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RESUMO

DALAPICOLA, R. C. Identificação de calcificações indicativas de ateroma em
imagens obtidas por radiografia odontológica panorâmica. 2018. 75p. Monografia
(Trabalho de Conclusão de Curso) - Escola de Engenharia de São Carlos, Universidade de
São Paulo, São Carlos, 2018.

Este trabalho teve como objetivo a análise de imagens de radiografia odontológica pa-
norâmica, a fim de detectar estruturas atípicas na região da carótida que pudessem ser
calcificações indicativas de ateroma. Ele propõe o uso de técnicas de processamento de
imagens para indicar a região de um possível ateroma, quando presente. O algoritmo
usa a técnica CLAHE para salientar os detalhes da imagem, e usa filtros propostos no
próprio trabalho para gerar imagens binárias com as regiões que forem mais intensas que
sua vizinhança. Em seguida faz uma análise do tamanho de cada região, eliminando as
que não são condizentes com o tamanho de um ateroma. Feito isso, ele usa as regiões
restantes como máscaras sobre a radiografia de entrada, e passa a analisar a intensidade
dos pixels dentro de cada máscara. Ele analisa a localização e a intensidade da região em
si, da vizinhança da região, e também a relação com as outras regiões detectadas pelo
filtro. Com todas as informações, ele decide se a região em questão contém ou não uma
placa de ateroma; e em caso positivo, traça um retângulo em torno da mesma. A técnica
proposta teve uma sensibilidade de 75% nas amostras utilizadas, com uma acurácia de
90, 5%, e valor preditivo positivo de 50%.

Palavras-chave: Ateroma. Aterosclerose. Processamento de imagem. Radiografia Pano-
râmica. CAD.





ABSTRACT

DALAPICOLA, R. C. Identification of atheroma indicative calcifications in
images obtained by dental panoramic radiography. 2018. 75p. Monografia
(Trabalho de Conclusão de Curso) - Escola de Engenharia de São Carlos, Universidade de
São Paulo, São Carlos, 2018.

This work had as goal the analysis of dental panoramic radiographs, in order to detect
atypical structures in the carotid region that might be indicative of atheroma calcifications.
It proposes the use of image processing techniques to indicate the region of a possible
atheroma, when existent. The algorithm uses the CLAHE technique to enhance the image
details, then uses filters proposed in the own work to generate binary images with the
regions which are more intense than its neighborhood. Subsequently it analyses the size
of each region, eliminating the ones that are not consistent with the size of an atheroma.
After that, it uses the remaining regions as masks over the input radiograph, and analyses
the intensity of the pixels inside the mask. It analyses the location and intensity of the
region itself, the region’s neighboorhood, and also the correlation with the other regions
detected by the filter. With all the information, it decides whether the region in question
contains or not an atheroma plaque; and in positive case, it draws a rectangle around
it. The proposed technique had a 75% sensibility on the tested samples, with a 90, 5%
accuracy, and 50% positive predictive value.

Keywords: Atheroma. Atherosclerosis. Image processing. Panoramic Radiograph. CAD.
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1 INTRODUÇÃO

1.1 Contextualização

A aterosclerose é a principal patogenia de doenças vasculares periféricas e cerebrais,
sendo a causa que lidera o ranking de óbitos no mundo ocidental, acima de qualquer outra
doença (KUMAR; ABBAS; ASTER., 2016).

A aterosclerose carotídea, em particular, se manifesta na forma de placas atero-
matosas nas artérias carótidas comuns, internas e externas, e é a causa mais comum de
acidentes vasculares cerebrais (AVC) (TUNAS, 2012). Só no Brasil, o AVC chega a causar
10,7 milhões de internações e 80 mil óbitos por ano (WILLIG; SOLDA, 2016).

A doença pode se apresentar de forma assintomática, ou sintomática. No primeiro
caso o paciente convive com a doença até que a placa se rompa, causando o entupimento
de alguma artéria, o que pode deixar sequelas ou levar a óbito. No caso sintomático, apesar
de ser maior a chance do diagnóstico, a placa ateromatosa tem uma probabilidade maior
de se romper, o que aumenta a urgência da sua detecção (CARR et al., 1996).

Já a radiografia panorâmica é um dos exames mais usados na odontologia. De acordo
com (FRIEDLANDER; FRIEDLANDER, 1998), as lesões ateroscleróticas na bifurcação
da artéria carótida são visíveis e podem ser detectadas nesses exames. Friedlander e outros
foram os primeiros a descrever sobre o ateroma em radiografias odontológicas panorâmicas,
indicando as maneiras que a placa poderia se apresentar (WILLIG; SOLDA, 2016).

A partir de então, profissionais que avaliavam radiografias panorâmicas no dia a dia
passaram a exercer um papel importante no diagnóstico da aterosclerose: a identificação
de placas ateromatosas, mesmo em exames com objetivos completamente distintos. Mesmo
que a identificação nesse tipo de imagem não seja o suficiente para um diagnóstico final, é
o bastante para encaminhar o paciente para um profissional da área, que realizará exames
mais específicos, e decidirá como agir.

1.2 Justificativa

Apesar de visível em radiografias odontológicas, muitas vezes essas imagens apre-
sentam sobreposições de estruturas ou artefatos; dificultando, assim, a identificação do
que está presente nela.

Outro ponto que dificulta a identificação do ateroma é justamente um dos principais
motivos que a radiografia odontológica panorâmica é útil para identificá-lo: esses exames
são rotineiros, e nunca têm como objetivo a identificação de calcificações indicativas de
aterosclerose. Por um lado, isso significa que diariamente um número grande de pessoas é
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submetido a esse exame, e como sua função original não é a detecção de placas ateromatosas,
qualquer diagnóstico negativo para essa patologia não terá submetido o paciente a radiação
desnecessária. Por outro lado, o profissional não está procurando pelo ateroma, visto
que o exame tem outro fim. Além disso, a baixa incidência do ateroma, cerca de 1,65%
(MEYER et al., 2012), reforça o hábito de não prestar atenção em áreas com possíveis
placas, diminuindo a sensibilidade dos profissionais para diagnosticar esse tipo de estrutura,
quando presente.

Por esse motivo, seria útil um sistema que indique quando aparecerem calcificações
em regiões próximas às artérias carótidas do paciente, pois podem ser indicativas de
aterosclerose. Um algoritmo que fizesse isso com eficácia poderia aumentar significantemente
a sensibilidade dos profissionais nessa primeira detecção de ateroma, quando este aparece
como um achado incidental no exame odontológico. Consequentemente aumentando o
número de diagnósticos de aterosclerose em estágios não tão avançados, e potencialmente
salvando a vida dos pacientes.

1.3 Objetivos

O objetivo desse projeto é propor um sistema capaz de indicar a presença de
ateromas em radiografias odontológicas panorâmicas. Esse sistema deve ser robusto o
suficiente para não acusar a presença de ateroma quando não houver, ou errar com baixa
frequência. Caso o sistema acuse falsamente a presença de placas em muitas imagens,
pode ocorrer novamente o problema do profissional parar de prestar atenção às acusações
feitas, e simplesmente ignorá-las. Ao mesmo tempo, o sistema deve reconhecer e indicar as
placas ateromatosas que aparecerem na radiografia, para gerar um aumento significativo
na sensbilidade do diagnóstico da aterosclerose por profissionais.

Idealmente o sistema seria acionado durante a própria aquisição da imagem, e
mostraria a imagem processada para o profissional. Caso não houvesse placa ateromatosa,
o profissional veria a imagem da radiografia panorâmica do mesmo modo que veria caso
não houvesse o sistema. Já caso a placa esteja presente, deseja-se que a imagem mostrada
tenha o ateroma ressaltado, para atrair a atenção do avaliador. A imagem armazenada seria
a imagem que não passou pelo sistema, para não interferir negativamente em avaliações
futuras.
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2 CONCEITOS E BASE TEÓRICA

2.1 Aterosclerose

2.1.1 Formação

Aterosclerose é uma doença inflamatória que ocorre em artérias. Quando lipo-
proteínas de baixa densidade (LDL - low density lipoproteins) que circulam pelo sangue
se chocam com a camada mais interna da artéria, o endotélio, as células dessa camada
podem ser danificadas. Isso permite que as LDL adentrem a parede endotelial, gerando um
acúmulo de lipoproteínas entre o endotélio e a camada muscular da artéria. Os leucócitos
(glóbulos brancos) são atraídos por esse acúmulo de LDL, e atravessam a parede endotelial
para fagocitar as moléculas de gordura ali presentes. Com o número de células lipoproteicas
muito maior que de leucócitos, estes fagocitam as LDL até que eles próprios morram. Os
leucócitos mortos pela ingestão de LDL são chamados de células espumosas. Ao morrer,
essas células liberam citocina, que atraem ainda mais glóbulos brancos, levando a um
acúmulo de células espumosas e de LDL entre a parede endotelial e a camada muscular da
artéria. À medida que mais e mais dessas células vão se acumulando, elas formam uma
lesão chamada de estria gordurosa (KUMAR; ABBAS; ASTER., 2016). A lesão descrita
pode ser visualizada na Figura 1 em um corte coronal da artéria.

Figura 1: Estria gordurosa mostrada em um corte coronal da artéria

Fonte: adaptado de (KUMAR; ABBAS; ASTER., 2016)

Apesar de envolvida pelo endotélio, as estrias gordurosas permitem que o sangue
coagule ao contato. Isso faz com que plaquetas se acumulem sobre o endotélio que cobre a
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estria, e soltem substâncias que incentivam o crescimento muscular na área. Essa substância
atrai até o endotélio células musculares presentes na túnica média da artéria. As células
musculares, estimuladas pelas substâncias excretadas pelas plaquetas, formam um conjunto
chamado de “capa fibrosa”, que é uma camada de proteção entre as células espumosas e
a corrente sanguínea. O conjunto da capa fibrosa com a estria gordurosa é chamado de
placa ateromatosa, ou ateroma (KUMAR; ABBAS; ASTER., 2016).

Com o aumento de células necróticas, aumenta-se também o depósito de cálcio na
placa, através de processos que ainda são debatidos pela medicina. Sem células vivas capazes
de absorver o cálcio, ele eventualmente se cristaliza, tornando a placa e, consequentemente,
a parede da artéria mais rígidas (KUMAR; ABBAS; ASTER., 2016). A placa ateromatosa,
com aglomerados de cálcio cristalizado, pode ser visualizada na Figura 2.

Figura 2: Placa de ateroma mostrada em um corte sagital

Fonte: (KUMAR; ABBAS; ASTER., 2016)

Eventualmente a capa fibrosa do ateroma pode se romper, liberando o contato entre
o aglomerado de células espumosas e a corrente sanguínea. Quando ocorre esse contato,
o sangue coagula rapidamente, diminuindo ainda mais a área da artéria disponível para
o fluxo sanguíneo, e possivelmente comprometendo o abastecimento de oxigênio para os
tecidos que dependem daquela artéria. Outra possível complicação é esse coágulo se soltar,
e entupir artérias menores, cortando completamente o fluxo sanguíneo para áreas do corpo
abastecidas pela artéria entupida (KUMAR; ABBAS; ASTER., 2016).

2.1.2 Aterosclerose carotídea

Enquanto a aterosclerose pode gerar placas de ateroma em diferentes artérias, a
aterosclerose carotídea é focada nas placas que surgem na artéria carótida.

Na aterosclerose carotídea as placas surgem próximas ao seio carotídeo(TUNAS,
2012), onde a carótida comum se bifurca e forma a carótida externa e a carótida interna, que
leva o fluxo sanguíneo para o cérebro (NETTER, 2011). Mais especificamente, essas placas
surgem na altura entre as vértebras C3 e C4, em até 4cm abaixo do ângulo da mandíbula
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(TUNAS, 2012). Antes da bifurcação a artéria carótida comum tem um diâmetro total
entre 4,3mm e 7,7mm (LIMBU et al., 2006).

Figura 3: Localização da bifurcação da carótida em imagem (a) frontal e (b) lateral

Fonte: adaptado de (BioDigital Human Plataform, 2018) e (NETTER, 2011)

Na Figura 3 pode-se ver a localização da bifurcação carotídea em diferentes ângulos.
Pela região espacial da artéria, e sabendo a altura que a placa ateromatosa surge, é possível
se ter uma ideia da região que ocupará quando exposta por um exame de radiografia
panorâmica de maxila.

A aterosclerose carotídea pode ou não ter sintomas. No caso da doença ser sintomá-
tica, a diminuição ou obstrução do fluxo sanguíneo pode causar principalmente sintomas
oculares, como a perda súbita de visão (NETO, 2016), ou sintomas provenientes da falta
de oxigenação do cérebro, como em acidentes vasculares cerebrais (FISHER et al., 2005).
Isso se dá pelo fato de uma das ramificações da carótida comum, a carótida interna, ser
responsável pelo abastecimento sanguíneo do cérebro e do olho (NETTER, 2011).

O caso sintomático tem maior incidência em pessoas de 66± 7 anos. Nesse estágio,
cerca de 24% da placa ateromatosa está calcificada, e 53% desta é composta por macrófagos.
Já os casos assintomáticos têm maior incidência na idade de 71±7 anos. A parcela calcificada
da placa nesse caso é o dobro de quando há sintomas, chegando a 48%. Em compensação,
apenas 23% da placa é composta por macrófagos (SHAALAN et al., 2004).

Pelo fato de mais da metade da placa ser composta por macrófago nos casos
sintomáticos, os efeitos de inflamação são muito mais fortes, o que as torna mais propensa
de ruptura. Já nos casos assintomáticos, quase metade da sua composição é cálcio, o que
torna a placa mais estável, e também mais visível em exames médico-odontológicos de
radiografia.
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2.2 Imagens Digitais

Para que as imagens pudessem ser armazenadas, manipuladas e tratadas houve
a necessidade de defini-las matematicamente, para que deixem de ser meros impulsos
de luz momentâneos. Uma dessas definições, que é a que será adotada neste trabalho, é
considerar uma imagem como uma função de intensidade de um certo sinal bidimensional
(BALLARD, 1982). Além disso, todas as entradas e saídas dessa função são quantizadas,
atribuindo a elas um número limitado de valores que podem assumir, e possibilitando que
computadores consigam manipulá-las. Desse modo, as imagens de radiografias panorâmicas
podem ser representadas como uma função da intensidade dos raios X incidentes, definida
como f(x, y), onde x e y são coordenadas espaciais (GONZALEZ; WOODS, 2002). Logo
a imagem f , com n linhas e m colunas, pode ser representada pela igualdade na Equação
2.1.

f =



f(0, 0) f(0, 1) ... f(0, m− 1)
f(1, 0) f(0, 1) ... f(0, m− 1)

. . . .

. . . .

. . . .

f(n− 1, 0) f(n− 1, 1) ... f(n− 1, m− 1)


(2.1)

Como é possível observar na Equação 2.1, uma imagem f possui um número bem
definido de elementos, cada um com uma coordenada (x, y) específica. Cada um desses
elementos é chamados de pixel, que vem do termo picture element (GONZALEZ; WOODS,
2002).

Os valores possíveis para os pixels de f variam dependendo do contexto que se está
utilizando a imagem. Imagens padrões costumam usar valores de intensidade 8 bits, ou
seja, a imagem tem um total de 256 níveis de intensidade (nível 0 ao 255). Há casos, como
em algumas imagens médicas em que se deseja maior discernimento na intensidade de
cada pixel, que esta tem valores de até 16 bits (65.536 níveis). Outra situação frequente
é se deparar com imagens em que se opta por usar apenas dois níveis de intensidade, as
chamadas imagens binárias. Nesse tipo de imagem, os pixels no nível alto recebem o nome
de pixel de objeto, enquanto os pixels de nível baixo recebem o nome de pixel de fundo de
imagem (GONZALEZ; WOODS, 2002).

As imagens binárias são muito utilizadas pois alguns processos são muito bem
definidos para esse tipo de imagem, como a dilatação, erosão, e segmentação, que serão
descritos posteriormente. Além disso, ela pode ser usada como uma máscara para definir
uma região de interesse em outra imagem. Por exemplo, pode-se processar uma imagem em
escala de cinza para gerar uma imagem binária onde os pixels de objeto sejam apenas um
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objeto específico da imagem, e classificando todo o resto como pixel de fundo. Multiplicando
essa imagem obtida sobre a imagem original, isola-se apenas o objeto desejado, com toda
a informação que ele possuía na imagem original.

Uma prática bem difundida é a normalização das intensidades da imagem. Ao
invés de usar seus valores entre 0 e 255, ou 0 e 65.535, usa-se o valor entre 0 e 1. Desse
modo, o processamento independe do número de valores que a função pode assumir. Junto
à normalização, é comum adotar a prática de considerar que os pixels podem assumir
qualquer valor entre 0 e 1. Ou seja, tratar o conjunto de valores que o pixel pode assumir
como contínuo, e não como discreto. Apesar disso ir de encontro ao que foi definido
anteriormente, é uma técnica frequentemente aplicada e interessante para diminuição de
erros, e no fim do processamento a imagem voltará a atender todas as características
previamente especificadas.

Na aplicação de múltiplos filtros sequenciais, pode ocorrer o acúmulo de erro devido
a quantização. Supõe-se o caso em que se passe um filtro de média numa imagem, e em
seguida aplique um algoritmo que, a partir de um ponto inicial, segue os pixels com valores
mais próximos, a fim de determinar quais pixels fazem parte da mesma região.

Figura 4: Diferença no valor do pixel central de (a) quando o resultado é ou não quantizado

(a): 3 pixels consecutivos
(b): Aplicação de filtro de mé-
dia no pixel central de (a),
com resultado quantizado

(c): Aplicação de filtro de mé-
dia no pixel central de (a),
sem quantização

Fonte: autoria própria

Pela Figura 4 percebe-se que o algoritmo que procura os valores mais similares do
pixel atual escolheria aleatoriamente por onde seguir em (b), enquanto em (c) está bem
definido que o pixel à sua direita é o mais próximo de seu valor.

Ao terminar de executar todos os filtros e processamentos na imagem, basta
aproximar o valor de cada pixel para o valor do nível de intensidade mais próximo
suportado pela imagem. Desse modo, o erro de quantização aparece apenas no final do
processamento, ao invés de ir se acumulando a cada operação feita.

Cada um desses níveis de intensidade de f(x, y) está associado a uma cor em uma
escala de cinza, sendo atribuídas cores mais escuras a valores menores, e mais claras a cores
maiores. A cor mais escura da escala é o preto, e a mais clara é o branco (GONZALEZ;
WOODS, 2002).
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2.2.1 Histograma

Ao observar uma imagem, a percepção sobre ela é subjetiva. Enquanto alguns podem
achar ela boa, outros acham ela muito clara ou escura. Enquanto uns acham que a imagem
tem muito pouco contraste para a identificação de certas estruturas, outros preferem
esse contraste menor. Para tornar esses parâmetros menos subjetivos e dependentes do
observador, adotou-se um método objetivo de analisá-los: o histograma. O histograma de
uma imagem f pode ser descrito como uma função h, tal que

h(rk) = nk (2.2)

onde rk é o nível k de cinza da imagem, e nk é o número de pixels em f que estão no nível
rk. Desse modo, é possível saber alguns parâmetros como o brilho e o contraste de uma
imagem analisando apenas seu histograma. Os efeitos no histograma das variações dos
parâmetros citados podem ser percebidos da Figura 5.

Figura 5: Histograma de imagens com (a) alto brilho, (b) baixo brilho, (c) alto contraste e
(d) baixo contraste

(a) (b)

(c)
(d)

Fonte: adaptado do banco de dados fornecido pelo HRAC

Do mesmo modo que é possível perceber algumas características da imagem pelo seu
histograma, pode-se manipular o histograma para que a imagem apresente as características
desejadas. Quando a imagem está muito escura, pode-se manipulá-la de modo que o
histograma seja centralizado, e a partir daí melhor distribuído, aumentando, assim, seu
brilho e seu contraste (GONZALEZ; WOODS, 2002).

2.2.1.1 Equalização de histograma

Normalmente deseja-se que o histograma de uma imagem seja distribuído entre
todo o alcance do histograma (para um bom contraste), como é possível observar na Figura
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Tabela 1: Aplicação da equalização de histograma em uma imagem hipotética

rk nk sk calculado sk arrendondado
0 20 0,55 1
1 65 2,3 2
2 74 4,3 4
3 41 5,5 5
4 28 6,2 6
5 12 6,6 7
6 9 6,8 7
7 7 7,0 7

5 (c), e que sua distribuição seja o mais uniforme possível (para um bom brilho). Para
isso foram desenvolvidas técnicas para equalizar o histograma, ou seja, tentar transformar
a imagem de modo que seu histograma fique o mais uniformemente distribuído em todo
seu intervalo. Sendo L o número total de níveis de cinza que os pixels da imagem podem
assumir, N o número total de pixels na imagem, rk o nível k de cinza da imagem original,
a Equação 2.3 relaciona-os a um sk. Para equalização do histograma, mapeia-se todos
os pixels no nível rk e atribui-se um novo valor a eles, o valor do nível sk. Isso gera uma
imagem com um histograma mais bem distribuído (RICHARDS, 1993).

sk = L− 1
N

k∑
j=0

rj (2.3)

2.2.1.2 CLAHE (contrast limited adaptive histogram equalization)

Como foi citado na Subseção 2.2.1.1, a equalização de histograma é usada para
melhorar parâmetros como brilho e contraste na imagem. Mas pode acontecer alguma
perda de informação com pixels que já se encontram nos extremos do histograma antes da
equalização. Ao aumentar o contraste da imagem geral, algumas áreas agrupadas, com
intensidade alta, podem acabar perdendo ainda mais o contraste, ou até mesmo podem
cair no mesmo nível sk que sua vizinhança, perdendo completamente a informação da área.
A Tabela 1 apresenta uma equalização de histograma de uma imagem 16x16 de 3 bits.

Pode-se perceber pela Tabela 1 que há um maior contraste nos pixels que estavam
entre o nível 0 e 4, mas todos os pixels que estavam nos níveis 5, 6 e 7 foram jogados
para o nível 7. Isso significa que em uma região onde havia somente pixels nesses níveis a
informação foi perdida.

Foi para esse tipo de cenário que criou-se o filtro de equalização adaptativa de
histograma com limitação de contraste (CLAHE). O filtro CLAHE subdivide a imagem
em várias regiões menores não-sobrepostas de tamanho especificado, e aplica a equalização
de histograma em cada uma delas, limitando o contraste máximo por um dos parâmetros
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do filtro (KURT; NABIYEV; TURHAN, 2012). Desse modo, quando a imagem tem uma
área muito escura, e outra muito clara, as informações de cada uma não são perdidas, pois
a equalização delas é feita de maneira independente.

Para este trabalho, deseja-se que o pré-processamento das imagens sirva para
padronizá-las. Ou seja, imagens que tenham baixo brilho ou contraste e imagens que
tenham alto brilho ou contrates devem ser tratadas para que a imagem resultante tenha
um brilho e contraste bem similar. Para esse fim, optou-se pela escolha do filtro CLAHE,
pelos motivos citados.

Para se demonstrar o efeito do filtro, ele foi aplicado na imagem (a) da Figura 6,
obtendo a imagem (b) da mesma figura.

Figura 6: A Imagem (b) é o resultado da aplicação de um filtro CLAHE na Imagem (a)

Fonte: adaptado do banco de imagens fornecido pelo HRAC

Para avaliar o efeito que esse filtro teria em imagens com parâmetros como brilho
ou contraste diferentes, diminuiu-se o contraste da imagem (a) da Figura 6. Os resultados
podem ser vistos na Figura 7.

Figura 7: A imagem (a) é uma versão com menos contraste da Figura 6 (a), e a imagem
(b) é o resultado do filtro CLAHE aplicado a imagem (a)

Fonte: adaptado do banco de imagens fornecido pelo HRAC

Apesar da Figra 6 (a) e 7 (a) terem um contraste notoriamente diferente, o resultado
da aplicação do CLAHE em ambas é muito similar. O CLAHE, então, diminui o efeito que
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essas pequenas variações nas imagens de entradas causam nas etapas de processamento
posteriores.

2.3 Imagens radiográficas

As imagens radiográficas atuais são feitas a partir de sensores digitais, sensibilizados
por raio X. Uma fonte emite raios X, que passam pela área a ser radiografada e atingem
algum tipo de sensor. A absorção do raio x nos ossos é muito maior que em tecidos moles,
e isso faz com que as ondas que passaram por mais tecido ósseo tenham menos energia
ao chegar no sensor (BARRETT; SWINDELL, 1981). Sabendo a intensidade que atingiu
cada um dos receptores do sensor, é possível criar uma imagem digital usando a posição
(x, y) do receptor, sendo f(x, y) a intensidade medida. Após algum pré-processamento
padrão para melhorar a visibilidade, chega-se em imagens similares à Figura 8.

Figura 8: Exemplo de radiografia de tórax

Fonte: adaptado de (MARTINEZ, 2015)

Com a técnica descrita é possível ver projeções 2D de áreas 3D do corpo humano,
mas a imagem gerada fica sujeita a sobreposições de elementos. Para contornar esse
problema foram desenvolvidas as tomografias.

Nas tomografias, usando técnicas de movimentação no emissor de raios X e no
sensor, em conjunto com reconstruções matemáticas, é possível reconstruir apenas uma
fatia da imagem, como na Figura 9, eliminando o problema de sobreposição. Gerando
a imagem de várias fatias consecutivas, torna-se possível a reconstrução em 3D da área
radiografada. (BARRETT; SWINDELL, 1981).
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Figura 9: Exemplo de uma fatia da tomografia da cabeça

Fonte: (MBq [Public domain], 2005)

Avançando um passo ainda, podem-se usar as técnicas da tomografia para aplicações
além da já citada. Usando a técnica de movimentação de uma maneira mais específica
e bem calculada, é possível fazer a projeção do objeto em um plano focal específico
(BARRETT; SWINDELL, 1981). Em radiografias panorâmicas, esse plano focal é ao longo
da cabeça do paciente, gerando uma imagem planificada da mesma.

A radiografia odontológica panorâmica, por apresentar apenas um plano focal, volta
a ter os problemas de sobreposição de estruturas existentes na radiografia simples. Ainda
assim, ela é vantajosa em muitos casos se comparada à tomografia, por ser necessário
expor o paciente a uma dose de radiação cerca de 60 vezes menor, no caso de imagens
odontológicas (LECOMBER et al., 2001). Ela também é vantajosa em algumas aplicações,
especialmente na área odontológicas, se comparada a radiografias simples, por permitir
definir um plano focal que acompanha a circunferência da cabeça humana, gerando um
número de estruturas sobrepostas expressivamente menor do que uma radiografia simples
geraria. A Figura 10 mostra uma imagem odontológica obtida pela técnica de radiografia
panorâmica.

2.4 Filtros

Neste tópico serão tratados somente filtros no domínio espacial, visto que o trabalho
não usa filtros no domínio da frequência na imagem.

Como dito na Seção 2.2, as imagens são representadas matematicamente para que
possam ser tratadas e manipuladas. E é para este mesmo fim que foram definidos os filtros.



35

Figura 10: Exemplo de radiografia panorâmica de maxila

Fonte: (Coronation Dental Specialty Group, 2013)

Um filtro pode ser definido como uma função T, tal que

g(x, y) = T [f(x, y)] (2.4)

onde f(x, y) e g(x, y) são as imagens original e processada, respectivamente. A função T é
um operador em f definido sobre uma vizinhança de (x, y) (GONZALEZ; WOODS, 2002).

2.4.1 Dilatação e Erosão

A dilatação e erosão são técnicas aplicadas princialmente em imagens binárias.
Para se aplicar esses filtros são necessários dois elementos base: a imagem a ser aplicada,
chamada de f, e o elemento estruturador, chamado de t, que também é descrito como uma
matriz (GONZALEZ; WOODS, 2002).

2.4.1.1 Dilatação

No caso da dilatação, o elemento estruturador é centrado em cada pixel de f,
passando por toda a imagem e verificando possíveis intersecções entre t e f. Caso pelo
menos um pixel branco de t se sobreponha a um pixel branco de f, o pixel na posição
central de t será atribuído nível alto (pixel branco) na imagem de saída. E o contrário
também se aplica; caso nenhum pixel se sobreponha, o pixel central terá nível baixo (pixel
preto) (GONZALEZ; WOODS, 2002).

Na Figura 11 tem-se a imagem (a) de tamanho 8x8, e um elemento estruturador (b)
de tamanho 3x3, escolhido arbitrariamente em formato de cruz. Aplicando o procedimento
de dilatação descrito acima, obtém-se a imagem (c). Para melhorar a visualização, coloriu-se
na Figura 12 os pixels da Figura 11 (c) que já eram brancos em (a).
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Figura 11: Aplicação de dilatação em uma imagem exemplo

(a) Imagem exemplo

(b) Elemento estruturador

(c) Dilatação de (a) por (b)

Fonte: autoria própria

Figura 12: Resultado da dilatação da Figura 11 (c), diferenciando os pixels que já existiam
dos pixels que surgiram na dilatação

Fonte: autoria própria

Pela Figura 12 é mais fácil visualizar os efeitos do elemento estruturador em formato
de cruz na imagem. Todos os pixels diretamente ligados ao pixel central, seja vertical ou
horizontalmente, se tornaram brancos na imagem dilatada.

2.4.1.2 Erosão

O processo de erosão é bem similar ao de dilatação. O elemento estruturador também
varre todos os pixels da imagem, mas caso pelo menos um pixel não se intersecte, o pixel
da imagem resultante será zerado (o oposto do que acontece da dilatação) (GONZALEZ;
WOODS, 2002). A erosão pode ser vista como uma dilatação do fundo da imagem.
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Pode-se observar na Figura 13 a aplicação da erosão em uma nova imagem, com o
mesmo elemento estruturador usado na Figura 11.

Figura 13: Aplicação de erosão em uma imagem exemplo

(a): Imagem exemplo

(b): Elemento estruturador

(c): Erosão de (a) por (b)

Fonte: autoria própria

Para observar melhor o efeito da erosão, na Figura 14 estão ressaltado de cinza
todos os pixels que tiveram sua intensidade zerada ao aplicar o filtro na imagem.

Figura 14: Resultado da erosão da Figura 11 (c), apontando os pixels que foram deletados
na erosão

Fonte: autoria própria

É interessante notar que, durante o processo de erosão, grupos de pixels menores
foram completamente apagados, e a imagem não voltaria a original mesmo se aplicado uma
dilatação. Isso é especialmente útil quando se deseja limpar pequenos ruídos em imagens
binárias. Escolhendo um elemento estruturador do tamanho máximo que a estrutura deve
ter para ser considerada ruído, é possível eliminá-la completamente da imagem.
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Tabela 2: Operadores 3x3 mais comuns para detecção de borda

Operador Vertical Horizontal

Sobel 1
4

1 0 −1
2 0 −2
1 0 −1

 1
4

−1 −2 −1
0 0 0
1 2 1


Prewitt 1

3

1 0 −1
1 0 −1
1 0 −1

 1
3

−1 −1 −1
0 0 0
1 1 1


Frei-Chen 1

2+
√

2

 1 0 −1√
2 0 −

√
2

1 0 −1

 1
2+
√

2

−1 −
√

2 −1
0 0 0
1

√
2 1


Fonte: adaptado de (FILHO; NETO, 1999)

2.4.2 Detectores de bordas

Em imagens digitais, entende-se por borda a fronteira entre duas regiões que
apresentam uma diferença significativa em seu nível de cinza (FILHO; NETO, 1999).
Quanto exatamente é “significativo” varia com a imagem e com o que se deseja detectar.

A detecção de borda é um tema importante de se abordar em imagens digitais,
pois é um primeiro passo para detecção de algumas estruturas. Quando se é possível
detectar bordas limpas, tem-se os contornos dos objetos presentes na imagem. Alguns dos
operadores mais usados são apresentados na Tabela 2.

Cada um dos operadores da Tabela 2 dá um peso diferente aos pixels da vizinhança,
então a escolha pode variar com o problema e o tipo de imagem que se tem.

2.5 Segmentação

Segmentação é a divisão da imagem em suas regiões ou objetos. O maior problema
é definir a que nível ocorrerão essas divisões, visto que idealmente a segmentação tem
que ser específica o suficiente para se capturar o objeto necessário, mas não a ponto de
subdividir esse objeto em regiões ainda menores. Uma boa segmentação de imagens não
triviais é um dos maiores desafios do processamento de imagens (GONZALEZ; WOODS,
2002).

2.5.1 Threshold

A técnica de thresholding, ou limiarização, é umas das maneiras mais simples de
se transformar uma imagem em escala de cinza para uma imagem binária. Adotando um
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valor T como limiar, todos os pixels da imagem que estiverem a baixo desse valor são
considerados plano de fundo, e todos os pixels a cima desse limiar são considerados objetos.

Como essa técnica separa pixels objeto dos pixels plano de fundo, se escolhido um
T adequado, ela pode ser considerada uma das técnicas mais simples de segmentação,
apesar de também ser usadas para diversas outras aplicações.

2.5.2 ROI (Região de Interesse)

A região de interesse é a área relevante onde se fará o processamento (GONZALEZ;
WOODS, 2002). Apesar de uma definição simples, a escolha da uma região de interesse
tem um grande impacto no processamento da imagem.

Limitando a região, o custo de processamento cai normalmente de uma maneira
proporcional a área. Isso significa que uma região de interesse com metade da altura e
metade da largura da imagem já resulta num tempo de processamento quatro vezes menor
que o inicial.

A escolha da ROI também pode influenciar em tomadas de decisões importantes.
Quando objetos de interesse estão muito próximos, pode ser vantajoso analisar cada um
individualmente para se extrair o máximo de informações possíveis. Desse modo, pode-se
selecionar duas regiões individuais, ao invés de analisar diretamente a imagem como um
todo, eliminando o risco de um objeto interferir no outro (por bordas muito próximas, ou
cores parecidas).
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3 MATERIAIS E MÉTODOS

3.1 Base de Imagens

As imagens de radiografia panorâmica utilizadas nesse trabalho foram disponibiliza-
das pela divisão de odontologia do Hospital de Reabilitação de Anomalias Craniofaciais da
Universidade de São Paulo (HREAC-USP), que fica na cidade de Bauru. A base de imagens
é composta por 21 imagens, sendo que 4 foram classificadas pela equipe como contendo
ateroma, e 17 foram classificadas como imagens sem ateroma. As imagens possuem 1444
linhas, de 2590 a 2608 colunas, e uma densidade de 16 bits por pixel (bpp).

A maior parte dos pacientes do HREAC são jovens adultos. Devido ao baixo
número de pacientes com mais de 50 anos, e a baixa incidência de ateroma, o número de
radiografias com a patogenia é bastante reduzido (apenas 4 ao longo deste trabalho). Como
as imagens provêm de um hospital especializado em deformações craniofaciais, algumas
apresentam variações significativas se comparadas a radiografias panorâmicas padrões.
Mesmo assim nenhuma imagem foi descartada, devido ao já baixo número disponível.

Todas as imagens fornecidas já haviam sido pré-processadas pelo software de
aquisição da imagem, para facilitar a análise odontológica da radiografia. Desse modo,
o brilho e contraste da imagem já haviam sido definidos antes das radiografais serem
fornecidas para a pesquisa. As letras “R” e “L” também já estavam presentes nos cantos
inferiores esquerdo e direito, respectivamente, de cada imagem, para indicar a qual lado
do paciente aquele lado da imagem era referente.

3.2 Classificação das imagens

As imagens com e sem ateroma foram fornecidas pelo HREAC em diferentes pastas.
As radiografias de 1 a 4 haviam sido previamente classificadas como contendo ateroma, e
as radiografias 5 a 21 haviam sido classificadas como sem ateromas.

Para saber a localização exata dos ateromas, consultou-se a Dra. Bruna Stuchi
Centurion Pagin, doutora em odontologia pela Universidade de São Paulo, e o Dr. Vitor
Fiorin de Vasconcellos, clínino geral pela Universidade de São Paulo. Devido a algumas
radiografias apresentarem muita sobreposiçao de estruturas, alguns diagnósticos são incer-
tos. Na radiografia 1, o ateroma estava nítido, e a confirmaçao de apenas um profissional
foi suficiente para a certeza do diagnóstico. Na radiografia 2, ambos concordaram no
diagnóstico, e apontaram as mesmas estruturas. Na radiografia 3, apenas a Dra. Bruna
teve confiança para afirmar um diagnóstico, e na radiografia 4 houve discordância entre os
diagnósticos dos dois profissionais. Nesse casos foi consultado um terceiro profissional, o
radiologista Dr. Gustavo Monjardim.
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Tabela 3: Classificação da presença ou ausência de placa ateromatosa por diferentes
profissionais
Radiografia Artéria Carótida Dra. Bruna Pagin Dr. Vitor Vasconcellos Dr. Gustavo Monjardim

1 Direita - Presente -
1 Esquerda - Ausente -
2 Direita Ausente Ausente -
2 Esquerda Presente Presente -
3 Direita Presente - -
3 Esquerda Presente - -
4 Direita Ausente Ausente Ausente
4 Esquerda Presente Ausente Ausente

Tabela 4: Classificação final adotada da presença ou ausência de placa ateromatosa

Radiografia Artéria Carótida Classificação
1 Direita Presente
1 Esquerda Ausente
2 Direita Ausente
2 Esquerda Presente
3 Direita Presente
3 Esquerda Presente
4 Direita Ausente
4 Esquerda Ausente

A afirmação de cada profissional sobre a presença ou ausência da placa pode ser
consultada na Tabela 3. Adotou-se, enfim, o diagnóstico em que o maior números de
doutores concordaram. A classificação que foi adotada sobre a presença de ateroma em
cada artéria das imagens é a presente na Tabela 4. As radiografias 5 a 21, que estavam
pré-classificadas como sem ateroma, não foram submetidas a uma nova análise pelos
profissionais citados.

3.3 Estimativa de medidas

Para se definir o tamanho de alguns filtros, é necessário se ter uma estimativa
de quantos pixels equivalem a quantos centímetros na imagem. Para isso, usou-se como
referência os filmes radiográficos.

Os filmes radiográficos para radiografia panorâmica têm 30cm de largura (Dabi
Atlante, 2013). Como as imagens digitais podem surgir tanto da digitalização de um filme,
quanto diretamente de sensores digitais, ambas as técnicas de aquisição têm características
muito similares em questões de distorção e tamanho. Por esse motivo, ao carregar a
imagem no algoritmo, divide-se 30cm pelo número de pixels que ela apresenta de largura,
conseguindo um fator de conversão de pixels para centímetros.

Fazendo isso, ignora-se as distorções geradas na radiografia panorâmica, e considera-
se que a imagem é totalmente linear. Apesar de não ser verdade, o nível de precisão exigido
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para o cálculo do tamanho das estruturas não é alto, visto que o propósito do trabalho
não é a medição de estruturas, mas sua detecção.

3.4 Método proposto

A maioria dos métodos de processamento de imagens para diagnóstico de imagens
médicas utiliza algum tipo de rede neural ou máquina de vetores de suporte (SVM) para
classificar uma imagem desejada. O problema dessas abordagens é que elas exigem uma
quantidade alta de amostras para treiná-las, além de um conjunto de testes. Devido a isso,
optou-se por uma abordagem mais analítica do problema, definindo os critérios de decisão
do ateroma baseado em sua formação fisiopatológica e das características observáveis nas
imagens em que está presente.

Figura 15: Fluxograma do método proposto para detecção de ateroma nas imagens

Fonte: autoria própria

Na Figura 15 pode-se ver todo o fluxograma do processo proposto para a detecção
dos ateromas. Nos próximos pontos serão explicadas as ações de cada bloco:

• Imagem de entrada

A imagem de entrada do algoritmo não deve ser a imagem sem processamento
que vem direto do sensor, e sim a imagem com o processamento necessário para a análise
humana. Caso o algoritmo proposto seja inserido diretamente do software de captura da
imagem, o ideal é que ele seja executado após os filtros que deixam as imagens analisáveis
por profissionais, e antes de serem inseridas as marcações, como o “R” e “L” nos cantos, e
também antes que a imagem seja compactada para armazenamento ou transferência.

• Recorte do canto inferior direito
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Dado que localização espacial do ateroma é limitada, trabalha-se inicialmente
apenas com o canto inferior direito. É selecionada uma área de 40% da altura da imagem,
a partir da borda inferior, e 30% da largura da imagem, a partir da borda direita. Qualquer
informação fora dessa área é completamente ignorada.

• Pré-processamento

O pré-processamento nesse trabalho se dá unicamente pela aplicação da técnica
CLAHE. Essa técnica é capaz de diminuir o efeito de leves variações de brilho e contraste
em imagens. Além disso, ela também executa uma função muito importante do algoritmo:
ela ressalta estruturas levemente mais intensas que sua vizinhança, o que torna a placa
ateromatosa mais distinguível.

• Segmentação

O processamento principal que leva a imagem pré-processada para um estágio
segmentado é feito a partir de filtros elaborados pelo autor. Esses filtros geram imagens
binárias, em que os pixels objetos são os que estão em uma área significantemente mais
intensa que sua vizinhança. Desse modo, cada aglomerado de pixels objetos é definido
como uma região de interesse, e são uma possível formação de ateroma.

• Eliminação de regiões pelo tamanho

O primeiro passo para a tomada de decisão sobre a presença ou ausência de placas
em cada região de interesse é a análise da forma da região detectada. Pela altura, largura,
e área dos pixels objetos da região, eliminam-se todas as que não são compatíveis com o
tamanho de uma placa ateromatosa.

• Análise das regiões restantes

Com algumas regiões de interesses já eliminadas por sua forma, é feita uma análise
mais minuciosa das restantes. São levantados parâmetros como a localização (x, y) da
área, a média de intensidade na região, em suas bordas, um pouco à direita e à esquerda,
um pouco mais afastado à direita, a média na região expandida, e na região expandida
apenas verticalmente. Esses parâmetros são levados em consideração tanto na imagem
antes da aplicação do CLAHE quanto na imagem já pré-processada.

Com todos esses dados, atribui-se uma pontuação para cada uma das regiões
restantes, com base nas relações entre esses parâmetros.

• Marcação de regiões com ateroma
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Com todas as regiões de interesse pontuadas, avalia-se tanto a pontuação absoluta
de uma região quanto a relação desta com a pontuação das outras regiões presentes na
imagem. Após essa avaliação, decide-se se a região de interesse em questão contém ateroma
ou não. Em seguida é feito um retângulo ao redor das regiões que foram classificadas como
positivas para a presença da placa.

• Volta da parte cortada para imagem original

Em posse da imagem do canto inferior direito com os retângulos ressaltando os
ateromas, esta é posta novamente na imagem total da radiografia. Desse modo, tem-se a
radiografia de entrada, mas com todos os ateromas da carótida esquerda (que fica do lado
direito da imagem) ressaltados.

• Espelhamento da imagem

Para se detectar os ateromas no canto esquerdo da imagem, espelha-se a imagem
de saída do último passo. Desse modo, o canto esquerdo é espelhado para o canto direito,
e o canto direito, já com os ateromas detectados, é espelhado para o canto esquerdo. Em
seguida, repetem-se todos os passos desde o recorte da imagem, obtendo, assim, uma
imagem espelhada em que ambos os lados passaram pela avaliação da presença de ateroma.
Finalmente, ao atingir novamente este passo, espelha-se a imagem de volta.

• Exibe imagem de saída

Com a imagem espelhada duas vezes, ela volta a sua orientação original, mas desta
vez com as áreas de ateromas destacadas (quando presentes) por retângulos coloridos.
Essa imagem é mostrada para o profissional, para que ele dê o diagnóstico final. Ela não
substitui a imagem original capturada pelo sensor.

3.5 Recorte de macro regiões e pré-processamento

Como citado na Seção 2.3, a técnica de radiografia panorâmica gera uma imagem
planificada da cabeça do paciente, na região maxilar. Pela Subseção 2.1.2, sabe-se que a
bifurcação da carótida, local onde a placa ateromatosa se forma na aterosclerose carotídea,
fica pouco abaixo do ângulo da mandíbula. E pela Figura 3 observa-se que a artéria
carótida se localiza bem próxima às vértebras. Na radiografia panorâmica, as vértebras,
quando visíveis, são localizadas nas extremidades da imagem. Desse modo, as bifurcações
das carótidas se localizam próximas a extremidade lateral da imagem, na metade inferior
(visto que a maxila fica centralizada). Pode-se confirmar essa localização ao analisar as 3
imagens com aterosclerose na Figura 16.
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Figura 16: Localização em vermelho das placas nas 3 imagens diagnosticadas com ateros-
clerose

(a) (b)

(c)

Fonte: adaptado do banco de imagens fornecido pelo HRAC

Para diminuir o processamento necessário, e para excluir possíveis regiões similares
a ateromas que estão presentes na maxila ou na mandíbula, processam-se somente os cantos
inferiores da imagem. Foram analisadas as imagens fornecidas, tanto as que apresentavam
aterosclerose quanto as que não a apresentavam, e optou-se por cortar os 40% inferiores, e
30% laterais da imagem. Da parte cortada é gerada uma nova imagem, onde ocorre todo
o processamento para decisão das regiões com ateroma. A partir desse momento, essa
imagem recortada será chamada de radiografia original, visto que é a parte relevante da
radiografia de entrada, ainda sem ter algum processamento.

Na Figura 17 ressaltou-se no retângulo verde as áreas a serem recortadas para o
processamento. Percebe-se que os ateromas não estão muito próximos aos limites, e não
há nenhuma perda de informação relevante ao se analisar somente as áreas apontadas.

Como o processamento de cada lado é em série, faz-se inicialmente o recorte apenas
do lado direito inferior da imagem, para detectar as placas ali presentes.

Definida a parte da imagem onde ocorrerá o processamento, executa-se a técnica
CLAHE. Escolheu-se empiricamente um limite que ressaltasse um pouco as estruturas
presentes, mas sem aumentar exageradamente o contraste dentro das regiões, para evitar a
formação de áreas muito claras onde não houvesse uma estrutura previamente. O resultado
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Figura 17: Localização em verde da área proposta a ser recortada para o processamento

(a) (b)

(c)

Fonte: adaptado do banco de imagens fornecido pelo HRAC

do corte da imagem seguido pela aplicação do CLAHE pode ser observado na Figura 18.

Figura 18: Efeito do CLAHE na parte recortada da radiografia 2

(a): Imagem recortada antes da aplicação
do CLAHE

(b): Imagem recortada após a aplicação do
CLAHE

Fonte: adaptado do banco de imagens fornecido pelo HRAC
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3.6 Segmentação

O processo escolhido para a segmentação final da imagem foi o de threshold, um
dos mais simples abordados na literatura. Optou-se por esse método para se ter mais
controle sobre a área exata da segmentação, uma vez que é mais difícil prever o resultado
exato da segmentação em algoritmos mais complexos. Definido o modo de segmentação,
surge o desafio de se processar a imagem de um modo que dê bons resultados ao aplicar o
filtro de threshold.

Como a placa ateromatosa apresenta uma porcentagem de cálcio, ela aparece em
radiografias panorâmicas como uma região fechada, de intensidade maior que a vizinhança.
Devido a sua formação, a placa tende a ter uma intensidade mais constante no plano
transversal, e a ter variações significativas no plano frontal. Devido a isso, traçou-se como
objetivo ressaltar pixels que estivessem significantemente mais intensos que os presentes
em sua vizinhança horizontal. Essa vizinhança deve ser grande o suficiente para abranger
todo ou boa parte de um corte transversal de um ateroma, ou seja, abranger o diâmetro
da artéria.

Para atingir o objetivo citado, criaram-se filtros que varrem cerca de 3, 5mm para
cada lado ao redor de um pixel central, totalizando 7mm varridos, aproximadamente o
tamanho da artéria carótida comum. Esses filtros calculam a média e o desvio padrão
do fragmento de linha analisado, usando-os de maneiras distintas para gerar imagens
com leves diferenças. Considere f(x, y) a função que descreve a intensidade da uma
imagem f, stdDev(x, y) a função que calcula o desvio padrão ao redor do ponto (x, y), e
mean(x, y) a função que calcula a média ao redor do ponto (x, y). As equações 3.1 e 3.2
descrevem a relação entre a entrada e cada uma das imagens de saída geradas pelos filtros
propostos. Durante a execução desses filtros, os valores das intensidades da imagem foram
normalizados, ou seja, os pixels possuiam valores entre 0 e 1.

fe(x, y) = stdDev(x, y)2 ∗ (e0.7∗ f(x,y)−mean(x,y)
stdDev(x,y) − 1.8) (3.1)

fl(x, y) = 1000 ∗ f(x, y)− 1.1 ∗mean(x, y)
stdDev(x, y) (3.2)

Adota-se como fe a imagem resultante da aplicação do filtro descrito pela Equação
3.1, e fl a resultante do filtro descrito pela Equação 3.2.

A Equação 3.1 é uma função exponencial, que penaliza valores abaixo da média
e desvio padrão baixo, enquanto a equação 3.2 é uma função linear, e penaliza apenas
valores abaixo de 110% da média. Como a fração do filtro linear está multiplicada por 1000,
ele se torna praticamente um filtro cuja saída é uma imagem binária, levando para 0 todos
os valores abaixo de 110% da média, e para 1 os valores acima. Já o filtro exponencial só
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se torna relevante em áreas onde o desvio padrão seja significativo, e mesmo nessas áreas
a intensidade do pixel deve ser mais de um desvio padrão acima da média. Para os casos
de f(x, y) ≈ mean(x, y) + 1 ∗ stdDev(x, y), ou seja, o pixel está apenas um desvio padrão
acima da média, tem-se fe(x, y) = 0, 2 ∗ stdDev(x, y)2, o que é quase nulo, visto que os
valores dos pixels variam apenas entre 0 e 1.

A Figura 18 (b) foi submetida a ambos os filtros, e os resultados podem ser vistos
na Figura 19.

Figura 19: Saídas dos filtros desenvolvidos para destaque de áreas

(a): Resultado saída do filtro exponencial
aplicado a Figura 18 (b)

(b): Resultado saída do filtro linear aplicado
a Figura 18 (b)

Fonte: gerado pelo algoritmo proposto, tendo como entrada uma imagem fornecida pelo
HRAC

É interessante reparar que a imagem de saída do filtro exponencial apresenta regiões
menores e mais segmentadas, com algumas regiões cinzentas. Já o filtro linear apresenta
quase que somente pixels brancos ou pretos, e possui áreas maiores e mais ligadas, ainda
contendo a maior parte da informação relevante sobre a forma das áreas presentes na
imagem original. Dessa forma, a imagem de saída do filtro exponencial se torna uma boa
candidata para se usar um threshold para segmentação, enquanto a imagem de saída do
filtro linear se torna uma boa imagem para a análise da forma da área ressaltada.

Aplicando um threshold de metade do valor máximo na imagem de saída do filtro
exponencial, obtém-se uma imagem binária, onde os pixels objetos são alguma região que
se destaca de sua vizinhança. Em seguida, aplica-se 3 iterações de dilatação, para unir
estruturas muito próximas, seguido por 5 iterações de erosão, para eliminar estruturas
pequenas isoladas, e mais 2 iterações de dilatação, para voltar as estruturas restantes
para um tamanho aproximado do original. Usa-se, então, a função findContours(), da
biblioteca OpenCV, para a detecção de contornos, cuja saída são várias imagens, cada
uma contendo uma região fechada da imagem de entrada. Desse modo, todas as áreas
relevantes da radiografia foram segmentadas, e cada segmento é acessível individualmente.
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Essas áreas separadas serão chamadas de segmentos da imagem.

3.7 Análise da forma

O primeiro critério para decidir se cada uma dos segmentos tem ou não um ateroma
é ver o tamanho do seu conteúdo - ou seja, verificar a altura, a largura, e a área da
estrutura presente dentro dessa área. Para isso, listam-se todos os segmentos em um vetor,
e analisa-se um a um. Joga-se o segmento em uma nova imagem, e usam-se 5 iterações de
dilatação. Usando essa imagem dilatada como máscara na imagem fl (imagem resultante
do filtro linear, calculada pela Equação 3.2), tem-se a área relevante da radiografia isolada
das demais áreas.

Na Figura 20 pode-se ver o resultado das ações mencionadas no parágrafo acima.

Figura 20: Aplicação de máscara para isolamento das estruturas da imagem fl

(a): Imagem fl
(b): Resultado da dilatação de um dos seg-
mentos detectados

(c): Aplicação de (b) como máscara de (c)

Fonte: gerado pelo algoritmo proposto, tendo como entrada uma imagem fornecida pelo
HRAC

Com apenas um dos segmentos isolado, detectam-se as coordenadas dos pixels mais
extremos em cada direção. Caso haja mais de uma região na imagem, e elas estejam quase
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conectadas, como ocorre na Figura 20 (c), ela passa a ser considerada apenas uma região.

Para que a região não seja eliminada ela deve ter uma largura entre 1, 7mm e
11, 5mm, e sua altura deve estar entre 1, 7mm e 10mm. O valor máximo foi escolhido
para ser capaz de selecionar ateromas mesmo quando localizados na bifurcação da artéria,
onde podem não ficar completamente vertical. Já o valor mínimo foi escolhido grande
o suficiente para eliminar estruturas insignificantes, mas pequeno o suficiente para não
eliminar regiões que capturam apenas uma parte do ateroma. Também contou-se o número
de pixels brancos presentes na região para se ter uma estimativa da área, e eliminaram-se
estruturas com área superior a 20mm2.

Pode-se ver essa etapa de processamento como uma etapa eliminatória. Todos os
segmentos que não se encaixam nos tamanhos especificados são eliminados, e não serão
mais processados. Os segmentos que ficaram dentro dos limites passam a ser considerados
regiões de interesse, e continuarão sendo avaliados.

3.8 Pontuação das regiões de interesse

Selecionadas as áreas que se encaixam na faixa de tamanho aceitável, o próximo
passo é analisar suas características, tanto na radiografia pré-processada quando na original.

Os seguintes parâmetros são coletados:

• x0: coordenada x do ponto superior direito da ROI

• y0: coordenada y do ponto superior direito da ROI

• mReg: média de intensidade dos pixels da radiografia pré-processada que estão dentro
da máscara da ROI

• mRaw: média de intensidade dos pixels da radiografia original, dentro da máscara
da ROI

• mEsq: média de intensidade dos pixels da radiografia pré-processada, com a máscara
da ROI deslocada 3, 5mm para a esquerda

• mDir : média de intensidade dos pixels da radiografia pré-processada, com a máscara
da ROI deslocada 3, 5mm para a direita

• mDilRaw: média de intensidade dos pixels da radiografia original, com a máscara
da ROI dilatada em 20 iterações, sem levar os pixels pretos em consideração para o
cálculo da média.

• mFarDir : média de intensidade dos pixels da radiografia pré-processada, com a
máscara da ROI descolada 8mm para a direita
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• mFarDirRaw: média de intensidade dos pixels da radiografia original, com a máscara
da ROI descolada 8mm para a direita

• mDilVert: média de intensidade dos pixels da radiografia pré-processada, com a
máscara da ROI dilatada apenas verticalmente em 10 iterações, sem levar os pixels
pretos em consideração para o cálculo da média.

• mBordaRaw: média da variação de intensidade dos pixels da radiografia original,
utilizando somente a borda da ROI em questão como máscara.

Para se levar em consideração esses vários parâmetros diferentes, usa-se um sistema
de pontuação para as regiões de interesse. Dependendo da relação entre alguns parâmetros
específicos, a região pode ser punida (descontados pontos) ou recompensada (adicionados
pontos). Desse modo, algumas relações podem facilmente ter um peso maior que outras,
e algum desvio do padrão que se espera de ateromas não irá necessariamente excluir a
região, dependendo ainda de outras relações.

Abaixo estão descritas as análises feitas para gerar as relações entre os parâmetros
que dão ou tiram pontos. Todas as condições desses parâmetros que influenciam na
pontuação podem ser consultadas na Tabela 5.

3.8.1 Análise da localização espacial

Os valores de x0 e y0 são usados para recompensar regiões mais centrais, e punir
regiões muito próximas das bordas.

3.8.2 Análise da área em relação a vizinhança horizontal

Os parâmetros mDir e mEsq são ambos comparados com mReg. Como o ateroma
aparece em radiografias como uma região fechada mais intensa que a vizinhança, espera-se
que os pixels a sua direita e a sua esquerda tenham uma intensidade menor que a sua.
Desse modo, o algoritmo recompensa valores proporcionalmente baixos de mDir e mEsq.
Do mesmo modo, ele penaliza a região quando algum desses dois valores é muito próximo
ou superior a mReg. São considerados “muito próximos” valores de mEsq maior que 90%
de mReg, ou valores de mDir maiores que 95% de mReg. Essa diferença de porcentagens
entre os lados direito e esquerdo se deve ao fato da vizinhança esquerda ser mais afastada
do centro das vértebras, fazendo com que seja naturalmente menos intensa que as regiões
a sua direita.

3.8.3 Análise das vizinhanças horizontais

Os parâmetros mDir e mEsq também são comparados entre si. As placas atero-
matosas surgem na artéria, que aparece na imagem em questão à esquerda das vértebras,
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podendo estar sobreposta por estas ou não. Desse modo, é esperado que as intensidades
médias das regiões formadas pela máscara deslocada para a direita e para a esquerda
sejam muito próximas entre si (caso a artéria se sobreponha as vértebras), ou a média
à esquerda seja significantemente menor (caso não haja sobreposição). Assim, áreas que
apresentam mEsq maior que 110% de mDir são penalizadas.

3.8.4 Análise da área em relação à vizinhança vertical

Para analisar a vizinhança vertical da estrutura, usa-se a máscara que a isolou.
Aplicam-se 20 iterações de dilatação com um elemento estruturador de apenas 1 coluna.
Isso gera uma máscara dilatada apenas verticalmente, e ao aplicar novamente na radiografia
o resultado será o isolamento da estrutura, junto a uma área acima e abaixo da mesma.

Aplicando essa máscara dilatada verticalmente na radiografia pré-processada, e
calculando-se a média, obtém-se mDilVert. É esperado que essa média seja menor que a
média da área original, devido ao ateroma ter uma intensidade maior que sua vizinhança.
Desse modo, quando mDilV ert é maior que 90% de mReg a região é punida. Pelo mesmo
raciocínio, quanto menor é a intensidade da região dilatada, começando em 80% de mReg,
mais a região é recompensada.

3.8.5 Análise da área em relação a toda vizinhança original

Como já foi analisada a vizinhança vertical e horizontal da radiografia pré-processada,
analisa-se agora toda a vizinhança da radiografia original. Para isso, dilata-se em 10 intera-
ções a máscara em questão, e aplica-se à radiografia original. A média dos pixels presentes
é mDilRaw.

Mesmo antes da imagem ser ressaltada pelo CLAHE, a diferença entre a média
da área da máscara original e da máscara dilatada deve ser significativa em um ateroma.
Caso a diferença entre essas médias seja menor que 1% do valor máximo que o pixel pode
assumir, a região é penalizada. A região também será penalizada caso mDilRaw seja maior
que 93, 5% de mRaw, e será recompensada quando mDilRaw apresentar valores inferiores
a 85% de mRaw. Na Figura 21 pode-se observar as regiões selecionadas pela máscara da
ROI, e pela máscara dilatada. Nota-se que toda região que aparece pela dilatação tem
uma intensidade menor que o ateroma, o que faz com que a média caia.

3.8.6 Análise das bordas da área

Para a análise das características da borda são necessárias uma imagem do gradiente
da figura original, e uma máscara que tenha como pixels objetos apenas a região de borda
do segmento.

Para gerar o primeiro requisito, usou-se o filtro Sobel para detecção de bordas
tanto no eixo X quanto no eixo Y da radiografia original. Foram somadas ambas as saídas
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Figura 21: Aplicação de máscaras na radiografia original, para avaliação dos pixels

(a): Máscara aplicada a radiografia original
(b): Máscara dilatada aplicada a radiografia
original

Fonte: gerado pelo algoritmo proposto, tendo como entrada uma imagem fornecida pelo
HRAC

do Sobel, dando um peso de 65% para o Sobel no eixo Y, e 35% para o no eixo X. Como a
máscara já foi achada utilizando somente os componentes horizontais da imagem, usar um
peso maior para se avaliar as bordas verticais gera resultados melhores, pois essas bordas
não foram levadas em consideração durante a procura pelas regiões.

Para se ter a máscara somente na região das bordas da imagem, toma-se a máscara
original, e gera duas novas máscaras: uma proveniente de um processo de erosão de 1
iteração, e outra de um processo de dilatação também de 1 iteração. Ao se subtrair a
primeira imagem da segunda, tem-se a máscara desejada.

Ao aplicar a máscara obtida na imagem do gradiente, pode-se calcular mBordaRaw.
Esse número indica a variação da área interior para a área exterior, então ela deve ter um
número significativo se comparado a mDilRaw para ser um ateroma. Quando mBordaRaw

é menor que mDilRaw
3,15 , a região é punida, e quanto menor for mBordaRaw a partir do valor

citado, mais pontos a região perde.

3.8.7 Análise de uma região distante a direita

Deslocando a máscara 8mm para a direita de sua localização original é possível se
ter uma ideia do conteúdo da imagem naquele local. Caso a intensidade não varie muito
da calculada com a máscara original, provavelmente é uma região com alguma estrutura.
Mas caso seja uma região de intensidade muito baixa, provavelmente é uma região vazia.

No caso dos ateromas, esse grande deslocamento para a direita resultará em uma
intensidade significativa na nova região. Mas caso o ponto sendo analisado esteja presente
na mandíbula do paciente, em vez de na sua artéria, um deslocamento grande para a
direita resulta normalmente na nova máscara caindo na região vazia entre a mandíbula e
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a coluna.

Desse modo, caso a região deslocada aplicada a radiografia pré-processada apresente
uma intensidade menor que 50% de mReg, e quando aplicada a radiografia original
apresente uma intensidade menor que 65% e mRaw, a região será punida. Caso mFarDir

seja menor que 33% de mReg a região é punida, mesmo sem checar a relação com mRaw.
Quanto mais abaixo de 33% a média for, mais pontos serão tirados da região.

3.9 Decisão das regiões com ateroma

Uma vez que todas as ROIs foram pontuadas, multiplica-se a pontuação de cada
uma pela raiz cúbica da razão entre a sua média e a média das médias das outras regiões.
Esse é um modo de penalizar regiões muito escuras na imagem original, e recompensar
regiões mais claras.

Em seguida, atribui-se o valor de −15 a qualquer região que esteja com uma
pontuação inferior a essa, e calcula-se a média e o desvio padrão da pontuação de todas as
regiões. Caso a soma da média com o desvio padrão seja superior a 30 pontos, esse passa a
ser o limiar para classificar a presença ou ausência do ateroma na região. Caso essa soma
seja inferior a 30, o limiar é 30.

Para cada região que tiver uma pontuação acima do limiar, é traçado um retângulo
em volta da área na radiografia original. O retângulo é 15 pixels afastado do pixel mais
extremo da área em cada direção. A Figura 22 demonstra a imagem gerada após gerar os
retângulos em torno das regiões que alcançaram os pontos necessários.

3.10 Imagem de saída

Com a região inferior direita da radiografia já processada, joga-se a imagem cortada
de volta para a radiografia original, levando junto todos os retângulos demarcados. Em
seguida, espelha-se a imagem, trazendo o canto inferior direito para o canto inferior
esquerdo, e vice-versa.

Com as regiões invertidas, repetem-se exatamente todos os passos feitos até agora.
Ao recortar novamente o canto inferior direito, o algoritmo estará processando as informa-
ções do lado esquerdo da radiografia original, devido a esta ter sido espelhada.

Terminando todo o processamento, e jogando a nova região cortada de volta para
a radiografia completa, espelha-se novamente a imagem. Desse modo, ambos os lados
inferiores são processados, e todas as regiões suspeitas de conter ateroma são demarcadas. A
Figura 23 mostra a imagem de saída do algoritmo aplicado em uma das imagens fornecida
pelo HREAC.

Na radiografia escolhida, há ateroma presente apenas no canto direito inferior.
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Tabela 5: Pontuação referente a cada condição analisada

Ref. Condição Pontuação

3.8.1

| x0
ImageW idth

− 0, 5| > 0, 03 min[(0, 25− | x0
ImageW idth

− 0.5)|) ∗ 100, 22]
y0

ImageHeight
< 0, 4 −(0, 4− y0

ImageHeight
) ∗ 100

y0
ImageHeight

> 0, 75 −( y0
ImageHeight

− 0, 75) ∗ 100
y0

ImageHeight
< 0, 15 −30

3.8.2

mEsq ≤ mReg
3 +70

mEsq > mReg
3 (mReg

mEsq
− 1) ∗ 10

mEsq > 0, 9 ∗mReg −15

mEsq > mReg −25

mDir ≤ mReg
2,43 +50

mDir > mReg
2,43 (mReg

mDir
− 1) ∗ 35

mDir > 0, 95 ∗mReg −10

mDir > 1, 05 ∗mReg −25
3.8.3 mEsq > 1, 1 ∗mDir −15

3.8.4
mDilV ert > 0, 9 ∗mReg −25

mDilV ert < 0, 8 ∗mReg min[( mReg
mDilV ert

− 1.2) ∗ 50, +15]

3.8.5

mRaw −mDilRaw < 2, 5 −20

mDilRaw < 0, 85 ∗mRaw +10

mDilRaw > 0, 935 ∗mRaw −15

mDilRaw > mRaw −20

3.8.6

mDilRaw > 3, 15 ∗mBordaRaw −15

mDilRaw > 4, 4 ∗mBordaRaw −15

mDilRaw > 5, 6 ∗mBordaRaw −15

mDirRaw > 1, 045 ∗mRaw −15

3.8.7

 mFarDir < 0,5*mReg

mFarDirRaw < 0,65*mRegRaw
−15

mFarDir < mReg
3 −20

mFarDir < mReg
6 −25
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Figura 22: Imagem gerada após processar o canto inferior direito

Fonte: gerado pelo algoritmo proposto, tendo como entrada uma imagem fornecida pelo
HRAC

Como não foi detectado nada no lado esquerdo da imagem, ele permanece inalterado,
enquanto na região direita surgem os retângulos indicando uma estrutura suspeita.
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Figura 23: Imagem final de saída do algoritmo

Fonte: gerado pelo algoritmo proposto, tendo como entrada uma imagem fornecida pelo
HRAC
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4 RESULTADOS E DISCUSSÃO

Para se analisar os resultados gerais do algoritmo proposto, este foi executado com
cada uma das 21 imagens de entrada, coletando, em cada uma, dados relevantes para se
validá-lo. Os dados coletados foram:

• NSeg: Número de segmentos que o filtro proposto dividiu cada canto da imagem

• NSegAtero: Número desses segmentos que estavam inteiramente sobre um ateroma

• NROI : Número de regiões de interesse (ROIs)

• NROIAtero: Número de regiões de interesse que estão sobre alguma parte de um
ateroma

• NROIClass: Número de regiões de interesse classificadas como contendo ateroma

Para determinar a região do ateroma de uma radiografia, o método proposto passa
por 3 fases críticas: a segmentação, a escolha das ROIs, e a tomada de decisão sobre
presença ou ausência do ateroma. Como cada uma dessas fases provém de uma técnica
proposta nesse trabalho, analisar-se-á o resultado de cada uma das etapas individualmente;
e, por fim, o resultado de todo o algoritmo.

4.1 Segmentação

O objetivo da segmentação é separar a possível região do ateroma da sua vizinhança,
para ser possível analisar individualmente cada região. Ao aplicar o algoritmo em cada
imagem, anotou-se o número de segmentos em que cada imagem foi dividida, e observou-se
quantos desses segmentos estavam inteiramente sobre o ateroma. Os resultados estão
presentes na Tabela 6.

Nessa tabela foi adotada a seguinte prática: em imagens onde não havia ateroma, o
número de segmentos sobre o ateroma (NSegAtero) foi inserido como “-”. Já quando havia
ateroma, mas a imagem não foi corretamente segmentada, e não houve nenhum segmento
completamente sobre o ateroma, inseriu-se o próprio número 0.

Para melhor entendimento da Tabela 6, o resultado da segmentação da radiografia
2 pode ser visto na Figura 24. Cada região isolada representa um segmento detectado, que
foi analisado individualmente. Foram destacadas manualmente em vermelho as regiões
que estão completamente sobre a área do ateroma.
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Tabela 6: Resultado numérico da segmentação

Artéria Esquerda Artéria Direita
Radiografia NSeg NSegAtero NSeg NSegAtero

1 90 - 81 5
2 99 5 123 -
3 136 0 146 10
4 127 - 142 -
5 131 - 112 -
6 85 - 80 -
7 82 - 82 -
8 72 - 84 -
9 55 - 53 -
10 34 - 46 -
11 55 - 69 -
12 70 - 69 -
13 114 - 100 -
14 71 - 77 -
15 59 - 83 -
16 61 - 58 -
17 87 - 86 -
18 55 - 40 -
19 103 - 90 -
20 34 - 40 -
21 85 - 93 -

Como a Tabela 6 mostra, a técnica proposta foi capaz de segmentar ou o ateroma
todo ou partes do ateroma em 3 dos 4 casos presentes nas radiografias do banco de imagens
fornecido.

Pode ocorrer da técnica proposta segmentar apenas parte do ateroma, como pode-se
observar na Figura 6. Isso justifica números grandes de segmentos com ateroma, mesmo
quando a imagem apresenta poucas ou apenas uma placa. Mas a subsegmentação de um
ateroma não representa necessariamente um problema para sua classificação, visto que
o segmento continua sendo composto completamente pelo ateroma, e não gera confusão
durante a sua classificação posteriormente.

O problema se dá quando o segmento detectado inclui não apenas o ateroma, mas
também parte de alguma outra estrutura sobreposta. Isso pode ser observado no ateroma
da artéria esquerda da radiografia 3, na Figura 25. Nesse caso foi tamanha a sobreposição
de estruturas, que a técnica de segmentação falhou em separar o ateroma da região a
sua volta, formando um grande segmento composto pelo ateroma, vértebra, e artefatos
gerados durante a captura da radiografia. Esse tipo de falha faz com que não haja nenhuma
região completamente sobreposta ao ateroma, tornando impossível sua detecção em etapas
posteriores.
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Figura 24: Resultado em (b) de todas as áreas segmentadas de (a)

(a) (b)

Fonte: adaptado da imagem de saída de uma das etapas do algoritmo proposto, e do banco
de imagens fornecido pelo HRAC

Figura 25: Resultado em (b) de todas as áreas segmentadas de (a)

(a) (b)

Fonte: adaptado da imagem de saída de uma das etapas do algoritmo proposto, e do banco
de imagens fornecido pelo HRAC

4.2 Escolha das ROIs

A escolha de quais segmentos passam a ser ROIs funciona como um filtro seletivo,
deixando passar para a etapa de processamento mais detalhado apenas as regiões que
atendem ao critério de tamanho especificado. Anotou-se, para cada imagem, o número de
segmentos que atenderam aos critérios para se tornarem ROIs, e observaram-se quantos
desses eram relativos aos segmentos sobrepostos ao ateroma. Os resultados estão presentes
na Tabela 7.

Adotou-se novamente a notação de “-” nos campos referentes a ROIs sobre o
ateroma, quando não há presença da placa ateromatosa, e “0” quando há presença, mas
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Tabela 7: Resultado numérico da seleção de ROIs

Artéria Esquerda Artéria Direita
Radiografia NROI NROIAtero NROI NROIAtero

1 14 - 15 1
2 14 4 4 -
3 8 0 19 7
4 19 - 17 -
5 17 - 17 -
6 6 - 9 -
7 7 - 9 -
8 7 - 8 -
9 4 - 5 -
10 4 - 3 -
11 5 - 9 -
12 7 - 11 -
13 2 - 1 -
14 12 - 5 -
15 3 - 3 -
16 5 - 9 -
17 12 - 12 -
18 5 - 8 -
19 16 - 12 -
20 3 - 2 -
21 5 - 10 -

não há nenhuma ROI sobre ela.

Para melhor entendimento da Tabela 6, os segmentos classificados como ROIs na
radiografia 2 podem ser vistos na Figura 26 ressaltados de vermelho.

Pode-se observar na Tabela 7 uma grande redução de regiões a serem analisadas,
se comparada à Tabela 6. Mesmo tendo uma redução expressiva do número de segmentos
para o número de ROIs, essa mesma redução não se mostrou tão intensa ao se comparar os
segmentos sobre ateromas e as ROIs sobre ateromas. Isso indica que o critério de tamanho
para a seleção dos segmentos está eliminando muitas das informações irrelevantes, sem
excluir boa parte dos segmentos relevantes. Alguns dos segmentos com ateroma foram
excluídos justamente devido à subsegmentação da placa, pois estes continham uma área
muito pequena de ateroma.

Com exceção da imagem da artéria esquerda da radiografia 3, todas as outas áreas
tem pelo menos uma ROI sobre o ateroma. A exceção citada se dá justamente pelo erro
de segmentação, comentado na Seção 4.1, e não é resultado do processo de seleção das
ROIs em si.

O método proposto para a seleção de quais segmentos seriam ROIs elimina, em
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Figura 26: Radiografia 2 com todas as ROIs detectadas ressaltadas em vermelho

Fonte: adaptado do banco de imagens fornecido pelo HRAC

média, 90% dos segmentos, sendo que não houve nenhum caso em que foram eliminados
todos os segmentos sobrepostos a um ateroma. Desse modo, o método diminui em 10 vezes o
número de áreas que seriam analisadas posteriormente, sem necessariamente comprometer
a detecção de um ateroma.

4.3 Critério de decisão

Após a seleção de quais segmentos se tornariam regiões de interesse, o próximo
passo é a decisão final se cada uma dessas regiões contém ou não ateroma. O número de
ROIs que foram classificadas positivamente para presença de ateroma em cada artéria das
radiografias está exposto na Tabela 8.

Durante a execução do algoritmo nas radiografias 1, 2 e 3 obserservou-se que toda
região classificada positivamente realmente estava situada em uma placa ateromatosa.
Comparando as Tabelas 7 e 8, vê-se que em todas as imagens em que havia alguma ROI
sobre o ateroma, pelo menos uma região foi classificada como positiva.

Ainda com as Tabelas 7 e 8, pode-se calcular indicadores importantes em relação
ao critério de decisão:

• Verdadeiros positivos: 5

• Falsos positivos: 4
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Tabela 8: Número de ROIs classificados como contendo ateroma

NROIClass
Radiografia Artéria Esquerda Artéria Direita

1 0 1
2 2 0
3 0 2
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0
9 0 0
10 0 0
11 0 0
12 0 1
13 0 0
14 0 0
15 0 0
16 0 0
17 2 1
18 0 0
19 0 0
20 0 0
21 0 0

• Verdadeiros negativos: 347

• Falsos negativos: 7

• Sensibilidade: 41,7%

• Especificidade: 98,9%

• Acurácia: 97,0%

• Valor preditivo positivo: 55,6%

A sensibilidade indica quantos dos casos verdadeiros foram realmente classificados
positivamente, enquanto a especificidade indica quanto dos casos falsos foram classificados
negativamente. O valor preditivo positivo indica quanto dos casos classificados como
positivos realmente eram placas ateromatosas, e a acurácia é quantos dos ROIs foram
classificados corretamente. Nota-se uma acurácia e especificidade altas, um valor preditivo
positivo em uma faixa razoável, mas sensibilidade não tão alta. Esses valores ainda são
aceitáveis, justamente pelo efeito causado pela subsegmentação. Devido a isso, mais de uma
região pode aparecer em cada ateroma, e basta uma dessas regiões ser classificada como
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Tabela 9: Diagnóstico dos profissionais vs decisão tomada pelo algoritmo

Artéria Direita Artéria Esquerda
Imagem Diagnóstico Algoritmo Diagnóstico Algoritmo

1 PRESENTE PRESENTE AUSENTE AUSENTE
2 AUSENTE AUSENTE PRESENTE PRESENTE
3 PRESENTE AUSENTE PRESENTE PRESENTE
4 AUSENTE AUSENTE AUSENTE AUSENTE
5 AUSENTE AUSENTE AUSENTE AUSENTE
6 AUSENTE AUSENTE AUSENTE AUSENTE
7 AUSENTE AUSENTE AUSENTE AUSENTE
8 AUSENTE AUSENTE AUSENTE AUSENTE
9 AUSENTE AUSENTE AUSENTE AUSENTE
10 AUSENTE AUSENTE AUSENTE AUSENTE
11 AUSENTE AUSENTE AUSENTE AUSENTE
12 AUSENTE PRESENTE AUSENTE AUSENTE
13 AUSENTE AUSENTE AUSENTE AUSENTE
14 AUSENTE AUSENTE AUSENTE AUSENTE
15 AUSENTE AUSENTE AUSENTE AUSENTE
16 AUSENTE AUSENTE AUSENTE AUSENTE
17 AUSENTE PRESENTE AUSENTE PRESENTE
18 AUSENTE AUSENTE AUSENTE AUSENTE
19 AUSENTE AUSENTE AUSENTE AUSENTE
20 AUSENTE AUSENTE AUSENTE AUSENTE
21 AUSENTE AUSENTE AUSENTE AUSENTE

positiva para atrair a atenção do profissional. Isso dá um peso maior a falsos positivos,
mas alivia os efeitos de falsos negativos, causando um aumento na sensibilidade, e uma
diminuição na especificidade, o que ajuda a balancear os parâmetros.

4.4 Algoritmo geral

Analisado os resultados de cada um dos três processos citados, resta analisar seu
desempenho em conjunto. Como exemplificado na Seção 4.3, cada etapa pode influenciar
direta ou indiretamente as etapas posteriores, tornando necessário também se analisar os
resultados do algoritmo em conjunto, em vez de olhar apenas para suas partes individuais.

Na Tabela 9 pode-se consultar tanto a classificação das imagens feita por profis-
sionais da área, como definido na Tabela 3, quanto a classificação feita pelo algoritmo.
Caso alguma das ROIs tenha sido classificada como positiva, o algoritmo classificou aquela
artéria como “PRESENTE” para a placa ateromatosa. Foi classificado como “AUSENTE”
apenas quando todas as ROIs da imagem analisada foram classificadas como negativas
para presença de ateroma.

Baseando-se na Tabela 9, podem-se calcular indicadores de extrema relevância
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sobre o algoritmo:

• Verdadeiros positivos: 3

• Falsos positivos: 3

• Verdadeiros negativos: 35

• Falsos negativos: 1

• Sensibilidade: 75%

• Especificidade: 92,1%

• Acurácia: 90,5%

• Valor preditivo positivo: 50%

Das 4 estruturas de ateromas presentes na base de imagens fornecida, o algoritmo
foi capaz de reconhecer 3 delas. A razão do não reconhecimento do ateroma na artéria
direita da radiografia 3 já foi explicada na Seção 4.1. É interessante, agora, abordar as
radiografias 12 e 17, onde ocorrem os 3 casos de falso positivo (na artéria direita da
radiografia 12, e em ambas artérias da radiografia 17).

Figura 27: Saída do algoritmo usando a radiografia 12 como entrada

Fonte: gerado pelo algoritmo proposto, tendo como entrada uma imagem fornecida pelo
HRAC

Na Figura 27 pode-se observar que a estrutura que o algoritmo classifica como
ateroma é, na verdade, a sobreposição de um osso com a coluna. Apesar de haver sobre-
posição em diversas outras imagens, nessa acontece de uma maneira muito específica: a
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sobreposição ocorre bem próxima da bifurcação da carótida, e no limiar das vértebras.
Levando também em conta que o restante do osso que causou a sobreposição perde inten-
sidade muito rapidamente na vizinhança da área ressaltada, essa estrutura atende vários
dos requisitos para ser considerado um ateroma, gerando um falso positivo.

Figura 28: Saída do algoritmo usando a radiografia 17 como entrada

Fonte: adaptado do banco de imagens fornecido pelo HRAC

Já na Figura 28, observa-se realmente figuras muito similares a pequenos ateromas
em ambos os lados da imagem. Isso se deve ao fato de que, apesar de não serem propriamente
placas ateromatosas, essas estruturas detectadas também são calcificações. De acordo com
o radiologista Dr. Gustavo Monjardim, as estruturas apontadas se tratam provavelmente
da calcificações das partes moles pré-vertebrais.

No apêndice deste trabalho pode-se ver o resultado do algoritmo para as outras
radiografias em que alguma região foi classificada como contendo ateroma. Como as
imagens dos falsos positivos já foram expostas nesta seção, todas as imagens presentes no
apêndice são referente aos verdadeiros positivos, em que as áreas assinaladas realmente
possuem ateromas.
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5 CONCLUSÃO

O objetivo desse trabalho foi o desenvolvimento de um algoritmo que conseguisse
reconhecer quando houvesse calcificações indicativas de ateroma numa radiografia odonto-
lógica panorâmica. Ao reconhecer, o algoritmo deveria ressaltá-lo, atraindo a atenção do
profissional, e facilitando sua detecção como um achado incidental nesse tipo de exame.

Para isso, foram desenvolvidas e analisadas diferentes técnicas, específicas para este
fim. Como indicam os resultados evidenciados no Capítulo 4, essas técnicas se provaram
válidas e úteis para a detecção automática de placas ateromatosas. Mesmo com falsos
positivos e falsos negativos, todas as estruturas detectadas pelo algoritmo eram similares
a aparições de ateromas, e dignas de serem avaliadas pelo profissional.

Nota-se que a técnica de segmentação proposta teve boa eficácia na separação
das estruturas da imagem, não sendo capaz de segmentar apenas uma das ocorrências. É
interessante também ressaltar a precisão gerada pelos parâmetros propostos para o critério
de decisão, que foram capazes de classificar corretamente 97% das regiões que haviam
chegado àquela etapa.

Apesar do trabalho ter uma base de imagens pequena para se usar como teste, ela
já prova que as técnicas propostas têm utilidade, e podem ser usadas futuramente em
outros trabalhos de mesmo cunho.

Em próximos trabalhos, caso se disponha de um banco com um número grande de
imagens com ateroma, pode-se usar a mesma técnica de segmentação e de escolha de ROIs
para testar o desempenho do algoritmo desenvolvido. Pode-se, ainda, usar os parâmetros
escolhidos para a tomada de decisão para treinar uma rede neural, ou algum outro método
de aprendizagem de máquina, em vez de usá-los diretamente para atribuir pontuações.

Finalmente, o trabalho atingiu o objetivo proposto de construir um sistema para
detecção de ateromas. Durante esse processo, foram elaboradas técnicas que podem ser
usadas sem grandes mudanças em trabalhos futuros que visarem elaborar um sistema mais
robusto; e até mesmo em outros trabalhos para detecção de estruturas em diferentes tipos
de radiografia.
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Apêndice 1 - Imagens de saída do algoritmo das radiografias acusadas de
conterem ateroma

(a): Imagem de saída do algoritmo para a radiografia 1

(b): Imagem de saída do algoritmo para a radiografia 2

(c): Imagem de saída do algoritmo para a radiografia 3


