UNIVERSIDADE DE SAO PAULO
ESCOLA POLIECNICA

FABIO RIZZA

Reduced-order model of a vertical riser under heave-imposed motion

Sao Paulo
2014



FABIO RIZZA

Reduced-order model of a vertical riser under heave-imposed motion

Trabalho de Formatura
apresentado a Escola Politécnica
daUniversidade

de Sao Paulo

Area de concentracio:
Engenharia de Estruturas

Orientador: Prof. Dr. Carlos
Eduardo Nigro Mazzilli



Rizza, Fabio

Reduced-order model of a vertical riser under heave-imposed
motion / F. Rizza. -- Sao Paulo, 2015.

47 p.

Trabalho de Formatura - Escola Politécnica da Universidade
de Sdo Paulo. Departamento de Engenharia de Estruturas e
Geotécnica.

1.Tubulagdes 2.Método dos elementos finitos l.Universidade
de Sdo Paulo. Escola Politécnica. Departamento de Engenharia
de Estruturas e Geotécnica ll.t.




ABSTRACT

The dynamic behavior of vertical rigid risers under top imposed motion (heave) is considered using
a reduced-order model (ROM) based on a Bessel-like mode. Heave motion enforce modulation of
the tension amplitude along the riser. In this scenario it will be studied the particular case of
parametric resonance caused by an excitation frequency that is equal to the double of the structure’s
first lateral natural frequency. The vibration modes of slender beams subjected to axial loads
(Bessel-like modes) are used to project (via the Galerkin Method) the continuum system dynamics
onto a single-degree-of-freedom system phase plane. Then the amplitudes of the response are
obtained via numerical integration (Runge-Kutta method family). The ROM obtained will be set
according to the experimental results obtained with a physically-reduced model tested in a towing
tank (Technological Research Institute of the State of Sao Paulo, IPT) [1] [2]. A comparison in
terms of amplitudes between the ROM based on the Bessel-like modes and the ROM based on
trigonometric function is carried out .In order to ensure the correctness and the reliability of the
reduced-order model a Finite Element Model develop with a specialized commercial software
frequently used in Offshore Engineering (Orcaflex®). Finally, a discussion of the results is made.
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1 CHAPTER1

This chapter gives a general overview of the offshore structures briefly describing the various types
of existing platforms and a specific component of them, the riser, which is the element under
investigation in this dissertation.

1.1 INTRODUCTION

Since decades, petroleum companies have been on a constant look out for availability of fossil fuels
reserves around the globe. When the land reserves were getting emptied up due to the constant
scooping and drilling, the ever increasing demand of oil and gas pushed oil and gas companies
further away from the marine coasts into ultra-deep ocean’s waters

Huge oil and gas fields were discovered in water depths above 1900 [m] at 250 [Km] off the
Brazilian Southeast coast (Lula field, Santos Basin). The reservoirs, estimated between 5 and 8
billion barrels of top quality petroleum, are in the so-called pre-salt layer about 5000 [m] below the
sea bottom.

An offshore platform is a large structure with facilities to drill wells, to extract and process oil and
natural gas, or to temporarily store product until it can be brought to shore for refining and
marketing. . The first offshore platform was installed in 1947 in 6[m] depth water. Today there are
over 700 units in water depths up to 2000 [m] .Depending on the circumstances, the platform can
be grouped in two main types namely: fixed platforms and floating platforms.


http://pt.wikipedia.org/wiki/Bacia_de_Santos
http://en.wikipedia.org/wiki/Petroleum
http://en.wikipedia.org/wiki/Natural_gas

1.1.1 FIXED PLATFORMS

The fixed platforms are built on concrete and/or steel legs anchored directly onto the seabed. Such
platforms are, by virtue of their immobility, designed for very long term and are economically
feasible for installation in water depths up to about 520[m].

1.1.1.1 JACKET PLATFORMS

The most common types of fixed platforms is the Jacket one (95%of the offshore platforms in the
world are jacket designed). Their deck is supported by a steel tubular structure having its feet on the
seabed. To fix them onto the seabed, the jacket is equipped with thick steel piles of 2[m] diameter

that can penetrate the sea floor up to 100[m] deep to ensure the stability of the whole platform.

YORTH RANKIN'B' PLATFORM. |

Figure 1: Example of Jacket platform

1.1.2 FLOATING PLATFORMS

Nowadays the design of floating platforms is in continuous development due to the fact that the
expected that this is not the limit since fields in 3000[m] have already been discovered and
obviously the depth can’t be reached by fixed platforms.

1.1.2.1 TENSION LEG PLATFORMS

An example of floating platform is the TLP (tension leg platform) used for water depth up to

1200[m].They are tied down to the seabed by vertical steel cables called tethers. This characteristic

makes the structure very rigid in the vertical direction and very flexible in the horizontal plane. The

vertical rigidity helps to tie in wells for production, while, the horizontal compliance makes the

platform insensitive to the primary effect of waves. These kinds of oil platforms are highly suitable
2


http://en.wikipedia.org/wiki/Concrete
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in areas prone to regular volatility of the oceanic conditions. Examples of some of the high seas
where TLP platforms are currently operated include the Gulf of Mexico and in certain parts of the
North Sea. The vertical motion, resisted by the tendons, is not large as compared to the horizontal
one; however it causes axial deformations that lead to periodic normal force variations. The main
disadvantage of these types of platform is the high initial cost.

Figure 2: Example of Tension Leg Platform

1.1.2.2 SEMI-SUBMERSIBLE PLATFORMS

A semi-submersible platform is designed with a platform-type deck supported by pontoon-type
columns that are submerged into the water. They are used for ultra-deep water and are held in place
by anchors connected to a catenary mooring system. As a semisubmersible, the rig offers
exceptional stability for drilling operation, since rolling and pitching from waves and wind are great
diminished. Because semisubmersible platform can float, transporting these rigs from location to
location is relatively simple



Figure 3: Example of semi-submersible platform

1.1.2.3 SPAR PLATFORMS

SPAR is a recent type of floating platform (the first spar platform Neptune was installed off the
USA in 1997) used for drilling wells beyond 2300[m]. It is designed with a hollow vertical
cylindrical hull and it is secured to the ocean floor by a complex network of cables and tendons.
The weight of the cylindrical hull stabilizes the drilling platform and caters for the drilling risers to
descend up to the drilling well on the sea floor. The vertical displacement of this type of structure is
strongly reduced minimizing in that way the effects of the superficial waves, but is sensitive to
problems related to VIV (vortex-induce vibrations)

Figure 4: Example of SPAR platform



1.1.2.4 FLOATING OFFSHORE PRODUCTION SYSTEMS

The FPSO (Floating Production Storage and Offloading) system is used extensively by oil
companies for the purpose of storing oil from the oil rigs in the middle of the ocean and in the high
seas and can be used where building fixed platform and piping is technically and economically not
feasible. It is one of the best devised systems developed by the oil exploration industry for deep-
water areas.

Figure 5 Example of Floating Production Storage and Offloading

The FPSO allows not just storing oil but also producing or refining it before finally offloading it to
the desired industrial sectors, either by way of cargo containers or with the help of pipelines built
underwater. The use of this system ensures that shipping companies do not have to invest even
more money by ferrying the raw and crude oil to an onshore refinery before transferring it to the
required industrial areas. In simple terms, the FPSO saves time and money effectively (some of the
famous FPSOs are Maersk’s FPSOs, Munin Award Winning FPSO, and Shell’s Prelude). The
FPSO presents 6 degrees of freedom that are showed in the following picture


http://www.marineinsight.com/marine/marine-news/featured/munin-%E2%80%93-the-award-winning-fpso-floating-production-storage-and-offloading-ship/

) Pitch

Heave

Figure 6: FPSO’s degrees of freedom

The displacement imposed by the vessel to the risers can be very large and can cause various
problems to the submerged risers and this aspect should be taken into account.

1.1.3 RISERS

In order to convey the hydrocarbon to the sea level, a pipe, conventionally referred to as a riser, is
installed between wellhead at the sea bed and the floating platform. Offshore production risers are
very slender structures and also a key issue in the design of offshore structure in particular for the
service life evaluation of the material due to fatigue. The risers are subjected to large axial thrusts at
the top to account for the riser submerged weight, still avoiding undesirable compression at the
bottom they are top tensioned.

We can distinguish two typologies of risers namely: flexible and rigid. There are also different
kinds of riser configurations, and both flexible risers and rigid risers can be used in free hanging or
in a vertical straight configuration.

1.1.3.1 FLEXIBLE RISERS

Flexible risers cope with vessel motion due to wave loading and compensate heave motion (simple
catenary risers is freely suspended between surface vessel and the seabed). They are more complex
compared to the rigid one because they are made of different material layers, which have
specifically structural or operational functions as show in the picture
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Figure 7: Flexible riser

1.1.3.2 RIGID RISERS

What are called rigid risers are actually steel tubes. Top-tensioned risers are a completely vertical
riser system that terminates directly below the facility. Although moored, these floating facilities
are able to move laterally with the wind and waves. Because the rigid risers are also fixed to the
seafloor, vertical displacement occurs between the top of the riser and its connection point on the
facility. Despite a number of advantages of the straight top-tensioned riser over the catenary riser,
straight production risers have not been used yet in water depths over 2000[m].

The concern, that is stopping the offshore industry from using top-tensioned straight risers in deep
waters, is associated with fluctuation of the axial tension in the riser that is caused by vertical
motion (heave) of the platform in waves. Although this fluctuation is significantly reduced by heave
compensators, through which the riser is connected to the platform, it can be dangerous. The danger
is that the fluctuating tension might destabilize the straight equilibrium of the riser and cause it to
vibrate at a dangerously high level.

The vibrations cause stresses in the risers, which may result in fatigue problems from cyclic loads.
When considering the fluctuation of top tension in the riser, the parametric instability problem of
the riser needs to be addressed first. Besides this, the riser will suffer considerable wave-induced
vibration (WI1V) and vortex-induced vibration (VIV), which can last for almost the whole design
life in harsher environments.



Figure 8: Rigid riser



2 CHAPTER 2

The main theoretical tools (non-linear modes, non-linear Galerkin method) used for the reduce-
order model development are here proposed. It is also given the theoretical base of the parametric
resonance problem which, in this work, is studied as a possible scenario of risers under heave
imposed motion due to the variation of their stiffness that is related to the axial force modification
caused by the riser vibration.

2.1 NON-LINEAR MODES

Clearly, linearity is an idealization, an exception to the rule; nonlinearity is a frequent occurrence in
real-life applications and the behavior of the risers is an example. The dynamic analysis of riser is
strongly non-linear in fact it involves: large displacements in a slender structure; unilateral contact
with the seabed (for catenary risers), fluid-structure interaction, vortex-induced vibrations (V1V)
etc.

The concept of a normal mode is central in the theory of linear vibrating systems. Any attempt to
apply traditional linear analysis to nonlinear systems results, at best, in a suboptimal design. Thus,
there is a need for efficient, analytically rigorous, broadly applicable analysis techniques for
nonlinear structural dynamics.

During the normal mode motion of a linear conservative system (LNM), each system component
moves with the same frequency and with a fixed ratio amongst the displacements of the
components. Targeting a straightforward nonlinear extension of the LNM concept, Rosenberg [1]
defined a nonlinear mode NNM as a vibration in unison of the system (i.e., a synchronous
oscillation). This definition requires that all material points of the system reach their extreme values
and pass through zero simultaneously and allows all displacements to be expressed in terms of a
single reference displacement. An extension of NNM definition to a broader class of problems, such
as non-proportionally damped system for which NNMs are not synchronous motions, was proposed
by Shaw and Pierre [2] Yet, for the purposes of the present work, Rosenberg’s definition suffices.

It is largely accepted that non-linear modes of vibration may be particularly suitable for obtaining
reduced-order models (ROM) in non-linear dynamics, for their ability to grasp, even when just a
few of them are taken into account, the essential qualitative system information that a much larger
number of linear modes is required to. Thus the main advantage of using the nonlinear modes in
comparison with the linear ones is the possibility of obtaining a better ROM with fewer degrees of
freedom

However it should be remembered that in nonlinear problems we don’t have the guarantee of
uniqueness of solutions and different solutions can coexist; they could manifest depending on the
parameters perturbation or on the initial conditions

9



Reduced-order models can be obtained from the modal relations and equations of selected non-
linear modal oscillators. In order to determinate the equivalent modal forces we can impose equality
between the virtual work in the original phase space and in the reduced order model phase space.
The forced nonlinear oscillator’s differential equation can be analytically integrated using a
perturbation method or numerically in order to obtain the time domain responses. In this
dissertation it will be used the Dorman Prince method (RKDP) to integrate analytically the
nonlinear differential equation.

2.2 PARAMETRIC RESONANCE

Several sources of nonlinearities are present in the riser analysis, making it a very complex system
to study. The nature and amount of dynamic loads that the riser is subjected to makes the problem
even more complex. One may have combination of platform movements, waves, internal flow,
currents acting in different directions, levels and intensities, which in turn trigger VIV (vortex
induced vibrations). In the nonlinear scenario of riser’s analysis (due to heave, waves, internal flow,
VIV etc.), very interesting dynamical phenomenon can occur: the parametric resonances. A
parametric excitation differs from direct forcing since the action appears as a time varying
modification of a system parameter (in the case of the riser problem this parameter is the stiffness
that varies in relation to the axial force modification caused by the riser vibration). Unlike the
classical resonance of forced system (that occurs when the excitation frequency is equal or close to
a natural frequency of the system) the primary parametric resonance takes place when the external
excitation frequency equals twice one of the natural frequencies of the parametrically exited system.
Under parametric resonance the equilibrium configuration becomes unstable and the system leaves
it (after an arbitrarily small initial disturbance) in the search of a steady-state solution which may or
not exist, depending on the system nonlinear stiffness and/or damping [3] For all the previous
reasons it is clear how important is the study of the parametrically resonant scenario in the riser’s
analysis.

Parametric excitation can be better understood considering the so-called Mathieu equation [4]:

X+ (6 + 2ecos2t)x = 0 (2.1)

This is a linear undamped equation of motion where the stiffness varies with time. Here the term
cos2t acts as an energy source and it is this term that parametrically excite the system

The parameter 6 is defined as the quadratic ratio between twice the natural frequency w and the
forcing frequency Q and € is related to the forcing amplitude

-

For different values of §, € the solution can grow without bound or be limited. The Strutt’s diagram
(Fig.9 ) indicates the regions where the solution is unbounded (hatched areas), and when parametric

10



instability is said to occur. Clearly when nonlinearities and dissipative effects are taken into
account, as in the case studied, the instability zones change and post-critical steady states may exist.

.

| | | [E——

-24 -20 -16 -12 -8 -4 4 8 12 16 20 24 28 32 §
Figure 9: Strutt’s diagram (Nayfeh and Mook, 1979)

(o}

2.3 NON-LINEAR GALERKIN METHOD

To transform the continuum model into a reduced-order model (ROM) with only one degree of
freedom, in the in the following sections the nonlinear Galerkin method [5] [6] will be used.

The nonlinear Galerkin method requires that the virtual work in the ‘high-order’ model should be
equal to that in the reduced-order model. Such equality corresponds to a constraint equation, namely
that the virtual work, or the ‘energy’, imparted to the modes excluded from the ‘reduced-order’
model should be zero, which, of course, is not an exact statement and in the case studied is like
confer all the energy to the first mode:

SW = 6p"F, = SU'F, | (23 |

where p and U stand for generalized displacements of the ‘high-order’ and the ‘reduced-order’
model and in the same way F,, Fy, are the generalized forces each one associated to its model.

To achieve this each terms of the equation(3.60) will be interpreted as a force per unit mass and as a
result it will be imposed that the virtual work of these “forces per unit mass”, defined in the
continuous system and evaluated by multiplication by the virtual “displacements” &p, should be
equal to the corresponding virtual work of the “modal forces per unit mass” in the reduced-order
model, evaluated by multiplication by the virtual “modal displacements” 6U.

11



3 CHAPTER 3

Starting from the Euler-Bernoulli beam theory and using the Hamilton's Principle the transversal
displacement equation is obtained. Then the non-linear free vibration of the vertical riser and the
relevant Bessel-like mode are provided. The last is used to project via the Galerkin method the
continuum dynamics system onto a single degree of freedom system phase plane in order to obtain
the reduced-order model for heave.

3.1 RISER MODELLING

This chapter presents the main steps for dimensional formulation of the motion’s equation of
vertical risers using Hamilton's Principle, so that the transversal motion is de-coupled from the
longitudinal one.

In the static configuration the structure is assumed completely vertical and the riser will here
modeled as a prestressed slender beam (with constant cross section and made by an homogeneous
isotropic material) subjected to an axial force linearly variable over its length due to its submerged
weight [7]. Classical simplifying assumptions are made namely: neglecting longitudinal inertial
forces and averaging geometric stiffness effects along the beam.

<

X,u

Figure 10: Static configuration of the vertical riser
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[ beam length
EA axial rigidity
ET bending stiffness
N axial force
m = pA mass per unit length

Boundary condition: the axial displacementat x = [ isequal to u; = 0 and at the time t = 0 in
x = 0 is imposed an axial displacement namely —u, due to the prestressed force N,(0), acting
together with the submerged weight.

After the application of N, (0),the vertical displacement in x = 0 will be fixed u(0,t) = —u, for
the purpose of analyzing the vibration modes. However, the axial force in the former region is
varying with respect to the time due to the second order bending effects.

In the formulation development it will be adopted the Euler-Bernoulli beam theory

Figure 11: Euler-Bernoulli’s kinematics

The generic point displacement will be

[ y ~ !
Up = U —zsing =u —zw
wy, =w +z(cosp —1) =w

WI
= arctan = w'
@ (1 + u’)

Primes denote differentiation with respect to the axial co-ordinate. The Lagrangian and the
engineering strains are assumed to be identical for practical purposes, provided they are small. The
strain at a generic point P of the riser along the longitudinal direction is

3.1)

1 1 1
&, = up + E(u})z + E(w{;)z =y —zw'" + I(W’)Z =ec—zw" (3.2)

13



where ¢ is the non-linear axial strain at the cross section centroid. Notice that in (1) it was assumed
that u, = 0(w#) and the axis strain was introduced as

e=u' +%(w’)2 (3.3)

The equations of motion for free vibration will be obtained with Hamilton’s principle

iy
f (6T — 6V)dt = 0 (3.4)
t

1

where 6T is the kinetic energy variation (neglecting rotational inertia) and §V is the variation of the
total potential energy.

The Kinetic energy is (where over dots indicate differentiation with respect to time)

lm
T =j —(@? + w?)dx (3.5)
0 2

From the former equation, after taking into account the natural boundary conditions,

t2 t2 l
6T dt = —f f m(itdu + wéw) dxdt (3.6)
t; J0

ty

The potential energy is the sum of the internal energy U and the potential energy of conservative
forces E,,

t2 t2 l
OE,dt = —f f pdU dxdt (3.7)
t; Jo

ty

t

ty t, rl 2l 3
oU = —f f EAW" +w'w'") Sudxdt — f f EA (u”w’ +u'w'" + —W'ZW") Swdxdt
ty t; Y0 ty Y0

2
(3.8)

[ l
+f fEIW’V Swdxdt
t; Jo

As demonstrated in [8], the system of differential equations with coupling between longitudinal and
transversal displacement comes out:

mii — EA@W" +w'w")—p =0

3 3.9
mw + EIWIV —EA (u”w’ +u'w" +§W,2W”) =0 ( )

14



Neglecting the longitudinal inertial force mii = 0 we have that the normal force vary linearly along
the riser

!

r 1 12 _
EA(u +ow ) +p=0 (3.10)
1
EA (u tow 2) + px = No(t) (3.12)
N(x,t) = No(t) — px (3.12)

At this point, it is more convenient to introduce the average value of normal force N calculated at
the mid-span (before that the transversal vibrations starts)

EAuO

N=-—
l

(3.13)

After the riser is expose to bending the normal force in the mid-span is affected by a new term and
become

_BAu, | EA
21

w’zdx (3.14)

Thus the axial force at a generic section and generic time will be

N(x,t) =N +p(£—x) EAf w'dx (3.15)
21

At the top of the riser we have

l EA (Y , EA (Y ,
No(t) =N(0,t) =N +p= +2l w' dx=N0(0)+Efw’ dx (3.16)

Now it is possible to decouple the transversal displacement equation from the longitudinal one [7]
to obtaining

(0 v _ 144 -
mw + Elw N(C, o )w” +pw’ =0 (3.17)

EAu ! EA [ 1
mW+EIWIV—< l 0+p(§—x>+2—l W’de>W”+pW':0 (3.18)
0
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Introducing the following parameters:

El
a=—
m
N
P
0 (3.19)
4 m
_ EA
A= omi
It is finally obtained the transversal displacement equation written in dimensional form
0w N o*w %w (1 )62w N ow azwff <6W>2 de = 0
T PO P AVINL F oA A riat Fol RV T M (3.20)
3.2 NON LINEAR FREE VIBRATION
Recalling the transversal displacement equation (3.18)
. EAu, l EA (Y
mw + EIw!V — l +p(§—x>+2—l w'%dx |w" +pw’' =0 (3.21)
0

We change the reference system in order to obtain an equivalent cable equation from the previous
one

>

ulL, By =wu(L, 0) No+ oL =N,

4444449494944

<
=

Figure 12: Static configuration of the vertical riser
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If the dynamic is dominated by a single mode, as it is supposed to be the case for a riser subjected to
a parametric resonance, the solution is searched in the form

w(x, t) = W(x)sinwt (3.22)
And subtitling in (3.21) we get
EA Lo
EIWV —NxO)W" —pW' — EW” f W'2sinwtdx — mw?*W =0 (3.23)
0
EAu l
N(x) = l 0+p<§—x) (3.24)

As a second approximation temporal Galerkin projection is applied to (3.23) followed by integration

.2m
over the response period o

3EA L
EIWV — NCOW" — pW' —EW”I W2dx — mw?W =0 (3.25)
0

Defining a fictitious normal force N*(x) such as

L
v _ ﬁ " 2 — _N\* "
EIWY —==W" | W2dx = —-N"(OW (3.26)
0

We arrive at a formally equivalent cable equation (with tension [N*(x) + N(x)])

—N*(X)W" = NQ)W" —pW' — maw?W =0 (3.27)
[N*(x) + NCOIW" + pW' + mw?W =0 (3.28)

The last approximation is the definition of a normal force that comes out from the linear mode

nmx
W, (x) = WOnsinT (3.29)

with n that indicates the mode number. We can then compute

2
N*() = No, = (o) Elg (3.30)

L

2 2
where El,, = EI (1 + 317’—6") and 31"—6" represents the nonlinear correction due to the motion

amplitude[8]
17



(3.31)

Wo, (t) = rn(¢) is the dimensional modal amplitude of the "™ mode and 75 (¢t) = @ is the non-

dimensional modal amplitude, recalling that the radios of gyration is definedad r = \/;

Thus the equivalent cable equation becomes

[1v077 + N(x)] W' + pW' + mw?W = 0

And a variable transformation introduced as

_az® Ny,
== .
m(N, + px
z=2 —( by TP )wn
p
with
a= p
mw?
an = Nb(O) + Non
so that
d2w, 1dw,
=W, =0
dz? +Z dz +

Also, it is defined X, in such a way that

Xn

1
Wn_ﬁ

Leading to an equivalent, yet simpler differential equation

d?x,
dz?

1
+<1+E>Xn=0

Notice that iz « 1 and also its average value 2e =
4z Zt—Zp

18
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(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)
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In the expressions above, subscripts z; and z, stand for bottom and top.

A familiar equation of motion then appears:

2
n

D¢
—7 (142X, =0 (3.40)

Whose solution is approximately given by

X, (2) = C,sinf,z + D,,cosf,z (3.41)
Provided
Pn=V1+2e=1+e=1 (3.42)
From which
1
W, = —[Cysin (z) + D,,cos (2)] (3.43)
Vz

Taking into account the boundary conditions

W (zp) = Wp(z,) = 0 (3.44)

The following homogenous system comes out [9]

[sin (zp) N cos(zb)]

oo oo l5]- 00

| sin (z¢)  cos(z) [LDn 0 (3.45)
L vz = Jz |
Requiring that
ﬁsin(zt —2z,) =0 (3.46)
Zy — Zp = N (3.47)

For not-trivial solutions to exist

Defining C,, = \/Z_bCOSZb

19



( nm
“n = 2Lm (\/NT’" * \/N_tn)
4’ N, ]
< Wn(Z) = WSIH (Z - Zb)

B JNp, + DX
T, + W,

V4 T

Combining the equations (3.48) is possible to rewrite W, (z) in the in the following way

2 3 = pl
a=" Tyu=Tyo+ () EIQ+2n?) Tyoy=N-% b=

Tpn

Y,(x,n) = (1 + ax)_% -sin[b(V1+ ax — 1)]

nm

Vi+al-1

(3.48)

(3.49)

(3.50)

The approximate non-linear solution supplies accurate information regarding the modal shapes that

can thus be used as projection functions within the non-linear Galerkin procedure to obtain

reduced-order models (ROM). As defined here, these are the Bessel like modes.

0,9
0,8
0,7
0,6
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0,3
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/ —n=2,5

/ —s

N ——n=75

\ —n=10

AN n=12,5

\ —n=15

0,2 0,4 0,6 0,8 1
x/

Figure 13: First modal shape with increasing non-linear terms
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Figure 15: Third modal shape with increasing non-linear terms
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Figure 16: Fourth modal shape with increasing non-linear terms

As shown by the graphs for the first mode, it is possible to neglect de influence of the non-linear
correction to the bending stiffness without compromising the quality of the results. This is not true
for higher modes, where it is possible to see an increasing shift of the shape caused by the non-
linearity correction

3mm
Eleq = FEI (1 + F) (3.51)
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3.3 REDUCED-ORDER MODEL FOR HEAVE

Starting with the nonlinear equation for the riser under free vibration is possible to add terms that
will consider the effect of the heave sign as a harmonic variation with a forcing frequency that is
twice one of the linear natural frequencies of the system (in order to consider the parametric
instability scenario). The relevant Bessel-like mode (3.49) is used to project via the Galerkin
method the continuum dynamics system onto a single degree of freedom system phase plane
obtaining a reduced-order model.

Recovering the dimensional equation of the non- linear free oscillator (3.20)

62w+ *w  9%w (1 )62w+ ow azwf’<aW)2d 0
a v is-x)5z+r——ne| (52) dx=
2 0x? ox 0x? ),

9t2 ot Pz dx (3.52)

it is possible to take into account the effect of a vertical imposed top motion (heave) adding a new
term, namely B, (t) (the effect of the average axial force N along the riser, is already considered by

B)
EAR(?)

= 3.53
pu(®) == (353)

Heave will be sought as a harmonic function
h(t) = ho - cos (0 1) (3.54)

where Q is the heave frequency O = 2@, which is twice the first natural frequency in still water
(@,) defined as a ratio between the natural frequency in air of the first non-liner mode w, (with
hypothesis of N acting all over the riser) and /1 + C;; (see equation (3.70) for the definition of C;;
coefficient)

~ !
w4 =
/s 2
w1 T ﬁ + l—za (3.56)

Nevertheless the transversal load g,, due to a relative movement fluid-structure movement must be
considered (the VIV effect will not be taken into account in this work)

62w+ 2*w 4 2%w (1 )62W+ ow 2%w 1‘)((?W)Zd — o (t
gz VoG T BTG TV (5 Y ) TV o THax ), \ax) = WO (3.57)
qw (8)
Ow () =— (3.58)
Where
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nD?9d%*w 1 (3.59)
qw(t) = —CaPw =35z ~ 5 CaPwD |6t|
62W+ 84 N (1 )62w+ ow azwf (6W> dx =
at? (B +Pnlt )) 8x2 2 ) axr TVax Hoxz ) \ox) T
_ C, mD*3*w 1y (3.60)

mPvTa 9z T 2mPw |at|

It should be recalled that the Morison equation is a semi-empirical equation for the inline force on a
body in oscillatory flow and it is the sum of two components: an inertia force and a drag force.

D? 1
F=pple—7w+s PﬂCdD|W| (3.61)
F; = psCaVW inertia force (3.62)
Fp = %pﬂCdAv'vlv'vl drag force (3.63)

The equation contains two empirical hydrodynamic coefficients: an inertia coefficient (C, is the
added mass coefficient) and a drag coefficient C,; which depends on the Keulegan—Carpenter
number, Reynolds number and surface roughness.

The two previous mentioned coefficients are contained as well in g, (t) (3.59).These coefficients
allow to consider: the effects related to the fluid additional mass, due to the distortion of the fluid
flow by the presence of the body, namely

=aD7 (3.64)

and the Morison damping type effects through the drag coefficient Cj.

The coefficient C,”, which stands for the ration between the water added mass per unit length and
the riser mass per unit length, and the drag coefficient C;must be calibrated over the experimental
results obtained in IPT’s experiment

It is more convenient to re-write the obtained equation (3.60) in non-dimensional form: with respect
to space, by means of the new variable v and &, and time which is normalized with respect to the
riser first-mode frequency in still water.
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_ w
=1 (3.65)
_ X
&= N (3.66)
T =@t (3.67)

For the chain rule

o _ 9 dag _ 1 ov 0*v _ 1 d%*v o%v _ 1 d*v
ox 0f dx I 0 o0xZ 12 982  ox* I* 8¢

(3.68)
w_90. & _ 5. ﬂ_az.az_”
ot ot dt ' ar a4tz 1 ar2
yield
_ 5 0%y - , 0%v avAavz 1 9%
(,()1 aT2D+C 1 a 2D +a1 67_- 0)1'5 +a l4’ 654’
5+ () l(l )162 +16vD
B+ pn(t) 12 652 14 2 $ 12 652 14 9¢ (3.69)
1 aszf (1 avD)Zd _o
Kz B¢z [ eP) €=
with the following coefficients
* CqpwD * Cq D? ~
a; = % C, = ZPWRT h(t) = ho - cos(Q2- ail) (3.70)

The reduced-order model that will be obtained will use linearized Bessl-like mode within the
Galerkin projection, according to two important approximations:

e It will be considered the scenario of parametric resonance with the first mode n = 1; asa
consequence the whole energy of the continuous system is assumed to be constrained to the
first mode

2 2
e Ty =Ty(0)+ G) El (1 + 1161712) = Tp(0) + (?) EI, because as seen in the section 3.2,
it is possible to assume that the first mode is insensitive to the non-linear correction implied
by the term %nnzin the bending stiffness.

Adopting the usual non-dimensional variables



Yu(Em) = (1 + ale) ™4 - sin[b(yTF alE - 1)] 371)

_ Pn(§mn) _
Wp (§,1n, ) = Wor (7) o (E, T]n) = Won (D)@ (€, 1n) (3.72)
Wi (€M, T) = Won (D)@, 1mn) = (D)@ (€, 10) (373)
08,1, 7) = 1 (D)5 A, 1) (3.74)

where ¢ indicates the point where the function sin@ exhibits a maximum, namely & = % .

Consequently ,,(¢,7) is a pure number.

The equation (3.74) will be used for projecting via Galerkin method the continuum dynamics
system onto a single degree of freedom withn =1 (n; =)

Inserting (39) in (35) yields

. . o N 1
i+ Ch @y rn-¢+a1-Irn-w1¢|-rn-w1¢+al—-rn-¢”’

_ (B + B (T))

(3.75)
£ n'¢”—7(5—€) g+ Lo Lo [ - g'eag = o

after division of each terms of the former equation by @, - (r) the following result is obtained

+
7'7.'¢(1+C¢;)+a;'|T77"¢|'T']'¢+(ZA > 4'T]'¢IV—(‘BA—‘82h(T))‘T7'¢”
0,1 w,°1?
R A L W oy uf 205 _ (3.76)
e O R R R R A R R RO R DL
Adopting the Galerkin non-linear method the equation (3.76)is multiplied by
v(§n,7) = ( Wolt )>¢>(€ M =8 (51(0) $Em (3.77)
yielding
i $2(L+Co) +ai -l gl 97 + n "o (479)

2
w0, 1%
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0

It should be noted that the coefficients ¢ and its derivatives vary along the riser length. To eliminate

such a variation these coefficients will be averaged with respect to the non-dimensional space
domain 0 < ¢ < 1 in order to remove the spatial dependence.

1 5 1 1 1 v
i€ [ @2 +ai gl [ 11s d5+aalzl4 nfoqb pdz
(ﬁ+ﬁh( )) II IR II
T f«b P — Alzl( ) jqb

_“rz 111<1_12>_
Azl3f0¢¢f0(n $)?dg ) d = 0

Trying to obtain a handier equation various coefficients are introduced
Ao = [y 0%dE Ay = [, $2pldE A= [ ¢VpdE Az = [ ¢l¢de

Ap=[y(5-¢)-¢"pds  As=[¢'pds A= [ ¢"(f, ($)%d¢)ds

a =4 A =a——— a3 = 4 ay =—2r
1™ (1+c) 2 @,214(1+C)) 37 a.212(1+c)) h = wi2iz(1+cy)
2
Y Y ur
Ay = de = Ay = ——————
47 211+C) 57 2211+¢) 67 5,213(1+C))
Finally

iAo + Nlnla Ay + nayA; — n(as + ap)Az —nagAs + nasAs — n*agAe
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4 CHAPTER 4

In this section the reduced-order model obtained in the previous chapter is resolved using a
numerical integration (Dormand-Prince method). With the same technic a different ROM
originated from the projection onto a trigonometric function is also solved and compared with the
previous one. Finally with the aim of analyzing the quality of the results of the ROMs a FEM model
is developed.

4.1 NUMERICAL INTEGRATION OF THE REDUCED ORDER
MODEL AND RESULTS

In order to carry out the numerical integration, it is used the software Matlab®. The numerical
integration adopted the Dormand—Prince method RKDP an explicit method for solving ordinary
differential equations . RKDP is a member of the Runge—Kutta ordinary differential equation solver
and is implemented in the Matlab® function ODE45. More specifically, it uses six function
evaluations to calculate fourth- and fifth-order accurate solutions and is a one-step solver in
computing (t;) . It needs only the solution at the immediately preceding time point y(¢;_,).The
Dormand-Prince method has seven stages, but it uses only six function evaluations per step because
the last stage is evaluated at the same point as the first stage of the next step. The coefficients of the
method minimize the error of the fifth-order solution.

Here the fundamental aspects of a Runge-Kutta ordinary differential equation solver are presented.
As an example, it is considered the fourth-order Runge-Kutta method.

The method uses a weighted average of the slope evaluated at multiple steps

YVis1=Yj + hEVm km (4.1)

where y,, are weighting coefficients (In general ). y,, = 1) and k,, are slopes evaluated at points in
the interval

(4.2)
The fourth-order Runge-Kutta method computes the slope at four positions within each step
ki = f(t':yj) (4.3)
h h (4.4)
k, = f(tj +§,yj +Ek1>
h h (4.5)
k3 = f(tj +§,yj +Ek2)
ky = f(tj + h,y; + hk3) (4.6)

28


http://en.wikipedia.org/wiki/Ordinary_differential_equations
http://en.wikipedia.org/wiki/Ordinary_differential_equations
http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta

It uses weighted average of slopes to obtain

ki ky ks k
Yisr =Yjt+h (—1 + : —4) (4.7)
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Figure 17: slopes calculation with fourth-order Runge-Kutta method

The numerical predictions are obtained solving the ordinary differential equations according to the
procedure already outlined.

The data chosen for the solution of the ROM are the same used in the experimental tests carried out
in IPT [10] in order to make the results comparable.

DATA
Undeformed length Lg 2552 mm
Stretched length L 2602mm
Immersed length L; 2257 mm
Internal diameter D; 15.8 mm
External diameter D 22.2mm
Riser mass m 1,190 kg/m
Immersed weight p 7.869 N/m
Axial stiffness EA 1207 N
Bending stiffness EIl 0.056 Nm?
Average normal force N 23.65 N
Fluid density Pl 1000 kg/m3
Water mass coefficient Cn 0,3252
Natural frequency in the air w4 5.7731rad-s?!
Heave amplitude hg 0.025m
Heave frequency Q 10.03rad - s~1

The coefficients Ay, A;, Ay, A3, Ay, As Ag Of equation (3.81) are numerically evaluated using
adaptive Simpson quadrature.

The coefficient C," and C; are obtained from the calibration fo the ROM to reach a good
agreement with the experimental attests carried out at the towing tank[10][11]. In particular, C,”
was obtained by imposing that the first mode natural frequency in still water
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w1

J1+C,°

61:

should be equal to the experimental value @; = 5,015 [%

The results here presented are based on the drag coefficient value equal to

C, =284

That is good agreement with the paper [12] that proposes

Cq = 2.946

Using the linearized Bessel-like first mode as the projection function within the Galerkin method,
the following results in terms of amplitude, phase portrait and power spectral density are obtained.
The results comes out from the numerical integration of the equation (3.81) which is a
dimensionless equation and then even the graphs presented are accordingly dimensionless
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Figure 18: Non-dimensional modal amplitude ROM (Bessel-like)
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Remembering that the equation was non-dimensionalized also with respect to the gyration radius

r= \/% = 0.0068[m] and the maximum (non-dimensional) amplitude recorded is A = 2.2239, we

finally get a dimensional amplitude of A; = 0.0151 [m] that is equal to the same as the amplitude

obtained in the IPT test [10].

The spanwise distribution of the Power Spectrum Density doesn’t show a perfect peak at 1 because
the natural frequency of the first mode w; = 5,7731 |

rad

].

N

One of the scopes of this work is also to prove that a reduced-order model obtained by means of a
non-linear mode provides better results in comparison with a MOR originated from the projection
onto a trigonometric function [12] as

v, = Agsin (knf)

(4.8)

Where k = 1,2,3 ...n is the number of modes considered
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To prove that the analysis is repeated with the same data and the same model (of course with

Figure 21: Bessel-like mode vs. trigonometric mode

v, = Agsin (kré)instead of non-linear mode) and the results are show in the Figures 22-23-24.
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Figure 22: Non-dimensional modal amplitude ROM (trigonometric-like)
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Figure 24: Power spectra ROM (trigonometric-like)

The non-dimensional amplitude is significantly reduced A = 1.8148 namely —18,40%. In order to
obtain a result close to the experimental one (4, = 0.015 [m]) the drag coefficient C," should be
posed equal to

C,* =2.25

The results of this section clearly show that: despite of the slightly difference between the two
functions (Bessel-like and trigonometric) used for projecting via Galerkin method the continuum
dynamics system such a difference can strongly affect the precision of the analysis.

Although the two types of functions are initially similar (Fig. 21), in the ROM’s equation (3.81)
appear coefficients related to their derivatives up to the fourth order and for each derivation the
difference between the two functions increase and consequently also the ROM’s results are
affected.
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Figure 25: Bessel-like derivatives vs. trigonometric derivatives

Furthermore it was shown haw the drag coefficient is a key parameter for the reduced-order model
here proposed and a little variation of this parameter has a strong effect on the ROM.
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4.2 FINITE-ELEMENT ANALYSIS WITH A DEDICATED CODE

In order to have another mean of comparison for the ROM’s result, a finite element analysis of the
vertical riser subjected to heave is carried out with dedicated software. OrcaFlex® is a marine
dynamics program developed by Orcina for static and dynamic analysis of a wide range of offshore
systems, including the rigid risers.

The equation of motion which OrcaFlex® solves is as follows:

M(p,a) + C(p,v) + K(p) = F(p,v,t)
(4.9)

where
M (p, a) is the system inertia load.
C(p, v) is the system damping load.
K (p) is the system stiffness load.
F(p,v,t) is the external load.
p is the position and v velocity and acceleration vectors respectively.

t is the simulation time.

The schema re-evaluates the system geometry at every time step and so the simulation takes full
account of all geometric non-linearities, including the spatial variation of both wave loads and
contact loads.

The finite element model for a line implemented in OrcaFlex® consists in a model divided into a
series of line segments which are then modeled by straight massless model segments with a node at
each end as shown in the figure below
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Figure 26: Orcalex fem element

The riser is first modeled so as to obtain normal forces that in the static analysis are close to the
normal forces of the IPT test [1], namely:

Static tension at the top N;(0) = 33,88 [N]
Static tension at the bottom N, (0) = 13,41 [N]

with a linear variation

Static tension variation
1
/|
08 /
0:7 /
0,6 /
Sos /
= 0:4 /
0,3 /
0:2 /
0,1 /
10 /
10 15 20 25 30 35 40
Ny(0) [N]

Figure 27: Static tension variation
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To achieve this goal the length of the riser is calibrated since the normal force is given by its
elongation. The length (before stretching was applied) which allows to have the same static tension
distribution is

L = 2552 mm

Figure 28: Orcalex model

OrcaFlex® calculates hydrodynamic loads on risers using an extended form of Morison's Equation
[13] and setting the data already used in the previous section we get the following results (Fig. 29-
30)
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Amplitude in in meters and referred to the mid-span where approximately the amplitude reach the
maximum.

It can be noticed that the model predicted an amplitude A = 0,016 [m] close to the Bessel-like
ROM. It must be underlined that OrcaFlex® compute the same shape already given by the Bessel-

like mode and not a trigonometric sinusoidal function confirming the greater accuracy of ROM
obtained by a projection onto a Bessel-like mode.

40



5 CONCLUSION

The objective of this thesis was to create a reduced-order model able to predict the behavior of a
vertical rigid riser subjected to vertical or the length before stretching was applied top motion
(heave) with a frequency twice of the natural one in order to study the parametric resonance
phenomenon. The behavior’s correct prediction of the riser under such excitation can help to avoid
some important problems especially the one related to fatigue. Firstly, the vertical riser was studied
as an axially loaded beam assuming the classic hypothesis of Euler-Bernoulli theory and by using
the Hamilton’s principle it was possible to obtain the non-linear equation of motion. Starting from
the previously obtained equation and introducing some approximations (single-mode dominated
dynamics, Galerkin temporal projection, non-linear correction in the normal force) it was possible
to get the non-linear Bessel-like vibration modes. The results have shown that for the first mode
(and only for the first) the non-linear correction previously introduced can be neglected without
compromising the quality of results. The first Bessel-like mode was then used as the projection
function within the non-linear Galerkin method in order to obtain the ROM. Once the analytical
expression of ROM was obtained, the amplitudes of the response were analyzed via numerical
integration (Dormand-Prince method).After that different comparisons were made to ensure the
reliability of the reduced model. The first and most important comparison was carried out with the
experimental results obtained with a physically-reduced model tested at the towing tank of IPT. The
ROM was in fact developed directly over the data obtained experimentally, yet requiring a
calibration of the natural frequency is still water (through coefficient C,") and the drag coefficient
to reach a good agreement with the experimental results.

One of the main goals of the project was to analyze if the ROM obtained via projection on a Bessel-
like would provide better results, in terms of quality and time demand, compared to a ROM based
on a trigonometric function. For this purpose two analyses with the two different ROMs with the
some data were carried out. The results have indicated that between the two models there is a
remarkable difference in the amplitude estimation (difference of 18,4%).

However it must be underlined that the drag coefficient used in this comparison was the one
obtained after calibration on the base of the ROM with Bessel-like and is clearly for this that the
ROM(Bessel-like mode) perfectly fits the experimental results unlike the other model.

To ensure the quality of the result of the ROM(Bessel-like mode) a finite element analysis with a
dedicated software was performed. This analysis has shown that the shape and even the amplitudes
of the FEM model are more in accordance with the ROM(Bessel-like mode) that with the ROM
(trigonometric function) which underestimates the amplitudes and has a sinusoidal shape.

The purpose of the thesis seems to have been reached. Obtain and analyze a ROM (Bessel-like
mode) implies a greater mathematical effort in comparison to a ROM (trigonometric-like mode) but
the quality of the results justifies the choice.
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