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ABSTRACT 

The dynamic behavior of vertical rigid risers under top imposed motion (heave) is considered using 

a reduced-order model (ROM) based on a Bessel-like mode. Heave motion enforce modulation of 

the tension amplitude along the riser. In this scenario it will be studied the particular case of 

parametric resonance caused by an excitation frequency that is equal to the double of the structure’s 

first lateral natural frequency. The vibration modes of slender beams subjected to axial loads 

(Bessel-like modes) are used to project (via the Galerkin Method) the continuum system dynamics 

onto a single-degree-of-freedom system phase plane. Then the amplitudes of the response are 

obtained via numerical integration (Runge-Kutta method family). The ROM obtained will be set 

according to the experimental results obtained with a physically-reduced model tested in a towing 

tank (Technological Research Institute of the State of São Paulo, IPT) [1] [2]. A comparison in 

terms of amplitudes between the ROM based on the Bessel-like modes and the ROM based on 

trigonometric function is carried out .In order to ensure the correctness and the reliability of the 

reduced-order model a Finite Element Model develop with a specialized commercial software 

frequently used in Offshore Engineering (Orcaflex©). Finally, a discussion of the results is made.  
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1 CHAPTER 1 

 

This chapter gives a general overview of the offshore structures briefly describing the various types 

of existing platforms and a specific component of them, the riser, which is the element under 

investigation in this dissertation. 

1.1 INTRODUCTION 

Since decades, petroleum companies have been on a constant look out for availability of fossil fuels 

reserves around the globe. When the land reserves were getting emptied up due to the constant 

scooping and drilling, the ever increasing demand of oil and gas pushed oil and gas companies 

further away from the marine coasts into ultra-deep ocean’s waters 

Huge oil and gas fields were discovered in water depths above          at          off the 

Brazilian Southeast coast (Lula field,  Santos Basin). The reservoirs, estimated between 5 and 8 

billion barrels of top quality petroleum, are in the so-called pre-salt layer about          below the 

sea bottom. 

An offshore platform is a large structure with facilities to drill wells, to extract and process oil and 

natural gas, or to temporarily store product until it can be brought to shore for refining and 

marketing. . The first offshore platform was installed in 1947 in      depth water. Today there are 

over     units in water depths up to          .Depending on the circumstances, the platform can 

be grouped in two main types namely: fixed platforms and floating platforms. 

 

 

 

 

 

 

 

 

 

http://pt.wikipedia.org/wiki/Bacia_de_Santos
http://en.wikipedia.org/wiki/Petroleum
http://en.wikipedia.org/wiki/Natural_gas
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1.1.1  FIXED PLATFORMS 

The fixed platforms are built on concrete and/or steel legs anchored directly onto the seabed. Such 

platforms are, by virtue of their immobility, designed for very long term and are economically 

feasible for installation in water depths up to about           

1.1.1.1 JACKET PLATFORMS 

The most common types of fixed platforms is the Jacket one (   of the offshore platforms in the 

world are jacket designed). Their deck is supported by a steel tubular structure having its feet on the 

seabed. To fix them onto the seabed, the jacket is equipped with thick steel piles of       diameter 

that can penetrate the sea floor up to        deep to ensure the stability of the whole platform. 

 

 

Figure 1: Example of Jacket platform 

 

 

1.1.2 FLOATING PLATFORMS 

Nowadays the design of floating platforms is in continuous development due to the  fact that the 

expected  that this is not the limit since fields in         have already been discovered and  

obviously the depth can’t be reached by fixed platforms. 

1.1.2.1 TENSION LEG PLATFORMS 

An example of floating platform is the TLP (tension leg platform) used for water depth up to 

       .They are tied down to the seabed by vertical steel cables called tethers. This characteristic 

makes the structure very rigid in the vertical direction and very flexible in the horizontal plane. The 

vertical rigidity helps to tie in wells for production, while, the horizontal compliance makes the 

platform insensitive to the primary effect of waves. These kinds of oil platforms are highly suitable 

http://en.wikipedia.org/wiki/Concrete
http://en.wikipedia.org/wiki/Steel
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in areas prone to regular volatility of the oceanic conditions. Examples of some of the high seas 

where TLP platforms are currently operated include the Gulf of Mexico and in certain parts of the 

North Sea. The vertical motion, resisted by the tendons, is not large as compared to the horizontal 

one; however it causes axial deformations that lead to periodic normal force variations. The main 

disadvantage of these types of platform is the high initial cost. 

 

Figure 2: Example of Tension Leg Platform 

 

1.1.2.2 SEMI-SUBMERSIBLE PLATFORMS 

A semi-submersible platform is designed with a platform-type deck supported by pontoon-type 

columns that are submerged into the water. They are used for ultra-deep water and are held in place 

by anchors connected to a catenary mooring system. As a semisubmersible, the rig offers 

exceptional stability for drilling operation, since rolling and pitching from waves and wind are great 

diminished. Because semisubmersible platform can float, transporting these rigs from location to 

location is relatively simple 
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Figure 3: Example of semi-submersible platform 

1.1.2.3 SPAR PLATFORMS 

SPAR is a recent type of floating platform (the first spar platform Neptune was installed off the 

USA in 1997) used for drilling wells beyond           It is designed with a hollow vertical 

cylindrical hull and it is secured to the ocean floor by a complex network of cables and tendons. 

The weight of the cylindrical hull stabilizes the drilling platform and caters for the drilling risers to 

descend up to the drilling well on the sea floor. The vertical displacement of this type of structure is 

strongly reduced minimizing in that way the effects of the superficial waves, but is sensitive to 

problems related to VIV (vortex-induce vibrations) 

 

Figure 4: Example of SPAR platform 



5 

 

1.1.2.4 FLOATING OFFSHORE PRODUCTION SYSTEMS  

The FPSO (Floating Production Storage and Offloading) system is used extensively by oil 

companies for the purpose of storing oil from the oil rigs in the middle of the ocean and in the high 

seas and can be used where building fixed platform and piping is technically and economically not 

feasible. It is one of the best devised systems developed by the oil exploration industry for deep-

water areas.  

 

Figure 5 Example of Floating Production Storage and Offloading 

The FPSO allows not just storing oil but also producing or refining it before finally offloading it to 

the desired industrial sectors, either by way of cargo containers or with the help of pipelines built 

underwater. The use of this system ensures that shipping companies do not have to invest even 

more money by ferrying the raw and crude oil to an onshore refinery before transferring it to the 

required industrial areas. In simple terms, the FPSO saves time and money effectively (some of the 

famous FPSOs are Maersk’s FPSOs, Munin Award Winning FPSO, and Shell’s Prelude). The 

FPSO presents 6 degrees of freedom that are showed in the following picture 

 

http://www.marineinsight.com/marine/marine-news/featured/munin-%E2%80%93-the-award-winning-fpso-floating-production-storage-and-offloading-ship/
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Figure 6: FPSO’s degrees of freedom 

The displacement imposed by the vessel to the risers can be very large and can cause various 

problems to the submerged risers and this aspect should be taken into account. 

1.1.3 RISERS 

In order to convey the hydrocarbon to the sea level, a pipe, conventionally referred to as a riser, is 

installed between wellhead at the sea bed and the floating platform. Offshore production risers are 

very slender structures and also a key issue in the design of offshore structure in particular for the 

service life evaluation of the material due to fatigue. The risers are subjected to large axial thrusts at 

the top to account for the riser submerged weight, still avoiding undesirable compression at the 

bottom they are top tensioned. 

We can distinguish two typologies of risers namely: flexible and rigid. There are also different 

kinds of riser configurations, and both flexible risers and rigid risers can be used in free hanging or 

in a vertical straight configuration. 

1.1.3.1 FLEXIBLE RISERS 

Flexible risers cope with vessel motion due to wave loading and compensate heave motion (simple 

catenary risers is freely suspended between surface vessel and the seabed). They are more complex 

compared to the rigid one because they are made of different material layers, which have 

specifically structural or operational functions as show in the picture 
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Figure 7: Flexible riser 

 

1.1.3.2 RIGID RISERS 

What are called rigid risers are actually steel tubes. Top-tensioned risers are a completely vertical 

riser system that terminates directly below the facility. Although moored, these floating facilities 

are able to move laterally with the wind and waves. Because the rigid risers are also fixed to the 

seafloor, vertical displacement occurs between the top of the riser and its connection point on the 

facility. Despite a number of advantages of the straight top-tensioned riser over the catenary riser, 

straight production risers have not been used yet in water depths over           

The concern, that is stopping the offshore industry from using top-tensioned straight risers in deep 

waters, is associated with fluctuation of the axial tension in the riser that is caused by vertical 

motion (heave) of the platform in waves. Although this fluctuation is significantly reduced by heave 

compensators, through which the riser is connected to the platform, it can be dangerous. The danger 

is that the fluctuating tension might destabilize the straight equilibrium of the riser and cause it to 

vibrate at a dangerously high level.  

The vibrations cause stresses in the risers, which may result in fatigue problems from cyclic loads. 

When considering the fluctuation of top tension in the riser, the parametric instability problem of 

the riser needs to be addressed first. Besides this, the riser will suffer considerable wave-induced 

vibration (WIV) and vortex-induced vibration (VIV), which can last for almost the whole design 

life in harsher environments.  
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Figure 8: Rigid riser 
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2 CHAPTER 2 

The main theoretical tools (non-linear modes, non-linear Galerkin method) used for the reduce-

order model development are here proposed. It is also given the theoretical base of the parametric 

resonance problem which, in this work, is studied as a possible scenario of risers under heave 

imposed motion due to the variation of their stiffness that is related to the axial force modification 

caused by the riser vibration. 

2.1 NON-LINEAR MODES 

Clearly, linearity is an idealization, an exception to the rule; nonlinearity is a frequent occurrence in 

real-life applications and the behavior of the risers is an example. The dynamic analysis of riser is 

strongly non-linear in fact it involves: large displacements in a slender structure; unilateral contact 

with the seabed (for catenary risers), fluid-structure interaction, vortex-induced vibrations (VIV) 

etc. 

The concept of a normal mode is central in the theory of linear vibrating systems. Any attempt to 

apply traditional linear analysis to nonlinear systems results, at best, in a suboptimal design. Thus, 

there is a need for efficient, analytically rigorous, broadly applicable analysis techniques for 

nonlinear structural dynamics. 

During the normal mode motion of a linear conservative system (LNM), each system component 

moves with the same frequency and with a fixed ratio amongst the displacements of the 

components. Targeting a straightforward nonlinear extension of the LNM concept, Rosenberg [1] 

defined a nonlinear mode NNM as a vibration in unison of the system (i.e., a synchronous 

oscillation). This definition requires that all material points of the system reach their extreme values 

and pass through zero simultaneously and allows all displacements to be expressed in terms of a 

single reference displacement. An extension of NNM definition to a broader class of problems, such 

as non-proportionally damped system for which NNMs are not synchronous motions, was proposed 

by Shaw and Pierre [2] Yet, for the purposes of the present work, Rosenberg’s definition suffices. 

It is largely accepted that non-linear modes of vibration may be particularly suitable for obtaining 

reduced-order models (ROM)  in non-linear dynamics, for their ability to grasp, even when just a 

few of them are taken into account, the essential qualitative system information that a much larger 

number of linear modes is required to. Thus the main advantage of using the nonlinear modes in 

comparison with the linear ones is the possibility of obtaining a better ROM with fewer degrees of 

freedom 

However it should be remembered that in nonlinear problems we don’t have the guarantee of 

uniqueness of solutions and different solutions can coexist; they could manifest depending on the 

parameters perturbation or on the initial conditions 
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Reduced-order models can be obtained from the modal relations and equations of selected non-

linear modal oscillators. In order to determinate the equivalent modal forces we can impose equality 

between the virtual work in the original phase space and in the reduced order model phase space. 

The forced nonlinear oscillator’s differential equation can be analytically integrated using a 

perturbation method or numerically in order to obtain the time domain responses. In this 

dissertation it will be used the Dorman Prince method (RKDP) to integrate analytically the 

nonlinear differential equation. 

2.2 PARAMETRIC RESONANCE  

Several sources of nonlinearities are present in the riser analysis, making it a very complex system 

to study. The nature and amount of dynamic loads that the riser is subjected to makes the problem 

even more complex. One may have combination of platform movements, waves, internal flow, 

currents acting in different directions, levels and intensities, which in turn trigger VIV (vortex 

induced vibrations). In the nonlinear scenario of riser’s analysis (due to heave, waves, internal flow, 

VIV etc.), very interesting dynamical phenomenon can occur: the parametric resonances. A 

parametric excitation differs from direct forcing since the action appears as a time varying 

modification of a system parameter (in the case of the riser problem this parameter is the stiffness 

that varies in relation to the axial force modification caused by the riser vibration). Unlike the 

classical resonance of forced system (that occurs when the excitation frequency is equal or close to 

a natural frequency of the system) the primary parametric resonance takes place when the external 

excitation frequency equals twice one of the natural frequencies of the parametrically exited system. 

Under parametric resonance the equilibrium configuration becomes unstable and the system leaves 

it (after an arbitrarily small initial disturbance) in the search of a steady-state solution which may or 

not exist, depending on the system nonlinear stiffness and/or damping [3] For all the previous 

reasons it is clear how important is the study of the parametrically resonant scenario in the riser’s 

analysis.  

Parametric excitation can be better understood considering the so-called Mathieu equation [4]: 

                          (2.1) 

 

This is a linear undamped equation of motion where the stiffness varies with time. Here the term  

      acts as an energy source and it is this term that parametrically excite the system  

The parameter   is defined as the quadratic ratio between twice the natural frequency   and the 

forcing frequency   and ϵ is related to the forcing amplitude 

    
  

 
 
 

 (2.2) 

 

For different values of     the solution can grow without bound or be limited. The Strutt’s diagram 

(Fig.9 ) indicates the regions where the solution is unbounded (hatched areas), and when parametric 
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instability is said to occur. Clearly when nonlinearities and dissipative effects are taken into 

account, as in the case studied, the instability zones change and post-critical steady states may exist. 

 
Figure 9: Strutt’s diagram (Nayfeh and Mook, 1979) 

2.3 NON-LINEAR GALERKIN METHOD  

To transform the continuum model into a reduced-order model (ROM) with only one degree of 

freedom, in the in the following sections the nonlinear Galerkin method [5] [6] will be used. 

The nonlinear Galerkin method requires that the virtual work in the ‘high-order’ model should be 

equal to that in the reduced-order model. Such equality corresponds to a constraint equation, namely 

that the virtual work, or the ‘energy’, imparted to the modes excluded from the ‘reduced-order’ 

model should be zero, which, of course, is not an exact statement and in the case studied is like 

confer all the energy to the first mode: 

               (2.3) 

 

where   and   stand for generalized displacements of the ‘high-order’ and the ‘reduced-order’ 

model and in the same way   ,    are the generalized forces each one associated to its model. 

To achieve this each terms of the equation(3.60) will be interpreted as a force per unit mass and as a 

result it will be imposed that the virtual work of these “forces per unit mass”, defined in the 

continuous system and evaluated by multiplication by the virtual “displacements”   , should be 

equal to the corresponding virtual work of the “modal forces per unit mass” in the reduced-order 

model, evaluated by multiplication by the virtual “modal displacements”     
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3 CHAPTER 3 

Starting from the Euler-Bernoulli beam theory and using the Hamilton's Principle the transversal 

displacement equation is obtained. Then the non-linear free vibration of the vertical riser and the 

relevant Bessel-like mode are provided. The last is used to project via the Galerkin method the 

continuum dynamics system onto a single degree of freedom system phase plane in order to obtain 

the reduced-order model for heave. 

3.1 RISER MODELLING 

This chapter presents the main steps for dimensional formulation of the motion’s equation of 

vertical risers using Hamilton's Principle, so that the transversal motion is de-coupled from the 

longitudinal one. 

In the static configuration  the structure is assumed completely vertical and the riser will here 

modeled as a prestressed slender beam (with constant cross section and made by an homogeneous 

isotropic material) subjected to an axial force linearly variable over its length due to its submerged 

weight [7]. Classical simplifying assumptions are made namely: neglecting longitudinal inertial 

forces and averaging geometric stiffness effects along the beam.  

 

 

 
Figure 10: Static configuration of the vertical riser 
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  beam length 

 
 

   axial rigidity 

 

 

   bending stiffness 

 

 

  axial force 

 

 

     mass per unit length 

 

 

Boundary condition: the axial displacement at       is equal to        and at the time      in 

     is imposed an axial displacement namely     due to the prestressed force      , acting 

together with the submerged weight.  

After the application of      ,the vertical displacement in      will be fixed             for 

the purpose of analyzing the vibration modes. However, the axial force in the former region is 

varying with respect to the time due to the second order bending effects. 

In the formulation development it will be adopted the Euler-Bernoulli beam theory 

 

Figure 11: Euler-Bernoulli’s kinematics 

The generic point displacement will be 

 
                 

(3.1) 
                 

         
  

    
     

 

Primes denote differentiation with respect to the axial co-ordinate. The Lagrangian and the 

engineering strains are assumed to be identical for practical purposes, provided they are small. The 

strain at a generic point P of the riser along the longitudinal direction is 

 

     
  

 

 
   

    
 

 
   

            
 

 
             (3.2) 
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where   is the non-linear axial strain at the cross section centroid. Notice that in (1) it was assumed 

that         
   and the axis strain was introduced as 

 

     
 

 
      (3.3) 

 

 

The equations of motion for free vibration will be obtained with Hamilton’s principle 

        
  

  

     (3.4) 

 

where     is the kinetic energy variation (neglecting rotational inertia) and    is the variation of the 

total potential energy. 

The kinetic energy is (where over dots indicate differentiation with respect to time) 

   
 

 

 

 

            (3.5) 

 

From the former equation, after taking into account the natural boundary conditions, 

 

   
  

  

                  
 

 

  

  

     (3.6) 

 

The potential energy is the sum of the internal energy   and the potential energy of conservative 

forces     

      
  

  

       
 

 

  

  

     (3.7) 

 

   
  

  

                 
 

 

  

  

                        
 

 
       

 

 

  

  

      

        
 

 

  

  

       

(3.8) 

 

As demonstrated in [8], the system of differential equations with coupling between longitudinal and 

transversal displacement comes out: 

 
                     

                         
 

 
         

  (3.9) 
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Neglecting the longitudinal inertial force       we have that the normal force vary linearly along 

the riser 

      
 

 
    

 

     

 

(3.10) 

      
 

 
              

 

(3.11) 

                (3.12) 

 

At this point, it is more convenient to introduce the average value of normal force    calculated at 

the mid-span (before that the transversal vibrations starts)  

    
    
 

 (3.13) 

 

After the riser is expose to bending the normal force in the mid-span is affected by a new term and 

become 

 
    
 

 
  

  
      
 

 

 (3.14) 

 

 

Thus the axial force at a generic section and generic time will be 

            
 

 
    

  

  
      
 

 

 (3.15) 

 

At the top of the riser we have 

                 
 

 
 
  

  
      
 

 

       
  

  
      
 

 

 (3.16) 

 

Now it is possible to decouple the transversal displacement equation from the longitudinal one [7] 

to obtaining   

                          
 

(3.17) 

 

           
    
 

   
 

 
    

  

  
      
 

 

           
(3.18) 
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Introducing the following parameters: 

  
  

 
 

 

 (3.19) 

  
  

 
 

 

  
 

 
 

 

  
  

   
 

 

It is finally obtained the transversal displacement equation written in dimensional form 

   

   
  

   

   
  

   

   
   

 

 
   

   

   
  

  

  
  

   

   
  

  

  
 
 

  
 

 

   

 

 

(3.20) 

 

3.2 NON LINEAR FREE VIBRATION 

Recalling the transversal displacement equation (3.18) 

           
    
 

   
 

 
    

  

  
      
 

 

           (3.21) 

We change the reference system in order to obtain an equivalent cable equation from the previous 

one  

 

Figure 12: Static configuration of the vertical riser 
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If the dynamic is dominated by a single mode, as it is supposed to be the case for a riser subjected to 

a parametric resonance, the solution is searched in the form   

                 (3.22) 

 

And subtitling in (3.21) we get   

                  
  

  
                      

 

 

 (3.23) 

 

     
    
 

   
 

 
    (3.24) 

 

As a second approximation temporal Galerkin projection is applied to (3.23) followed by integration 

over the response period  
  

 
 

                  
   

  
                

 

 

 (3.25) 

 

Defining a fictitious normal force       such as 

      
   

  
                   

 

 

 (3.26) 

 

We arrive at a formally equivalent cable equation (with tension              ) 

                             (3.27) 

 

                           (3.28) 

 

The last approximation is the definition of a normal force that comes out from the linear mode 

            
   

 
 (3.29) 

 

with   that indicates the mode number. We can then compute 

           
  

 
 
 

     (3.30) 

 

where           
   

 

  
   and  

   
 

  
  represents the nonlinear correction due to the motion 

amplitude[8] 
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(3.31) 

 

             is the dimensional modal amplitude of the n
th

 mode and         
   

 
 is the non-

dimensional modal amplitude, recalling that the radios of gyration is defined ad         
 

 
 

Thus the equivalent cable equation becomes 

                         (3.32) 

 

And a variable transformation introduced as 

  
   

 
 
   
 

 

 

(3.33) 

    
         

 
   

 

(3.34) 

with  

  
 

   
  

 

(3.35) 

              (3.36) 

 

so that 

    

   
 
 

 

   

  
      (3.37) 

 

Also, it is defined    in such a way that 

   
 

  
   (3.38) 

 

Leading to an equivalent, yet simpler differential equation 

    
   

    
 

   
      (3.39) 

 

Notice that     
 

   
   and also its average value     
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In the expressions above, subscripts    and    stand for bottom and top. 

A familiar equation of motion then appears: 

    
   

            (3.40) 

 

Whose solution is approximately given by 

                        (3.41) 

 

Provided 

               (3.42) 

   

From which 

   
 

  
                      (3.43) 

 

Taking into account the boundary conditions 

                (3.44) 

 

The following homogenous system comes out [9]  

 
 
 
 
 
        

   
 
       

   
        

   
 
       

    
 
 
 
 

 
  
  
   

 
 
  (3.45) 

 

Requiring that 

 

    
             

 

(3.46) 

         (3.47) 

 

For not-trivial solutions to exist  

Defining             
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  (3.48) 

 

Combining the equations (3.48) is possible to rewrite       in the in the following way 

               
 
                  (3.49) 

 

Where  

  
 

   
                 

  

 
 
 
     

 

  
  

                 
  

 
        

  

       
 (3.50) 

 

The approximate non-linear solution supplies accurate information regarding the modal shapes that 

can thus be used as projection functions within  the non-linear Galerkin procedure to obtain 

reduced-order models (ROM). As defined here, these are the Bessel like modes. 

 

 

Figure 13: First modal shape with increasing non-linear terms 
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Figure 14: second modal shape with increasing non-linear terms 

 

 

 

 

 

Figure 15: Third modal shape with increasing non-linear terms 
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Figure 16: Fourth modal shape with increasing non-linear terms 

As shown by the graphs for the first mode, it is possible to neglect de influence of the non-linear 

correction to the bending stiffness without compromising the quality of the results. This is not true 

for higher modes, where it is possible to see an increasing shift of the shape caused by the non-

linearity correction  

          
   

 

  
  (3.51) 

 

 

 

 

 

 

 

 

 

 

 

-1,5 

-1 

-0,5 

0 

0,5 

1 

1,5 

0 0,2 0,4 0,6 0,8 1 

x/l 

𝑊4(𝑧) 

η=2,5 

η=5 

η=7,5 

η=10 

η=12,5 

η=15 



23 

 

3.3 REDUCED-ORDER MODEL FOR HEAVE 

Starting with the nonlinear equation for the riser under free vibration is possible to add terms that 

will consider the effect of the heave sign as a harmonic variation with a forcing  frequency that is 

twice one of  the linear natural frequencies of the system (in order to consider the parametric 

instability scenario). The relevant  Bessel-like mode (3.49) is used to project via the Galerkin 

method the continuum dynamics system onto a single degree of freedom system phase plane 

obtaining a reduced-order model. 

Recovering the dimensional equation of the non- linear free oscillator (3.20) 

   

   
  

   

   
  

   

   
   

 

 
   

   

   
  

  

  
  

   

   
  

  

  
 
 

  
 

 

   

 

(3.52) 

 

it is possible to take into account the effect of a vertical imposed top motion (heave) adding a new 

term, namely       (the effect of the average axial force    along the riser, is already considered by 

 ) 

Heave will be sought as a harmonic function   

                   (3.54) 

where      is the heave frequency         which is twice the first natural frequency in still water 

      defined as a ratio between the natural frequency in air of the first non-liner mode    (with 

hypothesis of    acting all over the riser) and        (see equation (3.70) for the definition of   
  

coefficient)    

    
  

     
 
 (3.55) 

   
 

 
   

  

  
  (3.56) 

Nevertheless the transversal load    due to a relative movement fluid-structure movement must be 

considered (the VIV effect will not be taken into account in this work) 
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Where 

      
      

  
 (3.53) 
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(3.59) 

 

   

   
  

   

   
          

   

   
   

 

 
   

   

   
  

  

  
  

   

   
  

  

  
 
 

  
 

 

 

  
  
 
  

   

 

   

   
 
 

 

  
 
    

  

  
 
  

  
 

 

(3.60) 

 

It should be recalled that the Morison equation is a semi-empirical equation for the inline force on a 

body in oscillatory flow and it is the sum of two components: an inertia force and a drag force. 

       
   

 
   

 

 
           

 

(3.61) 

            inertia force 

 

(3.62) 

   
 

 
              drag force 

 

(3.63) 

 

The equation contains two empirical hydrodynamic coefficients: an inertia coefficient  (   is the 

added mass coefficient)  and a drag coefficient    which depends on the Keulegan–Carpenter 

number, Reynolds number and surface roughness. 

The two previous mentioned coefficients are contained as well in       (3.59).These coefficients 

allow to consider: the effects related to the fluid additional mass, due to the distortion of the fluid 

flow by the presence of the body, namely 

   
  

  

   

    

 (3.64) 

 

and the Morison damping type effects through  the drag coefficient   . 

 

The coefficient   
 
, which stands for the ration between the water added mass per unit length and 

the riser mass per unit length, and the drag coefficient   must be calibrated over the experimental 

results obtained in IPT’s experiment 

It is more convenient to re-write the obtained equation (3.60) in non-dimensional form: with respect 

to space, by means of the new variable   and  , and time which is normalized with respect to the 

riser first-mode frequency in still water. 

 

http://en.wikipedia.org/wiki/Hydrodynamics
http://en.wikipedia.org/wiki/Drag_coefficient
http://en.wikipedia.org/wiki/Keulegan%E2%80%93Carpenter_number
http://en.wikipedia.org/wiki/Keulegan%E2%80%93Carpenter_number
http://en.wikipedia.org/wiki/Reynolds_number
http://en.wikipedia.org/wiki/Surface_roughness
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For the chain rule  

  

  
 

 

  
 
  

  
 

 

 
 
  

  
      

   

   
 

 

  
 
   

   
      

   

   
 

 

  
 
   

   
 

  (3.68) 

  

  
 

 

  
 
  

  
     

  

  
      

   

   
    

  
   

   
 

 

yield 

   
  
   

   
    

     
  
   

   
     

      
  

  
     

  

  
    

 

  
 
   

   
  

          
 

  
 
   

   
     

 

 
   

 

  
 
   

   
   

 

 
 
  

  
   

  
 

  
 
   

   
   

 

 
 
  

  
  

 

  
 

 

            

 

(3.69) 

with the following coefficients 

  
  

     

  
        

  
  

 
  

   

 
                     

 

   
  (3.70) 

 

The reduced-order model that will be obtained will use linearized Bessl-like mode within the 

Galerkin projection, according to two important approximations: 

 It will be considered the scenario of parametric resonance with the first mode    ; as a 

consequence the whole energy of the continuous system is assumed to be constrained to the 

first mode 

            
 

 
 
 

     
 

  
  

          
 

 
 
 

  , because as seen in the section 3.2, 

it is possible to assume that the first mode is insensitive to the non-linear correction implied 

by the term 
 

  
  

 in the bending stiffness. 

Adopting the usual non-dimensional variables 
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(3.71) 

                 
        

        
               

 

(3.72) 

                                      
 

(3.73) 

                
 

 
           

(3.74) 

 

where   indicates the point where the function    
   

 
 exhibits a maximum, namely   

 

  
 . 

Consequently         is a pure number. 

The equation (3.74) will be used for projecting via Galerkin method the continuum dynamics 

system onto a single degree of freedom with     (    ) 

Inserting (39) in (35) yields  

   
          

     
          

                       
 

  
        

 
         

  
        

 

 
 
 

 
           

 

 
       

 

  
                    

 

 

 

(3.75) 

after division of each terms of the former equation by     
      the following result is obtained 

         
     

                
 

   
   

       
         

   
   

       

 
 

   
  
 
 

 
          

 

   
  
      

 

   
   

                   
 

 

 

 
 

(3.76) 

Adopting the Galerkin non-linear method the equation (3.76)is multiplied by  

           
     

 
          

 

 
              (3.77) 

yielding  

          
     

                 
 

   
   

        
(3.78) 
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It should be noted that the coefficients   and its derivatives vary along the riser length. To eliminate 

such a variation these coefficients will be averaged with respect to the non-dimensional space 

domain       in order to remove the spatial dependence.  

        
       

 

 

   
                     

 

 

  
 

   
   

         
 

 

 

 
         

   
   

         
 

 

 
 

   
  
 
 

 
            

 

 

 
 

   
  
        

 

 

 

 
   

   
   

                 
 

 

 
 

 

      

 

(3.79) 

Trying to obtain a handier equation various coefficients are introduced  

        
 

 
              

 

 
                      

 

 
                 

 

 
         

 

(3.80) 

      
 

 
          

 

 
               

 

 
                       

 

 
 

 

 
            

 

   
  
 

     
  

          
 

   
        

  
         

 

   
        

  
           

  

  
        

  
           

 

   
 

   
       

  
         

 

   
       

  
        

   

   
        

  
       

 

                                

Finally  

                                                    (3.81) 
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4 CHAPTER 4 

In this section the reduced-order model obtained in the previous chapter is resolved using a 

numerical integration (Dormand–Prince method). With the same technic a different ROM 

originated from the projection onto a trigonometric function is also solved and compared with the 

previous one. Finally with the aim of analyzing the quality of the results of the ROMs a FEM model 

is developed. 

4.1 NUMERICAL INTEGRATION OF THE REDUCED ORDER 

MODEL AND RESULTS 

In order to carry out the numerical integration, it is used the software Matlab®. The numerical 

integration adopted the Dormand–Prince method RKDP an explicit method for solving ordinary 

differential equations . RKDP is a member of the Runge–Kutta ordinary differential equation solver 

and is implemented in the Matlab® function ODE45. More specifically, it uses six function 

evaluations to calculate fourth- and fifth-order accurate solutions and is a one-step solver in 

computing      . It needs only the solution at the immediately preceding time point        .The 

Dormand–Prince method has seven stages, but it uses only six function evaluations per step because 

the last stage is evaluated at the same point as the first stage of the next step. The coefficients of the 

method minimize the error of the fifth-order solution. 

Here the fundamental aspects of a Runge-Kutta ordinary differential equation solver are presented. 

As an example, it is considered the fourth-order Runge-Kutta method. 

The method uses a weighted average of the slope evaluated at multiple steps 

                (4.1) 

 

where    are weighting coefficients (In general       )  and    are slopes evaluated at points in 

the interval 

          

 
(4.2) 

The fourth-order Runge-Kutta method computes the slope at four positions within each step 

            

 
(4.3) 

        
 

 
    

 

 
    

 

(4.4) 

        
 

 
    

 

 
    

 

(4.5) 

                  (4.6) 

http://en.wikipedia.org/wiki/Ordinary_differential_equations
http://en.wikipedia.org/wiki/Ordinary_differential_equations
http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta
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It uses weighted average of slopes to obtain 

          
  
 
 
  
 
 
  
 
 
  
 
  (4.7) 

 

 

Figure 17: slopes calculation with fourth-order Runge-Kutta method 

The numerical predictions are obtained solving the ordinary differential equations according to the 

procedure already outlined. 

The data chosen for the solution of the ROM are the same used in the experimental tests carried out 

in IPT [10] in order to make the results comparable.  

DATA 

Undeformed length            

Stretched length          

Immersed length            

Internal diameter            

External diameter           

Riser mass              
Immersed weight             

Axial stiffness           

Bending stiffness              
Average normal force            

Fluid density                

Water mass coefficient           

Natural frequency in the air                   

Heave amplitude            

Heave frequency                   
 

The coefficients                      of equation (3.81) are numerically evaluated using 

adaptive Simpson quadrature. 

The coefficient    
 
 and     are obtained from the calibration fo the ROM to reach a good 

agreement with the experimental attests carried out at the towing tank[10][11]. In particular,   
 
  

was obtained by imposing that the first mode natural frequency in still water  
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should be equal to the experimental value            
   

 
  

The results here presented are based on the drag coefficient value equal to  

           

 

That is good agreement with the paper [12] that proposes  

          

 

Using the linearized Bessel-like first mode as the projection function within the Galerkin method, 

the following results in terms of amplitude, phase portrait and power spectral density are obtained. 

The results comes out from the numerical integration of the equation (3.81) which is a 

dimensionless equation and then even the graphs presented are accordingly dimensionless 

 

 

Figure 18: Non-dimensional modal amplitude ROM (Bessel-like) 
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Figure 19: Modal phase portrait ROM(Bessel-like) 

 

Figure 20: Power spectra ROM (Bessel-like) 
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Remembering that the equation was non-dimensionalized also with respect to the gyration radius 

    
 

 
           and the maximum (non-dimensional) amplitude recorded is         , we 

finally get a dimensional amplitude of               that is equal to the same as the amplitude 

obtained in the IPT test [10]. 

The spanwise distribution of the Power Spectrum Density doesn’t show a perfect peak at 1 because 

the natural frequency of the first mode             
   

 
  .  

One of the scopes of this work is also to prove that a reduced-order model obtained by means of a 

non-linear mode provides better results in comparison with a MOR originated from the projection 

onto a trigonometric function [12] as  

               (4.8) 

Where           is the number of modes considered 

 

Figure 21: Bessel-like mode vs. trigonometric mode 

 

To prove that the analysis is repeated with the same data and the same model (of course with  

              instead of non-linear mode) and the results are show in the Figures 22-23-24.  
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Figure 22: Non-dimensional modal amplitude ROM (trigonometric-like) 

 

 

 

Figure 23: Modal phase portrait ROM (trigonometric-like) 
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Figure 24: Power spectra  ROM (trigonometric-like) 

The non-dimensional amplitude is significantly reduced          namely        . In order to 

obtain a result close to the experimental one (            ) the drag coefficient    
 
 should be 

posed equal to  

  
        

 

The results of this section clearly show that: despite of the slightly difference between the two 

functions (Bessel-like and trigonometric) used for projecting via Galerkin method the continuum 

dynamics system such a difference  can strongly affect the precision of the analysis.  

Although the two types of functions are initially similar (Fig. 21), in the ROM’s equation (3.81) 

appear coefficients related to their derivatives up to the fourth order and for each derivation the 

difference between the two functions increase and consequently also the ROM’s results are 

affected.  
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Figure 25: Bessel-like derivatives vs. trigonometric derivatives 

 

 

Furthermore it was shown haw the drag coefficient is a key parameter for the reduced-order model 

here proposed and a little variation of this parameter has a strong effect on the ROM.  
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4.2 FINITE-ELEMENT ANALYSIS WITH A DEDICATED CODE 

In order to have another mean of comparison for the ROM’s result, a finite element analysis of the 

vertical riser subjected to heave is carried out with dedicated software. OrcaFlex® is a marine 

dynamics program developed by Orcina for static and dynamic analysis of a wide range of offshore 

systems, including the rigid risers. 

The equation of motion which OrcaFlex®  solves is as follows:  

                                  

 

(4.9) 

where  

       is the system inertia load. 

 
 

       is the system damping load. 

 

 

     is the system stiffness load. 

 

 

         is the external load. 

 

 

  is  the position and   velocity and acceleration vectors respectively. 

 

 

  is the simulation time.  

 

The schema re-evaluates the system geometry at every time step and so the simulation takes full 

account of all geometric non-linearities, including the spatial variation of both wave loads and 

contact loads. 

The finite element model for a line implemented in OrcaFlex® consists in a model divided into a 

series of line segments which are then modeled by straight massless model segments with a node at 

each end as shown in the figure below 

 

mk:@MSITStore:C:/Program%20Files%20(x86)/Orcina/OrcaFlex/Demo/OrcaFlex.chm::/html/Orcina.htm
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Figure 26: Orcalex fem element 

 

 

The riser is first modeled so as to obtain normal forces that in the static analysis are close to the 

normal forces of the IPT test [1], namely: 

Static tension at the top                 
 

 

Static tension at the bottom                 
 

 

with a linear variation  

 

Figure 27: Static tension variation 
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To achieve this goal the length of the riser is calibrated since the normal force is given by its 

elongation. The length (before stretching was applied) which allows to have the same static tension 

distribution is 

          
 

 

 

 

 

Figure 28: Orcalex model 

 

OrcaFlex® calculates hydrodynamic loads on risers using an extended form of Morison's Equation 

[13] and setting the data already used in the previous section we get the following results (Fig. 29-

30) 
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Figure 29: Modal shape 

 
 

 
Figure 30: Modal amplitude at the mid-span 
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Amplitude in in meters and referred to the mid-span where approximately the amplitude reach the 

maximum. 

It can be noticed that the model predicted an amplitude             close to the Bessel-like 

ROM. It must be underlined that OrcaFlex® compute the same shape already given by the Bessel-

like mode and not a trigonometric sinusoidal function confirming the greater accuracy of ROM 

obtained by a projection onto a Bessel-like mode.   
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5 CONCLUSION 

The objective of this thesis was to create a reduced-order model able to predict the behavior of a 

vertical rigid riser subjected to vertical or the length before stretching was applied top motion 

(heave) with a frequency twice of the natural one in order to study the parametric resonance 

phenomenon. The behavior’s correct prediction of the riser under such excitation can help to avoid 

some important problems especially the one related to fatigue. Firstly, the vertical riser was studied 

as an axially loaded beam assuming the classic hypothesis of Euler-Bernoulli theory and by using 

the Hamilton’s principle it was possible to obtain the non-linear equation of motion. Starting from 

the previously obtained equation and introducing some approximations (single-mode dominated 

dynamics, Galerkin temporal projection, non-linear correction in the normal force) it was possible 

to get the non-linear Bessel-like vibration modes. The results have shown that for the first mode 

(and only for the first) the non-linear correction previously introduced can be neglected without 

compromising the quality of results. The first  Bessel-like mode was then used as the projection 

function within the non-linear Galerkin method in order to obtain the ROM. Once the analytical 

expression of ROM was obtained, the amplitudes of the response were analyzed via numerical 

integration (Dormand–Prince method).After that different comparisons were made to ensure the 

reliability of the reduced model. The first and most important comparison was carried out with the 

experimental results obtained with a physically-reduced model tested at the towing tank of IPT. The 

ROM was in fact developed directly over the data obtained experimentally, yet requiring a 

calibration of the natural frequency is still water (through coefficient   
 
) and  the drag coefficient 

to reach a good agreement with the experimental results.  

One of the main goals of the project was to analyze if the ROM obtained via projection on a Bessel-

like would provide better results, in terms of quality and time demand, compared to a ROM based 

on a trigonometric function.  For this purpose two analyses with the two different ROMs with the 

some data were carried out. The results have indicated that between the two models there is a 

remarkable difference in the amplitude estimation (difference of 18,4%).  

However it must be underlined that the drag coefficient used in this comparison was the one 

obtained after calibration on the base of the ROM with Bessel-like and is clearly for this that the  

ROM(Bessel-like mode) perfectly fits the experimental results unlike the other model. 

To ensure the quality of the result of the ROM(Bessel-like mode)  a finite element analysis with a 

dedicated software was performed. This analysis has shown that the shape and even the amplitudes 

of the FEM model are more in accordance with the ROM(Bessel-like mode) that with the ROM 

(trigonometric function) which underestimates the amplitudes and has a sinusoidal shape. 

The purpose of the thesis seems to have been reached. Obtain and analyze a ROM (Bessel-like 

mode) implies a greater mathematical effort in comparison to a ROM (trigonometric-like mode) but 

the quality of the results justifies the choice.  
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