
 
 

DIEGO CAMILO FERNANDES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sistema para detecção de desalinhamento de viga-guia em regiões 

de mudança de via dos Sistemas Monotrilho -  Estudo e proposição 

do algoritmo de visão computacional 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

São Paulo 

2016  



 
 

DIEGO CAMILO FERNANDES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sistema para detecção de desalinhamento de viga-guia em regiões 

de mudança de via dos Sistemas Monotrilho -  Estudo e proposição 

do algoritmo de visão computacional 

 

 

 

 

 

 

 

Monografia apresentada à Escola 
Politécnica da Universidade de São 
Paulo para obtenção do título de 
Especialista em Tecnologia 
Metroferroviária. 

 

 

 

 

 

 

 

 

 

São Paulo 

2016  



 
 

FOLHA DE APROVAÇÃO 
 
 
 
 
 

DIEGO CAMILO FERNANDES 
 
 

Monografia apresentada à Escola 
Politécnica da Universidade de São 
Paulo para obtenção do título de 
Especialista em Tecnologia Metro-
Ferroviária. 
 
 
Área de Concentração: 
Engenharia de Computação 
 
 
 
 

Aprovado em: 
 
 
 
 
 

Banca Examinadora 
 
 

Prof. Dra. Anna Helena Reali Costa 

Universidade de São Paulo    Assinatura: 
 
 
 

Prof. Dr. Jorge Rady de Almeida Junior 

Universidade de São Paulo    Assinatura: 
 
 
 

Prof. Dr. Paulo Sérgio Cugnasca 

Universidade de São Paulo    Assinatura: 
 

  

http://alunoweb.nucleoead.net/moodle/user/profile.php?id=1326


 
 

DIEGO CAMILO FERNANDES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sistema para detecção de desalinhamento de viga-guia em regiões 

de mudança de via dos Sistemas Monotrilho -  Estudo e proposição 

do algoritmo de visão computacional 

 

 

 

 

 

 

 

Monografia apresentada à Escola 
Politécnica da Universidade de São 
Paulo para obtenção do título de 
Especialista em Tecnologia 
Metroferroviária. 
 
 
Área de Concentração: 
Tecnologia Metroferroviária 
 
Orientador: Prof. Dra.  
Anna Helena Reali Costa 
 
 
 
 
 

São Paulo 
2016  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 
 

AGRADECIMENTOS 

 

À Gerência de Projeto e Concepção de Sistemas – GCS – e ao Engenheiro Rubens 

Borloni, por demonstrarem confiança em minha competência profissional e ao apoio 

incondicional concedido para o cumprimento desta trajetória com longanimidade. 

À minha orientadora, professora Livre-Docente Anna Reali, a quem Deus reservou a 

arte do conhecimento com a abundância de ensinar. 

Aos colegas desta jornada no PECE: Fabio Bernardes e Ricardo Santos. 

Aos Engenheiros da minha equipe de trabalho no Metrô de São Paulo: Fabio, Lucas, 

Mário G., Mário M., Natanael e Ruiz. 

E a todos que, direta ou indiretamente, colaboraram na execução deste trabalho. 

 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simplicidade é a maior sofisticação. 

(Leonardo da Vinci)  



 
 

RESUMO 

 

O objetivo deste trabalho é o estudo e a proposição do algoritmo de visão 

computacional capaz de mitigar o perigo do desalinhamento da viga-guia em regiões 

de mudança de via dos Sistemas Monotrilho em cenários envolvendo 

movimentações de trem em modalidade de condução manual nestas regiões.  Serão 

apresentadas as premissas que conduziram à definição do código de computador e 

as funções da biblioteca para visão computacional OpenCV aplicadas durante o 

desenvolvimento do algoritmo de reconhecimento de desalinhamento da via, parte 

central do Sistema para Detecção de Desalinhamento de Viga-guia – SDDV – a qual 

se baseia no processamento das imagens obtidas por meio das câmeras de bordo 

dos trens das frotas do Monotrilho das Linhas 15 e 17 do Metrô de São Paulo. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

ABSTRACT 

 

The objective of this work is the study and proposal of computer vision algorithm can 

mitigate the risk of misalignment of the beam guide in the process of changing 

regions of monorail systems in scenarios involving train drives in manual driving 

mode in these regions.The premises will be presented that led to the computer code 

definition and functions of the library for computer vision OpenCV applied during the 

development of the track misalignment recognition algorithm, central part of the 

Sistema para Detecção de Desalinhamento de Viga-guia - SDDV - the which is 

based on processing of images taken by the onboard cameras of the trains Monorail 

fleet of lines 15 and 17 of the São Paulo Metro. 

 

  



 
 

LISTAS DE FIGURAS 

 

FIGURA 1.1 – ORGANIZAÇÃO DO SIMULADOR PROPOSTO PARA ANÁLISE DOS RESULTADOS. ............................ 16 

FIGURA 2.1 – IMAGEM DA VIA SELECIONADA PARA AVALIÇÃO DOS MEIOS DE SOLUÇÃO DO PROBLEMA DE 

LOCALIZAÇÃO DA VIGA DESALINHADA. ....................................................................................................... 21 

FIGURA 2.13 – FLUXOGRAMA INICIAL. .................................................................................................................. 22 

FIGURA 2.14 – RESULTADO DA FUNÇÃO SOBEL NA PRIMEIRA IMAGEM DE AVALIAÇÃO, COM GRADIENTE (A) 

HORIZONTAL E (B) VERTICAL. ...................................................................................................................... 24 

FIGURA 2.15 – RESULTADO DA FUNÇÃO SOBEL NA SEGUNDA IMAGEM DE AVALIAÇÃO, COM GRADIENTE (A) 

HORIZONTAL E (B) VERTICAL. ...................................................................................................................... 25 

FIGURA 2.16 – RESULTADO DA FUNÇÃO CANNY NA (A) PRIMEIRA E (B) SEGUNDA IMAGEM DE AVALIAÇÃO. ... 26 

FIGURA 2.17 – IMAGEM DETALHADA (A) DA ROI, COM DIMENSÃO EQUIVALENTE À 1/3 DA ALTURA E 3/5 DA 

LARGURA DA IMAGEM ORIGINAL, DE 800 X 600 PIXELS; E (B) DA SOBREPOSIÇÃO DA ROI NA IMAGEM 

ORIGINAL, COM AS DEMARCAÇÕES DE SUAS SUBDIVISÕES. ...................................................................... 28 

FIGURA 2.18 – ALGORITMO PROPOSTO PARA IMPLEMENTAÇÃO DA TRANSFORMADA DE HOUGH. .................. 29 

FIGURA 2.19 – INTERPRETAÇÃO GEOMÉTRICA DA TRANSFORMADA DE HOUGH. ............................................... 30 

FIGURA 2.20 – RETAS IDENTIFICADAS APÓS APLICAÇÃO DA TRANSFORMADA DE HOUGH (A) NA PRIMEIRA E (B) 

NA SEGUNDA IMAGEM DE AVALIAÇÃO. ...................................................................................................... 31 

FIGURA 2.21 – REPRESENTAÇÃO GEOMÉTRICA DA PARÁBOLA E SEUS PARÂMETROS. ........................................ 32 

FIGURA 2.22 – REPRESENTAÇÃO GEOMÉTRICA DE UMA PARÁBOLA EM FUNÇÃO DOS PARÂMETROS POLARES Ρ, 

Β E Ω. ........................................................................................................................................................... 33 

FIGURA 2.23 – ALGORITMO PARA IMPLEMENTAÇÃO DA TRANSFORMADA DE HOUGH, ADAPTADO PARA 

IDENTIFICAÇÃO DE UMA PARÁBOLA. .......................................................................................................... 34 

FIGURA 2.24 – PARÁBOLAS IDENTIFICADAS NA SEGUNDA IMAGEM DE AVALIAÇÃO APÓS APLICAÇÃO DA 

TRANSFORMADA DE HOUGH MODIFICADA. EM DETALHE À ESQUERDA A ROI DA IMAGEM ORIGINAL. ... 35 

FIGURA 2.25 – AJUSTE LINEAR. ADAPTADO DE KUGA (2005). .............................................................................. 36 

FIGURA 2.26 – FLUXOGRAMA ATUALIZADO PARA APLICAÇÃO DO ALGORITMO DE MÍNIMOS QUADRADOS  

RECURSIVO. .................................................................................................................................................. 38 

FIGURA 2.27 – RESULTADO DA APLICAÇÃO DO ALGORITMO PARA IDENTIFICAÇÃO DA CURVA POR MÍNIMOS 

QUADRADOS RECURSIVO NA SEGUNDA IMAGEM DE AVALIAÇÃO: CURVAS EM AMARELO EM (B) E (D). . 39 

FIGURA 2.28 – EM (A) A PRIMEIRA IMAGEM DE AVALIAÇÃO, DETALHE DA ROI; EM (B) O RESULTADO DA 

APLICAÇÃO DO ALGORITMO PARA IDENTIFICAÇÃO DA CURVA POR MÍNIMOS QUADRADOS RECURSIVO 

NA PRIMEIRA IMAGEM DE AVALIAÇÃO. ...................................................................................................... 40 

FIGURA 2.29 – IMPLEMENTAÇÃO EM LINGUAGEM C DO ALGORITMO MÉTODO DA DIFERENÇA DO QUADRADO.

 ..................................................................................................................................................................... 43 

FIGURA 2.30 – TEMPLATES PARA UTILIZAÇÃO NO ALGORITMO DE CONVOLUÇÃO (MATCH TEMPLATE), 

AUMENTADOS. ............................................................................................................................................ 44 



 
 

FIGURA 2.31 – O FLUXOGRAMA DO CÓDIGO ATUALIZADO INCORPORANDO O MÉTODO DE MATCH TEMPLATE.

 ..................................................................................................................................................................... 45 

FIGURA 2.32 – RESULTADO DA APLICAÇÃO DA TÉCNICA DE MATCH TEMPLATE EM UMA IMAGEM DA VIA 

EXTRAÍDA DE VÍDEO COM RESOLUÇÃO 800 X 600 PIXELS. .......................................................................... 46 

FIGURA 2.33 – RESPOSTA DO ALGORITMO EM CURVA ACENTUADA À ESQUERDA. ............................................ 47 

FIGURA 2.34 – CENÁRIO COM SOMBRA DE TREM CIRCULANDO NA OUTRA VIA. ................................................ 47 

FIGURA 2.35 – CENÁRIO ONDE EXISTE TRANSIÇÃO DE UMA REGIÃO CLARA, PARA OUTRA SOMBREADA. ......... 48 

FIGURA 2.36 – SOMBRA NA VIGA PROVENIENTE DOS PRÉDIOS. .......................................................................... 48 

FIGURA 2.37 – CURVA LONGA À DIREITA. ............................................................................................................. 49 

FIGURA 2.38 – CURVA LONGA À ESQUERDA. ........................................................................................................ 49 

FIGURA 2.39 – APROXIMAÇÃO NA REGIÃO DE PLATAFORMA. ............................................................................. 50 

FIGURA 2.40 – FINAL DE PLATAFORMA. ................................................................................................................ 50 

FIGURA 2.41 – ESTRUTURA DE DADOS E FUNÇÕES AUXILIARES PARA O ALGORITMO DE FLOOD FILL. ............... 52 

FIGURA 2.42 – ALGORITMO FLOOD FILL. .............................................................................................................. 52 

FIGURA 2.43 – APLICAÇÃO DA TÉCNICA DE PREENCHIMENTO DE REGIÃO NA PRIMEIRA IMAGEM DE 

AVALIAÇÃO. ................................................................................................................................................. 53 

FIGURA 2.44 – APLICAÇÃO DA TÉCNICA DE PREENCHIMENTO DE REGIÃO NUMA REGIÃO DE MUDANÇA DE VIA 

NO PÁTIO ORATÓRIO – LINHA 15. ............................................................................................................... 54 

FIGURA 2.45 – RESULTADO FINAL DO ALGORITMO – MOVIMENTAÇÃO DIURNA DO TREM. ............................... 55 

FIGURA 2.46 – RESULTADO FINAL DO ALGORITMO – MOVIMENTAÇÃO NOTURNA DO TREM. ........................... 55 

FIGURA 2.47 – O FLUXOGRAMA DA IMPLEMENTAÇÃO FINAL DO ALGORITMO DE DETECÇÃO DE 

DESALINHAMENTO DE VIGA. ....................................................................................................................... 56 

FIGURA 3.1 – TELA PRINCIPAL DAS OPÇÕES PARA INSTALAÇÃO DO MICROSOFT VISUAL STUDIO
®
. .................... 58 

FIGURA 3.2 – TELA PRINCIPAL DAS OPÇÕES PARA INSTALAÇÃO DO OPENCV. ..................................................... 58 

FIGURA 3.3 – TELA PRINCIPAL DAS OPÇÕES PARA INSTALAÇÃO DO SOFTWARE CMAKE. .................................... 59 

FIGURA 3.4 – O FLUXOGRAMA DA IMPLEMENTAÇÃO FINAL DO ALGORITMO DE DETECÇÃO DE 

DESALINHAMENTO DE VIGA. ....................................................................................................................... 60 

FIGURA 3.5 – ESTRUTURA IPLIMAGE ..................................................................................................................... 62 

FIGURA 3.6 – ESTRUTURA CVMAT......................................................................................................................... 64 

 

 

  



 
 

LISTAS DE TABELAS 

 

TABELA 1.1 – DESCRIÇÃO DAS BIBLIOTECAS DO OPENCV. .................................................................................... 20 

TABELA 3.1 – FUNÇÕES DO OPENCV UTILIZADAS NO SDDV. ................................................................................ 61 

 

 

  



 
 

LISTA DE SIGLAS E ABREVIATURAS 

 

3D Três Dimensões  

AMV Aparelho de Mudança de Via  

API Application Programming Interface  

ASP Active Server Pages   

CPU Central Processing Unit  

DLL Dynamic Link Library  

FPS Frames per Second  

GUI Graphics User Interface  

GPU Graphics Processing Unit  

JPEG Joint Photographic Experts Group  

MATLAB Matrix Laboratory  

MPEG Moving Picture Experts Group  

OPENCV Open Computer Vision  

PIXEL Picture Element  

RANSAC Random Sample Consensus  

RGB Red, Green and Blue  

ROI Region of Interest  

SDDV Sistema de Detecção de Desalinhamento de Via  

 

 

 

 

 

 

 

 



 
 

SUMÁRIO 

 

1. INTRODUÇÃO ............................................................................................. 15 

1.1. O DESAFIO DA VISÃO COMPUTACIONAL ........................................................ 17 

1.2. ORIGENS DO OPENCV ................................................................................ 19 

1.3. BIBLIOTECAS ............................................................................................. 20 

2. IDENTIFICAÇÃO DO DESALINHAMENTO DE VIGA.................................. 21 

3. TRABALHANDO COM O OPENVC NO SDDV ............................................ 57 

3.1. INSTALAÇÃO .............................................................................................. 57 

3.2. DESCRIÇÃO DAS FUNÇÕES .......................................................................... 60 

4. CONCLUSÃO .............................................................................................. 70 

5. REFERÊNCIAS BIBLIOGRÁFICAS ............................................................. 74 

 

 

 



15 
 

1. INTRODUÇÃO 

 

Um dos principais riscos operacionais durante a operação de um sistema 

metroferroviário é a condução de um trem em modalidade manual através de uma 

região de mudança de via em condição de desalinhamento de rota, situação 

favorável para a ocorrência do descarrilamento da composição. Este risco é 

potencializado no modal de transporte Monotrilho, onde as regiões de mudança de 

via são elevadas – 15 metros de altura em média – e as consequências de um 

acidente desta natureza podem representar grandes prejuízos ambientais, 

patrimoniais e civis.  

Para a mitigação deste risco foi proposto o Sistema de Detecção de 

Desalinhamento de Via – SDDV, cujo objetivo é detectar a viga do AMV – Aparelho 

de Mudança de Via – desalinhada (fora de posição) quando o trem estiver operando 

em modalidade manual, utilizando a câmera interna do trem para a obtenção de 

imagens  que processadas por um algoritmo específico permitirá reconhecer e indicar 

a existência de desalinhamento na viga afim de, antecipadamente, disparar o 

processo que aplicará o freio de emergência a composição em movimento antes de 

adentrar na região de perigo. 

Com o objetivo de analisar o desempenho do algoritmo de reconhecimento do 

sistema SDDV, em uma situação real de movimentação do trem, foi proposta a 

configuração de um ambiente computacional para verificação do seu funcionamento 

durante a reprodução de um vídeo real, obtido pela câmera de bordo do trem. Neste 

ambiente as ferramentas necessárias foram instaladas e a partir delas criada uma 

simulação da operação do processo real ao longo do tempo. Deste modo, a 

utilização de um simulador tornou-se a opção mais adequada para propiciar a 

verificação rápida de alternativas e soluções de software sem a necessidade da 

utilização do trem, exceto quando fosse necessária a obtenção de novos dados de 

entrada, vídeos capturados pela câmera de bordo, que salvos no registrador interno 

de eventos do trem, poderiam ser descarregados por meio de pen-drive quando da 

sua parada em uma Estação da linha principal ou via de estacionamento do pátio de 

manutenção, evitando distúrbios durante a operação comercial da linha. A Figura 1.1 

apresenta o diagrama do simulador criado para testes do algoritmo do SDDV. 

 



16 
 

 

Figura 1.1 – Organização do simulador proposto para análise dos resultados.  

Os dados de entrada representam os vídeos obtidos por meio da 

câmera de bordo do trem e a execução dos algoritmos do SDDV 

geram dados de saída. 

 

Os critérios definidos neste trabalho para a pesquisa e seleção do conjunto de 

ferramentas para composição do simulador foram:  

 gratuidade: ausência de custos para aquisição e instalação dos softwares; 

 suporte: oferta de documentação completa e de qualidade para instalação e 

utilização; 

 diversidade de funções:  disponibilidade de funções específicas que não 

fazem parte do escopo principal do estudo mas fornecem o suporte necessário 

para acelerar o desenvolvimento dos algoritmos e os seus meios para 

avaliação; 

 interface gráfica: possibilitar a criação de uma interface gráfica suficiente para 

o manuseio dos dados, configuração dos parâmetros e visualização dos 

resultados da simulação dos algoritmos. 

 portabilidade: migrar entre sistemas operacionais e plataformas de hardware 

embarcado sem impactar significativamente em mudanças no código 

desenvolvido, foco no desenvolvimento de um produto final; 

 

Após extensa pesquisa, segundo os critérios apresentados, foi definido como 

biblioteca de software a ferramenta OpenCV. O OpenCV – Open Source Computer 

Vision é uma biblioteca de software para aplicações em visão computacional e 

aprendizado de máquina open source, ou seja, biblioteca cujo modelo de 

desenvolvimento promove o acesso universal por meio de código-fonte aberto 

permitindo projetar ou modelar um produto e redistribuí-lo, incorporando as melhorias 



17 
 

feitas por qualquer indivíduo. Lançado oficialmente em 1999, o projeto OpenCV era 

uma iniciativa da Intel® Research para o avanço em aplicações de uso intensivo da 

sua CPU. A partir da sua popularização, o OpenCV foi aperfeiçoado para fornecer 

uma infra-estrutura comum para aplicações de visão computacional e acelerar o uso 

da percepção de máquina em produtos comerciais. Esta biblioteca possuiu em sua 

versão atual mais de 2500 algoritmos otimizados, que inclui um conjunto abrangente 

de algoritmos clássicos e do estado da arte para visão computacional e aprendizado 

de máquina além de funções para criação e manipulação de objetos gráficos para 

construção de uma GUI – Graphic Interface Unit – completa. Os algoritmos 

fornecidos na biblioteca possibilitam a criação de aplicações como detectar e 

reconhecer rostos, identificar objetos, classificar as ações humanas em vídeos, 

interpretar movimentos de câmera, extrair modelos 3D de objetos, etc. Além da 

característica open source outras características como opções para o acesso á sua 

API – Application Program Interface – por meio de várias linguagens de programação 

como C++, C, Python, Java e MATLAB® Toolbox e compatibilidade de funcionamento 

com vários sistemas operacionais como Windows®, Linux, Android e MacOS®, 

contribuíram para a definição desta ferramenta como biblioteca básica de funções de 

visão computacional para o suporte ao desenvolvimento deste trabalho.  

 

1.1. O desafio da visão computacional 

 

A visão computacional compreende na transformação de dados de entrada, 

originários de uma câmara fotográfica ou de vídeo, em alguma decisão ou uma nova 

representação. Todas essas transformações são feitas para alcançar algum objetivo 

em particular. Os dados de entrada, por exemplo, podem incluir algumas informações 

contextuais tais como " a câmera está montada no trem " ou " o trem está a um metro 

de distância do obstácula à frente". A decisão por ourto lado pode ser " há chuva na 

via “ou " há viga está desalinhada ". A nova representação pode significar 

transformar uma imagem colorida em uma imagem em tons de cinza ou a remoção 

de movimento de câmera de uma sequência de imagens.  

O ser humano foi concebido para ser capaz de realizar tarefas que envolvam a 

percepção, interpretação e tomada de decisões a partir de estímulos visuais de forma 

simples. Se entretanto, tentarmos criar uma analogia ao pensar que um computador 



18 
 

pode ser capaz também de realizar as mesmas tarefas da mesma forma simples, nos 

precipitaremos.  

 

O cérebro humano divide o sinal de visão em muitos canais que reproduzem 

diferentes tipos de informação. Nosso cérebro possui um sistema de alerta, 

construído de uma forma dependente de tarefas, onde partes importantes de imagem 

são examinidas enquanto outras são suprimidas. Há realimentação maciça na 

corrente visual que é, por enquanto, pouco compreendido. Existem entradas 

associativas a partir de sensores de controle muscular e todos os outros sentidos, 

que permitem que o cérebro estabeleça associações cruzadas, possíveis de serem 

feitas a partir dos primeiros anos de vida de uma criança. Todos estes laços são 

realimentados dentro do cerébro e voltam para todas as fases de transformação, 

incluindo os próprios olhos, que controlam mecanicamente a iluminação externa 

captada pela íris, sintonizando a recepção de feixes por meio da superfície da retina.  

 

Em um sistema de visão de máquina, no entanto, um computador recebe uma 

matriz de números provenientes de uma câmera ou de uma memória não volátil, e 

nada mais. Na grande maioria das vezes, não há reconhecimento de padrões 

embutidos, nem controle automático de foco e abertura e tampouco há associações 

cruzadas com base no conhecimento, anos de vida. O que o computador "enxerga" é 

apenas uma matriz de números. Qualquer número dentro dessa matriz pode possuir 

uma grande componente de ruído e por assim só nos conferir pouca precisão na 

informação.  As ações ou decisões que o sistema de visão computacional tenta fazer 

com base em dados da câmera são executadas no contexto de um propósito ou 

tarefa específica. Nós podemos querer remover ruídos ou danos de uma imagem 

para que o nosso sistema de segurança, por exemplo, emita um alerta se o trem se 

movimentar em direção a uma região de desalinhamento na via ou porque 

precisamos de um sistema de monitoramento que conta quantas pessoas 

atravessam uma área em um parque de diversões. Independentemente da aplicação, 

vale como regra geral: quanto mais restrito for o contexto do sistema  de visão 

computacional maior serão as chances de podemos contar com essas restrições 

para simplificar o problema e desta forma aumentar a confiabilidade do resultado 

final. 



19 
 

1.2. Origens do OpenCV 

 

O OpenCV cresceu a partir de uma iniciativa da Intel Research para avançar 

em aplicações para uso intensivo da sua CPU. Um dos líderes desta pesquisa 

trabalhando pela Intel na época, visitou universidades e notou que alguns grupos 

universitários, como o MIT Media Lab, tinham desenvolvido internamente estruturas 

de código aberto para visão computacional que eram passadas de aluno para aluno 

e que isto conferia a cada novo aluno uma vantagem valiosa para o desenvolvimento 

da sua nova aplicação. Em vez de reinventar as funções básicas do zero, um novo 

estudante poderia começar seu desenvolvimento a partir da estrutura que havia sido 

criada anteriormente. 

Desta ideia inicial o OpenCV foi concebido, nas linguagens de programação C 

e C++, como um caminho para tornar a infra-estrutura de visão computacional 

universal. Com a ajuda do Intel’s Performance Library Team, o OpenCV começou 

com um núcleo de código implementado e especificações de algoritmos foram 

enviados para os membros desta equipe na Rússia. Foi lá onde o OpenCV começou 

a ganhar suas primeiras marcas de implementação: a experiência em otimização de 

códigos dos russos. 

A partir de então o OpenCV recebeu muitas contribuições dos usuários, e o 

desenvolvimento do core da biblioteca deslocou-se em grande parte para fora da 

Intel. Ao longo de sua trajetória o OpenCV foi afetado pelo boom das empresas 

chamadas dot-com fazendo com que muitos dos seus pesquisadores 

interrompessem as contribuições e voltassem seus esforços para este mercado 

promissor. Durante estas flutuações, houve momentos em que o OpenCV não tinha 

ninguém da Intel dedicado à continuidade do seu desenvolvimento. No entanto, com 

o advento dos processadores multicore muitas novas aplicações para visão 

computacional tornaram-se viáveis e o desenvolvimento do OpenCV passou a ser 

valorizado novamente. Hoje, o OpenCV é área ativa do desenvolvimento em diversas 

instituições o que torna possível em curtos espaços de tempo muitas atualizações 

referentes a algoritmos para calibração multicamera, percepção de profundidade, 

métodos para a mistura de visão com lasers de alcance e localização, e melhores 

bibliotecas para reconhecimento de padrões, bem como um grande apoio para 

necessidades envolvendo o ramo da visão robótica. 



20 
 

 

1.3. Bibliotecas 

 

De acordo com Bradski e Kaehler (2008), as funções do OpenCV estão 

distribuídas em bibliotecas que foram classificadas conforme suas características de 

aplicação. A Tabela 1.1 relaciona todas as bibliotecas e apresenta as descrições das 

aplicações. 

 Tabela 1.1 – Descrição das bibliotecas do OpenCV. 

Biblioteca Descrição da aplicação 

Calib3d Calibrar camera e reconstruir objetos a partir de múltiplas imagens planas 

Core Criar estruturas de dados, tipos e acessos para manipulação de memória 

Features2d Localizar e extrair características, descrições e objetos por semelhança em 
imagens 

Flann Utilizar funções de pesquisa rápida em espaços de grandes dimensões  

GPU Utilizar paralelização de algoritmos em GPU`s 

Highgui Criar e manipular GUI`s, imagens e vídeos 

Imgproc Processar imagens com filtragem, transformações geométricas, estruturas e 

análise de formas 

ML Aplicar modelos estatísticos e classificações 

Nonfree Utilizar algoritmos que estão patenteados em alguns países 

Objdetect Detectar objetos por meio de classificadores cascata e histogramas 

Stitching Aplicar mistura, distorção, costura e empacotamento em imagens 

Video Analisar movimento e objetos em vídeos 

 

 

 

 

 

 



21 
 

2. IDENTIFICAÇÃO DO DESALINHAMENTO DE VIGA 

 

Uma vez que as etapas de modelagem do problema, conforme apresentado 

por Bernardes, Fernandes e Santos (2016), e configuração do ambiente 

computacional foram concluídas deu-se início a etapa de desenvolvimento do 

algoritmo para identificação do desalinhamento da viga. Com intuito de compreender 

melhor o problema a ser resolvido primeiramente foi selecionada a imagem de um 

vídeo, capturado durante a movimentação do trem na via, onde fosse possível 

encontrar o maior número de situações consideradas obstáculos para o processo de 

identificação de maneira a provocar uma discussão sobre quais abordagens 

poderiam ser aplicadas a fim de resolver o problema de forma otimizada. 

 

Figura 2.1 – Imagem da via selecionada para avalição dos meios de solução do 

problema de localização da viga desalinhada. 

 

A partir das informações visuais contidas na Figura 2.1 foi possível observar 

os seguintes fatos: 

1. A maior concentração de informação a ser processada encontra-se numa 

região equivalente a 1/3 da altura da imagem, partindo de sua base; 

2. Na altura da linha central da imagem se concentra a maior quantidade de 

informações, em sua maior parte, sem utilidade para o problema; 



22 
 

3. As passarelas de serviço, formas curvas de tonalidade cinza escuro, são 

estruturas que acompanham a viga durante o percurso da via e apresentam 

características geométricas muito semelhantes; 

4. A viga apresenta situações de traçado curvo; 

5. Existe um aumento gradativo de distorção na imagem à medida que 

deslocamos a visão partindo do ponto central, em direção radial, no sentido de 

qualquer ponto periférico. Uma consequência é o efeito abaulado da lateral do 

prédio branco à direita da imagem; 

6. Presença do efeito de sombras sobre a viga; 

7. A viga não necessariamente está posicionada no centro da linha de base 

horizontal da imagem. Em situações de curva como a da Figura 2.1 este 

centro pode estar deslocado para os lados. 

 

Após analisar os sete pontos apresentados acima, criou-se a primeira proposta 

de fluxograma do algoritmo para solução do problema cuja validação seria feita 

incialmente com imagens estáticas, para posteriormente ser verificado em condição 

dinâmica onde o vídeo completo seria reproduzido e processado continuamente. O 

fluxograma proposto inicialmente está apresentado na Figura 2.2.  

 

 

 

 

 

 

 

 

 

 

Figura 2.2 – Fluxograma inicial. 

 

A solução para o primeiro bloco do fluxograma, “Abertura do arquivo de 

imagem para leitura” foi quase imediata, exigindo apenas o conhecimento da forma 

de utilização da função de manipulação de arquivos externos de imagem e as 

características da estrutura do tipo IplImage no OpenCV. Uma vez aberto e 

Abertura do arquivo de 
imagem para leitura 

Eliminação da informação 
desnecessária 

Identificação da viga e 
verificação de obstrução 



23 
 

acessado os dados do arquivo de imagem externa em formato JPEG, o próximo 

passo foi desenvolver os meios de eliminar da imagem todas as informações 

consideradas desnecessárias para o problema, portanto, todo o tipo de informação 

visual que não fosse a viga deveria ser descartado. Um paradigma foi criado, pois 

como seria possível eliminar toda a informação que não seja referente a viga se 

ainda sequer a reconhecemos na imagem. Deste modo, a ideia seguinte foi aplicar 

alguma técnica capaz de extrair os contornos da imagem, para então classificarmos 

o que seria a viga.  

Bovik (2000) afirma que a detecção de bordas é uma importante ferramenta 

para análise de imagens em aplicações de visão computacional nas quais objetos 

devem ser reconhecidos por meio dos seus pontos periféricos. Normalmente, um 

objeto pode ser reconhecido a partir somente dos seus pontos periféricos 

(ATTNEAVE, 1954) sendo que experimentos com o sistema visual humano 

demonstram que os limites dos objetos em imagens são extremamente importantes e 

tendem a mostrar a intensidade das descontinuidades em uma imagem (BALLARD, 

1982). 

A biblioteca OpenCV oferece suporte à aplicação da técnica de detecção de 

bordas sob a forma de filtragem, onde o foco é enfatizar as  bordas de um objeto por 

meio da análise do espectro da imagem sob o fato de na região das bordas 

naturalmente existir uma brusca variação de intensidade, o que caracteriza presença 

de componentes de alta frequência no espectro, ou sob a forma de operadores 

matemáticos, onde o foco é determinar bordas através da varredura de pixels em 

todas as direções da imagem aplicando um derivada para avaliar o grau de 

descontinuidade, ou “salto”, em relação ao valor da escala das cores nas vizinhanças 

do ponto de referência. 

Neste trabalho optou-se por trabalhar com a detecção de bordas por meio dos 

operadores matemáticos e, com o suporte das funções Sobel e Canny do OpenCV, 

foram avaliadas as respostas obtidas após aplicação da técnica em duas imagens da 

via, sendo uma delas a mesma imagem da Figura 2.1. Os resultados da aplicação 

das duas funções nas duas imagens selecionadas são apresentados nas Figuras 

Figura 2.3 e Figura 2.4, para a função Sobel e Figura Figura 2.5 para a função 

Canny. 



24 
 

 
(a) 

 
(b) 

Figura 2.3 – Resultado da função Sobel na primeira imagem de avaliação, 

com gradiente (a) horizontal e (b) vertical. 



25 
 

 
(a) 

 
(b) 

Figura 2.4 – Resultado da função Sobel na segunda imagem de avaliação, 

com gradiente (a) horizontal e (b) vertical. 

 

 



26 
 

 
(a) 

 
(b) 

Figura 2.5 – Resultado da função Canny na (a) primeira e (b) segunda 

imagem de avaliação. 

 



27 
 

Analisando os resultados é possível observar que a função Sobel, na 

condição de gradiente horizontal, foi mais eficiente que a função Canny na proposta 

de extrair as bordas da via, haja vista a quantidade de informação em excesso 

detectada no centro inferior da Figura 2.5 (b) se comparada à Figura 2.4 (a). Apesar 

desta característica, a função Canny foi a escolhida para extrair as bordas da via, 

pelo fato de apresentar um desempenho superior na detecção do trecho em curva, 

conforme demonstra a comparação entre as Figura 2.3 (a) e (b) em relação a Figura 

2.5 (a). Foram realizados testes posteriores com diversas imagens submetidas à 

função Canny com o propósito de determinar o parâmetro de limiar de comparação 

mais otimizado, um dos parâmetros desta função. O valor 65 para o parâmetro de 

limiar se mostrou o mais equilibrado entre o compromisso de detectar a borda da 

viga e minimizar as demais transições de borda, ou ruídos, indesejados na imagem. 

Outro ponto importante a se observar é que o processo de detecção de bordas gera 

como resultado uma imagem “binarizada”, ou preto e branco, onde os pixels 

resultantes do processo assumem apenas dois valores, 0, equivalente aos pixels 

representados na cor preta, e 255, equivalente aos pixels representados na cor 

branca. É preciso mencionar que as funções Sobel e Canny exigem como 

informação de entrada uma imagem em escala de cinza de 8 bits. 

Levando-se em conta as observações apresentadas no início deste capítulo, 

outra providência foi incorporada ao algoritmo no sentido de otimizar a quantidade de 

informação a ser processada e ignorar aquilo que não fosse útil para a identificação 

da viga. Com isto foi criada uma ROI - região de interesse – com as dimensões de 

altura e largura configuradas da melhor forma para o problema. A Figura 2.6 

apresenta a aplicação do conceito da ROI em relação à imagem da Figura 2.1. 

A altura da ROI foi determinada por simples inspeção, observando-se que 

durante a execução dos vídeos de movimentação do trem cerca de 2/3 da altura de 

cada imagem, tomando como referência o seu topo, poderiam ser consideradas 

informações desprezíveis para o processo de detecção. Em relação à largura da ROI 

o processo de determinação desta dimensão exigiu mais critérios para sua definição: 

as possíveis posições da viga na imagem.  

Observando o comportamento da sua posição durante a reprodução de alguns 

vídeos, foi possível determinar a largura média da ROI que fosse suficiente para 

considerar a curvatura máxima à direita, à esquerda e sua posição no centro da 



28 
 

imagem. O valor mais adequado para a janela foi definido como 3/5 da largura da 

imagem, posicionada a 2/5 do eixo x da imagem.  

  

 
(a) 

 
(b) 

Figura 2.6 – Imagem detalhada (a) da ROI, com dimensão equivalente à 1/3 

da altura e 3/5 da largura da imagem original, de 800 x 600 

pixels; e (b) da sobreposição da ROI na imagem original, com 

as demarcações de suas subdivisões.  

As subdivisões marcadas com 2, 3 e 5, somadas, equivalem a 

3/5 da largura da imagem original. A altura das subdivisões 

marcadas com 2, 3 e 5 é 1/3 da altura da imagem original. 

 

A ROI dentro no algoritmo é implementada por meio de um ponteiro para a 

região de memória que contém todos os valores da imagem original, executando o 



29 
 

endereçamento acrescentado um valor de offset compatível aos valores de largura e 

altura da região de interesse.  

O próximo passo foi identificar uma técnica para análise de pontos das bordas 

a fim de reconhecer se os pontos identificados estão contidos em alguma forma 

geométrica conhecida.  A Transformada de Hough é uma ferramenta que permite 

detectar relações geométrica entre pontos, originalmente desenvolvida para a 

detecção de retas. Outras variações desta transformada também permitem detectar 

formas cônicas como círculos, elipses e parábolas. O algoritmo proposto para 

implementação da transformada de Hough está transcrito na Figura 2.7. 

 

transformada_hough() 

Inicializar matriz M(ρ,θ) com zero 

Para cada x,y pertencente à imagem com I(x,y) =1  

  Para θ= -π/2+1 até θ=π/2 com incremento de Δθ 

  ρ = x cosθ + y sinθ 

  Incrementar de uma unidade a célula M(ρ,θ) da matriz acumuladora 

  Faça laço até θ não pertencer mais ao intervalo (−π/2,π/2] 

Faça laço até o final da imagem.  

Figura 2.7 – Algoritmo proposto para implementação da transformada de Hough. 

 

A ideia da transformada de Hough consiste em representar uma reta por meio 

dos parâmetros polares rho e theta e então, substituir os valores de posição, x e y, de 

um ponto da borda nesta função polar, variando o ângulo theta desta reta em passos 

discretos, de modo a calcular todos os parâmetros das retas que cruzam este ponto. 

A cada reta que passar pelo ponto incrementa-se uma matriz acumuladora cujos 

índices são os parâmetros da reta, repetindo-se esse procedimento para os demais 

pontos. Ao final do procedimento a posição da matriz que apresentar a maior 

contagem será aquela cujos índices representam os parâmetros da reta que passa 

pela maior quantidade de pontos da imagem. Sucessivamente verifica-se a segunda 

posição da matriz com maior contagem, a terceira posição da matriz e assim por 

diante até o número desejado de retas a serem consideradas no processo de 

identificação. A Figura 2.8 apresenta a interpretação geométrica deste procedimento.  

  



30 
 

 

Figura 2.8 – Interpretação geométrica da Transformada de Hough.  

Retas que passam por cada ponto, à esquerda, e a reta que torna todos 

os pontos colineares, à direita. A reta comum aos pontos será aquela 

cujo índice da matriz acumuladora apresentar o maior valor. 

 

A implementação da transformada de Hough não possui a função de imprimir 

as retas identificadas na imagem. Com o objetivo de avaliar os resultados de forma 

gráfica na imagem foi necessário desenvolver um trecho de código adicional com a 

função de eleger os candidatos a reta a partir da matriz acumuladora M(ρ,θ), escrever 

as equações em funções dos parâmetros, aplicar pontos às funções e com o 

resultado na forma de coordenadas x e y da imagem, alterar a cor do pixel 

correspondente para a cor vermelha. Antes deste processo a imagem “binarizada” foi 

convertida para o espaço de cores RGB a fim de permitir a sobreposição das retas 

de forma colorida. 

Os resultados apresentados na Figura 2.9 demonstram a capacidade da 

transformada em identificar retas na imagem. É possível concluir que para a primeira 

imagem de avaliação o fato da característica da forma da viga neste cenário ser 

equivalente a duas retas inclinadas tornou a eficiência do algoritmo alta do ponto de 

vista de detecção da sua forma, conforme apresentado na Figura 2.9 (a). Porém, à 

medida que o movimento do trem se aproxima de uma região da via cuja viga 

encontra o limite do seu raio de curvatura, como representado na segunda imagem 

de avaliação, a dificuldade de aproximar sua forma por uma reta aumenta 

drasticamente ao ponto de não ser possível identificá-la por meio da transformação 

implementada, conforme observado pela a ausência de retas sob a borda da viga na 

Figura 2.9 (b).  



31 
 

 
(a) 

 
(b) 

Figura 2.9 – Retas identificadas após aplicação da Transformada de Hough 

(a) na primeira e (b) na segunda imagem de avaliação. 

 



32 
 

A primeira tentativa para se contornar este problema foi criar uma variação da 

implementação da transformada de Hough que somente fosse aplicada sobre a 

imagem a partir do momento em que a transformada padrão, baseada em retas, não 

retornasse parâmetros de retas para a região da viga na imagem, sob a hipótese que 

neste cenário a representação da viga na imagem deixou de ser reta e passou a ser 

curva. Para a seleção da nova forma geométrica a ser incorporada na transformada 

de Hough foram tomados, a partir de imagens binarizadas da viga em curva, diversos 

valores de coordenadas x e y dos pontos sob suas bordas, repetindo-se este 

procedimento para outras imagens onde houvesse a variação do seu raio de 

curvatura. Toda esta massa de dados foi então submetida a procedimentos de 

ajustes de curvas e os ajustes obtidos foram então comparados. Após as 

comparações foi concluído que o melhor lugar geométrico para descrever os pontos 

da borda da curva seria uma parábola. Por definição a transformada de Hough opera 

em um espaço onde uma parábola necessariamente deve ser representada em 

função de seus parâmetros polares e, portanto, os passos a seguir apresentam a 

dedução para obtenção desta relação e a sua incorporação ao algoritmo da 

transformada. 

A parábola, Figura 2.10, é uma curva plana, lugar geométrico dos pontos de 

um plano que são equidistantes de um ponto fixo F e de uma reta fixa k. No plano 

cartesiano, é definida como a curva plana formada pelos pontos P(x, y), tais que: 

p PP’ PF, 

onde p representa a distância entre os pontos P e F ou à distância entre o ponto P e 

a reta k (diretriz).  

 

Figura 2.10 – Representação geométrica da parábola e seus parâmetros. 

 



33 
 

Outro parâmetro, 2d, representa a distância do foco F à reta diretriz k. Esta 

forma cônica também pode ser definida como uma função polinomial do segundo 

grau do tipo y = g.x2 + h.x + i ou x = g.y2 + hy + i, com g ≠ 0. Sempre que o parâmetro 

g > 0, a parábola terá concavidade voltada para cima ou para direita, e quando g < 0 

a parábola terá concavidade voltada para baixo ou para esquerda. No caso de uma 

equação reduzida da parábola de eixo horizontal e vértice na origem, consideremos 

os pontos: F(d, 0) - foco da parábola, e P(x, y) - um ponto qualquer da parábola. 

Usando a fórmula da distância entre pontos no plano cartesiano, obtemos: 

 

[ (x − d )
2
 + (y − 0)

2 
] 

1/2
 = [ (x + d )

2
 + (y − y)

2
] 

1/2 

 

Desenvolvendo e simplificando a expressão acima para parábolas de eixo 

horizontal e vértice em um ponto qualquer, do mesmo modo que se comporta a 

borda da viga, se o vértice da parábola não estiver na origem e, sim num ponto (x0, 

y0), a equação pode ser reescrita na forma: 

(y – y0 )
2
  = 4d (x – x0). 

 

Agora, observando a Figura 2.22 e efetuando projeções no eixo de referência x 

é possível estabelecer as seguintes relações: 




cos1

2




d

 

 cosx , senx  , 

 

 

Figura 2.11 – Representação geométrica de uma parábola em função dos 

parâmetros polares ρ, β e ω. 

 



34 
 

onde d representa a distância do foco ao vértice, ρ representa a distância do foco a 

cada ponto da parábola, equivalente ao p da Figura 2.10, β representa o ângulo de ρ 

em relação ao eixo horizontal, e x e y são as coordenadas de um ponto qualquer da 

parábola.  

Entretanto para a descrição completa, é necessário considerar as inclinações 

dos demais eixos e suas projeções: 

 




cossinsincos'

sinsincoscos'





f

f

yy

xx

, 

onde x’ e y’ são os pontos dos pixels da parábola em relação ao eixo da imagem e xf 

e yf  os pontos de localização do vértice da parábola. 

De posse das expressões de x’, y’ e ρ, o algoritmo para implementação da 

transformada de Hough foi adaptado para identificação de uma parábola, com a sua 

implementação final transcrita na Figura 2.12. 

 
parabola_hough() 

 Guardar todos os pixels num array de uma dimensão 

 Limpar acumulador M(x0,y0,d, ω) 

 Para pixel I(x,y), se este pixel I(x,y) estiver aceso na imagem 

  Para d>mínimo até d<máximo 

   Para β=0 até β<2π 

   ρ = 2d 1− cosβ 

    Para ω=0 até ω<2π 

    x = x −ρ cosβ cosω + ρ sinβ sinω f 

    y = y −ρ cosβ sinω −ρ sinβ cosω f 

    M(x0, y0,d, ω)=M(x0, y0,d, ω)+1 

    Faça para os ângulos de β=0 à 2π 

   Faça para os ângulos de ω=0 à 2π 

  Faça para todos os d´s de mínimo à máximo 

Faça para todos os pixels da imagem 

Figura 2.12 – Algoritmo para implementação da Transformada de Hough, adaptado para identificação 

de uma parábola. 

 

O funcionamento do algoritmo é idêntico àquele implementado para reta, 

porém a diferença aqui é que a matriz acumuladora possui um índice maior devido à 

quantidade de parâmetros da parábola, isto é, o tamanho necessário de memória 

para armazenar os parâmetros calculados aumentou oito vezes em relação ao que 

era necessário anteriormente. 

Os resultados da Figura 2.24 indicam que, para a imagem contendo a região 

curva, foi possível aproximar as bordas da viga por duas parábolas. A parábola à 

esquerda não apresentou um ajuste muito adequado à borda da viga; por outro lado, 

a parábola à direita foi capaz de acompanhar com razoável aproximação o contorno. 



35 
 

 

 

Figura 2.13 – Parábolas identificadas na segunda imagem de avaliação após aplicação 
da Transformada de Hough modificada. Em detalhe à esquerda a ROI da 
imagem original. 

 

Em termos do tempo de processamento, esta implementação foi cerca de dez 

vezes mais lenta do que em relação à transformada utilizando a reta como forma de 

identificação, mesmo levando-se em conta a utilização da ROI para minimizar o 

número de cálculos com pontos da imagem sem representação para este problema. 

O tempo total despendido para estimar as parábolas neste cenário de distribuição de 

pontos na imagem foi cerca de 110 ms, aproximadamente 3 vezes mais que o 

intervalo de tempo entre quadros do vídeo de movimentação do trem, reproduzido a 

30 fps ou 33 ms de intervalo entre quadros de imagens. Estes fatos motivaram a 

busca por outra forma alternativa para identificar a viga na imagem. 

Outra linha de abordagem para a solução deste problema seria interpretar os 

pontos de borda da imagem como medidas diretas da forma que se deseja estimar, 

levando o problema para o campo da estimação. Estimar parâmetros significa, como 

o próprio nome diz, estimar coisas que não variam, são constantes ao longo do 

processo de estimação. Então, para começar a estimar algo, necessita-se de um 

conjunto de medidas, no contexto do problema pontos, que esteja relacionada a esse 

algo. O próximo passo é modelar como essas medidas se relacionam aos 

parâmetros a serem estimados.   

Um dos estimadores de parâmetros utilizado pela comunidade científica é o 

algoritmo de mínimos quadrados (CHAPRA, 2008). Este procedimento, tão antigo 

quanto Gauss, que primeiro o formulou para processar observações astronômicas de 



36 
 

corpos celestes, formalmente, trata de minimizar uma função custo do quadrado dos 

resíduos na forma: 

)()( HxyHxyL t  , 

onde y representa o vetor contendo m medidas, x representa o vetor de n parâmetros 

a serem estimados, e H representa uma matriz m x n que relaciona as medidas aos 

parâmetros.  

Seja, por exemplo, o caso de ajustar uma reta aos dados através do método 

de mínimos quadrados, conforme ilustrado na Figura 2.14, como a situação onde os 

pontas da borda na viga, primeira figura de avaliação, são modeladas por duas retas 

inclinadas.  

 

Figura 2.14 – Ajuste linear. Adaptado de Kuga (2005). 

 

A equação genérica da reta é dada por yi = ati + b. Logo, a equação que 

relaciona as medidas aos parâmetros é formulada como: 

Hxy  , 

ou, de modo explícito: 

 
















































b

a

t

t

t

y

y

y

mm 1

1

1

2

1

1

2

1



, 

onde x = (a, b) é o vetor que contém os parâmetros a serem estimados. 

A princípio, a forma mais direta de processar essas medidas é o chamado 

processamento em lotes ou batch. A expressão geral desta implementação pode ser 

escrita na forma: 

 yHHHx tt 1)(ˆ  , 

onde x̂  representa o vetor que contém os parâmetros estimados. 



37 
 

No processamento em lote é necessário que todas as medidas estejam 

disponíveis para que os parâmetros sejam estimados, o que apesar de possível no 

contexto deste trabalho não é interessante do ponto de vista computacional, uma vez 

que o algoritmo prenderá o fluxo de execução principal no ponto da rotina que 

executa este cálculo até que todas as medidas sejam processadas, podendo deixar 

de lado outras tarefas que, no âmbito global do software, exijam seu cumprimento 

dentro deste intervalo de tempo.  

Em busca desta melhoria foi implementado o algoritmo de mínimos quadrados 

recursivo, que nada mais é do que uma forma algebricamente equivalente de 

processar as medidas. Outra vantagem desse algoritmo, aplicado à estimação de 

parâmetros, reside no fato de evitar inversões de matrizes. Diz-se recursivo por ter 

características de recursividade, portanto, bastante adequado para programação em 

computador. Outra vantagem é a de necessitar de matrizes de menor dimensão, 

traduzindo-se em menos memória de armazenamento. Basicamente, o algoritmo usa 

a forma de Kalman para o processamento (GREWAL; ANDREWS, 2015). 

Inicialmente, particionam-se as matrizes envolvidas: 











































































b

a

H

H

H

b

a

t

t

t

y

y

y

mmm


2

1

2

1

1

2

1

1

1

1

, 

 

 onde os Hi são os vetores linha que compõem a matriz H.  Em seguida, calcula-se: 

 

  


































2

1

2122

1

2

1
212

ˆ
y

y
HHPx

H

H
HHP

tt

t

t
tt

 

 

Então, o algoritmo torna-se recursivo para i = 3, ... , m: 

 
 

 11

1

1

11

ˆˆˆ

1















iiiiii

iiii

t

iii

t

iii

xHyKxx

PHKIP

HPHHPK

, 

 



38 
 

onde I representa a matriz identidade. O parâmetro K é conhecido como ganho de 

Kalman e P é a matriz de covariância. O novo fluxograma do algoritmo incorporando 

a aplicação do método de mínimos quadrados recursivos está apresentado na Figura 

2.15. 

 

 

 

Figura 2.15 – Fluxograma atualizado para aplicação do algoritmo de mínimos 

quadrados  recursivo. 

 

O algoritmo precisou ser reescrito para incorporar as expressões dos mínimos 

quadrados recursivos. A estratégia para detectar retas de Hough foi substituída por 

esta estratégia que também passou a ser aplicada nas situações de detecção da viga 

em curva. Incialmente são criados cinco estimadores cada qual responsável por uma 

subdivisão da imagem, conforme apresentado na Figura 2.19. Cada estimador 

processa 20 pixels verticais numa faixa de 10 pixels à direita e a esquerda do ponto 

de início da busca, crescendo no sentido de baixo para cima da imagem, eixo y 

negativo. Ao término da busca os parâmetros são avaliados para verificar a 

característica de inclinação da reta e também a matriz de covariância resultante com 

o intuito de avaliar a qualidade do ajuste. Se as condições forem satisfeitas, valores 

baixos na matriz e coeficientes de retas com inclinações acima de 30º, a janela de 

medidas equivalente a 20 pixels escorrega para cima na vertical tendo como centro 

da base da nova janela o último ponto da reta estimada no processo anterior. O 

objetivo é que ao final, somente as janelas que possuírem pontos que possam ser 

estimados pela pequena reta de aproximação alcançarão o limite vertical da ROI. 

Neste instante, os segmentos de retas unidos pelos seus pontos extremos 

representarão o contorno da forma da viga. 

Abertura do arquivo de 
imagem para leitura 

Conversão da imagem 
para escala de cinza 

Identificação da viga e 
verificação de obstrução 

Aplicação do detector de 
bordas Canny 

Criação de ponteiro para 
ROI 

Mínimos quadrados para 
determinação das bordas 



39 
 

 

 
(a) (b) 

 
(c) (d) 

Figura 2.16 – Resultado da aplicação do algoritmo para identificação da curva por mínimos 

quadrados recursivo na segunda imagem de avaliação: curvas em amarelo em 

(b) e (d). 

 

Na Figura 2.16 (b) uma avaliação da resposta do algoritmo, pixels em amarelo, 

mostra algumas limitações da sua implementação. Pelo fato da imagem ser 

submetida a detecção de bordas, muitos dos pontos da viga que deveriam existir na 

sua base não foram representados, devido ao efeito de sombras que atenuaram as 

variações de intensidade nesta região, deste modo, o algoritmo não foi capaz de 

receber os 20 primeiros pontos que forneceriam a orientação da reta que deveria 

acompanhar a curva à direita da imagem. Outro fator importante é que por se tratar 

de um estimador, caso existam muitos pontos na periferia do traçado real, existe uma 

tendência natural de o processo tentar encontrar um ajuste médio entre as curvas, 



40 
 

criando um efeito de descolamento em relação a curva da viga, como se observa na 

extremidade superior da curva à esquerda da imagem.  

Para a obtenção da resposta da Figura 2.16 (d), forçou-se o algoritmo a 

começar com um offset de 35 pixels na vertical permitindo desta forma que a curva à 

direita da imagem fosse identificada. É possível observar durante o 

acompanhamento desta curva sobre a borda da viga que existem alguns picos, estes 

picos são causados pelos pontos periféricos que, uma vez observados pela janela de 

varredura do algoritmo, são considerados nas estimativas e acabam por assim 

causar o mesmo efeito ocorrido na Figura 2.16 (b).  

 

 
(a) 

 
(b) 

Figura 2.17 – Em (a) a primeira imagem de avaliação, detalhe da ROI; em (b) o 

resultado da aplicação do algoritmo para identificação da curva por 

mínimos quadrados recursivo na primeira imagem de avaliação. 

 

Na Figura 2.17 (Figura 2.17b), as influências de ruídos demonstram 

claramente a dificuldade do algoritmo em acompanhar a trajetória esperada, 

chegando ao ponto das curvas em amarelo quase se cruzarem na base da imagem. 



41 
 

Apesar dos resultados não serem satisfatórios, em termos de tempo de 

processamento esta solução se mostrou muito eficiente. Nos três casos estudados o 

tempo médio para finalizar o processo não ultrapassou 5 ms.  

Após os testes com as transformadas de Hough e o método dos mínimos 

quadrados, optamos por avaliar a resposta das técnicas do tipo match template 

(BRADSKI; KAEHLER, 2008) para a execução da tarefa de identificar a viga na 

imagem. 

Match template é uma técnica de processamento digital de imagens utilizada 

para encontrar em pequenas partes de uma imagem uma correspondência para uma 

imagem modelo. Para modelos sem características fortes, ou para quando a maior 

parte da imagem do modelo constitui a imagem correspondente, uma abordagem 

baseada em match template pode ser eficaz. O método básico de match template 

consiste em utilizar uma máscara de convolução (o modelo), adaptado para uma 

característica específica de pesquisa de imagem. Esta técnica pode ser facilmente 

empregada com as imagens em escala de cinza ou imagens binarizadas, contendo 

bordas. O resultado do processo de convolução será maior nas regiões onde a 

estrutura de imagem corresponde à estrutura da máscara, ou seja, onde os valores 

da imagem serão multiplicados pelos valores da máscara e por serem semelhantes, 

resultarão em grandes valores.  

Este método é normalmente implementado primeiramente escolhendo uma 

parte da imagem para ser pesquisada com o modelo. Seja a imagem pesquisada I(x, 

y), onde (x, y) representam as coordenadas de cada pixel da imagem. Vamos chamar 

o modelo de T(xt, yt), onde (xt, yt)  representam as coordenadas de cada pixel no 

modelo. Em seguida, simplesmente movimentamos o centro (ou a origem) do modelo 

de T(xt, yt) sobre cada ponto (x, y) da imagem pesquisada e calculamos a soma dos 

produtos entre os coeficientes de I(x, y) e T(xt, yt)  ao longo de toda a área do modelo. 

Como todas as posições possíveis do modelo em relação a imagem pesquisada são 

consideradas, a posição com a pontuação mais alta será a melhor posição. De 

acordo com Desai; Pandya e Potdar (2013) existem variantes para as técnicas do 

tipo match template, a saber: 

 

1. Método da diferença do quadrado, calculado pela equação: 

 

    2

','

_ ','','),(  
yx

diffsq yyxxIyxTyxR

, 



42 
 

 

2. Método da correlação, calculado pela equação: 

 

    2

','

','','),(  
yx

ccor yyxxIyxTyxR

, 

 

3. Método do coeficiente de correlação, calculado pela equação: 

 
   

 
   

2

','

","","

","

1
','

","

1
','),( 

 






















































yx

yxyx

ccoeff
yyxxIhw

yyxxI
yxThw

yxTyxR

 

4. Métodos normalizados, calculado pelas equações: 

    2

','

','','),(  
yx

yyxxIyxTyxZ

, 

),(

),(
),( _

__ yxZ

yxR
yxR diffsq

normeddiffsq 
, 

),(
),(

),(_ yxZ
yxR

yxR ccor
normedccor 

, 

),(

),(
),(_ yxZ

yxR
yxR ccoeff

normedccoeff 
, 

onde R representa o coeficiente de correlação, w representa a largura e h representa 

a altura da imagem. 

Por questões de simplicidade para implementação e de desempenho, este 

método possui 98% de precisão quando comparado aos demais até aqui 

apresentados (DESAI; PANDYA e POTDAR, 2013), a escolha para ser incorporado 

ao algoritmo foi o método da diferença do quadrado, cuja implementação em 

linguagem C está transcrita na Figura 2.18. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



43 
 

 
    p0 = (double*)sum->data.ptr; 

    p1 = p0 + templ->cols*cn; 

    p2 = (double*)(sum->data.ptr + templ->rows*sum->step); 

    p3 = p2 + templ->cols*cn; 

    sum_step = sum ? sum->step / sizeof(double) : 0; 

    sqsum_step = sqsum ? sqsum->step / sizeof(double) : 0; 

    for( i = 0; i < result->rows; i++ ) 

    { 

        float* rrow = (float*)(result->data.ptr + i*result->step); 

        idx = i * sum_step; 

        idx2 = i * sqsum_step; 

        for( j = 0; j < result->cols; j++, idx += cn, idx2 += cn ) 

        { 

            double num = rrow[j], t; 

            double wnd_mean2 = 0, wnd_sum2 = 0; 

            if( num_type == 1 ) 

            { 

                for( k = 0; k < cn; k++ ) 

                { 

                    t = p0[idx+k] - p1[idx+k] - p2[idx+k] + p3[idx+k]; 

                    wnd_mean2 += CV_SQR(t); 

                    num -= t*templ_mean.val[k]; 

                } 

                wnd_mean2 *= inv_area; 

            } 

            if( is_normed || num_type == 2 ) 

            { 

                for( k = 0; k < cn; k++ ) 

                { 

                    t = q0[idx2+k] - q1[idx2+k] - q2[idx2+k] + q3[idx2+k]; 

                    wnd_sum2 += t; 

                } 

 

                if( num_type == 2 ) 

                    num = wnd_sum2 - 2*num + templ_sum2; 

            } 

            if( is_normed ) 

            { 

                t = sqrt(MAX(wnd_sum2 - wnd_mean2,0))*templ_norm; 

                if( t > eps ) 

                { 

                    num /= t; 

                    if( fabs(num) > 1. ) 

                        num = num > 0 ? 1 : -1; 

                } 

                else 

                    num = method != diff || num < DBL_EPSILON ? 0 : 1; 

            } 

            rrow[j] = (float)num; 

        } 

    } 

Figura 2.18 – Implementação em linguagem C do algoritmo método da diferença do quadrado. 

 

Neste esquema de identificação é necessário definir uma região de modelo ou 

template da imagem que seja de conhecimento a priori, ou seja, é necessário a 

princípio que este template seja conhecido e esteja armazenado em memória para 



44 
 

ser endereçado durante a inicialização do processo de busca. Para a sequência de 

testes iniciais dois templates, conforme a Figura 2.19, foram extraídos das imagens 

do vídeo. Duas janelas adicionais denominadas ROI e Espectro foram criadas 

adicionalmente com o intuito de avaliar os passos internos do processo. Nesta 

captura de imagem, com a viga sem curvas, é possível verificar que a sua 

localização dentro da ROI está situada na região central.  

 

  

(a) (b) 

Figura 2.19 – Templates para utilização no algoritmo de convolução (match template), 

aumentados. 

Em (a) o detalhe do modelo da viga em linha reta com a resolução do 

quadro selecionado equivalente a 62 x 79 pixels. Em (b) o detalhe do 

modelo da viga em curva com a resolução do quadro selecionado 

equivalente a 106 x 85 pixels. Ambos templates estão representados no 

espaço de cores RGB. 

 

A imagem formada dentro da janela Espectro permite observar a distribuição pixel a 

pixel do resultado pós processo de convolução. Os pontos mais brancos indicam a 

área que possui a maior probabilidade de estar semelhante ao template. Para esse 

teste o template (a) da Figura 2.19 foi utilizado. O pixel central desta distribuição, 

com o maior valor calculado, fornecerá as coordenadas da janela alvo impressas na 

janela ROI e na imagem em teste. Deve-se ressaltar que os valores obtidos pela 

expressão da correlação passam por um processo de normalização, podendo 

assumir somente valores compreendidos entre 0 e 255, daí reside o fato pela qual a 

janela Espectro apresenta uma coloração de seus pixels numa escala de cinza. 

O fluxograma do código atualizado incorporando o método de match template 

está apresentado na Figura 2.20 e na Figura 2.21 observamos o resultado da 

aplicação da técnica. 



45 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 2.20 – O fluxograma do código atualizado incorporando o 

método de match template. 

Não 

Sim 

Abertura do arquivo de 
imagem para leitura 

Conversão da imagem 
para escala de cinza 

Carregamento do 
template na memória 

Define a janela de 
correlação conforme 

template 

Criação de ponteiro para 
ROI 

Aplica correlação entre 
janela template e ROI 

Fim da 

imagem? 

Cria janela de alvo 
vermelha com seu centro 
sobre o centro da posição 

de maior correlação 



46 
 

 

Figura 2.21 – Resultado da aplicação da técnica de match template em uma 

imagem da via extraída de vídeo com resolução 800 x 600 pixels. 

 

Para a mesma janela foi aplicado o template (b) da Figura 2.19, apresentando 

uma pequena mudança na distribuição dos pixels brancos, que representam alta 

correlação, mas sem grandes mudanças no resultado final, a posição de máxima 

correlação da imagem de entrada. O próximo passo foi avaliar o desempenho do 

algoritmo em imagens contendo diversos cenários, representados da Figura 2.22 até 

a Figura 2.29. 

Todos os testes executados foram repetidos com o template apresentado na 

Figura 2.19 (b). Como não houve alterações significativas durante sua utilização o 

template da Figura 2.19 (a) foi mantido para o restante dos testes. Com a melhoria 

alcançada na detecção da viga foi implementada a última etapa do algoritmo que 

consiste na etapa para determinação se a viga está alinhada ou não. 

 



47 
 

 
Figura 2.22 – Resposta do algoritmo em curva acentuada à esquerda. 

No detalhe da ROI é possível verificar a grande presença de 

sombra na região da janela. A janela de convolução “Espectro” 

não apresenta variações acentuadas por conta deste efeito. 

 
Figura 2.23 – Cenário com sombra de trem circulando na outra via. 

Ponto luminoso verde no centro do alvo da se refere a luz de guia 

de alinhamento do AMV. Aumento da área de valor máximo na 

janela de convolução. 



48 
 

 
Figura 2.24 – Cenário onde existe transição de uma região clara, para outra 

sombreada.  

Na janela de convolução observa-se o surgimento de regiões 

onde o cálculo retornou valores maiores (branco) mas que 

permanecem na região da viga. 

 
Figura 2.25 – Sombra na viga proveniente dos prédios.  

Nas áreas periféricas da janela de convolução a resposta é similar 

à Figura 2.23 porém com a dispersão dos valores mais altos na 

região central. 



49 
 

 
Figura 2.26 – Curva longa à direita.  

Na janela de convolução a área correspondente aos maiores 

valores calculados da convolução concentram-se e alinham-se de 

maneira bem definida no sentido vertical. 

 
Figura 2.27 – Curva longa à esquerda.  

A janela de convolução similar à Figura 2.26. A particularidade 

reside na inclinação do “feixe” referente aos maiores valores 

calculados da convolução acompanhar à inclinação da viga. 



50 
 

 
Figura 2.28 – Aproximação na região de plataforma.  

Presença de sombras e outros elementos que se assemelham 
com o template. Janela de convolução apresenta valores maiores 
no canto inferior esquerdo da ROI, a convolução na região da 
viga retorna valores praticamente nulos (mancha preta). 

 
Figura 2.29 – Final de plataforma. 

Neste cenário a detecção é instável e a janela de alvo oscila entre 

locais da ROI. Captura realizada no instante onde a convolução 

apresentou maiores valores na região da viga. 



51 
 

Para este objetivo duas técnicas foram empregadas: a técnica de 

preenchimento de pixels e a técnica de contagem de área. A ideia é que a janela de 

alvo esteja sobre a viga e que a sua dimensão vertical esteja próxima daquela 

equivalente ao comprimento em pixels da distância a ser detectada, 

aproximadamente 40 metros; a técnica de preenchimento de pixels simplesmente é 

disparada no ponto central da janela alvo, a própria viga, e uma área 

aproximadamente correspondente aos limites da viga seja preenchida. Se esta área 

preenchida for inferior à área equivalente à mínima necessária, caracteriza-se o 

desalinhamento da viga. Para a determinação da área utiliza-se a segunda técnica 

mencionada, a técnica de contagem de pixels para o cálculo de área. 

Também conhecida como flood fill ou seed growing, a técnica de 

preenchimento de pixels é muito útil e frequentemente utilizada em cenários onde é 

necessário marcar ou isolar uma determinada região de imagem para aplicar em 

seguida um processamento específico. Um ponto da região, denominado semente, é 

selecionado na imagem e todos os outros pontos similares da sua vizinhança são 

coloridos com a mesma cor do ponto semente. Caso o contorno da região de 

interesse esteja com contraste bem definido, o preenchimento de uma cor no ponto 

central praticamente garante o preenchimento de toda região. 

O algoritmo flood fill – preenchimento de região – necessita para sua 

inicialização três parâmetros: o ponto de início, uma cor alvo e a cor de substituição. 

Após sua inicialização o algoritmo varre toda a matriz de cores da imagem 

observando quais são as posições da imagem que estabelecem um caminho de 

conexão com o ponto de início desde que mantenha a mesma cor alvo. Após a 

varredura todas as posições localizadas sofrem modificação da sua cor original para 

a cor definida por meio do parâmetro nova cor. É possível estabelecer uma analogia 

do funcionamento desta técnica com as ferramentas de preenchimento de cores, 

normalmente disponibilizada em softwares de tratamento de imagens e 

coloquialmente denominada como “balde de preenchimento”. As Figuras 2.41 e 2.42 

apresentam a implementação da estrutura de dados e da função flood fill, 

respectivamente, utilizada neste trabalho. 

 

  



52 
 

struct node 

{ 

    int x, y; 

    struct node *next; 

}; 

 

int push(struct node **top, int x, int y) 

{ 

    struct node *newNode; 

    newNode = (struct node *)malloc(sizeof(struct node)); 

    if(newNode == NULL) //If there is no more memory 

        return 0; 

    newNode->x = x; 

    newNode->y = y; 

    newNode->next = *top; 

    *top = newNode; 

    return 1; //If we push the element correctly 

} 

 

int pop(struct node **top, int &x, int &y) 

{ 

    if(*top == NULL) //If the stack is empty 

        return 0; 

    struct node *temporal; 

    temporal = *top; 

    x = (*top)->x; 

    y = (*top)->y; 

    *top = (*top)->next; 

    free(temporal); 

    return 1; //If we pop an element  

} 

Figura 2.30 – Estrutura de dados e funções auxiliares para o algoritmo de flood fill. 

 

void floodFill(int x, int y, int color_to_replace, int color_to_fill) 

{ 

 if(color_to_replace == color_to_fill) return; 

  struct node *stack = NULL; 

  if(push(&stack, x, y) == 0) return; 

    while(pop(&stack, x, y) == 1) 

    { 

        pixel(x, y, color_to_fill); 

        if(x+1 < 640 && read_pixel(x+1, y) == color_to_replace) 

            if(push(&stack, x+1, y) == 0) return; 

        if(x-1 >= 0 && read_pixel(x-1, y) == color_to_replace) 

            if(push(&stack, x-1, y) == 0) return; 

        if(y+1 < 480 && read_pixel(x, y+1) == color_to_replace) 

            if(push(&stack, x, y+1) == 0) return; 

        if(y-1 >= 0 && read_pixel(x, y-1) == color_to_replace) 

            if(push(&stack, x, y-1) == 0) return; 

    } 

} 

Figura 2.31 – Algoritmo flood fill. 

  



53 
 

A Figura 2.43 apresenta o exemplo de aplicação da técnica de preenchimento 

na primeira imagem de avaliação. 

 

 

Figura 2.32 – Aplicação da técnica de preenchimento de região na primeira imagem de avaliação.  

A descontinuidade nas cores dos pixels, sobre a superfície da viga, segrega 

naturalmente a área. 

 

Observando os resultados da aplicação da técnica de preenchimento foi 

definido o critério para detecção de alinhamento baseado no fato de que a ausência 

de viga cria naturalmente na imagem uma descontinuidade sobre a superfície da 

viga, em função desta característica é analisada dentro da janela alvo a área útil 

limitada pela superfície cujo preenchimento foi completado. Um exemplo de 

descontinuidade na viga e o efeito do preenchimento sob a região de sua área é 

apresentado na Figura 2.44. 

 



54 
 

 

Figura 2.33 – Aplicação da técnica de preenchimento de região numa região de mudança de via no 

pátio Oratório – Linha 15. 

Na região central da imagem a viga está alinhada. À esquerda e à direita da viga 

central não existe alinhamento estabelecido, condição de interrupção da viga guia. 

 

Na Figura 2.44 observa-se que o resultado da aplicação da técnica de 

preenchimento sobre os caminhos não alinhados estabeleceu uma estimativa da 

área sobre a viga, representada pelas cores vermelho escuro, verde claro e verde 

escuro. Nesta condição os limites na região de borda das vigas foram bem 

delimitados pela aplicação da técnica. Para estimar o cálculo de área da região 

preenchida contabilizam-se todos os pixels na cor vermelha dentro da área de alvo. 

Com o critério de 70% da área de alvo, o que equivale a 200 pixels (altura estimada 

para 40 metros) vezes 20 pixels (largura do alvo), realiza-se o julgamento se existe 

ou não o alinhamento. As Figuras 2.45 e 2.46 apresentam duas imagens do 

resultado final do algoritmo de reconhecimento nas condições de operação durante o 

dia e à noite. O fluxograma representando a estrutura do algoritmo final é 

apresentado na Figura 2.47. 

  



55 
 

 

Figura 2.34 – Resultado final do algoritmo – movimentação diurna do trem. 

 

 

Figura 2.35 – Resultado final do algoritmo – movimentação noturna do trem. 

  



56 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 2.36 – O fluxograma da implementação final do algoritmo de detecção de 

desalinhamento de viga. 

 

 

  

Abertura do vídeo para 
leitura de um quadro 

Conversão da imagem 
para escala de cinza 

Carregamento do 
template na memória 

Define a janela de 
correlação conforme 

template 

Criação de ponteiro para 
ROI 

Aplica correlação entre 
janela template e ROI 

Cria janela de alvo 
vermelha com seu centro 
sobre o centro da posição 

de maior correlação 

Aplica algoritmo de 

preenchimento 

Aplica critério de 

determinação de área 

Fim do 

vídeo? 

Finaliza aplicação 

Sim 

Não 



57 
 

3. TRABALHANDO COM O OPENVC NO SDDV 

 

3.1. Instalação 

 

Para realizar a configuração do ambiente conforme a organização proposta na 

Figura 1.1, foi iniciada a sequência de instalação das ferramentas a partir do software 

Visual Studio, seguida pela instalação da biblioteca OpenCV e finalizada com a 

instalação da ferramenta CMake. As instalações de todos os softwares foram 

realizadas de forma completa, ou seja, foram instalados todos os recursos de cada 

ferramenta, conforme as opções disponíveis em cada aplicativo assistente de 

instalação acordo com o ilustrado nas Figuras Figura 3.1, Figura 3.2 e Figura 3.3. 

Após a conclusão do processo de instalação das ferramentas, o próximo passo foi 

extrair da Internet, por meio da seção downloads da página www.opencv.org, o 

arquivo de configuração do CMake escrito para compilação da biblioteca OpenCV no 

ambiente Visual Studio. Uma vez aberto este arquivo dentro da ferramenta CMake e 

iniciada e concluída a compilação da biblioteca nativa, segundo as configurações 

determinadas em seu script, foi criada uma pasta denominda “VS2008” dentro da 

pasta de instalação gerada originalmente pelo assistente de instalação do OpenCV. 

Dentro da pasta, “VS2008”, foram criados automaticamente pelo CMake um projeto 

denominado “OpenCV” e todos os códigos fonte da biblioteca escritos em linguagem 

C. Deste ponto da configuração foi então iniciada a execução do software Visual 

Studio e solicitado a abertura do projeto “OpenCV”. Uma vez aberto este projeto, a 

etapa seguinte foi iniciar o processo de compilação dentro do ambiente, por meio do 

comando “Compile” disponibilizado no menu superior principal do Visual Studio, de 

maneira que ao final deste processo de compilação fossem criadas todas as dll`s – 

dinamic link libraries – do OpenCV para utilização em linguagem C dentro do 

ambiente Visual Studio, finalizando portanto toda a configuração do ambiente. Com 

as dll`s geradas é necessário criar um novo projeto dentro do ambiente Visual Studio 

e referenciar os arquivos dll`s que contenham as funções de visão computacional do 

OpenCV mais adequadas à proposta dos algoritmos desenvolvidos. 

 

 

 

http://www.opencv.org/


58 
 

 

Figura 3.1 – Tela principal das opções para instalação do Microsoft Visual Studio
®
. 

 

Figura 3.2 – Tela principal das opções para instalação do OpenCV. 



59 
 

 

Figura 3.3 – Tela principal das opções para instalação do software CMake. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



60 
 

3.2. Descrição das funções 

 

A partir da observação da Figura 3.4, que representa o algoritmo final 

desenvolvido para o sistema SDDV, foram relacionadas todas as funções e 

estruturas da biblioteca OpenCV utilizadas no trabalho, transcritas na Tabela 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 3.4 – O fluxograma da implementação final do algoritmo de detecção de 

desalinhamento de viga. 

 

 

 

 

Abertura do vídeo para 
leitura de um quadro 

Conversão da imagem 
para escala de cinza 

Carregamento do 
template na memória 

Define a janela de 
correlação conforme 

template 

Criação de ponteiro para 
ROI 

Aplica correlação entre 
janela template e ROI 

Cria janela de alvo 
vermelha com seu centro 
sobre o centro da posição 

de maior correlação 

Aplica algoritmo de 

preenchimento 

Aplica critério de 

determinação de área 

Fim do 

vídeo? 

Finaliza aplicação 

Sim 

Não 



61 
 

Tabela 3.1 – Funções do OpenCV utilizadas no SDDV. 

Função Tipo Biblioteca 

CvCapture Estrutura de dados Highgui 

IplImage Estrutura de dados *Cxtypes 

cvMat Estrutura de dados *Cxcore 

Imread Função Highgui 

cvCreateFileCapture Função Highgui 

cvQueryFrame Função Highgui 

cvSetCaptureProperty Função Highgui 

cvCreateImage Função *Cxcore 

cvSetImageROI Função *Cxcore 

cvCvtColor Função *Cv 

cvCanny Função *Cv 

rectangle Função *Cxcore 

namedWindow Função Highgui 

cvReleaseCapture Função Highgui 

cvDestroyWindow Função Highgui 

*Integram a biblioteca Core, apresentada na tabela 1.1. 

  



62 
 

As estruturas CvCapture, IplImage e cvMat foram utilizadas para manipular as 

informações em formato JPEG contidas nas cenas de vídeo em formato MPEG. 

A estrutura IplImage é definida como padrão de imagem da Intel Processing 

Library (IPL).  A definição exata da estrutura IplImage é mostrado na Figura 3.5. 

 

typedef struct _IplImage { 

 int nSize; 

 int ID; 

 int nChannels; 

 int alphaChannel; 

 int depth; 

 char colorModel[4]; 

 char channelSeq[4]; 

 int dataOrder; 

 int origin; 

 int align; 

 int width; 

 int height; 

 struct _IplROI* roi; 

 struct _IplImage* maskROI; 

 void* imageId; 

 struct _IplTileInfo* tileInfo; 

 int imageSize; 

 char* imageData; 

 int widthStep; 

 int BorderMode[4]; 

 int BorderConst[4]; 

 char* imageDataOrigin; 

} IplImage; 

 

Figura 3.5 – Estrutura IplImage 

 

 

 

 

 

 

 



63 
 

Após os membros width e height, depth e channels são as mais importantes 

membros desta estrutura. A variável depth está associada a um de um conjunto de 

valores definidos no arquivo ipl.h, que definem o formato de representação numérica 

dos valores armazenados na matriz de pontos da imagem, contidos nesta estrutura. 

Os próximos dois membros importantes são origin e dataOrder. A variável origem 

pode assumir os valores IPL_ORIGIN_TL ou IPL_ORIGIN_BL, correspondente à 

localização da origem das coordenadas da imagem, que pode estar localizado em 

qualquer dos cantos, superior esquerdo ou inferior esquerdo, da imagem, 

respectivamente. A falta de um padrão na origem das coordenadas (superior versus 

inferior) é uma fonte importante de erro nas rotinas de visão computacional. 

Dependendo de onde uma imagem foi gerada, sistema operacional, codec, formato 

de armazenamento, câmera, etc pode afetar a localização da origem das 

coordenadas e consequentemente gerar erros de execução dos algoritmos e 

estouros de ponteiros no acesso a memória.  

O membro dataOrder pode assumir os valores IPL_DATA_ORDER_PIXEL ou 

IPL_DATA_ORDER_PLANE. Este valor indica se os dados devem ser empacotados 

com vários canais um após o outro para cada pixel (intercalados, o caso mais usual), 

ou todos os canais agrupados em planos de imagem com os planos dispostos um 

após o outro.  

O parâmetro widthStep contém o número de bytes entre pontos na mesma 

coluna e linhas sucessivas. A largura variável não é suficiente para calcular a 

distância, porque cada linha pode ser alinhada com um determinado número de 

bytes para conseguir um processamento mais rápido da imagem; conseqüentemente 

pode haver algumas lacunas entre o fim da i-ésima linha e o início da (i + 1) linha. O 

parâmetro imageData contém o ponteiro para a primeira linha de dados de imagem. 

Se há várias planos separados na imagem (como quando dataOrder = 

IPL_DATA_ORDER_PLANE), então eles são colocadas consecutivamente como 

imagens separados de height vezes nChannels linhas no total, mas normalmente 

eles estão intercalados de modo que o número de linhas é igual à altura e com cada 

linha contendo os canais intercalados em ordem. E ,enfim, existe a importante região 

de interesse (ROI), que é na verdade um instância de outra estrutura IPL / IPP, Ipl 

ROI. Um IPL ROI contém um xOffset, um yOffset, um height, um width e uma coi, 

onde COI significa channel of interest. 



64 
 

A estrutura cvMat, outra importante estrutura de dados da biblioteca OpenCV, 

ao contrário da IplImage é uma estrutura mais simples cujo objetivo é armazenar as 

informações de uma imagem em formato raw para àquelas funções que dispensam 

em seus parâmetroas as informações relacionadas a cor, canais e tipo de dado. A 

Figura 3.6 apresenta os membros que compõem este tipo de dado.  

 

typedef struct CvMat { 

 int type; 

 int step; 

 int* refcount; // for internal use only 

 union { 

  uchar* ptr; 

  short* s; 

  int* i; 

  float* fl; 

  double* db; 

 } data; 

 union { 

  int rows; 

  int height; 

 }; 

 union { 

  int cols; 

  int width; 

 }; 

} CvMat; 

 

Figura 3.6 – Estrutura CvMat 

 

 

 

 

 

 

 

 

 

 

 



65 
 

A partir de agora serão descritos todas as funções do OpenCv utilizadas no 

trabalho. 

Função Imread 

Carrega uma imagem a partir de um arquivo em disco e retorna um 

ponteiro para uma estrutura tipo Mat. Os seguintes padrões de imagem são 

suportados: 

 Windows bitmaps - *.bmp, *.dib 

 JPEG files - *.jpeg, *.jpg, *.jpe 

 JPEG 2000 files - *.jp2 

 Portable Network Graphics - *.png 

 Portable image - *.pbm, *.pgm, *.ppm 

 Sun rasters - *.sr, *.ras 

 TIFF files - *.tiff, *.tif 

Sintaxe:  

Mat imread( const string& filename, int flags=1 ); 

 Parâmetros: 

 filename  Nome do arquivo a ser carregado. 

 flags  Especifica o tipo de cor a ser carregado na imagem: se >0 

a imagem carregada é forçada a ter 3 canais de cor. Se 0 a imagem a 

possuir escala de cinza. 

 

Função cvCreateFileCapture 

 Aloca e inicializa a estrutura CvCapture para leitura de um stream de 

dados de vídeo a partir de um arquivo em disco. 

 Sintaxe: 

public static IntPtr cvCreateFileCapture(string  filename); 

 Parâmetros: 

 filename Nome do arquivo de vídeo. 

 IntPtr  Ponteiro para estrutura CvCapture. 

 

 

 

 



66 
 

Função cvQueryFrame 

 Apanha e retorna um quadro a partir de uma câmera ou arquivo. A 

função cvQueryFrame apanha um quadro de uma câmera ou arquivo de vídeo, 

descomprime e a retorna numa estrutura tipo IplImage. 

 Sintaxe: 

IplImage* cvQueryFrame( CvCapture* capture ); Parâmetros: 

 Parâmetros: 

 capture Estrutura do arquivo de vídeo. 

 

Função cvSetCaptureProperty 

 Configura as propriedades para captura do vídeo. A função 

cvQueryFrame apanha um quadro de uma câmera ou arquivo de vídeo, 

descomprime e a retorna numa estrutura tipo IplImage. 

 Sintaxe: 

 double cvGetCaptureProperty( CvCapture* capture, int property  

  id );   

 Parâmetros: 

 capture Estrutura do arquivo de vídeo. 

 property_id Identificador da propriedade. 

CV CAP PROP POS MSECF Posição atual do filme em milisegundos 
CV CAP PROP POS FRAMES Índice para a posição do quadro a ser 
capturado. 
CV CAP PROP POS AVI RATIO Posição relativa do arquivo de vídeo  
CV CAP PROP FRAME WIDTH  Largura dos quadros no vídeo. 
CV CAP PROP FRAME HEIGHT  Altura dos quadros no vídeo. 
CV CAP PROP FPS   Frame rate. 
CV CAP PROP FOURCC   Código do codec em 4-caracteres. 
CV CAP PROP FRAME COUNT  Número de quadros no vídeo. 
CV CAP PROP BRIGHTNESS  Brilho da imagem (para câmeras). 
CV CAP PROP CONTRAST  Contraste da imagem (para câmeras) 
CV CAP PROP SATURATION  Saturação da imagem (para 
câmeras). 
CV CAP PROP HUE   Hue da imagem (para câmeras). 

 

 

 

 

 

 



67 
 

Função cvCreateImage 

 Cria um cabeçalho e aloca memória para os dados de uma imagem. 

 Sintaxe: 

 cvCreateImage(size, depth, channels)->image 

 Parâmetros: 

 size  Estrutura do arquivo de vídeo. 

 depth  Número de elementos de bits da imagem. 

 channels Número de canais por pixel. 

 

Função cvSetImageROI 

Configura o retângulo de uma região de interesse de uma imagem.  

Sintaxe: 

 void cvSetImageROI(IplImage* image, CvRect rect ); 

 Parâmetros: 

 image  Ponteiro para o cabeçalho da imagem. 

 rect  Tipo de dado que representa o retângulo da ROI. 

 

Função cvCvtColor 

Converte uma imagem de um espaço de cores para outro. 

Sintaxe: 

void cvCvtColor( const CvArr* src, CvArr* dst, int code ); 

Parâmetros: 

 src  A imagem de origem em 8-bit (8u), 16-bit (16u) ou ponto  

    flutuante de precisão simples(32f). 

 dst  A imagem de destino. 

 code  Constante que representa o tipo de operação de conversão 

    de cores. 

 

 

 

 

 

 

 



68 
 

Função cvCanny 

Implementa o algoritmo de Canny para detecção de bordas. 

Sintaxe: 

void cvCanny( const CvArr* image, CvArr* edges, double 

 threshold1, double threshold2, int aperture size=3 ); 

Parâmetros: 

 image  Imagem de entrada, em canal simples. 

 edges  Imagem de retorno com bordas em canal simples. 

 threshold1 Valor de ajuste do primeiro limiar. 

 threshold2 Valor de ajuste do segundo limiar. 

 aperture_size Parâmetro de abertura do operador Sobel. 

 

Função rectangle 

Desenha um retângulo com espessura e preenchimento. 

Sintaxe: 

void cvRectangle( CvArr* img, CvPoint pt1, CvPoint pt2, CvScalar 

 color, int thickness=1, int line type=8, int shift=0 ); 

Parâmetros: 

 img  Imagem 

 pt1  Um dos vértices do retângulo. 

 pt2  Vértice oposto do retângulo. 

 color  Cor da linha em RGB. 

 thickness Espessura da linha. 

 line_type Tipo da linha. 

 shift   Número de bits fracionais nos pontos de coordenadas. 

 

 

 

 

 

 

 

 

 



69 
 

Função namedWindow 

Cria uma janela que pode ser utilizada para exibir imagens e trackbars. 

Sintaxe: 

int cvNamedWindow( const char* name, int flags ); 

Parâmetros: 

 name  Nome da janela que será utilizada como identificador. 

 flags  Se configurado em 1, o tamanho da janela é ajustado em 

    função do conteúdo exibido. 

 

 

Função cvReleaseCapture 

Desaloca a estrutura CvCapture da memória. 

Sintaxe: 

void cvReleaseCapture( CvCapture** capture ); 

Parâmetros: 

 capture Ponteiro para a estrutura CvCapture. 

 

 

Função DestroyWindow 

Destroi uma janela. 

Sintaxe: 

void cvDestroyWindow( const char* name ); 

Parâmetros: 

 name  Nome da janela que será destruída. 



70 
 

4. CONCLUSÃO 

 

Este trabalho propôs uma nova abordagem para o reconhecimento das 

condições de desalinhamento de via por meio de um sistema baseado na captura de 

imagens com base na arquitetura proposta e apresentada para o SDDV.  

O tempo final de processamento do algoritmo desenvolvido, considerando as 

condições do hardware utilizado, é próximo a 7ms. Este tempo é inferior ao intervalo 

de tempo entre dois quadros sucessivos de um vídeo gerado pela câmera, 33ms, e 

os tempos de reação necessários para atuação do sistema de frenagem do trem, 

conforme as considerações apresentadas durante a modelagem do problema. Este é 

um ponto positivo, pois fornece uma perspectiva para a margem de implementação 

de um produto final, levando em consideração que em uma arquitetura embarcada, 

os recursos computacionais de processamento são normalmente mais escassos do 

que o disponibilizado em microcomputadores pessoais. 

A utilização da biblioteca OpenCV para o desenvolvimento do algoritmo base 

do SDDV se mostrou muito eficiente. Todas as funções e estruturas selecionadas e 

utilizadas trabalharam de maneira adequada e não ofereceram nenhum tipo de 

obstáculo durante o desenvolvimento do algoritmo. A documentação de suporte à 

sua utilização é muito detalhada e somado ao fato de ser uma biblioteca com código 

fonte aberto, auxilia no rápido aprendizado pois é permitido o acesso irrestrito para 

estudo à todas as funções disponibilizadas. Outro fator relevante é que o fato desta 

biblioteca ser concebida para permitir sua compilação sobre diversas plataformas, 

imaginando o produto final, a microprocessador embarcado poderá receber o código 

portado desenvolvido no Visual Studio sem nenhum tipo de problema, desde que o 

ambiente de desenvolvimento do microprocessador embarcado seja compatível com 

as linguagens de programação C ou C++. 

No decorrer do desenvolvimento do SDDV, notou-se que o cenário de 

aplicação deste sistema permite que a solução seja personalizada dentro de certos 

padrões, como parâmetros da via, velocidade do trem, posicionamento da câmera, 

aspectos do aparelho de mudança de via e padrões da imagem. Assim, foi possível 

observar que muitas informações contidas nas imagens coletada pela câmera, 

podem ser consideradas fora da região de interesse do problema otimizando a 

massa de informações a ser processada. Para a proposta de extração das bordas da 



71 
 

imagem original, a função Canny apresentou-se melhor desempenho na detecção 

em trechos de curva comparada à função Sobel. Os parâmetros desta função foram 

determinados de modo a se obter melhor equilíbrio entre a informação principal da 

imagem e os ruídos ou distorções.  

Para a identificação de formas geométricas conhecidas dentro da imagem 

binarizada, resultante da função Canny, tentou-se utilizar a Transformada de Hough 

para eleger retas e curvas próximas dos padrões da viga-guia. No entanto, devido ao 

demasiado tempo gasto para a estimativa de parábolas, cerca de três vezes maior 

que o tempo de intervalo entre os frames do vídeo, essa ferramenta foi descartada. 

Outra proposta foi realizar estimativas dos pontos da borda através do método 

de mínimos quadrados recursivo, implementado na forma de Kalman. Sua grande 

vantagem foi, ao utilizar matrizes de menor dimensão e evitar uso de inversão de 

matrizes, exigir menos memória para o armazenamento e demandar menor tempo de 

processamento. No entanto, foram observadas algumas limitações através da análise 

das curvas de resposta. Devido ao efeito das sombras na imagem original, em alguns 

casos, o algoritmo não foi capaz de identificar os primeiros pontos que fornecem a 

orientação da reta inicial. Além disso, caso existam muitos pontos na periferia do 

traçado real, como há uma tendência do processo em ajustar um valor médio entre 

as curvas, houve um efeito de deslocamento em relação a curva real da viga-guia. As 

influências de ruídos demonstraram, de forma significativa, implicar na dificuldade no 

acompanhamento da trajetória esperada. 

Por fim, a proposta que se mostrou mais eficaz para a identificação da viga foi 

através da técnica do match template, onde foram pré-definidas duas regiões de 

modelo para a imagem: uma para a viga em linha reta e outra para a viga em curva. 

Desta forma, a comparação dos padrões se deu através da análise do espectro de 

probabilidade da posição da viga. A estimativa da posição resultante desta análise, 

que apresenta 98% de precisão, se mostrou bem estável, mesmo havendo alguma 

divergência nas regiões escuras ou com sombras. Nas verificações com as imagens 

durante o período da noite e com chuva, mas com o mesmo template gerado da 

imagem durante o dia, observou-se um comportamento com maior instabilidade de 

detecção. Durante à noite existem mais pontos intensos de luminosidade, ou 

causados pela sinalização de via, ou pela iluminação pública, que resultam em 



72 
 

resultados que provém alto valor de correlação entre o padrão de imagem 

predefinido da viga e a viga real da imagem 

A verificação da continuidade da viga através do cálculo da área preenchida 

pela ferramenta flood fill permitiu identificar a descontinuidade da viga. No entanto, 

em algumas situações, os fatores externos podem incorrer em uma conclusão 

equivocada, interpretando regiões de sombras como se fosse uma descontinuidade 

da viga. Uma proposta para melhorar essa interpretação seria conciliar processos  

distintos de verificação, por diferentes métodos e executá-los em paralelo, para que 

sejam avaliados em conjunto. Após o processamento e o reconhecimento da 

condição de desalinhamento da via, o dispositivo iniciará a interface com o MTC, que 

tomará a decisão quanto à aplicação do freio de emergência no trem. Essa 

comunicação pode ser realizada através da rede de comunicação disponível no trem 

ou através de sinal exclusivo para esta finalidade. Foi demonstrado que é possível 

identificar os limites das bordas da viga-guia e realizar verificações computacionais 

da continuidade da via.  

Decorrente dos resultados apresentados a partir deste trabalho considera-se 

como pontos de melhoria as seguintes propostas: 

1. Obter vídeos de movimentação do trem a frente de regiões de mudança de 

via em condições de desalinhamento. Devido as premissas de segurança 

implementadas pela Operação do Metrô, as obtenções destes vídeos não 

foram permitidas até então, mas com o decorrer do comissionamento da 

Linha 15, será possível obter vídeos nestas condições. Estas informações 

deverão ser entrada para o algoritmo a fim de verificarmos o seu 

desempenho num cenário real de desalinhamento. 

2. Adoção de um mapa de templates, que represente as características 

individuais dos trechos de via com maior interesse. Esta melhoria além de 

tornar mais robusto o cálculo de correlação, pode ser entrada para um 

sistema de votação que poderá determinar com precisão a exata região de 

mudança em que se localiza o trem. 

3. Verificar alternativas para os algoritmos de detecção de bordas. 

Entendemos que é possível aplicar um método de estimação robusta para  

a identificação do contorno da borda da viga. A proposta futura será 

implementar o algoritmo RANSAC e avaliar o seu desempenho nestas 



73 
 

condições. Os benefícios poderiam refletir na diminuição do tempo de 

detecção das bordas e o aumento de precisão da contagem de área sobre 

a viga, desde que um modelo de ajuste mais fiel a geometria real como um 

clotóide, seja definido para o processo de estimação. 

4. Realizar os primeiros estudos para a montagem de um protótipo 

embarcado. Com o algoritmo mais consolidado, o próximo passo será 

iniciar a especificação de um protótipo eletrônico capaz de executar a 

função de processamento das imagens, comunicação com as câmeras de 

bordo do trem e interface com o sistema de freios do trem.  

 

Com maior investimento de tempo e recurso neste trabalho, o SDDV poderá 

ser adotado como parte de uma solução alternativa às existentes, e de forma 

gradativa dispensar o emprego de dispositivos instalados em via para o cumprimento 

desta função.  



74 
 

5. REFERÊNCIAS BIBLIOGRÁFICAS 

 

ATTNEAVE, F. Some information aspects of visual perception. Psychological 

review, v. 61, n. 3, p. 183-193, 1954. 

BALLARD, D. H.; BROWN, C. M. Computer vision. New Jersey: Prentice-Hall, 1982. 

523 p. 

BERNARDES, F. S.; FERNANDES, D. C.; SANTOS, R. S. Sistema para detecção 

de desalinhamento de viga-guia em regiões de mudança de via dos Sistemas 

Monotrilho. São Paulo. 2016. 100 p. Monografia (Especialização em Tecnologia 

Metroferroviária) – Escola Politécnica da Universidade de São Paulo. PECE – 

Programa de Educação Continuada em Engenharia. Universidade de São Paulo, São 

Paulo, 2016. 

BOVIK, A. C. Handbook of image and video processing. Canadá: Academic 

Press, 2000. 891 p. 

BRADSKI, G.; KAEHLER, A. Learning opencv: computer vision with the opencv 

library. 1. ed. Califórnia: O'Reilly, 2008. 555 p. 

CHAPRA, S. C. Applied numerical methods with matlab for engineers and 

scientists. 3. ed. Boston: McGraw-Hill, 2008. 673 p. 

DESAI, B. K.; PANDYA, M.; POTDAR, M. B. Comparison of various template 

matching for face recognition. International journal of engineering research and 

development – IJSERD, v. 8, p. 16-18, 2013. 

GREWAL, M. S.; ANDREWS, A. P. Kalman filtering: theory and practice with 

matlab, 4. ed. New Jersey: John Wiley & Sons, 2015. 617 p.  

KUGA, H. K. Notas de aula de 2005 - noções práticas de técnicas de estimação. 

São José dos Campos: INPE, 2005. Apostila para disciplina de pós-graduação da 

Divisão de Mecânica Espacial e Controle. 


