DIEGO CAMILO FERNANDES

Sistema para deteccéo de desalinhamento de viga-guia em regioes
de mudanca de via dos Sistemas Monotrilho - Estudo e proposicao
do algoritmo de visdao computacional

Sao Paulo
2016

DIEGO CAMILO FERNANDES

Sistema para deteccéo de desalinhamento de viga-guia em regioes
de mudanca de via dos Sistemas Monotrilho - Estudo e proposicao
do algoritmo de visao computacional

Monografia apresentada a Escola
Politécnica da Universidade de Sé&o
Paulo para obtencdo do titulo de
Especialista em Tecnologia
Metroferroviaria.

Sao Paulo
2016

FOLHA DE APROVACAO

DIEGO CAMILO FERNANDES

Monografia apresentada a Escola
Politécnica da Universidade de Sao
Paulo para obtencdo do titulo de
Especialista em Tecnologia Metro-
Ferroviéria.

Area de Concentrag&o:

Engenharia de Computagéo

Aprovado em:

Banca Examinadora

Prof. Dra. Anna Helena Reali Costa

Universidade de Sao Paulo Assinatura:

Prof. Dr. Jorge Rady de Almeida Junior

Universidade de Sao Paulo Assinatura:

Prof. Dr. Paulo Sérgio Cugnasca

Universidade de Sdo Paulo Assinatura:

http://alunoweb.nucleoead.net/moodle/user/profile.php?id=1326

DIEGO CAMILO FERNANDES

Sistema para deteccéo de desalinhamento de viga-guia em regioes
de mudanca de via dos Sistemas Monotrilho - Estudo e proposicao
do algoritmo de visdao computacional

Monografia apresentada a Escola
Politécnica da Universidade de Sé&o
Paulo para obtencdo do titulo de
Especialista em Tecnologia
Metroferroviaria.

Area de Concentrag&o:
Tecnologia Metroferroviaria

Orientador: Prof. Dra.
Anna Helena Reali Costa

Sao Paulo
2016

Catalogacé&o-na-publicac&o

Fernandes, Diego Camilo

Sistema para deteccdo de desalinhamento de viga-guia em regides de
mudanca de via dos Sistemas Monotrilho - Estudo e Proposi¢cio do Algoritmo de
Visdo Computacional / D. C. Fernandes -- Sdo Paulo, 2016.

74 p.

Monografia (Especializagdo em Tecnologia Metroferroviaria) - Escola
Politécnica da Universidade de S&o Paulo. PECE — Programa de Educac¢do
Continuada em Engenharia.

1.Visdo Computacional 2.Algoritmo 3.0pen CV l.Universidade de Sao
Paulo. Escola Politécnica. PECE — Programa de Educac¢ao Continuada em
Engenharia Il t.

AGRADECIMENTOS

A Geréncia de Projeto e Concepcéo de Sistemas — GCS — e ao Engenheiro Rubens
Borloni, por demonstrarem confianca em minha competéncia profissional e ao apoio
incondicional concedido para o cumprimento desta trajetoria com longanimidade.

A minha orientadora, professora Livre-Docente Anna Reali, a quem Deus reservou a
arte do conhecimento com a abundancia de ensinar.

Aos colegas desta jornada no PECE: Fabio Bernardes e Ricardo Santos.

Aos Engenheiros da minha equipe de trabalho no Metré de S&o Paulo: Fabio, Lucas,
Méario G., Mario M., Natanael e Ruiz.

E a todos que, direta ou indiretamente, colaboraram na execuc¢éo deste trabalho.

Simplicidade é a maior sofisticagéo.

(Leonardo da Vinci)

RESUMO

O objetivo deste trabalho é o estudo e a proposicdo do algoritmo de visdo
computacional capaz de mitigar o perigo do desalinhamento da viga-guia em regides
de mudanca de via dos Sistemas Monotrilho em cenérios envolvendo
movimentacgdes de trem em modalidade de conducdo manual nestas regides. Serao
apresentadas as premissas que conduziram a definicdo do cédigo de computador e
as funcbes da biblioteca para visdo computacional OpenCV aplicadas durante o
desenvolvimento do algoritmo de reconhecimento de desalinhamento da via, parte
central do Sistema para Deteccdo de Desalinhamento de Viga-guia — SDDV — a qual
se baseia no processamento das imagens obtidas por meio das cameras de bordo

dos trens das frotas do Monotrilho das Linhas 15 e 17 do Metrdé de Sao Paulo.

ABSTRACT

The objective of this work is the study and proposal of computer vision algorithm can
mitigate the risk of misalignment of the beam guide in the process of changing
regions of monorail systems in scenarios involving train drives in manual driving
mode in these regions.The premises will be presented that led to the computer code
definition and functions of the library for computer vision OpenCV applied during the
development of the track misalignment recognition algorithm, central part of the
Sistema para Deteccdo de Desalinhamento de Viga-guia - SDDV - the which is
based on processing of images taken by the onboard cameras of the trains Monorail
fleet of lines 15 and 17 of the S&do Paulo Metro.

LISTAS DE FIGURAS

FIGURA 1.1 — ORGANIZAGAO DO SIMULADOR PROPOSTO PARA ANALISE DOS RESULTADOS.coverrrrrrenrnnnnns 16
FIGURA 2.1 — IMAGEM DA VIA SELECIONADA PARA AVALIGAO DOS MEIOS DE SOLUGAO DO PROBLEMA DE
LOCALIZAGAO DA VIGA DESALINHADA.otuierietetetririiecesesietetssstsssssssste et sssssssssssssesessssssssssssesesesesssssnssnens 21
FIGURA 2.13 — FLUXOGRAMA INICIAL.ciiiiiiiiiiiii it 22
FIGURA 2.14 — RESULTADO DA FUNGAO SOBEL NA PRIMEIRA IMAGEM DE AVALIAGAO, COM GRADIENTE (A)
HORIZONTAL E (B) VERTICAL. ..ttt r st st r sttt et ne st ene et en e 24
FIGURA 2.15 — RESULTADO DA FUNGAO SOBEL NA SEGUNDA IMAGEM DE AVALIACAO, COM GRADIENTE (A)
HORIZONTAL E (B) VERTICAL. .vetiiiieiieiietete ettt ettt et s sttt st ettt ne st e nne 25
FIGURA 2.16 — RESULTADO DA FUNGAO CANNY NA (A) PRIMEIRA E (B) SEGUNDA IMAGEM DE AVALIAGAO. ...26
FIGURA 2.17 — IMAGEM DETALHADA (A) DA ROI, COM DIMENSAO EQUIVALENTE A 1/3 DA ALTURA E 3/5 DA
LARGURA DA IMAGEM ORIGINAL, DE 800 X 600 PIXELS; E (B) DA SOBREPOSIGAO DA ROI NA IMAGEM

ORIGINAL, COM AS DEMARCAGOES DE SUAS SUBDIVISOES.ccoviriiiiriererereieiesreesesessssssssesesevsssssssssnnns 28
FIGURA 2.18 — ALGORITMO PROPOSTO PARA IMPLEMENTAGAO DA TRANSFORMADA DE HOUGH. 29
FIGURA 2.19 — INTERPRETAGAO GEOMETRICA DA TRANSFORMADA DE HOUGH.cocvevveererrieisrsieisseiessnissenans 30

FIGURA 2.20 — RETAS IDENTIFICADAS APOS APLICAGAO DA TRANSFORMADA DE HOUGH (A) NA PRIMEIRA E (B)
NA SEGUNDA IMAGEM DE AVALIAGAO.c.ouierieieieiririitisie ettt ettt st esssssesesesessesasasens 31
FIGURA 2.21 — REPRESENTAGAO GEOMETRICA DA PARABOLA E SEUS PARAMETROS........cevviverieereisieisnseernnns 32
FIGURA 2.22 — REPRESENTAGAO GEOMETRICA DE UMA PARABOLA EM FUNGAO DOS PARAMETROS POLARES P,
BE Qoo 33
FIGURA 2.23 — ALGORITMO PARA IMPLEMENTAGAO DA TRANSFORMADA DE HOUGH, ADAPTADO PARA
IDENTIFICAGAO DE UMA PARABOLA.cvvuiteiiieteicie ettt st s s s s snas 34
FIGURA 2.24 — PARABOLAS IDENTIFICADAS NA SEGUNDA IMAGEM DE AVALIAGAO APOS APLICAGAO DA
TRANSFORMADA DE HOUGH MODIFICADA. EM DETALHE A ESQUERDA A ROI DA IMAGEM ORIGINAL. ... 35
FIGURA 2.25 — AJUSTE LINEAR. ADAPTADO DE KUGA (2005). ..cccveruerreriinririeeieeeeneenieneeeresie e seesnessesreseeeseeeenees 36
FIGURA 2.26 — FLUXOGRAMA ATUALIZADO PARA APLICAGAO DO ALGORITMO DE MINIMOS QUADRADOS
RECURSIVO . ..ottt b s bbb e b e saa e ae s 38
FIGURA 2.27 — RESULTADO DA APLICAGCAO DO ALGORITMO PARA IDENTIFICAGAO DA CURVA POR MINIMOS
QUADRADOS RECURSIVO NA SEGUNDA IMAGEM DE AVALIACAO: CURVAS EM AMARELO EM (B) E (D). .39
FIGURA 2.28 — EM (A) A PRIMEIRA IMAGEM DE AVALIAGAO, DETALHE DA ROI; EM (B) O RESULTADO DA
APLICAGAO DO ALGORITMO PARA IDENTIFICAGAO DA CURVA POR MINIMOS QUADRADOS RECURSIVO
NA PRIMEIRA IMAGEM DE AVALIAGAOD.o.oviviieierereisiiecesie ettt bbbt be s s s sansnens 40
FIGURA 2.29 — IMPLEMENTAGAO EM LINGUAGEM C DO ALGORITMO METODO DA DIFERENGA DO QUADRADO.

FIGURA 2.30 — TEMPLATES PARA UTILIZACAO NO ALGORITMO DE CONVOLUGAO (MATCH TEMPLATE),
AUMENTADOS. ..o bbb bbb b a e s bbb naa e 44

FIGURA 2.31 — O FLUXOGRAMA DO CODIGO ATUALIZADO INCORPORANDO O METODO DE MATCH TEMPLATE.

... 45
FIGURA 2.32 — RESULTADO DA APLICACAO DA TECNICA DE MATCH TEMPLATE EM UMA IMAGEM DA VIA
EXTRAIDA DE VIDEQO COM RESOLUGAO 800 X 600 PIXELS.cvcvevevrereercrererereseeeeeeeaesesesesesesessssesesesesesesenenans 46
FIGURA 2.33 — RESPOSTA DO ALGORITMO EM CURVA ACENTUADA A ESQUERDA.coevevreereeecrerereeeerereeienans 47
FIGURA 2.34 — CENARIO COM SOMBRA DE TREM CIRCULANDO NA OUTRA VIA.oeviiierieieereeiesese s 47
FIGURA 2.35 — CENARIO ONDE EXISTE TRANSICAO DE UMA REGIAO CLARA, PARA OUTRA SOMBREADA. 48
FIGURA 2.36 — SOMBRA NA VIGA PROVENIENTE DOS PREDIOS.cccvvruerreriereacteeeseesesesaesessaesesssesesassesesassesas 48
FIGURA 2.37 — CURVA LONGA A DIREITA.ovuiuitieeceeteeeeteecaeteesaetesassesesaesesssesesassesesassesesaetesssassenassesesassesasassesas 49
FIGURA 2.38 — CURVA LONGA A ESQUERDAL.coouiuevieiteteiicie ettt sttt bbb s snas 49
FIGURA 2.39 — APROXIMAGAQO NA REGIAO DE PLATAFORMA.ooucvreieeeeeereeieesaesesesesesaesessassesssesesassesesasaenas 50
FIGURA 2.40 — FINAL DE PLATAFORMAoviuettteetetesesteeeaetesessesesesassesassessassesssesesassssesassesssassesassesesassssanasaasas 50
FIGURA 2.41 — ESTRUTURA DE DADOS E FUNCOES AUXILIARES PARA O ALGORITMO DE FLOOD FILL. 52
FIGURA 2.42 — ALGORITMO FLOOD FILL. ..evvvervevreereresasieeesae e vesssesesas ettt aeses s st sasae s s s assesnaesasans 52
FIGURA 2.43 — APLICACAO DA TECNICA DE PREENCHIMENTO DE REGIAO NA PRIMEIRA IMAGEM DE
AVALIAGAOD. ..ottt sttt s et bbbt s bt b bt b st b e b bt et b et bbb et s st et st s 53
FIGURA 2.44 — APLICACAO DA TECNICA DE PREENCHIMENTO DE REGIAO NUMA REGIAO DE MUDANGA DE VIA
NO PATIO ORATORIO = LINHA 15.ovviieeeeeceeteteteteeeseseseesetesesesesesesssaesesesesesessssassesesesessssssssssesesesssessssnas 54
FIGURA 2.45 — RESULTADO FINAL DO ALGORITMO — MOVIMENTAGAQ DIURNA DO TREM........cocovevrererrnennnns 55
FIGURA 2.46 — RESULTADO FINAL DO ALGORITMO — MOVIMENTAGCAO NOTURNA DO TREM.cccoevueverrrranes 55
FIGURA 2.47 — O FLUXOGRAMA DA IMPLEMENTACAO FINAL DO ALGORITMO DE DETECGCAO DE
DESALINHAMENTO DE VIGA.ouvviieiiieieieietessssae st s s sss s sse st s s sss s s s s s s ssnsesnas 56
FIGURA 3.1 — TELA PRINCIPAL DAS OPCOES PARA INSTALACAO DO MICROSOFT VISUAL STUDIO 58
FIGURA 3.2 — TELA PRINCIPAL DAS OPCOES PARA INSTALAGAO DO OPENCV.cvveieevreceereeeaereeesae s senae e 58
FIGURA 3.3 — TELA PRINCIPAL DAS OPCOES PARA INSTALAGAO DO SOFTWARE CMAKE..........ceveeverereeerereennens 59
FIGURA 3.4 — O FLUXOGRAMA DA IMPLEMENTACAO FINAL DO ALGORITMO DE DETECGAO DE
DESALINHAMENTO DE VIGA.oevieieieieectetete st tes sttt s s st as st ss e b esassessae s s s s esesssaes s s sesnassesassesanans 60
FIGURA 3.5 — ESTRUTURA IPLIMAGEc.vuiueviiiteiiietiste et sssssse s s st sss s sssss s s s sse b s s sssssesssssesnsesnens 62

FIGURA 3.6 = ESTRUTURA CVIMAT ..ottt st seaan e s saae e eas 64

LISTAS DE TABELAS

TABELA 1.1 — DESCRIGAO DAS BIBLIOTECAS DO OPENCV.......cueuireeeireieiireeneesessessesssesseessessssssssesssssssssssssessssssenns 20
TABELA 3.1 — FUNGOES DO OPENCV UTILIZADAS NO SDDV. w..vvuieriririeeiirseneessiseseessenseessessssssessssessssssssssessssssenns 61

3D

AMV

API

ASP

CPU

DLL

FPS

GUI

GPU

JPEG

MATLAB

MPEG

OPENCV

PIXEL

RANSAC

RGB

ROI

SDDV

LISTA DE SIGLAS E ABREVIATURAS

Trés Dimensdes

Aparelho de Mudanca de Via
Application Programming Interface
Active Server Pages

Central Processing Unit

Dynamic Link Library

Frames per Second

Graphics User Interface

Graphics Processing Unit

Joint Photographic Experts Group
Matrix Laboratory

Moving Picture Experts Group
Open Computer Vision

Picture Element

Random Sample Consensus
Red, Green and Blue

Region of Interest

Sistema de Deteccdo de Desalinhamento de Via

SUMARIO

1. INTRODUGAO ...ttt ettt ettt ettt etesreare s 15
1.1. O DESAFIO DA VISAO COMPUTACIONALccvvtieeiiiiieeeeaiieseeeetinseessaineesennneas 17
1.2, ORIGENS DO OPENCV ...ttt e e e e e e e ea e e e e e e e e e eanaes 19
1.3, BIBLIOTECAS ..ootittiiii i i ettt ettt e e e e e e e e e ettt e e e e e e e e e eestbba e e aeaaeeeennes 20

2. IDENTIFICACAO DO DESALINHAMENTO DE VIGA........cooooveveeeeeeeree 21

3. TRABALHANDO COM O OPENVC NO SDDVcooiiiiiiiiiiiiicceeeeeeeeeein, 57
3.1. TN Y Y0\ ISP 57
3.2. DESCRICAO DAS FUNGOES ...t ittt eeeeiiie e ee ettt e e et e e et e e e e etae e e e entn e e e enaans 60

4, CONCLUSAO ...ttt et 70

5. REFERENCIAS BIBLIOGRAFICAS.........ooeoieeeeeeeeeeeeee e 74

1. INTRODUCAO

Um dos principais riscos operacionais durante a operacdo de um sistema
metroferroviario € a conducdo de um trem em modalidade manual através de uma
regido de mudanga de via em condicdo de desalinhamento de rota, situacao
favoravel para a ocorréncia do descarrilamento da composicdo. Este risco é
potencializado no modal de transporte Monotrilho, onde as regides de mudanca de
via sdo elevadas — 15 metros de altura em média — e as consequéncias de um
acidente desta natureza podem representar grandes prejuizos ambientais,
patrimoniais e civis.

Para a mitigacdo deste risco foi proposto o Sistema de Deteccdo de
Desalinhamento de Via — SDDV, cujo objetivo € detectar a viga do AMV — Aparelho
de Mudanca de Via — desalinhada (fora de posi¢éo) quando o trem estiver operando
em modalidade manual, utilizando a camera interna do trem para a obtencédo de
imagens que processadas por um algoritmo especifico permitira reconhecer e indicar
a existéncia de desalinhamento na viga afim de, antecipadamente, disparar o
processo que aplicara o freio de emergéncia a composicdo em movimento antes de
adentrar na regido de perigo.

Com o objetivo de analisar o desempenho do algoritmo de reconhecimento do
sistema SDDV, em uma situacado real de movimentacdo do trem, foi proposta a
configuracdo de um ambiente computacional para verificacdo do seu funcionamento
durante a reproducéo de um video real, obtido pela camera de bordo do trem. Neste
ambiente as ferramentas necessarias foram instaladas e a partir delas criada uma
simulacdo da operacdo do processo real ao longo do tempo. Deste modo, a
utilizacdo de um simulador tornou-se a opcado mais adequada para propiciar a
verificacdo rapida de alternativas e solucbes de software sem a necessidade da
utilizacao do trem, exceto quando fosse necessaria a obtencédo de novos dados de
entrada, videos capturados pela camera de bordo, que salvos no registrador interno
de eventos do trem, poderiam ser descarregados por meio de pen-drive quando da
sua parada em uma Estacéo da linha principal ou via de estacionamento do patio de
manutencdao, evitando distarbios durante a operacdo comercial da linha. A Figura 1.1

apresenta o diagrama do simulador criado para testes do algoritmo do SDDV.

15

Simulador

4 Ambiente h
computacional

Dados de Dados de

entrada saida

:> Ferramentas | ::

Modelo

Algoritmos

\ A

Figura 1.1 — Organizacao do simulador proposto para analise dos resultados.
Os dados de entrada representam os videos obtidos por meio da
camera de bordo do trem e a execugé&o dos algoritmos do SDDV
geram dados de saida.

Os critérios definidos neste trabalho para a pesquisa e selecdo do conjunto de

ferramentas para composi¢éao do simulador foram:

gratuidade: auséncia de custos para aquisi¢ao e instalacao dos softwares;
suporte: oferta de documentacédo completa e de qualidade para instalagéo e
utilizacao;

diversidade de funcdes: disponibilidade de funcbes especificas que nédo
fazem parte do escopo principal do estudo mas fornecem o suporte necessario
para acelerar o desenvolvimento dos algoritmos e 0Ss seus meios para
avaliacao;

interface grafica: possibilitar a criacdo de uma interface gréafica suficiente para
o manuseio dos dados, configuracdo dos parametros e visualizacdo dos
resultados da simulacéo dos algoritmos.

portabilidade: migrar entre sistemas operacionais e plataformas de hardware
embarcado sem impactar significativamente em mudancas no cdédigo

desenvolvido, foco no desenvolvimento de um produto final;

Apoés extensa pesquisa, segundo os critérios apresentados, foi definido como

biblioteca de software a ferramenta OpenCV. O OpenCV — Open Source Computer

Vision € uma biblioteca de software para aplicacbes em visdo computacional e

aprendizado de maquina open source, ou seja, biblioteca cujo modelo de

desenvolvimento promove 0 acesso universal por meio de codigo-fonte aberto

permitindo projetar ou modelar um produto e redistribui-lo, incorporando as melhorias

16

feitas por qualquer individuo. Lancado oficialmente em 1999, o projeto OpenCV era
uma iniciativa da Intel® Research para o avanco em aplicacdes de uso intensivo da
sua CPU. A partir da sua popularizacédo, o OpenCV foi aperfeicoado para fornecer
uma infra-estrutura comum para aplicacdes de visdo computacional e acelerar o uso
da percepcdo de maquina em produtos comerciais. Esta biblioteca possuiu em sua
versao atual mais de 2500 algoritmos otimizados, que inclui um conjunto abrangente
de algoritmos classicos e do estado da arte para visdo computacional e aprendizado
de maquina além de funcbes para criacdo e manipulacdo de objetos graficos para
construcdo de uma GUI — Graphic Interface Unit — completa. Os algoritmos
fornecidos na biblioteca possibilitam a criacdo de aplicagbes como detectar e
reconhecer rostos, identificar objetos, classificar as acdes humanas em videos,
interpretar movimentos de camera, extrair modelos 3D de objetos, etc. Além da
caracteristica open source outras caracteristicas como op¢des para 0 acesso a sua
API — Application Program Interface — por meio de varias linguagens de programacao
como C++, C, Python, Java e MATLAB® Toolbox e compatibilidade de funcionamento
com Varios sistemas operacionais como Windows®, Linux, Android e MacOS®,
contribuiram para a definicdo desta ferramenta como biblioteca bésica de funcdes de
visdo computacional para o suporte ao desenvolvimento deste trabalho.

1.1. O desafio davisdao computacional

A visdo computacional compreende na transformacado de dados de entrada,
originarios de uma camara fotogréfica ou de video, em alguma decisdo ou uma nova
representacdo. Todas essas transformacfes sdo feitas para alcancar algum objetivo
em particular. Os dados de entrada, por exemplo, podem incluir algumas informacées
contextuais tais como " a cAmera estd montada no trem " ou " o trem esta a um metro

de distancia do obstacula a frente". A decisdo por ourto lado pode ser " ha chuva na

via “ou h&d viga esta desalinhada A nova representacdo pode significar
transformar uma imagem colorida em uma imagem em tons de cinza ou a remocgéao
de movimento de camera de uma sequéncia de imagens.

O ser humano foi concebido para ser capaz de realizar tarefas que envolvam a
percepcao, interpretacédo e tomada de decisdes a partir de estimulos visuais de forma

simples. Se entretanto, tentarmos criar uma analogia ao pensar que um computador

17

pode ser capaz também de realizar as mesmas tarefas da mesma forma simples, nos

precipitaremos.

O cérebro humano divide o sinal de visdo em muitos canais que reproduzem
diferentes tipos de informacdo. Nosso cérebro possui um sistema de alerta,
construido de uma forma dependente de tarefas, onde partes importantes de imagem
sdo examinidas enquanto outras sdo suprimidas. Ha realimentacdo macica na
corrente visual que €, por enquanto, pouco compreendido. Existem entradas
associativas a partir de sensores de controle muscular e todos os outros sentidos,
que permitem que o cérebro estabeleca associacdes cruzadas, possiveis de serem
feitas a partir dos primeiros anos de vida de uma crianca. Todos estes lacos sao
realimentados dentro do cerébro e voltam para todas as fases de transformacéo,
incluindo os proprios olhos, que controlam mecanicamente a iluminagdo externa

captada pela iris, sintonizando a recepc¢ao de feixes por meio da superficie da retina.

Em um sistema de visdo de maquina, no entanto, um computador recebe uma
matriz de niUmeros provenientes de uma camera ou de uma memoria ndo volatil, e
nada mais. Na grande maioria das vezes, ndo h& reconhecimento de padrdes
embutidos, nem controle automatico de foco e abertura e tampouco ha associactes
cruzadas com base no conhecimento, anos de vida. O que o computador "enxerga" é
apenas uma matriz de nimeros. Qualquer numero dentro dessa matriz pode possuir
uma grande componente de ruido e por assim sé nos conferir pouca precisdo na
informagao. As agdes ou decisOes que o sistema de visdo computacional tenta fazer
com base em dados da camera sdo executadas no contexto de um propésito ou
tarefa especifica. N6s podemos querer remover ruidos ou danos de uma imagem
para que 0 nosso sistema de seguranca, por exemplo, emita um alerta se o trem se
movimentar em direcdo a uma regido de desalinhamento na via ou porque
precisamos de um sistema de monitoramento que conta quantas pessoas
atravessam uma area em um parque de diversdes. Independentemente da aplicacéo,
vale como regra geral: quanto mais restrito for o contexto do sistema de visao
computacional maior serdo as chances de podemos contar com essas restricoes
para simplificar o problema e desta forma aumentar a confiabilidade do resultado

final.

18

1.2. Origens do OpenCV

O OpenCV cresceu a partir de uma iniciativa da Intel Research para avancar
em aplicacdes para uso intensivo da sua CPU. Um dos lideres desta pesquisa
trabalhando pela Intel na época, visitou universidades e notou que alguns grupos
universitarios, como o MIT Media Lab, tinham desenvolvido internamente estruturas
de cddigo aberto para visdo computacional que eram passadas de aluno para aluno
e que isto conferia a cada novo aluno uma vantagem valiosa para o desenvolvimento
da sua nova aplicagdo. Em vez de reinventar as fun¢des basicas do zero, um novo
estudante poderia comecar seu desenvolvimento a partir da estrutura que havia sido
criada anteriormente.

Desta ideia inicial o OpenCV foi concebido, nas linguagens de programacgéo C
e C++, como um caminho para tornar a infra-estrutura de visdo computacional
universal. Com a ajuda do Intel’'s Performance Library Team, o OpenCV comecou
com um nucleo de codigo implementado e especificacdes de algoritmos foram
enviados para os membros desta equipe na Russia. Foi I onde o OpenCV comecou
a ganhar suas primeiras marcas de implementacao: a experiéncia em otimizagcao de
codigos dos russos.

A partir de entdo o OpenCV recebeu muitas contribuicbes dos usuarios, e 0
desenvolvimento do core da biblioteca deslocou-se em grande parte para fora da
Intel. Ao longo de sua trajetéria o OpenCV foi afetado pelo boom das empresas
chamadas dot-com fazendo com que muitos dos seus pesquisadores
interrompessem as contribuicdes e voltassem seus esforcos para este mercado
promissor. Durante estas flutuacdes, houve momentos em que o OpenCV néo tinha
ninguém da Intel dedicado a continuidade do seu desenvolvimento. No entanto, com
o advento dos processadores multicore muitas novas aplicacbes para Visao
computacional tornaram-se viaveis e o desenvolvimento do OpenCV passou a ser
valorizado novamente. Hoje, o OpenCV é area ativa do desenvolvimento em diversas
instituicbes o0 que torna possivel em curtos espacos de tempo muitas atualizacdes
referentes a algoritmos para calibracdo multicamera, percepcdo de profundidade,
métodos para a mistura de visdo com lasers de alcance e localizagdo, e melhores
bibliotecas para reconhecimento de padrdes, bem como um grande apoio para

necessidades envolvendo o ramo da visdo robética.

19

1.3. Bibliotecas

De acordo com Bradski e Kaehler (2008), as funcdes do OpenCV estdo

distribuidas em bibliotecas que foram classificadas conforme suas caracteristicas de

aplicacdo. A Tabela 1.1 relaciona todas as bibliotecas e apresenta as descrigbes das

aplicacoes.

Tabela 1.1 — Descricao das bibliotecas do OpenCV.

Biblioteca Descricao da aplicacao
Calib3d Calibrar camera e reconstruir objetos a partir de multiplas imagens planas
Core Criar estruturas de dados, tipos e acessos para manipulacdo de memaria
Features2d !_ocalizar e extrair caracteristicas, descri¢cdes e objetos por semelhanca em
imagens
Flann Utilizar fungdes de pesquisa rapida em espacos de grandes dimensfes
GPU Utilizar paralelizacao de algoritmos em GPU's
Highgui Criar e manipular GUI's, imagens e videos
Imgproc Processar imagens com filtragem, transformacdes geométricas, estruturas e
andlise de formas
ML Aplicar modelos estatisticos e classificacbes
Nonfree Utilizar algoritmos que estao patenteados em alguns paises
Objdetect Detectar objetos por meio de classificadores cascata e histogramas
Stitching Aplicar mistura, distor¢cao, costura e empacotamento em imagens
Video Analisar movimento e objetos em videos

20

2. IDENTIFICACAO DO DESALINHAMENTO DE VIGA

Uma vez que as etapas de modelagem do problema, conforme apresentado
por Bernardes, Fernandes e Santos (2016), e configuracdo do ambiente
computacional foram concluidas deu-se inicio a etapa de desenvolvimento do
algoritmo para identificagdo do desalinhamento da viga. Com intuito de compreender
melhor o problema a ser resolvido primeiramente foi selecionada a imagem de um
video, capturado durante a movimentacdo do trem na via, onde fosse possivel
encontrar o maior numero de situagfes consideradas obstaculos para o processo de
identificacdo de maneira a provocar uma discussao sobre quais abordagens

poderiam ser aplicadas a fim de resolver o problema de forma otimizada.

Al | s

-

- J"*.“m

‘-" » “' I‘

UL LG G R GG aReee S

%
v
5C
v
B
’.
o
I 4

)

zZ

o

-

Figura 2.1 — Imagem da via selecionada para avalicdo dos meios de solu¢éo do
problema de localizag&o da viga desalinhada.

A partir das informacdes visuais contidas na Figura 2.1 foi possivel observar
0s seguintes fatos:
1. A maior concentracdo de informacdo a ser processada encontra-se numa
regido equivalente a 1/3 da altura da imagem, partindo de sua base;
2. Na altura da linha central da imagem se concentra a maior quantidade de

informacgdes, em sua maior parte, sem utilidade para o problema,;

21

3. As passarelas de servigo, formas curvas de tonalidade cinza escuro, s&o
estruturas que acompanham a viga durante o percurso da via e apresentam
caracteristicas geométricas muito semelhantes;

4. A viga apresenta situacdes de tracado curvo;

Existe um aumento gradativo de distorcdo na imagem a medida que
deslocamos a visao partindo do ponto central, em direcao radial, no sentido de
qualquer ponto periférico. Uma consequéncia € o efeito abaulado da lateral do
prédio branco a direita da imagem;

Presenca do efeito de sombras sobre a viga;

7. A viga ndo necessariamente esta posicionada no centro da linha de base
horizontal da imagem. Em situacfes de curva como a da Figura 2.1 este

centro pode estar deslocado para os lados.

Apés analisar os sete pontos apresentados acima, criou-se a primeira proposta
de fluxograma do algoritmo para solucdo do problema cuja validacdo seria feita
incialmente com imagens estaticas, para posteriormente ser verificado em condicéo
dindmica onde o video completo seria reproduzido e processado continuamente. O

fluxograma proposto inicialmente esta apresentado na Figura 2.2.

Abertura do arquivo de
imagem para leitura

L

4 \
Eliminacao da informacéo
desnecessaria

|

Identificacéo da viga e
verificacdo de obstrucéo

Figura 2.2 — Fluxograma inicial.

A solugdo para o primeiro bloco do fluxograma, “Abertura do arquivo de
imagem para leitura” foi quase imediata, exigindo apenas o conhecimento da forma
de utilizacdo da funcdo de manipulacdo de arquivos externos de imagem e as

caracteristicas da estrutura do tipo IplImage no OpenCV. Uma vez aberto e

22

acessado os dados do arquivo de imagem externa em formato JPEG, o proximo
passo foi desenvolver os meios de eliminar da imagem todas as informacdes
consideradas desnecessarias para o problema, portanto, todo o tipo de informacao
visual que ndo fosse a viga deveria ser descartado. Um paradigma foi criado, pois
como seria possivel eliminar toda a informagcédo que ndo seja referente a viga se
ainda sequer a reconhecemos na imagem. Deste modo, a ideia seguinte foi aplicar
alguma técnica capaz de extrair os contornos da imagem, para entao classificarmos
0 que seria a viga.

Bovik (2000) afirma que a deteccdo de bordas € uma importante ferramenta
para andlise de imagens em aplicacdes de visdo computacional nas quais objetos
devem ser reconhecidos por meio dos seus pontos periféricos. Normalmente, um
objeto pode ser reconhecido a partir somente dos seus pontos periféricos
(ATTNEAVE, 1954) sendo que experimentos com o sistema visual humano
demonstram que os limites dos objetos em imagens sao extremamente importantes e
tendem a mostrar a intensidade das descontinuidades em uma imagem (BALLARD,
1982).

A biblioteca OpenCV oferece suporte a aplicacdo da técnica de deteccdo de
bordas sob a forma de filtragem, onde o foco € enfatizar as bordas de um objeto por
meio da andlise do espectro da imagem sob o fato de na regido das bordas
naturalmente existir uma brusca variacéo de intensidade, o que caracteriza presenca
de componentes de alta frequéncia no espectro, ou sob a forma de operadores
matematicos, onde o foco € determinar bordas através da varredura de pixels em
todas as direcbes da imagem aplicando um derivada para avaliar o grau de
descontinuidade, ou “salto”, em relagdo ao valor da escala das cores nas vizinhangas
do ponto de referéncia.

Neste trabalho optou-se por trabalhar com a deteccao de bordas por meio dos
operadores matematicos e, com o suporte das funcdes Sobel e Canny do OpenCV,
foram avaliadas as respostas obtidas apos aplicacdo da técnica em duas imagens da
via, sendo uma delas a mesma imagem da Figura 2.1. Os resultados da aplicacao
das duas func¢des nas duas imagens selecionadas sao apresentados nas Figuras
Figura 2.3 e Figura 2.4, para a funcdo Sobel e Figura Figura 2.5 para a fungéo

Canny.

23

RS

J
J
/4
2
ﬁ
A
AL
A
!
I
i
N 4

"wuuu\. 'r .,l Yoy
Sy i.n l"..iil

W

I'.u.

[N sobely:

(b)

Figura 2.3 — Resultado da funcdo Sobel na primeira imagem de avaliacao,

com gradiente (a) horizontal e (b) vertical.

24

b | ?MM’;

v

_lo x|

(b)

Figura 2.4 — Resultado da funcdo Sobel na segunda imagem de avaliacao,
com gradiente (a) horizontal e (b) vertical.

25

=10l x|

Figura 2.5 — Resultado da funcdo Canny na (a) primeira e (b) segunda
imagem de avaliacéo.

26

Analisando os resultados € possivel observar que a funcdo Sobel, na
condicao de gradiente horizontal, foi mais eficiente que a funcdo Canny na proposta
de extrair as bordas da via, haja vista a quantidade de informacdo em excesso
detectada no centro inferior da Figura 2.5 (b) se comparada a Figura 2.4 (a). Apesar
desta caracteristica, a funcdo Canny foi a escolhida para extrair as bordas da via,
pelo fato de apresentar um desempenho superior na deteccdo do trecho em curva,
conforme demonstra a comparacéo entre as Figura 2.3 (a) e (b) em relacdo a Figura
2.5 (a). Foram realizados testes posteriores com diversas imagens submetidas a
funcdo Canny com o propoésito de determinar o parametro de limiar de comparagao
mais otimizado, um dos parametros desta funcdo. O valor 65 para o parametro de
limiar se mostrou o mais equilibrado entre o compromisso de detectar a borda da
viga e minimizar as demais transi¢des de borda, ou ruidos, indesejados na imagem.
Outro ponto importante a se observar é que o processo de deteccdo de bordas gera
como resultado uma imagem “binarizada”, ou preto e branco, onde os pixels
resultantes do processo assumem apenas dois valores, 0, equivalente aos pixels
representados na cor preta, e 255, equivalente aos pixels representados na cor
branca. E preciso mencionar que as fungdes Sobel e Canny exigem como
informacgao de entrada uma imagem em escala de cinza de 8 bits.

Levando-se em conta as observacdes apresentadas no inicio deste capitulo,
outra providéncia foi incorporada ao algoritmo no sentido de otimizar a quantidade de
informacdo a ser processada e ignorar aquilo que ndo fosse util para a identificacao
da viga. Com isto foi criada uma ROI - regido de interesse — com as dimensdes de
altura e largura configuradas da melhor forma para o problema. A Figura 2.6
apresenta a aplicacdo do conceito da ROl em relacdo a imagem da Figura 2.1.

A altura da ROI foi determinada por simples inspec¢édo, observando-se que
durante a execuc¢do dos videos de movimenta¢cdo do trem cerca de 2/3 da altura de
cada imagem, tomando como referéncia o seu topo, poderiam ser consideradas
informacdes despreziveis para o processo de detecgcdo. Em relacdo a largura da ROI
0 processo de determinacdo desta dimensao exigiu mais critérios para sua definicao:
as possiveis posicdes da viga na imagem.

Observando o comportamento da sua posicao durante a reproducao de alguns
videos, foi possivel determinar a largura média da ROI que fosse suficiente para

considerar a curvatura maxima a direita, & esquerda e sua posicdo no centro da

27

imagem. O valor mais adequado para a janela foi definido como 3/5 da largura da
imagem, posicionada a 2/5 do eixo x da imagem.

CHUGACTLCHRARREEY

1

LY

(b)

Figura 2.6 — Imagem detalhada (a) da ROI, com dimens&o equivalente a 1/3
da altura e 3/5 da largura da imagem original, de 800 x 600
pixels; e (b) da sobreposicdo da ROl na imagem original, com
as demarcacdes de suas subdivisdes.

As subdivisbes marcadas com 2, 3 e 5, somadas, equivalem a
3/5 da largura da imagem original. A altura das subdivisbes
marcadas com 2, 3 e 5 é 1/3 da altura da imagem original.

A ROI dentro no algoritmo é implementada por meio de um ponteiro para a

regido de memoéria que contém todos os valores da imagem original, executando o

28

enderecamento acrescentado um valor de offset compativel aos valores de largura e
altura da regiao de interesse.
O proximo passo foi identificar uma técnica para analise de pontos das bordas
a fim de reconhecer se os pontos identificados estdo contidos em alguma forma
geométrica conhecida. A Transformada de Hough é uma ferramenta que permite
detectar relagbes geométrica entre pontos, originalmente desenvolvida para a
deteccdo de retas. Outras variacfes desta transformada também permitem detectar
formas cOnicas como circulos, elipses e parabolas. O algoritmo proposto para
implementacéo da transformada de Hough esta transcrito na Figura 2.7.
transformada hough ()
Inicializar matriz M(p,6) com zero
Para cada x,y pertencente a imagem com I(x,y) =1
Para ©= -n/2+1 até 6=mn/2 com incremento de AO
o = x cos6 + y sin6
Incrementar de uma unidade a célula M(p,6) da matriz acumuladora

Faca laco até 6 ndo pertencer mais ao intervalo (-m/2,1/2]
Faca laco até o final da imagem.

Figura 2.7 — Algoritmo proposto para implementacdo da transformada de Hough.

A ideia da transformada de Hough consiste em representar uma reta por meio
dos parametros polares rho e theta e entéo, substituir os valores de posicédo, x e y, de
um ponto da borda nesta fun¢éo polar, variando o angulo theta desta reta em passos
discretos, de modo a calcular todos os parametros das retas que cruzam este ponto.
A cada reta que passar pelo ponto incrementa-se uma matriz acumuladora cujos
indices sdo os parametros da reta, repetindo-se esse procedimento para os demais
pontos. Ao final do procedimento a posicdo da matriz que apresentar a maior
contagem sera aquela cujos indices representam os parametros da reta que passa
pela maior quantidade de pontos da imagem. Sucessivamente verifica-se a segunda
posicdo da matriz com maior contagem, a terceira posicdo da matriz e assim por
diante até o numero desejado de retas a serem consideradas no processo de
identificacdo. A Figura 2.8 apresenta a interpretacdo geomeétrica deste procedimento.

29

X

Figura 2.8 — Interpretacdo geométrica da Transformada de Hough.
Retas que passam por cada ponto, a esquerda, e a reta que torna todos
0s pontos colineares, a direita. A reta comum aos pontos sera aquela
cujo indice da matriz acumuladora apresentar o maior valor.

A implementacéo da transformada de Hough ndo possui a funcao de imprimir
as retas identificadas na imagem. Com o objetivo de avaliar os resultados de forma
grafica na imagem foi necessario desenvolver um trecho de cédigo adicional com a
funcao de eleger os candidatos a reta a partir da matriz acumuladora M(p,0), escrever
as equacdes em funcbes dos parametros, aplicar pontos as funcbes e com o
resultado na forma de coordenadas x e y da imagem, alterar a cor do pixel
correspondente para a cor vermelha. Antes deste processo a imagem “binarizada” foi
convertida para o espaco de cores RGB a fim de permitir a sobreposicédo das retas
de forma colorida.

Os resultados apresentados na Figura 2.9 demonstram a capacidade da
transformada em identificar retas na imagem. E possivel concluir que para a primeira
imagem de avaliacdo o fato da caracteristica da forma da viga neste cenario ser
equivalente a duas retas inclinadas tornou a eficiéncia do algoritmo alta do ponto de
vista de deteccao da sua forma, conforme apresentado na Figura 2.9 (a). Porém, a
medida que o0 movimento do trem se aproxima de uma regido da via cuja viga
encontra o limite do seu raio de curvatura, como representado na segunda imagem
de avaliacdo, a dificuldade de aproximar sua forma por uma reta aumenta
drasticamente ao ponto de n&o ser possivel identifica-la por meio da transformacéao
implementada, conforme observado pela a auséncia de retas sob a borda da viga na
Figura 2.9 (b).

30

JRL=IE|

Y
-t ‘
bl R

— il

(b)
Figura 2.9 — Retas identificadas apds aplicacdo da Transformada de Hough
(a) na primeira e (b) na segunda imagem de avaliacéo.

31

A primeira tentativa para se contornar este problema foi criar uma variagao da
implementacdo da transformada de Hough que somente fosse aplicada sobre a
imagem a partir do momento em que a transformada padrdo, baseada em retas, ndo
retornasse parametros de retas para a regido da viga na imagem, sob a hipétese que
neste cendrio a representacdo da viga na imagem deixou de ser reta e passou a ser
curva. Para a selecdo da nova forma geométrica a ser incorporada na transformada
de Hough foram tomados, a partir de imagens binarizadas da viga em curva, diversos
valores de coordenadas x e y dos pontos sob suas bordas, repetindo-se este
procedimento para outras imagens onde houvesse a variagdo do seu raio de
curvatura. Toda esta massa de dados foi entdo submetida a procedimentos de
ajustes de curvas e o0s ajustes obtidos foram entdo comparados. Apos as
comparacdes foi concluido que o melhor lugar geométrico para descrever 0s pontos
da borda da curva seria uma parabola. Por definicdo a transformada de Hough opera
em um espaco onde uma parabola necessariamente deve ser representada em
funcdo de seus parametros polares e, portanto, 0S passos a seguir apresentam a
deducdo para obtencdo desta relacdo e a sua incorporacdo ao algoritmo da
transformada.

A parabola, Figura 2.10, é uma curva plana, lugar geométrico dos pontos de
um plano que séo equidistantes de um ponto fixo F e de uma reta fixa k. No plano
cartesiano, € definida como a curva plana formada pelos pontos P(x, y), tais que:

p=PP’=PF,
onde p representa a distancia entre os pontos P e F ou a distancia entre o ponto P e
a reta k (diretriz).

Figura 2.10 — Representacao geométrica da parabola e seus parametros.

32

Outro parametro, 2d, representa a distancia do foco F a reta diretriz k. Esta
forma conica também pode ser definida como uma funcdo polinomial do segundo
grau do tipoy =g.x2 + hx +ioux=g.y2 + hy + i, com g # 0. Sempre que 0 parametro
g > 0, a parédbola ter4 concavidade voltada para cima ou para direita, e quando g <0
a parabola tera concavidade voltada para baixo ou para esquerda. No caso de uma
equacdao reduzida da parabola de eixo horizontal e vértice na origem, consideremos
os pontos: F(d, 0) - foco da parabola, e P(x, y) - um ponto qualquer da parabola.

Usando a férmula da distancia entre pontos no plano cartesiano, obtemos:
[(x—d)?+(y— 01" =[(x+d)*+ (y-y) 1™

Desenvolvendo e simplificando a expressdo acima para parabolas de eixo
horizontal e vértice em um ponto qualquer, do mesmo modo que se comporta a
borda da viga, se o vértice da pardbola ndo estiver na origem e, sim num ponto (Xp,

Yo), @ equacao pode ser reescrita na forma:
(Y—Yo)® =4d (x—Xo).

Agora, observando a Figura 2.22 e efetuando projecdes no eixo de referéncia x

€ possivel estabelecer as seguintes relacdes:

A
P 1-cosp

X = pcosB Xx=psens

7
Figura 2.11 — Representagdo geométrica de uma parabola em fungéo dos

parametros polares p, f e .

33

onde d representa a distancia do foco ao vértice, p representa a distancia do foco a
cada ponto da parabola, equivalente ao p da Figura 2.10, f representa o angulo de p
em relacéo ao eixo horizontal, e x e y séo as coordenadas de um ponto qualquer da
parabola.
Entretanto para a descricdo completa, € necessario considerar as inclinacdes

dos demais eixos e suas projecoes:

X'=X; + pcosBcosw— psin fsinw

y'=Y; +pcospsino+ psin fcosw

onde x’ e y’ sdo 0s pontos dos pixels da parabola em relacdo ao eixo da imagem e X;
e y; 0S pontos de localizacdo do vértice da parabola.

De posse das expressdes de x’, y' e p, 0 algoritmo para implementagdo da
transformada de Hough foi adaptado para identificagdo de uma parabola, com a sua

implementagéo final transcrita na Figura 2.12.

parabola hough ()
Guardar todos os pixels num array de uma dimensdo
Limpar acumulador M(x0,y0,d,)
Para pixel I(x,y), se este pixel I(x,y) estiver aceso na imagem
Para d>minimo até d<méximo
Para B=0 até B<2mo
o = 2d 1- cosp
Para =0 até w<2n
X = x —p cosP cosw + p sinP sinw f
y =y —p cosfB sinw -p sinf cosw f
M(x0, y0,d, w)=M(x0, vy0,d,)+l
Faca para os angulos de B=0 a 2no
Faca para os angulos de =0 a 2m
Faca para todos os d’s de minimo a méximo
Faca para todos os pixels da imagem

Figura 2.12 — Algoritmo para implementacéo da Transformada de Hough, adaptado para identificagéo
de uma parabola.

O funcionamento do algoritmo € idéntico aquele implementado para reta,
porém a diferenca aqui é que a matriz acumuladora possui um indice maior devido a
quantidade de parametros da pardbola, isto €, o tamanho necessario de memoria
para armazenar os parametros calculados aumentou oito vezes em relacdo ao que
era necessario anteriormente.

Os resultados da Figura 2.24 indicam que, para a imagem contendo a regiao
curva, foi possivel aproximar as bordas da viga por duas parabolas. A parabola a
esquerda nao apresentou um ajuste muito adequado a borda da viga; por outro lado,

a parabola a direita foi capaz de acompanhar com razoavel aproximagao o contorno.
34

Tt

Ty

ey

Figura 2.13 — Pardbolas identificadas na segunda imagem de avaliagdo apds aplicacdo
da Transformada de Hough modificada. Em detalhe a esquerda a ROI da
imagem original.

Em termos do tempo de processamento, esta implementacao foi cerca de dez
vezes mais lenta do que em relacéo a transformada utilizando a reta como forma de
identificagdo, mesmo levando-se em conta a utilizagdo da ROl para minimizar o
namero de célculos com pontos da imagem sem representacdo para este problema.
O tempo total despendido para estimar as parabolas neste cenério de distribuicdo de
pontos na imagem foi cerca de 110 ms, aproximadamente 3 vezes mais que 0
intervalo de tempo entre quadros do video de movimentagédo do trem, reproduzido a
30 fps ou 33 ms de intervalo entre quadros de imagens. Estes fatos motivaram a
busca por outra forma alternativa para identificar a viga na imagem.

Outra linha de abordagem para a solucdo deste problema seria interpretar os
pontos de borda da imagem como medidas diretas da forma que se deseja estimar,
levando o problema para o campo da estimacdo. Estimar parametros significa, como
0 préprio nome diz, estimar coisas que ndo variam, sdo constantes ao longo do
processo de estimacdo. Entdo, para comecar a estimar algo, necessita-se de um
conjunto de medidas, no contexto do problema pontos, que esteja relacionada a esse
algo. O proximo passo € modelar como essas medidas se relacionam aos
parametros a serem estimados.

Um dos estimadores de parametros utilizado pela comunidade cientifica é o
algoritmo de minimos quadrados (CHAPRA, 2008). Este procedimento, tdo antigo

guanto Gauss, que primeiro o formulou para processar observacgdes astrondmicas de

35

corpos celestes, formalmente, trata de minimizar uma funcéo custo do quadrado dos
residuos na forma:
L=(y—Hx)'(y—Hx)

onde y representa o vetor contendo m medidas, X representa o vetor de n parametros
a serem estimados, e H representa uma matriz m x n que relaciona as medidas aos
parametros.

Seja, por exemplo, 0 caso de ajustar uma reta aos dados através do método
de minimos quadrados, conforme ilustrado na Figura 2.14, como a situacdo onde 0s
pontas da borda na viga, primeira figura de avaliacdo, sdo modeladas por duas retas

inclinadas.

Figura 2.14 — Ajuste linear. Adaptado de Kuga (2005).

A equacdo genérica da reta é dada por y; = at; + b. Logo, a equagcdo que
relaciona as medidas aos parametros é formulada como:
y = HXx

ou, de modo explicito:

Y ty 1
onde x = (a, b) é o vetor que contém os pardmetros a serem estimados.

A principio, a forma mais direta de processar essas medidas € o chamado
processamento em lotes ou batch. A expressao geral desta implementacdo pode ser
escrita na forma:

R=(HH)'H'y

onde £ representa o vetor que contém os parametros estimados.

36

7z

No processamento em lote é necessario que todas as medidas estejam
disponiveis para que os parametros sejam estimados, o que apesar de possivel no
contexto deste trabalho ndo € interessante do ponto de vista computacional, uma vez
que o algoritmo prendera o fluxo de execucao principal no ponto da rotina que
executa este célculo até que todas as medidas sejam processadas, podendo deixar
de lado outras tarefas que, no ambito global do software, exijam seu cumprimento
dentro deste intervalo de tempo.

Em busca desta melhoria foi implementado o algoritmo de minimos quadrados
recursivo, que nada mais € do que uma forma algebricamente equivalente de
processar as medidas. Outra vantagem desse algoritmo, aplicado a estimacdo de
parametros, reside no fato de evitar inversées de matrizes. Diz-se recursivo por ter
caracteristicas de recursividade, portanto, bastante adequado para programacao em
computador. Outra vantagem € a de necessitar de matrizes de menor dimenséo,
traduzindo-se em menos memoaria de armazenamento. Basicamente, o algoritmo usa
a forma de Kalman para o processamento (GREWAL; ANDREWS, 2015).

Inicialmente, particionam-se as matrizes envolvidas:

Y. | |t 1 H,
Y. | |t l)|a B H, |la
0 I M_ : M
Y] [tm 1 H,

onde os H; sdo os vetores linha que compdem a matriz H. Em seguida, calcula-se:
[H H;]{ }

Entdo, o algoritmo torna-se recursivo parai =3, ..., m:

K, =P H (HPLH, +1)

PI=(|I KH,)P_,

X =)A(u aTt Ki (y Hi)A(i—l)

37

onde | representa a matriz identidade. O parametro K € conhecido como ganho de
Kalman e P € a matriz de covariancia. O novo fluxograma do algoritmo incorporando
a aplicacdo do método de minimos quadrados recursivos esta apresentado na Figura
2.15.

()\
Abertura do arquivo de Aplicacéo do detector de
imagem para leitura bordas Canny
. J
\ 4 \ 4
()
Criacdo de ponteiro para Minimos quadrados para
ROI determina¢éo das bordas
. J/
| |
(N\
Converséo da imagem Identificag&o da viga e
para escala de cinza verifica¢do de obstrugéo
. J

Figura 2.15 — Fluxograma atualizado para aplicacdo do algoritmo de minimos
quadrados recursivo.

O algoritmo precisou ser reescrito para incorporar as expressdes dos minimos
guadrados recursivos. A estratégia para detectar retas de Hough foi substituida por
esta estratégia que também passou a ser aplicada nas situacfes de deteccdo da viga
em curva. Incialmente sdo criados cinco estimadores cada qual responsavel por uma
subdivisdo da imagem, conforme apresentado na Figura 2.19. Cada estimador
processa 20 pixels verticais numa faixa de 10 pixels a direita e a esquerda do ponto
de inicio da busca, crescendo no sentido de baixo para cima da imagem, eixo y
negativo. Ao término da busca os parametros sdo avaliados para verificar a
caracteristica de inclinacao da reta e também a matriz de covariancia resultante com
o0 intuito de avaliar a qualidade do ajuste. Se as condi¢des forem satisfeitas, valores
baixos na matriz e coeficientes de retas com inclinacdes acima de 30°, a janela de
medidas equivalente a 20 pixels escorrega para cima na vertical tendo como centro
da base da nova janela o ultimo ponto da reta estimada no processo anterior. O
objetivo € que ao final, somente as janelas que possuirem pontos que possam ser
estimados pela pequena reta de aproximacgao alcancardo o limite vertical da ROI.
Neste instante, os segmentos de retas unidos pelos seus pontos extremos

representardo o contorno da forma da viga.

38

Figura 2.16 — Resultado da aplicagédo do algoritmo para identificacdo da curva por minimos
quadrados recursivo na segunda imagem de avaliagdo: curvas em amarelo em

(b) e (d).

Na Figura 2.16 (b) uma avaliacdo da resposta do algoritmo, pixels em amarelo,
mostra algumas limitacbes da sua implementacdo. Pelo fato da imagem ser
submetida a deteccao de bordas, muitos dos pontos da viga que deveriam existir na
sua base nao foram representados, devido ao efeito de sombras que atenuaram as
variacbes de intensidade nesta regido, deste modo, o algoritmo nao foi capaz de
receber os 20 primeiros pontos que forneceriam a orientagcdo da reta que deveria
acompanhar a curva a direita da imagem. Outro fator importante é que por se tratar
de um estimador, caso existam muitos pontos na periferia do tracado real, existe uma

tendéncia natural de o processo tentar encontrar um ajuste meédio entre as curvas,
39

criando um efeito de descolamento em relagdo a curva da viga, como se observa nha
extremidade superior da curva a esquerda da imagem.

Para a obtencdo da resposta da Figura 2.16 (d), forcou-se o algoritmo a
comecar com um offset de 35 pixels na vertical permitindo desta forma que a curva a
direita da imagem fosse identificada. E possivel observar durante o
acompanhamento desta curva sobre a borda da viga que existem alguns picos, estes
picos sao causados pelos pontos periféricos que, uma vez observados pela janela de
varredura do algoritmo, sdo considerados nas estimativas e acabam por assim

causar o mesmo efeito ocorrido na Figura 2.16 (b).

Figura 2.17 — Em (a) a primeira imagem de avaliacédo, detalhe da ROI; em (b) o
resultado da aplicacdo do algoritmo para identificacdo da curva por
minimos quadrados recursivo na primeira imagem de avaliagao.

Na Figura 2.17 (Figura 2.17b), as influéncias de ruidos demonstram
claramente a dificuldade do algoritmo em acompanhar a trajetdria esperada,

chegando ao ponto das curvas em amarelo quase se cruzarem na base da imagem.
40

Apesar dos resultados ndo serem satisfatérios, em termos de tempo de
processamento esta solu¢cdo se mostrou muito eficiente. Nos trés casos estudados o
tempo médio para finalizar o processo néo ultrapassou 5 ms.

Apés os testes com as transformadas de Hough e o método dos minimos
quadrados, optamos por avaliar a resposta das técnicas do tipo match template
(BRADSKI; KAEHLER, 2008) para a execucdo da tarefa de identificar a viga na
imagem.

Match template € uma técnica de processamento digital de imagens utilizada
para encontrar em pequenas partes de uma imagem uma correspondéncia para uma
imagem modelo. Para modelos sem caracteristicas fortes, ou para quando a maior
parte da imagem do modelo constitui a imagem correspondente, uma abordagem
baseada em match template pode ser eficaz. O método basico de match template
consiste em utilizar uma mascara de convolugdo (o modelo), adaptado para uma
caracteristica especifica de pesquisa de imagem. Esta técnica pode ser facilmente
empregada com as imagens em escala de cinza ou imagens binarizadas, contendo
bordas. O resultado do processo de convolucdo serd maior nas regides onde a
estrutura de imagem corresponde a estrutura da mascara, ou seja, onde os valores
da imagem serdo multiplicados pelos valores da mascara e por serem semelhantes,
resultardo em grandes valores.

Este método é normalmente implementado primeiramente escolhendo uma
parte da imagem para ser pesquisada com o modelo. Seja a imagem pesquisada I(x,
y), onde (X, y) representam as coordenadas de cada pixel da imagem. Vamos chamar
o modelo de T(x, Yyi), onde (X, y;) representam as coordenadas de cada pixel no
modelo. Em seguida, simplesmente movimentamos o centro (ou a origem) do modelo
de T(x, Yy;) sobre cada ponto (x, y) da imagem pesquisada e calculamos a soma dos
produtos entre os coeficientes de I(x, y) e T(x, yi) ao longo de toda a area do modelo.
Como todas as posicdes possiveis do modelo em relacdo a imagem pesquisada sdo
consideradas, a posicdo com a pontuacdo mais alta sera a melhor posi¢do. De
acordo com Desai; Pandya e Potdar (2013) existem variantes para as técnicas do

tipo match template, a saber:

1. Método da diferenca do quadrado, calculado pela equacao:

qufdiff (X’ y) = Z[T (XI’ yl)_ I (X+ Xl’ y + yl)]2

41

2. Método da correlagéo, calculado pela equacao:

R (9) = STy) 1,y)

3. Método do coeficiente de correlacao, calculado pela equacéo:

2

, , 1
Raoar (%, ¥) = z (w h)ZT(x y) | I(XH’erY)_(W-h)XZ‘"I(Xer",y+y") '

4. Métodos normalizados, calculado pelas equacdes:

Z(x,y) =JZ[T(X', y) 1(x+x,y+y)f

Xy

Ry airt (X
qu,diﬁfnormed (X’ y) = (X %(X; y)
Rcoor_normed (X’ y) - RCCOV (X, %(Xa y)

R X,
Rccoeff _normed (X’ y) = ()%(X, Y)

onde R representa o coeficiente de correlagéo, w representa a largura e h representa
a altura da imagem.

Por questdes de simplicidade para implementacdo e de desempenho, este
método possui 98% de precisdo quando comparado aos demais até aqui
apresentados (DESAI; PANDYA e POTDAR, 2013), a escolha para ser incorporado
ao algoritmo foi o método da diferenca do quadrado, cuja implementacdo em

linguagem C esté transcrita na Figura 2.18.

42

p0 = (double*)sum->data.ptr;

pl = p0 + templ->cols*cn;
p2 = (double*) (sum->data.ptr + templ->rows*sum->step);
p3 = p2 + templ->cols*cn;
sum_step = sum ? sum->step / sizeof (double) : 0;
sgsum_step = sgsum ? sgsum->step / sizeof (double) : 0;
for(i = 0; 1 < result->rows; i++)
{
float* rrow = (float*) (result->data.ptr + i*result->step);
idx = i * sum_step;
sgsum_step;

idx2 = 1
for(j =
{

*
0; j < result->cols; J++, idx += cn, 1dx2 += cn)

double num = rrow[]j], t;
double wnd meanZ2 = 0, wnd sum2 = 0;
if(num_type ==)
{
for(k = 0; k < cn; k++)
{
t = p0[idx+k] - pllidx+k] - p2[idx+k] + p3[idx+k];
wnd mean2 += CV_SQR(t);
num -= t*templ mean.vall[k];
}

wnd mean2 *= inv_area;
if(is _normed || num type ==)

for(k = 0; k < cn; k++)

{
t = g0[idx2+k] - gl[idx2+k] - g2[idx2+k] + g3[idx2+k];
wnd sum2 += t;

}

if(num type ==)
num = wnd sum2 - 2*num + templ sum2;

if(is_normed)

t = sqgrt (MAX(wnd sum2 - wnd mean2,0)) *templ norm;
if(t > eps)
{

num /= t;

if(fabs(num) > 1.)

num num > 0 2 1 : -1;
}
else
num = method != diff || num < DBL EPSILON ? 0 : 1;
}
rrow[j] = (float)num;

}

Figura 2.18 — Implementa¢é@o em linguagem C do algoritmo método da diferenca do quadrado.

Neste esquema de identificacdo é necessario definir uma regido de modelo ou
template da imagem que seja de conhecimento a priori, ou seja, € necessario a

principio que este template seja conhecido e esteja armazenado em memoaria para

43

ser enderecado durante a inicializagdo do processo de busca. Para a sequéncia de
testes iniciais dois templates, conforme a Figura 2.19, foram extraidos das imagens
do video. Duas janelas adicionais denominadas ROl e Espectro foram criadas
adicionalmente com o intuito de avaliar os passos internos do processo. Nesta

captura de imagem, com a viga sem curvas, € possivel verificar que a sua

localizacdo dentro da ROI esté situada na regido central.

(@) (b)

Figura 2.19 — Templates para utilizacdo no algoritmo de convolucdo (match template),
aumentados.
Em (a) o detalhe do modelo da viga em linha reta com a resolugdo do
guadro selecionado equivalente a 62 x 79 pixels. Em (b) o detalhe do
modelo da viga em curva com a resolucdo do quadro selecionado
equivalente a 106 x 85 pixels. Ambos templates estdo representados no
espaco de cores RGB.

A imagem formada dentro da janela Espectro permite observar a distribuicdo pixel a
pixel do resultado pds processo de convolugdo. Os pontos mais brancos indicam a
area que possui a maior probabilidade de estar semelhante ao template. Para esse
teste o template (a) da Figura 2.19 foi utilizado. O pixel central desta distribuicao,
com o maior valor calculado, fornecera as coordenadas da janela alvo impressas na
janela ROI e na imagem em teste. Deve-se ressaltar que os valores obtidos pela
expressdo da correlagdo passam por um processo de normalizacdo, podendo
assumir somente valores compreendidos entre 0 e 255, dai reside o fato pela qual a
janela Espectro apresenta uma coloracao de seus pixels numa escala de cinza.

O fluxograma do codigo atualizado incorporando o método de match template
esta apresentado na Figura 2.20 e na Figura 2.21 observamos o resultado da
aplicacéo da técnica.

44

Abertura do arquivo de
imagem para leitura

\ 4

4 N\
Criacao de ponteiro para
ROI
. J
A 4
()
Converséao da imagem
para escala de cinza
. J
A 4
(N\

Carregamento do
template na memoaria

\ 4

Define a janela de
correlacdo conforme C——
template

v

Aplica correlagéo entre
janela template e ROI

Fim da
imagem?

I sim

Cria janela de alvo
vermelha com seu centro
sobre o centro da posi¢ao

de maior correlagéo

Figura 2.20 — O fluxograma do cédigo atualizado incorporando o
método de match template.

45

EN Espectro

—

= A

. | -]) =
¥ w0 . g K Ca o ;
“« N 5 -
:’_‘:‘ .L -~'.‘ ...";_ l ‘!!". \ M " s'\— s -
A s Wi —

Figura 2.21 — Resultado da aplicacdo da técnica de match template em uma

imagem da via extraida de video com resolucdo 800 x 600 pixels.

Para a mesma janela foi aplicado o template (b) da Figura 2.19, apresentando
uma pequena mudanca na distribuicdo dos pixels brancos, que representam alta
correlacdo, mas sem grandes mudancas no resultado final, a posicdo de maxima
correlacdo da imagem de entrada. O proximo passo foi avaliar o desempenho do
algoritmo em imagens contendo diversos cenarios, representados da Figura 2.22 até
a Figura 2.29.

Todos os testes executados foram repetidos com o template apresentado na
Figura 2.19 (b). Como nao houve altera¢des significativas durante sua utilizagdo o
template da Figura 2.19 (a) foi mantido para o restante dos testes. Com a melhoria
alcancada na deteccdo da viga foi implementada a ultima etapa do algoritmo que

consiste na etapa para determinacdo se a viga esta alinhada ou néo.

46

T

o i
sy

g

\L'\\G\\L“.‘,‘J.\‘.l

W\\“l‘.‘t‘;ﬂ“ﬁtt(tﬂ

S T LR LA

Figura 2.22 — Resposta do algoritmo em curva acentuada a esquerda.

No detalhe da ROI é possivel verificar a grande presenca de
sombra na regido da janela. A janela de convolugdo “Espectro”
ndo apresenta variagcdes acentuadas por conta deste efeito.

W

Figura 2.23 — Cenario com sombra de trem circulando na outra via.

Ponto luminoso verde no centro do alvo da se refere a luz de guia

de alinhamento do AMV. Aumento da area de valor maximo na
janela de convolucao.

47

-lolx

Figura 2.24 — Cenario onde existe transicdo de uma regido clara, para outra
sombreada.
Na janela de convolugdo observa-se o surgimento de regides
onde o calculo retornou valores maiores (branco) mas que
permanecem na regido da viga.

BN RrOI W Espectro i}

Figura 2.25 — Sombra na viga proveniente dos prédios.
Nas areas periféricas da janela de convolucéo a resposta € similar
a Figura 2.23 porém com a dispersao dos valores mais altos na
regido central.

48

=

Figura 2.26 — Curva longa a direita.

Na janela de convolucdo a area correspondente aos maiores
valores calculados da convolucdo concentram-se e alinham-se de
maneira bem definida no sentido vertical.

o

™

oY |
T ! ’;_‘ . | m.,,
-] &

W

23 Yo

Figura 2.27 — Curva longa & esquerda.

A janela de convolugéo similar & Figura 2.26. A particularidade
reside na inclinagdo do “feixe” referente aos maiores valores
calculados da convolucdo acompanhar a inclinagao da viga.

49

[M Espectro

Figura 2.28 — Aproximag&o na regido de plataforma.
Presenca de sombras e outros elementos que se assemelham
com o template. Janela de convolugéo apresenta valores maiores
no canto inferior esquerdo da ROI, a convolugdo na regido da
viga retorna valores praticamente nulos (mancha preta).

[N Espectro

Figura 2.29 — Final de plataforma.

Neste cenério a deteccdo é instavel e a janela de alvo oscila entre

locais da ROI. Captura realizada no instante onde a convolucao
apresentou maiores valores na regido da viga.

50

Para este objetivo duas técnicas foram empregadas: a técnica de
preenchimento de pixels e a técnica de contagem de area. A ideia é que a janela de
alvo esteja sobre a viga e que a sua dimensao vertical esteja proxima daquela
equivalente ao comprimento em pixels da distancia a ser detectada,
aproximadamente 40 metros; a técnica de preenchimento de pixels simplesmente é
disparada no ponto central da janela alvo, a prépria viga, e uma 4&rea
aproximadamente correspondente aos limites da viga seja preenchida. Se esta area
preenchida for inferior a area equivalente a minima necessaria, caracteriza-se o
desalinhamento da viga. Para a determinacdo da area utiliza-se a segunda técnica
mencionada, a técnica de contagem de pixels para o célculo de area.

Também conhecida como flood fill ou seed growing, a técnica de
preenchimento de pixels é muito util e frequentemente utilizada em cenarios onde é
necessario marcar ou isolar uma determinada regido de imagem para aplicar em
seguida um processamento especifico. Um ponto da regido, denominado semente, é
selecionado na imagem e todos 0s outros pontos similares da sua vizinhanca sao
coloridos com a mesma cor do ponto semente. Caso o contorno da regido de
interesse esteja com contraste bem definido, o preenchimento de uma cor no ponto
central praticamente garante o preenchimento de toda regiéo.

O algoritmo flood fill — preenchimento de regido — necessita para sua
inicializacdo trés parametros: o ponto de inicio, uma cor alvo e a cor de substituicdo.
Apds sua inicializacdo o algoritmo varre toda a matriz de cores da imagem
observando quais sé&o as posi¢cbes da imagem que estabelecem um caminho de
conexdo com o ponto de inicio desde que mantenha a mesma cor alvo. Apés a
varredura todas as posicoes localizadas sofrem modificacdo da sua cor original para
a cor definida por meio do parametro nova cor. E possivel estabelecer uma analogia
do funcionamento desta técnica com as ferramentas de preenchimento de cores,
normalmente disponibilizada em softwares de tratamento de imagens e
coloquialmente denominada como “balde de preenchimento”. As Figuras 2.41 e 2.42
apresentam a implementacdo da estrutura de dados e da funcdo flood fill,

respectivamente, utilizada neste trabalho.

51

struct node
{
int x, y;
struct node *next;

}i
int push(struct node **top, int x, int y)

struct node *newNode;

newNode = (struct node *)malloc(sizeof (struct node));

if (newNode == NULL) //If there is no more memory
return 0;

newNode->x = X;

newNode->y = y;

newNode->next = *top;

*top = newNode;
return 1; //If we push the element correctly

int pop(struct node **top, int &x, int &vy)

if (*top == NULL) //If the stack is empty
return 0;

struct node *temporal;

temporal = *top;

x = (*top)->x;
y = (*top)->y;
*top = (*top)->next;

free(temporal) ;
return 1; //If we pop an element

Figura 2.30 — Estrutura de dados e func¢des auxiliares para o algoritmo de flood fill.

void floodFill (int x, int y, int color to replace, int color to fill)

{

if (color to replace == color to fill) return;
struct node *stack = NULL;
if (push (&stack, x, y) == 0) return;

while (pop(&stack, x, y) == 1)
{
pixel(x, y, color to fill);

if(x+1 < 640 && read pixel(x+l, y) == color to replace)
if (push(&stack, x+1, y) == 0) return;

if(x-1 >= 0 && read pixel(x-1, y) == color to replace)
if (push(&stack, x-1, y) == 0) return;

if(y+1l < 480 && read pixel(x, y+l) == color to replace)
if (push(&stack, x, y+1l) == 0) return;

if(y-1 >= 0 && read pixel(x, y-1) == color to replace)
if (push(&stack, x, y-1) == 0) return;

Figura 2.31 — Algoritmo flood fill.

52

A Figura 2.43 apresenta o exemplo de aplicacao da técnica de preenchimento
na primeira imagem de avaliago.

e

-
;-
B
>

=CF
- e
-l
- o
-

=B
-
-
=
-
- W
o
-
-
-

=
E
=
>
I
E

Figura 2.32 — Aplicagdo da técnica de preenchimento de regido na primeira imagem de avaliacao.

A descontinuidade nas cores dos pixels, sobre a superficie da viga, segrega
naturalmente a &rea.

Observando os resultados da aplicacdo da técnica de preenchimento foi
definido o critério para deteccéo de alinhamento baseado no fato de que a auséncia
de viga cria naturalmente na imagem uma descontinuidade sobre a superficie da
viga, em funcdo desta caracteristica é analisada dentro da janela alvo a area (util
limitada pela superficie cujo preenchimento foi completado. Um exemplo de

descontinuidade na viga e o efeito do preenchimento sob a regido de sua area é
apresentado na Figura 2.44.

53

Figura 2.33 — Aplicacédo da técnica de preenchimento de regido numa regido de mudanca de via no
patio Oratério — Linha 15.

A

Na regido central da imagem a viga esta alinhada. A esquerda e a direita da viga

central ndo existe alinhamento estabelecido, condi¢éo de interrupcao da viga guia.

Na Figura 2.44 observa-se que o resultado da aplicacdo da técnica de
preenchimento sobre os caminhos ndo alinhados estabeleceu uma estimativa da
area sobre a viga, representada pelas cores vermelho escuro, verde claro e verde
escuro. Nesta condicdo os limites na regido de borda das vigas foram bem
delimitados pela aplicacdo da técnica. Para estimar o célculo de area da regido
preenchida contabilizam-se todos os pixels na cor vermelha dentro da area de alvo.
Com o critério de 70% da area de alvo, o que equivale a 200 pixels (altura estimada
para 40 metros) vezes 20 pixels (largura do alvo), realiza-se o julgamento se existe
ou ndo o alinhamento. As Figuras 2.45 e 2.46 apresentam duas imagens do
resultado final do algoritmo de reconhecimento nas condi¢cdes de operacao durante o
dia e a noite. O fluxograma representando a estrutura do algoritmo final é

apresentado na Figura 2.47.

54

Figura 2.34 — Resultado final do algoritmo — movimentag&o diurna do trem.

X roOI [N Espectro

Figura 2.35 — Resultado final do algoritmo — movimentag&o noturna do trem.

55

Abertura do video para Aplica algoritmo de
leitura de um quadro preenchimento

a

A

\ 4 v

Criacao de ponteiro para
ROI

Aplica critério de
determinacgéo de area

A 4

Converséo da imagem
para escala de cinza

\ 4

Carregamento do
template na memoaria

\ 4

N Finaliza aplicagéo
Define a janela de
correlacdo conforme
template
y,

Aplica correlacéo entre
janela template e ROI

A 4

Cria janela de alvo
vermelha com seu centro
sobre o centro da posi¢ao

de maior correlacdo

Figura 2.36 — O fluxograma da implementacéo final do algoritmo de deteccéo de
desalinhamento de viga.

56

3. TRABALHANDO COM O OPENVC NO SDDV

3.1. Instalacéo

Para realizar a configuracdo do ambiente conforme a organizacao proposta na
Figura 1.1, foi iniciada a sequéncia de instalacéo das ferramentas a partir do software
Visual Studio, seguida pela instalacdo da biblioteca OpenCV e finalizada com a
instalacdo da ferramenta CMake. As instalacoes de todos os softwares foram
realizadas de forma completa, ou seja, foram instalados todos os recursos de cada
ferramenta, conforme as opg¢Bes disponiveis em cada aplicativo assistente de
instalacdo acordo com o ilustrado nas Figuras Figura 3.1, Figura 3.2 e Figura 3.3.
Apoés a conclusdo do processo de instalacdo das ferramentas, o proximo passo foi

extrair da Internet, por meio da secdo downloads da pagina www.opencv.org, 0O

arquivo de configuracdo do CMake escrito para compilacdo da biblioteca OpenCV no
ambiente Visual Studio. Uma vez aberto este arquivo dentro da ferramenta CMake e
iniciada e concluida a compilacdo da biblioteca nativa, segundo as configuracdes
determinadas em seu script, foi criada uma pasta denominda “VS2008” dentro da
pasta de instalacdo gerada originalmente pelo assistente de instalacédo do OpenCV.
Dentro da pasta, “VS2008”, foram criados automaticamente pelo CMake um projeto
denominado “OpenCV” e todos os cédigos fonte da biblioteca escritos em linguagem
C. Deste ponto da configuracdo foi entdo iniciada a execucdo do software Visual
Studio e solicitado a abertura do projeto “OpenCV”. Uma vez aberto este projeto, a
etapa seguinte foi iniciar o processo de compilacdo dentro do ambiente, por meio do
comando “Compile” disponibilizado no menu superior principal do Visual Studio, de
maneira que ao final deste processo de compilacdo fossem criadas todas as dlI's —
dinamic link libraries — do OpenCV para utilizacdo em linguagem C dentro do
ambiente Visual Studio, finalizando portanto toda a configuracdo do ambiente. Com
as dII's geradas é necessario criar um novo projeto dentro do ambiente Visual Studio
e referenciar os arquivos dlI's que contenham as funcdes de visdo computacional do

OpenCV mais adequadas a proposta dos algoritmos desenvolvidos.

57

http://www.opencv.org/

rosoft ¥isual Studio 2008 Setup - Options Page

" Mir,rpsoft’ i
v & Visual Studio 2008 Maintenance Mode

select features to install: Feature description:
=- @ =2 Microsoft Yisual Studio 2008 Professional E -
LW L Tool Microsoft Visual Studio 2008 Professional Edition
¥= anquage ook Microsoft Visual Studio 2008 Professional Edition installs a
[X Wisual Ctt rich set of tools that help you develop small to enterprise
= Visual C++ level solutions.
¥ Visual Basic
-0 ¥ Yisualweb Developer -

[¥]=2 D otfuscator Community Edition

[¥]=2 Tools for Redistributing Applications
W= Unit Testing Tools

-.[] X Microzoft SOL Server 2005 Express Edition

Feature install path:
c:"Program Files [86]sMicrosoft Wisual Studio 9.0% Brawsze...

Disk space requirements:

Wolurie | Dizsk Size | A ailable | Redquired | Remaiing |
[4449 GB 2528 GB 1.4GB 251.4GB

| I B

Restore Diefaultz | <Elevi0us| Wpdate | Cancel I

Figura 3.1 — Tela principal das opgdes para instalagéo do Microsoft Visual Studio®.

¢ Instalacdo do OpenC¥ 2.0.0 =10 x|

Ezcolher Componentes
Escolha quais funcdes do Opendcy 2.0.0 vocg quer instalar,

Marque os componentes que yacé quer instalar e desmargue os componentes que yocé nao
quer inskalar. Cligue emn Instalar para iniciar a instalagdo.

Selecione o tipo de instalagdo: |F|_||| j
0, selecione os main
componentes opcionais gue orc

wocé deseja instalar:

Espaco requerido; 116, 9ME6

Sistema de Instalacan Mullsaft w2, 45

< Yaolkar Instalar

Figura 3.2 — Tela principal das opc¢des para instalacdo do OpenCV.

s Instalacdo do CMake 2.8 - 0] x|

Escolher o Local da Instalagao
Escolha a pasta na qual inskalar o CMake 2.8,

2 Instaladar instalard o CMake 2,8 na seguinte pasta. Para instalar em uma pasta diferente,
cligue em Procurar e selecione outra pasta. Cliqgue em Prdximo para continuar,

Pasta Destino

”_:\Program Files NCMake 2,5 Procurar. .. |

Espaco requerido: 25.6MB
Espaco disponivel; 252.5G6

Sistema de Instalacan Mullsaft w2, 45

< Yoltar I Eraximo = I Cancelar

Figura 3.3 — Tela principal das opcdes para instalacdo do software CMake.

59

3.2. Descricao das fungdes

A partir da observacdo da Figura 3.4, que representa o algoritmo final

desenvolvido para o sistema SDDV, foram relacionadas todas as funcdes e

estruturas da biblioteca OpenCV utilizadas no trabalho, transcritas na Tabela 3.1.

Abertura do video para
leitura de um quadro

\ 4

Criacdo de ponteiro para
ROI

A 4

Conversao da imagem
para escala de cinza

\ 4

Carregamento do
template na memoaria

\ 4

-
Define a janela de
correlacdo conforme
template
\

Aplica correlacdo entre
janela template e ROI

A 4

Cria janela de alvo
vermelha com seu centro
sobre o centro da posi¢ao

de maior correlacdo

Figura 3.4 — O fluxograma da implementacéao final do algoritmo de detec¢éo de

desalinhamento de viga.

A

Aplica algoritmo de
preenchimento

Y

Aplica critério de
determinacéo de area

J

Finaliza aplicagdo

60

Tabela 3.1 — Fung8es do OpenCV utilizadas no SDDV.

Funcéo Tipo Biblioteca
CvCapture Estrutura de dados Highgui
Iplimage Estrutura de dados *Cxtypes
cvMat Estrutura de dados *Cxcore
Imread Funcéo Highgui
cvCreateFileCapture Funcéo Highgui
cvQueryFrame Funcéo Highgui
cvSetCaptureProperty Funcéo Highgui
cvCreatelmage Funcgéo *Cxcore
cvSetimageROI Funcéo *Cxcore
cvCvtColor Funcéo *Cv
cvCanny Funcéo *Cv
rectangle Funcgéo *Cxcore
namedWindow Funcéo Highgui
cvReleaseCapture Funcgéo Highgui
cvDestroyWindow Funcgéo Highgui

*Integram a biblioteca Core, apresentada na tabela 1.1.

61

As estruturas CvCapture, Iplimage e cvMat foram utilizadas para manipular as
informacdes em formato JPEG contidas nas cenas de video em formato MPEG.
A estrutura Iplimage é definida como padréo de imagem da Intel Processing

Library (IPL). A definicdo exata da estrutura Iplimage é mostrado na Figura 3.5.

typedef struct IplImage {
int nSize;
int ID;
int nChannels;
int alphaChannel;
int depth;
char colorModel([4];
char channelSeq[4];
int dataOrder;
int origin;
int align;
int width;
int height;
struct IplROI* roi;
struct IplImage* maskROI;
void* imagelId;
struct IplTileInfo* tilelInfo;
int imageSize;
char* imageData;
int widthStep;
int BorderMode[4];
int BorderConst[4];
char* imageDataOrigin;

} IplImage;

Figura 3.5 — Estrutura Iplimage

62

Apés os membros width e height, depth e channels sdo as mais importantes
membros desta estrutura. A variavel depth esta associada a um de um conjunto de
valores definidos no arquivo ipl.h, que definem o formato de representacdo numeérica
dos valores armazenados na matriz de pontos da imagem, contidos nesta estrutura.
Os préximos dois membros importantes sédo origin e dataOrder. A variavel origem
pode assumir os valores IPL_ORIGIN_TL ou IPL_ORIGIN_BL, correspondente a
localizacdo da origem das coordenadas da imagem, que pode estar localizado em
qualquer dos cantos, superior esquerdo ou inferior esquerdo, da imagem,
respectivamente. A falta de um padréo na origem das coordenadas (superior versus
inferior) € uma fonte importante de erro nas rotinas de visdo computacional.
Dependendo de onde uma imagem foi gerada, sistema operacional, codec, formato
de armazenamento, camera, etc pode afetar a localizacdo da origem das
coordenadas e consequentemente gerar erros de execucdo dos algoritmos e
estouros de ponteiros no acesso a memoria.

O membro dataOrder pode assumir os valores IPL_DATA ORDER_PIXEL ou
IPL_DATA ORDER_PLANE. Este valor indica se os dados devem ser empacotados
com VAarios canais um ap0s o outro para cada pixel (intercalados, o caso mais usual),
ou todos os canais agrupados em planos de imagem com os planos dispostos um
apos o outro.

O parametro widthStep contém o numero de bytes entre pontos na mesma
coluna e linhas sucessivas. A largura variavel ndo é suficiente para calcular a
distancia, porque cada linha pode ser alinhada com um determinado numero de
bytes para conseguir um processamento mais rapido da imagem; consequentemente
pode haver algumas lacunas entre o fim da i-ésima linha e o inicio da (i + 1) linha. O
parametro imageData contém o ponteiro para a primeira linha de dados de imagem.
Se ha vérias planos separados na imagem (como quando dataOrder =
IPL_DATA ORDER_PLANE), entdo eles sdo colocadas consecutivamente como
imagens separados de height vezes nChannels linhas no total, mas normalmente
eles estdo intercalados de modo que o numero de linhas é igual a altura e com cada
linha contendo os canais intercalados em ordem. E ,enfim, existe a importante regiao
de interesse (ROI), que € na verdade um instancia de outra estrutura IPL / IPP, Ipl
ROI. Um IPL ROI contém um xOffset, um yOffset, um height, um width e uma coi,

onde COI significa channel of interest.

63

A estrutura cvMat, outra importante estrutura de dados da biblioteca OpenCV,
ao contrario da Iplimage € uma estrutura mais simples cujo objetivo € armazenar as
informacdes de uma imagem em formato raw para aquelas fungbes que dispensam
em seus parametroas as informacdes relacionadas a cor, canais e tipo de dado. A

Figura 3.6 apresenta os membros que compdem este tipo de dado.

typedef struct CvMat {

int type;

int step;

int* refcount; // for internal use only

union {
uchar* ptr;
short* s;
int* 1i;
float* f1;
double* db;

} data;

union {
int rows;

int height;

union {
int cols;
int width;
}i
} CvMat;

Figura 3.6 — Estrutura CvMat

64

A partir de agora serédo descritos todas as funcdes do OpenCv utilizadas no
trabalho.

Funcao Imread

Carrega uma imagem a partir de um arquivo em disco e retorna um
ponteiro para uma estrutura tipo Mat. Os seguintes padrbes de imagem s&o
suportados:

e Windows bitmaps - *.bmp, *.dib

e JPEG files - *.jpeg, *.jpg, *.jpe

e JPEG 2000 files - *.jp2

e Portable Network Graphics - *.png

e Portable image - *.pbm, *.pgm, *.ppm

e Sun rasters - *.sr, *.ras

o TIFF files - *.tiff, *.tif

Sintaxe:

Mat imread(const stringé& filename, int flags=1l);

Parametros:

filename Nome do arquivo a ser carregado.

flags Especifica o tipo de cor a ser carregado na imagem: se >0
a imagem carregada € forcada a ter 3 canais de cor. Se 0 a imagem a

possuir escala de cinza.

Funcao cvCreateFileCapture

Aloca e inicializa a estrutura CvCapture para leitura de um stream de
dados de video a partir de um arquivo em disco.

Sintaxe:

public static IntPtr cvCreateFileCapture (string filename) ;
Parametros:
filename Nome do arquivo de video.

IntPtr Ponteiro para estrutura CvCapture.

65

Funcao cvQueryFrame

Apanha e retorna um quadro a partir de uma camera ou arquivo. A
funcdo cvQueryFrame apanha um quadro de uma camera ou arquivo de video,

descomprime e a retorna numa estrutura tipo Iplimage.

Sintaxe:

IplImage* cvQueryFrame (CvCapture* capture);Parémetros:
Parametros:

capture Estrutura do arquivo de video.

Funcao cvSetCaptureProperty

Configura as propriedades para captura do video. A funcédo
cvQueryFrame apanha um quadro de uma cémera ou arquivo de video,
descomprime e a retorna numa estrutura tipo Iplimage.

Sintaxe:

double cvGetCaptureProperty(CvCapture* capture, int property
id);

Parémetros:

capture Estrutura do arquivo de video.

property id Identificador da propriedade.

CV CAP PROP POS MSECF Posicao atual do filme em milisegundos
CV CAP PROP POS FRAMES Iindice para a posi¢éo do quadro a ser
capturado.

CV CAP PROP POS AVI RATIO Posigéo relativa do arquivo de video
CV CAP PROP FRAME WIDTH Largura dos quadros no video.

CV CAP PROP FRAME HEIGHT Altura dos quadros no video.

CV CAP PROP FPS Frame rate.

CV CAP PROP FOURCC Cddigo do codec em 4-caracteres.
CV CAP PROP FRAME COUNT Numero de quadros no video.

CV CAP PROP BRIGHTNESS Brilho da imagem (para cameras).

CV CAP PROP CONTRAST Contraste da imagem (para cameras)
CV CAP PROP SATURATION Saturacdo da imagem (para
cameras).

CV CAP PROP HUE Hue da imagem (para cameras).

66

Funcao cvCreatelmage

Cria um cabecalho e aloca memdria para os dados de uma imagem.

Sintaxe:

cvCreateImage (size, depth, channels)->image

Parémetros:
size Estrutura do arquivo de video.
depth Numero de elementos de bits da imagem.

channels Numero de canais por pixel.

Funcao cvSetimageROI

Configura o retangulo de uma regiéo de interesse de uma imagem.

Sintaxe:

void cvSetImageROI (IplImage* image, CvRect rect);

Parametros:
image Ponteiro para o cabecalho da imagem.
rect Tipo de dado que representa o retangulo da ROI.

Funcdo cvCvtColor

Converte uma imagem de um espaco de cores para outro.

Sintaxe:

void cvCvtColor(const CvArr* src, CvArr* dst, int code);

Parémetros:

src A imagem de origem em 8-bit (8u), 16-bit (16u) ou ponto
flutuante de precisao simples(32f).

dst A imagem de destino.

code Constante que representa o tipo de operagédo de conversao
de cores.

67

Funcao cvCanny

Implementa o algoritmo de Canny para deteccéo de bordas.

Sintaxe:

void cvCanny (const CvArr* image, CvArr* edges, double
thresholdl, double threshold2, int aperture size=3);

Parametros:

image Imagem de entrada, em canal simples.

edges Imagem de retorno com bordas em canal simples.

thresholdl Valor de ajuste do primeiro limiar.

threshold2 Valor de ajuste do segundo limiar.

aperture_size Parametro de abertura do operador Sobel.

Funcdo rectangle

Desenha um retadngulo com espessura e preenchimento.

Sintaxe:

void cvRectangle(CvArr* img, CvPoint ptl, CvPoint pt2, CvScalar

color, int thickness=1, int line type=8, int shift=0);

Parametros:

img

ptl

pt2

color
thickness
line_type
shift

Imagem

Um dos vértices do retangulo.

Vértice oposto do retangulo.

Cor da linha em RGB.

Espessura da linha.

Tipo da linha.

Numero de bits fracionais nos pontos de coordenadas.

68

Func&o namedWindow
Cria uma janela que pode ser utilizada para exibir imagens e trackbars.

Sintaxe:
int cvNamedWindow(const char* name, int flags);

Parametros:

name Nome da janela que sera utilizada como identificador.

flags Se configurado em 1, o tamanho da janela é ajustado em

funcao do conteudo exibido.

Funcéo cvReleaseCapture
Desaloca a estrutura CvCapture da memoria.

Sintaxe:
void cvReleaseCapture(CvCapture** capture);

Parémetros:
capture Ponteiro para a estrutura CvCapture.

Funcao DestroyWindow

Destroi uma janela.

Sintaxe:
void cvDestroyWindow(const char* name);

Parémetros:
name Nome da janela que sera destruida.

69

4. CONCLUSAO

Este trabalho prop6s uma nova abordagem para o reconhecimento das
condi¢cBes de desalinhamento de via por meio de um sistema baseado na captura de
imagens com base na arquitetura proposta e apresentada para o SDDV.

O tempo final de processamento do algoritmo desenvolvido, considerando as
condicdes do hardware utilizado, é proximo a 7ms. Este tempo é inferior ao intervalo
de tempo entre dois quadros sucessivos de um video gerado pela camera, 33ms, e
0s tempos de reagdo necessarios para atuacdo do sistema de frenagem do trem,
conforme as considerac¢des apresentadas durante a modelagem do problema. Este é
um ponto positivo, pois fornece uma perspectiva para a margem de implementacao
de um produto final, levando em consideracdo que em uma arquitetura embarcada,
0S recursos computacionais de processamento sdo normalmente mais escassos do
que o disponibilizado em microcomputadores pessoais.

A utilizacao da biblioteca OpenCV para o desenvolvimento do algoritmo base
do SDDV se mostrou muito eficiente. Todas as funcdes e estruturas selecionadas e
utilizadas trabalharam de maneira adequada e ndo ofereceram nenhum tipo de
obstaculo durante o desenvolvimento do algoritmo. A documentacdo de suporte a
sua utilizacdo é muito detalhada e somado ao fato de ser uma biblioteca com cd6digo
fonte aberto, auxilia no rapido aprendizado pois é permitido o acesso irrestrito para
estudo a todas as funcdes disponibilizadas. Outro fator relevante é que o fato desta
biblioteca ser concebida para permitir sua compilagdo sobre diversas plataformas,
imaginando o produto final, a microprocessador embarcado podera receber o codigo
portado desenvolvido no Visual Studio sem nenhum tipo de problema, desde que o
ambiente de desenvolvimento do microprocessador embarcado seja compativel com
as linguagens de programacgéo C ou C++.

No decorrer do desenvolvimento do SDDV, notou-se que o cendrio de
aplicacao deste sistema permite que a solucdo seja personalizada dentro de certos
padrées, como parametros da via, velocidade do trem, posicionamento da camera,
aspectos do aparelho de mudanca de via e padrbes da imagem. Assim, foi possivel
observar que muitas informacdes contidas nas imagens coletada pela camera,
podem ser consideradas fora da regidao de interesse do problema otimizando a

massa de informacgoes a ser processada. Para a proposta de extragao das bordas da

70

imagem original, a funcdo Canny apresentou-se melhor desempenho na deteccéo
em trechos de curva comparada a funcéo Sobel. Os parametros desta fungdo foram
determinados de modo a se obter melhor equilibrio entre a informacéo principal da
imagem e os ruidos ou distor¢des.

Para a identificacdo de formas geométricas conhecidas dentro da imagem
binarizada, resultante da funcdo Canny, tentou-se utilizar a Transformada de Hough
para eleger retas e curvas proximas dos padrbes da viga-guia. No entanto, devido ao
demasiado tempo gasto para a estimativa de parabolas, cerca de trés vezes maior
gue o tempo de intervalo entre os frames do video, essa ferramenta foi descartada.

Outra proposta foi realizar estimativas dos pontos da borda através do método
de minimos quadrados recursivo, implementado na forma de Kalman. Sua grande
vantagem foi, ao utilizar matrizes de menor dimenséo e evitar uso de inversdo de
matrizes, exigir menos memoria para o armazenamento e demandar menor tempo de
processamento. No entanto, foram observadas algumas limitacdes através da analise
das curvas de resposta. Devido ao efeito das sombras na imagem original, em alguns
casos, o0 algoritmo né&o foi capaz de identificar os primeiros pontos que fornecem a
orientacdo da reta inicial. Além disso, caso existam muitos pontos na periferia do
tracado real, como ha uma tendéncia do processo em ajustar um valor médio entre
as curvas, houve um efeito de deslocamento em relacéo a curva real da viga-guia. As
influéncias de ruidos demonstraram, de forma significativa, implicar na dificuldade no
acompanhamento da trajet6ria esperada.

Por fim, a proposta que se mostrou mais eficaz para a identificacdo da viga foi
através da técnica do match template, onde foram pré-definidas duas regiées de
modelo para a imagem: uma para a viga em linha reta e outra para a viga em curva.
Desta forma, a comparacao dos padrdes se deu através da analise do espectro de
probabilidade da posicao da viga. A estimativa da posicéo resultante desta andlise,
gue apresenta 98% de precisdo, se mostrou bem estavel, mesmo havendo alguma
divergéncia nas regifes escuras ou com sombras. Nas verificacbes com as imagens
durante o periodo da noite e com chuva, mas com o mesmo template gerado da
imagem durante o dia, observou-se um comportamento com maior instabilidade de
deteccdo. Durante a noite existem mais pontos intensos de luminosidade, ou

causados pela sinalizacdo de via, ou pela iluminagdo publica, que resultam em

71

resultados que provém alto valor de correlacdo entre o padrdo de imagem
predefinido da viga e a viga real da imagem

A verificacdo da continuidade da viga através do célculo da area preenchida

pela ferramenta flood fill permitiu identificar a descontinuidade da viga. No entanto,
em algumas situagbes, os fatores externos podem incorrer em uma concluséo
equivocada, interpretando regides de sombras como se fosse uma descontinuidade
da viga. Uma proposta para melhorar essa interpretacdo seria conciliar processos
distintos de verificacdo, por diferentes métodos e executa-los em paralelo, para que
sejam avaliados em conjunto. Ap0s 0 processamento e 0 reconhecimento da
condicao de desalinhamento da via, o dispositivo iniciara a interface com o MTC, que
tomara a decisdo quanto a aplicacdo do freio de emergéncia no trem. Essa
comunicacdo pode ser realizada através da rede de comunicacéo disponivel no trem
ou através de sinal exclusivo para esta finalidade. Foi demonstrado que é possivel
identificar os limites das bordas da viga-guia e realizar verificagdes computacionais
da continuidade da via.

Decorrente dos resultados apresentados a partir deste trabalho considera-se

como pontos de melhoria as seguintes propostas:

1. Obter videos de movimentacéo do trem a frente de regifes de mudanca de
via em condi¢des de desalinhamento. Devido as premissas de seguranca
implementadas pela Operacdo do Metrd, as obtencdes destes videos nao
foram permitidas até entdo, mas com o decorrer do comissionamento da
Linha 15, ser& possivel obter videos nestas condi¢des. Estas informacdes
deverdo ser entrada para o algoritmo a fim de verificarmos o seu
desempenho num cenario real de desalinhamento.

2. Adocdo de um mapa de templates, que represente as caracteristicas
individuais dos trechos de via com maior interesse. Esta melhoria além de
tornar mais robusto o calculo de correlacdo, pode ser entrada para um
sistema de votacdo que podera determinar com precisdo a exata regido de
mudanc¢a em que se localiza o trem.

3. Verificar alternativas para os algoritmos de deteccdo de bordas.
Entendemos que é possivel aplicar um método de estimacao robusta para
a identificacdo do contorno da borda da viga. A proposta futura sera

implementar o algoritmo RANSAC e avaliar o seu desempenho nestas

72

condigbes. Os beneficios poderiam refletir na diminuicdo do tempo de
deteccdo das bordas e 0 aumento de precisdo da contagem de area sobre
a viga, desde que um modelo de ajuste mais fiel a geometria real como um
clotoide, seja definido para o processo de estimacao.

4. Realizar os primeiros estudos para a montagem de um prototipo
embarcado. Com o algoritmo mais consolidado, o préximo passo sera
iniciar a especificacdo de um prototipo eletrénico capaz de executar a
funcdo de processamento das imagens, comunicagdo com as cameras de

bordo do trem e interface com o sistema de freios do trem.

Com maior investimento de tempo e recurso neste trabalho, o SDDV podera
ser adotado como parte de uma solucdo alternativa as existentes, e de forma
gradativa dispensar o emprego de dispositivos instalados em via para o cumprimento
desta fungéo.

73

5. REFERENCIAS BIBLIOGRAFICAS

ATTNEAVE, F. Some information aspects of visual perception. Psychological
review, v. 61, n. 3, p. 183-193, 1954.

BALLARD, D. H.; BROWN, C. M. Computer vision. New Jersey: Prentice-Hall, 1982.
523 p.

BERNARDES, F. S.; FERNANDES, D. C.; SANTOS, R. S. Sistema para deteccéao
de desalinhamento de viga-guia em regifes de mudanca de via dos Sistemas
Monotrilho. S&o Paulo. 2016. 100 p. Monografia (Especializagdo em Tecnologia
Metroferroviéria) — Escola Politécnica da Universidade de S&o Paulo. PECE —
Programa de Educacao Continuada em Engenharia. Universidade de Séo Paulo, Séo
Paulo, 2016.

BOVIK, A. C. Handbook of image and video processing. Canada: Academic
Press, 2000. 891 p.

BRADSKI, G.; KAEHLER, A. Learning opencv: computer vision with the opencv
library. 1. ed. Califérnia: O'Reilly, 2008. 555 p.

CHAPRA, S. C. Applied numerical methods with matlab for engineers and
scientists. 3. ed. Boston: McGraw-Hill, 2008. 673 p.

DESAI, B. K.; PANDYA, M.; POTDAR, M. B. Comparison of various template
matching for face recognition. International journal of engineering research and
development — IJSERD, v. 8, p. 16-18, 2013.

GREWAL, M. S.; ANDREWS, A. P. Kalman filtering: theory and practice with
matlab, 4. ed. New Jersey: John Wiley & Sons, 2015. 617 p.

KUGA, H. K. Notas de aula de 2005 - nocdes praticas de técnicas de estimacao.
Séo José dos Campos: INPE, 2005. Apostila para disciplina de pds-graduacéo da
Divisdo de Mecanica Espacial e Controle.

74

