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RESUMO

Redes complexas sdo grafos usados para simular contextos reais, neste trabalho elas serdo usadas
para simular falhas em sistemas que podem se propagar e possivelmente destruir a rede, assim sao
testados modelos de rede e caracteristicas topoldgicas como eficiéncia, grau médio e o nimero de nés
para encontrar vulnerabilidades na rede, para entdo relacionar quais caracteristicas t€m melhor efeito
para suprir as falhas em cascata, que foram simuladas computacionalmente e os resultados analisados.
Foi encontrado que a tolerancia e o grau médio da rede afetam significativamente as chances de
colapso, além de que as redes de Barabdasi-Albert, que gera uma rede usando conexdo preferencial,
e modelo de configuracdo dada uma distribuicao de graus em uma lei de poténcias possuem maior
resisténcia contra falhas, porém sdo vulnerdveis a ataques em seus hubs, enquando o modelo de
Erd6s-Rényi, um gerador de rede aleatdria, gera redes mais resistente a ataques nos hubs, porém é
vulneravel a multiplas falhas.
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1 INTRODUCAO

Com a rapida evolugao tecnoldgica da humanidade, sistemas e infraestruturas aumentaram em
escala e em complexidade e, por consequéncia, a ocorréncia de uma ou mais falhas pode se propagar
e causar danos enormes aos sistemas. A possibilidade de tais falhas leva a necessidade de existirem
resiliéncia e medidas de seguranca para garantir o menor dano possivel neste evento.

Para construir um sistema de apoio em eventuais falhas, hd grande relevancia em conhecer o
sistema, seus pontos fracos e pontos de importancia, e entdo estabelecer uma meta de tolerancia a
ser alcancada. Assim serdo estudados neste trabalho a identificacao de tais pontos fracos e relagoes
de tolerancias ao representar um sistema como uma rede complexa e executar simulagcdes de falhas
iniciais e seus efeitos em cascata, estabelecendo uma medida de carga para determinar se havera ou
nao falhas subsequentes apds uma iteragao, procurando assim modelos e caracteristicas de redes que
promovem sua estabilidade.

1.1 Objetivo

Utilizar redes complexas para simular falhas em cascata a partir de diferentes remog¢des iniciais,
comparando como diferentes modelos de redes, tolerancias, grau médio e outros fatores afetam a rede
a cada iteragc@o ao tomar medidas da eficiéncia, nimero de nds da rede e do maior componente conexo,
buscando encontrar caracteristicas que garantem maior estabilidade da rede.



2 MATERIAIS E METODOS

2.1 Conceitos de redes complexas
2.1.1 Definicao

Grafos sdo estruturas de dados cujo objetivo € representar objetos abstratos que estao relacionados
entre si, sem uma representacao no mundo real, ja redes complexas sao grafos dentro de um contexto
real e em grandes escalas ou com relagdes de conectividade nao triviais, como por exemplo a Internet,
malhas vidrias e redes sociais.

2.1.2 Nos, arestas e grau

N6s ou vértices sao objetos determinados por um contexto e que apresentam uma relagdo entre si,
a qual € representada por uma ligagao conhecida como aresta. Dado o exemplo de grafo da figura 1 a
seguir.

Figura 1: Exemplo de grafo com 7 nds e 11 arestas. Fonte: Elaborada pelo autor.

Para estudar o grafo, sio necessdrias medidas para caracteriza-lol3], sendo a primeira grandeza a
ser utilizada em sua caracterizacdo o grau de um né, determinado pelo nimero de arestas incidentes
a ele, exemplificando pela figura 1, o né A possui 3 arestas incidentes e, portanto, possui grau 3. Sao
conhecidos como hubs 0s nés com maiores graus da rede, no caso da figura 1, o n6 D € o maior hub
do grafo tendo grau 6.

Dentro de um grafo podem ser determinados subconjuntos de nds e arestas que formam outro
grafo dentro do original, sendo assim denominado um subgrafo. Caso existam subgrafos que nao
compartilham nos e que nao sao conectados entre si, cada subgrafo € um componente do grafo total,
sendo aquele com o maior ndmero de nés chamado maior componente conexo do grafo.

Ha ainda o grau médio (k) da rede que indica, em média, o grau de cada né na rede, calculado
pela equacdo a seguir, sendo P(k) a distribuicdo de graus da rede.

(k) = )" P(k)k (1)
k=0



2.1.3 Caminhos, centralidade e eficiéncia

No caso de grafos nao ponderados, que foram utilizados neste trabalho, os caminhos entre dois
nos sao dados pelas sequéncias de nds percorridos a partir do né de origem até o n6 de destino, com
o tamanho de um caminho sendo o nimero de arestas.

Dentre os caminhos de um par de nds, aqueles com o menor nimero de nés percorridos sao os
caminhos minimos deste par, sendo possivel existir multiplos caminhos minimos entre os nos.

A centralidade é um conceito que busca determinar uma ordem de importancia entre os nés, sendo,
por exemplo, definida pelos caminhos na rede.

Uma medida de centralidade € a intermediagdo, que define a importancia de um né i ao contar
o nimero de caminhos minimos entre todos os outros nés n, m da rede que passam por i. Nao sdao
inclusos caminhos onde i € um né de origem ou destino.

A distancia (d;y) entre dois nds € dada pelo nimero de arestas no caminho minimo entre eles, e
a eficiéncia deste par € o inverso de sua distancia. Assim a eficiéncia global da rede é a média das
eficiéncias de todos os pares de nds na rede, vista na equacao 2.

1 1
Egiobal = ——7—< ), — 2)
& NW—U;¢f

2.1.4 Carga

A carga é um indicador para definir se um no6 ira falhar apés algum evento na rede, que depende
de sua carga anterior (Cyp), sua nova carga (C) e a tolerancia (T) do né.
Um n6 falha caso sua nova carga satisfaca a condi¢do de sobrecarga

C, > (1+T)Cy. 3)

Ao falhar, o n6 e suas arestas incidentes sao removidos da rede, possivelmente causando outras
falhas por conta da mudanca de caminhos minimos de outros nds e assim ocorrendo uma falha em
cascata.

Neste trabalho a carga foi definida pela intermediacdo, seguindo a equacdo 4, sendo o (i, f) o
nimero de caminhos minimos entre i e f, e o (i, f|v) o nimero de caminhos minimos que passam pelo
nd v.

o(i, f|v)
= E —J - 4
Cs(V) = o(i, f) @

Para iniciar o efeito em cascata na rede € necessaria a retirada inicial de um ou multiplos nés, essa
retirada inicial € uma falha quando os nds sao removidos aleatériamente, ou um ataque quando os nos
sao removidos seletivamente, como por exemplo removendo apenas o maior hub da rede.

Ap6s a retirada inicial € verificado se hd nds que satisfacam a condi¢c@o 3, se houver eles sao
destruidos junto com suas arestas e ao fim dessas remogdes a condicdo 3 € verificada novamente na



rede, cada conjunto de remogdes € uma iteracao da falha em cascata, que se repete até nao haver nos
que satisfacam a condicao 3.

2.2 Modelos de redes complexas
2.2.1 Rede de livre escala

As redes de livre escala sao definidas por suas distribuigdes de graus que seguem uma lei de
poténcias conforme a equacgao 5, tal distribuicao faz com que a rede tenha hubs muito caracteristicos
com graus muito maiores que a média da rede.

P(k) ~ k™7 &)

A variavel v € um nimero real qualquer que costuma ser entre 2 € 3 quando aplicada a redes
complexas. Um exemplo de rede de livre escala € a World Wide Web, cujo valor y = 2,1 [4].

2.2.2 Modelo de Barabasi-Albert

O modelo de Barabasi-Albert'>! é um gerador de grafo que utiliza conexdo preferencial e gera uma
rede de livre escala. O modelo é alimentado com um pardmetro natural m e inicia um grafo com ao
menos m nos, adicionando por iteragdo um novo né e o conectando com m nds existentes, priorizando
nés com maior grau, até o tamanho estabelecido para arede. A probabilidade da aresta ser criada com
um né de grau k é dada pela equacgdo

k
i ki

p(k) = (6)

sendo k; o grau de cada no ja existente na rede.
Sendo uma rede de livre escala, a distribui¢ao de graus € dada por uma lei de poténcia, com y = 3.

P(k) ~ ak™3 (7

Ao adicionar m ligagdes por novo nd, que contribui para o grau do novo né e para outro ja existente,
o grau médio esperado de um grafo gerado pelo modelo de Barabasi-Albert é

(k) =2m (®)

2.2.3 Modelo de Erd&s-Rényi

O modelo de Erdos-Renyil® é caracterizado por gerar arestas aleatériamente com probabilidade (p)
constante, iterando entre todos pares de nds e determinando se a aresta serd gerada. Pela probabilidade
constante o modelo gera hubs menos caracteristicos e grau médio que melhor descreve a rede, sendo
calculado pela equagdo 9 com n sendo o nimero de nds da rede.



(k) =p(n—=1) 9)
Pelo objeto de trabalho ser uma rede complexa, n > 1, assim

(k) = pn (10)

Igualando ao grau médio de Barabasi-Albert da equacdo 8, sao relacionadas as grandezas do
modelo de Erdos-Renyi com Barabasi-Albert.

p=2 (1)

2.2.4 Modelo de configuragao

O modelo de configuraciol® gera uma rede com uma sequéncia de graus providenciada em forma
de lista, onde cada elemento da lista € o grau de um né da rede. Detalhadamente, o gerador cria o
grafo com n nos e atribui a cada n6 um nimero de pontas livres dado pela sequéncia de graus, por fim
sdo conectadas tais pontas livres em pares, formando assim as arestas da rede. Consequentemente,
¢ exigido que o nimero de pontas livres seja par, portanto a soma dos graus na rede deve ser par.
O algoritmo permite a geragao de lagos, que foram removidos de cada rede antes de iniciar cada
simulacao.

Assim foi escolhida uma sequéncia de graus que corresponde a distribuicao de graus de uma rede
de livre escala com grau minimo fixo ky.

P(k) = ak” (12)

Aplicando 12 na equagdo 1, € obtido o grau médio do gerador modelo de configuracdo dada uma
distribui¢ao de graus que segue uma lei de poténcia.

~1
k) = ko (13)

3 RESULTADOS

3.1 Modelo de Barabasi-Albert
3.1.1 Remocao inicial

O primeiro conjunto de dados foi realizado com o modelo de Barabési-Albert, comparando os
métodos de remocdo, sendo eles ataques no maior hub, nos 3 e 5 maiores hubs, e 10% de falhas.
A remocao inicial € aplicada na iteragao 1 da figura 2, seguida das falhas em cascata nas iteragoes
subsequentes.
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Figura 2: Evolucao normalizada da (a) eficiéncia, (b) contagem de nos total e (c) do maior
componente da rede de Barabasi-Albert, com 1000 simula¢des e parametros N = 1000, m =5, T =
40%, com falhas iterando pela rede até que nao ocorram mais sobrecargas. Fonte: Elaborada pelo

autor.

Neste conjunto de parametro € notdvel a resisténcia de uma rede gerada por Barabasi-Albert contra
falhas, dado que mesmo com apenas 45% dos nds restando ao final da falha em cascata, a rede manteve
perto de 55% de sua eficiéncia original.

A rede porém se mostrou vulneravel a ataques dado que com apenas um ataque nos 3 maiores
hubs, a rede perde cerca de 90% de sua eficiéncia e com um ataque nos 5 maiores hubs a rede € certa
de se colapsar. Vemos ainda que o maior componente se manteve similar ao total da rede, indicando
que ndo houve grandes separacdes em componentes na rede.

O enorme desvio padrao na remog¢ao do maior hub é dado pelo fato que nem todas as simulacoes
alcancam 11 iteragdes, dado que a maioria se estabilizou antes, por volta da quinta iteracdo sem

colapsar a rede. Podemos ver na figura 3 abaixo as simulagdes ao descartar da média as redes que ja
estabilizaram.
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Figura 3: Evolug¢ao normalizada da (a) eficiéncia, (b) contagem de nés total e (¢) do maior
componente da rede ao ignorar simulacdes finalizadas na média, com 1000 simulacdes e parametros
N =1000, m =5, T = 40%. Fonte: Elaborada pelo autor.

Pela figura 3 vemos que simulagdes que se estendem por mais iteracoes tenderam a se aproximar
do colapso da rede, sendo que poucas chegaram nesse estado, causando assim o aumento do desvio
padrao nas dltimas iteracOes sem afetar significativamente a média das simulacoes.

3.1.2 Tolerancia

Comparando agora valores para tolerancia, foram simulados com ataque no maior hub e 10% de
falhas, resultando, respectivamente, nos graficos (a) e (b) da figura 4.
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Figura 4: Evolucao normalizada da eficiéncia e da contagem total de nés com 1000 simulacdes, N =
1000, m = 5, (a) ataque nos 3 maiores hubs, (b) 10% falhas. Fonte: Elaborada pelo autor.

Em 50% de tolerancia a rede € quase estdvel apds o ataque nos 3 maiores hubs, perdendo 30%
de eficiéncia, enquanto perde cerca de 15% de eficiéncia apds as 10% de falhas. Sabendo pela figura
2 que o ataque nos 3 maiores hubs foi a segunda remog¢ao menos estavel, € inferido que 50% de
tolerancia nao € suficiente para a remog¢ao dos 5 maiores hubs da rede, exigindo assim uma enorme
tolerancia para ser evitado.

Portanto, nao é vidvel buscar apenas aumentar a tolerancia da rede até obter resultados estaveis,
dado que ao aplicar em um sistema real apenas este método seria financeiramente invidvel.

Analisando o maior componente conexo da rede, vemos pela figura 5 que ele colapsou para apenas
5% de sua contagem de n6s originais em 40% de tolerancia no ataque nos 3 maiores hubs, indicando
a separacao do componente em diversos componentes menores, que enfraquece muito a rede ao gerar
pares de nds que nao possuem caminhos entre si.



NUmero médio de nés no maior componente NUmero médio de nés no maior componente
100 §

100 A T T
—— 10% tolerance —— 10% tolerance

40% tolerance

40% tolerance
—— 50% tolerance —— 50% tolerance

801 80 A

60 4 60 o

40 4 40 -

204 | ‘

T T T T T T
o] 2 4 6 8 10
teracdes

(@) (b)

Namero de nés [%]
Numero de nés [%]

Iteragdes

Figura 5: Evolucao normalizada da contagem de nds do maior componente da rede, com 1000
simulacoes e parametros N = 1000, m = 5, T = 40% com (a) ataque nos 3 maiores hubs, (b) 10%
falhas. Fonte: Elaborada pelo autor.

3.1.3 Grau médio

Como tltimo conjunto de medidas do modelo de Barabési-Albert, o grau médio dado pela equagao
8 determina o quao robusta é a rede, como pode ser visto na figura 6.

Os valores de m usados nas simulacdes foram 2, 5 e 10, que equivalem aos graus médios,
respectivamente, 4, 10 e 20.
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Figura 6: Evolucao normalizada da (a) eficiéncia e (b) contagem total de nds para diferentes valores
de m, com 1000 simulac¢des e parametros N = 1000, T = 40% com ataque nos 3 maiores hubs. Fonte:
Elaborada pelo autor.

Notando que esta simulacao foi realizada com um ataque nos 3 maiores hubs, a segunda remog¢ao
mais impactante testada neste modelo, praticamente ndo afetou a eficiéncia da rede quando m = 5,
mesmo apos perder 5% de seus nds, dado que hd multiplos caminhos minimos entre a maioria dos
pares de nos.

O aumento de m resulta no aumento do grau médio da rede e, portanto, do quao resiliente ela €,
se mostrando a medida mais relevante para obter uma rede mais segura.
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3.2 Modelo de ErdGs-Rényi

3.2.1 Remocgao inicial

Utilizando agora o gerador de grafo aleatério, o modelo de Erd&s-Rényi, serdo realizadas comparacoes
similares as de Barabasi-Albert, comecando pelos tipos de remocao inicial comparados na figura 7.
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Figura 7: Evolucao normalizada da (a) eficiéncia, (b) contagem de nés total e (¢) do maior
componente da rede de Erd6s-Rényi, com 1000 simulagdes e parametros N = 1000, p = 1%, T = 40%
e 10% dos nds removidos nas falhas aleatérias. Fonte: Elaborada pelo autor.

Assim como o modelo de Barabasi-Albert, o maior componente conexo do modelo de Erdds-
Rényi também se apresentou similar a rede total, porém a efici€éncia da rede permanece aparentemente
intocada ao atacar o maior, 3 maiores € 5 maiores hubs, colapsando totalmente apenas quando
removidas quantidades significativas de hubs da rede.

3.2.2 Tolerancia

Dado que a retirada de poucos hubs afetam minimamente a rede, foram simuladas as tolerancias
apos o ataque nos 10% maiores hubs e apds 10% de falhas com resultados apresentados na figura 8.
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Figura 8: Evolucao normalizada da efici€ncia e da contagem total de nds. comparando diferentes
tolerancias na rede, com 1000 simulacoes, N = 1000, p = 1%, (a) ataque nos 10% maiores hubs, (b)
10% falhas. Fonte: Elaborada pelo autor.

Pela figura 8 (a), € indicado que a existéncia de hubs ainda tem importancia mesmo na rede
aleatdria, visto que apds os 10% de falhas na figura 8 (b) a rede foi muito resistente com 50% de

tolerancia, permanecendo quase ilesa das falhas em cascata, promovendo um excelente aumento de
confiabilidade da rede.

3.2.3 Grau médio

Com grau médio obtido pela equacdo 10, foram simulados conjuntos com probabilidades 0,4%,

1% e 2%, equivalendo respectivamente em graus médios 4, 10 e 20, com resuldados mostrados na
figura 9.
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Figura 9: Evolug¢ao normalizada da (a) eficiéncia, (b) contagem de nés total e (¢) do maior
componente da rede de Erdds-Rényi, comparando as probabilidades de gerar arestas, com 1000
simulagdes e parametros N = 1000, T = 40% com 10% de falhas. Fonte: Elaborada pelo autor.

Similarmente ao modelo de Barabasi-Albert, o aumento do grau médio impacta significativamente
na resisténcia da rede, estabilizando as falhas em cascata em apenas 4 iteracoes ao aumentar o grau
médio para 20.

Nesta simula¢@o ocorreu uma diferenca entre os nds totais da rede e do maior componente conexo,
que perdeu cerca de 99% dos nds no caso p = 0,4%, que foi a principal causa do colapso da rede dado
que mesmo com 35% de seus nds originais, a eficiéncia da rede caiu para quase nula. A importancia
do maior componente € notavel no fato que em p = 1%, mesmo com aproximadamente 5% de nds a
menos que em p = 0,4%, a rede nao colapsou totalmente e estabilizou em 30% de eficiéncia.

3.3 Modelo de configuracao

3.3.1 Remocgdo inicial

O ultimo modelo simulado foi 0 modelo de configuragdo escolhendo a distribui¢ao de graus dada
pela equagdo 12.
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Figura 10: Evolugao normalizada da (a) efici€ncia, (b) contagem de nés total e (¢) do maior
componente da rede do modelo de configuracdo, com 1000 simulag¢des e parametros N = 1000,
(k) =10,y =2,5e T =40% e 10% dos nds removidos nas falhas aleatdrias. Fonte: Elaborada pelo
autor.

Analisando a figura 10, vemos que o modelo se mostrou similar ao de Barabasi-Albert na carac-
teristica que possui maior resisténcia contra falhas, mas € vulnerdvel a ataques nos maiores hubs, o
que € esperado dado que ambos sdo redes de livre escala ao escolher a equacao 12 como distribui¢cao
de graus do modelo de configuragdo. O maior componente foi um fator importante nas simulagoes de
ataque nos 3 e 5 maiores hubs, que causaram seu colapso total mesmo com 30% dos nds restantes.

3.3.2 Tolerancia

As mesmas tolerancias de 10%, 40% e 50% foram testadas no modelo de configuragao.

14



100 A

804

o
=3

Eficiéncia global [%]
2
S

204

Eficiéncia média da rede

—— 10% tolerance
40% tolerance
—— 50% tolerance

AN

T T t T T T
2 3 4 5 6 7 8
teragdes

100 §

Namero de nés [%]

Numero médio de nds

—— 10% tolerance
40% tolerance
—— 50% tolerance

teragbes

(a)
Eficiéncia média da rede Nimero médio de nds
100 A 100 §
—}— 10% tolerance —}— 10% tolerance
\ 40% tolerance 40% tolerance
—— 50% tolerance —— 50% tolerance
801 80
g g
= 604 v 604
H 2
=) @
b °
2 :
@ 40 40 4
£ £
b 2
204 | 204
0 T T T T o]
2 4 6 8 10 2 4 [ 8 10
teragdes teragbes

Figura 11: Evolucao normalizada da eficiéncia e da contagem total de n6s com 1000 simulacdes, N =

1000, (k) = 10, y = 2,5 com (a) ataque no maior hub, (b) 10% falhas. Fonte: Elaborada pelo autor.

No cenario da figura 11 ndo houve grande salto na eficiéncia da rede entre 40% e 50% de tolerancia

como ocorreu em Barabasi-Albert e em Erd§s-Rényi tanto no ataque quanto na falha, indicando que

€ necessdrio outro fator para melhorar a confiabilidade da rede, sendo esse o grau médio.

3.3.3 Coeficiente y

Fixando o grau médio (k) = 10, pode ser analisado o efeito da forma da lei de poténcias na
distribuicao de graus da rede ao variar y e ko na equacao 13, resultando nas figuras 12 e 13, respecti-

vamente com 10% de falhas e ataque no maior hub.
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Figura 12: Evolu¢do normalizada da (a) eficiéncia, (b) contagem de no6s total e (¢) do maior
componente da rede do modelo de configura¢ao, comparando diferentes v com grau médio fixo
(k) = 10 e 10% de falhas, com parametros N = 1000 e T = 40% e 1000 simula¢des. Fonte:
Elaborada pelo autor.
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Figura 13: Evolu¢do normalizada da (a) eficiéncia, (b) contagem de no6s total e (¢) do maior
componente da rede do modelo de configura¢ao, comparando diferentes v com grau médio fixo
(k) = 10 e ataque no maior hub, com parametros N = 1000 e T = 40% e 1000 simula¢des. Fonte:
Elaborada pelo autor.

Com 10% de falhas vistas na figura 12, a rede se torna mais resistente quanto mais 7y se aproxima
de 2, sendo que no ataque do maior hub na figura 13 o contrdrio acontece, isso se da pelo fato que
para manter o grau médio constante, a0 aumentar y € necessario aumentar ko também, fazendo com
que a rede tenha um grau minimo maior, que contribuem mais na eficiéncia da rede durante falhas.

Simultaneamente, ao aumentar y, os hubs se tornam menos caracteristicos, fortalecendo a rede contra
ataques.

3.4 Comparagao entre os modelos

Ao longo das comparagdes por modelo de rede, os tipos de remocao mais relevantes foram o ataque
nos 3 maiores hubs e 10% falhas, sendo assim os resultados finais das falhas em cascata por modelo

foram comparados com essas remoc¢odes com 40% de tolerancia. Na figura 14 foram comparados os
modelos com diferentes graus médios.
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Figura 14: Resultado das eficiéncias das redes por modelo com (a) (k) =4 ey =298, (b) (k) =10e
vy=431,e(c) (k) =20ey = 3,49, atacando os 3 maiores hubs e usando N = 1000, T = 40%, 1000
simulacoes. Fonte: Elaborada pelo autor.

O modelo de Erdés-Rényi, por ndo possuir hubs caracteristicos, predominou como o mais resistente
em ataques na rede, perdendo apenas 1,5% de eficiéncia apds as falhas em cascata ao atacar os 3
maiores hubs, enquanto o modelo de Barabasi-Albert foi o que lidou pior com ataques, colapsando
facilmente por conta de seus hubs muito caracteristicos, precisando de um grau médio alto (k) = 20
para resistir tal ataque, porém a vulnerabilidade em seus hubs permanece mesmo com o grau médio
maior, essencialmente com mais hubs ainda maiores para suprir a auséncia dos hubs que falham.
Ja o modelo de configuracdo apresentou caracteristicas similares ao de Barabdsi-Albert, porém com
maior nimero de hubs de grau menor, possibilitando que a sobrevivéncia da rede em (k) = 10, porém
apresentando resultados muito variados em (k) = 20.
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Figura 15: Resultado das eficiéncias das redes por modelo com (a) (k) =4 ey =298, (b) (k) =10e
v=431,e(c) (k) =20ey = 3,49, com 10% de falhas e usando N = 1000, T = 40%, 1000
simulagdes. Fonte: Elaborada pelo autor.

J4 em 10% de falhas, o modelo de Barabasi-Albert é significativamente melhor, retendo metade
de sua eficiéncia mesmo com grau médio (k) = 4, porém com resultados variados conforme vistos na
figura 3, onde algumas simulacdes se estendem até a rede chegar perto de colapsar, tal comportamento

foi similar no modelo de configuracdo, enquanto o modelo de ErdGs-Rényi tende a colapsar em
cendrios de falha.
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E esperada similaridade entre os modelos de Barabasi-Albert e modelo de configuragio quando
v = 3 pela equacao 7, assim foram feitas as comparagdes nas figuras 16 e 17.
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Figura 16: Resultado das eficiéncias das redes dos modelos de Barabdasi-Albert e modelo de
configuragdo com grau médio (k) = 10, usando N = 1000, T = 40%, 1000 simulagdes e 10% de
falhas. Fonte: Elaborada pelo autor.
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Figura 17: Evolu¢do normalizada da (a) eficiéncia, (b) contagem de no6s total e (¢) do maior
componente das redes de Barabdsi-Albert e modelo de configuragdao, com 1000 simulagdes e
parametros N = 1000, (k) = 10,y =3, m =5, T = 40% com 10% de falhas. Fonte: Elaborada pelo
autor.

Vemos que no cendrio de 10% de falhas das figuras 16 e 17, os modelos se comportaram de forma

idéntica, mesmo que com alto desvio padrao. Comparando agora pelo ataque no maior hub temos as
figuras 18 e 19.
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v=4,31,e(c) (k) =20e vy = 3,49, atacando o maior hub e usando N = 1000, T = 40%, 1000
simulagdes. Fonte: Elaborada pelo autor.
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Figura 19: Evolugdo normalizada da (a) eficiéncia, (b) contagem de nos total e (¢) do maior
componente das rede de Barabdsi-Albert e modelo de configuracao, com 1000 simulacdes e
parametros N = 1000, (k) = 10,y =3, m =5, T = 40% com ataque no maior hub. Fonte: Elaborada
pelo autor.

Com o ataque no maior hub da rede os modelos resultaram em falhas em cascata diferentes,
com Barabasi-Albert apresentando maior confiabilidade que modelo de configuragao, ocorrendo pela
diferenca nas constantes multiplicativas das redes, que mesmo com graus médios iguais, causam
diferentes graus minimos e grau do maior hub, assim desencadeando diferencas nas simulacoes.

4 CONCLUSOES E CONSIDERACOES FINAIS

Com isso foram estudados diferentes caracteristicas topoldgicas, modelos de redes complexas,
falhas em cascata e a progressao de tais falhas ao relacionar com tais caracteristicas, o0 modelo de
Barabdsi-Albert provou grande confiabilidade em falhas, porém grande vulnerabilidade em ataques,
onde ao remover cerca de 3 maiores hubs da rede foi suficiente para fazé-la colapsar por usar a conexao
preferencial durante a geracao da rede, que tende a atribuir novas arestas a nés que possuem maior
grau, no entanto as cascatas geradas por ataques podem ser suprimidas com o aumento da tolerancia

19



e do grau médio da rede, cujo impacto na eficiéncia da rede foi efetivo em medidas razodveis quando
considerada a viabilidade desta melhoria.

As redes geradas pelo modelo de Erd&s-Rényi apresentaram distribui¢ao de graus que nao favore-
cem a geracao de hubs, criando uma rede com graus mais proximos da média e assim essas redes
foram intocadas por ataques nos maiores hubs, apenas colapsando no cendrio de multiplas falhas,
porém com a tolerancia afetando fortemente a ocorréncia de cascatas, permitindo uma rede que antes
perdia 80% de eficiéncia a perder menos de 5% apenas ao subir a tolerancia dos nés de 40% para
50%, tendo influéncia semelhando quando variado o grau médio.

O modelo de configuragao por fim apresentou resultados potencialmente balanceados entre ataques
e falhas, com y idealmente entre 2 e 3 visto que abaixo de 2 a distribui¢ao de graus da rede diverge,
enquanto acima de 3 a rede se torna mais dispersa, com grau médio, tamanho e quantidade de
hubs menores, proporcionando melhor resisténcia contra ataques, porém mais vulneravel a multiplas
falhas. Foram ainda comparados os modelos Barabasi-Albert e modelo de configuracao quando y = 3
e (k) = 10, sendo encontrado que os modelos se comportam de forma idéntica em falhas, porém
o modelo de configuracdo gerou redes com hubs mais dominantes, que causou na maior perda de
eficiéncia durante ataques no maior hub, sendo assim o modelo de Barabasi-Albert gerou redes mais
seguras que as de modelo de configuracao com distribuicao de nés como uma lei de poténcias.

Assim foram estudados fatores que podem influénciar na seguranca de uma rede complexa, que
pode representar, por exemplo, o trafego de informagdes na Internet e de veiculos nas ruas, permitindo
que nos eventos de queda de servidores e interdicdes em trechos da malha vidria, seja possivel prever
os pontos que o fluxo serd redirecionado e estabelecer medidas para aliviar possiveis sobrecargas.
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