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RESUMO 

Neste trabalho, aplicaram-se técnicas de análise de dados e aprendizado de 

máquina (machine learning) a um problema real, com o objetivo de modelar o torque 

de motores de combustão interna do tipo flex-fuel, a partir de dados de ensaios 

dinamométricos. Desenvolveu-se a metodologia e a arquitetura de dados, envolvendo 

as etapas de ingestão, pré-processamento, processamento e análise dos dados. Foi 

feita a conversão dos arquivos para um formato comum e a padronização dos nomes 

das variáveis, criando-se um dicionário de dados com o nome, descrição e unidade 

física de cada variável. Durante o processamento, foi desenvolvido um algoritmo para 

identificar janelas temporais nos ensaios em regime transitório, nas quais o motor 

exibiu comportamento estacionário, permitindo combinar os dados dos ensaios em 

regimes transitório e permanente em um único conjunto de dados para a modelagem 

do torque. Na modelagem, testaram-se o modelo padrão e duas técnicas de 

aprendizado de máquina, utilizando redes neurais artificiais (RNAs) e regressão por 

processos gaussianos (GPR - Gaussian Process Regression). O modelo padrão de 

torque utiliza um mapa (look-up table) que representa o torque máximo produzido pelo 

motor para diferentes condições de rotação e pressão no coletor de admissão, 

considerando gasolina e etanol comum. A geometria da rede neural foi obtida por meio 

de um método iterativo, ajustando o número de neurônios nas camadas ocultas e 

selecionando as quatro melhores arquiteturas. No modelo de regressão por processos 

gaussianos, foram testados quatro tipos de kernels diferentes. Foram gerados 

histogramas e gráficos para cada variável do conjunto de dados unificado obtido 

(dataset), permitindo a visualização das características principais do dataset, como 

distribuição e variabilidade dos dados. Realizou-se uma análise de correlação entre 

as variáveis e o torque, utilizando mapas de calor (heatmap) e análises gráficas de 

correlação de Spearman. Por fim, utilizaram-se indicadores de desempenho (KPIs - 

Key Performance Indicators) para avaliar e comparar o desempenho dos modelos 

obtidos, permitindo selecionar o modelo com melhor desempenho e menor tempo de 

execução. 

Palavras-chave: ANÁLISE DE DADOS, MACHINE LEARNING, MOTORES DE 

COMBUSTÃO INTERNA, MODELAGEM, BIOCOMBUSTÍVEIS.  
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1. INTRODUÇÃO.

Ao longo de mais de um século de história, os veículos automotores 

revolucionaram a humanidade, oferecendo um meio de transporte seguro, confortável 

e rápido. A maioria dos veículos modernos utiliza um sistema de propulsão 

(powertrain) equipado com um motor de combustão interna [1], [2]. O uso dos 

combustíveis derivados de petróleo e o crescimento em larga escala da frota mundial 

de veículos gerou uma série de impactos, sobretudo ambientais. Dados do Instituto 

de Energia e Meio Ambiente (IEMA) indicam que, na cidade de São Paulo, os 

automóveis são responsáveis por mais de 73% das emissões de gases que 

contribuem para o aquecimento global.

Atender às demandas de conforto, segurança, desempenho, eficiência 

energética, ao mesmo tempo que se busca reduzir as emissões de gases, representa 

um desafio complexo de engenharia, incentivando pesquisas científicas em diversas 

áreas [3], [4], [5]. Nas últimas décadas, surgiram novas tecnologias, como conversores 

catalíticos, comando de válvulas variável (Variable Valve Timing, VVT), injeção direta 

de combustível e sistemas de sobrealimentação. Surgiram também, combustíveis 

alternativos, como o etanol, veículos elétricos e híbridos. Essas tecnologias, em 

conjunto com o gerenciamento eletrônico dos motores de combustão, têm contribuído 

para a redução do consumo de combustível e das emissões em comparação aos 

veículos convencionais [1].

Para otimizar seu funcionamento, os motores de combustão interna modernos 

são equipados com sistemas de controle eletrônicos embarcados[1] [2]. O hardware 

utilizado no controle de motor é chamado de unidade de controle do motor ou ECU 

(Engine Control Unit), também conhecido como ECM (Engine Control Module) [4]. A 

exemplo do Brasil, as emissões de monóxido de carbono (CO) de um veículo leve 

nacional, que eram cerca de 54 g/km em 1986, atualmente são inferiores a 0,4 g/km,

com o uso dos sistemas de controle eletrônico nos motores de combustão modernos.
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Uma das principais variáveis de saída de um motor de combustão interna é o 

torque, que é uma medida da força rotacional gerada pelo motor no eixo do 

virabrequim. O torque produzido pelo motor, é aplicado ao eixo de transmissão, 

permitindo que o veículo ganhe velocidade [1].

O processo de calibração da ECU requer uma série de testes dinamométricos 

e ensaios com o veículo. Para melhorar a resposta e a dirigibilidade, a ECU do motor, 

deve controlar o torque produzido [5]. Para medir o torque e a potência do motor, 

utiliza-se um equipamento chamado dinamômetro, que pode ser de dois tipos: de 

bancada e de chassi. No dinamômetro de bancada, o motor é montado diretamente 

no equipamento, sem o veículo, permitindo medir o torque e a potência no próprio eixo 

do motor. Já no dinamômetro de chassi, o veículo é fixado sobre rolos, permitindo a 

medição do torque e da potência de saída diretamente nas rodas [1].

O dinamômetro é um equipamento de custo elevado e dimensões 

incompatíveis com o uso em veículos durante condições reais de condução. Portanto, 

a medição direta do torque no veículo em condições reais de condução acaba sendo 

inviável, tornando necessário o uso de modelos para estimar o torque. Esse modelo 

funciona como um "sensor virtual" ou estimador de torque, permitindo que a ECU 

estime o valor do torque produzido em cada ponto de operação do motor [3], [4], [5].

Modelar com precisão o torque em motores de combustão flex-fuel é uma 

tarefa complexa, pois envolve diversas variáveis, como o tipo de combustível, o ângulo 

de ignição e a proporção da mistura ar-combustível. Os modelos tradicionais utilizam 

mapas tridimensionais, nos quais um dos eixos representa a rotação do motor e o

outro representa a abertura da válvula borboleta ou a pressão no coletor de admissão 

de ar [3], ]. Os mapas são obtidos por meio de ensaios dinamométricos que coletam 

dados do motor em condições estacionárias para cada combinação de rotação e 

pressão na admissão [3].
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1.1. Objetivos. 

O objetivo geral deste trabalho é desenvolver e validar modelos de estimativa 

de torque para motores de combustão interna do tipo flex-fuel, utilizando técnicas de 

machine learning e análise de dados, com base em dados disponíveis de ensaios 

previamente realizados em regimes transitórios e estacionários do motor de 

combustão no dinamômetro. 

 

Dos os objetivos específicos, destacam-se: 

 Aplicar técnicas de análise aos dados disponíveis dos diversos ensaios em 

regime transitório do motor, que contêm séries temporais das variáveis, para 

identificar e extrair automaticamente as regiões de operação do motor em regime 

estacionário.  

 Incorporar os dados extraídos de ensaios em regime transitório aos dados 

disponíveis em condições estacionárias, gerando um único dataset integrado para a 

modelagem do torque. 

 Realizar a ingestão dos dados a partir dos diversos arquivos disponíveis 

contendo os dados brutos (raw data) dos ensaios em regime estacionário e transitório 

do motor.  

 Converter os diferentes arquivos para um formato comum, padronizando 

os nomes das variáveis presentes nos dados dos ensaios.  

 Construir um dicionário de dados padronizado para facilitar a manipulação 

e análise dos dados. 

 

1.2. Justificativa. 

A indústria automotiva enfrenta o desafio constante de reduzir emissões e 

melhorar a eficiência energética dos veículos. Em motores de combustão interna, o 

torque produzido influencia diretamente o desempenho, a dirigibilidade e as emissões 

do veículo ], ], ], ]. 

 

A unidade de controle do motor (ECU) controla as diversas variáveis do motor 

em função da demanda de torque gerada pelo condutor, garantindo uma resposta 
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eficiente do veículo. No entanto, a medição direta do torque em condições reais de 

condução é inviável devido ao custo e às dimensões dos equipamentos, tornando 

necessário o uso de modelos para estimar o torque produzido pelo motor. Modelar 

com precisão o torque do motor é uma tarefa complexa, pois envolve a interação de 

diversas variáveis do motor ], ], ], [ ].  

 

A utilização das técnicas de análise de dados e machine learning permite 

aprimorar os modelos tradicionais, oferecendo maior precisão e uso de um número 

maior de variáveis. Os modelos obtidos, permitem estimar o torque para diferentes 

tipos de combustíveis e diversas condições de operação do motor, tornando-os 

adequados para uso em motores do tipo flex-fuel utilizados pela indústria brasileira.  
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2. MODELAGEM DO TORQUE PARA MOTORES DE COMBUSTÃO 

INTERNA. 

A eletrônica automotiva está cada vez mais presente nos veículos modernos, 

especialmente em comparação com os veículos desenvolvidos no início do século 

passado. Nos primeiros motores de combustão, o controle da proporção ar-

combustível e da ignição era realizado inteiramente por sistemas eletromecânicos. 

Com o avanço da tecnologia e a crescente necessidade de otimizar o funcionamento 

dos motores de combustão interna, os veículos modernos passaram a utilizar 

sistemas de controle eletrônico embarcado. Esses sistemas são conhecidos como 

ECU (Electronic Control Unit). A ECU que controla o motor de combustão interna é 

também chamada de unidade de controle do motor (Engine Control Unit) e utiliza a 

mesma sigla. É um dos sistemas mais importantes do veículo, pois realiza o controle 

e gerenciamento do motor de combustão, influenciando diretamente o consumo de 

combustível, o desempenho e níveis de emissões de poluentes [3] [4] [5]. A ECU 

controla o torque produzido pelo motor em função da demanda gerada pelo condutor 

por meio do pedal do acelerador. A ECU interpreta o sinal da posição do pedal do 

acelerador como um indicador do nível de torque desejado pelo condutor e ajusta 

automaticamente os sistemas do motor para fornecer a quantidade de torque 

necessária, garantindo uma resposta eficiente ao condutor [5]. 

 

 

2.1. MOTOR DE COMBUSTÃO INTERNA. 

Uma ECU moderna possui entre 50 a 120 mapas de correção e consulta, 

podendo chegar a 30 variáveis medidas e 15 manipuladas [14], e possui diferentes 

estratégias (estados) de operação, tais como partida, marcha lenta, operação normal 

e operação priorizando a potência (modo boost) [14] figura 1. 

 

 

 

 



15/54 
 

 

Figura 1  Variáveis controladas pela ECU. 

 
Fonte: [14]. 

 

O motor de combustão é uma máquina térmica que converte a energia 

química do combustível em energia mecânica através de quatro ciclos: admissão, 

compressão, expansão e exaustão (figura 2). No ciclo de admissão, a válvula de 

admissão se abre, e o pistão se move do ponto morto superior (PMS) para o ponto 

morto inferior (PMI), aspirando a mistura de ar-combustível e preenchendo o cilindro 

com essa mistura. Em seguida, no ciclo de compressão, a válvula de admissão se 

fecha, e o pistão começa a se mover para cima, em direção ao PMS, comprimindo a 

mistura de ar-combustível. Quando o pistão está próximo do PMS, a vela de ignição 

gera uma centelha, iniciando a reação de combustão e produzindo uma frente de 

chama que se propaga pela mistura[1], [2] 

 

Durante o ciclo de expansão, essa frente de chama continua a se propagar, 

consumindo completamente a mistura de ar-combustível e fazendo a temperatura e a 

pressão dos gases dentro do cilindro aumentarem. Os gases quentes empurram o 

pistão para baixo, em direção ao PMI, convertendo a energia térmica em trabalho 

mecânico. Por fim, no ciclo de exaustão, a válvula de exaustão se abre, e o pistão se 

move para cima, expelindo os gases de combustão para o coletor de escape e 

completando o ciclo [1], [2]. 
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Figura 2  Quatro tempos do motor de combustão interna. 

 
Fonte: adaptado de [1]. 

 

A ECU utiliza diversos sensores e atuadores para monitorar e ajustar as 

condições de operação do motor, controlando a pressão no ciclo de admissão, a 

proporção da mistura ar-combustível e o instante em que a vela de ignição gera a 

centelha que inicia a combustão,[5] figura 3. 

Figura 3  Principais sensores e atuadores do motor de combustão interna. 

 
Fonte: adaptado de [5]. 
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Para controlar a quantidade de ar admitida, o motor utiliza uma válvula 

chamada válvula borboleta, que regula o fluxo de ar proveniente do filtro de ar (figura 

3). A válvula borboleta possui um prato que, dependendo da sua abertura, oferece 

maior ou menor restrição à passagem do ar, controlando o fluxo. Antes da válvula, 

existe o sensor de massa de ar (MAF - Mass Air Flow sensor), que monitora a 

quantidade de ar admitida pelo motor. Após passar pela válvula borboleta, o ar segue 

para o coletor de admissão, onde um sensor monitora a pressão e a temperatura 

(TMAP - Manifold Pressure and Temperature sensor), permitindo à ECU monitorar a 

pressão e a densidade do ar admitido [2], [5]. 

 

Em seguida, o fluxo de ar segue para a válvula de admissão. Próximo a ela, 

encontra-se o injetor de combustível, que recebe o combustível pressurizado vindo da 

bomba. Quando acionado, o injetor permite a passagem do combustível por um orifício 

muito fino, atomizando-o. Essa atomização permite a mistura do combustível com o 

ar, formando a mistura ar-combustível. Através do acionamento do injetor, a ECU 

controla, a massa de combustível admitida pelo motor em cada ciclo. No coletor de 

escape, há um sensor de concentração de oxigênio, chamado sonda lambda. A sonda 

permite que o sistema de controle estime a concentração de oxigênio nos gases de 

escape e ajuste a proporção da mistura ar-combustível, conforme o regime de 

operação do motor [2], [5]. 

 

A ECU controla o instante angular em que ocorre a centelha na vela de 

ignição, acionando a bobina de ignição. A bobina converte a tensão elétrica da bateria 

em uma tensão elevada, necessária para gerar a centelha. O ângulo de ignição é 

geralmente expresso em °APMS, ou graus antes do ponto morto superior (PMS), 

indicando o momento da centelha em relação à posição angular do pistão [2].  

 

O sensor de rotação permite que a ECU monitore a posição angular do motor 

e calcule sua velocidade angular. O sensor de fase, informa o momento exato em que 

a válvula de admissão está se abrindo, permitindo o acionamento síncrono do injetor 

de combustível. Por fim, o sensor de temperatura do motor permite à ECU monitorar 
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a temperatura do motor e ajustar seu funcionamento conforme necessário, protegendo 

o motor [2].  

 

2.2. MODELAGEM DO TORQUE. 

O modelo de torque padrão utilizado na ECU é composto por um mapa (look-

up table). Um dos eixos representa a rotação do motor, o outro eixo representa a 

abertura da válvula borboleta ou a pressão no coletor de admissão, e o terceiro eixo 

indica o torque produzido pelo motor. Esses mapas são construídos a partir de ensaios 

dinamométricos, que coletam dados do motor em condições estacionárias, nos pontos 

ideais de operação para cada combinação de rotação e pressão de admissão, figura 

4 [3], [5]. No caso de veículos flex-fuel, normalmente existem dois mapas: um para o 

torque produzido pelo motor utilizando gasolina e outro mapa para o torque com 

etanol. Quando o motor está operando com uma mistura de etanol/gasolina, o sistema 

interpola os valores desses dois mapas conforme a proporção de etanol na mistura 

[2], [3]. 

Figura 4  Modelo de torque padrão. 

 
Fonte: adaptado de [5]. 

 

O dinamômetro é utilizado para medir a potência e o torque de motores, nas 

etapas de desenvolvimento, calibração e otimização dos veículos. O dinamômetro 

funciona como uma carga que consome a energia gerada pelo motor. Ele pode operar 
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mantendo a rotação do motor constante para uma determinada condição de operação, 

permitindo que o torque produzido varie, ou controlando o torque de carga aplicado 

no motor, permitindo que a rotação do motor varie conforme a condição de operação. 

Ao fixar o torque ou a rotação, durante os ensaios dinamométricos, os engenheiros 

podem calibrar, validar e otimizar todo o software da unidade de controle do motor 

(ECU) [2], [3], [5].  

 

Existem dois tipos principais de dinamômetros: o dinamômetro de bancada e 

o dinamômetro de chassi, figura 5. No dinamômetro de bancada, o motor é testado 

isoladamente em um ambiente de laboratório, o que permite operá-lo em diferentes 

condições e medir diversas variáveis. Esse tipo de dinamômetro permite medir o 

torque diretamente no eixo do motor, sem a influência da massa do veículo ou do 

sistema de transmissão. Os testes típicos realizados em dinamômetros de bancada 

avaliam a eficiência, durabilidade, emissões de poluentes e características de 

desempenho e consumo do motor [1], [2]. 

Figura 5  Tipos principais de dinamômetros. 

  
Fonte: adaptado de [15], [16]. 

 

No dinamômetro de chassi, o motor é instalado no veículo, com as rodas 

acionando diretamente o dinamômetro, permitindo avaliar o desempenho do veículo 

como um todo. Ele simula condições de diferentes velocidades e cargas, medindo o 

comportamento do motor em situações próximas à condução real. O dinamômetro de 

chassi é amplamente utilizado em testes de consumo, emissões, aceleração e 

desempenho geral do veículo [1], [2]. 
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2.2.1. Modelagem analítica do torque. 

O modelo de torque padrão utilizado nas ECUs não considera a influência de 

diversos parâmetros de operação do motor. Para incluir a eficiência desses fatores, 

são utilizados modelos mais complexos, com base em princípios físicos, conforme a 

equação  [3]. 

 
 

 

   

 
 

 

 
: Poder calorífico da mistura de combustível utilizada (J/kg); 

: Vazão mássica admitida de combustível (kg/s); 
: Pressão no coletor de admissão (kPa); 
: Porcentagem de etanol no combustível (%); 

: Potência produzida pelo motor (W); 
: Potência térmica gerada pela combustão (W); 
: Torque produzido pelo motor (Nm); 
: Torque efetivo produzido pelo motor (Nm); 

: Perdas (Nm); 
: Temperatura do motor (ºC); 
: Tempo de injeção em (s); 
: Rotação do motor em (RPM); 

: Eficiência indicada, adimensional; 
: Fator da eficiência indicada dependente da rotação do motor;  

: Fator da eficiência indicada dependente da relação ar-combustível; 
: Fator da eficiência indicada dependente do ângulo de ignição; 

: Ângulo ótimo de ignição em °APMS;  
 : Fator lambda, adimensional. 

 

O torque produzido pelo motor é gerado a partir da energia química fornecida 

pelo combustível injetado, considerando seu poder calorífico e o rendimento térmico 

do motor, descontando as perdas, equação . O torque de saída do motor, medido 

no dinamômetro, corresponde ao torque efetivo produzido, subtraídas as perdas. 

Essas perdas incluem o atrito entre as partes mecânicas do motor e o trabalho 

necessário para o bombeamento de gases entre o coletor de admissão e o de escape. 

A massa de combustível injetada depende do tempo de injeção, que corresponde ao 

período de acionamento da válvula injetora. O poder calorífico depende diretamente 

da composição do combustível utilizado, equação . A eficiência do motor é um 
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parâmetro complexo, pois varia em função de diversos fatores e do ponto de 

operação. Para reduzir a complexidade, a eficiência é frequentemente decomposta 

em fatores de correção, sendo que cada um considera os efeitos de diferentes 

parâmetros de operação, como o ângulo de ignição, o fator lambda e a velocidade 

angular (rotação) do motor [3]. 

 

O fator  infere a influência da rotação do motor na eficiência indicada. 

Quando o motor se encontra em regime de baixa rotação, aumenta o tempo que os 

gases da combustão têm para trocar calor com as paredes do cilindro, aumentando 

as perdas e reduzindo a eficiência térmica. Já quando o motor está em regime de alta 

rotação, o tempo necessário para que a combustão ocorra por completo limita a 

quantidade de calor liberada no ciclo de expansão. Existe uma faixa ótima de rotação 

para o motor onde se observa um maior rendimento [3] [5]. O fator  estabelece a 

influência do instante em que ocorre a centelha na vela de ignição, chamado de ângulo 

de ignição ( ), sobre a eficiência do motor. O ângulo de ignição é comumente 

expressado em graus antes do ponto morto superior (°APMS). Existe um ângulo ótimo 

em que a ignição deve ocorrer, o ângulo ótimo é chamado de ângulo de máximo torque 

de saída o MBT (Maximum Break Torque) ou ( ) [3], [5].  

 

O fator  relaciona a influência da proporção ar-combustível (fator ), na 

reação de combustão, devido à falta ou excesso de oxigênio disponível. Existe uma 

quantidade mínima de ar necessária para consumir completamente uma determinada 

quantidade de combustível na reação de combustão, chamada de estequiométrica. A 

relação estequiométrica é definida como a razão mínima de massa de ar necessária 

por unidade de massa de combustível. Seu valor varia de 14,7:1, no caso da gasolina 

pura, a 9:1, no caso do etanol. Ou seja, para consumir completamente 1 kg de gasolina 

na reação de combustão, são necessários 14,7 kg de ar. O fator lambda ( ) relaciona 

a proporção ar-combustível na qual o motor está operando com a relação 

estequiométrica, conforme a equação (4) [3], [4], [5].Na condição estequiométrica da 

mistura, há oxigênio suficiente para que a reação de combustão ocorra de forma 

completa. Em condições de excesso de oxigênio na mistura ( , considera-se que 
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todo o combustível é consumido, e o fator vale 1. Em condições de excesso de 

combustível ( , fator diminui proporcionalmente ao valor de [3].

(4)

: Vazão mássica admitida de ar admitida (kg/s);
: Vazão mássica admitida de combustível (kg/s);

: Porcentagem de etanol no combustível (%);
: Relação estequiométrica, adimensional;
: Fator lambda, adimensional.

Os fatores de eficiência, como o de ignição, lambda e rotação, não seguem 

um comportamento linear e apresentam pontos ótimos em função das condições de 

operação do motor, como observado na figura 6 [3].

Figura 6 Fatores da eficiência indicada dependente da rotação ( ), relação ar-combustível ( ) e 
ângulo de ignição ( ).

Fonte: adaptado de [3].

É possível observar que as principais variáveis de interesse, por serem fatores 

diretamente relacionados ao desempenho do motor e à geração de torque, são:

ângulo de ignição (1), composição do combustível (2), fator lambda (3), pressão no 

coletor de admissão (4), rotação do motor (5), temperatura do motor (6) e tempo de 

injeção (7). Essas sete variáveis foram utilizadas neste trabalho como base para o 

desenvolvimento e validação dos modelos.
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2.3. MODELAGEM DO TORQUE COM MACHINE LEARNING. 

Para estimar o torque produzido pelo motor a partir de seu ponto de operação, 

selecionou-se duas técnicas de machine learning: redes neurais artificiais (RNAs) e 

regressão por processos gaussianos (Gaussian Process Regression  GPR). Essas 

técnicas foram escolhidas por serem amplamente utilizadas nas referências. 

 

 

2.3.1. Redes neurais artificiais (RNAs). 

As redes neurais artificiais (RNAs) são modelos computacionais capazes de 

reconhecer padrões, aproximar funções e possuem ampla aplicação em predição e 

classificação de variáveis. Inspiradas no cérebro humano, as RNAs são compostas 

por um sistema de neurônios interconectados formando camadas (layers), permitindo 

diversas variáveis de entrada e saída. As variáveis de entrada alimentam os neurônios 

na primeira camada, chamada de camada de entrada. A saída dos neurônios da 

camada de entrada, alimentam os neurônios das camadas intermediárias (ou ocultas), 

chegando ao(s) neurônio(s) da camada de saída (figura 7) ], ], ], ]. 

 

Utilizando um número adequado de neurônios e camadas, as redes neurais 

podem aproximar funções complexas, combinando os sinais gerados pelos diversos 

neurônios da rede. Os parâmetros de cada neurônio são obtidos durante o 

treinamento da rede, utilizando algoritmos de otimização que estimam os valores 

ideais de cada parâmetro, com o objetivo de minimizar o erro. 

 

O torque produzido por motores de combustão interna depende de interações 

altamente não lineares entre diversas variáveis. As RNAs são uma solução eficaz para 

modelar essas relações complexas sem a necessidade de desenvolver modelos 

analíticos baseados em fenômenos físicos. Possuem também a capacidade de lidar 

com ruídos de medição presentes em dados experimentais, garantindo maior 

robustez, ], ], ], ]. 
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Neste trabalho, utilizou-se uma rede neural do tipo feedforward, treinada para 

predição de variáveis ou regressão. Em uma rede feedforward, as informações fluem 

de forma unidirecional, da camada de entrada para a camada de saída, sem loops ou 

retroalimentações. Conectando as camadas de entrada e de saída, existem camadas 

intermediárias, chamadas de camadas ocultas (ou hidden layers). Essa rede pertence 

à categoria MLP (Multilayer Perceptron), contendo uma ou mais camadas ocultas com 

funções de ativação não lineares (figura 7) ]. A Figura 7 apresenta uma rede neural 

com as variáveis selecionadas para modelar o torque na camada de entrada, duas 

camadas intermediárias e uma camada de saída, onde é estimado o valor do torque.

Figura 7 Exemplo de arquitetura de rede neural para modelagem do torque.

Fonte: O autor.

2.3.2. Regressão baseada em Processos Gaussianos (GPR).

A regressão baseada em Processos Gaussianos (Gaussian Process Regression

GPR) é uma técnica estatística não paramétrica de aprendizado supervisionado, 

utilizada para prever e classificar variáveis. Permite também realizar predições com 

intervalos de confiança (figura 8), o que é especialmente útil na modelagem de 

sistemas onde o comportamento tem natureza ruidosa ou incerta. A GPR é uma 
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solução para modelar torque produzido por motores de combustão interna depende 

de interações altamente não lineares entre diversas variáveis. ], ], ], ], ] 

]. 

Figura 8  Regressão baseada em Processos Gaussianos. 

 
Fonte: ]  

 

 

A regressão baseada em Processos Gaussianos utiliza o conceito de que um 

dado conjunto finito de variáveis aleatórias segue uma distribuição do tipo Gaussiana. 

Ela estima a relação entre entradas e saídas por meio de uma função de média e 

funções de covariância, que descrevem a semelhança entre os pontos no espaço de 

entrada e de saída (figura 8). Essas relações são feitas utilizando uma ou mais 

funções de kernel, de forma semelhante aos neurônios presentes em redes neurais 

], [14], ].  

 

Para ajustar os parâmetros do modelo, são utilizados algoritmos de 

otimização, como a base na estimação da máxima probabilidade da semelhança 

(MLE, Maximum Likelihood Estimation), buscando os valores ótimos para os 
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parâmetros do kernel, minimizando o erro nas predições. Neste trabalho, utilizou-se

uma GPR, projetada para aproximação de funções ou regressão, Figura 9 ]. 

Figura 9 Arquitetura da GPR para modelagem do torque.

Fonte: O autor.
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3. DESENVOLVIMENTO DOS MODELOS DE TORQUE A PARTIR DOS 

DADOS EXPERIMENTAIS.

Para este trabalho, utilizou-se o MATLAB, um software amplamente utilizado 

pela indústria automotiva, que oferece diversas ferramentas de análise e 

processamento de dados. Este software também é utilizado pelo grupo de pesquisa 

em eletrônica automotiva da Poli-USP, permitindo que os códigos e a metodologia 

desenvolvidos ao longo deste trabalho sejam reutilizados em projetos futuros.

Para o modelo de processo de dados (figura 10), utilizou-se a metodologia de 

análise e processamento conforme as etapas da referência [20]. A arquitetura utilizada 

possui as etapas de: ingestão, pré-processamento, processamento, análise dos dados 

e apresentação dos resultados. 

Figura 10 Modelo de processo de dados.

Fonte: O autor.

3.1. Ingestão de Dados.

A ingestão dos dados é um processo complexo devido à variedade de 

formatos de arquivo das fontes de dados. Os dados dos ensaios estavam em diversos 

arquivos com extensão dat (data), xls e xlsx (eXceL Spreadsheet). Esses arquivos

foram convertidos para um formato de arquivo compatível com o MATLAB, o mat

(MATLAB data file). Após a conversão, identificou-se uma inconsistência nos nomes 

das variáveis, sendo necessária a padronização desses nomes. Realizou-se o 

mapeamento do nome das variáveis nos arquivos para padronizá-las, garantindo a 

uniformidade e consistência nos dados extraídos dos arquivos disponíveis, contendo 

os ensaios realizados no motor.
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A principal fonte de dados utilizada neste trabalho é composta pelos arquivos 

provenientes dos ensaios realizados no motor (figura 11) [21]. Esses ensaios são

classificados em dois tipos principais: regime permanente e regime transitório.

Figura 11 Fonte de dados.

Fonte: O autor.

Os arquivos dos ensaios em regime transitório contêm séries temporais, com 

o registro ao longo do tempo das variáveis geradas pela ECU (Unidade de Controle 

do Motor). Já os ensaios em regime permanente consistem em planilhas, geradas 

pelo operador do dinamômetro, com dados coletados em condições estacionárias do 

motor.

Armazenaram-se os arquivos dos ensaios realizados em uma pasta chamada 

RAWData. Desenvolveu-se um algoritmo para fazer a varredura da pasta RAWData, 

carregando e convertendo os arquivo

O registro das variáveis da ECU é feito em arquivos no formato dat . Esse 

arquivo contém os valores das variáveis ao longo do tempo, compactadas no formato 

(Measurement Data Format v.4). O formato 4 é um formato de arquivo 

utilizado na indústria automotiva e em outras áreas de engenharia. A ECU registra as 

variáveis do motor juntamente com suas respectivas bases de tempo. Como a ECU 
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controla diversos processos que ocorrem em tempos de execução diferentes, a 

gravação das variáveis é realizada em bases de tempo distintas. Cada variável 

registrada está associada a uma base de tempo específica, refletindo a frequência 

com que os dados são atualizados. Sendo necessário identificar a base de tempo 

correspondente para cada variável. O algoritmo utiliza o número identificador no nome 

e o número de amostras de cada variável com o da base de tempo selecionada pelo 

número de identificação. Cada variável e sua respectiva base de tempo são 

armazenadas em uma única variável do tipo timeseries do MATLAB, permitindo 

sincronizar os dados das variáveis no tempo. 

 

Os arquivos convertidos foram armazenados em uma pasta chamada de 

convData. Durante o processo de conversão, os nomes originais dos arquivos foram 

preservados, alterando apenas seus formatos, de dat  e xls  para mat . O algoritmo 

desenvolvido, detecta a existência de arquivos com o mesmo nome na pasta 

convData evitando que arquivos de ensaios diferentes sejam sobrescritos. 

 

Ao carregar os arquivos de cada ensaio, observou-se uma grande variedade 

nos nomes das variáveis. Sendo necessário mapear os nomes das variáveis para 

padronizá-las na etapa de processamento, garantindo que todos os arquivos fossem 

processados de maneira uniforme. Foi possível observar a falta de uma cultura de 

dados e governança. Se práticas como essas tivessem sido adotadas durante a 

elaboração dos ensaios, a etapa de ingestão de dados teria sido muito mais simples, 

sem a necessidade de padronizar e converter os nomes das variáveis. Além disso, foi 

reforçada para as equipes responsáveis pela realização dos ensaios a importância da 

cultura de dados, uma vez que esses arquivos podem ser utilizados em trabalhos 

futuros. A ausência de padronização e metadados dificulta o uso desses dados em 

futuras aplicações. 
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3.2. Pré-processamento dos dados. 

Antes da etapa de processamento dos dados, realizou-se o pré-

processamento para padronizar os nomes das variáveis e dos arquivos que contêm 

os dados dos ensaios. Os arquivos, previamente convertidos para o formato mat  

durante a fase de ingestão de dados, foram carregados, e os nomes das variáveis 

presentes nesses arquivos foram renomeados seguindo o mapeamento do nome das 

variáveis. Após essa padronização, foi gerado um novo arquivo, com as variáveis 

devidamente renomeadas, e o nome de cada arquivo também é padronizado. Esse 

novo arquivo foi armazenado em uma pasta chamada processData. Elaborou-se o 

dicionário de dados com o nome, descrição e unidade física de cada uma das 

variáveis. 

 

Desenvolveu-se um algoritmo para realizar a varredura dos arquivos da pasta 

convData. O algoritmo renomeia as variáveis e os arquivos seguindo um padrão com 

o nome do motor, o tipo de ensaio, o número do arquivo lido e a composição do 

combustível. O tipo de ensaio pode ser do tipo dinâmico, que corresponde às 

gravações feitas em regime transitório do motor, ou estático, que corresponde aos 

dados obtidos nos ensaios do motor em regime estacionário. Na Tabela 1, estão os 

nomes padronizados das variáveis, suas descrições e unidades físicas. Para os dados 

em regime transitório, foi utilizada uma notação específica para as variáveis em 

formato de séries temporais, seguindo o nome padrão apresentado na Tabela 1, 

porém com todas as letras em maiúsculas. 

 

O mapeamento das variáveis foi feito de forma manual, utilizando as 

ferramentas de busca do Excel. Essa etapa foi feita de forma manual, pois é uma 

etapa crítica influenciando diretamente a confiabilidade dos dados.  

Tabela 1  Nomes padronizados, descrição e unidade física de cada variável. 
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Fonte: O autor. 
 

O dicionário de dados foi elaborado a partir dos nomes padronizados. Ele 

serve como referência para o uso das, permitindo que os dados dos ensaios possam 

ser utilizados em simulações diversas, utilizando as gravações no tempo com os 

nomes padronizados e os dados convertidos do motor em regime estacionário e 

transitório. 

 

3.3. Processamento dos Dados. 

Nesse processo, os dados foram submetidos a uma etapa de limpeza, 

descartando-se os arquivos de ensaios que não continham as variáveis essenciais 

para a modelagem do torque. foram aplicadas técnicas de análise de dados para 

extrair janelas de operação do motor em regime estacionário a partir dos ensaios em 

regime transitório do motor. Essa análise permitiu a unificação dos dados provenientes 
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de ensaios em regimes transitório e estacionário em um único dataset, para ser 

utilizado nas etapas de análise e modelagem do torque do motor.  

 

Durante a etapa de limpeza, foi gerado um contendo informações como o 

nome do arquivo do ensaio, o arquivo original antes da conversão e o motivo da 

eliminação (arquivo de log). Em alguns ensaios, a temperatura do óleo não estava 

disponível, sendo seu valor aproximado como igual ao valor da temperatura do líquido 

de arrefecimento do motor. 

 

Após a limpeza, o algoritmo realizou a identificação de janelas de tempo em 

que o motor apresentava comportamento em regime estacionário. Para isso, foi feita 

uma busca ao longo do sinal de torque na série temporal, utilizando a derivada do 

sinal para detectar variações. O algoritmo identificou os picos de variação (figura 12), 

classificando-os como pontos de interesse, e criou janelas de 5 segundos antes e 

depois desses pontos. Em seguida, verificou-se se o valor do torque permanecia 

estável dentro dessas janelas de tempo. Caso fosse constatada estabilidade, 

extraindo os valores médios das variáveis: ângulo de ignição (1), composição do 

combustível (2), fator lambda (3), pressão no coletor de admissão (4), rotação do 

motor (5), temperatura do motor (6) e tempo de injeção (7).  

 

Após o processo de janelamento, os dados extraídos foram integrados aos 

dados provenientes dos ensaios em regime estacionário do motor, gerando o dataset 

principal denominado mainDataset. Esse mainDataset foi organizado no formato de 

tabela, contendo o nome das variáveis, suas descrições e as respectivas unidades 

físicas. 
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Figura 12 Pontos de interesse.

Fonte: O autor.

As variáveis contínuas foram discretizadas em intervalos predefinidos, com o 

objetivo de reduzir a dispersão nos dados e melhorar a qualidade da análise. Por 

exemplo, considerando dois pontos no dataset em que a temperatura do motor é de 

70°C e 71°C, a discretização permite agrupá-los em uma única classe, reduzindo a 

variabilidade e facilitando a obtenção dos modelos.

A pressão no coletor de admissão foi discretizada no intervalo de 30 a 90 kPa 

(quilopascais), com incrementos de 15 kPa. A rotação do motor foi discretizada no 

intervalo de 1500 a 5000 RPM (rotações por minuto), com incrementos de 500 RPM. 

A composição do combustível foi discretizada em intervalos fixos correspondentes a 

valores de [27, 45, 64, 82, 100] (%). O fator lambda foi discretizado no intervalo de 

0,85 a 1,15, com incrementos de 0,15 (adimensional). As demais variáveis foram

arredondadas para seus valores inteiros. Para realizar a discretização, o algoritmo 

percorreu todos os pontos do mainDataset e ajustou os valores ao intervalo 

discretizado mais próximo de cada ponto. 
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3.4. Análise de dados. 

Após a obtenção do dataset, foi realizada a etapa de análise de dados para 

desenvolver os modelos de torque produzido pelo motor. Para o treinamento e 

validação dos modelos, o mainDataset foi dividido em três subconjuntos: treino 

(Training), validação (Validation) e teste (Testing). O desempenho final dos modelos 

foi avaliado por meio de gráficos gerados nas etapas de treino, validação e teste, bem 

como pela análise de Indicadores de Desempenho (KPIs). Além disso, foi calculado o 

tempo gasto por cada modelo para predizer os valores de torque com base nos pontos 

do mainDataset. 

 

3.4.1. Modelos de Torque obtidos. 

Utilizou-se três modelos para o torque: o modelo padrão, modelo baseado em 

Redes Neurais Artificiais (RNAs) e Regressão por Processos Gaussianos (GPR).  

 

 Modelo padrão. 

O modelo de torque padrão consiste em um mapa (look-up table) que 

representa o torque máximo produzido pelo motor para uma determinada condição de 

rotação do motor e pressão no coletor de admissão, considerando os combustíveis 

gasolina e etanol comum. Para gerar o modelo padrão, utilizou-se as duas 

composições padrão de combustível: gasolina comum E27 (com 27% de etanol) e 

etanol comum E100 (100% de etanol). O algoritmo identificou os pontos no 

mainDataset correspondentes a essas composições e selecionou o maior valor de 

torque para cada combinação de pressão no coletor de admissão e rotação do motor. 

Esse processo resultou na criação do conjunto de pontos de treino. Os pontos 

restantes, que não foram utilizados no treinamento, foram divididos igualmente entre 

os conjuntos de teste e validação. Obteve-se dois mapas de torque, um para cada 

composição padrão de combustível, figura 13 e figura 14.  
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Figura 13  Mapa de torque para gasolina E27. 

 
Fonte: O autor. 

Figura 14  Mapa de torque para etanol E100. 

 
Fonte: O autor. 
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O valor de torque estimado pelo modelo para composições intermediárias de 

combustível, bem como para outras condições de operação, é calculado por meio da 

interpolação entre os dois mapas. 

 
 

 Redes neurais artificias (RNAs). 

Para os modelos de torque baseados em Redes Neurais Artificiais (RNAs) e 

Regressão por Processos Gaussianos (GPR), o mainDataset foi dividido em 

subconjuntos de treino, validação e teste, seguindo a proporção de 70%, 15% e 15%, 

respectivamente. Realizou-se essa divisão de forma aleatória, utilizando essa 

proporção para cada valor de composição de combustível presente no mainDataset 

([27, 45, 64, 82, 100]). Essa estratégia foi adotada para reduzir o risco de overfitting. 

Caso os pontos fossem selecionados aleatoriamente, diretamente do mainDataset, os 

dados de treino poderiam se concentrar em composições específicas, como 27%, 

comprometendo o desempenho geral dos modelos.  

 

Para a geometria da rede neural, foi utilizada uma topologia com duas 

camadas ocultas e um método interativo em loop para ajustar o número de neurônios 

nas camadas. Testou-se geometrias com o número de neurônios em cada camada 

variando de 1 a 10. Sendo selecionadas as quatro arquiteturas que apresentaram os 

menores erros. 

 

 

 Regressão baseada em Processos Gaussianos (GPR). 

Para o modelo GPR (Regressão por Processos Gaussianos), testando-se 

quatro diferentes tipos de kernels [14], ]: 

 

1. Squared Exponential:  
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2. Exponential:  

  

 
 

 

3. Rational Quadratic:  

  

 
 

 

 
 

4.  (Automatic Relevance Determination) ARD Squared Exponential:  

  

 

: Função de covariância (kernel). 

: Variância do sinal.  

: Comprimento de escala (length scale), distância em que as entradas ( ) 

permanecem correlacionadas. 

: Vetores de variáveis de entrada e de saída. 

: Distância euclidiana entre as entradas ( ). 

: Parâmetro de transição entre comprimentos de escala. 

: Comprimento de escala individual para a cada dimensão do vetor de entrada. 

: Dimensão do vetor de entrada (número de variáveis). 

: vetor de parâmetros transformados, ( ). 
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4. ANALISE E RESULTADOS OBTIDOS.

A partir do mainDataset, foram gerados histogramas e gráficos para cada 

variável, permitindo a visualização das características principais, como distribuição e 

variabilidade dos dados (figura 15 e figura 16). Observou-se que a maioria dos ensaios

foi realizada com o fator lambda entre 1,0 e 1,05, caracterizando uma operação em 

regime estequiométrico do motor.

Os Dados estão bem distribuídos em relação à pressão no coletor de 

admissão, com exceção dos ensaios realizados com pressões mais baixas, próximas 

a 30 kPa (figura 15). O torque apresentou uma distribuição aproximadamente 

uniforme, entre 40 Nm e 120 Nm (figura 15). É possível observar que a maioria dos 

ensaios foi realizada com o motor quente (acima de 70 °C) (figura 15). A rotação do 

motor também está bem distribuída ao longo dos valores analisados, exceto por um 

número reduzido de ensaios registrados em 4.500 RPM (figura 15).

Figura 15 Histogramas do mainDataset.

Fonte: O autor.
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Figura 16 Gráficos para cada variável do mainDataset.

Fonte: O autor.

Realizou-se uma análise de correlação entre as variáveis e o torque, utilizando 

mapas de calor (heatmap) e análises gráficas de correlação de Spearman (figura 17

e figura 18).

Os resultados indicaram forte correlação (próxima de 1) entre o torque e as 

variáveis pressão no coletor de admissão, tempo de injeção, ângulo de ignição e fator 

lambda A pressão no coletor e tempo de injeção tiveram as correlações mais fortes, 

refletindo sua influência direta na energia química admitida pelo motor, como previsto 

pela literatura.

Nas variáveis ângulo de ignição, fator lambda e rotação, observa-se uma 

correlação menos intensa devido ao comportamento não linear da influência dessas 

variáveis no torque produzido. Na revisão da literatura, observa-se que a influência 

dessas variáveis sobre o torque produzido é não linear e apresenta um valor ótimo. O 

torque produzido diminui à medida que o ponto de operação do motor se afasta desse 

valor ideal. Isso torna a análise de correlação dessas variáveis mais complexa do que 
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aquela obtida utilizando a correlação de Spearman, uma vez que a relação entre elas 

é não linear. É possível observar também uma leve correlação positiva entre o torque 

e a concentração de etanol no combustível, como esperado. Observou-se ainda que 

o torque apresenta uma correlação positiva com o aumento da temperatura do motor.

Esse comportamento ocorre porque temperaturas mais altas reduzem a viscosidade 

do óleo, minimizando as perdas por atrito no motor.

Figura 17 Mapa de calor (heatmap).

Fonte: O autor.
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Figura 18 Análises gráficas de correlação entre cada variável e o torque.

Fonte: O autor.

Modelo padrão.

Gerou-se gráficos de regressão para cada um dos modelos obtidos. No 

modelo padrão, observou-se um overfitting em relação aos dados de treino. Os pontos 

desse conjunto estão bem alinhados com a linha de identidade, indicando um bom 

ajuste em relação aos dados de treino (figura 19).

É observada uma grande dispersão nos dados de validação e teste, 

evidenciando o baixo desempenho do modelo. Esse comportamento era esperado, 

conforme a revisão da literatura, já que o modelo é construído com base nos valores 

de torque máximo para cada combinação de rotação e pressão, resultando em um 

desempenho ruim para os dados de validação e teste.
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Figura 19  Gráficos de regressão para modelo padrão. 

 
Fonte: O autor. 

 

 

 Redes neurais artificias (RNAs). 

Selecionou-se as quatro melhores topologias de redes neurais que 

apresentaram o menor erro quadrático médio (MSE, Mean Squared Error). Para essas 

RNAs, gerou-se os gráficos de regressão e de desempenho. Os gráficos de 

desempenho permitem visualizar as etapas de treinamento, validação e teste da rede 

neural em cada iteração do algoritmo, possibilitando identificar a iteração em que o 

algoritmo converge (figura 20). Nos gráficos de regressão, os pontos estão bem 

localizados próximos à linha de identidade (figura 21), e o algoritmo demonstrou rápida 

convergência (figura 20). Os resultados evidenciaram um bom ajuste das redes 

neurais na predição do torque, sem overfitting ou underfitting (figura 21). 
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Figura 20  Gráficos de desempenho das quatro melhores arquiteturas de rede neural. 

 
Fonte: O autor. 
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Figura 21  Gráficos de regressão das quatro melhores arquiteturas de rede neural. 

 
Fonte: O autor. 

 
 

 Regressão baseada em Processos Gaussianos (GPR). 

Para o modelo GPR, testou-se quatro diferentes tipos de kernels: squared 

exponential, exponential, rational quadratic, (Automatic Relevance Determination) 

ARD squared exponential. É possível observar, nos gráficos de regressão, que os 

pontos estão bem localizados próximos à linha de identidade, indicando um bom 

ajuste na predição do torque. É possível identificar a ausência de overfitting e 

underfitting (figura 22). 
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Figura 22  Gráficos de regressão das quatro tipo de kernel utilizados. 

 
Fonte: O autor. 

 

 

 

4.1. Indicadores de Desempenho dos modelos. 

Além dos gráficos de desempenho, foram utilizadas métricas indicadoras de 

desempenho (KPIs, Key Performance Indicators) para avaliar os modelos obtidos: 

1. Erro percentual absoluto (APE, Absolute Percentage Error) 
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2. Erro percentual absoluto médio (MAPE, Mean Absolute Percentage Error) 

  

 

3. Raiz do erro quadrático médio (RMSE, Root Mean Squared Error) 

  

 
 

4. Erro quadrático médio normalizado (NRMSE, Normalized Root Mean Squared 

Error) 

  

 

 
 

5. Coeficiente de determinação ( , Coefficient of Determination) 

  

 

: Número total de amostras. 

: valor da amostra. 

: valor predito pelo modelo. 

: valor médio das amostras. 

 

 

É elaborado um gráfico de dispersão com o erro percentual absoluto para 

cada ponto do mainDataset e para cada tipo de modelo (figura 23). Observou-se que 
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o modelo padrão apresentou valores de erro significativamente mais elevados quando 

comparado às redes neurais artificiais (RNAs) e à regressão por processos 

gaussianos (GPR). Além disso, o erro no modelo padrão demonstrou uma dispersão 

bem maior em relação aos demais modelos, indicando um desempenho inferior na 

predição.

Figura 23 Gráficos de dispersão com erro absoluto percentual para cada ponto do mainDataset.

Fonte: O autor.

Na Tabela 2, são apresentados os KPIs para o modelo padrão, as quatro 

melhores topologias de rede neural e cada um dos quatro kernels selecionados para 

a regressão por processos gaussianos (GPR). Observou-se que o erro absoluto médio 

(MAPE), o erro quadrático médio (RMSE) e o erro médio quadrático normalizado 

(NRMSE) foram, em média, cinco vezes menores nos modelos baseados em técnicas 

de machine learning em comparação ao modelo padrão.

Tabela 2 Indicadores de desempenho e tempo de execução para cada modelo.
Modelo MAPE RMSE NRMSE R2 tempo execução (ms)

Modelo Padrão 18,69 18,33 0,21 0,65 13,71

Rede Neural Artificial 3,12 3,75 0,04 0,99 7,33

Rede Neural Artificial 3,24 3,87 0,05 0,98 6,49

Rede Neural Artificial 3,36 3,99 0,05 0,98 6,08

Rede Neural Artificial 3,67 4,04 0,05 0,98 6,29

Processo Gaussiano 4,38 4,92 0,06 0,97 14,79

Processo Gaussiano 3,78 4,20 0,05 0,98 20,60
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 Processo Gaussiano  4,38 4,92 0,06 0,97 20,47 

 Processo Gaussiano  3,14 3,83 0,04 0,98 38,94 

Fonte: O autor. 
 

Na Tabela 3, são apresentados os KPIs encontrados nos principais artigos de 

referência, permitindo um comparativo com os resultados obtidos (benchmark). 

Tabela 3  Indicadores de desempenho para os principais artigos de referência (Benchmark). 
Referência Método Aplicação Métricas de Erro 

] RNA Torque de saída MAPE: 3,33% (médio) 
] RNA Torque de saída  
] RNA Potência de saída RMSE: 0.0046 

R²: 0.9952 
MAE: 1,51% 

] RNA Convlucional Torque de saída 
em série temporal 

RMSE: 0.0018 
MAPE: 0,56%. 

] GPR Emissões de 
gases 

RMSE: 0.1907 
MAE: 0.1364 
R²: 0.9518 

(médio) 
] GPR Sistema de 

admissão de ar 
RMSE: 128,01 
NRMSE: 0,06 

R²: 0,92 
(médio) 

] GPR Emissões de 
gases 

NRMSE: 4,80% 
(médio) 

] GPR Emissões de 
gases 

NRMSE: 0,392% 
(médio) 

] GPR Torque de saída e 
emissões de 

gases 

RMSE: 6.1125 
MSE: 37.362 
MAE: 2.8717  

] GPR Massa de ar 
estimada 

MAPE: 3.3% 
RMSE: 7.86 

Fonte: O autor. 
 

 

Os modelos obtidos com a Rede Neural Artificial (RNA) e a regressão com 

Processo Gaussiano (GPR) apresentam excelente desempenho em comparação aos 

benchmarks, com MAPE de 3,12% e 3,14%, RMSE de 3,75 e 3,83, e R² de 0,99 e 

0,98, respectivamente. O coeficiente de determinação (R²) apresentou valores 

próximos de 1 para ambos os modelos. O tempo de execução das redes neurais foi 

inferior à metade do tempo dos modelos baseados em GPR. Com base nos 

resultados, a RNA destacou-se como a melhor solução, apresentando erros 

comparáveis ao GPR, porém com menor tempo de execução. 
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5. CONCLUSÃO. 

No decorrer deste trabalho, aplicaram-se técnicas de análise de dados e 

aprendizado de máquina (Machine Learning) a um problema real, com o objetivo de 

modelar o torque em motores de combustão interna. 

 

As técnicas de análise de dados permitiram identificar janelas temporais 

dentro dos ensaios em regime transitório, nas quais o motor apresentou 

comportamento em regime permanente. Isso possibilitou a integração dos dados dos 

ensaios realizados em regimes transitório e permanente em um único conjunto de 

dados.  

 

Os modelos que utilizaram aprendizado de máquina apresentaram uma 

capacidade de previsão do torque com precisão superior ao modelo padrão, com um 

erro aproximadamente cinco vezes menor. Foram testadas duas técnicas de 

aprendizado de máquina: redes neurais artificiais e regressão por processos 

gaussianos. O resultado final indicou que a rede neural foi a melhor solução, 

apresentando um erro semelhante ao da regressão por processos gaussianos, porém 

com um tempo de execução inferior à metade do tempo necessário para executar o 

modelo de regressão por processos gaussianos. 

 

Com base nos resultados obtidos, o trabalho desenvolvido pode ser ampliado 

para a modelagem de emissões de gases poluentes, como óxidos de nitrogênio 

(NOx), hidrocarbonetos totais (THC - Total Hydrocarbons), dióxido de carbono (CO ) 

e monóxido de carbono (CO). Outra possibilidade de continuidade deste trabalho é a 

inclusão de novos dados, considerando motores de modelos e tecnologias diferentes, 

como motores turboalimentados, incluindo os modelos de injeção direta (TSI - 

Turbocharged Stratified Injection).  
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ANEXO A  Equipamentos utilizados. 
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Características dos combustíveis utilizados nos ensaios. Os ensaios foram 

realizados no Laboratório de Combustíveis Líquidos do Instituto de Pesquisas 

Tecnológicas do Estado de São Paulo. Os dados foram obtidos pelos métodos: ASTM 

D2699, D2700, D4052 e ABNT: 13992, 15639 (E100) Tabela 4. 

 
Tabela 4  Dados do Laboratório de Combustíveis Líquidos 

Mistura  E27 E65 E100 
Densidade a 20°C (Kg/m3) 753,2 778,4 805 

Etanol anidro [Vol.%] 27 65 94,7 
Água [Vol. %] 0.5  0 2,3 5,3 

Índice antidetonante [IAD] 88 97 100 
Relação estequiométrica 13,1 10 9 

 

 


