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RESUMO

Neste trabalho, aplicaram-se técnicas de analise de dados e aprendizado de
maquina (machine learning) a um problema real, com o objetivo de modelar o torque
de motores de combustdo interna do tipo flex-fuel, a partir de dados de ensaios
dinamométricos. Desenvolveu-se a metodologia e a arquitetura de dados, envolvendo
as etapas de ingestao, pré-processamento, processamento e analise dos dados. Foi
feita a conversao dos arquivos para um formato comum e a padronizacdo dos nomes
das variaveis, criando-se um dicionario de dados com o nome, descricdo e unidade
fisica de cada variavel. Durante o processamento, foi desenvolvido um algoritmo para
identificar janelas temporais nos ensaios em regime transitoério, nas quais 0 motor
exibiu comportamento estacionario, permitindo combinar os dados dos ensaios em
regimes transitorio e permanente em um unico conjunto de dados para a modelagem
do torque. Na modelagem, testaram-se o modelo padrdo e duas técnicas de
aprendizado de maquina, utilizando redes neurais artificiais (RNAs) e regressao por
processos gaussianos (GPR - Gaussian Process Regression). O modelo padrao de
torque utiliza um mapa (look-up table) que representa o torque maximo produzido pelo
motor para diferentes condicbes de rotacdo e pressao no coletor de admissao,
considerando gasolina e etanol comum. A geometria da rede neural foi obtida por meio
de um método iterativo, ajustando o numero de neurbnios nas camadas ocultas e
selecionando as quatro melhores arquiteturas. No modelo de regressao por processos
gaussianos, foram testados quatro tipos de kernels diferentes. Foram gerados
histogramas e graficos para cada variavel do conjunto de dados unificado obtido
(dataset), permitindo a visualizagao das caracteristicas principais do dataset, como
distribuicdo e variabilidade dos dados. Realizou-se uma analise de correlagdo entre
as variaveis e o torque, utilizando mapas de calor (heatmap) e analises graficas de
correlagdo de Spearman. Por fim, utilizaram-se indicadores de desempenho (KPlIs -
Key Performance Indicators) para avaliar e comparar o desempenho dos modelos
obtidos, permitindo selecionar o modelo com melhor desempenho e menor tempo de

execugao.

Palavras-chave: ANALISE DE DADOS, MACHINE LEARNING, MOTORES DE
COMBUSTAO INTERNA, MODELAGEM, BIOCOMBUSTIVEIS.
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1. INTRODUGAO.

Ao longo de mais de um século de historia, os veiculos automotores
revolucionaram a humanidade, oferecendo um meio de transporte seguro, confortavel
e rapido. A maioria dos veiculos modernos utiliza um sistema de propulsao
(powertrain) equipado com um motor de combustdo interna [1], [2]. O uso dos
combustiveis derivados de petrdleo e o crescimento em larga escala da frota mundial
de veiculos gerou uma série de impactos, sobretudo ambientais. Dados do Instituto
de Energia e Meio Ambiente (IEMA) indicam que, na cidade de Sao Paulo, os
automodveis sao responsaveis por mais de 73% das emissbes de gases que

contribuem para o aquecimento global.

Atender as demandas de conforto, seguranga, desempenho, eficiéncia
energética, ao mesmo tempo que se busca reduzir as emissdes de gases, representa
um desafio complexo de engenharia, incentivando pesquisas cientificas em diversas
areas [3], [4], [5]. Nas ultimas décadas, surgiram novas tecnologias, como conversores
cataliticos, comando de valvulas variavel (Variable Valve Timing, VVT), injecao direta
de combustivel e sistemas de sobrealimentagdo. Surgiram também, combustiveis
alternativos, como o etanol, veiculos elétricos e hibridos. Essas tecnologias, em
conjunto com o gerenciamento eletrénico dos motores de combustao, tém contribuido
para a reducdo do consumo de combustivel e das emissdes em comparacao aos

veiculos convencionais [1].

Para otimizar seu funcionamento, os motores de combust&o interna modernos
sdo equipados com sistemas de controle eletrénicos embarcados[1] [2]. O hardware
utilizado no controle de motor é chamado de unidade de controle do motor ou ECU
(Engine Control Unit), também conhecido como ECM (Engine Control Module) [4]. A
exemplo do Brasil, as emissdes de monodxido de carbono (CO) de um veiculo leve
nacional, que eram cerca de 54 g/km em 1986, atualmente sao inferiores a 0,4 g/km,

com o uso dos sistemas de controle eletronico nos motores de combustdao modernos.
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Uma das principais variaveis de saida de um motor de combustao interna é o
torque, que é uma medida da forga rotacional gerada pelo motor no eixo do

virabrequim. O torque produzido pelo motor, é aplicado ao eixo de transmissao,

permitindo que o veiculo ganhe velocidade [1].

O processo de calibragcao da ECU requer uma série de testes dinamomeétricos
e ensaios com o veiculo. Para melhorar a resposta e a dirigibilidade, a ECU do motor,
deve controlar o torque produzido [5]. Para medir o torque e a poténcia do motor,
utiliza-se um equipamento chamado dinamémetro, que pode ser de dois tipos: de
bancada e de chassi. No dinamdmetro de bancada, o motor € montado diretamente
no equipamento, sem o veiculo, permitindo medir o torque e a poténcia no préprio eixo
do motor. Ja no dinamdmetro de chassi, o veiculo é fixado sobre rolos, permitindo a

medicao do torque e da poténcia de saida diretamente nas rodas [1].

O dinamOmetro € um equipamento de custo elevado e dimensbdes
incompativeis com o uso em veiculos durante condi¢des reais de conducdo. Portanto,
a medicao direta do torque no veiculo em condi¢des reais de conducio acaba sendo
inviavel, tornando necessario o uso de modelos para estimar o torque. Esse modelo
funciona como um "sensor virtual" ou estimador de torque, permitindo que a ECU

estime o valor do torque produzido em cada ponto de operacdo do motor [3], [4], [5].

Modelar com precisdo o torque em motores de combustdo flex-fuel € uma
tarefa complexa, pois envolve diversas variaveis, como o tipo de combustivel, o angulo
de ignigao e a proporg¢ao da mistura ar-combustivel. Os modelos tradicionais utilizam
mapas tridimensionais, nos quais um dos eixos representa a rotacdo do motor € o
outro representa a abertura da valvula borboleta ou a presséo no coletor de admissao
de ar [3], [6]. Os mapas sao obtidos por meio de ensaios dinamomeétricos que coletam
dados do motor em condi¢gbes estacionarias para cada combinacdo de rotacéo e

pressao na admissao [3].
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1.1. Objetivos.

O objetivo geral deste trabalho € desenvolver e validar modelos de estimativa
de torque para motores de combustao interna do tipo flex-fuel, utilizando técnicas de
machine learning e analise de dados, com base em dados disponiveis de ensaios
previamente realizados em regimes transitorios e estacionarios do motor de

combustao no dinamobémetro.

Dos os objetivos especificos, destacam-se:

¢ Aplicar técnicas de analise aos dados disponiveis dos diversos ensaios em
regime transitério do motor, que contém séries temporais das variaveis, para
identificar e extrair automaticamente as regides de operagdo do motor em regime
estacionario.

¢ Incorporar os dados extraidos de ensaios em regime transitorio aos dados
disponiveis em condi¢des estacionarias, gerando um unico dataset integrado para a
modelagem do torque.

e Realizar a ingestdo dos dados a partir dos diversos arquivos disponiveis
contendo os dados brutos (raw data) dos ensaios em regime estacionario e transitorio
do motor.

e Converter os diferentes arquivos para um formato comum, padronizando
0s nomes das variaveis presentes nos dados dos ensaios.

e Construir um dicionario de dados padronizado para facilitar a manipulagao

e analise dos dados.

1.2. Justificativa.

A industria automotiva enfrenta o desafio constante de reduzir emissdes e
melhorar a eficiéncia energética dos veiculos. Em motores de combustao interna, o
torque produzido influencia diretamente o desempenho, a dirigibilidade e as emissdes
do veiculo [6], [7], [10], [11].

A unidade de controle do motor (ECU) controla as diversas variaveis do motor

em fungcdo da demanda de torque gerada pelo condutor, garantindo uma resposta



13/54

eficiente do veiculo. No entanto, a medicao direta do torque em condicdes reais de
conducgao é inviavel devido ao custo e as dimensdes dos equipamentos, tornando
necessario o uso de modelos para estimar o torque produzido pelo motor. Modelar
com precisao o torque do motor é uma tarefa complexa, pois envolve a interacio de

diversas variaveis do motor [6], [7], [10], [11].

A utilizacdo das técnicas de anadlise de dados e machine learning permite
aprimorar os modelos tradicionais, oferecendo maior precisao e uso de um numero
maior de variaveis. Os modelos obtidos, permitem estimar o torque para diferentes
tipos de combustiveis e diversas condicdes de operagao do motor, tornando-os

adequados para uso em motores do tipo flex-fuel utilizados pela industria brasileira.
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2. MODELAGEM DO TORQUE PARA MOTORES DE COMBUSTAO
INTERNA.

A eletrbnica automotiva esta cada vez mais presente nos veiculos modernos,
especialmente em comparacdo com os veiculos desenvolvidos no inicio do século
passado. Nos primeiros motores de combustdo, o controle da proporcao ar-
combustivel e da ignigéo era realizado inteiramente por sistemas eletromecanicos.
Com o avancgo da tecnologia e a crescente necessidade de otimizar o funcionamento
dos motores de combustdo interna, os veiculos modernos passaram a utilizar
sistemas de controle eletrbnico embarcado. Esses sistemas sdo conhecidos como
ECU (Electronic Control Unit). A ECU que controla o motor de combustao interna é
também chamada de unidade de controle do motor (Engine Control Unit) e utiliza a
mesma sigla. E um dos sistemas mais importantes do veiculo, pois realiza o controle
e gerenciamento do motor de combustédo, influenciando diretamente o consumo de
combustivel, o desempenho e niveis de emissdes de poluentes [3] [4] [5]. A ECU
controla o torque produzido pelo motor em fungdo da demanda gerada pelo condutor
por meio do pedal do acelerador. A ECU interpreta o sinal da posicao do pedal do
acelerador como um indicador do nivel de torque desejado pelo condutor e ajusta
automaticamente os sistemas do motor para fornecer a quantidade de torque

necessaria, garantindo uma resposta eficiente ao condutor [5].

2.1. MOTOR DE COMBUSTAO INTERNA.

Uma ECU moderna possui entre 50 a 120 mapas de corregao e consulta,
podendo chegar a 30 variaveis medidas e 15 manipuladas [14], e possui diferentes
estratégias (estados) de operagao, tais como partida, marcha lenta, operagado normal

e operagao priorizando a poténcia (modo boost) [14] figura 1.
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Figura 1 — Varidveis controladas pela ECU.
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Fonte: [14].

O motor de combustdo é uma maquina térmica que converte a energia
quimica do combustivel em energia mecanica através de quatro ciclos: admisséo,
compressao, expansao e exaustao (figura 2). No ciclo de admissao, a valvula de
admissao se abre, e o pistdo se move do ponto morto superior (PMS) para o ponto
morto inferior (PMI), aspirando a mistura de ar-combustivel e preenchendo o cilindro
com essa mistura. Em seguida, no ciclo de compresséo, a valvula de admisséo se
fecha, e o pistdo comeca a se mover para cima, em direcdo ao PMS, comprimindo a
mistura de ar-combustivel. Quando o pistdo esta préximo do PMS, a vela de igni¢cao
gera uma centelha, iniciando a reagdo de combustdo e produzindo uma frente de

chama que se propaga pela mistura[1], [2]

Durante o ciclo de expanséo, essa frente de chama continua a se propagar,
consumindo completamente a mistura de ar-combustivel e fazendo a temperatura e a
pressdo dos gases dentro do cilindro aumentarem. Os gases quentes empurram o
pistdo para baixo, em diregdo ao PMI, convertendo a energia térmica em trabalho
mecanico. Por fim, no ciclo de exaustdo, a valvula de exaustido se abre, e o pistdo se
move para cima, expelindo os gases de combustdo para o coletor de escape e
completando o ciclo [1], [2].
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Figura 2 — Quatro tempos do motor de combustdo interna.
Valvula Valvula Valvula Vilvula Vialvula Vilvula Valvula Vilvula
de admissdo de exaustio de admissdo de exaustdo de admiss 0 de exaustao de admissdo de exaustdo

Ponto Morto
Superior (PMS) _*_ L

[
\/7

Ponto Morto |
Inferior (PMI)

Admissdo Compressao Expansao Exaustao

Fonte: adaptado de [1].

A ECU utiliza diversos sensores e atuadores para monitorar e ajustar as
condigbes de operagao do motor, controlando a pressédo no ciclo de admissao, a
propor¢ao da mistura ar-combustivel e o instante em que a vela de ignigéo gera a
centelha que inicia a combustéo,[5] figura 3.

Figura 3 — Principais sensores e atuadores do motor de combustao interna.
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Fonte: adaptado de [5].
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Para controlar a quantidade de ar admitida, o motor utiliza uma valvula
chamada valvula borboleta, que regula o fluxo de ar proveniente do filtro de ar (figura
3). A vélvula borboleta possui um prato que, dependendo da sua abertura, oferece
maior ou menor restricdo a passagem do ar, controlando o fluxo. Antes da valvula,
existe o sensor de massa de ar (MAF - Mass Air Flow sensor), que monitora a
quantidade de ar admitida pelo motor. Apds passar pela valvula borboleta, o ar segue
para o coletor de admissdo, onde um sensor monitora a pressao e a temperatura
(TMAP - Manifold Pressure and Temperature sensor), permitindo a ECU monitorar a

pressao e a densidade do ar admitido [2], [5].

Em seguida, o fluxo de ar segue para a valvula de admiss&o. Proximo a ela,
encontra-se o injetor de combustivel, que recebe o combustivel pressurizado vindo da
bomba. Quando acionado, o injetor permite a passagem do combustivel por um orificio
muito fino, atomizando-o. Essa atomizagao permite a mistura do combustivel com o
ar, formando a mistura ar-combustivel. Através do acionamento do injetor, a ECU
controla, a massa de combustivel admitida pelo motor em cada ciclo. No coletor de
escape, ha um sensor de concentragao de oxigénio, chamado sonda lambda. A sonda
permite que o sistema de controle estime a concentragdo de oxigénio nos gases de
escape e ajuste a proporcdo da mistura ar-combustivel, conforme o regime de

operacao do motor [2], [5].

A ECU controla o instante angular em que ocorre a centelha na vela de
ignicao, acionando a bobina de ignigédo. A bobina converte a tensdo elétrica da bateria
em uma tensdo elevada, necessaria para gerar a centelha. O angulo de ignigéo é
geralmente expresso em °APMS, ou graus antes do ponto morto superior (PMS),

indicando o momento da centelha em relagédo a posi¢ao angular do pistao [2].

O sensor de rotagao permite que a ECU monitore a posi¢cao angular do motor
e calcule sua velocidade angular. O sensor de fase, informa o0 momento exato em que
a valvula de admissao esta se abrindo, permitindo o acionamento sincrono do injetor

de combustivel. Por fim, o sensor de temperatura do motor permite a ECU monitorar
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a temperatura do motor e ajustar seu funcionamento conforme necessario, protegendo

o0 motor [2].

2.2. MODELAGEM DO TORQUE.

O modelo de torque padréao utilizado na ECU é composto por um mapa (look-
up table). Um dos eixos representa a rotagdo do motor, o outro eixo representa a
abertura da valvula borboleta ou a pressao no coletor de admissao, e o terceiro eixo
indica o torque produzido pelo motor. Esses mapas sao construidos a partir de ensaios
dinamométricos, que coletam dados do motor em condi¢des estacionarias, nos pontos
ideais de operagao para cada combinacgao de rotacao e pressédo de admissao, figura
4 [3], [5]. No caso de veiculos flex-fuel, normalmente existem dois mapas: um para o
torque produzido pelo motor utilizando gasolina e outro mapa para o torque com
etanol. Quando o motor esta operando com uma mistura de etanol/gasolina, o sistema

interpola os valores desses dois mapas conforme a propor¢cao de etanol na mistura

(2], 3]

Figura 4 — Modelo de torque padrao.
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Fonte: adaptado de [5].

O dinambmetro é utilizado para medir a poténcia e o torque de motores, nas
etapas de desenvolvimento, calibragdo e otimizagdo dos veiculos. O dinamémetro

funciona como uma carga que consome a energia gerada pelo motor. Ele pode operar
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mantendo a rotagao do motor constante para uma determinada condicdo de operacao,
permitindo que o torque produzido varie, ou controlando o torque de carga aplicado
no motor, permitindo que a rotacdo do motor varie conforme a condicdo de operagao.
Ao fixar o torque ou a rotagdo, durante os ensaios dinamomeétricos, os engenheiros
podem calibrar, validar e otimizar todo o software da unidade de controle do motor
(ECU) [2], [3], [3].

Existem dois tipos principais de dinamdmetros: o dinamémetro de bancada e
o dinamémetro de chassi, figura 5. No dinamémetro de bancada, o motor é testado
isoladamente em um ambiente de laboratério, o que permite opera-lo em diferentes
condicbes e medir diversas variaveis. Esse tipo de dinamémetro permite medir o
torque diretamente no eixo do motor, sem a influéncia da massa do veiculo ou do
sistema de transmissdo. Os testes tipicos realizados em dinambmetros de bancada
avaliam a eficiéncia, durabilidade, emissées de poluentes e caracteristicas de

desempenho e consumo do motor [1], [2].

Figura 5 — Tipos principais de dinamémetros.
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Fonte: adaptado de [15], [16].

No dinamémetro de chassi, o0 motor é instalado no veiculo, com as rodas
acionando diretamente o dinamdmetro, permitindo avaliar o desempenho do veiculo
como um todo. Ele simula condi¢des de diferentes velocidades e cargas, medindo o
comportamento do motor em situagdes préximas a conducéo real. O dinamémetro de
chassi € amplamente utilizado em testes de consumo, emissdes, aceleragao e

desempenho geral do veiculo [1], [2].
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2.2.1. Modelagem analitica do torque.

O modelo de torque padrao utilizado nas ECUs n&o considera a influéncia de
diversos paradmetros de operacao do motor. Para incluir a eficiéncia desses fatores,
sao utilizados modelos mais complexos, com base em principios fisicos, conforme a

equacao (3) [3].
2.1

P = o T =21 0 (T = Tyeraas T Paan)) = 0 1)
Q = Meomp (tinj) * Hi(Petan) (2)
_ 26-0n _ mwmb(tmi)); Hy (Petan) B Ta e + Tooraa (o Pan) (3)
Hy: Poder calorifico da mistura de combustivel utilizada (J/kg);

eomp: Vaz&o massica admitida de combustivel (kg/s);
Paam:  Press&o no coletor de admisséo (kPa);
P.tan:  Porcentagem de etanol no combustivel (%);

P Poténcia produzida pelo motor (W);

0: Poténcia térmica gerada pela combustao (W);

T: Torque produzido pelo motor (Nm);

T: Torque efetivo produzido pelo motor (Nm);

Tperaas: Perdas (Nm);

T Temperatura do motor (°C);

tinj-: Tempo de injecdo em (s);

Wiy Rotac&o do motor em (RPM);

n: Eficiéncia indicada, adimensional;

N - Fator da eficiéncia indicada dependente da rotagdo do motor;
Ny Fator da eficiéncia indicada dependente da relagao ar-combustivel;
ne: Fator da eficiéncia indicada dependente do angulo de ignicao;
¢: Angulo 6timo de ignicdo em °APMS;

A Fator lambda, adimensional.

O torque produzido pelo motor € gerado a partir da energia quimica fornecida
pelo combustivel injetado, considerando seu poder calorifico e o rendimento térmico
do motor, descontando as perdas, equacao (1). O torque de saida do motor, medido
no dinamdmetro, corresponde ao torque efetivo produzido, subtraidas as perdas.
Essas perdas incluem o atrito entre as partes mecéanicas do motor e o trabalho
necessario para o bombeamento de gases entre o coletor de admisséo e o de escape.
A massa de combustivel injetada depende do tempo de injegc&o, que corresponde ao
periodo de acionamento da valvula injetora. O poder calorifico depende diretamente

da composigdao do combustivel utilizado, equagao (2). A eficiéncia do motor € um
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parametro complexo, pois varia em funcao de diversos fatores e do ponto de
operacao. Para reduzir a complexidade, a eficiéncia é frequentemente decomposta
em fatores de corregao, sendo que cada um considera os efeitos de diferentes
parametros de operacado, como o angulo de igni¢cao, o fator lambda e a velocidade

angular (rotagado) do motor [3].

O fator 7, infere a influéncia da rotagdo do motor na eficiéncia indicada.
Quando o motor se encontra em regime de baixa rotagdo, aumenta o tempo que os
gases da combustdo tém para trocar calor com as paredes do cilindro, aumentando
as perdas e reduzindo a eficiéncia térmica. Ja quando o motor esta em regime de alta
rotacdo, o tempo necessario para que a combustdo ocorra por completo limita a
quantidade de calor liberada no ciclo de expansao. Existe uma faixa 6tima de rotacao

para o motor onde se observa um maior rendimento [3] [5]. O fator n, estabelece a

influéncia do instante em que ocorre a centelha na vela de ignigdo, chamado de dngulo
de ignicao ({), sobre a eficiéncia do motor. O angulo de ignicdo é comumente
expressado em graus antes do ponto morto superior ((APMS). Existe um angulo étimo
em que a ignigao deve ocorrer, o angulo étimo é chamado de angulo de maximo torque
de saida o MBT (Maximum Break Torque) ou ({,) [3], [5].

O fator n, relaciona a influéncia da proporgéo ar-combustivel (fator 1), na
reacao de combustéo, devido a falta ou excesso de oxigénio disponivel. Existe uma
quantidade minima de ar necessaria para consumir completamente uma determinada
quantidade de combustivel na reacao de combustdo, chamada de estequiométrica. A
relacéo estequiométrica é definida como a razao minima de massa de ar necessaria
por unidade de massa de combustivel. Seu valor varia de 14,7:1, no caso da gasolina
pura, a 9:1, no caso do etanol. Ou seja, para consumir completamente 1 kg de gasolina
na reagao de combustdo, sdo necessarios 14,7 kg de ar. O fator lambda (1) relaciona
a propor¢cao ar-combustivel na qual o motor estd operando com a relagdo
estequiométrica, conforme a equacéo (4) [3], [4], [5].Na condi¢cao estequiométrica da
mistura, ha oxigénio suficiente para que a reagdo de combustdo ocorra de forma

completa. Em condi¢des de excesso de oxigénio na mistura (1 > 1), considera-se que
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todo o combustivel é consumido, e o fator n, vale 1. Em condi¢gdes de excesso de

combustivel (1 < 1), fator n, diminui proporcionalmente ao valor de 1 [3].

fe T (4)
Meomb * 00 (Petan)
Mgy Vazao massica admitida de ar admitida (kg/s);

Meomp:  Vazao massica admitida de combustivel (kg/s);
P.tan:  Porcentagem de etanol no combustivel (%);

0y: Relacao estequiométrica, adimensional;

A Fator lambda, adimensional.

Os fatores de eficiéncia, como o de ignicao, lambda e rotagcédo, ndo seguem
um comportamento linear e apresentam pontos 6timos em fungao das condi¢des de

operacgao do motor, como observado na figura 6 [3].

Figura 6 — Fatores da eficiéncia indicada dependente da rotagéo (n,,,,), relagéo ar-combustivel (n,) e
angulo de ignig&o (n¢).
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Fonte: adaptado de [3].

E possivel observar que as principais variaveis de interesse, por serem fatores
diretamente relacionados ao desempenho do motor e a geragao de torque, sao:
angulo de ignig¢ao (1), composi¢do do combustivel (2), fator lambda (3), pressao no
coletor de admisséao (4), rotacao do motor (5), temperatura do motor (6) e tempo de
injecao (7). Essas sete variaveis foram utilizadas neste trabalho como base para o

desenvolvimento e validagdo dos modelos.
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2.3. MODELAGEM DO TORQUE COM MACHINE LEARNING.

Para estimar o torque produzido pelo motor a partir de seu ponto de operacao,
selecionou-se duas técnicas de machine learning: redes neurais artificiais (RNAs) e
regressao por processos gaussianos (Gaussian Process Regression — GPR). Essas

técnicas foram escolhidas por serem amplamente utilizadas nas referéncias.

2.3.1. Redes neurais artificiais (RNAs).

As redes neurais artificiais (RNAs) sdo modelos computacionais capazes de
reconhecer padrdes, aproximar fungdes e possuem ampla aplicacédo em predicao e
classificacdo de variaveis. Inspiradas no cérebro humano, as RNAs sido compostas
por um sistema de neurdnios interconectados formando camadas (layers), permitindo
diversas variaveis de entrada e saida. As variaveis de entrada alimentam os neurénios
na primeira camada, chamada de camada de entrada. A saida dos neurbnios da
camada de entrada, alimentam os neurdnios das camadas intermediarias (ou ocultas),

chegando ao(s) neurdnio(s) da camada de saida (figura 7) [6], [7], [8], [9].

Utilizando um numero adequado de neurbnios e camadas, as redes neurais
podem aproximar fungdes complexas, combinando os sinais gerados pelos diversos
neurdnios da rede. Os parametros de cada neurbnio sdo obtidos durante o
treinamento da rede, utilizando algoritmos de otimizacdo que estimam os valores

ideais de cada parametro, com o objetivo de minimizar o erro.

O torque produzido por motores de combustao interna depende de interagdes
altamente nao lineares entre diversas variaveis. As RNAs sdo uma solucéo eficaz para
modelar essas relacbes complexas sem a necessidade de desenvolver modelos
analiticos baseados em fenémenos fisicos. Possuem também a capacidade de lidar
com ruidos de medigcdo presentes em dados experimentais, garantindo maior
robustez, [6], [7], [8], [9].
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Neste trabalho, utilizou-se uma rede neural do tipo feedforward, treinada para
predicdo de variaveis ou regressao. Em uma rede feedforward, as informacgdes fluem
de forma unidirecional, da camada de entrada para a camada de saida, sem loops ou
retroalimentagdes. Conectando as camadas de entrada e de saida, existem camadas
intermediarias, chamadas de camadas ocultas (ou hidden layers). Essa rede pertence
a categoria MLP (Multilayer Perceptron), contendo uma ou mais camadas ocultas com
funcgdes de ativagao nao lineares (figura 7) [9]. A Figura 7 apresenta uma rede neural
com as variaveis selecionadas para modelar o torque na camada de entrada, duas

camadas intermediarias e uma camada de saida, onde € estimado o valor do torque.

Figura 7 — Exemplo de arquitetura de rede neural para modelagem do torque.
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Fonte: O autor.

2.3.2. Regressao baseada em Processos Gaussianos (GPR).

A regressado baseada em Processos Gaussianos (Gaussian Process Regression —
GPR) é uma técnica estatistica nao paramétrica de aprendizado supervisionado,
utilizada para prever e classificar varidveis. Permite também realizar predicbes com
intervalos de confianga (figura 8), o que é especialmente util na modelagem de

sistemas onde o comportamento tem natureza ruidosa ou incerta. A GPR é uma
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solucao para modelar torque produzido por motores de combustio interna depende
de interacbes altamente nao lineares entre diversas variaveis. [10], [11], [12], [13], [17]
[18].

Figura 8 — Regressao baseada em Processos Gaussianos.
1 5 T T T

0.5

= = = sine = frue unknown func.
O measurements

GP - mean p=0.0017562

GP - 95% confidence interval ‘~ L~

----- GP - mean p=4.2199e-005 # ‘

-1.5

0 0.2 0.4 0.6 0.8 1
X
Fonte: [13]

A regressao baseada em Processos Gaussianos utiliza o conceito de que um
dado conjunto finito de variaveis aleatérias segue uma distribuicéo do tipo Gaussiana.
Ela estima a relagdo entre entradas e saidas por meio de uma fungdo de média e
funcbes de covariancia, que descrevem a semelhanca entre os pontos no espaco de
entrada e de saida (figura 8). Essas relagbes sao feitas utilizando uma ou mais
funcdes de kernel, de forma semelhante aos neurbnios presentes em redes neurais
[13], [14], [19].

Para ajustar os parédmetros do modelo, sido utilizados algoritmos de
otimizagdo, como a base na estimacao da maxima probabilidade da semelhanca
(MLE, Maximum Likelihood Estimation), buscando os valores o6timos para os
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parametros do kernel, minimizando o erro nas predi¢cdes. Neste trabalho, utilizou-se

uma GPR, projetada para aproximacgéao de fungdes ou regressao, Figura 9 [19].

Figura 9 — Arquitetura da GPR para modelagem do torque.
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3. DESENVOLVIMENTO DOS MODELOS DE TORQUE A PARTIR DOS
DADOS EXPERIMENTAIS.

Para este trabalho, utilizou-se o MATLAB, um software amplamente utilizado
pela industria automotiva, que oferece diversas ferramentas de analise e
processamento de dados. Este software também é utilizado pelo grupo de pesquisa
em eletrénica automotiva da Poli-USP, permitindo que os cdédigos e a metodologia

desenvolvidos ao longo deste trabalho sejam reutilizados em projetos futuros.

Para o modelo de processo de dados (figura 10), utilizou-se a metodologia de
analise e processamento conforme as etapas da referéncia [20]. A arquitetura utilizada
possui as etapas de: ingestao, pré-processamento, processamento, analise dos dados
e apresentacao dos resultados.

Figura 10 — Modelo de processo de dados.
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Fonte: O autor.

3.1. Ingestdo de Dados.

A ingestdo dos dados € um processo complexo devido a variedade de
formatos de arquivo das fontes de dados. Os dados dos ensaios estavam em diversos
arquivos com extensao “dat” (data), “xIs” e “xIsx” (eXceL Spreadsheet). Esses arquivos
foram convertidos para um formato de arquivo compativel com o MATLAB, o “mat”
(MATLAB data file). Apds a conversao, identificou-se uma inconsisténcia nos nomes
das variaveis, sendo necessaria a padronizagdo desses nomes. Realizou-se o
mapeamento do nome das variaveis nos arquivos para padroniza-las, garantindo a
uniformidade e consisténcia nos dados extraidos dos arquivos disponiveis, contendo

0s ensaios realizados no motor.
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A principal fonte de dados utilizada neste trabalho é composta pelos arquivos
provenientes dos ensaios realizados no motor (figura 11) [21]. Esses ensaios sao

classificados em dois tipos principais: regime permanente e regime transitério.

Figura 11 — Fonte de dados.
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Fonte: O autor.

Os arquivos dos ensaios em regime transitorio contém séries temporais, com
o registro ao longo do tempo das variaveis geradas pela ECU (Unidade de Controle
do Motor). Ja os ensaios em regime permanente consistem em planilhas, geradas
pelo operador do dinamdmetro, com dados coletados em condicdes estacionarias do

motor.

Armazenaram-se 0s arquivos dos ensaios realizados em uma pasta chamada
RAWData. Desenvolveu-se um algoritmo para fazer a varredura da pasta RAWData,

carregando e convertendo os arquivos disponiveis para o formato padrao (“mat”).

O registro das variaveis da ECU é feito em arquivos no formato “dat’. Esse
arquivo contém os valores das variaveis ao longo do tempo, compactadas no formato
‘mdf4” (Measurement Data Format v.4). O formato “mdf4” € um formato de arquivo
utilizado na industria automotiva e em outras areas de engenharia. A ECU registra as

variaveis do motor juntamente com suas respectivas bases de tempo. Como a ECU
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controla diversos processos que ocorrem em tempos de execugao diferentes, a
gravacao das variaveis é realizada em bases de tempo distintas. Cada variavel
registrada esta associada a uma base de tempo especifica, refletindo a frequéncia
com que os dados sao atualizados. Sendo necessario identificar a base de tempo
correspondente para cada variavel. O algoritmo utiliza o numero identificador no nome
e 0 numero de amostras de cada variavel com o da base de tempo selecionada pelo
numero de identificacdo. Cada variavel e sua respectiva base de tempo sao
armazenadas em uma unica variavel do tipo timeseries do MATLAB, permitindo

sincronizar os dados das variaveis no tempo.

Os arquivos convertidos foram armazenados em uma pasta chamada de
convData. Durante o processo de conversédo, os homes originais dos arquivos foram
preservados, alterando apenas seus formatos, de “dat” e “xIs” para “mat”. O algoritmo
desenvolvido, detecta a existéncia de arquivos com o mesmo nome na pasta

convData evitando que arquivos de ensaios diferentes sejam sobrescritos.

Ao carregar os arquivos de cada ensaio, observou-se uma grande variedade
nos nomes das variaveis. Sendo necessario mapear os nomes das variaveis para
padroniza-las na etapa de processamento, garantindo que todos os arquivos fossem
processados de maneira uniforme. Foi possivel observar a falta de uma cultura de
dados e governanga. Se praticas como essas tivessem sido adotadas durante a
elaboracdo dos ensaios, a etapa de ingestdo de dados teria sido muito mais simples,
sem a necessidade de padronizar e converter os nomes das variaveis. Além disso, foi
reforcada para as equipes responsaveis pela realizacao dos ensaios a importancia da
cultura de dados, uma vez que esses arquivos podem ser utilizados em trabalhos
futuros. A auséncia de padronizacao e metadados dificulta o uso desses dados em

futuras aplicacgoes.
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3.2. Pré-processamento dos dados.

Antes da etapa de processamento dos dados, realizou-se o pré-
processamento para padronizar os nomes das variaveis e dos arquivos que contém
os dados dos ensaios. Os arquivos, previamente convertidos para o formato “mat”
durante a fase de ingestdo de dados, foram carregados, e os nomes das variaveis
presentes nesses arquivos foram renomeados seguindo o0 mapeamento do nome das
variaveis. Apos essa padronizagao, foi gerado um novo arquivo, com as variaveis
devidamente renomeadas, e o nome de cada arquivo também ¢é padronizado. Esse
novo arquivo foi armazenado em uma pasta chamada processData. Elaborou-se o
dicionario de dados com o nome, descricdo e unidade fisica de cada uma das

variaveis.

Desenvolveu-se um algoritmo para realizar a varredura dos arquivos da pasta
convData. O algoritmo renomeia as variaveis e os arquivos seguindo um padrdao com
o nome do motor, o tipo de ensaio, 0 numero do arquivo lido e a composicdo do
combustivel. O tipo de ensaio pode ser do tipo dinamico, que corresponde as
gravacgdes feitas em regime transitério do motor, ou estatico, que corresponde aos
dados obtidos nos ensaios do motor em regime estacionario. Na Tabela 1, estdo os
nomes padronizados das variaveis, suas descrigdes e unidades fisicas. Para os dados
em regime transitorio, foi utilizada uma notagdo especifica para as variaveis em
formato de séries temporais, seguindo o nome padrdo apresentado na Tabela 1,

porém com todas as letras em maiusculas.

O mapeamento das variaveis foi feito de forma manual, utilizando as
ferramentas de busca do Excel. Essa etapa foi feita de forma manual, pois é uma

etapa critica influenciando diretamente a confiabilidade dos dados.

Tabela 1 — Nomes padronizados, descri¢cdo e unidade fisica de cada variavel.

Variavel Descrigcao Unidade
Etpc Porcentagem de etanol no combustivel. (%) Percentual
exh_co Nivel de emissdo de mondxido de carbono (ppm) Partes por milhdo
(CO) nos gases de escape.
exh_co2 Nivel de emissdo de diéxido de carbono (ppm) Partes por milhdo

(CO,) nos gases de escape.
exh_nox Nivel de emissdo de 6xidos de nitrogénio (ppm) Partes por milhdo
(NOx) nos gases de escape.
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exh_o2 Nivel de oxigénio nos gases de escape. (ppm) Partes por milhdo

exh_thc Nivel de emissdo de hidrocarbonetos totais (ppm) Partes por milhdo
(ATHC) nos gases de escape.

ign Angulo de ignigao. (°APMS) Graus antes do

ponto morto superior

lamb Fator lambda, que indica a relagdo ar- (.) Adimensional
combustivel na combust&o.

maf Fluxo de massa de ar. (kg/h) Quilograma por hora

padm Press&o no coletor de admiss3o. (kPa) Quilopascal

pamb Pressao ambiente. (kPa) Quilopascal

pexh Pressao no sistema de escapamento. (kPa) Quilopascal

poleo Pressao do 6leo do motor. (kPa) Quilopascal

rpm Rotag&o do motor. (RPM) Rotacgdes por minuto

tadm Temperatura no coletor de admissao. (°C) Graus Celsius

tamb Temperatura ambiente. (°C) Graus Celsius

texh Temperatura no sistema de escapamento. (°C) Graus Celsius

th2o Temperatura do fluido de arrefecimento do (°C) Graus Celsius
motor.

th2o_in Temperatura do fluido de arrefecimento na (°C) Graus Celsius
entrada do motor.

th2o_out Temperatura do fluido de arrefecimento na (°C) Graus Celsius
saida do motor.

tinj Tempo de injegdo de combustivel. (ms) Milissegundos

toleo Temperatura do 6leo do motor. (°C) Graus Celsius

tps Abertura da valvula borboleta (Throttle (%) Percentual
Position Sensor).

trq Torque gerado pelo motor. (Nm) Newton-metro

Fonte: O autor.

O dicionario de dados foi elaborado a partir dos nomes padronizados. Ele
serve como referéncia para o uso das, permitindo que os dados dos ensaios possam
ser utilizados em simulagdes diversas, utilizando as gravagdes no tempo com os
nomes padronizados e os dados convertidos do motor em regime estacionario e

transitorio.

3.3. Processamento dos Dados.

Nesse processo, os dados foram submetidos a uma etapa de limpeza,
descartando-se os arquivos de ensaios que nao continham as variaveis essenciais
para a modelagem do torque. foram aplicadas técnicas de analise de dados para
extrair janelas de operagéo do motor em regime estacionario a partir dos ensaios em

regime transitoério do motor. Essa analise permitiu a unificagado dos dados provenientes
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de ensaios em regimes transitorio e estacionario em um unico dataset, para ser

utilizado nas etapas de analise e modelagem do torque do motor.

Durante a etapa de limpeza, foi gerado um contendo informagées como o
nome do arquivo do ensaio, 0 arquivo original antes da conversdo e o motivo da
eliminacao (arquivo de log). Em alguns ensaios, a temperatura do 6leo nao estava
disponivel, sendo seu valor aproximado como igual ao valor da temperatura do liquido

de arrefecimento do motor.

Apds a limpeza, o algoritmo realizou a identificacdo de janelas de tempo em
que o motor apresentava comportamento em regime estacionario. Para isso, foi feita
uma busca ao longo do sinal de torque na série temporal, utilizando a derivada do
sinal para detectar variagdes. O algoritmo identificou os picos de variagao (figura 12),
classificando-os como pontos de interesse, e criou janelas de 5 segundos antes e
depois desses pontos. Em seguida, verificou-se se o valor do torque permanecia
estavel dentro dessas janelas de tempo. Caso fosse constatada estabilidade,
extraindo os valores médios das variaveis: angulo de ignigdo (1), composi¢cao do
combustivel (2), fator lambda (3), pressdo no coletor de admisséo (4), rotagao do

motor (5), temperatura do motor (6) e tempo de injegéo (7).

Apods o processo de janelamento, os dados extraidos foram integrados aos
dados provenientes dos ensaios em regime estacionario do motor, gerando o dataset
principal denominado mainDataset. Esse mainDataset foi organizado no formato de
tabela, contendo o nome das variaveis, suas descricdes e as respectivas unidades

fisicas.
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Figura 12 — Pontos de interesse.
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Fonte: O autor.

As variaveis continuas foram discretizadas em intervalos predefinidos, com o
objetivo de reduzir a dispersao nos dados e melhorar a qualidade da analise. Por
exemplo, considerando dois pontos no dataset em que a temperatura do motor é de
70°C e 71°C, a discretizacdo permite agrupa-los em uma unica classe, reduzindo a

variabilidade e facilitando a obtengao dos modelos.

A pressao no coletor de admisséo foi discretizada no intervalo de 30 a 90 kPa
(quilopascais), com incrementos de 15 kPa. A rotagdo do motor foi discretizada no
intervalo de 1500 a 5000 RPM (rotagdes por minuto), com incrementos de 500 RPM.
A composi¢cao do combustivel foi discretizada em intervalos fixos correspondentes a
valores de [27, 45, 64, 82, 100] (%). O fator lambda foi discretizado no intervalo de
0,85 a 1,15, com incrementos de 0,15 (adimensional). As demais variaveis foram
arredondadas para seus valores inteiros. Para realizar a discretizacdo, o algoritmo
percorreu todos os pontos do mainDataset e ajustou os valores ao intervalo

discretizado mais préximo de cada ponto.
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34. Analise de dados.

Apds a obtencao do dataset, foi realizada a etapa de analise de dados para
desenvolver os modelos de torque produzido pelo motor. Para o treinamento e
validagédo dos modelos, o mainDataset foi dividido em trés subconjuntos: treino
(Training), validacao (Validation) e teste (Testing). O desempenho final dos modelos
foi avaliado por meio de graficos gerados nas etapas de treino, validagao e teste, bem
como pela analise de Indicadores de Desempenho (KPIs). Além disso, foi calculado o
tempo gasto por cada modelo para predizer os valores de torque com base nos pontos

do mainDataset.

3.4.1. Modelos de Torque obtidos.

Utilizou-se trés modelos para o torque: o modelo padrao, modelo baseado em

Redes Neurais Atrtificiais (RNAs) e Regressao por Processos Gaussianos (GPR).

o Modelo padrao.

O modelo de torque padrdo consiste em um mapa (look-up table) que
representa o torque maximo produzido pelo motor para uma determinada condicao de
rotacdo do motor e pressao no coletor de admissao, considerando os combustiveis
gasolina e etanol comum. Para gerar o modelo padrdo, utilizou-se as duas
composi¢des padrdo de combustivel: gasolina comum E27 (com 27% de etanol) e
etanol comum E100 (100% de etanol). O algoritmo identificou os pontos no
mainDataset correspondentes a essas composi¢coes e selecionou o maior valor de
torque para cada combinagao de pressao no coletor de admissao e rotacdo do motor.
Esse processo resultou na criagdo do conjunto de pontos de treino. Os pontos
restantes, que nao foram utilizados no treinamento, foram divididos igualmente entre
os conjuntos de teste e validagdo. Obteve-se dois mapas de torque, um para cada

composic¢ao padrao de combustivel, figura 13 e figura 14.
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Figura 13 — Mapa de torque para gasolina E27.
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Fonte: O autor.
Figura 14 — Mapa de torque para etanol E100.
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O valor de torque estimado pelo modelo para composic¢des intermediarias de
combustivel, bem como para outras condi¢des de operagao, € calculado por meio da

interpolagao entre os dois mapas.

¢ Redes neurais artificias (RNAs).

Para os modelos de torque baseados em Redes Neurais Atrtificiais (RNAs) e
Regressao por Processos Gaussianos (GPR), o mainDataset foi dividido em
subconjuntos de treino, validagéo e teste, seguindo a propor¢ao de 70%, 15% e 15%,
respectivamente. Realizou-se essa divisdo de forma aleatdria, utilizando essa
proporcdo para cada valor de composi¢cao de combustivel presente no mainDataset
([27, 45, 64, 82, 100]). Essa estratégia foi adotada para reduzir o risco de oveffitting.
Caso os pontos fossem selecionados aleatoriamente, diretamente do mainDataset, os
dados de treino poderiam se concentrar em composi¢des especificas, como 27%,

comprometendo o desempenho geral dos modelos.

Para a geometria da rede neural, foi utilizada uma topologia com duas
camadas ocultas e um método interativo em loop para ajustar o numero de neurénios
nas camadas. Testou-se geometrias com o numero de neurbnios em cada camada
variando de 1 a 10. Sendo selecionadas as quatro arquiteturas que apresentaram os

menores erros.

o Regressao baseada em Processos Gaussianos (GPR).

Para o modelo GPR (Regressao por Processos Gaussianos), testando-se

quatro diferentes tipos de kernels [14], [19]:

1. Squared Exponential:

() (- xj)) 5)

k(x;,x10) =0} exp( o
I
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2. Exponential.
r 6
k(xi,xj|9)=0%exp<—0—l> ©6)
T (7)
r= \/(xi - %) (xi—x)
3. Rational Quadratic:
rz2 \“ (8)
k(xl-,xj I 9) = O'ch (1 +T0'lz>
T (9)
r= J(xi - %) (xi = %)
4. (Automatic Relevance Determination) ARD Squared Exponential:

(10)

1 < (x- — X )2
k(xux|6)=0f exp(—zz lma—zjm>
m=1 m

k(x;,x; | 8): Fungao de covariancia (kernel).

af: Variancia do sinal.

0,: Comprimento de escala (length scale), distancia em que as entradas (x;, x;)
permanecem correlacionadas.

x;, x;: Vetores de variaveis de entrada e de saida.

r. Distancia euclidiana entre as entradas (x;, x;).

a: Parametro de transig¢ao entre comprimentos de escala.

a2: Comprimento de escala individual para a cada dimenséo do vetor de entrada.
d: Dimensao do vetor de entrada (numero de variaveis).

6: vetor de parametros transformados, (6; = loga;, 8, = logoy).
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4, ANALISE E RESULTADOS OBTIDOS.

A partir do mainDataset, foram gerados histogramas e graficos para cada
variavel, permitindo a visualizagdo das caracteristicas principais, como distribuicdo e
variabilidade dos dados (figura 15 e figura 16). Observou-se que a maioria dos ensaios
foi realizada com o fator lambda entre 1,0 e 1,05, caracterizando uma operacdo em

regime estequiométrico do motor.

Os Dados estdo bem distribuidos em relagdo a pressdo no coletor de
admissao, com excecio dos ensaios realizados com pressdes mais baixas, proximas
a 30 kPa (figura 15). O torque apresentou uma distribuicdo aproximadamente
uniforme, entre 40 Nm e 120 Nm (figura 15). E possivel observar que a maioria dos
ensaios foi realizada com o motor quente (acima de 70 °C) (figura 15). A rotagao do
motor também esta bem distribuida ao longo dos valores analisados, exceto por um

numero reduzido de ensaios registrados em 4.500 RPM (figura 15).

Figura 15 — Histogramas do mainDataset.
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Figura 16 — Gréficos para cada variavel do mainDataset.
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Realizou-se uma analise de correlagdo entre as variaveis e o torque, utilizando
mapas de calor (heatmap) e analises graficas de correlagdo de Spearman (figura 17

e figura 18).

Os resultados indicaram forte correlagéo (préxima de 1) entre o torque e as
variaveis pressao no coletor de admissao, tempo de inje¢do, angulo de igni¢ao e fator
lambda A pressao no coletor e tempo de injecao tiveram as correlagbes mais fortes,
refletindo sua influéncia direta na energia quimica admitida pelo motor, como previsto

pela literatura.

Nas variaveis angulo de ignigao, fator lambda e rotagcédo, observa-se uma
correlacdo menos intensa devido ao comportamento nao linear da influéncia dessas
variaveis no torque produzido. Na revisdo da literatura, observa-se que a influéncia
dessas variaveis sobre o torque produzido € nao linear e apresenta um valor 6timo. O
torque produzido diminui @ medida que o ponto de operagcao do motor se afasta desse

valor ideal. Isso torna a analise de correlagdo dessas variaveis mais complexa do que
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aquela obtida utilizando a correlagdo de Spearman, uma vez que a relagéo entre elas
é ndo linear. E possivel observar também uma leve correlagéo positiva entre o torque
e a concentragao de etanol no combustivel, como esperado. Observou-se ainda que
o torque apresenta uma correlagéo positiva com o aumento da temperatura do motor.
Esse comportamento ocorre porque temperaturas mais altas reduzem a viscosidade

do 6leo, minimizando as perdas por atrito no motor.

Figura 17 — Mapa de calor (heatmap).
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Figura 18 — Analises graficas de correlagao entre cada variavel e o torque.
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e Modelo padrao.

Gerou-se graficos de regressdao para cada um dos modelos obtidos. No
modelo padrao, observou-se um overfitting em relagéo aos dados de treino. Os pontos
desse conjunto estdo bem alinhados com a linha de identidade, indicando um bom
ajuste em relagado aos dados de treino (figura 19).

E observada uma grande dispersdo nos dados de validacdo e teste,
evidenciando o baixo desempenho do modelo. Esse comportamento era esperado,
conforme a revisao da literatura, ja que o modelo é construido com base nos valores
de torque maximo para cada combinagao de rotacdo e pressao, resultando em um

desempenho ruim para os dados de validacgao e teste.
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Figura 19 — Graficos de regresséo para modelo padréo.
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¢ Redes neurais artificias (RNAs).

Selecionou-se as quatro melhores topologias de redes neurais que
apresentaram o menor erro quadratico médio (MSE, Mean Squared Error). Para essas
RNAs, gerou-se os graficos de regressédo e de desempenho. Os graficos de
desempenho permitem visualizar as etapas de treinamento, validacao e teste da rede
neural em cada iteragao do algoritmo, possibilitando identificar a iteragdo em que o
algoritmo converge (figura 20). Nos graficos de regressao, os pontos estdo bem
localizados préximos a linha de identidade (figura 21), e o algoritmo demonstrou rapida
convergéncia (figura 20). Os resultados evidenciaram um bom ajuste das redes

neurais na predigéo do torque, sem overfitting ou underfitting (figura 21).
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Figura 21 — Gréficos de regressao das quatro melhores arquiteturas de rede neural.
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Fonte: O autor.

e Regressao baseada em Processos Gaussianos (GPR).

Para o modelo GPR, testou-se quatro diferentes tipos de kernels: squared
exponential, exponential, rational quadratic, (Automatic Relevance Determination)
ARD squared exponential. E possivel observar, nos graficos de regressdo, que 0s
pontos estdo bem localizados proximos a linha de identidade, indicando um bom
ajuste na predicdo do torque. E possivel identificar a auséncia de overfitting e

underfitting (figura 22).
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Figura 22 — Graficos de regressao das quatro tipo de kernel utilizados.
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Fonte: O autor.

4.1. Indicadores de Desempenho dos modelos.

Além dos graficos de desempenho, foram utilizadas métricas indicadoras de

desempenho (KPls, Key Performance Indicators) para avaliar os modelos obtidos:

1. Erro percentual absoluto (APE, Absolute Percentage Error)

Vi = Ymay

APE = |
Vi

|-10096 (11)
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2. Erro percentual absoluto médio (MAPE, Mean Absolute Percentage Error)
N
1 Yi = Ymdy; (12)
MAPE = N ; |y—1| 100%
3. Raiz do erro quadratico médio (RMSE, Root Mean Squared Error)
L& (13)
RMSE = |- Z(yi ~ Ymat;)
4. Erro quadratico médio normalizado (NRMSE, Normalized Root Mean Squared
Error)
11 < (4
2
NRMSE = —- |—- i = Vimdl:
7 N ;(J’ y dll)
5. Coeficiente de determinagéo (R?, Coefficient of Determination)
2
R2 -1 Y (Vi = Ymayy) (15)

£V=1(3_’ - yi)?

N: Numero total de amostras.
y;: valor da amostra.
Ymay;- valor predito pelo modelo.

y: valor médio das amostras.

E elaborado um gréafico de dispersdo com o erro percentual absoluto para

cada ponto do mainDataset e para cada tipo de modelo (figura 23). Observou-se que
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o modelo padrao apresentou valores de erro significativamente mais elevados quando
comparado as redes neurais artificiais (RNAs) e a regressao por processos
gaussianos (GPR). Além disso, o erro no modelo padrao demonstrou uma disperséo
bem maior em relagdo aos demais modelos, indicando um desempenho inferior na

predicao.

Figura 23 — Graficos de dispersao com erro absoluto percentual para cada ponto do mainDataset.
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Fonte: O autor.

Na Tabela 2, sdo apresentados os KPIs para o modelo padrao, as quatro
melhores topologias de rede neural e cada um dos quatro kernels selecionados para
a regressao por processos gaussianos (GPR). Observou-se que o erro absoluto médio
(MAPE), o erro quadratico médio (RMSE) e o erro médio quadratico normalizado
(NRMSE) foram, em média, cinco vezes menores nos modelos baseados em técnicas

de machine learning em comparagao ao modelo padréo.

Tabela 2 — Indicadores de desempenho e tempo de execugdo para cada modelo.

Modelo MAPE RMSE NRMSE R2 tempo execugao (ms)
Modelo Padrao 18,69 18,33 0,21 0,65 13,71
Rede Neural Artificial 3,12 3,75 0,04 0,99 7,33
Rede Neural Artificial 3,24 3,87 0,05 0,98 6,49
Rede Neural Artificial 3,36 3,99 0,05 0,98 6,08
Rede Neural Artificial 3,67 4,04 0,05 0,98 6,29
Processo Gaussiano 4,38 4,92 0,06 0,97 14,79

Processo Gaussiano 3,78 4,20 0,05 0,98 20,60
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Processo Gaussiano 4,38
Processo Gaussiano 3,14

4,92 0,06
3,83 0,04

0,97 20,47
0,98 38,94

Fonte: O autor.

Na Tabela 3, sdo apresentados os KPIs encontrados nos principais artigos de

referéncia, permitindo um comparativo com os resultados obtidos (benchmark).

Tabela 3 — Indicadores de desempenho para os principais artigos de referéncia (Benchmark).

Referéncia Método Aplicagao Métricas de Erro
[6] RNA Torque de saida MAPE: 3,33% (médio)
[7]1 RNA Torque de saida
[8] RNA Poténcia de saida RMSE: 0.0046

Rz 0.9952
MAE: 1,51%
[9] RNA Convlucional Torque de saida RMSE: 0.0018
em série temporal MAPE: 0,56%.
[10] GPR Emissodes de RMSE: 0.1907
gases MAE: 0.1364
R% 0.9518
(médio)
[11] GPR Sistema de RMSE: 128,01
admisséao de ar NRMSE: 0,06
Rz 0,92
(médio)
[12] GPR Emissdes de NRMSE: 4,80%
gases (médio)
[13] GPR Emissbes de NRMSE: 0,392%
gases (médio)
[17] GPR Torque de saida e RMSE: 6.1125
emissdes de MSE: 37.362
gases MAE: 2.8717
[18] GPR Massa de ar MAPE: 3.3%
estimada RMSE: 7.86

Fonte: O autor.

Os modelos obtidos com a Rede Neural Artificial (RNA) e a regressao com

Processo Gaussiano (GPR) apresentam excelente desempenho em comparagao aos
benchmarks, com MAPE de 3,12% e 3,14%, RMSE de 3,75 e 3,83, e R2 de 0,99 e

0,98, respectivamente. O coeficiente de determinagdo (R?) apresentou valores

proximos de 1 para ambos os modelos. O tempo de execugao das redes neurais foi

inferior a metade do tempo dos modelos baseados em GPR. Com base nos

resultados, a RNA destacou-se como a melhor solugdo, apresentando erros

comparaveis ao GPR, porém com menor tempo de execugao.



49/54

5. CONCLUSAO.

No decorrer deste trabalho, aplicaram-se técnicas de analise de dados e
aprendizado de maquina (Machine Learning) a um problema real, com o objetivo de

modelar o torque em motores de combustao interna.

As técnicas de anadlise de dados permitiram identificar janelas temporais
dentro dos ensaios em regime transitério, nas quais o motor apresentou
comportamento em regime permanente. Isso possibilitou a integracédo dos dados dos
ensaios realizados em regimes transitério e permanente em um unico conjunto de

dados.

Os modelos que utilizaram aprendizado de maquina apresentaram uma
capacidade de previsdo do torque com precisdo superior ao modelo padrdo, com um
erro aproximadamente cinco vezes menor. Foram testadas duas técnicas de
aprendizado de maquina: redes neurais artificiais e regressdo por processos
gaussianos. O resultado final indicou que a rede neural foi a melhor solugao,
apresentando um erro semelhante ao da regressao por processos gaussianos, porém
com um tempo de execucéao inferior a metade do tempo necessario para executar o

modelo de regressao por processos gaussianos.

Com base nos resultados obtidos, o trabalho desenvolvido pode ser ampliado
para a modelagem de emissbes de gases poluentes, como 6xidos de nitrogénio
(NOXx), hidrocarbonetos totais (THC - Total Hydrocarbons), didxido de carbono (CO,)
e monoxido de carbono (CO). Outra possibilidade de continuidade deste trabalho é a
inclusdo de novos dados, considerando motores de modelos e tecnologias diferentes,
como motores turboalimentados, incluindo os modelos de injecao direta (TSI -

Turbocharged Stratified Injection).
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ANEXO A - Equipamentos utilizados.

Dinambémetros

Fabricante: SCHENCK
Modelo: D 360 1E automatizado, soffware ECAT
Capacidade: 700Nm e 5000RPM

Tipo: hidraulico, passivo.

Fabricante: Antriebstechnik
Modelo: INDY 33/4P
Capacidade: 330kW e 8000RPM
Tipo: Elétrico, ativo.

Motor

Fabricante: Volkswagen

Modelo: EA 111 VHT (very high torque) 1.6L Total Flex Ano 2008.

Especificagbes: Alimentagdo: aspirado; 4 cilindros com 8 valvulas; taxa de
compressao: 12,1:1; didmetro/curso do pistdo: 76,5/86,9mm; cilindrada: 1.598 cm3;
Poténcia maxima a 5250RPM: 101,0cv (74 kW) com gasolina € 104,0cv (76 kW)
com etanol; Torque maximo a 2500 RPM: 151Nm com gasolina, 153Nm com etanol;

ECU

Fabricante: BOSCH/ETAS
Modelo: Flex ECU MED17ETAS-2.41

Software interno: FlexECU-G1 para gasolina

Software de calibragao e aquisi¢do da ECU

Fabricante: ETAS
Modelo: INCA V7 .1

Sensor Lambda

Fabricante: BOSCH
Modelo: LSU4.9

Tipo: Planar de banda larga (Planar wide band)

Medidor Lambda

Fabricante: ETAS
Modelo: LA4
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Sensor de Composicao

Fabricante: Continental

Modelo: Flex-fuel sensor generation Il

Sensor de fluxo de massa de ar (MAF)

Fabricante: MTE
Modelo: 7113

Sensor de pressao do escape

Fabricante: Wika
Modelo: P# 9013512.
Sensor de temperatura do escape, liquido de refrigeracao e do éleo
Fabricante: ETAS
Modelo: ES650
Tipo: termopar tipo K para a temperatura do escape, e termopar tipo J para a

temperatura liquido de refrigeracéo e do 6leo.

Hardware de simulagao

Fabricante: ETAS
Modelo: Core i7 3,44GHz —8GB RAM; placa de interface: ES5340.2 —ICE board

Software de controle da simulagcao

Fabricante: ETAS
Modelo: Experiment Environment e LabCar—IP V5.4

Caracteristicas dos combustiveis utilizados nos ensaios. Os ensaios foram
realizados no Laboratério de Combustiveis Liquidos do Instituto de Pesquisas
Tecnolodgicas do Estado de Sao Paulo. Os dados foram obtidos pelos métodos: ASTM
D2699, D2700, D4052 e ABNT: 13992, 15639 (E100) Tabela 4.

Tabela 4 — Dados do Laboratério de Combustiveis Liquidos

Mistura E27 E65 E100
Densidade a 20°C (Kg/m?) 753,2 778,44 805
Etanol anidro [Vol.%] 27 65 94,7
Agua [Vol. %] 05-0 2,3 5,3
indice antidetonante [IAD] 88 97 100
Relacdo estequiométrica 13,1 10 9




