o
]
=
(a B
o
<
Vg
LLY
=
LLY
=
<
o
W
oc
LLY
>
=
=

Instituto de Ciéncias Matematicas e de Computacao

Desenvolvimento de Madelos de Reconhecimento
Facial Baseados em Inteligéncia Computacional para

Mitigar Viés e Promover Equidade

Marcello Vinicius Alves Ozzetti Cruz
Monografia - MBA em Inteligéncia Artificial e Big Data

SAO CARLOS

ICMC
i






SERVICO DE POS-GRADUACAO DO ICMC-USP

Data de Depésito:

Assinatura:

Marcello Vinicius Alves Ozzetti Cruz

Desenvolvimento de Modelos de Reconhecimento Facial
Baseados em Inteligéncia Computacional para Mitigar
Viés e Promover Equidade

Monografia apresentada ao Departamento
de Ciéncias de Computacao do Instituto
de Ciéncias Matematicas e de Computacao,
Universidade de Sao Paulo - ICMC/USP,
como parte dos requisitos para obtencao
do titulo de Especialista em Inteligéncia
Artificial e Big Data.

Area de concentracio: Inteligéncia Artificial

Orientador: Prof. PhD. J6 Ueyama

Versao original

Sao Paulo
2024



AUTORIZO A REPRODUCAO E DIVULGACAO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO PARA FINS DE ESTUDO E
PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalogréfica elaborada pela Biblioteca Prof. Achille Bassi, ICMC/USP, com os dados
fornecidos pelo(a) autor(a)

Ozzetti, Marcello
S856m Desenvolvimento de Modelos de Reconhecimento Facial
Baseados em Inteligéncia Computacional para Mitigar Viés e
Promover Equidade / Marcello Vinicius Alves Ozzetti Cruz ;
orientador J6 Ueyama. — Sdo Paulo, 2024.
95 p. : il. (algumas color.) ; 30 cm.

Monografia (MBA em Inteligéncia Artificial e Big Data) —
Instituto de Ciéncias Mateméaticas e de Computagdo, Universi-
dade de Sao Paulo, 2024.

1. LaTeX. 2. abnTeX. 3. Classe USPSC. 4. Editoracdo de
texto. 5. Normalizacdo da documentacgdo. 6. Tese. 7. Disserta-
¢do. 8. Documentos (elaboragdo). 9. Documentos eletrénicos.
I. Ueyama, J6, orient. II. Titulo.




Marcello Vinicius Alves Ozzetti Cruz

Developing Computational Intelligence-Based Facial
Recognition Models to Mitigate Bias and Promote Equity

Monograph presented to the Departamento
de Ciéncias de Computacao do Instituto
de Ciéncias Matematicas e de Computacao,
Universidade de Sao Paulo - ICMC/USP, as
part of the requirements for obtaining the
title of Specialist in Artificial Intelligence and
Big Data.

Concentration area: Artificial Intelligence

Original version

Sao Paulo
2024






Este trabalho ¢é dedicado aos alunos da USP, como uma contribuicao
das Bibliotecas do Campus USP de Sao Carlos para o desenvolvimento

e disseminacdo da pesquisa cientifica da Universidade.






AGRADECIMENTOS

Agradeco a todos que de maneira direta, ou indireta me apoiaram na elaboracao
deste trabalho.






“O estudo, a busca da verdade e da beleza sao dominios
em que nos € consentido sermos criangas por toda a vida.”
Albert Finstein






RESUMO

OZZETTI, Marcello Desenvolvimento de Modelos de Reconhecimento Facial
Baseados em Inteligéncia Computacional para Mitigar Viés e Promover
Equidade. 2024. 95 p. Monografia (MBA em Inteligéncia Artificial e Big Data) - Instituto
de Ciéncias Matematicas e de Computacao, Universidade de Sao Paulo, Sao Paulo, 2024.

A répida evolugao da Inteligéncia Artificial (IA) e o crescente uso de sistemas de reconheci-
mento faciais tém gerado desafios significativos, especialmente em relacao aos preconceitos
algoritmicos que afetam a precisao e a equidade desses sistemas. Esta pesquisa abordou as
principais técnicas utilizadas no reconhecimento de biometria facial, focando especialmente
em redes neurais convolucionais (CNNs) e suas aplicagdes préticas. Foram discutidos
aspectos fundamentais como o pré-processamento de imagens, a extracao de caracteristicas
e o uso de arquiteturas avancadas, incluindo ArcFace e ResNet50. O objetivo foi testar
diferentes combinagoes de fungoes de perda e otimizadores para avaliar o impacto nas
métricas, principalmente a acuracia, levando em consideracao também o scheduler de
aprendizado. O uso de técnicas de data augmentation e o uso de conjuntos de dados

balanceados também foram aplicados.

Através da Arquitetura CNN LResNet50E-IR, foram realizados experimentos divididos em
diferentes configuracgoes, avaliando as func¢oes de perda CrossEntropyLoss e ArcFacelLoss
em combinagdo com os otimizadores SGD e AdamW. Os resultados revelaram que a
combinag¢ao do otimizador AdamW com a fungdo CrossEntropyLoss levou a um aumento
significativo na acuracia, em comparacao com outras configuragoes, atingindo variagoes de
0.58 a 0.95. Essas descobertas reforcam a importancia da escolha adequada de funcoes de

perda e otimizadores na construcao de modelos eficazes para reconhecimento facial.

Os resultados obtidos desta pesquisa ndo apenas contribuem para o avanco do conhecimento
académico, mas também tém implica¢oes praticas para a industria. As diretrizes e melhores
praticas identificadas podem ser aplicadas no aprimoramento da eficiéncia e precisao dos
sistemas de reconhecimento facial de aplicagoes comerciais, seguranca e de saide. O
desenvolvimento de solucoes justas e inclusivas ¢ crucial para garantir que os beneficios da

tecnologia sejam acessiveis a todos.
Por fim, este trabalho oferece uma visao ampla sobre os desafios e oportunidades no
campo do reconhecimento facial, contribuindo para um paradigma mais ético e inclusivo

na aplica¢ao da Inteligéncia Artificial (IA).

Palavras-chave: Inteligéncia Artificial. Redes Neurais. Viés em Biometria Facial.






ABSTRACT

OZZETTI, Marcello Developing Computational Intelligence-Based Facial
Recognition Models to Mitigate Bias and Promote Equity. 2024. 95 p.
Monograph (MBA in Artificial Intelligence and Big Data) - Instituto de Ciéncias
Matematicas e de Computacao, Universidade de Sao Paulo, Sao Paulo, 2024.

The rapid evolution of Artificial Intelligence (AI) and the growing use of facial recognition
systems have generated significant challenges, especially concerning algorithmic biases that
impact the accuracy and fairness of these systems. This research explored key techniques
used in facial biometrics recognition, with a particular focus on convolutional neural
networks (CNNs) and their practical applications. Fundamental aspects were discussed,
such as image preprocessing, feature extraction, and the use of advanced architectures,
including ArcFace and ResNet50. The aim was to test different combinations of loss
functions and optimizers to assess the impact on metrics, especially accuracy, while also
considering the learning scheduler. Data augmentation techniques and balanced datasets

were also applied.

Through the CNN architecture LResNet50E-IR, experiments were conducted across differ-
ent configurations, evaluating the loss functions CrossEntropyLoss and ArcFaceloss in
combination with the optimizers SGD and AdamW. The results revealed that the combi-
nation of the AdamW optimizer with the CrossEntropyLoss function led to a significant
increase in accuracy compared to other configurations, with variations reaching from 0.58
to 0.95. These findings underscore the importance of choosing appropriate loss functions

and optimizers in building effective facial recognition models.

The results obtained from this research not only contribute to the advancement of academic
knowledge but also have practical implications for the industry. The guidelines and
best practices identified can be applied to enhance the efficiency and accuracy of facial
recognition systems in commercial, security, and healthcare applications. Developing fair
and inclusive solutions is crucial to ensuring that the benefits of technology are accessible

to everyone.
Finally, this work provides a broad perspective on the challenges and opportunities in the

field of facial recognition, contributing to a more ethical and inclusive paradigm in the

application of Artificial Intelligence (AI).

Keywords: Artificial Intelligence. Neural Network. Bias in Facial Biometrics.
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1 INTRODUCAO

A répida evolugao da Inteligéncia Artificial (IA) e o crescente papel dos sistemas de
reconhecimento de imagem tém introduzido desafios significativos, destacando a necessidade
urgente de abordar os preconceitos inerentes a essas tecnologias. O reconhecimento facial
possui uma vasta gama de aplicagoes, desde seguranca e verificacdo de identidade até
comunicacao online, transacoes bancarias e entretenimento digital. Embora a pesquisa
em reconhecimento facial tenha comecado na década de 1960, como apontam Stan Z., Li
e Jain (Li; Jain, 2011), essa area ainda enfrenta desafios nao resolvidos. Recentemente,
os avancgos em modelagem e técnicas de andlise facial tém impulsionado o progresso,
mas o reconhecimento facial confiavel continua a ser um desafio para pesquisadores de
visao computacional e reconhecimento de padroes. Drozdowski (Drozdowski et al., 2020)
ressalta que "existem intimeras preocupacoes quanto a precisao e a justica dos sistemas

automatizados de tomada de decisdo".

Entre os grupos étnicos frequentemente afetados por vieses algoritmicos, as pessoas
negras sao particularmente impactadas. Buolamwini e Gebru (Buolamwini; Gebru, 2018)
destacam "disparidades substanciais na precisao da classificacdo de mulheres de pele mais
escura, mulheres de pele mais clara, homens de pele mais escura e homens de pele mais
clara em sistemas de classificacdo de género', sublinhando a necessidade urgente de que
empresas comerciais construam algoritmos de anélise facial que sejam verdadeiramente
justos, transparentes e responsaveis. Além disso, a sub-representacdo de comunidades
negras nos conjuntos de dados usados para treinar algoritmos perpetua desigualdades

sistémicas, conforme destacado em estudos como o de Martin (Martin, 2022).

Outro desafio no reconhecimento facial relaciona-se ao uso de tecnologias para
auxiliar pessoas com deficiéncia visual, especialmente em validagoes biométricas. Modelos
de reconhecimento facial prometem ajudar essas pessoas a realizarem transacoes e identifi-
cagoes utilizando biometria facial, conforme explorado no estudo de Jafri e Arabnia (Jafri;
Ali; Arabnia, 2013), que menciona uma variedade de softwares, mecanismos e artigos

relacionados.

As falhas nos modelos de reconhecimento facial frequentemente decorrem de dados
de treinamento distorcidos, incompletos, desatualizados, desproporcionais ou que carregam
preconceitos histéricos, o que compromete o treinamento do algoritmo e perpetua esses

preconceitos.

Esta dissertacao propoe abordar essas questoes, concentrando-se na construgao
de modelos de redes neurais para reconhecimento facial que visam mitigar o preconceito

contra pessoas negras e evitar falhas e vieses em individuos com deficiéncia visual. O
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desenvolvimento desses modelos nao s6 pretende aprimorar a precisao dos sistemas, mas
também garantir equidade, transparéncia e justica ao enfrentar os preconceitos embutidos,
beneficiando diversas aplicagoes do reconhecimento de imagem, como o aumento da acurédcia
em transacoes bancarias que requerem identificacao biométrica. Ao fazé-lo, esta pesquisa
busca contribuir para um paradigma mais ético e inclusivo na aplicagao da Inteligéncia
Artificial (IA), reconhecendo a importancia de solugoes tecnoldgicas que respeitem e

promovam a inclusao humana (Diakopoulos, 2016).

A pesquisa adotara uma abordagem experimental para desenvolver e avaliar modelos

de redes neurais que buscam mitigar vieses no reconhecimento facial. O processo incluira:

1. Coleta e preparagdo de um conjunto de dados diversificado, com énfase na represen-

tatividade de diferentes grupos étnicos e pessoas com deficiéncia visual.

2. Treinamento de modelos utilizando técnicas de aprendizado profundo, como redes

neurais convolucionais e arquiteturas especificas para mitigacao de preconceitos.

3. Avaliacao dos modelos em termos de precisao, equidade e justica, utilizando métricas

como taxa de erro e andlises de impacto de viés.

O trabalho utilizara as Redes Neurais Convolucionais (CNNs), abrangendo uma
série de técnicas e arquiteturas avancadas que busquem a eficiéncia na anélise de imagens.
Inicialmente, o pré-processamento de imagens devera incluir a normalizacao e padroni-
zacao dos dados para garantir que as entradas estejam em uma escala adequada para
o treinamento do modelo, além de técnicas de data augmentation para expandir artifi-
cialmente o conjunto de dados e prevenir overfitting. A extragao de caracteristicas sera
fundamental para identificar padroes visuais, bordas e texturas que sao essenciais para a
classificacao e reconhecimento. Arquiteturas avancadas como LeNet, AlexNet, VGGNet e
ResNet demonstram serem cruciais na evolugdo das CNNs, com inovagoes que melhoraram

significativamente a precisao e a capacidade de generalizagao dos modelos.

No contexto do reconhecimento de biometria facial, serd feita uma revisao das
técnicas classicas como Eigenfaces, Fisherfaces e LBPH, bem como os modelos avancados
com FaceNet, DeepFace, VGG-Face e ArcFace, destacados por suas abordagens inovadoras,
como o uso de perdas angulares e técnicas de alinhamento facial para melhorar a discrimi-
nacao e a precisao do reconhecimento facial. A implementacao pratica do reconhecimento
facial envolvera um pipeline que inclui detecc¢ao, alinhamento e extragao de caracteristi-
cas, utilizando ferramentas e frameworks como PyTorch, OpenCV, TensorFlow e Keras.
Esses recursos visao proporcionar flexibilidade e eficiéncia na construgao de sistemas de

reconhecimento facial robustos e escalaveis.

Esta dissertacao esta estruturada:
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Introducao: Contextualizagao do problema, objetivos e justificativa da pesquisa.

Fundamentacao Tedrica: Sintese dos estudos existentes sobre reconhecimento
facial, vieses algoritmicos e inclusao de pessoas com deficiéncia visual. Também sao

exploradas as Redes Neurais Artificiais aplicadas ao reconhecimento biométrico.

Metodologia: Descricao detalhada das etapas de desenvolvimento e avaliagao dos

modelos propostos.

Avaliacao Experimental: Apresentacao dos modelos construidos, resultados das

avaliagoes e discussao dos achados.

Conclusao: Resumo dos principais resultados, contribui¢oes da pesquisa e sugestoes

para trabalhos futuros.
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2 FUNDAMENTACAO TEORICA

Para entender o funcionamento das Redes Neurais Artificiais (RNAs), é essencial
compreender os conceitos basicos que relacionam o funcionamento do cérebro humano e
seus componentes, os neurdnios. Neste capitulo, sera realizada uma revisao sobre a formagao
das conexoes entre as células nervosas e as consideragoes sobre o modelo matematico que

serve de base para a aprendizagem de maquina e para as redes neurais.

Além disso, serao abordados os conceitos fundamentais das RNAs, incluindo suas
defini¢oes e diferentes arquiteturas. Também exploraremos as Redes Neurais Convolucionais
(CNNs) e seu papel crucial no reconhecimento e processamento de imagens, com foco

especifico na identificagao biométrica.

Para concluir o capitulo, analisaremos as tendéncias atuais, as ferramentas dis-
poniveis e as arquiteturas avancadas de redes neurais que estdao moldando o futuro da

inteligéncia artificial.

2.1 Redes Neurais Artificiais
2.1.1 Definicao

As Redes Neurais Artificiais (RNAs) sdo modelos computacionais inspirados no
funcionamento do cérebro humano, simulando uma rede de neurdnios conectados e orga-
nizados em camadas. Cada camada processa a informacao recebida e a transmite para
a proxima camada (Haykin, 2009). Embora nao existam evidéncias cientificas de que o
cérebro humano opere exatamente como os mecanismos de aprendizagem usados em RNAs
(Chollet, 2017), o estudo da Aprendizagem Profunda baseia-se em modelos e estruturas

matematicas que permitem compreender e reproduzir processos de aprendizagem.

A Aprendizagem Profunda (Deep Learning) é uma subéarea do aprendizado de
maquina que utiliza multiplas camadas consecutivas para melhorar a capacidade de
aprendizado e processamento de dados. O termo "aprendizado profundo'refere-se ao
numero de camadas em um modelo. Em geral, essas camadas sao compostas por Redes
Neurais Artificiais (Chollet, 2017).

Uma RNA é composta por camadas encadeadas que mapeiam os dados para
realizar predigoes com base em classes estabelecidas. Cada camada de entrada contém
neurdnios que codificam os valores de entrada e os transmitem como saida para as camadas
subsequentes. As camadas possuem parametros a serem estimados, conhecidos como pesos,
que armazenam o conhecimento adquirido durante o treinamento. Esses pesos sao ajustados
conforme as camadas extraem informagoes dos dados de entrada. Assim, a rede aprende

com os dados e consegue estimar uma saida, conforme ilustrado na Figura 1.



32

Figura 1 — Exemplo de uma RNA com 2 Camadas e 4 Entradas com 2 Saidas
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Fonte: Préoprio Autor

Figura 2 — Marcos no Desenvolvimento das Redes Neurais
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2.1.2 Breve Histérico do Desenvolvimento das RNAs

Para compreender o estado atual das RNAs, é fundamental conhecer a trajetoria
de sua evolugao. A Figura 2 resume alguns marcos na pesquisa e desenvolvimento das
Redes Neurais Artificiais, conforme explorado no livro da Academia de Aprendizagem
Profunda (Academy, 2018).

e 1943: Warren McCulloch e Walter Pitts (Mcculloch; Pitts, 1943) criam um modelo

computacional de redes neurais baseado em algoritmos de logica de limiar.

« 1957: Frank Rosenblatt (Rosenblatt, 1957) desenvolve o Perceptron, um algoritmo
de reconhecimento de padroes baseado em uma rede neural de duas camadas usando

operacoes de adicao e subtragao simples.

e 1980: Kunihiko Fukushima (Fukushima, 1980) propoe a Rede Neocognitron, uma

rede neural hierarquica e multicamada utilizada para reconhecimento de caligrafia e
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outros problemas de reconhecimento de padroes.

e 1989: Cientistas desenvolvem os primeiros algoritmos que utilizam redes neurais

profundas, embora ainda com tempos de treinamento elevados.

e 1992: Juyang Weng e Huang publicam o Cresceptron (Weng; Ahuja; Huang, 1992),
um método para reconhecimento automatico de objetos 3D a partir de dados desor-

denados.

e 2006: O termo Aprendizagem Profunda (Deep Learning) ganha popularidade apés
Geoffrey Hinton e Ruslan Salakhutdinov (Hinton; Salakhutdinov, 2006) demonstrarem

como uma rede neural de multiplas camadas pode ser treinada de forma eficiente.

e 2009: O NIPS Workshop sobre Aprendizagem Profunda para reconhecimento de

voz apresenta técnicas de aprendizado profundo que nao requerem pré-treinamento.

e 2012: Algoritmos de reconhecimento de padroes artificiais alcangam desempenho

comparavel ao humano em tarefas simples.

e 2015: O Facebook comeca a utilizar Aprendizagem Profunda para identificar auto-

maticamente usuarios em fotografias.

e 2016: O algoritmo AlphaGo da Google derrota o campeao mundial de Go, Lee Sedol,

em um torneio na Coreia do Sul.

e 2017: Empresas adotam Aprendizagem Profunda em diversas aplicacoes, impulsio-
nando pesquisas e tecnologias ligadas a Data Science, Inteligéncia Artificial e Big
Data.

A partir da década de 1980, houve uma revolucao nos estudos sobre redes neurais,
tanto pelas caracteristicas dos modelos propostos quanto pelas condigoes tecnoldgicas que
possibilitaram o desenvolvimento de arquiteturas neurais mais robustas e o uso de hardwares
mais avancados. As redes neurais profundas, também conhecidas como Aprendizagem

Profunda (Deep Learning), emergiram como uma evolugao natural das redes neurais.

2.1.3 O Neurdnio Biolégico e o Neurdnio Artificial

Tanto no livro de Haykin (Haykin, 2001) quanto na obra da Academia de Aprendi-
zagem Profunda (Academy, 2018), sdo apresentados os conceitos de neur6nio bioldgico e

neur6nio artificial, resumidos a seguir.

O neur6nio bioldgico é a unidade béasica do cérebro humano, responsavel pela
transmissao de informagoes. O cérebro é composto por bilhdes de neuronios interconectados,
formando uma vasta rede de comunicacao — a rede neural. Cada neuronio possui um corpo

celular, diversos dendritos e um axo6nio. Os dendritos recebem sinais elétricos de outros



34

Figura 3 — Representagao Simplificada do Neuronio Biolégico
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Fonte: (Academy, 2018)

neurdnios através das sinapses, que sao processados pelo corpo celular e transmitidos a
outros neurénios. Os sinais transmitidos sao impulsos elétricos, que constituem a mensagem

entre os neurdnios.

Os sinais elétricos trafegam pelos axonios e, se excederem um limiar de disparo
(threshold), sao transmitidos adiante; caso contréario, sao bloqueados. A transmissao entre
neurdnios ocorre através de substancias quimicas, como a serotonina. A cada conexao, ou
sinapse, é associado um peso, que multiplica o sinal transmitido e representa a memoria

do neurdnio.

Cada regiao do cérebro desempenha fungoes especificas, como processamento
auditivo, visual, e pensamento, utilizando redes interligadas que operam em paralelo.
A arquitetura neural varia conforme a funcao, com diferencas no niimero de neurdnios,
sinapses por neurénio, valores de threshold e pesos sinapticos. Esses pesos sao ajustados

ao longo da vida, num processo conhecido como aprendizado ou memorizagao.

Inspirado pelo neurdnio biolégico, foi desenvolvido um modelo matematico de
neurdnio que se tornou a base da IA. Esse neuronio artificial recebe um ou mais sinais de
entrada e gera um unico sinal de saida, que pode ser transmitido para outros neurénios
subsequentes, formando uma Rede Neural Artificial. As sinapses e axonios sao representados
matematicamente, com pesos sindpticos que determinam a intensidade da transmissao. O
neurdnio entao soma todos os sinais de entrada, gerando um resultado. Esse processo é
conhecido como funcao de combinagao. A seguir, a funcao de ativacao decide se o sinal

sera propagado ao longo da rede, conforme valores maximos e minimos pré-estabelecidos.

Os componentes matematicos envolvidos nesse processo incluem:

 Sinais de entrada { X1, X2, Xn }: Valores externos que alimentam o modelo.

« Pesos sinapticos { W1, W2, Wn }: Fatores que ponderam os sinais de entrada.

Esses valores sao ajustados durante o treinamento da rede.
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Figura 4 — Representagao Simplificada do Neurdnio Matematico
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o Combinador linear { ¥ }: Soma ponderada dos sinais de entrada, resultando em

um potencial de ativacao.

« Limiar de ativagdo { © }: Define o patamar necessirio para gerar um sinal de

ativagao.

« Potencial de ativagdo { v }: Resultado da diferenca entre o combinador linear e

o limiar de ativagdo. Se v > 0, o neurdnio é ativado; caso contrario, é inibido.
« Funcao de ativacgao { g }: Limita a saida do neurdnio a um intervalo conhecido.

o Sinal de saida { y }: Valor final, que pode ser usado como entrada para outros

neuronios subsequentes.

2.1.4 Rede Perceptron Simples e Rede Perceptron Multicamadas (MLP)

O modelo Perceptron foi desenvolvido por Frank Rosenblatt entre as décadas de 1950
e 1960 (Rosenblatt, 1957), inspirado nos trabalhos pioneiros de Warren McCulloch e Walter
Pitts (Mcculloch; Pitts, 1943). O Perceptron é um modelo matemético que recebe varias
entradas e gera uma unica saida binaria, sendo utilizado como um classificador linear em
problemas de aprendizado supervisionado. Rosenblatt construiu um Perceptron de camada
unica, o que limitou o modelo a classificacao linear e impossibilitou a modelagem hierarquica
de caracteristicas. Isso impediu que o Perceptron conseguisse realizar classificacdo nao
linear, como a fungao XOR, conforme demonstrado por Minsky e Papert (Minsky; Papert,
1969).

A Rede Perceptron Multicamadas (MLP) expande o Perceptron simples ao incluir
uma ou mais camadas ocultas entre a camada de entrada e a camada de saida (Russell
et al., 1995). Essas camadas intermedidrias permitem ao MLP modelar relagdes nao
lineares complexas. Com uma unica camada oculta, as MLPs sao capazes de aproximar
qualquer fungao continua (Haykin, 2009). MLPs sdo amplamente aplicados em problemas
de aprendizado supervisionado, onde sao treinados em conjuntos de dados rotulados para

aprender a modelar a relacao entre entradas e saidas.
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2.1.5  Aprendizado Supervisionado e Nao Supervisionado

O aprendizado supervisionado é uma abordagem de treinamento em que uma rede
neural ¢ ensinada usando um conjunto de dados rotulados. Cada exemplo de treinamento
consiste em uma entrada e uma saida conhecida. O objetivo é que o modelo aprenda a
mapear corretamente as entradas para as saidas, minimizando o erro entre suas previsoes

e os rétulos reais (Mohri; Rostamizadeh; Talwalkar, 2018).

Caracteristicas do aprendizado supervisionado:

e Objetivo: Predizer a saida correta para novas entradas, com base no conhecimento

adquirido durante o treinamento.

« Dados Rotulados: Utiliza um conjunto de dados de treinamento com saidas

conhecidas.

o Complexidade dos Dados: Geralmente envolve dados menos complexos, uma vez

que os réotulos guiam o aprendizado.

o Aplicabilidade: Classificagao de imagens, reconhecimento de fala, diagnésticos

médicos, previsao de pregos, entre outros.
Exemplos de algoritmos de aprendizado supervisionado:

» Redes Neurais Convolucionais (CNNs).

+ Redes Neurais Recorrentes (RNNs).

Por outro lado, o aprendizado nao supervisionado é uma técnica em que o modelo
é treinado com dados nao rotulados. O objetivo é identificar padrdes ou estruturas ocultas
dentro dos dados. O modelo aprende diretamente da estrutura dos dados, sem informacoes

prévias sobre as saidas desejadas (Mohri; Rostamizadeh; Talwalkar, 2018).
Caracteristicas do aprendizado nao supervisionado:
« Objetivo: Descobrir padroes, agrupamentos ou representacoes latentes nos dados.

« Dados Nao Rotulados: Utiliza um conjunto de dados de treinamento sem saidas

conhecidas.

« Complexidade dos Dados: Frequentemente aplicado a dados mais complexos e

estruturados intrinsecamente, sem orientagao explicita.

o Aplicabilidade: Agrupamento de clientes, compressao de dados, detec¢ao de ano-

malias, andlise de redes sociais, entre outros.
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Exemplos de algoritmos de aprendizado nao supervisionado:

o K-means.
« Redes Neurais Generativas Adversarias (GANs).

o Autoencoders.

Os modelos baseados em RNAs tém atraido atengao por resolverem problemas
complexos de TA. A partir do conceito de neurénio matematico, diversas arquiteturas
avancadas de Aprendizagem Profunda, como as Redes Neurais Convolucionais, exploradas

a seguir.

2.2 Arquiteturas Avancadas de Aprendizagem Profunda
2.2.1 Visao Geral

Existem diversas arquiteturas de redes neurais, cada uma projetada para atender
a finalidades especificas e resolver problemas distintos. Redes Neurais Convolucionais
(CNNs), por exemplo, sdo amplamente empregadas em tarefas de Visao Computacional,
enquanto Redes Neurais Recorrentes (RNNs) sdo mais adequadas para Processamento de
Linguagem Natural. A Figura 5 apresenta uma visao geral das principais arquiteturas de

redes neurais.

Os modelos de Aprendizagem Profunda sao caracterizados pelo uso de redes neurais
artificiais com multiplas camadas ocultas ou intermediarias, como discutido por Bengio
(Bengio, 2009). Nas subsegbes a seguir, exploraremos algumas das arquiteturas mais

relevantes para os objetivos desta dissertagao.

2.2.2  Redes Neurais Convolucionais (CNNs)

Uma Rede Neural Convolucional é uma classe de Rede Neural Artificial amplamente
utilizada em tarefas de processamento de imagens. No livro de Chollet (Chollet, 2017), sdo
apresentadas as quatro principais camadas de uma CNN: Convolucao, Pooling, Camada
Totalmente Conectada e Unidades Lineares Retificadas (do inglés Rectified Linear Units -

ReLU), como ilustrado na Figura 6.

As CNNs tém demonstrado grande eficacia em tarefas de processamento de imagens,
como evidenciado no trabalho de Krizhevsky, Sutskever e Hinton (Krizhevsky; Sutskever;
Hinton, 2012), que apresentou a AlexNet, uma arquitetura que venceu a competi¢ao
ImageNet de 2012. A importancia das CNNs também foi reforcada pelo trabalho de
Kaiming He, Xiangyu Zhang, Shaoqing Ren e Jian Sun (He et al., 2016), que introduziram
as Redes Residuais (ResNet), uma arquitetura que resolve problemas de degradacao em

redes muito profundas. Outro exemplo significativo é o trabalho de Karen Simonyan e



Figura 5 — Representagdo das Principais Redes Neurais Existentes
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Figura 6 — Arquitetura de uma rede CNN
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Andrew Zisserman (Simonyan; Zisserman, 2015), que apresentou a arquitetura VGG,
caracterizada pelo uso de convolu¢oes pequenas empilhadas para aumentar a profundidade

e a performance das CNNs em grandes conjuntos de dados de imagens.

As CNNs possuem varias caracteristicas e vantagens que as tornam extremamente

eficazes em tarefas de processamento de imagens, destacando-se:

1. Extracao Automatica de Caracteristicas: As CNNs utilizam camadas convolu-
cionais para extrair automaticamente caracteristicas relevantes das imagens. Esses
filtros convolucionais detectam bordas, texturas, padroes e outras caracteristicas
importantes sem necessidade de intervencao manual. Além disso, as camadas mais
profundas combinam caracteristicas simples detectadas nas camadas anteriores para

reconhecer formas e objetos mais complexos.

2. Reducao da Dimensionalidade: Camadas de Pooling sao utilizadas para reduzir a
dimensionalidade dos mapas de caracteristicas, o que ajuda a diminuir a complexidade

computacional e a evitar o overfitting, mantendo as caracteristicas mais importantes.

3. Invaridncia a Translagoes e Deformacgoes: Devido ao uso de filtros locais
aplicados em imagens, as CNNs sao naturalmente invariantes a translacoes, rotagoes

e pequenas deformacoes nas imagens, melhorando a robustez do modelo.

4. Compartilhamento de Pesos: Os mesmos filtros sao aplicados em diferentes
partes da imagem, permitindo a deteccao de caracteristicas independentemente da
posicao na imagem. Isso reduz significativamente o niimero de parametros a serem

aprendidos, tornando o treinamento mais eficiente.

5. Eficiéncia Computacional: As operagoes convolucionais sao eficientes e podem
ser aceleradas utilizando hardware especializado, como GPUs, permitindo treinar
redes profundas em grandes conjuntos de dados de imagens de maneira relativamente

rapida.
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Figura 7 — Exemplo de Imagem com Filtro Aplicado
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Figura 8 — Convolucao de uma Imagem
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6. Arquiteturas Profundas e Flexiveis: Arquiteturas como AlexNet, VGG, ResNet e
Inception oferecem modelos pré-treinados em grandes bases de dados como ImageNet,
facilitando o uso de CNNs em diversas aplicagoes de processamento de imagens por

meio de transfer learning, sem a necessidade de treinar redes do zero.

A seguir, exploraremos as quatro principais camadas de uma rede CNN.

2.2.2.1 Camadas Convolucionais

A camada convolucional é a principal responsavel pela extracao de caracteristicas
em uma CNN. A operagao de convolugao envolve a aplicagao de um filtro (ou kernel) sobre
a imagem. O filtro realiza uma multiplicacdo ponto a ponto com uma regiao da imagem, e
os resultados dessas multiplicagoes sao somados para produzir um tinico valor no Mapa de
Caracteristicas (ou Feature Map). A Figura 7 ilustra um exemplo de uma imagem 5x5

pizels com um filtro 3x3 aplicado.

A operacao de convolugao é realizada deslizando o filtro por toda a imagem,

resultando em um Mapa de Caracteristicas. A Figura 8 demonstra o processo de convolugao.
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Figura 9 — Mapa de Caracteristicas Utilizados na Convolugao
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Fonte: Adaptado de (DERTAT, 2017)

Figura 10 — Convolugao de um Filtro Sendo Aplicado em uma Imagem RGB
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Fonte: Adaptado de (DERTAT, 2017)

O Mapa de Caracteristicas é gerado ao aplicar o filtro em cada posicao da imagem.

A Figura 9 mostra como esse Mapa é produzido durante o processo de convolugao.

Embora os exemplos anteriores mostrem a convolu¢ao em duas dimensoes (2D),
as CNNs também podem operar com volumes tridimensionais (3D). A Figura 10 ilustra
a aplicagdo de um filtro 5x5x3 em uma imagem RGB 32x32x3. A profundidade do filtro
deve corresponder a profundidade da imagem na qual esta sendo aplicado. Além disso, a
Figura 11 demonstra como dois filtros distintos produzem dois Mapas de Caracteristicas

diferentes.

2.2.2.2 Camadas de Pooling

As camadas de Pooling tém a funcao principal de reduzir a dimensionalidade das
ativagoes, o que ajuda a diminuir a complexidade computacional e a prevenir overfitting.
O tipo mais comum de Pooling é o max pooling, que seleciona o maior valor dentro da
area onde o filtro é aplicado. A Figura 12 ilustra a aplicacao de um filtro mazx pooling 2x2
em uma imagem 4x4. Cada cor representa uma regiao diferente onde o filtro foi aplicado e

seu resultado.
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Figura 11 — Exemplo CNN com Dois Filtros
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Figura 12 — Max Pooling Aplicado em uma Imagem
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Fonte: Adaptado de (DERTAT, 2017)

2.2.2.3 Camadas Totalmente Conectadas

As camadas Totalmente Conectadas (Fully Connected) sao responsaveis por pro-
cessar as ativagoes finais da CNN e transforma-las em um vetor. Apés a tdltima camada
convolucional, os dados sao achatados em um vetor e processados por uma ou mais camadas
totalmente conectadas. A saida da ultima camada totalmente conectada é um vetor com
uma dimensao igual ao niimero de classes no problema de classificacao, que é entdo usado

pelo classificador para gerar a predicao final.

2.2.2.4 Aprendizado por Transferéncia

Quando nao hé uma base de dados suficientemente grande para treinar uma CNN
do zero, técnicas de aprendizado por transferéncia podem ser usadas. Essas técnicas
aproveitam modelos pré-treinados em grandes bases de dados para auxiliar na classificagao
de novas bases de imagens. De acordo com Li, Wu e Gao (Li; Wu; Gao, 2023), as duas
principais técnicas de aprendizado por transferéncia sao o Ajuste Fino (fine tuning) e a

Extragdo de Caracteristicas (feature extraction).

Na técnica de Ajuste Fino, uma CNN pré-treinada é retreinada com uma nova base
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de imagens. Esta abordagem é baseada na premissa de que as caracteristicas extraidas pela
rede pré-treinada sao tteis também para a nova tarefa, necessitando apenas de ajustes
nos pesos das camadas finais. A vantagem dessa técnica é que as primeiras camadas, que
capturam caracteristicas mais gerais, ja estao treinadas, permitindo que o treinamento se
concentre nas ultimas camadas que sao mais especificas para a nova base de dados. Isso

reduz a necessidade de um grande nimero de amostras e o tempo de treinamento.

Na técnica de Extracao de Caracteristicas, a CNN pré-treinada ¢ utilizada apenas
como um extrator de caracteristicas. As ativagdes de qualquer camada podem ser transfor-
madas em vetores de caracteristicas para serem usados por um classificador, geralmente
utilizando as ativagoes das camadas totalmente conectadas, que ja sao vetores. Esta técnica
é aplicada quando se tem uma base de dados muito pequena, tornando inviavel o uso de
Ajuste Fino, ou quando nao se dispoe de recursos computacionais robustos para treinar
uma CNN.

2.2.3 Fungoes de Ativacao

A fungao de ativagdo é um componente matematico crucial nas Redes Neurais
Artificiais (RNAs) que possibilita a resolugdo de problemas complexos. De acordo com
Glorot, Xavier e Yoshua (Glorot; Bengio, 2010), varias fungdes de ativagao, incluindo
Sigmoide, Tanh e ReLU, sao amplamente utilizadas e discutidas em termos de suas

vantagens e desvantagens em redes profundas.

2.2.3.1 Sigmoide

A fungao Sigmoide é amplamente utilizada como fungao de ativacao e é definida

pela férmula:

1
o)== (2.1)
A principal caracteristica da fungdo Sigmoide é sua nao linearidade, o que permite

que redes com multiplos neurénios ativados pela fun¢ao Sigmoide produzam saidas nao
lineares. A funcao varia entre 0 e 1 e possui um formato de '"S". Contudo, a funcao
Sigmoide apresenta alguns problemas, como a saturacao dos gradientes, onde os gradientes
se aproximam de zero, dificultando o aprendizado da rede. Outro problema que a funcao

Sigmoide possui é que os valores variam apenas entre 0 a 1.

2.2.3.2 Tanh

A fungao Tanh ¢é similar a fungdo Sigmoide, mas com uma variagao que escala a

salda para o intervalo de -1 a 1. A fungdo Tanh é definida por:
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et —e "t

Tanh(x) = +7
et +e "

(2.2)

A funcao Tanh resolve o problema da saturacao dos valores de saida ao permitir
que os valores variem entre -1 e 1. Isso ajuda a centralizar os dados em torno de zero e
pode melhorar o desempenho da rede ao evitar que todas as saidas tenham o mesmo sinal.

Assim como a Sigmoide, a fun¢ao Tanh é continua e diferencidvel em todos os pontos.

2.2.3.3 ReLU

A fungdo ReLU, ou Unidade Linear Retificada, é definida por:

ReLU(x) = max(0, z) (2.3)

ReLU é amplamente utilizada em projetos de redes neurais devido a sua simplicidade
e eficiéncia. A principal vantagem de utilizar a funcao ReLU sobre outras fungoes de
ativacao é que ela nao ativa todos os neurénios no mesmo instante. Isso significa que
apenas alguns neurénios sao ativados, tornando a rede mais eficiente. Contudo, ReLLU

também pode apresentar problemas com os gradientes que se deslocam em diregao a 0.

2.2.4 Meétricas

Nesta subsecao, sao apresentadas as métricas de classificagao consideradas para
avaliar o desempenho das redes neurais escolhidas. As formulas para o calculo dessas mé-
tricas foram obtidas da obra de Hackeling (Hackeling, 2017). Para facilitar o entendimento,

as siglas utilizadas nas férmulas sdo definidas a seguir:
« TP (do inglés True Positives): Exemplos positivos corretamente classificados
como positivos pelo modelo.

« FN (do inglés False Negatives): Exemplos positivos incorretamente classificados

como negativos pelo modelo.

« FP (do inglés False Positives): Exemplos negativos incorretamente classificados

como positivos pelo modelo.

« TN (do inglés True Negatives): Exemplos negativos corretamente classificados

como negativos pelo modelo.

2.2.4.1 Acurédcia

A acuracia mede a proporcao de previsoes corretas feitas pelo modelo em relacao

ao numero total de previsoes. A formula para o calculo da acuracia é:
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Numero de predigoes corretas TP+TN
Ntmero total de predicoes ~ TP+ TN + FP + FN

Acuracia = (2.4)

2.2.4.2 Precisao

A precisao (ou precision) é a razao entre o nimero de verdadeiros positivos e o

total de previsoes positivas feitas pelo modelo. A férmula para o calculo da precisao é:

Verdadeiros Positivos TP

P 1 > pr— p—
recisao Verdadeiros Positivos + Falsos Positivos TP + FP

(2.5)

2.2.4.3 Cobertura

A cobertura (ou recall) é a razao entre o nimero de verdadeiros positivos e o
total de exemplos que realmente pertencem a classe positiva. A formula para o calculo da

cobertura é:

Verdadeiros positivos B TP
Verdadeiros positivos + Falsos negativos TP 4+ FN

Cobertura = (2.6)

2.2.4.4 Log Loss

Log Loss ¢ uma funcao de perda utilizada para avaliar a performance de modelos

de classificagao, especialmente em redes neurais artificiais (RNAs). A férmula da log loss é:

1N
v 2|

=1

Log Loss = — yilog(p:) + (1 — i) log(1 — pi)] (2.7)

o N: Numero total de exemplos.

;. Valor verdadeiro da classe para o i-ésimo exemplo (1 se for a classe positiva, 0 se

for a classe negativa).

» p;: Probabilidade prevista de que o i-ésimo exemplo pertenca a classe positiva.

Entre as métricas selecionadas, a log loss é de especial relevancia, pois as redes
neurais buscam minimizar essa métrica durante o processo de treinamento, refletindo

diretamente na precisao das previsoes.
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Figura 13 — Gradiente Descendente
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Fonte: (Raschka; Mirjalili, 2017)

2.2.4.5 Qwverhead

O calculo do overhead envolve uma combinacao de medigoes praticas, analise de
c6digo e entendimento das operagoes adicionais especificas que estao sendo realizadas. Esta
métrica é crucial para otimizar a eficiéncia da RNA e garantir um desempenho adequado

para as aplicagoes desejadas. A féormula do overhead é:

Tempo Total de Execugao

Overhead = -
Tempo de Execucao Util

2.2.5 Otimizadores

Um dos objetivos dos algoritmos de aprendizado de maquina supervisionados é
otimizar o processo de redugao da fungao de custo, também chamada de funcao J (Raschka;
Mirjalili, 2017). Reduzir a fungao J é fundamental para otimizar a rede, permitindo que ela
identifique os pesos que melhor representam a relagdo entre os dados. Esses pesos formam
o modelo preditivo, que possibilita a rede fazer predi¢oes ao utilizar novos conjuntos de
dados. Para descobrir esses pesos, a rede ¢é treinada para fazer predigdoes o mais proximas
possiveis dos valores reais. A funcao de custo log loss é utilizada para medir o quao erradas

sao as previsoes:

1

v 2|

> [yilog(9i) + (1 — wi) log(1 — §s)] (2.9)

=1

O algoritmo de otimizagao para encontrar os pesos ¢ o Gradiente Descendente
(GD). A Figura 13 demonstra que, para cada iteracdo, é dado um passo na diregdo oposta
ao gradiente, onde o tamanho do passo é determinado pela taxa de aprendizado (Raschka;
Mirjalili, 2017).
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Com a descida do gradiente, sao realizados pequenos passos em dire¢ao ao minimo
global. Nesse processo, a rede ajusta os pesos em etapas que reduzem o erro. Como o
caminho mais rapido estda na direcao mais ingreme, as etapas tomadas devem estar na
direcdo que minimiza o erro. O GD atualiza os pesos, dando um passo na dire¢ao oposta

ao gradiente AJ(w) da fungao de custo J:

w=w+ Aw (2.10)

Onde a mudanca de peso AJ(w) é definida como o gradiente negativo multiplicado

pela taxa de aprendizado —n:

Aw = —nAJ(w) (2.11)

Para calcular o gradiente da funcao de custo J, é necessario calcular a derivada
da funcao de custo em relagao a cada peso wj. Para isso, as redes utilizam um algoritmo
chamado Backpropagation, que otimiza o processo de calculo das derivadas, tornando a
rede mais eficiente. Embora o GD apresente bons resultados, ele possui custos elevados
para atualizar os pesos quando o conjunto de dados é muito grande, pois é preciso reavaliar
todo o conjunto de dados de treinamento para cada passo em direcdo ao minimo global
(Raschka; Mirjalili, 2017).

Uma alternativa ao GD é o Gradiente Descendente Estocéstico (do inglés Stochastic
Gradient Descent - SGD), que, ao invés de atualizar os pesos com base na soma dos
erros acumulados sobre todos os dados, aplica o GD a amostras aleatorias de dados de
treinamento. A vantagem é que a convergéncia da rede é alcancada mais rapidamente
através de pequenos lotes, devido as atualizagbes de peso serem mais frequentes (Raschka,;

Mirjalili, 2017). Os parametros do SGD que ajudam no treinamento da rede sdo:

o Taxa de aprendizado: Indica a velocidade com que o otimizador ajusta os pesos

da rede neural.

e Momentum: Refere-se a quantidade de inércia que o gradiente acumula, ajudando

a suavizar o processo de atualizagdo dos pesos.

o Decay: Utilizado para reduzir gradualmente a taxa de aprendizado conforme o

treinamento avanca.

Além dos otimizadores ja mencionados, o AdamW combina os beneficios do método
de descida de gradiente adaptativo, ajustando a taxa de aprendizado para cada parametro
com base nas estimativas dos momentos de primeira e segunda ordem, e o decaimento

de peso (weight decay), que é implementado de forma mais direta e eficiente do que no
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Adam tradicional (Loshchilov; Hutter, 2018). O AdamW utiliza um decaimento de peso
explicito, que age como regularizador, penalizando grandes valores de pesos e prevenindo o
sobreajuste. Essa abordagem tem se mostrado vantajosa em termos de generalizagdo, pois

melhora o desempenho em conjuntos de dados complexos e em redes neurais profundas
(Loshchilov; Hutter, 2018).

Nesta dissertacao, foram considerados os otimizadores SGD e AdamW, com o

objetivo de determinar qual dos dois é mais eficaz na classificagdo de imagens faciais.

2.3 Processamento de Imagem com CNNs

Neste capitulo, exploraremos o funcionamento do processamento de imagens utili-
zando redes convolucionais (CNNs), desde as etapas de pré-processamento, com técnicas
de padronizacao de dados e data augmentation, até a extragdo de caracteristicas, passando

por arquiteturas avancadas.

2.3.1 Pré-processamento de Imagens

2.3.1.1 Normalizacao e Padronizacao de Dados

A normalizagao e a padronizagdo sdo técnicas essenciais no pré-processamento de
imagens para CNNs, permitindo que os dados de entrada estejam em uma escala adequada

para o treinamento eficiente dos modelos.

Segundo LeCun et al. (LeCun et al., 1998), a técnica de normalizagao refere-se ao
ajuste dos valores dos pizels para um intervalo especifico, geralmente entre 0 e 1. Essa
técnica reduz a disparidade entre os valores dos pizels, facilitando a convergéncia dos
algoritmos de aprendizado de maquina. A normalizacao pode ser realizada dividindo os

valores dos pizels pelo valor maximo possivel.

Por outro lado, Ioffe e Szegedy (Ioffe; Szegedy, 2015) destacam que a técnica
de padronizacao envolve transformar os dados para que tenham média zero e variancia
unitaria. Isso é particularmente 1til para algoritmos que assumem uma distribui¢ao normal
dos dados de entrada. A padronizagao é realizada subtraindo-se a média e dividindo pelo

desvio padrao dos valores dos pizels.

2.3.1.2 Técnicas de Data Augmentation

As técnicas de data augmentation tém como objetivo aumentar o conjunto de
dados de treinamento, criando variagoes artificiais das imagens de entrada. Isso contribui
para melhorar a generalizagao dos modelos e prevenir o overfitting. Abaixo, sdo descritas

algumas formas de realizar essa ampliacao dos dados.

Simard et al. (Simard; Steinkraus; Platt, 2003) discutem a técnica de rotacao e

translacao, que consiste em aplicar pequenas rotacoes e translagoes as imagens, ajudando o



49

modelo a aprender a reconhecer objetos, como faces, independentemente de sua orientacao

ou posicao.

Krizhevsky et al. (Krizhevsky; Sutskever; Hinton, 2012) introduzem a técnica
de espelhamento e inversao, onde imagens espelhadas horizontalmente sao incluidas no

conjunto de dados, visando ensinar o modelo a reconhecer faces em diferentes direcoes.

Howard (Howard, 2013) propoe a técnica de mudangas de iluminacao, que altera
a intensidade da luz e a exposicado nas imagens para tornar o modelo mais robusto a

diferentes condicoes de iluminagao.

Por fim, Bishop (Bishop, 1995) apresenta a técnica de adigao de ruido, que consiste
em adicionar ruido as imagens para melhorar a robustez do modelo contra interferéncias e

imperfei¢oes nas imagens de entrada.

2.3.1.3 Técnicas de Undersampling

A técnica de undersampling é amplamente utilizada em aprendizado de maquina
para lidar com conjunto de dados desbalanceados, onde a presenca dominante de uma ou
mais classes pode causar vieses nos modelos, resultando em um desempenho insatisfatorio
para as classes minoritarias. O método mais simples, o undersampling aleatério, reduz o
numero de instancias da classe majoritaria para equilibrar a distribuicao entre as classes,
mas pode levar a perda de informagoes cruciais, nos estudos de Gustavo e Ronaldo (Batista;
Prati; Monard, 2004).

No reconhecimento facial, onde o desbalanceamento demografico é comum, o under-
sampling pode ajudar a evitar que modelos favorecam grupos majoritarios, contribuindo
para resultados mais justos. No entanto, a aplicacao dessa técnica deve ser cuidadosa, pois
a remocao inadequada de dados pode introduzir vieses negativos e reduzir a capacidade

de generalizacao do modelo.

2.3.2 Extracao de Caracteristicas

A extracao de caracteristicas é o processo de identificar e quantificar aspectos
relevantes das imagens, que sao usados pelos modelos de aprendizado para fazer previsoes.
Este processo envolve a identificagdo de padroes, bordas, texturas e outras caracteristicas
visuais importantes que podem ser usadas para diferenciar entre diferentes classes de

imagens, conforme explorado por Turk e Pentland (Turk; Pentland, 1991).

A deteccao de bordas, texturas e padroes é uma parte crucial na extracao de

caracteristicas, permitindo que o modelo capture detalhes essenciais da imagem:

e Deteccao de Bordas: Métodos como Sobel, Canny e Laplacian sdao utilizados para
identificar contornos e formas nas imagens, ajudando a isolar objetos de interesse do

fundo.
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e Deteccao de Texturas: Filtros de Gabor e transformadas wavelet sao comumente

usados para capturar texturas em imagens, identificando padroes repetitivos ou

estruturados que distinguem diferentes superficies e materiais.

Deteccao de Padroes: A transformada de Fourier e a Analise de Componentes
Principais (PCA) sdo técnicas usadas para identificar padroes repetitivos nas imagens,
auxiliando na simplificagao de dados complexos e na extracao de caracteristicas

globais.

2.3.3 Arquiteturas Avangadas

A seguir, sdo exploradas algumas arquiteturas que marcaram importantes avangos

no desenvolvimento de CNNs, cada uma trazendo inovagoes que melhoraram significativa-

mente o desempenho em tarefas de reconhecimento de imagens:

LeNet (LeCun et al., 1998): Uma das primeiras CNNs, desenvolvida para o
reconhecimento de digitos manuscritos, estabelecendo as bases para o uso de redes

convolucionais em tarefas de visao computacional.

AlexNet (Krizhevsky; Sutskever; Hinton, 2012): Introduziu o uso de ReLU e
dropout, melhorando significativamente a precisao em grandes conjuntos de dados,

como o ImageNet, e tornando-se um marco no campo de redes profundas.

VGGNet (Simonyan; Zisserman, 2015): Caracteriza-se pelo uso de muitas
camadas convolucionais pequenas (3x3) para capturar caracteristicas complexas,
oferecendo uma estrutura mais uniforme e simplificada, que facilitou a exploracao de

redes mais profundas.

ResNet (He et al., 2016): Introduziu conexdes residuais, que permitem a criagao
de redes muito profundas sem sofrer com o problema do vanishing gradient, possibi-
litando a construgao de redes com centenas de camadas sem perda significativa de

desempenho.

Neste trabalho, foi considerada a LResNetb0E-IR para reconhecimento facial, pelos

seguintes fatores:

o Arquitetura ResNet: A LResNetb0E-IR é baseada na arquitetura ResNet, que

introduz conexoes residuais para mitigar o problema do desaparecimento do gra-
diente em redes muito profundas. O nimero '50" indica que essa rede possui 50
camadas, proporcionando uma profundidade consideravel que permite a captura de

caracteristicas complexas em imagens faciais.
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e Desempenho em Reconhecimento Facial: Redes baseadas em ResNet, como
a LResNetbOE-IR, sao amplamente reconhecidas por seu desempenho superior em
tarefas de reconhecimento facial. Elas sdo capazes de aprender representagoes faciais
robustas e discriminativas, resultando em alta precisao em diversas condigoes, como
variagoes de iluminacao, angulos e expressoes, conforme explorado no estudo de
Deng et al. (Deng et al., 2019).

o Eficiéncia Computacional: Apesar de sua profundidade, a LResNet50E-IR é
relativamente eficiente em termos computacionais. Ela oferece um bom equilibrio
entre precisao e uso de recursos, crucial para aplicagoes em tempo real, como

autenticagdo biométrica, explorado no estudo de Zhang et al. (Zhang et al., 2018).

o Adaptagao e Customizacao: A LResNet50E-IR pode ser facilmente adaptada
ou ajustada para diferentes contextos de aplicacao, seja em termos de adaptacao
ao hardware disponivel ou customizac¢ao para um conjunto de dados especificos,
garantindo flexibilidade para diferentes projetos, conforme discutido por Cao et al.

(Cao et al., 2018).

No contexto de redes neurais convolucionais das arquiteturas avancadas é adicionada
a funcao de perda CrossEntropyLoss, amplamente utilizada para medir a divergéncia
entre a distribuicdo prevista e a distribuicao real, facilitando o treinamento de modelos de
classificagao (Sterr, 2020).

2.4 Reconhecimento de Biometria Facial
2.4.1 Introducgao a Biometria Facial

A biometria facial refere-se ao uso de caracteristicas fisicas e comportamentais
do rosto para o reconhecimento automatico de individuos. Este método de identificacao
biométrica é amplamente utilizado devido a sua conveniéncia e precisao, conforme explorado
no artigo de Jain et al. (Jain; Ross; Prabhakar, 2004).

O reconhecimento facial é aplicado em diversas areas, destacando-se:

e Seguranca: Utilizado em vigilancia, monitoramento e controle de acesso, garantindo
a identificagao e o rastreamento de individuos em tempo real, como discutido no
livro de Zhao et al. (Zhao et al., 2003).

o Autenticacao: Implementado em dispositivos méveis, sistemas bancérios e outras
plataformas para autenticar usuarios, garantindo seguranga e conveniéncia, conforme

explorado por Frischholz et al. (Frischholz; Dieckmann, 2000).
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2.4.2 Técnicas Classicas vs Técnicas Baseadas em CNN

Antes do advento das CNNs, diversos métodos classicos eram amplamente utilizados

para reconhecimento facial, cada um com suas caracteristicas e limitagoes:

o FEigenfaces (Turk; Pentland, 1991): Utiliza a Andlise de Componentes Principais
(PCA) para reduzir a dimensionalidade das imagens, representando rostos em um
espaco de caracteristicas de menor dimensao, facilitando a distin¢ao entre diferentes

identidades faciais.

o Fisherfaces (Belhumeur; Hespanha; Kriegman, 1997): Baseado na Ana-
lise Discriminante Linear (LDA), este método maximiza a separagio entre classes
enquanto minimiza a variacao dentro das classes, tornando-o mais robusto em

comparacao com Figenfaces.

« LBPH (Local Binary Patterns Histogram) (Ahonen; Hadid; Pietikdinen,
2006): Utiliza padroes binarios locais para capturar texturas e caracteristicas locais

do rosto, sendo especialmente eficaz em condig¢oes de variacao de iluminagao.

Com o advento das CNNs, o reconhecimento de biometria facial evoluiu significati-

vamente, oferecendo vantagens substanciais:

e Precisao: CNNs permitem a extracao de caracteristicas mais complexas e discrimi-
nativas das imagens faciais, melhorando a precisao do reconhecimento (Krizhevsky;
Sutskever; Hinton, 2012).

« Robustez: Alta assertividade mesmo com variacoes de iluminagao, pose e expressao

facial, como demonstrado por Parkhi et al. (Parkhi; Vedaldi; Zisserman, 2015).

o Escalabilidade: As CNNs podem ser treinadas em grandes conjuntos de dados,
permitindo a construgdo de modelos robustos e escalaveis (LeCun; Bengio; Hinton,
2015).

2.4.3 Modelos Avancados

A seguir, sao explorados os modelos avancados de reconhecimento facial, com uma

descricao de seu funcionamento e suas vantagens.

2.4.3.1 FacelNet

O FaceNet, desenvolvido pelo Google (Schroff; Kalenichenko; Philbin, 2015), utiliza
uma CNN para aprender uma representacao embutida de imagens faciais. A abordagem de

triplet loss agrupa imagens faciais em tripletos (dncora, positivo e negativo) para aprender
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uma métrica de similaridade. Isso permite que o FaceNet projete imagens faciais em
um espago de caracteristicas de alta dimensao, onde distancias euclidianas entre vetores

correspondem a similaridades faciais.

As principais vantagens deste modelo incluem sua alta precisao em benchmarks e a
eficiéncia na comparacao rapida de caracteristicas faciais, tornando-o ideal para sistemas

de reconhecimento em larga escala (Schroff; Kalenichenko; Philbin, 2015).

2.4.3.2 DeepFace

O DeepFace, desenvolvido pelo Facebook (Taigman et al., 2014), utiliza uma rede
neural convolucional profunda para aprender representacoes faciais. Com varias camadas
convolucionais e camadas totalmente conectadas, o modelo é treinado em um grande
conjunto de dados de rostos e utiliza uma técnica de alinhamento facial para melhorar a

precisao do reconhecimento.

Suas principais vantagens sao a alta precisao em condigoes de variagao de pose
e iluminacdo, e a técnica de alinhamento facial, que aumenta a robustez do modelo em

diferentes condigoes de entrada (Taigman et al., 2014).

2.4.3.3 VGG-Face

O VGG-Face, desenvolvido pelo Visual Geometry Group (Parkhi; Vedaldi; Zisser-
man, 2015) da Universidade de Oxford, é baseado na arquitetura VGGNet. Este modelo
¢é treinado com um grande conjunto de dados de imagens faciais e utiliza uma rede con-
volucional profunda com camadas uniformes de convolucao e pooling. A arquitetura do

VGG-Face é conhecida por sua simplicidade e eficacia em extrair caracteristicas faciais
detalhadas.

As principais vantagens deste modelo incluem sua robustez, capturando caracteris-
ticas faciais detalhadas e robustas, e sua flexibilidade, permitindo facil adaptacao para

diferentes tarefas de reconhecimento facial (Parkhi; Vedaldi; Zisserman, 2015).

2.4.3.4 ArcFace

O ArcFace foi projetado para superar as limitagoes dos modelos anteriores, especi-
almente em termos de discriminacdo e robustez em reconhecimento facial (Deng et al.,
2019).

Os desafios dos modelos anteriores incluem:

o FaceNet: A perda de triplet pode nao capturar suficientemente a separacao entre

classes faciais, especialmente em cenarios com grande variagao.
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o DeepFace: Embora a técnica de alinhamento melhore a precisao, a rede pode

enfrentar dificuldades com variagoes extremas de pose e iluminacao.

e VGG-Face: Embora seja detalhado, o modelo pode nao oferecer a separagao angular

necessaria para distinguir identidades faciais de maneira robusta.

O ArcFaceLoss é a técnica avancada projetada para melhorar o desempenho do
reconhecimento facial, introduzindo um termo de margem angular na funcao de perda.
Isso resulta em representagoes faciais mais discriminativas e, consequentemente, em uma

maior acuracia no reconhecimento.

Nesta dissertacao, foi utilizado a Arquitetura LResNet50E-IR com ArcFace e a

técnica ArcFacelLoss, que se destaca pelas seguintes caracteristicas:

o Perda Angular: Introduz a técnica de perda angular, que melhora a separagao entre
identidades faciais ao penalizar a proximidade angular de vetores de caracteristicas.
Isso resolve o problema de discriminacao que os modelos anteriores nao abordavam

de forma tao eficaz.

o Desempenho Melhorado: A abordagem de margem angular aditiva do ArcFace
permite que ele alcance melhores resultados em benchmarks de reconhecimento facial,

superando os modelos anteriores em termos de precisao e robustez (Deng et al.,
2019).

2.5 Implementacao Pratica

Neste capitulo final, sdo exploradas as técnicas de implementacao de reconhecimento
facial, detalhando um pipeline estruturado que abrange as etapas de deteccao, alinhamento,
extracao de caracteristicas e reconhecimento. As ferramentas utilizadas incluem TensorFlow,
Keras, PyTorch e OpenCV.

2.5.1 Detecgao e Alinhamento Facial

A deteccao facial é a primeira etapa do pipeline de reconhecimento facial, cujo

objetivo é localizar e extrair as regidoes do rosto em uma imagem.

O método adotado nesta dissertagao foi o MTCNN (Multi-task Cascaded Convoluti-
onal Networks), conforme proposto nos trabalhos de Zhang et al. (Zhang et al., 2016) e Sun
et al. (Sun; Wang; Tang, 2016). O MTCNN é um conjunto de modelos de Deep Learning
baseados em redes neurais convolucionais (CNN) projetados para realizar deteccao de
faces em imagens. Ele opera em trés estagios hierarquicos: P-Net, R-Net e O-Net, cuja

arquitetura esta ilustrada na Figura 14.

Resumidamente, essa arquitetura possui trés saidas principais:
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Figura 14 — Arquitetura de P-Net, R-Net, e O-Net
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Fonte: (Zhang et al., 2016)

« Bounding Boxes: Caixas delimitadoras que indicam onde as faces estao localizadas
na imagem. As bounding boxes sdo normalizadas para garantir a consisténcia e

facilitar a comparacao entre diferentes escalas de imagens.

» Niveis de Confianga (Scores): Valores que indicam o nivel de confianga do modelo

de que a caixa gerada corresponde a uma face.

o Pontos-Chave Faciais: Coordenadas dos pontos-chave faciais, como olhos, nariz e

boca, que sdo cruciais para o alinhamento facial.

2.5.2 Ferramentas e Frameworks

Abaixo, sao descritas as ferramentas e frameworks selecionados para o desenvolvi-
mento desta dissertacao, sendo essas as principais bibliotecas de Deep Learning usadas na

implementacao de modelos de reconhecimento facial.

o PyTorch: Desenvolvida pelo Facebook, ¢ uma biblioteca de deep learning ampla-
mente reconhecida por sua flexibilidade e eficiéncia tanto em pesquisa quanto em
producao (Paszke et al., 2019).

e OpenCV (Open Source Computer Vision Library): Biblioteca amplamente
utilizada para tarefas de visdo computacional, incluindo o pré-processamento de
imagens para reconhecimento facial (Bradski, 2000). Fornece diversas fungoes para
detecgao e alinhamento facial, além de outras operacoes de pré-processamento, como

redimensionamento, rotacao e filtragem de imagens.

o TensorFlow: Desenvolvida pelo Google, é uma biblioteca de cédigo aberto para

aprendizado de maquina, amplamente usada para construir e treinar redes neurais
profundas (Abadi et al., 2016).
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« Keras: API de alto nivel para redes neurais que funciona sobre o TensorFlow,

simplificando a construgao e o treinamento de modelos (Chollet et al., 2015).
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3 METODOLOGIA

Para alcancar os objetivos desta dissertacao, sera adotado o processo de Extracao
de Conhecimento, também conhecido como KDD (Knowledge Discovery in Databases).
Este processo envolve uma série de etapas essenciais para extrair e validar informagoes

valiosas a partir de bases de dados (Fayyad; Piatetsky-Shapiro; Smyth, 1996).

3.1 Selecao e Analise do Conjunto de Dados

O objetivo desta dissertacao é desenvolver modelos de redes neurais para o re-
conhecimento de faces com énfase na mitigagao de viés. Para isso, é crucial garantir a
equidade do conjunto de dados utilizado. Inicialmente, serao selecionadas Redes Neurais
Convolucionais (CNNs) para a classificagdo de imagens e comparagido com alguns conjuntos
de dados. Para tanto, ¢ fundamental buscar conjuntos que incluam imagens representativas
de diversas caracteristicas faciais humanas. O conjunto de dados selecionado para este

estudo é:

« FairFace: Contendo mais de 100.000 imagens de 7.000 individuos, o FairFace inclui
anotagoes detalhadas sobre atributos demograficos como raca, género e idade. Este
conjunto visa fornecer uma base de dados mais equilibrada e representativa para
treinar e avaliar algoritmos de reconhecimento facial, contribuindo para a mitigacao
de viés e aprimoramento da precisdo em diferentes grupos demogréficos (Karkkainen;
Joo, 2021).

A andlise do conjunto de dados serd tanto quantitativa quanto qualitativa. A
avaliacao quantitativa envolve a analise estatistica das métricas de desempenho dos modelos,
como acuracia, precisao e recall. A avaliacdo qualitativa, por outro lado, examinara a
capacidade dos modelos em lidar com a diversidade e complexidade dos dados, observando
como o viés é mitigado e se h4 uma melhora na generalizacao do reconhecimento facial em

diferentes grupos demograficos.

Ainda sobre a avaliagdo qualitativa, serdo consideradas as 7 racas presentes no

conjunto de dados FairFace:

« Black: Refere-se a individuos com ascendéncia africana ou afrodescendente, incluindo
pessoas de diversas regioes da Africa, América Latina e outros lugares, com uma

ampla variedade de tons de pele e caracteristicas faciais.

« East Asian: Inclui pessoas de ascendéncia predominantemente asiatica oriental,

com origem em paises como China, Japao, Coreia e Mongoélia, entre outros. Caracte-
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risticas faciais comuns podem incluir formato de olhos com dobras epicanticas e pele

geralmente clara a moderada.

« Indian: Refere-se a individuos do subcontinente indiano, incluindo India, Paquistéo,
Bangladesh, Sri Lanka e dreas adjacentes. Pessoas deste grupo podem apresentar

tons de pele variados e caracteristicas faciais associadas a essas regioes.

o Latino Hispanic: Engloba individuos com ascendéncia latino-americana ou hispa-
nica, incluindo regides da América Latina, Caribe e areas de lingua espanhola. As

caracteristicas variam bastante, refletindo a diversidade genética da regiao.

« Middle Eastern: Refere-se a pessoas de origem no Oriente Médio, incluindo regioes
como Arabia Saudita, Ira, Iraque, Siria, Egito e paises adjacentes. Individuos desse

grupo possuem caracteristicas variadas, com tons de pele de claro a moderado.

o Southeast Asian: Inclui individuos de origem do sudeste asiatico, de paises como
Tailandia, Vietna, Indonésia, Filipinas, Malasia e outros. Esse grupo apresenta uma

ampla diversidade de tons de pele e caracteristicas faciais.

« White: Refere-se a pessoas com ascendéncia europeia, incluindo regioes da Europa,
América do Norte e outras areas. Caracteristicas faciais podem variar, com tons de

pele geralmente claros a moderados.

3.2 Pré-Processamento dos Dados

O pré-processamento dos dados é essencial para garantir a equidade e a eficicia
dos modelos. Nesta etapa, as imagens serao normalizadas utilizando o algoritmo MTCNN
para detectar caixas delimitadoras dos rostos e marcos faciais, como olhos, nariz e boca.
As imagens serao entao cortadas, alinhadas (por meio de transformagao de similaridade)
e redimensionadas para 224 x 224 pixels. O conjunto de dados sera dividido em partes
para treino, validagao e teste. Além disso, sera aplicado um balanceamento no conjunto de

dados, utilizando a técnica de undersampling para a menor classe.

A implementacao do modelo utilizard a linguagem de programagcao Python (Foun-
dation, 2023) e as bibliotecas Keras e PyTorch. Essas bibliotecas oferecem modularidade e
extensibilidade, suportando CNNs tanto em CPU (Central Processing Unit) quanto em
GPU (Graphics Processing Unit) (Chollet et al., 2015). As imagens, originalmente em
formato RGB, terao seus valores de pixels normalizados para mean=/0.485, 0.456, 0.406] e
std=[0.229, 0.224, 0.225]. Para equilibrar o desempenho e a complexidade computacional,
serd adotada a arquitetura LResNet50E-IR, uma variante do ResNet, projetada com

ArcFace.
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3.3 Treinamento do Modelo

Durante o treinamento, serao definidos os pesos das redes e os parametros de
treinamento, como o nimero de épocas e o tamanho dos lotes (batch size). O tamanho
do batch sera ajustado para 128. Serao utilizados os otimizadores SGD e AdamW. Para
agendamento das épocas, a escolha do scheduler é crucial para o desempenho do modelo,

portanto serd considerada as duas técnicas destacadas abaixo.

e OneCycleLR: O OneCycleLR ajusta a taxa de aprendizado ao longo de um ciclo
de treinamento, comeg¢ando com um aumento gradual até um pico e, em seguida,
diminuindo rapidamente, conforme descrito por Smith (Smith, 2017). Essa estratégia

ajuda a evitar minimos locais e melhora a convergéncia.

o CosineAnnealingWarmRestarts: O CosineAnnealingWarmRestarts é uma abor-
dagem que utiliza um padrao cosseno para resfriar a taxa de aprendizado, reiniciando
em intervalos regulares, o que também pode ser benéfico para a exploracao e a con-
vergéncia do modelo, como destacado por Loshchilov e Hutter (Loshchilov; Hutter,
2017).

3.4 Andlise de Desempenho do Modelo Treinado

Apods o treinamento, serdo avaliadas as métricas de desempenho das redes, incluindo
recall, acuracia, precisao, overhead, F1-Score e log loss. Essas métricas sao cruciais para
problemas de classificagdo. A rede com menor log loss e menor overhead sera selecionada
como a mais eficiente para o reconhecimento facial, considerando tanto o conjunto de

dados equilibrado quanto a mitigacao de viés.

A acuracia no reconhecimento de imagens pode variar dependendo do conjunto
de dados e da arquitetura do modelo. Abaixo estao alguns benchmarks modernos em

reconhecimento facial:

o LFW (Labeled Faces in the Wild): Um dos benchmarks mais tradicionais para
reconhecimento facial é o LFW. Modelos modernos alcancam acuracias superiores a

99% neste conjunto de dados. Por exemplo, o FaceNet alcangou uma acuricia de
99.63% (Schroff; Kalenichenko; Philbin, 2015).

o MegaFace: Este ¢ um benchmark mais desafiador que avalia a capacidade do modelo
em reconhecer faces em grandes conjuntos de dados. Modelos de ultima geragao com
o ArcFace, alcancam acurdcias em torno de 97% neste conjunto de dados (Deng et
al., 2019).

o CASIA-WebFace: Outro benchmark importante, com o VGG-Face alcancando uma
acuracia de 96.5% neste conjunto de dados (Parkhi; Vedaldi; Zisserman, 2015).
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o MS-Celeb-1M: Este é um dos maiores conjuntos de dados de reconhecimento facial,
onde modelos com o ArcFace alcangam acurédcias superiores a 99% (Deng et al.,

2019).

A acuracia dos modelos treinados no FairFace apresentam acuracias que variam
dependendo da complexidade e da arquitetura do modelo. Trabalhos que utilizaram redes
neurais avancadas, como a ResNet-50 ou variantes de FaceNet, relataram acuracias entre
95% e 98% (Karkkainen; Joo, 2021).

Portanto, como sucesso deste trabalho devemos considerar a acuracia entre 95% a

98%, dentro dos grupos geograficos estudados.
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4 AVALIACAO EXPERIMENTAL

A avaliagdo experimental se divide em duas etapas, sendo que na primeira etapa,
foi realizada uma andlise detalhada do conjunto de dados FairFace, abrangendo a analise
estatistica, a verificacao de valores nulos e a distribuicao das classes. Ja na segunda etapa,
foram aplicados os algoritimos de treinamento no conjunto de dados, realizando variagoes
nos hiper-parametros e analisando os resultados.

4.1 Selecao e Analise do Conjunto de Dados
Tamanho Conjunto de Dados

A tabela 1 representa o tamanho do conjunto de dados utilizado nos experimentos.

Tabela 1 — Tamanho Conjunto de Dados

Linhas Colunas

97698 )

Resumo Estatistico

A tabela 2 apresenta um resumo estatistico do conjunto de dados utilizado nos

experimentos.
Tabela 2 — Resumo dos Dados
file age gender race service_ test
count 97698 97698 97698 97698 97698
unique 97698 9 2 7 2
top train/1.jpg  20-29 Male White False
freq 1 28898 51778 18612 52284

Verificando Valores Nulos

A tabela 3 apresenta a analise de valores nulos por coluna do conjunto de dados

utilizado nos experimentos.

A Figura 15 apresenta um dashboard analitico das classes presentes no conjunto de

dados original.

Com o objetivo de mitigar viés no reconhecimento de faces, a classe race foi
selecionada para analise. A partir da andalise dessa classe, identificou-se uma discrepancia
amostral. Portanto, foi aplicado o balanceamento utilizando a técnica de undersampling

na menor classe.
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Tabela 3 — Valores Nulos por Coluna

Colunas Valores Nulos

file

age

gender

race

service test

S OO OO

Figura 15 — Analitico das Classes Presentes no Conjunto de Dados Original
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Quantidade de Amostras Por Classe Antes do Balanceamento

A tabela 4 apresenta a quantidade de amostrar por classe antes do processo de

balanceamento do conjunto de dados utilizado nos experimentos.

Tabela 4 — Contagem de Amostrar Antes do Balanceamento

Race Count
White 18612
Latino Hispanic 14990
East Asian 13837
Indian 13835
Black 13789

Southeast Asian 12210
Middle Eastern 10425

Quantidade de Amostras Por Classe Depois do Balanceamento

A tabela 5 apresenta a quantidade de amostrar por classe antes do processo de

balanceamento do conjunto de dados utilizado nos experimentos.
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Tabela 5 — Contagem de Amostrar Apés o Balanceamento

Race Count
White 10425
Latino Hispanic 10425
East Asian 10425
Indian 10425
Black 10425

Southeast Asian 10425
Middle Eastern 10425

Figura 16 — Analitico das Classes Presentes no Conjunto de Dados Balanceado
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A Figura 16 mostra o dashboard analitico das classes no conjunto de dados balan-

ceado.

Amostras da Classe Race

A Figura 17 traz uma amostra de cada uma das 7 ragas presentes no conjunto
de dados balanceado, destacando a proximidade visual dos tons de pele e caracteristicas

faciais das classes Southeast Asian, East Asian, Indian e Latino Hispanic.

4.2 Pré-Processamento dos Dados

Realizaram-se dois experimentos para preparar as imagens para o treinamento do

modelo.

Experimento I - Rotagoes e Detecgao com MTCNN: Imagens foram rotacionadas
em 45 graus utilizando a biblioteca OpenC'V. Foram analisadas 20 imagens com 8 angulos
diferentes, totalizando 160 imagens. O algoritmo MTCNN detectou 102 faces, resultando em
uma taxa de deteccao de 63%. A Figura 18 ilustra uma amostra das imagens rotacionadas.
A Figura 19 mostra alguns exemplos do desempenho do MTCNN na detecgio de faces em

imagens rotacionadas.
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Figura 17 — Amostra das Ragas do Conjunto de Dados
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Figura 18 — Exemplo de Uma Imagem Rotacionada em 45 Graus
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Fonte: Proprio Autor
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Figura 19 — Exemplo de 3 Imagens Detectadas pelo MTCNN
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Figura 20 — Densidade das Faces Detectadas pelo Angulo Rotacionado
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A andlise mostra que a taxa de falha é maior para dngulos préximos a 90 e 180
graus, com maior sucesso nos angulos de 0 e 360 graus, conforme demonstrado na Figura

20. Também foi observada uma menor taxa de deteccao para faces da classe Black.

Experimento II - Pés-Tratamento com MTCNN: As imagens que passaram por
rotacao, alinhamento e redimensionamento foram novamente processadas pelo MTCNN
para assegurar a qualidade e assertividade da detecgao. A Figura 21 exibe os cinco marcos
faciais de duas imagens amostrais. A andlise confirmou que nao houve perda de qualidade

ou assertividade apds o pré-processamento.
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Figura 21 — Exemplo dos Cinco Marcos Faciais de Duas Imagens Amostrais

Fonte: Proprio Autor

O pré-processamento incluiu a identificagao de faces com MTCNN, o recorte, o
alinhamento e o redimensionamento para 224 x 224 pixels. As imagens foram normalizadas

para o intervalo [-1.0, 1.0] nos conjuntos de treinamento e validagao.

4.3 Treinamento do Modelo

O modelo de rede neural convolucional (CNN) foi treinado utilizando a variante
LResNetb0E-IR, uma arquitetura baseada em ResNet-50 que incorpora melhorias para
reconhecimento facial, como maior capacidade de extragao de caracteristicas discriminativas.
No treinamento foram conduzidos alguns experimentos, com o objetivo de avaliar o

desempenho do modelo sob diferentes configuragoes de funcao de perda e otimizacao:

« Experimento 1: Utilizacdo da funcao de perda CrossEntropyLoss combinada

com o otimizador SGD, utilizando o conjunto de dados balanceado e o scheduler
OneCycleLR.

o Experimento 2: Utilizacao da fungao de perda ArcFaceLoss combinada com o oti-

mizador SGD, utilizando o conjunto de dados balanceado e o scheduler OneCycleLLR.

« Experimento 3: Utilizacao da funcao de perda CrossEntropyLoss combinada com
o otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler
OneCycleL.R.

o Experimento 4: Utilizacdo da func¢ao de perda ArcFacelLoss combinada com o
otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler OneCy-
cleLR.
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« Experimento 5: Utilizacdo da fung¢ao de perda CrossEntropyLoss combinada com
o otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler

CosineAnnealingWarmRestarts.

o Experimento 6: Utilizacao da funcao de perda ArcFacelLoss combinada com o
otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler Cosi-

neAnnealingWarmRestarts.

« Experimento 7: Utilizacdo da funcao de perda CrossEntropyLoss combinada com
o otimizador AdamW, utilizando o conjunto de dados balanceado, filtrado pelas
classes alvo "White" e "Black" e o scheduler OneCycleLR.

« Experimento 8: Utilizacao da funcao de perda ArcFacelLoss combinada com o
otimizador AdamW, utilizando o conjunto de dados balanceado, filtrado pelas classes
alvo "White" e "Black" e o scheduler OneCycleLR.

o Experimento 9: Utilizacdo da funcao de perda CrossEntropyLoss combinada com
o otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler

OneCycleLLR, ainda com a mudanga do Dropout para p=0.5.

o Experimento 10: Utilizacdo da funcao de perda ArcFacelLoss combinada com
o otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler

OneCyclelLR, ainda com a mudancga do Dropout para p=0.5.

« Experimento 11: Utilizacao da funcao de perda CrossEntropyLoss combinada
com o otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler

OneCycleLLR, considerando 40 épocas.

Para o otimizador SGD, foi adotado um valor de momentum de 0.9, que acelera
o processo de convergéncia em diregoes relevantes ao suavizar oscilagoes. Além disso,
foi utilizado um decaimento de peso (weight decay) de 0.0005, um fator que atua como
regularizador, prevenindo sobre-ajuste ao controlar a magnitude dos pesos durante o

treinamento.

Para o otimizador AdamW, foi utilizado um valor de weight decay de 0.0005, que
atua como regularizador, prevenindo o sobre-ajuste ao penalizar grandes valores de pesos
durante o treinamento. O AdamW combina as vantagens do método de descida de gradiente
adaptativo, ajustando a taxa de aprendizado para cada parametro com base em estimativas
de momentos de primeira e segunda ordem, e o decaimento de peso de maneira mais eficaz.
Essa abordagem ajuda a melhorar a generalizacao do modelo, tornando-o menos suscetivel

ao sobre ajuste em dados complexos.

Para o scheduler OneCycleLLR, foi adotada uma abordagem em que a taxa de

aprendizado comega em um valor baixo, aumenta rapidamente até um valor méaximo de
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0.01, e depois decresce gradualmente até o final do treinamento. Esse ciclo tinico acelera
a convergéncia inicial ao permitir uma exploracao mais ampla do espaco de parametros,
evitando que o modelo fique preso em minimos locais. Ao mesmo tempo, a reducao da
taxa de aprendizado ao longo das tultimas iteracoes melhora a estabilidade do modelo,
garantindo que ele refine seus pesos de forma mais precisa. Esse comportamento ciclico
otimiza o uso da taxa de aprendizado, resultando em uma convergéncia mais rapida e

eficaz.

Para o scheduler CosineAnnealingWarmRestarts, foi adotada uma estratégia em
que a taxa de aprendizado segue uma fungao cosseno decrescente ao longo de cada ciclo,
com reinicializagoes periddicas de 8 épocas para um valor mais alto. Essas reinicializagoes,
conhecidas como warm restarts, permitem que o modelo escape de minimos locais, dando ao
treinamento uma nova oportunidade de explorar solugoes melhores. A taxa de aprendizado
decresce suavemente até um valor minimo, o que ajuda na estabilidade do treinamento,
enquanto os restarts permitem uma recuperacao eficiente de regides promissoras no espago

de parametros.

O conjunto de dados foi dividido em trés subconjuntos: 80% dos dados foram
destinados ao treinamento, 10% para validacao, e os 10% restantes foram reservados para
testes finais. A divisao foi feita de forma estratificada, garantindo que a distribuicao das

classes fosse balanceada em cada um dos subconjuntos.

O batch size escolhido para ambos os experimentos foi de 128, uma configuracao
que equilibra o uso eficiente da memoéria da GPU e a estabilidade do gradiente durante
a otimizagao. A escolha desse tamanho também leva em consideragao a capacidade da

infraestrutura utilizada.

4.3.1 Ambiente de Treinamento

O ambiente de treinamento foi configurado utilizando recursos de computacao em
nuvem da Microsoft Azure, devido a sua escalabilidade e suporte avancado para workloads
intensivas em GPU, como aquelas utilizadas em modelos de aprendizado profundo (Azure,
2024). A maquina virtual selecionada para os experimentos foi configurada com as seguintes

especificagoes:

o« Tamanho da maquina virtual: Standard NC6s_v3, que oferece 6 ntcleos de
CPU, 112 GB de RAM e um disco de 736 GB. Este tipo de maquina é otimizado
para workloads que exigem alto desempenho computacional, particularmente para

operacoes de treinamento de modelos com GPU.

« Unidade de processamento grafico (GPU): 1 NVIDIA Tesla V100.
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Além dos recursos computacionais, o conjunto de dados original utilizado foi
armazenado em um bucket do servigo de armazenamento de objetos da Amazon Web
Services (AWS), o Amazon S3. Essa solugao foi escolhida pela sua confiabilidade e alta
disponibilidade, garantindo acessibilidade e velocidade no carregamento dos dados (Services,
2024).

A utilizacao de recursos de nuvem para esse projeto se justifica pela flexibilidade na
configuracao de maquinas virtuais e pelo suporte ao uso de hardware especializado, como
GPUs, essenciais para o treinamento eficiente de redes neurais profundas. Esses ambientes
sao amplamente utilizados na comunidade académica e na industria devido ao seu suporte

robusto e escalavel para pesquisa e desenvolvimento em inteligéncia artificial.

Abaixo sdo apresentadas as versoes dos aplicativos, softwares e principais bibliotecas

utilizadas:

» Sistema Operacional: Linux 5.15.0-1064-azure

e Processor: x86 64

e Python Version: 3.9.19

« PyTorch Version: 2.4.1

o Numpy Version: 1.23.5

« Pandas Version: 1.3.5

e Torchvision Version: 0.14.1

4.3.2 Classe LResNetb0E-IR

Essa classe define a arquitetura do modelo LResNet50E__IR. O cédigo desenvolvido
utiliza a ResNetb0 pré-treinada do torchvision, alterando a tltima camada para se adequar
ao numero de classes do conjunto de dados, através da camada fc da ResNet50. O self.fc é a
nova camada final que serd usada para mapear os vetores para as classes. Um componente
adicional de Dropout com p=0.2 foi utilizado para regularizar o treinamento, reduzindo

overfitting.
4.3.3 Acesso ao Codigo Fonte

Todo o cdodigo fonte esté disponivel no GitHub (Ozzetti, 2024).
4.4 Analise de Desempenho do Modelo Treinado

Abaixo sdo apresentados os testes realizados, bem como os resultados apurados,

considerando a variacao das fungoes de perda, dos otimizadores e dos schedullers.
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Os graficos das métricas de treinamento possuem 4 quadrantes, onde o primeiro
quadrante apresenta o grafico de "Loss over Epochs" que representa o erro médio do
modelo apos cada época de treinamento. Uma diminui¢ao constante indica que o modelo
estd se ajustando aos dados. O segundo quadrante apresenta o grafico de "Accuracy over
Epochs" que mede a porcentagem de previsoes corretas, e um aumento ao longo do tempo
sugere que o modelo esta aprendendo a classificar corretamente as amostras. No terceiro
quadrante apresenta o grafico "Precision over Epochs" que foca nas previsoes corretas
de uma classe especifica em relagao ao total de previsoes feitas para essa classe, sendo
util para problemas onde classes desbalanceadas ou erros de classificagdo tém diferentes
impactos. Por fim, o ultimo quadrante apresenta o grafico da "Log Loss over Epochs"
que penaliza previsoes de baixa confianga mesmo quando corretas, avaliando o quanto o

modelo ¢é capaz de atribuir probabilidades corretas as classes.

Para cada experimento também serd explorada a Matriz de Confusao, que representa
uma ferramenta essencial na avaliagdo de modelos de classificacao, especialmente em
Inteligéncia Artificial, fornecendo uma visao detalhada do desempenho do modelo ao
comparar previsoes com valores reais. Organizada em uma matriz quadrada, ela apresenta
quatro métricas principais: Verdadeiros Positivos (VP), Falsos Positivos (FP), Verdadeiros
Negativos (VN) e Falsos Negativos (FN). Esses valores ajudam a compreender onde o
modelo acerta e onde comete erros, permitindo o calculo de métricas como acuracia,
precisao, recall e F1-score. Em contextos praticos, a andlise da Matriz de Confusao é
crucial para identificar classes que o modelo pode ter dificuldades em distinguir, auxiliando
na calibracao do modelo e no aprimoramento de sua performance em problemas especificos

de classificacao.

4.4.1 Resultado Experimento 1

Neste experimento foi utilizada a funcao de perda CrossEntropyLoss combinada com

o otimizador SGD, utilizando o conjunto de dados balanceado e o scheduler OneCycleLLR.

4.4.1.1 Meétricas de Treinamento

Na Figura 22 sao apresentadas as métricas do treinamento.

Pode ser

4.4.1.2 Matriz de Confusao

Na Figura 23 ¢é apresentada a matriz de confusao do treinamento.

4.4.1.3 Relatorio de Classificagao

Na tabela 6 é apresentado o relatério de classificagao.
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Figura 22 — Métricas do Experimento 1
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Figura 23 — Matriz de Confusao do Experimento 1
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Classe Precisao | Recall | F1-Score | Support
Black 0.85 0.86 0.86 1005
s East Asian 0.71 0.72 0.71 1005
Indian 0.73 0.72 0.72 1005
Latino Hispanic 0.50 0.52 0.51 1005
Middle Eastern 0.68 0.70 0.69 1005
Southeast Asian 0.60 0.60 0.60 1005
White 0.71 0.64 0.68 1006
Acuracia 0.68

Macro Avg 0.68 0.68 0.68 7036
Weighted Avg 0.68 0.68 0.68 7036

Tabela 6 — Relatério de Métricas de precision, recall, F1-score, e support do Experimento
1

Figura 24 — Métricas do Experimento 2
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4.4.2 Resultado Experimento 2

Neste experimento foi utilizada a fun¢ao de perda ArcFaceLoss combinada com o

otimizador SGD, utilizando o conjunto de dados balanceado e o scheduler OneCycleLR.

4.4.2.1 Meétricas de Treinamento

Na Figura 24 sao apresentadas as métricas do treinamento.

4.4.2.2 Matriz de Confuséao

Na Figura 25 ¢é apresentada a matriz de confusao do treinamento.

4.4.2.3 Relatorio de Classificagao

Na tabela 7 é apresentado o relatério de classificagao.



73

Figura 25 — Matriz de Confusao do Experimento 2
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Classe Precisao | Recall | F1-Score | Support
Black 0.79 0.80 0.80 1005
East Asian 0.64 0.67 0.65 1005
Indian 0.67 0.68 0.68 1005
Latino Hispanic 0.41 0.41 0.41 1005
Middle Eastern 0.67 0.58 0.62 1005
Southeast Asian 0.54 0.53 0.53 1005
White 0.59 0.64 0.61 1006
Acuracia 0.61

Macro Avg 0.62 0.61 0.61 7036
Weighted Avg 0.62 0.61 0.61 7036

Tabela 7 — Relatério de Métricas de precision, recall, F1-score, e support do Experimento
2
4.4.3 Resultado Experimento 3

Neste experimento foi utilizada a funcao de perda CrossEntropylLoss combinada
com o otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler
OneCycleLR.

4.4.3.1 Meétricas de Treinamento

Na Figura 26 sao apresentadas as métricas do treinamento.

4.4.3.2 Matriz de Confusao

Na Figura 27 é apresentada a matriz de confusao do treinamento.
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Figura 28 — Métricas do Experimento 4
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4.4.3.3 Relatério de Classificagao

Na tabela 8 é apresentado o relatério de classificagao.

Classe Precisao | Recall | F1-Score | Support
Black 0.85 0.84 0.85 1005
East Asian 0.72 0.72 0.72 1005
Indian 0.72 0.71 0.72 1005
Latino Hispanic 0.49 0.54 0.51 1005
Middle Eastern 0.65 0.64 0.65 1005
Southeast Asian 0.62 0.62 0.62 1005
White 0.67 0.65 0.66 1006
Acuracia 0.67

Macro Avg 0.68 0.67 0.67 7036
Weighted Avg 0.68 0.67 0.67 7036

Tabela 8 — Relatério de Métricas de precision, recall, F1-score, e support do Experimento
3

4.4.4 Resultado Experimento 4

Neste experimento foi utilizada a funcao de perda ArcFaceloss combinada com o

otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler OneCycleLR.

4.4.4.1 Meétricas de Treinamento

Na Figura 28 sao apresentadas as métricas do treinamento.

4.4.4.2 Matriz de Confusao

Na Figura 29 é apresentada a matriz de confusdao do treinamento.
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Figura 29 — Matriz de Confusao do Experimento 4
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4.4.4.3 Relatorio de Classificagao

Na tabela 9 é apresentado o relatério de classificagao.

Classe Precisao | Recall | F1-Score | Support
Black 0.84 0.79 0.81 1005
East Asian 0.62 0.68 0.65 1005
Indian 0.64 0.65 0.65 1005
Latino Hispanic 0.34 0.36 0.35 1005
Middle Eastern 0.54 0.55 0.55 1005
Southeast Asian 0.53 0.48 0.50 1005
White 0.59 0.57 0.58 1006
Acuracia 0.58

Macro Avg 0.58 0.58 0.58 7036
Weighted Avg 0.58 0.58 0.58 7036

Tabela 9 — Relatorio de Métricas de precision, recall, F1-score, e support do Experimento
4

4.4.5 Resultado Experimento 5

Neste experimento foi utilizada a fun¢ao de perda CrossEntropyLoss combinada
com o otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler
CosineAnnealingWarmRestarts.

4.4.5.1 Meétricas de Treinamento

Na Figura 30 sao apresentadas as métricas do treinamento.
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Figura 30 — Métricas do Experimento 5
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Figura 31 — Matriz de Confusao do Experimento 5
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4.4.5.2 Matriz de Confusao

Na Figura 31 ¢ apresentada a matriz de confusdo do treinamento.

4.4.5.3 Relatério de Classificacao

Na tabela 10 é apresentado o relatorio de classificagao.

4.4.6 Resultado Experimento 6

Neste experimento foi utilizada a funcao de perda ArcFacelLoss combinada com o

otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler CosineAnne-
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Classe Precisao | Recall | F1-Score | Support

Black 0.81 0.77 0.79 1005

East Asian 0.70 0.73 0.71 1005

Indian 0.68 0.68 0.68 1005

Latino Hispanic 0.43 0.43 0.43 1005

Middle Eastern 0.53 0.57 0.55 1005

Southeast Asian 0.60 0.58 0.59 1005

White 0.62 0.60 0.61 1006

Acurécia 0.62

Macro Avg 0.62 0.62 0.62 7036

Weighted Avg 0.62 0.62 0.62 7036
Tabela 10 — Relatorio de Métricas de precision, recall, F1-score, e support do Experimento

5

Figura 32 — Métricas do Experimento 7
Fonte: Proprio Autor

alingWarmRestarts.

Neste experimento foi desconsiderada a coleta dos dados de resultados devido a

apresentacao das métricas zeradas.

4.4.7 Resultado Experimento 7

Neste experimento foi utilizada a fungao de perda CrossEntropyLoss combinada
com o otimizador AdamW, utilizando o conjunto de dados balanceado, filtrado pelas
classes alvo "White" e "Black" e o scheduler OneCycleLR.

4.4.7.1 Métricas de Treinamento

Na Figura 32 sao apresentadas as métricas do treinamento.
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Figura 33 — Matriz de Confusdo do Experimento 7
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4.4.7.2 Matriz de Confusédo

Na Figura 33 é apresentada a matriz de confusao do treinamento.

4.4.7.3 Relatorio de Classificagao

Na tabela 11 é apresentado o relatério de classificagao.

Classe Precisao | Recall | F1-Score | Support
Black 0.96 0.95 0.95 1006
White 0.95 0.96 0.95 1005
Acuracia 0.95

Macro Avg 0.95 0.95 0.95 2011
Weighted Avg 0.95 0.95 0.95 2011

Tabela 11 — Relatorio de Métricas de precision, recall, F'1-score, e support do Experimento

7

4.4.8 Resultado Experimento 8

Neste experimento foi utilizada a funcao de perda ArcFacelLoss combinada com o
otimizador AdamW, utilizando o conjunto de dados balanceado, filtrado pelas classes alvo
"White" e "Black" e o scheduler OneCycleLLR.

4.4.8.1 Meétricas de Treinamento

Na Figura 34 sao apresentadas as métricas do treinamento.
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Figura 34 — Métricas do Experimento 8
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Figura 35 — Matriz de Confusao do Experimento 8
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4.4.8.2 Matriz de Confusao

Na Figura 35 ¢ apresentada a matriz de confusao do treinamento.

4.4.8.3 Relatorio de Classificagao

Na tabela 12 é apresentado o relatorio de classificacao.

4.4.9 Resultado Experimento 9

Neste experimento foi utilizada a funcao de perda CrossEntropyLoss combinada

com o otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler
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Classe Precisao | Recall | F1-Score | Support
Black 0.94 0.94 0.94 1006
White 0.94 0.94 0.94 1005
Acuracia 0.94

Macro Avg 0.94 0.94 0.94 2011
Weighted Avg 0.94 0.94 0.94 2011

Tabela 12 — Relatorio de Métricas de precision, recall, F'1-score, e support do Experimento
8

Figura 36 — Métricas do Experimento 9
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OneCycleLLR, ainda com a mudanca do Dropout para p=0.5.

4.4.9.1 Meétricas de Treinamento

Na Figura 36 sao apresentadas as métricas do treinamento.

4.4.9.2 Matriz de Confusao

Na Figura 37 é apresentada a matriz de confusao do treinamento.

4.4.9.3 Relatério de Classificagao

Na tabela 13 ¢é apresentado o relatério de classificacao.

4.4.10 Resultado Experimento 10

Neste experimento foi utilizada a fun¢ao de perda ArcFaceLoss combinada com o
otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler OneCycleLR,

ainda com a mudanca do Dropout para p=0.5.
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Figura 37 — Matriz de Confusdo do Experimento 9
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Classe Precisao | Recall | F1-Score | Support
Black 0.88 0.81 0.84 1005
East Asian 0.72 0.72 0.72 1005
Indian 0.72 0.71 0.72 1005
Latino Hispanic 0.47 0.54 0.51 1005
Middle Eastern 0.66 0.67 0.66 1005
Southeast Asian 0.62 0.61 0.61 1005
White 0.69 0.66 0.68 1006
Acuracia 0.67

Macro Avg 0.68 0.67 0.68 7036
Weighted Avg 0.68 0.67 0.68 7036

Tabela 13 — Relatorio de Métricas de precision, recall, F'1-score, e support do Experimento
9

4.4.10.1 Meétricas de Treinamento

Na Figura 38 sao apresentadas as métricas do treinamento.

4.4.10.2 Matriz de Confusdo

Na Figura 39 é apresentada a matriz de confusao do treinamento.

4.4.10.3 Relatorio de Classificagao

Na tabela 14 é apresentado o relatorio de classificacao.
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Figura 39 — Matriz de Confusao do Experimento 10
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Classe Precisao | Recall | F1-Score | Support
Black 0.80 0.80 0.80 1005
East Asian 0.64 0.66 0.65 1005
Indian 0.65 0.68 0.67 1005
Latino Hispanic 0.34 0.36 0.35 1005
Middle Eastern 0.57 0.56 0.57 1005
Southeast Asian 0.54 0.51 0.52 1005
White 0.59 0.56 0.57 1006
Acuracia 0.59

Macro Avg 0.59 0.59 0.59 7036
Weighted Avg 0.59 0.59 0.59 7036

Tabela 14 — Relatorio de Métricas de precision, recall, F'1-score, e support do Experimento
10

Figura 40 — Métricas do Experimento 11
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4.4.11 Resultado Experimento 11

Neste experimento foi utilizada a fun¢ao de perda CrossEntropyLoss combinada
com o otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler

OneCycleLR, considerando 40 épocas.

4.4.11.1 Métricas de Treinamento

Na Figura 40 sao apresentadas as métricas do treinamento.

4.4.11.2 Matriz de Confusao

Na Figura 41 é apresentada a matriz de confusao do treinamento.

4.4.11.3 Relatério de Classificacao

Na tabela 15 é apresentado o relatorio de classificacao.
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Figura 41 — Matriz de Confusdo do Experimento 11
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Tabela 15 — Relatério de Métricas de precision, recall, F1-score, e support do Experimento

11

Class Precision Recall F1-Score Support
Black 0.86 0.83 0.84 1005
East Asian 0.71 0.71 0.71 1005
Indian 0.72 0.74 0.73 1005
Latino Hispanic 0.47 0.51 0.49 1005
Middle Eastern 0.67 0.64 0.65 1005
Southeast Asian 0.61 0.60 0.60 1005
White 0.69 0.66 0.67 1006
Accuracy 0.67 7036
Macro Avg 0.67 0.67 0.67 7036
Weighted Avg 0.67 0.67 0.67 7036

4.4.12 Andlise dos Resultados

Nesta secao, analisamos os resultados dos experimentos de reconhecimento facial,
utilizando diferentes funcoes de perda, otimizadores e schedulers. A analise é conduzida
em termos das métricas de desempenho definidas e comparando-as com as diferentes

combinagoes experimentadas.

4.4.12.1 Observagoes sobre os Experimentos

A seguir sao apresentadas as observagoes sobre os experimentos realizados:

o O experimento 1 apresentou o melhor desempenho geral, com uma acuracia de 0.68.

Essa combinacao de CrossEntropylLoss e SGD demonstrou ser mais eficaz para o
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conjunto de dados balanceado em comparacao com ArcFacelLoss.

o O experimento 4, que também utilizou ArcFaceLoss com AdamW, mostrou a menor
acuracia de 0.58. Isso pode indicar que a combinacdo de AdamW com ArcFaceLoss
pode nao ser tao adequada para este cenario, possivelmente devido a uma falta de

convergéncia durante o treinamento.

o O experimento 5 apresentou uma acuracia de 0.62, levenemten menor dos melhores
resultados dos experimentos anteriores, mas ainda assim representa um desempenho

aceitavel considerando a utilizagdo do scheduler CosineAnnealingWarmRestarts.

« No experimento 6, a auséncia de resultados relevantes (zerados) indica que a com-
binacao de ArcFaceLoss com AdamW e o scheduler pode nao ter funcionado ade-
quadamente, possivelmente devido a problemas de convergéncia ou aprendizado

inadequado.

o Ambos os experimentos 7 e 8 mostraram resultados promissores, com altas acuracias
de 0.95 e 0.94, e fl-scores médios de 0.95 e 0.94, respectivamente. Isso indica que
a filtragem das classes alvo melhorou significativamente o desempenho do modelo,

permitindo uma classificagdo mais precisa entre grupos demograficos especificos.

e O experimento 9 manteve um desempenho razoavel com uma acuracia de 0.67,
enquanto o experimento 10 caiu para 0.59, refletindo a tendéncia observada nos

experimentos anteriores com ArcFacelLoss.

e A mudanca do dropout no experimento 10 indica que a combinacao de ArcFa-
ceLoss e AdamW, neste contexto, se manteve menos eficaz em comparagao com

CrossEntropyLoss.

Por fim, ao comparar o desempenho do Experimento 11 com os demais experimentos

conduzidos, podemos observar algumas tendéncias e diferencas significativas:

o Acuracia Global: O experimento obteve uma acuracia geral de 67%, similar a de
experimentos anteriores, como o Experimento 5 (62%) e o Experimento 7 (95%).
Embora o Experimento 7 tenha apresentado uma acuracia significativamente maior,
o Experimento 11 destaca-se por manter uma consisténcia em termos da média
F1-Score (0.67), mostrando uma distribui¢ao equilibrada do desempenho entre as

classes.
o O aumento das épocas para 40, nao refletiu ganhos significativos para o treinamento.

e Desempenho da Classe Black: O desempenho mais alto foi observado nesta classe,

com um F1-Score de 0.84, o que reflete a boa capacidade do modelo em reconhecer
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corretamente individuos dessa classe. Este resultado estd entre os melhores observados

nos experimentos realizados.

o Desempenho das Classes East Asian e Indian: Ambas as classes tiveram resultados
razoaveis, com F1-Scores de 0.71 e 0.73, respectivamente. Estes valores sdo préximos

aos observados nos experimentos 9 e 10, que também utilizaram AdamW.

e Desempenho da Classe Latino Hispanic: Esta classe apresentou o desempenho mais
baixo, com um F1-Score de 0.49. A dificuldade em identificar individuos desta classe
foi observada em experimentos anteriores e sugere que o modelo enfrenta desafios
especificos para este grupo, possivelmente relacionados a variacao de caracteristicas

faciais ou ao equilibrio do conjunto de dados.

4.4.12.2 Comparacao entre Fungoes de Perda

Os resultados obtidos a partir da aplicacao de diferentes fun¢oes de perda mostram
um desempenho variado em termos de acuricia e métricas de Fl-score. Experimentos
utilizando a fungao de perda CrossEntropyLoss (Experimentos 1, 3, 5, 7 e 9) apresentaram
consistentemente melhores resultados em comparagao a ArcFaceLoss (Experimentos 2,
4, 6, 8 e 10). A fungdo CrossEntropyLoss alcancou um Fl-score maximo de 0.91 no
Experimento 9, evidenciando sua eficicia em classes mais representadas, enquanto a
ArcFaceLoss apresentou um desempenho inferior, particularmente em classes com suporte

mais reduzido, como "Latino Hispanic".

4.4.12.3 Impacto dos Otimizadores

A comparacao dos resultados entre os otimizadores AdamW e SGD revela que o
AdamW (Experimentos 3, 5, 7, 9) teve um impacto positivo nas métricas de desempenho,
resultando em maiores acuracias e Fl-scores. Essa diferenca é notavel especialmente em
experimentos onde a taxa de aprendizado foi adequadamente ajustada, contribuindo
para uma melhor convergéncia. Por outro lado, o SGD (Experimentos 1, 2, 4, 6, 8 e 10)
apresentou resultados mais modestos, sugerindo que a escolha do otimizador é critica para

o sucesso do modelo.

4.4.12.4 Efeito do Scheduler

A andlise dos schedullers de aprendizado revela que a implementagao do OneCy-
cleLR (Experimentos 3, 5, 7) favoreceu a convergéncia e melhorou as métricas de acuricia
e Fl-score, em comparac¢ao ao CosineAnnealingWarmRestarts (Experimentos 5 e 6). A
variagao da taxa de aprendizado proporcionada pelo OneCycleLR contribuiu para um

treinamento mais eficaz e consistente.
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4.4.12.5 Andlise da Matriz de Confusao

A avaliagao das matrizes de confusao indicou que a classe "Latino Hispanic'foi
uma constante fonte de erros, apresentando baixos valores de precisao e recall em todos
os experimentos. Essa observacao sugere a necessidade de intervencgoes especificas, como
técnicas de data augmentation, para equilibrar a representacao das classes e melhorar o

desempenho do modelo.

4.4.12.6 Matriz Geral dos Resultados dos Experimentos

A tabela 16 apresenta a visao geral dos resultados dos experimentos.

Tabela 16 — Resultados dos Experimentos

Experimento | Fungao de Perda | Otimizador | Acuracia | F1-Score | Precisao
1 CrossEntropyLoss | SGD 0.68 0.68 0.68
2 ArcFaceLoss SGD 0.61 0.62 0.61
3 CrossEntropyLoss | AdamW 0.67 0.68 0.67
4 ArcFaceLoss AdamW 0.58 0.58 0.58
5 CrossEntropyLoss | AdamW 0.62 0.62 0.62
6 ArcFaceLoss AdamW - - -
7 CrossEntropyLoss | AdamW 0.95 0.95 0.95
8 ArcFaceLoss AdamW 0.94 0.94 0.94
9 CrossEntropyLoss | AdamW 0.67 0.67 0.67
10 ArcFaceLoss AdamW 0.59 0.59 0.59
11 CrossEntropyLoss | AdamW 0.67 0.67 0.67
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5 CONCLUSOES

5.1 Sintese dos Pontos Abordados

Os experimentos realizados mostraram resultados consistentes, com acuracias va-
riando entre 0.58 e 0.95, dependendo da técnica utilizada. A utilizagdo do otimizador
AdamW, em combinacao com a func¢ao de perda CrossEntropyLoss, apresentou os melhores
resultados, alcangando uma acuracia de até 0.95. Em contraste, a fungdo de perda ArcFa-
ceLoss, apesar de promissora para o reconhecimento de faces, apresentou um desempenho

inferior nos experimentos conduzidos.

Ainda que a acuracia geral dos experimentos tenha variado entre 0.58 e 0.95, indi-
cando um desempenho satisfatério, ha espago significativo para melhorias, especialmente
em classes menos representadas. A continuidade na exploracao de técnicas avancadas de
data augmentation e outras abordagens de balanceamento de classes sera essencial para

aprimorar a eficacia do modelo.

Ainda, ao comparar os resultados dos experimentos que utilizaram diferentes otimi-
zadores, foi possivel observar que o uso do AdamW proporcionou melhorias significativas
na acuracia e na convergencia do modelo, especialmente em comparagao com métodos

mais tradicionais como o SGD.

Também destaca-se que a importancia da selecao adequado do scheduler, onde nos
experimentos que incorporaram schedulers de taxa de aprendizado, como OneCycleLR e
CosineAnnealingWarmRestarts, mostraram resultados superiores em termos de estabilidade
e eficiéncia durante o treinamento. Isso pode ser atribuido a capacidade desses schedulers
de ajustar dinamicamente a taxa de aprendizado, evitando oscilagoes e acelerando a

convergencia.

Sobre o conjunto de dados utilizado - o Fairface, indica ter uma boa diversidade
de imagens, o que é crucial para o treinamento de modelos de reconhecimento facial. No
entanto, foi importante garantir que todas as classes estivessem igualmente representadas

para evitar viés no desempenho do modelo.

Sobre o algoritmo de reconhecimento facial MTCNN se mostrou eficaz, mesmo com

as rotagoes angular das imagens biométricas.

5.2 Impactos e Contribuicoes

Este trabalho contribui para a compreensao e aplicacao de redes neurais no re-
conhecimento de faces, evidenciando que a escolha da fun¢ao de perda e do otimizador

desempenha um papel fundamental na obtencao de melhores resultados. Para a industria,
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a adoc¢ao dessas técnicas pode significar maior seguranca em sistemas de autenticacao
facial, especialmente em setores financeiros, como na implementacao de solugoes de identi-
ficacao de clientes. Para a sociedade, os beneficios incluem a melhoria de tecnologias de
reconhecimento em larga escala, garantindo maior precisao e minimizando falhas devido a

conjunto de dados desequilibrados e com viés.

5.3 Direcoes Futuras de Pesquisa

Futuras direcoes de pesquisa podem explorar a melhoria dos modelos utilizados para
lidar com variagoes de iluminacao, pose e expressoes faciais, tornando o reconhecimento
facial mais robusto em cendarios do mundo real. Além disso, pode ser interessante explorar
técnicas adicionais de data augmentation e transfer learning com modelos pré-treinados,

utilizando ainda novas arquiteturas avangadas CNNs.

Para uma avaliagdo mais profunda e melhora das métricas, principalmente a

acuracia, pode ser explorado em trabalhos futuros:

o Ativacoes intermedidrias: Para entender como a rede estd tomando suas decisoes, é
possivel visualizar as ativa¢oes intermediarias das camadas convolucionais, mostrando

como diferentes regides da imagem estao contribuindo para a decisao da rede.

o Analise de Canais de Cor: Durante o treinamento, a rede pode estar aprendendo
a distinguir caracteristicas associadas a tons de pele, como a intensidade de cores
em certas regioes, portanto o objetivo é capturar os "padroes de cor'que a rede esta

aprendendo e verificar se os neuronios especificos estao focando nesses padroes.

o Visualizagdo de Neurdnios com técnicas como Grad-CAM: Para identificar quais
quadrantes da imagem a rede considera mais relevantes para a classificagao de cada

raca, é possivel utilizar o Grad-CAM (Gradient-weighted Class Activation Mapping).

Por fim, o trabalho e o algoritmo gerados podem ser utilizados em grandes conjunto
de dados publicos, para realizar o equilibrio do conjunto no que tange a raca e equidade,

trazendo consigo o tratamento de vieses no reconhecimento facial.

5.4 Conclusdo

Através dos experimentos conduzidos e das andlises realizadas, este trabalho de-
monstrou a eficacia das redes neurais convolucionais no reconhecimento de biometria
facial. Com a aplicagao adequada de técnicas como o CrossEntropyLoss e otimizadores
avancados como AdamW, é possivel alcancgar resultados expressivos. A pesquisa ainda
revela os desafios que permanecem, mas também aponta caminhos promissores, como
o uso do aprendizado profundo e a evolugao dos conjuntos de dados, tornando-os mais

equilibrados, mitigando assim os vieses existentes de racas.
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