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RESUMO

OZZETTI, Marcello Desenvolvimento de Modelos de Reconhecimento Facial
Baseados em Inteligência Computacional para Mitigar Viés e Promover
Equidade. 2024. 95 p. Monografia (MBA em Inteligência Artificial e Big Data) - Instituto
de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Paulo, 2024.

A rápida evolução da Inteligência Artificial (IA) e o crescente uso de sistemas de reconheci-
mento faciais têm gerado desafios significativos, especialmente em relação aos preconceitos
algorítmicos que afetam a precisão e a equidade desses sistemas. Esta pesquisa abordou as
principais técnicas utilizadas no reconhecimento de biometria facial, focando especialmente
em redes neurais convolucionais (CNNs) e suas aplicações práticas. Foram discutidos
aspectos fundamentais como o pré-processamento de imagens, a extração de características
e o uso de arquiteturas avançadas, incluindo ArcFace e ResNet50. O objetivo foi testar
diferentes combinações de funções de perda e otimizadores para avaliar o impacto nas
métricas, principalmente a acurácia, levando em consideração também o scheduler de
aprendizado. O uso de técnicas de data augmentation e o uso de conjuntos de dados
balanceados também foram aplicados.

Através da Arquitetura CNN LResNet50E-IR, foram realizados experimentos divididos em
diferentes configurações, avaliando as funções de perda CrossEntropyLoss e ArcFaceLoss
em combinação com os otimizadores SGD e AdamW. Os resultados revelaram que a
combinação do otimizador AdamW com a função CrossEntropyLoss levou a um aumento
significativo na acurácia, em comparação com outras configurações, atingindo variações de
0.58 a 0.95. Essas descobertas reforçam a importância da escolha adequada de funções de
perda e otimizadores na construção de modelos eficazes para reconhecimento facial.

Os resultados obtidos desta pesquisa não apenas contribuem para o avanço do conhecimento
acadêmico, mas também têm implicações práticas para a indústria. As diretrizes e melhores
práticas identificadas podem ser aplicadas no aprimoramento da eficiência e precisão dos
sistemas de reconhecimento facial de aplicações comerciais, segurança e de saúde. O
desenvolvimento de soluções justas e inclusivas é crucial para garantir que os benefícios da
tecnologia sejam acessíveis a todos.

Por fim, este trabalho oferece uma visão ampla sobre os desafios e oportunidades no
campo do reconhecimento facial, contribuindo para um paradigma mais ético e inclusivo
na aplicação da Inteligência Artificial (IA).

Palavras-chave: Inteligência Artificial. Redes Neurais. Viés em Biometria Facial.





ABSTRACT

OZZETTI, Marcello Developing Computational Intelligence-Based Facial
Recognition Models to Mitigate Bias and Promote Equity. 2024. 95 p.
Monograph (MBA in Artificial Intelligence and Big Data) - Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Paulo, 2024.

The rapid evolution of Artificial Intelligence (AI) and the growing use of facial recognition
systems have generated significant challenges, especially concerning algorithmic biases that
impact the accuracy and fairness of these systems. This research explored key techniques
used in facial biometrics recognition, with a particular focus on convolutional neural
networks (CNNs) and their practical applications. Fundamental aspects were discussed,
such as image preprocessing, feature extraction, and the use of advanced architectures,
including ArcFace and ResNet50. The aim was to test different combinations of loss
functions and optimizers to assess the impact on metrics, especially accuracy, while also
considering the learning scheduler. Data augmentation techniques and balanced datasets
were also applied.

Through the CNN architecture LResNet50E-IR, experiments were conducted across differ-
ent configurations, evaluating the loss functions CrossEntropyLoss and ArcFaceLoss in
combination with the optimizers SGD and AdamW. The results revealed that the combi-
nation of the AdamW optimizer with the CrossEntropyLoss function led to a significant
increase in accuracy compared to other configurations, with variations reaching from 0.58
to 0.95. These findings underscore the importance of choosing appropriate loss functions
and optimizers in building effective facial recognition models.

The results obtained from this research not only contribute to the advancement of academic
knowledge but also have practical implications for the industry. The guidelines and
best practices identified can be applied to enhance the efficiency and accuracy of facial
recognition systems in commercial, security, and healthcare applications. Developing fair
and inclusive solutions is crucial to ensuring that the benefits of technology are accessible
to everyone.

Finally, this work provides a broad perspective on the challenges and opportunities in the
field of facial recognition, contributing to a more ethical and inclusive paradigm in the
application of Artificial Intelligence (AI).

Keywords: Artificial Intelligence. Neural Network. Bias in Facial Biometrics.
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1 INTRODUÇÃO

A rápida evolução da Inteligência Artificial (IA) e o crescente papel dos sistemas de
reconhecimento de imagem têm introduzido desafios significativos, destacando a necessidade
urgente de abordar os preconceitos inerentes a essas tecnologias. O reconhecimento facial
possui uma vasta gama de aplicações, desde segurança e verificação de identidade até
comunicação online, transações bancárias e entretenimento digital. Embora a pesquisa
em reconhecimento facial tenha começado na década de 1960, como apontam Stan Z., Li
e Jain (Li; Jain, 2011), essa área ainda enfrenta desafios não resolvidos. Recentemente,
os avanços em modelagem e técnicas de análise facial têm impulsionado o progresso,
mas o reconhecimento facial confiável continua a ser um desafio para pesquisadores de
visão computacional e reconhecimento de padrões. Drozdowski (Drozdowski et al., 2020)
ressalta que "existem inúmeras preocupações quanto à precisão e à justiça dos sistemas
automatizados de tomada de decisão".

Entre os grupos étnicos frequentemente afetados por vieses algorítmicos, as pessoas
negras são particularmente impactadas. Buolamwini e Gebru (Buolamwini; Gebru, 2018)
destacam "disparidades substanciais na precisão da classificação de mulheres de pele mais
escura, mulheres de pele mais clara, homens de pele mais escura e homens de pele mais
clara em sistemas de classificação de gênero", sublinhando a necessidade urgente de que
empresas comerciais construam algoritmos de análise facial que sejam verdadeiramente
justos, transparentes e responsáveis. Além disso, a sub-representação de comunidades
negras nos conjuntos de dados usados para treinar algoritmos perpetua desigualdades
sistêmicas, conforme destacado em estudos como o de Martin (Martin, 2022).

Outro desafio no reconhecimento facial relaciona-se ao uso de tecnologias para
auxiliar pessoas com deficiência visual, especialmente em validações biométricas. Modelos
de reconhecimento facial prometem ajudar essas pessoas a realizarem transações e identifi-
cações utilizando biometria facial, conforme explorado no estudo de Jafri e Arabnia (Jafri;
Ali; Arabnia, 2013), que menciona uma variedade de softwares, mecanismos e artigos
relacionados.

As falhas nos modelos de reconhecimento facial frequentemente decorrem de dados
de treinamento distorcidos, incompletos, desatualizados, desproporcionais ou que carregam
preconceitos históricos, o que compromete o treinamento do algoritmo e perpetua esses
preconceitos.

Esta dissertação propõe abordar essas questões, concentrando-se na construção
de modelos de redes neurais para reconhecimento facial que visam mitigar o preconceito
contra pessoas negras e evitar falhas e vieses em indivíduos com deficiência visual. O
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desenvolvimento desses modelos não só pretende aprimorar a precisão dos sistemas, mas
também garantir equidade, transparência e justiça ao enfrentar os preconceitos embutidos,
beneficiando diversas aplicações do reconhecimento de imagem, como o aumento da acurácia
em transações bancárias que requerem identificação biométrica. Ao fazê-lo, esta pesquisa
busca contribuir para um paradigma mais ético e inclusivo na aplicação da Inteligência
Artificial (IA), reconhecendo a importância de soluções tecnológicas que respeitem e
promovam a inclusão humana (Diakopoulos, 2016).

A pesquisa adotará uma abordagem experimental para desenvolver e avaliar modelos
de redes neurais que buscam mitigar vieses no reconhecimento facial. O processo incluirá:

1. Coleta e preparação de um conjunto de dados diversificado, com ênfase na represen-
tatividade de diferentes grupos étnicos e pessoas com deficiência visual.

2. Treinamento de modelos utilizando técnicas de aprendizado profundo, como redes
neurais convolucionais e arquiteturas específicas para mitigação de preconceitos.

3. Avaliação dos modelos em termos de precisão, equidade e justiça, utilizando métricas
como taxa de erro e análises de impacto de viés.

O trabalho utilizará as Redes Neurais Convolucionais (CNNs), abrangendo uma
série de técnicas e arquiteturas avançadas que busquem a eficiência na análise de imagens.
Inicialmente, o pré-processamento de imagens deverá incluir a normalização e padroni-
zação dos dados para garantir que as entradas estejam em uma escala adequada para
o treinamento do modelo, além de técnicas de data augmentation para expandir artifi-
cialmente o conjunto de dados e prevenir overfitting. A extração de características será
fundamental para identificar padrões visuais, bordas e texturas que são essenciais para a
classificação e reconhecimento. Arquiteturas avançadas como LeNet, AlexNet, VGGNet e
ResNet demonstram serem cruciais na evolução das CNNs, com inovações que melhoraram
significativamente a precisão e a capacidade de generalização dos modelos.

No contexto do reconhecimento de biometria facial, será feita uma revisão das
técnicas clássicas como Eigenfaces, Fisherfaces e LBPH, bem como os modelos avançados
com FaceNet, DeepFace, VGG-Face e ArcFace, destacados por suas abordagens inovadoras,
como o uso de perdas angulares e técnicas de alinhamento facial para melhorar a discrimi-
nação e a precisão do reconhecimento facial. A implementação prática do reconhecimento
facial envolverá um pipeline que inclui detecção, alinhamento e extração de característi-
cas, utilizando ferramentas e frameworks como PyTorch, OpenCV, TensorFlow e Keras.
Esses recursos visão proporcionar flexibilidade e eficiência na construção de sistemas de
reconhecimento facial robustos e escaláveis.

Esta dissertação está estruturada:
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• Introdução: Contextualização do problema, objetivos e justificativa da pesquisa.

• Fundamentação Teórica: Síntese dos estudos existentes sobre reconhecimento
facial, vieses algorítmicos e inclusão de pessoas com deficiência visual. Também são
exploradas as Redes Neurais Artificiais aplicadas ao reconhecimento biométrico.

• Metodologia: Descrição detalhada das etapas de desenvolvimento e avaliação dos
modelos propostos.

• Avaliação Experimental: Apresentação dos modelos construídos, resultados das
avaliações e discussão dos achados.

• Conclusão: Resumo dos principais resultados, contribuições da pesquisa e sugestões
para trabalhos futuros.
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2 FUNDAMENTAÇÃO TEÓRICA

Para entender o funcionamento das Redes Neurais Artificiais (RNAs), é essencial
compreender os conceitos básicos que relacionam o funcionamento do cérebro humano e
seus componentes, os neurônios. Neste capítulo, será realizada uma revisão sobre a formação
das conexões entre as células nervosas e as considerações sobre o modelo matemático que
serve de base para a aprendizagem de máquina e para as redes neurais.

Além disso, serão abordados os conceitos fundamentais das RNAs, incluindo suas
definições e diferentes arquiteturas. Também exploraremos as Redes Neurais Convolucionais
(CNNs) e seu papel crucial no reconhecimento e processamento de imagens, com foco
específico na identificação biométrica.

Para concluir o capítulo, analisaremos as tendências atuais, as ferramentas dis-
poníveis e as arquiteturas avançadas de redes neurais que estão moldando o futuro da
inteligência artificial.

2.1 Redes Neurais Artificiais

2.1.1 Definição

As Redes Neurais Artificiais (RNAs) são modelos computacionais inspirados no
funcionamento do cérebro humano, simulando uma rede de neurônios conectados e orga-
nizados em camadas. Cada camada processa a informação recebida e a transmite para
a próxima camada (Haykin, 2009). Embora não existam evidências científicas de que o
cérebro humano opere exatamente como os mecanismos de aprendizagem usados em RNAs
(Chollet, 2017), o estudo da Aprendizagem Profunda baseia-se em modelos e estruturas
matemáticas que permitem compreender e reproduzir processos de aprendizagem.

A Aprendizagem Profunda (Deep Learning) é uma subárea do aprendizado de
máquina que utiliza múltiplas camadas consecutivas para melhorar a capacidade de
aprendizado e processamento de dados. O termo "aprendizado profundo"refere-se ao
número de camadas em um modelo. Em geral, essas camadas são compostas por Redes
Neurais Artificiais (Chollet, 2017).

Uma RNA é composta por camadas encadeadas que mapeiam os dados para
realizar predições com base em classes estabelecidas. Cada camada de entrada contém
neurônios que codificam os valores de entrada e os transmitem como saída para as camadas
subsequentes. As camadas possuem parâmetros a serem estimados, conhecidos como pesos,
que armazenam o conhecimento adquirido durante o treinamento. Esses pesos são ajustados
conforme as camadas extraem informações dos dados de entrada. Assim, a rede aprende
com os dados e consegue estimar uma saída, conforme ilustrado na Figura 1.
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Figura 1 – Exemplo de uma RNA com 2 Camadas e 4 Entradas com 2 Saídas

Fonte: Próprio Autor

Figura 2 – Marcos no Desenvolvimento das Redes Neurais

Fonte: (Academy, 2018)

2.1.2 Breve Histórico do Desenvolvimento das RNAs

Para compreender o estado atual das RNAs, é fundamental conhecer a trajetória
de sua evolução. A Figura 2 resume alguns marcos na pesquisa e desenvolvimento das
Redes Neurais Artificiais, conforme explorado no livro da Academia de Aprendizagem
Profunda (Academy, 2018).

• 1943: Warren McCulloch e Walter Pitts (Mcculloch; Pitts, 1943) criam um modelo
computacional de redes neurais baseado em algoritmos de lógica de limiar.

• 1957: Frank Rosenblatt (Rosenblatt, 1957) desenvolve o Perceptron, um algoritmo
de reconhecimento de padrões baseado em uma rede neural de duas camadas usando
operações de adição e subtração simples.

• 1980: Kunihiko Fukushima (Fukushima, 1980) propõe a Rede Neocognitron, uma
rede neural hierárquica e multicamada utilizada para reconhecimento de caligrafia e
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outros problemas de reconhecimento de padrões.

• 1989: Cientistas desenvolvem os primeiros algoritmos que utilizam redes neurais
profundas, embora ainda com tempos de treinamento elevados.

• 1992: Juyang Weng e Huang publicam o Cresceptron (Weng; Ahuja; Huang, 1992),
um método para reconhecimento automático de objetos 3D a partir de dados desor-
denados.

• 2006: O termo Aprendizagem Profunda (Deep Learning) ganha popularidade após
Geoffrey Hinton e Ruslan Salakhutdinov (Hinton; Salakhutdinov, 2006) demonstrarem
como uma rede neural de múltiplas camadas pode ser treinada de forma eficiente.

• 2009: O NIPS Workshop sobre Aprendizagem Profunda para reconhecimento de
voz apresenta técnicas de aprendizado profundo que não requerem pré-treinamento.

• 2012: Algoritmos de reconhecimento de padrões artificiais alcançam desempenho
comparável ao humano em tarefas simples.

• 2015: O Facebook começa a utilizar Aprendizagem Profunda para identificar auto-
maticamente usuários em fotografias.

• 2016: O algoritmo AlphaGo da Google derrota o campeão mundial de Go, Lee Sedol,
em um torneio na Coreia do Sul.

• 2017: Empresas adotam Aprendizagem Profunda em diversas aplicações, impulsio-
nando pesquisas e tecnologias ligadas a Data Science, Inteligência Artificial e Big
Data.

A partir da década de 1980, houve uma revolução nos estudos sobre redes neurais,
tanto pelas características dos modelos propostos quanto pelas condições tecnológicas que
possibilitaram o desenvolvimento de arquiteturas neurais mais robustas e o uso de hardwares
mais avançados. As redes neurais profundas, também conhecidas como Aprendizagem
Profunda (Deep Learning), emergiram como uma evolução natural das redes neurais.

2.1.3 O Neurônio Biológico e o Neurônio Artificial

Tanto no livro de Haykin (Haykin, 2001) quanto na obra da Academia de Aprendi-
zagem Profunda (Academy, 2018), são apresentados os conceitos de neurônio biológico e
neurônio artificial, resumidos a seguir.

O neurônio biológico é a unidade básica do cérebro humano, responsável pela
transmissão de informações. O cérebro é composto por bilhões de neurônios interconectados,
formando uma vasta rede de comunicação — a rede neural. Cada neurônio possui um corpo
celular, diversos dendritos e um axônio. Os dendritos recebem sinais elétricos de outros
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Figura 3 – Representação Simplificada do Neurônio Biológico

Fonte: (Academy, 2018)

neurônios através das sinapses, que são processados pelo corpo celular e transmitidos a
outros neurônios. Os sinais transmitidos são impulsos elétricos, que constituem a mensagem
entre os neurônios.

Os sinais elétricos trafegam pelos axônios e, se excederem um limiar de disparo
(threshold), são transmitidos adiante; caso contrário, são bloqueados. A transmissão entre
neurônios ocorre através de substâncias químicas, como a serotonina. A cada conexão, ou
sinapse, é associado um peso, que multiplica o sinal transmitido e representa a memória
do neurônio.

Cada região do cérebro desempenha funções específicas, como processamento
auditivo, visual, e pensamento, utilizando redes interligadas que operam em paralelo.
A arquitetura neural varia conforme a função, com diferenças no número de neurônios,
sinapses por neurônio, valores de threshold e pesos sinápticos. Esses pesos são ajustados
ao longo da vida, num processo conhecido como aprendizado ou memorização.

Inspirado pelo neurônio biológico, foi desenvolvido um modelo matemático de
neurônio que se tornou a base da IA. Esse neurônio artificial recebe um ou mais sinais de
entrada e gera um único sinal de saída, que pode ser transmitido para outros neurônios
subsequentes, formando uma Rede Neural Artificial. As sinapses e axônios são representados
matematicamente, com pesos sinápticos que determinam a intensidade da transmissão. O
neurônio então soma todos os sinais de entrada, gerando um resultado. Esse processo é
conhecido como função de combinação. A seguir, a função de ativação decide se o sinal
será propagado ao longo da rede, conforme valores máximos e mínimos pré-estabelecidos.

Os componentes matemáticos envolvidos nesse processo incluem:

• Sinais de entrada { X1, X2, Xn }: Valores externos que alimentam o modelo.

• Pesos sinápticos { W1, W2, Wn }: Fatores que ponderam os sinais de entrada.
Esses valores são ajustados durante o treinamento da rede.
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Figura 4 – Representação Simplificada do Neurônio Matemático

Fonte: (Academy, 2018)

• Combinador linear { Σ }: Soma ponderada dos sinais de entrada, resultando em
um potencial de ativação.

• Limiar de ativação { Θ }: Define o patamar necessário para gerar um sinal de
ativação.

• Potencial de ativação { υ }: Resultado da diferença entre o combinador linear e
o limiar de ativação. Se υ ≥ 0, o neurônio é ativado; caso contrário, é inibido.

• Função de ativação { g }: Limita a saída do neurônio a um intervalo conhecido.

• Sinal de saída { y }: Valor final, que pode ser usado como entrada para outros
neurônios subsequentes.

2.1.4 Rede Perceptron Simples e Rede Perceptron Multicamadas (MLP)

O modelo Perceptron foi desenvolvido por Frank Rosenblatt entre as décadas de 1950
e 1960 (Rosenblatt, 1957), inspirado nos trabalhos pioneiros de Warren McCulloch e Walter
Pitts (Mcculloch; Pitts, 1943). O Perceptron é um modelo matemático que recebe várias
entradas e gera uma única saída binária, sendo utilizado como um classificador linear em
problemas de aprendizado supervisionado. Rosenblatt construiu um Perceptron de camada
única, o que limitou o modelo à classificação linear e impossibilitou a modelagem hierárquica
de características. Isso impediu que o Perceptron conseguisse realizar classificação não
linear, como a função XOR, conforme demonstrado por Minsky e Papert (Minsky; Papert,
1969).

A Rede Perceptron Multicamadas (MLP) expande o Perceptron simples ao incluir
uma ou mais camadas ocultas entre a camada de entrada e a camada de saída (Russell
et al., 1995). Essas camadas intermediárias permitem ao MLP modelar relações não
lineares complexas. Com uma única camada oculta, as MLPs são capazes de aproximar
qualquer função contínua (Haykin, 2009). MLPs são amplamente aplicados em problemas
de aprendizado supervisionado, onde são treinados em conjuntos de dados rotulados para
aprender a modelar a relação entre entradas e saídas.
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2.1.5 Aprendizado Supervisionado e Não Supervisionado

O aprendizado supervisionado é uma abordagem de treinamento em que uma rede
neural é ensinada usando um conjunto de dados rotulados. Cada exemplo de treinamento
consiste em uma entrada e uma saída conhecida. O objetivo é que o modelo aprenda a
mapear corretamente as entradas para as saídas, minimizando o erro entre suas previsões
e os rótulos reais (Mohri; Rostamizadeh; Talwalkar, 2018).

Características do aprendizado supervisionado:

• Objetivo: Predizer a saída correta para novas entradas, com base no conhecimento
adquirido durante o treinamento.

• Dados Rotulados: Utiliza um conjunto de dados de treinamento com saídas
conhecidas.

• Complexidade dos Dados: Geralmente envolve dados menos complexos, uma vez
que os rótulos guiam o aprendizado.

• Aplicabilidade: Classificação de imagens, reconhecimento de fala, diagnósticos
médicos, previsão de preços, entre outros.

Exemplos de algoritmos de aprendizado supervisionado:

• Redes Neurais Convolucionais (CNNs).

• Redes Neurais Recorrentes (RNNs).

Por outro lado, o aprendizado não supervisionado é uma técnica em que o modelo
é treinado com dados não rotulados. O objetivo é identificar padrões ou estruturas ocultas
dentro dos dados. O modelo aprende diretamente da estrutura dos dados, sem informações
prévias sobre as saídas desejadas (Mohri; Rostamizadeh; Talwalkar, 2018).

Características do aprendizado não supervisionado:

• Objetivo: Descobrir padrões, agrupamentos ou representações latentes nos dados.

• Dados Não Rotulados: Utiliza um conjunto de dados de treinamento sem saídas
conhecidas.

• Complexidade dos Dados: Frequentemente aplicado a dados mais complexos e
estruturados intrinsecamente, sem orientação explícita.

• Aplicabilidade: Agrupamento de clientes, compressão de dados, detecção de ano-
malias, análise de redes sociais, entre outros.
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Exemplos de algoritmos de aprendizado não supervisionado:

• K-means.

• Redes Neurais Generativas Adversárias (GANs).

• Autoencoders.

Os modelos baseados em RNAs têm atraído atenção por resolverem problemas
complexos de IA. A partir do conceito de neurônio matemático, diversas arquiteturas
avançadas de Aprendizagem Profunda, como as Redes Neurais Convolucionais, exploradas
a seguir.

2.2 Arquiteturas Avançadas de Aprendizagem Profunda

2.2.1 Visão Geral

Existem diversas arquiteturas de redes neurais, cada uma projetada para atender
a finalidades específicas e resolver problemas distintos. Redes Neurais Convolucionais
(CNNs), por exemplo, são amplamente empregadas em tarefas de Visão Computacional,
enquanto Redes Neurais Recorrentes (RNNs) são mais adequadas para Processamento de
Linguagem Natural. A Figura 5 apresenta uma visão geral das principais arquiteturas de
redes neurais.

Os modelos de Aprendizagem Profunda são caracterizados pelo uso de redes neurais
artificiais com múltiplas camadas ocultas ou intermediárias, como discutido por Bengio
(Bengio, 2009). Nas subseções a seguir, exploraremos algumas das arquiteturas mais
relevantes para os objetivos desta dissertação.

2.2.2 Redes Neurais Convolucionais (CNNs)

Uma Rede Neural Convolucional é uma classe de Rede Neural Artificial amplamente
utilizada em tarefas de processamento de imagens. No livro de Chollet (Chollet, 2017), são
apresentadas as quatro principais camadas de uma CNN: Convolução, Pooling, Camada
Totalmente Conectada e Unidades Lineares Retificadas (do inglês Rectified Linear Units -
ReLU), como ilustrado na Figura 6.

As CNNs têm demonstrado grande eficácia em tarefas de processamento de imagens,
como evidenciado no trabalho de Krizhevsky, Sutskever e Hinton (Krizhevsky; Sutskever;
Hinton, 2012), que apresentou a AlexNet, uma arquitetura que venceu a competição
ImageNet de 2012. A importância das CNNs também foi reforçada pelo trabalho de
Kaiming He, Xiangyu Zhang, Shaoqing Ren e Jian Sun (He et al., 2016), que introduziram
as Redes Residuais (ResNet), uma arquitetura que resolve problemas de degradação em
redes muito profundas. Outro exemplo significativo é o trabalho de Karen Simonyan e
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Figura 5 – Representação das Principais Redes Neurais Existentes

Fonte: (Leijnen; Veen, 2020)
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Figura 6 – Arquitetura de uma rede CNN

Fonte: (Academy, 2018)

Andrew Zisserman (Simonyan; Zisserman, 2015), que apresentou a arquitetura VGG,
caracterizada pelo uso de convoluções pequenas empilhadas para aumentar a profundidade
e a performance das CNNs em grandes conjuntos de dados de imagens.

As CNNs possuem várias características e vantagens que as tornam extremamente
eficazes em tarefas de processamento de imagens, destacando-se:

1. Extração Automática de Características: As CNNs utilizam camadas convolu-
cionais para extrair automaticamente características relevantes das imagens. Esses
filtros convolucionais detectam bordas, texturas, padrões e outras características
importantes sem necessidade de intervenção manual. Além disso, as camadas mais
profundas combinam características simples detectadas nas camadas anteriores para
reconhecer formas e objetos mais complexos.

2. Redução da Dimensionalidade: Camadas de Pooling são utilizadas para reduzir a
dimensionalidade dos mapas de características, o que ajuda a diminuir a complexidade
computacional e a evitar o overfitting, mantendo as características mais importantes.

3. Invariância a Translações e Deformações: Devido ao uso de filtros locais
aplicados em imagens, as CNNs são naturalmente invariantes a translações, rotações
e pequenas deformações nas imagens, melhorando a robustez do modelo.

4. Compartilhamento de Pesos: Os mesmos filtros são aplicados em diferentes
partes da imagem, permitindo a detecção de características independentemente da
posição na imagem. Isso reduz significativamente o número de parâmetros a serem
aprendidos, tornando o treinamento mais eficiente.

5. Eficiência Computacional: As operações convolucionais são eficientes e podem
ser aceleradas utilizando hardware especializado, como GPUs, permitindo treinar
redes profundas em grandes conjuntos de dados de imagens de maneira relativamente
rápida.
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Figura 7 – Exemplo de Imagem com Filtro Aplicado

Fonte: Adaptado de (DERTAT, 2017)

Figura 8 – Convolução de uma Imagem

Fonte: Adaptado de (DERTAT, 2017)

6. Arquiteturas Profundas e Flexíveis: Arquiteturas como AlexNet, VGG, ResNet e
Inception oferecem modelos pré-treinados em grandes bases de dados como ImageNet,
facilitando o uso de CNNs em diversas aplicações de processamento de imagens por
meio de transfer learning, sem a necessidade de treinar redes do zero.

A seguir, exploraremos as quatro principais camadas de uma rede CNN.

2.2.2.1 Camadas Convolucionais

A camada convolucional é a principal responsável pela extração de características
em uma CNN. A operação de convolução envolve a aplicação de um filtro (ou kernel) sobre
a imagem. O filtro realiza uma multiplicação ponto a ponto com uma região da imagem, e
os resultados dessas multiplicações são somados para produzir um único valor no Mapa de
Características (ou Feature Map). A Figura 7 ilustra um exemplo de uma imagem 5x5
pixels com um filtro 3x3 aplicado.

A operação de convolução é realizada deslizando o filtro por toda a imagem,
resultando em um Mapa de Características. A Figura 8 demonstra o processo de convolução.
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Figura 9 – Mapa de Características Utilizados na Convolução

Fonte: Adaptado de (DERTAT, 2017)

Figura 10 – Convolução de um Filtro Sendo Aplicado em uma Imagem RGB

Fonte: Adaptado de (DERTAT, 2017)

O Mapa de Características é gerado ao aplicar o filtro em cada posição da imagem.
A Figura 9 mostra como esse Mapa é produzido durante o processo de convolução.

Embora os exemplos anteriores mostrem a convolução em duas dimensões (2D),
as CNNs também podem operar com volumes tridimensionais (3D). A Figura 10 ilustra
a aplicação de um filtro 5x5x3 em uma imagem RGB 32x32x3. A profundidade do filtro
deve corresponder à profundidade da imagem na qual está sendo aplicado. Além disso, a
Figura 11 demonstra como dois filtros distintos produzem dois Mapas de Características
diferentes.

2.2.2.2 Camadas de Pooling

As camadas de Pooling têm a função principal de reduzir a dimensionalidade das
ativações, o que ajuda a diminuir a complexidade computacional e a prevenir overfitting.
O tipo mais comum de Pooling é o max pooling, que seleciona o maior valor dentro da
área onde o filtro é aplicado. A Figura 12 ilustra a aplicação de um filtro max pooling 2x2
em uma imagem 4x4. Cada cor representa uma região diferente onde o filtro foi aplicado e
seu resultado.
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Figura 11 – Exemplo CNN com Dois Filtros

Fonte: Adaptado de (DERTAT, 2017)

Figura 12 – Max Pooling Aplicado em uma Imagem

Fonte: Adaptado de (DERTAT, 2017)

2.2.2.3 Camadas Totalmente Conectadas

As camadas Totalmente Conectadas (Fully Connected) são responsáveis por pro-
cessar as ativações finais da CNN e transformá-las em um vetor. Após a última camada
convolucional, os dados são achatados em um vetor e processados por uma ou mais camadas
totalmente conectadas. A saída da última camada totalmente conectada é um vetor com
uma dimensão igual ao número de classes no problema de classificação, que é então usado
pelo classificador para gerar a predição final.

2.2.2.4 Aprendizado por Transferência

Quando não há uma base de dados suficientemente grande para treinar uma CNN
do zero, técnicas de aprendizado por transferência podem ser usadas. Essas técnicas
aproveitam modelos pré-treinados em grandes bases de dados para auxiliar na classificação
de novas bases de imagens. De acordo com Li, Wu e Gao (Li; Wu; Gao, 2023), as duas
principais técnicas de aprendizado por transferência são o Ajuste Fino (fine tuning) e a
Extração de Características (feature extraction).

Na técnica de Ajuste Fino, uma CNN pré-treinada é retreinada com uma nova base
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de imagens. Esta abordagem é baseada na premissa de que as características extraídas pela
rede pré-treinada são úteis também para a nova tarefa, necessitando apenas de ajustes
nos pesos das camadas finais. A vantagem dessa técnica é que as primeiras camadas, que
capturam características mais gerais, já estão treinadas, permitindo que o treinamento se
concentre nas últimas camadas que são mais específicas para a nova base de dados. Isso
reduz a necessidade de um grande número de amostras e o tempo de treinamento.

Na técnica de Extração de Características, a CNN pré-treinada é utilizada apenas
como um extrator de características. As ativações de qualquer camada podem ser transfor-
madas em vetores de características para serem usados por um classificador, geralmente
utilizando as ativações das camadas totalmente conectadas, que já são vetores. Esta técnica
é aplicada quando se tem uma base de dados muito pequena, tornando inviável o uso de
Ajuste Fino, ou quando não se dispõe de recursos computacionais robustos para treinar
uma CNN.

2.2.3 Funções de Ativação

A função de ativação é um componente matemático crucial nas Redes Neurais
Artificiais (RNAs) que possibilita a resolução de problemas complexos. De acordo com
Glorot, Xavier e Yoshua (Glorot; Bengio, 2010), várias funções de ativação, incluindo
Sigmoide, Tanh e ReLU, são amplamente utilizadas e discutidas em termos de suas
vantagens e desvantagens em redes profundas.

2.2.3.1 Sigmoide

A função Sigmoide é amplamente utilizada como função de ativação e é definida
pela fórmula:

σ(x) = 1
1 + e−x

(2.1)

A principal característica da função Sigmoide é sua não linearidade, o que permite
que redes com múltiplos neurônios ativados pela função Sigmoide produzam saídas não
lineares. A função varia entre 0 e 1 e possui um formato de "S". Contudo, a função
Sigmoide apresenta alguns problemas, como a saturação dos gradientes, onde os gradientes
se aproximam de zero, dificultando o aprendizado da rede. Outro problema que a função
Sigmoide possui é que os valores variam apenas entre 0 a 1.

2.2.3.2 Tanh

A função Tanh é similar à função Sigmoide, mas com uma variação que escala a
saída para o intervalo de -1 a 1. A função Tanh é definida por:
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Tanh(x) = ex − e−x

ex + e−x
(2.2)

A função Tanh resolve o problema da saturação dos valores de saída ao permitir
que os valores variem entre -1 e 1. Isso ajuda a centralizar os dados em torno de zero e
pode melhorar o desempenho da rede ao evitar que todas as saídas tenham o mesmo sinal.
Assim como a Sigmoide, a função Tanh é contínua e diferenciável em todos os pontos.

2.2.3.3 ReLU

A função ReLU, ou Unidade Linear Retificada, é definida por:

ReLU(x) = max(0, x) (2.3)

ReLU é amplamente utilizada em projetos de redes neurais devido à sua simplicidade
e eficiência. A principal vantagem de utilizar a função ReLU sobre outras funções de
ativação é que ela não ativa todos os neurônios no mesmo instante. Isso significa que
apenas alguns neurônios são ativados, tornando a rede mais eficiente. Contudo, ReLU
também pode apresentar problemas com os gradientes que se deslocam em direção a 0.

2.2.4 Métricas

Nesta subseção, são apresentadas as métricas de classificação consideradas para
avaliar o desempenho das redes neurais escolhidas. As fórmulas para o cálculo dessas mé-
tricas foram obtidas da obra de Hackeling (Hackeling, 2017). Para facilitar o entendimento,
as siglas utilizadas nas fórmulas são definidas a seguir:

• TP (do inglês True Positives): Exemplos positivos corretamente classificados
como positivos pelo modelo.

• FN (do inglês False Negatives): Exemplos positivos incorretamente classificados
como negativos pelo modelo.

• FP (do inglês False Positives): Exemplos negativos incorretamente classificados
como positivos pelo modelo.

• TN (do inglês True Negatives): Exemplos negativos corretamente classificados
como negativos pelo modelo.

2.2.4.1 Acurácia

A acurácia mede a proporção de previsões corretas feitas pelo modelo em relação
ao número total de previsões. A fórmula para o cálculo da acurácia é:
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Acurácia = Número de predições corretas
Número total de predições = TP + TN

TP + TN + FP + FN
(2.4)

2.2.4.2 Precisão

A precisão (ou precision) é a razão entre o número de verdadeiros positivos e o
total de previsões positivas feitas pelo modelo. A fórmula para o cálculo da precisão é:

Precisão = Verdadeiros Positivos
Verdadeiros Positivos + Falsos Positivos = TP

TP + FP
(2.5)

2.2.4.3 Cobertura

A cobertura (ou recall) é a razão entre o número de verdadeiros positivos e o
total de exemplos que realmente pertencem à classe positiva. A fórmula para o cálculo da
cobertura é:

Cobertura = Verdadeiros positivos
Verdadeiros positivos + Falsos negativos = TP

TP + FN
(2.6)

2.2.4.4 Log Loss

Log Loss é uma função de perda utilizada para avaliar a performance de modelos
de classificação, especialmente em redes neurais artificiais (RNAs). A fórmula da log loss é:

Log Loss = − 1
N

N∑
i=1

[yi log(pi) + (1 − yi) log(1 − pi)] (2.7)

• N : Número total de exemplos.

• yi: Valor verdadeiro da classe para o i-ésimo exemplo (1 se for a classe positiva, 0 se
for a classe negativa).

• pi: Probabilidade prevista de que o i-ésimo exemplo pertença à classe positiva.

Entre as métricas selecionadas, a log loss é de especial relevância, pois as redes
neurais buscam minimizar essa métrica durante o processo de treinamento, refletindo
diretamente na precisão das previsões.
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Figura 13 – Gradiente Descendente

Fonte: (Raschka; Mirjalili, 2017)

2.2.4.5 Overhead

O cálculo do overhead envolve uma combinação de medições práticas, análise de
código e entendimento das operações adicionais específicas que estão sendo realizadas. Esta
métrica é crucial para otimizar a eficiência da RNA e garantir um desempenho adequado
para as aplicações desejadas. A fórmula do overhead é:

Overhead = Tempo Total de Execução
Tempo de Execução Útil

(2.8)

2.2.5 Otimizadores

Um dos objetivos dos algoritmos de aprendizado de máquina supervisionados é
otimizar o processo de redução da função de custo, também chamada de função J (Raschka;
Mirjalili, 2017). Reduzir a função J é fundamental para otimizar a rede, permitindo que ela
identifique os pesos que melhor representam a relação entre os dados. Esses pesos formam
o modelo preditivo, que possibilita à rede fazer predições ao utilizar novos conjuntos de
dados. Para descobrir esses pesos, a rede é treinada para fazer predições o mais próximas
possíveis dos valores reais. A função de custo log loss é utilizada para medir o quão erradas
são as previsões:

L(y, ŷ) = − 1
N

N∑
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)] (2.9)

O algoritmo de otimização para encontrar os pesos é o Gradiente Descendente
(GD). A Figura 13 demonstra que, para cada iteração, é dado um passo na direção oposta
ao gradiente, onde o tamanho do passo é determinado pela taxa de aprendizado (Raschka;
Mirjalili, 2017).
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Com a descida do gradiente, são realizados pequenos passos em direção ao mínimo
global. Nesse processo, a rede ajusta os pesos em etapas que reduzem o erro. Como o
caminho mais rápido está na direção mais íngreme, as etapas tomadas devem estar na
direção que minimiza o erro. O GD atualiza os pesos, dando um passo na direção oposta
ao gradiente ∆J(w) da função de custo J:

w := w + ∆w (2.10)

Onde a mudança de peso ∆J(w) é definida como o gradiente negativo multiplicado
pela taxa de aprendizado −η:

∆w = −η∆J(w) (2.11)

Para calcular o gradiente da função de custo J, é necessário calcular a derivada
da função de custo em relação a cada peso wj. Para isso, as redes utilizam um algoritmo
chamado Backpropagation, que otimiza o processo de cálculo das derivadas, tornando a
rede mais eficiente. Embora o GD apresente bons resultados, ele possui custos elevados
para atualizar os pesos quando o conjunto de dados é muito grande, pois é preciso reavaliar
todo o conjunto de dados de treinamento para cada passo em direção ao mínimo global
(Raschka; Mirjalili, 2017).

Uma alternativa ao GD é o Gradiente Descendente Estocástico (do inglês Stochastic
Gradient Descent - SGD), que, ao invés de atualizar os pesos com base na soma dos
erros acumulados sobre todos os dados, aplica o GD a amostras aleatórias de dados de
treinamento. A vantagem é que a convergência da rede é alcançada mais rapidamente
através de pequenos lotes, devido às atualizações de peso serem mais frequentes (Raschka;
Mirjalili, 2017). Os parâmetros do SGD que ajudam no treinamento da rede são:

• Taxa de aprendizado: Indica a velocidade com que o otimizador ajusta os pesos
da rede neural.

• Momentum: Refere-se à quantidade de inércia que o gradiente acumula, ajudando
a suavizar o processo de atualização dos pesos.

• Decay: Utilizado para reduzir gradualmente a taxa de aprendizado conforme o
treinamento avança.

Além dos otimizadores já mencionados, o AdamW combina os benefícios do método
de descida de gradiente adaptativo, ajustando a taxa de aprendizado para cada parâmetro
com base nas estimativas dos momentos de primeira e segunda ordem, e o decaimento
de peso (weight decay), que é implementado de forma mais direta e eficiente do que no



48

Adam tradicional (Loshchilov; Hutter, 2018). O AdamW utiliza um decaimento de peso
explícito, que age como regularizador, penalizando grandes valores de pesos e prevenindo o
sobreajuste. Essa abordagem tem se mostrado vantajosa em termos de generalização, pois
melhora o desempenho em conjuntos de dados complexos e em redes neurais profundas
(Loshchilov; Hutter, 2018).

Nesta dissertação, foram considerados os otimizadores SGD e AdamW, com o
objetivo de determinar qual dos dois é mais eficaz na classificação de imagens faciais.

2.3 Processamento de Imagem com CNNs

Neste capítulo, exploraremos o funcionamento do processamento de imagens utili-
zando redes convolucionais (CNNs), desde as etapas de pré-processamento, com técnicas
de padronização de dados e data augmentation, até a extração de características, passando
por arquiteturas avançadas.

2.3.1 Pré-processamento de Imagens

2.3.1.1 Normalização e Padronização de Dados

A normalização e a padronização são técnicas essenciais no pré-processamento de
imagens para CNNs, permitindo que os dados de entrada estejam em uma escala adequada
para o treinamento eficiente dos modelos.

Segundo LeCun et al. (LeCun et al., 1998), a técnica de normalização refere-se ao
ajuste dos valores dos pixels para um intervalo específico, geralmente entre 0 e 1. Essa
técnica reduz a disparidade entre os valores dos pixels, facilitando a convergência dos
algoritmos de aprendizado de máquina. A normalização pode ser realizada dividindo os
valores dos pixels pelo valor máximo possível.

Por outro lado, Ioffe e Szegedy (Ioffe; Szegedy, 2015) destacam que a técnica
de padronização envolve transformar os dados para que tenham média zero e variância
unitária. Isso é particularmente útil para algoritmos que assumem uma distribuição normal
dos dados de entrada. A padronização é realizada subtraindo-se a média e dividindo pelo
desvio padrão dos valores dos pixels.

2.3.1.2 Técnicas de Data Augmentation

As técnicas de data augmentation têm como objetivo aumentar o conjunto de
dados de treinamento, criando variações artificiais das imagens de entrada. Isso contribui
para melhorar a generalização dos modelos e prevenir o overfitting. Abaixo, são descritas
algumas formas de realizar essa ampliação dos dados.

Simard et al. (Simard; Steinkraus; Platt, 2003) discutem a técnica de rotação e
translação, que consiste em aplicar pequenas rotações e translações às imagens, ajudando o
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modelo a aprender a reconhecer objetos, como faces, independentemente de sua orientação
ou posição.

Krizhevsky et al. (Krizhevsky; Sutskever; Hinton, 2012) introduzem a técnica
de espelhamento e inversão, onde imagens espelhadas horizontalmente são incluídas no
conjunto de dados, visando ensinar o modelo a reconhecer faces em diferentes direções.

Howard (Howard, 2013) propõe a técnica de mudanças de iluminação, que altera
a intensidade da luz e a exposição nas imagens para tornar o modelo mais robusto a
diferentes condições de iluminação.

Por fim, Bishop (Bishop, 1995) apresenta a técnica de adição de ruído, que consiste
em adicionar ruído às imagens para melhorar a robustez do modelo contra interferências e
imperfeições nas imagens de entrada.

2.3.1.3 Técnicas de Undersampling

A técnica de undersampling é amplamente utilizada em aprendizado de máquina
para lidar com conjunto de dados desbalanceados, onde a presença dominante de uma ou
mais classes pode causar vieses nos modelos, resultando em um desempenho insatisfatório
para as classes minoritárias. O método mais simples, o undersampling aleatório, reduz o
número de instâncias da classe majoritária para equilibrar a distribuição entre as classes,
mas pode levar à perda de informações cruciais, nos estudos de Gustavo e Ronaldo (Batista;
Prati; Monard, 2004).

No reconhecimento facial, onde o desbalanceamento demográfico é comum, o under-
sampling pode ajudar a evitar que modelos favoreçam grupos majoritários, contribuindo
para resultados mais justos. No entanto, a aplicação dessa técnica deve ser cuidadosa, pois
a remoção inadequada de dados pode introduzir vieses negativos e reduzir a capacidade
de generalização do modelo.

2.3.2 Extração de Características

A extração de características é o processo de identificar e quantificar aspectos
relevantes das imagens, que são usados pelos modelos de aprendizado para fazer previsões.
Este processo envolve a identificação de padrões, bordas, texturas e outras características
visuais importantes que podem ser usadas para diferenciar entre diferentes classes de
imagens, conforme explorado por Turk e Pentland (Turk; Pentland, 1991).

A detecção de bordas, texturas e padrões é uma parte crucial na extração de
características, permitindo que o modelo capture detalhes essenciais da imagem:

• Detecção de Bordas: Métodos como Sobel, Canny e Laplacian são utilizados para
identificar contornos e formas nas imagens, ajudando a isolar objetos de interesse do
fundo.
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• Detecção de Texturas: Filtros de Gabor e transformadas wavelet são comumente
usados para capturar texturas em imagens, identificando padrões repetitivos ou
estruturados que distinguem diferentes superfícies e materiais.

• Detecção de Padrões: A transformada de Fourier e a Análise de Componentes
Principais (PCA) são técnicas usadas para identificar padrões repetitivos nas imagens,
auxiliando na simplificação de dados complexos e na extração de características
globais.

2.3.3 Arquiteturas Avançadas

A seguir, são exploradas algumas arquiteturas que marcaram importantes avanços
no desenvolvimento de CNNs, cada uma trazendo inovações que melhoraram significativa-
mente o desempenho em tarefas de reconhecimento de imagens:

• LeNet (LeCun et al., 1998): Uma das primeiras CNNs, desenvolvida para o
reconhecimento de dígitos manuscritos, estabelecendo as bases para o uso de redes
convolucionais em tarefas de visão computacional.

• AlexNet (Krizhevsky; Sutskever; Hinton, 2012): Introduziu o uso de ReLU e
dropout, melhorando significativamente a precisão em grandes conjuntos de dados,
como o ImageNet, e tornando-se um marco no campo de redes profundas.

• VGGNet (Simonyan; Zisserman, 2015): Caracteriza-se pelo uso de muitas
camadas convolucionais pequenas (3x3) para capturar características complexas,
oferecendo uma estrutura mais uniforme e simplificada, que facilitou a exploração de
redes mais profundas.

• ResNet (He et al., 2016): Introduziu conexões residuais, que permitem a criação
de redes muito profundas sem sofrer com o problema do vanishing gradient, possibi-
litando a construção de redes com centenas de camadas sem perda significativa de
desempenho.

Neste trabalho, foi considerada a LResNet50E-IR para reconhecimento facial, pelos
seguintes fatores:

• Arquitetura ResNet: A LResNet50E-IR é baseada na arquitetura ResNet, que
introduz conexões residuais para mitigar o problema do desaparecimento do gra-
diente em redes muito profundas. O número ’50’ indica que essa rede possui 50
camadas, proporcionando uma profundidade considerável que permite a captura de
características complexas em imagens faciais.
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• Desempenho em Reconhecimento Facial: Redes baseadas em ResNet, como
a LResNet50E-IR, são amplamente reconhecidas por seu desempenho superior em
tarefas de reconhecimento facial. Elas são capazes de aprender representações faciais
robustas e discriminativas, resultando em alta precisão em diversas condições, como
variações de iluminação, ângulos e expressões, conforme explorado no estudo de
Deng et al. (Deng et al., 2019).

• Eficiência Computacional: Apesar de sua profundidade, a LResNet50E-IR é
relativamente eficiente em termos computacionais. Ela oferece um bom equilíbrio
entre precisão e uso de recursos, crucial para aplicações em tempo real, como
autenticação biométrica, explorado no estudo de Zhang et al. (Zhang et al., 2018).

• Adaptação e Customização: A LResNet50E-IR pode ser facilmente adaptada
ou ajustada para diferentes contextos de aplicação, seja em termos de adaptação
ao hardware disponível ou customização para um conjunto de dados específicos,
garantindo flexibilidade para diferentes projetos, conforme discutido por Cao et al.
(Cao et al., 2018).

No contexto de redes neurais convolucionais das arquiteturas avançadas é adicionada
a função de perda CrossEntropyLoss, amplamente utilizada para medir a divergência
entre a distribuição prevista e a distribuição real, facilitando o treinamento de modelos de
classificação (Sterr, 2020).

2.4 Reconhecimento de Biometria Facial

2.4.1 Introdução à Biometria Facial

A biometria facial refere-se ao uso de características físicas e comportamentais
do rosto para o reconhecimento automático de indivíduos. Este método de identificação
biométrica é amplamente utilizado devido à sua conveniência e precisão, conforme explorado
no artigo de Jain et al. (Jain; Ross; Prabhakar, 2004).

O reconhecimento facial é aplicado em diversas áreas, destacando-se:

• Segurança: Utilizado em vigilância, monitoramento e controle de acesso, garantindo
a identificação e o rastreamento de indivíduos em tempo real, como discutido no
livro de Zhao et al. (Zhao et al., 2003).

• Autenticação: Implementado em dispositivos móveis, sistemas bancários e outras
plataformas para autenticar usuários, garantindo segurança e conveniência, conforme
explorado por Frischholz et al. (Frischholz; Dieckmann, 2000).
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2.4.2 Técnicas Clássicas vs Técnicas Baseadas em CNN

Antes do advento das CNNs, diversos métodos clássicos eram amplamente utilizados
para reconhecimento facial, cada um com suas características e limitações:

• Eigenfaces (Turk; Pentland, 1991): Utiliza a Análise de Componentes Principais
(PCA) para reduzir a dimensionalidade das imagens, representando rostos em um
espaço de características de menor dimensão, facilitando a distinção entre diferentes
identidades faciais.

• Fisherfaces (Belhumeur; Hespanha; Kriegman, 1997): Baseado na Aná-
lise Discriminante Linear (LDA), este método maximiza a separação entre classes
enquanto minimiza a variação dentro das classes, tornando-o mais robusto em
comparação com Eigenfaces.

• LBPH (Local Binary Patterns Histogram) (Ahonen; Hadid; Pietikäinen,
2006): Utiliza padrões binários locais para capturar texturas e características locais
do rosto, sendo especialmente eficaz em condições de variação de iluminação.

Com o advento das CNNs, o reconhecimento de biometria facial evoluiu significati-
vamente, oferecendo vantagens substanciais:

• Precisão: CNNs permitem a extração de características mais complexas e discrimi-
nativas das imagens faciais, melhorando a precisão do reconhecimento (Krizhevsky;
Sutskever; Hinton, 2012).

• Robustez: Alta assertividade mesmo com variações de iluminação, pose e expressão
facial, como demonstrado por Parkhi et al. (Parkhi; Vedaldi; Zisserman, 2015).

• Escalabilidade: As CNNs podem ser treinadas em grandes conjuntos de dados,
permitindo a construção de modelos robustos e escaláveis (LeCun; Bengio; Hinton,
2015).

2.4.3 Modelos Avançados

A seguir, são explorados os modelos avançados de reconhecimento facial, com uma
descrição de seu funcionamento e suas vantagens.

2.4.3.1 FaceNet

O FaceNet, desenvolvido pelo Google (Schroff; Kalenichenko; Philbin, 2015), utiliza
uma CNN para aprender uma representação embutida de imagens faciais. A abordagem de
triplet loss agrupa imagens faciais em tripletos (âncora, positivo e negativo) para aprender
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uma métrica de similaridade. Isso permite que o FaceNet projete imagens faciais em
um espaço de características de alta dimensão, onde distâncias euclidianas entre vetores
correspondem a similaridades faciais.

As principais vantagens deste modelo incluem sua alta precisão em benchmarks e a
eficiência na comparação rápida de características faciais, tornando-o ideal para sistemas
de reconhecimento em larga escala (Schroff; Kalenichenko; Philbin, 2015).

2.4.3.2 DeepFace

O DeepFace, desenvolvido pelo Facebook (Taigman et al., 2014), utiliza uma rede
neural convolucional profunda para aprender representações faciais. Com várias camadas
convolucionais e camadas totalmente conectadas, o modelo é treinado em um grande
conjunto de dados de rostos e utiliza uma técnica de alinhamento facial para melhorar a
precisão do reconhecimento.

Suas principais vantagens são a alta precisão em condições de variação de pose
e iluminação, e a técnica de alinhamento facial, que aumenta a robustez do modelo em
diferentes condições de entrada (Taigman et al., 2014).

2.4.3.3 VGG-Face

O VGG-Face, desenvolvido pelo Visual Geometry Group (Parkhi; Vedaldi; Zisser-
man, 2015) da Universidade de Oxford, é baseado na arquitetura VGGNet. Este modelo
é treinado com um grande conjunto de dados de imagens faciais e utiliza uma rede con-
volucional profunda com camadas uniformes de convolução e pooling. A arquitetura do
VGG-Face é conhecida por sua simplicidade e eficácia em extrair características faciais
detalhadas.

As principais vantagens deste modelo incluem sua robustez, capturando caracterís-
ticas faciais detalhadas e robustas, e sua flexibilidade, permitindo fácil adaptação para
diferentes tarefas de reconhecimento facial (Parkhi; Vedaldi; Zisserman, 2015).

2.4.3.4 ArcFace

O ArcFace foi projetado para superar as limitações dos modelos anteriores, especi-
almente em termos de discriminação e robustez em reconhecimento facial (Deng et al.,
2019).

Os desafios dos modelos anteriores incluem:

• FaceNet: A perda de triplet pode não capturar suficientemente a separação entre
classes faciais, especialmente em cenários com grande variação.
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• DeepFace: Embora a técnica de alinhamento melhore a precisão, a rede pode
enfrentar dificuldades com variações extremas de pose e iluminação.

• VGG-Face: Embora seja detalhado, o modelo pode não oferecer a separação angular
necessária para distinguir identidades faciais de maneira robusta.

O ArcFaceLoss é a técnica avançada projetada para melhorar o desempenho do
reconhecimento facial, introduzindo um termo de margem angular na função de perda.
Isso resulta em representações faciais mais discriminativas e, consequentemente, em uma
maior acurácia no reconhecimento.

Nesta dissertação, foi utilizado a Arquitetura LResNet50E-IR com ArcFace e a
técnica ArcFaceLoss, que se destaca pelas seguintes características:

• Perda Angular: Introduz a técnica de perda angular, que melhora a separação entre
identidades faciais ao penalizar a proximidade angular de vetores de características.
Isso resolve o problema de discriminação que os modelos anteriores não abordavam
de forma tão eficaz.

• Desempenho Melhorado: A abordagem de margem angular aditiva do ArcFace
permite que ele alcance melhores resultados em benchmarks de reconhecimento facial,
superando os modelos anteriores em termos de precisão e robustez (Deng et al.,
2019).

2.5 Implementação Prática

Neste capítulo final, são exploradas as técnicas de implementação de reconhecimento
facial, detalhando um pipeline estruturado que abrange as etapas de detecção, alinhamento,
extração de características e reconhecimento. As ferramentas utilizadas incluem TensorFlow,
Keras, PyTorch e OpenCV.

2.5.1 Detecção e Alinhamento Facial

A detecção facial é a primeira etapa do pipeline de reconhecimento facial, cujo
objetivo é localizar e extrair as regiões do rosto em uma imagem.

O método adotado nesta dissertação foi o MTCNN (Multi-task Cascaded Convoluti-
onal Networks), conforme proposto nos trabalhos de Zhang et al. (Zhang et al., 2016) e Sun
et al. (Sun; Wang; Tang, 2016). O MTCNN é um conjunto de modelos de Deep Learning
baseados em redes neurais convolucionais (CNN) projetados para realizar detecção de
faces em imagens. Ele opera em três estágios hierárquicos: P-Net, R-Net e O-Net, cuja
arquitetura está ilustrada na Figura 14.

Resumidamente, essa arquitetura possui três saídas principais:
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Figura 14 – Arquitetura de P-Net, R-Net, e O-Net

Fonte: (Zhang et al., 2016)

• Bounding Boxes: Caixas delimitadoras que indicam onde as faces estão localizadas
na imagem. As bounding boxes são normalizadas para garantir a consistência e
facilitar a comparação entre diferentes escalas de imagens.

• Níveis de Confiança (Scores): Valores que indicam o nível de confiança do modelo
de que a caixa gerada corresponde a uma face.

• Pontos-Chave Faciais: Coordenadas dos pontos-chave faciais, como olhos, nariz e
boca, que são cruciais para o alinhamento facial.

2.5.2 Ferramentas e Frameworks

Abaixo, são descritas as ferramentas e frameworks selecionados para o desenvolvi-
mento desta dissertação, sendo essas as principais bibliotecas de Deep Learning usadas na
implementação de modelos de reconhecimento facial.

• PyTorch: Desenvolvida pelo Facebook, é uma biblioteca de deep learning ampla-
mente reconhecida por sua flexibilidade e eficiência tanto em pesquisa quanto em
produção (Paszke et al., 2019).

• OpenCV (Open Source Computer Vision Library): Biblioteca amplamente
utilizada para tarefas de visão computacional, incluindo o pré-processamento de
imagens para reconhecimento facial (Bradski, 2000). Fornece diversas funções para
detecção e alinhamento facial, além de outras operações de pré-processamento, como
redimensionamento, rotação e filtragem de imagens.

• TensorFlow: Desenvolvida pelo Google, é uma biblioteca de código aberto para
aprendizado de máquina, amplamente usada para construir e treinar redes neurais
profundas (Abadi et al., 2016).
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• Keras: API de alto nível para redes neurais que funciona sobre o TensorFlow,
simplificando a construção e o treinamento de modelos (Chollet et al., 2015).
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3 METODOLOGIA

Para alcançar os objetivos desta dissertação, será adotado o processo de Extração
de Conhecimento, também conhecido como KDD (Knowledge Discovery in Databases).
Este processo envolve uma série de etapas essenciais para extrair e validar informações
valiosas a partir de bases de dados (Fayyad; Piatetsky-Shapiro; Smyth, 1996).

3.1 Seleção e Análise do Conjunto de Dados

O objetivo desta dissertação é desenvolver modelos de redes neurais para o re-
conhecimento de faces com ênfase na mitigação de viés. Para isso, é crucial garantir a
equidade do conjunto de dados utilizado. Inicialmente, serão selecionadas Redes Neurais
Convolucionais (CNNs) para a classificação de imagens e comparação com alguns conjuntos
de dados. Para tanto, é fundamental buscar conjuntos que incluam imagens representativas
de diversas características faciais humanas. O conjunto de dados selecionado para este
estudo é:

• FairFace: Contendo mais de 100.000 imagens de 7.000 indivíduos, o FairFace inclui
anotações detalhadas sobre atributos demográficos como raça, gênero e idade. Este
conjunto visa fornecer uma base de dados mais equilibrada e representativa para
treinar e avaliar algoritmos de reconhecimento facial, contribuindo para a mitigação
de viés e aprimoramento da precisão em diferentes grupos demográficos (Karkkainen;
Joo, 2021).

A análise do conjunto de dados será tanto quantitativa quanto qualitativa. A
avaliação quantitativa envolve a análise estatística das métricas de desempenho dos modelos,
como acurácia, precisão e recall. A avaliação qualitativa, por outro lado, examinará a
capacidade dos modelos em lidar com a diversidade e complexidade dos dados, observando
como o viés é mitigado e se há uma melhora na generalização do reconhecimento facial em
diferentes grupos demográficos.

Ainda sobre a avaliação qualitativa, serão consideradas as 7 raças presentes no
conjunto de dados FairFace:

• Black: Refere-se a indivíduos com ascendência africana ou afrodescendente, incluindo
pessoas de diversas regiões da África, América Latina e outros lugares, com uma
ampla variedade de tons de pele e características faciais.

• East Asian: Inclui pessoas de ascendência predominantemente asiática oriental,
com origem em países como China, Japão, Coreia e Mongólia, entre outros. Caracte-
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rísticas faciais comuns podem incluir formato de olhos com dobras epicânticas e pele
geralmente clara a moderada.

• Indian: Refere-se a indivíduos do subcontinente indiano, incluindo Índia, Paquistão,
Bangladesh, Sri Lanka e áreas adjacentes. Pessoas deste grupo podem apresentar
tons de pele variados e características faciais associadas a essas regiões.

• Latino Hispanic: Engloba indivíduos com ascendência latino-americana ou hispâ-
nica, incluindo regiões da América Latina, Caribe e áreas de língua espanhola. As
características variam bastante, refletindo a diversidade genética da região.

• Middle Eastern: Refere-se a pessoas de origem no Oriente Médio, incluindo regiões
como Arábia Saudita, Irã, Iraque, Síria, Egito e países adjacentes. Indivíduos desse
grupo possuem características variadas, com tons de pele de claro a moderado.

• Southeast Asian: Inclui indivíduos de origem do sudeste asiático, de países como
Tailândia, Vietnã, Indonésia, Filipinas, Malásia e outros. Esse grupo apresenta uma
ampla diversidade de tons de pele e características faciais.

• White: Refere-se a pessoas com ascendência europeia, incluindo regiões da Europa,
América do Norte e outras áreas. Características faciais podem variar, com tons de
pele geralmente claros a moderados.

3.2 Pré-Processamento dos Dados

O pré-processamento dos dados é essencial para garantir a equidade e a eficácia
dos modelos. Nesta etapa, as imagens serão normalizadas utilizando o algoritmo MTCNN
para detectar caixas delimitadoras dos rostos e marcos faciais, como olhos, nariz e boca.
As imagens serão então cortadas, alinhadas (por meio de transformação de similaridade)
e redimensionadas para 224 × 224 pixels. O conjunto de dados será dividido em partes
para treino, validação e teste. Além disso, será aplicado um balanceamento no conjunto de
dados, utilizando a técnica de undersampling para a menor classe.

A implementação do modelo utilizará a linguagem de programação Python (Foun-
dation, 2023) e as bibliotecas Keras e PyTorch. Essas bibliotecas oferecem modularidade e
extensibilidade, suportando CNNs tanto em CPU (Central Processing Unit) quanto em
GPU (Graphics Processing Unit) (Chollet et al., 2015). As imagens, originalmente em
formato RGB, terão seus valores de pixels normalizados para mean=[0.485, 0.456, 0.406] e
std=[0.229, 0.224, 0.225]. Para equilibrar o desempenho e a complexidade computacional,
será adotada a arquitetura LResNet50E-IR, uma variante do ResNet, projetada com
ArcFace.
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3.3 Treinamento do Modelo

Durante o treinamento, serão definidos os pesos das redes e os parâmetros de
treinamento, como o número de épocas e o tamanho dos lotes (batch size). O tamanho
do batch será ajustado para 128. Serão utilizados os otimizadores SGD e AdamW. Para
agendamento das épocas, a escolha do scheduler é crucial para o desempenho do modelo,
portanto será considerada as duas técnicas destacadas abaixo.

• OneCycleLR: O OneCycleLR ajusta a taxa de aprendizado ao longo de um ciclo
de treinamento, começando com um aumento gradual até um pico e, em seguida,
diminuindo rapidamente, conforme descrito por Smith (Smith, 2017). Essa estratégia
ajuda a evitar mínimos locais e melhora a convergência.

• CosineAnnealingWarmRestarts: O CosineAnnealingWarmRestarts é uma abor-
dagem que utiliza um padrão cosseno para resfriar a taxa de aprendizado, reiniciando
em intervalos regulares, o que também pode ser benéfico para a exploração e a con-
vergência do modelo, como destacado por Loshchilov e Hutter (Loshchilov; Hutter,
2017).

3.4 Análise de Desempenho do Modelo Treinado

Após o treinamento, serão avaliadas as métricas de desempenho das redes, incluindo
recall, acurácia, precisão, overhead, F1-Score e log loss. Essas métricas são cruciais para
problemas de classificação. A rede com menor log loss e menor overhead será selecionada
como a mais eficiente para o reconhecimento facial, considerando tanto o conjunto de
dados equilibrado quanto a mitigação de viés.

A acurácia no reconhecimento de imagens pode variar dependendo do conjunto
de dados e da arquitetura do modelo. Abaixo estão alguns benchmarks modernos em
reconhecimento facial:

• LFW (Labeled Faces in the Wild): Um dos benchmarks mais tradicionais para
reconhecimento facial é o LFW. Modelos modernos alcançam acurácias superiores a
99% neste conjunto de dados. Por exemplo, o FaceNet alcançou uma acurácia de
99.63% (Schroff; Kalenichenko; Philbin, 2015).

• MegaFace: Este é um benchmark mais desafiador que avalia a capacidade do modelo
em reconhecer faces em grandes conjuntos de dados. Modelos de última geração com
o ArcFace, alcançam acurácias em torno de 97% neste conjunto de dados (Deng et
al., 2019).

• CASIA-WebFace: Outro benchmark importante, com o VGG-Face alcançando uma
acurácia de 96.5% neste conjunto de dados (Parkhi; Vedaldi; Zisserman, 2015).
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• MS-Celeb-1M: Este é um dos maiores conjuntos de dados de reconhecimento facial,
onde modelos com o ArcFace alcançam acurácias superiores a 99% (Deng et al.,
2019).

A acurácia dos modelos treinados no FairFace apresentam acurácias que variam
dependendo da complexidade e da arquitetura do modelo. Trabalhos que utilizaram redes
neurais avançadas, como a ResNet-50 ou variantes de FaceNet, relataram acurácias entre
95% e 98% (Karkkainen; Joo, 2021).

Portanto, como sucesso deste trabalho devemos considerar a acurácia entre 95% a
98%, dentro dos grupos geográficos estudados.
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4 AVALIAÇÃO EXPERIMENTAL

A avaliação experimental se divide em duas etapas, sendo que na primeira etapa,
foi realizada uma análise detalhada do conjunto de dados FairFace, abrangendo a análise
estatística, a verificação de valores nulos e a distribuição das classes. Já na segunda etapa,
foram aplicados os algorítimos de treinamento no conjunto de dados, realizando variações
nos hiper-parâmetros e analisando os resultados.

4.1 Seleção e Análise do Conjunto de Dados

Tamanho Conjunto de Dados

A tabela 1 representa o tamanho do conjunto de dados utilizado nos experimentos.

Tabela 1 – Tamanho Conjunto de Dados

Linhas Colunas
97698 5

Resumo Estatístico

A tabela 2 apresenta um resumo estatístico do conjunto de dados utilizado nos
experimentos.

Tabela 2 – Resumo dos Dados

file age gender race service_test
count 97698 97698 97698 97698 97698
unique 97698 9 2 7 2
top train/1.jpg 20-29 Male White False
freq 1 28898 51778 18612 52284

Verificando Valores Nulos

A tabela 3 apresenta a análise de valores nulos por coluna do conjunto de dados
utilizado nos experimentos.

A Figura 15 apresenta um dashboard analítico das classes presentes no conjunto de
dados original.

Com o objetivo de mitigar viés no reconhecimento de faces, a classe race foi
selecionada para análise. A partir da análise dessa classe, identificou-se uma discrepância
amostral. Portanto, foi aplicado o balanceamento utilizando a técnica de undersampling
na menor classe.
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Tabela 3 – Valores Nulos por Coluna

Colunas Valores Nulos
file 0
age 0
gender 0
race 0
service_test 0

Figura 15 – Analítico das Classes Presentes no Conjunto de Dados Original

Fonte: Próprio Autor

Quantidade de Amostras Por Classe Antes do Balanceamento

A tabela 4 apresenta a quantidade de amostrar por classe antes do processo de
balanceamento do conjunto de dados utilizado nos experimentos.

Tabela 4 – Contagem de Amostrar Antes do Balanceamento

Race Count
White 18612
Latino Hispanic 14990
East Asian 13837
Indian 13835
Black 13789
Southeast Asian 12210
Middle Eastern 10425

Quantidade de Amostras Por Classe Depois do Balanceamento

A tabela 5 apresenta a quantidade de amostrar por classe antes do processo de
balanceamento do conjunto de dados utilizado nos experimentos.
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Tabela 5 – Contagem de Amostrar Após o Balanceamento

Race Count
White 10425
Latino Hispanic 10425
East Asian 10425
Indian 10425
Black 10425
Southeast Asian 10425
Middle Eastern 10425

Figura 16 – Analítico das Classes Presentes no Conjunto de Dados Balanceado

Fonte: Próprio Autor

A Figura 16 mostra o dashboard analítico das classes no conjunto de dados balan-
ceado.

Amostras da Classe Race

A Figura 17 traz uma amostra de cada uma das 7 raças presentes no conjunto
de dados balanceado, destacando a proximidade visual dos tons de pele e características
faciais das classes Southeast Asian, East Asian, Indian e Latino Hispanic.

4.2 Pré-Processamento dos Dados

Realizaram-se dois experimentos para preparar as imagens para o treinamento do
modelo.

Experimento I - Rotações e Detecção com MTCNN: Imagens foram rotacionadas
em 45 graus utilizando a biblioteca OpenCV. Foram analisadas 20 imagens com 8 ângulos
diferentes, totalizando 160 imagens. O algoritmo MTCNN detectou 102 faces, resultando em
uma taxa de detecção de 63%. A Figura 18 ilustra uma amostra das imagens rotacionadas.
A Figura 19 mostra alguns exemplos do desempenho do MTCNN na detecção de faces em
imagens rotacionadas.
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Figura 17 – Amostra das Raças do Conjunto de Dados

Fonte: Próprio Autor

Figura 18 – Exemplo de Uma Imagem Rotacionada em 45 Graus

Fonte: Próprio Autor
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Figura 19 – Exemplo de 3 Imagens Detectadas pelo MTCNN

Fonte: Próprio Autor

Figura 20 – Densidade das Faces Detectadas pelo Angulo Rotacionado

Fonte: Próprio Autor

A análise mostra que a taxa de falha é maior para ângulos próximos a 90 e 180
graus, com maior sucesso nos ângulos de 0 e 360 graus, conforme demonstrado na Figura
20. Também foi observada uma menor taxa de detecção para faces da classe Black.

Experimento II - Pós-Tratamento com MTCNN: As imagens que passaram por
rotação, alinhamento e redimensionamento foram novamente processadas pelo MTCNN
para assegurar a qualidade e assertividade da detecção. A Figura 21 exibe os cinco marcos
faciais de duas imagens amostrais. A análise confirmou que não houve perda de qualidade
ou assertividade após o pré-processamento.
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Figura 21 – Exemplo dos Cinco Marcos Faciais de Duas Imagens Amostrais

Fonte: Próprio Autor

O pré-processamento incluiu a identificação de faces com MTCNN, o recorte, o
alinhamento e o redimensionamento para 224 × 224 pixels. As imagens foram normalizadas
para o intervalo [-1.0, 1.0] nos conjuntos de treinamento e validação.

4.3 Treinamento do Modelo

O modelo de rede neural convolucional (CNN) foi treinado utilizando a variante
LResNet50E-IR, uma arquitetura baseada em ResNet-50 que incorpora melhorias para
reconhecimento facial, como maior capacidade de extração de características discriminativas.
No treinamento foram conduzidos alguns experimentos, com o objetivo de avaliar o
desempenho do modelo sob diferentes configurações de função de perda e otimização:

• Experimento 1: Utilização da função de perda CrossEntropyLoss combinada
com o otimizador SGD, utilizando o conjunto de dados balanceado e o scheduler
OneCycleLR.

• Experimento 2: Utilização da função de perda ArcFaceLoss combinada com o oti-
mizador SGD, utilizando o conjunto de dados balanceado e o scheduler OneCycleLR.

• Experimento 3: Utilização da função de perda CrossEntropyLoss combinada com
o otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler
OneCycleLR.

• Experimento 4: Utilização da função de perda ArcFaceLoss combinada com o
otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler OneCy-
cleLR.
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• Experimento 5: Utilização da função de perda CrossEntropyLoss combinada com
o otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler
CosineAnnealingWarmRestarts.

• Experimento 6: Utilização da função de perda ArcFaceLoss combinada com o
otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler Cosi-
neAnnealingWarmRestarts.

• Experimento 7: Utilização da função de perda CrossEntropyLoss combinada com
o otimizador AdamW, utilizando o conjunto de dados balanceado, filtrado pelas
classes alvo "White" e "Black" e o scheduler OneCycleLR.

• Experimento 8: Utilização da função de perda ArcFaceLoss combinada com o
otimizador AdamW, utilizando o conjunto de dados balanceado, filtrado pelas classes
alvo "White" e "Black" e o scheduler OneCycleLR.

• Experimento 9: Utilização da função de perda CrossEntropyLoss combinada com
o otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler
OneCycleLR, ainda com a mudança do Dropout para p=0.5.

• Experimento 10: Utilização da função de perda ArcFaceLoss combinada com
o otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler
OneCycleLR, ainda com a mudança do Dropout para p=0.5.

• Experimento 11: Utilização da função de perda CrossEntropyLoss combinada
com o otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler
OneCycleLR, considerando 40 épocas.

Para o otimizador SGD, foi adotado um valor de momentum de 0.9, que acelera
o processo de convergência em direções relevantes ao suavizar oscilações. Além disso,
foi utilizado um decaimento de peso (weight decay) de 0.0005, um fator que atua como
regularizador, prevenindo sobre-ajuste ao controlar a magnitude dos pesos durante o
treinamento.

Para o otimizador AdamW, foi utilizado um valor de weight decay de 0.0005, que
atua como regularizador, prevenindo o sobre-ajuste ao penalizar grandes valores de pesos
durante o treinamento. O AdamW combina as vantagens do método de descida de gradiente
adaptativo, ajustando a taxa de aprendizado para cada parâmetro com base em estimativas
de momentos de primeira e segunda ordem, e o decaimento de peso de maneira mais eficaz.
Essa abordagem ajuda a melhorar a generalização do modelo, tornando-o menos suscetível
ao sobre ajuste em dados complexos.

Para o scheduler OneCycleLR, foi adotada uma abordagem em que a taxa de
aprendizado começa em um valor baixo, aumenta rapidamente até um valor máximo de
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0.01, e depois decresce gradualmente até o final do treinamento. Esse ciclo único acelera
a convergência inicial ao permitir uma exploração mais ampla do espaço de parâmetros,
evitando que o modelo fique preso em mínimos locais. Ao mesmo tempo, a redução da
taxa de aprendizado ao longo das últimas iterações melhora a estabilidade do modelo,
garantindo que ele refine seus pesos de forma mais precisa. Esse comportamento cíclico
otimiza o uso da taxa de aprendizado, resultando em uma convergência mais rápida e
eficaz.

Para o scheduler CosineAnnealingWarmRestarts, foi adotada uma estratégia em
que a taxa de aprendizado segue uma função cosseno decrescente ao longo de cada ciclo,
com reinicializações periódicas de 8 épocas para um valor mais alto. Essas reinicializações,
conhecidas como warm restarts, permitem que o modelo escape de mínimos locais, dando ao
treinamento uma nova oportunidade de explorar soluções melhores. A taxa de aprendizado
decresce suavemente até um valor mínimo, o que ajuda na estabilidade do treinamento,
enquanto os restarts permitem uma recuperação eficiente de regiões promissoras no espaço
de parâmetros.

O conjunto de dados foi dividido em três subconjuntos: 80% dos dados foram
destinados ao treinamento, 10% para validação, e os 10% restantes foram reservados para
testes finais. A divisão foi feita de forma estratificada, garantindo que a distribuição das
classes fosse balanceada em cada um dos subconjuntos.

O batch size escolhido para ambos os experimentos foi de 128, uma configuração
que equilibra o uso eficiente da memória da GPU e a estabilidade do gradiente durante
a otimização. A escolha desse tamanho também leva em consideração a capacidade da
infraestrutura utilizada.

4.3.1 Ambiente de Treinamento

O ambiente de treinamento foi configurado utilizando recursos de computação em
nuvem da Microsoft Azure, devido à sua escalabilidade e suporte avançado para workloads
intensivas em GPU, como aquelas utilizadas em modelos de aprendizado profundo (Azure,
2024). A máquina virtual selecionada para os experimentos foi configurada com as seguintes
especificações:

• Tamanho da máquina virtual: Standard_NC6s_v3, que oferece 6 núcleos de
CPU, 112 GB de RAM e um disco de 736 GB. Este tipo de máquina é otimizado
para workloads que exigem alto desempenho computacional, particularmente para
operações de treinamento de modelos com GPU.

• Unidade de processamento gráfico (GPU): 1 NVIDIA Tesla V100.
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Além dos recursos computacionais, o conjunto de dados original utilizado foi
armazenado em um bucket do serviço de armazenamento de objetos da Amazon Web
Services (AWS), o Amazon S3. Essa solução foi escolhida pela sua confiabilidade e alta
disponibilidade, garantindo acessibilidade e velocidade no carregamento dos dados (Services,
2024).

A utilização de recursos de nuvem para esse projeto se justifica pela flexibilidade na
configuração de máquinas virtuais e pelo suporte ao uso de hardware especializado, como
GPUs, essenciais para o treinamento eficiente de redes neurais profundas. Esses ambientes
são amplamente utilizados na comunidade acadêmica e na indústria devido ao seu suporte
robusto e escalável para pesquisa e desenvolvimento em inteligência artificial.

Abaixo são apresentadas as versões dos aplicativos, softwares e principais bibliotecas
utilizadas:

• Sistema Operacional: Linux 5.15.0-1064-azure

• Processor: x86_64

• Python Version: 3.9.19

• PyTorch Version: 2.4.1

• Numpy Version: 1.23.5

• Pandas Version: 1.3.5

• Torchvision Version: 0.14.1

4.3.2 Classe LResNet50E-IR

Essa classe define a arquitetura do modelo LResNet50E_IR. O código desenvolvido
utiliza a ResNet50 pré-treinada do torchvision, alterando a última camada para se adequar
ao número de classes do conjunto de dados, através da camada fc da ResNet50. O self.fc é a
nova camada final que será usada para mapear os vetores para as classes. Um componente
adicional de Dropout com p=0.2 foi utilizado para regularizar o treinamento, reduzindo
overfitting.

4.3.3 Acesso ao Código Fonte

Todo o código fonte está disponível no GitHub (Ozzetti, 2024).

4.4 Análise de Desempenho do Modelo Treinado

Abaixo são apresentados os testes realizados, bem como os resultados apurados,
considerando a variação das funções de perda, dos otimizadores e dos schedullers.
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Os gráficos das métricas de treinamento possuem 4 quadrantes, onde o primeiro
quadrante apresenta o gráfico de "Loss over Epochs" que representa o erro médio do
modelo após cada época de treinamento. Uma diminuição constante indica que o modelo
está se ajustando aos dados. O segundo quadrante apresenta o gráfico de "Accuracy over
Epochs" que mede a porcentagem de previsões corretas, e um aumento ao longo do tempo
sugere que o modelo está aprendendo a classificar corretamente as amostras. No terceiro
quadrante apresenta o gráfico "Precision over Epochs" que foca nas previsões corretas
de uma classe específica em relação ao total de previsões feitas para essa classe, sendo
útil para problemas onde classes desbalanceadas ou erros de classificação têm diferentes
impactos. Por fim, o ultimo quadrante apresenta o gráfico da "Log Loss over Epochs"
que penaliza previsões de baixa confiança mesmo quando corretas, avaliando o quanto o
modelo é capaz de atribuir probabilidades corretas às classes.

Para cada experimento também será explorada a Matriz de Confusão, que representa
uma ferramenta essencial na avaliação de modelos de classificação, especialmente em
Inteligência Artificial, fornecendo uma visão detalhada do desempenho do modelo ao
comparar previsões com valores reais. Organizada em uma matriz quadrada, ela apresenta
quatro métricas principais: Verdadeiros Positivos (VP), Falsos Positivos (FP), Verdadeiros
Negativos (VN) e Falsos Negativos (FN). Esses valores ajudam a compreender onde o
modelo acerta e onde comete erros, permitindo o cálculo de métricas como acurácia,
precisão, recall e F1-score. Em contextos práticos, a análise da Matriz de Confusão é
crucial para identificar classes que o modelo pode ter dificuldades em distinguir, auxiliando
na calibração do modelo e no aprimoramento de sua performance em problemas específicos
de classificação.

4.4.1 Resultado Experimento 1

Neste experimento foi utilizada a função de perda CrossEntropyLoss combinada com
o otimizador SGD, utilizando o conjunto de dados balanceado e o scheduler OneCycleLR.

4.4.1.1 Métricas de Treinamento

Na Figura 22 são apresentadas as métricas do treinamento.

Pode ser

4.4.1.2 Matriz de Confusão

Na Figura 23 é apresentada a matriz de confusão do treinamento.

4.4.1.3 Relatório de Classificação

Na tabela 6 é apresentado o relatório de classificação.
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Figura 22 – Métricas do Experimento 1

Fonte: Próprio Autor

Figura 23 – Matriz de Confusão do Experimento 1

Fonte: Próprio Autor
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Classe Precisão Recall F1-Score Support
Black 0.85 0.86 0.86 1005
s East Asian 0.71 0.72 0.71 1005
Indian 0.73 0.72 0.72 1005
Latino Hispanic 0.50 0.52 0.51 1005
Middle Eastern 0.68 0.70 0.69 1005
Southeast Asian 0.60 0.60 0.60 1005
White 0.71 0.64 0.68 1006
Acurácia 0.68
Macro Avg 0.68 0.68 0.68 7036
Weighted Avg 0.68 0.68 0.68 7036

Tabela 6 – Relatório de Métricas de precision, recall, F1-score, e support do Experimento
1

Figura 24 – Métricas do Experimento 2

Fonte: Próprio Autor

4.4.2 Resultado Experimento 2

Neste experimento foi utilizada a função de perda ArcFaceLoss combinada com o
otimizador SGD, utilizando o conjunto de dados balanceado e o scheduler OneCycleLR.

4.4.2.1 Métricas de Treinamento

Na Figura 24 são apresentadas as métricas do treinamento.

4.4.2.2 Matriz de Confusão

Na Figura 25 é apresentada a matriz de confusão do treinamento.

4.4.2.3 Relatório de Classificação

Na tabela 7 é apresentado o relatório de classificação.
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Figura 25 – Matriz de Confusão do Experimento 2

Fonte: Próprio Autor

Classe Precisão Recall F1-Score Support
Black 0.79 0.80 0.80 1005
East Asian 0.64 0.67 0.65 1005
Indian 0.67 0.68 0.68 1005
Latino Hispanic 0.41 0.41 0.41 1005
Middle Eastern 0.67 0.58 0.62 1005
Southeast Asian 0.54 0.53 0.53 1005
White 0.59 0.64 0.61 1006
Acurácia 0.61
Macro Avg 0.62 0.61 0.61 7036
Weighted Avg 0.62 0.61 0.61 7036

Tabela 7 – Relatório de Métricas de precision, recall, F1-score, e support do Experimento
2

4.4.3 Resultado Experimento 3

Neste experimento foi utilizada a função de perda CrossEntropyLoss combinada
com o otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler
OneCycleLR.

4.4.3.1 Métricas de Treinamento

Na Figura 26 são apresentadas as métricas do treinamento.

4.4.3.2 Matriz de Confusão

Na Figura 27 é apresentada a matriz de confusão do treinamento.
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Figura 26 – Métricas do Experimento 3

Fonte: Próprio Autor

Figura 27 – Matriz de Confusão do Experimento 3

Fonte: Próprio Autor
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Figura 28 – Métricas do Experimento 4

Fonte: Próprio Autor

4.4.3.3 Relatório de Classificação

Na tabela 8 é apresentado o relatório de classificação.

Classe Precisão Recall F1-Score Support
Black 0.85 0.84 0.85 1005
East Asian 0.72 0.72 0.72 1005
Indian 0.72 0.71 0.72 1005
Latino Hispanic 0.49 0.54 0.51 1005
Middle Eastern 0.65 0.64 0.65 1005
Southeast Asian 0.62 0.62 0.62 1005
White 0.67 0.65 0.66 1006
Acurácia 0.67
Macro Avg 0.68 0.67 0.67 7036
Weighted Avg 0.68 0.67 0.67 7036

Tabela 8 – Relatório de Métricas de precision, recall, F1-score, e support do Experimento
3

4.4.4 Resultado Experimento 4

Neste experimento foi utilizada a função de perda ArcFaceLoss combinada com o
otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler OneCycleLR.

4.4.4.1 Métricas de Treinamento

Na Figura 28 são apresentadas as métricas do treinamento.

4.4.4.2 Matriz de Confusão

Na Figura 29 é apresentada a matriz de confusão do treinamento.
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Figura 29 – Matriz de Confusão do Experimento 4

Fonte: Próprio Autor

4.4.4.3 Relatório de Classificação

Na tabela 9 é apresentado o relatório de classificação.

Classe Precisão Recall F1-Score Support
Black 0.84 0.79 0.81 1005
East Asian 0.62 0.68 0.65 1005
Indian 0.64 0.65 0.65 1005
Latino Hispanic 0.34 0.36 0.35 1005
Middle Eastern 0.54 0.55 0.55 1005
Southeast Asian 0.53 0.48 0.50 1005
White 0.59 0.57 0.58 1006
Acurácia 0.58
Macro Avg 0.58 0.58 0.58 7036
Weighted Avg 0.58 0.58 0.58 7036

Tabela 9 – Relatório de Métricas de precision, recall, F1-score, e support do Experimento
4

4.4.5 Resultado Experimento 5

Neste experimento foi utilizada a função de perda CrossEntropyLoss combinada
com o otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler
CosineAnnealingWarmRestarts.

4.4.5.1 Métricas de Treinamento

Na Figura 30 são apresentadas as métricas do treinamento.
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Figura 30 – Métricas do Experimento 5

Fonte: Próprio Autor

Figura 31 – Matriz de Confusão do Experimento 5

Fonte: Próprio Autor

4.4.5.2 Matriz de Confusão

Na Figura 31 é apresentada a matriz de confusão do treinamento.

4.4.5.3 Relatório de Classificação

Na tabela 10 é apresentado o relatório de classificação.

4.4.6 Resultado Experimento 6

Neste experimento foi utilizada a função de perda ArcFaceLoss combinada com o
otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler CosineAnne-
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Classe Precisão Recall F1-Score Support
Black 0.81 0.77 0.79 1005
East Asian 0.70 0.73 0.71 1005
Indian 0.68 0.68 0.68 1005
Latino Hispanic 0.43 0.43 0.43 1005
Middle Eastern 0.53 0.57 0.55 1005
Southeast Asian 0.60 0.58 0.59 1005
White 0.62 0.60 0.61 1006
Acurácia 0.62
Macro Avg 0.62 0.62 0.62 7036
Weighted Avg 0.62 0.62 0.62 7036

Tabela 10 – Relatório de Métricas de precision, recall, F1-score, e support do Experimento
5

Figura 32 – Métricas do Experimento 7

Fonte: Próprio Autor

alingWarmRestarts.

Neste experimento foi desconsiderada a coleta dos dados de resultados devido a
apresentação das métricas zeradas.

4.4.7 Resultado Experimento 7

Neste experimento foi utilizada a função de perda CrossEntropyLoss combinada
com o otimizador AdamW, utilizando o conjunto de dados balanceado, filtrado pelas
classes alvo "White" e "Black" e o scheduler OneCycleLR.

4.4.7.1 Métricas de Treinamento

Na Figura 32 são apresentadas as métricas do treinamento.
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Figura 33 – Matriz de Confusão do Experimento 7

Fonte: Próprio Autor

4.4.7.2 Matriz de Confusão

Na Figura 33 é apresentada a matriz de confusão do treinamento.

4.4.7.3 Relatório de Classificação

Na tabela 11 é apresentado o relatório de classificação.

Classe Precisão Recall F1-Score Support
Black 0.96 0.95 0.95 1006
White 0.95 0.96 0.95 1005
Acurácia 0.95
Macro Avg 0.95 0.95 0.95 2011
Weighted Avg 0.95 0.95 0.95 2011

Tabela 11 – Relatório de Métricas de precision, recall, F1-score, e support do Experimento
7

4.4.8 Resultado Experimento 8

Neste experimento foi utilizada a função de perda ArcFaceLoss combinada com o
otimizador AdamW, utilizando o conjunto de dados balanceado, filtrado pelas classes alvo
"White" e "Black" e o scheduler OneCycleLR.

4.4.8.1 Métricas de Treinamento

Na Figura 34 são apresentadas as métricas do treinamento.
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Figura 34 – Métricas do Experimento 8

Fonte: Próprio Autor

Figura 35 – Matriz de Confusão do Experimento 8

Fonte: Próprio Autor

4.4.8.2 Matriz de Confusão

Na Figura 35 é apresentada a matriz de confusão do treinamento.

4.4.8.3 Relatório de Classificação

Na tabela 12 é apresentado o relatório de classificação.

4.4.9 Resultado Experimento 9

Neste experimento foi utilizada a função de perda CrossEntropyLoss combinada
com o otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler
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Classe Precisão Recall F1-Score Support
Black 0.94 0.94 0.94 1006
White 0.94 0.94 0.94 1005
Acurácia 0.94
Macro Avg 0.94 0.94 0.94 2011
Weighted Avg 0.94 0.94 0.94 2011

Tabela 12 – Relatório de Métricas de precision, recall, F1-score, e support do Experimento
8

Figura 36 – Métricas do Experimento 9

Fonte: Próprio Autor

OneCycleLR, ainda com a mudança do Dropout para p=0.5.

4.4.9.1 Métricas de Treinamento

Na Figura 36 são apresentadas as métricas do treinamento.

4.4.9.2 Matriz de Confusão

Na Figura 37 é apresentada a matriz de confusão do treinamento.

4.4.9.3 Relatório de Classificação

Na tabela 13 é apresentado o relatório de classificação.

4.4.10 Resultado Experimento 10

Neste experimento foi utilizada a função de perda ArcFaceLoss combinada com o
otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler OneCycleLR,
ainda com a mudança do Dropout para p=0.5.
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Figura 37 – Matriz de Confusão do Experimento 9

Fonte: Próprio Autor

Classe Precisão Recall F1-Score Support
Black 0.88 0.81 0.84 1005
East Asian 0.72 0.72 0.72 1005
Indian 0.72 0.71 0.72 1005
Latino Hispanic 0.47 0.54 0.51 1005
Middle Eastern 0.66 0.67 0.66 1005
Southeast Asian 0.62 0.61 0.61 1005
White 0.69 0.66 0.68 1006
Acurácia 0.67
Macro Avg 0.68 0.67 0.68 7036
Weighted Avg 0.68 0.67 0.68 7036

Tabela 13 – Relatório de Métricas de precision, recall, F1-score, e support do Experimento
9

4.4.10.1 Métricas de Treinamento

Na Figura 38 são apresentadas as métricas do treinamento.

4.4.10.2 Matriz de Confusão

Na Figura 39 é apresentada a matriz de confusão do treinamento.

4.4.10.3 Relatório de Classificação

Na tabela 14 é apresentado o relatório de classificação.
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Figura 38 – Métricas do Experimento 10

Fonte: Próprio Autor

Figura 39 – Matriz de Confusão do Experimento 10

Fonte: Próprio Autor
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Classe Precisão Recall F1-Score Support
Black 0.80 0.80 0.80 1005
East Asian 0.64 0.66 0.65 1005
Indian 0.65 0.68 0.67 1005
Latino Hispanic 0.34 0.36 0.35 1005
Middle Eastern 0.57 0.56 0.57 1005
Southeast Asian 0.54 0.51 0.52 1005
White 0.59 0.56 0.57 1006
Acurácia 0.59
Macro Avg 0.59 0.59 0.59 7036
Weighted Avg 0.59 0.59 0.59 7036

Tabela 14 – Relatório de Métricas de precision, recall, F1-score, e support do Experimento
10

Figura 40 – Métricas do Experimento 11

Fonte: Próprio Autor

4.4.11 Resultado Experimento 11

Neste experimento foi utilizada a função de perda CrossEntropyLoss combinada
com o otimizador AdamW, utilizando o conjunto de dados balanceado e o scheduler
OneCycleLR, considerando 40 épocas.

4.4.11.1 Métricas de Treinamento

Na Figura 40 são apresentadas as métricas do treinamento.

4.4.11.2 Matriz de Confusão

Na Figura 41 é apresentada a matriz de confusão do treinamento.

4.4.11.3 Relatório de Classificação

Na tabela 15 é apresentado o relatório de classificação.
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Figura 41 – Matriz de Confusão do Experimento 11

Fonte: Próprio Autor

Tabela 15 – Relatório de Métricas de precision, recall, F1-score, e support do Experimento
11
Class Precision Recall F1-Score Support
Black 0.86 0.83 0.84 1005
East Asian 0.71 0.71 0.71 1005
Indian 0.72 0.74 0.73 1005
Latino Hispanic 0.47 0.51 0.49 1005
Middle Eastern 0.67 0.64 0.65 1005
Southeast Asian 0.61 0.60 0.60 1005
White 0.69 0.66 0.67 1006
Accuracy 0.67 7036
Macro Avg 0.67 0.67 0.67 7036
Weighted Avg 0.67 0.67 0.67 7036

4.4.12 Análise dos Resultados

Nesta seção, analisamos os resultados dos experimentos de reconhecimento facial,
utilizando diferentes funções de perda, otimizadores e schedulers. A análise é conduzida
em termos das métricas de desempenho definidas e comparando-as com as diferentes
combinações experimentadas.

4.4.12.1 Observações sobre os Experimentos

A seguir são apresentadas as observações sobre os experimentos realizados:

• O experimento 1 apresentou o melhor desempenho geral, com uma acurácia de 0.68.
Essa combinação de CrossEntropyLoss e SGD demonstrou ser mais eficaz para o
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conjunto de dados balanceado em comparação com ArcFaceLoss.

• O experimento 4, que também utilizou ArcFaceLoss com AdamW, mostrou a menor
acurácia de 0.58. Isso pode indicar que a combinação de AdamW com ArcFaceLoss
pode não ser tão adequada para este cenário, possivelmente devido a uma falta de
convergência durante o treinamento.

• O experimento 5 apresentou uma acurácia de 0.62, levenemten menor dos melhores
resultados dos experimentos anteriores, mas ainda assim representa um desempenho
aceitável considerando a utilização do scheduler CosineAnnealingWarmRestarts.

• No experimento 6, a ausência de resultados relevantes (zerados) indica que a com-
binação de ArcFaceLoss com AdamW e o scheduler pode não ter funcionado ade-
quadamente, possivelmente devido a problemas de convergência ou aprendizado
inadequado.

• Ambos os experimentos 7 e 8 mostraram resultados promissores, com altas acurácias
de 0.95 e 0.94, e f1-scores médios de 0.95 e 0.94, respectivamente. Isso indica que
a filtragem das classes alvo melhorou significativamente o desempenho do modelo,
permitindo uma classificação mais precisa entre grupos demográficos específicos.

• O experimento 9 manteve um desempenho razoável com uma acurácia de 0.67,
enquanto o experimento 10 caiu para 0.59, refletindo a tendência observada nos
experimentos anteriores com ArcFaceLoss.

• A mudança do dropout no experimento 10 indica que a combinação de ArcFa-
ceLoss e AdamW, neste contexto, se manteve menos eficaz em comparação com
CrossEntropyLoss.

Por fim, ao comparar o desempenho do Experimento 11 com os demais experimentos
conduzidos, podemos observar algumas tendências e diferenças significativas:

• Acurácia Global: O experimento obteve uma acurácia geral de 67%, similar à de
experimentos anteriores, como o Experimento 5 (62%) e o Experimento 7 (95%).
Embora o Experimento 7 tenha apresentado uma acurácia significativamente maior,
o Experimento 11 destaca-se por manter uma consistência em termos da média
F1-Score (0.67), mostrando uma distribuição equilibrada do desempenho entre as
classes.

• O aumento das épocas para 40, não refletiu ganhos significativos para o treinamento.

• Desempenho da Classe Black: O desempenho mais alto foi observado nesta classe,
com um F1-Score de 0.84, o que reflete a boa capacidade do modelo em reconhecer
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corretamente indivíduos dessa classe. Este resultado está entre os melhores observados
nos experimentos realizados.

• Desempenho das Classes East Asian e Indian: Ambas as classes tiveram resultados
razoáveis, com F1-Scores de 0.71 e 0.73, respectivamente. Estes valores são próximos
aos observados nos experimentos 9 e 10, que também utilizaram AdamW.

• Desempenho da Classe Latino Hispanic: Esta classe apresentou o desempenho mais
baixo, com um F1-Score de 0.49. A dificuldade em identificar indivíduos desta classe
foi observada em experimentos anteriores e sugere que o modelo enfrenta desafios
específicos para este grupo, possivelmente relacionados à variação de características
faciais ou ao equilíbrio do conjunto de dados.

4.4.12.2 Comparação entre Funções de Perda

Os resultados obtidos a partir da aplicação de diferentes funções de perda mostram
um desempenho variado em termos de acurácia e métricas de F1-score. Experimentos
utilizando a função de perda CrossEntropyLoss (Experimentos 1, 3, 5, 7 e 9) apresentaram
consistentemente melhores resultados em comparação à ArcFaceLoss (Experimentos 2,
4, 6, 8 e 10). A função CrossEntropyLoss alcançou um F1-score máximo de 0.91 no
Experimento 9, evidenciando sua eficácia em classes mais representadas, enquanto a
ArcFaceLoss apresentou um desempenho inferior, particularmente em classes com suporte
mais reduzido, como "Latino Hispanic".

4.4.12.3 Impacto dos Otimizadores

A comparação dos resultados entre os otimizadores AdamW e SGD revela que o
AdamW (Experimentos 3, 5, 7, 9) teve um impacto positivo nas métricas de desempenho,
resultando em maiores acurácias e F1-scores. Essa diferença é notável especialmente em
experimentos onde a taxa de aprendizado foi adequadamente ajustada, contribuindo
para uma melhor convergência. Por outro lado, o SGD (Experimentos 1, 2, 4, 6, 8 e 10)
apresentou resultados mais modestos, sugerindo que a escolha do otimizador é crítica para
o sucesso do modelo.

4.4.12.4 Efeito do Scheduler

A análise dos schedullers de aprendizado revela que a implementação do OneCy-
cleLR (Experimentos 3, 5, 7) favoreceu a convergência e melhorou as métricas de acurácia
e F1-score, em comparação ao CosineAnnealingWarmRestarts (Experimentos 5 e 6). A
variação da taxa de aprendizado proporcionada pelo OneCycleLR contribuiu para um
treinamento mais eficaz e consistente.
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4.4.12.5 Análise da Matriz de Confusão

A avaliação das matrizes de confusão indicou que a classe "Latino Hispanic"foi
uma constante fonte de erros, apresentando baixos valores de precisão e recall em todos
os experimentos. Essa observação sugere a necessidade de intervenções específicas, como
técnicas de data augmentation, para equilibrar a representação das classes e melhorar o
desempenho do modelo.

4.4.12.6 Matriz Geral dos Resultados dos Experimentos

A tabela 16 apresenta a visão geral dos resultados dos experimentos.

Tabela 16 – Resultados dos Experimentos
Experimento Função de Perda Otimizador Acurácia F1-Score Precisão

1 CrossEntropyLoss SGD 0.68 0.68 0.68
2 ArcFaceLoss SGD 0.61 0.62 0.61
3 CrossEntropyLoss AdamW 0.67 0.68 0.67
4 ArcFaceLoss AdamW 0.58 0.58 0.58
5 CrossEntropyLoss AdamW 0.62 0.62 0.62
6 ArcFaceLoss AdamW - - -
7 CrossEntropyLoss AdamW 0.95 0.95 0.95
8 ArcFaceLoss AdamW 0.94 0.94 0.94
9 CrossEntropyLoss AdamW 0.67 0.67 0.67
10 ArcFaceLoss AdamW 0.59 0.59 0.59
11 CrossEntropyLoss AdamW 0.67 0.67 0.67
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5 CONCLUSÕES

5.1 Síntese dos Pontos Abordados

Os experimentos realizados mostraram resultados consistentes, com acurácias va-
riando entre 0.58 e 0.95, dependendo da técnica utilizada. A utilização do otimizador
AdamW, em combinação com a função de perda CrossEntropyLoss, apresentou os melhores
resultados, alcançando uma acurácia de até 0.95. Em contraste, a função de perda ArcFa-
ceLoss, apesar de promissora para o reconhecimento de faces, apresentou um desempenho
inferior nos experimentos conduzidos.

Ainda que a acurácia geral dos experimentos tenha variado entre 0.58 e 0.95, indi-
cando um desempenho satisfatório, há espaço significativo para melhorias, especialmente
em classes menos representadas. A continuidade na exploração de técnicas avançadas de
data augmentation e outras abordagens de balanceamento de classes será essencial para
aprimorar a eficácia do modelo.

Ainda, ao comparar os resultados dos experimentos que utilizaram diferentes otimi-
zadores, foi possível observar que o uso do AdamW proporcionou melhorias significativas
na acurácia e na convergência do modelo, especialmente em comparação com métodos
mais tradicionais como o SGD.

Também destaca-se que a importância da seleção adequado do scheduler, onde nos
experimentos que incorporaram schedulers de taxa de aprendizado, como OneCycleLR e
CosineAnnealingWarmRestarts, mostraram resultados superiores em termos de estabilidade
e eficiência durante o treinamento. Isso pode ser atribuído à capacidade desses schedulers
de ajustar dinamicamente a taxa de aprendizado, evitando oscilações e acelerando a
convergência.

Sobre o conjunto de dados utilizado - o Fairface, indica ter uma boa diversidade
de imagens, o que é crucial para o treinamento de modelos de reconhecimento facial. No
entanto, foi importante garantir que todas as classes estivessem igualmente representadas
para evitar viés no desempenho do modelo.

Sobre o algoritmo de reconhecimento facial MTCNN se mostrou eficaz, mesmo com
as rotações angular das imagens biométricas.

5.2 Impactos e Contribuições

Este trabalho contribui para a compreensão e aplicação de redes neurais no re-
conhecimento de faces, evidenciando que a escolha da função de perda e do otimizador
desempenha um papel fundamental na obtenção de melhores resultados. Para a indústria,
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a adoção dessas técnicas pode significar maior segurança em sistemas de autenticação
facial, especialmente em setores financeiros, como na implementação de soluções de identi-
ficação de clientes. Para a sociedade, os benefícios incluem a melhoria de tecnologias de
reconhecimento em larga escala, garantindo maior precisão e minimizando falhas devido a
conjunto de dados desequilibrados e com viés.

5.3 Direções Futuras de Pesquisa

Futuras direções de pesquisa podem explorar a melhoria dos modelos utilizados para
lidar com variações de iluminação, pose e expressões faciais, tornando o reconhecimento
facial mais robusto em cenários do mundo real. Além disso, pode ser interessante explorar
técnicas adicionais de data augmentation e transfer learning com modelos pré-treinados,
utilizando ainda novas arquiteturas avançadas CNNs.

Para uma avaliação mais profunda e melhora das métricas, principalmente a
acurácia, pode ser explorado em trabalhos futuros:

• Ativações intermediárias: Para entender como a rede está tomando suas decisões, é
possível visualizar as ativações intermediárias das camadas convolucionais, mostrando
como diferentes regiões da imagem estão contribuindo para a decisão da rede.

• Análise de Canais de Cor: Durante o treinamento, a rede pode estar aprendendo
a distinguir características associadas a tons de pele, como a intensidade de cores
em certas regiões, portanto o objetivo é capturar os "padrões de cor"que a rede está
aprendendo e verificar se os neurônios específicos estão focando nesses padrões.

• Visualização de Neurônios com técnicas como Grad-CAM: Para identificar quais
quadrantes da imagem a rede considera mais relevantes para a classificação de cada
raça, é possível utilizar o Grad-CAM (Gradient-weighted Class Activation Mapping).

Por fim, o trabalho e o algoritmo gerados podem ser utilizados em grandes conjunto
de dados públicos, para realizar o equilíbrio do conjunto no que tange a raça e equidade,
trazendo consigo o tratamento de vieses no reconhecimento facial.

5.4 Conclusão

Através dos experimentos conduzidos e das análises realizadas, este trabalho de-
monstrou a eficácia das redes neurais convolucionais no reconhecimento de biometria
facial. Com a aplicação adequada de técnicas como o CrossEntropyLoss e otimizadores
avançados como AdamW, é possível alcançar resultados expressivos. A pesquisa ainda
revela os desafios que permanecem, mas também aponta caminhos promissores, como
o uso do aprendizado profundo e a evolução dos conjuntos de dados, tornando-os mais
equilibrados, mitigando assim os vieses existentes de raças.
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