UNIVERSIDADE DE SAO PAULO
ESCOLA DE ENGENHARIA DE SAO CARLOS

DESENVOLVIMENTO DE DISPOSITIVO DE AQUISICAO DE DADOS E CONTROLE
DE BAIXO CUSTO PARA UTILIZAGAO COM NI LABVIEW

Fabio Felipe Mira Machuca

Péricles Bernardes Caravieri

ORIENTADOR: Prof. Dr. Daniel Varela Magalhaes

Sao Carlos

Dezembro, 2012

AUTORIZO A REPRODUGCAO E DIVULGAGAO TOTAL OU PARCIAL DESTE
TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO,
PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Machuca, Fébio Felipe Mira

M151d Desenvolvimento de dispositivo de aquisicdo de dados e
controle de baixo custo para utilizag¢do com NI LabVIEW /
Fabio Felipe Mira Machuca, Péricles Bernardes Caravieri;
orientador Daniel Varela Magalh&es. - S&o Carlos, 2012.

Monografia (Graduagdo em Engenharia Mecatrdnica) --
Escola de Engenharia de S&o Carlos da Universidade de Sao
Paulo, 2012.

1. Aquisic&o de dados. 2. Acionamento digital. 3. PWM.
4. LabVIEW. 5. PIC18. 6. USB. I. Titulo. II. Caravieri,
Péricles Bernardes.

FOLHA DE AVALIAGAO

Candidatos: Fabio Felipe Mira Machuca e Péricles Bernardes Caravieri

Titulo: Desenvolvimento de dispositivo de aquisigdo de dados e controle de

baixo custo para utilizacdo com NI LabVIEW

Trabalho de Concluséo de Curso apresentado a
Escola de Engenharia de Sdo Carlos da

Universidade de Sao Paulo
Curso de Engenharia Mecatrénica

BANCA EXAMINADORA

Eng. Jodo Marcelo Pereira Nogueira

Nota atribuida: 9,0 (__meve)

;(égm WonaleYopr spoone

sinatura)

Prof. Dr. Rodrigo Nicoletti A/

Nota atribuida; 0 (nowd) %ﬂé/ﬁ}a w/f)«
(assmatdga)

Prof. Dr. Daniel Varela Magalhaes (orientador) |

Nota atribuida; __ J,& (__aoveg =) E""Q MW
(assinatura)

Média: 3O (_roovue)
Resultado: A Puouave

Data: 13/12/2012

FABIO FELIPE MIRA MACHUCA
PERICLES BERNARDES CARAVIERI

DESENVOLVIMENTO DE DISPOSITIVO DE AQUISICAO DE DADOS E CONTROLE
DE BAIXO CUSTO PARA UTILIZAGAO COM NI LABVIEW

Trabalho de Conclusdo de Curso apresentado a
Escola de Engenharia de Sao Carlos, da
Universidade de S3ao Paulo

Curso de Engenharia Mecatronica

ORIENTADOR: Prof. Dr. Daniel Varela Magalhaes

Sao Carlos

Dezembro, 2012

Resumo

Este trabalho dedica-se ao desenvolvimento de um dispositivo de baixo custo que
seja capaz de realizar tarefas de aquisicao de dados e controle. Dotado de entradas e saidas
digitais, além de um conversor A/D para leituras analdgicas e dois mdédulos de saida de sinal
PWM, o dispositivo comunica-se com um computador através da comunicacdo USB e pelo
software NI LabVIEW. Pretendemos oferecer uma solucdo simples e eficiente para
problemas que ndo exijam extrema precisdo e altas taxas de aquisicdo, visando a uma
utilizacgdo em meio académico, para aprendizado, e desenvolvimento de projetos
domésticos. Ainda assim, para sistemas de baixa frequéncia e acionamentos digitais, o

dispositivo é robusto e tdo eficaz quanto qualquer solucao comercial.

Palavras-chave: Aquisicdo de dados. Acionamento digital. PWM. LabVIEW. PIC18.
USB.

Abstract

This work focuses on designing a low cost device capable of doing control and data
acquisition tasks. The device has digital inputs and outputs, one analog-to-digital converter,
to read analog values, and two pulse-width modulation outputs. It communicates with a
computer through USB (Universal Serial Bus) protocol and provides its functions as LabVIEW
blocks. The objective is to provide a simple and efficient solution to problems that don’t
require very high precision or high acquisition rates, to be used for teaching, in academic

environments, and learning, at home. For low frequency systems and digital actuation the

device is just as effective and robust as any commercial solution.

Keywords: Data acquisition. Digital actuation. PWM. LabVIEW. PIC18. USB.

Sumario
=TT U 0T PP 1
Y 4 1o ST TP PP P TP PPPPUTROPPIN 2
R 1 | 1 g Yo [V Tor- o TN 5
2 Entradas e saidas digitaiS........ccoeuuiiiiiiiii e 6
2.1 NI (=Y g e [P = U 6
2.2 Vantagens das tECNICas digitaiS.ueueeeiiiiiiiiiiiie e e e e et e e e e e e e eeeaaaaas 6
2.3 LimitagOes das tEcnicas digitaiSuviiiiiiiieiiiiie e e 7
2.4 SiStEMA DINAMO. .t e e e e e e e e 8
2.5 Representacdo de quantidades DINAMAS.........cuueeiiiiiiiii i 9
2.6 Sinais digitais e diagramas de teMPO........ccuuuiiiiiiiii e 10
2.7 Circuitos integrados digitaiSciviiiiiiiiiiiiiiiiiii ittt 11
3 Pulse Width Modulation (PWM)..........oouuiuiiiieie et e e e e e e e et e e e e e e e e e ea e e e eeaeaens 12
3.1 Principio de fuNGoNamMENtOciiiiiieee et e et e e e 12
3.2 Vantagens e cuidados COM PWIML.......uuuuuuuiiiiiiiiiiiiiiiiii s 14
4 ENtradas analOZiCas.......coouuuuuiieieeeeeieiiiee et e e e e e e e e e e e e e e bt eaaeeeratt e aeeeraraaa. 17
4.1 Quantidade analégica e sua impPOrtanCia.........cceuuiiieiiiiiii i 17
4.2 SiStEMA dE AQUISICAO.iiiiiiiiiiiii ittt ettt ettt ettt e et e et bt b e bt e baeeaeaanane 17
4.3 Conversor analogico digitaloeuuiuiiiiiiiieieee e e aaaes 19
4.4 FAN [1 1 o = PSP 20
T U Y - USSP 23
5.1 Yol o (SO PP PP PP PP PP PPPPPPPPPPPPPPPRY 23
5.2 Vantagens € deSVANTAZENScccvuiieiiii e et e et e et e e et e e e et e e e e et e e e et e e e e abeeeeseaanns 23
5.3 DEtAlNES TECNICOS ... e 25
6 Microcontrolador PICI8FAS50cceeettieiiiiiiieiiieieeeieieteeeeeeeeeeeeeeeeeeereeeeeeesresererenenerenenenenenenene 29
6.1 MiICrOCONTIOIAUOIES ... e 29
6.2 o TR o o PR 31
A N 11 g YU E=T=(<Y o o I OSSPt 34
7.1 U e RV T Lo I =LY - | RN 34
7.2 LiNgUAGEM ESTIUTUIAO@ ...uu ittt e e et e e e ettt e e e et e e e e et e e eesanaeeesasaanaaes 35
7.3 Forma basica de um programa Cooeuiiiiiiiiee e e et e e e e e e e s 35
7.4 BT oo e [SINe F- o 1o USSP 36
7.5 Compiladores X iINterpretadoresuuieieiiiie et e et e e 37

7.6 211 oL o1 =Y or= L3 38

7.7 Lo 7 = = SRR 39
8 LADVIEW ...ttt ettt e ettt e e e e e et e e e e e e et ereeas 40
8.1 O QUE E LADVIEW. ...ttt e e et e e et e e e et e e e et e e s et e e e et e e s aaannns 40
8.2 F AN o] [Tor: [olo =1 J PRSPPI 40
8.3 oY= =10 0 F=Tor- o T PSPPI 41
8.4 Limitag0es @ desSVantagensS.u.iiiiiiii et e et e e et e e e e e e e et e e e et earaaa e 45
9 MICrOChiP USB FIAMEWOIK........cceeeeieeie e e ettt et e e e e e e et e e e e e e e e et e e e e e e e e e aaeanneeas 46
9.1 Microchip APPlICALION LIDIQIIES...........cceeeieeeeeiiieeee e e e eeeieee e e e e e e e e e e e eeaat e e e e aaaeens 46
9.2 USB FIOMEWOIK ... e e 46
9.3 L0 1T (=Y a 1= 1ol T = TN 47
9.4 BOOLIOGUENeeeeeeeiiiieee ettt ettt e e ettt e e e e s st e e e e e e e st 47
10 BAGLE ...ttt ettt e ettt e e e e ettt e e e e e e e ea e et be et e e e e e e eanbbeaeeas 49
O R VA - To =LY - | RS 49
11 DESENVOIVIMENTO 1o 52
O R 1Y o1 ¢ < =1 o | - [0 Lo PPN 52
3 O |V 1o) V- o T N 53
1.3 HAIAWATE....ccccoeieeeeeie ettt ettt ettt et et et et e e teb e resebaaesenenenes 56
O o o] o ol] o U U PP PO P PP PP PPPPPPPPPPN 63
L0 S SO AN - e aaaaaaaaaaaaaas 66
116 Bl O A e 67
T11.7 FIFMWAIE ettt e et e e e e e et e e e s e e et e e s e e e e seaebaaas 77
L1.8 LADVIEW .ttt ettt ettt e e e e e ettt et e e e e e s ettt e e e e e e e e e e e s ntbeaeeeeaeeens 88
R T (= 1o U | Yo LSOO 90
11,10 CUSEO X BENEFICIO. ceiiiiiiieieeeee e e e ee e e e 91
12 (00 T [T = Tolo T=Ey 4 g b= | KN 95

LR L= =1 a Lol = TN 97

1 Introducao

O objetivo deste trabalho é desenvolver um dispositivo para aquisicdo de dados e
acionamento digital que seja acessivel, tanto em relagdo ao custo, quanto em relagdo a
simplicidade de uso. Em relacdo ao custo, a placa foi projetada para ser construida de
maneira facil e de baixo custo: a placa possui apenas uma face, com trilhas largas, e os
componentes utilizados sdao comuns e facilmente encontrados em lojas de componentes
eletronicos. Do ponto de vista da simplicidade de uso, o protocolo USB foi escolhido para
fazer a comunicagdao entre o dispositivo e o computador, por ser encontrado em
praticamente todos os computadores atuais, e para a utilizacdo dos recursos foi es colhido o
software LabVIEW, da National Instruments, por ser uma plataforma bastante usada para

aquisicdo de dados e controle, de facil utilizacdo até mesmo para iniciantes.

O dispositivo possui: 16 entradas e saidas digitais, sendo que cada uma delas pode
ser configurada como entrada ou saida independentemente; 8 entradas analdgicas, que
podem ser utilizadas para leitura de sensores analégicos com uma frequéncia de aquisicao
de até 1kHz; e 2 mddulos PWM, sendo um com saida simples, e outro com duas saidas
complementares, podendo ser usadas para o acionamento de uma carga ligada com ponte H

em modo half-bridge diretamente.

A motivacdo para o desenvolvimento deste trabalho vem das disciplinas praticas do
curso de Engenharia Mecatronica, que podem se beneficiar de um dispositivo como o

desenvolvido neste trabalho, pois ele é bastante versatil e de facil acesso aos alunos.

2 Entradas e saidas digitais

2.1 Sistemas digitais

Na ciéncia, na tecnologia, nos negdécios e em muitos outros campos de trabalho,
estamos constantemente tratando com quantidades. Quantidades sdo medidas,
monitoradas, guardadas, manipuladas aritmeticamente, observadas ou utilizadas de alguma
outra maneira na maioria dos sistemas fisicos. Quando manipulamos quantidades diversas, é

importante que saibamos representar seus valores de modo eficiente e preciso.

Na representacao digital, as quantidades n3dao sdo representadas por quantidades
proporcionais, mas por simbolos denominados digitos, variando em saltos ou degraus
(steps). Em outras palavras, essa representacdo digital varia de maneira discreta (em

degraus), quando comparada com a representacdo da mesma grandeza fornecida por um

sistema continuo ou analdgico.

Um sistema digital € uma combinacdo de dispositivos projetados para manipular
informacgao légica ou quantidades fisicas que sdo representadas no formato digital; ou seja,
as quantidades podem assumir apenas valores discretos. Esses dispositivos sdo, na maioria
das vezes, eletronicos, mas podem também ser mecanicos, magnéticos ou pneumaticos.
Alguns dos sistemas digitais mais conhecidos sdo os computadores digitais e as calculadoras,
os equipamentos digitais de audio e video, sistema de telefonia (considerado o maior

sistema digital do mundo).

2.2 Vantagens das técnicas digitais

Um aumento no numero de aplicagGes em eletrdnica, assim como acontece em
muitas outras tecnologias, estd relacionado ao uso de técnicas digitais para implementar
funcgdes que eram realizadas usando-se métodos analdgicos, somente. Os principais motivos

da migracdo para a tecnologia digital sdo:

e Os sistemas digitais sdao mais faceis de serem projetados. Isso porque os circuitos

utilizados sao circuitos de chaveamento, nos quais nao importam os valores exatos

de tensdo ou corrente, mas apenas a faixa — ALTA (high) ou BAIXA (low) — na qual
eles se encontram;

e Facil armazenamento de informagdes. Esta é uma habilidade de dispositivos e
circuitos especiais, que podem guardar (/atch) informacdo digital e manté-la pelo
tempo necessario, e técnicas de armazenamento de massa (grande quantidade de
informacdo), que podem armazenar bilhdes de bits de informacdo em um espaco
fisico relativamente pequeno;

e Maior precisdo e exatiddo. Os sistemas digitais podem manipular todos os digitos de
precisdo necessarios simplesmente acrescentando mais circuitos de chaveamento.
Nos sistemas analégicos, a precisdo é limitada porque os valores de tensdo e
corrente sdo diretamente dependentes dos valores dos componentes do circuito e
sdo afetados por flutuagdes aleatérias na tensao (ruido);

e As operacdes podem ser programadas. E bastante facil projetar um sistema digital
cuja operacdo é controlada por um conjunto de instrucdes armazenadas denominado
“programa”. Os sistemas analdgicos também podem ser programados, porém a
variedade e a complexidade das operagdes disponibilizadas sao bastante limitadas;

e Os circuitos digitais sao menos afetados por ruido. Em geral, flutuagdes espurias na
tensdo (ruido) ndo sdo tdo criticas em sistemas digitais porque o valor exato da
tensdo ndao é importante, desde que o ruido ndo tenha amplitude suficiente que
dificulte a distincdo entre um nivel ALTO (H) e um nivel BAIXO (L);

e (I’s (chips) digitais podem ser fabricados com mais dispositivos internos. E verdade
que os circuitos analégicos também foram beneficiados com o grande
desenvolvimento da tecnologia de circuitos integrados, mas esses circuitos sdo
relativamente complexos e utilizam dispositivos que n3do podem ser
economicamente integrados (capacitores de alto valor, resistores de precisdo,

indutores e transformadores).

2.3 Limitagdes das técnicas digitais

Na verdade, hd apenas uma grande desvantagem quando se usam técnicas digitais: o

mundo real é quase totalmente analdgico.

A maioria das quantidades (grandezas) fisicas é de natureza analdgica, e essas
grandezas sdo muitas vezes as entradas e saidas monitoradas, operadas (alteradas) e
controladas por um sistema. Como exemplos temos a temperatura, a pressdo, a posicdo, a
velocidade, o nivel de um liquido e a vazao, entre outros. Estamos habituados a expressar
essas grandezas “digitalmente”, quando dizemos que a temperatura é 25 °C, mas o que
estamos realmente fazendo é uma aproximacdo digital para uma grandeza inerentemente

analdgica.

Para obter as vantagens das técnicas digitais quando tratarmos com entradas e

saidas analdgicas, trés passos devem ser seguidos:

e Converter as entradas analdgicas do mundo real para o formato digital;

e Realizar o processamento da informacdo digital;

e Converter as saidas digitais de volta ao formato analdgico (o formato do mundo real).

2.4 Sistema binério

O sistema de numeracdo decimal ndo é conveniente para ser implementado em
sistemas digitais. Por exemplo, é muito dificil projetar um equipamento eletrénico que opere
com dez niveis diferentes de tensdo (cada um representando um caractere decimal, 0 a 9).
Por outro lado, é muito facil projetar um circuito eletrénico simples e preciso que opere com
apenas dois niveis de tensdo. Por esse motivo, quase todos os sistemas digitais usam o
sistema de numeracdo binario (ou de base 2) como sistema basico de numerac¢do para suas
operagdes, embora outros sistemas de numeragao sejam, muitas vezes, usados juntamente

com o sistema binario.

No sistema bindrio ha apenas dois simbolos ou valores possiveis para os digitos: 0 e
1. Esse sistema de base 2 também pode ser usado para representar qualquer quantidade
gue possa ser representada em decimal ou em qualquer outro sistema de numeracao.
Entretanto, é comum que o sistema bindrio use um ndmero maior de digitos para expressar

um determinado valor.

No sistema bindrio, o termo “digito binario” (binary digit) é quase sempre abreviado
com o uso do termo bit, o qual usaremos deste ponto em diante. O bit mais significativo
(most significant bit — MSB) é o da esquerda (o de maior peso). O bit menos significativo

(least significant bit — LSB) é o da direita (o de menor peso).

A maioria dos microcomputadores e microcontroladores manipula e armazena
informacdes e dados bindrios em grupos de 8 bits, de modo que uma sequéncia de 8 bits
recebe o nome de byte. Um byte é constituido sempre de 8 bits e pode representar

quaisquer tipos de dados ou informacdes.

2.5 Representacdo de quantidades binarias

Em sistemas digitais, a informacdo processada é normalmente apresentada na forma
bindria. As quantidades binarias podem ser representadas por qualquer dispositivo que
tenha apenas dois estados de operacdo ou duas condi¢cdes possiveis. Por exemplo, uma
chave tem apenas dois estados: aberta ou fechada. Podemos, arbitrariamente, representar
uma chave aberta pelo binario “0” e uma chave fechada pelo bindrio “1”. Com essas

condi¢Oes, podemos representar qualquer nimero binario a partir desses estados.

Existem varios outros dispositivos que tém apenas dois estados de operagdo ou que
podem ser operados em duas condi¢Ges extremas. Entre esses dispositivos temos: lampada
(acesa ou apagada), diodo (em conducdo ou em corte), relé (energizado ou ndo), transistor
(em corte ou em saturagdo), fotocélula (iluminada ou no escuro), termostato (aberto ou
fechado), engate mecanico (engatado ou desengatado) e um ponto em um disco magnético

(magnetizado ou desmagnetizado).

Em sistemas eletrénicos digitais, uma informac¢ao bindria é representada por tensdes
(ou correntes) que estdo presentes nas entradas e saidas de diversos circuitos. Tipicamente,
0s numero bindrios 0 e 1 sdo representados por dois niveis de tensGes nominais. Por
exemplo, zero volt (0 V) pode representar o bindrio “0”, e +5 V pode representar o binario
“1”. Na realidade, devido as varia¢gGes nos circuitos, o 0 e o 1 sdo representados por faixas
de tensdo. Isso é ilustrado na Figura 1(a), na qual qualquer tensdo entre 0 e 0,8 V representa

o binario 0 e qualquer tensdao entre 2 e 5 V representa o binario 1. Todos os sinais de

10

entrada e saida estardo dentro de uma dessas faixas, exceto durante as transicdes de um

nivel para o outro.

Nos sistemas digitais, o valor exato da tensdo ndo é importante; por exemplo, para os
valores de tensdes da Figura 1(a), uma tensdo de 3,6 V significa o mesmo que uma tensao de

4,3, o que ndo ocorre em sistemas analdgicos, em que a tensdo é proporcional a grandeza

medida.
4 Volts A
5V
Binério 1
1 1
4V
2V
} Nao
usado
e B 0 0
inario 0
oV AR 1 : i : : -t
t t t2 t3 ta 15
(a) (b)

Figura 1 - (a) Valores tipicos de tensées em um sistema digital; (b) diagrama de tempo de um sinal digital tipico.

2.6 Sinais digitais e diagramas de tempo

A Figura 1(b) mostra um sinal digital tipico e como ele varia ao longo do tempo. Na
realidade, trata-se de um grafico de tensdo versus tempo que é denominado “diagrama de
tempo”. A escala de tempo, horizontal, é dividida em intervalos regulares, comecando em ¢,
e passando por t,, t, e assim por diante. Por exemplo, no diagrama de tempo mostrado, o
sinal comega em 0 V (que é um bindrio 0) no instante t, e se mantém nesse valor até o
instante t;. Em t;, o sinal faz uma transi¢do rapida para 4 V (um binario 1). Em t,, o sinal
salta de volta para 0 V. Transi¢Bes similares ocorrem em t; e t;. Observe que em t, o sinal

ndo muda, permanecendo em 4 V de t; a t.

As transi¢cdes no diagrama de tempo foram desenhadas como linhas verticais; desse
modo, as transi¢cdes parecem ser instantaneas, sendo que, na realidade, ndo é isso o que

ocorre. Entretanto, em muitas situagGes, os tempos de transi¢do sdo tdo curtos, comparados

com os tempos entre as transicdes, que podemos mostra-los como linhas verticais.

11

Os diagramas de tempo sdo usados extensivamente para mostrar como os sinais
digitais variam no tempo, em especial para mostrar as relacdes entre dois ou mais sinais
digitais de um mesmo circuito ou sistema. Por meio da visualizacdo de um ou mais sinais
digitais em um sistema de medi¢do, como um osciloscdpio, por exemplo, podemos comparar

0s sinais com os respectivos diagramas de tempo pretendidos. Essa é uma etapa importante

nos procedimentos de teste e verificacao de defeitos usada em sistemas digitais.

2.7 Circuitos integrados digitais

Quase todos os circuitos digitais usados nos modernos sistemas digitais sdo circuitos
integrados (Cls). A disponibilidade de uma grande variedade de CIs légicos tem tornado
possivel a implementa¢ao de sistemas digitais complexos que sdao menores e mais seguros

gue os mesmos circuitos implementados com componentes discretos.

Varias tecnologias de fabricacdo de circuitos integrados sdo usadas para a producdo
de CIs digitais, sendo as tecnologias TTL, CMOS, NMOS e ECL as mais comuns. Uma difere da
outra pelo tipo de circuito usado para implementar a operacdao logica desejada. Por
exemplo, a tecnologia TTL (transistor — transistor logic, l6gica transistor — transistor) usa o
transistor bipolar como seu principal elemento de circuito, enquanto a tecnologia CMOS
(complementary metal — oxide — semiconductor, semicondutor de Oxido metalico

complementar) usa o MOSFET tipo enriquecimento como seu principal elemento de circuito.

12

3 Pulse Width Modulation (PWM)

3.1 Principio de funcionamento

Os controles de poténcia, inversores de frequéncia, conversores para servomotores,

fontes chaveadas e muitos outros circuitos utilizam a tecnologia do PWM, ou Modulacao de

Largura de Pulso, como base de seu funcionamento.

Para que se entenda como funciona esta tecnologia no controle de poténcia,
partimos de um circuito imagindrio formado por um interruptor de agao muito rapida e uma

carga que deve ser controlada, de acordo com a Figura 2.

Interruptor
+V > oo
A
Controle Carga
ov Y |

Figura 2 - Quando abrimos e fechamos o interruptor, controlamos a corrente na carga.

Quando o interruptor esta aberto ndo ha corrente na carga e a poténcia aplicada é

nula. No instante em que o interruptor é fechado, a carga recebe a tensdo total da fonte e a

poténcia aplicada é maxima.

Para obtermos uma poténcia intermedidria, digamos 50%, aplicada a carga, fazemos
com que a chave seja aberta e fechada rapidamente, de modo a ficar 50% do tempo aberta e

50% fechada. Isso significa que, em média, teremos metade do tempo com corrente e

metade do tempo sem corrente, como ilustra a Figura 3.

13

Tensdo na carga (%) Tensio média

4
[e——
100 = - - ~re—- - - - g— - -
L EEE EEEEE TXLEE TITT) OOrrE Brree ==ssgeees Tempo
0
I 11 I |2 I
ty =15
Largura do pulso (50% do ciclo ativo)

Figura 3 - Abrindo e fechando em tempos controlados variamos a tensdo média.

A poténcia média e, portanto, a propria tensdo média aplicada a carga é, neste caso,

50% da tensao de entrada.

Assim, o interruptor fechado pode definir uma largura de pulso pelo tempo em que
ele fica nesta condicdo, e um intervalo entre pulsos pelo tempo em que ele fica aberto. Os

dois tempos juntos definem o periodo e, portanto, uma frequéncia de controle.

A relacdo entre o tempo em que temos o pulso e a duragao de um ciclo completo de
operacao do interruptor nos define ainda o duty cycle, ou ciclo ativo, ou ciclo de trabalho,

conforme é mostrado na Figura 4.

|q+l-|
d
t w100="Y
1 cycle
o]
1

Figura 4 - Definindo o duty cycle.

Variando-se a largura do pulso e também o intervalo de modo a termos ciclos ativos

diferentes, podemos controlar a poténcia média aplicada a uma carga. Assim, quando a

14

largura do pulso varia de zero até o maximo, a poténcia também varia na mesma proporc¢ao,

conforme esta indicado na Figura 5.

A
100 4 —| [+—1%
Poténcia
aplicada a
carga
/ 1%
- ----vq;--ncn----- LI"I!I.'I'II'I'I"II-I ---u---’
Tempo
A 90 % Poténcia
w004 [———= aplicada a
------------------------ | N N & carga
99 %
= -
Tempo

Figura 5 - Controlando a poténcia pelo duty cycle.

Na pratica, o interruptor é substituido por um dispositivo de estado sélido que possa
ser capaz de chavear o circuito como, por exemplo, um transistor bipolar, um FET de
poténcia, um IGBT ou até mesmo um SCR. A este dispositivo é entdo ligado um oscilador que
possa ter seu ciclo controlado numa grande faixa de valores. Esse oscilador, muitas vezes, é
parte parte de um circuito integrado de um microcontrolador, e o duty cycle pode ser
controlado através da programacdo deste microcontrolador. Sistemas dedicados, como o
montado com um circuito integrado 4093, também podem ser construidos. Os sinais

gerados sdo, entdo aplicados ao transistor de poténcia que comanda a carga.

3.2 Vantagens e cuidados com PWM

Na operagao de um controle por PWM existem diversas vantagens a serem

consideradas e alguns pontos para os quais o projetista deve ficar atento para se aproveitar

ao maximo estas vantagens.

15

Na condicdo de aberto, nenhuma corrente circula pelo dispositivo de controle e,
portanto, sua dissipacdo é nula. Na condicdo de fechado, teoricamente, se ele apresenta
uma resisténcia nula, a queda de tensdo é nula, e ele ndo dissipa também nenhuma

poténcia.

Isso significa que, na teoria, os controles PWM ndo dissipam poténcia alguma e,

portanto, consistem em solugdes ideais para este tipo de aplicacdo.

Na prdtica, entretanto, em primeiro lugar, os dispositivos usados no controle ndo sao
capazes de abrir e fechar o circuito num tempo infinitamente pequeno. Eles precisam de um
tempo para mudar de estado e, neste intervalo, sua resisténcia sobe de um valor muito
pequeno até o infinito e vice-versa, numa curva de comutacdao semelhante a mostrada na

Figura 6.

Curva | <

real \‘E
(]
]
]
(]
]
[
L]
]

Curva
ideal

]

Tempo de subida ~ Tempo de descida

1 t

Figura 6 - Nos intervalos de t,. e tg, o dispositivo gera calor em boa quantidade.

Neste intervalo de tempo a queda de tensdo e a corrente através do dispositivo ndo
sao nulas, e uma boa quantidade de calor poderd ser gerada conforme a carga controlada.

Dependendo da frequéncia de controle e da resposta do dispositivo usado, uma boa

quantidade de calor poderd ser gerada neste processo de comutacgao.

Entretanto, mesmo com este problema, a poténcia gerada num controle PWM ainda
€ muito menor do que num circuito de controle linear equivalente. Transistores de
comutacdo rapidos, FETs de poténcia, e outros componentes de chaveamento podem ser

suficientemente rdpidos para permitir que projetos de controles de poténcias elevadas

16

sejam implementados sem a necessidade de grandes dissipadores de calor ou sem que

tenham problemas de perdas de energia por geracdo de calor que possam ser preocupantes.

O segundo problema que poderd surgir vem justamente do fato de que os
transistores de efeito de campo ou bipolares usados em comutagdo nao se comportam
como resisténcias nulas, quando saturados. Os transistores bipolares podem apresentar uma

gueda de tensdo de até alguns volts quando saturados, o mesmo ocorrendo com os FETSs.

Assim, dependendo da aplicag¢do, principalmente nos circuitos de baixa tensdo, os
transistores de poténcia bipolares ou mesmo os IGBTs podem ser ainda melhores que os

FETs de poténcia.

17

4 Entradas analdgicas

4.1 Quantidade analdgica e sua importancia

Uma quantidade analdgica é uma quantidade que pode assumir qualquer valor
dentro de uma faixa continua de valores e, mais importante, o seu valor exato é significativo.
Por exemplo, uma saida de tensdo de 1,7 V de um sensor de temperatura pode representar
17,0°C. Se essa saida for 1,75 V, a temperatura sendo medida ndo serd mais a mesma. Em

outras palavras, cada valor apresenta um significado diferente.

A maioria das varidveis fisicas é analdgica e, portanto, pode assumir qualquer valor
dentro de uma faixa continua de valores. Podemos citar como exemplo: posi¢do, velocidade,
aceleracdo, temperatura, pressdo, intensidade luminosa. Em diversas aplicacles é
necessario realizar medicdes dessas grandezas fisicas. Para isso, usa-se um transdutor, que é
um dispositivo que converte uma varidvel fisica em uma varidvel elétrica. A saida analdgica
de um transdutor é uma tensdo ou uma corrente, que é proporcional a varidvel fisica sendo
medida. Alguns transdutores mais comuns sdo: termistores, fotocélulas, fotodiodos,

transdutores de pressao, tacometros.

Embora as grandezas medidas normalmente sejam analégicas, os sistemas de
processamento, como microcontroladores ou computadores, apenas trabalham com dados
digitais. Assim é necessario converter as grandezas fisicas para sinais digitais, que podem ser

manipulados pelos processadores. Os sistemas de aquisi¢cdo de dados sdo responsaveis por

realizar essa conversao.

4.2 Sistema de aquisicdo

Os transdutores sdao responsdaveis por converter as varidveis fisicas em varidveis
elétricas. A conversdo de uma grandeza analdgica para uma grandeza digital, por sua vez, é

realizada por um conversor analdgico digital. Porém existem outros componentes

18

necessarios a um bom sistema de aquisicao de dados. A figura abaixo ilustra um sistema de

aquisicdo de dados de quatro canais:

]) Conversor Referéncia
Transdutor Filtro Multiplexer analogico digital de tensio

i/_\

[I'— v

N Amostragem

m | e hold

| I — -

_/ & @\V

5 °

II '— [e]

/ Saida

—~ digital

[—T]

/

Amplificagdio e offset T T i T

Controle do
processador

Figura 7: Estrutura de um sistema de aquisi¢éo de dados de quatro canais.

Um sistema de aquisicao de dados é composto por:

e Transdutor: gera um sinal elétrico, de tensdo ou corrente, proporcional a variavel
fisica sendo medida;

e Amplificacdo e offset: aplica um ganho e um offset ao sinal gerado pelo transdutor, a
fim de aproveitar ao maximo a faixa de entrada do conversor analdgico digital;

e Filtro: remove componentes indesejadas do sinal, geralmente para evitar aliasing;

e Multiplexer: seleciona qual canal estd conectado ao conversor;

e Amostragem e hold: obtém uma amostra do sinal e mantém esse valor durante a
conversao;

e Conversor analdgico digital: faz a conversdo do sinal analdgico, em sua entrada, para
uma quantidade digital, em sua saida;

e Referéncia de tensdo: serve como referéncia fixa para o conversor;

O multiplexer, a amostragem e hold, e o conversor analdgico digital sdo geralmente
controlados pelo processador, que determina qual canal serd utilizado, qual o tempo de
amostragem, e quando deve ser iniciada a conversao. Por sua vez, o conversor envia a saida

digital, que é o resultado da conversdo, ao processador.

19

4.3 Conversor analdgico digital

A tarefa do conversor analdgico digital é determinar um numero digital que seja
equivalente a tensdo de entrada. Varios tipos de conversores ja foram desenvolvidos, cada
qual com diferentes aplicacdes em mente. Alguns, como o conversor de rampa dupla, sdao
lentos, mas possuem grande precisdao, e sao usados geralmente para medidas de precisao,
como em multimetros digitais. Outros, como o conversor do tipo flash, sdo rapidos, mas de
pouca precisdo, e sdo usados para converter sinais de alta velocidade, como video ou radar.

Outros, ainda, como o conversor de aproximacdes sucessivas, sdo de média velocidade e

média precisdo, e sao Uteis para aplicagdes de uso geral.

A figura a seguir ilustra o funcionamento de um conversor analégico digital de n bits,

com a entrada analdgica variando de 0 a V,,,, e a saida digital variando de 0 a (2™ — 1),
mostrada em binario:

Saida

digital)

@2"-1) -

(@"-2) -

100 —

011 =

010 - L

...001

Entrada

Ii'f'l"l"léi){ P
analogica

_ J

~

Faixa de Entrada

Figura 8: Relagdo entre a saida digital e a entrada analdgica de um conversor analdgico digital de n bits.

Ou seja, para cada valor da tensdo analdgica de entrada, o conversor ird associar um

numero digital que mais se aproxima do valor, levando em conta a tensdo de referéncia e a

resolucdo do conversor.

20

Muitos conversores tem a faixa de entrada entre 0 V e 5 V. QOutros, entretanto,
podem ter uma faixa bipolar, aceitando tensdes positivas e negativas, por exemplo, entre +5
V e -5 V. Em todo caso, a faixa de entrada, V,, serd a diferenga entre a maior e a menor
tensdo de entrada. Essa faixa geralmente estd relacionada com a referéncia de tensao do

conversor.

Pode-se notar, intuitivamente, pela figura, que quanto maior o nimero de bits, maior
serd o numero de niveis digitais, e melhor serd a conversdo. A resolucdo de um conversor

7

v, , . , .
pode ser calculada como -, onde V, é a faixa de entrada, e n é o numero de bits do

2n!
conversor. A resolugdo indica a menor variagdo de tensdao que pode ser percebida pelo

conversor.

Para o melhor aproveitamento do conversor, o ideal é que o sinal a ser convertido
use toda a faixa de entrada. Mas nem sempre os transdutores geram sinais compativeis
diretamente com a entrada do conversor. Nesse caso, é necessario aplicar um ganho e/ou
offset ao sinal, de modo a adequd-lo. Por exemplo, para obter um melhor resultado com um
transdutor que gera um sinal entre 100 mV e 200 mV, utilizando um conversor cuja faixa de
entrada varia entre 0 V e 5V, aplica-se um ganho de 50, fazendo o sinal variar entre 5V e 10
V, e em seguida aplica-se um offset de — 5V, resultando em um sinal que variarentre 0V e 5

V, aproveitando ao maximo a resolugdao do conversor.

Nos circuitos comerciais os blocos responsdveis pela selecdo de canal e pela
amostragem e hold geralmente sdo incluidos junto ao proprio conversor. A interface digital

com o processador pode ser serial ou paralela.

Um fator que tem grande peso na qualidade da conversdo é a tensao de referéncia,
pois o sinal sera convertido usando essa tensdao como referéncia. Assim, essa tensdao deve

ser estavel, de boa precisdo, e de valor conhecido, para garantir uma boa medicgao.

4.4 Aliasing

Quando um sinal continuo, como é o caso dos sinais analégicos gerados pelos

transdutores, é transformado em um sinal discreto no tempo pode ocorrer o aliasing. O

21

aliasing ocorre quando um sinal discreto no tempo pode representar diferentes sinais

continuos no tempo, que possuem frequéncias distintas. Pode-se entender o aliasing como

uma ambiguidade no dominio da frequéncia.

Para ilustrar esse efeito, consideremos um sinal discreto no tempo, composto por:

x(0)=0
x(1) = 0,866
x(2) = 0,866

x(3)=0
x(4) = —0,866
x(5) = —0,866

x(6) =0

Na figura a seguir temos esses pontos representados em um grafico, e dois senos de

diferentes frequéncias que podem representar o sinal continuo que originou os pontos

discretos:

0.8661 '["
(a) o * , . T T Loy
i , Tempo
|
-0.866 [] II

(b)

LI
UV INCUAT

Figura 9: Ambiguidade da frequéncia: (a) valores discretos no tempo; (b) dois senos diferentes que passam pelos pontos

discretos.

22

Apenas com os pontos discretos fornecidos ndo é possivel determinar qual
frequéncia corresponde ao sinal original. Para evitar o problema de aliasing, utiliza-se uma
frequéncia de amostragem, ou seja, a frequéncia com que sado feitas aquisicdes de dados,
que é maior ou igual ao dobro da maior frequéncia de interesse no sinal analisado. Esse
requisito provém do teorema de Nyquist. Para evitar que componentes indesejaveis sejam
obtidas durante a aquisicdo, pode-se usar filtros que removam essas componentes do sinal
analégico. Por exemplo, para garantir a condicdo do teorema de Nyquist pode-se usar um
filtro passa baixa com frequéncia de corte igual a maior frequéncia de interesse do sinal,

usando uma taxa de amostragem que é o dobro dessa frequéncia.

23

5 USB

5.1 Sobre

USB (Universal Serial Bus, barramento serial universal) é uma especificacdo de
comunicag¢ao serial utilizada para interligar dispositivos de diversos tipos, criada,
inicialmente, com o propdsito de padronizar a conexdo de periféricos a computadores
pessoais. A especificacdo é mantida pelo USB Implementers Forum, entidade responsavel
pelo desenvolvimento e por apoiar o avango e adocdo da tecnologia. O conselho de
diretores é composto, atualmente, pelas seguintes empresas: HP, Intel, LSI, Microsoft,

Renesas Electronicos, e ST-Ericsson.

A especificacdo descreve as caracteristicas do barramento, a definicdo do protocolo,
os tipos de transacdes, o gerenciamento do barramento, e a interface de programacao
necessaria para projetar e construir sistemas e periféricos que sdao compativeis com o
padrdo. Em contraste, outros padrées de comunica¢do serial, como o RS-232C, definem
apenas as caracteristicas elétricas da comunicacdo e da codificacdo dos dados, sem definir

um protocolo especifico para comunicagao.

Com o avan¢co do padrdo USB, alguns padrbes de comunicacdo se tornaram
obsoletos. Pode-se citar como exemplo: conector PS/2 (mouse, teclado), porta paralela
(impressora, scanner), porta serial (mouse), game port (joystick, joypad). Alguns dispositivos
que antes eram exclusivamente internos aos computadores agora possuem versdes

externas, como placas de som, rede, e modens.

5.2 Vantagens e desvantagens

O padrdao USB trouxe grandes vantagens para o usudrio final. A facilidade de uso é

uma das principais vantagens:

e Interface Unica: varios dispositivos de diferentes funcdes sdo ligados utilizando um

mesmo tipo de cabo e conector;

24

e Configuracdo automatica: ao se plugar um dispositivo, o sistema operacional
automaticamente carrega os drivers necessarios. Alguns dispositivos podem exigir a
instalagao de drivers, mas o processo deve ser feito apenas na primeira conexao;

e Facil de conectar: um computador comum possui varias portas USB, e com o uso de
hubs é possivel aumentar esse nimero de forma simples e facil;

e (Cabos convenientes: os conectores USB sdo pequenos, se comparados a outros
padrdes, como o RS-232C.

e Hot pluggable: os dispositivos podem ser conectados e desconectados mesmo com o
computador ligado;

e Sem alimentagdo externa: varios dispositivos, que ndao tenham consumo elevado,
podem utilizar a alimentacdo fornecida diretamente através do cabo USB, sem a

necessidade de fontes externas;

A comunicagdao USB é bastante confidvel. A especificacdo garante um ambiente de
baixo ruido elétrico, ao especificar as caracteristicas dos transmissores, receptores, e dos
cabos, eliminando a maior parte dos ruidos que causam erros nas transmissdes. O protocolo
definido pela especificacdao também suporta a detecgao de erros e retransmissao dos dados
corrompidos, feito diretamente por hardware, sem a necessidade da intervencdo do

software ou do usuario.

A especificacdo foi feita com economia em mente. Como o computador fornece a
maior parte da inteligéncia para controlar a interface, os componentes necessarios aos
dispositivos USB sdao baratos. A economia de energia, que é bastante importante nos dias de
hoje, devido tanto aos dispositivos méveis, que utilizam baterias, quanto a preocupag¢ao com
o meio ambiente, foi levada em conta na especificacdo, de modo que um dispositivo possa

reduzir seu consumo de energia e ainda se manter apto a comunicacao.

A principal limitacdo da especificacdo diz respeito a distancia: para conseguir atender
aos requisitos da especificacdo, os cabos ndo podem ser muito longos. Isso provém do fato
do padrdo ter sido desenvolvido principalmente com a conexdao de periféricos em mente.
Outros padrées, como RS-232C, RS-485, IEEE-1394b, e Ethernet permitem cabos muito mais

longos.

25

Outra limitacdo é que a conexdao USB deve ser feita entre um host, geralmente um
computador, e um dispositivo. Conexdes entre dispositivos, ou entre hosts, ndo sdo

possiveis.

Uma solugdo parcial para esse problema foi dada com a criagdao do USB OTG (On-The-
Go). Um dispositivo que suporta USB OTG pode funcionar tanto como dispositivo, quando
conectado a um host, quanto como um host limitado, quando conectado a um dispositivo. O
padrao USB 3.0 definiu um novo cabo, para a velocidade SuperSpeed, que permite a conexao

entre dois hosts.

Sem suporte a broadcasting: o padrao ndo suporta enviar dados simultaneamente
para mais de um dispositivo. O host deve enviar os dados individualmente para cada

dispositivo. Esse recurso é suportado pelo IEEE-1394b e Ethernet.

5.3 Detalhes técnicos

A topologia, ou o arranjo das conexdes, do barramento USB é do tipo rede em estrela
com camadas. No centro de cada estrela fica um hub e cada conexdo é uma ponta da
estrela. O hub raiz é o host. Cada hub externo possui uma porta usada para se comunicar
com o host e duas ou mais portas para se comunicar com dispositivos. Essa topologia
descreve apenas a conexdo fisica dos dispositivos, pois a conexdo légica, que é o que
importa para o software e para o firmware, nao faz distincdo de como o dispositivo esta

conectado ao host. A figura a seguir exemplifica a topologia em questao:

26

HOST
HUB RAIZ
110 IT
I 5 ‘
L ‘ HUB ‘ U HUB
DISP DISP
M rr 10
= l
] []]
HUB
DISP HUB DISP DISP
MM
] L
DISP DISP ‘ DISP ‘ DISP ‘
DISP COMPOSTO DISP = DISPOSITIVO

Figura 10: Topologia de rede em estrela com camadas.

A comunicacdo USB acontece através de canais ldgicos de comunicagdao que sao
chamados de endpoints. Cada endpoint é caracterizado por um nimero e uma dire¢do. O
nimero pode variar de 0 a 15, e a direcdo pode ser do host para o dispositivo ou do
dispositivo para o host. Isso totaliza um maximo de 32 canais légicos possiveis, sendo 16 do

host para o dispositivo e 16 do dispositivo para o host. Existem quatro tipos de endpoints:

e (Control: Unico tipo de endpoint que exige que sejam definidos dois endpoints de
mesmo numero, mas de dire¢Oes opostas. Ele é baseado na troca de mensagens
entre o host e o dispositivo. As mensagens sao enviadas pelo host pelo endpoint que
vai do host para o dispositivo, e o dispositivo responde pelo endpoint de mesmo
numero, mas que vai do dispositivo para o host. O endpoint de nimero O deve existir
e ser obrigatoriamente desse tipo, pois é usado para identificar e configurar o
dispositivo. Transfere poucos dados, ndo possui garantia de taxa de transferéncia de
dados, mas apresenta correcdo de erros.

e Bulk: capaz de transmitir uma quantidade maior de dados, com correcao de erros,
mas nao possui garantia de taxa de transferéncia. Usado geralmente em dispositivos

de armazena mento, impressoras, e scanners.

27

e Interrupt: transmissdo periddica de poucos dados, com correcdo de erros, mas sem
taxa de transferéncia garantida. Geralmente usado em dispositivos como teclado e
mouse.

e [sochronous: transmite uma grande quantidade de dados com garantia de taxa de
transmissdao, mas nao possui corregdao de erros. Usado principalmente para

streaming de audio e video.

Os dispositivos USB possuem descritores que sdao consultados pelo sistema
operacional, através do endpoint 0, para determinar como o dispositivo deve ser usado.
Dentre as informacdes contidas nos descritores temos o Vendor ID e o Product ID, que
identificam, respectivamente, o fabricante do dispositivo e o dispositivo em si. Ambos sdo
valores inteiros de 16 bits. Os Vendor IDs sdo atribuidos pela USB Implementers Forum as
empresas, mediante uma taxa de licenciamento. O dispositivo pode conter, opcionalmente,
um nome descritivo do fabricante, do dispositivo, e um ndmero serial. O descritor indica a

classe e os endpoints que sao usados pelo dispositivo.

Com a fungdo principal de conectar dispositivos a computadores, o protocolo USB foi
desenvolvido com algumas classes de dispositivos genéricas, que sdao suportadas pela
maioria dos sistemas operacionais sem a necessidade de instalagdao de drivers de terceiros.
Por exemplo, existem classes definidas pela especificacdo para: dispositivos de dudio (placa
de som), dispositivos de comunicacdo (Ethernet, Wi-Fi, modem), dispositivos de interface
humana (teclado, mouse, controles), impressoras, dispositivos de armazenamento, hub USB,
dispositivos de video (webcam), entre outros. Todas essas classes definem um protocolo

genérico adequado para o tipo de dispositivo em questao.

Com o intuito de manter o protocolo USB genérico o bastante, para suportar
dispositivos ndo previstos na especificacdo, existe uma classe que indica para o sistema
operacional que o dispositivo necessita de um driver do fabricante. Essa classe é livre para

definir o seu proprio protocolo de comunicacao.

As classes definidas pela especificacdo para fungdes especificas, como a classe para
dispositivos de interface humana, possuem em sua especificagcdo a descricio do seu
comportamento: quais requisicoes devem ser atendidas, como devem ser atendidas, quais

endpoints sdo obrigatérios e, caso existam, quais sdo opcionais, como devem ser

28

transferidos os dados, entra outros detalhes. A classe para dispositivos que necessitam de
drivers do fabricante ndo especifica a configuracdo dos endpoints, apenas que o endpoint 0

deve ser para operagdes de controle.

A classe dos dispositivos de interface humana (HID) define uma classe genérica para
qualquer dispositivo que possa servir de interface ente o usuario e o computador. Os
dispositivos que seguem a especificagdo HID usam relatdrios para transmitir dados entre o
dispositivo e o computador, e vice versa. Existem trés tipos de relatdrios: input, que enviam
comandos do usuario para o computador; output, que envia comandos do computador para
0 usuario; e feature, que serve para configurar op¢bes, caso existam, do dispositivo. O

significado de cada item em um relatdrio é definido pelos descritores de relatdrio.

Nos descritores de relatério sdo especificadas todas as entradas, saidas e
configuracdes disponiveis no dispositivo. Para entrada hd, por exemplo, botGes e valores
analdgicos. Para saida ha, por exemplo, intensidade do force feedback ou um indicador

luminoso. Para configuracdo hd, por exemplo, a intensidade maxima do force feedback.

Os dispositivos HID ndo necessitam de drivers, pois possuem suporte nativo dos
sistemas operacionais. O formato dos dados depende apenas do que é especificado nos
descritores de relatérios. Essas caracteristicas fazem com que a classe HID seja utilizada para
obter troca de dados genéricos, ou seja, que nao sdao de interface humana, entre um
software e um dispositivo, sem a necessidade do desenvolvimento de drivers. Um dos
bootloaders USB fornecido pela Microchip utiliza esse recurso, para facilitar o uso do

programa pelo usudrio final, sem a necessidade de instalar drivers.

29

6 Microcontrolador PIC18F4550

6.1 Microcontroladores

Os microcontroladores (ou MCU) sdo pequenos dispositivos basicamente
constituidos de uma CPU (Central Processing Unit, ou Unidade Central de Processamento,
em portugués), memoria (para dados e programas) e periféricos (portas E/S, 12C, SPI, USART,
entre outros). Suas dimensdes reduzidas sdo resultantes da alta capacidade de integracao,
em que milhdes de componentes sdo inseridos em uma Unica pastilha de silicio pela técnica
de circuitos integrados (Cls). Eles estdo presentes na maioria dos equipamentos digitais,

como celulares, MP3 player, impressoras, robodtica, instrumentacdo, entre outros.

Memaona de dados | Perifericos
Portas E/fS
@ TIMERs
—— LUSART
CPU |[(——> S-gl [Exterior
j\ Conversor A/D
! J Conversar D/A
E Memdria de programa
i
L

Microcontrolador

Figura 11 - Diagrama resumido de um microcontrolador.

As duas principais arquiteturas de microcontroladores sdo Harvard e Von-Neumann.
A arquitetura Harvard é caracterizada pela existéncia de um barramento para o acesso a
memodria de dados e outro para a memodria de programa, resultando em um aumento do
fluxo de dados, enquanto na arquitetura Von-Neumann as memodrias de dados e programas

compartilham o mesmo barramento, limitando a banda de operacao.

30

. = Fr'_ _"_'_] . Memana de
Memana 47L, . Memadria de
| CPU | 0 | CPU |4+~ | programae
| de dados L programa : |. de dados

Figura 12 - Diagrama de arquitetura Harvard (a esquerda) e arquitetura Von-Neumann (a direita).

Em geral, as memdrias de programa presentes nos microcontroladores sdo do tipo
EEPROM (Eletrically Erasable Programmable Read Only Memory), Flash, ROM (Read Only
Memory), EPROM (Erasable Programmable Read Only Memory) ou OTP (One Time
Programmable). Elas sdao responsdveis pelo armazenamento do programa, o que significa
que sua capacidade de armazenamento deve ser suficiente para reter todo o cddigo
desejado. Essas memodrias sdao do tipo ndo voldtil, portanto o cédigo de programa
armazenado n3ao é perdido, caso o circuito ndo esteja sendo alimentado. Vejamos as

principais caracteristicas das memdrias citadas.

e ROM: ndo permite que o conteudo seja alterado pelo usuario. Ela aceita somente a
leitura do conteuldo, o qual foi gravado pelo fabricante. Microcontroladores dotados
de memodria de programa do tipo ROM normalmente apresentam um baixo custo
com relacdo as memoérias FLASH, EPROM e OTP, e sao recomendados quando o
cédigo do programa nao apresenta erros e hd necessidade de grande quantidade.

e EPROM: pode ser apagada e/ou programada muitas vezes, porém o conteldo da
memodria é apagado através da exposicao da janela de quartzo a luz ultravioleta, cujo
processo de fabricacdo apresenta um custo elevado, se comparados com os outros
tipos de memdria.

e OTP: tolera somente uma gravacao. Esse tipo de memdria apresenta o menor custo
se for comparado com as memarias programaveis (EPROM e FLASH).

e EEPROM: de funcionamento semelhante ao de uma EPROM, essa memoria é escrita
ou apagada eletricamente.

e FLASH: é a memdria mais flexivel entre todos os outros tipos de memdria de
programa, pois pode ser apagada eletricamente e reprogramada 100000 a 1000000

de vezes, dependendo da tecnologia empregada na fabricacdo desse componente.

Outro tipo de memoria existente é a de dados, definida como memédria RAM

(Random Access Memory). Ela é volatil e armazena as varidveis e constantes do sistema. O

31

conteudo presente nesse tipo de memdria é perdido sempre que a alimentacdo é cortada.
Isso implica que os valores das varidveis devem ser carregados sempre que o sistema for
iniciado.

Pinos I/O (input/output, ou entrada/saida) digitais estdo presentes em todos os
microcontroladores. Por meio deles, o MCU se comunica com o mundo exterior, ou seja, é
por intermédio destes que o MCU aciona um relé, led, motor, etc. O sentido do fluxo de
dados de um pino I/O pode ser definido como entrada ou saida. Se o pino for definido como
saida, entdo ele normalmente sera utilizado para controlar periféricos; caso contrario, se for
definido como entrada, o dispositivo passa a ler o sinal presente no pino. Chamamos de

porta um conjunto de pinos relacionados a ela (exemplo: porta X e pinos X.1, X.2, X.3, X.4,

X.5, etc).

Alguns periféricos como conversores A/D, USART (Universal Synchronous
Asynchronous Receiver Transmitter), TIMER, SPI (Serial Peripheral Interface) e I12C (Inter-
Integrated Circuit) sdo muito comuns nos microcontroladores, no entanto existem MCUs
mais robustos que, além desses periféricos, também apresentam outros mais especificos,

como controladores de LCD, USB (Universal Serial Bus), RTC (Real-Time Clock), rede CAN, etc.

A velocidade de processamento do microcontrolador esta diretamente relacionada
com a frequéncia de clock. Quanto maior a frequéncia de trabalho maior sera a capacidade
de processamento, assim como o consumo de energia. Essa frequéncia pode ser gerada por
um oscilador interno, que normalmente é um circuito RC, ou entdao por um cristal de quartzo
ou um ressonador conectado externamente. Osciladores internos do tipo RC sdo

normalmente utilizados quando ndo hd grande necessidade de precisdo de clock; caso

contrario, utiliza-se o cristal.

6.2 PIC18F4550

O PIC um microcontrolador fabricado exclusivamente pela Microchip Tecnology, e
divide-se em varias familias. Com arquitetura de 8 bits tem-se, por ordem crescente de

performance e dimensao, as familias PIC10, PIC12, PIC16 e PIC18. Com arquitetura de 16 bits

32

hd as familias PIC24F e PIC24H e os processadores digitais de sinais (DSPs) dsPIC30 e
dsPIC33.

O microcontrolador PIC18F4550, é construido com base na arquitetura Harvard com
instrugdes do tipo RISC (Computador com Conjunto Reduzido de Instrugdes). E um
dispositivo de 8 bits dotado de 32 KB de memdria de programa e 2 KB de memdria RAM.
Esse dispositivo pode ser alimentado com tensdes entre 4 V e 5,5 V, além de operar em
frequéncias de até 48 MHz (12 MIPS — milh&es de instrucdes por segundo). Ele pode ser
alimentado diretamente por um oscilador de 48 MHz ou por um cristal associado com o
bloco PLL, capaz de multiplicar a frequéncia do cristal até os limites de 48 MHZ. Além disso,

possui um oscilador interno de 8 MHz, que pode ser derivado em 8 MHz, 4 MHz, 2 MHz, 1

MHz, 500 KHz, 250 KHz, 125KHz e 31 KHz.

Esse modelo possui 40 pinos, dos quais 35 podem ser configurados como 1/0, e
diversos periféricos, tais como memdria EEPROM (FLASH) de 256 bytes, um mddulo CCP
(Capture-Compare-PWM) e ECCP (Enhanced Capture-Compare-PWM), um mddulo SPI e 12C,
conversor A/D de 13 canais com 10 bits de resolugdo e tempo de aquisi¢do programavel,
dois comparadores analdgicos, uma comunicacdao EUSART, um TIMER de 8 bits (TIMER2) e
trés de 16 bits (TIMERO, TIMER1 e TIMER3), um mddulo de detec¢do de alta/baixa voltagem
(HLVD), além de ter um médulo USB 2.0 capaz de operar no modo /low-speed (1,5 Mbps) ou
full-speed (12 Mbps).

A Figura 13 ilustra a distribuicdo dos pinos e respectivas fungdes do microcontrolador
PIC18F4550. Uma descricdo completa da funcdo de cada pino pode ser encontrada no

datasheet completo do componente (Datasheet PIC18F4550, 2009).

33

_— U
MCLRAVPP/RE3 —= [1 40 [] = RB7/KBI3/PGD
RAD/AND =—[] 2 39 [] =—— RBG/KBIZ/PGC
RAT/ANT =—[] 3 38 [] =—= RB5/KBI1/PGM
RA2/AN2VREF-/ICVREF =—[] 4 37 [=—= RB4/AN11/KBID/CSSPP
RA3/AN3VREF+ —=[] 5 36 [=— RrB3/ANg/CCP2vPO
RA4/TOCKI/IC1OUT/RCY =—=[] & 35 [] =—= RB2/ANS/INT2VMO
RAS5/AN4/SSHLVDIN/C20UT =—=[] 7 34 [] =—= RB1/ANT0INT1/SCK/SCL
RED/ANS/CK1SPP =—[] 8 n o 33 [J =—= RBO/AN12/INTO/FLTO/SDI/SDA
RE1/ANG/CK2SPP =—=[] 9 § - 320 =— VoD
RE2/AN7/QOESPP =—[] 10 rE 31[] =——Vss
Voo —= [] 11 ®® 30 [] =—= RD7/SPP7/P1D
Vss — =[] 12 00 29 [] =—= RDG/SPPE/P1C
OSC1/CLKI —= [] 13 oo 28 [=—= RD5/SPP5/P1B
OSC2/ICLKO/RAE «———[) 14 27 [0 = RD4/SPP4
RCOT10SOM13CKI =[] 15 26 [] =— RC7/RX/DT/SDO
RC1/T108l/CCP2)/UDE =—=[] 16 25 [] =—= RCBTX/CK
RC2/CCP1/PIA =—= 17 24 [] =—— RC5/D+VP
VUsE «——=[] 18 23 [=—— RC4/D-VM
RDO/SPP0 =—=[] 19 22 [] =——= RD3/SPP3
RD1/SPP1 =—=[] 20 21[] =——= RD2/SPP2

Figura 13 - Pinagem do PIC18F4550.

34

7 Alinguagem C

7.1 Uma visao geral

A linguagem C foi inventada e implementada incialmente por Dennis Ritchie em um
DEC PDP-11 que utilizava sistema operacional UNIX. C é o resultado de um processo de
desenvolvimento que comegou com uma linguagem mais antiga, chamada BCPL, que
influenciou uma linguagem chamada B. Na década de 1970, a linguagem B levou ao

desenvolvimento de C.

Com a popularidade dos microcomputadores, um grande nuUmero de
implementac¢des de C foi criado. Porém, por ndo existir nenhum padrao, havia discrepancias.
Para remediar essa situacdao, o ANSI (American National Stantdards Institute) estabeleceu,
em 1983, um comité para criar um padrdao que definiria de uma vez por todas a linguagem C.

Assim, todos os principais compiladores ja implementaram o padrdao C ANSI.

C é uma linguagem chamada de médio nivel para computadores. Isso ndo significa,
no entanto, que seja menos poderosa, dificil de usar ou menos desenvolvida que uma
linguagem de alto nivel como BASIC e Pascal, tampouco implica que C seja similar a
linguagem assembly e seus problemas correlatos aos usudrios. C é tratada como linguagem
de médio nivel porque combina elementos de linguagens de alto nivel com a funcionalidade

da linguagem assembly.

Como linguagem de médio nivel, C permite a manipulagao de bits, bytes e enderecos

— 0s elementos bdasicos com os quais um computador ou microcontrolador funciona.

Todas as linguagens de programacdo de alto nivel suportam o conceito de tipos de
dados. Embora C tenha cinco tipos de dados internos, ela ndo é considerada uma linguagem
rica em tipos de dados como Pascal e Ada. C permite quase todas conversdes de tipos de
dados. Por exemplo, os tipos caractere e inteiro podem ser livremente misturados na
maioria das expressdes, ndao sendo efetuada nenhuma verificagdo — a ndo ser por recursos

de compilador — no tempo de execugdo, sendo estes de responsabilidade do programador.

35

Outro aspecto importante sobre a linguagem C é que ela tem apenas 32 palavras-
chave (27 origindrias do padrdo original, mais 5 adicionadas pelo comité ANSI de
padronizacdo), que sdo os comandos que compdem a linguagem C. As linguagens de alto
nivel tipicamente tem vdrias vezes esse numero de palavras reservadas. Como comparagao,

a maioria das versdes de BASIC possuem bem mais de 100 palavras reservadas.

7.2 Linguagem estruturada

C é uma linguagem de programacdo estruturada. A caracteristica especial de uma
linguagem estruturada é a compartimentalizacdo do cdodigo e dos dados. Trata-se da
habilidade de uma linguagem seccionar e esconder do resto do programa todas as
informagdes necessdrias para se realizar uma tarefa especifica. Com o uso de varidveis
locais, é possivel escrever sub-rotinas de forma que os eventos que ocorrem dentro delas
ndao causem nenhum efeito inesperado nas outras partes do programa. Essa capacidade
permite que programas em C compartilhem facilmente se¢des de cddigo, sendo possivel a

criacdo de funcdes compartimentalizadas.

Uma linguagem estruturada permite muitas possibilidades na programacao. Ela
suporta, diretamente, diversas construcGes de lagos (/oops), como while, do-while e for. Em
uma linguagem estruturada, o uso de goto é proibido ou, no minimo, desencorajado. Uma
linguagem estruturada permite a insercao de sentencas em qualquer lugar de uma linha e

nao exige um conceito rigoroso de campo, como em FORTRAN.

7.3 Forma basica de um programa C

Todo programa em C consiste em uma ou mais fungbes. A Unica fungdo que
necessariamente precisa estar presente é a denominada “main()”, que é a primeira funcdo a
ser chamada quando a execu¢do do programa comeca. Em um cddigo C bem escrito,

“main()” contém, em esséncia, um esboco do que o programa faz. O esboco é composto pela

36

chamada de fung¢des. Embora a funcdo principal ndo seja tecnicamente parte da linguagem

C, é tratada como se fosse.

A forma geral de um programa C é ilustrada na Figura 14, em que f1() até fN()

representam fungdes definidas pelo programador.

declaracdes globais
tipo devolvide main(lista de parametros)
{

seqgiléncia de comandos

}

tipo develvide flilista de parametros)

{

seqiéncia de comandos

tipo devolvido f2(lista de parametros)
{
seqgiléncia de comandos

1

tipo devolvido fN(lista de parametros)
[

Figura 14 - A forma geral de um programa em C.

7.4 Tipos de dados

A linguagem C define cinco tipos de dados basicos: caractere (char), inteiro (int),
ponto flutuante (float), ponto flutuante de dupla precisdo (double) e sem valor (void). Todos
os outros tipos de dados em C sdo baseados em um desses tipos basicos. O tipo void,

especificamente, declara explicitamente uma funcdo que ndo retorna valor algum ou cria

ponteiros genéricos.

Todos os tipos de dados definidos no padrao ANSI sdo exibidos abaixo.

Tipo Tamanho em Bytes Faixa Minima
char 1 -127 a 127
unsigned char 1 0a 255
signed char 1 -127 a 127

37

int 4 -2.147.483.648 a 2.147.483.647
unsignedint 4 0 a4.294.967.295
signedint 4 -2.147.483.648 a 2.147.483.647
short int 2 -32.768 a32.767
unsigned shortint 2 0a65.535

signed shortint 2 -32.768 a 32.767
longint 4 -2.147.483.648 a 2.147.483.647
signedlongint 4 -2.147.483.648 a 2.147.483.647
unsignedlongint 4 0a4.294.967.295

float 4 Seis digitos de precisao
double 8 Dez digitos de precisdo
longdouble 10 Dez digitos de precisdo

7.5 Compiladores x interpretadores

Os termos compiladores e interpretadores referem-se a maneira como um programa
é executado. Existem dois métodos gerais pelos quais um programa pode ser executado. Em
teoria, qualquer linguagem de programacdo pode ser compilada ou interpretada, mas
algumas geralmente s3ao executadas de uma maneira ou outra. A maneira pela qual um
programa é executado ndo é definida pela linguagem em si. Interpretadores e compiladores
sdo simplesmente programas sofisticados que operam sobre o cddigo-fonte de um

programa.

Um interpretador |é o cddigo-fonte de um programa uma linha por vez, executando a
instrucdo especifica contida nessa linha. Um compilador |é o programa inteiro e converte-o
em um codigo-objeto, que é uma traducdo do cddigo-fonte em uma forma que o
computador possa executar diretamente. O cddigo-objeto é também conhecido como
cédigo bindrio ou cdodigo de maquina. Uma vez que o programa tenha sido compilado, uma
linha do cédigo-fonte, mesmo que seja alterada, ndo é mais importante na execuc¢do do seu

programa.

38

Quando um interpretador é usado, deve estar presente toda vez que o programa é
executado, para examinar uma linha por vez para correcao e entdao executd-la. Esse processo
lento ocorre cada vez que o programa for executado. Um compilador, ao contrario, converte
seu programa em um cédigo-objeto que pode ser executado diretamente pelo computador.
Como o compilador traduz o programa de uma sé vez, tudo o que é necessario fazer é
executar o programa diretamente. Assim, o tempo de compilacdo sé é gasto uma vez,

enquanto o cddigo interpretado incorre neste trabalho adicional em cada execugao.

7.6 Bibliotecas

Em principio, é possivel criar um programa util e funcional que consista apenas nos
comandos realmente criados pelo programador. Isso é muito raro, porém, porque C, dentro
da atual definicdo da linguagem, ndo oferece nenhum método de executar operacdes de
entrada/saida (I/0O, ou E/S). Como resultado, a maioria dos programas inclui chamadas a

varias fun¢des contidas na biblioteca C padrao.

Todo compilador C vem com uma biblioteca C padrao de fungbes que realizam as
tarefas mais comuns. No entanto, cada compilador contera muitas outras funcgdes,

eventualmente dedicadas a alguma aplicagdo dedicada a qual se aplica o compilador. Por

exemplo.

Muitas das funcbes utilizadas nos programas mais comuns estdo na biblioteca
padrdo. Elas agem como blocos bdsicos que podem ser combinados. Ainda, fungdes
especificas ou que sejam utilizadas muitas vezes também podem ser colocadas em
bibliotecas. Alguns compiladores permitem que fun¢bes sejam adicionadas a biblioteca
padrdo, mas sempre é possivel a criagdo de uma biblioteca adicional. De qualquer forma, o

cédigo estara |3 para ser usado repetidamente.

39

7.7 MPLAB C18

O compilador C da Microchip, C18, é um compilado gratuito para a familia de
microcontroladores PIC18 em padrao ANSI. Um compilador para utilizacdo em
microcontroladores é um compilador como outro, um programa que roda sobre o cddigo
para sua interpretacdo e transformacdo em linguagem de maquina. Algumas diferencas
quanto a funcionalidade e disponibilidade de recursos, no entanto, sdo notaveis, e devidas

as diferencas entre os dispositivos de hardware a que um programa-objeto se destina.

Assim, o compilador C18 é um compilador C especifico para a familia de dispositivos
PIC18, microcontroladores programaveis de propdsito geral, e, entao, otimizado para suprir,
exclusivamente, as necessidades desses dispositivos. Entdao, quando comparado com um
compilador C tradicional, este tem algumas limitacGes. Funcbes recursivas nao estdo
disponiveis, uma vez que os dispositivos PIC ndo possuem uma pilha para armazenamento

de varidveis, e também devido a maneira como o compilador otimiza o cédigo.

De qualquer forma, o compilador é capaz de implementar constru¢des normais em C,
operacgdes de entrada e saida, e operagdes bit a bit. Todos os tipos de dados suportados pela
linguagem sdo suportados pelo compilador, além de ponteiros para vetores constantes,

operacles com ponto flutuante e vetores de bits.

40

8 LabVIEW

8.1 Oque éLlabVIEW

Inicialmente, o LabVIEW era somente uma linguagem de programacao grafica
desenvolvida com o propdsito de facilitar a coleta de dados de instrumentos de laboratdrio,
a partir de sistema de aquisicdo de dados. Para tais propésitos, o LabVIEW foi sempre facil
de usar, uma vez que criar programas de computador ligados por “fios”, conectores, e com
uma integrada e intuitiva interface grafica, é bastante simples. Ainda, isso faz muito mais

simples e rapida tarefas de aquisicdo de dados.

Assim, LabVIEW (acrénimo para Laboratory Virtual Instrument Engineering
Workbech) é uma linguagem de programacdo grafica, originaria da National Instruments. A
primeira versao surgiu em 1986 para Macintosh e atualmente existem ambientes de
desenvolvimento para os sistemas operacionais Windows, Linux e Solaris, além de
plataformas modveis de integracdo e a versdo gratuita, RunTime Engine, somente para

execugdo de programas.

Atualmente, é uma poderosa interface de programacdo, coleta de dados e controle,
considerado um ambiente de desenvolvimento de instrumentagdo virtual, capaz de realizar
tarefas e medi¢Oes tdo precisas — ou mais, dependendo dos sistemas de aquisicdo — quanto

equipamentos dedicados.

8.2 Aplicagbes

Os principais campos de aplicagdao do LabVIEW sdo a realizagdao de medicdes e a

automacao, sendo as tarefas divididas, basicamente, em:

e Aquisicdo dos dados a partir de instrumentos;
e Processamento dos dados;
e Andlise dos dados (tomada de decisdo a partir do processamento);

e Controle de instrumentos e equipamentos.

41

Para engenheiros, o LabVIEW torna possivel trazer informacdes do mundo real,
exterior, para dentro de um computador, tomar decisdes baseadas na aquisicdo de dados e

enviar os resultados do computador de volta ao mundo real para controlar a operacao de

um determinado equipamento.

8.3 Programacao

A programacgao é feita de acordo com o modelo de fluxo de dados, o que oferece a

esta linguagem diversas vantagens e facilidades para a aquisicdo de dados e para sua

manipulagao.

Os programas em LabVIEW sdo chamados Virtual Instruments (instrumentos virtuais),
ou mais comumente, VIs, na sigla em inglés. Sdo compostos pelo painel frontal, que contém
a interface, controles, entradas e saidas, como mostrado na Figura 15, e pelo diagrama de
blocos, que contém o cédigo grafico do programa, como mostra a Figura 16. O programa, ao
contrdrio de muitos ambientes de programacdo “amigaveis” ao usudrio, ndo é processado
por um interpretador, mas sim compilado. Deste modo, sua performance é comparavel a

exibida pelas linguagens de programacao de alto nivel. A linguagem grafica de programacao

do LabVIEW é chamada “G”, nome dado pelo desenvolvedor.

3 Final.vi Front Panel =@ S
File Edit View E.Yojt(l Operate Tools ﬂmdc‘\-. ﬂell: . _
[®] @[][15pt Application Font |~|[2o~][Za~][-][¢5~] 7] e
Referéncia ~
Image
Bola ag
yel . Ea Escala (px/ cm) :
k \J 16,3234 iz
o Barra 207
+ :
L I J 18 output range
0 : | output high
& 16 o
3} PID gains H»?’ 00
~ id - ANENENENNEN IR 14 | “outputlow
%1‘ | proportional gain (Ke) {2000 B: 500 |
= | integraltime (Ti, min) -§0,010 !
ol derivative time (Td, min) *§0.000
&l
Data (0- 255) sTOP
{208
/320240 1X &-bitimage 141 (00) 1995 vesco A8
Waveform Chart 11003 Referéncia [

Amplitude

Time

Figura 15 - Tipico painel frontal do LabVIEW.

42

[vid_04d88&pid_0003
pi

E1EIR E]

@

Vision Assistant

output range

i

Calibrated Matc

Ve

Number of Matcr

Calibrated Matc

¥

PID gains

Waveform Chart

Data (0 - 255)

&

Write To
Measurernent
File2

Signals

&

Write To
Measurement
File

Number of Mate

Referéncia

Escala (px / cm)

LIpSEL ||

Signals

Figura 16 - Exemplo de diagrama de blocos desenvolvido em LabVIEW.

43

Os blocos de fungbes sdao designados por instrumentos virtuais. Isto é assim porque,
em principio, cada programa (VI) pode ser usado como subprograma (subVI) por qualquer
outro ou pode, simplesmente, ser executado isoladamente. Devido a utilizagcdo do modelo
do fluxo de dados, as chamadas recursivas nao sao estruturalmente possiveis, podendo-se,

no entanto, conseguir esse efeito pela aplicacdo de algum esforco extra.

O programador liga Vis com linhas (wires ou fios) de ligacdo e define, deste modo, o
fluxo de dados. As linhas, pela espessura e cor, define o tipo de dado que circula entre os
blocos de fungdes, como ilustra a Figura 17. Cada VI pode possuir entradas e/ou saidas. A
execucdo de um VI comega quando todas as entradas estdo disponiveis; os resultados do
processamento sao entao colocados nas saidas assim que a execugdo do subprograma tenha
terminado. Desta forma, a ordem pela qual as tarefas sdo executadas é definida em funcao

dos dados. Uma ordem pré-definida (por exemplo, “da esquerda para a direita”) nado existe.

Boolean)] Eonal
TF
e
g ez
Mumeric 2
E} S123]
In
o+0i! pl23 Error Cluster ﬁ
pol .
: |1D Array of Doublesl [iz%
o ||
_:D 2D Array of Doubles m=
=0
_
Ho S e .,[:::]
e ' : T ° T exx
510

Figura 17 - Tipos de dados manipulados pelo LabVIEW. A composigdo desses dados pode ser feita através da estrutura do

tipo cluster.

Uma importante consequéncia destas regras é a facilidade com que podem ser
criados processos paralelos no LabVIEW. Os subVls sem interdependéncia dos respectivos

dados sdo processados em paralelo.

44

Os subVIs que ndo possuem entradas sdo executados no inicio do programa. Se o
subprograma ndo possuir saidas, os dados resultantes sdo ignorados ou, entdo usados pelo
exterior: sdo escritos para o disco rigido ou para a rede, ou enviados para a impressao. Da
mesma forma, um subVl sem entradas pode receber dados provenientes de aparelhos
periféricos ou pode gerar seus préoprios dados (um exemplo é um gerador de numeros

aleatorios).

Os subprogramas podem estar interligados com muita complexidade. Muitas das
fungdes proéprias do LabVIEW sdo, por sua vez, VIs normais, que podem ser modificados pelo
programador (o que ndo é recomendado). Todos os VIs se baseiam numa série de fungdes

basicas, chamadas “primitivas”, que ndo podem ser modificadas pelo programador.

Muitos VIs e primitivas em LabVIEW sdo polimorfos, ou seja, sua funcionalidade
adapta-se aos tipos de dados que recebem. Por exemplo, a funcdo “Build Array” pode ser
usada para a criacdao de quaisquer variaveis, ou seja, de strings, de inteiros e também de
arrays de clusters. Também ¢é possivel ao programador construir seus préprios Vis
polimorfos. No fundo, consistem de uma colecdo de varios Vis com diferentes tipos de

dados, entradas e saidas.

Os dados podem ser ligadas ao Painel Frontal através de manipuladores. Por
exemplo, a insercdo de nimeros pode ser dependente de um manipulo e uma varidvel de

saida booleana pode ser realizada por um LED colocado no painel.

O Painel Frontal do LabVIEW é um meio confortavel para construir programas com
uma boa interface grafica. O programador n3do necessita de escrever qualquer linha de
codigo, apesar de que essa possibilidade existe, podendo o VI receber linhas de cédigo de
diversas linguagens comumente utilizadas. A apresentacado grafica dos processos aumenta a
facilidade de leitura e de utilizacdo. Uma grande vantagem em relacdao as linguagens
baseadas em texto é a facilidade com que se cria componentes que se executam
paralelamente. Em projetos de grande dimensdo é muito importante planejar sua estrutura

desde o inicio (como acontece nas outras linguagens de programacao).

45

8.4 LimitacOes e desvantagens

Por um lado, é muito confortavel programar sem cddigo, em principio, mas nao
devemos esquecer que no LabVIEW é muito importante planejar muito bem o projeto antes
de se passar a realizacdo dos VIs (em geral, a estruturacdo prévia do programa é muito mais

necessaria se comparada a programa feitos em cédigo escrito).

Pequenas mudangas podem obrigar a profundas reestruturacdes do programa, uma
vez que sempre que se insere um novo bloco é necessario voltar e ligar os fios e os simbolos

para restabelecer o funcionamento.

Ainda, para evitar confusdes de linhas, é habitual introduzir mais varidaveis do que
aquelas que sdo estritamente necessdrias, diminuindo-se, assim, a velocidade de
programacao e, mais grave, de execuc¢do do cédigo, e contrariando-se, de algum modo, o

modelo funcional de fluxo de dados.

46

9 Microchip USB Framework

9.1 Microchip Application Libraries

A Microchip Application Libraries (MLA) é uma colecdo, de bibliotecas e de modelos
de projetos de aplicagdes para os microcontroladores PIC, distribuida gratuitamente. Nem
todos os firmwares da Microchip, no entanto, sdo distribuidos nesse pacote; este contém
algumas bibliotecas especificas que geralmente podem ser usadas em conjunto. Distribuindo
bibliotecas que podem ser usadas em conjunto, exemplos de projetos que utilizam multiplas
bibliotecas e apresentam multiplos recursos podem, também, ser oferecidos, e

acompa nham o pacote.

Para prover o maximo de flexibilidade a programadores, usudrios e desenvolvedores
de solugdes, o framework é distribuido a partir do cdédigo-fonte, o que facilita a

customizagdo do firmware para cada aplicagao.

9.2 USB Framework

A Microchip possui software de suporte a implementacdo de USB nos

microcontroladores PIC de 8 bits, 16 bits e 32 bits. Esse software é livre, de cddigo aberto e o

pacote acompanha exemplos de projeto com fins de aprendizado.

A familia de microcontroladores PIC18 tem suporte a implementa¢cdo de USB na
forma de dispositivos. As familias PIC24 e PIC32, além do suporte de USB como dispositivos,

podem atuar como host, e suportam o USB On-The-Go. Todas as familias suportam o modo

full-speed USB (FS-USB), que opera em 12 Mbps.

A Microchip USB Framework for PIC18, PIC24 & PIC32 é um pacote distribuido com a
MLA contendo uma variedade de exemplos de projetos de firmwares, além de drivers USB e

outros recursos para o uso de um computador.

47

Entre os modelos de projeto, encontram-se Device CDC demo, Printer demo, bar code
Scanner demo, CDC serial emulator, device composite HID and mass storage, generic driver
demo, HID mouse example, HID keyboard demo, SD card reader, SD data logger, thumb

driver data logger (host), além de muitos outros.

9.3 Driver genérico USB

O pacote de aplicagdes em USB acompanha o Generic USB Driver, que é um conjunto
de bibliotecas para a implementacdao de um dispositivo genérico de comunicacdo com o PC
via USB. Contém funcdes de leitura, escrita, bem como a descricdo e configuracdo de um

dispositivo USB full-speed (12 Mbps).

9.4 Bootloader

Por definicdo, o bootloader é um programa com a funcdo de acessar a memoria de
programa e carregar a primeira instrugdo de execugdo na memodria. Nem sempre esse

programa é visivel; na maioria das vezes, ele é invisivel ao usuario.

Em microcontroladores, um bootloader é um programa, armazenado em parte da
memodria do MCU e que se comunica com um PC (via serial ou USB). O bootloader recebe o
programa do usuario através do PC e escreve-o na memoria FLASH do microcontrolador. O
programa pode, depois, ser executado normalmente. Bootloaders sé podem ser usados em
dispositivos capazes de escreverem em sua memodria FLASH através de software. Um
bootloader, propriamente, deve, no entanto, ser carregado no microcontrolador através de

um programador externo.

Para que o bootloader seja capaz de ser inicializado depois de cada reset, a instrucao
que chama essa parte do cédigo deve estar entre as 4 primeiras instru¢des do programa.
Ainda, o programa pode ser feito de modo a ter dois modos de operacdo: modo de

programacao, em que o bootloader é carregado (quando se pressiona um botdo, por

48

exemplo, durante a reinicializacdo), e o modo de execu¢cdo de programa, em que o

bootloader nao é carregado, e sim o cédigo principal do programa.

O Framework da Microchip oferece uma solucdo de bootloader via USB-HID, que
dispensa a utilizacdo de drivers especificos. Dessa forma, é bastante simples desenvolver
aplicagGes, uma vez que um programador externo s6 é necessario para a gravac¢do do

bootloader no microcontrolador.

49

10 EAGLE

10.1 Visao geral

EAGLE (Easily Applicable Graphical Layout Editor) é um software de projeto de placas
eletronicas, desenvolvido pela CadSoft, uma subsididria da Premier Farnell, que é um dos
lideres mundiais em distribuicdo de componentes eletrénicos, produtos e servicos
relacionados. O EAGLE pode ser classificado como um software ECAD (Electronic Computer-
Aided Design), pois utiliza recursos computacionais para auxiliar em projetos eletronicos.
Recursos CAM (Computer-Aided Manufacturing) também estdo presentes, tornando o
EAGLE um software completo para a criacdo de placas de circuito impresso, uma vez que ele
fornece recursos que auxiliam desde a concepcdo do esquematico até a construcao,
propriamente dita, da placa de circuito impresso. Estdo disponiveis versdes para Windows,

Linux e Mac OS X.

O EAGLE é composto basicamente por trés médulos:

e Editor de Layout: utilizado para projetar as placas de circuito impresso;
e Editor de Esquematico: utilizado para criar o esquematico do circuito;

e Autorouter: ferramenta que posiciona as trilhas na placa automaticamente;

Ambos os editores possuem o editor de biblioteca, o processador CAM, e podem
executar programas e scripts ULP (User Language Programs). O editor de biblioteca permite
a criacdo de novos componentes, definindo seu simbolo para esquematico e seu
encapsulamento para placa. A biblioteca de componentes que acompanha o software é
bastante completa, e componentes extras podem ser obtidos através da internet. O
processador CAM é responsavel por gerar os arquivos que sao usados na fabricacdo das
placas, como, por exemplo, o formato Gerber, que descreve as trilhas, as mascaras de solda,
entre outras coisas, ou o formato Excellon, que descreve os furos. Além das funcdes
presentes no proprio software, é possivel acrescentar funcionalidades através de programas

e scripts ULP.

50

Um recurso bastante interessante desse software é que ele mantém o esquematico e
a placa sincronizados, ou seja, modificacoes feitas no esquemdtico resultam,
automaticamente, em modificacdes na placa, e vice versa. Desse modo o esquematico e a

placa sempre estardo refletindo o mesmo circuito.

Na tela principal do software, chamada de Control Panel (painel de controle), é
possivel consultar e alterar as bibliotecas de componentes (Libraries) e os ULPs (User
Language Programs) que estao instalados. Nessa tela é possivel abrir ou criar novos

esquematicos, placas, ULPs, entre outros.

-
4 Control Panel - EAGLE 6.3.0 Light O | Bl bl
File View Options Window Help
-~
Mame Description Libraries
+ Libraries Libraries The component libraries supplied with EAGLE have been
» Design Rules Design Rules compiled with great care as an additional service to you,
- User Language Programs User Language Progr.. | O customer, However, the large number of available
- Seri S crint Fil components and suppliers of these components means
cripts cript Files that the occasional discrepancy is unavoidable. Please
> CAM Jobs CAM Processor Jobs note, therefore, that CadSoft takes no responsibility for
* Projects the complete accuracy of information induded in library
files.

Additional new libraries, that have not yet been offidally
released, can be found on CadSoft's internet site at the
download section of http:/ /www.cadsoftusa.com.

Use the ADD command in the Schematic Editor or Layout
Editor window to search for a certain device or package!

Information about defining your own libraries can be
found in the file library.bct in the doc directory.

Figura 18 - Control Panel, tela principal do software.

As telas do editor de esquematico e do editor de /ayout sao muito semelhantes, pois

a maioria das ferramentas é comum aos dois médulos.

[1 Schematic - C:\Program Files (x86)\EAGLE-6.3.0\untitled.sch - EAGLE 6.3.0 Light

=E)

File Edit

EHSE &y w

Draw View Tools Library Options Window Help

aRAaq

B 7

Sheets & X [0.1inch(3317) |

dgsugﬂ_‘k o

Figura 19: Editor de esquemdtico.

B 1 Board - C:\Program Files (x86)\EAGLE-6.3.0\untitled.brd - EAGLE 6.3.0 Light

P <)

File Edit

ed&EF & @

Draw View Tools Library Options

2 B RAAE

Window Help

B 7

- 0.05inch (3.853.60) |

!

=1
5

ON Aexndzee S X 70
R

i e

rt¢o
E

des PCE
%Igﬂﬂk lhouore

Figura 20: Editor de layout.

11 Desenvolvimento

11.1 Apresentacao

O dispositivo conta com os recursos de hardware listados a seguir:

e 16 1/0 digitais

e 8 ADC de 10 bits

e 1 saida PWM com resolugao de 10 bits

e 1 mddulo PWM half bridge com resolucdo de 10 bits

Na Figura 21 é indicada a disposi¢cdao dos recursos e principais componentes do

equipamento.

AYEYLID

Figura 21- Disposi¢@o dos principais recursos e componentes

52

53

1. Header para programacao in circuit
2. Botdo do modo bootloader

3. Entradas/saidas digitais DO— D7
4. Entradas/saidas digitais D8 — D15
5. vDD

6. Entrada USB tipo B

7. Led indicador de modo bootloader
8. VSS

9. Modulos PWM

10. Cristal 24 MHz

11. Saidas analdgicas ANO — ANO7

12. Microcontrolador PIC18F4550

13. MCLR (reset)

11.2 Motivagao

O primeiro prototipo foi construido em protoboard, sem que houvesse sido feito um

projeto do circuito a ser montado. Esse primeiro prototipo, criado essencialmente para

desenvolvimento da ideia e realizacdo de testes, foi exaustivamente submetido a provas.

Criado em 2009, partiu da necessidade de um equipamento que fosse a interface
entre o computador e o mundo fisico, inicialmente para a realizagdo de trabalhos propostos
pelas disciplinas que cursavamos. Buscamos solugGes comerciais, que verificamos serem
bastante dispendiosas e/ou com recursos muito além dos que necessitdvamos realmente
para tais aplicacdes. Como ja tinhamos algum conhecimento em desenvolvimento de Vis em
NI LabVIEW e programagao em C, come¢amos a buscar uma solugdo alternativa,

desenvolvendo nosso préprio equipamento, que fosse programado em C e utilizado através

da interface em NI LabVIEW.

54

Figura 22 - Foto do protdtipo.

Figura 23 - Foto do protdtipo.

55

Figura 24 - Foto do protdtipo.

O resultado foi o prototipo que veio sendo utilizado, desde entdo, no
desenvolvimento dos projetos de disciplinas como Problemas de Engenharia Mecatrénica,
Modelagem e Simulagdo de Sistemas Dindmicos, Sistemas de Controle, Elementos de
Automacgdo e Projetos de Sistemas Mecatrénicos, além de diversos projetos caseiros, como o
controle de mecanismo barra — bola com motor DC, leitura de encoder e controle de motor

de passo.

Dessa forma, o equipamento pdde evoluir até se tornar estavel e confiavel. Ao longo
do tempo, a comunicacado foi sendo alterada para se tornar mais eficiente, e os recursos

foram adicionados e também melhorados.

56

11.3 Hardware

O projeto do circuito foi desenvolvido, para viabilizar a montagem da placa que
acomodaria o circuito final. A Figura 24 mostra o circuito da forma como foi projetado e a

associacdo entre os componentes.

000000 — O
—0

:
i
o
o
060 1o

il

N
N
-

1=
J
|
— 1
]
——1—

Figura 25 - Esquemdtico do circuito eletrénico.

Definidos os componentes utilizados e suas respectivas relagdes, o desenvolvimento
da placa final do circuito se torna possivel. A lista completa de componentes utilizados é a

que segue.

e 1 xPlaca fenolite 15 x 20 cm

e 2 x Capacitor ceramico 22 pF

e 2 x Capacitor poliéster 0,1 uF

e 1 x Capacitor poliéster 0,47 uF

e 1 x Soquete padrdo DIP 40 pinos
e 1 x Microcontrolador PIC18F4550
e 1 x Header de 6 pinos

e 1xJumper sem aba

e 1 xLed difuso 5mm cor verde

e 1 xCristal 24 MHz

57

e 2 xResistor 1 k()

e 1 xResistor330 Q)

e 2 x Chave tactil 4 terminais 5 mm
e 1 x Conector USB-B fémea

e 12 x Borne KRE 2 terminais 5 mm

e 3 x Borne KRE 3 terminais 5 mm

A partir da lista de pecas e feito o esquematico do projeto, é possivel criar o modelo
da placa final, entdo. A Figura 25 e Figura 26 mostram o desenho esquematico da placa, com

e sem a indicacdo dos componentes.

Figura 26 - Desenho esquemadtico da placa, com indicagdo dos componentes.

58

Figura 27 - Desenho esquemadtico da placa, somente com marcagdes de furos, ilhas e trilhas.

O trabalho de confecgao da placa de circuito foi documentado em imagens, e seguem

com as respectivas indicacdes das etapas de montagem.

59

Ny

\
[

=
RO

[

==

@

Figura 28 - Imagem da placa impressa em papel transfer.

Depois de impressa em papel apropriado, a imagem é fixada sobre a placa (segundo a
orientacdo da camada, top ou bottom) e é prensada em alta temperatura. Dessa forma, o
toner impregnado no papel é transferido para a placa de cobre previamente limpa e lixada,
marcando as trilhas, ilhas e indicacdes de furos sobre o cobre. Para esta operacdo, a prensa

operou por 2 minutos a uma temperatura de 50 °C.

Apods essa operacao, a placa é imersa em solucdo de percloreto de ferro, que corroi o
cobre das areas onde nao ha toner. Apds cerca de 40 minutos, a placa é retirada e limpa,

com solvente capaz de eliminar o toner de sua superficie.

60

Figura 30 - Placa apds a limpeza do toner.

Na sequéncia, procede a furagdo da placa nos pontos que receberdo os terminais dos

componentes ou acessorios de fixacdo ou apoio.

61

Figura 31 - Furagdo.

Finalmente, os componentes sdo montados em suas respectivas posi¢cdes e soldados.

Figura 32 - Montagem.

Figura 33 - Placa finalizada.

Figura 34 — Placa finalizada.

62

63

Figura 35 - Placa finalizada.

11.4 Protocolo

Fazendo uso da Microchip Framework, é possivel estabelecer um canal de troca de
dados entre um programa sendo executado no computador e um programa sendo
executado no microcontrolador. Para que esses dados tenham sentido é necessario definir
um protocolo de comunicacdo, que especifique como as informac¢bes de interesse serdao

enviadas e recebidas.

Tendo em mente que esse protocolo interliga dois sistemas com velocidades de
processamento que sdo bastante diferentes, é légico fazer com que a maior parte do
processamento seja feito no sistema mais rapido, quando possivel. Para tanto, o protocolo

deve ser simples do ponto de vista do microcontrolador.

O protocolo se resume, basicamente, a troca de valores digitais e analdgicos entre o
computador e o microcontrolador. O computador deve enviar ao microcontrolador a
configuracdo desejada para o sistema: quais portas serdo entradas digitais, quais serao
saidas digitais, quantas portas analdgicas serdo utilizadas, qual o tempo de aquisicdo para
cada porta analdgica, e a frequéncia do PWM. O computador também deve enviar o estado

desejado para as saidas digitais, que pode ser nivel alto ou baixo, e o duty cycle de cada

64

saida PWM. O microcontrolador, por sua vez, responde com o estado das entradas digitais, e

os valores convertidos das entradas analdgicas.

O tamanho do endpoint 1, que é o endpoint usado para a comunicacdo com o
dispositivo, € o maior numero de bytes que podem ser enviados ou recebidos durante uma
transacdo. O ideal é que cada comando seja enviado ou recebido em apenas uma transacgao,

a fim de obter maiores velocidades de comunicacao.

O resultado é um protocolo simples, que atende aos requisitos acima, e é composto
por apenas quatro comandos. A comunicacdo entre o computador e o microcontrolador é
sempre iniciada pelo computador: os comandos enviados pelo microcontrolador sao
respostas aos comandos enviados pelo computador. Assim, dois dos comandos sao enviados
do computador para o microcontrolador, e os outros dois sdao as respostas enviadas pelo
microcontrolador para o computador. Os dados nos comandos estdo, sempre que possivel,
em formatos que sdo diretamente compativeis com os registradores especiais do
microcontrolador, de modo que necessitem de pouco ou nenhum tratamento por parte do

microcontrolador. Os comandos sdo identificados pelo primeiro byte.

O primeiro comando, responsavel por configurar o dispositivo, € composto por:

e |dentificacdo do comando (valor 255)

e Direcdaodas portas A, B, C, D

e Numero de entradas analdgicas

e Tempo de aquisicdo de cada porta analdgica
e Prescaler do Timer2

e Periodo do Timer2

A direcdo das portas é enviada num formato que é compativel diretamente com os
registradores do microcontrolador. O Unico tratamento necessdrio é limitar quais bits
podem ser afetados, pois nem todas as portas do microcontrolador serdo usadas como
entradas e saidas digitais: as entradas analégicas devem ser configuradas como entradas, e
as saidas de PWM devem ser configuradas como saidas. Como a placa identifica as portas
digitais por Dn, o computador é responsavel por converter essa numeracao logica na posicao

fisica de cada porta.

65

O numero de entradas analdgicas indica quais portas terdo os seus valores analdgicos
convertidos e enviados ao computador. Pode variar de 0, onde nenhuma porta terd seu
valor convertido, até 8, onde todas as portas serdo convertidas. As portas a serem
convertidas sao de ANO até AN(n-1), onde n é o numero de portas analdgicas. Por exemplo,

se o valor passado for 3, as portas ANO, AN1 e AN2 serdo habilitadas.

O tempo de aquisicdao especifica quanto tempo o circuito de amostragem & hold
ficard conectado a entrada analdgica antes de realizar a conversdo, para cada entrada. O
valor é especificado no formato do registrador que controla o tempo de aquisicdo, e é

definido em fun¢do do clock do conversor.

O valor do prescaler do Timer2 define um divisor para o clock que entra no circuito

do timer, podendo ser 1, 4 ou 16. Logo, o clock do timer pode ser Folsc, Fosc

F,
ou —25¢ onde
4 16

F,sc € o clock do microcontrolador. Também em um formato compativel com o respectivo

registrador.

O periodo do Timer2 controla qual o periodo do timer, ou seja, até qual valor o timer
irda contar antes de retornar a 0. Este valor, junto com o prescaler, determina qual sera a

frequéncia das saidas PWM.

Apos receber este comando e fazer as configuragdes necessarias, o microcontrolador

responde com um comando que tem apenas:
e |dentificacdo do comando (valor 255)

Esta resposta serve para o computador verificar se o microcontrolador recebeu o

comando e se a comunicagdo estd ocorrendo normalmente.

O segundo comando é responsavel por enviar os niveis desejados das saidas digitais e

o duty cycle de cada saida PWM. Os valores transmitidos sao:

e |dentificacdo do comando (valor 0)
e Saida das portas A, B, C, D
e Duty cycle doPWM 1le 2

As saidas digitais sdo transferidas em um formato compativel diretamente com os

registradores do microcontrolador, assim como foram transferidas as dire¢des das portas.

66

Novamente, o microcontrolador limita os bits que podem ser alterados a apenas os
que correspondem as portas digitais usadas. As portas que estdo configuradas como
entradas digitais ndo sofrem efeito algum. O computador é responsavel por converter a

posicdo fisica das portas para a numeracao ldgica usada pelo projeto.

O duty cycle de cada saida PWM é transmitido no formato esperado pelos

registradores do microcontrolador, que é calculado pelo computador.

Apds receber esse comando o microcontrolador altera os valores das saidas de
acordo com os valores recebidos, e em seguida faz a leitura das entradas digitais e

analdgicas, enviando para o computador um comando de resposta com os seguintes valores:

e |dentificacdo do comando (valor 0)
e Entrada das portas A, B, C, D

e Entradas analégicas ANO-AN8

As entradas digitais sdo especificadas diretamente no formato lido dos registradores
do microcontrolador. O computador é responsavel por traduzir a posicdo fisica das entradas
na posicao légica, Dn, usada pelo trabalho. Os valores apenas terdo sentido para as portas

configuradas como entradas digitais.

As entradas analégicas apenas terao valores significativos para aquelas que foram
habilitadas previamente com o comando de configuragdo. As outras terdo valores quaisquer.

O valor retornado é o valor lido diretamente do conversor analdgico digital.

Portanto, esses quatro comandos simples sdo suficientes para realizar todas as
operacles necessarias para o correto funcionamento do dispositivo sendo projetado. A
maior parte do processamento é feito no computador, enviando valores calculados para o

microcontrolador, que por sua vez apenas 0s escreve nos respectivos registradores.

11.5 Software

A solucdo de software para o projeto é composta por duas partes: o driver e as
bibliotecas que sdo executados no computador, e o firmware que é executado no

microcontrolador. Ambos implementam o protocolo discutido anteriormente, de modo que

67

a comunicacdo possa ser feita. Os VIs do LabVIEW, por sua vez, sdo implementados usando a
biblioteca criada em C, fazendo a adaptacdo das funcdes para funcionamento no LabVIEW. A
decisdo de implementar o protocolo em uma biblioteca feita em C permite que a placa seja
utilizada em outras linguagens, como C/C++ ou MATLAB, apenas utilizando as fungdes

exportadas pela biblioteca, embora esse ndo seja o objetivo do trabalho.

Para estabelecer um canal de comunicagdo entre o computador e o microcontrolador
foi utilizada a USB Framework, fornecida, gratuitamente, pela Microchip no seu pacote
Microchip Libraries for Applications, disponivel para download em seu site. No pacote esta
incluido o USB HID Bootloader, que permite programar o microcontrolador de maneira
simples, através da propria porta USB, facilitando bastante o desenvolvimento e,

posteriormente, a atualizacdo do firmware.

Incluido na Framework estd o cédigo para o microcontrolador que implementa um
dispositivo USB genérico, ou seja, que precisa de um driver especifico para o seu correto
funcionamento. O driver é fornecido junto ao pacote, bem como uma biblioteca que se
comunica com o driver. Esses componentes criam um canal de troca de dados genéricos
entre o microcontrolador e um programa fazendo uso da biblioteca. Esse canal sera usado

para implementar o protocolo definido para o projeto.

11.6 Biblioteca

A biblioteca em C que implementa o protocolo foi desenvolvida utilizando a
linguagem C, no ambiente de desenvolvimento da Microsoft, o Visual Studio 2010, e foi
chamada de DAQ. Ela utiliza as fun¢des da biblioteca fornecida pela Microchip para se

comunicar com o microcontrolador. Ela exporta as seguintes fungdes:

e daq_open_device — usada para criar uma conexao com o dispositivo;

e daq_close_device — fecha a conexdo criada pelo daq_open_device;

e daq_configure — configura os parametros do dispositivo: direcdo das portas digitais,
nuimero de portas analdgicas, tempo de aquisicdo das portas analégicas, e frequéncia
do PWM;

e daq_write_digital — define o estado de uma saida digital;

68

e daq_read_digital — faz a leitura de uma entrada digital;

e daq_read_analog — |é o valor de uma entrada analdgica;

e daq_set duty cycle — define o duty cycle de uma saida PWM,;

e daq_update — faz a comunicacdo com o microcontrolador: envia os valores a serem

definidos e recebe os valores a serem lidos;

As funcGes que interagem com o dispositivo ndo se comunicam imediatamente com
0 mesmo: quando é definido o estado de uma saida digital ou o duty cycle de um PWM, ou
quando é lido o valor de uma entrada digital ou analégica, os valores sdo escritos e lidos em
uma estrutura interna. Quando é chamada a fungdo que faz a comunicagdo com o
microcontrolador os valores que devem ser escritos sdo enviados e os valores a serem lidos
sao recebidos e armazenados na estrutura interna, para serem lidos posteriormente, pelas
respectivas fungbes. Esse agrupamento dos dados em um Unico comando permite alcangar

maiores velocidades de comunicacgdo.
Segue abaixo o cédigo da biblioteca desenvolvida:

daqg.c—codigoda biblioteca

#include <stdio.h>

#include <stdint.h>

#define WIN32_LEAN_AND_MEAN
#include <Windows.h>

#include "daqg.h"

JERFEEE KRRk Rk Dafinicdes do MCHPUSB *¥kskkkskskkkoskkkskkk /

/* Resultado de uma operagao */
#define MPUSB_FAIL @ /* Falha */
#define MPUSB_SUCCESS 1 /* Sucesso */

/* Direc¢do do endpoint */
#define MP_WRITE © /* Escrita */
#tdefine MP_READ 1 /* Leitura */

/* Numero maximo de dispositivos */
#define MAX_NUM_MPUSB_DEV 127

/* Retorna o numero de dispositivos com o VID e PID especificados */
DWORD (*MPUSBGetDeviceCount)(PCHAR pVID PID);

/* Abre um endpoint no dispositivo */
HANDLE (*MPUSBOpen) (DWORD instance, /* Numero de instancia do dispositivo */
PCHAR pVID_PID, /* VID e PID do dispositivo (exemplo:
"vid_04d8&pid_00eb") */
PCHAR pEP, /* Endpoint (exemplo: "\\MCHP_EP1") */
DWORD dwDir, /* Dire¢do do endpoint (MP_READ ou MP_WRITE) */
DWORD dwReserved); /* Reservado */

/* Le de um endpoint */

69

DWORD (*MPUSBRead) (HANDLE handle, /* Handle que identifica o endpoint */
PVOID pData, /* Ponteiro para meméria que ird receber os
dados */
DWORD dwLen, /* Nimero de caracteres a serem lidos */
PDWORD pLength, /* Ponteiro para variavel que armazena o

numero de caracteres lidos */

DWORD dwMilliseconds); /* Time-out em mili segundos, ou INFINITE */

DWORD (*MPUSBWrite)(HANDLE handle, /* Handle que identifica o endpoint */
PVOID pData, /* Ponteiro para memdoria que contém os
dados a serem escritos */
DWORD dwLen, /* Numero de caracteres a serem escritos */
PDWORD pLength, /* Ponteiro para variavel que recebe o

numero de caracteres escritos */

DWORD dwMilliseconds); /* Time-out em mili segundos, ou INFINITE

*/

/* Fecha um endpoint */
BOOL (*MPUSBClose)(HANDLE handle);

/****************** Comandos PIC18 ******************/

#tpragma pack(push)
#tpragma pack(1)

#define CMD_OUT_CONFIGURE OxFF
struct cmd_out_configure_t

{
uint8_t command; /* CMD_OUT_CONFIGURE */

uint8 t tris[4]; /* TRISA, TRISB, TRISC, TRISD */
uint8_t an_count; /* Numero de entradas analdgicas */
uint8_t adcon2; /* ADCON2[ACQT2:ACQTO] */
uint8_t t2con; /* T2CON[T2CKPS1:T2CKPS@] */
uint8_t pr2; /* PR2 */

¥

#define CMD_IN_CONFIGURE OxFF
struct cmd_in_configure_t

{
1

#tdefine CMD_OUT_SET ©x00
struct cmd_out_set_t

{

uint8_t command; /* CMD_IN_CONFIGURE */

uint8_t command; /* CMD_OUT_SET */
uint8_t lat[4]; /* LATA, LATB, LATC, LATD */
uint8_t ccplcon; /* CCP1CON */
uint8_t ccprll; /* CCPR1L[DC1B1:DC1BO] */
uint8_t ccp2con; /* CCP2CON */
uint8_t ccpr2l; /* CCPR2L[DC2B1:DC2BO] */

¥

#define CMD_IN_GET 0x00
struct cmd_in_get_t
{
uint8_t command; /* CMD_IN_GET */
uint8 t port[4]; /* PORTA, PORTB, PORTC, PORTD */

uintl6_t an[8]; /* AN@, AN1, AN2, AN3, AN4, AN5, AN6, AN7 */

1

#tpragma pack(pop)

/****************** Dados inter\nos ******************/

/* Estado interno do DAQ */

struct daq_internal_t

{
HANDLE endpoint_in;
HANDLE endpoint_out;
int digital_in[16];
int digital_out[16];
int analog[8];
int duty_cycle[2];
int pr2;

}s

/* Identifica uma porta do PIC18 */

typedef struct

{
int port; /* ©=PORTA, 1=PORTB, 2=PORTC, 3=PORTD */
int bit; /* Numero do bit */

} port_bit_t;

#tdefine PORT_A ©
#tdefine PORT_B 1
#define PORT_C 2

3

#define PORT_D

/* Tabela para conversao entre Dx e portas do PIC18 */
static const port_bit_t port_bit_shuffle[] = {

{ PORT.D, 7 }, /* Do */
{ PORT.B, @ }, /* D1 */
{ PORT.B, 1}, /* D2 */
{ PORT.B, 2 }, /* D3 */
{ PORT B, 3 }, /* D4 */
{ PORT.B, 5 }, /* D5 */
{ PORT.B, 6 }, /* D6 */
{ PORT.B, 7 }, /* D7 */
{ PORT_A, 4 }, /* D8 */
{ PORT.C, @ }, /* D9 */
{ PORT D, 2 }, /* D10 */
{ PORT.D, 3 }, /* D11 */
{ PORT.C, 6 }, /* D12 */
{ PORT.C, 7 }, /* D13 */
{ PORT D, 4 }, /* D14 */
{ PORT.D, 6 }, /* D15 */

}s

/* Relaciona o tempo de aquisi¢ao com os valores do registrador ADCON2 */
typedef struct
{

int time; /* micro segundos */

uint8_t adcon2; /* ADCON2 */
} acquisition_time_t;
#tdefine SAMPLE_TIME_COUNT (sizeof(sample_time)/sizeof(sample_time[0]))
static const acquisition_time_t sample_time[] = {

{ 2, (1 <<3)}, /* 2,667us */

{ 5, (2 < 3) }, /* 5,333us */

{ 8, (3« 3)1}, /* 8,000us */

{10, (4 << 3) }, /* 10,667us */

{ 16, (5 << 3) }, /* 16,000us */

71

{ 21, (6 << 3) }, /* 21,333us */
{ 26, (7 << 3) }, /* 26,667us */

1

/****************** Funcaes inter\nas ******************/

/* Tenta abrir o endpoint 1 para leitura e escrita */
static BOOL try_open_device(daq_handle_t handle, int vendor_id, int product_id)
{
CHAR vid_pid[] = "vid_oeee&pid 0000";
DWORD device_count;
DWORD 1i;
sprintf_s(vid_pid, sizeof(vid_pid), "vid_%04x&pid %04x", (vendor_id & oxffff),
(product_id & oxffff));
device_count = MPUSBGetDeviceCount(vid_pid);
if (device_count > @)
{
for (i = @; i < MAX_NUM MPUSB_DEV; ++i)
{
handle->endpoint_in = MPUSBOpen(i, vid_pid, "\\MCHP_EP1", MP_READ,
0);
handle->endpoint_out = MPUSBOpen(i, vid_pid, "\\MCHP_EP1",
MP_WRITE, 0);
if ((handle->endpoint_in != INVALID_HANDLE_VALUE) && (handle-
>endpoint_out != INVALID HANDLE_VALUE))

{
return TRUE;

if (handle->endpoint_in != INVALID HANDLE_VALUE)

MPUSBClose(handle->endpoint_in);

}
if (handle->endpoint_out != INVALID HANDLE_VALUE)
{
MPUSBClose(handle->endpoint_out);
}

}
}
return FALSE;
}

/* Carrega a DLL da Microchip e encontra o endere¢o das fun¢des usadas */
static BOOL load_mchpusb()
{

HMODULE hModule;

hModule = LoadlLibrary("MPUSBAPI.d11");

if (hModule == NULL)

{

}
MPUSBGetDeviceCount = (DWORD (*)(PCHAR))GetProcAddress(hModule,

"_MPUSBGetDeviceCount");

MPUSBOpen = (HANDLE (*)(DWORD,PCHAR,PCHAR,DWORD,DWORD))GetProcAddress(hModule,
" MPUSBOpen");

MPUSBRead = (DWORD (*)(HANDLE,PVOID,DWORD,PDWORD,DWORD))GetProcAddress(hModule,
" MPUSBRead");

MPUSBWrite
" MPUSBWrite");

MPUSBClose = (BOOL (*)(HANDLE))GetProcAddress(hModule, " MPUSBClose");

if ((MPUSBGetDeviceCount == NULL) || (MPUSBOpen == NULL) || (MPUSBRead == NULL)
|| (MPUSBWrite == NULL)|| (MPUSBClose == NULL))

{

return FALSE;

(DWORD (*) (HANDLE , PVOID,DWORD, PDWORD, DWORD)) GetProcAddress (hModule,

return FALSE;

}
return TRUE;

}

/****************** Funcaes expor\tadas ******************/

daq_handle_t daq_open_device(int vendor_id, int product_id)
{

dag_handle_t handle;

handle = (daq_handle_t)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY,
sizeof(struct daq_internal_t));

if (handle != NULL)

{
if (try_open_device(handle, vendor_id, product_id))
return handle;
¥
HeapFree(GetProcessHeap(), ©, handle);
}
return NULL;
}
void dag_close_device(dag_handle_t handle)
{
MPUSBClose(handle->endpoint_in);
MPUSBClose(handle->endpoint_out);
HeapFree(GetProcessHeap(), 0, handle);
}

int daq_configure(daq_handle_t handle, int digital direction, int analog count, int
analog sample_time, int pwm_frequency)
{

struct cmd_out_configure_t configure;

struct cmd_in_configure_t reply;

int i;

int t2ckps;

int pr2;

DWORD length;

configure.command = CMD_OUT_CONFIGURE;

configure.tris[PORT_A] = 0x00;
configure.tris[PORT_B] = 0x00;
configure.tris[PORT_C] = 0x00;

configure.tris[PORT_D] = 0x00;
for (i = 0; i < 16; ++i)
{
if (digital_direction & (1 << i))

configure.tris[port_bit_shuffle[i].port] |= (1 <<
port_bit_shuffle[i].bit);

}

configure.an_count = max(min(analog_count, 8), 0);
for (1 = @; 1 < (SAMPLE_TIME_COUNT - 1); ++i)

{
if (sample_time[i].time >= analog_sample_time)
{
break;
}
}

configure.adcon2 = sample_time[i].adcon2;
t2ckps = 1;

72

for (i =0; i < 3; ++1)

{
pr2 = (48000000 / 4 / max(pwm_frequency, 1) / t2ckps);
if (pr2 < 256)
break;
}
t2ckps *= 4;
}

configure.t2con = i;

configure.pr2 = handle->pr2 = max(min(pr2, 255), 0);

if (MPUSBWrite(handle->endpoint_out, &configure, sizeof(struct
cmd_out_configure_t), &length, 1000) == MPUSB_FAIL)

{
return 0;
b
if (length != sizeof(struct cmd_out_configure t))
{
return 0;
}

if (MPUSBRead(handle->endpoint_in, &reply, sizeof(reply), &length, 1000) ==
MPUSB_FAIL)

{
return 0;
if ((length != sizeof(struct cmd_in_configure_t)) || (reply.command !=
CMD_IN CONFIGURE))
{
return 0;
}
return 1;

}

void dag_write_digital(daq_handle_t handle, int channel, int state)

if ((channel >= @) && (channel < 16))

{
handle->digital out[channel] = state;
}
}
int daqg_read_digital(daq_handle_t handle, int channel)
{
if ((channel >= @) && (channel < 16))
{
return handle->digital_in[channel];
}
else
{
return 0;
}
}

int dag_read_analog(daq_handle_t handle, int channel)

if ((channel >= @) && (channel < 8))
{

}

else

{

return handle->analog[channel];

return 0;

73

74

}

void dag_set_duty cycle(daq_handle_t handle, int channel, int duty_cycle)

{
if ((channel >= 1) && (channel <= 2))

handle->duty_cycle[channel - 1] = min(max(duty cycle, 0), 100);

}
int daq_update(dag_handle_t handle)

struct cmd_out_set_t set;
int i;
DWORD length;
uint8_t buffer[64];
struct cmd_in_get_t* get = (struct cmd_in_get t*)buffer;
int duty;
set.command = CMD_OUT_SET;
set.lat[PORT_A] = 0x00;
set.lat[PORT_B] = 0x00;
set.lat[PORT_C] = 0x00;
[]
= <

set.lat[PORT_D 0x00;
0; 16; ++1i)

-

for (i

{
if (handle->digital out[i])

{
set.lat[port_bit_shuffle[i].port] |= (1 <<
port_bit_shuffle[i].bit);

¥

duty = 4 * (handle->pr2 + 1) * handle->duty_cycle[@] / 100;

duty = min(duty, 1023);

set.ccplcon = ((duty & 0x03) << 4);

set.ccprll = (duty >> 2);

duty = 4 * (handle->pr2 + 1) * handle->duty_cycle[1] / 1090;

duty = min(duty, 1023);

set.ccp2con = ((duty & Ox03) << 4);

set.ccpr2l = (duty >> 2);

if (MPUSBWrite(handle->endpoint_out, &set, sizeof(struct cmd_out_set_t),
&length, 1000) == MPUSB_FAIL)

{

return 0;

if (length != sizeof(struct cmd_out_set_t))
{

}
if (MPUSBRead(handle->endpoint_in, buffer, sizeof(buffer), &length, 1000) ==

MPUSB_FAIL)

return 0;

{
return 0;

}

if ((length != sizeof(struct cmd_in_get t)) || (get->command != CMD_IN_GET))
return 0;

}

for (i = 0; i < 16; ++i)

{
handle->digital_in[i] = !!(get->port[port_bit_shuffle[i].port] & (1 <<

port_bit_shuffle[i].bit));

75

}
for (1 =0; 1 < 8; ++1)

{
}

return 1;

handle->analog[i] = get->an[i];

}

/* Fun¢ao chamada quando a DLL é carregada */
BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpvReserved)
{

switch (fdwReason)

{

case DLL_PROCESS_ATTACH:
if (load_mchpusb() == FALSE)
{

}

break;

case DLL_PROCESS_DETACH:
break;

case DLL_THREAD_ATTACH:
break;

case DLL_THREAD_DETACH:
break;

}

return TRUE;

return FALSE;

dag.h— cabecalho coma declaragdo das fungdes

#pragma once

struct daq_internal_t;
typedef struct dag_internal_t* daq_handle_t;

* Abre o DAQ
* vendor_id - VID do dispositivo
* product_id - PID do dispositivo
* retorna - ponteiro para o handle do dispositivo, ou NULL em caso de falha
*/
dag_handle_t daq_open_device(int vendor_id, int product_id);

/*
* Fecha o DAQ
* handle - ponteiro para o handle do dispositivo
*/

void dag_close_device(daq_handle_t handle);

/*

* Configura as entradas e saidas do DAQ

* handle - ponteiro para o handle do dispositivo

* digital direction - bitmask com a dire¢do das portas digitais (@=Output, 1=Input),
DO no bit @, D1 no bit 1, e assim por diante

* analog_count - numero de entradas analdgicas usadas (de © a 8)

* analog_sample_time - tempo minimo de amostragem, em micro segundos (valor real serd
maior ou igual a esse valor)

* pwm_frequency - frequéncia do PWM em hertz (valor real sera bastante proéximo, com a
maior resolu¢do possivel)

* retorna - ©=falha, 1=sucesso

*/

int dag_configure(daq_handle_t handle, int digital direction, int analog_count, int
analog_sample_time, int pwm_frequency);

* Escreve em uma saida digital
* handle - ponteiro para o handle do dispositivo
* channel - ndmero da saida digital (de @ a 15)
* state - ©@=nivel baixo, 1l=nivel alto
*/
void daq_write_digital(daq_handle_t handle, int channel, int state);

/*
* Lé uma entrada digital
* handle - ponteiro para o handle do dispositivo
* channel - nimero da entrada digital (de @ a 15)
*/
int daq_read_digital(daq_handle_t handle, int channel);

/*
* Lé uma entrada analdgica
* handle - ponteiro para o handle do dispositivo
* channel - numero da entrada analégica (de © a 7)
*/
int dag_read_analog(dag_handle_t handle, int channel);

* Altera o duty cycle do PWM
* handle - ponteiro para o handle do dispositivo
* channel - numero do canal de PWM (1 ou 2)
* duty cycle - duty cycle em porcentagem (de © a 100)
*/
void dag_set_duty cycle(daq_handle_t handle, int channel, int duty_cycle);

/*

* Faz a comunicacdao com o microcontrolador, escrevevendo as saidas e lendo as
entradas

* handle - ponteiro para o handle do dispositivo

* retorna - ©=falha, 1=sucesso

*/

int dag_update(daq_handle_t handle);

daqg.def—arquivo que listaasfung¢des a serem exportadas

EXPORTS
daqg_open_device
daq_close_device
daq_configure
dag_write_digital
daqg_read_digital
daqg_read_analog
daqg_set_duty_cycle
daqg_update

76

77

11.7 Firmware

O cddigo do microcontrolador implementa o protocolo usando a Framework USB da
Microchip. Para ser compilado é necessario incluir a pasta onde se encontram os cédigos
que serdo apresentados aqui, e também a pasta Microchip\Include, nos Include directories
do compilador C18. Também é necessario compilar o arquivo Microchip\USB\usb_device.c
junto com outros codigos. Os arquivos e pastas extras citados sdo obtidos através da

Microchip Application Libraries.

Os coddigos do firmware desenvolvido para o microcontrolador PIC18F4550 sdo

apresentados abaixo:

main.c — define a fungao principal e os vetores de interrupgao

#include <p18f4550.h>
#include "fw_daqg.h"

#pragma code

void main(void)

{
dag_init();
while(1)
daq_loop();
}
}

#pragma interrupt high_isr
void high_isr()
{

}

#pragma interruptlow low_isr
void low_isr()

{
}

#tdefine USE_HID_BOOTLOADER

dag_high_isr();

dag_low_isr();

#ifdef USE_HID_BOOTLOADER

#tdefine HI_INT_ADDR ©x1008
#tdefine LO_INT_ADDR ©x1018

extern void _startup(void);
#pragma code RESET = 0x1000
void _reset (void)

{
}

_asm goto _startup _endasm

#telse /* USE_HID_BOOTLOADER */

#define HI_INT_ADDR 0x0008
#define LO_INT_ADDR 0x0018

#tendif /* USE_HID_BOOTLOADER */

#pragma code HI_INT = HI_INT_ADDR
void hi_int_goto (void)

{

¥
#pragma code LO_INT = LO_INT_ADDR

void lo_int_goto (void)

{
}

_asm goto high_isr _endasm

_asm goto low_isr _endasm

usb_descriptors.c—contém os descritores USB do dispositivo

#include "USB/usb.h"
#pragma romdata

/* Device descriptor */
ROM USB_DEVICE_DESCRIPTOR device dsc = {

ox12, /* Tamanho em bytes */
USB_DESCRIPTOR_DEVICE, /* Tipo */

0x0200, /* Versao do USB */

ox00, /* Classe */

0x00, /* Subclasse */

ox00, /* Protocolo */
USB_EP@_BUFF_SIZE, /* Tamanho do endpoint @ */
0x04D8, /* VID */

0x000C, /* PID */

0x0000, /* Relase number */

ox01, /* String do fabricante */
0x02, /* String do produto */
0x00, /* String de serial */

ox01 /* Numero de configuragbes */

1

/* Configuration descriptor 1 */
ROM BYTE configDescriptorl[] = {
/* Configuration descriptor */

0x09, /* Tamanho em bytes */
USB_DESCRIPTOR_CONFIGURATION, /* Tipo */

0x20,0x00, /* Tamanho total da configuration */

1, /* Numero de interfaces */

1, /* Numero dessa configuration */

9, /* String que identifica essa configuration */
_DEFAULT | _SELF, /* Atributos, ver usb_device.h */

50, /* Consumo maximo (2x mA) */

/* Interface descriptor */

0x09, /* Tamanho em bytes */

USB_DESCRIPTOR_INTERFACE, /* Tipo */

9, /* Numero dessa interface */

9, /* Numero dessa interface entre as alternativas */

2, /* Numero de endpoints */

OxFF, /* Classe */

OxFF, /* Subclasse */
OxFF, /* Protocolo */
9, /* String que identifica essa interface */

/* Endpoint descriptors */

0x07, /* Tamanho em bytes */
USB_DESCRIPTOR_ENDPOINT, /* Tipo */

_EPO1_OUT, /* Endereco */

_BULK, /* Atributos */
USBGEN_EP_SIZE,0x00, /* Tamanho */

1, /* Intervalo */

ox07, /* Tamanho em bytes */
USB_DESCRIPTOR_ENDPOINT, /* Tipo */

_EPO1_1IN, /* Endereco */

_BULK, /* Atributos */
USBGEN_EP_SIZE,0x00, /* Tamanho */

1 /* Intervalo */

}s

/* String descriptor (language code) */
ROM struct {

BYTE bLength;

BYTE bDscType;

WORD string[1];

} sdeeo = {
sizeof(sdoeo), /* Tamanho */
USB_DESCRIPTOR_STRING, /* Tipo */
{ ox0409 } /* Linguas*/

.
B

/* String do fabricante */
ROM struct {
BYTE bLength;
BYTE bDscType;
WORD string[25];
} sdeel = {
sizeof(sdeol), /* Tamanho */
USB_DESCRIPTOR_STRING, /* Tipo */
/* String */
{ IMI) 'i', ICIJ 'r"} IOI) 'C'} lhl} Ii', lpIJ ' '
ITI) 'e', ICIJ 'h'} 'n', 'O'} lll} IO', lglJ 'y
III) 'n') ICIJ

1

/* String do produto */
ROM struct {
BYTE blLength;
BYTE bDscType;
WORD string[27];
} sdee2 = {
sizeof(sdee2), /* Tamanho */
USB_DESCRIPTOR_STRING, /* Tipo */
/* String */

{ IMIJ 'i', ICI, r\, |0|J 'C', lhl, Ii', Ip, s
c) u) SJ t) o) m) B
U k) S) B B) D k) e) \) 1) C B e }

}s

/* Vetor com os Configuration descriptors */
ROM BYTE* ROM USB_CD Ptr[] = {

80

(ROM BYTE *ROM)&configDescriptorl
}s

/* Vetor com os String descriptors */
ROM BYTE* ROM USB_SD Ptr[] = {

(ROM BYTE *ROM)&sdeoe,

(ROM BYTE *ROM)&sdoe1,

(ROM BYTE *ROM)&sd0@2

}s

usb_config.h —configura os parametros da Framework USB

#ifndef USBCFG_H
#define USBCFG_H

/* Definicdes */

#define USB_EP@ BUFF_SIZE 8 /* Tamanho do endpoint @ */
#define USB_MAX _NUM_INT 1 /* Numero maximo de interfaces */
#define USB_MAX_EP_NUMBER 1 /* Maior numero de endpoint usado */

/* Device descriptor */
#define USB_USER_DEVICE_DESCRIPTOR &device_dsc
#define USB_USER_DEVICE_DESCRIPTOR_INCLUDE extern ROM USB_DEVICE_DESCRIPTOR device dsc

/* Configuration descriptor */
#define USB_USER_CONFIG_DESCRIPTOR USB_CD_Ptr
#define USB_USER_CONFIG_DESCRIPTOR_INCLUDE extern ROM BYTE *ROM USB_CD_Ptr[]

/* Opg¢des do driver */

#tdefine USB_POLLING

#define USB_PING_PONG_MODE USB_PING_PONG__FULL_PING_PONG
#define USB_PULLUP_OPTION USB_PULLUP_ENABLE

#define USB_TRANSCEIVER_OPTION USB_INTERNAL_TRANSCEIVER
#define USB_SPEED OPTION USB_FULL_SPEED

#define USB_ENABLE_STATUS_STAGE_TIMEOUTS
#define USB_STATUS_STAGE_TIMEOUT (BYTE)45

#define USB_SUPPORT DEVICE

#define USB_NUM_STRING_DESCRIPTORS 3

#define USB_ENABLE_SUSPEND_HANDLER

#define USB_ENABLE_WAKEUP_FROM_SUSPEND_HANDLER
#define USB_ENABLE_INIT_ EP_HANDLER

#define USB_USE_GEN

#define USBGEN_EP_SIZE 64

#define USBGEN_EP_NUM 1

#tendif /* USBCFG_H */

HardwareProfile.h —parametros extras da Framework USB, relacionados ao hardware

#ifndef HARDWARE_PROFILE_H
#define HARDWARE_PROFILE_H

#tdefine self_power 1
#define USB_BUS_SENSE 1

#tendif /* HARDWARE_PROFILE_H */

fw_dag.c—implementa o protocolo

#include <p18f4550.h>
#include "USB/usb.h"

#include "USB/usb_function_generic.

#include "HardwareProfile.h"

typedef unsigned char uint8_t;
typedef unsigned short uintl6_t;

#define CMD_IN_CONFIGURE Oxff
struct cmd_in_configure_t
{
uint8_t command;
uint8_t trisa;
uint8_t trisb;
uint8_t trisc;
uint8_t trisd;
uint8_t an_count;
uint8_t adcon2;
uint8_t t2con;
uint8_t pr2;
}s

#define CMD_OUT_CONFIGURE Oxff
struct cmd_out_configure_t

{
1

#define CMD_IN_SET 0x00
struct cmd_in_set_ t

{

uint8_t command;

uint8_t command;
uint8_t lata;
uint8_t latb;
uint8_t latc;
uint8_t latd;
uint8_t ccplcon;
uint8_t ccprill;
uint8_t ccp2con;
uint8_t ccpr2l;
¥

#define CMD_OUT_GET 0x00
struct cmd_out_get_t
{
uint8_t command;
uint8_t porta;
uint8_t portb;
uint8_t portc;
uint8_t portd;
uintl6_t an[8];
¥

#tdefine LED_TRIS TRISDbits.TRISD@
#tdefine LED_LAT LATDbits.LATDO

h"

81

#define PORTA_MASK ©0x10
#tdefine PORTB_MASK @xef
#define PORTC_MASK ©@xcl
#define PORTD_MASK @xdc

#pragma udata

USB_HANDLE USBGenericOutHandle;
USB_HANDLE USBGenericInHandle;

static volatile uint8_t analog_max;
static volatile uint8_t analog_i;

static volatile uint8_t analog_done;

#pragma udata USB_VARS = 0x500

union {

struct cmd_in_configure_t cmd_in_configure;
struct cmd_in_set_t cmd_in_set;
BYTE bytes[USBGEN_EP_SIZE];

} receive_buffer;

struct cmd_out_configure_t cmd_out_configure;
struct cmd_out_get_t cmd_out_get;

#pragma cod

static void

trisd)

{
TRISA =
TRISB =
TRISC =
TRISD =

¥

static void

{

analog max = ((an_count > 8) ? 8 :

e

configure_digital(uint8_t trisa, uint8_t trisb,

(TRISA & ~PORTA_MASK)
(TRISB & ~PORTB_MASK)
(TRISC & ~PORTC_MASK)
(TRISD & ~PORTD_MASK)

(trisa & PORTA_MASK);
(trisb & PORTB_MASK);
(trisc & PORTC_MASK);
(trisd & PORTD_MASK);

uint8_t trisc, uint8_t

configure_analog(uint8 t an_count, uint8_t adcon2)

TRISA |= ox2f;

TRISE |
ADCON@
ADCON1
ADCON2

}

static void configure_pwm(uint8_t t2con, uint8 t pr2)

{

TRISCbits.TRISC2 = O;
TRISDbits.TRISD5 = O;
TRISCbits.TRISC1 = O;
T2CON = (t2con & 0x@3);
TMR2 = 0x00;

PR2 = pr2;

0x07;

ox00; /* Channel 0, disabled */

an_count);

0x07; /* Vdd/Vss reference, ANO-AN7 as analog */
0x86 | (adcon2 & ©x31); /* Right justified, Fosc/64 */

CCPRIL = 0x00;
CCPR2L = 0x00;
CCP1CON = ©x8c; /* Half-bridge, PWM P1A/P1B active-high */

CCP2CON = @x@c; /* PWM */

ECCP1DEL = 0x00;
ECCP1AS = 0x00;
T2CONbits.TMR20ON =

1;

82

static void set_digital(uint8_t lata, uint8_t latb, uint8_t latc, uint8_t latd)
{

LATA = (LATA & ~PORTA_MASK) | (lata & PORTA MASK);
LATB = (LATB & ~PORTB_MASK) | (latb & PORTB_MASK);
LATC = (LATC & ~PORTC_MASK) | (latc & PORTC_MASK);
LATD = (LATD & ~PORTD_MASK) | (latd & PORTD_MASK);

}

static void set_pwm(uint8_t ccplcon, uint8_t ccprll, uint8_ t ccp2con, uint8_t ccpr2l)
{

CCP1CON = (CCP1CON & @xcf) | (ccplcon & 0x30);

CCPR1L = ccprill;

CCP2CON = (CCP2CON & @xcf) | (ccp2con & 0x30);

CCPR2L = ccpr2l;

}

static void get_digital(void)
{

cmd_out_get.porta
cmd_out_get.portb
cmd_out_get.portc
cmd_out_get.portd

PORTA;
PORTB;
PORTC;
PORTD;

}

static void get_analog(void)
{
if (analog _max == @)

{

}
PIR1bits.ADIF = O;

)
INTCONbits.GIE = 1;
analog i = 0;
analog_done = 0;
ADCON@ = (analog i << 2);
ADCON@Obits.ADON = 1;
ADCON@bits.GO = 1;
while (!analog_done)

{

}
INTCONbits.GIE = @;

return;

USBDeviceTasks();

}

void dag_init(void)

{
/* Reseta os registradores de interrupg¢ao */
RCONbits.IPEN = 0;
INTCON = Ox00;
INTCON2 = 0x80; /* Disable PORTB pull-ups */
INTCON3 = 0x00;

PIR1 = 9x00;
PIR2 = Ox00;
PIE1 = Ox00;
PIE2 = Ox00;
IPR1 = Ox00;
IPR2 = Ox00;
/* Reseta todos os latches de saida */
LATA = 0x00;
LATB = 0x00;

LATC = 0x00;

83

}

84

LATD = 0x00;
LATE = 0x00;
/* Reseta todos os pinos para entradas digitais */
TRISA = Oxff;

TRISB = Oxff;
TRISC = Oxff;
TRISD = Oxff;
TRISE = Oxff;

ADCON1 = oxef;

/* Configura e inicializa o pino do LED */
LED_TRIS = ©;

LED_LAT = 0;

/* Configura interrup¢oes de ADC */
PIE1lbits.ADIE = 1;

INTCONbits.PEIE = 1;

/* Inicializa o USB */
USBGenericOutHandle = 0;
USBGenericInHandle = 0;
USBDeviceInit();

void daq_high_isr(void)

{

}

PIR1bits.ADIF = O;
cmd_out_get.an[analog_i] = ADRES;
if ((++analog_i) < analog_max)

{
ADCONO = (analog i << 2);
ADCON@Obits.ADON = 1;
ADCON@bits.GO = 1;

}

else

{
analog done = 1;

}

void daq_low_isr(void)

{
}

static void handle_cmd_in_configure(void)

{

if (USBHandleGetLength(USBGenericOutHandle) != sizeof(struct cmd_in_configure_t))
{

}

configure_digital(
receive_buffer.cmd_in_configure.trisa,
receive_buffer.cmd_in_configure.trisb,
receive_buffer.cmd_in_configure.trisc,
receive_buffer.cmd_in_configure.trisd);

configure_analog(
receive_buffer.cmd_in_configure.an_count,
receive_buffer.cmd_in_configure.adcon2);

configure_pwm(
receive_buffer.cmd_in_configure.t2con,
receive_buffer.cmd_in_configure.pr2);

if (!USBHandleBusy(USBGenericInHandle))

{

return;

cmd_out_configure.command = CMD_OUT_CONFIGURE;

USBGenericInHandle = USBGenWrite(USBGEN_EP_NUM,
(BYTE*)&cmd_out_configure, sizeof(cmd_out_configure));

}
}
static void handle_cmd_in_set(void)
{
if (USBHandleGetLength(USBGenericOutHandle) != sizeof(struct cmd_in_set_t))
{
return;
}
set_digital(
receive_buffer.cmd_in_set.lata,
receive_buffer.cmd_in_set.latb,
receive_buffer.cmd_in_set.latc,
receive_buffer.cmd_in_set.latd);
set_pwm(
receive_buffer.cmd_in_set.ccplcon,
receive_buffer.cmd_in_set.ccprill,
receive_buffer.cmd_in_set.ccp2con,
receive_buffer.cmd_in_set.ccpr2l);
if (!USBHandleBusy(USBGenericInHandle))
{
cmd_out_get.command = CMD_OUT_GET;
get_digital();
get_analog();
USBGenericInHandle = USBGenWrite(USBGEN_EP_NUM,
(BYTE*)&cmd_out_get, sizeof(cmd_out_get));
}
}
void dag_loop(void)
{
USBDeviceTasks();
if((USBDeviceState < CONFIGURED STATE) || (USBSuspendControl == 1))
return;
}
if(!USBHandleBusy(USBGenericOutHandle))
{

static uint8_t led_count = 50;
if ((--led_count) == 0)

{
led_count = 100;
LED_LAT = !LED_LAT,
}
switch (receive_buffer.bytes[0])
{
case CMD_IN_CONFIGURE:
handle_cmd_in_configure();
break;
case CMD_IN_SET:
handle_cmd_in_set();
break;
default:
break;
}

USBGenericOutHandle = USBGenRead(USBGEN_EP_NUM, (BYTE*)&receive_ buffer,
USBGEN_EP_SIZE);

}
}

void USBCBSuspend(void)

{
OSCCON = 9x13; /* Reduz o clock */
}
void USBCBWakeFromSuspend(void)
{
OSCCON = 0x60; /* Volta para o clock primario */
{
unsigned int pll_startup_counter = 800;
while(pll_startup_counter--);
}
}
void USBCBInitEP(void)
{

/* Habilita o endpoint 1 */

USBEnableEndpoint (USBGEN_EP_NUM,
USB_OUT_ENABLED|USB_IN_ENABLED|USB_HANDSHAKE ENABLED|USB_DISALLOW SETUP);

/* Prepara o endpoint 1 para receber dados */

USBGenericOutHandle = USBGenRead(USBGEN_EP_NUM, (BYTE*)&receive_ buffer,
USBGEN_EP_SIZE);

}

BOOL USER_USB_CALLBACK_EVENT_HANDLER(int event, void* pdata, WORD size)
{

switch(event)
{
case EVENT_SUSPEND:
USBCBSuspend();
break;

case EVENT_RESUME:
USBCBWakeFromSuspend();
break;

case EVENT_CONFIGURED:
USBCBINitEP();
break;

default:
break;

}
return TRUE;

fw_daq.h—define asfunc¢des usadas pelamain.c

#ifndef FW_DAQ H
#define FW_DAQ H

void dag_init(void);
void dag_loop(void);
void dag_high_isr(void);
void dag_low_isr(void);

#endif /* FW_DAQ H */

86

Alémdo cdédigo, é necessario um linker script para que o firmware compilado possa funcionar

corretamente com o bootloader:

18f4550_bl.Ikr

// File: 18f4550_g.lkr

// Generic linker script for the PIC18F4550 processor

#DEFINE _CODEEND _DEBUGCODESTART - 1
#DEFINE _CEND _CODEEND + _DEBUGCODELEN
#DEFINE _DATAEND _DEBUGDATASTART - 1
#DEFINE _DEND _DATAEND + _DEBUGDATALEN

LIBPATH .

#IFDEF _CRUNTIME
#IFDEF _EXTENDEDMODE
FILES c018i_e.o
FILES clib_e.lib
FILES p18f4550 e.lib

#ELSE
FILES c018i.0
FILES clib.lib
FILES p18f4550.1ib
#FI

#FI
CODEPAGE
#IFDEF _DEBUGCODESTART
CODEPAGE NAME=page
CODEPAGE NAME=debug
H#ELSE
CODEPAGE NAME=page
#FI
CODEPAGE NAME=idlocs
CODEPAGE NAME=config
CODEPAGE NAME=devid
CODEPAGE NAME=eedata

#IFDEF _EXTENDEDMODE

NAME=bootloader START=0x0

START=0x1000
START=_DEBUGCODESTART

START=0x1000
START=0x200000
START=0x300000

START=0x3FFFFE
START=0xF00000

START=0x0

START=0x60
START=0x100

DATABANK NAME=gpre
#ELSE
ACCESSBANK NAME=accessram START=0x0
#FI
DATABANK NAME=gpro
DATABANK NAME=gprl
DATABANK NAME=gpr2

#IFDEF _DEBUGDATASTART

DATABANK NAME=gpr3

DATABANK NAME=dbgspr
#ELSE //no debug

DATABANK NAME=gpr3
#FI
DATABANK NAME=gpr4
DATABANK NAME=gpr5
DATABANK NAME=gpré
DATABANK NAME=gpr7

ACCESSBANK NAME=accesssfr

#IFDEF _CRUNTIME
SECTION NAME=CONFIG

START=0x200

START=0x300
START=_DEBUGDATASTART

START=0x300

START=0x400
START=0x500
START=0x600
START=0x700
START=0xF60

ROM=config

END=OXFFF PROTECTED
END=_CODEEND
END=_CEND PROTECTED

END=Ox7FFF

END=0x200007
END=0x30000D
END=O@x3FFFFF
END=0xFOOOFF

PROTECTED
PROTECTED
PROTECTED
PROTECTED

END=0x5F

END=0Ox5F

END=OXFF
END=OX1FF
END=Ox2FF

END=_DATAEND
END=_DEND PROTECTED

END=0@x3FF

END=Ox4FF
END=OX5FF
END=Ox6FF
END=Ox7FF

END=OxFFF PROTECTED

88

#IFDEF _DEBUGDATASTART
STACK SIZE=0x108 RAM=gpr2
H#ELSE
STACK SIZE=0x108 RAM=gpr3
#FI
#FI

Uma vez compilado, o firmware pode ser enviado ao microcontrolador utilizando o

HID Bootloader, da Microchip, e a placa estarad pronta para ser usada.

11.8 LabVIEW

O software da National Instruments é o responsdavel pela manipulacdo da biblioteca e
suas fungdes, no computador. Assim, é o responsavel pela comunicacdo e interface entre

este e o microcontrolador.

As funcdes sdao exploradas no LabVIEW através do Call Library Function Node, que
transforma uma fung¢ao, com seus parametros de saida e entrada, em um bloco funcional do

programa.

Para simplificar e condensar todos os recursos de uma fungdo em um Unico bloco, um
subVI foi criado para cada funcdo, e em seu interior encontram-se os controles e indicadores
dos parametros a serem utilizados, o tipo de dependéncia aplicavel a cada parametro (se é
obrigatdrio, recomendavel ou opcional) e quaisquer manipulagdes obrigatérias que sejam
feitas para adaptacdo dos dados as entradas ou saidas. Assim, esses recursos tornam-se

invisiveis, numa primeira instancia, ao usudrio, simplificando o uso de tais funcdes.

Os subViIs criados, com seus respectivos parametros, sdo os seguintes:

DAQ.Ivlib:daq open device.vi daq close device.vi
wvendor_id DAR | return type handle DA handle 2
T dag dag
product_id mpom error out) clare
error in (no error) o error in (no error) error out
Abre o DAQ Fecha o DAQ

*vendor_id - VID do dispositivo * handle - ponteire para o handle do dispositivo

* product_id - PID de dispositive
* retorna - ponteirc para o handle do dispositivo, ou
MULL em caso de falha

89

DAQ.vlib:daq configure.wvi

analog_sample_time

handle 2s3 handle 2
digital_direction J_J canFiqus function return
analog_count error out

error in (no error)
pwm_frequency

Configura as entradas e saidas do DAC

* handle - ponteiro para o handle do dispositive
* digital_direction - bitrnask com a diregdo das
portas digitais (0=Cutput, T=Input), D0 ne bit 0, 01
ne bit 1, e assim por diante

* analog_count - ndmero de entradas analdgicas
usadas (dea &)

* analog_sample_time - tempo minimeo de
amostragem, em microe segundos (valor real serd
maicr ou igual a esse valor)

* pwm_frequency - frequéncia do PWM em hertz
(valor real serd bastante préxime, com a maior
resclugdo possivel)

* retorna - O=falha, 1=sucesso

daq read digital.vi

handle ::nl handle 2
channel 4 :;:i.tlnl L function return

error in (no error) == Bece epror out

Lé urna entrada digital
* handle - ponteire para o handle do dispositive
* channel - nimerc da entrada digital {de 0 a 13)

DAQ.Ivlib:daq read analog.vi

handle ::nl handle 2
channel 4 :-:-:-Ilu L function return

error in (no error) == Bece epror out

L& uma entrada analdgica
* handle - ponteire para o handle do dispositive
* channel - nimerc da entrada analdgica (de0a7)

daq set duty cycle.vi
handle ::n handle 2
channel - i'.‘:
duty_cycle Suty error out

error in (no error)

Altera o duty cycle do PWM

* handle - ponteire para o handle do dispositive

* channel - nimero do canal de PWMM (1 ou 2)

* duty_cycle - duty cycle em porcentagem (de 0 a
100)

DAQ.vlib:daq update.vi

handle ::nl handle 2
error in (no error) s function return
Ee grror out

Faz a comunicagde com o microcontrolader,
escrevevendo as saidas e lendo as entradas

* handle - ponteire para o handle do dispositivo
* retorna - O=falha, 1=sucesso

daq write digital.vi

handle ::n handle 2
channel - rite
digital oeeeeeeey
ctate Siakal error out

error in (no error)

Escreve em urna saida digital

* handle - ponteire para o handle do dispositive
* channel - nimerc da saida digital (de 0a 15)

* gtate - O=nivel baixo, 1=nivel alto

Um tipico VI utilizado para aquisicdo de dados e/ou controle, tem um fluxo de dados

gue respeita, de alguma forma, uma sequéncia de ac¢0es.

Primeiramente, estando o dispositivo ja conectado ao computador, deve-se abrir o

canal de comunicacdao entre o computador e o dispositivo. Isso é possivel identificando-o,

90

dentre os dispositivos conectados, através de seu Product ID (0x04D8) e Vendor ID (0x000C).

Depois, a configuracdo dos recursos desejados é realizada.

A proxima etapa é a em que ocorre toda a leitura, escrita e manipulacdo — pelo
menos inicial — dos dados. Geralmente, a aquisicdo é feita dentro de um laco de repeticao,
que possa depender de alguma condi¢do de parada ou que seja limitado a um nimero de
iteragbes, de modo com que a quantidade de dados necessaria seja transferida. O programa
é finalizado, geralmente, ao se interromper o laco de repeticdo. Assim, ao sair do laco, o
ultimo passo é fechar o canal de comunicacdo para que o dispositivo possa ser liberado

novamente.

[1) Abre a comunicacio]

3) Combinagdo das fungdes que foram
previamente configuradas. A agdo de

— aquisigdoou controle ccorre dentro
dag

de um lago while e € interrompida
quande & verdadeira a condigdo de
parada.

|2] Configura o dispositi\rol

|4] A comunicagdo € encerradal

Figura 36 - Tipico fluxo de dados em um VI de aquisicdo e/ou controle.

11.9 Recursos

O dispositivo de aquisicdo de dados e controle foi desenvolvido para ser capaz de
suprir as principais necessidades em um ambiente de automac¢ao voltado ao aprendizado,
em ambientes escolares e académicos, ou para projetos domésticos. Assim, 0s recursos

presentes no equipamento sdo os seguintes:

91

e 16 1/0 digitais

e 8 ADC de 10 bits, configuraveis, com capacidade de até 1 kS/s (kiloSamples
per second, milhares de amostras por segundo)

e 1 saida PWM com resolugdo de 10 bits, configuravel

e 1 mddulo PWM half bridge com resolucao de 10 bits, configuravel

e Programacao via software

11.10 Custo x beneficio

Para verificacdo dos precos de mercado dos componentes, uma cotacdo foi realizada

em trés diferentes estabelecimentos, que seguem.

e Farnell Newark, http://www.farnellnewark.com.br

e Solda Fria, http://www.soldafria.com.br

e Pinhé Componentes Eletronicos, http://www.pinhe.com.br

Assim, obtivemos a seguinte média de pregos para os componentes citados.

Quantidade Item Unitario (RS) Total (RS)
1 Placa fenolite 15 x 20 cm 6,70 6,70
2 Capacitor ceramico 22 pF 0,20 0,40
2 Capacitor poliéster 0,1 uF 0,25 0,50
1 Capacitor poliéster 0,47 uF 0,70 0,70
1 Soquete padrdao DIP 40 pinos 2,80 2,80
1 Microcontrolador PIC18F4550 22,90 22,90
1 Header de 6 pinos 0,20 0,20
1 Jumper sem aba 0,20 0,20
1 Led difuso 5mm cor verde 1,00 1,00
1 Cristal 24 MHz 1,20 1,20
2 Resistor 1 kQ) 0,01 0,02
1 Resistor 330 () 0,01 0,01
2 Chave tactil 4 terminais 5 mm 0,25 0,50
1 Conector USB-B fémea 2,40 2,40

http://www.farnellnewark.com.br/
http://www.soldafria.com.br/
http://www.pinhe.com.br/

92

12 Borne KRE 2 terminais 5 mm 0,45 5,40
3 Borne KRE 3 terminais 5 mm 1,50 4,50
Valor Total (RS) 49,43

A partir do custo do nosso equipamento, é possivel validar sua posicdao proposta

como produto de uso académico e doméstico. Como comparacdo, podemos citar alguns

produtos que se enquadram nesse mercado.

O kit de desenvolvimento Arduino é amplamente difundido e, apesar de nao ser

definido exatamente como plataforma de aquisicdo de dados, mas como ja citado, mddulo

de desenvolvimento, conta, em seu mdédulo basico, com recursos bastante semelhantes aos

propostos nesse trabalho. E vendido por cerca de RS 120,00.

MADE ™)

IN ITALY N SN0 NOWWME MmN -
[[} 1 ~

MHB» aw DIGITAL (PWM~) F

rxsm* ARDUINO
(srx16 mm’ .o

F\Mh-n—auo—naa@ﬂﬁ Ao ueaa
- -

" o'- TXDI'."
(]

. 3k LUBT
e
poy

Figura 37 - Arduino.

Na linha de produtos para aquisicdo de dados, propriamente, temos equipamentos

como o Easy Lab I/0, dotado de 10 I/O digitais, 1 sinal PWM de 10 bits e contador de pulsos,

conectado via USB 2.0 (FS-USB), que é vendido por cerca de RS 200,00.

93

Figura 38 - Easy Lab 1/0.

A National Instruments possui solugdes profissionais, inclusive com equipamentos
capazes de atuar em real time. Seu modelo de entrada, o NI USB-6009, ja é bastante
superior e indicado para algumas aplicacBes que necessitem de mais recursos. Possui 8
entradas analdgicas de 14 bits, com capacidade de leitura de 48 kS/s (kiloSamples per
second, ou milhares de amostras por segundo); 2 saidas analdgicas de 12 bits com
capacidade de 150 S/s; 12 1/O digitais; contador de 32 bits. Nota-se claramente a maior

disponibilidade e extensdo de recursos. O NI USB-6009 é vendido por cerca de RS 1000,00,

no Brasil.

94

-
&
2
. @
o ;
: - Z
[' :
. 9
: 0
: 1 K
' . W waonat 1 B
@ ' :
o N USB'WIQ"‘? e
. 3 et 120t 1045y My e “ 3
: ; o
: g
i £
€
&

Figura 39 - NI USB-6009.

Levando em conta o publico a que se destina e as solugdes a que se deseja atender,
temos um equipamento que se enquadra entre um kit basico de desenvolvimento — servindo
a esse propdsito com os recursos de controle — e um equipamento robusto para aquisicao de
dados — superior aos modelos “genéricos” comumente encontrados no mercado, mas ainda
restrito em relagdo a linha de entrada de equipamentos de referéncia. Entdo, como nossa
proposta é oferecer um recurso robusto e eficiente para aquisicdo de dados e controle
dentro dos parametros ja apresentados, temos um equipamento barato e ainda assim

superior em termos de disponibilidade de recursos.

95

12 Consideracdes finais

O dispositivo para aquisicdao e controle desenvolvido neste trabalho pode ser usado
para uma grande variedade de aplicagdes de maneira satisfatdria, principalmente onde o
custo é o fator preponderante, devido a sua gama de recursos a um custo baixo. A
comunicagdo é bastante robusta, gracas a utilizacdo do USB, que garante a velocidade de
transmissdo e a integridade dos dados. A sua facil utilizacdo com o ambiente LabVIEW, que é
bastante usado em aplicagdes de aquisicdo e controle, torna-o bastante atrativo para

usuarios domésticos e alunos universitarios.

Como citado anteriormente, esse dispositivo foi utilizado com éxito em diversas
disciplinas do curso de Engenharia Mecatronica, principalmente as de cunho pratico. Um
fator importante para esse sucesso, além da utilizacdo do ambiente LabVIEW, foi a
disponibilidade do dispositivo para testes sem a necessidade de utilizar os laboratérios, pois
o dispositivo necessita apenas de uma conexdao USB para funcionar. Assim, o aluno tem
virtualmente todo o tempo possivel para desenvolver as aplicacdes, enquanto testa

diretamente com o hardware.

Um uso sugerido para este dispositivo seria como um kit a ser construido durante o
primeiro ano do curso de engenharia. Os alunos seriam apresentados a microcontroladores,
componentes e placas eletronicos e ao ambiente LabVIEW, englobando uma boa parte das
areas de conhecimento da Engenharia Mecatrbnica, além de ter amplo contato com a
pratica, como a producdo de uma placa eletrénica e a soldagem de componentes. Cada
aluno, ou em grupos, construir uma placa, a mesma poderia ser usada durante todo o curso,
a fim de desenvolver projetos mais avancados nas disciplinas de carater pratico, tais como as

disciplinas de Problemas de Engenharia Mecatronica.

A versatilidade da solugdo desenvolvida deve ser reforcada. Ao encapsular o
protocolo de comunicagao com o microcontrolador em uma biblioteca, é possivel comunicar
com a placa utilizando outras linguagens que ndao somente a do ambiente LabVIEW, sendo
possivel utilizar C/C++, MATLAB, ou Python. O Unico requisito é que seja possivel carregar a
biblioteca e utilizar as suas funcoes. Devido a presenca do bootloader, que permite que um

firmware qualquer seja gravado no microcontrolador, também é possivel utilizar a placa para

96

a aprendizagem e desenvolvimento com microcontroladores, de maneira geral,
especificamente o modelo PIC18F4550 da Microchip, que, como apresentado, possui

diversos recursos diferentes, além daqueles utilizados na aplicacdo deste trabalho.

97

Referéncias

About Us: CadSoft Computer.(2011). Acesso em 04 de Dezembro de 2012, disponivel em
CadSoft Computer: http://www.cadsoftusa.com/about-us/

Axelson, J. (2009). USB Complete: The Developer's Guide (42 ed.). Lakeview Research.

Cerne. (2008). http://www.cerne-tec.com.br. Acesso em 4de Dezembro de 2012, disponivel
em Cerne: http://www.cerne-tec.com.br/labview.pdf

Datasheet PIC18F4550. (27 de Outubro de 2009). Acesso em 26 de Outubro de 2012,
disponivel em Microchip:
http://ww1.microchip.com/downloads/en/DeviceDoc/39632e.pdf

Eagle ManualVersion 6. (Maio de 2011). Acessoem 04 de Dezembro de 2012, disponivel em
CadSoft Computer: http://www.cadsoft.de/wp-
content/uploads/2011/05/V6_manual_en.pdf

Larsen, R. W. (2010). LabVIEW for Engineers. Prentice Hall.
Lyons, R. G. (1996). Understanding Digital Signal Processing (12 ed.). Pearson Education.

Miyadaira, A. N. (2009). Microcontroladores PIC18- Aprenda e Program em Linguagem C (12
ed.). Editora Erica Ltda.

MPLAB C18 C Compiler User's Guide. (2005). Acesso em 28 de Outubro de 2012, disponivel em
Microchip: http://ww1.microchip.com/downloads/en/devicedoc/51288f.pdf

Schildt, H. (1996). C Completo e Total, Edicdo Revista e atualizada (32 ed.). Pearson Education
do Brasil.

Tocci, R. J., & Widmer, N.S. (1998). Sistemas Digitais, Principios e Aplicagdes (72 ed.). LTC.

USB 2.0 Specification. (27 de Abril de 2000). Acesso em 28 de Outubro de 2012, disponivel em
Universal Serial Bus: http://www.usb.org/developers/docs/

Wilmshurst, T. (2009). Designing Embedded Systems with PIC Microcontrollers: Principles and
Applications (22 ed.). Newnes.

