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SÃO PAULO
2021
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RESUMO

ALMIRALL, Felipe e GODOY, Leonardo. Indústria 4.0: Projeto e Integração de Gêmeo Digi-
tal de bancada didática e emulador de rede de Petri. 2021. 75 f. Trabalho de Conclusão de
Curso – Departamento de Engenharia Mecatrônica, Universidade de São Paulo. São Paulo, 2021.

Palavras-chave: Emulador de rede de Petri, Gêmeo digital, Simulação de produção, Indústria
4.0

O presente trabalho desenvolve um programa capaz de interpretar arquivos de redes de Petri
desenvolvidos em PIPE 4.3, utilizando essa estrutura para comandar sinais digitais de um Gêmeo
Digital de uma bancada didática, via protocolo OPC-UA. Demonstra a estrutura constrúıda
para o funcionamento do interpretador e controlador através de diagramas UML utilizando
linguagem de programação Orientada a Objeto, bem como a elaboração do Gêmeo Digital da
bancada didática de forma fidedigna através do uso do Software Visual Components. Estabelece
a conexão do Servidor desenvolvido com o Cliente no Gêmeo Digital via OPC-UA com sucesso
e propõe diferentes usos da ferramenta em sala de aula.



ABSTRACT

ALMIRALL, Felipe e GODOY, Leonardo. Digital Twin: PLC Simulation. 2021. 75 f. Trabalho
de Conclusão de Curso – Departamento de Engenharia Mecatrônica, Universidade de São Paulo.
São Paulo, 2021.

Keywords: Petri net Emulator, Digital Twin, Production Simulation, Industry 4.0.

This project develops a program capable of interpreting Petri net files developed in PIPE 4.3
and uses this structure to command digital signals from a digital twin of a didactic station, via
OPC-UA protocol. It demonstrates the structure built for the operation of the interpreter and
controller through UML diagrams using Object Oriented programming language, as well as
the elaboration of the Digital Twin of the didactic station in a reliable way through the use of
Visual Components Software. It successfully connects the Server developed with the Client in
the Digital Twin via OPC-UA and proposes different uses of the tool in classes.
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1 Introdução

O termo“Indústria 4.0”encontra-se altamente difundido no cenário hodierno. Ele foi

primordialmente definido pelo Governo Federal Alemão como uma estrutura emergente, na qual

a manufatura e loǵıstica são estruturadas na forma de sistemas de produção f́ısico-cibernéticos,

que usam intensivamente as informações dispońıveis globalmente e as redes de comunicações

para uma troca amplamente automatizada de dados, na qual processos de produção e negócios

são combinados (BAHRIN et al., 2016). Isso remete à mudança de paradigma atual na estrutura,

tecnologia e organização da indústria moderna, denominada como a 4ª Revolução Industrial. De

acordo com (LASI et al., 2014) este processo é caracterizado por uma avançada digitalização

na indústria, a combinação de tecnologias de Internet e tecnologias voltadas na aplicação de

objetos“inteligentes” (máquinas e produtos).

A Indústria 4.0 possui 9 pilares principais que permitem a transformação de módulos

de produção isolados em uma produção totalmente integrada, automatizada e otimizada

(VAIDYA; AMBAD; BHOSLE, 2018). Estes são “Big Data and Analytics”, “Autonomous

Robots”,“Simulation”,“System Integration”,“The Industrial Internet of Things”,“Cyber security

and Cyber Physical Systems”,“The Cloud”,“Additive Manufacturing”e“Augmented Reality”

(VAIDYA; AMBAD; BHOSLE, 2018). Com base nos campos apresentados o projeto que será

desenvolvido possui um enfoque no pilar de“Simulação”.

A simulação compreende uma representação aproximada da realidade, operação de um

processo ou sistema ao longo de um certo tempo. É uma ferramenta poderosa para a avaliação

e análise de projetos de novos sistemas, modificações em sistemas existentes e alterações

propostas para sistemas de controle e regras operacionais (II, 2004). Esse pilar está ligado

diretamente ao termo Gêmeo Digital, conceito essencial da Indústria 4.0 e que embasa e

fundamenta o projeto que será discorrido posteriormente.

Gêmeo Digital depreende o conceito de simulação em uma forma mais espećıfica, é uma

tecnologia que virtualiza um ambiente ou sistema f́ısico para que a organização simule cenários

e gere valor agregado aos negócios. De acordo com (QUINALHA, 2018)“Gêmeo digital pode

ser definido como um modelo digital de um objeto real, que representa sua configuração f́ısica

com riqueza de detalhes suficiente ou até mesmo com simplificações pertinentes, alimentado

por dados de sensores, o que ilustra a situação instantânea deste objeto no mundo real. Um

gêmeo digital pode representar um ativo individual, um sistema composto por ativos diferentes
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ou um conjunto de vários ativos idênticos.”

Tendo em vista esse conceito, o Gêmeo Digital mostra-se uma poderosa e relevante

ferramenta para a didática. Isso se mostra veŕıdico e pertinente em (NIKOLAEV et al., 2018)

que valida o benef́ıcio da utilização do Gêmeo Digital na educação de alunos de mestrado em

ciência aplicada através da metodologia de desenvolvimento de produto baseada em simulação.

O procedimento educacional foi constrúıdo em torno de um processo real de desenvolvimento

de produto, um pequeno“Véıculo Aéreo Não Tripulado”. Foram utilizadas diversas ferramentas

de simulação no processo educacional com o intuito de criar o Gêmeo Digital do produto

alcançando ótimos resultados no ensino.

Ademais, esse tema é citado em (SEPASGOZAR, 2020) no qual é demonstrada a

aplicação de tecnologias de Gêmeo Digital e da Realidade Virtual e Aumentada para o ensino

de estudantes de arquitetura, engenharia e construção. Este artigo desenvolveu um conjunto

de módulos virtuais e discutiu sua aplicabilidade na área da educação na construção civil,

por meio de um curso prático como um estudo de caso. Um dos módulos implementou um

Gêmeo Digital de escavadeira que estava vinculado a uma escavadeira real, com isso os alunos

poderiam usá-la para aprender diferentes movimentos da escavadeira. A implementação de

tecnologia virtual exclusiva e o feedback dos alunos mostram que o uso de ferramentas virtuais

online para aprender cursos práticos de construção é viável e útil.

Levando em consideração as ideias e referências citadas, o Gêmeo Digital torna-se

um potente instrumento das instituições de ensino na área da engenharia para elucidar de

forma prática, clara e visual conceitos e processos de novos conhecimentos. Já no campo

da indústria e negócios permite o treinamento e desenvolvimento de colaboradores sobre

os processos e tecnologias empregadas na produção. Há a possibilidade de estudo, análise,

viabilidade e otimização dos recursos e procedimentos aplicados ou até que serão aplicados, ou

seja, permite-se avaliar antes de adquirir ou instalar um processo ou tecnologia, se este será

pertinente e atenderá os requisitos estimados pela entidade.

Com uma simulação funcional (que representa de forma satisfatória e adequada as

caracteŕısticas do sistema real simulado), flex́ıvel e com aspectos gráficos, permite-se um

entendimento mais claro e objetivo dos processos e composições assimiladas no simulacro.

Há uma grande facilidade de acesso e estudo pois não é necessário possuir os equipamentos,

instalações f́ısicas, ou estar presente em algum local o que é de enorme vantagem para a

escalabilidade de uma aula ou de um treinamento, principalmente no contexto atual de pandemia

do Covid-19.
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1.1 Objetivo

Levando em consideração as motivações didáticas e tecnológicas mencionadas em 1 e

a partir de um contexto de Indústria 4.0 é posto o objetivo deste trabalho. O projeto consiste

no projeto e implementação de um Gêmeo Digital de uma bancada MPS da Festo e de um

emulador de rede de Petri e integração destes dois. O emulador receberá como entrada um

modelo gráfico em forma de rede de Petri que representa e descreve o controle da bancada.

Será estabelecido uma comunicação entre o emulador e o Gêmeo Digital da bancada MPS

permitindo a troca de informações entre estes e garantindo o controle do módulo simulado.

Sendo assim, com a obtenção do Gêmeo Digital e do emulador mencionados, adquire-se

uma potencial ferramenta para ser utilizada posteriormente para didática de forma prática e

funcional e para uma melhor compreensão de conceitos e processos da Indústria 4.0.

1.2 Estrutura do texto

O texto vigente é composto por 6 caṕıtulos. Sendo o caṕıtulo atual responsável pela

introdução que contextualiza o tema do estudo, expõe as motivações e o objetivo do trabalho.

O caṕıtulo 2 contém a Revisão Bibliográfica do estudo. Exibe-se diferentes trabalhos

e estudos publicados acerca do tema tratado, contextualizando e apresentando a conjuntura

de conteúdos em vigência relacionados a este trabalho. Ademais é exposto algumas posśıveis

tecnologias para a aplicação e as escolhidas para a execução do objetivo proposto. Também

inclui-se uma fundamentação teórica acerca da rede de Petri e a apresentação da bancada

MPS Festo que será tratada.

O caṕıtulo 3 aborda o projeto do Gêmeo Digital da bancada MPS bem como a

metodologia utilizada para tal e também o projeto do emulador de Rede de Petri juntamente

com sua metodologia baseada no UML (Unified Modeling Language) para a elaboração da

estrutura do programa interpretador de arquivo XML (Extensible Markup Language).

Já no caṕıtulo 4 exibe-se os processos e passos da implementação do Gêmeo Digital

da Bancada e o emulador de rede de Petri. Além do mais expĺıcita e descreve a integração

destas duas partes.

Por sua vez, o caṕıtulo 5 documenta os resultados das implementações e também a

avaliação dos testes feitos.

Por fim, o caṕıtulo 6 comporta as conclusões do trabalho exposto e posśıveis aplicações

futuras dos recursos constrúıdos.
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2 Revisão Bibliográfica

Este caṕıtulo inicia-se com Estado da Arte a respeito do tema do trabalho. É exibido

diversos trabalhos e estudos acerca de Gêmeo Digital, seu contexto atual, pertinência, cenários

e aplicações, bem como seu uso e relevância como ferramenta didática. Há também estudos

que se relacionam com a temática de emuladores de rede de Petri e observações baseadas nos

estudos levantados.

Em seguida são levantadas posśıveis tecnologias, como softwares, linguagens de

programação e dispositivos de processamento para a implementação do projeto. Também,

dentre as opções pontuadas, é apresentado os recursos escolhidos e os motivos de tal.

Prosseguindo, é posto uma fundamentação teórica acerca da linguagem de modelagem

baseada em elementos gráficos chamada de rede de Petri, a qual é um componente fundamental

para a aplicação deste trabalho, já que esta descreve o controle aplicado no projeto do Gêmeo

Digital criado.

Ademais, expõe-se a respeito das bancadas MPS Festo assim como a escolha de uma

delas para dar prosseguimento ao projeto do Gêmeo Digital. Discorre-se desta escolhida de

forma detalhada, descrevendo seu funcionamento e componentes.

Por fim, é feito uma śıntese do caṕıtulo de Revisão Bibliográfica apontando alguns

comentários e fazendo a correlação com o próximo caṕıtulo.

2.1 Estado da Arte

O Conceito de Gêmeo Digital surge como uma simulação dinâmica em tempo real de

um sistema f́ısico e seus recursos envolvidos (BERISHA; CARUSO; HARTEIS, 2021), o que,

combinado a representações detalhadas do ambiente em que o sistema está inserido, viabiliza

uma representação digital mais precisa do sistema que reflete, permitindo análises e controle

(PANETTA, 2016).

Empresas estão pesquisando e implementando novas tecnologias para melhorar o

treinamento de funcionários, a eficiência do processo de produção, a redução de custos e a

qualidade do produto (OSBORNE; MAVERS, 2019). O impacto de melhorias, mesmo que

pequenas, numa linha de produção reflete no agregado a um ganho de produtividade que pode

impactar a quantidade de produto finalizada no dia de uma empresa. Simulações, entram nesse
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contexto, para que uma empresa possa alterar os parâmetros atuais de sua cadeia de produção

e testar novas oportunidades sem que a cadeia de produção seja interrompida. Para tais

simulações, as melhorias no processo serão tão fiéis quanto o modelo representar a realidade.

Além da produtividade, pode-se considerar que uma emulação virtual de um sistema

em tempo real abre portas para: (i) a manutenção a distância do sistema, (ii) a monitoração do

processo, (iii) a aquisição de dados (GöKALP et al., 2016) (iv) para a definição de pontos de

ociosidade, de gargalo ou até manutenção preventiva, (v) o cruzamento de previsões de demanda

com a possibilidade de entrega e até (vi) a previsão e prevenção de cenários cŕıticos que possam

acarretar em desligamento do sistema como um todo. Sabendo disso, uma simulação pode

alterar a velocidade com que um processo ocorre, bem como aumentar o ńıvel de detalhamento

viśıvel para que a pessoa que a acompanha possa interagir sabendo o que deve ou não ser

reproduzido em um ambiente real, principalmente por conta de uma resposta em tempo real

de determinado input sem que haja danificação da cadeia produtiva.

Em um ambiente simulado, não só o acompanhamento do maquinário é posśıvel, mas

também a simulação de cenários distintos ao real, o que é extremamente conveniente para

a apresentação do sistema a pessoas não familiarizadas. Essa aplicação é válida tanto para o

treinamento de funcionários quanto para aplicação didática em sala de aula e pode ocorrer por

meio de diferentes tecnologias, mas sempre com foco na representação virtual da realidade,

possibilitando o engajamento de aprendizados de alto ńıvel (SILVIA, 2012).

A pertinência da aplicação de Gêmeo Digital no âmbito educacional pode ser vista em

(SEPASGOZAR, 2020). O estudo contempla a utilização de tecnologias digitais para a didática

de alunos da área AEC (arquitetura, engenharia e construção civil). A inovação deste projeto

advém do desenvolvimento de módulos de construção imersiva, práticas de implementação do

ensino digital e apresentação da capacidade das tecnologias virtuais para a educação. Para

tanto, foi utilizado um curso de construção como caso de uso e foram implementados módulos

criados para a formação do aluno. Um dos módulos aplicados foi baseado em um Gêmeo Digital

de escavadeira que estava vinculada a uma entidade f́ısica da máquina, possibilitando que os

alunos pudessem manejá-la para aprender os diferentes movimentos da escavadeira.

Nessa oportunidade, verificou-se que em processos complicados na construção, como

perfuração e sondagem subterrânea - nos quais os alunos não possúıam nenhum conhecimento

prévio -, os novos métodos de ensino digital mostraram-se superiores aos métodos de aprendiza-

gem tradicionais, como livros didáticos. A possibilidade de praticar em um ambiente simulado,

que permite aos alunos correção e repetição para melhorar suas habilidades com falhas sem
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risco, mostrou-se um ótimo mecanismo didático. Como resultado do estudo, a satisfação dos

alunos aumentou, bem como a apreciação e o aprendizado, o que foi refletido no feedback dos

alunos.

A aplicação de Gêmeo Digital também se mostra relevante para o treinamento e

segurança em empresas. Tradicionalmente, o treinamento de segurança tem sido realizado por

aulas teóricas em uma sala de aula externa ou treinamento no local na instalação de produção.

Aulas como método de treinamento de segurança não oferecem a possibilidade de experiência

prática, com estudos anteriores indicando a ineficácia do treinamento de segurança tradicional

em comparação com o treinamento de segurança em um ambiente virtual. (SIM et al., 2019),

(LE; PEDRO; PARK, 2015).

Não obstante, frequentemente é necessária uma pausa na produção para realizar o

treinamento de segurança dentro das células de trabalho, o que pode causar estresse ao instrutor

e instrúıdos, além de aumentar a exposição a riscos. Logo, do ponto de vista da empresa, o

treinamento utilizando tecnologias como Gêmeo Digital, mostra-se vantajoso, em vista da não

necessidade de pausar algum módulo da produção para sua aplicação. (SIM et al., 2019)

Em (KAARLELA; PIESKä; PITKäAHO, 2020) o assunto sobre aplicação da tecnologia

do Gêmeo Digital no treinamento de segurança também é abordado. Discorre-se sobre sua

implementação em um laboratório de robótica, possibilitando a instrução dos alunos e visitantes

sobre os procedimentos de segurança antes de entrar fisicamente no laboratório. Durante o

treinamento, os participantes adquirem conhecimento de como controlar robôs, suas trajetórias

de movimento, áreas de alcance e seus dispositivos de segurança espećıficos. Ademais, o autor

levanta a necessidade de métodos inovadores de treinamento em segurança em vários setores da

indústria, especialmente o de construção e o de mineração. Além do mais, ressalta-se benef́ıcios

da aplicação desta tecnologia nesse contexto, como: (i) viabilidade de acesso remoto ao curso,

(ii) possibilidade de participação de um público mais amplo de vários locais de trabalho no

treinamento, (iii) possibilidade da análise de risco e planejamento de segurança nas fases iniciais

de projeto de uma nova célula de produção e (iv) fornecimento de aprendizado quase prático

de diferentes tarefas de trabalho em tempo real, sem entrar fisicamente nas instalações de

produção. Portanto, o Gêmeo Digital é uma forma promissora de desenvolver o treinamento

de segurança para ser mais ilustrativo e eficiente. O aprendizado virtual oferece um método

intuitivo, seguro e sem estresse para tais treinamentos.

Levando em conta cenários de risco posśıveis de serem simulados sem consequências

reais, em (EL-GENK et al., 2019) vê-se uma implementação de uma emulação de CLP
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(Controlador lógico programável) de um contexto bastante cŕıtico. A realização do projeto

tem como objetivo final a simulação de um CLP inserido em um contexto de usina nuclear e,

ainda que as motivações estejam concentradas no campo da segurança digital da emulação

versus a segurança de um CLP convencional, são evidentes as preocupações com a segurança

de cenários cŕıticos pasśıveis de simulação e testes em um escopo mais abrangente. O projeto

de El-Genk, na ocasião, utiliza um Raspberry Pi com interface TCP/IP conectada a um PC

Servidor para emular a conexão do CLP no Cliente.

Ainda no contexto de segurança digital, vê-se no estudo grande preocupação com

a segurança da informação. Obviamente que um fator nevrálgico em se tratando de uma

usina nuclear, mas que também deve ser foco em qualquer linha de produção conectada

no contexto da Indústria 4.0. Com as máquinas conectadas à rede, para que haja acesso

remoto e, eventualmente, processamento dos dados, surge a preocupação para que protocolos

de segurança sejam suficientemente seguros e ŕıgidos, a fim de não expor dados senśıveis e

segredos comerciais da indústria. Assim, é pré-requisito que a troca de informação ocorra de

maneira segura. Estabeleceu-se, em 1994, um protocolo padrão chamado de OPC-UA para esta

aplicação, e por estes motivos, além de sua universalidade no contexto da Indústria 4.0, passa

a ser um protocolo de grande interesse para o uso em projetos envolvendo o uso de Gêmeo

Digital.

Abordando o problema que é emular um CLP, deve ser levado em consideração que

“usar uma emulação para avaliar o comportamento de uma rede de CLPs é dif́ıcil devido à

falta de ferramentas que imitem com precisão o comportamento em tempo real de tais redes”

(BABU; NICOL, 2016). Isso pois, o projeto demanda baixo atraso em resposta, bem como a

capacidade de processamento asśıncrono, motivo pelo qual uma representação de rede de Petri

ganha destaque e passa a ser considerada.

Ademais, verifica-se que a utilização de um emulador de rede de Petri como forma

de estabelecer o controle de eventos discretos empreendidos pela bancada MPS Festo se

mostra uma opção para validar o projeto de controle da bancada sem necessariamente envolver

a programação por intermédio dos programas propostos pela fabricante. A rede de Petri

depreende uma linguagem de modelagem gráfica de sistemas distribúıdos discretos. De acordo

com (BARROS, 2006) essa linguagem possui benef́ıcios e vantagens pois consiste em uma

representação gráfica simples (ćırculos, retângulos e setas), representação algébrica simples

(na rede de Petri de baixo ńıvel), estruturação do algoritmo com dualidade de lugar-transição

e, por fim, a localidade do efeito das transições. Portanto a rede de Petri é uma expressiva
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linguagem gráfica de modelagem que permite a construção e validação do algoritmo de controle.

Logo, mostra-se pertinente a implementação de um emulador de rede de Petri como forma de

controle da bancada simulada. Tendo em vista que a bancada real é controlada por um CLP,

este não possui interpretador direto da linguagem gráfica de rede de Petri. Logo, essa carência

pode ser contornada pela implementação de um emulador.

Os benef́ıcios da utilização do diagrama da rede de Petri para modelagem do controle

de sistemas automatizados são evidenciados em (OSMAN; BAKAR, 2014). O estudo mostra

uma análise da modelagem de um emulador de rede de Petri em comparação com a aplicação

de um Diagrama Ladder, uma linguagem padronizada e comumente usada no campo dos

controladores lógicos programáveis (PLCs). Estas duas linguagens gráficas foram aplicadas em

um processo discreto de uma planta industrial composta por um tanque, como um exemplo

para papel de pesquisa. Foram citadas vantagens da utilização do diagrama de rede de Petri,

como a existência de um suporte matemático altamente desenvolvido e de alta flexibilidade

na análise de todos os elementos que podem influenciar na condução de um evento. Também

na descrição do sistema modelado graficamente de modo mais claro e intuitivo permitindo

uma fácil visualização do sistema complexo. Ademais, a modelagem de sistemas de forma

hierárquica possibilita a apresentação deste de cima para baixo em vários ńıveis de abstração

e detalhamento. Por fim, possibilita a análise sistemática e qualitativa do sistema por meio

de técnicas de análise de rede de Petri bem desenvolvidas. O texto conclui exprimindo que à

medida que os sistemas de manufatura automatizados se tornam mais complexos, a necessidade

de uma ferramenta de projeto eficaz para produzir sistemas de controle de eventos discretos

de alto ńıvel e implementações de baixo ńıvel torna-se mais importante e que a rede de Petri

representa o método mais eficaz tanto para o projeto quanto para a implementação destes

sistemas.

Outro trabalho no qual é discorrido a aplicabilidade da rede de Petri para a simulação

e validação de sistemas discretos, fica claro a benesse da utilização desta linguagem. Em

(QUEZADA et al., 2017) o autor propõe a simulação e validação de algoritmos de controle

desenvolvidos em Diagrama Ladder utilizando Redes de Petri para lidar com posśıveis situações

de falha (curto-circuito e / ou circuito aberto) no subsistema de entradas f́ısicas de um sistema

de controle baseado em CLP, por meio do caso de uso de um sietema de controle automático

de lavagem de carro. Em virtude da rede de Petri possuir ferramentas para realização de

análise do sistema modelado, o método proposto, baseado no emprego da rede de Petri a

partir do Diagrama Ladder, mostrou-se adequado. A proposta de validação permitiu avaliar o
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comportamento do algoritmo de controle nas posśıveis condições de falha nos sinais f́ısicos de

entrada dos sensores, a fim de determinar condições de risco ou perigo que podem ocorrer no

processo industrial, e portanto, permitindo tomada de medidas de segurança adequadas antes

de sua implementação, ou mesmo se estas já estiverem implementadas nos sistemas baseados

em CLP.

Ainda nessa conjuntura, (OSMAN; BAKAR, 2014) ressaltam a significância do em-

prego da teoria da rede de Petri no contexto atual, visto que sua aplicação aos sistema de

manufatura comporta uma pesquisa muito importante para desenvolver um sistema de controle

de manufatura moderno. A sua utilização para modelagem de sistema dinâmico de eventos

discretos, planejamento e projeto de controle, encontra-se cada vez mais em ênfase. Portanto

o desenvolvimento e aplicação de um emulador de rede de Petri neste trabalho, mostra-se

pertinente.

2.2 Revisão de tecnologia

Tendo em mente o contexto, tecnologias e aplicações do Gêmeo Digital contemplado

pelos estudos levantados anteriormente, foram pesquisados posśıveis tecnologias que permitam a

implementação do projeto. Primeiramente são discutidos softwares que propiciam a construção

e implementação do Gêmeo Digital de bancada MPS Festo.

Há a existência de alguns softwares da Festo que estão relacionados com a simulação

de processos e tecnologias da Indústria 4.0. O software COSIMIR proporciona uma ferramenta

para simulações 3D, planejamento de células de trabalho baseadas em robôs, desenvolvimento

de programas para robôs e controladores (RESEARCH, 2000). Existe também um software mais

atual e flex́ıvel chamado CIROS, o qual possibilita a criação de simulações 3D de automação de

processos e equipamento no âmbito fabril, simulação de processos da vida real e comportamento

de componentes, permite a criação de aplicações de robótica e programação e teste de CLP

(FESTO, 2021).

Apesar da disponibilidade dos softwares da FESTO e uma maior facilidade da simulação

das bancadas MPS da FESTO nestes programas, optou-se por utilizar o software Visual

Components, devido a sua alta flexibilidade, mais opções e versatilidade de simulação de

processos, sua grande otimização e versão atualizada. Além do mais, possui APIs (Application

Programming Interface) que adicionam mais funcionalidades e possibilidades, como o Python

API e OPC-UA API que se mostram bastante úteis para a aplicação deste trabalho.
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Discorrendo um pouco mais sobre o protocolo OPC-UA, é um protocolo de comunicação

máquina a máquina para automação industrial. É citado em (OPC-UA, 2021) que“A Arquitetura

Unificada OPC (UA), lançada em 2008, é uma arquitetura orientada a serviços independente

de plataforma que integra todas as funcionalidades das especificações OPC Classic individuais

em uma estrutura extenśıvel”. É o protocolo padrão utilizado no contexto da Indústria 4.0 e é

suportado por diversos softwares de simulação. Por seu caráter universal, apresenta benef́ıcios

significativos quanto a escalabilidade de software e traz aos projetos replicabilidade além de

oferecer “as melhores condições de digitalização, independente de plataforma e fabricante e

com mecanismos de segurança integrados”. (SIEMENS, 2021). O que se mostra a viabilidade

de sua aplicação de forma a estabelecer a comunicação entre o Gêmeo Digital da bancada

MPS Festo e o emulador de rede de Petri.

Agora sobre o desenvolvimento do emulador, dentre as linguagens de programação

posśıveis, a linguagem Python apresenta-se como a opção mais estimada devido à sua sintaxe

objetiva e enxuta, alta flexibilidade e grande variedade de bibliotecas facilitando e possibilitando

diversas aplicações. No caso, Python possui uma biblioteca do protocolo OPC-UA que contribui

para a implementação deste no emulador, permitindo-se o estabelecimento da comunicação do

emulador com a bancada MPS simulada.

Em śıntese será utilizado o software de desenvolvimento de simulações, Visual Compo-

nents, para projetar, desenvolver e implementar o Gêmeo Digital de uma bancada MPS da Festo.

Os API’s de Python do Visual Components serão utilizados para comandar o comportamento

da simulação e o protocolo OPC-UA será responsável por estabelecer a comunicação entre um

interpretador de rede de Petri desenvolvido em Python e o Visual Components, permitindo o

controle da simulação por um arquivo XML de rede de Petri.

2.3 Rede de Petri

A rede de Petri é uma técnica de modelagem que permite a descrição e análise de

sistemas discretos. Foi originalmente formulada por Carl Adam Petri, que dá nome à técnica, e

desenvolvida a partir do trabalho inicial de Petri sobre o tema, datado de 1962, quando formulou

a base da teoria de comunicação entre componentes asśıncronos de um sistema computacional.

Essa técnica de representação de processos destaca-se das demais representações de fluxos

visuais ou matemáticas para sistemas distribúıdos discretos ao permitir modelar sistemas

paralelos, concorrentes e asśıncronos se forma simples e bastante objetiva.
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Nesse sentido, a rede de Petri, enquanto forma de descrição do procedimento de

controle de sistemas e eventos discretos, sua gráfica é formada por dois principais componen-

tes, um ativo, as transições, e um passivo, os lugares. Tais componentes são representados

respectivamente pelas formas de retângulos e ćırculos, respectivamente. Os lugares, enquanto

componentes passivos, podem assumir estados, capazes de armazenar ou mostrar itens. Nesse

sentido, podem estar vazios ou cheios, e isso será representado visualmente na rede de Petri da

figura 1.

Figura 1 – Representação de rede de Petri simplificada com 2 lugares e uma transição interme-
diária.

Fonte: (CHEN, 2002)

Na rede de Petri, os componentes representados na figura 1 são ligados entre si

por arcos dirigidos, que, por sua vez, podem ser únicos ou múltiplos. Diferentes dos ativos e

distribuidores, os arcos não representam um componente do sistema, mas sim um relacionamento

abstrato entre os componentes (MIYAGI, 1996). Os arcos são representados por linhas, que

denotam uma direcionalidade através de setas em uma das pontas da linha. Logo, os arcos

podem ter duas direcionalidades, sendo orientado de transição ao lugar ou de lugar a transição.

Não é posśıvel, entretanto, que o arco seja orientado de lugar a lugar ou de transição a transição.

Caso isto ocorra durante a criacao de uma rede de Petri, diz-se que o modelo assumido esta

omitindo um nivel de informação.

Por definição, os lugares têm capacidade infinita. Caso contrário, a capacidade é

indicada no próprio Lugar.

Um tipo especial de arco, o arco inibidor, é usado para reverter a lógica de um local

de entrada. Com um arco inibidor, a ausência de uma Marca no local de entrada permite, não

a presença. Além disso, um Arco pode conter um peso espećıfico que, por padrão é 1. Caso um
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Figura 2 – Representação de rede de Petri: Lugares com capacidades distintas.

Fonte: (CHEN, 2002)

Arco com peso 2, por exemplo, saia de um Lugar, ele exigirá 2 Marcas no Lugar de origem para

que a Transição ao qual aponta seja ativada. Caso um Arco com peso 3, por exemplo, saia de

uma Transição, ele alocará 3 Marcas no Lugar de destino após ativada a Transição de origem.

Figura 3 – Representação de rede de Petri: Arco inibidor.

Fonte: (CHEN, 2002)

Na figura 4, pode-se verificar algumas das estruturas chamadas de primitivas no

contexto de redes de Petri. A partir de tais estruturas é posśıvel elaborar redes de Petri

complexas para atender as mais diversas cadeias de eventos.

2.4 Bancada MPS

O termo MPS refere-se a Modular Production System, chamadas de Sistema Modular

de Produção (SMP) em portugues, são sistemas criados pela companhia FESTO, utilizados

como ferramentas de treinamento e cursos de programação para técnicos da área de automação
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Figura 4 – Representação de redes de Petri: Primitivas.

Fonte: (CHEN, 2002)

industrial. Foi concebida para a formação prática e é modelada com a máxima relevância

industrial em automatização e tecnologia de manipulação de peças. Devido às ferramentas e

recursos de aprendizagem dispońıveis no sistema, pode-se criar um ambiente de aprendizagem

ideal para a formação em mecatrônica e para a automatização fabril. Além do mais, foi projetado

de forma a valorizar a formação independente, básica e superior relacionada à indústria na

mecatrônica e na tecnologia de automatização, como também o valor a longo prazo e a robustez

do equipamento.

Devido ao alto ńıvel de modularidade do sistema, pode combinar estações, módulos e

acessórios para criar uma linha de produção personalizada de acordo com os objetivos e cenários

de aprendizagem. As estações são plataformas de produção individuais, as quais realizam

funções espećıficas no processo. Estas são compostas por módulos os quais correspondem aos

componentes e instrumentos que combinados permitem a realização da função espećıfica de

produção. Os acessórios são dispositivos que permitem estender e controlar os MPS.

As bancadas MPS atuam em peças de trabalho padronizadas e desenvolvidas especifi-

camente para esses sistemas. Existem dois conjuntos de peças de trabalho, cada conjunto possui

sua peça base, a qual pode ser manipulada em qualquer das estações, e peças complementares,

as quais podem ser montadas nas peças bases em certas estações.
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O primeiro conjunto de peças, corresponde à peça base, tipo camisa de cilindro,

juntamente com as peças complementares, pistão, mola e tampa. Quando montada a peça

base com as complementares, obtém-se pequenos cilindros pneumáticos. As peças base são

cilindros com espaços internos os quais contemplam três cores posśıveis: vermelho, preto e

prata, viśıveis na figura 5, sendo os de cores vermelho e preto constitúıdos de plástico e o prata

de metal. O diâmetro do cilindro é padrão em 40mm e pode possuir três alturas diferentes,

sendo 22,5 mm, 25 mm e 27,5 mm. As peças complementares correspondem a tampa em cor

azul, a mola e o pistão que dispõe de duas cores (preto e prata). O pistão preto possui altura

de 20mm e acomoda apenas as peças vermelhas e pratas. Já o pistão prata possui altura de

16mm e acomoda apenas as peças pretas. Como adendo, apenas as peças base de altura 22,5

mm e 25 mm podem ser montadas com as complementares.

Figura 5 – (a) Peças base tipo corpo de cilindro e (b) peças complementares.

Fonte: (POLA, 2013)

As estações MPS possuem uma estrutura comum configurada pela planta (onde ficam

instalados os módulos), o painel de controle (interface homem máquina para controle manual

das estações), o gabinete móvel (armação da estação) e um controlador lógico programável.

Alguns módulos comuns também estão presentes nas plataformas. O módulo de unidade de

conservação é utilizado para regular a pressão e filtrar o ar comprimido da estação. O módulo

de sensor óptico receptor e transmissor, que respectivamente, recebe sinal óptico digital de um

sensor transmissor, quando a estação subsequente está pronta para receber a próxima peça

(sinal em 0 define a bancada livre, enquanto sinal em 1 define a bancada como ocupada) e

transmite um sinal óptico digital da mesma maneira.

Ademais, discorre-se sobre as estações MPS. As principais estações MPS dispońıveis
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são nomeadas de acordo com a função espećıfica que realizam e são listadas a seguir com uma

breve descrição:

MPS-Distributing, essa estação é responsável por fornecer as peças de trabalho ao

sistema. Pode-se armazenar até nove peças em um módulo de depósito, atuado por um cilindro

pneumático de dupla ação para sáıda da peça. O módulo de transferência de peças é composto

por um atuador giratório com uma ventosa para a sucção das peças.

MPS-Testing, essa estação recebe peças, realiza a verificação da peça e determina se

a peça será aprovada, prosseguindo para uma próxima estação, ou rejeitada, isolando a peça na

própria plataforma, de acordo com os critérios estabelecidos. Por meio de sensores, é posśıvel

realizar a classificação da peça de acordo com sua cor e em sequência verifica-se a altura da

peça.

MPS-Processing, essa estação recebe peças, transporta as peças de trabalho por meio

de uma mesa giratória, e as processa. É realizada a indexação da peça para verificação da

posição do orif́ıcio, em seguida, é realizada uma simulação de usinagem no orif́ıcio da peça.

Após esse processamento a peça é encaminhada à próxima estação. Essa estação não possui

nenhum atuador pneumático.

MPS-Sorting, essa estação recebe peças, realiza a classificação delas, e as separa por

tipo ou por cor. As peças são detectadas no ińıcio da esteira e levadas até o módulo de parada,

pelo qual é classificada pelos sensores ópticos e indutivo. Após a classificação, as peças são

separadas nas três rampas, de acordo com os critérios estabelecidos na programação.

MPS-Handling Pneumática, essa estação é utilizada como estação de manipulação de

peças. Ela recebe peças e pode também classificá-las, diferenciando as pelas cores, e realizando

a separação das peças. A manipulação é realizada por meio de um manipulador, com uma

garra pneumática espećıfica para essa atividade.

Diante da exposição das principais estações MPS descritas acima, optou-se pela

escolha da estação MPS-Sorting, dispońıvel na figura 6, para prosseguir com o desenvolvimento

do Gêmeo Digital desse sistema.

O objetivo desta plataforma, como foi citado anteriormente, é a classificação e

separação das peças de trabalho pela cor ou pelo tipo da peça. Ademais, discorre-se sobre

os módulos e instrumentos caracteŕısticos desta estação. A figura 7 comporta os principais

elementos da estação Sorting.

O fluxo da plataforma inicia-se com a inserção de uma peça de trabalho no ińıcio

da esteira transportadora onde um dos sensores ópticos difusos detecta a peça de trabalho
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Figura 6 – Estação MPS-Sorting.

Fonte: (FESTO, 2015)

Figura 7 – Estação MPS-Sorting com indicação de seus principais elementos.

Fonte: (FESTO, 2015)

e marca o ińıcio da execução do código de controle. As peças de trabalho devem proceder

individualmente para não prejudicar as funções de manobra dos ramos. Em seguida, a esteira

transportadora é acionada e a peça fica barrada pelo módulo de atuador de parada. Então a

peça é classificada de acordo com a cor e o tipo pelo outro sensor óptico difuso e o sensor

indutivo, respectivamente. Após a classificação finalizada, o módulo desviador definido para a

respectiva peça é acionado, caso a peça não seja alocada para a última rampa, e o módulo de

atuador de parada recua o pistão permitindo a passagem da peça na esteira. O sensor retro
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reflexivo monitora o ńıvel de enchimento das rampas e se alguma rampa atinge sua capacidade

máxima, o módulo atuador de parada não recua o pistão, mesmo depois de classificar a peça

no ińıcio do processo.

Ademais, discorre-se sobre os módulos que não atuam diretamente à peça de trabalho,

mas possuem funções necessárias para o funcionamento dessa estação. Os módulos de sensor

óptico de transmissão e unidade de conservação são comuns às estações, como já explicado

anteriormente. O módulo limitador de corrente é um dispositivo utilizado como proteção no

acionamento do motor da esteira e possui um botão para o acionamento manual do motor.

O módulo do terminal de válvulas é utilizado para o acionamento dos dois desviadores e do

módulo de parada. Já o módulo de terminal I/O é usado para ligar oito entradas e oito sáıdas

digitais, as quais são conectadas a soquetes, também há LEDs instalados nos terminais de

entrada e sáıda, o que facilita o monitoramento do status de comutação.

Em śıntese, a estação Sorting, possui duas partes principais compostas por módulos que

interagem com a peça de trabalho, a parte transportadora e a parte das rampas de separação.

A figura 8 ilustra em maior detalhe essas partes.

Figura 8 – (a) Transportadora e (b) rampas de separação.

Fonte: (FESTO, 2015)
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2.5 Śıntese

O presente caṕıtulo elucidou o contexto da aplicação de Gêmeos Digital como ferra-

mentas e tecnologias pertinentes para o desenvolvimento no sistema de ensino. Além do mais,

evidenciou os benef́ıcios da utilização da linguagem matemática e gráfica de rede de Petri

como forma de descrever o controle do processo baseado em eventos discretos. Também houve

uma descrição mais detalhada da estrutura e funcionamento de redes de Petri, como forma

de estabelecer uma base teórica para melhor entendimento do funcionamento do emulador, o

qual terá seu projeto descrito nos próximos caṕıtulos, que servirá de controle do Gêmeo Digital.

Além disso, o caṕıtulo discorreu em mais detalhes sobre o que são as bancadas MPS Festo,

dando um panorama e breve descrição das principais estações que compreendem o sistema

MPS, e apresentou em detalhes o funcionamento da estação escolhida para desenvolvimento

do projeto de Gêmeo Digital presente no próximo caṕıtulo, como forma de estabelecer uma

base para a composição e construção da forma digital desta plataforma.
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3 Metodologia do Projeto

3.1 Projeto do Gêmeo Digital da Bancada MPS

Este caṕıtulo tem como intuito descrever o panorama da construção, estruturação e

comportamento do Gêmeo Digital da bancada MPS-Sorting pelo software de desenvolvimento

de simulações industriais, Visual Components (Visual Components, 2021) e descrever a metodo-

logia de implementação, do programa de controle a partir de leitura e interpretação de arquivo

XML. Inicialmente é retratado de modo geral as etapas sequenciais determinadas para execução

do projeto. Em seguida, aborda-se em mais detalhes o que cada etapa compreende, bem como

o procedimento e as caracteŕısticas que ela implementa. O detalhamento das etapas de estru-

turação do Gêmeo Digital é baseado nos componentes da plataforma MPS-Sorting, descritos

no caṕıtulo anterior na seção 2.4, enquanto o detalhamento das etapas de desenvolvimento do

Programa é baseado em metodologia UML.

Para uma melhor compreensão do projeto e do sistema do Gêmeo Digital, mostra-se

pertinente expor como se dá a representação dos componentes no Visual Components. Existem

três elementos básicos que fazem parte de um componente: Features, Behaviors e Properties.

As Features caracterizam a representação visual de um componente. Elas são usadas

para conter, agrupar e editar a geometria, bem como definir pontos de referência em um

componente. Os Behaviors definem comportamentos e executam tarefas em um componente.

As Properties são variáveis globais em um componente. As figuras 9, 10, e 11, mostram,

respectivamente, os tipos e opções de Features, Behaviors e Properties, que podem ser

implementados na criação de um componente.

A estrutura de um componente é definida por uma árvore determinada por uma

hierarquia de nós. Cada nó contém um conjunto de Behaviors e Features. O nó raiz é a origem

de um componente e contém o conjunto de Properties deste. Cada nó vinculado ao nó raiz

tem seu próprio deslocamento e junta, que define a amplitude de movimento e os graus de

liberdade desse nó. Behaviors em nós diferentes podem ser conectados e referenciados uns aos

outros. Os Features em nós formam uma hierarquia e podem ser aninhados uns com os outros

para realizar operações que manipulam a geometria de um recurso e do próprio objeto.

A Figura 12 sintetiza as etapas do projeto do Gêmeo Digital:

A primeira etapa compreende a definição dos componentes, a qual é responsável pela
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Figura 9 – Painel de Features.

Fonte: (Visual Components, 2021)

importação das geometrias as quais estabelecem as Features de cada elemento que compõem

a bancada em questão. Essas Features serão reorganizadas de modo a determinar como será a

composição de cada componente dentro do Visual Components, assim como a as juntas de

certos componentes que possuem alguma função na manipulação da peça de trabalho.

A segunda etapa estabelece as caracteŕısticas de cada componente. Isso estende-se no

âmbito da definição das Behaviors e Properties. A implementação das Properties será aplicada

para adicionar variáveis globais a certos componentes, as quais serão vinculadas ao script

que será implementado na terceira etapa e também, para definir as restrições, velocidades e

acelerações das juntas dos componentes atuadores. Ademais, serão implementadas restrições

f́ısicas das juntas dos componentes atuadores. Já a implementação de Behaviors, refere-se: ao

estabelecimento das interfaces de cada componente, isto é, a conexão dos componentes com

fluxo da peça de trabalho e de sinais entre componentes; à definição das rotas nos componentes

que serão responsáveis pelo fluxo da peça de trabalho; a implementação de sensores que

serão vinculados a certos sinais; ao estabelecimento dos sinais auxiliares necessários para o

funcionamento da simulação, bem como os sinais de entrada e sáıda que serão trocados com

o emulador, depois da implementação da última etapa de conectividade OPC-UA; por fim, à

definição de servo controladores os quais serão vinculados às juntas dos atuadores, permitindo

a simulação do movimentos destes.



Caṕıtulo 3. Metodologia do Projeto 21

Figura 10 – Painel de Behaviors.

Fonte: (Visual Components, 2021)

A terceira etapa compreende a implementação de um Behaviors, fundamental para

o funcionamento da simulação, o Python Script, disponibilizado pelo API Python do Visual

Components. Este será responsável pela aplicação da lógica de funcionamento e da tratativa de

sinais do Gêmeo Digital durante a simulação e troca dos sinais com o emulador. Será aplicado

em apenas um componente central, facilitando a elaboração do algoritmo.

A quarta e última etapa refere-se à conexão entre o Gêmeo Digital e o emulador de

rede de Petri, a partir do protocolo OPC-UA.

A seguir, discorre-se em mais detalhes cada etapa do projeto do Gêmeo Digital.
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Figura 11 – Painel de Properties.

Fonte: (Visual Components, 2021)

3.1.1 Definição dos componentes

Inicialmente, para definição dos componentes, é necessário importar a geometria das

peças. Para tal, será utilizado o CAD da bancada MPS-Sorting, disponibilizado pela própria

Festo para o laboratório de mecatrônica da Universidade de São Paulo. O Visual Components

importa as geometrias advindas de um arquivo CAD, de modo a formar um único componente

composto de diversas Features. Logo se faz necessário extrair os componentes a partir dessa

estrutura inicial de forma a organizar e separar as Features para formar os componentes

individualmente. Além disso, para os componentes que possuem fluxo da peça de trabalho,

faz-se necessário adicionar Features de coordenadas as quais são chamadas de Frames, para

com isso, posteriormente definir os Behaviors de rotas do fluxo das peças de trabalho e da

posição de sensores.

Partindo-se dos 15 componentes principais da plataforma MPS-Sorting apresentados

na seção 2.4, é descrito a seguir quais comporão um único componente e quais terão juntas.

Os componentes são: planta, painel de controle, gabinete móvel, terminal de válvulas, módulo

limitador de corrente, terminal I/O (input/output), sensor óptico receptor, unidade de conser-

vação, módulo atuador de paradas, módulos desviadores, esteira transportadora, rampas de

separação, sensores ópticos difusos, sensor indutivo e sensor retro reflexivo.

O primeiro componente será definido pela composição dos módulos que não interagem

fisicamente ou sensorialmente com as peças de trabalho. Este será composto pelos módulos:

planta, painel de controle, gabinete móvel, terminal de válvulas, módulo limitador de corrente,

terminal I/O, sensor óptico receptor, unidade de conservação. O componente formado será
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Figura 12 – Projeto do Gêmeo Digital proposto

apenas ilustrativo e servirá de base para os demais componentes.

O segundo componente será composto pela esteira transportadora, pelos dois sensores

ópticos difusos, pelo sensor indutivo e pelo sensor retro reflexivo. Visto que, como será descrito

posteriormente, os locais onde os sinais serão captados estarão definidos pela posição destes

sensores na esteira transportadora e nas rampas separadoras.

As rampas separadoras darão origem a 3 componentes individuais, sendo cada compo-

nente uma das rampas separadoras. Os dois módulos desviadores e o módulo atuador de parada

compõem individualmente o próprio componente e possuem juntas. O componente atuador de

parada possui uma junta prismática, a qual translada um cilindro para simular o bloqueio da

passagem da peça de trabalho. Os dois componentes desviadores possuem uma junta rotativa

que permite a rotação de um braço desviador, simulando o redirecionamento do curso da peça

de trabalho para alguma das rampas separadoras.

Faz-se importante discorrer sobre as peças de trabalho processadas na bancada. O

modelo da peça de trabalho é extráıdo do CAD da bancada fornecido. A partir desse modelo
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são determinados três componentes que retratam as três peças base tipo corpo de cilindro,

ilustradas na Figura 8.

Além da definição dos componentes extráıdos do CAD importado, será utilizado um

componente auxiliar disponibilizado pelo Visual Components chamado de Advanced Feeder o

qual terá a função de gerar as peças de trabalho que entrarão na bancada durante a simulação.

3.1.2 Definição de Behaviors e Properties

A definição das Properties se aplicará com a incorporação de uma variável global para

cada um dos três componentes que definem as peças de trabalho. A função dessa propriedade

adicionada será a de conter a informação sobre a cor do componente. Estas variáveis serão

utilizadas, posteriormente, no Python Script. Ademais, é necessário definir as restrições e

velocidades dos componentes atuadores do processo, estes são: os dois módulos desviadores e o

módulo atuador de parada. Para os módulos desviadores serão definidas propriedades referentes

à junta de rotação, sendo esta restrita a uma rotação entre 0 e 55 graus, com a velocidade

e aceleração mantida a padrão, respectivamente, de 100°/s e de 500°/s2. Já o componente

de módulo atuador de parada terá a propriedade de translação da junta prismática com um

deslocamento ḿınimo de 0 mm e máximo de 13 mm, com a velocidade e aceleração mantida a

padrão, respectivamente, de 100mm/s e de 500mm/s2.

Sobre a definição de Behaviors, inicialmente será definido o interfaceamento. Este

compreende a conexão f́ısica entre os componentes que comportam o fluxo da peça de trabalho

e a conexão de sinais entre componentes. As interfaces definirão fluxo de entrada e fluxo de

sáıda da peça, utilizando os Frames definidos anteriormente. O componente correspondente à

esteira transportadora terá uma interface de entrada para fluxo de material e três interfaces

de sáıda de fluxo de material, também terá mais três interfaces de sinais. Estas interfaces

serão conectadas respectivamente com o a interface de sáıda de fluxo de material do Advanced

Feeder, com cada interface de entrada de fluxo de material das três rampas separadoras e com

cada uma das três interfaces de sinais de cada rampa separadora.

Posteriormente, serão definidas rotas de fluxo da peça de trabalho sobre alguns

componentes. Estes são: a esteira transportadora e cada um dos três componentes das rampas

separadoras.

Ademais, será definido os Behaviors do tipo ”sensores”. Estes Behaviors tem como

objetivo identificar a passagem da peça de trabalho nas rotas de fluxo de material e serão
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utilizados de forma análoga aos sensores reais da bancada. Serão utilizados 5 sensores do

tipo Raycast que serão posicionados em certos Frames, identificados posteriormente. Esse

tipo de sensor é acionado quando uma peça de trabalho corta o eixo z do Frame em que foi

definido. Dois desses Behaviors estarão no componente da esteira transportadora, o primeiro

será posicionado na direção do primeiro sensor óptico difuso e o segundo será posicionado na

direção do segundo sensor óptico difuso e do sensor indutivo. Cada um dos outros três Behaviors

estarão em uma das rampas separadores e sua função será análoga ao sensor retro-reflexivo.

Acerca da definição de sinais, estes serão divididos em dois grupos: os sinais de entrada

e sáıda, que serão mapeados com os sinais do emulador de rede de Petri, e os sinais auxiliares,

que serão utilizados apenas no próprio gêmeo digital. O primeiro grupo de sinais será baseado

nos próprios I/Os da estação real, e cada um está relacionado com alguma funcionalidade da

estação. A tabela 1 apresenta a relação de I/Os e as funcionalidades da estação MPS-Sorting.

Tabela 1 – Terminal de I/Os - Estação MPS Sorting.

Terminal de I/O
Entradas digitais

(IN)
Descrição

Terminal de I/O
Sáıdas digitais

(OUT)
Descrição

DI 0
Peça dispońıvel

no ińıcio da esteira
DO 0 Liga esteira

DI 1 Peça metálica DO 1 Avança atuador 1
DI 2 Peça não preta DO 2 Avança atuador 2

DI 3 Rampa cheia DO 3
Recua atuador
de parada

DI 4 Atuador 1 recuado DO 4
DI 5 Atuador 1 avançado DO 5
DI 6 Atuador 2 recuado DO 6
DI 7 Atuador 2 avançado DO 7 Estação ocupada

Fonte: (POLA, 2013)

Nota-se que o terminal de I/Os descrito na tabela está com o referencial do controlador

da estação, pois os sinais denominados com“DI”são os de entrada do controlador e sáıda do

Gêmeo Digital e os sinais denominados com“DO” são os de sáıda do controlador e entrada do

Gêmeo Digital. Optou-se por utilizar o mesmo nome dos sinais como apresentado na imagem

para maior facilidade na identificação e, posteriormente, pareamento dos sinais entre o Gêmeo

Digital e o emulador. Já com relação aos sinais auxiliares, estes serão definidos durante a

implementação da simulação.

Por fim, serão definidos os Behaviors do tipo servo controladores os quais possibilitaram
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o movimento dos componentes atuador linear, módulo desviador 1 e módulo desviador 2, durante

a simulação.

3.1.3 Implementação do algoritmo

A terceira etapa do projeto será a implementação de um algoritmo que descreve a

lógica básica de funcionamento do Gêmeo Digital, isto é, de acordo com as funcionalidade dos

sinais 1, estabelece-se a lógica de mudança dos sinais de sáıda da simulação e executa-se as

funções da estação de acordo com os sinais de entrada da simulação.

Este algoritmo é implementado pelo Behavior de Python Script, assim como foi citado

anteriormente, será aplicado em apenas um componente central. Este componente será a

esteira transportadora, o qual também compreenderá, além de outros Behaviors, o primeiro

grupo de sinais definidos (de entrada e sáıda). O script utilizará alguns Behaviors e Properties

criados anteriormente nos componentes para parte de seu funcionamento.

O algoritmo será baseado em duas funções principais. A primeira será responsável por

verificar se há a mudança de algum sinal, e se houver, executa alguma outra ação. E a segunda

será responsável pela simulação que será definida dentro de um loop constante e executará as

funções de movimentação dos atuadores e do fluxo da peça de trabalho.

3.1.4 Conectividade OPC-UA

A quarta e última etapa corresponde ao mapeamento e pareamento dos sinais de

entrada e sáıda definidos anteriormente, para com o os sinais do definido no emulador de rede

de Petri, por meio do protocolo de comunicação OPC-UA. Utiliza-se o API OPC-UA dispońıvel

no Visual Components, proporcionando para o Gêmeo Digital a caracteŕıstica de conectividade,

permitindo a comunicação com o emulador.

3.2 Projeto do Emulador de rede de Petri

O projeto do Emulador de rede de Petri tem como objetivo claro o recebimento de

um arquivo XML (caracterizado por marcas relativas a uma rede de Petri) a ser processado

e servir como estrutura para a implementação de um Sistema a Eventos Discretos capaz de

controlar uma Máquina (neste caso uma representação visual) via protocolo OPC-UA.

Para uma rede de Petri como a dispońıvel na Figura 13, o arquivo XML correspondente,

desenvolvida a partir do software PIPE 4.3 (Platform Independent Petri net Editor, 2009) seria
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tal qual o dispońıvel na Figura 14.

Figura 13 – Exemplo de rede de Petri.

Figura 14 – XML (Extensible Markup Language) associado à Figura 13.

Para a implementação do Emulador de rede de Petri, utilizou-se a linguagem de

programação Python. Inicialmente foram revisados os objetivos do programa com base na

metodologia UML.

O diagrama da Máquina de Estados, encontrado na Figura 15, tem por objetivo

representar os posśıveis caminhos que o programa pode percorrer. Dado que existe uma

comunicação asśıncrona entre o emulador de rede de Petri (que representa justamente um

sistema de eventos discretos) e o gêmeo digital (que por sua vez representa um sistema

cont́ınuo) faz-se necessária a criação de estados de espera, cujas transições estão representadas

no diagrama de Máquina de Estados.
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Figura 15 – Diagrama de Máquina de Estados UML.

Neste caso, é esperada, conforme Figura 15 uma etapa em que o programa aguarda

a leitura correta de um arquivo XML, para que então ocorra o processamento do arquivo, a

inicialização do Servidor OPC-UA, seguida por fim de um ciclo de alteração e leitura dos I/Os.

Por sua vez, o diagrama de Componentes, encontrado na Figura 16, foi elaborado a

fim de estrututar o funcionamento e a interação das frentes do programa, bem como representar

o protocolo OPC-UA que faz interface entre o emulador e o Gêmeo Digital.

Figura 16 – Components Diagram UML.
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Para a implementação de todas as três frentes propostas (interface do usuário, in-

terpretador de rede de Petri e servidor OPC-UA), foram elencadas algumas dependências de

bibliotecas em Python a serem utilizadas, dentre elas:

PySimpleGUI para a implementação de uma Interface para o Usuário de forma

simplificada. A interface tem como proposta a definição de parâmetros essenciais para o

estabelecimento do protocolo OPC-UA bem como os arquivos de entrada do usuário e de

variáveis de controle do programa, além de possibilitar ao usuário a escolha de um arquivo

compat́ıvel XML.

freeopcua para a implementação de um servidor OPC-UA, permitindo a troca de

informação entre o emulador de rede de Petri e o Gêmeo Digital.

xml para a interpretação hierárquica (parse) do arquivo XML inserido pelo usuário.

A estrutura da rede de Petri é, por sua vez, implementada a partir de Classes e Objetos

desenvolvidos no programa. Os lugares e transições são genericamente definidos de modo a

serem flexibilizados de acordo com um arquivo de entrada do usuário contendo a descrição da

rede de Petri. A rede de Petri por sua vez é inicializada conforme estado inicial definido pelo

arquivo inserido sendo estruturada de acordo com o Diagrama de Classes UML dispońıvel na

Figura 17.

Figura 17 – Emulador de rede de Petri - Diagrama de Classe UML.

Por fim, conforme proposto pelo diagrama de Componentes da Figura 16, estabeleceu-
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se mais um Diagrama de Classes UML, dispońıvel na Figura 18 a fim de estruturar as variáveis

do programa que devem ser consultadas e atualizadas ao longo de toda a execução do mesmo.

Além das informações dispońıveis na Figura 18, é na Classe ExchangeableVariables onde são

armazenadas constantes do programa, tais como cores da interface e textos de introdução a

serem apresentados na interface do usuário.

Figura 18 – Variáveis do Programa - Diagrama de Classe UML.
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4 Desenvolvimento

Este caṕıtulo documenta a implementação de ambas as partes do trabalho, do Gêmeo

Digital da bancada MPS-Sorting e do emulador de rede de Petri, baseando-se na estrutura

de projeto definida nos caṕıtulos anteriores. Além do mais, o caṕıtulo contempla a integração

das duas partes por meio do protocolo de comunicação máquina a máquina, OPC-UA. Uma

descrição mais detalhada do funcionamento geral do processo é posta. Ela engloba uma

explicação do mapeamento de sinais de ambas as partes e da correlação e fluxo da lógica básica

estabelecida na estrutura dos projetos.

4.1 Gêmeo Digital da Bancada MPS

A implementação do desta seção seguiu a estrutura do fluxograma do projeto do

Gêmeo Digital da bancada MPS-Sorting da Figura 12. A primeira parte de execução do projeto

foi a definição dos componentes, a segunda parte foi a definição de Behaviors e Properties, a

terceira parte foi a implementação do algoritmo e por fim, o estabelecimento da conectividade

OPC-UA.

4.1.1 Definição dos componentes

Iniciou-se a construção do Gêmeo Digital com a importação da geometria da bancada

MPS-Sorting por meio do arquivo CAD fornecido pelo fabricante. A Figura 19 expõe o

componente gerado com a importação da geometria.

Após a importação foi necessário redefinir a base de coordenadas do componente. Foi

posta na roda esquerda posterior da estrutura do gabinete móvel. Com a importação do arquivo

CAD, foi gerado um único componente que corresponde a todos os elementos da bancada

MPS-Sorting, definido por apenas uma Feature como é ilustrado na Figura 20.

Nota-se no canto inferior esquerdo na janela de Component Graph, a árvore de Features

do componente em questão que existe apenas a Feature“Collapsed0”. O painel Component

Graph fornece um esboço do componente selecionado, incluindo seus nós, Behaviors, Properties

e Features. Para que seja posśıvel definir diferentes componentes para, posteriormente, definir

os seus Behaviors e Properties, foi preciso derivar essa única Feature em diversas outras que

descrevem a geometria de cada forma individual de cada elemento da bancada MPS-Sorting.



Caṕıtulo 4. Desenvolvimento 32

Figura 19 – CAD importado.

Figura 20 – Componente gerado pela importação do CAD.

Para isso, utilizou-se o comando de ”Explode”, gerando 663 features. A árvore de features ficou

conforme a Figura 21:

Tendo cada elemento e geometria definida por uma Feature, iniciou-se o processo de

seleção destas para extráı-las como um novo componente. Para todo novo componente gerado,

foi definido um sistema de coordenadas para o próprio. A ordem de definição dos componentes

foi baseada no número de features que cada componente compreende, os primeiros foram os

com menos features. Assim, facilitou-se para definir o último componente, que é definido pela
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Figura 21 – Component Graph da bancada importada após a aplicação do ”Explode”.

maioria das features, o qual corresponde a todos os elementos da bancada MPS-Sorting que

não interagem diretamente com a peça de trabalho. O primeiro componente extráıdo foi a

peça de trabalho.

A Figura 22, ilustra o componente genérico gerado para a peça de trabalho tipo corpo

de cilindro. A partir desse componente genérico, foram geradas três cópias desse arquivo com

o objetivo de definir as três diferentes peças de trabalho, estabelecendo os materiais e cores

das respectivas peças na segunda etapa de definição de Behaviors/Properties.

O segundo componente extráıdo foi o módulo atuador de parada, denominado como

atuador linear. Uma das Features que formaram o componente foi extráıda como uma junta e

as demais foram fundidas em apenas uma Feature, para melhor organização da estrutura da

geometria do componente. A junta definida corresponde ao cilindro que executa o movimento

de translação linear, responsável por simular o bloqueio da passagem da peça de trabalho na

esteira transportadora. O componente do atuador linear e seu Component Graph podem ser

observados na Figura 23.
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Figura 22 – Componente genérico da peça de trabalho.

Figura 23 – Módulo atuador de parada e seu Component Graph.

O terceiro e quarto componentes representam os dois módulos desviadores e foram

definidos de forma igual. Para cada um foi definida uma junta que executa o movimento de

rotação, responsável por simular o desvio da peça de trabalho para as rampas separadoras. As

Features que compunham a junta foram fundidas em uma única Feature e as que compunham

o resto do componente foram fundidas em uma outra. A Figura 24 exibe o componente e seu

Component Graph:

O quinto, sexto e sétimo componentes definidos foram as três rampas separadoras. Da

mesma forma, para cada rampa, suas Features foram fundidas em apenas uma. Além disso, para

cada rampa foi adicionado um conjunto de Frames, os quais serão utilizados posteriormente
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Figura 24 – Módulo desviador e seu Component Graph.

para definir Behaviors do tipo interface, sensores e rotas de fluxo de material. A Figura 25

exibe o componente de uma rampa e seu Component Graph:

Figura 25 – Rampa separadora e seu Component Graph.

O oitavo componente definido foi o módulo da esteira transportadora, composta pela

esteira transportadora, pelos dois sensores ópticos difusos, pelo sensor indutivo e pelo sensor

retro reflexivo. Também foi definido para esse componente um conjunto de Frames que serão

utilizados posteriormente para definir Behaviors do tipo interface, sensores e rotas de fluxo

de material. Do mesmo modo que os componentes definidos anteriormente, suas Features

foram fundidas em apenas uma. A Figura 26 representa este componente, assim como seu

Component Graph.

Posteriormente, foi extráıdo um componente adicional, a partir de uma das Features
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Figura 26 – Esteira transportadora e seu Component Graph.

restantes. Este componente compreende um Led localizado no sensor óptico receptor e foi

criado com o objetivo de indicar se a estação está ocupada ou não. A ideia é que sua cor

mude para verde se a estação estiver livre ou mude para vermelho se estiver ocupada, essa

mudança da cor do material do componente foi implementada no Python Script posteriormente.

A localização desse componente na estação é ilustrada na Figura 27.

Figura 27 – Componente Led.

O décimo componente foi nomeado como“Conjunto Inerte”e foi definido com as Fea-

tures restantes após a definição dos componentes anteriormente, estabelecendo a composição

dos módulos que não interagem fisicamente ou sensorialmente com as peças de trabalho. Neste

caso, suas Features foram deixadas de forma individual, pois caso houvesse uma necessidade

de criar um outro componente a partir destes elementos, bastaria extrair as Features corres-
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pondentes como um novo componente. A Figura 28 ilustra esse componente e seu Component

Graph.

Figura 28 – Conjunto Inerte e seu Component Graph.

Além do mais, implementou-se mais três componentes, denominados como compo-

nentes auxiliares. Estes foram implementados com o objetivo de adicionar uma funcionalidade

extra para a simulação, a de acúmulo de peças nas rampas separadoras. A ideia por trás

desses componentes foi de agirem como esteiras transportadoras com capacidade zero, as

quais seriam conectadas ao final das rampas separadoras por meio de interfaces. Assim quando

estas conexões estivessem ligadas, as peças de trabalho acumulariam na rampa, e quando

estivessem desligadas, as peças de trabalho desapareceriam da simulação. Será abordado mais

à frente essa lógica nas etapas de definição de Behaviors/Properties e na de implementação do

algoritmo. De todo modo, para criação desse componente utilizou-se uma estrutura básica de

um cubo dispońıvel no próprio software e foi adicionado um Frame, o qual seria utilizado para

definir os Behaviors tipo interface e rota de fluxo de material. Nota-se que esses componentes

permaneceram com a opção de visibilidade desativada, já que não fazem parte fisicamente da

estação mas apenas executam uma funcionalidade para uma simulação verosśımil. A Figura 29

mostra um desses componentes com a opção de visibilidade ativada apenas para efeito de

documentação.

Por fim, foi adicionado ao Gêmeo Digital o componente abordado anteriormente, o
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Figura 29 – Componente auxiliar e seu Component Graph.

Advanced Feeder. A Figura 30 representa este componente.

Figura 30 – Advanced Feeder.

Depois de criados todos os componentes utilizados no Gêmeo Digital, iniciou-se a

etapa de definição de Behaviors e Properties.

4.1.2 Definição de Behaviors e Properties

4.1.2.1 Implementação de Properties

Esta etapa iniciou com a implementação de certas Properties nos três componentes

genéricos da peça de trabalho. Com isso, para cada um, foi definida uma variável global do
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tipo string nomeada como “cor” e então seu valor foi editado para “red”, “metal”, “black”.

Dessa forma, estas variáveis poderiam ser utilizadas, posteriormente, pelo Python Script. Em

sequência, os materiais de cada um desses componentes foram alterados para que visual-

mente correspondessem ao valor definido na variável “cor”. As figuras 31, 32 e 33 ilustram os

componentes das peças de trabalho e suas Properties.

Figura 31 – Componente genérico da peça de trabalho vermelha.

Figura 32 – Componente genérico da peça de trabalho metálica.

Após essas alterações, foi implementado uma Property no componente da esteira

transportadora, sendo uma variável global do tipo boolean denominada“Accumulate Mode”.

A ideia por trás dessa variável é permitir que o usuário configure seu valor, deste modo,

posteriormente o Python Script leria está variável e de acordo com seu valor, ativaria ou

desativaria o modo de acúmulo de peças de trabalho nas rampas separadoras durante a

simulação.
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Figura 33 – Componente da peça de trabalho preta.

Sobre os componentes atuadores, suas restrições foram configuradas de acordo com o

descrito no projeto. Para o módulo atuador de parada a propriedade de translação da junta

prismática foi configurada com um deslocamento ḿınimo de 0 mm e máximo de 13 mm, sua

velocidade e aceleração permaneceu a padrão do software. Para os módulos desviadores a

propriedade de rotação da junta rotacional foi configurada com um deslocamento de no ḿınimo

0 graus e no máximo 55 graus, suas velocidades e acelerações também permaneceram a padrão.

Ademais, as propriedades de dimensão do componente Advanced Feeder foram altera-

das para que visualmente se adequasse ao tamanho da estação. A Figura 34, demonstra como

ficou este componente.

Figura 34 – Advanced Feeder modificado.

Finalizada a implementação e alteração de certas Properties, partiu-se para a imple-
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mentação de Behaviors, iniciando com a definição de interfaces.

4.1.2.2 Definição de interfaces

Todas as interfaces adicionadas nesta etapa foram do tipo“One To One”, isto é, se

conectam apenas com uma outra interface. Primeiramente foram definidas as interfaces do

componente central, a esteira transportadora. Iniciou-se a implementação com as interfaces de

conexão f́ısica entre componentes, as quais determinam o sentido do fluxo da peça de trabalho.

Uma interface foi nomeada como“BeginInterface”, foi configurada com sentido de

entrada de material e definida sobre o Frame de nome“BeginFrame”, no ińıcio da esteira trans-

portadora. Esta interface seria conectada com a interface de sáıda de material do componente

Advanced Feeder, possibilitando a passagem de peça de trabalho para a esteira transportadora.

Foram adicionadas mais três interfaces nomeadas respectivamente de “EndInter-

face1”,“EndInterface2”e“EndInterface3”, com a configuração de sentido de sáıda de material,

definidas, respectivamente, pelos Frames “ExitForRamp1Frame”,“ExitForRamp2Frame”e“Exit-

ForRamp3Frame”. Essas interfaces seriam conectadas com interfaces de entrada de material de

cada rampa separadora. Possibilitando a sáıda das peças de trabalho para as rampas separadoras.

Depois da definição das interfaces de fluxo de material, foram implementadas as

interfaces de sinais na esteira transportadora. Para estas, não foi necessário vinculá-las a

um Frame do componente. Então, foram adicionadas três interfaces do tipo sinal, nomeadas

de “DI3 Aux1interface”, “DI3 Aux2interface” e “DI3 Aux3interface”. Estas interfaces seriam

vinculadas com três sinais os quais seriam criados e depois conectadas com outras interfaces

de cada rampa separadora. Isso possibilita que algum sinal de uma rampa separadora que

esteja vinculada a sua respectiva interface de sinal, esteja relacionado ao sinal da esteira

transportadora que esteja vinculada a sua respectiva interface de sinal. Portando se um valor do

sinal da rampa separadora muda, o sinal relacionado da esteira transportadora também muda.

Com as interfaces da esteira transportadora definidas. Partiu-se para a definição das

interfaces das rampas separadoras.

As interfaces das rampas separadoras foram definidas de modo simétrico para cada

rampa. Primeiramente foram implementadas as interfaces de fluxo de material e em sequência

as interfaces de sinais.

Para cada rampa, definiu-se uma interface de fluxo de material com sentido de

entrada, com os nomes respectivos de“BeginRamp1Interface”,“BeginRamp2Interface”e“Be-
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ginRamp3Interface”, as quais foram vinculadas, respectivamente, aos Frames iniciais de cada

rampa de nomes “InitialRamp1Frame”, “InitialRamp2Frame” e “InitialRamp3Frame”. Como

comentado anteriormente, estas interfaces foram conectadas com as três interfaces respectivas

de sáıda de material da esteira transportadora.

Ademais, para cada rampa, definiu-se uma interface de fluxo de material com sentido de

sáıda para cada rampa com os nomes respectivos de“EndRamp1Interface”,“EndRamp2Interface”

e“EndRamp3Interface”, as quais foram vinculadas, respectivamente, aos Frames finais de cada

campa de nomes“EndRamp1Frame”,“EndRamp2Frame”e“EndRamp3Frame”. Estas interfaces

seriam conectadas ou desconectadas com as interfaces de entrada de material dos componentes

auxiliares comentados anteriormente, possibilitando assim a ativação ou desativação do modo

de acúmulo de peças de trabalho nas rampas separadoras.

Prosseguiu-se, então, com a adição de uma interface de sinal para cada rampa, estas

foram nomeadas de“SinalAux1Interface”,“SinalAux2Interface”e“SinalAux3Interface”. Assim

como descrito anteriormente, essas interfaces foram conectadas com as três interfaces de sinais

da esteira transportadora.

Com todas as interfaces das rampas separadoras definidas. Partiu-se para a definição

das interfaces dos três componentes auxiliares. Para cada um destes componentes, foi adicionado

apenas uma interface de fluxo de material com sentido de entrada. Os nomes dessas interfaces

foram deixadas como padrão sendo “OneToOneInterface” e foram vinculadas aos Frames

respectivos de cada componente de nomes“In flowFrame”.

Finalizado a definição de todas as interfaces. Iniciou-se a definição das rotas de fluxo

de material, chamados de paths.

4.1.2.3 Definição dos paths

Todas as rotas adicionadas nesta etapa foram do tipo“One Way Path”, isto é, existe

apenas um sentido no fluxo de material. Em um primeiro momento foram definidos os paths

do componente central, a esteira transportadora. Foram implementadas quatro dessas rotas

neste componente. Elas seriam posteriormente declaradas no Python Script, onde executaria a

lógica de qual caminho a peça de trabalho seguiria.

O primeiro path foi denominado como“BasicPath”e foi definido na respectiva ordem

dos Frames:“BeginFrame”e“ReadFrame”. Essa rota é acessada por todas as peças de trabalho

que são produzidas pelo Advanced Feeder e entram na esteira transportadora.
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Os outros três paths, foram denominados como“Path1”,“Path2”e“Path3”e foram de-

finidos na respectiva ordem dos frames:“GenericInitialRampFrame”,“InitalRamp1Frame”e“Exit-

ForRamp1Frame”;“GenericInitialRampFrame”,“InitalRamp2Frame”e“ExitForRamp2Frame”;

“GenericInitialRampFrame”,“InitalRamp3Frame”e“ExitForRamp3Frame”. A peça de trabalho é

desiguinada para um desses caminhos pelo Python Script de acordo com a lógica de separação

das cores introduzida por uma rede de Petri no emulador.

Conclúıdo os paths da esteira transportadora. Implementou-se rotas para cada rampa se-

paradora. Estas foram nomeadas respectivamente de“Ramp1Path”,“Ramp2Path”e“Ramp3Path”

e foram definidos pelos respectivos Frames de cada rampa:“InitialRamp1Frame”,“Ramp1SensorFrame”

e“EndRamp1Frame”;“InitialRamp2Frame”,“Ramp2SensorFrame”e“EndRamp2Frame”;“Initial-

Ramp3Frame”, ”Ramp3SensorFrame“ e“EndRamp3Frame”. As peças de trabalho que sáıssem

da esteira transportadora entrariam respectivamente nos paths da cada rampa separadora.

Tendo as rotas das rampas finalizadas, implementou-se as rotas dos três componentes

auxiliares. As rotas desses componentes foram deixadas com o nome padrão de“OneWayPath”

e foram definidas pelo Frame “In flowFrame”respectivo de cada um desses componentes. Como

comentado anteriormente, essas rotas foram configuradas para ter capacidade zero, permitindo

assim aplicar a lógica de acúmulo de peças de trabalho nas rampas separadoras.

Finalizado a definição de todos os paths. Iniciou-se a definição dos sensores.

4.1.2.4 Definição de sensores

Assim como definido pelo projeto, foram adicionados cinco sensores do tipo Raycast.

Dois destes sensores foram implementados no componente da esteira transportadora e os outros

três foram implementados um em cada rampa separadora.

O primeiro sensor da esteira transportadora foi denominado como“SensorOpticoDi-

fuso1”e definido no Frame “BeginFrame”na direção do primeiro sensor óptico difuso com o

intuito de ser ativado se houver alguma peça de trabalho no ińıcio da esteira, de forma análoga

ao sensor real. O segundo sensor foi denominado“SensorConjuntoLeCores”e definido no Frame

“ReadFrame”na direção do segundo sensor óptico difuso e do sensor indutivo com o intuito de

ser ativado quando a peça de trabalho chegar na posição de leitura dos sensores.

Com relação aos três sensores aplicados nas rampas separadoras, estes foram deno-

minados como“SensorRetroreflexivoParte1”,“SensorRetroreflexivoParte2”e“SensorRetrorefle-

xivoParte3”, foram definidos nos Frames respectivos de cada rampa: “Ramp1SensorFrame”,
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“Ramp2SensorFrame” e “Ramp3SensorFrame”, na mesma direção do sensor retro-reflexivo.

Dessa forma, quando alguma peça cruzar qualquer um destes sensores seria como se o sensor

retro-reflexivo real fosse ativado.

Conclúıdo a definição de todos os sensores. Iniciou-se a definição dos sinais.

4.1.2.5 Definição de sinais

Como definido pelo projeto, a implementação de sinais dividiu-se em dois grupos: os

sinais de entrada e sáıda, respectivos aos terminais I/Os da tabela 1, e os sinais auxiliares para

funcionamento da simulação. Todos os sinais definidos foram vinculados com o Python Script e

alguns destes também foram vinculados com os sensores definidos anteriormente, isto significa

que se o sensor for acionado pela passagem de uma peça de trabalho, o sinal vinculado a esse

sensor é ativado, caso o sensor não seja acionado o sinal permanece desativado.

Iniciou-se com a definição do primeiro grupo de sinais. Todos estes sinais são do tipo

boolean e foram adicionados ao componente central, esteira transportadora. Logo, os sinais de

sáıda da simulação e entrada para o emulador foram nomeados como:“DI0 Peça dispońıvel no

inicio da esteira”,“DI1 Peça metálica”,“DI2 Peça não preta”,“DI3 Rampa cheia”,“DI4 Atuador

1 recuado”,“DI5 Atuador 1 avançado”,“DI6 Atuador 2 recuado”e“DI7 Atuador 2 avançado”.

Os sinais de sáıda do emulador e entrada para a simulação foram nomeados como:“DO0 Liga

esteira”,“DO1 Avança atuador 1”,“DO2 Avança atuador 2”,“DO3 Recua atuador de parada”

e “DO7 Estação ocupada”. Ademais, o sinal denominado “DI0 Peça dispońıvel no inicio da

esteira” foi vinculado com sensor“SensorOpticoDifuso1” implementado anteriormente.

O segundo grupo de sinais foi definido em sequência. Para o componente da esteira

transportadora foram criados quatro sinais auxiliares do tipo boolean e um sinal do tipo

component. O primeiro sinal auxiliar do tipo boolean foi denominado“Sinal AuxBoolean”e

o sinal do tipo component foi denominado“Sinal Componente”, ambos foram vinculados ao

sensor “SensorConjuntoLeCores”. Quando este sensor for acionado, além de ativar o sinal

“Sinal AuxBoolean”ele ativará o sinal de component “Sinal Componente”que passará a ter em

seu valor o componente que acionou o sensor, esta informação será usada no Python Script para

possibilitar a leitura das propriedades de cor, definidas anteriormente, das peças de trabalho.

Os outros três sinais boolean auxiliares foram denominados como“DI3 Aux1”,“DI3 Aux2”e

“DI3 Aux3”, estes foram vinculados respectivamente as interfaces de sinais“DI3 Aux1interface”,

“DI3 Aux2interface”e“DI3 Aux3interface”, definidas anteriormente.
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Com os sinais auxiliares da esteira transportadora adicionados. Foram implementados

um sinal auxiliar do tipo boolean para cada um dos três componentes de rampa transportadora.

Estes foram denominados respectivamente como“SinalAux1”,“SinalAux2”e“SinalAux3”. Estes

sinais foram vinculados, respectivamente, às interfaces de sinais de nomes“SinalAux1Interface”,

“SinalAux2Interface”e“SinalAux3Interface”e também aos sensores de de nomes“SensorRetro-

reflexivoParte1”,“SensorRetroreflexivoParte2”e“SensorRetroreflexivoParte3”de cada rampa.

Portanto, caso alguma peça acione algum destes sensores, o sinal auxiliar da rampa correspon-

dente seria ativado, como este sinal está vinculado a interface de sinal da rampa e esta por sua

vez está conectada com a interface de sinal respectiva da esteira transportadora, o sinal auxiliar

correspondente da esteira transportadora vinculada a sua interface também seria ativada. Logo,

os sinais auxiliares“DI3 Aux1”,“DI3 Aux2”e“DI3 Aux3”da esteira transportadora assumem,

respectivamente, o mesmo valor dos sinais auxiliares de cada rampa“SinalAux1”,“SinalAux2”

e“SinalAux3”. Estes sinais auxiliares foram relacionados com o sinal“DI3 Rampa cheia”por

meio do Python Script, desta forma, se qualquer um dos sinais auxiliares das rampas forem

ativados, o sinal final “DI3 Rampa cheia”também será ativado, simulando o acionamento do

sensor retro-reflexivo.

Finalizada a definição de todos os sinais. Iniciou-se a definição dos servo controladores.

4.1.2.6 Definição de servo controladores

Assim como definido pelo projeto, foram adicionados Behaviors do tipo servo controla-

dor a todos os componentes atuadores, estes são: atuador linear e os dois módulos desviadores.

Esses servo controladores foram configurados para as juntas de cada componente atuador. A

adição destes Behaviors permite executar uma função no Python Script que movimenta as

juntas na simulação.

Conclúıda a definição dos servo controladores, a segunda etapa da implementação

foi finalizada. Ademais adicionou-se um Behavior de Python Script ao componente central,

esteira transportadora, o qual foi editado na etapa seguinte da implementação. Com isso a

estação final é ilustrada na Figura 35. As linhas verticais vermelhas que aparecem na figura,

indicam os cinco sensores Raycast, definidos anteriormente. Os três componentes auxiliares já

não aparecem mais na estação por terem sido configurados como não viśıveis.

O Component Graph dos dez componentes manipulados depois da implementação de

todos os Behavior e Properties pode ser observado nas figuras 36, 37, 38 e 39.
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Figura 35 – Configuração final da bancada.

4.1.3 Implementação do algoritmo

Nesta terceira etapa iniciou-se a edição do Python Script adicionado anteriormente

na esteira transportadora. Como descrito no projeto, a função deste Behavior é implementar a

lógica de mudanças e as funcionalidades dos sinal de entrada e sáıda. Os diferentes componentes,

seus Behavior e Properties foram declarados no algoritmo para que pudessem ser manipulados

para o funcionamento correto do Gêmeo Digital.

A estrutura inicial do Python Script já veio com duas funções pré-definidas, a primeira

função denominada“OnSignal”, aciona quando algum Behavior de sinal conectado ao script

muda seu valor, e a segunda função denominada“OnRun”, refere-se ao loop principal do código,

em que a simulação é estabelecida e funcionalidades de movimentação dos atuadores são

aplicadas. A movimentação dos atuadores é executada pela função “moveJoint”, inerente a

objetos do tipo servo controladores. Ademais, foram declarados no algoritmo, os três servo

controladores dos componentes atuadores. No caso deste algoritmo, os movimentos aplicados

para os atuadores limitam-se em duas possibilidades, a extensão máxima ou ḿınima da junta,

estabelecida pelas restrições impostas anteriormente.

A lógica implementada no algoritmo para as funcionalidades da estação sobre os 18



Caṕıtulo 4. Desenvolvimento 47

Figura 36 – Component Graph da esteira transportadora.

sinais definidos na esteira transportadora é explicada a seguir. Primeiramente, aborda-se sobre

os sinais de sáıda da simulação e os auxiliares relacionados. Em sequência, aborda-se sobre os

sinais de entrada para a simulação.

O primeiro sinal “DI0 Peça dispońıvel no inicio da esteira”não possui lógica direta no

código, pois a mudança deste já é causada pela passagem de peça pelo Behavior de sensor

“SensorOpticoDifuso1”definido anteriormente.

O sinal “DI1 Peça metálica”e“DI2 Peça não preta”estão relacionados com os sinais

auxiliares“Sinal AuxBoolean”e“Sinal Componente”. Estes dois sinais auxiliares estão vincu-
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Figura 37 – Component Graph dos componentes atuadores.

Figura 38 – Component Graph dos componentes de rampa transportadora.

Figura 39 – Component Graph dos componentes auxiliares.

lados ao sensor “SensorConjuntoLeCores”, quando este é acionado o valor do sinal auxiliar

“Sinal AuxBoolean”é ativado. Implementou-se um condicional deste sinal na função“OnSignal”,

de modo que o script lê o valor do sinal do tipo component “Sinal Componente”no momento

em que o sinal ”Sinal AuxBoolean”for ativado. Este valor lido consiste na peça de trabalho que

acionou o sensor. O script acessa o valor da propriedade cor definida nas peças de trabalho,

caso seja “red”, os sinais “DI1 Peça metálica”e“DI2 Peça não preta” são configurados para

“False”e“True”, respectivamente. Caso seja“metal”os sinais “DI1 Peça metálica”e“DI2 Peça

não preta”são configurados para“True”e“True”, respectivamente. Por fim, caso seja“black”

os sinais“DI1 Peça metálica”e“DI2 Peça não preta”são configurados para“False”e“False”,

respectivamente.

Ademais, para os sinais auxiliares“DI3 Aux1”,“DI3 Aux2”e“DI3 Aux3” implementou-

se um condicional para cada um na função“OnSignal”. Assim como explicado anteriormente,

quando algum dos sinais auxiliares das rampas separadoras forem alterados, o respectivo sinal

desses auxiliares também será modificado, passando pela função “OnSignal”. O condicional
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definido determina que se qualquer um dos sinais“DI3 Aux1”,“DI3 Aux2”e“DI3 Aux3”, forem

ativados o sinal “DI3 Rampa cheia” recebe“True”, caso forem desativados o sinal “DI3 Rampa

cheia” recebe“False”.

Prosseguindo para os sinais“DI4 Atuador 1 recuado”e“DI5 Atuador 1 avançado”. Estes

sinais são configurados na função“OnRun”. Quando a função“moveJoint” é executada para

avançar o módulo desviador 1, antes de iniciar o movimento na simulação, o sinal“DI4 Atuador

1 recuado” é configurado para“False”, após a execução do movimento o sinal “DI5 Atuador

1 avançado” é configurado para“True”. Caso a função“moveJoint” é executada para recuar

o módulo desviador 1, antes de iniciar o movimento na simulação, o sinal “DI5 Atuador 1

avançado” é configurado para“False”, após a execução do movimento o sinal “DI4 Atuador 1

recuado” é configurado para“True”. Isso ocorre de forma análoga aos sinais“DI6 Atuador 2

recuado”e“DI7 Atuador 2 avançado”para o módulo desviador 2.

Agora, discorre-se sobre os sinais de entrada para a simulação. O primeiro sinal

“DO0 Liga esteira” é contemplado com um condicional na função “OnSignal”, quando o

emulador alterar o sinal da variável análoga a esta, a condição será satisfeita. Caso o valor

deste sinal for para“False”, o script desabilita todos os paths “BasicPath”, ”Path1”, ”Path2”

e“Path3”, fazendo com o que qualquer peça que estiver em alguma dessas rotas pare de se

mover. Caso o valor mude para “True”, o script habilita estes paths, fazendo que as peças

nestas rotas comecem a se mover.

Com relação ao sinal “DO1 Avança atuador 1” implementou-se um condicional na

função “OnRun”, que analisa este sinal. Caso ele seja “False”, uma função “moveJoint” será

executada para mover a junta do módulo desviador 1 para a posição ḿınima, caso o sinal for

“True”uma função“moveJoint”será executada para mover sua junta para a posição máxima.

Isso ocorre de forma análoga ao sinal“DO2 Avança atuador 2”só que para o módulo desviador

2.

Sobre o sinal“DO3 Recua atuador de parada”, também implementou-se um condicional

na função “OnRun”. Caso o sinal seja “False”, uma função “moveJoint” será executada para

mover a junta do módulo atuador de parada para a posição máxima, caso seja“True”, uma

função“moveJoint”será executada para mover sua junta para a posição ḿınima, ou seja, junta

recuada.

Por fim, o sinal “DO7 Estação ocupada” foi contemplada com um condicional na

função “OnSignal”. Caso seu valor mude para “False”, o material do componente Led será

alterado para verde, e o material de uma seção do componente Advanced Feeder também será
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modificado para verde, indicando que a estação está livre para a entrada de peças. Além do

mais o path do Advanced Feeder é habilitado, permitindo a passagem da peça de trabalho

para a esteira transportadora. Caso o valor do sinal mude para“True”, o material do Led será

alterado para vermelho e o material da seção do Advanced Feeder também, indicando que

a estação está ocupada. Ademais, o path do Advanced Feeder é desabilitado, impedindo a

passagem da peça de trabalho para a esteira transportadora.

Com isso, a lógica de todos os sinais foi contemplada pelo Python Script. Então,

aborda-se sobre a lógica de roteamento das peças de trabalho. Essa se dá de modo condicional

na função“OnRun”. Caso o sinal “DO1 Avança atuador 1”esteja“True”a peça de trabalho

segue pela rota “Path1”, entrando para a rampa separadora 1. Caso o sinal “DO2 Avança

atuador 2”esteja“True”e o sinal “DO1 Avança atuador 1”esteja“False”, a peça de trabalho

segue pela rota“Path2”entrando para a rampa separadora 2. Caso estes sinais estejam“False”,

a peça segue pela rota“Path3”, entrando para a rampa separadora 3.

Por fim, foi definida a lógica de funcionamento do modo acumulativo comentado

anteriormente. Na função“OnRun”, antes de iniciar o loop da simulação, é feita uma tratativa

que verifica o valor da Property “Accumulate Mode”definida anteriormente. Este valor pode

ser alterado pelo usuário antes de iniciar a simulação. Caso o valor seja “True”, o script

conecta as interfaces de sáıda de fluxo da peça de trabalho das rampas separadoras, com as

respectivas interfaces de entrada de fluxo de peça de trabalho dos componentes auxiliares, como

a capacidade dos paths dos componentes auxiliares é zero, as peças de trabalho começam a

acumular nas rampas separadoras. Caso o valor dessa Property seja“False”, o script desconecta

essas interfaces, fazendo com que as peças de trabalho que chegam no final das rampas

separadoras desapareçam da simulação.

Isso conclui a explicação de modo geral do funcionamento do algoritmo implementado.

Em sequência, aborda-se sobre a conectividade OPC-UA .

4.1.4 Conectividade OPC-UA

Esta última etapa da implementação do Gêmeo Digital corresponde à implantação da

conexão entre o Gêmeo Digital e o emulador de rede de Petri. Esta conexão foi estabelecida

pelo protocolo de comunicação OPC-UA, por meio do API OPC-UA dispońıvel no Visual

Components. Para isso foi necessário primeiramente entrar com o endereço do servidor do

emulador, estabelecendo a conexão, para que então fosse posśıvel parear os sinais do Gêmeo
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Digital com os do emulador.

Primeiramente os sinais de sáıda do Gêmeo Digital e entrada do emulador foram

pareados. Os pares de sinais ficaram “DI0 Peça dispońıvel no inicio da esteira” com “DI0”,

”DI1 Peça metálica”com“DI1”, ”DI2 Peça não preta”com“DI2”,“DI3 Rampa cheia”com“DI3”,

“DI4 Atuador 1 recuado” com“DI4”, “DI5 Atuador 1 avançado” com“DI5”, “DI6 Atuador 2

recuado”com“DI6”e“DI7 Atuador 2 avançado”com“DI7”.

Depois, seguiu-se com o pareamento dos sinais de entrada do Gêmeo Digital e sáıda

do emulador. Os pares de sinais ficaram“DO0 Liga esteira”com“DO0”,“DO1 Avança atuador

1”com“DO1”,“DO2 Avança atuador 2”com“DO2”,“DO3 Recua atuador de parada”com

“DO3”e“DO7 Estação ocupada”com“DO7”.

A Figura 40 mostra o painel de conexão OPC-UA do Visual components com as

variáveis do Gêmeo Digital e o emulador pareadas.

Figura 40 – Painel de conexão OPC-UA.

Fonte: (Visual Components, 2021)

4.2 Emulador de rede de Petri

Para a construção do Emulador de rede de Petri, a fim de funcionar conforme proposto

neste trabalho, foi segmentado o código em três frentes, executadas de forma praticamente

concorrente tal qual é feita com a biblioteca Trio (SMITH. N. J., 2017) de Python. As três

frentes são: Interface do Usuário (responsável por receber informações do usuário, bem como

apresentar informações relevantes), Interpretador de Arquivo XML e rede de Petri (responsável
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por alterar os estados de forma coerente ao arquivo inserido pelo usuário) e o servidor OPC-UA

(responsável por estabelecer a conexão correta com o Gêmeo Digital). Para que as três frentes

funcionassem a partir das mesmas informações, foi criada uma Classe em Python denominada

ExchangeableVariables, que armazena todas as informações atuais do programa em um único

endereço na memória e é passada como parâmetro das três funções citadas a cima, permitindo

alterações espećıficas em cada uma delas, mantendo a coerência da informação entre elas.

4.2.1 Interface do Usuário

A Interface do Usuário (Figura 41) foi desenvolvida com o aux́ılio da biblioteca

PySimpleGui (PySimpleGUI, 2020) e é separada em 4 seções.

A primeira diz respeito ao endereço em que o Servidor OPC-UA será estabelecido,

seguido de um quadrado que se mantém vermelho enquanto o Servidor estiver inativo, e verde

enquanto o Servidor estiver ativo.

A segunda dá opção ao usuário escolher um arquivo, necessariamente no formato

XML. Ao clicar o botão“Browse”, abre-se uma janela que permite ao usuário navegar pelos

seus diretórios até encontrar o arquivo desejado. Há ainda, nesta seção, duas opções para a

forma como a rede de Petri é interpretada. A opção“Set/Reset” faz com que as sáıdas sejam

alterados exatamente conforme é definido nos Lugares da rede de Petri, sendo necessário,

portanto, que o usuário informe quando uma sáıda é redefinida para zero. Já a opção“High on

Place” faz com que apenas as sáıdas estabelecidas nos Lugares com Marcas sejam definidas

para um, ou seja, assim que a Marca é consumida e o Lugar fica vazio a sáıda é alterada para

zero, dando flexibilidade para o usuário escolher como modelar a rede de Petri. Escolhido o

arquivo e o modo de execução, o usuário deve apertar o botão“Submit”para que o arquivo

seja lido.

A terceira tem papel informativo. Mostra o atual estado de cada uma das Entradas

e Sáıdas do Servidor. Quadrados vermelhos representam o sinal em zero (Low), e quadrados

verdes representam o sinal em um (High).

A quarta diz respeito aos registros da execução. Inicia com uma breve introdução

ao programa, informa a inicialização do Servidor bem como o carregamento do arquivo XML

e apresenta a ativação das transições, bem como pausas causadas por temporizadores nas

Transições da rede de Petri.
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Figura 41 – Interface do Usuário.

4.2.2 Interpretador de Arquivo XML e rede de Petri

A construção do Emulador de rede de Petri parte da leitura de um arquivo XML

constrúıdo a partir do software PIPE (Platform Independent Petri net Editor, 2009). Utilizou-se

um pacote nativo de Python chamado “xml” para fazer a leitura do arquivo e processar os

diferentes atributos classificados com marcas como: <place>, <transition> e <arc>.

Para a manipulação e armazenamento da rede de Petri de forma mais organizada,

aproveita-se da caracteŕıstica da linguagem Python em ser Orientada a Objetos para a criação

de Classes espećıficas para cada parte essencial da rede de Petri.

Implementou-se, portanto, três Classes chamadas“Place”,“Transition”,“Arc”, a fim de
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armazenar as informações essenciais de cada tipo, dando sentido a rede de Petri. Vale ressaltar

que a Classe “Arc” tem nos atributos “Arc.source” e “Arc.target”, exatamente o endereço

conectando Objetos do tipo Lugar a Transições e vice-versa, o que agiliza o acesso dos mesmos

para atualização de parâmetros na execução da rede.

Implementou-se também uma classe responsável por, a partir do endereço do arquivo

XML a ser interpretado, realizar a leitura, atribuindo aos objetos com seus respectivos tipos, as

informações necessárias para criar um objeto contento todos os elementos da rede de Petri.

Essa estrutura, testada para diversos arquivos do Software PIPE, mostrou-se bastante

eficiente para armazenar toda a informação contida na rede de Petri e, para uma rede de Petri

como a exibida na Figura 13, apresenta output tal qual apresentado no Código 1.

Código 1 - Execução teste de interpretação de Arquivos XML.

1 In [1]: petri = Petrinet(

2 'petrinet_examples/petrinet_example.xml'

3 )

4 petri.__dict__

5 Out[1]: {'places': [P0, P1], 'transitions': [T0], 'arcs': [P0→T0, T0→P1]}

6

7 In [2]: petri.arcs[0].__dict__

8 Out[2]: {'id': 'P0 to T0', 'source': P0, 'target': T0}

9

10 In [3]: petri.arcs[0].source.__dict__

11 Out[3]: {'id': 'P0', 'capacity': 1}

Para permitir a usabilidade do programa, foi definida uma regra para a nomenclatura

dos Lugares e Transições, responsáveis pela correta interpretação e alteração das variáveis

transacionadas via OPC-UA. Como uma rede de Petri convencional, para a ativação das

transições ocorre somente se as marcas necessárias se encontram nos lugares corretos, anteriores

à transição, bem como se são satisfeitas as condições da transição em si.

Sobre a convenção de nomenclatura, considerando a aplicação em questão, definiu-

se que transições devem conter, entre parenteses as entradas necessárias para sua ativação.

Entradas que começam com o carácter til (∼) requerem o sinal em“0”, enquanto entradas que

não começam com tal carácter, requerem o sinal em“1”. Em caso de mais de uma entrada, o
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usuário deve separá-las com v́ırgula (,).

Assim, é posśıvel definir os requisitos para ativação da transição, conforme Tabela 2.

Tabela 2 – Entradas Digitais.

Entrada Requisitado como 1 Requisitado como 0
DI0 DI0 ∼DI0
DI1 DI1 ∼DI1
DI2 DI2 ∼DI2
DI3 DI3 ∼DI3
DI4 DI4 ∼DI4
DI5 DI5 ∼DI5
DI6 DI6 ∼DI6
DI7 DI7 ∼DI7

Alguns dos posśıveis nomes de Transição, conforme explicado na Tabela 2 podem ser

conferidos na Tabela 3.

Tabela 3 – Exemplos de Entradas Digitais.

Nome da transição Requisito para ativação
T1(DI0) DI0 = 1
T2(∼DI1) DI1 = 0

T3(DI2, DI3) DI2 = 1 E DI3 = 1
T4(DI4, ∼DI5) DI4 = 1 E DI5 = 0

As transições ainda podem ser temporizadas. Para isso é necessário alterar, no PIPE, a

informação denominada“Timer”, definindo o tempo a ser esperado na seção“Rate”das opções

da transição. Quando acionada, uma transição deste tipo coloca em espera a rede de Petri,

mantendo posśıvel ainda a interação do usuário com a interface, executando o consumo das

Marcas e inserindo novas Marcas nos Lugares de destino assim que acabada a espera.

Seguindo o mesmo racional, os nomes dos Lugares devem conter, também entre

parenteses, os nomes das sáıdas e seus respectivos sinais a serem definidos, conforme o mesmo

padrão de uso do caractere til (∼). (Tabela 4)

Alguns dos posśıveis nomes de Lugares, conforme explicado na Tabela 4 podem ser

conferidos na Tabela 5.

Criada a rede de Petri, passa-se a parte de controlar as mudanças de estados a partir

do recebimento de dados do sistema, neste caso, via OPC-UA.

Dada a informação de uma transição, foi implementada uma função responsável por

elencar os potênciais arcos a serem ativados. Como os arcos na rede de Petri são unidirecionais,

implementou-se uma função que avalia somente os atributos“Arc.source”.
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Tabela 4 – Sáıdas Digitais.

Sáıda Definida como 1 Definida como 0
DO0 DO0 ∼DO0
DO1 DO1 ∼DO1
DO2 DO2 ∼DO2
DO3 DO3 ∼DO3
DO4 DO4 ∼DO4
DO5 DO5 ∼DO5
DO6 DO6 ∼DO6
DO7 DO7 ∼DO7

Tabela 5 – Exemplos de Sáıdas Digitais.

Nome do lugar Define as seguintes sáıdas
P1(DO0) DO0 = 1
P2(∼DO1) DO1 = 0

P3(DO2, DO3) DO2 = 1 E DO3 = 1
P4(DO4, ∼DO5) DO4 = 1 E DO5 = 0

Deste modo, o emulador constantemente avalia os sinais nos I/Os, definindo as

Transições pasśıveis de ativação. Assim que uma ou mais transições têm suas condições

satisfeitas, o emulador ativa uma das Transições, o que altera os sinais nos I/Os e faz com o

que emulador novamente avalie todas as transições da rede de Petri, repetindo o ciclo.

4.2.3 Servidor OPC-UA

Como parte dos requisitos do projeto, foi estabelecido um Servidor OPC-UA capaz

de se conectar ao Gêmeo Digital. Para isso, utilizou-se da biblioteca de Python freeOPCUA

(freeOPCUA, 2020), cuja classe Server permite a implementação de um Servidor OPC-UA na

rede local do computador. Para tal, definiu-se o endereço padrão: “opc.tcp://127.0.0.1:12345”.

Além disso, na inicialização do Servidor, definiu-se todas as entradas digitais, bem como todas

as sáıdas digitais, respeitando o padrão acordado com o Gêmeo Digital (DI0, DI1, DI2, DI3,

DI4, DI5, DI6, DI7, DO0, DO1, DO2, DO3, DO4, DO5, DO6, DO7). Esta parte do programa é

responsável por alterar os sinais de acordo com as informações do parâmetro“VariableExchange”,

sobrescrevendo os valores de Sáıdas Digitais a cada iteração. É responsabilidade do Gêmeo

Digital, por sua vez, alterar os valores das Entradas Digitais, que são lidos e atualizam o

“VariableExchange”, também a cada iteração.
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4.2.4 Armazenamento de Variáveis

Como descrito na introdução desta seção, para que ocorra a troca de informações de

forma correta entre a interface, o emulador de rede de Petri e o servidor OPC-UA; implementou-

se uma Classe denominada“VariableExchange”, que carrega os seguintes parâmetros, pasśıveis

de alteração. (Tabela 6)

Tabela 6 –“VariableExchange”

Variável Tipo Descrição Alterável por

DI Dicionário
Chaves como entradas

(ex.: DI1) e estado atual como valor.
OPC-UA

DO Dicionário
Chaves como entradas

(ex.: DO1) e estado atual como valor.
rede de Petri

address String opc.tcp://127.0.0.1:12345 OPC-UA
file xml String /petrinet example.xml UI

set reset Booleana
Responsável por definir a

forma como a rede de Petri será interpretada.
UI

running Booleana
Responsável por definir se o

programa está aberto e executando.
UI

connected Booleana
Responsável por definir se o

Servidor se conectou com sucesso.
OPC-UA

petrinet ready Booleana
Responsável por definir se o

arquivo XML foi interpretado corretamente.
rede de Petri

gui ready Booleana
Responsável por definir se a

Interface do Usuário foi utilizada corretamente.
UI

opcua ready Booleana
Responsável por definir se o

Servidor se conectou com sucesso.
OPC-UA

4.2.5 Execução

Ao executar o programa, o usuário perceberá que a interface estabelecerá um Server

OPC-UA no endereço informado. Dado que a definição das Entradas e Sáıdas já estará

estabelecida no Gêmeo Digital, cabe ao usuário selecionar, no Visual Components, a conexão

OPC-UA e a ativar. Inicializando a simulação, o programa começará a responder ao arquivo

XML selecionado e, se feito corretamente, mostrará no Gêmeo Digital exatamente o que foi

instrúıdo pela rede de Petri. Podendo, inclusive, ser usado como validador da rede de Petri.
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5 Testes e Resultados

Este caṕıtulo documenta os testes realizados para garantir o funcionamento de ambas

as frentes desenvolvidas. Busca mostrar teste individuais entre partes modulares mas também

testes completos envolvendo todas as frentes do trabalho.

Implementadas as etapas do programa, foram testadas cada uma das frentes (Interface

do Usuário, Interpretador de Arquivo rede de Petri em XML e Servidor OPC-UA) de forma

separada, simplificando a interação entre as diferentes funções. Para a Interface do Usuário,

verificou-se o valor recebido pelo evento de submissão de um arquivo.

Já para o Interpretador de Arquivo rede de Petri em XML, foram testadas redes de

Petri bastante diversas a partir da instanciação repetidamente da classe Petrinet. Por se tratar

de um arquivo XML padronizado na versão do PIPE definida, verificou-se consistência entre

todas as redes de Petri inseridas e modeladas conforme as classes descritas.

Assim, foi validada esta etapa do programa. Para o Servidor OPC-UA, criou-se, da

mesma maneira, um servidor enxuto contento 8 entradas digitais e 8 sáıdas digitais. Feito isso,

buscou-se estabelecer conexão com o programa de testes de Servidor OPC-UA denominado

UA-Expert (UA-Expert, 2018), que exibiu tanto o Servidor em si, na ocasião denominado

“OPCUA DIGITAL TWIN”, quanto as 8 entradas digitais e 8 sáıdas digitais, o que pode ser

conferido na Figura 42, sendo um sucesso quando acessado via rede local. Sendo ainda posśıvel

testar a alteração de variáveis no Servidor, sendo refletidas no Cliente ou ainda alterações

nas variáveis no Cliente sendo refletidas no Servidor, tal qual é esperado da interação entre o

interpretador e o Gêmeo Digital.

Estabelecidas as três frentes do projeto e conectadas de forma coerente via Trio

(SMITH. N. J., 2017) e via o compartilhamento de dados com uma instância da classe

“VariableExchange”, passou-se a validar os testes do projeto já lado a lado ao Gêmeo Digital.

Para validar o modo“Set/Reset” foi elaborada uma rede de Petri capaz de controlar a

bancada MPS Sorting alocando as peças metálicas na primeira rampa, as peças vermelhas na

segunda rampa e as peças pretas na terceira rampa. Esta rede de Petri pode ser conferida na

figura 43.

Selecionando o arquivo XML correspondente a rede de Petri da Figura 43 na interface

do programa, e iniciando a simulação, foram capturadas imagens de tela correspondentes a

estados intermediários da simulação.
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Figura 42 – Teste de Conectividade OPC-UA.

Figura 43 – Rede de Petri - Modo Set/Reset.

A Figura 44 representa uma dessas capturas de tela contendo o estado da simulação

visto na Figura 45. É posśıvel ver a seleção do modo“Set/Reset”, o que exige que as sáıdas

sejam definidas para“0”quando necessário, bem como as transições anteriores registradas na

interface do usuário. As entradas DI0, DI4, e DI6, enviadas pelo Gêmeo Digital, estão em“1”. A

peça se encontra no começo da esteira e caminha para a posição em que os sensores definirão

o tipo de peça e, com esta informação, o controlador definirá seu caminho. Nesta rede de Petri,
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Figura 44 – Interface do Usuário - Primeiro Teste - Marca em P0

foi inserida uma temporização na transição T1 de 15 segundos, para garantir a posição da peça

na região de medida dos sensores. Este tempo é mais que suficiente para que isso ocorra.

As Figuras 46 e 47 ilustram, respectivamente, a interface do usuário e o estado da

simulação para um momento imediatamente posterior a transição T3 da rede de Petri da

Figura 43 ser ativada. Neste caso, as entradas DI2, DI4 e DI6 estão em“1”. O que indica que a

peça analisada não é da cor preta e também não é metálica, portanto é vermelha, fazendo

com que o programa tome a decisão de alocar a peça na segunda esteira, conforme o arquivo

selecionado.

É visto nas Figuras 48 e 49 o estado descrito no Lugar P3 da rede de Petri da figura.

A peça é deslocada na esteira e a ativação do sensor da rampa DI3, que indicaria a entrada da

peça em uma das rampas, é aguardada para que se dispare a transição T6.

Por fim, encerrando o ciclo desta peça, nas Figuras 50 e 51, a passagem da peça pelo

sensor DI3, indicando que a peça entrou de fato na rampa. Neste instante da simulação existe

uma Marca em P6 na rede de Petri da Figura 43. No Gêmeo Digital, vê-se espaço dispońıvel
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Figura 45 – Visual Components - Primeiro Teste - Marca em P0

na rampa, o que indica que, após a passagem da peça pelo sensor da rampa, a peça deixará

de interromper o sensor, fazendo com que DI3 seja novamente definido para “0”, ativando

a transição T9, para que um novo ciclo, para uma nova peça, seja iniciado. Caso a rampa

esteja cheia de peças, o sensor DI3 se manteria em“1”, indicando rampa cheia. Neste caso, a

transição T9 não seria ativada e a estação não seria liberada para novas peças, bloqueando a

simulação, como esperado.

Para validar o modo“High on Place”, em que apenas lugares com Marcas definem

suas sáıdas para“1”, foi elaborada uma nova rede de Petri capaz de controlar a bancada MPS

Sorting alocando as peças metálicas na primeira rampa, as peças vermelhas na segunda rampa

e as peças pretas na terceira rampa. Esta rede de Petri pode ser conferida na Figura 52.

Foi selecionado o arquivo XML correspondente a rede de Petri da Figura 52 na interface

do programa, marcando a opção “High on Place”. Iniciando a simulação, foram capturadas

imagens de tela correspondentes a estados intermediários.

Para este modo, é posśıvel notar que, embora as ativações sejam semelhantes, a rede

de Petri em śı, é bastante diferente da utilizada no modo“Set/Reset”. Nenhum dos Lugares, na

rede de Petri“High on Place”define as uma sáıda para“0”. Isto ocorre pois, por padrão, apenas

Lugares com Marcas definem para“1”as sáıdas relacionadas. Assim, para a Figura 53, vê-se

que a rede de Petri foi devidamente carregada no modo“High on Place”e como pode ser visto

na Figura 54, deu-se ińıcio a simulação. Com a ativação de T0, da Figura 52, adicionou-se
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Figura 46 – Interface do Usuário - Primeiro Teste - Marca em P3

uma Marca em P2, uma Marca em P8, responsável por definir DO0 para“1”e, portanto, ligar

a esteira, e uma Marca em P9, responsável por definir DO7 para“1” informando que a Estação

está ocupada.

As Figuras 55 e 56, fazem referência ao estado imediatamente posterior a ativação

T2, da Figura 52, neste instante, as ainda existem Marcas em P8 e P9 e, portanto, a esteira

segue ligada e a Estação segue ocupada, e também existe Marca em P4, o que define para

“1”as sáıdas DO1 e DO3, fazendo com que o primeiro atuador seja avançado e o atuador de

parada no ińıcio da esteira seja recuado. Como pode ser visto na Figura 58.

Ao passar pelo sensor da rampa, a transição T5, da Figura 52, é disparada, colocando

uma Marca no Lugar P7, que não está atrelado a nenhuma ação, e portanto, não redefine

nenhuma sáıda para“1”, mas redefine as sáıdas DO1 e DO3 para“0”ao consumir a Marca em

P4. O que faz com que o primeiro atuador seja recuado e o atuador de parada no ińıcio da

esteira seja avançado. Este instante pode ser visualizado nas Figuras 59 e 60.

Vê-se que, assim como no teste para o modo“Set/Reset”, definiu-se na Figura 52 que,
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Figura 47 – Visual Components - Primeiro Test - Marca em P3

assim que a peça deixa de interromper o sensor de rampa cheia e que é recuado o primeiro

atuador (para a peça cinza) são satisfeitas as condições para o disparo da transição T8. O que

completa os requisitos de Marcas para que a Transição T11 seja ativada, recomeçando o ciclo

assim que uma nova peça entre na esteira.

Em (ALMIRALL; GODOY, 2021c) é disponibilizado um v́ıdeo contendo um trecho das

execuções de teste a partir da Figura 43 e em (ALMIRALL; GODOY, 2021b) é disponibilizado

um v́ıdeo contendo um trecho das execuções de teste a partir da Figura 52.

O código do interpretador de rede de Petri que estabelece servidor OPC-UA desenvol-

vido neste projeto pode ser encontrado em (ALMIRALL; GODOY, 2021a).
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Figura 48 – Interface do Usuário - Primeiro Teste - Marca em P3

Figura 49 – Visual Components - Primeiro Teste - Marca em P3
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Figura 50 – Interface do Usuário - Primeiro Teste - Marca em P6

Figura 51 – Visual Components - Primeiro Teste - Marca em P6
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Figura 52 – Rede de Petri - Modo High on Place.

Figura 53 – Interface do Usuário - Segundo Teste - Marcas em P2, P8 e P9
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Figura 54 – Visual Components - Segundo Teste - Marcas em P2, P8 e P9

Figura 55 – Interface do Usuário - Segundo Teste - Marcas em P4, P8 e P9
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Figura 56 – Visual Components - Segundo Teste - Marcas em P4, P8 e P9

Figura 57 – Interface do Usuário - Segundo Teste - Marcas em P4, P8 e P9
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Figura 58 – Visual Components - Segundo Teste - Marcas em P4, P8 e P9

Figura 59 – Interface do Usuário - Segundo Teste - Marcas em P7, P8 e P9
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Figura 60 – Visual Components - Segundo Teste - Marcas em P7, P8 e P9
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6 Conclusão

O trabalho concluiu com sucesso as etapas que se propôs a executar. Ao conectar um

interpretador de rede de Petri, capaz de fazer a leitura de forma flex́ıvel de qualquer rede de

Petri estruturada no PIPE 4.3 com um Gêmeo Digital via protocolo OPC-UA, viabilizou uma

simulação fiel à realidade de uma bancada didática, permitindo testes e validações bem como

o uso didático da ferramenta e a possibilidade de uso para treinamentos dos usuários, além de

permitir uma forma diferente de controle da bancada, agora a partir de uma rede de Petri.

Constrúıdo com linguagem Python, abre possibilidades de extração de informações em

tempo real do Gêmeo Digital em questão que podem vir a ser utilizadas para a melhora de

eventuais ociosidades do processo.

O trabalho demonstra-se bastante promissor para a aplicação em sala de aula. Conforme

descrito nos objetivos do projeto, abre a possibilidade de melhoria de laboratórios didáticos,

principalmente envolvendo a disciplina PMR 3305 da Graduação de Engenharia Mecatrônica

da Escola Politécnica, podendo ser muito utilizado em peŕıodos de aula a distância, mas não

perdendo sua relevância também em aulas presenciais, por permitir aos alunos testes diretos

com redes de Petri, de forma a sintetizar a lógica de controle.

6.1 Trabalhos Futuros

É proposto como continuidade deste trabalho, a implementação de novas bancadas

didáticas para ampliar as possibilidades de uso da ferramenta. Deste modo, seria posśıvel testar

as bancadas em sequência, o que permitiria estudos de melhoria do processo como um todo,

evitando gargalos intermediários e aumentando o fluxo de peças entre as etapas.

Pode-se ainda, trabalhar no desenvolvimento de outros ambientes de simulação com

até 8 entradas digitais e até 8 sáıdas digitais para o controle via rede de Petri por intermédio do

Servidor OPC-UA estabelecido por este projeto. Seria posśıvel desta forma, controlar sistemas

diferentes ao das bancadas didáticas, sendo posśıvel inclusive testar variados sistemas a eventos

discretos.

Sugere-se o uso e a avaliação da funcionalidade da ferramenta na bancada real, neste

caso, tanto com a bancada MPS-Sorting Festo quanto com outras bancadas didáticas, a fim

de validar a conectividade OPC-UA com tal sistema real.
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Por fim, propõe-se a aplicação de forma didática da ferramenta, a fim de fornecer

uma noção mais paupável e intuitiva da funcionalidade de redes de Petri em sistemas reais

e simulados. Para a aplicação didática, seria interessante a condução de um estudo a fim de

avaliar os ganhos do uso do programa em sala de aula como ferramenta de fixação para testes

de redes de Petri.
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v=vqvN9E6n3-8>. Acesso em: 05 de dezembro de 2021. Citado na página 63.

BABU, V.; NICOL, D. Emulation/simulation of plc networks with the s3f network simulator.
2016 Winter Simulation Conference (WSC), p. 1475–1486, 12 2016. Citado na página 7.

BAHRIN, M. et al. Industry 4.0: A review on industrial automation and robotic. Jurnal
Teknologi, v. 78, 06 2016. Citado na página 1.

BARROS, J. P. Modularidade em redes de petri. 2006. Dispońıvel em: <http://hdl.handle.
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