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Resumo

Conforme o valor dos investimentos em esportes aumenta, também aumenta sua visibi-
lidade e o interesse por novas tecnologias que permitem com que os atletas possuam certa
vantagem sobre seus competidores. A visdo computacional vem sendo usada ativamente
nessa atividade, ji4 que proporciona uma forma ndo invasiva de aquisicdo de informacao.
Esse trabalho propde um método para identificacdo de posi¢ao dos jogadores por meio do
processamento de videos de partidas de ténis, considerando as restricdes de sistemas embar-
cados, o que limita as decisdes em tamanho de c6digo, espago de memoria necessario e tempo
de processamento. O método foi construido com algoritmos de processamento de imagem
utilizando rotinas do OpenCV em C++, para que os resultados fossem melhor observados e
utilizados foi proposta a inclusdo de uma transformacao de perspectiva para apresentacao do
posicionamento dos jogadores. Os algoritmos construidos apresentaram baixa demanda de
recursos computacionais o que estimula sua implementacao futura em sistemas embarcados.
Os resultados de deteccdo de posi¢do alcangados atingiram os objetivos propostos apresen-
tando erros inferiores a 50 cm. Essa opcao oferece a oportunidade de implementagdo futura

de anélises de informagdes a respeito dos atletas na partida.

Palavras-Chave: Visdao computacional, esporte, processamento de imagens, engenharia

esportiva.






Abstract

As the amount of money applied to sports increases, their visibility also increases together
with the need for new technologies that can give athletes an edge in competition. Computer
Vision has become a good alternative for development in the area, as it do not depend on
sensors used on clothing. The focus of this work is to propose a method of player tracking
through the analysis of video from tennis matches, considering the restrictions in embbeded
systems, that limitate the size of code, memory and processing time. The method was cons-
tructed with algoritms of image processing using OpenCV rotines in C++, in order to improve
the display and use of the information, a perspective transform was used. The developed al-
goritm presented low demand of computing resources that helps the future implementation
in embbeded systems . The results in player detection reached the objectives with an error
smaller than 0,5m. This option offers the future opportunity of implementation in a system

of infering information about the players.

Keywords: Computer vision, sports, image processing, sports engineering tennis.
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Capitulo 1

Introducao

Cada vez mais a quantidade de dinheiro que vem sendo aplicada em esportes € maior,
seja considerando premiagdes, saldrios de jogadores, valores dos patrocinios dos times, e
até a quantidade de dinheiro envolvido com as apostas. Assim, surge uma necessidade por
parte dos times, atletas e treinadores de estarem sempre a frente de seus competidores, seja
em relacdo a equipamentos, como ténis, uniformes, e também tecnologias, como sensores
cardiacos e GPS.

A darea da engenharia que busca desenvolver tecnologias para os esportes se chama En-
genharia Esportiva, e ela vem sendo desenvolvida ao longo dos ultimos anos nas suas mais
diversas frentes, seja relacionado a transmissao de eventos esportivos, a auxilio de arbitragem
ou até no desenvolvimento de produtos, tanto para o usudrio casual como para o atleta de alto
rendimento.

Em contrapartida, a drea de visdo computacional esta relacionada com a capacidade de
mdaquinas em interpretar, automaticamente ou auxiliadas por um usudrio, imagens dos mais
diversos tipos. Essa drea de estudo vem sendo aplicada aos mais diversos problemas, criando
solugdes para diferentes ambientes e condicdes.

Uma das principais caracteristicas da visdo computacional é sua capacidade de obter in-
formagdes sem a utilizagdo de sensores ligados ao corpo, o que permite simultaneamente, a
captacao de dados sem interferir diretamente no objeto medido além de que a distancia que
essa medida pode ser realizada € relativamente grande, quando comparada aos outros tipos
de sensores utilizados, como de infravermelho ou mesmo RFIDs, que possuem um raio de
atuagdo de poucos metros.

O fato da visdo computacional possibilitar a andlise por imagens, sem a necessidade de

sensores ligados ao atleta € de vital importancia para a drea do esporte, j4 que 0s mesmos po-
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dem gerar lesdes em atividades de contato, como o Rugby, ou podem ser de dificil utilizagdao
em ambientes como uma piscina, no caso da natacdo e polo aquético.

Outro fator importante a ser considerado é que a maioria das federacdes proibe a utiliza-
¢do de sensores ligados diretamente ao corpo do atleta, j4 que os mesmos poderiam transmitir
informacdes mais especificas, como a taxa de batimento cardiaco do atleta, e mesmo algu-
mas outras condicdes de fadiga muscular, que proporcionariam uma vantagem desleal para
o mesmo. Como a visdo computacional usa apenas imagens, que qualquer pessoa treinada
poderia ver, a mesma nio € considerada uma vantagem desleal no esporte.

Com base nos argumentos anteriores, fica claro que o papel da visdo computacional na
aquisicao de informacdes para o esporte € que a mesma passe a ser uma forma de retirar a
subjetividade da andlise dos profissionais, permitindo que dados explicitos sejam compara-
dos, como a distancia percorrida por um atleta, ou até a maxima velocidade frontal e lateral
que o mesmo consegue alcangar, permitindo assim que decisdes mais consistentes possam
ser tomadas.

O projeto consiste no desenvolvimento de um sistema de aquisi¢do e interpretacio de
imagens de partidas esportivas, focando na posicdo dos jogadores e nas informagdes que po-
dem ser inferidas a partir da mesma, como velocidade méxima, tempo de resposta, distancia
percorrida. O projeto foi desenvolvido levando em consideragao que a realidade brasileira,
em que os atletas jogam em diferentes ambientes e situacdes, estando sempre viajando e com
necessidade das informagdes em tempo real, dessa forma o foco na criacdo foi para uma
plataforma embarcada que utiliza apenas uma camera.

O esporte a ser analisado nesse trabalho € o ténis, com a possibilidade de desenvolvi-
mento futuro para outros esportes, como o futebol. Inicialmente foi considerado o t€nis por
uma variedade de motivos, entre eles € possivel citar, a existéncia de apenas 2 jogadores,
que permanecem durante a maior parte do jogo em regides bem definidas e opostas, evitando
assim que eles se sobreponham. Outro fator interessante € que o mesmo € dividido em pontos
de curta duracdo, e apds cada um deles, as posi¢des iniciais dos atletas voltam a ser semelhan-
tes. Além da facilidade de trabalhar com o esporte, as transmissdes de ténis envolvem, em
geral, apenas uma camera posicionada em um angulo obliquo acima dos jogadores, fazendo
com que seja relativamente facil obter uma quantidade boa de casos de teste.

Outro objetivo claro do projeto € a identificacdo, dentre as diferentes técnicas abordadas,
qual a que produz melhores resultados em uma situagdo de jogo, ja que elas sdo usadas em

situagcdes do cotidiano, normalmente os movimentos das pessoas sdo bem comportados e
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seguem padroes bem distintos. H4 uma necessidade de entender inicialmente qual dessas

técnicas produz melhor resultados, antes de implementéd-la em um sistema mais complexos.

1.1 Objetivos

Implementacdo de sistema de deteccdo de jogadores em partida de ténis.

Implementacdo de sistema de pré processamento de imagens.

Tornar o sistema autdbnomo, capaz de se calibrar automaticamente, sem operador.

Analisar diferentes técnicas para realizar a detec¢cdo de jogadores

Analisar a viabilidade de tornar o sistema embarcado, facilitando sua venda como um

produto no mercado.

1.2 Relevancia

A diferenciacdo desse trabalho para os desenvolvidos anteriormente € mesmo para os
produtos apresentados no mercado € uma adequa¢do maior para uma realidade esportiva bra-
sileira, ou seja, permitir a criagdo futura de um sistema sistema embarcado que realize a
deteccao de jogadores, ja que ndo serdo todas equipes que o possuirdo. O desenvolvimento
focado em um futuro sistema embarcado trds uma inovagdo relevante para o mercado brasi-

leiro.

1.3 Organizacao da Monografia

No capitulo 2 serdo levantados todos os fundamentos tedricos utilizados na durante o
desenvolvimento do projeto, além do estado da arte atual da tecnologia, incluindo todos os
sistemas comerciais que sdo aplicados na drea. No capitulo 3 serdo apresentados os materiais
e métodos utilizados nas diferentes etapas de desenvolvimento. No capitulo 4 serdo apresen-
tados os resultados para cada etapa de desenvolvimento. No capitulo 5 serdo apresentadas

todas as conclusdes alcancadas durante o desenvolvimento do projeto.
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Capitulo 2

Embasamento Teorico

2.1 Estado da Arte

De forma geral, apesar de ser possivel conseguir informagdes sobre preco, hardware e
condicdes de utilizacdo dos sistemas que estdo sendo vendidos no mercado hoje em dia, é
muito dificil encontrar qualquer informagao das técnicas utilizadas em seu desenvolvimento,

sendo as mesmas protegidas por patentes e segredos empresariais.

2.1.1 Trabalhos Académicos

Existem no mercado, hoje, algumas op¢des de empresas que fornecem servigos relaciona-
dos a visd@o computacional, tanto para a aquisi¢do de informacdes durante as partidas, como
forma de auxiliar na arbitragem ou mesmo na transmissao de TV dos esportes, mas da mesma
forma, existe uma visivel falta de trabalhos cientificos que abordam esse assunto, de forma
que conhecimento na drea fica muito restrito a pessoas que trabalham ou trabalharam na area.

A principal pesquisa na érea, feita por universidades, foi realizada na Ecole Polytechni-
que Federale de Lausane, na Suica, seu Computer Vision Laboratory vem contribuindo nos
ultimos anos com vdrios trabalhos, nos mais diversos niveis, relacionado ao posicionamento
dos jogadores e bolas, além de informagdes que podem ser extrapoladas dessa andlise. Boa
parte da pesquisa com relacao a identificacdo de jogadores esta sendo usada como bibliografia
nesse trabalho.[1, 2, 3]

Outro trabalho muito relevante na drea, e que trouxe muitas solugdes para o projeto foi a
dissertacdo de mestrado "Automatic Feature Extraction From Tennis Videos for Content Ba-
sed Retrieval” desenvolvida por Thejaswi Hanumantha Raya, que trds solu¢des para muitos

dos problemas abordados nesse trabalho, apesar de ser focado em extracdo e classificagcdo
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automadtica de clipes para a transmissoes esportivas.[4]

No mercado esportivo, existem diversas empresas criando sistemas que utilizam visao
computacional, mas cada um € especifico para uma modalidade, portanto € necessario separar
por esportes, antes de entender suas caracteristicas. Como ponto em comum, todos sistemas
apresentam uma quantidade relativamente grande de cameras, de 8 a 12, de alta resolugdo,
para poder fornecer dados o mais precisos possiveis, além de trabalharem de forma assistida,

com um operador que corrige qualquer identificacdo errada do programa.

2.1.2 Hawkeye Innovations

Na area do ténis, a empresa que se destaca € a Hawkeye Innovations do grupo Sony, que
possui uma tecnologia de auxilio de arbitragem muito utilizada em torneios internacionais, €
amplamente reconhecida por quem costuma assistir transmissdes do esporte. Na figura 2.1. é
possivel observar a saida do seu sistema, que proporciona um modelo em trés dimensdes da
bola durante todo o ponto, permitindo que seja determinado se a bola tocou o solo dentro ou
fora da quadra. A Hawkeye também possui um software de auxilio no treinamento esportivo
do ténis, que identifica os movimentos dos membros do atleta, e os compara com um padrao,

de forma a identificar pontos que podem ser melhorados.

OFFICIAL
REVIEW

Figura 2.1: Saida de video do sistema da Hawkeye Innovations.

2.1.3 Prozone

Quando € considerado o futebol, existem algumas alternativas que possuem diferentes

solucdes para a aquisi¢do de dados. Ambas sdo baseadas na utilizagdo de cameras fixas, em
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quantidades diversas. O sistema desenvolvido pela Prozone, empresa lider de mercado, é
baseado na instalagdo de 8 cameras fixas no estadio. A figura 2.2 apresenta a resposta apre-
sentada pelo sistema da Prozone durante uma partida de futebol, esse sistema e reconhecido
como o mais completo e com menores erros. Além de todo o software de detec¢dao, mui-
tas informacdes sdo interpoladas a partir da posicao dos jogadores e bola, como velocidade
maxima, esquema tético, pressao defensiva e muitos outros.

A instalacdo desse sistema tem um custo de aproximadamente 1 milhdo de reais, devido
ao alto grau de calibragdo das cameras, e sua operacao tem um custo mensal de 40 mil reais,
se tornando assim, uma alternativa muito cara de produto, que nao consegue suprir todo o

mercado brasileiro.

Teamn Ve Teamn

Figura 2.2: Interface do sistema Prozone, realizando andlise de posicionamento dos jogadores.

2.14 SportsVU

Outra empresa da drea é a SportsVU, desenvolvedora do sistema STATS, fundada pelo
americano David James, precursor da andlise estatistica no esporte, seu sistema € baseado
na utilizacdo de 3 cameras, sendo cada uma voltada para uma regido diferente do campo,

como mostrado na imagem 2.3. O STATS apresenta menos dados que o sistema da Prozone,
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porém o seu foco sdo as informagdes importantes para tornar uma transmissao esportiva mais
relevante para os telespectadores, sendo menos utilizado por times profissionais, € mais por

canais esportivos.

IEEEEEEEN

Figura 2.3: No detalhe, sistema de 3 cAmeras usado no STATS.

2.2 Representacao de Imagens

Na drea da visdo computacional, imagens sdo representadas por matrizes, de forma que
o valor de cada elemento da matriz, a partir de agora chamado de pixel, representa sua cor.
Essa conversdo da imagem em pixels € feita logo apds sua captura pelo sensores da camera,
e entender esse processo ndo € do interesse desse trabalho.

A matriz utilizada na representacao possui duas ou trés dimensdes, sendo as duas primei-
ras coordenadas para a representacdo do pixel na imagem, e a terceira responsavel por criar a
percepgao de cor.

Existem varios sistemas de representagdo de cor em visdo computacional[6], quando é
representada uma imagem em tons de cinza, a partir de agora chamada de grayscale, a matriz

tem apenas duas dimensdes, o valor de cada elemento representa sua cor, sendo 0 menor a
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preta, € o maior a branca, com valores intermedidrios representando uma escala de cinza. Em
outras representacoes de cores mais complexas, essa logica geral se mantém.

Existem outras formas conhecidas de representagdo das cores, uma delas é o RGB, no
qual, as matrizes tem trés dimensdes com a terceira delas possuindo 3 elementos, ou seja, a
imagem € formada pela soma de trés matrizes diferentes. Cada canal representa a quantidade
de cor vermelha(Red), verde(Green) e azul(Blue) que somada, produzird a cor desejada. O
valor dentro de cada elemento da matriz, em cada canal, funciona da mesma forma que no
grayscale.

Cada um desses sistemas de cores gera um espago tridimensional, em que o valor(cor) do
pixel é representado como uma posi¢do, essa representagdo ¢ importante para um entendi-
mento claro da representacdo e pode ser utilizada para realizar comparagdes de forma mais
eficiente.

Um outro sistema de representacdo de cores € o HSV, em que cada canal representa uma
caracteristica diferente da cor, a matiz(Hue) representa qual a tonalidade de cor esta sendo
considerada, a saturacdo(Saturation) representa a pureza do tom e o valor(Value) define o
brilho da cor. O espaco de cores HSV é muito utilizado na identificacdo de cores, para

diferentes condi¢des de iluminagao.

2.3 Processamento de Imagens

Um dos focos da visdo computacional € na identificacdo de objetos e regides de interesse
em imagens e videos, isso se da a partir da separacdo de certas caracteristicas Unicas a elas
nessas imagens, por exemplo, se procuramos uma bola de ténis na imagem, existem duas
caracteristicas unicas a ela em qualquer quadro considerado, a forma da bola, e sua cor ca-
racteristica. E necessdrio, por tanto, utilizar filtros, de forma que seja possivel primeiro s6
visualizar os objetos amarelos e posteriormente procurar dentre esses objetos, apenas aqueles
com a forma redonda.

Uma das formas de se segmentar o fundo dos objetos sendo considerados € a utilizacao de
uma binarizacio adequada, a segmentacido de uma imagem € uma transformacdo nos valores
de cada pixel da mesma, de forma que eles assumam apenas os valores maximo e minimo
permitidos. A decisdo de qual o valor do pixel apds a transformacao € feita a partir de um
limiar(threshold), sendo que valores de pixel acima do limiar passam ao valor maximo e os a

baixo passam para o minimo.
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Para a utilizacdo da binarizacdo, o ideal € que a imagem seja passada antes, por algum
outro sistema que a transforme em niveis de cinza, essa transformagdo pode ocorrer de dife-
rentes maneiras.

No projeto, a regido de interesse sao os pontos que estdo em movimento em frames conse-
cutivos da imagem(jogadores e bola), portanto foram utilizadas técnicas que separem regides
desse tipo. Uma delas € o filtro de diferengas, que consiste na subtracdo, em cada canal, de
frames consecutivos para que identificar regides em que ocorrerdo movimentagao.

Outro parametro que foi considerado durante o desenvolvimento do projeto foi a cor da
roupa dos jogadores, que para a maioria dos esportes, € bem distinta e diferente do solo da
quadra ou campo.

Outra necessidade desse trabalho € de seguir os jogadores em diferentes quadros, portanto
€ necessario nao sé identifica-los em todos os quadros, mas também conseguir distinguir a
trajetoria que esta sendo desenvolvida por eles. Para tanto, € importante conseguir segmentar
a quadra em diferentes regides, a partir de suas linhas. As linhas s@o separadas a partir de
uma binarizacdo, e o algoritmo de Hough[5] foi utilizado para detectar suas formas.

A transformada de Hough pode ser utilizado para detectar forma geométricas bem defini-
das, como circunferéncias e retas. Uma reta no espaco polar € definida pelo valor em médulo
e angulo que um vetor perpendicular a ela, passando pela origem assume, considerando um
ponto no espaco retangular, infinitas retas passam por ele, e elas sdo representadas no espaco
polar por uma sendide, como pode ser observado na parte direita da 4.3. Realizando esse
processo para todos os pixels brancos de uma imagem binarizada, é possivel identificar li-
nhas a partir do cruzamento das sendides. Um dos parametros escolhidos é a quantidade de

interseccdes de curvas que definem uma reta.
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Figura 2.4: Transformada de Hough.
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2.4 Transformacoes Lineares

Em visdo computacional, muitas vezes é necessario realizar uma mudancga de perspectiva,
para que a imagem seja possivel realizar medidas e comparagdes. Para isso € realizada uma
transformacdo de perspectiva, a partir de uma matriz de transformacao linear produzida por
4 pontos em 2 imagens distintas.

Além da transformacdo de perspectiva, é possivel realizar uma transformacdo afim [6]
com relacdo a rotagdo, translacdo e escala, podendo ser representadas pelas figuras 2.5 e
2.6, essas transformagdes sdo muito usadas para realizar correcdes de uma movimentacao da

camera.

DIFFERENTIAL SCALING SKEW

ROTATION TRANSLATION

Figura 2.5: Resultados de diferentes tipos de transformacao afim. Ex
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Figura 2.6: Exemplos de transformacdes afins e suas matrizes de transformacao.



37

2.5 Caracteristicas do Esporte

Outra necessidade desse trabalho € de seguir os jogadores em diferentes quadros, portanto
€ necessario nao sé identifica-los em todos os quadros, mas também conseguir distinguir a
trajetdria que esta sendo desenvolvida por eles.

Algumas pesquisas recentes indicam que ndo € necessdria a identificacio correta dos jo-
gadores em todos os frames [3], mas sim um algoritmo capaz de entender que as pessoas nao
podem simplesmente desaparecer de um momento para o outro, permitindo assim identificar
falsos negativos e coibir muitos dos erros cometidos na identificacdo e tragar trajetérias mais
condizentes com a realidade.

Essas pesquisas entendem que a quantidade de frames para identificagdo € muito grande
e consequentemente a probabilidade de um erro ocorrer nesse processo muito maior, por-
tanto ndo pode ser permitido ao programa considerar todos os resultados obtidos nessa etapa
como corretos sem antes ser feita uma estimativa de velocidade e trajetdria, para ver se esta
condizente com o esperado.

Algumas caracteristicas dos jogos a serem considerados sdo importantes também, apesar
da aparente movimentacdo aleatéria dos jogadores durante uma partida, algumas conside-
racdes importantes podem ser feitas[7], de forma a simplificar e muito a andlise. Em uma
partida de futebol, dependendo do esquema tético, cada jogador costuma ocupar uma parte
especifica do campo na defesa e se movimentar para frente de uma determinada forma quando
seu time esta com a posse da bola. Em uma partida de ténis, cada jogador se desloca sempre
de forma a alcancar a bola antes que ela toque o piso a segunda vez consecutiva no seu lado
da quadra.

Levando em consideragdo essas informacgdes junto com as caracteristica do desenvolvi-
mento do sistema de visdo computacional, é possivel conseguir uma forma mais simples de

obtencdo da posicao dos jogadores.
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Capitulo 3

Materiais e Métodos

3.1 Especificacoes do Sistema

O trabalho foi testado e desenvolvido em um computador pessoal, um SONY Vaio PCG
41213, com 2GB de memoria RAM, e processador i3 de 2,10GHz, instalado com o sistema
operacional Ubuntu 14.10 para 64bits .

O desenvolvimento foi feito em C++ com a biblioteca OpenCV, a escolha foi feita pela
familiaridade do desenvolvedor com a linguagem e a grande quantidade de informacdes rela-
cionadas a essa biblioteca na literatura, além da grande quantidade de funcdes utilizadas que
jé estdo implementadas nela.

Uma rotina de detec¢do de movimento, desenvolvida em MATLAB, foi utilizada como
parametro de comparacdo com relacao a qualidade do trabalho desenvolvido. Toda a rotina

de MATLAB utilizada pode ser encontrada no anexo 1.

3.2 Compartimentalizacio do Desenvolvimento

O desenvolvimento do projeto foi compartimentalizado, de forma que uma parte do pro-
jeto pode ser desenvolvida sem que a parte anterior houvesse sido terminada ou sequer co-
mecada. Isso permitiu que as partes consideradas mais dificeis pudessem ser desenvolvidas
desde o inicio, e que mais aten¢do fosse dada a elas.

Na figura 3.1, € possivel observar as diferentes etapas de desenvolvimento adotadas.
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Entrada »Pré pro ito Peteceanide Tracking Imerpretagio;dos Saida
pessoas dados

Deteccao de linhas

Figura 3.1: Diagrama de blocos que rege o desenvolvimento do sistema.

3.3 Pré Processamento

Foi considerado, durante o desenvolvimento, que o sistema poderia ser usado a partir
de imagens filmadas especificamente para a utilizacdo no programa ou também, a partir de
videos de terceiros, permitindo uma maior flexibilidade ao usudrio. A grande diversidade de
videos de entrada faz com que seja necessdria uma etapa de pré processamento, de forma
que todas entradas do programa estejam semelhantes. No pré processamento sdo usadas as
linhas da quadra para a calibragdo da imagem, essa informac¢do ainda € utilizada na etapa de
interpretacdo dos dados, portanto é uma saida paralela da primeira etapa. As etapas de pré

processamento sdo representadas na imagem 3.2.

Entrada | Filtro | | Hough Detecgdo Affine Saida 2:
| Canny | | Transform de pontos transform frame

Saida 1:

quadra

Figura 3.2: Diagrama de blocos do pré processamento do video.

3.4 Deteccao de Linhas

Para realizar a identificac@o das linhas da quadra, foi utilizado a transformada de Hough
para linhas, a partir de uma imagem que passou anteriormente por um filtro de Canny, que
identifica bordas, ndo s6 das linhas da quadra, mas também dos jogadores e boa parte da

torcida. A partir das informagdes do filtro é possivel realizar a transformada e identificar
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linhas retas na imagem.

As linhas detectadas sdo analisadas e suas intersec¢des encontradas, a partir de suas po-
si¢des relativas € possivel encontrar os cantos da quadra para cada frame. O canto superior
esquerdo € o ponto em que temos a menor soma de x e y, o canto inferior direito € o ponto
com maior soma das suas coordenadas, e os outros dois pontos sdo intermedidrios, com maior
X € menor y ou o contrdrio.

A partir da posi¢ao dos cantos em frames consecutivos € possivel detectar se houve mo-
vimento da camera, e corrigi-lo a partir da matriz de transformacdo, que detecta translacao,
rotacdo e escala. Aplicando a matriz de transformacao obtida em todos os pixels do segundo
frame, é obtido uma imagem em que as linhas da quadra estdo alinhadas com a primeira, é
necessario passar a imagem resultante por um filtro da média para retirar pequenas desconti-

nuidades nas linhas e imperfeicdes.

3.5 Deteccao de Jogadores - Técnicas Consideradas

A identificacdo dos jogadores foi a etapa para qual foi dada maior aten¢do durante o
desenvolvimento do sistema. Nela, é necessario identificar a posi¢ao inicial deles, para pos-
teriormente entender qual a movimentagdo que eles tem em quadros seguidos.

Como o desenvolvimento foi feito em C++, focado em um sistema embarcado, foi pos-
sivel perceber que o desenvolvimento do filtro de Kalman em um ambiente OpenCV exige
muita memdria, portanto essa alternativa foi descartada.

Algumas opcdes ao filtro de Kalman foram testadas durante o desenvolvimento, entre
elas € possivel citar, a técnica de Lucas Kanade, a técnica de histogramas com gradientes
orientados, em inglés HOG, que utiliza uma maquina de vetores de suporte, em inglés SVM,
, uma técnica de detecc¢io de descritores e um filtro de diferenca baseado na distancia entre
pixels no espaco RGB.

A técnica de Lucas Kanade, como mostrado na figura 3.3, procura imagens iguais em
quadros distintos, para tracar um caminho com elas; essa técnica € muito boa para detectar
movimentos de corpos rigidos sem rotagdo. Infelizmente esse algoritmo ndo € eficiente para
a deteccdo de pessoas, principalmente enquanto elas praticam atividades fisicas, j4 que as

mesmas podem ter posigdes relativas de braco, corpo e pernas muito distintas.
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Figura 3.3: Exemplo de utilizacdo da técnica de Lucas Kanade.

A técnica de HOG com SVM, como mostrada na figura 3.4, ¢ um método em que ini-
cialmente € necessdrio treinar o SVM, ou seja, € necessdrio fornecer uma série de imagens
de pessoas em situacdo de jogo, para que as diferentes configuragdes de movimento possam
ser detectadas. Com a técnica é fornecida uma SVM default, que € amplamente utilizada
para a detec¢do de pessoas caminhando, na impossibilidade de treinar uma nova maquina de

vetores, foi utilizada a fornecida, como forma de teste.

Figura 3.4: Imagens de pessoas usadas para a calibracdo do default do SVM.

Para que a detec¢do dos jogadores fosse automatizada, foi utilizada uma técnica seme-
lhante a um filtro de diferencas, onde € calculada, para cada pixel da imagem, a distancia,
no espago RGB, entre o valor dele e o valor do pixel correspondente no frame anterior. O

diagrama da figura 3.5 indica as etapas de desenvolvimento.

Dados do pré Filtro de Desenhar pEQiC,;%';':fJS -I;Jrzgisgfgor?zr
processamento diferenga MBR jogadores espago

Figura 3.5: Diagrama de blocos da deteccdo dos jogadores.
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A comparacgdo das cores no espaco RGB foi escolhido pelo fato que o fundo € predomi-
nantemente de uma Unica cor, numa quadra ou campo, portanto tem resultados melhores em
comparacdo com um filtro de diferencas tradicional.

A partir da imagem de diferencas em grayscale, foi realizada uma binarizacdo, para di-
minuir o ruido, com o valor do threshold escolhido empiricamente.

Na imagem binarizada resultante, foi possivel detectar regides que pertencem ao mesmo
jogador, mas que ndo estdo conectadas, gerando assim erro de deteccao multipla. Para que
esse erro fosse minimizado, foi realizada uma dilatacdo na imagem com uma mdscara de

tamanho k:
width

=2(350

)+1 (3.1)

Para frame resultante, foi feita uma andlise baseada em uma regido de interesse. A ima-
gem foi varrida por essa regido, de forma que, se uma quantidade minima de bits internos a
regido fossem brancos, era considerado que ocorreu movimento naquela rea.

O tamanho N da regido de interesse foi definido como:

width
N =

3.2
45 (3-2)
A quantidade minima de pontos brancos dentro da regido P, para que seja considerado o

movimento é:

P=— (3.3)

O ajuste dos valores nas equacdes anteriores foram definidos baseados em [4] e de forma
a proporcionar respostas equivalentes para diferentes resolu¢des de imagem.

Todas as regides em que foi reconhecido o movimento, foram pintadas de branco em uma
imagem preta de mesmo tamanho que o frame estudado, isso retira o ruido proporcionado por
regides em que nao foram detectados bits brancos o suficiente para a detec¢do de movimento.

Com a nova imagem, foi encontrado o contorno ao redor das regides brancas, € com
esse contorno, foi definido o MBR, minimum bounding rectangle, o menor retangulo que
encapsula toda a regido.

Para cada MBR encontrado, foi definida sua posicao como a média entre as coordenadas
x dos seus cantos, e a maior coordenada y, considerando a origem no canto superior esquerdo
da tela. Na imagem 4.2, a posicao dos objetos de interesse estdo marcadas como pequenas

circunferéncias na borda de cada MBR.
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3.6 Anadlise da Posicao dos Jogadores

Com a posic¢ao de cada jogador bem definida, foi necessario entender claramente em qual
ponto da quadra esse jogador estava, portanto foi realizada uma transformada de perspectiva,
considerando os pontos relativos aos objetos e a posicao dos cantos da quadra, encontrados
anteriormente.

Foi tragada um diagrama, apresentado na figura 3.6, seguindo as propor¢des corretas de

uma quadra de ténis oficial, de forma a representar a nova posi¢do dos jogadores e bola.

Figura 3.6: Quadra tracada para mudancga de perspectiva na representacao.

A mudanca de perspectiva foi necessaria para estimar o valor de deslocamento e velo-
cidade dos objetos, mas foi também uma alternativa considerada para diminuir o trabalho
computacional em um sistema embarcado, ja enviar informagdes para a tela € uma das ativi-
dades que exige uma maior quantidade de processamento e memoria de um sistema.

A partir da posic¢ao dos jogadores, da bola e das linhas da quadra, € possivel identificar
jogadores em frames consecutivos[8, 9] além de identificar sua velocidade, considerando o
intervalo de tempo real entre cada quadro.

A identificacdo de jogadores em sequéncias de videos € feita a partir de sua posicao re-
lativa, sempre que um objeto novo é detectado a partir do movimento, uma comparagao é
feita para todos os quadros subsequentes, se existe um objeto se movendo préximo a posi¢ao
anterior do mesmo, a posi¢ao ¢é atualizada, se nao ocorreu movimentacdo nas proximidades,
€ considerado que o objeto permaneceu parado.

Essa técnica de identificacdo sé pode ser usada porque existem poucos momentos de

superposicdo nas partidas de ténis, e portanto os erros sao minimizados.
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A partir da posicao de cada objeto identificado, foi necessario identificar os jogadores e
a bola,além desses, muitos outros objetos foram detectados. Toda movimentacdo de arbitro,
torcida ou pessoal técnico é detectada e apresentada no video. Objetos que se movimen-
tam por uma quantidade de quadros muito pequena, e permanecem parados por boa parte
de tempo sdo considerados como alheios a partida, objetos que se movimentam na maior
parte dos quadros, mas que permanecem sempre do mesmo lado da quadra, sdo jogadores,
enquanto objetos que se movimentam livremente pelo frame sdo considerados bolas.

Ao final de cada ponto da partida, hd um intervalo de alguns segundos em que a posicao
dos jogadores ndo € importante, portanto foram analisados clipes de duracdo de apenas um
ponto.

A saida do programa € uma planilha com a posicdo dos objetos detectados em todos os

frames.
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Capitulo 4

Resultados e Analise

4.1 Pré Processamento

A saida em video da etapa de pré processamento de imagem do projeto pode ser vista na

figura 4.1. Foi possivel perceber que a quantidade de pixels da imagem, € o principal fator

que limita o desempenho dessa etapa.

Figura 4.1: Saida do pré processamento de video, apds a aplicacdo do filtro de média.

Para videos de menor qualidade, transformadas afins fazem com que as linhas da quadra

se tornem descontinuas, dando a impressdo que a imagem muda muito de um frame para o
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outro, apesar de a quadra permanecer centralizada.

Portanto, quanto menor a qualidade da imagem, maior deve ser a mdscara do filtro de
média aplicado para que o video permaneca fluido, o que, por sua vez, prejudica a detec¢ao
dos objetos na etapa seguinte, ja que as imagens na saida ficam cada vez menos claras. Foi
necessario encontrar um equilibrio, em que a impressao de fluidez se mantém, e o video
ainda pode ser usado para deteccdo de jogadores e bola; a menor qualidade de video que foi
considerada como boa o suficiente para ser usada foi o de 720p, para qualquer valor menor
que esse, a rotina de pré processamento prejudica o resultado final do sistema.

Um filtro de média com mascara 5x5 foi o que apresentou, visualmente, melhores resul-
tados em diversas qualidades de video.

A técnica utilizada para a retirada de movimentagao do video funciona melhor para mo-
vimentag¢des relativamente grandes; para pequenos tremores que surgem de erros de captacao
em uma imagem outras técnicas teriam que ser utilizadas.

Outro fator importante da técnica aplicada € que ela produz resultados melhores para as
regides mais proximas ao centro, quanto mais longe do centro do frame o pixel esta, maior

sera o ruido introduzido.

4.2 Deteccao dos Jogadores

Considerando as diferentes técnicas testadas para identificar os jogadores, foram observa-
dos alguns resultados.

Com relagdo a técnica de Lucas Kanade, ndo foi possivel obter nenhum resultado de
identificacdo, visto o problema discutido anteriormente de que os jogadores ndo apresentam
formas rigidas a serem observadas, o que dificulta a execucdo do mesmo.

A técnica HOG com o SVM default também ndo se mostrou capaz de detectar nenhum
jogador, isso se deve ao fato de que a calibracdo feita anteriormente, considerava uma movi-
mentacdo bem comportada das pessoas, no caso do ténis, os jogadores estdao correndo e em
padrdes muito distintos dos usados na calibragao da miquina, isso dificulta qualquer aplica-
¢do do SVM default para esses casos.

Considerando agora a técnica para identificacdo automatica dos jogadores a partir da dis-
tancia no espaco RGB entre pixels correspondentes, ela demanda um esfor¢co computacional
muito maior comparada a outras alternativas em que apenas regides menores sdo considera-

das, ja que em todo quadro, € necessdrio realizar uma varredura da imagem para encontrar
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diferencas nas cores e posi¢des. Em compensacgao, os resultados sdao muito melhores.

Foram realizados testes com dois tipos diferentes de videos, no primeiro, ele com a cimera
parada enquanto no segundo momento foi utilizado um video de uma transmissao de TV em
que a camera segue a bola.

Para o video que precisou ser passado pela rotina de pré processamento, os resultados
sao piores que o do video filmado parado, mas ainda sdo muito melhores que a rotina que
estava sendo aplicada anteriormente. Em comparag¢do com o exemplo de MATLAB, os resul-
tados sdo muito proximos, apresentando ainda a versatilidade de ser aplicada a sistema com
a camera sofrendo certo nivel de movimentagao.

Os resultados melhores dessa alternativa se dao devido principalmente a dois fatores, o
primeiro deles é que nessa técnica, ndo € considerada apenas uma regiao préxima a anterior,
mas detectado movimento em todo o quadro, e a segunda € que a distancia no espaco RGB
leva em consideracao as duas caracteristicas que foram consideradas anteriormente de forma
separadas, a movimentacdo entre frames consecutivos € o valor RGB do pixel em frames
consecutivos.

Outro fator importante é que € realizada uma dilatacdo na imagem para que todas as
regides de movimentacdo de um tUnico objeto sejam detectadas com uma Unica drea inter-
conectada, porém em alguns momentos isso nao foi suficiente. Principalmente no inicio de
cada ponto, quando cada jogador movimenta partes especificas do corpo para sacar, podem
ser detectados mais de uma regido, quando elas deviam ter sido detectas como uma s6. Esse
erro teve de ser ajustado na etapa de identificacdo de qual jogador corresponde cada regido
encontrada.

E importante ressaltar que as técnicas anteriores fazem a identificacdo dos jogadores, en-
quanto essa técnica automadtica apenas detecta regides onde ocorrem movimentagdo, € essas
devem ser posteriormente analisadas, pela posi¢do e comportamento, para identificar os jo-
gadores, a bola e outros objetos, como arbitros.

Diferentemente das técnicas analisadas anteriormente, até a bola é detectada nessas situ-
acoes. A Unica ressalva é que quando a bola estd proxima do jogador, ambos objetos passam
a ser detectados como um unico, isso pode inclusive alterar as dimensdes do MBR e compro-
meter em parte a posicdo detectada do jogador.

A deteccdo da bola ocorre antes da transformada de perspectiva, porém ao realizar a
transformada, foi realizada uma suposicao, que todos objetos se encontram no mesmo plano

do chdo, o que nao € verdade para o caso da bola, j4 que em geral ela esta se movendo em
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todo o espaco tridimensional. Dessa forma, a trajetéria e velocidade da bola encontrados ndo
podem ser considerados como corretos.

Uma alternativa encontrada na literatura[4] para esse problema € a utilizacdo do 4udio
junto ao video para a encontrar momentos em que a posi¢do da bola pode ser considerada
como correta. Em geral, a bola anda em trajetdrias retas, com o ponto inicial e final bem
definidos, por posicdes em que ela esta junto aos jogadores.

O 4udio da bola tocando o chdo e batendo na rede da raquete € bem definido e pode ser
usado para detectar diferentes frames em que € possivel analisar corretamente a posicao da
bola.

Como limites e dificuldades dessa técnica, foi possivel perceber que a qualidade da ima-
gem utilizada influencia muito no resultado, quanto melhor a qualidade do video e maior sua
estabilidade, melhor o seu desempenho. Videos que foram tratados por técnicas utilizadas
em transmissodes esportivas trouxeram uma resposta ainda superior, indicando que as técnicas
de pré processamento ndo foram suficientes para igualar as condicdes de um video filmado

com a camera parada ou mesmo com rotinas de pré processamento comerciais.

y & E M # JACOBS CREEK g m'l.:!:m‘\ ({D @ @ ‘m ‘m @ fnlgrhfm:,s ANZ

Fly Emirates

* * ot
o * Fl
_m\““\ o — . EUROGTTTHD
3

1§"M | 1 - ANZ T

IME L BOURNE!

Figura 4.2: Saida da detec¢do do movimento.
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4.3 Deteccao de Linhas

A identificagdo de qual jogador corresponde cada regido de interesse encontrada, e os
dados para a realizacdo da transformada de perspectiva dependem da identificacdo das linhas
da quadra e de suas intersec¢des. A utilizacdo da transformada de Hough traz como resultado
uma série de linhas detectadas na imagem. Essas linhas apresentam nao s6 aquelas que
limitam a quadra, mas também outras que aparecem gracas a torcida ou a outros fatores,
como propagandas.

O ajuste dos valores da transformada tiveram que ser feitos para especificamente para
cada partida, a partir de tentativa e erro, eles levaram em consideracdo que as regides de
torcida nao fossem detectadas, e de forma que cada linha da quadra fosse detectada apenas

duas vezes, isso €, na sua borda exterior e na borda interior.
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Figura 4.3: Detec¢do de linhas desajustada.

As imagens 4.3 e 4.4 apresentam uma situacdo em que a detec¢io de bordas esta desre-
gulada e uma em que os parametros foram ajustados corretamente. O ajuste foi feito a partir
do parametro de escolha da transformada de Hough, que permite escolher qual a quantidade
minima de pixels pertencente aquele segmento de reta, para que ele fosse mostrado.

O melhor ajuste encontrado ainda ndo detecta apenas as linhas de interesse, mas também

outras, como as linhas da rede. A parte superior da rede sempre é detectada como linha,
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ja que € da mesma cor que as linha da quadra, mas nesse caso sio detectadas vdrias linhas
nessa posicao, ja que a rede apresenta uma curvatura. Essas linhas também foram levadas em

consideracdo na analise dos pontos de interesse.

; . ‘ Fiy = / N Fiy
sEEN  @IACOBSCREEK gmivates (ALY @ / A [KIA] @ LKIAJ Emirates ANZ A
/

Ty Emirates 2 . *_ Fly Emiray
EUROETTIH, s

*. LIVE

I E L BIOURNE)

Tempo:
e > T

Pausado 0:01/0:04

Figura 4.4: Deteccdo de linhas bem ajustada.

Os pontos a serem considerados foram aqueles onde ocorrem a intersec¢do entre diferen-
tes retas, dentro do tamanho da imagem, e dessa forma eles foram analisados para encontrar
os extremos da quadra. Os pontos de extremo sdo encontrados considerando sua posi¢ao re-
lativas aos outros, isso gera alguns limites com rela¢do a posicdo em que o video pode ser
gravado.

A camera deve estar posicionada de forma que as linhas de fundo da quadra estejam o
mais horizontais possivel. Caso as linhas de fundo de quadra estejam em angulo, elas devem
ser tais que as linhas laterais da quadra ndo facam um angulo maior que noventa graus com

uma linha horizontal.

4.4 Identificiacao dos Jogadores

A saida do programa, apds a transformada de perspectiva, sem a identificacdo dos jogado-
res esta apresentada na figura 4.5, ela foi desenhada levando em consideragdo as dimensoes

reais de uma quadra de ténis, que tem 23,77m de comprimento e 10,97m de largura, repre-
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Figura 4.6: Resultado do projeto, com a identificacdo dos jogadores.

sentados por 437 pixels de comprimento e 79 pixels de largura, dessa forma, cada elemento
representa uma drea real de 5,44cm x 13,88cm.

A 1identificacdo dos diferentes jogadores e bolas foi feita de duas formas diferentes, a
primeira foi baseada no tamanho do MBR detectado, de forma que os dois maiores MBR

detectados sdo jogadores.

IR N “ =
05 /0:2

Figura 4.5: Resultado do projeto, sem a identificacio dos jogadores.

A segunda alternativa é semelhante a deteccdo anterior, em que € considerada uma regiao
préxima a posicao anterior, para encontrar o deslocamento.

Como para a condi¢do necessdria da camera, o tamanho dos jogadores e bola sao bem
especificos, a melhor alternativa foi a de defini¢do pelo tamanho. O resultado dessa alternativa
€ apresentado na figura 4.6.

Outra saida do programa € uma tabela ou banco de dados com todas as posi¢des assumidas
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pelos jogadores no periodo considerado,em geral, um ponto. A tabela a seguir apresenta um

exemplo de resultado para alguns frames.

Tabela 4.1: Resultado do programa, tabela de posicionamento dos jogadores em cada frame.
Frame X doJogador1l Y doJogador1l X dolJogador2 Y doJogador?2

9 161 394 1158 227
10 168 395 1158 226
11 169 396 1158 224
12 175 397 1162 222
13 180 398 1162 220
14 184 401 1167 219
15 194 402 1172 218
16 119 377 1236 211
17 133 377 1278 206
18 215 404 1241 210
19 222 405 1201 215
20 233 407 1201 215
21 134 377 1201 215
22 238 407 134 377
23 242 405 134 377
24 209 395 134 377
25 206 395 134 377

Apesar do tracking dos jogadores, quando observado no video sem a transformacdo de
perspectiva, ser muito bom, ao realizar a transformada é possivel perceber uma clara dimi-
nuicado na precisao da posi¢ao dos jogadores, isso se dd pela mudanga frequente nas bordas
do MBR, o que gera uma mudanca na posi¢do detectada de cada objeto, mesmo que esse nao
se movimente de fato.

Esse erro € aumentado com a transformada de perspectiva, até que na dltima etapa do
desenvolvimento, ele fica bem evidente, alterando em partes o resultado final. Torna-se ne-
cessario mudar a defini¢do da posi¢cao do jogador, baseado no seu MBR.

A partir da tabela de posi¢Oes gerada, € possivel retirar todas as informacdes com relacao
aos jogadores.

Com relacdo a aplica¢do do programa em um sistema embarcado, o desenvolvido foi di-
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vidido em trés partes diferentes, de forma que o pré processamento e a identificacdo dos
jogadores e bola seriam feitas em diferentes dispositivos. A Unica etapa realizada no dispo-
sitivo embarcado seria o tracking dos objetos em movimento e das linhas da quadra. Tendo
em vista o teste da rotina desenvolvida em uma aplicacdo embarcada, o programa foi testado
em uma Raspberry Pi 2, e mesmo limitando a quantidade de informacao a ser processada a
um minimo, um clipe de oito segundos de duracdo e duzentos e vinte frames levou mais de
30 minutos para ser processado, o que indica que a capacidade de processamento da placa
precisa ser muito maior.

Considerando os resultados apresentados, € possivel perceber que em muitos momentos
esta ocorrendo a deteccdo e o tracking dos jogadores, mas considerando os objetivos gerais
do trabalho, e considerando ainda todas as etapas de desenvolvimento apresentadas anterior-
mente, fica claro que ainda faltam muitas fases de desenvolvimento a serem cumpridas para

que um produto completo possa ser apresentado.
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Capitulo 5

Conclusao

A partir dos resultados obtidos, é possivel inferir algumas conclusdes, entre elas, a mais
importante é que é possivel criar um sistema de detec¢do de jogadores em partidas de ténis
com relativamente baixo esfor¢co computacional e erro de detecc¢ao.

Dentre as vérias etapas de desenvolvimento realizadas, a de pré processamento conseguiu
centralizar uma imagem em movimento como o projetado, mas a aplicagdo dessa imagem
centralizada no sistema desenvolvido nao obteve resultados visualmente superiores as da ima-
gem com pouca movimentagdo, permitindo perceber que técnicas mais complexas poderiam
ter sido utilizadas, mesmo que isso limitasse a velocidade da solugdo.

A qualidade da imagem foi identificada como um fator relevante em diferentes etapas no
desenvolvimento do projeto. Uma melhor qualidade de imagem, ou seja, aquela que possui
mais pixels, gera melhores resultados no programa, porém esse mesmo fator é responsavel
pelo aumento da necessidade de processamento, de forma que deve existir um equilibrio entre
os dois fatores para otimizar o desempenho. Conforme o nimero de pixels que o jogador
ocupa € reduzido, diminui também o quanto uma alterag@o nos elementos influencia no valor
total da média calculada no processo. Como solucdo para esse problema pode se propor a
utiliza¢do de uma imagem de resolucao média(720p).

Considerando a etapa de detec¢do dos jogadores, foi possivel criar um sistema em que
toda movimentacdo € detectada. Isso permitiu que os jogadores fossem detectados durante a
maior parte do ponto, porém foi necessdrio reiniciar a deteccao no inicio de cada ponto.

A maior fonte de erro nessa etapa ocorre quando o jogador e a bola sdo detectados em um
mesmo MRB, de forma que a posi¢cao detectada do jogador muda rapidamente.

Na etapa de diferenciacdo dos objetos, devido principalmente a posi¢ao relativa dos joga-

dores na quadra e dela no video, foi possivel utilizar um algoritmo simples para a separacao
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de jogadores, a partir do seu tamanho. Nessa etapa, desde que ambos os jogadores tenham
sido detectados e ndo ocorra oclusdo, ndo foram detectadas fontes significativas de erros. A
diferenciacdo dos jogadores ser tdo simples do ponto de vista computacional é um dos fa-
tores que permite a utilizacido da distancia no espaco RGB para a deteccao da posi¢dao dos
jogadores.

A utilizacdo de apenas uma camera gera algumas dificuldades com relagdo a profundi-
dade, principalmente na deteccdo de objetos que ndo ficam todo o tempo no chdo, no caso
de partidas de ténis, a bola. Essa dificuldade pode ser contornada com a utiliza¢do de outras
ferramentas, que nao foram abordadas nesse trabalho.

Com relagdo ao desenvolvimento focado em sistemas embarcados, todo o software uti-
lizado pode ser utilizado em uma aplicacdo embarcada, e o atendimento dos requisitos de
velocidade de processamento podera ser atendido em fun¢do da defini¢ao das especificagdes
do sistema embarcado.

Ficou possivel observar que a criagdo de um sistema de deteccao de jogadores com baixo
custo de implementagdo, que pode oferecer informacdes relevantes e ajudar no planejamento
e andlise de partidas, tanto de t€nis como de outros esportes. Isso Possibilita a criacdo de
alternativas para o mercado que no momento apresentam solucdes de alto custo, e de dificil

implementacao.

5.1 Sequéncia do trabalho

Mesmo com todo o trabalho e as diferentes técnicas aplicadas e testadas para o desenvol-
vimento do sistema, ainda restam muitos pontos a serem abordados e trabalhados.

Com as limitagcdes em se embarcar o sistema, se torna necessario fazer um levantamento
de outras op¢des de hardware embarcado para melhorar o desempenho do sistema.

Como alternativa ao sistema embarcado, pode-se optar pelo desenvolvimento de um sis-
tema ndo embarcado, que pode ser usado por técnicos e jogadores para uma andlise posterior.
Outra alternativa seria tornar o sistema capaz de ser operado em paralelo, de forma a aumentar
o rendimento do mesmo.

A alternativa escolhida para continuar o desenvolvimento, sugerida acima, também influ-
encia qual deve ser a atencdo dada para as melhorias aplicadas ao sistema.

Caso o foco seja para imagens que ja chegam ao programa com uma qualidade e pré

processamento com boa qualidade, o foco do desenvolvimento deve ser em melhorar a iden-
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tificacdo dos jogadores de forma automadtica, para que no final, o desenho do deslocamento
de cada jogador seja mais suave.

Outro ponto importante de desenvolvimento semelhante ao anterior, € a identificagdo cor-
reta do posicionamento da bola durante todo o jogo. Isso € importante ndo s6 para encontrar
outras informacdes nas partidas de t€nis, mas também para que seja aplicada em outros es-
portes.

Caso o foco do desenvolvimento seja na utilizacao de imagens de menor qualidade ou com
maior movimentagdo, deve ser dada uma maior atencio para a etapa de pré processamento,
de forma a implementar rotinas semelhantes as usadas na TV para produzir imagens o mais
estdveis possivel.

Quando todas etapas precedentes estiverem sido cumpridas, s6 entdo seria possivel obter
uma posi¢ao confidvel em um plano bidimensional para a partir dai se obter alguma informa-
¢do dos jogadores e da partida.

A partir de uma melhora na deteccdo da posi¢c@o dos jogadores e bola, € possivel melhorar
as informacdes obtidas. Se o posicionamento dos jogadores e da bola forem muito precisos, é
possivel até realizar uma andlise de tempo de reacao dos jogadores em saques dos adversarios.

O ideal seria que ao menos a posi¢ao, a velocidade méxima, velocidade média e o tempo

de reagdo de cada jogador fossem medidos.



60



61

Referéncias Bibliograficas

[1] H. Ben Shitrit, M. Raca, F. Fleuret, and P. Fua, “Tracking multiple players using a single

camera,’ tech. rep., Springer Verlag, 2013.

[2] H. Ben Shitrit, J. Berclaz, F. Fleuret, and P. Fua, “Multi-commodity network flow for
tracking multiple people,” Pattern Analysis and Machine Intelligence, IEEE Transactions

on, vol. 36, no. 8, pp. 1614-1627, 2014.

[3] X. Wang, V. Ablavsky, H. B. Shitrit, and P. Fua, “Take your eyes off the ball: Improving
ball-tracking by focusing on team play,” Computer Vision and Image Understanding,

vol. 119, pp. 102-115, 2014.

[4] T. H. Raya, Automatic feature extraction from tennis videos for content based retrieval.

THE UNIVERSITY OF ALABAMA IN HUNTSVILLE, 2011.
[5] J. Pokorny, “Tracking players in low-resolution videos of soccer games,” 2012.
[6] L. Shapiro and G. C. Stockman, “Computer vision. 2001,” ed: Prentice Hall, 2001.

[7] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Com-
puter Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Con-
ference on, vol. 1, pp. 886—893, IEEE, 2005.

[8] K. Okuma, D. G. Lowe, and J. J. Little, “Self-learning for player localization in sports
video,” arXiv preprint arXiv:1307.7198, 2013.

[9] J. 1. Agbinya and D. Rees, “Multi-object tracking in video,” Real-Time Imaging, vol. 5,
no. 5, pp. 295-304, 1999.



62



Apéndice A
Apéndice 1

Codigo do programa desenvolvido em C++ com OpenCYV, para o pré processamento.

USing namespace cv;

using namespace std;

int main(int argc, charx argv[])
{
Mat framel , grayl, resultl , frame2, gray2, result2, contorno, zoom;
Mat original;
Mat peql, peq2, peq3, peq4;
int k, i, j, poslx=20, posly=20, pos2x, pos2y, produto_calc=0, produto_maior=0;
int contl, cont2, conta_quadro=0;
float relacao, A, B;
int filtro:
Point Al, A2, Bl, B2, Cl, C2;
float alfal , alfa2, betal, beta2, rl, r2;
int x, y;
int xal, xa2, xbl, xb2, xcl, xc2, yal, ya2, ybl, yb2, ycl, yc2;
double Sx, Sy, Tx, Ty, teta;
int last_tx=0, last_ty=0;

//A: superior esquerdo
//B: inferior direito

//C: inferior esquerdo
VideoCapture cap("tcc3 .mpd");

// testa se abriu corretamente o arquivo
if (!cap.isOpened())
{

std ::cout << "!!! Failed to open file: << argv([l] << std::endl;

return —1;

int width = cap.get(CV_CAP_PROP_FRAME_WIDTH);
int height = cap.get (CV_CAP_PROP_FRAME_HEIGHT);

// varidveis para serem utilizadas na correcgdo
A=width/2;

B=height/2;

filtro = 2%(width/360)+1;

//cria saida de video
VideoWriter writer;

writer .open( "saidal .wmv", CV_FOURCC(’X’,’V’,’1’,°D’), cap.get(CV_CAP_PROP_FPS), cv::Size(width, height), true ):
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//cria as janelas

//namedWindow (" gray ");

//namedWindow (" antes ");

//namedWindow (" depois ");

//faz a calibragdo inicial no primeiro frame, para comparagcdo posterior

cap.read(framel );
peql = Mat(framel, Rect(120, 80, (framel.cols —160), (framel.rows —160)));
cvtColor (peql, grayl, CV_RGB2GRAY);

/lespecifico para o YCrCb

/%

vector <Mat> chanels;

split(grayl, chanels);

resultl

*/

= chanels [0];

threshold (grayl, resultl , 150, 255, THRESH BINARY);
Canny (resultl , result2, 30, 160);

//imshow (" depois", result2);

/1 cvWaitKey (0);

vector<Vec2f> lines , lines_ok:

HoughLines(result2 , lines, 1, CV_PI/180, 80, 0, 0 ); //valores experimentais

cout <<

"lines = << lines.size()<< endl;

// printa as

1%

for(i =

{

03

flo

linhas

i < lines.size (); i++ )

at rho = lines[i][0], theta = lines[i][1];

Point ptl, pt2;

double a = cos(theta), b = sin(theta);

double x0 = axrho, y0 = bxrho;

//cout << "polar: rho = " << rho <<

theta = " << theta <<

//cout << " retangular: a = " << a << " b =" << b << endl;

// cout << endl;

ptl
ptl

pt2.

pt2

.Xx = cvRound (x0 + 1000%(—b))+80;
.y = cvRound(y0 + 1000x(a))+80;
x = cvRound(x0 — 1000%(—b))+80;
.y = cvRound(y0 — 1000x*(a))+80;

line ( framel, ptl, pt2, Scalar(0,255,255), 1, CV_AA);

imshow (" depois", framel);

cvWaitKey (10);

*/

// calcular
.x=1000;
.y=1000;

Al
Al

BI.

Bl
C1
Cl1

x=10;
.y=10;

.x=1000;

Ly=10;

for (i=0; i

{

for

{

os pontos de interseccdo das retas

<lines.size (); i++)

(j=i+1; j<lines.size (): j++)

alfal=(—1)/tan(lines[i][1]);
alfa2=(—1)/tan(lines[j][1]);
rl=lines[i][0];

r2=lines [j][0];
betal=rl/sin(lines[i][1]);
beta2=r2/sin(lines [j1[1]);

endl ;



for (;3)

x=(beta2—betal )/(alfal —alfa2);

y=alfalsx+betal;
Point teste;
teste .x=x+80;

teste .y=y+80;

if ((x+80>=0)&&(x+80<width)&&(y+80>=0)&&(y+80<height))

{
/lcout << "x = "<< x << " y = " <<y << endl;
circle (framel , teste, 3, Scalar(255, 0, 0), 2);
if ((teste .x+teste.y)<=(Al.x+Al.y))
{
Al.x=teste .x;
Al.y=teste .y;
}
if ((teste .x+teste.y)>=(Bl.x+Bl.y))
{
Bl.x=teste .x;
Bl.y=teste .y;
}
if ((teste .x<=Cl.x)&&(teste .y>=Cl.y))
{
Cl.x=teste .x;
Cl.y=teste .y;
}
}

//1e o segundo frame do video, para corrigir
cap.read (framel);

if (!cap.read(framel))

{

cout << "fim do video << endl;

break ;

// fransforma a imagem em bindria, para diminuir o ruido no filtro canny
peql = Mat(framel , Rect(80, 120, (framel.cols —160), (framel.rows —200)));
//imshow (" depois", peql);

cvtColor(peql, grayl, CV_RGB2GRAY);

//Usa o canal Y como uma imagem grayscale

/%

vector <Mat> chanels;

split(grayl, chanels);

resultl = chanels[0];

*/

threshold (grayl, resultl , 180, 255, THRESH_BINARY);

//realiza o Canny

Canny (resultl , result2, 30, 160);

//Usa o hough lines

vector<Vec2f> lines , lines_ok:

HoughLines(result2 , lines, 1, CV_PI/180, 80, 0, 0 ); //valores experimentais

cout << "lines = << lines.size()<< endl;
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// printa as

for(i =

{

linhas

0; i < lines.size (); i++ )

float
Point
double
double
// cout
// cout
// cout
ptl.x
ptl.y
pt2.x
pt2.y

line (

// calcular os

.x=1000;

A2

A2.
B2.
B2.
C2.
C2.

x=10;
y=10;

y=10;

y=1000;

x=1000;

for (i=0; i<li

{

rho = lines[i][0], theta = lines[i][1];

ptl, pt2;

a = cos(theta), b = sin(theta);

x0 = asrho, y0 = bxrho;

<< "polar: rho = " << rho << " theta = " << theta << endl;
<< " retangular: a = " << a << " b =" << b << endl;
<< endl;

= cvRound (x0 + 1000x(—b))+80;
= cvRound(y0 + 1000x(a))+120;
= cvRound (x0 — 1000%(—b))+80;
= cvRound(y0 — 1000%(a))+120;

framel ,

ptl, pt2, Scalar(0,255,255), 1, CV_AA);

pontos de interseccao das retas

nes.size (); i++)

for (j=i+l; j<lines.size (); j++)

{

alfal=(—1)/tan(lines[i][1]);
alfa2=(—1)/tan(lines[j][1]):
rl=lines [i][0];

r2=lines [j1[0];
betal=rl/sin(lines[i][1]);

beta2=

r2/sin(lines [j1[11);

x=(beta2—betal )/(alfal —alfa2);

y=alfal*x+betal ;

Point
teste

teste

teste ;

.Xx=x+80;

Ly=y+120;

i ((x+80>=0)&&(x+80< width)&&(y+80>=0)&&(y+80<height ))

{

/lcout << "X = "<< X << y = << y << endl;

// printa o ponto

//circle (framel , teste, 3, Scalar (255,

if ((teste .x+teste.y)<=(A2.x+A2.y))
{
A2.x=teste .X;
A2.y=teste.y;
/lcout << "A: " << A2.x << "
}
if ((teste .x+teste.y)>=(B2.x+B2.y))
{
B2.x=teste .X;
B2.y=teste .y;

//cout << "B: " << B2.x <<

}
if ((teste .x<=C2.x)&&(teste .y>=C2.y))

0, 0), 2);

' << A2.y << endl;

<< B2.y << endl;



C2.x=teste .x;

C2.y=teste .y;

/lcout << "C: " << C2.x << " " << C2.y << endl;

// printa oos pontos de referencia

circle (framel , A2, 5, Scalar(0, 255, 0), 2);
circle (framel, B2, 5, Scalar(0, 0, 255), 2);
circle (framel , C2, 5, Scalar(0, 255, 255), 2);

frame2= framel.clone ();

writer << framel ;

cvWaitKey (10);

Cédigo do processamento da posi¢do dos objetos:

#include <opencv/cvaux.h>

#include <opencv/highgui.h>

#include <opencv/cxcore.h>

#include <opencv2/imgproc/imgproc_c.h>
#include <stdio.h>

#include <stdlib.h>

#include <opencv2/video/background_segm.hpp>
#include <iostream>

#include <fstream>

using namespace cv;

using namespace std;

/l variaveis globais

int jogadorl[2][2], jogador2[2][2], quadral [4][2], quadra2[4][2], quadra3([2][2],

int main(int argc, charx argv[])

{

// define varidveis

Mat frame2, framel, frame3, result2, resultl , result3 , result4, peql, peq2, grayl
int i, j, conta_anterior=0, conta_frame=0;

vector<int> posi_ant;

float dist_x, dist_y, dist_z;

// variaveis para detectar as linhas
Point cantol_2, canto2_2, canto3_2, canto4_2:
r2;

float alfal , alfa2, betal, beta2, rl

int x, y;

// abre o arquivo para salvar a informacdo da bola e dos jogadores
ofstream arq;

// ofstream arq2;

arq.open("posi");

//arq2 .open("diagrama");

//le arquivo da memodria e salva em cap

VideoCapture cap("tcc3 .mp4");

int width = cap.get(CV_CAP_PROP_FRAME_WIDTH);
int height = cap.get (CV_CAP_PROP_FRAME_HEIGHT);

quadra4 [2][2],

, bwl, linhal;

contaclick=0;
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// carrega a imagem da quadra

Mat quadra = imread (" quadra.png");

//cria saida de video

VideoWriter writer , writer2;

writer .open( "saidal .wmv", CV_FOURCC('X’,’V’,’1’,’D"), cap.get(CV_CAP_PROP_FPS), cv::Size(width, height), true );
// writer2 .open( "saida2.wmv", CV_FOURCC(’X’,’V’,’1’,’D’), cap.get(CV_CAP_PROP_FPS), cv::Size(width, height), true );

//testa se abriu corretamente o arquivo
if (!cap.isOpened())
{

std ::cout << "!!! Failed to open file:

<< argv([l] << std::endl;
return —1;

}

// prepara para a exibi¢do do video

//namedWindow (" frame ");

//namedWindow (" difference ");

// define os cantos da quadra

Point cantol_1, canto2_1, canto3_1, canto4_1;
cantol_1.y=141;

cantol_1.x=169;

canto2_1.y=578;

canto2_1.x=169;

canto3_1.y=141;

canto3_1.x=1110;

canto4_1.y=578;

canto4_1.x=1110;

//desenha circuilos ao redor deles

//circle (quadra, cantol_1, 3, Scalar(255, 0, 0), 2);
// circle (quadra, canto2_1, 3, Scalar(255, 0, 0), 2);
// circle (quadra, canto3_1, 3, Scalar(255, 0, 0), 2);
/lcircle (quadra, canto4_1, 3, Scalar(255, 0, 0), 2);

//namedWindow (" quadra ");

//imshow (" quadra", quadra);

/1 cvWaitKey (0);

TELETEEELT LT i i i r i i i i i 400100 11414111111717 Pontos  de
//(141, 169) (578, 169) (141, 1110) (578, 1110)

destroyWindow (" quadra");
cap.read (framel);

/1 cvWaitKey (10);

//limita manualemnte a imagem para que sé detecte as linhas da quadra
for (53)

{

conta_frame++;

if (!cap.read(frame2))

{

cout << "fim do video"<< endl;
break ;

}

//imshow (" frame ", peql);

resultl = Mat:: zeros (framel .rows, framel.cols, CV_8UCIl);

interesse /// /1111 TTLITEETEETTEETEETTETEETTLTT



for(i=0; i<framel.cols; i++)

for(j=0; j<framel .rows; j++)

{

{

Point ponto;

ponto .x=i;

ponto.y=j;

Vec3b valuel = framel.at<Vec3b>(ponto);
Vec3b value2 = frame2.at<Vec3b>(ponto);
dist_x= value2.val[0]—valuel.val[0];
dist_y= value2.val[l]—valuel .val[l];
dist_z= value2.val[2]—valuel .val[2];
resultl .at<uint8_t >(ponto)=sqrt(dist_x=*dist_x + dist_ysxdist_y + dist_z=xdist_z);
}

)

//converte o resultado para B&WV
blur(resultl , result2, Size(2,2), Point(—1,—1), BORDER DEFAULT);
threshold (resultl , result2, 70, 255, THRESH_BINARY);

//realiza uma abertura da imagem para unir pontos separados
int k;

k=2%(width/360)+1;

dilate (result2 , result3 , k);

//DESENHAR O MINIMUM BOUND RECTANGLE
//comeca por identificar os macroblocos
int N, dim;

int a, b;

int conta_pixel=0, conta_bloco=0, conta_mega=0; //contador de quantos pixels estdo brancos no macrobloco e quantos

vector <int> vetor_posi;
vector<int> vetor_mega;
vector<int> posi_atual;
vector<int> tam;

vector <Point> pe;

//N=framel . cols/45;
N=25;
dim=NxN/2;

// varre toda a imagem

for(i=0; i<framel.cols—N; i++)
{
for(j=0; j<framel .rows—N; j++)

{

peql = Mat(result3 , Rect(i, j, N, N));
Scalar pixel = sum(peql);

conta_pixel=pixel [0]/255;

if (conta_pixel >40)

{

//cria um vetor com a posi¢cdo inicial de todos macroblocos encontrados na imagem
vetor_posi.push_back(i);

vetor_posi.push_back(j);

conta_bloco++;

}

}

}

cout << "quantidade de blocos: << conta_bloco << endl;
//se a quantidade dde macroblocos for 0, descosidera esse quadro

if (conta_bloco==0) continue;
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// printa todos macroblocos em um fundo preto

Mat resultd4d = Mat:: zeros(resultl .rows, resultl.cols, CV_8UCI);

for(i=0; i<conta_bloco; i++)

{

Point cantol , canto2;

cantol .x=vetor_posi[2x*i];

cantol .y=vetor_posi[2xi+1];
canto2.x=vetor_posi[2*i]+N;
canto2.y=vetor_posi[2xi+1]+N;

rectangle (result4 , cantol, canto2, 255);

}

framel=frame2.clone ();

frame3=quadra.clone ();

// usar o print dos marcoblocos para desenhar um MBR a partir dos contornos gerados
vector<vector<Point> > contours;

vector <Vec4i> hierarchy;
findContours (result4 , contours, hierarchy , CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);

vector <vector <Point> > contours_poly( contours.size() );

vector <Rect> boundRect( contours.size () );

LILELEEETEE 00070717 171177 1717 ENCONTRA AS LINHAS DA QUADRA LA LTATATATLTTEVVEVLA VLV
//diminui a imagem para trabalhar sé com a parte central

peql = Mat(frame2, Rect(80, 120, (framel.cols —160), (framel.rows —200)));

cvtColor (peql, grayl , CV_RGB2GRAY);

threshold (grayl, bwl, 180, 255, THRESH_BINARY):

//realiza o Canny

Canny (bwl, linhal, 30, 160);
//Usa o hough lines

//cout << "testel" << endl;
vector<Vec2f> lines , lines_ok;
vector <Point> pontos;

HoughLines (linhal , lines, 1, CV_PI/36, 100, 0, 0 ); //valores experimentais

// calcular os pontos de intersec¢do das retas
canto3_2.x=1000;

canto3_2.y=1000;

canto2_2.x=10;

canto2_2.y=10;

cantol_2.x=1000;

cantol_2.y=10;

canto4_2.y=1000;

canto4_2 .x=10;

for (i=0; i<lines.size (); i++)

{

for (j=i+1; j<lines.size (); j++)
{

alfal=(—1)/tan(lines[i][1]);
alfa2=(—1)/tan(lines[j1[1]);
rl=lines[i][0];

r2=lines [j][0];
betal=rl/sin(lines[i][1]);
beta2=r2/sin(lines[j][11);



x=(beta2—betal )/(alfal —alfa2);

y=alfal xx+betal ;

Point teste;
teste .x=x+80;

teste .y=y+120;

if ((x+80>=0)&&(x+80<width)&&(y+80>=0)&&(y+80<height))
{

/lcout << "x = "<< x << "y =" <<y << endl;

// printa o ponto

//circle (framel , teste, 3, Scalar(255, 0, 0), 2);
pontos.push_back(teste );

if ((teste .x+teste.y)<=(canto3_2.x+canto3_2.y))
{
canto3_2 .x=teste .X;

canto3_2.y=teste.y;

//cout << "A: << A2.x <<
)
if ((teste.x+teste.y)>=(canto2_2.x+canto2_2.y))

{

canto2_2 .x=teste .X;

<< A2.y << endl;

canto2_2.y=teste.y;

// cout << "B: << B2.x <<
}
if ((teste .x<=cantol_2.x)&&(cantol_2.y>=cantol_2.y))

{

cantol_2 .x=teste .X;

<< B2.y << endl;

cantol_2.y=teste.y;

//cout << "C: << C2.x <<
)
if ((teste.y<=canto4_2.y))
{

canto4_2 .x=teste .X;

<< C2.y << endl;

canto4_2.y=teste.y;
//cout << "C: " << C2.x << " " << C2.y << endl;

}

for (i=0; i<pontos.size (); i++)

{

Point aux;

aux=pontos[i];

if ((abs(aux.y—canto4_2.y)<=20)&&(aux.x>=canto4_2.x))
{

canto4_2 .Xx=aux.x;

canto4_2 .y=aux.y;

}

)

// printa oos pontos de referencia

circle (frame2, canto3_2, 5, Scalar(0, 255, 0), 2);

circle (frame2, canto2_2, 5, Scalar(0, 0, 255), 2);

circle (frame2, cantol_2, 5, Scalar(0, 255, 255), 2);

circle (frame2, canto4_2, 5, Scalar(255, 0, 0), 2);

PILELETETLT i i 00000 0040710710117171FIM DAS LINHAS // /1111111001000 irii i ririniriiirrnrg
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Point2f cantol [4], canto2([4];
cantol [0]=cantol_1;
cantol [1]=canto2_1;
cantol [2]=canto3_1;
cantol [3]=canto4_1;
canto2[0]=cantol_2;
canto2[l]=canto2_2;
canto2[2]=canto3_2;

canto2[3]=canto4_2;

Mat transform;

transform = getPerspectiveTransform(canto2, cantol);
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// printa os MBR

for(i=0; i<contours.size (); i++)

{

Point auxl, aux2, aux3, aux4;

//Mat in;

//Mat out;

approxPolyDP( Mat(contours[i]), contours_poly[i], 3, true );
boundRect[i] = boundingRect( Mat(contours_poly[i]) );
//rectangle ( frame2, boundRect[i].tl(), boundRect[i].br(), Scalar(255, 255, 0), 2, 8, 0 );
auxl=boundRect[i]. tl ();

aux2=boundRect[i].br();

aux3.y=aux2.y;

aux3.x=(auxl.x+aux2.x)/2;

Mat in = (Mat_<double >(3,1) << aux3.x, aux3.y, 1);

Mat out;
out=transforms+in;
// cout << in << endl << transform << endl << out << endl;

aux4 .x=out.at<double >(0,0)/out.at<double >(2,0);

aux4.y=out.at<double >(1,0)/out.at<double >(2,0);

//circle ( frame2, auxl, 3, Scalar (255, 0, 0), 2);
// circle ( frame3, aux2, 20, Scalar(0, 255, 255), —1);
int num;

num=abs ((aux1.x—aux2.x)x(auxl.y—aux2.y));

arq << conta_frame << << aux4d.x << << aux4d.y << << num << endl;

<< conta_frame <<

//arq2 << "frame: ", " << aux2 << endl;

posi_ant=posi_atual;
//imshow (" frame ", frame2);
namedWindow (" difference ");
imshow (" difference", result4);

//cvWaitKey (10);

writer <<frame2 ;

// writer2 <<frame3;

vetor_posi.clear ();

}
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/larq2.close ();

arq.close ();

cap.release ();
return 0;

}

Cédigo da fungdo utilizada para fazer a transformada de perspectiva:

#include <stdlib.h>
#include <opencv2/video/background_segm.hpp>
#include <iostream>

#include <fstream>

using namespace cv;

using namespace std;

int main()

{

// abre o arquivo para leitura
ifstream arq;

arq.open("posi", ios::in);

int cont=0, conta_frame=0;

int a, x, y, anterior=0,inicial [4];

int i, num_jog=0, area;

Point ponto, jogl, jog2;

int maiorl, maior2;

// definir jogadores como uma matriz Nx4, a primeira coluna é o frame, a segunda é o id do jogador, a terceira e a quarta sdo as coordenadas
//vector<int> quadro;

//vector<int> id;

// vector <Point> posi;

//vector<Vecli> total;

Mat quadra = imread (" quadra.png");

Mat frame = quadra.clone ();

int height= quadra.rows;

int width= quadra.cols;

VideoWriter writer;

writer .open( "saidal .wmv", CV_FOURCC('X’,’V’,”’1’,’D’), 10, cv::Size(width, height), true );
/%

a=0;

quadro . push_back(a);

id . push_back(a);

ponto.x=0;

ponto.y=0;

posi.push_back (ponto);

*/

while (arq >> a >> x >> y >> area)
{

int cont=0;

ponto.x=Xx;

ponto.y=y:

// quadro . push_back (a);
// posi.push_back(ponto);

//definir se o jogador detectado jd tem id ou nao;
/%
if (a==1)
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{

cont++;

id . push_back (cont);
)

else

{

*/

cout << a << " (" << x <<

",y << )" << << area << endl
if (a==anterior)

{

cont++;

if (cont==1)

{

if (area>=maiorl)

{

maior2=maiorl ;

maiorl=area;

jog2=jogl;

jogl=ponto;

)

else

{

maior2=area;

jog2=ponto;

)

}

else

{

if (area>=maiorl)

{

maior2=maiorl ;

maiorl=area;

jog2=jogl;

jogl=ponto;

)

if ((area<maiorl)&&(area>=maior2))
{

maior2=area;

jog2=ponto;

)

}

// circle ( frame, ponto, 20, Scalar(0, 255, 255), —1)
}

else

{

cont=0;

conta_frame ++;

frame = quadra.clone ();

// circle ( frame, ponto, 20, Scalar(0, 255, 255), —1);
maiorl=area;

jogl=ponto;

if (conta_frame >0)

{

circle ( frame, jogl, 20, Scalar(0, 255, 255), —1);
if (conta_frame >0) circle ( frame, jog2, 20, Scalar(0, 0, 255), —1);
writer << frame;

}

}

anterior=a;

}

arq.close ();
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Anexo I

Anexo 1

Funcao MATLAB de deteccao de objetos a partir de filtro de Kalman:

function multiObjectTracking ()

% Create system objects used for reading video, detecting moving objects ,and displaying the results.

obj = setupSystemObjects ();
tracks = initializeTracks (); % Create an empty array of tracks.
nextld = 1; % ID of the next track

% Detect moving objects , and track them across video frames.
while ~isDone(obj.reader)

frame = readFrame ();

[centroids , bboxes, mask] = detectObjects (frame);
predictNewLocationsOfTracks ();

[assignments , unassignedTracks, unassignedDetections] =

detectionToTrackAssignment ();

updateAssignedTracks ();
updateUnassignedTracks ();
deleteLostTracks ();

createNewTracks ();

displayTrackingResults ();

end

function obj = setupSystemObjects ()
% Initialize Video 1/0
% Create objects for reading a video from a file , drawing the tracked

% objects in each frame, and playing the video.

% Create a video file reader.

obj.reader = vision.VideoFileReader(’videol .wmv’);

% Create two video players, one to display the video,

% and one to display the foreground mask.

obj.videoPlayer = vision. VideoPlayer(’ Position’, [20, 400, 700, 400]);
obj.maskPlayer = vision.VideoPlayer(’Position’, [740, 400, 700, 400]);

% Create system objects for foreground detection and blob analysis

S

%

q

The foreground detector is used to segment moving objects from

3

N

the background. It outputs a binary mask, where the pixel value
% of 1 corresponds to the foreground and the value of 0 corresponds

% to the background.

S
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obj.detector = vision.ForegroundDetector (’NumGaussians’, 3,

*NumTrainingFrames ’, 40, ’MinimumBackgroundRatio’, 0.7);

% Connected groups of foreground pixels are likely to correspond to moving
% objects. The blob analysis system object is used to find such groups
% (called ’blobs’ or ’connected components’), and compute their

% characteristics , such as area, centroid, and the bounding box.

obj.blobAnalyser = vision.BlobAnalysis(’BoundingBoxOutputPort’, true,
*AreaOutputPort ’, true, 'CentroidOutputPort’, true,
*MinimumBlobArea’, 400);

end

function tracks = initializeTracks ()

% create an empty array of tracks

tracks = struct (...
Tid’, (),
‘bbox ', {},

*kalmanFilter *, {},

tage’, {1},

“totalVisibleCount *, {},
*consecutivelnvisibleCount >, {});

end

function frame = readFrame ()
frame = obj.reader.step ();

end

function [centroids , bboxes, mask] = detectObjects (frame)

% Detect foreground.

mask = obj.detector.step(frame);

% Apply morphological operations to remove noise and fill in holes.

mask = imopen(mask, strel(’rectangle’, [3,3]));

mask = imclose (mask, strel(’rectangle’, [15, 15]));

mask = imfill (mask, “holes ’);

% Perform blob analysis to find connected components.
[~, centroids, bboxes] = obj.blobAnalyser.step (mask);

end

function predictNewLocationsOfTracks ()
for i = 1:length(tracks)
bbox = tracks(i).bbox;

% Predict the current location of the track.

predictedCentroid = predict(tracks(i).kalmanFilter);

% Shift the bounding box so that its center is at

% the predicted location.

predictedCentroid = int32(predictedCentroid) — bbox(3:4) / 2;
tracks (i).bbox = [predictedCentroid , bbox (3:4)];

end

end

function [assignments, unassignedTracks, unassignedDetections] =

detectionToTrackAssignment ()

nTracks = length(tracks);

nDetections = size (centroids , 1);

% Compute the cost of assigning each detection to each track.

cost = zeros(nTracks, nDetections);



for i = l:nTracks
cost(i, :) = distance (tracks(i).kalmanFilter, centroids);

end

% Solve the assignment problem.

costOfNonAssignment = 20;

[assignments , unassignedTracks , unassignedDetections] =
assignDetectionsToTracks (cost, costOfNonAssignment);

end

function updateAssignedTracks ()
numAssignedTracks = size (assignments, 1);
for i = l:numAssignedTracks

trackldx = assignments(i, 1);
detectionldx = assignments (i, 2);
centroid = centroids (detectionldx , :);

bbox = bboxes(detectionldx , :);

% Correct the estimate of the object’s location
% using the new detection.

correct(tracks (trackIdx ). kalmanFilter, centroid);

% Replace predicted bounding box with detected
% bounding box.

tracks (trackIdx ).bbox = bbox;

% Update track ’s age.
tracks (trackIdx ).age = tracks(trackIdx).age + 1;

% Update visibility .

tracks (trackIdx ). totalVisibleCount =

tracks (trackIdx ). totalVisibleCount + 1;

tracks (trackIdx ). consecutivelnvisibleCount = 0;
end

end

function updateUnassignedTracks ()

for i = I:length(unassignedTracks)

ind = unassignedTracks(i);

tracks (ind).age = tracks(ind).age + 1;
tracks (ind ). consecutivelnvisibleCount =
tracks (ind ). consecutivelnvisibleCount + 1;
end

end

function deleteLostTracks ()
if isempty(tracks)
return ;

end

invisibleForTooLong = 20;
ageThreshold = 8;

% Compute the fraction of the track’s age for which it was visible.
ages = [tracks (:).age];
totalVisibleCounts = [tracks (:). totalVisibleCount];

visibility = totalVisibleCounts ./ ages;

% Find the indices of ’lost’ tracks.
lostInds = (ages < ageThreshold AND visibility < 0.6) |

[tracks (:). consecutivelnvisibleCount] >= invisibleForTooLong;

% Delete lost tracks.
tracks = tracks(~lostInds);

end
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function createNewTracks ()

centroids = centroids (unassignedDetections , :);
bboxes = bboxes(unassignedDetections , :);

for i = l:size(centroids, 1)

centroid = centroids (i,:);

bbox = bboxes(i, :);

% Create a Kalman filter object.
kalmanFilter = configureKalmanFilter(’ ConstantVelocity ’,

centroid , [200, 50], [100, 25], 100);

% Create a new track.
newTrack = struct (...

Yid *, nextld,

bbox ’, bbox,

"kalmanFilter °, kalmanFilter ,
‘age’, 1,

“totalVisibleCount *, 1,

consecutivelnvisibleCount >, 0);

% Add it to the array of tracks.

tracks (end + 1) = newTrack;

% Increment the next id.
nextld = nextld + 1;
end

end

function displayTrackingResults ()
% Convert the frame and the mask to uint8 RGB.
frame = im2uint8 (frame);

mask = uint8 (repmat(mask, [1, 1, 3])) .x 255;

minVisibleCount = 8;

if ~isempty(tracks)

% Noisy detections tend to result in short—lived tracks.
% Only display tracks that have been visible for more than
% a minimum number of frames.

reliableTrackInds =

[tracks (:).totalVisibleCount] > minVisibleCount;

reliableTracks = tracks(reliableTrackInds);

% Display the objects. If an object has not been detected
% in this frame, display its predicted bounding box.

if ~isempty(reliableTracks)

% Get bounding boxes.

bboxes = cat(l, reliableTracks.bbox);

% Get ids.
ids = int32 ([reliableTracks (:).id]);

% Create labels for objects indicating the ones for

% which we display the predicted rather than the actual
% location .

labels = cellstr(int2str(ids ’));

predictedTrackInds =
[reliableTracks (:). consecutivelnvisibleCount] > 0;
isPredicted = cell(size(labels));

isPredicted (predictedTrackInds) = {’ predicted "};

labels = strcat(labels, isPredicted);



% Draw the objects on the frame.
frame = insertObjectAnnotation (frame,

bboxes, labels);

% Draw the objects on the mask.

mask = insertObjectAnnotation (mask, ’rectangle ’

bboxes, labels);
end

end

% Display the mask and the frame.
obj.maskPlayer.step (mask);
obj.videoPlayer.step (frame);

end

‘rectangle
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