
	

BRENO HENRIQUE DUARTE DE OLIVEIRA

Práticas de Behavior Driven Development em Scrum para Entrega

Contínua de Valor.

São Paulo

2015

	
BRENO HENRIQUE DUARTE DE OLIVEIRA

Práticas de Behavior Driven Development em Scrum para Entrega Contínua
de Valor.

Monografia – Programa de Educação

Continuada em Engenharia da Escola

Politécnica da Universidade de São Paulo

como parte dos requisitos para conclusão

do curso de especialização em

Tecnologia de Software MBA-USP.

São Paulo

2015

	
BRENO HENRIQUE DUARTE DE OLIVEIRA

Práticas de Behavior Driven Development em Scrum para Entrega Contínua
de Valor.

Monografia – Programa de Educação

Continuada em Engenharia da Escola

Politécnica da Universidade de São Paulo

como parte dos requisitos para conclusão

do curso de especialização em

Tecnologia de Software MBA-USP.

Área de Concentração: Tecnologia de

Software.

Orientadora: Profª Dra. Selma Shin

Shimizu Melnikoff.

São Paulo

2015

	
RESUMO

OLIVEIRA, Breno Henrique Duarte de. Práticas de Behavior Driven Development
em Scrum para Entrega Contínua de Valor. 2015. 57p. Monografia – Programa de

Educação Continuada da Escola Politécnica da Universidade de São Paulo, Curso

de Especialização em Tecnologia de Software MBA-USP, 2015.

Este trabalho tem o objetivo de apresentar um guia de aplicação de boas práticas de

Behavior-Driven Development - Desenvolvimento Orientado a Comportamento -

BDD para entrega contínua de valores para cliente. Trata-se de uma pesquisa que

aborda a importância das mudanças no desenvolvimento de software que surgiram

com o aparecimento do Manifesto Ágil, de Test Driven Development - TDD –

Desenvolvimento Orientado a Testes e de Behavior-Driven Development – BDD -

Desenvolvimento Orientado a Comportamento. Este último assunto busca uma

forma de evitar as falhas no sistema, através do envolvimento de teste de aceitação

desde as atividades iniciais de planejamento e desenvolvimento de software. Os

conceitos selecionados foram aplicados ao processo de desenvolvimento de uma

empresa real, com foco na entrega contínua de valor para o cliente, e os resultados
obtidos são apresentados.

Palavras-chave: Desenvolvimento Orientado a Comportamento (Behavior-Driven

Development – BDD); Entrega contínua; Integração contínua.

	
ABSTRACT

OLIVEIRA, Breno Henrique Duarte de. Práticas de Behavior Driven Development
em Scrum para Entrega Contínua de Valor. 2015. 57p. Monografia – Programa de

Educação Continuada da Escola Politécnica da Universidade de São Paulo, Curso

de Especialização em Tecnologia de Software MBA-USP, 2015.

This paper aims to present an application guide of good practice of Behavior- Driven

Development - Behavior Driven Development - BDD for continuous delivery of value

to customers. This is a research focusing on the importance of changes in software

development that emerged with the appearance of the Agile Manifesto of Test Driven

Development - TDD - Test-Driven Development and Behavior- Driven Development -

BDD - Driven Development Behavior . This last issue is seeking a way to avoid

system crashes, through acceptance testing of involvement from the initial planning

activities and software development. The selected concepts have been applied to the

development of an actual business process , focusing on continuous delivery value to

the client, and the results are presented.

Keywords: Behavior Driven Development- BDD; Continuous Delivery; Continuous

Integration.

	
SUMÁRIO

1. INTRODUÇÃO	...	7	
1.1 Motivação ... 7	
1.2 Objetivo .. 9	
1.3 Justificativa .. 10	
1.4 Metodologia ... 12	
1.5 Estrutura da Monografia ... 13	
2.1Método Scrum... 14	
2.1.1 Principais Tópicos sobre Scrum .. 14	
2.1.2 Manifesto Ágil ... 14	
2.1.3 Scrum .. 16	
2.2 Extreme Programming ... 18	
2.3.2 Práticas do BDD ... 22	
2.4 Integração e entrega contínua de software .. 23	
2.5 Importância do feedback .. 24	
2.6. Considerações finais ... 26	

3. BOAS PRÁTICAS DO BEHAVIOR DRIVEN DEVELOPMENT NO SCRUM	28	
3.1 Desafios dos profissionais de software .. 28	
3.2. Resumo do problema ... 29	
3.3 Melhorias do Processo de Teste através do BDD .. 30	
3.3.1 Seleção das Práticas do BDD ... 30	
3.3.2 Incorporação das práticas do BDD no Scrum ... 31	
3.4 Aplicação das boas práticas do BDD no ambiente Scrum 37	
3.4.1 Descrição do ambiente de teste da empresa M .. 38	
3.4.2 Aplicação das boas práticas de BDD na empresa M 40	
3.5 Considerações Finais ... 52	

4. CONSIDERAÇÕES FINAIS	..	53	
4.1 Conclusões .. 53	
4.2 Contribuições .. 54	
4.3 Trabalhos futuros .. 55	

REFERÊNCIAS	..	56	

	

	

7	

1. INTRODUÇÃO

Este capítulo apresenta a motivação, o objetivo, a justificativa, a metodologia

utilizada para o trabalho e a estrutura da monografia.

1.1 Motivação
Diante da crescente pressão do mercado por inovação e exigências dos

clientes, os projetos de software têm buscado excelência na qualidade dos sistemas,
através de técnicas para melhorias nas diversas fases do seu desenvolvimento.

A evolução na área é notória e necessária, uma vez que, para proporcionar

qualidade aos resultados dos processos organizacionais, os sistemas de software

precisam atender aos requisitos iniciais de sua criação e, ao mesmo tempo, estar

aptos à adaptação, caso mudanças eventualmente ocorram. Sistemas duráveis,

flexíveis e, sobretudo, de fácil manutenção são, portanto, essenciais a esses
propósitos.

O Manifesto Ágil, publicado em 2001 foi um marco no desenvolvimento de

software, pois traz mudanças nos valores do processo de desenvolvimento de

software orientado a processos e utilizando regras da ciência para um modelo

dirigido por questões sobre pessoas e suas interações, sobre um software e como

este pode ser concebido (KENT et al 2001). Como consequência, surgiram os

métodos ágeis como XP (KNIBERG, 2007), Scrum (SCHWABER; SUTHERLAND,

2013) e vários outros, que atraíram os desenvolvedores para a nova abordagem. No

entanto, a implantação desses processos não é imediata, sendo necessário haver

mudanças de cultura e treinamento (MARTIN; SHORE; WARDEN, 2007).

Um dos conceitos interessantes introduzidos pelos métodos ágeis de

desenvolvimento de software foi o Desenvolvimento Dirigido por Testes (Test-Driven

Development – TDD), que resulta em um processo de desenvolvimento guiado pelos

testes, ou seja, os testes são criados inicialmente, onde eles não passam pois não

há o código de implementação, depois o desenvolvedor implementa o código o

código da maneira mais simples possível; dessa forma, o desenvolvedor passa, pelo

código implementado, melhorando-o e os testes já implementados anteriormente

devem continuar como aceito.

	

8	

Essa prática combina a técnica da definição de testes antes da programação,

o projeto e a refatoração de código, e permite a obtenção de códigos mais próximos

à real necessidade, pois o desenvolvedor está focado apenas no que é necessário

fazer para que o teste do código tenha sucesso. Como resultado, a necessidade de

alterações no código é menor que no caso de software desenvolvido através de

modelo convencional, no qual as eventuais falhas de adequação de projeto são

percebidas apenas nas fases finais do desenvolvimento. Além disso, faz parte do

TDD, o registro das informações do teste no código, o que permite documentar os
erros deletados, para que eles sejam evitados em um novo projeto.	

Como evolução do TDD surgiu o Desenvolvimento Orientado a

Comportamento (Behavior-Driven Development – BDD), proposto por North, para

tornar a interação, entre a equipe de desenvolvimento e o cliente, mais produtiva,

incorporando os conceitos de análise e teste de aceitação ao TDD (NORTH, 2006).

O BDD incorpora as características do TDD, como o ciclo de criação de testes e

refatoração de código de forma incremental, porém o foco dos testes é no

comportamento do software. Dessa forma, o teste tem a finalidade de facilitar a

compreensão do funcionamento do sistema, evitando falhas no entendimento do
software e também do negócio.

No BDD, os trechos de especificação do comportamento do sistema são

definidos de tal forma que o seu teste possa ser automatizado. Os testes definidos

são claros e compreensíveis, pois o BDD utiliza de uma linguagem ubíqua que

permite que pessoas de diversos perfis possam definir os testes desejados (SOLÍS;

WANG, 2011). Dessa forma, o BDD incorpora as características do modelo de

negócio para o qual o software se destina, pois permite transformar uma ideia em

um requisito implementável. O teste do código é preparado para ser executado para

avaliar o requisito específico do ponto de vista das pessoas de negócio,
desenvolvedores e testadores, criando um comum entendimento do projeto.

Os testes projetados e realizados sistematicamente permitem ampla

cobertura de verificação, o que os torna capazes de fornecer tanto a qualidade

técnica dos sistemas quanto a satisfação e aceitação dos usuários. Por outro lado,

os testes realizados dessa forma evidenciam a possibilidade de adaptação do

	

9	

sistema às possíveis mudanças impostas pelo mercado agressivo às organizações,

devido à possibilidade de repetir os testes que ficam documentados.

Para Humble e Farley, o foco no teste de aceitação, desde o início do

desenvolvimento do sistema, aumenta a probabilidade de sucesso do sistema
(HUMBLE; FARLEY, 2013):

O foco em teste de aceitação, como uma forma de mostrar que a

aplicação atende a seus critérios para cada requisito, tem um benefício

adicional. Faz com que todos os envolvidos na entrega – clientes,

testadores, desenvolvedores, analistas, pessoal de operações e gerentes

de projeto – pensem sobre o que significa obter sucesso para cada requisito

(HUMBLE; FARLEY, 2013, p. 26).

Ainda, em relação aos testes em métodos ágeis, a prática de integração

contínua favorece a liberação de produtos com valor. De acordo com o artigo de
Continuous Integration de Martin Fowler (FOWLER, 2000):

Integração Contínua é uma prática de desenvolvimento de software

em que os membros de uma equipe realizam a integração frequentemente.

Geralmente cada pessoa realiza a integração pelo menos diariamente,

podendo ocorrer várias integrações por dia. Cada integração é verificada

por um processo de compilação automatizado (incluindo testes) para

detectar erros de integração o mais rápido possível. Muitas equipes

consideram que essa abordagem leva a uma redução significativa dos

problemas de integração e permite que uma equipe desenvolva software

coeso mais rapidamente. (FOWLER, 2000)

1.2 Objetivo

Considerando que as práticas citadas na seção anterior possuem

relacionamento entre elas e que o BDD é uma prática ainda em desenvolvimento,

torna-se necessário discutir a aplicação conjunta em um processo de

desenvolvimento.

O BDD possibilita a validação do software através da definição de testes

relacionados com seus requisitos; porém, para se ter resultados eficazes, é

necessário que o desenvolvedor execute os testes sistematicamente e

	

10	

constantemente. Com isso, ocorre a integração contínua que causa um feedback

constante durante o desenvolvimento do software.

Dessa forma, este trabalho tem como objetivo, definir um guia de boas

práticas para a aplicação de BDD em desenvolvimento de software que tenha como
meta a integração contínua.

Para isso, optou-se em utilizar um processo ágil, no caso o Scrum, e

selecionaram-se as tarefas, consideradas relevantes do BDD, que foram atribuídas

para os papéis existentes no Scrum. Assim, as estórias do Scrum constituem o

comportamento do sistema do ponto de vista do Scrum e o desenvolvimento de
cada estória resulta no teste a ser executo no servidor de integração contínua.

1.3 Justificativa

Os métodos ágeis apresentam um diferencial para desenvolvimento de

software, através de valores e práticas que consolidam o processo iterativo e

incremental, apresentado no modelo espiral na década de 70 (PRESSMAN, 2011).

Com uma abordagem "evolucionária" à engenharia de software, capacita o

desenvolvedor e o cliente a entender e reagir aos riscos em cada fase

evolutiva. Essas práticas, no entanto, não são facilmente compreendidas e

aplicadas no processo de desenvolvimento e tem causado efeitos contrários aos

esperados.

Apesar disso, e mesmo com a resistência de alguns setores e empresas, os

métodos ágeis são cada vez mais utilizados e uma de suas exigências é a

necessidade de maior grau de envolvimento e de comunicação entre membros da

equipe, para garantir a negociação e o andamento do projeto (SHORE, 2007).

Uma das práticas interessantes dos métodos ágeis é a integração contínua

(FOWLER, 2000) e, para sua viabilização, é de fundamental importância que todos

os envolvidos no desenvolvimento estejam comprometidos com testes de integração

planejados de forma a ocorrer continuamente, com qualidade na liberação das suas

partes. Todos devem se envolver com código de todos, realizando melhorias

contínuas através da refatoração. Com isso, obtém-se um processo de entrega de

	

11	

novas funcionalidades e retificações com valor ao cliente (HUMBLE; FARLEY,

2013).

Uma das dificuldades da integração contínua é unificar e coordenar as

atividades de requisitos, projeto, implementação e testes das iterações, para tornar o

processo eficiente e confiável durante sua execução. Outra dificuldade é conseguir

com que desenvolvedores, testadores e pessoal de operação trabalhem juntos de

forma eficiente (HUMBLE; FARLEY, 2013).

Outra prática relevante nos métodos ágeis é o TDD, que trouxe uma grande

contribuição ao propor a elaboração do procedimento de teste anteriormente ao

projeto e codificação. Porém, ao operacionalizar esse conceito, constatou-se que

não era fácil estabelecer um procedimento para identificar como começar os testes e

definir o seu escopo, assim como os dominar, compreender e identificar as falhas

(NORTH, 2006).

O BDD foi uma tentativa do North, para melhorar a aplicação do conceito do

TDD, e integrou as atividades de análise de requisitos e teste de aceitação ao TDD

(BECK, 2002). Para isso, o modelo e as regra de negócio foram introduzidos na

visão de testes de aceitação. A linguagem para definição de testes é próxima à

linguagem de usuários, que não possuem conhecimento em desenvolvimento de

software, permitindo, assim, a sua participação na descrição de testes.

Por outro lado, com o BDD, o cliente pode escrever a especificação das

estórias e, se as ações não forem coordenadas com a equipe de desenvolvimento, a

solução pode não ser adequada, devido à sua falta de conhecimento técnico. Para

que o resultado seja beneficiado com a diversidade de ideias, é importante que haja

participação de grupos heterogêneos de pessoas trabalhando juntos. O cliente

precisa de informações técnicas que o auxiliem na criação de cenários antes não

pensados; caso contrário, a solução pode ser mais complexa do que necessária.

Sendo assim, é necessário que a equipe de desenvolvimento o cliente trabalhem

colaborativamente (PUFAL; VIEIRA, 2013).

Vale salientar que, no BDD, é recomendável o uso de ferramentas, como

Cucumber (WYNNE; HELLES,2012), para viabilizar a sua implantação. Nesse caso,

as estórias são escritas diretamente utilizando-se a linguagem da ferramenta e esse

procedimento reforça a necessidade de uma interação efetiva do cliente com a

	

12	

equipe de desenvolvimento, para juntos elaborarem possíveis ideias para o

desenvolvimento do sistema (PUFAL; VIEIRA, 2013).

Dessa forma, o BDD, conta com a participação do cliente, para identificar as

necessidades reais do cliente, para compor os cenários que descrevem o

comportamento do software; com isso, facilita ao cliente visualizar o uso do software,

apresenta a forma como o software é construído e aproxima o desenvolvimento de

software aos negócios.

É necessário apontar a importância de organizar a construção do software ao

cliente, pois mostra que o software pode ter qualidade desde o primeiro conjunto de

testes que é executado em um ambiente próximo ao de produção, eventualmente

em máquinas com custos mais acessíveis. Dessa forma, cria-se uma confiança

maior no processo de implantação no ambiente de produção. Além disso, o cliente

se conscientiza de que as falhas, detectadas na versão em teste, não avançam para

os próximos estágios, devido ao teste contínuo, e o software final será de fato um

apoio para melhorar o seu negócio.

Do ponto de vista da entrega contínua de software o processo deve

considerar desde o início do desenvolvimento; as necessidades do cliente devem

ser identificadas e agregadas aos critérios claros que resultem no sucesso do

software. Essa prática causa evolução nos processos e no uso das ferramentas, até

alcançar o estágio final, ou seja, a entrega contínua do software de valor.

Assim, o software está diretamente vinculado com os objetivos do negócio do

cliente e torna-se imprescindível que este esteja sempre atualizado e disponível para

a continuidade do negócio.

1.4 Metodologia

Para o desenvolvimento desse trabalho, inicialmente fez-se o levantamento

bibliográfico e o estudo do material relacionado com métodos ágeis de

desenvolvimento de software, com foco na integração contínua, TDD e BDD.

Selecionou-se o Scrum como método ágil para dar suporte à incorporação do

BDD, por ser um dos métodos ágeis mais utilizados no mercado. Sobre o Scrum,

	

13	

foram definidas as práticas do BDD e da entrega contínua, para detalhar o processo

de teste.

Para a parte prática do trabalho, o método resultante foi aplicado em uma

empresa. Foram utilizadas ferramentas para definir um ambiente que fornecesse

apoio a esse experimento: Cucumber, Git e GO – Continuous Delivery. O Cucumber

foi utilizado como ferramenta de auxílio para a escrita das estórias do BDD; o Git,

como controle de versão do código; Go, como servidor de integração contínua.

O Cucumber, em particular, foi selecionado para possibilitar a escrita de

funcionalidades do sistema em uma linguagem natural, tão essenciais na

comunicação do cliente e a equipe. Há ainda de incluir que o processo possibilita a

contínua entrega de valores ao cliente, através do apoio do Git e Go, assim

validando constantemente as funcionalidades inseridas no software (HUMBLE;

FARLEY, 2013).

A aplicação do método resultante ocorreu na empresa M com o intuito da

evolução das entregas do software em ciclos constantes; observou-se que o

software foi entregue constantemente com maior aderência aos requisitos e uma

melhor cobertura de testes automatizados, para garantir a qualidade do software.

1.5 Estrutura da Monografia

Além da INTRODUÇÃO apresentada, esta monografia possui de mais três

capítulos.

No Capítulo 2 TESTE NO DESENVOLVIMENTO ITERATIVO, são

apresentados os conceitos e as técnicas relacionados com os testes no contexto de
métodos ágeis de desenvolvimento de software.

No Capítulo 3 BOAS PRÁTICAS DO BEHAVIOR DRIVEN DEVELOPMENT

NO SCRUM, é apresentada a utilização das boas práticas do BDD no contexto do

Scrum, a aplicação do método resultante a uma parte do sistema referente ao

processo de compra do e-commerce e a análise dos resultados obtidos.

No Capítulo 4 CONSIDERAÇÕES FINAIS são apresentados a conclusão, as

principais contribuições deste trabalho e os trabalhos futuros.

	

14	

2 TESTE NO DESENVOLVIMENTO ITERATIVO

O objetivo desse capítulo é apresentar os conceitos e as técnicas que

permitam dar suporte ao entendimento desse trabalho. São apresentados os pontos

relevantes do método Scrum e as práticas relevantes do TDD e BDD.

2.1Método Scrum

Os métodos ágeis passaram a ser definidos e utilizados após a publicação do

Manifesto Ágil, elaborado por especialistas em desenvolvimento de software, que

buscavam solucionar os frequentes problemas ocorridos em processos e em

produtos gerados.

2.1.1 Principais Tópicos sobre Scrum

Essa seção apresenta o Manifesto Ágil e os conceitos relevantes do Scrum.

Esse método foi selecionado por ser um dos métodos ágeis mais utilizados no
mercado.

2.1.2 Manifesto Ágil

Em fevereiro de 2011, 17 profissionais da área de software reuniram-se para

discutir as alternativas para processos utilizados na época, considerados não

adequados por serem pesados e orientados por documentos. Das práticas adotadas

por esses participantes, entre eles Kent Beck, Robert C. Martin e Martin Fowler,

surgiram o Manifesto para Desenvolvimento Ágil de Software, conhecido como

Manifesto Ágil que apresenta quatro valores e doze princípios, que constituem a
base para o desenvolvimento ágil de software (KENT et al., 2001).

Os autores declaram que estão identificando maneiras melhores de

desenvolver software, através dos seus trabalhos, para ajudar os outros

	

15	

profissionais nessa tarefa. Os valores apresentados do Manifesto Ágil são os

seguintes (KENT et al., 2001):

1. Indivíduos e interação entre eles, mais que processos e ferramentas.

2. Software em funcionamento, mais que documentação abrangente.

3. Colaboração com o cliente, mais que negociação de contratos.
4. Responder a mudanças, mais que seguir um plano.

Para eles, mesmo que os itens à direita dos valores apresentados sejam
importantes, os itens à esquerda devem ser mais considerados.

Os princípios do Manifesto Ágil são os seguintes (KENT et al., 2001):

1. A maior prioridade é satisfazer o cliente, através de entregas com

antecedência e contínua, de software com valor.

2. Acolher as mudanças nos requisitos mesmo na etapa tardia do

desenvolvimento. Os processos ágeis aproveitam a mudança para obter

vantagens competitivas ao cliente.

3. Entregar software em funcionamento com frequência, entre 2 semanas a 2

meses, dando preferência a períodos mais curtos.

4. Pessoas relacionadas com negócio e desenvolvedores devem trabalhar em

conjunto ao longo do projeto.

5. Construir projetos ao redor de indivíduos motivados, dando a eles o ambiente

e suporte necessários, e confiar na realização do seu trabalho.

6. O método mais eficiente e eficaz, para transmitir informações para uma

equipe de desenvolvimento, é através de uma conversa frente a frente.

7. Software em funcionamento é a medida principal do progresso.

8. Processos ágeis promovem um ambiente sustentável. Os patrocinadores,

desenvolvedores e usuários, devem ser capazes de manter passos

constantes indefinidamente.

9. Contínua atenção à excelência técnica e ao bom design aumenta a agilidade.

10. Simplicidade - a arte de maximizar a quantidade de trabalho não realizada – é

essencial.

11. As melhores arquiteturas, requisitos e designs emergem de equipes auto-

organizadas.

	

16	

12. Em intervalos regulares, a equipe reflete em como ser mais efetiva; então, se

sintonizam e ajustam seu comportamento de acordo.

O Manifesto Ágil, através de seus valores e seus princípios sintetiza a filosofia
dos autores.

2.1.3 Scrum

Denominado de framework por Ken Schwaber e Jeff Sutherland

(SCHWABER; SUTHERLAND, 2013), o Scrum permite o uso de diversos processos

e técnicas para desenvolver e manter produtos complexos, entregando produtos

com mais alto valor possível. O processo resultante da sua aplicação é classificado
como ágil, devido às características aderentes ao Manifesto Ágil.

O Scrum apresenta três papéis principais: Scrum Master, Product Owner e
Scrum Team.

O Scrum Master tem o papel de liderar os processos e, para isso, deve fazer

com que os participantes entendam e incorporem os valores, os princípios e as

práticas do Scrum. Além disso, o Scrum Master desempenha o papel de facilitador,

removendo interferências externas, resolvendo problemas e atuando na equipe para

realizar melhorias.

O Product Owner é o representante do negócio e das partes interessadas;

sua responsabilidade é definir as funcionalidades, a serem construídos, os recursos

necessários, bem como, manter a comunicação entre os interessados, para que
todos tenham os mesmos objetivos no projeto.

O Scrum Team é uma equipe multifuncional (entre 5 e 9 pessoas)

responsáveis pela concepção, construção e testes do produto, ou seja, atuam na

análise, no projeto, na implementação e no teste. A equipe se auto-organiza para

atingir a meta estabelecida pelo Product Owner.

O fluxo de processo do Scrum está representado na figura 1.

	

17	

Figura 1 — Ciclo da metodologia Scrum

O Product Backlog é o conjunto de funcionalidades priorizadas do software a

ser desenvolvido e é definido pelo Product Owner. Cabe salientar, que o Product

Backlog é um documento em constante desenvolvimento e evolução, por conta de

mudanças que possam ocorrer no negócio ou devido à melhor compreensão do
produto pelos participantes do projeto.

No Scrum, a execução do projeto é dividida em ciclos chamados Sprints e

cada um corresponde a uma iteração, cuja duração é em média de 2 a 4 semanas,

com reuniões diárias de 15 minutos no máximo, denominadas Daily Meeting, para

acompanhar o trabalho. Na execução de cada Sprint, deve-se criar uma versão de
valor tangível para o cliente ou usuário.

Para planejar cada Sprint, é realizada uma reunião em que o Product Owner,

o Scrum Team e o ScrumMaster definem o Sprint Backlog, que contém as

funcionalidades a serem implementadas durante o Sprint.
Definidos os itens prioritários do Product Backlog, estabelece-se a sequência

priorizada dos itens, a partir de fatores como custo, risco e valor.

No final do Sprint, são realizadas duas atividades fundamentais:

1. Sprint Review, cujo objetivo é rever os itens concluídos e verificar se o

produto atende à expectativa de entrega.

	

18	

2. Sprint Retrospective, cujo objetivo é identificar o que está funcionando

adequadamente, o que precisa ser melhorado e quais as ações a serem

tomadas para melhorarias. O Sprint Retrospective é realizado no final da

Sprint Review para verificar as melhorias nas formas de trabalho para o

próximo Sprint.

O resultado do Sprint é um produto ou uma funcionalidade. No final do Sprint ,

é gerado um documento chamado Definition of Done – DoD, que é um acordo feito

pelo Scrum Team, no qual é apresentado de maneira clara, o conjunto mínimo de

passos necessários para a entrega do resultado com qualidade.

2.2 Extreme Programming

O Extreme Programming (XP) foi criado por Kent Beck, em um projeto crítico

de folha de pagamento para a empresa Chrysler; nele Beck selecionou um conjunto

de práticas que haviam se mostrado eficientes separadamente em outros projetos e

as aplicou juntas e potencializadas e, isso foi a origem do o XP. Beck pode perceber

que a revisão de código, testes, integração rápida, feedback do cliente, design

simples, entre outras práticas, eram atividades que contribuíam para a maior

qualidade do produto. Então, sua proposta foi intensificar a utilização delas ao

extremo, fazendo, por exemplo, revisão constante do código através de

programação em pares, intensificando o uso testes automatizados, antecipando a

criação dos testes com testes antes mesmo da implementação do código e

permitindo um acompanhamento constante do projeto com o cliente presente

(BECK, 2002).

O TDD é uma prática aplicada na comunidade que atua com metodologias
ágeis e foi introduzida inicialmente através do XP, por Kent Beck em 2002.

O TDD utiliza a filosofia de que o desenvolvimento deve ser feito do teste para

o código e é realizado em ciclos, que cobrem pequenos trechos, definindo-se o teste

para uma função desejada, antes da sua implementação.

Com isso, o TDD procura integrar a escrita e a verificação do código de forma

simultânea e, assim, viabiliza a agilidade no ciclo de desenvolvimento, através do
melhor entendimento das funções a serem codificadas.

	

19	

No entanto, por ser uma tecnologia relativamente nova, é necessário treinar os

desenvolvedores, o que demanda tempo para aprendizado. Além disso, do ponto de

vista da produção de código, o TDD dá a falsa impressão de diminuir a

produtividade; mas, por outro lado, o código gerado tende a ter maior qualidade,
evitando erros e correções que ocorrem na implantação.

O mecanismo do TDD é apresentado na Figura 2.

Figura 2 — TDD – Test Driven Development

O ciclo do TDD é dado na seguinte forma:

1. O desenvolvedor cria um teste para um código inexistente, fazendo com

que o teste recém-criado não passe na sua execução.

2. Nessa etapa o desenvolvedor escreve o código de implementação da

maneira mais simples, para o teste, de maneira a fazer o teste ser

executado com sucesso.

3. O desenvolvedor volta à implementação para refatorar o código, de forma a

evoluir a implementação ou fazer com que outros cenários do teste também

sejam executados com sucesso.

	

20	

Segundo Kent Beck (BECK, 2002), o ciclo de TDD pode ser feito em pequenos

passos para obter resultados rapidamente e uma compreensão sobre o que se está

sendo desenvolvido.

A adoção do TDD vem se tornando cada vez mais popular em empresas de

desenvolvimento de software, pois o método faz com que o desenvolvedor crie um

teste automatizado para determinado cenário, que até então eram manuais, sujeitos

a falha humana (BECK, 2002). Sua adoção no início é mais complicada para

desenvolvedores, pois em geral, o desenvolvedor não compreende o que é escrever

um teste que falhe na sua execução (NORTH, 2006).

Observe que o uso da prática de TDD ajuda a equipe a garantir que os

requisitos funcionam como esperado, e também auxilia o desenvolvedor a identificar
problemas de código na sua implementação.

2.3 BDD

 O BDD é uma abordagem de desenvolvimento de software proposta por Dan

North em 2003, em resposta às dificuldades dos desenvolvedores ao utilizar o TDD.

As dúvidas na aplicação do TDD eram várias e aconteciam desde como começar os

testes, o que deveriam ou não testar, até como compreender porque os testes

falharam. Para auxiliar os desenvolvedores, North propôs o BDD, que inicia o

desenvolvimento do sistema a partir da visão do teste do seu comportamento,

ressaltando as funcionalidades que agreguem maior valor aos interessados

(NORTH, 2003).

2.3.1 Conceitos do BDD
 Para reconhecer o valor das funcionalidades para o negócio, o BDD faz com

que os desenvolvedores discutam sobre exemplos concretos do comportamento do

sistema com os profissionais de negócio. Dessa forma, o BDD propicia uma

interação mais intensa entre analistas de negócio, desenvolvedores e testadores de

software, pois os requisitos devem ser expressos de forma que facilite os seus

testes, e de forma compreensíveis para a equipe de desenvolvimento e interessados

da área de negócio. As ferramentas de BDD permitem a conversão dos requisitos

em testes automatizados, o que ajuda o trabalho do desenvolvedor para verificar as

funcionalidades e para documentar o sistema (SMART, 2014).

	

21	

 A interação entre a equipe de negócio e de tecnologia é possibilitada no

BDD pela existência de uma linguagem comum (ubíqua) para especificar o

comportamento do sistema. Essa linguagem permite que (LAZAR; MOTOGNA;

PÂRV, 2010):

1. Clientes especifiquem os requisitos do ponto de vista de negócio;

2. Analistas de negócio definam exemplos concretos (cenários e testes de

aceitação) que tornem claro o comportamento do sistema;

3. Desenvolvedores implementem o comportamento do sistema usando TDD.

 Ainda, podem-se citar os três princípios do BDD (NORTH, 2003):

1. O suficiente é suficiente: Não se deve automatizar todo o processo de

negócio, mas o que descreve o comportamento esperado do produto pelo

cliente isso é suficiente para desenvolver a solução e, mais do que isso, é

desperdício de esforço.

2. Entregar valor para os clientes: deve-se entregar somente o que tem valor

para o cliente. Se não agregar valor para o cliente, ou não potencializar o

valor entregue, deve-se descartar essa parte.

3. Tudo é comportamento; independentemente do nível de teste, a

funcionalidade sempre é descrita como comportamento: Tudo que um

software faz pode ser descrito como comportamento e explicado para

qualquer pessoa que tenha o domínio do negócio.

North (2006) esclarece que o BDD acrescenta vantagens ao TDD através de

fatos como comunicação entre as equipes, compartilhamento de conhecimento,

documentação dinâmica, visão do todo, além de criar uma conexão entre a definição

do negócio e a criação dos testes.

O desenvolvimento de um software através de um processo guiado por testes

torna a manutenção bem mais acessível no futuro, pois a cada nova funcionalidade

ou refatoração de código, o desenvolvedor executa os testes, já criados

anteriormente, garantindo que o que já foi desenvolvido antes não tenha o

comportamento alterado pelas novas funcionalidades ou refatoração (BECK, 2002).

	

	

22	

2.3.2 Práticas do BDD

 O BDD tem, como característica, ser guiado para e pelos os valores do

negócio que motiva ou solicita a produção do software. Apesar de ter sua filosofia

semelhante à de TDD, de elaborar o teste antes da codificação, o foco do BDD é no

comportamento do software e não nas funções do seu software. Dessa forma, deixa

os participantes do projeto em situação mais confortável para pensar no sistema

como um todo e elaborar os cenários de teste mesmo antes do seu

desenvolvimento. O BDD permite definir ideias acerca do seu funcionamento,

amadurecê-las através de cenários de teste e transformá-las em requisitos que

serão implementados e testados. Essa dinâmica torna o processo de

desenvolvimento mais simples e eficaz (NORTH, 2006).

 Para isso, precisa-se de uma forma para descrever os requisitos para que

os participantes, tais como especialistas de negócios, desenvolvedores e testadores

tenham um entendimento comum do software a ser desenvolvido. No BDD, a

descrição de um requisito é feita através de uma estória, que descreve um requisito

e seu benefício no negócio, a qual deve obter a concordância dos participantes.

 A descrição de requisitos é feita a linguagem ubíqua, que tem a

característica de poder ser utilizada com certa facilidade tanto pelo cliente quanto

pela equipe de desenvolvimento. Esse recurso é inspirado na técnica do Domain-

Driven Design – DDD, para melhorar o diálogo entre os especialistas de domínio e

de aplicação (AVRAN; MARINESCU, 2007).

 Para que processo do BDD seja executado com eficácia, é necessário

envolver as pessoas desde o desenvolvedor ao cliente e descrever exemplos do

comportamento da aplicação ou unidade de código, para esclarecer requisitos e

outros cenários. Uma vez com as estórias definidas, criam-se os testes

automatizados de rápida execução para o desenvolvedor executar os devidos

cenários de teste constantemente, ou seja, o desenvolvedor executa esses testes

diversas vezes ao dia.

 Outra prática sugerida pelo BDD é a utilização de simuladores de teste

(mocks, stubs, fakes, dummies), que são unidades auxiliares para permitir a

colaboração com módulos e códigos que ainda não foram escritos.

	

23	

2.4 Integração e entrega contínua de software

 As interações dos métodos ágeis, bem como as técnicas contidas no TDD e

BDD, têm a preocupação de realizar a Integração Contínua, ou seja, uma prática de

desenvolvimento de software na qual os membros da equipe integram seu trabalho

constantemente, para serem executados em um servidor que detecta através dos

builds (incluindo teste) possíveis erros o quanto antes.

 A entrega contínua, por sua vez, é uma prática que permite liberar os

produtos de software com frequência, o que agiliza o feedback entre o

desenvolvedor e a equipe, além de oferecer maior segurança para o cliente. Essa

prática é frequentemente citada como o primeiro princípio dos doze princípios do

manifesto ágil: “Nossa maior prioridade é satisfazer o cliente através da entrega

contínua e adiantada de software com valor agregado” (KENT et al., 2001) .

 O BDD utiliza o método de entrega contínua, ao entender uma mudança que

não considera os critérios estabelecidos pelo cliente, leva os interessados a buscar

soluções (HUMBLE; FARLEY, 2013), sendo assim é possível corrigir o problema

assim que ele ocorre, isso permite disponibilizar sempre o software em estado

funcional, ou seja, pronto para ser instalado em ambiente de produção.

 A entrega contínua é a habilidade do BDD para se adaptar, bem como, para

responder às mudanças e, assim, garantir a sobrevivência do projeto. Para isso, se

faz necessário verificar se o software realmente apresenta o valor esperado, o que

nem sempre acontece, pois, em geral, espera-se que a maioria ou todas as

funcionalidades do sistema estejam implementadas, para então detectar e

solucionar possíveis erros, o que demanda uma quantidade razoável de trabalho,

(HUMBLE; FARLEY, 2013).

A integração frequente, para incorporar as mudanças que ocorrem durante o

desenvolvimento de software promove a integração contínua. Para Fowler (2000), é

uma prática de desenvolvimento de software em que os membros de uma equipe

integram o sistema frequentemente e, normalmente, cada pessoa deve integrar pelo

menos uma vez por dia.

Cada procedimento construído é testado, caso seja identificado possíveis

erros eles são corrigidos. Esse método evita problemas relativos à integração, bem

como possibilita o desenvolvimento do software coeso e de forma rápida. Por isso, a

integração deve ser feita de maneira contínua e com testes de aceitação constantes

	

24	

até que os requisitos se completem, ou seja, até que o código que satisfaz as

necessidades do cliente seja aprovado em todos os testes.

Os códigos são utilizados como um repertório, que juntamente com um

sistema de controle de versões, acompanha os requisitos e viabiliza versões

diferenciadas dos arquivos.

Assim como o repositório de códigos possui sua funcionalidade dentro do

desenvolvimento do software, a integração só se faz contínua se todos os

envolvidos no projeto consigam instalá-lo e executar todos os testes em diferentes

máquinas. Para isso, um script de build automatizado desempenha um papel

relevante dentro do desenvolvimento do software, que informa como compilar

códigos-fontes, instalar junto com suas dependências, executar testes, assim como,

notificar a equipe problemas ou falhas dentro do processo.

Segundo Fowler (2000), o ponto principal é usar o mesmo ambiente, para que

seja possível evitar problemas antes do software passar para produção. Tantos

problemas relacionados a versões de dependências quanto ao do sistema

operacional. Essa prática mostra-se eficiente, pois a equipe não tem surpresas na

hora de implantar o sistema no ambiente de produção, pois o ambiente é idêntico ao

ambiente em que o software foi desenvolvido e testado.

As práticas na equipe, como compartilhar versões de código, instalar,

executar testes e validar sistema a qualquer momento, evitam surpresas no

momento da implantação e, consequentemente, todas as novas funcionalidades do

software podem evoluir juntas são fundamentais para a integração contínua.

A integração contínua integra sintetiza-se em ter um feedback rápido para

assegurar um software quando pronto possa ser colocado em produção.

2.5 Importância do feedback

Ultimamente denota-se um crescimento de interesse em Testes de Softwares,

confirmando-se a necessidade de agilidade do desenvolvimento de sistemas de

	

25	

software e, assim, promover uma mudança evolucionária no ciclo de vida do projeto,

cujo ambiente é estável e acolhedor.

Mesmo com o crescimento nos negócios de Testes de Software, permanece a

sua essência de manter a interação entre os envolvidos, de forma a produzir o que é

interessante para todos. Assim, todos contribuem na documentação, independente

do modelo de negócios e, com isso, o processo do software é dirigido e modificado

com a finalidade de atender as necessidades dos envolvidos.

Os envolvidos no projeto de software criam equipes ou comunidades que

incluem os usuários aos desenvolvedores e, muitas vezes, o cliente atua junto para

compor o melhor software.

Dentro da pesquisa realizada, foram encontrados poucos estudos que

possam contribuir para a documentação detalhada de Testes de Softwares, em

projetos que envolvam a contratação de uma ou mais desenvolvedores por um curto

período de tempo. A prestando serviço ao cliente deve ser de maneira integrada

com valor de negócio, assim como, a cooperação deve ser no sentido de

desenvolvimento funcional do software, tornando-o útil ao cliente.

É importante ressaltar que o cliente deve orientar ou criar as hipóteses em

relação às correções e às funcionalidades mais úteis para os usuários. Para Humble

e Farley (2013), o objetivo deve ser a entrega o software com qualidade suficiente

para gerar valor aos seus usuários.

A entrega de um software com qualidade é, algumas vezes, considerada uma

arte, mas deveria ser considerada como uma disciplina de engenharia. Para isso,

deve ocorrer o envolvimento do cliente no projeto de software e o resultado depende

da experiência que a equipe têm no relacionamento com clientes. Mas o sucesso de

um projeto de software depende da habilidade do fornecedor de responder

rapidamente à demanda das funcionalidades pelos clientes e da colaboração do

cliente para responder ou entregar rapidamente às solicitações.

Sendo assim, a agilidade com que ocorre um ciclo de entrega em um projeto

de software é muito importante, pois a disponibilidade rápida de uma manutenção

solicitada pelo cliente faz todos os envolvidos perceberem a utilidade da entrega

rápida como foco de negócio.

Nesse contexto, o processo de mudança de software pode ser visto com certo

grau de confiança, porque a descoberta de problemas nos produtos de entrega

	

26	

rápida e a busca de soluções em sequência, minimiza o tempo do ciclo, bem como,

possibilita gerar uma nova versão do sistema.

O curto período entre as entregas faz com que o intervalo entre as conversas

dos envolvidos seja pequeno, aumentando com isso o feedback. Esse mecanismo

traz melhorias contínuas e possibilita a entrega rápida do software ao cliente.

Quanto mais frequentes forem as entregas ao cliente, o processo leva a um

feedback mais rápido, principalmente se o teste de cada mudança ou correção for

feito de maneira mais automatizada possível. Em testes ágeis, para cada mudança

ou correção realizada, o feedback deve ser enviado para a equipe responsável que

deve recebê-lo, compreendê-lo e atuar sobre o sistema para atender ao feedback,

se for necessário.

Para qualquer mudança realizada, o sistema completo deve ser testado para

garantir que não ocorreram efeitos colaterais. Os testes variam de acordo com cada

tipo de sistema e verificam o funcionamento do seu código, seu comportamento, se

está dentro do esperado, o valor do negócio esperado, se atende às necessidades

dos usuários, Para garantir o resultado, o ambiente de teste devem ser o mais

próximo possível do ambiente produtivo. Segundo Humble e Farley (2013):
Um dos elementos de nossa abordagem é a necessidade de feedback

rápido. Garantir esse feedback em mudanças exige atenção ao processo de

desenvolvimento do código. Os desenvolvedores devem realizar commits

frequentes para o sistema de versionamento e separar o código em

componentes para gerenciar equipes maiores ou distribuídas. Criar novos

branches deve ser evitado na maioria das vezes.

Ainda, a resposta rápida ao feedback torna-se fundamental para que todos

estejam envolvidos no processo de desenvolvimento do software e busquem a

melhoria contínua na sua entrega, o que requer muito planejamento e disciplina.

2.6. Considerações finais

No ambiente competitivo do mercado de software, é necessário investir em

processos de desenvolvimento de software que resultem em produtos de maior

qualidade para atender as necessidades dos usuários de forma mais eficaz.

	

27	

Nesse contexto, os métodos ágeis foram bem aceitos pela sua capacidade de

aproximar os clientes de fornecedores, através da maior interação entre eles e da

possibilidade da liberação de entregáveis com maior frequência.

Ao agregar as abordagens de BDD, os métodos ágeis têm a qualidade dos

entregáveis melhorada, pelo fato de trazer uma cultura que agrega valores

relevantes aos clientes. Com isso, ocorre um rápido ciclo de feedback a cada

entrega, favorecendo a qualidade do software entregue e mais valor é entregue com

maior frequência ao cliente.

Esse resultado pode ser obtido, pois a visão do teste é elaborada a partir do

comportamento do sistema, uma vez que o BDD é voltado para testes de aceitação,

viabilizando a criação de cenários para novas funcionalidades e garantindo a

entrega dentro do que realmente o cliente espera, ou seja, entrega contínua de

valores.

	

28	

3. BOAS PRÁTICAS DO BEHAVIOR DRIVEN DEVELOPMENT NO SCRUM

Este capítulo apresenta a seleção de um conjunto de boas práticas do BDD

para ser aplicado a um processo ágil, sua aplicação em uma empresa real de
pagamentos digitais e a discussão dos resultados obtidos.

3.1 Desafios dos profissionais de software

Com a utilização da Internet nos negócios, as fronteiras se expandiram e o

reflexo disso chegou ao mercado. Uma empresa, por exemplo, que atuava apenas

no seu bairro ou na sua cidade, pode vender, através do uso da Internet, para

qualquer lugar do Brasil ou do mundo. Essa situação passou a gerar a necessidade

de um grande volume de desenvolvimento de sistemas que, por sua vez,

demandavam evolução para se adaptar às novas condições geradas pelo negócio.

Dessa forma, um grande desafio que os profissionais da área de

desenvolvimento de software enfrenta é transformar boas ideias em sistemas,

adicionar novas características aos sistemas existentes e entregar produtos com alta

qualidade aos usuários, dentro de um prazo previsto (HUMBLE; FARLEY, 2013).

Para isso, uma das características relevantes de um processo de desenvolvimento,

que responda a essa demanda, é possuir uma forma de realizar os testes de modo

sistemático.

Atualmente, o desenvolvimento de software tem várias atividades, tais como

teste, implantação e instalação, realizadas manualmente e seus resultados devem

ser documentados (HUMBLE; FARLEY, 2013).

Na implantação e instalação de software, os ambientes, em geral, são criados

manualmente, por uma equipe de operação, que realiza seguintes tipos de passos:

1. Instalar o software de terceiros do qual a aplicação depende;

2. Carregar a aplicação no ambiente de produção;

3. Configurar os servidores Web, servidores de aplicação ou outros

componentes do sistema criados por terceiros;

	

29	

4. Copiar os dados de referência para os servidores em questão;

5. Iniciar a aplicação por partes, se o sistema for distribuído ou orientado

serviços.

Esses passos geram uma série de informação que deve ser registrada para

que possa ser utilizada posteriormente na implantação e na instalação de novas

versões.

3.2. Resumo do problema

Em relação à evolução de um software, a adição de novas características não

deve alterar o comportamento das demais que não foram alteradas. Para garantir

isso, o impacto das alterações solicitadas deve ser avaliado e a sua inclusão deve

ser feita seguindo os procedimentos estabelecidos. Além disso, devem-se executar

todos os testes contidos no plano de teste, a fim de verificar a não existência de

efeitos colaterais (CHELIMSKY et al., 2009). Esse procedimento deveria, em

princípio, fazer parte da rotina diária de um desenvolvedor; porém, muitas vezes, o

procedimento é descartado por uma série de motivos.

Um deles é a falta de recursos ou conhecimento dos desenvolvedores para

analisar o impacto das alterações, pois os documentos atualizados podem não estar

disponíveis (NORTH, 2006).

Outro motivo frequente é a falta de cultura de elaborar planos de teste, o que

obriga os desenvolvedores a definir novos conjuntos de teste a cada alteração de

software. Dessa forma, além do retrabalho para definição dos testes a serem

executado, o resultado depende da experiência do profissional encarregado

(NORTH, 2006).

Ainda, deve-se considerar o tempo para realizar os testes; às vezes pode ser

necessário refazer parte do teste de integração, realizando testes em interfaces,

acesso a banco de dados, ou até uma integração com software de terceiros (BECK,

2002). Em geral, o prazo estimado para a alteração não é suficiente e, muitas vezes,

torna a execução do plano de teste inviável, pois se faz necessário alterar a

	

30	

configuração de ambiente, o que pode ser muito demorado.

Além disso, após a evolução do sistema, as alterações realizadas devem ser

atualizadas nos seus documentos para que se possa garantir próximas adições e

alterações das características do sistema. A atualização desses documentos é uma

tarefa complexa, que consome tempo significativo e necessita da colaboração de

diversos tipos de profissionais e, se não for bem controlada, os documentos

geralmente ficam incompletos ou ultrapassados (HUMBLE; FARLEY, 2013).

Para novos sistemas, cuidados devem ser tomados ao longo do desenvolvimento,

para que os sistemas apresentem características que deem suporte ao teste, tais

como arquitetura, componentes com alta coesão e baixo acoplamento, planos e

procedimento de teste, entre outras (BECK; FOWLER, 2000).

Uma falha, em qualquer ponto do processo de desenvolvimento ou evolução,

pode causar grande impacto ao usuário final e, como consequência, trazer prejuízos

financeiros às organizações.

3.3 Melhorias do Processo de Teste através do BDD

Dentre os assuntos citados na seção 3.2, o processo de teste é um ponto

importante para a melhoria da qualidade de software e, por esse motivo, foi

selecionado como o foco do trabalho. A proposta consiste em incorporar os

conceitos e as práticas do BDD, que agregam os aspectos de negócio ao TDD, a um

processo ágil, que utiliza a prática do TDD e da Integração Contínua. Foi

selecionado o método Scrum, por ser um dos mais utilizados no mercado.

3.3.1 Seleção das Práticas do BDD

O BDD foi analisado e foram selecionadas, as práticas mais relevantes para

serem incorporadas no processo do Scrum e devem ser informados aos

participantes do projeto, para uniformizar a visão de todos. As seguintes práticas do

	

31	

BDD foram selecionadas:

1. Maior envolvimento das pessoas interessadas no processo de

desenvolvimento;

2. Uso de exemplos para melhorar o entendimento do comportamento de

uma aplicação;

3. Automação de cenários de testes desses exemplos para obter um

feedback rápido do cliente;

4. Testes de regressão para garantir que comportamentos anteriores não

sejam alterados por novos comportamentos.

3.3.2 Incorporação das práticas do BDD no Scrum

Para incorporar as práticas do BDD ao Scrum, foram feitas substituição ou

detalhamento das suas atividades originais, ou inserção de novas atividades. O novo

processo obtido foi denominado de Scrum-BDD.

Os dois papéis do Scrum: Product Owner e Scrum Team, descritos na seção

2.1.1, tiveram a sua responsabilidade ajustada da seguinte forma:

1. O Product Owner deve definir dos comportamentos indispensáveis para o

software a ser desenvolvido, com a utilização de exemplos;

2. O Product Owner deve elaborar a especificação de testes para os cenários;

3. O Scrum Team deve criar testes automatizados dos cenários descritos pelo

Product Owner;

4. O Scrum Team deve preparar o servidor para a Integração Contínua, para o

rápido feedback.

Os comportamentos indispensáveis, do ponto de vista do BDD, são as

funções que o sistema deve possuir e correspondem às funcionalidades do Product

Backlog do Scrum. Então, o tratamento de uma funcionalidade deve ser o mesmo

dispensado a um comportamento indispensável do BDD e a definição do Product

Backlog deve ser feita seguindo as recomendações do BDD, utilizando palavras

chaves que permitem, a quem está escrevendo, elaborar um texto que possa ser

compreendido por qualquer integrante da equipe. No BDD um desenvolvedor ou

profissional do setor de qualidade ou até mesmo o cliente pode escrever as estórias,

	

32	

correspondentes às funcionalidades, passo-a-passo, seguindo o modelo da figura 3.

Figura 3 — Modelo de escrita de uma funcionalidade.

Funcionalidade: ...

Como um (a) …

Quero

Com o objetivo ...

O Sprint Backlog, que contém as tarefas a serem realizadas nas próximas

iterações, deve incluir novos tipos de tarefa e alterar as tarefas originais do Scrum,

para acomodar a descrição dos cenários, a elaboração da especificação dos testes,

e a geração dos testes automatizados baseados nessas descrições.

A descrição de cenários do BDD, é feita seguindo os modelos das figuras 4 e

5.

Figura 4 — Modelo de escrita de um cenário.

Cenário: ...

Dado ...

Quando ...

Então...

Figura 5 — Modelo de escrita de um cenário mais complexo.

	

33	

Cenário: ...

Dado ...

Quando ...

Então…

E

Cenário: ...

Dado ...

E ...

Quando ...

Então ...

E ...

Com a inclusão das práticas de BDD, a execução de um Sprint passa a ser

feita conforme apresentada na figura 6.

	

34	

Figura 6 — Diagrama de funcionamento.

A elaboração da especificação de testes para os cenários deve ser feita

através de uma estória, ou seja, da descrição de um requisito e seu benefício no

negócio, e de um conjunto de critérios de como o requisito será implementado, o

qual tem o de acordo de todos os participantes do projeto (NORTH, 2006). A

utilização de ferramentas apropriadas, durante o desenvolvimento, permite melhor

elaboração e a automação dessas estórias, pois permitem a escrita das estórias em

texto puro.

Para automatizar e executar as estórias é necessário preparar o servidor de

Integração Contínua, no entanto, essa é uma atividade já existente no Scrum, pois

os métodos ágeis pressupõem esse tipo de prática. Os testes serão realizados no

servidor de Integração Continua e, caso sejam executados com sucesso, o servidor

de Integração Continua deve disponibilizar o software para instalação no ambiente

de produção.

A atribuição das tarefas incluídas ou alteradas aos papéis do Scrum-BDD

pode ser vista na Tabela 1.

Tabela 1 – Atribuição das tarefas novas e alteradas aos papéis do Scrum

Papéis do Scrum Tarefas

Scrum Master

Especialização do Scrum com as tarefas do BDD

incluídas

Disseminação do Scrum-BDD

	

35	

Product Owner

Definição dos comportamentos indispensáveis

Descrição dos cenários para os comportamentos

Elaboração da especificação de testes para

cenários

Scrum Team

Criação dos testes automatizados para a

especificação de testes

Preparação do servidor para Integração Contínua

O Scrum Master, como líder do processo, é responsável pela especialização

do Scrum para incorporar as atividades do BDD e pela disseminação da prática do

Scrum-BDD. Para isso, deve ter um bom conhecimento do BDD.

O Product Owner deve ter a visão de negócio e do projeto, para definir o

Product Backlog, e coordenar a execução dos Sprints. Devido a esse perfil, foi

atribuído a ele a definição dos comportamentos indispensáveis e a descrição dos

cenários. Para isso, ele deve incorporar as particularidades do BDD para a descrição

das funcionalidades, as quais podem melhorar o próprio entendimento das

funcionalidades, uma vez que a visão do teste de aceitação está sendo incorporada.

O Scrum Team deve os testes automatizados para os cenários dos

comportamentos elaborados pelo Product Owner, visando testes automatizados,

para o Sprint, no servidor de Integração Contínua, que deve ser preparado

inicialmente. Os testes incluem a verificação dos comportamentos implementados

anteriormente, para garantir que suas características sejam preservadas. Uma vez

especificados os testes, os comportamentos do software são codificados e testados.

No final de um Sprint, o Scrum Team tem um produto para ser colocado em

produção.

Do ponto de vista de tipos de teste, os usuários de métodos ágeis

frequentemente utilizam a estratégia da pirâmide de teste, referenciada por Martin

Fowler (SOLÍS; WANG, 2011XXXX), Essa estratégia foi também adotada no Scrum-

BDD pois, para o constante feedback, é necessário que os testes sejam executados

constante e rapidamente (figura 7).

	

36	

Figura 7 — Pirâmide de teste.

Essa estratégia considera os testes de unidade, testes de serviço e teste

através da interface de humano-computador (IHC). Os testes através da IHC é, em

princípio, uma boa solução, pois permite testar o software a partir do comando na

IHC. No entanto, como em geral a IHC contém software de terceiros, nem sempre é

fácil realizar os testes em ferramentas automatizadas. A dificuldade decorre da

necessidade de realizar configurações diferentes da ferramenta de teste para

conjuntos de teste e também da obtenção de licenças de software de terceiros.

Dessa forma, em muitos casos, o teste de serviços, sem o uso da IHC pode ser uma

solução que agiliza os testes. Esse tipo de teste é realizado na camada intermediária

de teste de serviços e é denominado de teste subcutânea, sendo realizado na

camada imediatamente abaixo da camada de interface (SOLÍS; WANG, 2011).

Pode-se ainda comentar que o processo de teste automatizado tem, no

preparo dos testes, a geração de especificação executável dos comportamentos do

software e, pela sua própria natureza, passa a ser um documento dos

comportamentos que estarão sempre atualizados.

A entrega frequente de produtos de alta qualidade dos Sprints faz com que

cada versão tenha, em geral, um acréscimo de funcionalidades, sem impactar no

	

37	

funcionamento da anterior. Isso faz com que o risco associado à liberação de uma

nova versão fique reduzido significativamente e, no caso da necessidade de reverter

às mudanças, o processo é facilitado. A entrega frequente também causa uma

realimentação mais rápida do cliente, agilizando o desenvolvimento.

3.4 Aplicação das boas práticas do BDD no ambiente Scrum

Nesta seção, é feita a aplicação do Scrum-BDD na estrutura corporativa de

uma empresa real de pagamentos digitais, denominado de empresa M, a qual é
responsável por fornecer meios de pagamento para lojas virtuais.

Com expansão do negócio através da Internet surgiu, como desafios, a

necessidade de criar uma forma para que o cliente possa pagar pelo produto ou pelo

serviço de maneira não presencial, ou seja, sem que o cliente estivesse presente na

loja no ato da compra. O resultado foi a instituição do pagamento digital, que é feito

pela Internet, por meio de uma transação bancária ou por cartões de crédito. Dessa

forma, o cliente tem a comodidade de pagar pelo pedido, independentemente de

onde estiver, e a loja virtual, por sua vez, deve ter a segurança do recebimento do

valor pago pelo cliente.

As plataformas de pagamento via Internet disponibilizam esse tipo de serviço,

a fim de facilitar a realização de transações financeiras rápidas e seguras. As

empresas, que fornecem essas plataformas, garantem às lojas virtuais uma

disponibilidade de cerca de 99,7%. Isso significa que, em um dia, o software desse

tipo pode ter uma indisponibilidade de cerca de 4 minutos e 19 segundos, em uma

semana, 30 minutos e 14 segundos, em um mês, 2 horas e 11 minutos e, em um

ano, 1 dia 2 horas 17 minutos e 50 segundos.

	

38	

3.4.1 Descrição do ambiente de teste da empresa M

Dado este cenário, pode-se observar que o software de pagamento digital

deve ser de alta disponibilidade e empresas que fornecem esse tipo de software

devem possuir processos desenvolvimento que garantam a qualidade das

transações financeiras. Em particular, os processos de teste e instalação devem ser

feitos com planejamento cuidadoso, pois uma pequena indisponibilidade pode gerar

um enorme prejuízo financeiro a essas empresas e às lojas virtuais que utilizam

suas plataformas.

Atualmente, no mercado de pagamentos digitais, existem inúmeras opções de

pagamentos disponíveis que permitem uma conexão direta com o autorizador da

transação financeira. Por exemplo, se a loja virtual precisar aceitar Diners,

Mastercard e Visa, basta integrar-se diretamente ao adquirente, usando seus

protocolos, Cielo E-commerce, Redecard e outros adquirentes.

Da mesma forma, é possível, à loja virtual, conectar diretamente ao banco e

fornecer, aos clientes, as opções de pagarem suas compras através de transferência

bancária, boleto e, em alguns casos, através de financiamento. Este último tipo de

serviço é provido, por exemplo, por Banco do Brasil, Banrisul, Bradesco e Itaú.

A empresa M está nesse mercado desde 2008 e fornece, em uma única

integração, uma plataforma com diversos meios de pagamentos digitais, necessários

para uma loja virtual.

É apresentado, a seguir, o ambiente de desenvolvimento de software da

empresa M, relacionado com os testes.

A empresa utiliza a ferramenta Cucumber que permite descrever as

funcionalidades do sistema a ser desenvolvido, através de uma linguagem

específica de domínio, compreensível pelas pessoas da área de negócio. A

descrição do comportamento é feita através de texto em linguagem natural, que é

inserido na estrutura de programa, para posterior codificação. Como as

funcionalidades podem ser descritas em português, essas descrições auxiliam na

	

39	

documentação do software, por serem mais precisos que comentários inseridos

posteriormente (WYNNE; HELLES,2012).

A empresa M utiliza Scrum e seu Product Owner é responsável por escrever

as funcionalidades que são detalhadas e codificadas pelo Scrum Team.

Para controle de versão de código, a empresa optou por utilizar o Git, um

sistema distribuído de código livre e aberto, para controle de versão de projetos de

portes diversos. O Git é uma ferramenta amplamente utilizada no mercado e

empresas como Google, Facebook, Microsoft, Twitter, Netflix, Gnome, Eclipse, entre

outras utilizam no seu desenvolvimento de software.

O Git mostrou-se ser uma ferramenta importante para empresas que

trabalham com diversas equipes no mesmo código do software, pois permite os

desenvolvedores trabalharem em diferentes partes do software, sem quem um

interfira o outro.

Para a aplicação do conceito de Integração Contínua, a empresa utiliza o GO

– Continuous Delivery, um sistema de código aberto para integração contínua e

gerência de versões, desenvolvido pela empresa ThoughtWorks.

O GO automatiza e contribui de maneira a agilizar o ciclo de testes e a gerar

os artefatos compilados para a entrega contínua. A ferramenta realiza a execução

de testes automatizados e, caso algum teste venha a falhar, dispara um e-mail para

o Scrum Team, com os dados sobre as falhas ocorridas em algum teste. Outro

recurso do GO é gerar os pacotes de versão para a instalação do software. A cada

nova funcionalidade instalada no software, o GO dispara uma execução dos testes

e, quando todos os testes forem executados com sucesso, o GO gera um pacote

instalável da versão do software, considerada uma versão estável.

Após o GO ter gerado o pacote do software, a empresa M, ainda conta com o

ambiente de homologação que, em geral, é muito semelhante ao de produção, sem,

no entanto, realizar operações financeiras reais.

A versão estável do software é instalada no ambiente de homologação, para

que o Product Owner realize seus testes para validar as funcionalidades em relação

	

40	

aos requisitos. Uma vez que as novas funcionalidades adicionadas ao software

foram validadas pelo Product Owner, o software encontra-se disponível para a

instalação no ambiente de produção.

O sistema operacional dos servidores de instalação da empresa é Linux,

devido a sua fácil integração com as tecnologias descritas anteriormente. O Linux

também é um sistema operacional amplamente difundido, estável e seguro.

3.4.2 Aplicação das boas práticas de BDD na empresa M

Nesta seção, é descrito um experimento na empresa M, para analisar a

inclusão das boas práticas de BDD no Scrum que já era utilizada pela sua equipe de

desenvolvimento. A empresa é uma empresa de médio porte com cerca de 80

(oitenta) colaboradores sendo desses apenas 20 (vinte) envolvidos na parte de

tecnologia da empresa. Inicialmente, vale salientar que empresa M vem tentando,

por inúmeras vezes, aplicar métodos ágeis como Scrum à risca. Porém, nunca foi

bem-sucedida, devido a diversos motivos, tais como falta de uma boa compreensão

da equipe envolvida sobre o processo de testes, ou seja, o que era necessário

testar, como e onde incluir as atividades de testes dentro do processo ágil. Além,

disso, muitas vezes, existia a falta de uma visão mais clara sobre as novas

funcionalidades que estão sendo adicionadas ao software.

Antes da implantação das práticas do BDD, a preparação da entrega de

software na empresa M era feita de maneira manual e complemente dependente do

desenvolvedor.

O desenvolver recebia as tarefas de maneira imprecisa, sem uma descrição

detalhada da funcionalidade e, por muitas vezes, o entendimento ficava sujeito à sua

interpretação, e atribuía significado não esperado para a nova funcionalidade.

O processo de execução dos testes era totalmente dependente do

desenvolvedor, ou seja, era necessário que o desenvolvedor definisse os testes e o

ambiente de execução de testes ficava no seu computador, onde as alterações

feitas eram testadas. Isso mostrou ser um processo falho, pois caso o

	

41	

desenvolvedor não tivesse o cuidado necessário com o software, os testes eram

realizados de forma adequada e o desenvolvedor não tinha a motivação para

continuar evoluindo os testes.

Após a implementação da nova funcionalidade, o desenvolvedor ainda era o

responsável por gerar o pacote do software, disponibilizando-o para a equipe de

infraestrutura, que recebia esse pacote, sem nenhum tipo de versionamento do

software e, manualmente, instalava nos ambientes desejados.

Por muito tempo a empresa M utilizou esse processo, completamente

dependente de seus desenvolvedores; porém, com o crescimento da equipe, o

processo complemente manual e dependente dos desenvolvedores começou a

mostrar suas fraquezas. Por muitas vezes, foram instaladas versões de software em

que, por falta de testes planejados, outras funcionalidades pararam de funcionar ou

tiveram seu comportamento alterado. Neste processo, ainda existia uma grande

dificuldade para voltar para versões estáveis do software, pois não existia controle

de versões, dificultando a identificação da versão que estava sendo instalada no

ambiente de produção.

Com isso pode-se observar que o processo anterior era muito frágil e

suscetível a erros, gerando grandes problemas para a empresa M.

Para resolver esses problemas, as equipes de desenvolvimento optaram pela

utilização do Scrum, para gerenciar melhor a inclusão das novas funcionalidades,

decorrentes da crescente demanda de mercado. Porém, apenas utilização do

processo Scrum não foi suficiente para atingir as metas de qualidade, pois as

equipes não conseguiam elaborar bons cenários de testes para as funcionalidades.

Sendo assim, ao executar as próximas iterações do processo, as equipes de

desenvolvimento observaram que as funcionalidades existentes foram

comprometidas devido às mudanças atuais.

Esse cenário contribuiu para que fossem entregues versões com

funcionalidades comprometidas do software ou causando impacto em outras

funcionalidades já existentes, e entregando um software com erros ou

comportamentos não esperados.

A introdução do Scrum-BDD na empresa M é ilustrada através da descrição

parcial dos passos realizados em um Sprint de um desenvolvimento. Para o ponto

	

42	

de partida, considera-se que o Product Owner, o Scrum Master e o Scrum Team já

tenham realizado a cerimônia de definição de Sprint. Para a maior clareza da

aplicação, descreve-se o desenvolvimento da funcionalidade de identificação de

bandeira de cartão de crédito, que é adicionada ao Checkout de Pagamentos da
empresa M.

O Checkout é um módulo do software da empresa M, para o qual o usuário da

loja virtual é direcionado para fechar a compra de seus itens. De forma resumida,

corresponde ao procedimento que vai desde o cadastro do usuário, caso ele ainda

não seja cliente, passando pela seleção do endereço de entrega até o cálculo de
frete, concluindo com o pagamento dos itens.

Inicialmente foram escritas as estórias da funcionalidade do Sprint pelo

Product Owner, que é o especialista do domínio de pagamentos digitais. O Product

Owner é responsável por escolher as estórias que agreguem valor ao cliente. Duas
delas foram selecionadas para ilustrar a aplicação das boas práticas:

Eu como empresa M, gostaria de identificar a bandeira do cartão de crédito,
quando o usuário informar o número.

Eu como empresa M, gostaria de não aceitar cartão com a data de expiração
já vencida.

Feito isso, o Product Owner escreveu a funcionalidade correspondente às
estórias.

Como empresa M utiliza a ferramenta Cucumber, a descrição das

funcionalidades é feita em linguagem natural, ou seja, em linguagem que o

especialista do domínio e os desenvolvedores possam compreender mais

facilmente. As Figuras 8 e 9 apresentam os documentos de funcionalidade das
estórias selecionadas, na forma recomendadas pelo BDD.

	

43	

Figura 8 — Documento de funcionalidade identificação de bandeira.

Funcionalidade: Identificação de bandeira de cartão

 Como um intermediador de pagamento

 Com o objetivo de melhorar a conversão do checkout

 Eu devo identificar a bandeira do cartão do crédito

 Cenário: Identificando uma bandeira de cartão válido

 Dado que eu esteja realizando um pagamento

 Quando eu seleciono "Cartão de Crédito" como forma de "pagamento"

 E eu preencho "Número de Cartão" com "<cartão>"

 Então eu devo ver "<bandeira>"

 Cenário: Cartão não identificado

 Dado que eu esteja realizando um pagamento

 Quando eu seleciono "Cartão de Crédito" de "Cliente"

 E eu preencho "Número de Cartão" com "0000"

 Então eu deveria ver "Cartão de Crédito Inválido"

 Exemplos:

 | cartão | bandeira |

 | 4012001037141112 | Visa |

 | 5453010000066167 | MasterCard |

 | 6362970000457013 | Elo |

	

44	

Figura 9 — Documento de funcionalidade validação de data.

Funcionalidade: Não aceitação de cartão com a data de vencimento expirada

 Como um intermediador de pagamento

 Com o objetivo de melhorar a conversão do checkout

 Eu não devo aceitar cartão a data de expiração vencida

 Cenário: Cartão com data de expiração vencida

 Dado que eu esteja realizando um pagamento

 E que hoje seja dia 22/01/2015

 Quando eu seleciono "Cartão de Crédito" como forma de "pagamento"

 E eu preencho "Número de Cartão" com "4012001037141112"

 E eu preencho "Expiração do Cartão" com "12/2014”

 Então eu deveria ver "Cartão de Crédito vencido"

 Cenário: Cartão dentro da data de expiração

 Dado que eu esteja realizando um pagamento

 Quando eu seleciono "Cartão de Crédito" de "Cliente"

 E eu preencho "Número de Cartão" com "4012001037141112"

 E eu preencho "Expiração do Cartão" com "12/2020”

 Então eu deveria conseguir prosseguir no checkout

As funcionalidades 8 e 9 contém as informações necessárias para que o

Scrum Team comece a preparar seus testes e sua implementação. Caso ainda

apareçam mais cenários de testes, o Product Owner modifica o arquivo de

funcionalidade, adicionando os novos cenários, sem o comprometimento do trabalho
em andamento.

Os documentos de funcionalidade também têm a utilidade como

documentação do software, pois descrevem o seu comportamento e os seus

cenários.

	

45	

Uma vez que os documentos de funcionalidade estavam prontos, o Scrum

Team iniciou o preparo dos testes automatizados e a codificação da funcionalidade.

A empresa M utiliza, como controle de versão de código, a ferramenta Git,

que faz o papel de unir as partes do projeto (código fonte), de modo que cada

membro da equipe faça uma parte e, utilizando este sistema é possível unir, as

diferentes alterações de cada desenvolvedor em um único código final. Para isso o

Git trabalha com o conceito de branches, ou seja, uma ramificação do código que

possibilita os desenvolvedores continuarem evoluindo o código sem que outro

desenvolvedor interrompa, e então eles podem unir o código em um processo
chamado merge, quando as suas partes estiverem funcionando.

Para cada nova funcionalidade do Sprint, cria-se em uma nova branch, cujo

nome deve ser próximo ao da funcionalidade que será desenvolvida. Assim, uma

nova branch é criada a partir do trecho de código principal, o branch master que

corresponde à versão estável do software. Os testes da integração contínua são

realizados sempre a partir da branch master. Na figura 10, pode-se observar os

branches expiração_cartao e validação_bandeira, correspondentes às duas

funcionalidades descritas anteriormente.

Figura 10 — Versionamento de código.

Cada funcionalidade é implementada por um desenvolvedor separadamente e

a ferramenta Git auxilia na distribuição de código entre as branches. Cada

desenvolvedor cria uma nova branch, como também cria um novo ponteiro para que

possa se mover em relação à branch master. A ferramenta Git permite que dois

desenvolvedores trabalhem em funcionalidades diferentes, porém, nos mesmos

trechos de código e evitando conflitos das funcionalidades, uma vez que cada um

deles está trabalhando em uma branch separadamente. Dessa forma, é possível

	

46	

que cada desenvolver trabalhe em seu trecho de código, sem que um interfira na

funcionalidade do outro.

Após a geração dos documentos de funcionalidade, é feita a preparação de

testes automatizados pelo Scrum Team, utilizando a ferramenta Cucumber; os

documentos de funcionalidade foram interpretados e foram gerados os documentos

de implementação de testes. Nesse documento, são definidos os steps pelo

desenvolvedor, os quais correspondem aos métodos ou funções de programas

orientados a objetos ou procedurais. Cada step pode ter zero ou mais argumentos e

a sua definição começa com uma preposição ou advérbio (Dado, Quando, Então, E,
Mas).

Os documentos de implementação de testes das funcionalidades de validação

data de expiração do cartão de crédito e validação de bandeira de cartão de crédito

encontra-se respectivamente nas Figuras 11 e 12.

	

47	

Figura 11 — Documento de implementação de testes – funcionalidade validação de

bandeira de cartão de crédito.

Dado /^que eu esteja realizando um pagamento$/ do

 visit "/checkout"

end

Quando /^eu seleciono "Cartão de Crédito" como forma de "pagamento"$/ do

 click_button "creditcard"

end

E /^eu preencho "Número de Cartão" com "<cartão>"$/ do

 fills_in "creditcard_number", with: "4012001037141112"

end

Então /^Então eu devo ver <bandeira>$/ do

 response.should have_tag("p", text: /Visa/)

end

	

48	

Figura 12 — Documento de implementação de testes – funcionalidade validação data de

expiração do cartão de crédito.

Dado /^que eu esteja realizando um pagamento$/ do

 visit "/checkout"

end

E /^que hoje seja dia 22/01/2015$/ do

end

Quando /^ eu seleciono "Cartão de Crédito" como forma de "pagamento"$/ do

 click_button "creditcard"

end

E /^eu preencho "Número de Cartão" com "4012001037141112"$/ do

 fills_in "creditcard_number", with: "4012001037141112"

end

E /^eu preencho "Expiração do Cartão" com "12/2014"$/ do

 fills_in "creditcard_expiration_date", with: "12/2014"

end

Então /^eu deveria ver "Cartão de Crédito vencido"$/ do

 response.should have_tag("p", text: /Cartão de Crédito expirado/)

end

O documento de implementação de testes contém a especificação para os

testes automatizados para cada um dos cenários de uma funcionalidade. Conforme

a recomendação do BDD, primeiro deve-se criar um teste que não passa, para

	

49	

depois criar a implementação da funcionalidade, seguindo o mesmo ciclo

recomendado por Kent Back (BECK, 2002). Então, ao realizar os testes, se o

desenvolvedor receber a informação de que os testes, referentes a pagamento com

o cartão de crédito, não estão passando, é porque a implementação final do código
ainda não foi elaborada.

Com o entendimento dos diversos cenários, o desenvolvedor está mais

seguro para criar código necessário para atender a um requisito. Uma vez que, o

desenvolvedor tenha realizado a implementação necessária, os respectivos testes

realizados e a funcionalidade é considerada concluída, o código correspondente
deve ser inserido na branch master.

Para isso, o desenvolvedor deve trazer a versão do branch master para seu

branch e realizar as mudanças necessárias, para obter a nova versão. A ferramenta

Git (CHACON, 2014) fornece, ao desenvolvedor, o recurso de merge de código

entre os branches, para que não haja conflito com os outros desenvolvedores que
estão trabalhando no mesmo software.

O processo de merge está representado pela figura 13. O desenvolvedor que

estiver com uma versão do código de validacao_bandeira concluída, solicita o

processo de merge e, caso não ocorram conflitos, pode liberar a sua funcionalidade.

Figura 13 — Merge do master para validação_bandeira

A operação de merge é representada pela linha à direita que une a branch da
validação_bandeira para a branch master.

Após o merge, a nova funcionalidade fica disponível para ser incorporada nos
testes no servidor de Integração Contínua.

	

50	

Quando o código desenvolvido nas branches é colocado na branch master, as

branches correspondentes devem ser removidas, encerrando, dessa forma o seu
ciclo de vida.

A figura 14 mostra o encerramento do ciclo de vida das branches, em seu
processo de desenvolvimento.

Figura 14 — Encerramento de branch

Com o encerramento da funcionalidade no processo de merge do Git, é

iniciado o processo de integração contínua. Para a empresa M, o servidor GO

(CHACON, 2014) realiza operações, como a execução de teste e empacotamento

do software.

A execução dos testes é realizada na empresa M através da utilização da

ferramenta Go Continuous Delivery no servidor de Integração Contínua. Essa

ferramenta é integrada com a ferramenta Git e, assim, quando ocorre mudança de
código na branch master do Git, isso é identificado pelo Go que inicia seu processo.

Sendo assim, a identificação automática da mudança do software causa a

execução automática dos testes pelo Go; isso garante que as funcionalidades

acrescentadas ao software, não tenham alterado os comportamentos já existentes.

Para a validação de software, o Go realiza os seguintes passos:

• BuildApp: o Go baixa o código fonte da ferramenta Git e, se necessário,

realiza a compilação;

• TestUnit: execução de todos os cenários de testes existentes dentro do

software;

• VendorizeGems: realiza o empacotamento das bibliotecas de terceiros

utilizado pelo software;

	

51	

• CodeQualityAndSecurity: realiza a análise estática do código, onde o foco é

encontrar possíveis vulnerabilidades de segurança;
• PackageApp: realiza o empacotamento de uma versão estável do software;

• PushAppPackage: envia a versão de software estável para o servidor de

repositórios do software, disponibilizando-o para instalação nos servidores de

produção.

A empresa M considera que uma versão estável de software é gerada quando
o código passa por todos os passos sem falhas.

Caso venha a acontecer alguma falha, em qualquer passo do processo, o Go

não disponibiliza a versão de software e comunica, através de um e-mail para Scrum

Team, alertando a instabilidade do software. A nova versão do software não é

liberada até que a falha encontrada seja corrigida, garantindo apenas que a última
versão estável do software esteja disponível para instalação nos ambientes.

Quando o Go disponibiliza a versão estável do software, o Scrum Team faz a

instalação no ambiente de homologação, para avaliação final do Product Owner.

Com a aprovação da nova funcionalidade pelo Product Owner, de acordo com o

processo do Scrum, tem-se a versão pronta para ser instalada nos servidores de
produção.

O processo de instalação do software em ambiente de produção ainda está

em estudo na empresa M. Busca-se uma forma que seja segura e automatizada,
através do uso de uma ferramenta apropriada.

O desenvolvimento de software, através das práticas de BDD no método

Scrum, permite disponibilizar uma versão de software ao final de cada estória,

agregando, assim, valor ao cliente de maneira contínua e validado pelos

especialistas do domínio. Dessa forma, as entregas ocorrem continuamente,

melhorando de fato desempenho do método Scrum, diminuindo o tempo das

entregas entre Sprints e mostrando a evolução do software com novas

funcionalidades.

	

52	

3.5 Considerações Finais

As boas práticas do BDD no Scrum auxiliam a empresa M na entrega de

software com qualidade e também contribuem para que as versões de softwares

sejam entregues com maior frequência no ambiente de produção. Enfatiza-se que

houve uma mudança de comportamento na sua equipe de desenvolvimento, o que

permitiu aplicar as boas práticas com o sucesso. O envolvimento e a interação das

pessoas da equipe de desenvolvimento causaram o sucesso desse experimento.

O processo ainda está em fase de amadurecimento, porém sua importância já

foi reconhecida na empresa, de maneira que novas funcionalidades estão sendo
concebidas através do seu uso.

	

53	

4. CONSIDERAÇÕES FINAIS

Este capítulo descreve as conclusões obtidas com este trabalho, suas

principais contribuições e recomendações, bem como os trabalhos futuros.

4.1 Conclusões

O primeiro princípio do Manifesto Ágil apresenta diz que “Nossa maior

prioridade é satisfazer o cliente através da entrega contínua e adiantada de software
com valor agregado”.

A estratégia do desenvolvimento ágil de software é possibilitar ao cliente

avaliar o software em desenvolvimento e agregar valor ao negócio. Para isso, é

fundamental planejar a entrega contínua de partes prontas do software, para que o

cliente avalie se a funcionalidade atende as suas necessidades, como também,
antecipar ao cliente os benefícios do software.

 O BDD, como uma prática do desenvolvimento ágil, transforma uma ideia para

um requisito que possa ser implementado e testado para a produção simples e

eficaz, desde que o requisito seja específico o suficiente para que todos
compreendam.

Também vale à pena salientar que não há muito tempo para a integração e a

entrega de valor para o cliente, visto que o desenvolvimento ágil permite mostrar o

que está ou não funcionando durante sua construção e obter novos recursos com

feedback rápido, isso torna o ambiente corporativo mais colaborativo no ciclo de
desenvolvimento.

O cliente hoje procura resultados e investir no desenvolvimento de software,

que seja durável, flexível e, sobretudo, de fácil manutenção, ou seja, a entrega do
software funcionando o mais breve possível.

Sendo assim pode-se considerar que o trabalho atingiu parcialmente o

objetivo, uma vez que a utilização do scrum-BDD auxiliou ao desenvolvedor

	

54	

compreender melhor as regras de negócio e melhorar a qualidade do software

entregue. O uso de histórias e cenários deixou claro para desenvolvedor e Product

Owner o que realmente era necessário a ser desenvolvido. Porém os testes de

aceitação por muitas vezes demandam mais tempo para serem executados e como
foi visto anteriormente é importante que eles possam ser executados rapidamente.

4.2 Contribuições

Atualmente, o uso da Internet possui uma demanda caracterizada por acesso
a serviços online e buscas com acesso de forma rápida e com qualidade.

O atendimento de tais expectativas torna-se uma demanda necessária para o

desenvolvimento de software e, neste sentido, o grande desafio é a

operacionalização de uma série de pesquisas existentes na área. O presente

trabalho busca ser um guia de estudo e boas práticas de BDD, dentro de processo

Scrum, em uma prática de integração e entrega contínua, no qual, espera-se

contribuir para a descoberta de elementos, que desencadeiem processos para o
desenvolvimento ágil de software.

Para isso, apresenta-se uma forma de implantação de uma metodologia ágil

focada em comportamento do software em um ambiente corporativo e mostra-se um

exemplo. Através das práticas do BDD em um processo de entrega contínua, com

aplicação do conjunto das técnicas no ambiente de desenvolvimento da empresa M,

observa-se como o software é entregue e validado constantemente dentro do

processo. Trata-se de uma prática na qual os testes são escritos antes da

implementação final do código, permitindo-se aumentar a qualidade do código
produzido.

Sendo assim, a principal contribuição do presente trabalho foi a aplicação do

processo definido na empresa M e, principalmente, a mudança cultural ocorrida

dentro da empresa, onde todos os interessados passaram a se envolver para criar o
software final de qualidade.

	

55	

4.3 Trabalhos futuros

O processo foi aplicado em uma empresa de médio porte, o que facilitou a

aplicação. Como trabalho futuro pode-se avaliar identificar como o mesmo processo

pode ser aplicado dentro de grandes empresas, com diversas equipes atuando
sobre o mesmo software.

Outro trabalho futuro, principalmente para a empresa M, é identificar o

processo de instalação automatizada, da instalação do software em seus devidos

ambientes para evitar falhas na composição de uma versão de software. Ainda,

muitos tópicos podem ser explorados para trazer melhorias e maturidade da entrega
contínua e surgir uma continuação para esse assunto ainda pouco explorado.

	

56	

REFERÊNCIAS

AVRAN, Abel & MARINESCU, Floyd. Domain-Driven Design Quickly. Lulu.com,

2007.

CHELIMSKY, David & ASTELS, Dave & HELMKAMP, Bryan & NORTH, D. &

DENNIS, Zach & HELLESOY, Aslak. The RSpec Book: Behaviour Driven

Development with RSpec, Cucumber, and Friends. Pragmatic Bookshelf, 2009. 21-
52p.

DAN North & Associates. Introducing BDD. Disponível em:

http://dannorth.net/introducing-bdd. Março, 2006. Acesso em 18 novembro de 2014.

FOWLER, Martin. Continuous Integration. 2000. Disponível em

<http://martinfowler.com/articles/continuousIntegration.html>. Acesso em 3 junho
2015.

FOWLER, Martin. Refactoring: Improving the Design of Existing Code, Addison-
Wesley Professional, 1999. 63-89p.

HUMBLE, Jez & FARLEY, David. Entrega contínua: Como entrega de software de

forma rápida e confiável. São Paulo, São Paulo: Bookman Companhia Ed, 2013. 11-

69p ;187 – 222p

KENT, Beck. Test Driven Development: By Example, Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, 2002. 20-81p.

KENT, Beck & BEEDLE, Mike & BENNEKUM, Arie Van & COCKBURN, Alistair &

CUNNINGHAM , Ward & FOWLER, Martin & GRENNING, James & HIGHSMITH,

Jim & HUNT, Andrew & JEFFRIES, Ron & KERN, Jon & MARICK, Brian & MARTIN,

Robert C. & MELLOR, Steve & SCHWABER,Ken & THOMAS & Dave, Jeff

Sutherland. Manifesto for agile software development. Disponível em

http://agilemanifesto.org/, 02 2001. Acesso em 12 março 2015.

	

57	

KNIBERG, H. Scrum and XP from the Trenches. InfoQ, 2007. Disponível em:

<http://www.infoq.com/minibooks/scrum-xp-from-the-trenches>. Acesso em junho de

2015.

LAZAR, Loan & MOTOGNA, Simona & PÂRV, Brazil. Behaviour-Driven

Development of Foundational UML Components. 2010.

PRESSMAN, Roger S. Engenharia de software: Uma abordagem profissional. Ed 7ª.

São Paulo: Editora Bookman, 2011. 53 – 104p.

PUFAL, Nicholas & VIEIRA, Juraci. TRÊS FALÁCIA DO BDD. Disponível em

<http://www.thoughtworks.com/pt/insights/blog/3-misconceptions-about-bdd>.

Dezembro de 2013. Acesso em 8 julho de 2015.

SCHWABER, Ken & SUTHERLAND, Jeff. Um guia definitive para o Scrum: As

regras do jogo. Disponível em:

<http://www.scrumguides.org/scrumgruides/v1/Scrum-guide-Portuguese-BR.pdf>.

Junho de 2013. Acesso em julho de 2015.

SHORE, J.; WARDEN, S. The Art of Agile Development. O'Reilly, 2007. 255-261p.

SOLÍS, Carlos & WANG, Xiaofeng. A study of the Characteristics of Behaviour

Driven Development. 2011 37th euromicro Conference on Software Engineering and

Advanced Applications.

SMART, John Ferguson. BDD in Action: Behavior-Driven Development for the Whole

Software Lifecycle. Editora Manning, 2014. 110 - 250p. 

WYNNE, Matt & HELLESøy, Aslak. The Cucumber Book: Behaviour-Driven

Development for Testers and Developers. Publisher: Pragmatic Bookshelf, 2012. 3-

8p.

CHACON, Scott & STRAUB, Ben. Pro Git Book. Editora Apress; 2nd ed. 2014. 43 –
141p

