BRENO HENRIQUE DUARTE DE OLIVEIRA

Praticas de Behavior Driven Development em Scrum para Entrega

Continua de Valor.

Sao Paulo
2015

BRENO HENRIQUE DUARTE DE OLIVEIRA

Praticas de Behavior Driven Development em Scrum para Entrega Continua
de Valor.

Monografia — Programa de Educacéao
Continuada em Engenharia da Escola
Politécnica da Universidade de S&o Paulo
como parte dos requisitos para conclusao
do curso de especializagdo em
Tecnologia de Software MBA-USP.

Sao Paulo
2015

BRENO HENRIQUE DUARTE DE OLIVEIRA

Praticas de Behavior Driven Development em Scrum para Entrega Continua
de Valor.

Monografia — Programa de Educacéao
Continuada em Engenharia da Escola
Politécnica da Universidade de S&o Paulo
como parte dos requisitos para conclusao
do curso de especializagdo em
Tecnologia de Software MBA-USP.

Area de Concentracdo: Tecnologia de

Software.

Orientadora: Prof2 Dr* Selma Shin
Shimizu Melnikoff.

Sao Paulo
2015

RESUMO

OLIVEIRA, Breno Henrique Duarte de. Praticas de Behavior Driven Development
em Scrum para Entrega Continua de Valor. 2015. 57p. Monografia — Programa de
Educacdo Continuada da Escola Politécnica da Universidade de Sao Paulo, Curso
de Especializagdo em Tecnologia de Software MBA-USP, 2015.

Este trabalho tem o objetivo de apresentar um guia de aplicagao de boas praticas de
Behavior-Driven Development - Desenvolvimento Orientado a Comportamento -
BDD para entrega continua de valores para cliente. Trata-se de uma pesquisa que
aborda a importéncia das mudangas no desenvolvimento de software que surgiram
com o aparecimento do Manifesto Agil, de Test Driven Development - TDD —
Desenvolvimento Orientado a Testes e de Behavior-Driven Development — BDD -
Desenvolvimento Orientado a Comportamento. Este ultimo assunto busca uma
forma de evitar as falhas no sistema, através do envolvimento de teste de aceitagao
desde as atividades iniciais de planejamento e desenvolvimento de software. Os
conceitos selecionados foram aplicados ao processo de desenvolvimento de uma
empresa real, com foco na entrega continua de valor para o cliente, e os resultados

obtidos séo apresentados.

Palavras-chave: Desenvolvimento Orientado a Comportamento (Behavior-Driven

Development — BDD); Entrega continua; Integracao continua.

ABSTRACT

OLIVEIRA, Breno Henrique Duarte de. Praticas de Behavior Driven Development
em Scrum para Entrega Continua de Valor. 2015. 57p. Monografia — Programa de
Educacdo Continuada da Escola Politécnica da Universidade de Sao Paulo, Curso
de Especializagdo em Tecnologia de Software MBA-USP, 2015.

This paper aims to present an application guide of good practice of Behavior- Driven
Development - Behavior Driven Development - BDD for continuous delivery of value
to customers. This is a research focusing on the importance of changes in software
development that emerged with the appearance of the Agile Manifesto of Test Driven
Development - TDD - Test-Driven Development and Behavior- Driven Development -
BDD - Driven Development Behavior . This last issue is seeking a way to avoid
system crashes, through acceptance testing of involvement from the initial planning
activities and software development. The selected concepts have been applied to the
development of an actual business process , focusing on continuous delivery value to

the client, and the results are presented.

Keywords: Behavior Driven Development- BDD; Continuous Delivery; Continuous
Integration.

SUMARIO

1. INTRODUGAOcouerereeterereneeeeseseseesesesesesssssesesessssssssssessssssesssssessasesesssessassssssenens 7
I T o Y7 T T 7
70 1 o 1= 4o SR 9
1.3 Justificativa.........eee 10
1.4 Metodologia ... ———————— 12
1.5 Estrutura da Monografia.........cccccoiiiiiiiiiininiieerrrr . 13
2 AMELOAO SCrUM.......eeeeerr s 14
2.1.1 Principais TOpicos sobre SCrum ... 14
2.1.2 MaNfeSto Agil.....cccccoceerueerieeceieee et ea e ee e ee e e eas e e ea e e esan s 14
0t I T 1 1 16
2.2 Extreme Programmingccccccoesssussmsmmsmmmmmssssmnninnnnsssssssssssssssssssses 18
2.3.2 Praticas do BDD ... s 22
2.4 Integracao e entrega continua de software...............ccooeviiiiiiiiiinnnnennnnneenn 23
2.5 Importancia do feedbackccoumimimmiimemm 24
2.6. Consideragoes fiNais ... 26
3. BOAS PRATICAS DO BEHAVIOR DRIVEN DEVELOPMENT NO SCRUM........ 28
3.1 Desafios dos profissionais de soffware..............cccccouniiiiiiimnnnnnees 28
3.2. Resumo do problema.............ccoiiinie 29
3.3 Melhorias do Processo de Teste através do BDD...........ccccccmmmrrrriiiiiiiiiininns 30
3.3.1 Selegao das Praticas do BDD ... 30
3.3.2 Incorporacgao das praticas do BDD no Scrum..............eoiiiiieecciiireeeeceneees 31
3.4 Aplicacao das boas praticas do BDD no ambiente Scrum 37
3.4.1 Descrigao do ambiente de teste daempresa Mcoooriiriiiccciiciiinnnn, 38
3.4.2 Aplicacao das boas praticas de BDD naempresa M.........ccccccciiirreenncenenens 40
3.5 Consideragoes FiNaiscccccciiiiiiiiiiimniinnsicss s 52
4. CONSIDERAGOES FINAISooooveeeeeererereesesssesesssesesesessssssssesessssssssssessassssssesenes 53
T 30 I 0o T Lo ¥ L= o = 53
T B2 0o T 1 o 10 1o o Y= 54
4.3 Trabalhos fULUIOSeeeeir s 55

REFERENCIAS........couiieeetetecetreeestsssssssesssssssssssstssasssssasssssssssesssssssssssssssassssessssssssaes 56

1. INTRODUCAO

Este capitulo apresenta a motivagdo, o objetivo, a justificativa, a metodologia
utilizada para o trabalho e a estrutura da monografia.

1.1 Motivagao

Diante da crescente pressdo do mercado por inovagdo e exigéncias dos
clientes, os projetos de software tém buscado exceléncia na qualidade dos sistemas,

através de técnicas para melhorias nas diversas fases do seu desenvolvimento.

A evolucdo na area € notodria e necessaria, uma vez que, para proporcionar
qualidade aos resultados dos processos organizacionais, os sistemas de software
precisam atender aos requisitos iniciais de sua criacdo e, ao mesmo tempo, estar
aptos a adaptagdo, caso mudangas eventualmente ocorram. Sistemas duraveis,
flexiveis e, sobretudo, de facil manutencdo sado, portanto, essenciais a esses
propositos.

O Manifesto Agil, publicado em 2001 foi um marco no desenvolvimento de
software, pois traz mudancas nos valores do processo de desenvolvimento de
software orientado a processos e utilizando regras da ciéncia para um modelo
dirigido por questbes sobre pessoas e suas interagdes, sobre um software e como
este pode ser concebido (KENT et al 2001). Como consequéncia, surgiram o0s
métodos ageis como XP (KNIBERG, 2007), Scrum (SCHWABER; SUTHERLAND,
2013) e varios outros, que atrairam os desenvolvedores para a nova abordagem. No
entanto, a implantacdo desses processos n&o € imediata, sendo necessario haver
mudancas de cultura e treinamento (MARTIN; SHORE; WARDEN, 2007).

Um dos conceitos interessantes introduzidos pelos meétodos ageis de
desenvolvimento de software foi o Desenvolvimento Dirigido por Testes (Test-Driven
Development — TDD), que resulta em um processo de desenvolvimento guiado pelos
testes, ou seja, os testes sdo criados inicialmente, onde eles ndo passam pois n&o
ha o codigo de implementacdo, depois o desenvolvedor implementa o cdédigo o
cbédigo da maneira mais simples possivel; dessa forma, o desenvolvedor passa, pelo
cédigo implementado, melhorando-o0 e os testes ja implementados anteriormente

devem continuar como aceito.

Essa pratica combina a técnica da definicdo de testes antes da programacao,
o projeto e a refatoragcédo de codigo, e permite a obtengédo de codigos mais proximos
a real necessidade, pois o desenvolvedor esta focado apenas no que € necessario
fazer para que o teste do codigo tenha sucesso. Como resultado, a necessidade de
alteragdes no coédigo € menor que no caso de software desenvolvido através de
modelo convencional, no qual as eventuais falhas de adequag&o de projeto sdo
percebidas apenas nas fases finais do desenvolvimento. Além disso, faz parte do
TDD, o registro das informagdes do teste no codigo, o que permite documentar os

erros deletados, para que eles sejam evitados em um novo projeto.

Como evolugdo do TDD surgiu o Desenvolvimento Orientado a
Comportamento (Behavior-Driven Development — BDD), proposto por North, para
tornar a interagéo, entre a equipe de desenvolvimento e o cliente, mais produtiva,
incorporando os conceitos de analise e teste de aceitacdo ao TDD (NORTH, 2006).
O BDD incorpora as caracteristicas do TDD, como o ciclo de criagdo de testes e
refatoracdo de codigo de forma incremental, porém o foco dos testes é no
comportamento do software. Dessa forma, o teste tem a finalidade de facilitar a
compreensao do funcionamento do sistema, evitando falhas no entendimento do

software e também do negdcio.

No BDD, os trechos de especificagdo do comportamento do sistema sao
definidos de tal forma que o seu teste possa ser automatizado. Os testes definidos
sdo claros e compreensiveis, pois o BDD utiliza de uma linguagem ubiqua que
permite que pessoas de diversos perfis possam definir os testes desejados (SOLIS;
WANG, 2011). Dessa forma, o BDD incorpora as caracteristicas do modelo de
negocio para o qual o software se destina, pois permite transformar uma ideia em
um requisito implementavel. O teste do codigo € preparado para ser executado para
avaliar o requisito especifico do ponto de vista das pessoas de negdcio,

desenvolvedores e testadores, criando um comum entendimento do projeto.

Os testes projetados e realizados sistematicamente permitem ampla
cobertura de verificagcdo, o que os torna capazes de fornecer tanto a qualidade
técnica dos sistemas quanto a satisfacdo e aceitacdo dos usuarios. Por outro lado,

os testes realizados dessa forma evidenciam a possibilidade de adaptagdo do

sistema as possiveis mudangas impostas pelo mercado agressivo as organizagdes,

devido a possibilidade de repetir os testes que ficam documentados.

Para Humble e Farley, o foco no teste de aceitagdo, desde o inicio do
desenvolvimento do sistema, aumenta a probabilidade de sucesso do sistema
(HUMBLE; FARLEY, 2013):

O foco em teste de aceitagdo, como uma forma de mostrar que a
aplicagdo atende a seus critérios para cada requisito, tem um beneficio
adicional. Faz com que todos os envolvidos na entrega — clientes,
testadores, desenvolvedores, analistas, pessoal de operacdes e gerentes
de projeto — pensem sobre o que significa obter sucesso para cada requisito
(HUMBLE; FARLEY, 2013, p. 26).

Ainda, em relagdo aos testes em métodos ageis, a pratica de integracao
continua favorece a liberagdo de produtos com valor. De acordo com o artigo de
Continuous Integration de Martin Fowler (FOWLER, 2000):

Integracado Continua € uma pratica de desenvolvimento de software
em que os membros de uma equipe realizam a integracao frequentemente.
Geralmente cada pessoa realiza a integracdo pelo menos diariamente,
podendo ocorrer varias integragdes por dia. Cada integragdo é verificada
por um processo de compilagdo automatizado (incluindo testes) para
detectar erros de integragdo o mais rapido possivel. Muitas equipes
consideram que essa abordagem leva a uma redugéo significativa dos
problemas de integracdo e permite que uma equipe desenvolva software
coeso mais rapidamente. (FOWLER, 2000)

1.2 Objetivo

Considerando que as praticas citadas na secdo anterior possuem
relacionamento entre elas e que o BDD é uma pratica ainda em desenvolvimento,
torna-se necessario discutir a aplicagdo conjunta em um processo de

desenvolvimento.

O BDD possibilita a validacdo do software através da definicdo de testes
relacionados com seus requisitos; porém, para se ter resultados eficazes, é

necessario que o desenvolvedor execute os testes sistematicamente e

10

constantemente. Com isso, ocorre a integragdo continua que causa um feedback

constante durante o desenvolvimento do software.

Dessa forma, este trabalho tem como objetivo, definir um guia de boas
praticas para a aplicacdo de BDD em desenvolvimento de software que tenha como

meta a integrag&o continua.

Para isso, optou-se em utilizar um processo agil, no caso o Scrum, e
selecionaram-se as tarefas, consideradas relevantes do BDD, que foram atribuidas
para os papéis existentes no Scrum. Assim, as estorias do Scrum constituem o
comportamento do sistema do ponto de vista do Scrum e o desenvolvimento de

cada estoria resulta no teste a ser executo no servidor de integragdo continua.

1.3 Justificativa

Os métodos ageis apresentam um diferencial para desenvolvimento de
software, através de valores e praticas que consolidam o processo iterativo e
incremental, apresentado no modelo espiral na década de 70 (PRESSMAN, 2011).
Com uma abordagem "evolucionaria" a engenharia de software, capacita o
desenvolvedor e o cliente a entender e reagir aos riscos em cada fase
evolutiva. Essas praticas, no entanto, ndo sdo facilmente compreendidas e
aplicadas no processo de desenvolvimento e tem causado efeitos contrarios aos

esperados.

Apesar disso, e mesmo com a resisténcia de alguns setores e empresas, 0s
métodos ageis sdo cada vez mais utilizados e uma de suas exigéncias € a
necessidade de maior grau de envolvimento e de comunicagéo entre membros da

equipe, para garantir a negociagédo e o andamento do projeto (SHORE, 2007).

Uma das praticas interessantes dos métodos ageis é a integragdo continua
(FOWLER, 2000) e, para sua viabilizagdo, € de fundamental importancia que todos
os envolvidos no desenvolvimento estejam comprometidos com testes de integracéo
planejados de forma a ocorrer continuamente, com qualidade na liberagdo das suas
partes. Todos devem se envolver com cédigo de todos, realizando melhorias
continuas através da refatoracdo. Com isso, obtém-se um processo de entrega de

11

novas funcionalidades e retificagbes com valor ao cliente (HUMBLE; FARLEY,
2013).

Uma das dificuldades da integracdo continua é unificar e coordenar as
atividades de requisitos, projeto, implementacgao e testes das itera¢des, para tornar o
processo eficiente e confiavel durante sua execugéo. Outra dificuldade é conseguir
com que desenvolvedores, testadores e pessoal de operagao trabalhem juntos de
forma eficiente (HUMBLE; FARLEY, 2013).

Outra pratica relevante nos métodos ageis é o TDD, que trouxe uma grande
contribuicdo ao propor a elaboracdo do procedimento de teste anteriormente ao
projeto e codificacdo. Porém, ao operacionalizar esse conceito, constatou-se que
nao era facil estabelecer um procedimento para identificar como comegar os testes e
definir o seu escopo, assim como os dominar, compreender e identificar as falhas
(NORTH, 2006).

O BDD foi uma tentativa do North, para melhorar a aplicacido do conceito do
TDD, e integrou as atividades de analise de requisitos e teste de aceitagdo ao TDD
(BECK, 2002). Para isso, o modelo e as regra de negocio foram introduzidos na
visdo de testes de aceitagdo. A linguagem para definicdo de testes € proxima a
linguagem de usuarios, que n&o possuem conhecimento em desenvolvimento de

software, permitindo, assim, a sua participacado na descricdo de testes.

Por outro lado, com o BDD, o cliente pode escrever a especificacdo das
estorias e, se as acdes ndo forem coordenadas com a equipe de desenvolvimento, a
solugédo pode ndo ser adequada, devido a sua falta de conhecimento técnico. Para
que o resultado seja beneficiado com a diversidade de ideias, é importante que haja
participagdo de grupos heterogéneos de pessoas trabalhando juntos. O cliente
precisa de informacgdes técnicas que o auxiliem na criacdo de cenarios antes nao
pensados; caso contrario, a solucao pode ser mais complexa do que necessaria.
Sendo assim, € necessario que a equipe de desenvolvimento o cliente trabalhem
colaborativamente (PUFAL; VIEIRA, 2013).

Vale salientar que, no BDD, é recomendavel o uso de ferramentas, como
Cucumber (WYNNE; HELLES,2012), para viabilizar a sua implantagdo. Nesse caso,
as estoérias sdo escritas diretamente utilizando-se a linguagem da ferramenta e esse

procedimento reforca a necessidade de uma interacdo efetiva do cliente com a

12

equipe de desenvolvimento, para juntos elaborarem possiveis ideias para o
desenvolvimento do sistema (PUFAL; VIEIRA, 2013).

Dessa forma, o BDD, conta com a participagao do cliente, para identificar as
necessidades reais do cliente, para compor os cenarios que descrevem O
comportamento do software; com isso, facilita ao cliente visualizar o uso do software,
apresenta a forma como o software € construido e aproxima o desenvolvimento de

software aos negocios.

E necessario apontar a importancia de organizar a construcdo do software ao
cliente, pois mostra que o software pode ter qualidade desde o primeiro conjunto de
testes que é executado em um ambiente proximo ao de produgdo, eventualmente
em maquinas com custos mais acessiveis. Dessa forma, cria-se uma confianga
maior no processo de implantacdo no ambiente de produgdo. Além disso, o cliente
se conscientiza de que as falhas, detectadas na versdo em teste, ndo avangam para
os préoximos estagios, devido ao teste continuo, e o software final sera de fato um

apoio para melhorar o seu negdcio.

Do ponto de vista da entrega continua de software o processo deve
considerar desde o inicio do desenvolvimento; as necessidades do cliente devem
ser identificadas e agregadas aos critérios claros que resultem no sucesso do
software. Essa pratica causa evolugdo nos processos e no uso das ferramentas, até

alcancar o estagio final, ou seja, a entrega continua do software de valor.

Assim, o software esta diretamente vinculado com os objetivos do negécio do
cliente e torna-se imprescindivel que este esteja sempre atualizado e disponivel para

a continuidade do negdcio.

1.4 Metodologia

Para o desenvolvimento desse trabalho, inicialmente fez-se o levantamento
bibliografico e o estudo do material relacionado com métodos ageis de
desenvolvimento de software, com foco na integracéo continua, TDD e BDD.

Selecionou-se 0 Scrum como método agil para dar suporte a incorporagao do
BDD, por ser um dos métodos ageis mais utilizados no mercado. Sobre o Scrum,

13

foram definidas as praticas do BDD e da entrega continua, para detalhar o processo
de teste.

Para a parte pratica do trabalho, o método resultante foi aplicado em uma
empresa. Foram utilizadas ferramentas para definir um ambiente que fornecesse
apoio a esse experimento: Cucumber, Git e GO — Continuous Delivery. O Cucumber
foi utilizado como ferramenta de auxilio para a escrita das estérias do BDD; o Git,
como controle de versédo do codigo; Go, como servidor de integragao continua.

O Cucumber, em particular, foi selecionado para possibilitar a escrita de
funcionalidades do sistema em uma linguagem natural, tdo essenciais na
comunicagao do cliente e a equipe. Ha ainda de incluir que o processo possibilita a
continua entrega de valores ao cliente, através do apoio do Git e Go, assim
validando constantemente as funcionalidades inseridas no software (HUMBLE;
FARLEY, 2013).

A aplicagdo do método resultante ocorreu na empresa M com o intuito da
evolugdo das entregas do soffware em ciclos constantes; observou-se que o
software foi entregue constantemente com maior aderéncia aos requisitos e uma

melhor cobertura de testes automatizados, para garantir a qualidade do software.

1.5 Estrutura da Monografia

Além da INTRODUCAO apresentada, esta monografia possui de mais trés

capitulos.

No Capitulo 2 TESTE NO DESENVOLVIMENTO ITERATIVO, séao
apresentados os conceitos e as técnicas relacionados com os testes no contexto de

meétodos ageis de desenvolvimento de software.

No Capitulo 3 BOAS PRATICAS DO BEHAVIOR DRIVEN DEVELOPMENT
NO SCRUM, é apresentada a utilizacdo das boas praticas do BDD no contexto do
Scrum, a aplicagdo do método resultante a uma parte do sistema referente ao
processo de compra do e-commerce e a analise dos resultados obtidos.

No Capitulo 4 CONSIDERACOES FINAIS s&o apresentados a concluséo, as
principais contribuicdes deste trabalho e os trabalhos futuros.

14

2 TESTE NO DESENVOLVIMENTO ITERATIVO

O objetivo desse capitulo € apresentar os conceitos e as técnicas que
permitam dar suporte ao entendimento desse trabalho. S&o apresentados os pontos
relevantes do método Scrum e as praticas relevantes do TDD e BDD.

2.1Método Scrum

Os métodos ageis passaram a ser definidos e utilizados apds a publicagdo do
Manifesto Agil, elaborado por especialistas em desenvolvimento de software, que
buscavam solucionar os frequentes problemas ocorridos em processos e em

produtos gerados.

2.1.1 Principais Tépicos sobre Scrum

Essa segdo apresenta o Manifesto Agil e os conceitos relevantes do Scrum.
Esse método foi selecionado por ser um dos métodos ageis mais utilizados no

mercado.

2.1.2 Manifesto Agil

Em fevereiro de 2011, 17 profissionais da area de software reuniram-se para
discutir as alternativas para processos utilizados na época, considerados nao
adequados por serem pesados e orientados por documentos. Das praticas adotadas
por esses participantes, entre eles Kent Beck, Robert C. Martin e Martin Fowler,
surgiram o Manifesto para Desenvolvimento Agil de Software, conhecido como
Manifesto Agil que apresenta quatro valores e doze principios, que constituem a
base para o desenvolvimento agil de software (KENT et al., 2001).

Os autores declaram que estdo identificando maneiras melhores de
desenvolver software, através dos seus trabalhos, para ajudar os outros

15

profissionais nessa tarefa. Os valores apresentados do Manifesto Agil sdo os
seguintes (KENT et al., 2001):

A

Individuos e interagao entre eles, mais que processos e ferramentas.
Software em funcionamento, mais que documentagéo abrangente.
Colaboracédo com o cliente, mais que negociacao de contratos.

Responder a mudangas, mais que seguir um plano.

Para eles, mesmo que os itens a direita dos valores apresentados sejam

importantes, os itens a esquerda devem ser mais considerados.

9.

Os principios do Manifesto Agil sdo os seguintes (KENT et al., 2001):

A maior prioridade € satisfazer o cliente, através de entregas com
antecedéncia e continua, de soffware com valor.

Acolher as mudancas nos requisitos mesmo na etapa tardia do
desenvolvimento. Os processos ageis aproveitam a mudanga para obter
vantagens competitivas ao cliente.

Entregar soffware em funcionamento com frequéncia, entre 2 semanas a 2
meses, dando preferéncia a periodos mais curtos.

Pessoas relacionadas com negocio e desenvolvedores devem trabalhar em
conjunto ao longo do projeto.

Construir projetos ao redor de individuos motivados, dando a eles o ambiente
e suporte necessarios, e confiar na realizagcdo do seu trabalho.

O método mais eficiente e eficaz, para transmitir informagdées para uma
equipe de desenvolvimento, é através de uma conversa frente a frente.
Software em funcionamento € a medida principal do progresso.

Processos ageis promovem um ambiente sustentavel. Os patrocinadores,
desenvolvedores e wusuarios, devem ser capazes de manter passos
constantes indefinidamente.

Continua atencado a exceléncia técnica e ao bom design aumenta a agilidade.

10.Simplicidade - a arte de maximizar a quantidade de trabalho n&o realizada — é

essencial.

11.As melhores arquiteturas, requisitos e designs emergem de equipes auto-

organizadas.

16

12.Em intervalos regulares, a equipe reflete em como ser mais efetiva; entéo, se

sintonizam e ajustam seu comportamento de acordo.

O Manifesto Agil, através de seus valores e seus principios sintetiza a filosofia

dos autores.

2.1.3 Scrum

Denominado de framework por Ken Schwaber e Jeff Sutherland
(SCHWABER; SUTHERLAND, 2013), o Scrum permite o uso de diversos processos
e técnicas para desenvolver e manter produtos complexos, entregando produtos
com mais alto valor possivel. O processo resultante da sua aplicacéo é classificado
como 4&gil, devido as caracteristicas aderentes ao Manifesto Agil.

O Scrum apresenta trés papéis principais: Scrum Master, Product Owner e

Scrum Team.

O Scrum Master tem o papel de liderar os processos e, para isso, deve fazer
com que os participantes entendam e incorporem os valores, 0s principios e as
praticas do Scrum. Além disso, o Scrum Master desempenha o papel de facilitador,
removendo interferéncias externas, resolvendo problemas e atuando na equipe para
realizar melhorias.

O Product Owner é o representante do negdcio e das partes interessadas;
sua responsabilidade é definir as funcionalidades, a serem construidos, os recursos
necessarios, bem como, manter a comunicagao entre os interessados, para que

todos tenham os mesmos objetivos no projeto.

O Scrum Team é uma equipe multifuncional (entre 5 e 9 pessoas)
responsaveis pela concep¢ao, construgcédo e testes do produto, ou seja, atuam na
analise, no projeto, na implementagdo e no teste. A equipe se auto-organiza para
atingir a meta estabelecida pelo Product Owner.

O fluxo de processo do Scrum esta representado na figura 1.

17

Figura 1 — Ciclo da metodologia Scrum

Product Backlog 24 horas

Sprint

Backlog
e

2 -4 semanas

Resultado do Sprint
Produto ou funcionalidade
Concluida

O Product Backlog € o conjunto de funcionalidades priorizadas do software a
ser desenvolvido e é definido pelo Product Owner. Cabe salientar, que o Product
Backlog € um documento em constante desenvolvimento e evolugao, por conta de
mudangas que possam ocorrer no negocio ou devido a melhor compreensdo do

produto pelos participantes do projeto.

No Scrum, a execugdo do projeto € dividida em ciclos chamados Sprints e
cada um corresponde a uma iteragdo, cuja duragdo é em média de 2 a 4 semanas,
com reunides diarias de 15 minutos no maximo, denominadas Daily Meeting, para
acompanhar o trabalho. Na execucédo de cada Sprint, deve-se criar uma versao de

valor tangivel para o cliente ou usuario.

Para planejar cada Sprint, é realizada uma reunido em que o Product Owner,
o Scrum Team e o ScrumMaster definem o Sprint Backlog, que contém as
funcionalidades a serem implementadas durante o Sprint.

Definidos os itens prioritarios do Product Backlog, estabelece-se a sequéncia
priorizada dos itens, a partir de fatores como custo, risco e valor.

No final do Sprint, sdo realizadas duas atividades fundamentais:

1. Sprint Review, cujo objetivo é rever os itens concluidos e verificar se o

produto atende a expectativa de entrega.

18

2. Sprint Retrospective, cujo objetivo € identificar o que esta funcionando
adequadamente, o que precisa ser melhorado e quais as agbes a serem
tomadas para melhorarias. O Sprint Retrospective € realizado no final da
Sprint Review para verificar as melhorias nas formas de trabalho para o

préximo Sprint.

O resultado do Sprint € um produto ou uma funcionalidade. No final do Sprint
€ gerado um documento chamado Definition of Done — DoD, que € um acordo feito
pelo Scrum Team, no qual € apresentado de maneira clara, o conjunto minimo de

passos necessarios para a entrega do resultado com qualidade.

2.2 Extreme Programming

O Extreme Programming (XP) foi criado por Kent Beck, em um projeto critico
de folha de pagamento para a empresa Chrysler, nele Beck selecionou um conjunto
de praticas que haviam se mostrado eficientes separadamente em outros projetos e
as aplicou juntas e potencializadas e, isso foi a origem do o XP. Beck pode perceber
que a revisdo de codigo, testes, integragdo rapida, feedback do cliente, design
simples, entre outras praticas, eram atividades que contribuiam para a maior
qualidade do produto. Entdo, sua proposta foi intensificar a utilizacdo delas ao
extremo, fazendo, por exemplo, revisdo constante do codigo através de
programacgao em pares, intensificando o uso testes automatizados, antecipando a
criacdo dos testes com testes antes mesmo da implementagdo do codigo e
permitindo um acompanhamento constante do projeto com o cliente presente
(BECK, 2002).

O TDD é uma pratica aplicada na comunidade que atua com metodologias
ageis e foi introduzida inicialmente através do XP, por Kent Beck em 2002.

O TDD utiliza a filosofia de que o desenvolvimento deve ser feito do teste para
o codigo e é realizado em ciclos, que cobrem pequenos trechos, definindo-se o teste
para uma fungéo desejada, antes da sua implementagéo.

Com isso, o TDD procura integrar a escrita e a verificagdo do cédigo de forma
simultanea e, assim, viabiliza a agilidade no ciclo de desenvolvimento, através do

melhor entendimento das fungdes a serem codificadas.

19

No entanto, por ser uma tecnologia relativamente nova, € necessario treinar os
desenvolvedores, 0 que demanda tempo para aprendizado. Além disso, do ponto de
vista da produgdo de codigo, o TDD da a falsa impressdao de diminuir a
produtividade; mas, por outro lado, o cddigo gerado tende a ter maior qualidade,

evitando erros e corregdes que ocorrem na implantagéo.

O mecanismo do TDD é apresentado na Figura 2.

Figura 2 — TDD — Test Driven Development

Escreva um teste
que falhe.

Escreva a implementagao
para o teste passar.

Refatoracao.

O ciclo do TDD é dado na seguinte forma:

1. O desenvolvedor cria um teste para um codigo inexistente, fazendo com

que o teste recém-criado n&o passe na sua execugao.

2. Nessa etapa o desenvolvedor escreve o cédigo de implementagdo da
maneira mais simples, para o teste, de maneira a fazer o teste ser

executado com sucesso.

3. O desenvolvedor volta a implementacao para refatorar o cédigo, de forma a
evoluir a implementagao ou fazer com que outros cenarios do teste também

sejam executados com sucesso.

20

Segundo Kent Beck (BECK, 2002), o ciclo de TDD pode ser feito em pequenos
passos para obter resultados rapidamente e uma compreensao sobre o que se esta
sendo desenvolvido.

A adocdo do TDD vem se tornando cada vez mais popular em empresas de
desenvolvimento de software, pois 0 método faz com que o desenvolvedor crie um
teste automatizado para determinado cenario, que até entdo eram manuais, sujeitos
a falha humana (BECK, 2002). Sua adog¢do no inicio € mais complicada para
desenvolvedores, pois em geral, o desenvolvedor ndo compreende o0 que € escrever
um teste que falhe na sua execug¢do (NORTH, 2006).

Observe que o uso da pratica de TDD ajuda a equipe a garantir que os
requisitos funcionam como esperado, e também auxilia o desenvolvedor a identificar

problemas de cddigo na sua implementagao.

2.3 BDD

O BDD é uma abordagem de desenvolvimento de software proposta por Dan
North em 2003, em resposta as dificuldades dos desenvolvedores ao utilizar o TDD.
As duvidas na aplicagcao do TDD eram varias e aconteciam desde como comecgar 0s
testes, o que deveriam ou ndo testar, até como compreender porque os testes
falharam. Para auxiliar os desenvolvedores, North propés o BDD, que inicia o
desenvolvimento do sistema a partir da visdo do teste do seu comportamento,
ressaltando as funcionalidades que agreguem maior valor aos interessados
(NORTH, 2003).

2.3.1 Conceitos do BDD

Para reconhecer o valor das funcionalidades para o negocio, o BDD faz com
que os desenvolvedores discutam sobre exemplos concretos do comportamento do
sistema com os profissionais de negoécio. Dessa forma, o BDD propicia uma
interacdo mais intensa entre analistas de negocio, desenvolvedores e testadores de
software, pois os requisitos devem ser expressos de forma que facilite os seus
testes, e de forma compreensiveis para a equipe de desenvolvimento e interessados
da area de negdcio. As ferramentas de BDD permitem a conversdo dos requisitos
em testes automatizados, o que ajuda o trabalho do desenvolvedor para verificar as
funcionalidades e para documentar o sistema (SMART, 2014).

21

A interagdo entre a equipe de negodcio e de tecnologia é possibilitada no

BDD pela existéncia de uma linguagem comum (ubiqua) para especificar o

comportamento do sistema. Essa linguagem permite que (LAZAR; MOTOGNA;
PARV, 2010):

1.
2.

Clientes especifiquem os requisitos do ponto de vista de negdcio;
Analistas de negocio definam exemplos concretos (cenarios e testes de
aceitacdo) que tornem claro o comportamento do sistema;

Desenvolvedores implementem o comportamento do sistema usando TDD.

Ainda, podem-se citar os trés principios do BDD (NORTH, 2003):

. O suficiente é suficiente: Nado se deve automatizar todo o processo de

negocio, mas o que descreve o comportamento esperado do produto pelo
cliente isso é suficiente para desenvolver a solugdo e, mais do que isso, é

desperdicio de esforgo.

. Entregar valor para os clientes: deve-se entregar somente o que tem valor

para o cliente. Se ndo agregar valor para o cliente, ou ndo potencializar o
valor entregue, deve-se descartar essa parte.

Tudo ¢é comportamento; independentemente do nivel de teste, a
funcionalidade sempre € descrita como comportamento: Tudo que um
software faz pode ser descrito como comportamento e explicado para
qualquer pessoa que tenha o dominio do negécio.

North (2006) esclarece que o BDD acrescenta vantagens ao TDD através de

fatos como comunicagdo entre as equipes, compartilhamento de conhecimento,

documentacao dinamica, visdo do todo, além de criar uma conexao entre a definigao

do negdcio e a criagado dos testes.

O desenvolvimento de um software através de um processo guiado por testes

torna a manutengdo bem mais acessivel no futuro, pois a cada nova funcionalidade

ou refatoragdo de cdédigo, o desenvolvedor executa os testes, ja criados

anteriormente, garantindo que o que ja foi desenvolvido antes n&o tenha o

comportamento alterado pelas novas funcionalidades ou refatoragdo (BECK, 2002).

22

2.3.2 Praticas do BDD

O BDD tem, como caracteristica, ser guiado para e pelos os valores do
negocio que motiva ou solicita a producédo do soffware. Apesar de ter sua filosofia
semelhante a de TDD, de elaborar o teste antes da codificacdo, o foco do BDD € no
comportamento do software e ndo nas fungdes do seu software. Dessa forma, deixa
os participantes do projeto em situagdo mais confortavel para pensar no sistema
como um todo e elaborar os cenarios de teste mesmo antes do seu
desenvolvimento. O BDD permite definir ideias acerca do seu funcionamento,
amadurecé-las através de cenarios de teste e transforma-las em requisitos que
serdo implementados e testados. Essa dinamica torna o processo de
desenvolvimento mais simples e eficaz (NORTH, 2006).

Para isso, precisa-se de uma forma para descrever os requisitos para que
os participantes, tais como especialistas de negocios, desenvolvedores e testadores
tenham um entendimento comum do software a ser desenvolvido. No BDD, a
descricdo de um requisito € feita através de uma estdria, que descreve um requisito
e seu beneficio no negdcio, a qual deve obter a concordancia dos participantes.

A descricdo de requisitos € feita a linguagem ubiqua, que tem a
caracteristica de poder ser utilizada com certa facilidade tanto pelo cliente quanto
pela equipe de desenvolvimento. Esse recurso € inspirado na técnica do Domain-
Driven Design — DDD, para melhorar o dialogo entre os especialistas de dominio e
de aplicagédo (AVRAN; MARINESCU, 2007).

Para que processo do BDD seja executado com eficacia, € necessario
envolver as pessoas desde o desenvolvedor ao cliente e descrever exemplos do
comportamento da aplicagdo ou unidade de cddigo, para esclarecer requisitos e
outros cenarios. Uma vez com as estorias definidas, criam-se os testes
automatizados de rapida execugdo para o desenvolvedor executar os devidos
cenarios de teste constantemente, ou seja, o desenvolvedor executa esses testes

diversas vezes ao dia.

Outra pratica sugerida pelo BDD é a utilizagdo de simuladores de teste
(mocks, stubs, fakes, dummies), que sao unidades auxiliares para permitir a

colaboragdo com modulos e codigos que ainda n&o foram escritos.

23

2.4 Integracgao e entrega continua de software

As interagbes dos métodos ageis, bem como as técnicas contidas no TDD e
BDD, tém a preocupacédo de realizar a Integragdo Continua, ou seja, uma pratica de
desenvolvimento de software na qual os membros da equipe integram seu trabalho
constantemente, para serem executados em um servidor que detecta através dos
builds (incluindo teste) possiveis erros o quanto antes.

A entrega continua, por sua vez, € uma pratica que permite liberar os
produtos de software com frequéncia, o que agiliza o feedback entre o
desenvolvedor e a equipe, além de oferecer maior seguranga para o cliente. Essa
pratica € frequentemente citada como o primeiro principio dos doze principios do
manifesto agil: “Nossa maior prioridade é satisfazer o cliente através da entrega
continua e adiantada de software com valor agregado” (KENT et al., 2001) .

O BDD utiliza o método de entrega continua, ao entender uma mudanca que
nao considera os critérios estabelecidos pelo cliente, leva os interessados a buscar
solugcdes (HUMBLE; FARLEY, 2013), sendo assim é possivel corrigir o problema
assim que ele ocorre, isso permite disponibilizar sempre o software em estado
funcional, ou seja, pronto para ser instalado em ambiente de producéao.

A entrega continua é a habilidade do BDD para se adaptar, bem como, para
responder as mudangas e, assim, garantir a sobrevivéncia do projeto. Para isso, se
faz necessario verificar se o software realmente apresenta o valor esperado, o que
nem sempre acontece, pois, em geral, espera-se que a maioria ou todas as
funcionalidades do sistema estejam implementadas, para entdo detectar e
solucionar possiveis erros, o que demanda uma quantidade razoavel de trabalho,
(HUMBLE; FARLEY, 2013).

A integracéo frequente, para incorporar as mudangas que ocorrem durante o
desenvolvimento de software promove a integragao continua. Para Fowler (2000), é
uma pratica de desenvolvimento de software em que os membros de uma equipe
integram o sistema frequentemente e, normalmente, cada pessoa deve integrar pelo
menos uma vez por dia.

Cada procedimento construido € testado, caso seja identificado possiveis
erros eles sdo corrigidos. Esse método evita problemas relativos a integragado, bem
como possibilita o desenvolvimento do software coeso e de forma rapida. Por isso, a

integracao deve ser feita de maneira continua e com testes de aceitagao constantes

24

até que os requisitos se completem, ou seja, até que o cddigo que satisfaz as
necessidades do cliente seja aprovado em todos os testes.

Os codigos sédo utilizados como um repertério, que juntamente com um
sistema de controle de versdes, acompanha os requisitos e viabiliza versdes
diferenciadas dos arquivos.

Assim como o repositorio de cdédigos possui sua funcionalidade dentro do
desenvolvimento do software, a integracdo sé se faz continua se todos os
envolvidos no projeto consigam instala-lo e executar todos os testes em diferentes
maquinas. Para isso, um script de build automatizado desempenha um papel
relevante dentro do desenvolvimento do software, que informa como compilar
coédigos-fontes, instalar junto com suas dependéncias, executar testes, assim como,

notificar a equipe problemas ou falhas dentro do processo.

Segundo Fowler (2000), o ponto principal € usar o mesmo ambiente, para que
seja possivel evitar problemas antes do software passar para produgdo. Tantos
problemas relacionados a versdes de dependéncias quanto ao do sistema
operacional. Essa pratica mostra-se eficiente, pois a equipe ndo tem surpresas na
hora de implantar o sistema no ambiente de producéo, pois o ambiente & idéntico ao
ambiente em que o software foi desenvolvido e testado.

As praticas na equipe, como compartilhar versdes de cddigo, instalar,
executar testes e validar sistema a qualquer momento, evitam surpresas no
momento da implantagdo e, consequentemente, todas as novas funcionalidades do

software podem evoluir juntas sdo fundamentais para a integragao continua.

A integragdo continua integra sintetiza-se em ter um feedback rapido para
assegurar um software quando pronto possa ser colocado em produgao.

2.5 Importancia do feedback

Ultimamente denota-se um crescimento de interesse em Testes de Softwares,

confirmando-se a necessidade de agilidade do desenvolvimento de sistemas de

25

software e, assim, promover uma mudanga evolucionaria no ciclo de vida do projeto,
cujo ambiente € estavel e acolhedor.

Mesmo com o crescimento nos negocios de Testes de Software, permanece a
sua esséncia de manter a interacdo entre os envolvidos, de forma a produzir o que €
interessante para todos. Assim, todos contribuem na documentacio, independente
do modelo de negdcios e, com isso, 0 processo do software € dirigido e modificado
com a finalidade de atender as necessidades dos envolvidos.

Os envolvidos no projeto de software criam equipes ou comunidades que
incluem os usuarios aos desenvolvedores e, muitas vezes, o cliente atua junto para
compor o melhor software.

Dentro da pesquisa realizada, foram encontrados poucos estudos que
possam contribuir para a documentacdo detalhada de Testes de Softwares, em
projetos que envolvam a contratagdo de uma ou mais desenvolvedores por um curto
periodo de tempo. A prestando servigo ao cliente deve ser de maneira integrada
com valor de negdcio, assim como, a cooperagdo deve ser no sentido de
desenvolvimento funcional do software, tornando-o util ao cliente.

E importante ressaltar que o cliente deve orientar ou criar as hipéteses em
relagao as correcdes e as funcionalidades mais uteis para os usuarios. Para Humble
e Farley (2013), o objetivo deve ser a entrega o software com qualidade suficiente
para gerar valor aos seus usuarios.

A entrega de um software com qualidade &, algumas vezes, considerada uma
arte, mas deveria ser considerada como uma disciplina de engenharia. Para isso,
deve ocorrer o envolvimento do cliente no projeto de software e o resultado depende
da experiéncia que a equipe tém no relacionamento com clientes. Mas o sucesso de
um projeto de software depende da habilidade do fornecedor de responder
rapidamente a demanda das funcionalidades pelos clientes e da colaboracdo do
cliente para responder ou entregar rapidamente as solicitagdes.

Sendo assim, a agilidade com que ocorre um ciclo de entrega em um projeto
de software é muito importante, pois a disponibilidade rapida de uma manutengao
solicitada pelo cliente faz todos os envolvidos perceberem a utilidade da entrega
rapida como foco de negdcio.

Nesse contexto, o processo de mudanca de software pode ser visto com certo
grau de confianga, porque a descoberta de problemas nos produtos de entrega

26

rapida e a busca de solugbes em sequéncia, minimiza o tempo do ciclo, bem como,
possibilita gerar uma nova versao do sistema.

O curto periodo entre as entregas faz com que o intervalo entre as conversas
dos envolvidos seja pequeno, aumentando com isso o feedback. Esse mecanismo
traz melhorias continuas e possibilita a entrega rapida do software ao cliente.

Quanto mais frequentes forem as entregas ao cliente, o processo leva a um
feedback mais rapido, principalmente se o teste de cada mudanga ou correcéo for
feito de maneira mais automatizada possivel. Em testes ageis, para cada mudancga
ou correcao realizada, o feedback deve ser enviado para a equipe responsavel que
deve recebé-lo, compreendé-lo e atuar sobre o sistema para atender ao feedback,
se for necessario.

Para qualquer mudancga realizada, o sistema completo deve ser testado para
garantir que n&o ocorreram efeitos colaterais. Os testes variam de acordo com cada
tipo de sistema e verificam o funcionamento do seu cédigo, seu comportamento, se
esta dentro do esperado, o valor do negécio esperado, se atende as necessidades
dos usuarios, Para garantir o resultado, o ambiente de teste devem ser o mais

proximo possivel do ambiente produtivo. Segundo Humble e Farley (2013):
Um dos elementos de nossa abordagem é a necessidade de feedback
rapido. Garantir esse feedback em mudangas exige atengéo ao processo de
desenvolvimento do cédigo. Os desenvolvedores devem realizar commits
frequentes para o sistema de versionamento e separar o cddigo em
componentes para gerenciar equipes maiores ou distribuidas. Criar novos

branches deve ser evitado na maioria das vezes.

Ainda, a resposta rapida ao feedback torna-se fundamental para que todos
estejam envolvidos no processo de desenvolvimento do soffware e busquem a

melhoria continua na sua entrega, o que requer muito planejamento e disciplina.
2.6. Consideragoes finais
No ambiente competitivo do mercado de software, € necessario investir em

processos de desenvolvimento de software que resultem em produtos de maior

qualidade para atender as necessidades dos usuarios de forma mais eficaz.

27

Nesse contexto, os métodos ageis foram bem aceitos pela sua capacidade de
aproximar os clientes de fornecedores, através da maior interacdo entre eles e da

possibilidade da liberacdo de entregaveis com maior frequéncia.

Ao agregar as abordagens de BDD, os métodos ageis tém a qualidade dos
entregaveis melhorada, pelo fato de trazer uma cultura que agrega valores
relevantes aos clientes. Com isso, ocorre um rapido ciclo de feedback a cada
entrega, favorecendo a qualidade do software entregue e mais valor € entregue com

maior frequéncia ao cliente.

Esse resultado pode ser obtido, pois a visdo do teste é elaborada a partir do
comportamento do sistema, uma vez que o BDD é voltado para testes de aceitagao,
viabilizando a criagdo de cenarios para novas funcionalidades e garantindo a
entrega dentro do que realmente o cliente espera, ou seja, entrega continua de

valores.

28

3. BOAS PRATICAS DO BEHAVIOR DRIVEN DEVELOPMENT NO SCRUM

Este capitulo apresenta a selegdo de um conjunto de boas praticas do BDD
para ser aplicado a um processo agil, sua aplicagdo em uma empresa real de
pagamentos digitais e a discuss&o dos resultados obtidos.

3.1 Desafios dos profissionais de software

Com a utilizagdo da Internet nos negdcios, as fronteiras se expandiram e o
reflexo disso chegou ao mercado. Uma empresa, por exemplo, que atuava apenas
no seu bairro ou na sua cidade, pode vender, através do uso da Internet, para
qualquer lugar do Brasil ou do mundo. Essa situag&o passou a gerar a necessidade
de um grande volume de desenvolvimento de sistemas que, por sua vez,

demandavam evolugao para se adaptar as novas condigdes geradas pelo negdcio.

Dessa forma, um grande desafio que os profissionais da area de
desenvolvimento de software enfrenta é transformar boas ideias em sistemas,
adicionar novas caracteristicas aos sistemas existentes e entregar produtos com alta
qualidade aos usuarios, dentro de um prazo previsto (HUMBLE; FARLEY, 2013).
Para isso, uma das caracteristicas relevantes de um processo de desenvolvimento,
gue responda a essa demanda, € possuir uma forma de realizar os testes de modo

sistematico.

Atualmente, o desenvolvimento de software tem varias atividades, tais como
teste, implantagcdo e instalagéo, realizadas manualmente e seus resultados devem
ser documentados (HUMBLE; FARLEY, 2013).

Na implantagéo e instalacdo de software, os ambientes, em geral, s&o criados

manualmente, por uma equipe de operacgdo, que realiza seguintes tipos de passos:

1. Instalar o software de terceiros do qual a aplicacdo depende;
2. Carregar a aplicagdo no ambiente de produgéo;
3. Configurar os servidores Web, servidores de aplicagdo ou outros

componentes do sistema criados por terceiros;

29

Copiar os dados de referéncia para os servidores em questao;
Iniciar a aplicagdo por partes, se o sistema for distribuido ou orientado

servigos.

Esses passos geram uma série de informagado que deve ser registrada para
que possa ser utilizada posteriormente na implantacdo e na instalacdo de novas

versoes.

3.2. Resumo do problema

Em relagado a evolugao de um software, a adicao de novas caracteristicas ndo
deve alterar o comportamento das demais que nao foram alteradas. Para garantir
isso, o impacto das alteragbes solicitadas deve ser avaliado e a sua inclusdo deve
ser feita seguindo os procedimentos estabelecidos. Além disso, devem-se executar
todos os testes contidos no plano de teste, a fim de verificar a ndo existéncia de
efeitos colaterais (CHELIMSKY et al., 2009). Esse procedimento deveria, em
principio, fazer parte da rotina diaria de um desenvolvedor; porém, muitas vezes, o

procedimento € descartado por uma série de motivos.

Um deles é a falta de recursos ou conhecimento dos desenvolvedores para
analisar o impacto das alteragdes, pois os documentos atualizados podem nao estar
disponiveis (NORTH, 2006).

Outro motivo frequente € a falta de cultura de elaborar planos de teste, o que
obriga os desenvolvedores a definir novos conjuntos de teste a cada alteragdo de
software. Dessa forma, além do retrabalho para definicdo dos testes a serem
executado, o resultado depende da experiéncia do profissional encarregado
(NORTH, 2006).

Ainda, deve-se considerar o tempo para realizar os testes; as vezes pode ser
necessario refazer parte do teste de integragcéo, realizando testes em interfaces,
acesso a banco de dados, ou até uma integragdo com software de terceiros (BECK,
2002). Em geral, o prazo estimado para a alteragao nao é suficiente e, muitas vezes,

torna a execugdo do plano de teste inviavel, pois se faz necessario alterar a

30

configuracdo de ambiente, o que pode ser muito demorado.

Além disso, apds a evolucado do sistema, as alteragdes realizadas devem ser
atualizadas nos seus documentos para que se possa garantir proximas adicoes e
alteracbes das caracteristicas do sistema. A atualizagdo desses documentos é uma
tarefa complexa, que consome tempo significativo e necessita da colaboracédo de
diversos tipos de profissionais e, se nao for bem controlada, os documentos
geralmente ficam incompletos ou ultrapassados (HUMBLE; FARLEY, 2013).

Para novos sistemas, cuidados devem ser tomados ao longo do desenvolvimento,
para que os sistemas apresentem caracteristicas que deem suporte ao teste, tais
como arquitetura, componentes com alta coesao e baixo acoplamento, planos e
procedimento de teste, entre outras (BECK; FOWLER, 2000).

Uma falha, em qualquer ponto do processo de desenvolvimento ou evolucéo,
pode causar grande impacto ao usuario final e, como consequéncia, trazer prejuizos

financeiros as organizagoes.

3.3 Melhorias do Processo de Teste através do BDD

Dentre os assuntos citados na sec¢ao 3.2, o processo de teste € um ponto
importante para a melhoria da qualidade de software e, por esse motivo, foi
selecionado como o foco do trabalho. A proposta consiste em incorporar os
conceitos e as praticas do BDD, que agregam os aspectos de negocio ao TDD, a um
processo agil, que utiliza a pratica do TDD e da Integragdo Continua. Foi

selecionado o método Scrum, por ser um dos mais utilizados no mercado.

3.3.1 Selec¢ao das Praticas do BDD

O BDD foi analisado e foram selecionadas, as praticas mais relevantes para
serem incorporadas no processo do Scrum e devem ser informados aos

participantes do projeto, para uniformizar a visdo de todos. As seguintes praticas do

31

BDD foram selecionadas:

1. Maior envolvimento das pessoas interessadas no processo de
desenvolvimento;

2. Uso de exemplos para melhorar o entendimento do comportamento de
uma aplicagao;

3. Automacido de cenarios de testes desses exemplos para obter um
feedback rapido do cliente;

4. Testes de regressdo para garantir que comportamentos anteriores nao

sejam alterados por novos comportamentos.

3.3.2 Incorporagao das praticas do BDD no Scrum

Para incorporar as praticas do BDD ao Scrum, foram feitas substituicdo ou
detalhamento das suas atividades originais, ou insergdo de novas atividades. O novo

processo obtido foi denominado de Scrum-BDD.

Os dois papéis do Scrum: Product Owner e Scrum Team, descritos na seg¢ao
2.1.1, tiveram a sua responsabilidade ajustada da seguinte forma:

1. O Product Owner deve definir dos comportamentos indispensaveis para o
software a ser desenvolvido, com a utilizacdo de exemplos;

2. O Product Owner deve elaborar a especificagao de testes para os cenarios;

3. O Scrum Team deve criar testes automatizados dos cenarios descritos pelo
Product Owner;

4. O Scrum Team deve preparar o servidor para a Integracdo Continua, para o
rapido feedback.

Os comportamentos indispensaveis, do ponto de vista do BDD, sdo as
fungdes que o sistema deve possuir e correspondem as funcionalidades do Product
Backlog do Scrum. Entédo, o tratamento de uma funcionalidade deve ser o mesmo
dispensado a um comportamento indispensavel do BDD e a definigdo do Product
Backlog deve ser feita seguindo as recomendagdes do BDD, utilizando palavras
chaves que permitem, a quem esta escrevendo, elaborar um texto que possa ser
compreendido por qualquer integrante da equipe. No BDD um desenvolvedor ou

profissional do setor de qualidade ou até mesmo o cliente pode escrever as estorias,

32

correspondentes as funcionalidades, passo-a-passo, seguindo o modelo da figura 3.

Figura 3 — Modelo de escrita de uma funcionalidade.

Funcionalidade: ...
Comoum (a) ...
Quero

Com o objetivo ...

O Sprint Backlog, que contém as tarefas a serem realizadas nas proximas
iteragdes, deve incluir novos tipos de tarefa e alterar as tarefas originais do Scrum,
para acomodar a descrigao dos cenarios, a elaboracido da especificacdo dos testes,

e a geragao dos testes automatizados baseados nessas descri¢des.

A descrigao de cenarios do BDD, é feita seguindo os modelos das figuras 4 e

Figura 4 — Modelo de escrita de um cenario.

Cenairrio: ...

Dado ...

Quando ...

Entao...

Figura 56 — Modelo de escrita de um cenario mais complexo.

33

Cenairio: ...

Dado ...

Quando ...

Entao...

E

Cenairrio: ...

Dado ...

E..

Quando ...

Entao ...

E..

Com a inclusédo das praticas de BDD, a execucdo de um Sprint passa a ser
feita conforme apresentada na figura 6.

34

Figura 6 — Diagrama de funcionamento.

! CODIFICACAO /

\,

DEPLOY
(ANALISE ﬁ DESIGN CODIGO |

\ -

A elaboracdo da especificacdo de testes para os cenarios deve ser feita
através de uma estoéria, ou seja, da descricdo de um requisito e seu beneficio no
negocio, e de um conjunto de critérios de como o requisito sera implementado, o
qual tem o de acordo de todos os participantes do projeto (NORTH, 2006). A
utilizacdo de ferramentas apropriadas, durante o desenvolvimento, permite melhor
elaboracdo e a automacao dessas estorias, pois permitem a escrita das estorias em

texto puro.

Para automatizar e executar as estérias € necessario preparar o servidor de
Integragdo Continua, no entanto, essa € uma atividade ja existente no Scrum, pois
os métodos ageis pressupdem esse tipo de pratica. Os testes serdo realizados no
servidor de Integracdo Continua e, caso sejam executados com sucesso, o servidor
de Integracdo Continua deve disponibilizar o software para instalagdo no ambiente
de producéo.

A atribuicdo das tarefas incluidas ou alteradas aos papéis do Scrum-BDD
pode ser vista na Tabela 1.

Tabela 1 — Atribuigcdo das tarefas novas e alteradas aos papéis do Scrum

Papéis do Scrum Tarefas

Especializacdo do Scrum com as tarefas do BDD
Scrum Master incluidas

Disseminag¢ao do Scrum-BDD

35

Definicdo dos comportamentos indispensaveis

Descricao dos cenarios para os comportamentos
Product Owner

Elaboracio da especificacdo de testes para

cenarios

Criagéo dos testes automatizados para a

Scrum Team especificacao de testes

Preparagao do servidor para Integracdo Continua

O Scrum Master, como lider do processo, € responsavel pela especializagao
do Scrum para incorporar as atividades do BDD e pela disseminacdo da pratica do
Scrum-BDD. Para isso, deve ter um bom conhecimento do BDD.

O Product Owner deve ter a visdo de negocio e do projeto, para definir o
Product Backlog, e coordenar a execugao dos Sprints. Devido a esse perfil, foi
atribuido a ele a definicdo dos comportamentos indispensaveis e a descricao dos
cenarios. Para isso, ele deve incorporar as particularidades do BDD para a descrigao
das funcionalidades, as quais podem melhorar o préprio entendimento das

funcionalidades, uma vez que a visdo do teste de aceitacao esta sendo incorporada.

O Scrum Team deve os testes automatizados para os cenarios dos
comportamentos elaborados pelo Product Owner, visando testes automatizados,
para o Sprint, no servidor de Integragdo Continua, que deve ser preparado
inicialmente. Os testes incluem a verificagcdo dos comportamentos implementados
anteriormente, para garantir que suas caracteristicas sejam preservadas. Uma vez
especificados os testes, os comportamentos do software sdo codificados e testados.
No final de um Sprint, o Scrum Team tem um produto para ser colocado em

producao.

Do ponto de vista de tipos de teste, os usuarios de métodos ageis
frequentemente utilizam a estratégia da piramide de teste, referenciada por Martin
Fowler (SOLIS; WANG, 2011XXXX), Essa estratégia foi também adotada no Scrum-
BDD pois, para o constante feedback, é necessario que os testes sejam executados
constante e rapidamente (figura 7).

36

Figura 7 — Pirémide de teste.

/Interface\

Servigos

Unidade

Essa estratégia considera os testes de unidade, testes de servico e teste
através da interface de humano-computador (IHC). Os testes através da IHC €&, em
principio, uma boa solug¢do, pois permite testar o software a partir do comando na
IHC. No entanto, como em geral a IHC contém software de terceiros, nem sempre é
facil realizar os testes em ferramentas automatizadas. A dificuldade decorre da
necessidade de realizar configuragdes diferentes da ferramenta de teste para
conjuntos de teste e também da obtencédo de licengas de software de terceiros.
Dessa forma, em muitos casos, o teste de servigos, sem o uso da IHC pode ser uma
solugéo que agiliza os testes. Esse tipo de teste é realizado na camada intermediaria
de teste de servicos e € denominado de teste subcutanea, sendo realizado na
camada imediatamente abaixo da camada de interface (SOLIS; WANG, 2011).

Pode-se ainda comentar que o processo de teste automatizado tem, no
preparo dos testes, a geragao de especificagdo executavel dos comportamentos do
software e, pela sua propria natureza, passa a ser um documento dos

comportamentos que estardo sempre atualizados.

A entrega frequente de produtos de alta qualidade dos Sprints faz com que

cada versado tenha, em geral, um acréscimo de funcionalidades, sem impactar no

37

funcionamento da anterior. Isso faz com que o risco associado a liberagdo de uma
nova versao fique reduzido significativamente e, no caso da necessidade de reverter
as mudancgas, o processo € facilitado. A entrega frequente também causa uma

realimentagdo mais rapida do cliente, agilizando o desenvolvimento.

3.4 Aplicagao das boas praticas do BDD no ambiente Scrum

Nesta secdo, é feita a aplicacao do Scrum-BDD na estrutura corporativa de
uma empresa real de pagamentos digitais, denominado de empresa M, a qual é

responsavel por fornecer meios de pagamento para lojas virtuais.

Com expansao do negocio através da Internet surgiu, como desafios, a
necessidade de criar uma forma para que o cliente possa pagar pelo produto ou pelo
servigco de maneira n&o presencial, ou seja, sem que o cliente estivesse presente na
loja no ato da compra. O resultado foi a instituicdo do pagamento digital, que é feito
pela Internet, por meio de uma transagao bancaria ou por cartdes de crédito. Dessa
forma, o cliente tem a comodidade de pagar pelo pedido, independentemente de
onde estiver, e a loja virtual, por sua vez, deve ter a seguranca do recebimento do
valor pago pelo cliente.

As plataformas de pagamento via Internet disponibilizam esse tipo de servico,
a fim de facilitar a realizacdo de transagbes financeiras rapidas e seguras. As
empresas, que fornecem essas plataformas, garantem as lojas virtuais uma
disponibilidade de cerca de 99,7%. Isso significa que, em um dia, o software desse
tipo pode ter uma indisponibilidade de cerca de 4 minutos e 19 segundos, em uma
semana, 30 minutos e 14 segundos, em um més, 2 horas e 11 minutos e, em um

ano, 1 dia 2 horas 17 minutos e 50 segundos.

38

3.4.1 Descrigao do ambiente de teste da empresa M

Dado este cenario, pode-se observar que o software de pagamento digital
deve ser de alta disponibilidade e empresas que fornecem esse tipo de software
devem possuir processos desenvolvimento que garantam a qualidade das
transagdes financeiras. Em particular, os processos de teste e instalacdo devem ser
feitos com planejamento cuidadoso, pois uma pequena indisponibilidade pode gerar
um enorme prejuizo financeiro a essas empresas e as lojas virtuais que utilizam

suas plataformas.

Atualmente, no mercado de pagamentos digitais, existem inumeras opgdes de
pagamentos disponiveis que permitem uma conexao direta com o autorizador da
transacdo financeira. Por exemplo, se a loja virtual precisar aceitar Diners,
Mastercard e Visa, basta integrar-se diretamente ao adquirente, usando seus
protocolos, Cielo E-commerce, Redecard e outros adquirentes.

Da mesma forma, € possivel, a loja virtual, conectar diretamente ao banco e
fornecer, aos clientes, as opgdes de pagarem suas compras através de transferéncia
bancaria, boleto e, em alguns casos, através de financiamento. Este ultimo tipo de

servigo € provido, por exemplo, por Banco do Brasil, Banrisul, Bradesco e Itau.

A empresa M esta nesse mercado desde 2008 e fornece, em uma unica
integragédo, uma plataforma com diversos meios de pagamentos digitais, necessarios

para uma loja virtual.

E apresentado, a seguir, o ambiente de desenvolvimento de software da
empresa M, relacionado com os testes.

A empresa utiliza a ferramenta Cucumber que permite descrever as
funcionalidades do sistema a ser desenvolvido, através de uma linguagem
especifica de dominio, compreensivel pelas pessoas da area de negdcio. A
descricdo do comportamento é feita através de texto em linguagem natural, que é
inserido na estrutura de programa, para posterior codificagdo. Como as

funcionalidades podem ser descritas em portugués, essas descrigées auxiliam na

39

documentacdo do software, por serem mais precisos que comentarios inseridos
posteriormente (WYNNE; HELLES,2012).

A empresa M utiliza Scrum e seu Product Owner € responsavel por escrever

as funcionalidades que s&o detalhadas e codificadas pelo Scrum Team.

Para controle de versdo de codigo, a empresa optou por utilizar o Git, um
sistema distribuido de cddigo livre e aberto, para controle de versdo de projetos de
portes diversos. O Git € uma ferramenta amplamente utilizada no mercado e
empresas como Google, Facebook, Microsoft, Twitter, Netflix, Gnome, Eclipse, entre

outras utilizam no seu desenvolvimento de software.

O Git mostrou-se ser uma ferramenta importante para empresas que
trabalham com diversas equipes no mesmo codigo do software, pois permite os
desenvolvedores trabalharem em diferentes partes do software, sem quem um

interfira o outro.

Para a aplicagao do conceito de Integragdo Continua, a empresa utiliza o GO
— Continuous Delivery, um sistema de codigo aberto para integragdo continua e
geréncia de versdes, desenvolvido pela empresa ThoughtWorks.

O GO automatiza e contribui de maneira a agilizar o ciclo de testes e a gerar
os artefatos compilados para a entrega continua. A ferramenta realiza a execugéo
de testes automatizados e, caso algum teste venha a falhar, dispara um e-mail para
o Scrum Team, com os dados sobre as falhas ocorridas em algum teste. Outro
recurso do GO é gerar os pacotes de verséo para a instalagdo do software. A cada
nova funcionalidade instalada no software, o GO dispara uma execucao dos testes
e, quando todos os testes forem executados com sucesso, o GO gera um pacote

instalavel da versao do software, considerada uma versao estavel.

Apods o GO ter gerado o pacote do software, a empresa M, ainda conta com o
ambiente de homologacéo que, em geral, é muito semelhante ao de producédo, sem,

no entanto, realizar operagdes financeiras reais.

A versao estavel do software é instalada no ambiente de homologagéao, para

que o Product Owner realize seus testes para validar as funcionalidades em relagao

40

aos requisitos. Uma vez que as novas funcionalidades adicionadas ao software
foram validadas pelo Product Owner, o software encontra-se disponivel para a
instalacdo no ambiente de producéo.

O sistema operacional dos servidores de instalagdo da empresa € Linux,
devido a sua facil integracdo com as tecnologias descritas anteriormente. O Linux

também é um sistema operacional amplamente difundido, estavel e seguro.

3.4.2 Aplicagao das boas praticas de BDD na empresa M

Nesta secdo, € descrito um experimento na empresa M, para analisar a
inclusdo das boas praticas de BDD no Scrum que ja era utilizada pela sua equipe de
desenvolvimento. A empresa é uma empresa de médio porte com cerca de 80
(oitenta) colaboradores sendo desses apenas 20 (vinte) envolvidos na parte de
tecnologia da empresa. Inicialmente, vale salientar que empresa M vem tentando,
por inumeras vezes, aplicar métodos ageis como Scrum a risca. Porém, nunca foi
bem-sucedida, devido a diversos motivos, tais como falta de uma boa compreensao
da equipe envolvida sobre o processo de testes, ou seja, 0 que era necessario
testar, como e onde incluir as atividades de testes dentro do processo agil. Além,
disso, muitas vezes, existia a falta de uma visdo mais clara sobre as novas

funcionalidades que estdo sendo adicionadas ao software.

Antes da implantagdo das praticas do BDD, a preparagdo da entrega de
software na empresa M era feita de maneira manual e complemente dependente do

desenvolvedor.

O desenvolver recebia as tarefas de maneira imprecisa, sem uma descrigao
detalhada da funcionalidade e, por muitas vezes, o entendimento ficava sujeito a sua
interpretacéo, e atribuia significado ndo esperado para a nova funcionalidade.

O processo de execucdo dos testes era totalmente dependente do
desenvolvedor, ou seja, era necessario que o desenvolvedor definisse os testes e o
ambiente de execucao de testes ficava no seu computador, onde as alteracdes
feitas eram testadas. Isso mostrou ser um processo falho, pois caso o

41

desenvolvedor nao tivesse o cuidado necessario com o software, os testes eram
realizados de forma adequada e o desenvolvedor ndo tinha a motivagdo para

continuar evoluindo os testes.

Apoés a implementagédo da nova funcionalidade, o desenvolvedor ainda era o
responsavel por gerar o pacote do software, disponibilizando-o para a equipe de
infraestrutura, que recebia esse pacote, sem nenhum tipo de versionamento do

software e, manualmente, instalava nos ambientes desejados.

Por muito tempo a empresa M utilizou esse processo, completamente
dependente de seus desenvolvedores; porém, com o crescimento da equipe, O
processo complemente manual e dependente dos desenvolvedores comegou a
mostrar suas fraquezas. Por muitas vezes, foram instaladas versdes de soffware em
que, por falta de testes planejados, outras funcionalidades pararam de funcionar ou
tiveram seu comportamento alterado. Neste processo, ainda existia uma grande
dificuldade para voltar para versdes estaveis do software, pois ndo existia controle
de versdes, dificultando a identificacdo da versdo que estava sendo instalada no
ambiente de produgéo.

Com isso pode-se observar que o processo anterior era muito fragil e

suscetivel a erros, gerando grandes problemas para a empresa M.

Para resolver esses problemas, as equipes de desenvolvimento optaram pela
utilizacdo do Scrum, para gerenciar melhor a inclusdo das novas funcionalidades,
decorrentes da crescente demanda de mercado. Porém, apenas utilizacdo do
processo Scrum nao foi suficiente para atingir as metas de qualidade, pois as
equipes ndo conseguiam elaborar bons cenarios de testes para as funcionalidades.
Sendo assim, ao executar as proximas iteracbes do processo, as equipes de
desenvolvimento observaram que as funcionalidades existentes foram

comprometidas devido as mudancgas atuais.

Esse cenario contribuiu para que fossem entregues versbes com
funcionalidades comprometidas do sofftware ou causando impacto em outras
funcionalidades ja existentes, e entregando um soffware com erros ou

comportamentos nao esperados.

A introducdo do Scrum-BDD na empresa M ¢ ilustrada através da descri¢ao

parcial dos passos realizados em um Sprint de um desenvolvimento. Para o ponto

42

de partida, considera-se que o Product Owner, o Scrum Master e o Scrum Team ja
tenham realizado a cerimdnia de definicdo de Sprint. Para a maior clareza da
aplicacdo, descreve-se o desenvolvimento da funcionalidade de identificacdo de
bandeira de cartdo de crédito, que € adicionada ao Checkout de Pagamentos da
empresa M.

O Checkout € um modulo do software da empresa M, para o qual o usuario da
loja virtual € direcionado para fechar a compra de seus itens. De forma resumida,
corresponde ao procedimento que vai desde o cadastro do usuario, caso ele ainda
nao seja cliente, passando pela selecdo do endere¢co de entrega até o calculo de
frete, concluindo com o pagamento dos itens.

Inicialmente foram escritas as estérias da funcionalidade do Sprint pelo
Product Owner, que é o especialista do dominio de pagamentos digitais. O Product
Owner é responsavel por escolher as estorias que agreguem valor ao cliente. Duas

delas foram selecionadas para ilustrar a aplicagao das boas praticas:

Eu como empresa M, gostaria de identificar a bandeira do cartdo de crédito,

quando o usuario informar o numero.

Eu como empresa M, gostaria de ndo aceitar cartdo com a data de expiragao

ja vencida.

Feito isso, o Product Owner escreveu a funcionalidade correspondente as

estorias.

Como empresa M utiliza a ferramenta Cucumber, a descricdo das
funcionalidades ¢é feita em linguagem natural, ou seja, em linguagem que o
especialista do dominio e os desenvolvedores possam compreender mais
facilmente. As Figuras 8 e 9 apresentam os documentos de funcionalidade das
estdrias selecionadas, na forma recomendadas pelo BDD.

Figura 8 — Documento de funcionalidade identificagdo de bandeira.

43

Funcionalidade: Identificacdo de bandeira de cartao
Como um intermediador de pagamento
Com o objetivo de melhorar a converséo do checkout

Eu devo identificar a bandeira do cartdo do crédito

Cenario: ldentificando uma bandeira de cartdo valido
Dado que eu esteja realizando um pagamento
Quando eu seleciono "Cartao de Crédito" como forma de "pagamento”
E eu preencho "Numero de Cartao" com "<cartao>"

Entao eu devo ver "<bandeira>"

Cenario: Cartado nao identificado
Dado que eu esteja realizando um pagamento
Quando eu seleciono "Cartao de Crédito" de "Cliente"
E eu preencho "Numero de Cartdo" com "0000"

Entao eu deveria ver "Cartao de Crédito Invalido"

Exemplos:

cartdo	bandeira
4012001037141112	Visa
5453010000066167	MasterCard
6362970000457013	Elo

44

Figura 9 — Documento de funcionalidade validagdo de data.

Funcionalidade: Nao aceitagao de cartdo com a data de vencimento expirada
Como um intermediador de pagamento
Com o objetivo de melhorar a converséo do checkout

Eu ndo devo aceitar cartdo a data de expiracdo vencida

Cenario: Cartdo com data de expiracao vencida
Dado que eu esteja realizando um pagamento
E que hoje seja dia 22/01/2015
Quando eu seleciono "Cartao de Crédito" como forma de "pagamento”
E eu preencho "Numero de Cartao" com "4012001037141112"
E eu preencho "Expiracao do Cartao" com "12/2014”

Entdo eu deveria ver "Cartao de Crédito vencido"

Cenario: Cartao dentro da data de expiragao
Dado que eu esteja realizando um pagamento
Quando eu seleciono "Cartao de Crédito" de "Cliente"
E eu preencho "Numero de Cartao" com "4012001037141112"
E eu preencho "Expiracao do Cartao" com "12/2020”

Entao eu deveria conseguir prosseguir no checkout

As funcionalidades 8 e 9 contém as informacbes necessarias para que 0O
Scrum Team comece a preparar seus testes e sua implementacdo. Caso ainda
aparecam mais cenarios de testes, o Product Owner modifica o arquivo de
funcionalidade, adicionando os novos cenarios, sem o comprometimento do trabalho

em andamento.

Os documentos de funcionalidade também tém a utilidade como
documentacdo do software, pois descrevem 0 seu comportamento e 0s seus

cenarios.

45

Uma vez que os documentos de funcionalidade estavam prontos, o Scrum

Team iniciou o preparo dos testes automatizados e a codificagdo da funcionalidade.

A empresa M utiliza, como controle de versdo de codigo, a ferramenta Git,
que faz o papel de unir as partes do projeto (cédigo fonte), de modo que cada
membro da equipe faga uma parte e, utilizando este sistema é possivel unir, as
diferentes alteragbes de cada desenvolvedor em um unico cédigo final. Para isso o
Git trabalha com o conceito de branches, ou seja, uma ramificagdo do codigo que
possibilita os desenvolvedores continuarem evoluindo o codigo sem que outro
desenvolvedor interrompa, e entdo eles podem unir o cédigo em um processo

chamado merge, quando as suas partes estiverem funcionando.

Para cada nova funcionalidade do Sprint, cria-se em uma nova branch, cujo
nome deve ser proximo ao da funcionalidade que sera desenvolvida. Assim, uma
nova branch é criada a partir do trecho de codigo principal, o branch master que
corresponde a versao estavel do software. Os testes da integragdo continua s&o
realizados sempre a partir da branch master. Na figura 10, pode-se observar os
branches expiracdo_cartao e validacdo_bandeira, correspondentes as duas

funcionalidades descritas anteriormente.

Figura 10 — Versionamento de codigo.

master

Cada funcionalidade é implementada por um desenvolvedor separadamente e
a ferramenta Git auxilia na distribuicdo de codigo entre as branches. Cada
desenvolvedor cria uma nova branch, como também cria um novo ponteiro para que
possa se mover em relagdo a branch master. A ferramenta Git permite que dois
desenvolvedores trabalhem em funcionalidades diferentes, porém, nos mesmos
trechos de cddigo e evitando conflitos das funcionalidades, uma vez que cada um
deles esta trabalhando em uma branch separadamente. Dessa forma, € possivel

46

que cada desenvolver trabalhe em seu trecho de cddigo, sem que um interfira na
funcionalidade do outro.

Apoés a geracdo dos documentos de funcionalidade, é feita a preparagao de
testes automatizados pelo Scrum Team, utilizando a ferramenta Cucumber; os
documentos de funcionalidade foram interpretados e foram gerados os documentos
de implementacdo de testes. Nesse documento, sdo definidos os steps pelo
desenvolvedor, os quais correspondem aos métodos ou fungdes de programas
orientados a objetos ou procedurais. Cada step pode ter zero ou mais argumentos e
a sua definicdo comega com uma preposi¢céo ou advérbio (Dado, Quando, Entéo, E,
Mas).

Os documentos de implementacao de testes das funcionalidades de validagao
data de expiracado do cartdo de crédito e validacdo de bandeira de cartdo de crédito
encontra-se respectivamente nas Figuras 11 e 12.

47

Figura 11 — Documento de implementacdo de testes — funcionalidade validacdo de

bandeira de cartao de crédito.

Dado /Aque eu esteja realizando um pagamento$/ do
visit "/checkout"
end

Quando /*eu seleciono "Cartdo de Crédito" como forma de "pagamento"$/ do
click_button "creditcard"
end

E /eu preencho "Numero de Cartdo" com "<cartao>"$/ do
fills_in "creditcard_number", with: "4012001037141112"
end

Entdo /*Ent&o eu devo ver <bandeira>$/ do
response.should have_tag("p", text: /Visa/)
end

48

Figura 12 — Documento de implementacédo de testes — funcionalidade validagdo data de

expiragédo do cartdo de crédito.

Dado /Aque eu esteja realizando um pagamento$/ do
visit "/checkout"
end

E /Aque hoje seja dia 22/01/2015%/ do

end

Quando /* eu seleciono "Cartdo de Crédito" como forma de "pagamento"$/ do
click_button "creditcard"
end

E /eu preencho "Numero de Cartdo" com "4012001037141112"$/ do
fills_in "creditcard_number", with: "4012001037141112"
end

E /*eu preencho "Expiragédo do Cartao" com "12/2014"$/ do
fills_in "creditcard_expiration_date", with: "12/2014"
end

Entdo /*eu deveria ver "Cartao de Crédito vencido"$/ do
response.should have_tag("p", text: /Cartdo de Crédito expirado/)
end

O documento de implementagao de testes contém a especificagdo para os

testes automatizados para cada um dos cenarios de uma funcionalidade. Conforme

a recomendacado do BDD, primeiro deve-se criar um teste que n&o passa, para

49

depois criar a implementagdo da funcionalidade, seguindo o mesmo ciclo
recomendado por Kent Back (BECK, 2002). Entdo, ao realizar os testes, se o
desenvolvedor receber a informagao de que os testes, referentes a pagamento com
o cartdo de crédito, ndo estdo passando, é porque a implementagao final do codigo
ainda nao foi elaborada.

Com o entendimento dos diversos cenarios, o desenvolvedor esta mais
seguro para criar codigo necessario para atender a um requisito. Uma vez que, o
desenvolvedor tenha realizado a implementagao necessaria, os respectivos testes
realizados e a funcionalidade é considerada concluida, o codigo correspondente

deve ser inserido na branch master.

Para isso, o desenvolvedor deve trazer a versdo do branch master para seu
branch e realizar as mudangas necessarias, para obter a nova versao. A ferramenta
Git (CHACON, 2014) fornece, ao desenvolvedor, o recurso de merge de codigo
entre os branches, para que nao haja conflito com os outros desenvolvedores que

estao trabalhando no mesmo software.

O processo de merge esta representado pela figura 13. O desenvolvedor que
estiver com uma versdo do codigo de validacao_bandeira concluida, solicita o

processo de merge e, caso ndo ocorram conflitos, pode liberar a sua funcionalidade.

Figura 13 — Merge do master para validagcdo_bandeira

master

&

A operacéo de merge é representada pela linha a direita que une a branch da
validagao_bandeira para a branch master.

Apds o0 merge, a nova funcionalidade fica disponivel para ser incorporada nos
testes no servidor de Integracéo Continua.

50

Quando o cédigo desenvolvido nas branches é colocado na branch master, as
branches correspondentes devem ser removidas, encerrando, dessa forma o seu

ciclo de vida.

A figura 14 mostra o encerramento do ciclo de vida das branches, em seu

processo de desenvolvimento.

Figura 14 — Encerramento de branch

master . @ ® @
validacao_bandeiracooiiiiiiiiiiiiiiiiin. S
.‘,'1:
EXDEE N0 s \ *—

Com o encerramento da funcionalidade no processo de merge do Git, é
iniciado o processo de integragdo continua. Para a empresa M, o servidor GO
(CHACON, 2014) realiza operagbes, como a execugao de teste e empacotamento

do software.

A execucao dos testes € realizada na empresa M através da utilizacdo da
ferramenta Go Continuous Delivery no servidor de Integragdo Continua. Essa
ferramenta é integrada com a ferramenta Git e, assim, quando ocorre mudanga de

cbdigo na branch master do Git, isso é identificado pelo Go que inicia seu processo.

Sendo assim, a identificacdo automatica da mudanga do software causa a
execugcao automatica dos testes pelo Go; isso garante que as funcionalidades
acrescentadas ao software, ndo tenham alterado os comportamentos ja existentes.

Para a validagao de software, o Go realiza os seguintes passos:

* BuildApp: o Go baixa o cédigo fonte da ferramenta Git e, se necessario,
realiza a compilagao;

* TestUnit: execugdo de todos os cenarios de testes existentes dentro do
software;

* VendorizeGems: realiza o empacotamento das bibliotecas de terceiros

utilizado pelo software;

51

* CodeQualityAndSecurity: realiza a analise estatica do cédigo, onde o foco é
encontrar possiveis vulnerabilidades de seguranga;

* PackageApp: realiza o empacotamento de uma versao estavel do software;

* PushAppPackage: envia a versdo de software estavel para o servidor de
repositorios do software, disponibilizando-o para instalagdo nos servidores de
producao.

A empresa M considera que uma versao estavel de software € gerada quando
o cbdigo passa por todos os passos sem falhas.

Caso venha a acontecer alguma falha, em qualquer passo do processo, o Go
nao disponibiliza a versdo de soffware e comunica, através de um e-mail para Scrum
Team, alertando a instabilidade do software. A nova versao do software n&o é
liberada até que a falha encontrada seja corrigida, garantindo apenas que a ultima
versao estavel do software esteja disponivel para instalagdo nos ambientes.

Quando o Go disponibiliza a versao estavel do software, o Scrum Team faz a
instalagdo no ambiente de homologagéo, para avaliagdo final do Product Owner.
Com a aprovagdo da nova funcionalidade pelo Product Owner, de acordo com o
processo do Scrum, tem-se a versao pronta para ser instalada nos servidores de

producao.

O processo de instalagcdo do software em ambiente de produgdo ainda esta
em estudo na empresa M. Busca-se uma forma que seja segura e automatizada,

através do uso de uma ferramenta apropriada.

O desenvolvimento de software, através das praticas de BDD no método
Scrum, permite disponibilizar uma versido de software ao final de cada estoria,
agregando, assim, valor ao cliente de maneira continua e validado pelos
especialistas do dominio. Dessa forma, as entregas ocorrem continuamente,
melhorando de fato desempenho do método Scrum, diminuindo o tempo das
entregas entre Sprints e mostrando a evolugdo do software com novas

funcionalidades.

52

3.5 Consideragoes Finais

As boas praticas do BDD no Scrum auxiliam a empresa M na entrega de
software com qualidade e também contribuem para que as versdes de softwares
sejam entregues com maior frequéncia no ambiente de produgdo. Enfatiza-se que
houve uma mudanca de comportamento na sua equipe de desenvolvimento, o que
permitiu aplicar as boas praticas com o sucesso. O envolvimento e a interagdo das

pessoas da equipe de desenvolvimento causaram o sucesso desse experimento.

O processo ainda esta em fase de amadurecimento, porém sua importancia ja
foi reconhecida na empresa, de maneira que novas funcionalidades estdo sendo

concebidas através do seu uso.

53

4. CONSIDERAGOES FINAIS

Este capitulo descreve as conclusbes obtidas com este trabalho, suas
principais contribuigcdes e recomendagdes, bem como os trabalhos futuros.

4.1 Conclusoes

O primeiro principio do Manifesto Agil apresenta diz que “Nossa maior
prioridade é satisfazer o cliente através da entrega continua e adiantada de software
com valor agregado”.

A estratégia do desenvolvimento agil de software é possibilitar ao cliente
avaliar o software em desenvolvimento e agregar valor ao negocio. Para isso, é
fundamental planejar a entrega continua de partes prontas do software, para que o
cliente avalie se a funcionalidade atende as suas necessidades, como também,

antecipar ao cliente os beneficios do software.

O BDD, como uma pratica do desenvolvimento agil, transforma uma ideia para
um requisito que possa ser implementado e testado para a producdo simples e
eficaz, desde que o requisito seja especifico o suficiente para que todos

compreendam.

Também vale a pena salientar que ndo ha muito tempo para a integracéo e a
entrega de valor para o cliente, visto que o desenvolvimento agil permite mostrar o
que esta ou n&o funcionando durante sua construgdo e obter novos recursos com
feedback rapido, isso torna o ambiente corporativo mais colaborativo no ciclo de

desenvolvimento.

O cliente hoje procura resultados e investir no desenvolvimento de software,
que seja duravel, flexivel e, sobretudo, de facil manutengéo, ou seja, a entrega do

software funcionando o mais breve possivel.

Sendo assim pode-se considerar que o trabalho atingiu parcialmente o

objetivo, uma vez que a utilizagdo do scrum-BDD auxiliou ao desenvolvedor

54

compreender melhor as regras de negdécio e melhorar a qualidade do software
entregue. O uso de historias e cenarios deixou claro para desenvolvedor e Product
Owner o que realmente era necessario a ser desenvolvido. Porém os testes de
aceitacdo por muitas vezes demandam mais tempo para serem executados e como

foi visto anteriormente € importante que eles possam ser executados rapidamente.

4.2 Contribuicoes

Atualmente, o uso da Internet possui uma demanda caracterizada por acesso

a servigos online e buscas com acesso de forma rapida e com qualidade.

O atendimento de tais expectativas torna-se uma demanda necessaria para o
desenvolvimento de software e, neste sentido, o grande desafio é a
operacionalizacdo de uma série de pesquisas existentes na area. O presente
trabalho busca ser um guia de estudo e boas praticas de BDD, dentro de processo
Scrum, em uma pratica de integragdo e entrega continua, no qual, espera-se
contribuir para a descoberta de elementos, que desencadeiem processos para o

desenvolvimento agil de software.

Para isso, apresenta-se uma forma de implantagcdo de uma metodologia agil
focada em comportamento do software em um ambiente corporativo e mostra-se um
exemplo. Através das praticas do BDD em um processo de entrega continua, com
aplicacao do conjunto das técnicas no ambiente de desenvolvimento da empresa M,
observa-se como o soffware €& entregue e validado constantemente dentro do
processo. Trata-se de uma pratica na qual os testes sdo escritos antes da
implementagdo final do cddigo, permitindo-se aumentar a qualidade do cddigo
produzido.

Sendo assim, a principal contribuicdo do presente trabalho foi a aplicacdo do
processo definido na empresa M e, principalmente, a mudanga cultural ocorrida
dentro da empresa, onde todos os interessados passaram a se envolver para criar o

software final de qualidade.

55

4.3 Trabalhos futuros

O processo foi aplicado em uma empresa de médio porte, o que facilitou a
aplicacdo. Como trabalho futuro pode-se avaliar identificar como o0 mesmo processo
pode ser aplicado dentro de grandes empresas, com diversas equipes atuando
sobre 0 mesmo software.

Outro trabalho futuro, principalmente para a empresa M, € identificar o
processo de instalagcdo automatizada, da instalacido do software em seus devidos
ambientes para evitar falhas na composi¢cdo de uma versao de software. Ainda,
muitos topicos podem ser explorados para trazer melhorias e maturidade da entrega

continua e surgir uma continuagéo para esse assunto ainda pouco explorado.

56

REFERENCIAS

AVRAN, Abel & MARINESCU, Floyd. Domain-Driven Design Quickly. Lulu.com,
2007.

CHELIMSKY, David & ASTELS, Dave & HELMKAMP, Bryan & NORTH, D. &
DENNIS, Zach & HELLESOY, Aslak. The RSpec Book: Behaviour Driven
Development with RSpec, Cucumber, and Friends. Pragmatic Bookshelf, 2009. 21-
52p.

DAN North & Associates. Introducing BDD. Disponivel em:
http://dannorth.net/introducing-bdd. Margo, 2006. Acesso em 18 novembro de 2014.
FOWLER, Martin. Continuous Integration. 2000. Disponivel em
<http://martinfowler.com/articles/continuouslintegration.html>. Acesso em 3 junho
2015.

FOWLER, Martin. Refactoring: Improving the Design of Existing Code, Addison-
Wesley Professional, 1999. 63-89p.

HUMBLE, Jez & FARLEY, David. Entrega continua: Como entrega de software de
forma rapida e confiavel. Sao Paulo, Sdo Paulo: Bookman Companhia Ed, 2013. 11-
69p ;187 — 222p

KENT, Beck. Test Driven Development: By Example, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, 2002. 20-81p.

KENT, Beck & BEEDLE, Mike & BENNEKUM, Arie Van & COCKBURN, Alistair &
CUNNINGHAM , Ward & FOWLER, Martin & GRENNING, James & HIGHSMITH,
Jim & HUNT, Andrew & JEFFRIES, Ron & KERN, Jon & MARICK, Brian & MARTIN,
Robert C. & MELLOR, Steve & SCHWABER,Ken & THOMAS & Dave, Jeff
Sutherland. Manifesto for agile software development. Disponivel em

http://agilemanifesto.org/, 02 2001. Acesso em 12 margo 2015.

57

KNIBERG, H. Scrum and XP from the Trenches. InfoQ, 2007. Disponivel em:
<http://www.infoq.com/minibooks/scrum-xp-from-the-trenches>. Acesso em junho de
2015.

LAZAR, Loan & MOTOGNA, Simona & PARV, Brazil. Behaviour-Driven
Development of Foundational UML Components. 2010.

PRESSMAN, Roger S. Engenharia de software: Uma abordagem profissional. Ed 72.
S&o Paulo: Editora Bookman, 2011. 53 — 104p.

PUFAL, Nicholas & VIEIRA, Juraci. TRES FALACIA DO BDD. Disponivel em
<http://www.thoughtworks.com/pt/insights/blog/3-misconceptions-about-bdd>.
Dezembro de 2013. Acesso em 8 julho de 2015.

SCHWABER, Ken & SUTHERLAND, Jeff. Um guia definitive para o Scrum: As

regras do jogo. Disponivel em:

<http://www.scrumguides.org/scrumgruides/v1/Scrum-guide-Portuguese-BR.pdf>.
Junho de 2013. Acesso em julho de 2015.

SHORE, J.; WARDEN, S. The Art of Agile Development. O'Reilly, 2007. 255-261p.

SOLIS, Carlos & WANG, Xiaofeng. A study of the Characteristics of Behaviour
Driven Development. 2011 37™ euromicro Conference on Software Engineering and

Advanced Applications.

SMART, John Ferguson. BDD in Action: Behavior-Driven Development for the Whole
Software Lifecycle. Editora Manning, 2014. 110 - 250p.

WYNNE, Matt & HELLESw@y, Aslak. The Cucumber Book: Behaviour-Driven
Development for Testers and Developers. Publisher: Pragmatic Bookshelf, 2012. 3-
8p.

CHACON, Scott & STRAUB, Ben. Pro Git Book. Editora Apress; 2nd ed. 2014. 43 —
141p

