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RESUMO 

SEGRETO SILVA, T. H.  Análise de desempenho de modelos de Deep Learning 
para previsão de falhas em operações de rosqueamento.   2021.  198 f.  

Monografia (Trabalho de Conclusão de Curso) – Escola de Engenharia de São Carlos, 
Universidade de São Paulo, São Carlos, 2021. 

 

 Operação de rosqueamento é uma das mais comuns em ambientes industriais e se 

encontra no processo de manufatura de diversas classes de produtos. Para automação 

desse tipo de operação é fundamental uma etapa de previsão de falhas para evitar perdas 

de componentes. Mas existem diversas dificuldades a essa etapa devido às incertezas do 

ambiente industrial e da complexa dinâmica de rosqueamento. Essa última faz com que a 

modelagem do problema seja extremamente complicada e, muitas vezes, incompleta ou 

ineficiente. Como alternativa à modelagem clássica, os métodos de aprendizado de 

máquina têm o potencial de representar as características complexas da operação através 

da análise de dados experimentais. Deep learning é uma das áreas que vem ganhando 

espaço nesse cenário e já se provou extremamente eficaz em visão computacional e 

processamento de linguagem natural. Porém, seus modelos necessitam de uma grande 

quantidade de dados para obterem desempenho significativo, e aliado a dificuldade de 

extrair dados em operações de rosqueamento, novas estratégias de obtenção de dados 

são necessárias para aplicações práticas. Uma possível solução, é a geração de dados 

sintéticos a partir de dados reais pelo processo de data augmentation. Nesse contexto, 

este trabalho se propõe em analisar o desempenho de modelos de deep learning treinados 

em conjuntos de dados artificiais, e verificar o impacto de modelos de diferentes níveis 

de complexidade na previsão de falhas de rosqueamento. 

  

Palavras-chave: Operação de rosqueamento. Previsão de falhas. Deep learning. Data 

augmentation. Análise de desempenho.  

  



 
 

  



 
 

LISTA DE ILUSTRAÇÕES 

 

 

Figura 1 – Esquema genérico de uma MLP .......................................................................       4 

Figura 2 – Esquema genérico de uma CNN ........................................................................      7 

Figura 3 – Esquema genérico de um Transformer .............................................................       8 

Figura 4 – Matriz de confusão de duas dimensões .............................................................      10 

Figura 5 - Comportamento do par viés-variância em relação à  

complexidade do modelo .....................................................................................................      14 

Figura 6 – SMOTe calculando um elemento da classe alvo  

utilizando quatro vizinhos em torno do ponto de referência ..........................................      17 

Figura 7 – As três classes da operação de rosqueamento  

consideradas nos conjuntos de dados ................................................................................      18 

Figura 8 – Forças nos eixos x, y e z de cada  

classe de experimento ...........................................................................................................       19 

Figura 9 – Torques nos eixos x, y e z de cada  

classe de experimento ...........................................................................................................       19 

Figura 10 – Ciclo de operação de aplicações de ML .......................................................      21 

Figura 11 – Arquitetura AWS para produção de modelos ................................................       22 

Figura 12 – Fluxograma do processo de treinamento .......................................................       25 

Figura 13 – Precisão média das combinações (conjunto, modelo) ..................................       26 

Figura 14 – Precisão estratificada por classe .....................................................................       27 

Figura 15 – Média das precisões com erro marginal da CNN ..........................................       29 

Figura 16 – Precisão de cada modelo para cada classe. Todos os modelos foram  

treinados apenas pelo conjunto quadruplicado .................................................................       30 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

LISTA DE TABELAS 

 

 

Tabela 1 – Número de exemplares de cada classe nos conjuntos de dados .................... 20 

Tabela 2 – Precisão média de todas as classes ................................................................. .... 27 

Tabela 3 – Valores de F1 para classe "travado"..................................................................... 28 

Tabela 4 – Matriz de confusão da combinação (Quadruplicado, CNN) ............................ 28 

 

  



 
 

 

  



 
 

LISTA DE ABREVIATURAS E SIGLAS 

 

Elemento opcional. É composto de uma relação alfabética das abreviaturas e siglas 

utilizadas no texto seguido do seu significado. 

 

AWS   –  Amazon Web Services 

CNN     –  Convolutional Neural-Networks 

DL  –  Deep Learning 

ECR  –  Elastic Container Registry 

GPU  –  Graphic Processing Units  

JSON  –  JavaScript Object Notation  

MLP   –  Multiple Layer Perceptrons 

MLOPs –  Machine Learning Operations 

ML  –  Machine Learning 

SNS  –  Simple Notification Service 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

SUMÁRIO 

 

1 INTRODUÇÃO ...................................................................................................................   1 

2 DEEP LEARNING ..............................................................................................................   3 

2.1 Modelos ............................................................................................................................   3 

2.1.1 Multilayer Perceptron (MLP) .....................................................................................   4 

2.1.2 Convolutional Neural Networks (CNN)) ............................................................         6 

2.1.3 Transformers ..........................................................................................................         7 

2.2 Métricas de classificação .........................................................................................         9 

2.3 Hiperparâmetros .......................................................................................................       11 

2.3.1 Hiperparâmetros MLP ..........................................................................................       12 

2.3.2 Hiperparâmetros CNN ..........................................................................................       12 

2.3.3 Hiperparâmetros Transformer ............................................................................       13 

2.3.4 Cross-validation .....................................................................................................       13 

2.4 Análise de desempenho ...........................................................................................       13 

3 DATA AUGMENTATION .......................................................................................... 16 

4 INFRAESTRUTURA E DADOS ................................................................................. 18 

4.1 Conjunto de dados ....................................................................................................       18 

4.2 AWS e MLOps ...........................................................................................................       20 

5 TREINAMENTO DE MODELOS ............................................................................... 24 

6 DISCUSSÃO .................................................................................................................. 26 

7 CONCLUSÃO ................................................................................................................ 31 

   REFERÊNCIAS ............................................................................................................... 33 

 

  





 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





1 
 

1 INTRODUÇÃO 

 

 

 Rosqueamento é uma das operações mais comuns em ambientes industriais e está 

presente na manufatura de diversas classes de produtos, desde pequenos aparelhos 

eletrônicos até grandes maquinários [1]. A automação desse procedimento é fundamental 

para se conquistar um aumento de produtividade resistente a falhas e com qualidade 

consistente. Mas, apesar da prevalência e importância dessa operação, a automação 

completa ainda não é a realidade na indústria devido à sua inerente complexidade [2]. 

 Parte desta complexidade se deve a grande variedade de cenários e parâmetros 

da operação e a imprevisibilidades do ambiente industrial, o que torna a modelagem do 

problema particularmente difícil e incompleta [3]. Outra dificuldade se dá pelas tolerâncias 

mais rigorosas, pois erros podem causar o descarte de peças inteiras ou comprometer 

componentes sensíveis como baterias. Por fim, durante o processo de rosqueamento 

ocorrem diferentes estágios de contato mecânico com dinâmicas complexas, e cada uma 

introduzindo oportunidades para falhas [4]. Neste contexto, uma das estratégias de 

automação é implementar um estágio de previsão de falhas acoplado com procedimentos 

de recuperação. Assim, mesmo expostos aos riscos citados acima, é possível antecipá-los 

e garantir continuidade da operação. 

Devido às dificuldades na modelagem, os métodos de previsão baseados em 

análise de dados são uma solução alternativa vantajosa. Dentre esses, os pertencentes a 

classe de deep learning (DL) possuem um grande potencial para previsões robustas, mas 

necessitam de um grande volume de dados classificados para atingirem resultados 

satisfatórios [5]. A extração desses dados possui seus próprios desafios, entre os 

principais, a dificuldade de se conseguir uma quantidade exemplos de falha significativa. 

Com apenas 1%-2% das operações de rosqueamento resultando em falha, o conjunto de 

dados finais é desbalanceado, o que causa o enviesamento nos algoritmos de DL [6]. 

Também há uma dificuldade intrínseca em se garantir a representatividade desses dados, 

pois a própria classificação manual de falhas está sujeita a erros na identificação do real 

estado da peça.  

Uma das formas de contornar os conjuntos desbalanceados e a falta de dados é 

utilizando técnicas de data augmentation que expandem artificialmente o conjunto de 
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dados utilizando heurísticas para garantir a relevância desses novos. A representatividade 

dos dados pode ser averiguada indiretamente através dos erros de generalização dos 

modelos de classificação [7].  

 Outros fatores podem prejudicar o resultado dos modelos de previsão, como por 

exemplo: complexidade do modelo utilizado, hiperparâmetros mal otimizados e má 

escolha dos parâmetros extraídos dos dados [8] [pág. 424-427].  Não existe um método 

para saber qual o principal fator que está deteriorando os modelos, mas com 

experimentação com pré-processamento de dados e modelos de diferentes 

complexidades pode-se chegar às principais causas determinístico [8] [pág. 414]. 

Este trabalho propõe analisar o desempenho de classes de algoritmos de 

aprendizado na previsão de falhas em operações de rosqueamento robótico a fim de 

encontrar os principais fatores que o limita. Para isso, foi comparado o impacto do nível 

de complexidade dos modelos e do tamanho do conjunto de dados em que foram 

treinados. 

A seção 2 apresenta os modelos de DL utilizados, as métricas de classificação 

escolhidas e explica o processo de otimização dos hiperparêmetros. Também explica o 

método de análise de desempenho, bem como os tipos de erro envolvidos no uso dos 

modelos. Na seção 3 está definido o algoritmo de sintetização de dados para a criação 

dos conjuntos artificiais. As características e o processo de obtenção de dados são 

explicados na seção 4, onde também está descrito o processo de treinamento e 

otimização dos modelos em nuvem. 
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2 DEEP LEARNING 

  

 

 Algoritmos de machine learning (ML) são aqueles que possuem a capacidade de 

realizar tarefas específicas e de se autoajustarem para melhorarem o seu desempenho 

nessas. Existe uma grande gama de algoritmos que usam diferentes técnicas de regressão 

e classificação, cada qual com suas vantagens e desvantagens. 

DL é uma subclasse de algoritmos de ML, portanto também são algoritmos 

capazes de aprender a realizar tarefas avaliando o seu desempenho e otimizando seus 

parâmetros internos conforme esse. O que diferencia essa classe de algoritmos dos 

modelos de ML clássicos é sua arquitetura de processamento de dados, que usa 

“neurônios artificiais” para modelar as relações entre os dados de entrada [8] [pág. 191- 

196]. 

Neurônios conectados entre si formam estruturas chamadas de redes neurais 

artificiais, inspiradas nas próprias camadas de neurônios biológicos. O efeito prático dessa 

estrutura de processamento é o aumento significativo da dimensionalidade do modelo, o 

que dá a capacidade de representar funções não-lineares complexas através do espaço 

dimensional com diversos parâmetros. Esse é o principal atributo que torna os algoritmos 

de DL extremamente eficientes em resolução de problemas complexos [9]. 

Visão computacional e processamento de linguagem são exemplos de problemas 

difíceis em que as redes neurais se tornaram a principal técnica de análise e previsão, 

superando as clássicas de ML e ferramentas heurísticas e estocásticas [10][11]. Apesar do 

sucesso em ambas as áreas, modelos de DL ainda estão ganhando espaço na análise de 

séries temporais [12], que estão presentes em diversos problemas práticos devido à 

natureza temporal dos fenômenos [13]. 

 

2.1 Modelos 
  

Abaixo seguem três modelos de DL, dispostos em ordem crescente de 

complexidade, que é considerada como uma combinação do número de parâmetros e 

processos intermediários de processamento de dados. 
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2.1.1 Multilayer Perceptrons (MLP) 

 

 A MLP é o modelo mais simples de DL [14], contando com uma estrutura bem 

definida de camadas de neurônios nas quais cada um está conectado a todos os outros 

das camadas vizinhas. A figura 1 mostra a disposição dos neurônios em camadas em 

MLP genérica. 

 

Figura 1 - Esquema genérico de uma MLP (https://www.dotnetlovers.com/article/243/neural-
networks-and-mlp) 

  

De camada a camada, os dados de entrada representados pelo vetor 𝑋  são 

multiplicados por uma matriz de pesos 𝑊, cujos valores representam cada conexão entre 

os neurônios de duas camadas {𝑤0,0, 𝑤0,1 ... 𝑤𝑖−1,𝑖, 𝑤𝑖,𝑖}. Depois é aplicada uma função de 

ativação não linear 𝑔 com o intuito preservar a dimensionalidade da rede, impedindo que 

essa se reduza a uma simples transformação linear [15]. A transformação dos dados até 

antes da última camada pode ser representada pela equação 1. 

 

𝐻𝑘 =  𝑔(𝑊𝑇 ∗ 𝑋 +   𝑏)                    1 
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 𝐻  é o vetor de valores dos neurônios da camada intermediária, 𝑘  o índice da 

camada e 𝑏 é o vetor de viés, utilizado para garantir um grau de liberdade a mais da 

função 𝑔, permitindo a translação dos resultados da função [16] [pág. 285-287]. Existem 

diferentes tipos de função de ativação, como por exemplo: sigmoid, tanh e rectifier linear 

unit (ReLU), sendo a última a mais difundida por sua eficácia e rapidez [17]. 

 

 No caso de problemas de classificação, a última camada possuirá o mesmo número 

de neurônios que de classes e sua saída será um número no intervalo [0, 1] que 

representará a certeza da rede sobre a escolha da classe. Assim, tem de se garantir que a 

soma dos valores de saída seja exatamente 1. 

 A função softmax abaixo (equação 2) satisfaz essa condição e sempre mantem a 

soma total dos valores de saída como valor unitário, sendo 𝐾 o número de classes e ℎ o 

vetor de entrada de cada neurônio 𝑖 da última camada. 

 

  𝜎(ℎ⃑ )𝑖 =  
𝑒ℎ𝑖

∑ 𝑒
ℎ𝑗𝐾

𝑗=1

                         2 

 

 O último estágio no treinamento do modelo envolve o cálculo do erro nos 

exemplos de treino e a propagação da última camada para as intermediárias. Com os 

gradientes descendentes, é possível atualizar os pesos de cada conexão entre neurônios 

para valores na direção de diminuição dos erros. Existem várias métricas de erro e essas 

acabam se destacando em cenários diferentes. Por exemplo, para um conjunto de dados 

com muitos outliers, funções polinomiais de erro melhoram o treinamento do modelo 

quanto maior o seu grau de liberdade. A maior dimensionalidade da função de erro ajuda 

a diminuir a influência de dados anômalos na atualização da matriz de pesos [18]. 

 Neste trabalho foi utilizada a função perda de entropia cruzada esparsa 𝐸  que, 

bastante similar ao erro logístico, é capaz de representar os erros em problemas de 

classificação [19]. Essa função expressa a diferença entre a distribuição das classes reais 𝑝 

e a das classes previstas 𝑞 conforme a equação 3. 

 

  𝐸(𝑝, 𝑞) =  − ∑ 𝑝(𝑥) log 𝑞(𝑥)𝑥∈𝑋                  3 
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Escolhida a função de erro, aplica-se o método Stocastic Gradient Descent (SGD) 

para propagar o erro da camada de saída para as camadas intermediarias [8] [pág. 197]. 

Com os gradientes 𝐺 em cada neurônio calcula-se os novos pesos 𝑤𝑖𝑗  de sua conexão 

ponderando o erro com o fator de taxa de aprendizado 𝜇 com mostra a equação 4. 

 

  ∆𝑤𝑗𝑖(𝑥) =  −𝜇𝐺𝑗𝑦𝑖(𝑥)                   4 

 

Esse procedimento é repetido múltiplas vezes para cada vetor de entrada 𝑋 dos 

dados de treino até que seja percorrido todo o conjunto e satisfaça as condições de 

parada. Ao final teremos uma matriz de pesos 𝑊 otimizada para o conjunto de treino e 

basta verificar se desempenho generaliza para o conjunto de teste, que possui os dados 

que o modelo não processou. 

 

2.1.2 Convolutional Neural Networks (CNN) 

 

 CNNs são os tipos mais utilizados em visão computacional devido ao desempenho 

sobre humano em muitas aplicações de análise de imagem [20]. Assim como as MLPs, as 

CNNs também utilizam a mesma estrutura de neurônios conectados em camadas, mas 

agora com diferenças estruturais que as deixam mais similares ao comportamento dos 

neurônios de um córtex visual. 

 A principal diferença é a adição de camadas de convolução que, ao invés de estar 

completamente conectada, seus neurônios apenas se conectam a uma região limitada da 

camada anterior. Isso faz com que cada neurônio da camada subsequente apenas abstraia 

as informações contidas na região, chamadas de kernel, que ele observa. 

 Essa nova forma de se conectar os neurônios de diferentes camadas faz com que 

haja menos parâmetros para serem processados devido ao menor número de conexões 

quando comparadas a uma MLP típica [8] [pág. 322]. Para melhorar sua capacidade de 

abstração devido ao menor número de conexões, a camada convolucional é decomposta 

em mapas que filtram os dados de entrada e assim treinam sobre aspectos específicos da 

imagem. 

 A figura 2 é uma representação das camadas de convolução com seus respectivos 

mapas de filtros. 
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Figura 2 - Esquema genérico de uma CNN 
(https://en.wikipedia.org/wiki/Convolutional_neural_network) 

 

 A capacidade de abstrair mais com menos conexões gera dois problemas. O 

primeiro é a grande carga de memória RAM adicional por camada devido aos mapas 

adicionais por convolução. O segundo é adição de novos hiperparâmetros que tornam 

extremamente custosos o treinamento do modelo com a otimização da estrutura da rede 

[16] [pág. 456].  

Para amenizar esses problemas, a camada de pooling é adicionada entre as 

camadas intermediárias para reduzir a resolução dos dados de entrada. Para isso, é feito 

um agrupamento dos dados por kernel, representando-os assim por um único valor em 

cada neurônio da camada de pooling. Porém, a diminuição da resolução dos dados reduz 

o desempenho final da rede, então deve-se buscar um equilíbrio entre o uso de camadas 

convolucionais e de pooling para atingir um desempenho satisfatório em um tempo de 

treinamento plausível [21]. 

 No geral, CNNs possuem desempenho equiparável ou ordens de grandeza maior 

que as MLPs em problemas de alta complexidades por consequência da introdução de 

novas etapas de abstração [22]. 

 

2.1.3 Transformers 

 

 Diferente das MLPs e CNNs, as trasnformers são redes mais abstratas e usam uma 

combinação de artefatos ao invés de serem embasada em um conceito de funcionamento 

único. Dentre seus principais artefatos tem-se os: mecanismos de atenção, camadas de 
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embedding, MLPs, camadas de normalização.  A figura 3 ilustra um exemplo de uma 

transforme e seus componentes.  

 

Figura 3 - Esquema genérico de um Transformer [16] 

 

 As transformers foram desenvolvidas para o estudo de linguagem natural e se 

tornaram bem-sucedidas no emprego de modelos linguísticos [23]. O motivo de ser um 

excelente motor desses modelos se deve principalmente aos mecanismos de atenção 

citados. Esses constroem relações hierárquicas entre os dados que ele recebe [24], 

determinando a relevância de cada no contexto em que estão inseridos. Os mecanismos 

são representados na figura 3 pelas caixas “masked multi-head attention”.  

Na entrada da estrutura existem dois mecanismos, um de codificação (encoder) a 

esquerda e outro de decodificação (decoder) a direita. A função desses dois é, 

respectivamente, codificar os dados de entrada em um formato padrão de 512 bits e 

eventualmente decodificar os outputs desse formato ao original dos dados. Essa etapa é 
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necessária pois as transformers precisam de uma representação interna dos dados, de 

forma que todos estejam catalogados para ser mais fácil a identificação e processamentos.  

Embedding é outro tipo de processo de codificação crucial no funcionamento de 

uma transformer, mas diferente do encoder, embeddings codificam grupos de dados 

conforme o contexto em que estão inseridos. Por exemplo, se forem usados para 

processamento de linguagem, o encoder codificaria sentenças inteiras uma vez, enquanto 

embeddings o fariam somente em palavras e o resultado dependeria da sentença em que 

essas palavras estão contidas. 

Todo esse dinamismo serve a um único propósito: processar grandes cadeias de 

dados correlacionados da forma mais eficiente possível [25].  Essa é exatamente a 

natureza de um problema de linguagem, processar textos longos com milhares de 

sentenças e palavras. No contexto de séries temporais, o uso de transformers também é 

bastante relevante, pois aquelas também são cadeias de dados longas e correlacionadas. 

 

2.2 Métricas de classificação 

 

As métricas mais comuns em problemas de classificação são derivadas da matriz 

de confusão. Ela representa os possíveis resultados de previsão em relação a classificação 

correta dos exemplos. As métricas de avaliação dos modelos são escolhidas com base 

nos diferentes grupos pertencentes à matriz.  A figura 4 é uma matriz de duas dimensões 

com as principais métricas desempenho.  
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Figura 4 - Matriz de confusão de duas dimensões 

 

A escolha das métricas de desempenho é fundamental para o sucesso de um 

processo de classificação. Apesar das classes já estarem definidas e devidamente 

categorizadas, a otimização dos hiperparâmetros do modelo é feita utilizando as métricas 

como funções objetivas [26]. A princípio não há uma regra definida sobre a escolha das 

métricas, cada aplicação possui um conjunto mais apropriado para seus requisitos e 

objetivos [27]. 

Precisão e sensibilidade são as métricas mais comuns e geralmente possuem uma 

relação inversa, na tentativa de se otimizar uma compromete-se a outra [28]. Precisão é 

muito útil quando se quer garantir o menor número de falso positivos com o custo de mais 

exemplos classificados serem falso negativos. Já a sensibilidade se torna mais importante 

quando se quer que o máximo de exemplos positivos sejam classificados como tal mesmo 

com aumento de falsos positivos. 

O valor preditivo negativo (VPN) e a especificidade possuem a mesmo 

relacionamento característico do observado entre previsão e sensibilidade, mas quando 

se análise a classe negativa, que no caso de classificação de múltiplas classes seriam todas 
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outras classes além da classe de positiva de referência [26]. Por último, a acurácia 

representa o desempenho geral dos modelos sobre todas as classes, ou seja, quando as 

previsões de todas as classes são igualmente importantes, esta é uma das métricas mais 

desejáveis. 

 A partir das métricas acima, pode se derivar outras mais apropriadas para atender 

a outras análises específicas. O valor F1, por exemplo, é uma forma de agregar precisão 

e sensibilidade para que sejam otimizadas ambas as métricas. Essa é importante em 

problemas em que ambos falsos positivos e negativos tenham grande relevância e, 

portanto, a redução do número desses casos deve ser otimizada [27].  

 Para estudos em que  há mais de duas classes, analiza-se cada classe 

individualmente contra todas as outras a fim de se calcular o valor da métrica de 

desempenho correspondente. Seguem as fórmulas de precisão, sensibilidade e F1 para 

multiclasses, sendo 𝑘 o número de classes. 

 

 

  𝑝𝑟𝑒𝑐𝑖𝑠ã𝑜 =  
𝑉𝑃

𝑉𝑃 + ∑ 𝐹𝑃𝑖
𝑘
𝑖=0

                                                               5 

 

  𝑠𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒 =
𝑉𝑃

𝑉𝑃 + ∑ 𝐹𝑁𝑖
𝑘
𝑖=0

                  6 

 

  𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠ã𝑜∗𝑠𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒

𝑝𝑟𝑒𝑐𝑖𝑠ã𝑜 + 𝑠𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒
                 7 

 

 

2.3 Hiperparâmetros 

  

 Hiperparâmetros são parâmetros internos e externos aos modelos de ML que 

podem ser otimizados além da etapa de SGD de atualização da matriz de pesos. Os 

parâmetros internos se referem àqueles que definem o tipo e a estrutura do modelo, e os 

externos são associados a qualquer configuração da etapa de pré-processamento do 

conjunto de dados [29]. 
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A otimização desses parâmetros é realizada repetindo-se o processo de 

treinamento para cada combinação a fim de determinar qual a melhor estrutura de rede 

neural [29].  

 

2.3.1 Hiperparâmetros MLP 

  

• Neurônios por camada: Este valor normalmente é próximo do tamanho do 

input, mas pode variar de camada a camada. 

• Número de camadas: Quanto maior o número de camadas, maior a capacidade 

de abstração da rede, mas também introduz problemas em seu treinamento. 

• Dropout: Fator de regularização que seleciona aleatoriamente quais neurônios 

vão participar de cada etapa de treino. O objetivo desse parâmetro é amenizar 

erros causados por alta variância. 

• Taxa de aprendizado 𝜇: Valor que determina a intensidade de correção dos 

pesos após o cálculo de erro e aplicação do SGD. 

• Batch Normalization:  Fator que corrige o desvio padrão de grupos (batches) 

de dados conforme passam pelas camadas da rede. Serve principalmente para 

estabilizar e acelerar o processo de treinamento, particularmente útil em redes 

com muitas camadas. 

• Função de ativação: apesar de diferentes funções de ativação, ReLU continua 

sendo a mais utilizada. 

 

2.3.2 Hiperparâmetros CNN 

  

 A CNN possui todos os hiperparâmetros de uma MLP e os seguintes adicionais 

em relação à sua estrutura. 

 

• Número de mapas de filtro por camada: como discutido na seção 2.1.2, 

cada camada convolucional será um agrupamento de mapas de filtro. 

• Tamanho do kernel: tamanho da região que é conectada aos neurônios da 

camada subsequente. 
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• Stride: Dimensão do deslocamento do kernel entre neurônios. É utilizado para 

reduzir o tamanho da próxima camada convolucional, diminuindo o tempo de 

treino. 

• Padding: Neurônios adicionados à camada, normalmente com peso zero, para 

determinar um tamanho específico para a próxima camada de convolução 

 

 

2.3.3 Hiperparâmetros Transformer 

 

• Camadas transformer: Camadas abstratas que englobam as camadas Multi-

head, camadas de normalização e as MLPs internas. 

• Número de heads: Número de módulos de atenção. 

• Tamanho do embedding:  Tamanho do vetor em que se deseja codificar os 

dados de entrada na célula de embedding. 

 

 

2.3.4 Cross-validation 

 

 Ao se otimizar os hiperparâmetros utilizando o conjunto de teste para verificar o 

desempenho, pode ocorrer o enviesamento da rede e consequentemente causar erro de 

generalização. Para evitar esse problema, aplica-se a técnica de cross-validation que 

divide o conjunto de treino em um número 𝑘 determinado [30]. Treina-se o modelo 𝑘 

vezes, escolhendo uma das divisões como conjunto de teste em cada vez. Dessa maneira, 

garante-se que o conjunto de teste original fique reservado apenas para a última análise 

de desempenho, de forma a ter uma avaliação fiel da generalização do modelo para novos 

dados. 

 

2.4 Análise de desempenho 

  

Os erros e limitações de desempenho dos modelos de ML normalmente recaem 

sobre os seguintes espectros: enviesamento ou excesso de variância [31]. Conseguir 

determinar em qual desses está o principal culpado pela limitação de desempenho é 



14 
 

fundamental para se traçar novas estratégias de treino que não desperdicem tempo e 

recursos computacionais [32]. A figura 5 ilustra a relação de erros por viés e variância no 

contexto da complexidade do modelo. 

 

 

 

Figura 5 - Comportamento do par viés-variância em relação à complexidade do modelo 

 

 

Erro por enviesamento se dá pelo fato de o modelo não conseguir representam as 

relações complexas entre os dados. Dentre os principais motivos, se destacam: 

 

• Pouca quantidade de dados para alimentar o modelo 

• Modelo com baixa dimensionalidade (poucos parâmetros para ser 

representativo) 

• Alta regularização dos pesos das conexões entre neurônios, limitando o 

impacto dos parâmetros internos do modelo 

 

Já a alta variância se dá principalmente por: 

 

• Dados pouco representativos ou anômalos 

• Modelo de alta complexidade  

• Baixa regularização da matriz de pesos de conexões neurais 
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Treinamento em conjuntos de dados maiores aumentam o desempenho dos 

modelos independentemente do tipo de erro [33]. Porém, a magnitude dos ganhos pode 

indicar que o tamanho do conjunto não é o principal fator limitante do desempenho. No 

quesito de dimensionalidade do modelo, se os erros de generalização aumentaram com 

os modelos mais complexos, provavelmente o erro está atrelado à alta variância. 
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3 DATA AUGMENTATION 

 

 

Data Augmentation é uma técnica que se tornou bastante popular em 

implementações de visão computacional. O principal objetivo é gerar dados 

representativos a partir dos observados e assim melhorar a generalização dos modelos. A 

representatividade tem que ser aferida pois deve-se garantir que os novos dados artificiais 

possuam relevância estatística no que diz a respeito da distribuição real dos dados [34]. 

Apesar da popularidade e eficácia das técnicas, poucas são transferíveis para 

outras classes de problemas de ML. Isso se deve às particularidades dos dados de 

imagem, o que torna certas operações de produção de dados artificiais incondizentes com 

dados de outros tipos. Um exemplo bastante comum é a geração de imagens por rotação 

que ajuda redes neurais a abstraírem imagens idênticas em perspectivas diferentes. Essa 

técnica se provou bastante eficaz no campo de visão, mas não obteve o mesmo sucesso 

em aplicações de séries temporais [35]. 

Para essas, o método Synthetic Minority Over-sampling Technique (SMOTe) é 

considerado o mais adequado para geração de dados sintéticos [36]. Esse equilibra as 

populações entre classes diferentes no conjunto de treino afim de eliminar o efeito de 

enviesamento nos algoritmos. Também pode ser utilizado para expandir um conjunto de 

dados já equilibrados a fim de se obter maior volume de dados totais, aplicando-o em 

cada classe separadamente [37]. 

O seu funcionamento se baseia na criação de dados variados ponderados em 

relação a distância euclidiana dos vizinhos de mesma classe. Para isso, vetoriza-se os 

dados da classe de referência e determina-se um o número de vizinhos k dos quais se 

deseja calcular a média de distância euclidiana, utilizando um ponto pertencente a classe 

como pivô. A figura 6 é uma representação geométrica da geração de dados por SMOTe. 

 

 



17 
 

 

Figura 6 - SMOTe calculando um elemento da classe alvo utilizando 4 vizinhos em torno do ponto 
de referência. Last, F., Douzas, G., & Bacao, F. (2017). Oversampling for imbalanced learning 
based on k-means and smote. 
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4 INFRAESTRUTURA E DADOS 

 

 

 Processos e ferramentas utilizados nas etapas de aquisição e processamento de 

dados. Segue a descrição dos conjuntos utilizados nesse trabalho, bem como a arquitetura 

em nuvem utilizada para automação do processo de treinamento dos modelos.  

 
4.1 Conjunto de dados 

 

O conjunto de dados analisados provém do estudo [38] em que foram utilizadas 

seguintes classes de eventos montado, travado e não montado (figura 7). Os dados foram 

gerados através de operações de rosqueamento com o robô industrial KUKA KR16 

utilizando o sensor de força e torque MHS3-50D com tempo de amostragem de 12ms. 

 

Figura 7 - As três classes da operação de rosqueamento consideradas nos conjuntos de dados 

 
  

No total há 476 operações de rosqueamento contendo 2560 pontos de dados e 12 

séries temporais, que correspondem aos parâmetros de forças axiais, torques, posição 

angular e linear nos eixos x, y, z respectivamente. As figuras 8 e 9 exibem as forças e 

torques em cada eixo e para cada classe de resultado. 
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Figura 8 - Forças nos eixos x, y e z de cada classe de experimento 

 

 

Figura 9 - Torques nos eixos x, y e z de cada classe de experimento 

  

O conjunto de dados foi dividido entre um de treino e de teste pela razão 4:1, 

respeitando a proporção de cada classe nos exemplares originais. Em seguida foi aplicada 

a técnica SMOTe para criar o conjunto nivelado de todas as classes, mantendo a 

quantidade original de exemplos da classe preponderante.  

Com os dados balanceados foi gerado um conjunto com número de dados 

quadruplicados. Estes vão ser utilizados para averiguar o impacto no aumento de dados 

na performance dos modelos em questão. A tabela 1 mostra a quantidade de dados 

relativa a cada conjunto. 
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Tabela 1 - Número de exemplares de cada classe nos conjuntos de dados 

 
Original Nivelado Quadruplicado Teste 

Montado 
243 (64%) 243 972 61 (64%) 

Travado 
49 (13%) 243 972 12 (13%) 

Não Montado 
88 (23%) 243 972 23 (23%) 

Total 
380 729 2916 96 

 
 
4.2 AWS e MLOPs 

 

 Os modelos de DL são considerados computacionalmente custosos devido a 

plenitude de parâmetros que os compõem somados com aqueles da etapa de pré-

processamento. Como discutido, é necessária a otimização desses parâmetros através de 

repetidas sessões de treino em grandes volumes de dados o que torna a complexidade 

temporal exponencial [29]. 

  A fim de reduzir o tempo de treinamento e deixar a otimização dos parâmetros dos 

modelos mais eficiente, a implementação de técnicas de concorrência para 

processamento em graphics processing units (GPUs) se tornou prática padrão em 

aplicações de DL [39]. Aliado à necessidade do paralelismo, uma infraestrutura autônoma 

também o é para se manter o funcionamento dos modelos com desempenho consistente, 

bem como ter agilidade nas análises de diferente modelos e configurações de parâmetros 

[40].  

 A combinação das aplicações de ML com ferramentas de automação de 

engenharia de software constitui o que se chama de Machine Learning Operations 

(MLOps). O conjunto de práticas e diretrizes operativas de MLOps englobam toda a 

cadeia de treinamento dos modelos até o seu uso em produção e monitoramento de seus 

desempenhos [40]. A figura 10 mostra uma típica cadeia de operações dos modelos. 
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Figura 10 - Ciclo de operação de aplicações de ML 

  

Esse conjunto de técnicas ajudam a simplificar a cadeia de processos do 

treinamento de modelos e a sua automação traz escalabilidade na criação de estudos de 

modelos e na execução desses para ensaios em produção. Também se aplica o método 

de Continuous Integration / Contininuous Delivery (CI/CD) para que toda as 

modificações realizadas sejam facilmente implementadas na arquitetura mantendo a 

execução dos estudos contínua. Nesse contexto, MLOPs tem como papel fundamental 

garantir escalabilidade e estabilidade em processos de ML. 

A fim de se averiguar a viabilidade de um futuro sistema de DL para previsão de 

falhas, uma arquitetura em nuvem na Amazon Web Services (AWS) foi desenvolvida para 

satisfazer os requerimentos discutidos acima. A figura 11 é um esquemático da arquitetura 

em nuvem. 
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Figura 11 - Arquitetura AWS para produção de modelos 

  

Segue uma breve explicação dos recursos e serviços: 

 

• Lambda: Módulos serverless que executam scripts sem a necessidade de 
configurar um servidor dedicado. 
 

• DynamoDB: Banco de dados não relacional (NoSQL) de valores-chave 
 

• S3: Serviço de armazenamento de arquivos 
 

• Simple notification service (SNS): Serviço de envio de mensagens 
 

• CloudFormation: Serviço que gerencia a criação de novos recursos da nuvem 
 

• CloudWatch: Serviço de monitoramento de recursos da nuvem 
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• CodeCommit: Gerenciador de repositórios git 

 
• Instâncias EC2 SPOT: máquinas dedicadas instanciadas por leilão 

 
• Elastic Conatiner Registry (ECR): Serviço de gerenciamento de containers 

 

 

O processo de treinamento e criação de modelos acontece da seguinte forma. 

Todos os estudos requeridos pelas pesquisas serão salvos em formato Javascript 

Object Notation (JSON) na tabela “Estudos Requeridos” do dynamodb, que por sua 

vez acionara o SNS para ativação do lambda de checagem de estudos. Esse irá 

verificar se o estudo já foi realizado comparando as tabelas “Estudo Requeridos” e 

“Estudos Completados”, caso seja realmente um novo estudo, o lambda acionará o 

CloudFormation para instanciar as máquinas spot com GPUs. Containers com 

ambiente e bibliotecas configurados para treinar os modelos do keras tem suas 

imagens salvas no ECR e são utilizadas após a confirmação da inicialização das 

instancias, dando procedimento ao treinamento e otimização dos modelos. O 

processo de treino e otimização é definido nas configurações especificadas no 

documento JSON. Por fim, as máquinas irão salvar os melhores modelos no S3 e dar 

início ao processo de desligamento. Por fim, o S3 ativará o lambda que irá confirmar 

a execução do estudo e registrar as informações desse na tabela Dynamo 

“EstudosCompletados”. 
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5 TREINAMENTO DOS MODELOS 

 

 

Duas estratégias foram adotadas para se fazer a análise de desempenho, treinar os 

modelos em conjunto de dados de diferentes tamanhos e utilizar modelos de diferentes 

complexidades em cada um dos conjuntos.  

Todo o processo de treinamento foi realizado em ambiente Python. A etapa de 

preparação dos conjuntos de dados foi realizada com auxílio da biblioteca Scikit-Learn. 

Para a construção dos modelos a biblioteca Keras e o tensorflow 2.0 foi escolhido como 

seu backend de processamento, sendo o treinamento realizado em instâncias Spot do tipo 

P da AWS.  

Para os conjuntos de dados apresentados na seção 4.1 foi otimizado os 

hiperparâmetros de cada modelo com a técnica de cross-validation, dividindo o conjunto 

de treino em cinco partes sendo uma utilizada na validação dos parâmetros escolhidos.  

Para cada hiperparâmetro foi estabelecido um intervalo de busca, e em cada 

processo iterativo um valor randômico era selecionado para o estudo, sendo nenhum 

repetido em estudos consecutivos. Para gerenciá-los, foi utilizada a biblioteca Optuna, que 

tem como padrão o algoritmo de busca Tree-structured Parzen Estimator. 

Seguem os intervalos de busca analisados: 

 

• Neurônios por camada: [1, 2048] 

• Número de camada: [1, 10] 

• Dropout: [0, 0.5] 

• Batch Normalization: Gerenciado pelo Optuna 

• Função de ativação: ReLU nas camadas intermediárias e softmax na última. 

• Número de camadas por filtro: {32, 64} 

• Tamanho do kernel: {1, 3, 5} 

• Stride: Fixo em 1 

• Padding: Padrão ‘same’ do Keras, que preenche neurônios com zero 

• Camadas transformer: [1,8] 

• Número de heads: {2, 4, 6, 8} 
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• Tamanho do embedding: {8, 16} 

A precisão na classe de montado foi escolhida como a função objetivo da 

otimização, pois foi considerado que os falsos positivos de montados em travados são 

potencialmente mais danosos caso ocorram na operação. Ao fim da otimização, os 

modelos foram retreinados e seus melhores hiperparâmetros salvos em formato JSON. A 

figura 12 representa o fluxograma do processo de treinamento e otimização.  

 

 

Figura 12 - Fluxograma do processo de treinamento 
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6 DISCUSSÃO 

 

 

 A primeira análise foi feita em relação ao desempenho dos modelos treinados 

conjuntos de diferentes tamanhos. Para isso foi calculado a precisão média de cada classe 

para cada combinação {conjunto, modelo}. Como discutido na seção 5, a precisão foi 

considerada a métrica mais relevante para o sistema de previsão. A figura 13 mostra a 

evolução da precisão dos modelos. 

 

 

Figura 13 - Precisão média das combinações (conjunto, modelo) 

 

 Todos os modelos apresentaram melhora significativa ao serem treinados no 

conjunto nivelado em relação ao original. Já com o conjunto quadruplicado apenas a CNN 

teve um ganho na precisão enquanto a MLP deteriorou e a Transformer ficou 

praticamente estacionária. A tabela 2 contém média das precisões com a proporção de 

desempenho ganho a cada aumento do conjunto de dados. 
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  Tabela 2 - Precisão média de todas as classes 

 MLP CNN Transformer 

Original 0.73 0.72 0.71 
Nivelado 0.83 (14%) 0.78 (8%) 0.79 (11%) 

Quadruplicado 0.80 (-3%) 0.85 (10%) 0.79 (1%) 
 

 

 Estratificando as precisões por classe é possível perceber que o impacto dos 

conjuntos no desempenho foi majoritariamente devido à classificação de travados. A 

figura 14 evidencia a melhora em relação à essa classe e mostra que a CNN teve resultados 

melhores que os outros modelos. 

 Todos os modelos ou permaneceram, ou deterioraram seus ganhos levemente na 

classe de “Não montado”, e na classe de montados tiveram ganhos pequenos quando 

comparados aos de travado. 

 

 

 

Figura 14 - Precisão estratificada por classe 

 

 

 Para investigar os ganhos em relação a classe “travado”, foi utilizado a métrica F1 

dos modelos para eliminar a preponderância da precisão em relação à sensibilidade, 

analisando a média dessas métricas, como mostrado na equação 7. Assim pode-se 

observar o desempenho da CNN isoladamente. 
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Tabela 3 - Valores de F1 para classe "travado" 

 MLP CNN Transformer 

Original 0 0 0 
Nivelado 0.32 0.32 0.27 

Quadruplicado 0.31 0.64 0.38 
 

 

 O descolamento da CNN em relação aos outros modelos é evidenciado na última 

linha da tabela 3. Devido ao fato de a classe “travado” possuir apenas doze exemplos no 

conjunto de testes, essa está suscetível a ter grandes variações no desempenho causado 

por mudanças marginais. Para verificar esse fenômeno, subtraiu-se uma unidade 

verdadeiro positivo das duas classes minoritárias “travado” e “não montado” na matriz 

de confusão da CNN (tabela 4) do conjunto quadruplicado. 

 

 

Tabela 4 - Matriz de confusão da combinação (Quadruplicado, CNN) 

 
 
 
Reais 

                  Previstos 

 Montado Travado Não montado 

Montado 56 3 2 
Travado 5 7 (- 1) 0 (+ 1) 

Não montado 4 0 (+ 1) 19 (- 1) 
 

 

Em seguida foi recalculada a métrica F1 na tabela 2 através das equações 5, 6 e 7 

com resultado de 0.778 para a CNN treinada no conjunto quadruplicado. A figura 15 exibe 

as precisões médias novamente, mas agora a CNN com deslocamento marginal de uma 

unidade. Pode-se perceber que o descolamento da CNN em relação aos outros modelos 

era devido à escassez de classes de “travado”. 
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Figura 15 - Média das precisões com erro marginal da CNN 

 

A estagnação do desempenho no conjunto quadruplicado em relação à classe 

“travado” pode ser explicada por uma deficiência de representatividade do conjunto 

original, pois a sintetização dos dados por SMOTe usa como referência a distribuição dos 

dados reais. Portanto se houver enviesamento por dados anômalos, mal classificados ou 

falta de representatividade, esse erro vai ser propagado para o conjunto artificial. 

 Com a análise sobre a variação do tamanho dos conjuntos revelando um possível 

problema de enviesamento, foi feita a comparação do desempenho dos modelos, 

limitando-se a análise ao conjunto ao quadruplicado.  
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Figura 16 - Precisão de cada modelo para cada classe. Todos os modelos foram treinados 
apenas pelo conjunto quadruplicado. 

 

A partir da figura 16 pode-se perceber que não há uma correlação clara entre 

complexidade do modelo e desempenho. Isso significa que os modelos tiveram erro de 

generalização comparáveis, sugerindo que a limitação do desempenho não se deve à alta 

variância.  

 As análises de complexidade e tamanho de conjunto de dados revelam que existe 

um erro de enviesamento, pois não houve ganho de desempenho com o aumento do 

número de dados e aquele se mostrou indiferente à complexidade dos modelos. Portanto, 

a provável limitação do desempenho é a má representatividade dos dados, que, caso fosse 

adequada, era esperado uma melhora no desempenho dos modelos treinados no conjunto 

quadruplicado. 
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7 CONCLUSÃO 

 

 

 Este trabalho implementou a técnica SMOTe de data augmentation para 

balanceamento e geração de dados sintéticos, nos quais foram treinados os modelos MLP, 

CNN e transformer de DL. Com auxílio da AWS, os hiperparâmetros dos modelos foram 

otimizados em nuvem e em seguida foi feita análise do desempenho dos modelos 

otimizados em cada conjunto de dado obtido. 

O balanceamento do conjunto de dados original foi responsável pelo maior 

desempenho ao analisar os modelos treinados no conjunto nivelado.  A maior parte desse 

ganho ocorreu na melhora da precisão da classe “travado” que era a classe minoritária e 

mais sujeita ao enviesamento.  

Porém, a posterior expansão de dados no conjunto quadruplicado não resultou em 

avanços significativos com exceção da CNN na classificação de travados. Mas, o 

descolamento no desempenho foi devido apenas a mudanças marginais da previsão 

correta da classe, que é resultado dos poucos exemplos de travados no conjunto de teste. 

Portanto, pode-se considerar que não houve ganhos relevantes no conjunto 

quadruplicado em relação às classes “travado” e “não montado”. 

Em seguida, a análise unilateral dos modelos revelou que não houve nenhum 

impacto significativo no desempenho quando considerada a arquitetura do modelo, o que 

indica um possível erro por enviesamento e sustenta a hipótese de má representatividade 

dos dados. Com a estagnação do desempenho no conjunto quadruplicado e a sua 

invariância em relação aos modelos de diferentes complexidades, a provável causa da 

limitação do desempenho é um potencial enviesamento no conjunto de dados. 

A migração do processo de treinamento para a nuvem agilizou a realização dos 

estudos permitindo que fossem treinados os modelos mais complexos nos conjuntos 

maiores em tempo plausível. A arquitetura desenvolvida também será utilizada para 

estudos futuros para serem treinados em escala, valendo-se da automação de toda a 

cadeia de processamento. 
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Nos estudos futuros será feita a comparação da mesma coleção de modelos, mas 

treinados em outros conjuntos de rosqueamento similares e será realizado novos 

experimentos com processo de amostragem mais rigoroso e assim ter dados mais 

representativos.  
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