UNIVERSIDADE DE SAO PAULO
ESCOLA DE ENGENHARIA DE SAO CARLOS

Thiago Henrique Segreto Silva

Analise de desempenho de modelos de Deep Learning para

previsao de falhas em operacdes de rosqueamento

Séo Carlos

2021

Thiago Henrique Segreto Silva

Analise de desempenho de modelos de Deep Learning para

previsado de falhas em operacdes de rosqueamento

Monografia apresentada ao Curso de
Engenharia Mecatrénica, da Escola de
Engenharia de Sdo Carlos da Universidade
de Sdo Paulo, como parte dos requisitos
para obtencdo do titulo de Engenheiro

Mecatronico.

Orientador: Prof. Dr. Glauco Augusto de

Paula Caurin

VERSAO CORRIGIDA

Sdo Carlos

2021

AUTORIZO A REPRODUCAO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalografica elaborada pela Biblioteca Prof. Dr. Sérgio Redrigues Fontes da
EESC/USP com os dados insendos pelo(a) autor(a).

S5ThiH
enrSag
r3ilva

Segreto Silwva, Thiago Henrigque

Analise de desempenho de modelos de Deep Learning
para previsio de falhas am ocperacdes de rosgueamento /
Thiago Henrigue Segreto Silva; orientador Glauco
Augusto de Paula Caurin; coorientador Gustavo Jose
Giardini Lahr. S3o Carleos, 2021.

Monografia (Graduacdo em Engenharia Mecatrdnica)
-— Escola de Engenharia de 330 Carlos da Universidade
de Sic Paulo, 2021.

1. Operacio de rosgqueamento. 2. Previsdo de
falhas. 3. Deep learning. 4. Data augmentation. 5.
AZnalise de desempenho. I. Titulo.

Eduardo Graziosi Silva - CRB - 8/8907

FOLHA DE AVALIACAO

Candidato: _ Thiago Henrique Segreto Silva

Titulo: _ Analise de desempenho de modelos de Deep Learning para previséo
de falhas em operacdes de rosqueamento

Trabalho de Concluséo de Curso apresentado a
Escola de Engenharia de Sao Carlos da
Universidade de Sao Paulo

Curso de Engenharia Mecatronica.

BANCA EXAMINADORA

Professor _Glauco Augusto de Paula Caurin_

Orientador \

() /..'

Nota atribuida: 9,0 (__nove) | _é&‘cu;m
{assinaturqij?

Professor _Gustavo José Giardini Lahr__ ‘||

Mota atribuida: 9,0 {_ nove) pl 'f/f’uf_:lf‘é.!.x_re_h_
(asgpfatura)

Professor _Marcio José da Cunha @

Nota atribuida: _9,0_ (__nove) n/ Q LLFLTL

Média: 90 (_ Nove)
Resultado: Aprovado
Data: __23_/_07__/_2021__.

Este trabalho tem condigfies de ser hospedado /Dﬂ]Pcrtal Digital da Biblioteca da EESC
A3

SIM @' NAO O visto do orientador I %%-.u Ly
6:.-"

AGRADECIMENTOS

Ao Dr. Glauco Caurin, pelo suporte e apoio como orientador.

Ao Gustavo Lahr, por sempre estar disposto a ajudar e ser um grande mentor e amigo

Aos meus pais Marco Antonio e Elizabete Adriana, por todo carinho e apoio que me
deram ao longo desses anos.

Agradeco também & AWS por terem disponibilizado recursos usados nesta pesquisa.

RESUMO

SEGRETO SILVA, T. H. Analise de desempenho de modelos de Deep Learning
para previsao de falhas em operacdes de rosqueamento. 2021. 198 f.
Monografia (Trabalho de Conclusdo de Curso) — Escola de Engenharia de Sdo Carlos,
Universidade de Séo Paulo, Sdo Carlos, 2021.

Operacéo de rosqueamento é uma das mais comuns em ambientes industriais e se
encontra no processo de manufatura de diversas classes de produtos. Para automacgéo
desse tipo de operacéo é fundamental uma etapa de previsdo de falhas para evitar perdas
de componentes. Mas existem diversas dificuldades a essa etapa devido as incertezas do
ambiente industrial e da complexa dindmica de rosqueamento. Essa dltima faz com que a
modelagem do problema seja extremamente complicada e, muitas vezes, incompleta ou
ineficiente. Como alternativa a modelagem cléassica, os métodos de aprendizado de
maquina tém o potencial de representar as caracteristicas complexas da operagéo através
da andlise de dados experimentais. Deep learning é uma das areas que vem ganhando
espago nesse cenario e ja se provou extremamente eficaz em visdo computacional e
processamento de linguagem natural. Porém, seus modelos necessitam de uma grande
quantidade de dados para obterem desempenho significativo, e aliado a dificuldade de
extrair dados em operagdes de rosqueamento, novas estratégias de obtencdo de dados
sdo necessarias para aplicagoes praticas. Uma possivel solugédo, é a geracdo de dados
sintéticos a partir de dados reais pelo processo de data augmentation. Nesse contexto,
este trabalho se propde em analisar o desempenho de modelos de deep /earningtreinados
em conjuntos de dados artificiais, e verificar o impacto de modelos de diferentes niveis

de complexidade na previsdo de falhas de rosqueamento.

Palavras-chave: Operacéo de rosqueamento. Previsdo de falhas. Deep learning. Data

augmentation. Analise de desempenho.

LISTA DE ILUSTRACOES

Figura 1 — Esquema genérico de uma MLP ... 4
Figura 2 — Esquema genérico de uma CNNc.ccoiiiniiinniinceeeeeeeees 7
Figura 3 — Esquema genérico de Um 77anSIOIIErccccoeeeeeeeeeneeeeeeeeseeeeeees 8
Figura 4 — Matriz de confusdo de duas dimensoescccecveerieirereeeneieserieeseeeeieene 10

Figura 5 - Comportamento do par viés-varidncia em relacéo a

complexidade do MOAELODccooveiiiiiiieieieeeeee s 14
Figura 6 — SMOTe calculando um elemento da classe alvo

utilizando quatro vizinhos em torno do ponto de referénciaccoceeveeerievieenieennenens 17

Figura 7 — As trés classes da operacdo de rosqueamento

consideradas nos conjuntos de dadoscccuevueieieiiiieieieieie ettt 18
Figura 8 — Forgas nos eixos x, y e z de cada

Classe de EXPETIMENTOccoceeiiriiriiiecieeieetecte ettt beere bbb b eseebeebeeseesesseeseas 19

Figura 9 — Torques nos eixos x, y e z de cada

Classe de EXPETIMENTOcccoveieiieiieiieiieieeeeeteee ettt ettt ettt eteereeteeseeseeseeseebeeseeseas 19
Figura 10 — Ciclo de operagéo de aplicagdes de MLccccovveievienenienienieeieeenn 21
Figura 11 — Arquitetura AWS para producéo de modeloscccceveievieciinenenencneene 22
Figura 12 — Fluxograma do processo de treinamentoc.ccccoeverereenenenieenenenennene 25
Figura 13 — Preciséo média das combinag¢des (conjunto, modelo)ccceeveeverennnene. 26
Figura 14 — Preciséo estratificada por Classecccoerieeieencininicinecerecseeeees 27
Figura 15 — Média das precisdes com erro marginal da CNNcccoooriiinininennen. 29

Figura 16 — Precisdo de cada modelo para cada classe. Todos os modelos foram

treinados apenas pelo conjunto quadruplicadocceeveeieieienienieieeeeeeeee 30

LISTA DE TABELAS

Tabela 1 — Numero de exemplares de cada classe nos conjuntos de dados 20
Tabela 2 — Precisdo média de todas as ClasSesc.cooeererieirieieenieieeeee e 27
Tabela 3 — Valores de F1 para classe "travado"............ccccoceeuieiirieeiieieeeeeeeeeeeeeeee e 28

Tabela 4 — Matriz de confusdo da combinacéo (Quadruplicado, CNN)ccccveeenennne 28

LISTA DE ABREVIATURAS E SIGLAS

Elemento opcional. E composto de uma relagdo alfabética das abreviaturas e siglas

utilizadas no texto seguido do seu significado.

AWS - Amazon Web Services

CNN - Convolutional Neural-Networks
DL - Deep Learning

ECR - Elastic Container Registry

GPU - Graphic Processing Units
JSON - JavaScript Object Notation
MLP - Multiple Layer Perceptrons
MLOPs - Machine Learning Operations
ML - Machine Learning

SNS - Simple Notification Service

SUMARIO

1 INTRODUGAO ...ooieeeeeeeeeee e 1
2 DEEP LEARNING ..ottt 3
2.1 MOAEIOS ...ttt 3
2.1.1 Multilayer Perceptron (IMLP)cooiiioieeiee et 4
2.1.2 Convolutional Neural Networks (CNN))c.ccoeoivmeinneinrcirececeeeene 6
2.1.3 TTanSTOTIMETS ...c.oouiiieiiiieee ettt 7
2.2 Métricas de ClasSifiCaCa0ccceevieviviieiieicieceeeeeeeeee e 9
2.3 HIPEIPATAIMELITOS ..ottt ettt 11
2.3.1 HiperparGmetros MLP ..ot 12
2.3.2 Hiperpardmetros CINNcccooiiiiiiiieieeeeese ettt 12
2.3.3 Hiperparametros Transformerccccoeveirenieinieieeeceeeeeeee e 13
2.3.4 Cross-Validationcceivieuiinieieieee et 13
2.4 Andlise de deSempPenhocccoieiiiiiiiee e 13
3 DATA AUGMENTATION ...ooiiiiiiiieeeeete ettt 16
4 INFRAESTRUTURA E DADOSccooiiiiiiininreeieteicittneseseeeveveieett e 18
4.1 Conjunto de dadOSccevieiiriiieieieee e 18
4.2 AWS € MLODS ..ottt ettt 20
5 TREINAMENTO DE MODELOS ..ottt 24
6 DISCUSSAD ..ot 26
7 CONCLUSAD ...orviiiieeeie ettt 31

REFERENCIAS ...oovoiiiriies et 33

1 INTRODUCAO

Rosqueamento é uma das operagdes mais comuns em ambientes industriais e esta
presente na manufatura de diversas classes de produtos, desde pequenos aparelhos
eletrénicos até grandes maquinarios [1]. A automagédo desse procedimento é fundamental
para se conquistar um aumento de produtividade resistente a falhas e com qualidade
consistente. Mas, apesar da prevaléncia e importancia dessa operacdo, a automacéo
completa ainda néo é a realidade na industria devido a sua inerente complexidade [2].

Parte desta complexidade se deve a grande variedade de cenarios e pardmetros
da operacdo e a imprevisibilidades do ambiente industrial, o que torna a modelagem do
problema particularmente dificil e incompleta [3]. Outra dificuldade se da pelas tolerancias
mais rigorosas, pois erros podem causar o descarte de pecas inteiras ou comprometer
componentes sensiveis como baterias. Por fim, durante o processo de rosqueamento
ocorrem diferentes estagios de contato mecénico com dindmicas complexas, e cada uma
introduzindo oportunidades para falhas [4]. Neste contexto, uma das estratégias de
automacdo é implementar um estagio de previsdo de falhas acoplado com procedimentos
de recuperagdo. Assim, mesmo expostos aos riscos citados acima, é possivel antecipa-los
e garantir continuidade da operacéo.

Devido as dificuldades na modelagem, os métodos de previsdo baseados em
analise de dados sdo uma solugédo alternativa vantajosa. Dentre esses, os pertencentes a
classe de deep learning (DL) possuem um grande potencial para previsdes robustas, mas
necessitam de um grande volume de dados classificados para atingirem resultados
satisfatorios [5]. A extracdo desses dados possui seus proprios desafios, entre os
principais, a dificuldade de se conseguir uma quantidade exemplos de falha significativa.
Com apenas 1%-2% das operac¢des de rosqueamento resultando em falha, o conjunto de
dados finais é desbalanceado, o que causa o enviesamento nos algoritmos de DL [6].
Também ha uma dificuldade intrinseca em se garantir a representatividade desses dados,
pois a propria classificacdo manual de falhas estd sujeita a erros na identificacdo do real
estado da peca.

Uma das formas de contornar os conjuntos desbalanceados e a falta de dados é

utilizando técnicas de data augmentation que expandem artificialmente o conjunto de

dados utilizando heuristicas para garantir a relevancia desses novos. A representatividade
dos dados pode ser averiguada indiretamente através dos erros de generalizacdo dos
modelos de classificagéo [7].

Outros fatores podem prejudicar o resultado dos modelos de previsdo, como por
exemplo: complexidade do modelo utilizado, hiperpardmetros mal otimizados e ma
escolha dos parametros extraidos dos dados [8] [pag. 424-427]. Né&o existe um método
para saber qual o principal fator que estd deteriorando os modelos, mas com
experimentagdo com pré-processamento de dados e modelos de diferentes
complexidades pode-se chegar as principais causas deterministico [8] [pag. 414].

Este trabalho propde analisar o desempenho de classes de algoritmos de
aprendizado na previsdo de falhas em operagdes de rosqueamento roboético a fim de
encontrar os principais fatores que o limita. Para isso, foi comparado o impacto do nivel
de complexidade dos modelos e do tamanho do conjunto de dados em que foram
treinados.

A secdo 2 apresenta os modelos de DL utilizados, as métricas de classificacédo
escolhidas e explica o processo de otimizacdo dos hiperparémetros. Também explica o
método de andlise de desempenho, bem como os tipos de erro envolvidos no uso dos
modelos. Na secéo 3 esta definido o algoritmo de sintetiza¢do de dados para a criagdo
dos conjuntos artificiais. As caracteristicas e o processo de obtencdo de dados sédo
explicados na seg¢do 4, onde também esta descrito o processo de treinamento e

otimiza¢do dos modelos em nuvem.

2 DEEP LEARNING

Algoritmos de machine learning (ML) sdo aqueles que possuem a capacidade de
realizar tarefas especificas e de se autoajustarem para melhorarem o seu desempenho
nessas. Existe uma grande gama de algoritmos que usam diferentes técnicas de regressdo
e classificacéo, cada qual com suas vantagens e desvantagens.

DL é uma subclasse de algoritmos de ML, portanto também s&o algoritmos
capazes de aprender a realizar tarefas avaliando o seu desempenho e otimizando seus
parametros internos conforme esse. O que diferencia essa classe de algoritmos dos
modelos de ML cléssicos é sua arquitetura de processamento de dados, que usa
“neurodnios artificiais” para modelar as relagdes entre os dados de entrada [8] [pag. 191-
196].

Neurénios conectados entre si formam estruturas chamadas de redes neurais
artificiais, inspiradas nas proprias camadas de neurénios biolégicos. O efeito pratico dessa
estrutura de processamento é o aumento significativo da dimensionalidade do modelo, o
que d& a capacidade de representar fun¢des néo-lineares complexas através do espacgo
dimensional com diversos pardmetros. Esse é o principal atributo que torna os algoritmos
de DL extremamente eficientes em resolucéo de problemas complexos [9].

Visdo computacional e processamento de linguagem sdo exemplos de problemas
dificeis em que as redes neurais se tornaram a principal técnica de andlise e previséo,
superando as classicas de ML e ferramentas heuristicas e estocasticas [10][11]. Apesar do
sucesso em ambas as areas, modelos de DL ainda estdo ganhando espaco na andlise de
séries temporais [12], que estdo presentes em diversos problemas praticos devido a

natureza temporal dos fend6menos [13].

2.1 Modelos

Abaixo seguem trés modelos de DL, dispostos em ordem crescente de
complexidade, que é considerada como uma combina¢do do numero de parédmetros e

processos intermedidrios de processamento de dados.

2.1.1 Multilayer Perceptrons (MLP)

A MLP é o modelo mais simples de DL [14], contando com uma estrutura bem
definida de camadas de neur6nios nas quais cada um esta conectado a todos os outros

das camadas vizinhas. A figura I mostra a disposicdo dos neurdnios em camadas em

MLP genérica.
Camada de Entrada Camada intermedidria Camada de saida
Hg

Xy —*

— ¥
Xg—™

—* Y,
K

— Y,
X —™

['l.-‘.l'.j.j-'l.-‘.l'ji], [bj- IZIIJ] [W.:..:.-ij], [Bg- Ek]

Figura 1 - Esquema genérico de uma MLP (https://www.dotnetlovers.com/article/243/neural-
networks-and-mlp)

De camada a camada, os dados de entrada representados pelo vetor X s&o
multiplicados por uma matriz de pesos W, cujos valores representam cada conexdo entre
os neur6nios de duas camadas {wg g, Wg 1 ... W;_1;, W;;}. Depois € aplicada uma funcéo de
ativacdo néo linear g com o intuito preservar a dimensionalidade da rede, impedindo que
essa se reduza a uma simples transformacédo linear [15]. A transformagdo dos dados até

antes da ultima camada pode ser representada pela equagdo 1.

H,= gWT*X + b) 1

H é o vetor de valores dos neurénios da camada intermediaria, k o indice da
camada e b é o vetor de viés, utilizado para garantir um grau de liberdade a mais da
funcdo g, permitindo a translagdo dos resultados da fungdo [16] [pag. 285-287]. Existem
diferentes tipos de func¢do de ativagdo, como por exemplo: sigmoid, tanh e rectifier linear

unit (ReLU), sendo a ultima a mais difundida por sua eficicia e rapidez [17].

No caso de problemas de classificac¢éo, a ultima camada possuira o0 mesmo numero
de neurOnios que de classes e sua saida serd um numero no intervalo [0, 1] que
representard a certeza da rede sobre a escolha da classe. Assim, tem de se garantir que a
soma dos valores de saida seja exatamente 1.

A funcéo softmax abaixo (equagdo 2) satisfaz essa condigdo e sempre mantem a
soma total dos valores de saida como valor unitario, sendo K o numero de classes e h o

vetor de entrada de cada neurdnio i da ultima camada.

el

o(h)i = =
2 j=1¢€ J

O ultimo estagio no treinamento do modelo envolve o calculo do erro nos
exemplos de treino e a propagacdo da ultima camada para as intermediarias. Com os
gradientes descendentes, é possivel atualizar os pesos de cada conexdo entre neurénios
para valores na dire¢do de diminui¢do dos erros. Existem varias métricas de erro e essas
acabam se destacando em cenarios diferentes. Por exemplo, para um conjunto de dados
com muitos outliers, fungdes polinomiais de erro melhoram o treinamento do modelo
quanto maior o seu grau de liberdade. A maior dimensionalidade da fungéo de erro ajuda
a diminuir a influéncia de dados anémalos na atualizagdo da matriz de pesos [18].

Neste trabalho foi utilizada a funcdo perda de entropia cruzada esparsa E que,
bastante similar ao erro logistico, é capaz de representar os erros em problemas de

classificacdo [19]. Essa funcéo expressa a diferenga entre a distribuicédo das classes reais p

e a das classes previstas q conforme a equacéo 3.

E(p,q) = — Yxexp(x)logq(x) 3

Escolhida a fungéo de erro, aplica-se o método Stocastic Gradient Descent (SGD)

para propagar o erro da camada de saida para as camadas intermediarias [8] [pag. 197].
Com os gradientes G em cada neurdnio calcula-se 0s novos pesos W; j de sua conexao

ponderando o erro com o fator de taxa de aprendizado y com mostra a equagdo 4.

Awji(x) = —puGjy;(x) 4

Esse procedimento é repetido multiplas vezes para cada vetor de entrada X dos
dados de treino até que seja percorrido todo o conjunto e satisfaga as condi¢des de
parada. Ao final teremos uma matriz de pesos W otimizada para o conjunto de treino e
basta verificar se desempenho generaliza para o conjunto de teste, que possui os dados

que o modelo nédo processou.

2.1.2 Convolutional Neural Networks (CNN)

CNNs séo os tipos mais utilizados em visdo computacional devido ao desempenho
sobre humano em muitas aplica¢des de analise de imagem [20]. Assim como as MLPs, as
CNNs também utilizam a mesma estrutura de neurdnios conectados em camadas, mas
agora com diferengas estruturais que as deixam mais similares ao comportamento dos
neurénios de um cortex visual.

A principal diferenga é a adi¢cdo de camadas de convolucédo que, ao invés de estar
completamente conectada, seus neurdnios apenas se conectam a uma regido limitada da
camada anterior. Isso faz com que cada neurénio da camada subsequente apenas abstraia
as informacgdes contidas na regido, chamadas de kernel, que ele observa.

Essa nova forma de se conectar os neur6nios de diferentes camadas faz com que
haja menos pardmetros para serem processados devido ao menor numero de conexdes
quando comparadas a uma MLP tipica [8] [pag. 322]. Para melhorar sua capacidade de
abstracdo devido ao menor numero de conexdes, a camada convolucional é decomposta
em mapas que filtram os dados de entrada e assim treinam sobre aspectos especificos da
imagem.

A figura 2 é uma representacdo das camadas de convolugdo com seus respectivos
mapas de filtros.

Mapa de features

Entrada

Convolucdes Subamostragem Convolucdes Subamostragem

Figura 2 - Esquema genérico de uma CNN
(https://en.wikipedia.org/wiki/Convolutional_neural_network)

A capacidade de abstrair mais com menos conexdes gera dois problemas. O
primeiro é a grande carga de memoria RAM adicional por camada devido aos mapas
adicionais por convolugdo. O segundo é adi¢do de novos hiperpardmetros que tornam
extremamente custosos o treinamento do modelo com a otimizagdo da estrutura da rede
[16] [pag. 456].

Para amenizar esses problemas, a camada de pooling é adicionada entre as
camadas intermedidrias para reduzir a resolucdo dos dados de entrada. Para isso, € feito
um agrupamento dos dados por kernel, representando-os assim por um unico valor em
cada neurdnio da camada de pooling. Porém, a diminui¢do da resolugdo dos dados reduz
o desempenho final da rede, entdo deve-se buscar um equilibrio entre o uso de camadas
convolucionais e de pooling para atingir um desempenho satisfatério em um tempo de
treinamento plausivel [21].

No geral, CNNs possuem desempenho equiparavel ou ordens de grandeza maior
que as MLPs em problemas de alta complexidades por consequéncia da introdugéo de

novas etapas de abstragdo [22].

2.1.3 Transformers

Diferente das MLPs e CNNs, as trasnformers sdo redes mais abstratas e usam uma
combinacéo de artefatos ao invés de serem embasada em um conceito de funcionamento

unico. Dentre seus principais artefatos tem-se os: mecanismos de atenc¢éo, camadas de

embedding, MLPs, camadas de normalizagdo. A figura 3 ilustra um exemplo de uma

transforme e seus componentes.

Qutput
Probabilities

-
Add & Norm
Feed
Forward
' 1 ~\ I Add & Norm |<_:
= Mutti-Head
Feed Attention
Forward 7T 7 Nx
.
N Add & Norm
Add & Norm T
Multi-Head Multi-Head
Attention Attention
A F) At
\k J . _JJ
Positional o) & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Qutputs
(shifted right)

Figura 3 - Esquema genérico de um Transformer [16]

As transformers foram desenvolvidas para o estudo de linguagem natural e se
tornaram bem-sucedidas no emprego de modelos linguisticos [23]. O motivo de ser um
excelente motor desses modelos se deve principalmente aos mecanismos de atengéo
citados. Esses constroem relagdes hierarquicas entre os dados que ele recebe [24],
determinando a relevancia de cada no contexto em que estédo inseridos. Os mecanismos
sdo representados na figura 3 pelas caixas “masked multi-head attention”.

Na entrada da estrutura existem dois mecanismos, um de codifica¢do (encoder) a
esquerda e outro de decodificagdo (decoder) a direita. A fungdo desses dois é,
respectivamente, codificar os dados de entrada em um formato padréo de 512 bits e

eventualmente decodificar os outputs desse formato ao original dos dados. Essa etapa é

necessaria pois as transformers precisam de uma representacédo interna dos dados, de
forma que todos estejam catalogados para ser mais facil a identificagdo e processamentos.

Embedding é outro tipo de processo de codificagdo crucial no funcionamento de
uma transformer, mas diferente do encoder, embeddings codificam grupos de dados
conforme o contexto em que estdo inseridos. Por exemplo, se forem usados para
processamento de linguagem, o encoder codificaria sentengas inteiras uma vez, enquanto
embeddings o fariam somente em palavras e o resultado dependeria da sentenga em que
essas palavras estdo contidas.

Todo esse dinamismo serve a um unico proposito: processar grandes cadeias de
dados correlacionados da forma mais eficiente possivel [25]. Essa é exatamente a
natureza de um problema de linguagem, processar textos longos com milhares de
sentencas e palavras. No contexto de séries temporais, o uso de transformers também é

bastante relevante, pois aquelas também sédo cadeias de dados longas e correlacionadas.

2.2 Métricas de classificacédo

As métricas mais comuns em problemas de classificagdo sdo derivadas da matriz
de confusdo. Ela representa os possiveis resultados de previsdo em relagéo a classificagdo
correta dos exemplos. As métricas de avaliacdo dos modelos sdo escolhidas com base
nos diferentes grupos pertencentes a matriz. A figura 4 € uma matriz de duas dimensdes

com as principais métricas desempenho.

10

Previsto
Positivo Negativo
E Verdadeiro Falso Sensibilidade
e ays - .
= Positivo Negativo
® = VP FN VP/(VP + FN)
el
@
<
&
= =
by E Falso Verdadeiro Especificidade
> = Positivo Negativo
> FP VN VN/(VN+ FP)
s Acuracia
Precisao VPN
VP/(VP + FP) | VN/(VN + FN) (VP+VN)/
(VP + FP + FN + VN)

Figura 4 - Matriz de confusédo de duas dimensdes

A escolha das métricas de desempenho é fundamental para o sucesso de um
processo de classificacdo. Apesar das classes ja estarem definidas e devidamente
categorizadas, a otimizagdo dos hiperpardmetros do modelo é feita utilizando as métricas
como fungdes objetivas [26]. A principio ndo hd uma regra definida sobre a escolha das
métricas, cada aplicacdo possui um conjunto mais apropriado para seus requisitos e
objetivos [27].

Preciséo e sensibilidade sdo as métricas mais comuns e geralmente possuem uma
relacdo inversa, na tentativa de se otimizar uma compromete-se a outra [28]. Precisédo é
muito util quando se quer garantir o menor numero de falso positivos com o custo de mais
exemplos classificados serem falso negativos. J& a sensibilidade se torna mais importante
quando se quer que o maximo de exemplos positivos sejam classificados como tal mesmo
com aumento de falsos positivos.

O wvalor preditivo negativo (VPN) e a especificidade possuem a mesmo
relacionamento caracteristico do observado entre previsdo e sensibilidade, mas quando

se andlise a classe negativa, que no caso de classificacdo de multiplas classes seriam todas

11

outras classes além da classe de positiva de referéncia [26]. Por ultimo, a acuracia
representa o desempenho geral dos modelos sobre todas as classes, ou seja, quando as
previsdes de todas as classes sdo igualmente importantes, esta € uma das métricas mais
desejaveis.

A partir das métricas acima, pode se derivar outras mais apropriadas para atender
a outras andlises especificas. O valor F1, por exemplo, é uma forma de agregar precisdo
e sensibilidade para que sejam otimizadas ambas as métricas. Essa é importante em
problemas em que ambos falsos positivos e negativos tenham grande relevancia e,
portanto, a reducdo do numero desses casos deve ser otimizada [27].

Para estudos em que h& mais de duas classes, analiza-se cada classe
individualmente contra todas as outras a fim de se calcular o valor da métrica de
desempenho correspondente. Seguem as férmulas de preciséo, sensibilidade e F1 para

multiclasses, sendo k o numero de classes.

VP

precisao = ———— 5
VP +Yk FP;
- vp
sensibilidade = ———— 6
VP + YK FN;
recisaoxsensibilidade
F1=2x2 7

precisdo + sensibilidade

2.3 Hiperparametros

Hiperparametros sdo pardmetros internos e externos aos modelos de ML que
podem ser otimizados além da etapa de SGD de atualizacdo da matriz de pesos. Os
parametros internos se referem aqueles que definem o tipo e a estrutura do modelo, e os
externos sdo associados a qualquer configuracdo da etapa de pré-processamento do

conjunto de dados [29].

12

A otimizacdo desses parametros ¢ realizada repetindo-se o processo de
treinamento para cada combinacéo a fim de determinar qual a melhor estrutura de rede

neural [29].

2.3.1 Hiperparédmetros MLP

e Neurdnios por camada: Este valor normalmente é proximo do tamanho do
input, mas pode variar de camada a camada.

e Numero de camadas: Quanto maior o numero de camadas, maior a capacidade
de abstracdo da rede, mas também introduz problemas em seu treinamento.

e Dropout: Fator de regularizacdo que seleciona aleatoriamente quais neurénios
vao participar de cada etapa de treino. O objetivo desse par@metro é amenizar
erros causados por alta variancia.

e Taxa de aprendizado [: Valor que determina a intensidade de correcdo dos
pesos apods o calculo de erro e aplicacdo do SGD.

e Batch Normalization: Fator que corrige o desvio padrdo de grupos (batches)
de dados conforme passam pelas camadas da rede. Serve principalmente para
estabilizar e acelerar o processo de treinamento, particularmente util em redes
com muitas camadas.

e Funcédo de ativacéo: apesar de diferentes fun¢des de ativacdo, ReLU continua

sendo a mais utilizada.

2.3.2 Hiperparametros CNN

A CNN possui todos os hiperpardmetros de uma MLP e os seguintes adicionais

em relacéo a sua estrutura.

e Numero de mapas de filtro por camada: como discutido na secédo 2.1.2,
cada camada convolucional serd um agrupamento de mapas de filtro.
e Tamanho do kernel: tamanho da regido que é conectada aos neurdnios da

camada subsequente.

13

e Stride: Dimensédo do deslocamento do kernel entre neurdnios. E utilizado para
reduzir o tamanho da préxima camada convolucional, diminuindo o tempo de
treino.

e Padding: Neurbnios adicionados & camada, normalmente com peso zero, para

determinar um tamanho especifico para a proxima camada de convolugéo

2.3.3 Hiperparametros Transformer

e Camadas transformer: Camadas abstratas que englobam as camadas Multi-
head, camadas de normalizacédo e as MLPs internas.

e Numero de heads: Numero de modulos de atengéo.

e Tamanho do embedding: Tamanho do vetor em que se deseja codificar os

dados de entrada na célula de embedding.

2.3.4 Cross-validation

Ao se otimizar os hiperpardmetros utilizando o conjunto de teste para verificar o
desempenho, pode ocorrer o enviesamento da rede e consequentemente causar erro de
generalizagdo. Para evitar esse problema, aplica-se a técnica de cross-validation que
divide o conjunto de treino em um numero k determinado [30]. Treina-se o modelo k
vezes, escolhendo uma das divisdes como conjunto de teste em cada vez. Dessa maneira,
garante-se que o conjunto de teste original fique reservado apenas para a ultima andlise
de desempenho, de forma a ter uma avaliagao fiel da generalizagdo do modelo para novos

dados.

2.4 Andlise de desempenho

Os erros e limitagées de desempenho dos modelos de ML normalmente recaem
sobre os seguintes espectros: enviesamento ou excesso de variéncia [31]. Conseguir

determinar em qual desses estd o principal culpado pela limitacdo de desempenho é

14

fundamental para se tragar novas estratégias de treino que ndo desperdicem tempo e
recursos computacionais [32]. A figura 5ilustra a relagdo de erros por viés e variancia no

contexto da complexidade do modelo.

Erro total

Erro

Complexidade 6tima

Variancia

Viés

o : =

&

Complexidade do modelo

P

Figura 5 - Comportamento do par viés-variancia em relacédo a complexidade do modelo

Erro por enviesamento se da pelo fato de o modelo ndo conseguir representam as

relagcdes complexas entre os dados. Dentre os principais motivos, se destacam:

e Pouca quantidade de dados para alimentar o modelo

e Modelo com baixa dimensionalidade (poucos parédmetros para ser
representativo)

e Alta regularizacdo dos pesos das conexdes entre neurdnios, limitando o

impacto dos parametros internos do modelo
Ja a alta variéncia se déa principalmente por:
e Dados pouco representativos ou anémalos

e Modelo de alta complexidade

e Baixa regularizacdo da matriz de pesos de conexdes neurais

15

Treinamento em conjuntos de dados maiores aumentam o desempenho dos
modelos independentemente do tipo de erro [33]. Porém, a magnitude dos ganhos pode
indicar que o tamanho do conjunto nédo é o principal fator limitante do desempenho. No
quesito de dimensionalidade do modelo, se os erros de generalizagdo aumentaram com

os modelos mais complexos, provavelmente o erro estd atrelado a alta variancia.

16

3 DATA AUGMENTATION

Data Augmentation é uma técnica que se tornou bastante popular em
implementagdes de visdo computacional. O principal objetivo é gerar dados
representativos a partir dos observados e assim melhorar a generalizacdo dos modelos. A
representatividade tem que ser aferida pois deve-se garantir que os novos dados artificiais
possuam relevancia estatistica no que diz a respeito da distribuicédo real dos dados [34].

Apesar da popularidade e eficacia das técnicas, poucas sdo transferiveis para
outras classes de problemas de ML. Isso se deve as particularidades dos dados de
imagem, o que torna certas operac¢des de producéo de dados artificiais incondizentes com
dados de outros tipos. Um exemplo bastante comum é a geracdo de imagens por rotagdo
que ajuda redes neurais a abstrairem imagens idénticas em perspectivas diferentes. Essa
técnica se provou bastante eficaz no campo de visdo, mas ndo obteve o mesmo sucesso
em aplicacdes de séries temporais [35].

Para essas, o método Synthetic Minority Over-sampling Technique (SMOTe) é
considerado o mais adequado para geracdo de dados sintéticos [36]. Esse equilibra as
populagdes entre classes diferentes no conjunto de treino afim de eliminar o efeito de
enviesamento nos algoritmos. Também pode ser utilizado para expandir um conjunto de
dados ja equilibrados a fim de se obter maior volume de dados totais, aplicando-o em
cada classe separadamente [37].

O seu funcionamento se baseia na criacdo de dados variados ponderados em
relacdo a distancia euclidiana dos vizinhos de mesma classe. Para isso, vetoriza-se os
dados da classe de referéncia e determina-se um o numero de vizinhos k& dos quais se
deseja calcular a média de disténcia euclidiana, utilizando um ponto pertencente a classe

como pivod. A figura 6 é uma representacdo geomeétrica da geragdo de dados por SMOTe.

17

X Amostra da classe minoritaria
(%) Amostra escolhida
<+ Amostra gerada

Figura 6 - SMOTe calculando um elemento da classe alvo utilizando 4 vizinhos em torno do ponto
de referéncia. Last, F., Douzas, G., & Bacao, F. (2017). Oversampling for imbalanced learning
based on k-means and smote.

18

4 INFRAESTRUTURA E DADOS

Processos e ferramentas utilizados nas etapas de aquisicdo e processamento de
dados. Segue a descrigdo dos conjuntos utilizados nesse trabalho, bem como a arquitetura

em nuvem utilizada para automacéo do processo de treinamento dos modelos.

4.1 Conjunto de dados

O conjunto de dados analisados provém do estudo [38] em que foram utilizadas
seguintes classes de eventos montado, travado e ndo montado (figura 7). Os dados foram
gerados através de operacdes de rosqueamento com o robd industrial KUKA KR16

utilizando o sensor de forca e torque MHS3-50D com tempo de amostragem de 12ms.

=y OB h

EBE=—=—3

Montado Travado Nio Montado

Figura 7 - As trés classes da operagdo de rosqueamento consideradas nos conjuntos de dados

No total hd 476 operacdes de rosqueamento contendo 2560 pontos de dados e 12
séries temporais, que correspondem aos parametros de forcas axiais, torques, posicdo

angular e linear nos eixos x, y, z respectivamente. As figuras § e 9 exibem as forcas e
torques em cada eixo e para cada classe de resultado.

19

Forcas axiais
fz fy fx

Farga (N)

—— Montada

= Travado
-10 Mo Manlada

0 2 4 B 8 10 12 14 16 O 2 4 B 8 10 12 14 16 0 2 4 L3 a8 10 12 14 16
Tempo (s)

Figura 8 - Forgas nos eixos x, y e z de cada classe de experimento

Torques

mz my mx
1.0 — Montade
— Travada

NEo Montado
a5

S = _— Md;’ —‘N J’“‘*—"‘::'.’-m—‘»: '“‘“'.":-'u“.____,
(R o \Wﬁ“‘\@ \/\/ Ph‘ .‘I ;‘_/ |

-1.5

Torque (N*m)
Loos
= in
e
o —
-
=
—

-2.0

a Z 4] B 10 12 14 18 0 2 4 6 a 10 1z 14 16 O 2 4 & & 1n 12 14 16
Tempo (s)

Figura 9 - Torques nos eixos x, y e z de cada classe de experimento

O conjunto de dados foi dividido entre um de treino e de teste pela razdo 4:1,
respeitando a proporg¢do de cada classe nos exemplares originais. Em seguida foi aplicada
a técnica SMOTe para criar o conjunto nivelado de todas as classes, mantendo a
quantidade original de exemplos da classe preponderante.

Com os dados balanceados foi gerado um conjunto com numero de dados
quadruplicados. Estes vao ser utilizados para averiguar o impacto no aumento de dados

na performance dos modelos em questdo. A tabela 1 mostra a quantidade de dados

relativa a cada conjunto.

20

Tabela 1 - Numero de exemplares de cada classe nos conjuntos de dados

Original Nivelado Quadruplicado Teste
Montado 243 (64%) 243 972 | 61 (64%)
Travado 49 (13%) 243 072 | 12 (13%)
Nao Montado | g4 530/ 243 972 | 23 (23%)
Total 380 729 2916 96

4.2 AWS e MLOPs

Os modelos de DL sdo considerados computacionalmente custosos devido a
plenitude de pardmetros que os compdem somados com aqueles da etapa de pré-
processamento. Como discutido, é necessaria a otimizagdo desses paradmetros através de
repetidas sessdes de treino em grandes volumes de dados o que torna a complexidade
temporal exponencial [29].

A fim de reduzir o tempo de treinamento e deixar a otimiza¢do dos parametros dos
modelos mais eficiente, a implementacdo de técnicas de concorréncia para
processamento em graphics processing units (GPUs) se tornou pratica padrdo em
aplicacdes de DL [39]. Aliado a necessidade do paralelismo, uma infraestrutura autbnoma
também o é para se manter o funcionamento dos modelos com desempenho consistente,
bem como ter agilidade nas analises de diferente modelos e configuracdes de pardmetros
[40].

A combinagdo das aplicagbes de ML com ferramentas de automacéo de
engenharia de software constitui o que se chama de Machine Learning Operations
(MLOps). O conjunto de praticas e diretrizes operativas de MLOps englobam toda a
cadeia de treinamento dos modelos até o seu uso em produgdo e monitoramento de seus

desempenhos [40]. A figura 10 mostra uma tipica cadeia de operagdes dos modelos.

21

Figura 10 - Ciclo de operacéo de aplicagdes de ML

Esse conjunto de técnicas ajudam a simplificar a cadeia de processos do
treinamento de modelos e a sua automacéao traz escalabilidade na criacdo de estudos de
modelos e na execugdo desses para ensaios em produgdo. Também se aplica 0 método
de Continuous Integration / Contininuous Delivery (CI/CD) para que toda as
modificagdes realizadas sejam facilmente implementadas na arquitetura mantendo a
execucdo dos estudos continua. Nesse contexto, MLOPs tem como papel fundamental

garantir escalabilidade e estabilidade em processos de ML.

A fim de se averiguar a viabilidade de um futuro sistema de DL para previséo de
falhas, uma arquitetura em nuvem na Amazon Web Services (AWS) foi desenvolvida para
satisfazer os requerimentos discutidos acima. A figura 11é um esquematico da arquitetura

€m nuvem.

22

Containers

Spot Fleet

CodeCommit

K
<>

LLLLL

P2

TTTTT

LILLL

P2

TTTTT

-

CloudEormation

P2

C@ Cloudwatch

Arguivamento \
checagem e Partida

NoSQL DB

Estudos Completados

Estudos Requeridos

Figura 11 - Arquitetura AWS para producéo de modelos

Segue uma breve explicagdo dos recursos e servigos:

e Lambda: Moédulos serveriess que executam scripts sem a necessidade de

configurar um servidor dedicado.

e DynamoDB: Banco de dados néo relacional (NoSQL) de valores-chave

e S3: Servigo de armazenamento de arquivos

e Simple notification service (SNS): Servico de envio de mensagens

e CloudFormation: Servico que gerencia a criagdo de novos recursos da nuvem

e CloudWatch: Servico de monitoramento de recursos da nuvem

23

e CodeCommit: Gerenciador de repositérios git
e Instancias EC2 SPOT: maquinas dedicadas instanciadas por leildo

o Elastic Conatiner Registry (ECR): Servi¢co de gerenciamento de containers

O processo de treinamento e criacdo de modelos acontece da seguinte forma.
Todos os estudos requeridos pelas pesquisas serdo salvos em formato Javascript
Object Notation (JSON) na tabela “Estudos Requeridos” do dynamodb, que por sua
vez acionara o SNS para ativacdo do lambda de checagem de estudos. Esse ira
verificar se o estudo ja foi realizado comparando as tabelas “Estudo Requeridos” e
“Estudos Completados”, caso seja realmente um novo estudo, o lambda acionara o
CloudFormation para instanciar as maquinas spot com GPUs. Containers com
ambiente e bibliotecas configurados para treinar os modelos do keras tem suas
imagens salvas no ECR e sdo utilizadas ap6s a confirmagdo da inicializagdo das
instancias, dando procedimento ao treinamento e otimizacdo dos modelos. O
processo de treino e otimizacdo é definido nas configuragdes especificadas no
documento JSON. Por fim, as maquinas irdo salvar os melhores modelos no S3 e dar
inicio ao processo de desligamento. Por fim, o S3 ativara o lambda que ira confirmar
a execucdo do estudo e registrar as informagdes desse na tabela Dynamo

“EstudosCompletados”.

24

5 TREINAMENTO DOS MODELOS

Duas estratégias foram adotadas para se fazer a andlise de desempenho, treinar os
modelos em conjunto de dados de diferentes tamanhos e utilizar modelos de diferentes
complexidades em cada um dos conjuntos.

Todo o processo de treinamento foi realizado em ambiente Python. A etapa de
preparagdo dos conjuntos de dados foi realizada com auxilio da biblioteca Scikit-Learn.
Para a construcdo dos modelos a biblioteca Keras e o tensorflow 2.0 foi escolhido como
seu backend de processamento, sendo o treinamento realizado em insténcias Spotdo tipo
P da AWS.

Para os conjuntos de dados apresentados na secdo 4.1 foi otimizado os
hiperparametros de cada modelo com a técnica de cross-validation, dividindo o conjunto
de treino em cinco partes sendo uma utilizada na validacéo dos pardmetros escolhidos.

Para cada hiperparametro foi estabelecido um intervalo de busca, e em cada
processo iterativo um valor randémico era selecionado para o estudo, sendo nenhum
repetido em estudos consecutivos. Para gerencia-los, foi utilizada a biblioteca Optuna, que
tem como padréo o algoritmo de busca 7ree-structured Parzen Estimator.

Seguem os intervalos de busca analisados:

e Neurbnios por camada: [1, 2048]

e Numero de camada: [1, 10]

e Dropout: [0, 0.5]

e Batch Normalization: Gerenciado pelo Optuna

e Funcédo de ativacdo: ReLU nas camadas intermedidrias e softmax na ultima.
e Numero de camadas por filtro: {32, 64}

e Tamanho do kernel: {1, 3, 5}

e Stride:Fixoem 1

e Padding: Padrdo ‘same’do Keras, que preenche neurénios com zero

e Camadas transformer:[1,8]

e Numero de heads. {2, 4, 6, 8}

25

e Tamanho do embedding: {8, 16}

A precisdo na classe de montado foi escolhida como a fungdo objetivo da
otimizacé&o, pois foi considerado que os falsos positivos de montados em travados sédo
potencialmente mais danosos caso ocorram na operagdo. Ao fim da otimizagdo, os
modelos foram retreinados e seus melhores hiperpardmetros salvos em formato JSON. A

figura 12representa o fluxograma do processo de treinamento e otimizagéo.

Conjuto
Test
(Cross-val) » Modelos ¥ Avaliacdo
» Conjunto
Dados Treino -
Limpos
Divisdo 4:1
ry Hiperpardmetros |«
Conjunto . o ¢ Melhores
7 Teste ¥ Avaliacao Modelos
L 4
LLLLL
< Modelos = =
N Finais = F):! u

ESTUDO
JSON

]

'

1

1
T
]

1

|

Figura 12 - Fluxograma do processo de treinamento

26

6 DISCUSSAO

A primeira andlise foi feita em relacdo ao desempenho dos modelos treinados
conjuntos de diferentes tamanhos. Para isso foi calculado a precisdo média de cada classe
para cada combinagdo {conjunto, modelo}. Como discutido na segdo 5, a precisdo foi
considerada a métrica mais relevante para o sistema de previsdo. A figura 13 mostra a

evolucdo da precisdo dos modelos.

Desempenho médic dos modelos em relacdo aos conjuntos de treino

MLP
—&— CNN
—8— Transformer

0.84

0.82 1

0.80 1

Preciséo
(=)
~
=]

076

0.741

0721

Oridinal Nivélado Ouadru‘plicado

Figura 13 - Preciséo média das combinac¢des (conjunto, modelo)

Todos os modelos apresentaram melhora significativa ao serem treinados no
conjunto nivelado em relagdo ao original. J& com o conjunto quadruplicado apenas a CNN
teve um ganho na precisdo enquanto a MLP deteriorou e a 7ransformer ficou
praticamente estacionaria. A tabela 2 contém meédia das precisdes com a propor¢do de

desempenho ganho a cada aumento do conjunto de dados.

Tabela 2 - Precisdo média de todas as classes

MLP CNN Transformer
Original 0.73 0.72 0.71
Nivelado 0.83 (14%) 0.78 (8%) 0.79 (11%)
Quadruplicado 0.80 (-3%) 0.85 (10%) 0.79 (1%)

27

Estratificando as precisdes por classe é possivel perceber que o impacto dos

conjuntos no desempenho foi majoritariamente devido a classificacdo de travados. A

figura 14 evidencia a melhora em relacéo a essa classe e mostra que a CNN teve resultados

melhores que os outros modelos.

Todos os modelos ou permaneceram, ou deterioraram seus ganhos levemente na

classe de “Ndo montado”, e na classe de montados tiveram ganhos pequenos quando

comparados aos de travado.

1.0

08

e
=g

Precisac
o
=

0.2

0.0

Original

Montado

Precisdo em cada classe

Travado

Nao Montado

W

MLP
—a— CNN
—8— Transformer

—— .

Nivelado

Quadru'plicad'o

Figura 14 - Precisdo estratificada por classe

Para investigar os ganhos em relagdo a classe “travado”, foi utilizado a métrica F1

dos modelos para eliminar a preponderancia da precisdo em relagdo a sensibilidade,

analisando a média dessas métricas, como mostrado na equagdo 7. Assim pode-se

observar o desempenho da CNN isoladamente.

28

Tabela 3 - Valores de F1 para classe "travado"

MLP CNN | Transformer

Original 0 0 0
Nivelado 0.32 0.32 0.27
Quadruplicado 0.31 0.64 0.38

O descolamento da CNN em relagdo aos outros modelos é evidenciado na ultima

linha da fabela 3. Devido ao fato de a classe “travado” possuir apenas doze exemplos no

conjunto de testes, essa esta suscetivel a ter grandes variagdes no desempenho causado

por mudangas marginais. Para verificar esse fendmeno, subtraiu-se uma unidade

verdadeiro positivo das duas classes minoritarias “travado” e “ndo montado” na matriz

de confusdo da CNN (tabela 4) do conjunto quadruplicado.

Tabela 4 - Matriz de confusdo da combinagéo (Quadruplicado, CNN)

Previstos
Montado | Travado | Nao montado
. Montado 56 2
Reais Travado 5 7(-1) 0(+1)
Nao montado 4 0(+ 1) 19 (- 1)

Em seguida foi recalculada a métrica F1 na tabela 2 através das equacdes 5, 6 e 7

com resultado de 0.778 para a CNN treinada no conjunto quadruplicado. A figura 15exibe

as precisdes médias novamente, mas agora a CNN com deslocamento marginal de uma

unidade. Pode-se perceber que o descolamento da CNN em relagdo aos outros modelos

era devido a escassez de classes de “travado”.

29

Desempenho médio dos modelos em relacdo aos conjuntos de treino

MLP
—a— CNN
—8— Transformer
—&— CNN_Margem

0.84 4

0.82

0.80 -

Precisdo
o
-~
o

0.76

0.74 1

0.724

original Nivelado Quadruplicado
Figura 15 - Média das precisdes com erro marginal da CNN

A estagnacdo do desempenho no conjunto quadruplicado em relagdo a classe
“travado” pode ser explicada por uma deficiéncia de representatividade do conjunto
original, pois a sintetizagdo dos dados por SMOTe usa como referéncia a distribui¢éo dos
dados reais. Portanto se houver enviesamento por dados anémalos, mal classificados ou

falta de representatividade, esse erro vai ser propagado para o conjunto artificial.

Com a andlise sobre a variacdo do tamanho dos conjuntos revelando um possivel
problema de enviesamento, foi feita a comparagdo do desempenho dos modelos,

limitando-se a andlise ao conjunto ao quadruplicado.

30

1.0

0.8+

Preciséo
o
>

o
b

0.2+

0.0-

Precisédo em cada modelo
Montado Travado

Ndo Montado

MLP

.

CEE .

CNN®m Transformer m

Figura 16 - Precisédo de cada modelo para cada classe. Todos os modelos foram treinados
apenas pelo conjunto quadruplicado.

A partir da figura 16 pode-se perceber que ndo hd uma correlagdo clara entre

complexidade do modelo e desempenho. Isso significa que os modelos tiveram erro de

generalizagdo comparaveis, sugerindo que a limitacdo do desempenho néo se deve a alta

variancia.

As analises de complexidade e tamanho de conjunto de dados revelam que existe

um erro de enviesamento, pois ndo houve ganho de desempenho com o aumento do

numero de dados e aquele se mostrou indiferente a complexidade dos modelos. Portanto,

a provavel limitacdo do desempenho é a ma representatividade dos dados, que, caso fosse

adequada, era esperado uma melhora no desempenho dos modelos treinados no conjunto

quadruplicado.

31

7 CONCLUSAO

Este trabalho implementou a técnica SMOTe de data augmentation para
balanceamento e geracdo de dados sintéticos, nos quais foram treinados os modelos MLP,
CNN e transformer de DL. Com auxilio da AWS, os hiperparametros dos modelos foram
otimizados em nuvem e em seguida foi feita andlise do desempenho dos modelos

otimizados em cada conjunto de dado obtido.

O balanceamento do conjunto de dados original foi responsavel pelo maior
desempenho ao analisar os modelos treinados no conjunto nivelado. A maior parte desse
ganho ocorreu na melhora da preciséo da classe “travado” que era a classe minoritaria e

mais sujeita ao enviesamento.

Porém, a posterior expansdo de dados no conjunto quadruplicado néo resultou em
avancgos significativos com excecdo da CNN na classificagdo de travados. Mas, o
descolamento no desempenho foi devido apenas a mudangas marginais da previsdo
correta da classe, que é resultado dos poucos exemplos de travados no conjunto de teste.
Portanto, pode-se considerar que n&o houve ganhos relevantes no conjunto

quadruplicado em relagédo as classes “travado” e “ndo montado”.

Em seguida, a andlise unilateral dos modelos revelou que ndo houve nenhum
impacto significativo no desempenho quando considerada a arquitetura do modelo, o que
indica um possivel erro por enviesamento e sustenta a hipotese de ma representatividade
dos dados. Com a estagnacdo do desempenho no conjunto quadruplicado e a sua
invaridncia em relagdo aos modelos de diferentes complexidades, a provavel causa da

limitacdo do desempenho é um potencial enviesamento no conjunto de dados.

A migragdo do processo de treinamento para a nuvem agilizou a realizacdo dos
estudos permitindo que fossem treinados os modelos mais complexos nos conjuntos
maiores em tempo plausivel. A arquitetura desenvolvida também serd utilizada para
estudos futuros para serem treinados em escala, valendo-se da automacgdo de toda a

cadeia de processamento.

32

Nos estudos futuros sera feita a comparacdo da mesma cole¢do de modelos, mas
treinados em outros conjuntos de rosqueamento similares e serd realizado novos
experimentos com processo de amostragem mais rigoroso e assim ter dados mais

representativos.

33

REFERENCIAS

[1] Jia, Z., Bhatia, A., Aronson, R. M., Bourne, D., & Mason, M. T. (2019). A Survey of
Automated Threaded Fastening. /EEE Transactions on Automation Science and
Engineering, 16(1). https://doi.org/10.1109/TASE.2018.2835382

[2] Li, Z. (2015). Robotics research for 3c assembly automation. Accessed: Jan.
Available: https://app.box.com/s/zcg8qgxt6fw6v4xz22h6

[3] Rigelsford, J. (2004). Mechanical Assemblies: Their Design, Manufacture, and
Role in Product Development. Assembly Automation, 24(1).
https://doi.org/10.1108/aa.2004.03324aae.002

[4] Wiedmann, S., & Sturges, B. (2006). Spatial kinematic analysis of threaded
fastener assembly. Journal of Mechanical Design, Transactions of the ASME,
128(1). https://doi.org/10.1115/1.2114909

[5] Aronson, R. M., Bhatia, A, Jia, Z., Guillame-Bert, M., Bourne, D., Dubrawski, A., &
Mason, M. T. (2017). Data-Driven Classification of Screwdriving Operations.
In Springer Proceedings in Advanced Robotics (Vol. 1).
https://doi.org/10.1007/978-3-319-50115-4 22

[6] Aronson, R. M., Bhatia, A, Jia, Z., & Mason, M. T. (2017). Data collection for
screwdriving. Robotics Science and Systems, Workshop on (Empirically) Data-
Driven Manipulation, 1(2), 1-6.

[7] Pipino, L. L., Lee, Y. W.,, & Wang, R. Y. (2002). Data quality assessment.
Communications of the ACM, 45(4), 211-218.

[8] Goodfellow, 1., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
[9] Sejnowski, T. J. (2020). The unreasonable effectiveness of deep learning in

artificial intelligence. Proceedings of the National Academy of Sciences of the
United States of America, 11748). https://doi.org/10.1073/pnas.1907373117

[10] Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep
Learning for Computer Vision: A Brief Review. Computational Intelligence and
Neuroscience. https://doi.org/10.1155/2018/7068349

[11] Otter, D. W., Medina, J. R, & Kalita, J. K. (2021). A Survey of the Usages of Deep
Learning for Natural Language Processing. /EEE Transactions on Neural
Networks and Learning Systems, 322).
https://doi.org/10.1109/TNNLS.2020.2979670

34

[12] Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., & Muller, P. A. (2019).
Deep learning for time series classification: a review. Data Mining and
Knowledge Discovery, 334). https://doi.org/10.1007/s10618-019-00619-1

[13] Langkvist, M., Karlsson, L., & Loutfi, A. (2014). A review of unsupervised feature
learning and deep learning for time-series modeling. Pattern Recognition
Letters, 42(1). https://doi.org/10.1016/j.patrec.2014.01.008

[14] Taud, H., & Mas, J. F. (2018). Multilayer perceptron (MLP). In Geomatic
Approaches for Modeling Land Change Scenarios (pp. 451-455). Springer.

[15] Hayou, S., Doucet, A., & Rousseau, J. (2019). On the impact of the activation
function on deep neural networks training. In 36th International Conference on
Machine Learning, ICML 2019 (Vol. 2019-June).

[16] Aurélien Géron. (2019). Hands-on machine learning with Scikit-Learn, Keras
and TensorFlow: concepts, tools, and techniques to build intelligent
systems. O’Reilly Media.

[17] Agarap, A. F. (2018). Deep learning using rectified linear units (relu). ArXiv
Preprint ArXiv:1803.08375.

[18] Naser, M. Z., & Alavi, A. (2020). Insights into performance fitness and error
metrics for machine learning. ArXiv Preprint ArXiv:2006.00887.

[19] Rubinstein, R. Y., & Kroese, D. P. (2013). The cross-entropy method: a unified
approach to combinatorial optimization, Monte-Carlo simulation and
machine learning. Springer Science \& Business Media.

[20] Chen, L., Wang, S., Fan, W., Sun, J., & Naoi, S. (2016). Beyond human
recognition: A CNN-based framework for handwritten character
recognition. Proceedings - 3rd IAPR Asian Conference on Pattern Recognition,
ACPR 2015. https://doi.org/10.1109/ACPR.2015.7486592

[21] Shin, H. C., Roth, H. R, Gao, M, Ly, L., Xu, Z., Nogues, 1, Yao, J., Mollura, D., &
Summers, R. M. (2016). Deep Convolutional Neural Networks for Computer-
Aided Detection: CNN Architectures, Dataset Characteristics and Transfer
Learning. /EEE Transactions on Medical Imaging, 35(5).
https://doi.org/10.1109/TMI.2016.2528162

[22] Botalb, A., Moinuddin, M., Al-Saggaf, U. M., & Alj, S. S. A. (2018). Contrasting
Convolutional Neural Network (CNN) with Multi-Layer Perceptron (MLP)
for Big Data Analysis. /nternational Conference on Intelligent and Advanced
System, ICIAS 2018. https://doi.org/10.1109/1CIAS.2018.8540626

35

[23] Wang, Q., Li, B, Xiao, T., Zhu, J., Li, C., Wong, D. F., & Chao, L. S. (2020).
Learning deep transformer models for machine translation. ACL 2019 - 57th
Annual Meeting of the Association for Computational Linguistics, Proceedings of
the Conference. https://doi.org/10.18653/v1/p19-1176

[24] Kobayashi, G. (2021). Attention is Not Only a Weight: Analyzing
Transformers with Vector Norms. Journal of Natural Language Processing,
28(1). https://doi.org/10.5715/jnlp.28.292

[25] Tay, Y., Dehghani, M., Bahri, D., & Metzler, D. (2020). Efficient transformers: A
survey. ArXiv Preprint ArXiv:2009.06732.

[26] Hossin, M., & Sulaiman, M. N. (2015). A review on evaluation metrics for data
classification evaluations. /nfernational Journal of Data Mining \& Knowledge
Management Process, 5(2), 1.

[27] Seliya, N., Khoshgoftaar, T. M., & Van Hulse, J. (2009). A study on the
relationships of classifier performance metrics. Proceedings - International
Conference on Tools with Artificial Intelligence, ICTAI
https://doi.org/10.1109/1CTAI.2009.25

[28] Buckland, M., & Gey, F. (1994). The relationship between Recall and Precision.
Journal of the American Society for Information Science, 45(1).
https://doi.org/10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI12>3.0.CO;2-L

[29] Feurer, M., & Hutter, F. (2019). Hyperparameter optimization. In Automated
machine learning (pp. 3—33). Springer, Cham.

[30] Berrar, D. (2019). Cross-Validation.

[31] Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine-
learning practice and the classical bias-variance trade-off. Proceedings of
the National Academy of Sciences of the United States of America, 11632).
https://doi.org/10.1073/pnas.1903070116

[32] Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the
bias/variance dilemma. Neural Computation, 4(1), 1-58.

[33] Al-Jarrah, O. Y., Yoo, P. D., Muhaidat, S., Karagiannidis, G. K., & Taha, K. (2015).
Efficient Machine Learning for Big Data: A Review. Big Data Research.
https://doi.org/10.1016/j.bdr.2015.04.001

[34] Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data
Augmentation for Deep Learning. Journal of Big Data, &1).
https://doi.org/10.1186/s40537-019-0197-0

36

[35] Iwana, B. K., & Uchida, S. (2020). An empirical survey of data augmentation
for time series classification with neural networks. ArXiv Preprint
ArXiv:2007.15951.

[36] Fernandez, A., Garcia, S., Herrera, F., & Chawla, N. V. (2018). SMOTE for learning
from imbalanced data: progress and challenges, marking the 15-year
anniversary. Journal of Artificial Intelligence Research, 61, 863-905.

[37] Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE:
Synthetic minority over-sampling technique. Journal of Artificial Intelligence
Research, 16. https://doi.org/10.1613/jair.953

[38] Moreira, G. R,, Lahr, G. J. G., Boaventura, T., Savazzi, J. O., & Caurin, G. A. P.
(2018). Online prediction of threading task failure using Convolutional
Neural Networks. In /EEE International Conference on Intelligent Robots and
Systems. https://doi.org/10.1109/IR0OS.2018.8594501

[39] Ben-Nun, T., & Hoefler, T. (2019). Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis. ACM Computing Surveys, 524).
https://doi.org/10.1145/3320060

[40] M&kinen, S., Skogstrom, H., Laaksonen, E., & Mikkonen, T. (2021). Who Needs
MLOps: What Data Scientists Seek to Accomplish and How Can MLOps
Help?

