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Resumo

O plano de restabelecimento de energia elétrica esta diretamente ligado a confiabilidade
da rede e ao tempo de restabelecimento de energia. De forma que um plano de restabelecimento
ineficiente pode acarretar na interrupcéo de energia a diversas unidades consumidoras gerando
impactos econémicos e sociais. Um plano de restabelecimento consiste em: deteccéo de falha,
isolacao e restabelecimento. A deteccao ocorre por meio de equipamentos, que desligam o alimen-
tador ou sinalizam a falha. Apds o desligamento, o setor € isolado através de chaves de manobra de
carga e o alimentador é religado. Por fim, o setor é inspecionado por uma equipe para identificar
e reparar a falha. A roteirizagdo dessa equipe por esses pontos visando menores custos pode ser
entendida como um caso especial do problema do caixeiro-viajante em que se aplicou o DPSO,
uma meta-heuristica baseada em inteligéncia coletiva para encontrar solu¢des otimizadas num
espacgo de busca discreto. O algoritmo foi desenvolvido na linguagem Python 2.7 e foi aplicado em
um computador com processador de 64 bits do tipo Intel(R) Core(TM) i3-4005U com clock interno
de 1,70 GHz, em que foram realizados diversos testes em relagdo aos parametros do algoritmo
e as entradas do sistema. Embora o algoritmo ndo garanta 6timos globais, os resultados obtidos
foram satisfatorios quanto a redugéo do custo. O objetivo desse trabalho é roteirizar uma equipe de
inspegao visando menores custos utilizando o DPSO.

Palavras chave - DPSO, TSP, Roteamento, Restabelecimento, Sistema de distribuigéo.






Abstract

The restoration plan of a distribution system is directly connected to the system reliability
and power restoration time. An inefficient restoration plan may result in power interruption to various
consumer units and reflects in economic and social impacts. Therefore, a restoration plan consists of:
fault detection, isolation and restoration. The detection occurs through equipments, which switch off
the power supply or signals failure. After triping, the fault sector is isolated by switching devices and
the feeder is switched. Finally, a crew is sent to identify and repair the failure. The routing of this crew
through these points aimed at lower costs can be understood as a special case of traveling salesman
problem in which case was applied the DPSQO, a meta-heuristic based on collective intelligence to find
optimal solutions in a discreet search space. The algorithm was developed in Python 2.7 and was
applied on a 64-bit processor Intel (R) Core (TM) i3-4005U with internal clock 1.70 GHz in that were
conducted several tests on the algorithm parameters and system entries. Although the algorithm does
not guarantee the global minimum, the results were satisfactory as reducing the cost. The objective
of this work is to route an inspection crew aiming at lower costs using the DPSO.

Index Terms - DPSO, TSP, Routing, Restoration, Distribution system.
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1 Introducao

Estatisticas mostram, na maior parte, que falhas na rede de distribuicido de energia elé-
trica ocorrem devido ao clima, desgaste de equipamentos e acidentes (KAVOUSI-FARD ABDOL;
LAH; NIKNAM, 2014). Mas, antes mesmo de identificar as causas de um desligamento, deve-se
identificar o local em que ele ocorreu e restabelecer os clientes o mais rapido possivel (ZIDAN
ABOELSOOD; KHAIRALLA! 2016)), uma vez que a interrupcdo de energia gera impactos de ordem
econdmica e social (LINARES PEDRO; REY, [2013).

Sem um bom plano de restabelecimento de energia, a confiabilidade da rede de distribuicdo é
reduzida ja que a falha de um equipamento pode ocasionar a interrupgéo de varias UCs. Portanto,
€ essencial um plano de restabelecimento de energia eficaz, que consiste em: deteccao de falha,
isolamento e restabelecimento (COELHO A.; RODRIGUES, [2004).

Ocorrida a detecgao de falha por sinalizadores e disjuntores, o alimentador é desligado. Apds o
desligamento, a menor parte possivel que contém a falha é isolada por chaves de manobra e o
alimentador é religado para suprir as demais UCs. Diferentes métodos sdo usados para localizar as
irregularidades com a rede, incluindo o envio de uma equipe, que além de inspecionar o local realiza
o reparo (VASCO JOHN; RAMLACHAN| [2008).

A roteirizacao visando o menor custo, com multiplas paradas, dessa equipe de inspecéo € seme-
Ihante ao problema do caixeiro-viajante com algumas ressalvas: a equipe ndo deve retornar ao
ponto inicial, o mapa nao consiste em um grafo completo e os pontos nao possuem restricdo de
serem visitados apenas uma vez. Tratando-se de um problema de otimizagao combinatéria, ndo ha
heuristica com tempo polinomial que encontre resultado étimo (GERACE IVAN; GRECO, [2008).
Desta forma, a proposta desse trabalho é utilizar a otimizagao por enxame de particulas (PSO -
do inglés Particle Swarm Optimization), uma meta-heuristica bioinspirada no comportamento de
um bando de passaros voando a procura de matrizes alimenticias, para encontrar percursos com
custo reduzido. Metaforicamente, os passaros representam as solugdes do sistema, que trafegam
pelo espago de busca e utilizam-se de inteligéncias cognitiva e coletiva para atuar no préximo
deslocamento a procura de solugdes otimizadas (KENNEDY J.; EBERHART] [1995).

Pelo fato do PSO ser aplicado a fungbes continuas, utilizou-se do DPSO, uma versao discreta da
otimizagéo por enxame de particulas (WANG ; LAN HUANG, |2003). Embora esse algoritmo nao
garanta 6timo global, foi possivel obter resultados satisfatorios.

No [Capitulo 2/temos uma contextualizagéo do estado da arte nos planos de restabelecimento de
energia. Bem como uma explicagdo de como é o funcionamento do PSO e como € composto o
deslocamento das particulas. A explicagdo de como o DPSO foi adaptado do PSO e de como foram
realizados os testes constam no ja os resultados desses testes no[Capitulo 4] Por fim, no
[Capitulo 5]temos uma discusséo acerca dos resultados, concluséo e diretivas de continuidade do
trabalho.
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2 Desenvolvimento Teobrico

2.1 Plano de restabelecimento de energia

2.1.1 Introdugéao

O sistema de distribuicdo de energia elétrica, cujas falhas compde a maioria dos casos de

falta de energia (ZIDAN ABOELSOOD; KHAIRALLA|[2016), sem um plano de restabelecimento de
energia (PRE) eficaz, possui baixa confiabilidade, ja que a falha de um componente pode ocasionar
a interrupgao de varias UCs a jusante da regiao de falha (COELHO A.; RODRIGUES, [2004). A
deteccao das falhas deve ocorrer mesmo antes de se investigar as causas, ja que a interrupgao
da energia pode causar varios impactos de ordem econémica como: perda de produgdo, danos
de equipamentos, deterioracdo de matéria prima e custos de reinicio de producao. Além disso a
interrupgdo de energia pode trazer impactos sociais como riscos a saude e seguranga (LINARES
PEDRO; REY, 2013).
E necessario que o PRE seja eficiente para aumentar a confiabilidade do sistema, além de maximizar
0 numero de unidades consumidoras restauradas e diminuir os indicadores de continuidade coletivos,
duracgao equivalente de interrupcéo por unidade consumidora (DEC) e frequéncia equivalente de
interrupcéo por unidade consumidora (FEC) (DISTRIBUICAO, [2010). Podendo ser imprescindivel
para clientes criticos como hospitais, aeroportos e industrias.

2.1.2 Indicadores de continuidade do servico de distribuicao de energia elétrica

Segundo (SALES CLAUDIO; MONTEIRO, [2014), a confiabilidade do sistema de distribuigao
de energia elétrica é avaliada pelos indicadores de continuidade, que podem ser divididos em duas
familias:

» Frequéncia de interrupgdes durante o periodo de apuragio: associada as condigdes fisicas
dos ativos da concessionaria. Como a configuracao da rede, o grau de redundéancia e a idade
e qualidade de manutengéo dos equipamentos. Mais conhecido no Brasil como FEC;

» Duracdo cumulativa das interrup¢oes ocorridas durante um determinado intervalo de tempo:
associada aos recursos humanos e materiais disponiveis para a recomposi¢cao e reparos.
Corresponde ao indicador DEC.

2.1.2.1 Indicadores de continuidade individuais

A duragao de interrupgéo individual por unidade consumidora ou por ponto de conexéo (DIC)
é definida pela[Equacdo 1] expressa em horas e centésimos de hora, e a frequéncia de interrupgao
individual por unidade consumidora ou por ponto de conexdo (FIC) pela[Equacao 2] expressa o
numero da interrupcoées de por UC durante o periodo de apuracdo. Em que n € 0 niumero de
interrupgdes da UC considerada; ¢ corresponde ao indice de interrupgdes da UC, variando de 1
an; t(i) é tempo de duragdo da i-ésima interrupgdo da UC considerada ou ponto de conexdo. A
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apuragao das interrupcdes ocorre mensalmente (DISTRIBUICAQ, [2010).

DIC =) t(i) (1)
=1
FIC =n 2)

2.1.2.2 Indicadores de continuidade de conjunto de unidades consumidoras

Os indicadores de continuidade de conjunto de unidades consumidoras ou coletivos DEC,
expressa em horas e centésimos de hora, e FEC, expressa em nimero de interrupgdes e centésimos
do numero de interrupgoes, podem ser definidos de acordo com as Equagdes [3| e [4] e indicam,
respectivamente, a média de horas e o nimero de interrupcées médio de um determinado conjunto de
consumidores no periodo de apuragdo. Os indices DIC(i) e FIC(i) sdo os mesmos definidos pelas
Equacdes[1]e[2] respectivamente, para i-ésima UC atendida em baixa ou média tenséo faturadas do
conjunto; C'c corresponde ao numero total de UCs faturadas do conjunto no periodo de apuragao,
atendidas em baixa ou média tensdo. O periodo de apuracao das interrupgcdes corresponde aos
periodos de definicéo civil: mensal, trimestral e anual (DISTRIBUICAO, [2010).

Ce
> DIC(i)
DEC = le (3)
Ce
Y FIC(i)

2.1.3 Deteccao de falha

As falhas sdo detectadas por alarmes baseados em altas correntes e baixas tensoes elétricas,

que em conjunto com disjuntores sinalizam imediatamente que ocorreu uma falha através dos links de
comunicacao para o sistema de automacao de redes de distribuicdo (KAZEMI SHAHRAM; MILLAR,
2014). Esses disjuntores desarmam quando a corrente do alimentador supera uma carga pré-
determinada, com uma resposta no tempo que depende do valor medido de corrente (MILIOUDIS
APOSTOLOS N.; ANDREOQOU, 2012). Apos o desligamento do alimentador é necessario localizar o
ponto em que houve falha.
Diversos métodos sado utilizados para determinar o local de falha, dentre eles: a medigdo de
impedancia aparente (KEZUNOVIC| [2011), analise de circuito trifasico (YANG, [2007), inteligéncia
artificial integrada na analise de qualidade de poténcia (SOUZA J.C.S.; RODRIGUES, 2001) (TEO
C.Y.; GOOI,|[1998) (MOMOH J.A.; DIAS,|1997), além de envio de equipes de inspegao para localizar
e reparar a falha (VASCO JOHN; RAMLACHAN, 2008), sendo este ultimo o objeto de estudo deste
trabalho. Desses métodos, a medicdo de impedancia aparente e a analise de circuito trifasico
possuem o inconveniente de varias estimativas para o local de falha. A inteligéncia artificial requer
dados elevados para treinamento, além de novos treinamentos a cada mudancga na configuragdo do
sistema (ZIDAN ABOELSOOD; KHAIRALLA] 2016).
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2.1.4 Isolagao

Apbs localizada, a menor parte possivel do sistema que contém a falha é isolada por chaves
de manobra de carga, ou seja, as chaves seccionadoras ou chaves remotamente controladas sao
abertas.

Assim que isolada a area de falha, o disjuntor é fechado para que as demais UCs sejam supridas
pelo alimentador. Além disso, é realizada uma analise das cargas dos alimentadores interligados
para restabelecer a maior quantidade de UCs possivel (ZIDAN ABOELSOOD; KHAIRALLA/[2016).

2.1.5 Recomposicao

Uma vez que isolado o setor de falha, inicia-se a restauracdo das unidades consumidoras
sem energia visando a menor quantidade de manobras de chaves, maior nimero de unidades
restabelecidas e em menor tempo possivel (LI JUAN; MA] 2014). Define-se por setores os trechos
entre chaves como por exemplo na[Figura 1] que ilustra um grafo de rede de um setor, em que a
chave GM é uma chave estratégica; a chave SU; € uma chave seccionadora unipolar; By, Bs, Bs,
B4 e B; sédo postes; T4 € um transformador de distribuicdo. Realiza-se uma analise de carga para
checar se os clientes serdo parcial ou totalmente transferidos para outro alimentador interligado.
H& duas maneiras de se realizar a inspecao e recomposi¢cao (FANUCCHI; CAMILLO, 2016). Em uma
delas é feita a inspecao total dos trechos entre as chaves e caso nao encontrada a falha, os trechos
sao religados. Na outra ha a recomposicao trecho a trecho, em que cada setor é avaliado e caso ndo
apresente falha é religado partindo seguidamente para o préximo trecho desempenhando o mesmo
papel e assim sucessivamente (FANUCCHI; CAMILLO, 2016). Portanto, torna-se interessante
estudar formas de reduzir o tempo de inspecao das equipes. Como esse roteamento se encaixa no
tipo de problema combinatério, utiliza-se de heuristicas e meta-heuristicas para otimizar a solugao,
dentre elas o0 DPSO (do inglés Discrete Particle Swarm Optimization).

B,

GM

B,
o—=

kg & =
R

B,

Figura 1 — Exemplo de um grafo de rede de um setor entre as chaves GM e SU» para ilustrar a
definicao de setor. Retirado de (FANUCCHI; CAMILLO| [2016)

2.2 Otimizagao por enxame de particulas

2.2.1 Introducéao

A otimizacao por enxame de particulas (do inglés PSO - Particle Swarm Optimization) é
uma meta-heuristica bio-inspirada no comportamento de um bando de passaros a procura de fontes
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alimenticias.

As aves realizam buscas baseadas na cogni¢éo e na comunicagdo com as demais do mesmo bando.
Desta forma, ao encontrar alimento, as aves disseminam informagdes influenciando na forma com
que séao feitas as proximas buscas do bando. Isto €, quando é encontrado um local com abundancia
de comida, as novas buscas tendem a ocorrer nos arredores daquela area.

Considerando esse comportamento no cenario evolutivo, o bando tende a atingir 6timos locais e até
mesmo globais como matrizes alimenticias. Sob esse enfoque, foi elaborado um algoritimo de otimi-
zagdo. Sendo os termos usuais na literatura particulas e enxame para representar respectivamente
as aves e o bando.

Primeiramente introduzido por (KENNEDY J.; EBERHART][1995), 0 PSO é um algoritimo efetivo para
problemas fortemente nao lineares. Providas de velocidade, as particulas se deslocam pelo espago
de busca e suas posi¢oes sdo as solugdes do sistema. A medida que vao adquirindo posi¢des de
interesse, ou seja, solugdes otimizadas, o enxame dispde-se nessas posi¢cdes (GOMES et al., 2006).

2.2.2 Problemas de otimizagao

Dada uma funcao f com dominio S, que intitula-se fungdo de custo ou fungao-objetivo.
Define-se por minimizagdo: encontrar s* € S/f(s*) < f(s),Vs € S, em que s* é denominado
minimo. A maximizagdo é definida como: encontrar s* € S/ f(s*) > f(s),Vs € S, intitula-se s* como
maximo. Entende-se por problema de otimizagao: minimizar ou maximizar a fungao-objetivo f e a
solugdo étima, ou ponto 6timo do problema, corresponde ao minimo ou maximo, respectivamente.
Espacgo de busca ou dominio S é o conjunto de todas as solugdes viaveis do problema, ou seja,
aquelas que obedecem as restricdes do problema (BECCENERI, [2008).

2.2.2.1 Otimo local

O otimo local s% de uma fungéo f com dominio S, para uma regido A C S é definido
como s € A/f(s%) < f(s),Vs € Aou s’y € A/f(s%) > f(s),Vs € A, para minimo e maximo,
respectivamente. O espago de busca S pode conter multiplas regiées A;, A;/A;NA; = @i # j, em
que os pontos definidos nessas regides sao Unicos, ou seja, 7. # lej. Além disso, nao ha restrigcbes
para o valor que f assume como 6timo local, implicando na possibilidade de f(z%.) = f(x*Aj)
(BECCENERI, [2008).

2.2.2.2 Otimo global

O 6timo global s* de uma fungao com espago de busca S é definido como s* € S/ f(s*) <
f(s),¥s € Sous* € S/f(s*) > f(s),Vs € S, para minimo e maximo, respectivamente (BECCE+
NERI, 2008).

2.2.2.3 Heuristicas e meta-heuristicas

Segundo (REEVES, [1993), heuristica € uma técnica que busca boas solugdes (quase o6ti-
mas) a um custo computacional razoavel, porém sem ser capaz de garantir que as mesmas sejam
6timas ou admissiveis, podendo nao determinar a proximidade da solugao admissivel. Portanto, a
heuristica ndo garante a descoberta da melhor solucao, ou seja, a solugdo étima para determinado



2.2. Otimizag&o por enxame de particulas 21

problema. A flexibilidade e sua busca continua de utilizagdo minima de recursos computacionais sao
seus principais focos. Assim, é possivel que se atinja o 6timo global para um determinado problema,
mesmo que a heuristica ndo garanta esta responsabilidade e nem indique quao préxima a solugéao
se encontra do étimo global.

Como as demais heuristicas, a meta-heuristica visa encontrar a melhor solugdo para um problema
focando na resposta em questéo, utilizando um razoavel grau de recursos computacionais e flexibili-
dade controlada. Se diferenciam das outras heuristicas devido aos seus algoritmos serem aplicaveis
a varios tipos de problemas fazendo uso de combinagéo de uma ou mais heuristicas para explorarem
de forma conjunta o espaco de solugdes (CURSO, ). Sdo agrupadas em dois grandes grupos de
acordo com os critérios utilizados para a busca de solugdes: busca local e busca populacional,
o primeiro se baseia na exploracdo do espago de solugbes através de movimentos entre seus
vizinhos. A cada iteragdo é gerada uma nova geragao até que se consiga atingir uma solugao
desejavel (KIRKPATRICK et all [1983). Exemplo de um algoritmo qualificado como meta-heuristica
de busca local sdo os algoritmos de busca tabu (CURSO| ) e simulated annealing (KIRKPATRICK
et al,|1983). O segundo, consiste na busca da manutencao de um conjunto de boas solugoes e,
através de combinacgdes entre elas, tentam alcancar solugcées melhores. Como exemplo desta classe,
pode-se citar os algoritmos genéticos (GOLBERG, [1989)). Logo, a evolugéo da populagéo faz com
que a formacao dos novos individuos caminhem para o étimo, a medida que aumenta sua funcéo
de adaptacao (fitness). Dentre essas meta-heuristicas, varias propostas de novos procedimentos
meta-heuristicos vém sendo apresentadas. Uma dessas propostas, é o algoritmo conhecido como
otimizagéo por enxame de particulas (KENNEDY J.; EBERHART], [1995).

2.2.3 PSO canonico

Divulgado por Kennedy e Eberhart em 1995 (KENNEDY J.; EBERHART, [1995), o PSO
candnico ou cléssico consiste em um modelo de otimizagao de fungdes continuas néo lineares.
As N particulas de um enxame, ou enxame de tamanho NN, sdo as solugdes que trafegam pelo
espacgo de busca de dimensédo D. Esse é definido classicamente como um hipercubo da forma
[Trmin, Tmaz]”. Inicialmente, as particulas sdo distribuidas de maneira aleatéria e uniforme no
intervalo [Zy,in, Tmaz] Para cada dimensao. Essas posi¢des sdo atribuidas aos vetores ppest,, , COMO
valor inicial; sendo esta a melhor posigdo de cada particulae n € {1,..., N}. As posi¢des sédo
submetidas a uma fungéo de custo, cujo resultado é comparado com os demais a fim de eleger o de
menor valor. Uma vez encontrado o menor valor, sua posicao correspondente é atribuida ao vetor
Jhest: @ melhor posigdo do enxame.
As velocidades também sao iniciadas aleatoriamente, porém na pratica sua distribuigcao € uniforme

no intervalo [(#mingFmar) (Imex=Imin)] pois ndo é desejavel que elas tendam a deixar o espago de
busca na primeira iteragao.

Em seguida, as particulas tém suas velocidades e posigoes atualizadas pelas equagdes de mo-
vimento para que novamente sejam submetidas a fun¢éo de custo e ter seus resultados compa-
rados com os melhores de cada particula (pyest,,) € do enxame (gpest), respectivamente. Esse
processo ocorre iterativamente até que se alcance a precisdo desejada ou o limite de iteracbes
pré-estabelecido.
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2.2.4 Teoria dos grafos

Um grafo simples G é formado por um conjunto finito ndo vazio de vértices, denominado Vg,
e um conjunto finito de pares nao ordenados de elementos distintos de V; denominado Ag, que
corresponde as arestas. Lacos ou lacetes sdo as arestas que unem um vértice a ele préprio. Dois
vértices podem ter diversas arestas unindo-os, denominadas arestas multiplas. Desta forma, um
grafo é dito simples se ndo possui arestas multiplas e\ou lacetes. Um grafo em que as arestas se
atribuem nameros nao negativos é chamado de grafo com pesos ou grafo ponderado e um ndmero
atribuido a aresta a é denominado peso ou ponderagédo de a. Seja Vg = {vo,...,vn}, c(vi,v5) é0
comprimento da aresta a = {v;, v;}, em que v;,v; € Vg e 4,5 € {0,...,n}. Emum grafo ponderado,
o0 comprimento das arestas corresponde ao peso (LUCCHESI, [1979).

2.2.41 Grafos direcionados

A modelagem de certos problemas necessita de um sentido para as arestas, como por
exemplo em mapas de vias publicas, em que existem vias cujo trafego é permitido em uma Unica
direcdo. Um grafo direcionado (digrafo) D é constituido por um conjunto finito ndo vazio de vértices
Vp e em um conjunto finito de arestas orientadas Ap, também conhecidas como aros (LUCCHESI,
1979).

2.2.4.2 Grafos completos

Seja a = {v1,v2} a aresta de um grafo, denomina-se que a incide em v; e em v,. O grau de
um vértice v é dado pelo nimero de arestas incidentes em v e denota-se por g(v). Um grafo simples
cujos vértices possuem 0 mesmo grau r € intitulado grafo regular de grau . Um grafo regular com p
vértices em que todos possuam o mesmo grau p — 1 € denominado grafo completo K, (LUCCHESI,
1979).

2.2.4.3 Caminho e ciclo

Em um grafo G, caminho é uma sequéncia como: vy, a1, V1, a2, V2, . .., Um—1, Am, Vm. EM

quev; € Vg, i € {0,...,m} ea; € Ag/a; = {vj_1,v;}, 7 € {1,...,m}. Se vy = v, chama-se
caminho fechado, caso contrario caminho aberto. Se todas as arestas forem distintas, classifica-se
como caminho sem repeticdo de arestas. Analogamente, se todos os vértices forem distintos,
excetuando-se vg e v,,, caso caminho seja fechado, categoriza-se como caminho sem repeticao de
vértices.
Um caminho fechado sem repeticédo de vértices com o numero de arestas m > 1 é chamado de
ciclo. Qualquer par de arestas multiplas ou lacete também é um ciclo. Caminho hamiltoniano é um
caminho sem repeticdo de vértices que permite passar por todos os vértices de um grafo, caso esse
caminho descreva um ciclo, este € denominado ciclo hamiltoniano (LUCCHESI| [1979).

2.2.4.4 Arvore

Um grafo é conexo caso nao possa ser expresso como unido de dois grafos e desconexo
caso contrario. Portanto, um grafo desconexo pode ser expresso como a unido de dois grafos
conexos. Defini-se por arvore um grafo simples, conexo e sem ciclos (LUCCHESI, [1979).



2.2. Otimizag&o por enxame de particulas 23

2.2.4.5 Problema do menor caminho

Dado um grafo ponderado G, em que Vi = {vo,...,v,} € 0 conjunto de vértices e Ag
o de arestas. O problema do menor caminho consiste em encontrar um caminho no conjunto de
caminhos P de v; para vj, em que v;,v; € Vg ei € {0,...,j},5 € {1,...,n}, tal que f(p) seja
minimo dentre todos p € P. f(p) é a fungdo de peso do caminho ou funcéo de custo, dado pela
[Equacdo 5| (LUCCHESI, [1979).
J
Fo) =) clog, ki) 5)

k=1

2.2.5 PSO com grafo de influéncia

Na forma classica todas as particulas sédo informadas pelas demais quando ha uma posigao
de interesse. Esse tipo de dispersao de informacao traz ao enxame um comportamento uniforme,
que acelera a convergéncia se a fungao possui apenas 6timo global. Porém, quando a fungéo possui
6timos locais a busca pelo 6timo global fica prejudicada, uma vez que o foco do enxame pode se
fixar em um 6timo local, deixando de explorar os demais.

Com base nessa caracteristica é interessante controlar o trafego de informagéo. Para (CLERC,
2006a), é tradicional que modelemos uma rede de informagéao entre individuos por grafo, chamado de
grafo de influéncia. Cada n6 do grafo representa um individuo e cada aresta, um link de informacéo,
entre dois individuos A e B significa "A informa B". Esses links sao redefinidos estocasticamente a
cada iteragdo, em que cada particula informa outras K particulas escolhidas aleatoriamente com
reposigao. Isso implica que o grupo de informantes por particula tem uma média menor que K, pois
uma mesma particula receptora de informacao pode ser selecionada diversas vezes.

A titulo ilustrativo, uma particula escolhe outra aleatoriamente num enxame de tamanho NV, incluindo
ela mesma, para informar. Logo a probabilidade de um individuo ser selecionado durante uma
iteracdo na primeira escolha é de % e a probabilidade de n&o ser informado € 1 — % Para
as demais K escolhas dessa particula, que sdo eventos independentes, a probabilidade de um
individuo ndo ser selecionado é ¢ = (1 — %)K E a probabilidade de um individuo ser selecionado
ép=q¢-=1—q=1- (1 — %)K ou seja, existem apenas duas possibilidades: a particula ser
informada ou ndo. Como isso ocorre de forma independente para as N particulas e a probabilidade
de ocorréncia se mantém constante todas as vezes, tratam-se de ensaios de Bernoulli. Sendo S o
nimero de informantes de uma particula, essa é uma variavel aleatéria discreta com S ~ Bin(N, p),
pois € o numero de sucessos apés a realizacdo de N ensaios de Bernoulli. A probabilidade de
S assumir o valor de s informantes, em que s € {0,1,..., N} é dada pela[Equagao 6] A média
do numero de informantes por particula é dada pela esperanga matematica na [Equacdo 7| que
associada a[Equagdo 6] resulta na[Equacdo 8| (GRIMMETT] [1986). Ao substituir p na[Equagéo 8|
concluimos que o nimero médio de informantes por particula (K,) a cada iteragdo é dado pela
Como K é um parametro constante, nota-se que a medida que N cresce K, tende a K,
conforme a Demonstragéo Pela substituicédo da expressdo 1 — % por X, o limite passa a tender a
1.

N
P(S=s)= < )psqN‘s (6)
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N
E(S) =) sP(S=5) (7)
s=0
N
E(S) = Zs <]SV> p'q" =" =Np (8)

. X=1-+ _. i .
Demonstracéao 1 Iim N [1 — (1 — %)K] — ¥ lim =% LH imKk XK1=k

N—so00 X1 17X X1

Supondo que a cada iteragcdo um numero K de links de informagéo sejam estabelecidos aleato-
riamente por cada particula, apds t iteracdes teremos difundido uma informacéo para K' indivi-
duos. Generalizando, a probabilidade de um individuo n&o ser informado apos t incrementos é de
t
(1 - %)K . Desta forma, a probabilidade de um individuo ser atingido pelo menos uma vez é dada
1\ Kt . ~ .
por 1 — (1 - N) , valor que cresce rapidamente com t. Logo K n&o precisa ser grande para que a
propagacao ocorra rapidamente (CLERC, 2006a).

2.2.6 Equagbes de movimento

O movimento das particulas de um enxame de tamanho N para a k-ésima iteracao é
dado pelas Equagdes[10]e que representam, respectivamente, a atualizacao da velocidade e o
deslocamento em cada uma das D dimensdes. Os indices n e d se referem ao nimero da particula
e ao d-ésimo componente de cada vetor, tal que, n € {1,...,N}, d € {1,...,D}. O coeficiente
c1 € constante e representa a inércia, ja os coeficientes ¢, e c3 sdo chamados de coeficientes de
confianga cognitiva e social, nUmeros gerados de forma aleatéria em uma distribuicdo uniforme
para cada componente do vetor a cada iteracao, ou seja, sdo variaveis aleatérias continuas tal que
¢ ~U(0,C;), C; € R, i ={2,3}. O vetor ppes: € @ melhor posicédo de cada particula e gpes: @ melhor
posicao atingida pelo enxame. Os vetores = e v sd0 as posi¢coes e velocidades de cada particula.

Na|Equagéo 10| Clvfﬁ 4 corresponde a componente inercial da velocidade, c; caracteriza a confianga

da particula em seu préprio movimento. A parcela c’gd (pbestn,d — mﬁ’d) representa a componente

cognitiva, em que ¢ indica a confianga na melhor performance da prépria particula. A componente
social consta na terceira parcela: c’gd(gbestd - fﬁ,d)’ em que cs determina a confianga no melhor
informante.
k+1 k k k k k
’Un,d - clvn,d + C2d (pbeStn,d - xn,d) + CSd (gbestd - xn,d)
Inercial Cognitiva Social

k+1 _ k k+1
Tnd = Tnd + Un.d (11)
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2.2.7 Algoritmo PSO

Algoritmo 1: Otimizagéo por enxame de particulas - PSO

1 inicio

2

3

© 0o N o

10
1
12
13
14
15
16

17

fim

para cada particula € enxame faca
iniciar posicao;
iniciar velocidade;
fim
repita
Gerar links de informagéo;
para cada particula € enxame faca
Up,.., < calcular fungdo de custo da particula;
atualizar py.; da particula;
se algum valor € vy, ., < vy, ., entéo
Gbest < Pbest;
fim
atualizar velocidade da particula;
atualizar posi¢éao da particula;

fim

até que chegue a condigao de parada;







27

3 Materiais e métodos

3.1 Roteamento das equipes de inspecao de rede e o problema do caixeiro
vigjante

3.1.1 Problema do caixeiro-viajante

O problema do caixeiro-viajante, mais conhecido como TSP (do inglés Travel salesman

problem), é representativo de uma gama de problemas de otimizagdo combinatéria como controle
de cobertura para rede de sensores sem fio (DU et al.,2014), programacéo de recursos de maquina
virtual (HUANG; YANG; DING, 2013), problema do roteamento de veiculos que possuem capacidade
limitada de carga (KAO; CHEN,|2013)), dentre eles a proposta de roteamento de equipes de inspecéo
de redes de distribuicdo de energia. Pertencente a classe NP-Complete, ndo ha um algoritmo
polinomial que encontre o resultado 6timo, este encontrado apenas em tempo fatorial (N — 1)!.
Na forma original do TSP, um mapa das cidades é dado a um vendedor e ele deve visitar todas
apenas uma vez e retornar a cidade de origem, desempenhando o menor trajeto possivel. O mapa
consiste em um grafo finito completo e o objetivo é encontrar um ciclo hamiltoniano (GERACE
IVAN; GRECO, 2008).

3.1.2 Inspecao de rede

Muito semelhante ao TSP, a proposta de roteamento das equipes de inspegéo consiste em
fiscalizar pontos intermediarios as duas chaves de manobra que isolam o setor, de forma que a
equipe percorra a menor distancia possivel. Porém com ressalvas:

* a equipe nao deve retornar ao ponto inicial, isto é, deve partir de uma chave de manobra,
inspecionar os pontos de interesse e chegar na outra chave que isola o setor;

* 0 mapa nao consiste em um grafo completo, pois as equipes trafegam num grafo de vias
urbanas georreferenciado com os pontos de inspecao incorporados. Este ultimo denominado
como grafo de rede;

« como o deslocamento é feito por vias urbanas, os pontos de inspec¢ado ndo terdo a restricao de
serem visitados apenas uma vez. Visando o menor percurso de um grafo direcionado, pode
ser necessario passar novamente por um mesmo ponto.

3.2 DPSO aplicado ao roteamento de equipes de inspec¢ao de rede

Para o caso do roteamento de equipes de inspecao de rede, o algoritmo PSO canénico
ndo deve ser utilizado, pois se tratando de um otimizador de fungdes continuas oferece resultados
invalidos. Como alternativa para casos discretos ha o DPSO. Para manter a mesma estrutura do
as operagdes e os elementos das equagdes [10] e [{ 1] foram redefinidos (CLERC| [2004).
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3.2.1 Posicao

Seja GG um grafo de vias ponderado, ja com o grafo de rede incorporado, no qual G =
{Ng,Ag}, em que N¢ sdo os nés e Ag sdo as arestas. Os M nés sdo rotulados por niUmeros
naturais, ou seja, m € {0,1,..., M — 1}.

A posicao de cada particula consiste em um vetor cujos D elementos, ou dimensdes, sdo 0s nés a
serem inspecionados.

3.2.1.1 Subtracao de posicoes

A subtracdo de posi¢des resulta em velocidade, desta forma essa operagéo detecta todas
as trocas de elementos necessarias para levar de uma posi¢ao a outra, alojando-as em um vetor
velocidade. Exemplificando a operagéo, dados z; = [5,9, 14, 20, 19], 22 = [9, 20, 14, 5, 19], temos v,
tal que v = x1 — 22 = [(9,5), (20, 9)]. Desta forma, entende-se que v é a velocidade que desloca a
particula da posigao x, para x;.

A subtragédo de posicdes consta no em que D é a dimensé&o dos vetores de posicao
(posicao; e posicaos) e velocidade, definido na|subsegcao 3.2.2] € um vetor cujos elementos séo

duplas que representam uma troca entre dois nds. Além disso, utilizam-se duas fungdes: a AntiSwap,
definida nolalgoritmo 3| retorna a primeira dupla de troca detectada entre dois vetores de posigao e a
Swap, contida no [algoritmo 4] realiza a troca de dois elementos. A dupla do tipo (enumerar(posi¢ao),
posicédo) (algoritmo 3Hlinha 2) consiste como primeiro componente na fungdo enumerar aplicada ao

vetor posicao, essa funcio retorna o indice de cada elemento do vetor e como segundo componente,
0 elemento do vetor posigao associado ao indice retornado pela fungao enumerar. Desta forma, a
dupla para o primeiro elemento do vetor z; do exemplo acima seria (0, 5), para o segundo (1,9).

Algoritmo 2: Subtragédo de posigdes
Entrada: D, posi¢cao;, posigao,
Saida: velocidade

1 inicio

2 parai < 0 até D faca

3 Acrescente a velocidade[ AntiSwap(posi¢ao,, posigdos)]|;
4 Swap(posic¢ao,, velocidade[i]);

5 fim

6 Filtre os elementos @ de velocidade;

7 fim

Algoritmo 3: AntiSwap
Entrada: posi¢do;, posi¢ao.
Saida: dupla
inicio
2 para (n,i) € (enumerar(posi¢do; ), posi¢cdo, ) faca
se i # posicdo.[n] entdo
dupla < (posi¢éo [r],posicdos[n]);
fim

-

o s W

6 fim
7 fim
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3.2.2 \Velocidade

A velocidade v de cada particula foi definida de forma que troque, dois a dois, os elementos
do vetor posigdo: v = ((ig,jx)), ik, jk € Nag, k € {1,...,]|v||}. Em que a dupla (i, ji) pode ser
lida da forma "troque o elemento i; pelo j;", conhecido na literatura por Swap (WANG, 2007). O
realiza essa agédo e a fungdo enumerar retorna o indice de cada elemento do vetor
posicao. Essa troca também pode ser realizada pelo indice dos elementos do vetor, em que o par
(i,7) representa a troca do elemento de indice ¢, pelo elemento de indice j (WANG ; LAN HUANG,
2003). A ||v]| (norma de v) é a dimenséo do vetor velocidade ou nimero de Swaps a serem realizados,
ou seja, o vetor velocidade é uma colecao de Swaps.

Algoritmo 4: Swap
Entrada: posicao, dupla
Saida: posicao
1 inicio
2 se dupla # & entao
3 (Na, Np) + dupla;
4 para (n,i) € (enumerar(posi¢do), posicdo) faca
5 se i = N4 entao
6 ‘ posicdo[n] < Np;
7 fim
8 se i = Np entao
9 ‘ posicdo[n] < Nyu;
10 fim
11 fim
12 fim
13 fim

3.2.2.1 Adigéo de velocidades

A adicao de velocidades resume-se na incorporagédo ordenada ou concatenacao dos ele-
mentos dos vetores velocidade por outro vetor. Como exemplo temos v1 = ((3,4),(5,7),(4,9)) e
vy = ((6,7),(2,5)), a velocidade resultante serd v, = v + vy = ((3,4),(5,7),(4,9),(6,7),(2,5)).
Enfatiza-se que essa operacdo ndao € comutativa, uma vez que a ordem em que as trocas sao
realizadas esta relacionada a resultante (CLERC/ 2006b).

3.2.2.2 Multiplicacao por escalar

A multiplicagédo da velocidade v pelo escalar c pode ser dividida em 3 casos:

1. ¢ = 0: a multiplicagdo deve retornar cv = @;

2. 0 < ¢ < 1: devemos truncar o numero de duplas do vetor velocidade no maior inteiro menor
que o produto cl|v|[, isto &, cv = (v1,...,v|¢v|));

3. ¢ > 1: podemos escrever ¢ como um inteiro k mais um numero real ;7 < 1, tal que

cv=v4+v+---F+v+jv o _ o o
—_— , €m que a adi¢do de velocidades ja foi definida e a parcela jv é
k vezes
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correspondente a multiplicacédo por escalar entre 0 e 1.

A operacgao de multiplicagao é ilustrada pelo[algoritmo 5, em que é utilizado um vetor auxiliar para
receber os elementos do vetor velocidade e a varidvel ¢ é atribuido o valor da norma de auxiliar. Aléem
disso, a fungéo |z | retorna o maior inteiro menor que z, ou seja, |z| = max{m € Z | m < z}. Na

linha 11| doalgoritmo 5| utilizou-se a operagdo moédulo, que retorna o resto da divisdo de ¢ por |c]|,
ou seja, a parte decimal do nimero real c. As linhas[13]e[T5] contém o operador "+", que no caso
refere-se a concatenagdo de vetores velocidade, j& definida na[subsegédo 3.2.2.1| O vetor auxiliar[0
até (| ct])], representa o vetor auxiliar com o nimero de elementos truncado pelo maior inteiro menor
que o produto ct.

Algoritmo 5: Multiplicacao
Entrada: c, velocidade
Saida: velocidade

1 inicio

2 auxiliar < velocidade;

3 t < |lauxiliar||;

4 se ¢ = 0 entao

5 ‘ velocidade + &;

6 fim

7 se 0 < ¢ < 1entao

8 ‘ velocidade «+ auxiliar[0 até (|ct])];

9 fim
10 se ¢ > 1 entao
11 el < ¢ mod |c;
12 parai < 0 até (|c] — 1) faca
13 velocidade « velocidade + auxiliar ;
14 fim
15 velocidade < velocidade + auxiliar[0 até (|ct])];
16 fim
17 fim

3.2.3 Atualizar velocidade

Para atualizar a velocidade, utiliza-se a [Equagao 10| com as operagdes redefinidas. O
algoritmo 6/ mostra como a velocidade é alterada, a definicdo dos parametros ci, ca, ¢3, D, Dpest €
Jest CONstam na|subsecao 2.2.6]

Algoritmo 6: Atualizar velocidade
Entrada: D, c1, c2, €3, Gbest, Dbests POSIGA0, velocidade
Saida: velocidade

1 inicio

2 velocidade inercial < Multiplicagdo(c;, velocidade);

3 velocidade cognitiva <— Multiplicagdo(cq, Subtragéo de posigdes(D, ppest, POSi¢a0));
4 velocidade social + Multiplicagao(cs, Subtragao de posigdes(D, gpest, POSi¢ao));

5 velocidade < velocidade inercial + velocidade cognitiva + velocidade social;

6 fim
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3.2.4 Deslocamento

O deslocamento é feito de acordo com o [algoritmo 7} A[Equacdo 11]é mantida, porém o

algoritmo foi adequado aos casos discretos. A soma do vetor posi¢do a velocidade é feita através
do lago de controle atrelado a fungdo Swap para cada elemento do vetor velocidade, portanto a
equacao é mantida conceitualmente.

Algoritmo 7: Deslocamento
Entrada: posigao, velocidade
Saida: posicao

1 inicio

2 para i < 0 até || velocidade|| faca
3 ‘ Swap(posigao, velocidadeli));
4 fim

5 fim

3.2.5 Algoritmo DPSO completo

O[algoritmo 8| contém o DPSO aplicado ao roteamento de uma equipe de inspegdo. O vetor
chaves contém 2 elementos, sendo o primeiro a chave da qual a equipe partira para inspegéo e
0 segundo, a chave de chegada. O vetor inspe¢ao contém os pontos a serem inspecionados. Ao
parametro maxit € conferido o nimero maximo de iteragbes. Se atribui a entrada chamada grafo o
grafo de vias com o de rede incorporado. Os demais parametros foram previamente definidos.
Nal[linha 3] o vetor enxame recebe elementos do tipo particula, que ao se iniciarem embaralham os
elementos de inspecao e 0s alojam em seus respectivos vetores posicao.
As linhas de@]amdefinem o grafo de influéncia, em que a funcéo Inteiro aleatério(a, b) retorna um
ndmero inteiro aleatério em uma distribuicdo uniforme no intervalo [a, b)].
Allinha 23|contém o célculo da fungédo de custo para posicdo de cada particula do enxame ja aplicada
a fungao que retorna a rota (linha 22).
As linhas entre [24] e [27] atualizam o vetor py.s; para cada particula do enxame, além de manter o
respectivo valor da fungdo de custo no vetor epy.s;. J& as linhas no intervalo de [28a [34] atualizam
0 vetor gpest, 0 NUMeEro egpes: € @ menor rota encontrada. Por fim, as equagdes de movimento sdo
utilizadas entre as linhas [36] e [39]
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Algoritmo 8: DPSO

© 0 N o u

10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41

Entrada: chaves, inspegéao, grafo, maxit, N, D, K, c1, co, c3

Saida: Gvests €Gbests rota
inicio

fim

para
e
fim

n < 0 até NV faca
nxame[n] + particula(inspecgéo);

€Pbest 1:

€Gpest < 1;
1+ 0;
repita

p

aran < 0 até N faca
param <« 0 até N faca
‘ links[m|][n] < 0;
fim
links[n][n] < 1;

im

aram < 0 até N faca
para k + 0 até K faca
n < Inteiro aleatério(0, N — 1);
links[m][n] «+ 1;

fi

fim
m
ara j < 0 até N faca
rotas[j] + Fungéo de rota(enxame[j].posi¢éo, grafo, chaves);
L[j] + Fung&o de custo(rotas|j], grafo);
se L[j] < eppest OU eppest = 1 entdo
Drest[j] < enxame[j].posicao;
eppest[j] < Ljl;
fim
para g < 0 até N faca
se (L[j] < egpest 0U egpest = 1) € (links|g][j] = 1) entdo
Jbest < enxame|[j].posicao;
egvest < L[J];
rota + rotas[j;
fim

fim

im

ara j + 0 até N faca

Atualizar velocidade(D, c1, ¢2, €3, Gbest, Pbest, €NXame[j].posicdo, enxame[j].velocidade);

fi

Deslocamento(enxame[;].posi¢do, enxame]j].velocidade);
m

até que i = maxit;
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3.2.6 Funcao de custo

A Funcéo de custo no[algoritmo 9|calcula a distancia baseada na soma algébrica das arestas
ponderadas de cada trajeto, o valor retornado é denominado custo. Esses trajetos sdo dados pela
concatenacao do primeiro elemento do vetor chaves, seguido do respectivo vetor posi¢ao e do ultimo
elemento de chaves. A Fungao de rota utiliza o algoritmo de Dijkstra para encontrar o
menor caminho entre dois pontos sucessivos de cada trajeto contido no vetor rotas.

Algoritmo 9: Fungéo de custo
Entrada: trajeto, grafo

Saida: custo
1 inicio
2 custo < 0;
3 para z < 0 até (||frajeto|| — 1) faca
4 custo < custo + Tamanho aresta(trajeto[z], trajeto[z + 1]);
5 fim
6 fim

Algoritmo 10: Funcéo de rota
Entrada: posicao, grafo, chaves
Saida: trajeto

1 inicio

2 auxiliar < chaves|0] + posigdo + chaves[1];
3 14 0;

4 para x < 0 até (| auxiliar| — 1) faca

5 ‘ trajeto < trajeto + Menor caminho Dijkstra(grafo, auxiliar[x], auxiliar[z + 1]);
6 fim

7 repita

8 se trajetoli] = trajeto[i + 1] entao

9 ‘ Deletar(trajeto[i]);

10 fim

1 senao

12 ‘ 11+ 1;

13 fim

14 até que i < (||trajeto|| — 1);

15 fim

3.2.6.1 Algoritmo de Dijkstra

O algoritmo de Dijkstra foi usado para encontrar o0 menor caminho entre dois pontos sucessi-
vos do vetor inspegao. A complexidade desse algoritmo é O(n?), em que n é o nimero de nés do
grafo (ZAMBONI; PAMBOUKIAN; BARROS, 2006). Esse algoritmo é desenvolvido em uma arvore
de caminhos minimos, dado que caso haja arestas multiplas ou lagos, esses sdo transformados em
grafos simples deixando apenas as arestas de menor peso (BARROS; PAMBOUKIAN; ZAMBONI,
2007). Além de ter um bom desempenho (ATZINGEN et al.,2012), o algoritmo pode ser facilmente
implementado através da biblioteca networkx pela fungéo nx.dijkstra_path (HAGBERG; SCHULT;
SWART], [2008).
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3.3 Testes

Os testes foram realizados em um computador com processador de 64 bits do tipo Intel(R)
Core(TM) i3-4005U com clock interno de 1,70 GHz e memdéria cache de 3Mb, 4Gb de RAM e sistema
operacional Windows 10. A linguagem utilizada foi Python 2.7. O trabalho foi elaborado no ambiente
de desenvolvimento cientifico Anaconda (ANACONDA|, 2016), que facilitou a interface com o sistema
operacional Windows 10.

Para cada ponto coletado, em cada grafico, realizou-se 80 repeticdes do algoritmo com foco no
tempo de execucgao e no custo do melhor caminho encontrado.

3.3.1 Mapa - Grafo de vias

O grafo utilizado para os testes é do tipo /attice nao direcionado com arestas de tamanho
unitario, que por simplicidade representam vias de duas maos com o mesmo custo. Na|[Figura 2|
temos um exemplo desse tipo de grafo de tamanho 8x8, este mesmo grafo foi utilizado para os
testes de numero de iteragdes, tamanho do enxame, quantidade de informantes por particula e
namero de elementos a serem inspecionados. O grafo foi construido através do gerador de grafos
grid_2d_graph da biblioteca networkx (HAGBERG; SCHULT; SWART, [2008). Essa biblioteca da
linguagem Python proporciona a criagao, manipulagao e estudo da estrutura, dindmica e fungao de
redes complexas. A biblioteca matplotlib (HUNTER)] [2007), também pertencente a linguagem Python,
foi empregada na produgéao das figuras e graficos.

B

0

%
)

(w

Figura 2 — Grafo do tipo /attice 8x8 utilizado para os testes do roteamento de uma equipe de inspecao
de rede simbolizando vias de duas maos com 0 mesmo custo, unitario.
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3.3.2 Parametros constantes

Os coeficientes de confianga foram mantidos constantes durante os testes, em que ¢; =
0.689343, co = 1.42694 e c3 = 1.42694. Esses valores foram retirados de (CLERC/|2006a), ja que o
autor os indica para acelerar a convergéncia.

3.3.3 Numero de iteracdes

Para os testes com o nimero de iteragbes, o tamanho do enxame utilizado foi N = 20 com
4 informantes por particula (K = 4). O vetor chaves contém como elementos 0s nés 2 e 62, do
grafo da[Figura 2, como chave inicial e final, respectivamente. o vetor inspeg¢éo foi definido como
[17,23, 50, 36, 12, 56].
O teste foi iniciado com 11 iteragdes e terminou com 201, com acréscimo de 10 iteragdes a cada
ponto. Para cada um dos 20 pontos obtidos foram realizadas 80 repeticdes e calculou-se as médias
e desvios padrao dos respectivos custos dos gpes: (egBest) € duragao de execugao.

3.3.4 Numero de particulas ()

Os parametros empregados nesse teste foram o nimero de iteragdes fixado em 100, nimero

de informantes por particulas K = 4 e o grafo da Os vetores chaves = [2, 62] e inspegdo
= [17,23, 50, 36, 12, 56] foram mantidos como no teste do nimero de iteragdes.
O numero de particulas se inicia em 6, em que foram realizadas 80 repeti¢cdes, entdo foram
acrescidas 2 particulas e outras 80 repeticbes foram executadas. Esse processo ocorreu até o
enxame atingir o tamanho de 44 e as médias e desvios padrao foram calculados para cada ponto
para os custos, egp.st, € duragdo de execugao.

3.3.5 Numero de informantes por particula (K)

O numero de informantes por particula (K) foi variado de 1 a 20 com incremento de 1
informante a cada ponto coletado. Para esses pontos foram realizadas 80 repetiges e calculou-se
as médias e desvios padrao para 0s egp.s: € intervalos de tempo de execuc¢dao.

O tamanho do enxame foi fixado em 20 particulas, foram feitas 100 iteragdes por repeti¢éo e foi
empregado o grafo da[Figura 2| Os vetores chaves = [2,62] e inspecdo = [17, 23,50, 36, 12, 56]
foram conservados.

3.3.6 Numero de pontos de inspec¢ao

Os parametros mantidos nesse teste foram: N = 20, K = 4 e numero de iteragdes igual a
100. O grafo da [Figura 2|foi utilizado como grafo de vias e o vetor chaves = [2,62].
O numero de elementos do vetor de inspegéo foi incrementado de 1 em 1, em que os nds foram
obtidos de forma aleatéria no conjunto de nés do grafo. Esse nimero se inicia em 7 elementos,
[17,23,50, 36,12, 56, 6], finalizando o teste com 26. Para cada incremento de elementos do vetor
inspecao foram realizados 80 repeticoes e foram calculadas as médias e desvios padrao dos egpest
e tempos de execucgao.
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3.3.7 Representagao grafica do menor caminho encontrado

Para essa etapa realizou-se 80 repeticbes com N = 20, K = 4, 100 iteracbes, chaves
= [2,62], inspegdo = [17, 23, 50, 36, 12, 56]. O menor caminho com maior nimero de repeti¢éo foi
selecionado. Apoés a selegcdo do menor caminho, tragou-se o trajeto de vermelho no grafo de vias da
em que os pontos de inspegdo séo sinalizados de azul e as chaves por quadrados verdes.

Vale ressaltar que caso uma aresta seja percorrida mais de uma vez, sua cor tera uma tonalidade
mais escura.
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4 Resultados e discussao

Para cada teste dafsecdo 3.3} tragou-se dois grafico com os resultados, em um deles foi
obtido o custo do percurso de uma equipe de inspegéo e no outro o tempo de execugao do cddigo,
com suas respectivas médias (z) e desvios padrao (Vv s2).

4.1 Numero de iteracoes

O custo das posigdes gpes: €m fungao do nimero de iteragdes da[Tabela 1] ¢ ilustrado pela
O valor médio ap6s estabilizagéo, a partir do terceiro ponto, € de 29,56 com desvio padrao
médio de 0,96. O custo se estabilizou rapidamente com o aumento do niumero de iteragdes, pois a
partir do terceiro ponto, 31 iteragbes, o grafico mostra um comportamento tendendo a uniformidade.
Na [Figura 4] o tempo de execugéo apresentou comportamento linear em relagdo ao nimero de
iteragdes, cujos resultados constam na[Tabela 2|
O algoritmo DPSO mostrou-se validado pela (YIN|, 2004), em que esse obtém valores
menores a medida que aumentamos o numero de iteragdes, até se estabilizar num valor minimo.
Porém, o tempo de execugéo cresce linearmente com o nimero de iteragdes (Figura 4). Tornando-se
necessario ponderar sobre esse parametro se é desejavel uma solugao mais otimizada em detri-
mento do tempo de execucgao.

s Custo X Iteracao

Custo

0 50 1(I)O 150 2(I)O
Iteracao

Figura 3 — Custo das posi¢oes gpes: €m fungdo do nimero de iteragées. Com N = 20, K = 4,
chaves = [2,62], inspegdo = [17, 23, 50, 36, 12, 56], 80 repeti¢des por ponto, incremento
de 10 iteragGes de um ponto para o préximo.



38 Capitulo 4. Resultados e discussao

Tempo X Iteracao

1
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0 50 160 15;0 260
Iteracao

Figura 4 — Tempo de execugdo em fungédo do namero de iteragcbes. Com N = 20, K = 4, chaves
= [2,62], inspegdo = [17,23, 50, 36, 12, 56], 80 repetigdes por ponto, incremento de 10
iteragdes de um ponto para o préximo.
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Tabela 1 — Médias e desvios padrdo dos custos das posigdes gp.s: €m fungdo do nimero de itera-
¢des. Utilizando-se N = 20, K = 4, chaves = [2, 62], inspegdo = [17,23, 50, 36, 12, 56,
80 repeticbes por ponto, incremento de 10 iteragées de um ponto para o préximo.

Ponto | Numero de iterac6es z Vs?
1 11 32,85 | 2,07
2 21 29,75 | 1,02
3 31 29,52 | 0,88
4 41 29,50 | 0,87
5 51 29,62 | 0,98
6 61 29,58 | 0,91
7 71 29,68 | 1,09
8 81 29,55 | 0,89
9 91 29,60 | 0,97
10 101 29,62 | 1,08
11 111 29,58 | 1,01
12 121 29,52 | 0,94
13 131 29,50 | 0,97
14 141 29,50 | 0,87
15 151 29,50 | 0,92
16 161 29,55 | 1,00
17 171 29,58 | 0,96
18 181 29,40 | 0,92
19 191 29,68 | 1,05
20 201 29,48 | 0,91
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Tabela 2 — Médias e desvios padréo do tempo de execugdo em fungdo do nimero de iteragdes.
Utilizando-se N = 20, K = 4, chaves = [2,62], inspegdo = [17, 23,50, 36, 12, 56], 80
repetigdes por ponto, incremento de 10 iteragdes de um ponto para o proéximo.

Ponto | NUmero de iteracoes z V's?
1 11 0,05 | 0,01
2 21 0,51 | 0,03
3 31 0,97 | 0,09
4 41 1,32 | 0,12
5 51 1,59 | 0,08
6 61 1,90 | 0,09
7 71 2,23 | 0,09
8 81 2,55 | 0,11
9 91 2,89 | 0,12
10 101 3,27 | 0,20
11 111 3,59 | 0,25
12 121 3,87 | 0,18
13 131 4,22 | 0,20
14 141 4,56 | 0,21
15 151 4,87 | 0,25
16 161 5,20 | 0,25
17 171 5,51 | 0,30
18 181 5,79 | 0,30
19 191 6,27 | 0,31
20 201 6,52 | 0,39

4.2 Numero de particulas (V)

Na [Figura 5|temos o custo das posi¢des gpes: €m relagdo ao nimero de particulas do

enxame. Notam-se elevados desvio padrao e média para o primeiro ponto, cujos valores foram de
aproximadamente 5,41 e 39,20, respectivamente. A partir do décimo segundo ponto (N = 28) o
resultado se estabiliza de acordo com a[Tabela 3l A[Tabela 4l contém os resultados relacionados ao
tempo de execugdo. Nota-se pela[Figura 6/que o tempo de execugdo apresenta crescimento linear
com o numero de particulas empregado.
O tamanho do enxame influenciou de forma semelhante ao nimero de iteragbes na obtengao dos
minimos locais e globais. De forma que quanto maior o enxame, menores 0s custos obtidos até
estabilizar-se no valor minimo. Entretanto, o tempo de execugao também cresce de forma linear com
0 numero de particulas, sendo necessario encontrar um ponto de equilibrio.
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Figura 5 — Custo das posicdes gpes: €m funcéo do nimero de particulas do enxame. Com nimero
de iteragdes igual a 100, K = 4, chaves = [2,62], inspec¢do = [17, 23, 50, 36, 12, 56], 80
repeticdes por ponto, incremento de 2 particulas de um ponto para o préximo.
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Figura 6 — Tempo de execugcdo em fungado do numero de particulas do enxame. Com numero de
iteragdes igual a 100, K = 4, chaves = [2,62], inspegdo = [17,23, 50, 36, 12, 56], 80
repeticdes por ponto, incremento de 2 particulas de um ponto para o préximo.
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Tabela 3 — Médias e desvios padrao dos custos das posigdes gp.s: em fungdo do numero de
particulas do enxame. Com numero de iteragdes igual a 100, K = 4, chaves = [2, 62],
inspecéo = [17, 23, 50, 36, 12, 56|, 80 repeticdes por ponto, incremento de 2 particulas de
um ponto para o proximo.

Ponto | N z Vs
6 | 39,20 | 5,41
8 | 31,95 | 2,49
10 | 31,45 | 2,07
12 | 30,72 | 1,57
14 | 30,10 | 1,34
16 | 30,05 | 1,38
18 | 29,78 | 1,07
20 | 29,80 | 1,12
22 | 29,58 | 1,06
24 | 29,75 | 1,02
26 | 29,68 | 1,14
28 | 29,48 | 0,85
30 | 29,45 | 0,84
32 | 29,50 | 0,87
34 | 29,42 | 0,82
36 | 29,50 | 0,87
38 | 29,38 | 0,78
40 | 29,40 | 0,80
42 | 29,42 | 0,82
44 | 29,42 | 0,82
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Tabela 4 — Médias e desvios padrdo do tempo de execugao em fungdo do numero de particulas

do enxame. Com numero de iteragdes igual a 100, K = 4, chaves = [2, 62|, inspegéo
= [17, 23,50, 36, 12, 56|, 80 repetigdes por ponto, incremento de 2 particulas de um ponto

para o préximo.

Ponto | N z Vs
1 6 | 0,23 | 0,03
2 8 | 0,56 | 0,04
3 10 | 0,98 | 0,06
4 12 | 1,26 | 0,08
5 14 | 1,60 | 0,10
6 16 | 1,95 | 0,12
7 18 | 2,28 | 0,11
8 20 | 2,62 | 0,13
9 22 | 2,97 | 0,15
10 24 | 3,35 | 0,15
11 26 | 3,71 | 0,16
12 28 | 4,01 | 0,20
13 30 | 4,35 | 0,18
14 32 | 4,68 | 0,21
15 34 | 5,09 | 0,20
16 36 | 5,47 | 0,34
17 38 | 5,78 | 0,25
18 40 | 6,11 | 0,28
19 42 | 6,47 | 0,29
20 44 | 6,80 | 0,31

4.3 Numero de informantes por particula (K)

A[Tabela 5 contém os resultados referentes aos custos em fungédo de K, ilustrados pela
Figura 7l Na[Tabela 6|temos o tempo de execugdo em fungéo de K e seu comportamento pode ser
melhor observado pela|Figura 8| As médias e desvios padrdoes se mantiveram na mesma faixa para

todos os pontos, tanto no custo quanto no tempo de execugao.
O numero de informantes por particula ndo teve influéncia expressiva nos testes em virtude do

numero de iteragbes ser elevado e a propagacao da informagao ocorrer rapidamente como discutido

nalsubsecao 2.2.5
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Figura 7 — Custo das posicoes gp.s: €m fungdo do nimero de informantes por particulas do en-
xame. Com numero de iteragdes igual a 100, N = 20, chaves = [2,62], inspegdo
= [17,23,50, 36, 12, 56|, 80 repeticdes por ponto, incremento de 1 particula de um ponto
para o préximo.
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Figura 8 — Tempo de execugdo em fungdo do numero de informantes por particulas do en-

xame. Com numero de iteragdes igual a 100, N = 20, chaves = [2,62], inspegao
= [17,23, 50, 36, 12, 56], 80 repeti¢des por ponto, incremento de 1 particula de um ponto
para o préximo.
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Tabela 5 — Médias e desvios padrdo dos custos das posi¢cées gpest €m fungdo do numero de

informantes por particulas do enxame. Com numero de iteragdes igual a 100, N = 20,
chaves = [2,62], inspecdo = [17, 23, 50, 36, 12, 56], 80 repeti¢cdes por ponto, incremento

de 1 particula de um ponto para o préximo.

Ponto | K z Vs
1 1 ]29,82 | 1,18
2 2 | 29,62 | 0,98
3 3 | 29,52 | 0,88
4 4 | 29,52 | 0,94
5 5 | 29,52 | 0,94
6 6 | 29,78 | 1,07
7 7 | 29,48 | 0,91
8 8 | 29,62 | 0,98
9 9 | 29,58 | 0,91
10 10 | 29,60 | 0,92
11 11 | 29,60 | 0,97
12 12 | 29,42 | 0,82
13 13 | 29,60 | 0,97
14 14 | 29,60 | 0,97
15 15 | 29,60 | 0,92
16 16 | 29,52 | 0,88
17 17 | 29,55 | 0,89
18 18 | 29,40 | 0,80
19 19 | 29,60 | 0,92
20 20 | 29,65 | 1,04
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Tabela 6 — Médias e desvios padrdo dos tempos de execugao em fungdo do niumero de informantes
por particulas do enxame. Com numero de iteragdes igual a 100, N = 20, chaves
= [2,62], inspegdo = [17,23,50, 36,12, 56], 80 repeticdes por ponto, incremento de 1
particula de um ponto para o préximo.

Ponto | K z Vs
1 1 | 3,54 | 0,16
2 2 | 3,50 0,16
3 3 |352] 0,16
4 4 | 3,53 | 0,26
5 5 (3,52 0,17
6 6 | 3,56 | 0,16
7 7 | 3,510,116
8 8 | 3,53 | 0,16
9 9 | 355 0,16
10 10 | 3,52 | 0,15
11 11 | 3,55 | 0,16
12 12 | 3,55 | 0,17
13 13 | 3,57 | 0,15
14 14 | 3,57 | 0,16
15 15 | 3,55 | 0,17
16 16 | 3,55 | 0,17
17 17 | 3,59 | 0,24
18 18 | 3,57 | 0,14
19 19 | 3,57 | 0,15
20 20 | 3,61 | 0,17

4.4 Numero de pontos de inspecéao

Na|Tabela 7|temos os resultados relativos ao custo e sua representacéo na|Figura 9| A

média e o desvio padrdo crescem a medida em que s&o inseridos novos elementos. Na|[Tabela 8]
temos os resultados relativos ao tempo de execugéo e o gréafico na[Figura 10} Este apresenta um
crescimento aproximadamente linear com o numero de elementos do vetor inspecéo.

O numero de elementos a serem inspecionados relaciona-se com tempo de execugao do cédigo. A
medida que a norma do vetor inspecao aumenta, o tempo de execucao cresce de forma aproximada-
mente linear. Isso pode ser um problema devido ao nimero de elementos a serem inspecionados
ser elevado em um determinado setor.
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Figura 9 — Custo das posicoes gp.s: em funcdo do nimero de pontos de inspecdao. Com numero
de iteragbes igual a 100, N = 20, K = 4, chaves = [2,62], 80 repeti¢cdes por ponto,
incremento de 1 elemento a ser inspecionado de um ponto para outro.

s Tempo X || Inspegaol|

16} P

14} - i

2 Il Il Il Il
5 10 15 20 25

| Inspecaoll

Figura 10 — Tempo de execugao em fungdo do niumero de pontos de inspecdo. Com nimero de
iteragdes igual a 100, N = 20, K = 4, chaves = [2,62], 80 repeti¢bes por ponto,
incremento de 1 elemento a ser inspecionado de um ponto para outro.
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Tabela 7 — Médias e desvios padrao dos custos das posigdes gpes: €m fungdo do numero de pontos
de inspegdo. Com numero de iteragdes igual a 100, N = 20, K = 4, chaves = [2,62], 80
repeticdes por ponto, incremento de 1 elemento a ser inspecionado de um ponto para

outro.

Ponto | ||Inspegéol| z Vs?
1 7 32,17 | 1,29
2 8 32,92 | 1,72
3 9 33,95 | 2,10
4 10 35,75 | 2,08
5 11 37,72 | 2,63
6 12 38,33 | 3,03
7 13 42,50 | 2,96
8 14 44,95 | 4,05
9 15 46,88 | 3,86
10 16 49,42 | 3,87
11 17 59,75 | 4,42
12 18 64,53 | 4,30
13 19 67,12 | 4,09
14 20 68,53 | 4,09
15 21 75,70 | 4,58
16 22 79,85 | 4,69
17 23 85,78 | 4,27
18 24 89,40 | 4,66
19 25 91,72 | 4,99
20 26 95,22 | 4,18
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Tabela 8 — Médias e desvios padrao dos tempos de execug¢ao em fungdo do nimero de pontos de
inspegdo. Com numero de iteragdes igual a 100, N = 20, K = 4, chaves = [2, 62], 80
repeticoes por ponto, incremento de 1 elemento a ser inspecionado de um ponto para

outro.

Ponto | ||Inspecéol| z Vs?
1 7 3,86 | 0,21
2 8 4,13 | 0,27
3 9 4,49 | 0,25
4 10 5,00 | 0,26
5 11 5,53 | 0,29
6 12 5,91 | 0,41
7 13 6,76 | 0,44
8 14 7,81 | 0,48
9 15 8,26 | 0,49
10 16 8,90 | 0,53
11 17 10,85 | 0,18
12 18 11,48 | 0,33
13 19 11,93 | 0,20
14 20 12,32 | 0,16
15 21 13,10 | 0,33
16 22 13,72 | 0,17
17 23 14,51 | 0,17
18 24 15,04 | 0,30
19 25 15,58 | 0,18
20 26 16,00 | 0,18

4.5 Representacdo grafica do menor caminho encontrado

Na [Figura T1]temos a representacao gréfica do menor caminho encontrado. Devido ao grafo

de vias utilizado ser nao direcionado e com arestas de tamanho unitario, existem trajetos diferentes
que levam ao mesmo valor. Nesse teste, 70% (56 trajetos) dos resultados obtidos em 80 repeticbes
foram iguais ou de custo igual a esse trajeto. Excetuando-se esses 56 trajetos com redundancia de
custo, que sao 6timos globais, os demais se tratam de 6timos locais.
Os pontos azuis sdo os locais a serem inspecionados e os quadrados em verde as chaves de
manobra. Em vermelho temos a rota, com uma tonalidade mais escura para arestas percorridas
mais de uma vez. O custo desse trajeto resultou em 29 e a duracao de execucao do algoritmo
3,54[s]. Portanto, mesmo ndo encontrando o menor percurso possivel, o algoritmo ainda responde
de forma satisfatoria encontrando 6timos locais.
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Figura 11 — Representacgéo grafica para a solugédo do roteamento com custo de 29, obtido em 70
% dos casos, e 3,625[s] de duragdo da execugdo. Utlizando N = 20, K = 4, 100
iteragdes, chaves = [2, 62], inspecdo = [17, 23, 50, 36, 12, 56].
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5 Conclusao

Os parametros do DPSO devem ser selecionados de forma que se deseje um resultado mais
rapido ou mais otimizado. O numero de pontos de inspegao é proporcional ao tempo de execugao, a
medida que esse nimero aumenta, o tempo de execucdo também aumenta. Isso se torna um fator
limitante, pois um setor pode ter um elevado nimero de pontos a inspecionar.
A meta-heuristica se mostrou eficiente para roteirizar a inspec¢ao de uma equipe visando um custo re-
duzido do trajeto. Como a fungéo de custo depende dos pesos das arestas do grafo, pode-se atribuir
a esses pesos uma ponderagao de diferentes caracteristicas, dentre elas tempo e deslocamento.
Isso pode significar redug¢édo no tempo ou deslocamento da equipe em encontrar a falha e repara-la
e consequentemente reduzir o tempo de restabelecimento de energia.
A redugao de tempo na recomposi¢do de UCs pode diminuir o DEC, além de aumentar a confiabili-
dade da rede elétrica. Isso reduz os transtornos de ordem social e econémica aos clientes.
Como proposta para trabalhos futuros sugere-se analisar a resposta do algoritmo a diversas configu-
ragdes e tamanhos de grafos, incluindo grafos de vias reais. Pois ao utilizar o algoritmo de Dijkstra,
o custo computacional passa a depender do tamanho do grafo € quando se trata de um grafo de
vias reais, 0 nUmero de nés e arestas é elevado.
Além disso, propde-se estudar topologias de conectividade entre as particulas do enxame. Estruturas
fixas e regulares possuem desempenho melhor do que as aleatoriamente selecionadas, como foi
abordado nesse trabalho.
A Ponderagao dos pesos das arestas também fornece um objeto de estudo relevante, pois ela pode
estar relacionada a diversos fatores como: numero de clientes, gastos, clientes especiais e distancia.
A paralelizagdo da execugéo do programa também pode ser um campo estudado, em virtude da
reducdo do tempo de execucgao.
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