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Resumo

O plano de restabelecimento de energia elétrica está diretamente ligado à confiabilidade

da rede e ao tempo de restabelecimento de energia. De forma que um plano de restabelecimento

ineficiente pode acarretar na interrupção de energia a diversas unidades consumidoras gerando

impactos econômicos e sociais. Um plano de restabelecimento consiste em: detecção de falha,

isolação e restabelecimento. A detecção ocorre por meio de equipamentos, que desligam o alimen-

tador ou sinalizam a falha. Após o desligamento, o setor é isolado através de chaves de manobra de

carga e o alimentador é religado. Por fim, o setor é inspecionado por uma equipe para identificar

e reparar a falha. A roteirização dessa equipe por esses pontos visando menores custos pode ser

entendida como um caso especial do problema do caixeiro-viajante em que se aplicou o DPSO,

uma meta-heurística baseada em inteligência coletiva para encontrar soluções otimizadas num

espaço de busca discreto. O algoritmo foi desenvolvido na linguagem Python 2.7 e foi aplicado em

um computador com processador de 64 bits do tipo Intel(R) Core(TM) i3-4005U com clock interno

de 1,70 GHz, em que foram realizados diversos testes em relação aos parâmetros do algoritmo

e às entradas do sistema. Embora o algoritmo não garanta ótimos globais, os resultados obtidos

foram satisfatórios quanto a redução do custo. O objetivo desse trabalho é roteirizar uma equipe de

inspeção visando menores custos utilizando o DPSO.

Palavras chave - DPSO, TSP, Roteamento, Restabelecimento, Sistema de distribuição.





Abstract

The restoration plan of a distribution system is directly connected to the system reliability

and power restoration time. An inefficient restoration plan may result in power interruption to various

consumer units and reflects in economic and social impacts. Therefore, a restoration plan consists of:

fault detection, isolation and restoration. The detection occurs through equipments, which switch off

the power supply or signals failure. After triping, the fault sector is isolated by switching devices and

the feeder is switched. Finally, a crew is sent to identify and repair the failure. The routing of this crew

through these points aimed at lower costs can be understood as a special case of traveling salesman

problem in which case was applied the DPSO, a meta-heuristic based on collective intelligence to find

optimal solutions in a discreet search space. The algorithm was developed in Python 2.7 and was

applied on a 64-bit processor Intel (R) Core (TM) i3-4005U with internal clock 1.70 GHz in that were

conducted several tests on the algorithm parameters and system entries. Although the algorithm does

not guarantee the global minimum, the results were satisfactory as reducing the cost. The objective

of this work is to route an inspection crew aiming at lower costs using the DPSO.

Index Terms - DPSO, TSP, Routing, Restoration, Distribution system.
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1 Introdução

Estatísticas mostram, na maior parte, que falhas na rede de distribuição de energia elé-

trica ocorrem devido ao clima, desgaste de equipamentos e acidentes (KAVOUSI-FARD ABDOL-

LAH; NIKNAM, 2014). Mas, antes mesmo de identificar as causas de um desligamento, deve-se

identificar o local em que ele ocorreu e restabelecer os clientes o mais rápido possível (ZIDAN

ABOELSOOD; KHAIRALLA, 2016), uma vez que a interrupção de energia gera impactos de ordem

econômica e social (LINARES PEDRO; REY, 2013).

Sem um bom plano de restabelecimento de energia, a confiabilidade da rede de distribuição é

reduzida já que a falha de um equipamento pode ocasionar a interrupção de várias UCs. Portanto,

é essencial um plano de restabelecimento de energia eficaz, que consiste em: detecção de falha,

isolamento e restabelecimento (COELHO A.; RODRIGUES, 2004).

Ocorrida a detecção de falha por sinalizadores e disjuntores, o alimentador é desligado. Após o

desligamento, a menor parte possível que contém a falha é isolada por chaves de manobra e o

alimentador é religado para suprir às demais UCs. Diferentes métodos são usados para localizar as

irregularidades com a rede, incluindo o envio de uma equipe, que além de inspecionar o local realiza

o reparo (VASCO JOHN; RAMLACHAN, 2008).

A roteirização visando o menor custo, com múltiplas paradas, dessa equipe de inspeção é seme-

lhante ao problema do caixeiro-viajante com algumas ressalvas: a equipe não deve retornar ao

ponto inicial, o mapa não consiste em um grafo completo e os pontos não possuem restrição de

serem visitados apenas uma vez. Tratando-se de um problema de otimização combinatória, não há

heurística com tempo polinomial que encontre resultado ótimo (GERACE IVAN; GRECO, 2008).

Desta forma, a proposta desse trabalho é utilizar a otimização por enxame de partículas (PSO -

do inglês Particle Swarm Optimization), uma meta-heurística bioinspirada no comportamento de

um bando de pássaros voando a procura de matrizes alimentícias, para encontrar percursos com

custo reduzido. Metaforicamente, os pássaros representam as soluções do sistema, que trafegam

pelo espaço de busca e utilizam-se de inteligências cognitiva e coletiva para atuar no próximo

deslocamento a procura de soluções otimizadas (KENNEDY J.; EBERHART, 1995).

Pelo fato do PSO ser aplicado à funções contínuas, utilizou-se do DPSO, uma versão discreta da

otimização por enxame de partículas (WANG ; LAN HUANG, 2003). Embora esse algoritmo não

garanta ótimo global, foi possível obter resultados satisfatórios.

No Capítulo 2 temos uma contextualização do estado da arte nos planos de restabelecimento de

energia. Bem como uma explicação de como é o funcionamento do PSO e como é composto o

deslocamento das partículas. A explicação de como o DPSO foi adaptado do PSO e de como foram

realizados os testes constam no Capítulo 3, já os resultados desses testes no Capítulo 4. Por fim, no

Capítulo 5 temos uma discussão acerca dos resultados, conclusão e diretivas de continuidade do

trabalho.
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2 Desenvolvimento Teórico

2.1 Plano de restabelecimento de energia

2.1.1 Introdução

O sistema de distribuição de energia elétrica, cujas falhas compõe a maioria dos casos de

falta de energia (ZIDAN ABOELSOOD; KHAIRALLA, 2016), sem um plano de restabelecimento de

energia (PRE) eficaz, possui baixa confiabilidade, já que a falha de um componente pode ocasionar

a interrupção de várias UCs à jusante da região de falha (COELHO A.; RODRIGUES, 2004). A

detecção das falhas deve ocorrer mesmo antes de se investigar as causas, já que a interrupção

da energia pode causar vários impactos de ordem econômica como: perda de produção, danos

de equipamentos, deterioração de matéria prima e custos de reinício de produção. Além disso a

interrupção de energia pode trazer impactos sociais como riscos à saúde e segurança (LINARES

PEDRO; REY, 2013).

É necessário que o PRE seja eficiente para aumentar a confiabilidade do sistema, além de maximizar

o número de unidades consumidoras restauradas e diminuir os indicadores de continuidade coletivos,

duração equivalente de interrupção por unidade consumidora (DEC) e frequência equivalente de

interrupção por unidade consumidora (FEC) (DISTRIBUIÇÃO, 2010). Podendo ser imprescindível

para clientes críticos como hospitais, aeroportos e indústrias.

2.1.2 Indicadores de continuidade do serviço de distribuição de energia elétrica

Segundo (SALES CLAUDIO; MONTEIRO, 2014), a confiabilidade do sistema de distribuição

de energia elétrica é avaliada pelos indicadores de continuidade, que podem ser divididos em duas

famílias:

• Frequência de interrupções durante o período de apuração: associada às condições físicas

dos ativos da concessionária. Como a configuração da rede, o grau de redundância e a idade

e qualidade de manutenção dos equipamentos. Mais conhecido no Brasil como FEC;

• Duração cumulativa das interrupções ocorridas durante um determinado intervalo de tempo:

associada aos recursos humanos e materiais disponíveis para a recomposição e reparos.

Corresponde ao indicador DEC.

2.1.2.1 Indicadores de continuidade individuais

A duração de interrupção individual por unidade consumidora ou por ponto de conexão (DIC)

é definida pela Equação 1, expressa em horas e centésimos de hora, e a frequência de interrupção

individual por unidade consumidora ou por ponto de conexão (FIC) pela Equação 2, expressa o

número da interrupções de por UC durante o período de apuração. Em que n é o número de

interrupções da UC considerada; i corresponde ao índice de interrupções da UC, variando de 1

a n; t(i) é tempo de duração da i-ésima interrupção da UC considerada ou ponto de conexão. A
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apuração das interrupções ocorre mensalmente (DISTRIBUIÇÃO, 2010).

DIC =

n∑
i=1

t(i) (1)

FIC = n (2)

2.1.2.2 Indicadores de continuidade de conjunto de unidades consumidoras

Os indicadores de continuidade de conjunto de unidades consumidoras ou coletivos DEC,

expressa em horas e centésimos de hora, e FEC, expressa em número de interrupções e centésimos

do número de interrupções, podem ser definidos de acordo com as Equações 3 e 4 e indicam,

respectivamente, a média de horas e o número de interrupções médio de um determinado conjunto de

consumidores no período de apuração. Os índices DIC(i) e FIC(i) são os mesmos definidos pelas

Equações 1 e 2, respectivamente, para i-ésima UC atendida em baixa ou média tensão faturadas do

conjunto; Cc corresponde ao número total de UCs faturadas do conjunto no período de apuração,

atendidas em baixa ou média tensão. O período de apuração das interrupções corresponde aos

períodos de definição civil: mensal, trimestral e anual (DISTRIBUIÇÃO, 2010).

DEC =

Cc∑
i=1

DIC(i)

Cc
(3)

FEC =

Cc∑
i=1

FIC(i)

Cc
(4)

2.1.3 Detecção de falha

As falhas são detectadas por alarmes baseados em altas correntes e baixas tensões elétricas,

que em conjunto com disjuntores sinalizam imediatamente que ocorreu uma falha através dos links de

comunicação para o sistema de automação de redes de distribuição (KAZEMI SHAHRAM; MILLAR,

2014). Esses disjuntores desarmam quando a corrente do alimentador supera uma carga pré-

determinada, com uma resposta no tempo que depende do valor medido de corrente (MILIOUDIS

APOSTOLOS N.; ANDREOU, 2012). Após o desligamento do alimentador é necessário localizar o

ponto em que houve falha.

Diversos métodos são utilizados para determinar o local de falha, dentre eles: a medição de

impedância aparente (KEZUNOVIC, 2011), análise de circuito trifásico (YANG, 2007), inteligência

artificial integrada na análise de qualidade de potência (SOUZA J.C.S.; RODRIGUES, 2001) (TEO

C.Y.; GOOI, 1998) (MOMOH J.A.; DIAS, 1997), além de envio de equipes de inspeção para localizar

e reparar a falha (VASCO JOHN; RAMLACHAN, 2008), sendo este último o objeto de estudo deste

trabalho. Desses métodos, a medição de impedância aparente e a análise de circuito trifásico

possuem o inconveniente de várias estimativas para o local de falha. A inteligência artificial requer

dados elevados para treinamento, além de novos treinamentos a cada mudança na configuração do

sistema (ZIDAN ABOELSOOD; KHAIRALLA, 2016).
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2.1.4 Isolação

Após localizada, a menor parte possível do sistema que contém a falha é isolada por chaves

de manobra de carga, ou seja, as chaves seccionadoras ou chaves remotamente controladas são

abertas.

Assim que isolada a área de falha, o disjuntor é fechado para que as demais UCs sejam supridas

pelo alimentador. Além disso, é realizada uma análise das cargas dos alimentadores interligados

para restabelecer a maior quantidade de UCs possível (ZIDAN ABOELSOOD; KHAIRALLA, 2016).

2.1.5 Recomposição

Uma vez que isolado o setor de falha, inicia-se a restauração das unidades consumidoras

sem energia visando a menor quantidade de manobras de chaves, maior número de unidades

restabelecidas e em menor tempo possível (LI JUAN; MA, 2014). Define-se por setores os trechos

entre chaves como por exemplo na Figura 1 que ilustra um grafo de rede de um setor, em que a

chave GM é uma chave estratégica; a chave SU2 é uma chave seccionadora unipolar; B1, B2, B3,

B4 e B5 são postes; T4 é um transformador de distribuição. Realiza-se uma análise de carga para

checar se os clientes serão parcial ou totalmente transferidos para outro alimentador interligado.

Há duas maneiras de se realizar a inspeção e recomposição (FANUCCHI; CAMILLO, 2016). Em uma

delas é feita a inspeção total dos trechos entre as chaves e caso não encontrada a falha, os trechos

são religados. Na outra há a recomposição trecho a trecho, em que cada setor é avaliado e caso não

apresente falha é religado partindo seguidamente para o próximo trecho desempenhando o mesmo

papel e assim sucessivamente (FANUCCHI; CAMILLO, 2016). Portanto, torna-se interessante

estudar formas de reduzir o tempo de inspeção das equipes. Como esse roteamento se encaixa no

tipo de problema combinatório, utiliza-se de heurísticas e meta-heurísticas para otimizar a solução,

dentre elas o DPSO (do inglês Discrete Particle Swarm Optimization).

Figura 1 – Exemplo de um grafo de rede de um setor entre as chaves GM e SU2 para ilustrar a

definição de setor. Retirado de (FANUCCHI; CAMILLO, 2016)

2.2 Otimização por enxame de partículas

2.2.1 Introdução

A otimização por enxame de partículas (do inglês PSO - Particle Swarm Optimization) é

uma meta-heurística bio-inspirada no comportamento de um bando de pássaros a procura de fontes
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alimentícias.

As aves realizam buscas baseadas na cognição e na comunicação com as demais do mesmo bando.

Desta forma, ao encontrar alimento, as aves disseminam informações influenciando na forma com

que são feitas as próximas buscas do bando. Isto é, quando é encontrado um local com abundância

de comida, as novas buscas tendem a ocorrer nos arredores daquela área.

Considerando esse comportamento no cenário evolutivo, o bando tende a atingir ótimos locais e até

mesmo globais como matrizes alimentícias. Sob esse enfoque, foi elaborado um algorítimo de otimi-

zação. Sendo os termos usuais na literatura partículas e enxame para representar respectivamente

as aves e o bando.

Primeiramente introduzido por (KENNEDY J.; EBERHART, 1995), o PSO é um algorítimo efetivo para

problemas fortemente não lineares. Providas de velocidade, as partículas se deslocam pelo espaço

de busca e suas posições são as soluções do sistema. A medida que vão adquirindo posições de

interesse, ou seja, soluções otimizadas, o enxame dispõe-se nessas posições (GOMES et al., 2006).

2.2.2 Problemas de otimização

Dada uma função f com domínio S, que intitula-se função de custo ou função-objetivo.

Define-se por minimização: encontrar s∗ ∈ S/f(s∗) ≤ f(s),∀s ∈ S, em que s∗ é denominado

mínimo. A maximização é definida como: encontrar s∗ ∈ S/f(s∗) ≥ f(s),∀s ∈ S, intitula-se s∗ como

máximo. Entende-se por problema de otimização: minimizar ou maximizar a função-objetivo f e a

solução ótima, ou ponto ótimo do problema, corresponde ao mínimo ou máximo, respectivamente.

Espaço de busca ou domínio S é o conjunto de todas as soluções viáveis do problema, ou seja,

aquelas que obedecem às restrições do problema (BECCENERI, 2008).

2.2.2.1 Ótimo local

O ótimo local s∗A de uma função f com domínio S, para uma região A ⊂ S é definido

como s∗A ∈ A/f(s∗A) ≤ f(s), ∀s ∈ A ou s∗A ∈ A/f(s∗A) ≥ f(s), ∀s ∈ A, para mínimo e máximo,

respectivamente. O espaço de busca S pode conter múltiplas regiões Ai, Aj/Ai∩Aj = ∅, i 6= j, em

que os pontos definidos nessas regiões são únicos, ou seja, x∗Ai
6= x∗Aj

. Além disso, não há restrições

para o valor que f assume como ótimo local, implicando na possibilidade de f(x∗Ai
) = f(x∗Aj

)

(BECCENERI, 2008).

2.2.2.2 Ótimo global

O ótimo global s∗ de uma função com espaço de busca S é definido como s∗ ∈ S/f(s∗) ≤
f(s), ∀s ∈ S ou s∗ ∈ S/f(s∗) ≥ f(s), ∀s ∈ S, para mínimo e máximo, respectivamente (BECCE-

NERI, 2008).

2.2.2.3 Heurísticas e meta-heurísticas

Segundo (REEVES, 1993), heurística é uma técnica que busca boas soluções (quase óti-

mas) a um custo computacional razoável, porém sem ser capaz de garantir que as mesmas sejam

ótimas ou admissíveis, podendo não determinar a proximidade da solução admissível. Portanto, a

heurística não garante a descoberta da melhor solução, ou seja, a solução ótima para determinado
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problema. A flexibilidade e sua busca contínua de utilização mínima de recursos computacionais são

seus principais focos. Assim, é possível que se atinja o ótimo global para um determinado problema,

mesmo que a heurística não garanta esta responsabilidade e nem indique quão próxima a solução

se encontra do ótimo global.

Como as demais heurísticas, a meta-heurística visa encontrar a melhor solução para um problema

focando na resposta em questão, utilizando um razoável grau de recursos computacionais e flexibili-

dade controlada. Se diferenciam das outras heurísticas devido aos seus algoritmos serem aplicáveis

a vários tipos de problemas fazendo uso de combinação de uma ou mais heurísticas para explorarem

de forma conjunta o espaço de soluções (CURSO, ). São agrupadas em dois grandes grupos de

acordo com os critérios utilizados para a busca de soluções: busca local e busca populacional,

o primeiro se baseia na exploração do espaço de soluções através de movimentos entre seus

vizinhos. A cada iteração é gerada uma nova geração até que se consiga atingir uma solução

desejável (KIRKPATRICK et al., 1983). Exemplo de um algoritmo qualificado como meta-heurística

de busca local são os algoritmos de busca tabu (CURSO, ) e simulated annealing (KIRKPATRICK

et al., 1983). O segundo, consiste na busca da manutenção de um conjunto de boas soluções e,

através de combinações entre elas, tentam alcançar soluções melhores. Como exemplo desta classe,

pode-se citar os algoritmos genéticos (GOLBERG, 1989). Logo, a evolução da população faz com

que a formação dos novos indivíduos caminhem para o ótimo, à medida que aumenta sua função

de adaptação (fitness). Dentre essas meta-heurísticas, várias propostas de novos procedimentos

meta-heurísticos vêm sendo apresentadas. Uma dessas propostas, é o algoritmo conhecido como

otimização por enxame de partículas (KENNEDY J.; EBERHART, 1995).

2.2.3 PSO canônico

Divulgado por Kennedy e Eberhart em 1995 (KENNEDY J.; EBERHART, 1995), o PSO

canônico ou clássico consiste em um modelo de otimização de funções contínuas não lineares.

As N partículas de um enxame, ou enxame de tamanho N , são as soluções que trafegam pelo

espaço de busca de dimensão D. Esse é definido classicamente como um hipercubo da forma

[xmin, xmax]D. Inicialmente, as partículas são distribuídas de maneira aleatória e uniforme no

intervalo [xmin, xmax] para cada dimensão. Essas posições são atribuídas aos vetores pbestn , como

valor inicial; sendo esta a melhor posição de cada partícula e n ∈ {1, . . . , N}. As posições são

submetidas a uma função de custo, cujo resultado é comparado com os demais a fim de eleger o de

menor valor. Uma vez encontrado o menor valor, sua posição correspondente é atribuída ao vetor

gbest: a melhor posição do enxame.

As velocidades também são iniciadas aleatoriamente, porém na prática sua distribuição é uniforme

no intervalo [(xmin−xmax
2 ), (xmax−xmin

2 )], pois não é desejável que elas tendam a deixar o espaço de

busca na primeira iteração.

Em seguida, as partículas têm suas velocidades e posições atualizadas pelas equações de mo-

vimento para que novamente sejam submetidas a função de custo e ter seus resultados compa-

rados com os melhores de cada partícula (pbestn) e do enxame (gbest), respectivamente. Esse

processo ocorre iterativamente até que se alcance a precisão desejada ou o limite de iterações

pré-estabelecido.



22 Capítulo 2. Desenvolvimento Teórico

2.2.4 Teoria dos grafos

Um grafo simples G é formado por um conjunto finito não vazio de vértices, denominado VG,

e um conjunto finito de pares não ordenados de elementos distintos de VG denominado AG, que

corresponde às arestas. Laços ou lacetes são as arestas que unem um vértice a ele próprio. Dois

vértices podem ter diversas arestas unindo-os, denominadas arestas múltiplas. Desta forma, um

grafo é dito simples se não possui arestas múltiplas e\ou lacetes. Um grafo em que às arestas se

atribuem números não negativos é chamado de grafo com pesos ou grafo ponderado e um número

atribuído à aresta a é denominado peso ou ponderação de a. Seja VG = {v0, . . . , vn}, c(vi, vj) é o

comprimento da aresta a = {vi, vj}, em que vi, vj ∈ VG e i, j ∈ {0, . . . , n}. Em um grafo ponderado,

o comprimento das arestas corresponde ao peso (LUCCHESI, 1979).

2.2.4.1 Grafos direcionados

A modelagem de certos problemas necessita de um sentido para as arestas, como por

exemplo em mapas de vias publicas, em que existem vias cujo tráfego é permitido em uma única

direção. Um grafo direcionado (digrafo) D é constituído por um conjunto finito não vazio de vértices

VD e em um conjunto finito de arestas orientadas AD, também conhecidas como aros (LUCCHESI,

1979).

2.2.4.2 Grafos completos

Seja a = {v1, v2} a aresta de um grafo, denomina-se que a incide em v1 e em v2. O grau de

um vértice v é dado pelo número de arestas incidentes em v e denota-se por g(v). Um grafo simples

cujos vértices possuem o mesmo grau r é intitulado grafo regular de grau r. Um grafo regular com p

vértices em que todos possuam o mesmo grau p− 1 é denominado grafo completo Kp (LUCCHESI,

1979).

2.2.4.3 Caminho e ciclo

Em um grafo G, caminho é uma sequência como: v0, a1, v1, a2, v2, . . . , vm−1, am, vm. Em

que vi ∈ VG, i ∈ {0, . . . ,m} e aj ∈ AG/aj = {vj−1, vj}, j ∈ {1, . . . ,m}. Se v0 = vm chama-se

caminho fechado, caso contrário caminho aberto. Se todas as arestas forem distintas, classifica-se

como caminho sem repetição de arestas. Analogamente, se todos os vértices forem distintos,

excetuando-se v0 e vm caso caminho seja fechado, categoriza-se como caminho sem repetição de

vértices.

Um caminho fechado sem repetição de vértices com o número de arestas m ≥ 1 é chamado de

ciclo. Qualquer par de arestas múltiplas ou lacete também é um ciclo. Caminho hamiltoniano é um

caminho sem repetição de vértices que permite passar por todos os vértices de um grafo, caso esse

caminho descreva um ciclo, este é denominado ciclo hamiltoniano (LUCCHESI, 1979).

2.2.4.4 Árvore

Um grafo é conexo caso não possa ser expresso como união de dois grafos e desconexo

caso contrário. Portanto, um grafo desconexo pode ser expresso como a união de dois grafos

conexos. Defini-se por árvore um grafo simples, conexo e sem ciclos (LUCCHESI, 1979).
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2.2.4.5 Problema do menor caminho

Dado um grafo ponderado G, em que VG = {v0, . . . , vn} é o conjunto de vértices e AG

o de arestas. O problema do menor caminho consiste em encontrar um caminho no conjunto de

caminhos P de vi para vj , em que vi, vj ∈ VG e i ∈ {0, . . . , j}, j ∈ {1, . . . , n}, tal que f(p) seja

mínimo dentre todos p ∈ P . f(p) é a função de peso do caminho ou função de custo, dado pela

Equação 5 (LUCCHESI, 1979).

f(p) =

j∑
k=i

c(vk, vk+1) (5)

2.2.5 PSO com grafo de influência

Na forma clássica todas as partículas são informadas pelas demais quando há uma posição

de interesse. Esse tipo de dispersão de informação traz ao enxame um comportamento uniforme,

que acelera a convergência se a função possui apenas ótimo global. Porém, quando a função possui

ótimos locais a busca pelo ótimo global fica prejudicada, uma vez que o foco do enxame pode se

fixar em um ótimo local, deixando de explorar os demais.

Com base nessa característica é interessante controlar o tráfego de informação. Para (CLERC,

2006a), é tradicional que modelemos uma rede de informação entre indivíduos por grafo, chamado de

grafo de influência. Cada nó do grafo representa um indivíduo e cada aresta, um link de informação,

entre dois indivíduos A e B significa "A informa B". Esses links são redefinidos estocasticamente a

cada iteração, em que cada partícula informa outras K partículas escolhidas aleatoriamente com

reposição. Isso implica que o grupo de informantes por partícula tem uma média menor que K, pois

uma mesma partícula receptora de informação pode ser selecionada diversas vezes.

A título ilustrativo, uma partícula escolhe outra aleatoriamente num enxame de tamanho N , incluindo

ela mesma, para informar. Logo a probabilidade de um indivíduo ser selecionado durante uma

iteração na primeira escolha é de 1
N e a probabilidade de não ser informado é 1 − 1

N . Para

as demais K escolhas dessa partícula, que são eventos independentes, a probabilidade de um

indivíduo não ser selecionado é q =
(
1− 1

N

)K
. E a probabilidade de um indivíduo ser selecionado

é p = qc = 1 − q = 1 −
(
1− 1

N

)K
, ou seja, existem apenas duas possibilidades: a partícula ser

informada ou não. Como isso ocorre de forma independente para as N partículas e a probabilidade

de ocorrência se mantém constante todas as vezes, tratam-se de ensaios de Bernoulli. Sendo S o

número de informantes de uma partícula, essa é uma variável aleatória discreta com S ∼ Bin(N, p),

pois é o número de sucessos após a realização de N ensaios de Bernoulli. A probabilidade de

S assumir o valor de s informantes, em que s ∈ {0, 1, . . . , N} é dada pela Equação 6. A média

do número de informantes por partícula é dada pela esperança matemática na Equação 7, que

associada a Equação 6, resulta na Equação 8 (GRIMMETT, 1986). Ao substituir p na Equação 8,

concluímos que o número médio de informantes por partícula (Ko) a cada iteração é dado pela

Equação 9. Como K é um parâmetro constante, nota-se que a medida que N cresce Ko tende a K,

conforme a Demonstração 1. Pela substituição da expressão 1− 1
N por X , o limite passa a tender a

1.

P (S = s) =

(
N

s

)
psqN−s (6)
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E(S) =

N∑
s=0

sP (S = s) (7)

E(S) =

N∑
s=0

s

(
N

s

)
psqN−s = Np (8)

Ko = N

[
1−

(
1− 1

N

)K
]

(9)

Demonstração 1 lim
N→∞

N
[
1−

(
1− 1

N

)K] X=1− 1
N= lim

X→1

1−XK

1−X
L’H
= lim

X→1
KXK−1=K

Supondo que a cada iteração um número K de links de informação sejam estabelecidos aleato-

riamente por cada partícula, após t iterações teremos difundido uma informação para Kt indiví-

duos. Generalizando, a probabilidade de um indivíduo não ser informado após t incrementos é de(
1− 1

N

)Kt

. Desta forma, a probabilidade de um indivíduo ser atingido pelo menos uma vez é dada

por 1−
(
1− 1

N

)Kt

, valor que cresce rapidamente com t. Logo K não precisa ser grande para que a

propagação ocorra rapidamente (CLERC, 2006a).

2.2.6 Equações de movimento

O movimento das partículas de um enxame de tamanho N para a k-ésima iteração é

dado pelas Equações 10 e 11, que representam, respectivamente, a atualização da velocidade e o

deslocamento em cada uma das D dimensões. Os índices n e d se referem ao número da partícula

e ao d-ésimo componente de cada vetor, tal que, n ∈ {1, . . . , N}, d ∈ {1, ..., D}. O coeficiente

c1 é constante e representa a inércia, já os coeficientes c2 e c3 são chamados de coeficientes de

confiança cognitiva e social, números gerados de forma aleatória em uma distribuição uniforme

para cada componente do vetor a cada iteração, ou seja, são variáveis aleatórias contínuas tal que

ci ∼ U(0, Ci), Ci ∈ R, i = {2, 3}. O vetor pbest é a melhor posição de cada partícula e gbest a melhor

posição atingida pelo enxame. Os vetores x e v são as posições e velocidades de cada partícula.

Na Equação 10, c1vkn,d corresponde à componente inercial da velocidade, c1 caracteriza a confiança

da partícula em seu próprio movimento. A parcela ck2d(pbestn,d
− xkn,d) representa a componente

cognitiva, em que c2 indica a confiança na melhor performance da própria partícula. A componente

social consta na terceira parcela: ck3d(gbestd − xkn,d), em que c3 determina a confiança no melhor

informante.

vk+1
n,d = c1v

k
n,d︸ ︷︷ ︸ + ck2d(pbestn,d

− xkn,d)︸ ︷︷ ︸ + ck3d(gbestd − xkn,d)︸ ︷︷ ︸
Inercial Cognitiva Social

(10)

xk+1
n,d = xkn,d + vk+1

n,d (11)
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2.2.7 Algoritmo PSO

Algoritmo 1: Otimização por enxame de partículas - PSO

1 início

2 para cada partícula ∈ enxame faça

3 iniciar posição;

4 iniciar velocidade;

5 fim

6 repita

7 Gerar links de informação;

8 para cada particula ∈ enxame faça

9 vpbest
← calcular função de custo da partícula;

10 atualizar pbest da partícula;

11 se algum valor ∈ vpbest
< vgbest então

12 gbest ← pbest;

13 fim

14 atualizar velocidade da partícula;

15 atualizar posição da partícula;

16 fim

17 até que chegue a condição de parada;

18 fim
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3 Materiais e métodos

3.1 Roteamento das equipes de inspeção de rede e o problema do caixeiro

viajante

3.1.1 Problema do caixeiro-viajante

O problema do caixeiro-viajante, mais conhecido como TSP (do inglês Travel salesman

problem), é representativo de uma gama de problemas de otimização combinatória como controle

de cobertura para rede de sensores sem fio (DU et al., 2014), programação de recursos de máquina

virtual (HUANG; YANG; DING, 2013), problema do roteamento de veículos que possuem capacidade

limitada de carga (KAO; CHEN, 2013), dentre eles a proposta de roteamento de equipes de inspeção

de redes de distribuição de energia. Pertencente à classe NP-Complete, não há um algoritmo

polinomial que encontre o resultado ótimo, este encontrado apenas em tempo fatorial (N − 1)!.

Na forma original do TSP, um mapa das cidades é dado a um vendedor e ele deve visitar todas

apenas uma vez e retornar a cidade de origem, desempenhando o menor trajeto possível. O mapa

consiste em um grafo finito completo e o objetivo é encontrar um ciclo hamiltoniano (GERACE

IVAN; GRECO, 2008).

3.1.2 Inspeção de rede

Muito semelhante ao TSP, a proposta de roteamento das equipes de inspeção consiste em

fiscalizar pontos intermediários às duas chaves de manobra que isolam o setor, de forma que a

equipe percorra a menor distância possível. Porém com ressalvas:

• a equipe não deve retornar ao ponto inicial, isto é, deve partir de uma chave de manobra,

inspecionar os pontos de interesse e chegar na outra chave que isola o setor;

• o mapa não consiste em um grafo completo, pois as equipes trafegam num grafo de vias

urbanas georreferenciado com os pontos de inspeção incorporados. Este último denominado

como grafo de rede;

• como o deslocamento é feito por vias urbanas, os pontos de inspeção não terão a restrição de

serem visitados apenas uma vez. Visando o menor percurso de um grafo direcionado, pode

ser necessário passar novamente por um mesmo ponto.

3.2 DPSO aplicado ao roteamento de equipes de inspeção de rede

Para o caso do roteamento de equipes de inspeção de rede, o algoritmo PSO canônico

não deve ser utilizado, pois se tratando de um otimizador de funções contínuas oferece resultados

inválidos. Como alternativa para casos discretos há o DPSO. Para manter a mesma estrutura do

algoritmo 1, as operações e os elementos das equações 10 e 11 foram redefinidos (CLERC, 2004).
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3.2.1 Posição

Seja G um grafo de vias ponderado, já com o grafo de rede incorporado, no qual G =

{NG, AG}, em que NG são os nós e AG são as arestas. Os M nós são rotulados por números

naturais, ou seja, m ∈ {0, 1, . . . ,M − 1}.
A posição de cada partícula consiste em um vetor cujos D elementos, ou dimensões, são os nós a

serem inspecionados.

3.2.1.1 Subtração de posições

A subtração de posições resulta em velocidade, desta forma essa operação detecta todas

as trocas de elementos necessárias para levar de uma posição a outra, alojando-as em um vetor

velocidade. Exemplificando a operação, dados x1 = [5, 9, 14, 20, 19], x2 = [9, 20, 14, 5, 19], temos v,

tal que v = x1 − x2 = [(9, 5), (20, 9)]. Desta forma, entende-se que v é a velocidade que desloca a

partícula da posição x2 para x1.

A subtração de posições consta no algoritmo 2, em que D é a dimensão dos vetores de posição

(posição1 e posição2) e velocidade, definido na subseção 3.2.2, é um vetor cujos elementos são

duplas que representam uma troca entre dois nós. Além disso, utilizam-se duas funções: a AntiSwap,

definida no algoritmo 3, retorna a primeira dupla de troca detectada entre dois vetores de posição e a

Swap, contida no algoritmo 4, realiza a troca de dois elementos. A dupla do tipo (enumerar(posição),

posição) (algoritmo 3-linha 2) consiste como primeiro componente na função enumerar aplicada ao

vetor posição, essa função retorna o índice de cada elemento do vetor e como segundo componente,

o elemento do vetor posição associado ao índice retornado pela função enumerar. Desta forma, a

dupla para o primeiro elemento do vetor x1 do exemplo acima seria (0, 5), para o segundo (1, 9).

Algoritmo 2: Subtração de posições
Entrada: D, posição1, posição2

Saída: velocidade

1 início

2 para i← 0 até D faça

3 Acrescente a velocidade[ AntiSwap(posição1, posição2)];

4 Swap(posição1, velocidade[i]);

5 fim

6 Filtre os elementos ∅ de velocidade;

7 fim

Algoritmo 3: AntiSwap
Entrada: posição1, posição2

Saída: dupla

1 início

2 para (n, i) ∈ (enumerar(posição1), posição1) faça

3 se i 6= posição2[n] então

4 dupla← (posição1[n],posição2[n]);

5 fim

6 fim

7 fim
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3.2.2 Velocidade

A velocidade v de cada partícula foi definida de forma que troque, dois a dois, os elementos

do vetor posição: v = ((ik, jk)), ik, jk ∈ NG, k ∈ {1, . . . , ‖v‖}. Em que a dupla (ik, jk) pode ser

lida da forma "troque o elemento ik pelo jk", conhecido na literatura por Swap (WANG, 2007). O

algoritmo 4 realiza essa ação e a função enumerar retorna o índice de cada elemento do vetor

posição. Essa troca também pode ser realizada pelo índice dos elementos do vetor, em que o par

(i, j) representa a troca do elemento de índice i, pelo elemento de índice j (WANG ; LAN HUANG,

2003). A ‖v‖ (norma de v) é a dimensão do vetor velocidade ou número de Swaps a serem realizados,

ou seja, o vetor velocidade é uma coleção de Swaps.

Algoritmo 4: Swap
Entrada: posição, dupla

Saída: posição

1 início

2 se dupla 6= ∅ então

3 (NA, NB)← dupla;

4 para (n, i) ∈ (enumerar(posição), posição) faça

5 se i = NA então

6 posição[n]← NB ;

7 fim

8 se i = NB então

9 posição[n]← NA;

10 fim

11 fim

12 fim

13 fim

3.2.2.1 Adição de velocidades

A adição de velocidades resume-se na incorporação ordenada ou concatenação dos ele-

mentos dos vetores velocidade por outro vetor. Como exemplo temos v1 = ((3, 4), (5, 7), (4, 9)) e

v2 = ((6, 7), (2, 5)), a velocidade resultante será vr = v1 + v2 = ((3, 4), (5, 7), (4, 9), (6, 7), (2, 5)).

Enfatiza-se que essa operação não é comutativa, uma vez que a ordem em que as trocas são

realizadas está relacionada à resultante (CLERC, 2006b).

3.2.2.2 Multiplicação por escalar

A multiplicação da velocidade v pelo escalar c pode ser dividida em 3 casos:

1. c = 0: a multiplicação deve retornar cv = ∅;

2. 0 < c ≤ 1: devemos truncar o número de duplas do vetor velocidade no maior inteiro menor

que o produto c‖v‖, isto é, cv = (v1, . . . , vbc‖v‖c);

3. c > 1: podemos escrever c como um inteiro k mais um número real j < 1, tal que
cv = v + v + · · ·+ v︸ ︷︷ ︸+jv

k vezes
, em que a adição de velocidades já foi definida e a parcela jv é
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correspondente à multiplicação por escalar entre 0 e 1.

A operação de multiplicação é ilustrada pelo algoritmo 5, em que é utilizado um vetor auxiliar para

receber os elementos do vetor velocidade e à variável t é atribuído o valor da norma de auxiliar. Além

disso, a função bxc retorna o maior inteiro menor que x, ou seja, bxc = max{m ∈ Z | m ≤ x}. Na

linha 11, do algoritmo 5, utilizou-se a operação módulo, que retorna o resto da divisão de c por bcc,
ou seja, a parte decimal do número real c. As linhas 13 e 15 contém o operador "+", que no caso

refere-se à concatenação de vetores velocidade, já definida na subseção 3.2.2.1. O vetor auxiliar[0

até (bctc)], representa o vetor auxiliar com o número de elementos truncado pelo maior inteiro menor

que o produto ct.

Algoritmo 5: Multiplicação
Entrada: c, velocidade

Saída: velocidade

1 início

2 auxiliar← velocidade;

3 t← ‖auxiliar‖;
4 se c = 0 então

5 velocidade← ∅;

6 fim

7 se 0 < c ≤ 1 então

8 velocidade← auxiliar[0 até (bctc)];
9 fim

10 se c > 1 então

11 cl← c mod bcc;
12 para i← 0 até (bcc − 1) faça

13 velocidade← velocidade + auxiliar ;

14 fim

15 velocidade← velocidade + auxiliar[0 até (bctc)];
16 fim

17 fim

3.2.3 Atualizar velocidade

Para atualizar a velocidade, utiliza-se a Equação 10 com as operações redefinidas. O

algoritmo 6 mostra como a velocidade é alterada, a definição dos parâmetros c1, c2, c3, D, pbest e

gbest constam na subseção 2.2.6.

Algoritmo 6: Atualizar velocidade
Entrada: D, c1, c2, c3, gbest, pbest, posição, velocidade

Saída: velocidade

1 início

2 velocidade inercial← Multiplicação(c1, velocidade);

3 velocidade cognitiva← Multiplicação(c2, Subtração de posições(D, pbest, posição));

4 velocidade social← Multiplicação(c3, Subtração de posições(D, gbest, posição));

5 velocidade← velocidade inercial + velocidade cognitiva + velocidade social;

6 fim
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3.2.4 Deslocamento

O deslocamento é feito de acordo com o algoritmo 7. A Equação 11 é mantida, porém o

algoritmo foi adequado aos casos discretos. A soma do vetor posição à velocidade é feita através

do laço de controle atrelado a função Swap para cada elemento do vetor velocidade, portanto a

equação é mantida conceitualmente.

Algoritmo 7: Deslocamento
Entrada: posição, velocidade

Saída: posição

1 início

2 para i← 0 até ‖velocidade‖ faça

3 Swap(posição, velocidade[i]);

4 fim

5 fim

3.2.5 Algoritmo DPSO completo

O algoritmo 8 contém o DPSO aplicado ao roteamento de uma equipe de inspeção. O vetor
chaves contém 2 elementos, sendo o primeiro a chave da qual a equipe partirá para inspeção e
o segundo, a chave de chegada. O vetor inspeção contém os pontos a serem inspecionados. Ao
parâmetro maxit é conferido o número máximo de iterações. Se atribui à entrada chamada grafo o
grafo de vias com o de rede incorporado. Os demais parâmetros foram previamente definidos.
Na linha 3, o vetor enxame recebe elementos do tipo partícula, que ao se iniciarem embaralham os
elementos de inspeção e os alojam em seus respectivos vetores posição.
As linhas de 9 a 20 definem o grafo de influência, em que a função Inteiro aleatório(a, b) retorna um
número inteiro aleatório em uma distribuição uniforme no intervalo [a, b].
A linha 23 contém o cálculo da função de custo para posição de cada partícula do enxame já aplicada
à função que retorna a rota (linha 22).
As linhas entre 24 e 27 atualizam o vetor pbest para cada partícula do enxame, além de manter o
respectivo valor da função de custo no vetor epbest. Já as linhas no intervalo de 28 a 34 atualizam
o vetor gbest, o número egbest e a menor rota encontrada. Por fim, as equações de movimento são
utilizadas entre as linhas 36 e 39.
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Algoritmo 8: DPSO
Entrada: chaves, inspeção, grafo, maxit, N , D, K, c1, c2, c3
Saída: gbest, egbest, rota

1 início

2 para n← 0 até N faça

3 enxame[n]← partícula(inspeção);

4 fim

5 epbest ← 1;

6 egbest ← 1;

7 i← 0;

8 repita

9 para n← 0 até N faça

10 para m← 0 até N faça

11 links[m][n]← 0;

12 fim

13 links[n][n]← 1;

14 fim

15 para m← 0 até N faça

16 para k ← 0 até K faça

17 n← Inteiro aleatório(0, N − 1);

18 links[m][n]← 1;

19 fim

20 fim

21 para j ← 0 até N faça

22 rotas[j]← Função de rota(enxame[j].posição, grafo, chaves);

23 L[j]← Função de custo(rotas[j], grafo);

24 se L[j] < epbest ou epbest = 1 então

25 pbest[j]← enxame[j].posição;

26 epbest[j]← L[j];

27 fim

28 para g ← 0 até N faça

29 se (L[j] < egbest ou egbest = 1) e (links[g][j] = 1) então

30 gbest ← enxame[j].posição;

31 egbest ← L[j];

32 rota← rotas[j];

33 fim

34 fim

35 fim

36 para j ← 0 até N faça

37 Atualizar velocidade(D, c1, c2, c3, gbest, pbest, enxame[j].posição, enxame[j].velocidade);

38 Deslocamento(enxame[j].posição, enxame[j].velocidade);

39 fim

40 até que i = maxit ;

41 fim
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3.2.6 Função de custo

A Função de custo no algoritmo 9 calcula a distância baseada na soma algébrica das arestas

ponderadas de cada trajeto, o valor retornado é denominado custo. Esses trajetos são dados pela

concatenação do primeiro elemento do vetor chaves, seguido do respectivo vetor posição e do último

elemento de chaves. A Função de rota (algoritmo 10) utiliza o algoritmo de Dijkstra para encontrar o

menor caminho entre dois pontos sucessivos de cada trajeto contido no vetor rotas.

Algoritmo 9: Função de custo
Entrada: trajeto, grafo

Saída: custo

1 início

2 custo← 0;

3 para x← 0 até (‖trajeto‖ − 1) faça

4 custo← custo + Tamanho aresta(trajeto[x], trajeto[x + 1]);

5 fim

6 fim

Algoritmo 10: Função de rota
Entrada: posição, grafo, chaves

Saída: trajeto

1 início

2 auxiliar← chaves[0] + posição + chaves[1];

3 i← 0;

4 para x← 0 até (‖auxiliar‖ − 1) faça

5 trajeto← trajeto + Menor caminho Dijkstra(grafo, auxiliar[x], auxiliar[x + 1]);

6 fim

7 repita

8 se trajeto[i] = trajeto[i + 1] então

9 Deletar(trajeto[i]);

10 fim

11 senão

12 i← i + 1;

13 fim

14 até que i < (‖trajeto‖ − 1);

15 fim

3.2.6.1 Algoritmo de Dijkstra

O algoritmo de Dijkstra foi usado para encontrar o menor caminho entre dois pontos sucessi-

vos do vetor inspeção. A complexidade desse algoritmo é O(n2), em que n é o número de nós do

grafo (ZAMBONI; PAMBOUKIAN; BARROS, 2006). Esse algoritmo é desenvolvido em uma árvore

de caminhos mínimos, dado que caso haja arestas múltiplas ou laços, esses são transformados em

grafos simples deixando apenas as arestas de menor peso (BARROS; PAMBOUKIAN; ZAMBONI,

2007). Além de ter um bom desempenho (ATZINGEN et al., 2012), o algoritmo pode ser facilmente

implementado através da biblioteca networkx pela função nx.dijkstra_path (HAGBERG; SCHULT;

SWART, 2008).
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3.3 Testes

Os testes foram realizados em um computador com processador de 64 bits do tipo Intel(R)

Core(TM) i3-4005U com clock interno de 1,70 GHz e memória cache de 3Mb, 4Gb de RAM e sistema

operacional Windows 10. A linguagem utilizada foi Python 2.7. O trabalho foi elaborado no ambiente

de desenvolvimento científico Anaconda (ANACONDA, 2016), que facilitou a interface com o sistema

operacional Windows 10.

Para cada ponto coletado, em cada gráfico, realizou-se 80 repetições do algoritmo com foco no

tempo de execução e no custo do melhor caminho encontrado.

3.3.1 Mapa - Grafo de vias

O grafo utilizado para os testes é do tipo lattice não direcionado com arestas de tamanho

unitário, que por simplicidade representam vias de duas mãos com o mesmo custo. Na Figura 2

temos um exemplo desse tipo de grafo de tamanho 8x8, este mesmo grafo foi utilizado para os

testes de número de iterações, tamanho do enxame, quantidade de informantes por partícula e

número de elementos a serem inspecionados. O grafo foi construído através do gerador de grafos

grid_2d_graph da biblioteca networkx (HAGBERG; SCHULT; SWART, 2008). Essa biblioteca da

linguagem Python proporciona a criação, manipulação e estudo da estrutura, dinâmica e função de

redes complexas. A biblioteca matplotlib (HUNTER, 2007), também pertencente à linguagem Python,

foi empregada na produção das figuras e gráficos.
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Figura 2 – Grafo do tipo lattice 8x8 utilizado para os testes do roteamento de uma equipe de inspeção

de rede simbolizando vias de duas mãos com o mesmo custo, unitário.
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3.3.2 Parâmetros constantes

Os coeficientes de confiança foram mantidos constantes durante os testes, em que c1 =

0.689343, c2 = 1.42694 e c3 = 1.42694. Esses valores foram retirados de (CLERC, 2006a), já que o

autor os indica para acelerar a convergência.

3.3.3 Número de iterações

Para os testes com o número de iterações, o tamanho do enxame utilizado foi N = 20 com

4 informantes por partícula (K = 4). O vetor chaves contém como elementos os nós 2 e 62, do

grafo da Figura 2, como chave inicial e final, respectivamente. o vetor inspeção foi definido como

[17, 23, 50, 36, 12, 56].

O teste foi iniciado com 11 iterações e terminou com 201, com acréscimo de 10 iterações a cada

ponto. Para cada um dos 20 pontos obtidos foram realizadas 80 repetições e calculou-se as médias

e desvios padrão dos respectivos custos dos gBest (egBest) e duração de execução.

3.3.4 Número de partículas (N )

Os parâmetros empregados nesse teste foram o número de iterações fixado em 100, número

de informantes por partículas K = 4 e o grafo da Figura 2. Os vetores chaves = [2, 62] e inspeção

= [17, 23, 50, 36, 12, 56] foram mantidos como no teste do número de iterações.

O número de partículas se inicia em 6, em que foram realizadas 80 repetições, então foram

acrescidas 2 partículas e outras 80 repetições foram executadas. Esse processo ocorreu até o

enxame atingir o tamanho de 44 e as médias e desvios padrão foram calculados para cada ponto

para os custos, egBest, e duração de execução.

3.3.5 Número de informantes por partícula (K)

O número de informantes por partícula (K) foi variado de 1 a 20 com incremento de 1

informante a cada ponto coletado. Para esses pontos foram realizadas 80 repetições e calculou-se

as médias e desvios padrão para os egBest e intervalos de tempo de execução.

O tamanho do enxame foi fixado em 20 partículas, foram feitas 100 iterações por repetição e foi

empregado o grafo da Figura 2. Os vetores chaves = [2, 62] e inspeção = [17, 23, 50, 36, 12, 56]

foram conservados.

3.3.6 Número de pontos de inspeção

Os parâmetros mantidos nesse teste foram: N = 20, K = 4 e número de iterações igual a

100. O grafo da Figura 2 foi utilizado como grafo de vias e o vetor chaves = [2, 62].

O número de elementos do vetor de inspeção foi incrementado de 1 em 1, em que os nós foram

obtidos de forma aleatória no conjunto de nós do grafo. Esse número se inicia em 7 elementos,

[17, 23, 50, 36, 12, 56, 6], finalizando o teste com 26. Para cada incremento de elementos do vetor

inspeção foram realizados 80 repetições e foram calculadas as médias e desvios padrão dos egBest

e tempos de execução.
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3.3.7 Representação gráfica do menor caminho encontrado

Para essa etapa realizou-se 80 repetições com N = 20, K = 4, 100 iterações, chaves

= [2, 62], inspeção = [17, 23, 50, 36, 12, 56]. O menor caminho com maior número de repetição foi

selecionado. Após a seleção do menor caminho, traçou-se o trajeto de vermelho no grafo de vias da

Figura 2, em que os pontos de inspeção são sinalizados de azul e as chaves por quadrados verdes.

Vale ressaltar que caso uma aresta seja percorrida mais de uma vez, sua cor terá uma tonalidade

mais escura.
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4 Resultados e discussão

Para cada teste da seção 3.3, traçou-se dois gráfico com os resultados, em um deles foi

obtido o custo do percurso de uma equipe de inspeção e no outro o tempo de execução do código,

com suas respectivas médias (x̄) e desvios padrão (
√
s2).

4.1 Número de iterações

O custo das posições gBest em função do número de iterações da Tabela 1 é ilustrado pela

Figura 3. O valor médio após estabilização, a partir do terceiro ponto, é de 29,56 com desvio padrão

médio de 0,96. O custo se estabilizou rapidamente com o aumento do número de iterações, pois a

partir do terceiro ponto, 31 iterações, o gráfico mostra um comportamento tendendo a uniformidade.

Na Figura 4, o tempo de execução apresentou comportamento linear em relação ao número de

iterações, cujos resultados constam na Tabela 2.

O algoritmo DPSO mostrou-se validado pela Figura 3 (YIN, 2004), em que esse obtém valores

menores a medida que aumentamos o número de iterações, até se estabilizar num valor mínimo.

Porém, o tempo de execução cresce linearmente com o número de iterações (Figura 4). Tornando-se

necessário ponderar sobre esse parâmetro se é desejável uma solução mais otimizada em detri-

mento do tempo de execução.
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Figura 3 – Custo das posições gBest em função do número de iterações. Com N = 20, K = 4,

chaves = [2, 62], inspeção = [17, 23, 50, 36, 12, 56], 80 repetições por ponto, incremento

de 10 iterações de um ponto para o próximo.
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Figura 4 – Tempo de execução em função do número de iterações. Com N = 20, K = 4, chaves

= [2, 62], inspeção = [17, 23, 50, 36, 12, 56], 80 repetições por ponto, incremento de 10

iterações de um ponto para o próximo.
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Tabela 1 – Médias e desvios padrão dos custos das posições gBest em função do número de itera-

ções. Utilizando-se N = 20, K = 4, chaves = [2, 62], inspeção = [17, 23, 50, 36, 12, 56],

80 repetições por ponto, incremento de 10 iterações de um ponto para o próximo.

Ponto Número de iterações x̄
√
s2

1 11 32,85 2,07

2 21 29,75 1,02

3 31 29,52 0,88

4 41 29,50 0,87

5 51 29,62 0,98

6 61 29,58 0,91

7 71 29,68 1,09

8 81 29,55 0,89

9 91 29,60 0,97

10 101 29,62 1,08

11 111 29,58 1,01

12 121 29,52 0,94

13 131 29,50 0,97

14 141 29,50 0,87

15 151 29,50 0,92

16 161 29,55 1,00

17 171 29,58 0,96

18 181 29,40 0,92

19 191 29,68 1,05

20 201 29,48 0,91
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Tabela 2 – Médias e desvios padrão do tempo de execução em função do número de iterações.

Utilizando-se N = 20, K = 4, chaves = [2, 62], inspeção = [17, 23, 50, 36, 12, 56], 80

repetições por ponto, incremento de 10 iterações de um ponto para o próximo.

Ponto Número de iterações x̄
√
s2

1 11 0,05 0,01

2 21 0,51 0,03

3 31 0,97 0,09

4 41 1,32 0,12

5 51 1,59 0,08

6 61 1,90 0,09

7 71 2,23 0,09

8 81 2,55 0,11

9 91 2,89 0,12

10 101 3,27 0,20

11 111 3,59 0,25

12 121 3,87 0,18

13 131 4,22 0,20

14 141 4,56 0,21

15 151 4,87 0,25

16 161 5,20 0,25

17 171 5,51 0,30

18 181 5,79 0,30

19 191 6,27 0,31

20 201 6,52 0,39

4.2 Número de partículas (N )

Na Figura 5 temos o custo das posições gBest em relação ao número de partículas do

enxame. Notam-se elevados desvio padrão e média para o primeiro ponto, cujos valores foram de

aproximadamente 5,41 e 39,20, respectivamente. A partir do décimo segundo ponto (N = 28) o

resultado se estabiliza de acordo com a Tabela 3. A Tabela 4 contém os resultados relacionados ao

tempo de execução. Nota-se pela Figura 6 que o tempo de execução apresenta crescimento linear

com o número de partículas empregado.

O tamanho do enxame influenciou de forma semelhante ao número de iterações na obtenção dos

mínimos locais e globais. De forma que quanto maior o enxame, menores os custos obtidos até

estabilizar-se no valor mínimo. Entretanto, o tempo de execução também cresce de forma linear com

o número de partículas, sendo necessário encontrar um ponto de equilíbrio.
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Figura 5 – Custo das posições gBest em função do número de partículas do enxame. Com número

de iterações igual a 100, K = 4, chaves = [2, 62], inspeção = [17, 23, 50, 36, 12, 56], 80

repetições por ponto, incremento de 2 partículas de um ponto para o próximo.
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Figura 6 – Tempo de execução em função do número de partículas do enxame. Com número de

iterações igual a 100, K = 4, chaves = [2, 62], inspeção = [17, 23, 50, 36, 12, 56], 80

repetições por ponto, incremento de 2 partículas de um ponto para o próximo.
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Tabela 3 – Médias e desvios padrão dos custos das posições gBest em função do número de

partículas do enxame. Com número de iterações igual a 100, K = 4, chaves = [2, 62],

inspeção = [17, 23, 50, 36, 12, 56], 80 repetições por ponto, incremento de 2 partículas de

um ponto para o próximo.

Ponto N x̄
√
s2

1 6 39,20 5,41

2 8 31,95 2,49

3 10 31,45 2,07

4 12 30,72 1,57

5 14 30,10 1,34

6 16 30,05 1,38

7 18 29,78 1,07

8 20 29,80 1,12

9 22 29,58 1,06

10 24 29,75 1,02

11 26 29,68 1,14

12 28 29,48 0,85

13 30 29,45 0,84

14 32 29,50 0,87

15 34 29,42 0,82

16 36 29,50 0,87

17 38 29,38 0,78

18 40 29,40 0,80

19 42 29,42 0,82

20 44 29,42 0,82
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Tabela 4 – Médias e desvios padrão do tempo de execução em função do número de partículas

do enxame. Com número de iterações igual a 100, K = 4, chaves = [2, 62], inspeção

= [17, 23, 50, 36, 12, 56], 80 repetições por ponto, incremento de 2 partículas de um ponto

para o próximo.

Ponto N x̄
√
s2

1 6 0,23 0,03

2 8 0,56 0,04

3 10 0,93 0,06

4 12 1,26 0,08

5 14 1,60 0,10

6 16 1,95 0,12

7 18 2,28 0,11

8 20 2,62 0,13

9 22 2,97 0,15

10 24 3,35 0,15

11 26 3,71 0,16

12 28 4,01 0,20

13 30 4,35 0,18

14 32 4,68 0,21

15 34 5,09 0,20

16 36 5,47 0,34

17 38 5,78 0,25

18 40 6,11 0,28

19 42 6,47 0,29

20 44 6,80 0,31

4.3 Número de informantes por partícula (K)

A Tabela 5 contém os resultados referentes aos custos em função de K, ilustrados pela

Figura 7. Na Tabela 6 temos o tempo de execução em função de K e seu comportamento pode ser

melhor observado pela Figura 8. As médias e desvios padrões se mantiveram na mesma faixa para

todos os pontos, tanto no custo quanto no tempo de execução.

O número de informantes por partícula não teve influência expressiva nos testes em virtude do

número de iterações ser elevado e a propagação da informação ocorrer rapidamente como discutido

na subseção 2.2.5.
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Figura 7 – Custo das posições gBest em função do número de informantes por partículas do en-

xame. Com número de iterações igual a 100, N = 20, chaves = [2, 62], inspeção

= [17, 23, 50, 36, 12, 56], 80 repetições por ponto, incremento de 1 partícula de um ponto

para o próximo.
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Figura 8 – Tempo de execução em função do número de informantes por partículas do en-

xame. Com número de iterações igual a 100, N = 20, chaves = [2, 62], inspeção

= [17, 23, 50, 36, 12, 56], 80 repetições por ponto, incremento de 1 partícula de um ponto

para o próximo.
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Tabela 5 – Médias e desvios padrão dos custos das posições gBest em função do número de

informantes por partículas do enxame. Com número de iterações igual a 100, N = 20,

chaves = [2, 62], inspeção = [17, 23, 50, 36, 12, 56], 80 repetições por ponto, incremento

de 1 partícula de um ponto para o próximo.

Ponto K x̄
√
s2

1 1 29,82 1,13

2 2 29,62 0,98

3 3 29,52 0,88

4 4 29,52 0,94

5 5 29,52 0,94

6 6 29,78 1,07

7 7 29,48 0,91

8 8 29,62 0,98

9 9 29,58 0,91

10 10 29,60 0,92

11 11 29,60 0,97

12 12 29,42 0,82

13 13 29,60 0,97

14 14 29,60 0,97

15 15 29,60 0,92

16 16 29,52 0,88

17 17 29,55 0,89

18 18 29,40 0,80

19 19 29,60 0,92

20 20 29,65 1,04
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Tabela 6 – Médias e desvios padrão dos tempos de execução em função do número de informantes

por partículas do enxame. Com número de iterações igual a 100, N = 20, chaves

= [2, 62], inspeção = [17, 23, 50, 36, 12, 56], 80 repetições por ponto, incremento de 1

partícula de um ponto para o próximo.

Ponto K x̄
√
s2

1 1 3,54 0,16

2 2 3,50 0,16

3 3 3,52 0,16

4 4 3,53 0,26

5 5 3,52 0,17

6 6 3,56 0,16

7 7 3,51 0,16

8 8 3,53 0,16

9 9 3,55 0,16

10 10 3,52 0,15

11 11 3,55 0,16

12 12 3,55 0,17

13 13 3,57 0,15

14 14 3,57 0,16

15 15 3,55 0,17

16 16 3,55 0,17

17 17 3,59 0,24

18 18 3,57 0,14

19 19 3,57 0,15

20 20 3,61 0,17

4.4 Número de pontos de inspeção

Na Tabela 7 temos os resultados relativos ao custo e sua representação na Figura 9. A

média e o desvio padrão crescem a medida em que são inseridos novos elementos. Na Tabela 8

temos os resultados relativos ao tempo de execução e o gráfico na Figura 10. Este apresenta um

crescimento aproximadamente linear com o número de elementos do vetor inspeção.

O número de elementos a serem inspecionados relaciona-se com tempo de execução do código. A

medida que a norma do vetor inspeção aumenta, o tempo de execução cresce de forma aproximada-

mente linear. Isso pode ser um problema devido ao número de elementos a serem inspecionados

ser elevado em um determinado setor.
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Figura 9 – Custo das posições gBest em função do número de pontos de inspeção. Com número

de iterações igual a 100, N = 20, K = 4, chaves = [2, 62], 80 repetições por ponto,

incremento de 1 elemento a ser inspecionado de um ponto para outro.
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Figura 10 – Tempo de execução em função do número de pontos de inspeção. Com número de

iterações igual a 100, N = 20, K = 4, chaves = [2, 62], 80 repetições por ponto,

incremento de 1 elemento a ser inspecionado de um ponto para outro.
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Tabela 7 – Médias e desvios padrão dos custos das posições gBest em função do número de pontos

de inspeção. Com número de iterações igual a 100, N = 20, K = 4, chaves = [2, 62], 80

repetições por ponto, incremento de 1 elemento a ser inspecionado de um ponto para

outro.

Ponto ‖Inspeção‖ x̄
√
s2

1 7 32,17 1,29

2 8 32,92 1,72

3 9 33,95 2,10

4 10 35,75 2,08

5 11 37,72 2,63

6 12 38,33 3,03

7 13 42,50 2,96

8 14 44,95 4,05

9 15 46,88 3,86

10 16 49,42 3,87

11 17 59,75 4,42

12 18 64,53 4,30

13 19 67,12 4,09

14 20 68,53 4,09

15 21 75,70 4,58

16 22 79,85 4,69

17 23 85,78 4,27

18 24 89,40 4,66

19 25 91,72 4,99

20 26 95,22 4,18
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Tabela 8 – Médias e desvios padrão dos tempos de execução em função do número de pontos de

inspeção. Com número de iterações igual a 100, N = 20, K = 4, chaves = [2, 62], 80

repetições por ponto, incremento de 1 elemento a ser inspecionado de um ponto para

outro.

Ponto ‖Inspeção‖ x̄
√
s2

1 7 3,86 0,21

2 8 4,13 0,27

3 9 4,49 0,25

4 10 5,00 0,26

5 11 5,53 0,29

6 12 5,91 0,41

7 13 6,76 0,44

8 14 7,81 0,48

9 15 8,26 0,49

10 16 8,90 0,53

11 17 10,85 0,18

12 18 11,48 0,33

13 19 11,93 0,20

14 20 12,32 0,16

15 21 13,10 0,33

16 22 13,72 0,17

17 23 14,51 0,17

18 24 15,04 0,30

19 25 15,58 0,18

20 26 16,00 0,18

4.5 Representação gráfica do menor caminho encontrado

Na Figura 11 temos a representação gráfica do menor caminho encontrado. Devido ao grafo

de vias utilizado ser não direcionado e com arestas de tamanho unitário, existem trajetos diferentes

que levam ao mesmo valor. Nesse teste, 70% (56 trajetos) dos resultados obtidos em 80 repetições

foram iguais ou de custo igual a esse trajeto. Excetuando-se esses 56 trajetos com redundância de

custo, que são ótimos globais, os demais se tratam de ótimos locais.

Os pontos azuis são os locais a serem inspecionados e os quadrados em verde as chaves de

manobra. Em vermelho temos a rota, com uma tonalidade mais escura para arestas percorridas

mais de uma vez. O custo desse trajeto resultou em 29 e a duração de execução do algoritmo

3,54[s]. Portanto, mesmo não encontrando o menor percurso possível, o algoritmo ainda responde

de forma satisfatória encontrando ótimos locais.
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Figura 11 – Representação gráfica para a solução do roteamento com custo de 29, obtido em 70

% dos casos, e 3,625[s] de duração da execução. Utilizando N = 20, K = 4, 100

iterações, chaves = [2, 62], inspeção = [17, 23, 50, 36, 12, 56].
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5 Conclusão

Os parâmetros do DPSO devem ser selecionados de forma que se deseje um resultado mais

rápido ou mais otimizado. O número de pontos de inspeção é proporcional ao tempo de execução, a

medida que esse número aumenta, o tempo de execução também aumenta. Isso se torna um fator

limitante, pois um setor pode ter um elevado número de pontos a inspecionar.

A meta-heurística se mostrou eficiente para roteirizar a inspeção de uma equipe visando um custo re-

duzido do trajeto. Como a função de custo depende dos pesos das arestas do grafo, pode-se atribuir

a esses pesos uma ponderação de diferentes características, dentre elas tempo e deslocamento.

Isso pode significar redução no tempo ou deslocamento da equipe em encontrar a falha e repará-la

e consequentemente reduzir o tempo de restabelecimento de energia.

A redução de tempo na recomposição de UCs pode diminuir o DEC, além de aumentar a confiabili-

dade da rede elétrica. Isso reduz os transtornos de ordem social e econômica aos clientes.

Como proposta para trabalhos futuros sugere-se analisar a resposta do algoritmo a diversas configu-

rações e tamanhos de grafos, incluindo grafos de vias reais. Pois ao utilizar o algoritmo de Dijkstra,

o custo computacional passa a depender do tamanho do grafo e quando se trata de um grafo de

vias reais, o número de nós e arestas é elevado.

Além disso, propõe-se estudar topologias de conectividade entre as partículas do enxame. Estruturas

fixas e regulares possuem desempenho melhor do que as aleatoriamente selecionadas, como foi

abordado nesse trabalho.

A Ponderação dos pesos das arestas também fornece um objeto de estudo relevante, pois ela pode

estar relacionada a diversos fatores como: número de clientes, gastos, clientes especiais e distância.

A paralelização da execução do programa também pode ser um campo estudado, em virtude da

redução do tempo de execução.
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