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RESUMO

ASHITOMI, A. C. Análise e projeto de um freio de Foucault aplicado a
motores de indução. 2020. 78p. Monografia (Trabalho de Conclusão de Curso) - Escola
de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2020.

Este trabalho apresenta uma análise completa de um freio eletromagnético por ação de
correntes parasitas (freio de Foucault) aplicado a motores de indução. Num primeiro
momento, são apresentados estudos realizados por diversos autores para equacionar a
força exercida por esse tipo de freio, além de apresentar resumidamente certos conceitos
importantes sobre a teoria eletromagnética. Em seguida, é feito o projeto e a construção de
um freio de Foucault e o mesmo é aplicado para a obtenção da curva torque x velocidade
na região estável de operação de um motor de indução monofásico. Posteriormente, são
realizados experimentos, onde foi possível obter a curva torque x velocidade de um motor
de indução em sua região estável de operação e seus respectivos resultados são apresentados
e discutidos. Finalmente, a partir da análise dos resultados experimentais, são propostas
melhorias para o freio de Foucault projetado.

Palavras-chave: Freio de Foucault. Dinamômetro. Motor de indução. Correntes parasitas.
Curva torque x velocidade.





ABSTRACT

ASHITOMI, A. C. Analysis and project of an eddy current brake applied to
induction motors. 2020. 78p. Monografia (Trabalho de Conclusão de Curso) - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2020.

This work presents the complete analysis of an induction brake (eddy current brake)
applied to induction motors. Firstly, studies carried out by several authors are presented
to model the force exerted by this type of brake, in addition to a brief presentation of
important concepts about electromagnetic theory. Then, the project and construction of
an eddy current brake is made and applied to plot the torque vs speed curve in the stable
region of a single phase induction motor. Subsequently, experiments were carried out to
obtain the torque vs speed curve of an induction motor in its stable operation region
and their respective results are presented and discussed. Finally, from the analysis of the
experimental results, improvements for the designed eddy current brake are proposed.

Keywords: Eddy current brake. Dynamometer. Induction motor. Foucault’s currents.
Torque vs speed curve
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1 INTRODUÇÃO

As correntes parasitas, também denominadas correntes de Foucault são um fenô-
meno bem conhecido na literatura. Elas decorrem da Lei de Faraday, que diz que se um
condutor estiver imerso num campo magnético variável, uma tensão será induzida nesse
condutor. Essas tensões produzem correntes que formam caminhos circulares, semelhantes
a redemoinhos (CHAPMAN, 2013).

As correntes parasitas geralmente são vistas como um efeito indesejável, pois elas
estão relacionadas a perdas elétricas. Por exemplo, a corrente alternada em transformadores
geram tensões não apenas nas bobinas, mas também no núcleo ferromagnético, fazendo
com que correntes parasitas fluam nele, ocasionando perdas na forma de calor (CHAPMAN,
2013).

Entretanto, quando o objetivo é justamente ocasionar a dissipação de alguma forma
de energia em forma de calor, as correntes de Foucault podem se tornar um efeito muito
proveitoso. Um exemplo é a utilização desse fenômeno em freios eletromagnéticos por ação
de correntes parasitas (freio de Foucault) (BARNES et al., 1993). Uma vantagem desse
tipo de freio é a inexistência de contato físico para realizar a frenagem, diferentemente de
freios convencionais que dependem do atrito para a dissipação de energia. Por conta disso,
os freios eletromagnéticos possuem uma vasta aplicabilidade. Um exemplo é sua utilização
em trens Maglev já que, por não estarem em contato direto com o solo, a utilização de
freios por atrito se torna impraticável.

A utilização de freios eletromagnéticos por ação de correntes parasitas não se limita
apenas aos exemplos citados. Uma outra aplicação é em dinamômetros utilizados para
ensaios de motores elétricos (BRIN, 2012). Os motores elétricos, principalmente os de
indução, possuem extensa utilização, estando presentes em um vasto número de máquinas
sejam elas de uso doméstico ou industrial.

Uma característica importante das máquinas elétricas é sua curva torque x veloci-
dade. Ela representa o comportamento da máquina frente à carga a ela acoplada. Essa
curva pode ser obtida através de experimentos práticos ao se variar o ponto de operação
do motor. Para tanto, muitos fabricantes produzem dinamômetros baseados em um freio
de Foucault para a produção de diferentes torques resistivos, a fim de variar o ponto de
operação do motor. Dinamômetros deste tipo são mais baratos e compactos se comparados
com os dinamômetros baseados em geradores de corrente contínua além de possuir uma
maior versatilidade, podendo ser utilizado em ensaios de transmissões mecânicas, turbinas,
bombas hidráulicas, motores a explosão, caixas de engrenagens e reduções, dentre outros
tipos de máquinas (PEREIRA, 2016).
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Este trabalho visa a análise, projeto e construção de um freio de Foucault para
a realização de ensaios em um motor de indução, com o intuito de se obter a sua curva
torque x velocidade na região estável de operação.
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2 ASPECTOS TEÓRICOS

Este capítulo é dedicado a apresentar conceitos necessários para o entendimento
dos estudos e projetos dos capítulos subsequentes. As seções 2.1 e 2.2 apresentam conceitos
básicos de eletromagnetismo, enquanto as seções 2.3 a 2.5 apresentam conceitos importantes
para o compreensão do projeto proposto neste trabalho.

2.1 Circuitos magnéticos

A partir das equações de Maxwell, pode-se obter a relação entre os campos magné-
ticos e as correntes que os produzem, dadas por:

∮
C
H • dl =

∮
S
J • dA (2.1)

∮
S
B • dA = 0 (2.2)

onde H é a intensidade de campo magnético, C é um contorno fechado e S é a superfície
delimitada por este contorno. A equação (2.1) diz então que a integral da componente
tangencial de H ao longo de C é igual à corrente que passa através de qualquer superfície
S delimitada por C. Já a equação (2.2) afirma que o fluxo magnético B que sai de uma
superfície S fechada é sempre nulo, indicando que as linhas de fluxo magnético são sempre
fechadas.

A resolução das equações (2.1) e (2.2) são, no entanto, muito difíceis para geome-
trias complexas. Por conta disso, é utilizada uma simplificação que reduz o problema a um
circuito equivalente unidimensional (denominado circuito magnético) análogo à de um cir-
cuito elétrico, que produz soluções com exatidão aceitável em engenharia (FITZGERALD;
KINGSLEY; UMANS, 2012).

No circuito magnético, é suposto que a permeabilidade magnética do material do
núcleo é extremamente elevada, fazendo com que todo o fluxo magnético esteja confinado
nele. Assim, as linhas de campo seguem caminhos delimitados pela geometria do núcleo e
sua densidade de fluxo é suposta uniforme em qualquer seção reta do núcleo.

As figuras 1 e 2 ilustram um núcleo ferromagnético e seu respectivo circuito
magnético equivalente, respectivamente.
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Figura 1: Núcleo ferromagnético com uma bobina.

Fonte: Elaborado pelo autor.

Figura 2: Circuito análogo elétrico equivalente.

Fonte: Elaborado pelo autor.

O circuito magnético possui basicamente: uma fonte de campo magnético, chamada
de força magnetomotriz Fmm, dado em ampères-espiras (A.e), que é o equivalente da fonte
de tensão em um circuito elétrico; uma relutância magnética Rm, dado em ampères-espiras
(A.e) por weber (Wb), que é o equivalente da resistência elétrica em um circuito elétrico;
um fluxo magnético φ, dado em weber (Wb), que é o equivalente da corrente elétrica em
um circuito elétrico.

A força magnetomotriz do circuito magnético da figura 1 é dada por:

Fmm = NI =
∮

C
H • dl (2.3)

onde N é o número de espiras e I a corrente que passa por elas.

Devido às dimensões do núcleo, o caminho de qualquer linha de fluxo se aproxima
do caminho médio do núcleo lc (FITZGERALD; KINGSLEY; UMANS, 2012). Desta
maneira, a equação (2.3) se reduz a:

Fmm = NI = Hlc (2.4)
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onde H é o módulo médio de H no núcleo.

Para o núcleo da figura 1, a densidade de fluxo magnético é dada por:

B = µH (2.5)

onde µ é a permeabilidade magnética em henry (H) por metro (m). A permeabilidade
magnética de materiais magnéticos lineares são dados em comparação com a permeabilidade
magnética do vácuo, denominada permeabilidade relativa, definida como:

µr = µ

µ0
(2.6)

sendo

µ0 = 4π × 10−7 (2.7)

O fluxo magnético é dado por:

φ =
∫

S
B • dA (2.8)

Se for considerado que o vetor de densidade de fluxo magnético é perpendicular a
um plano de área Ac do núcleo e se a densidade de fluxo magnético for constante através
dessa área, então a equação (2.8) se torna (CHAPMAN, 2013):

φ = BAc = µHAc (2.9)

A partir do circuito equivalente magnético da figura 2, pode-se calcular a relutância
Rm utilizando o análogo da lei de Ohm, ou seja:

Fmm = φRm (2.10)

Substituindo as equações (2.4) e (2.9) na equação (2.10) e rearranjando, obtém-se:

Rm = lc
µAc

(2.11)

Em determinadas situações, no entanto, é necessária a inserção de um entreferro
no núcleo ferromagnético (como por exemplo, o freio de Foucault), como ilustra a figura 3
a seguir.
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Figura 3: Circuito magnético com entreferro.

Fonte: Elaborado pelo autor.

A presença do entreferro resulta em uma área efetiva maior em sua seção reta
em comparação com a seção reta do núcleo. Esse efeito é denominado espraiamento.
Porém, caso o comprimento do entreferro seja muito menor do que as dimensões das
faces adjacentes do núcleo, o efeito do espraiamento é reduzido e pode ser desprezado
(FITZGERALD; KINGSLEY; UMANS, 2012).

O circuito magnético equivalente da figura 3 pode ser construído acrescentando-se
uma relutância em série Rg à relutância Rm da figura 2. Nesse caso, Rg representa a
relutância do entreferro enquanto Rm representa a relutância do núcleo. Assim, a equação
(2.10) se torna

Fmm = φ(Rm +Rg) (2.12)

com
Rg = x

µ0Ag

(2.13)

onde x é o comprimento do entreferro e Ag sua área.

Entretanto, da equação (2.11), é possível observar que um material de alta per-
meabilidade resulta em uma menor relutância. Como são utilizados materiais de alta
permeabilidade para a construção do núcleo, a relutância deste passa a ser muito inferior
se comparada com a relutância do entreferro. Nesse caso, pode-se desprezar a relutância
do núcleo, ou seja, a equação (2.12) se torna

Fmm ≈ φRg (2.14)

Desprezando o efeito de espraiamento e substituindo as equações (2.4), (2.9) e
(2.13) na equação (2.14) e isolando B, obtém-se:

B = NIµ0

x
(2.15)
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Portanto, a densidade de fluxo magnético B no circuito magnético e consequente-
mente no entreferro é proporcional à corrente I e inversamente proporcional ao comprimento
x do entreferro.

2.2 Correntes parasitas

As correntes de Foucault, também denominadas como correntes parasitas, são um
fenômeno bem conhecido na literatura. Essas correntes são decorrentes da Lei de Faraday,
que diz que um campo magnético variante no tempo produz uma tensão induzida. Além
disso, de acordo com a Lei de Lenz, essa tensão está orientada de modo que se produza
uma corrente cujo fluxo se opõe à variação do fluxo original que a induziu. Para uma
bobina com N espiras, a Lei de Faraday pode ser escrita como:

eind = −N •
dφ

dt
(2.16)

As correntes de Foucault são geralmente vistas como algo indesejável, pois estão
associadas às perdas num circuito. Em um transformador, por exemplo, a corrente alternada
que circula nas bobinas induz uma tensão em seu núcleo. Essa tensão produz correntes
que formam caminhos circulares que lembram redemoinhos (por isso o nome eddy current,
do inglês, para as correntes de Foucault). Como estas correntes estão circulando em
um material resistivo (o núcleo do transformador, no caso), existirão perdas por efeito
Joule. Para contornar esse problema, muitos transformadores são construídos com diversas
lâminas de pequena espessura empilhadas, unidas por uma resina isolante entre elas.
Desta forma, o caminho por onde as correntes de Foucault podem circular é reduzido,
consequentemente, diminuindo as perdas por efeito Joule (CHAPMAN, 2013). Entretanto,
existem casos em que as correntes parasitas são desejáveis, como por exemplo no freio de
Foucault.

2.3 Freio de Foucault

O freio de Foucault é o nome dado a um freio eletromagnético que funciona por
meio das correntes de Foucault. Assim, por exemplo, caso seja colocado um disco no
entreferro do núcleo da figura 3 e este disco estiver acoplado a um motor, o conjunto
eletroímã e disco é o freio de Foucault. Quando o eletroímã está ligado e o motor desligado
não há variação no campo magnético no disco, portanto, não há a geração de correntes
parasitas no disco, conforme ilustra a figura 4.
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Figura 4: Disco parado sob a ação de um campo magnético

Fonte: Elaborado pelo autor.

Já quando o motor está em movimento, existe uma variação no campo magnético
na região do disco próximo do eletroímã. Dessa forma, há a geração de correntes parasitas
nessa região, conforme ilustra a figura 5.

Figura 5: Disco em movimento sob a ação de um campo magnético

Fonte: Elaborado pelo autor.
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Como o disco da figura 5 está girando no sentido anti-horário, a região do disco
que está sob efeito do campo magnético do eletroímã num determinado instante, terá seu
campo magnético reduzido à medida que o disco se move. Assim, pela lei de Lenz, correntes
serão induzidas no disco de tal forma que gerem um campo magnético que se oponha a
essa variação (neste caso, redução do campo magnético nessa região do disco), ou seja, as
correntes induzidas percorrerão um caminho no sentido horário, de forma a produzir um
campo magnético na mesma direção do campo magnético do eletroímã (WIEDERICK et
al., 1987).

A região do disco que não está sob o efeito do campo magnético do eletroímã num
determinado instante, passará a adentrar no campo magnético do eletroímã à medida que o
disco se move. Da mesma forma, pela lei de Lenz, correntes serão induzidas no disco de tal
forma que gerem um campo magnético que se oponha a essa variação (neste caso, aumento
do campo magnético nessa região do disco), ou seja, as correntes induzidas percorrerão
um caminho no sentido anti-horário, de forma a produzir um campo magnético contrário
ao campo magnético do eletroímã (WIEDERICK et al., 1987).

Assim, na região do disco sob efeito do eletroímã, haverá uma concentração de
correntes apontadas para uma mesma direção e sentido (em direção ao centro do disco
no caso da figura 5). A presença de um campo magnético perpendicular a uma corrente
elétrica gera uma força (força de Lorentz) que é perpendicular tanto em relação à direção
da corrente como também do campo magnético. Essa força possui direção contrária ao
movimento do disco, o que acarreta na frenagem dele (WIEDERICK et al., 1987). O
capítulo 3 apresenta cinco estudos que resultaram em diferentes equacionamentos para a
força resistiva gerada pelo freio de Foucault.

Por ser um freio eletromagnético, sua vantagem em relação aos freios convencionais
é a ausência da necessidade de fricção entre dois objetos (como uma pastilha e um disco de
freio) para produzir a força dissipativa. No freio de Foucault, o controle da força magnética
resistiva é feito pela corrente elétrica que flui nas bobinas do eletroímã. Assim, quanto
menor a corrente, menor a densidade de fluxo magnético produzida, o que reduz a força
magnética resistiva. A energia cinética é convertida em calor, o que faz com que o disco
aqueça.

As desvantagens do freio de Foucault consistem principalmente na impossibilidade
de se frear o disco completamente, já que é necessário existir velocidade para existir força
resistiva e também na dificuldade de se calcular teoricamente sua força (a ser detalhado
no capítulo 3).

O freio de Foucault possui diversas aplicações, como em freios de montanha-russa,
freios de trens, dinamômetros, dentre outros.
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2.4 Célula de Carga

Uma célula de carga é um dispositivo utilizado para medir força. Basicamente, ele
é composto de um material rígido, como o aço ou alumínio, com um extensômetro colado
em sua superfície. Quando uma força é aplicada ao material, este sofre uma pequena
deformação, que altera a resistência elétrica do extensômetro. A partir dessa alteração, é
possível obter a medição desejada utilizando circuitos condicionadores de sinais.

Existem diversos tipos de célula de carga para diferentes tipos de medição de
esforços mecânicos, como tração, compressão, cisalhamento, etc. Todas as células de carga
possuem um limite de esforço que depende do tipo e geometria do material utilizado em
sua fabricação. Caso o esforço aplicado à célula de carga supere esse limite, o material pode
não retornar ao seu estado original (deformação plástica), podendo ocorrer sua ruptura
em um caso extremo. Para tanto, é necessário uma escolha cuidadosa da célula de carga a
depender de sua utilização.

Um empecilho relacionado à célula de carga é a pequena variação na resistência
elétrica do extensômetro em função do esforço mecânico aplicado. Um método usual para
conseguir detectar essa pequena variação é a utilização da ponte de Wheatstone. A ponte
de Wheatstone é um circuito formado por quatro resistores, como ilustra a figura 6.

Figura 6: Ponte de Wheatstone

Fonte: Elaborado pelo autor.

A tensão V0 da figura 6 é dada por:

V0 =
(

R3

R3 +R4
− R2

R1 +R2

)
Vf (2.17)

A ponte está em equilíbrio quando V0 = 0, ou seja, quando R1/R2 = R4/R3. Porém, se
qualquer um dos resistores sofra uma pequena variação, a ponte entrará em desequilíbrio,
fazendo com que uma tensão em V0 apareça.
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Existem diversos formas de se montar a ponte de Wheatstone numa célula de
carga. A célula de carga utilizada neste projeto (a ser detalhada no capítulo 5) possui o
formato de ponte completa. Nesse formato, todos os 4 resistores da ponte de Wheatstone
da figura 6 são substituídos por resistências variáveis. Como a variação na tensão V0 é
muito pequena, geralmente é necessária a inclusão de um circuito amplificador antes de
realizar a leitura do sinal.

2.5 Curva torque x velocidade de motores de indução

A curva torque x velocidade expressa o desempenho do motor frente a carga a
ele acoplada. O formato da curva depende do tipo do motor (gaiola de esquilo, dupla
gaiola de esquilo, bobinado, etc) e de características elétricas, como a tensão aplicada nos
terminais, frequência da rede elétrica e resistência externa aplicada ao rotor (no caso de
rotor bobinado). A figura 7 ilustra uma curva de torque x velocidade típica de um motor
de indução trifásico.

Figura 7: Curva torque x velocidade típica de um motor de indução trifásico

Fonte: Elaborado pelo autor.

A curva torque x velocidade pode ser dividida em 2 regiões: estável e instável. A
região estável é delimitada entre a velocidade em que ocorre o conjugado máximo até
a velocidade síncrona. Nesta região, o conjugado produzido pelo motor diminui com o
aumento da velocidade. Assim, caso o motor esteja operando em plena carga e o conjugado
resistivo aumente por algum motivo, o motor irá desacelerar, consequentemente levando
a um aumento do conjugado produzido pelo motor até um novo ponto de operação ser
atingido.



32

A região instável é delimitada entre a velocidade nula até a velocidade onde ocorre
o conjugado máximo. Nesta região, o conjugado produzido pelo motor aumenta com o
aumento a velocidade. Assim, tomando como exemplo a partida do motor, caso o conjugado
resistente seja menor que o conjugado de partida, o motor começará a acelerar, aumentando
sua velocidade, consequentemente, aumentando seu torque, o que faz o motor acelerar
ainda mais. O motor então passa rapidamente da região instável para a região estável,
onde um ponto de operação será atingido.

Num exemplo oposto, caso o motor esteja em funcionamento exatamente no ponto
de conjugado máximo e o torque resistivo aumente, o motor irá desacelerar, o que reduzirá
o conjugado produzido pelo motor (pois o motor passou para a região instável). Assim, o
motor irá desacelerar ainda mais, o que acarreta na diminuição de seu conjugado produzido.
Esse ciclo se repete até que o motor pare completamente, podendo causar graves danos à
ele caso o sistema de proteção não atue.

A curva torque x velocidade de motores monofásicos também possui diferenças a
depender do tipo do motor, mais especificamente de seu método de partida (enrolamento
de fase dividida, enrolamento com capacitor, etc). A figura 8 ilustra uma curva torque
x velocidade típica de um motor de indução monofásico com capacitor de partida (tipo
utilizado neste trabalho).

Figura 8: Curva torque x velocidade de um motor monofásico com capacitor de partida

Fonte: Elaborado pelo autor.

Na figura 8, é possível observar a descontinuidade causada pela retirada do capacitor
do circuito auxiliar quando o motor atinge determinada velocidade. A presença do capacitor
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eleva consideravelmente o conjugado produzido pelo motor, razão pela qual esse tipo de
motor é utilizado em aplicações onde a partida já ocorre com carga (CHAPMAN, 2013).
Devido ao capacitor ser dimensionado exclusivamente para a partida, caso o motor opere
por um certo tempo com o capacitor ativo no circuito, este poderá queimar.

A velocidade do motor pode ser medida em função da velocidade síncrona. Essa
relação é denominada escorregamento, sendo seu valor percentual dado pela equação (2.18).

s =
(
ωsinc − ω
ωsinc

)
.100% (2.18)

Assim, um alto escorregamento demonstra uma baixa velocidade, enquanto um
baixo escorregamento demonstra uma alta velocidade do motor.
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3 REVISÃO BIBLIOGRÁFICA

Existem diversos artigos sobre o estudo das correntes de Foucault para a criação de
um freio eletromagnético. Como o cálculo do conjugado gerado pelo freio envolve a solução
das equações de Maxwell, comumente são feitas diversas simplificações no equacionamento.
Entretanto, algumas dessas simplificações acarretam numa divergência entre os resultados
obtidos teoricamente e experimentalmente. Para tanto, existem diversos artigos sobre
o equacionamento do conjugado resistivo de um freio eletromagnético, cada um deles
optando por diferentes métodos de simplificação.

Nesta seção, são apresentadas algumas das bibliografias mais relevantes para a
elaboração do presente trabalho. Diversas outras bibliografias foram consultadas para um
maior aprofundamento no tema, as quais estão listas a seguir para o leitor interessado:
(BARNES et al., 1993); (GONZÁLEZ, 2004); (SCHIEBER, 1974); (BALTE; KULLOLI;
GAJJAL, 2015) e (BRIN, 2012).

3.1 Estudo de Plonus

Um experimento comumente utilizado para demonstrar a ação das correntes parasi-
tas é feito através de um ímã e um pêndulo constituído de uma chapa de metal condutora.
Em seu livro, Plonus (1978) ilustra bem esse exemplo e também fornece o equacionamento
mais simples para o conjugado resistivo que as correntes de Foucault produzem.

Inicialmente, ao se soltar o pêndulo a partir de uma certa altura, este passa a
oscilar livremente em torno do seu ponto de equilíbrio. Devido às perdas como atrito no
eixo de rotação e resistência do ar, a amplitude do pêndulo decai continuamente. Todavia,
esse decaimento é lento, o que faz com que as oscilações continuem por um certo tempo.

Com a inserção do ímã de maneira que o seu fluxo magnético atravesse a lâmina
do pêndulo próximo de seu ponto de equilíbrio, ao soltar o pêndulo novamente de certa
altura, observa-se que o mesmo sofre uma desaceleração considerável ao se aproximar do
ímã. Com isso, o pêndulo praticamente não oscila, ou seja, o ímã se comporta como um
freio magnético.

Para o equacionamento da força exercida pelo freio, é necessário antes a apresentação
de algumas equações do eletromagnetismo. A partir de observações feitas por Ampère e
Biot-Savart, foi descoberto que um fio conduzindo uma corrente e imerso em um campo
magnético sofre a ação de uma força. A seguinte equação descreve essa observação:

dF
dvol

= J×B (3.1)
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onde dF
dvol

é a força por unidade de volume, J é a densidade de corrente e B é a
densidade de fluxo magnético (PLONUS, 1978). Essa força pode ser também equacionada
como

F
q

= v×B (3.2)

onde q é a carga elétrica e v é a velocidade da carga. Essa força é denominada força de
Lorentz.

Para ilustrar a força de Lorentz, Plonus (1978) toma como exemplo um fio condutor
que se movimenta com uma velocidade v perpendicularmente a um campo magnético. As
cargas (elétrons livres) irão sofrer uma força dada pela equação (3.2). Essa força dividida
pela carga é equivalente ao campo elétrico induzido no fio, ou seja:

F
q

= E (3.3)

onde E é o campo elétrico induzido no fio (PLONUS, 1978).

Substituindo a equação (3.3) na equação (3.2), obtém-se

E = v×B (3.4)

A lei de Ohm na forma vetorial é dada por

J = σE (3.5)

onde σ é a condutividade elétrica da placa de metal

Voltando ao exemplo anterior, no instante em que o pêndulo começa a adentrar o
campo magnético, uma tensão é induzida na chapa. Esta tensão gera uma densidade de
corrente J, dada pela equação (3.5). Substituindo (3.4) em (3.5), tem-se que

J = σ(v×B) (3.6)

Supondo que as linhas de campo de B estão perpendiculares à direção de v,
pode-se afirmar que a densidade de corrente apontará para baixo. Para simplificar o
equacionamento, será suposto também que não há o efeito de espraiamento do campo
magnético de B e que ele também seja constante. Além disso, são desprezadas as ações do
campo magnético gerado pelas correntes de Foucault sobre o campo magnético do ímã.
Como a placa é finita, a corrente gerada percorrerá um caminho em loop como mostra a
figura 9.
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Figura 9: Experimento do freio magnético.

Fonte: Elaborado pelo autor.

Substituindo (3.6) na equação (3.1), tem-se que

dF
dvol

= σ(v×B)×B (3.7)

Aplicando as simplificações consideradas na equação (3.7), obtém-se

dF = σvB2dvol (3.8)

Uma outra forma de observar o problema é através da Lei de Lenz. Antes do pêndulo
adentrar o campo magnético B, não há campo magnético atuando sobre a chapa nem
corrente circulando nela. No instante em que a chapa adentrar B, um campo magnético
começa a adentrar na chapa. Assim, uma corrente deverá ser induzida de forma que ela
produza um campo magnético que se oponha à variação do campo magnético que a induziu.
Assim, uma corrente percorrendo o caminho mostrado na figura 9 é induzida.

Para simplificar ainda mais o equacionamento, pode-se supor que a chapa do
pêndulo tenha dimensão infinita. Deste modo, a direção da corrente induzida será apenas
para baixo. Assim, a equação (3.8) se torna

F = σvB2vol (3.9)

onde v representa a velocidade linear no centro da área de atuação de B e vol representa o
volume da chapa que está imerso no campo magnético B, ou seja, a área da face do ímã
paralela à chapa multiplicado pela espessura da chapa (PLONUS, 1978).

A equação (3.9) é a equação mais simples para o cálculo do conjugado resistente
exercido por um freio eletromagnético.
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A figura 10 representa um disco girante sob ação de um campo magnético em
determinada região, com as seguintes características:

• σ = condutividade do material do disco, em [(Ω.m)−1];

• ω = velocidade angular, em [rad/s];

• δ = espessura do disco, em [m];

• a = largura da secção transversal do núcleo do eletroímã, em[m];

• b = altura da secção transversal do núcleo do eletroímã, em [m];

• B = Campo magnético, em [T ];

• r = raio do disco, em [m];

• re = distância entre o centro do disco e o centro do núcleo no plano do disco, em [m].

Figura 10: Disco sob ação de um freio de Foucault.

Fonte: Elaborado pelo autor.

De posse desses dados, é possível calcular o conjugado resistivo induzido pelo freio
utilizando a equação (3.9). A variável re, também chamada de raio efetivo, representa uma
simplificação para o cálculo da velocidade linear. Por se tratar de um disco, cada segmento
dentro da área afetada pelo campo magnético possui velocidade linear diferente. Para
tanto, é utilizada a velocidade linear no centro da área afetada pelo campo magnético,
que dista re do centro do disco. A velocidade linear é dada por

v = ωre (3.10)
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O volume da chapa que está imerso no campo magnético é dado por

vol = abδ (3.11)

Substituindo (3.10) e (3.11) na equação (3.9), tem-se:

Fr = σωreB
2abδ (3.12)

onde o índice de Fr indica uma força resistiva.

Portanto, o conjugado resistivo é dado por

Tr = σωr2
eB

2abδ (3.13)

É notável a quantidade de simplificações utilizadas para formular a equação (3.12).
Isso se reflete em uma menor precisão se comparada com resultados obtidos experimen-
talmente. Por conta disso, esta equação geralmente não é utilizada para projetos que
necessitem de uma maior precisão nos cálculos.

3.2 Estudo de Smythe

Em seu trabalho, Smythe (1942) realizou um estudo das distribuições das correntes
de Foucault ao redor da área do disco inserida no campo magnético de um eletroímã.
Smythe afirma que as correntes de Foucault não são geradas apenas pela variação do
campo magnético externo que atua sobre o disco, mas também pela variação da indução
magnética das correntes de Foucault em outras regiões do disco. A partir das equações de
Maxwell em conjunto com a lei de Ohm, Smythe (1942) formulou um equacionamento para
o cálculo das correntes parasitas produzidas em um disco girante imerso em um campo
magnético. Para um freio de Foucault com apenas um eletroímã, a equação do conjugado
resistivo encontrada é dada por

Tr = ωσ<2φ2Θ
(<+ β2σ2ω2)2 (3.14)

com

β2 = δ2r2
e

4g

(
1−

2(D
2 )2r2(r2 + r2

e)
r2

e(r2 − r2
e)2 + 2r4

r4
e

loge

(
(r2 − r2

e)2

(r2 − r2
e)2 − r2

e(D
2 )2

))
(3.15)

e
Θ = δr2

e

2π(D
2 )2

(
1−

r2(D
2 )2

(r2 − r2
e)2

)
(3.16)

onde:

• ω = velocidade angular, em [rad/s];
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• σ = condutividade elétrica, em [(Ω.m)−1];

• < = Relutância magnética do eletroímã, em [H−1];

• φ = fluxo magnético, em[Wb];

• δ = espessura do disco, em [m];

• re = raio efetivo, em [m];

• g = comprimento do entreferro, em [m];

• D = diâmetro do eletroímã, em [m];

• r = raio do disco, em [m].

Os resultados obtidos por Smythe foram precisos para baixas velocidade. Entretanto,
para altas velocidades os resultados não foram satisfatórios, notando-se uma elevada queda
no conjugado resistivo à medida que a velocidade crescia.

3.3 Estudo de Wiederick

Em seu estudo, Wiederick et al. (1987) formulou um equacionamento para o
conjugado de frenagem de um freio de Foucault (formado por um disco e um eletroímã)
a partir de uma analogia com um circuito elétrico equivalente. O campo elétrico gerado
no disco é escrito em função de uma queda de tensão na região afetada pelo campo
magnético. Essa tensão é representada por uma bateria, com uma força eletromotriz e
resistência interna. Ao se calcular a resistência externa do volume do disco afetado pelo
campo magnético, é utilizada a Lei de Ohm para encontrar a corrente induzida no disco
(corrente de Foucault). De posse da corrente, é possível calcular a densidade de corrente e
então obter a força magnética a partir da integração da equação (3.1). A força magnética
encontrada é dada por

F = ασabδB2v (3.17)

com
α =

(
1 + Rext

Rin

)−1
(3.18)

onde:

• σ = condutividade elétrica do disco;

• a = altura da secção transversal do núcleo;

• b = largura da secção transversal do núcleo;

• δ = espessura do disco;
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• B = densidade de fluxo magnético;

• v = velocidade linear a uma distância do raio efetivo do centro do disco;

• Rext = resistência externa do volume do disco afetado por B;

• Rin = resistência interna do volume do disco afetado por B.

O parâmetro α é um adimensional que depende da relação entre a resistência
externa e interna do disco.

É possível reescrever (3.17) como

F = ασvB2vol (3.19)

onde vol é o volume do disco imerso no campo magnético B.

Para esse equacionamento, foi suposto que: o campo magnético gerado pelo eletroímã
é uniforme; o campo magnético fora da região da área da secção transversal do núcleo é
desprezível; a densidade de corrente é uniforme; o campo magnético atua em uma região
longe o suficiente do centro e das bordas do disco, fazendo com que o problema se torne
análogo ao de uma longa chapa de metal percorrendo um campo magnético; o campo
magnético gerado pelas correntes de Foucault é desprezível.

3.4 Estudo de Heald

Em seu estudo, Heald (1988) propôs uma alteração em uma simplificação feita
no trabalho de Wiederick et al. (1987) para tornar o equacionamento mais próximo da
realidade. Heald afirma que a densidade de corrente tende a se concentrar nas extremidades
da região do disco inserida no campo magnético e sua direção não é ortogonal à velocidade
linear do disco. Seu trabalho resultou na alteração do parâmetro α da equação (3.18) para

α = 1− 1
2π [4tan−1A+ Aln

(
1 + 1

A2

)
− 1
A
ln(1 + A2)] (3.20)

onde
A = b

a

Heald concluiu que os resultados teóricos se aproximaram mais dos resultados
experimentais se utilizada a equação (3.20) no lugar de (3.18) para os experimentos feitos
por Wiederick et al. (1987).

3.5 Estudo de Wouterse

Em seu estudo, Wouterse (1991) se baseou em trabalhos de outros autores. Wouterse
sabia que, na região de altas velocidades, o conjugado resistivo de um freio de Foucault
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varia inversamente proporcional à velocidade angular do disco. Além disso, também
sabia que o tamanho do entreferro influenciava no conjugado resistivo. Para baixas
velocidades, Wouterse supõe que o campo magnético induzido pelas correntes de Foucault
são desprezíveis se comparado com o campo magnético gerado pelo eletroímã, além das
correntes de Foucault serem uniformes. A partir do equacionamento da potência dissipada
no disco devido à ação das correntes de Foucault, a força magnética resistiva encontrada é
dada por

Fr = 1
4
π

ρ
D2δB2cv (3.21)

com

c = 1
2

1− 1
4

1(
1 + re

r

)2 (
r−re

D

)2

 (3.22)

onde:

• ρ = resistividade elétrica do disco;

• D = diâmetro do núcleo do eletroímã, para o caso de um núcleo não circular,
representa-se o diâmetro de um círculo de mesma área da secção transversal do
núcleo;

• δ = espessura do disco;

• B = densidade de fluxo magnético atuando no disco, quando este está parado;

• c = constante que depende da geometria do núcleo;

• v = velocidade linear do disco à distância re do centro do disco;

• r = raio do disco;

• re = distância do centro do disco até o centro do núcleo, no plano do disco (raio
efetivo).

É possível reescrever a equação (3.21) como

Fr = cσvB2vol (3.23)

mostrando sua semelhança com a equação (3.19).

Entretanto, Wouterse observou três fenômenos empiricamente:

a. Para velocidades muito baixas, o campo magnético que atua no disco difere pouco em
comparação com o disco parado. Em outras palavras, o campo magnético induzido
pelas correntes de Foucault é muito pequeno se comparado com o campo magnético
do eletroímã.
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b. Para a velocidade onde ocorre o conjugado resistente máximo (velocidade crítica),
o campo magnético induzido pelas correntes de Foucault não é mais desprezível.
Assim, o campo magnético que atua no disco é menor em relação ao disco parado.

c. Para velocidades elevadas, o campo magnético que atua no disco começa a decair,
ou seja, o campo magnético induzido pelas correntes de Foucault tende a anular o
campo magnético do eletroímã.

Desta maneira, a equação (3.21) não descreve de maneira satisfatória o comporta-
mento de um freio de Foucault, pois de acordo com essa equação, a força resistiva deveria
aumentar indefinidamente com o aumento da velocidade do disco, o que não condiz com
as observações feitas por Wouterse (1991).

Para tanto, Wouterse propôs uma nova solução geral para a força magnética
exercida pelo freio de Foucault, dada por

Fr(v) = Fk
2

vk

v
+ v

vk

(3.24)

onde

Fk = 1
µ0

√√√√( c
ξ

)
π

4D
2B2

√(
x

D

)
(3.25)

e

vk = 2
µ0

√√√√( 1
cξ

)
ρ

δ

√(
x

D

)
(3.26)

com:

• Fk = Força crítica;

• vk = velocidade crítica;

• µ0 = permeabilidade magnética do vácuo;

• ξ = parâmetro que depende da geometria do núcleo, geralmente estimado possuir
valor próximo de 1;

• x = comprimento total do entreferro, incluindo a espessura do disco.

Wouterse (1991) concluiu que, apesar do equacionamento não ser completamente preciso,
este forneceu uma boa aproximação quando comparado com os resultados experimentais.
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4 PROJETO DO FREIO DE FOUCAULT

Este capítulo apresenta uma proposta para o projeto de um freio de Foucault
tomando como base os materiais disponíveis para utilização, para então realizar simulações.

4.1 Proposta de projeto

Para o projeto do freio de Foucault, foram utilizadas as equações do estudo de
(WOUTERSE, 1991), pois é o estudo com publicação mais recente, além dos seus resultados
obtidos se aproximarem mais do caso real se comparado com outros estudos.

Com a finalidade de testar o freio de Foucault e comparar seu desempenho com
as equações de Wouterse (1991) através de experimentos, foi utilizado um motor de
indução para fornecer movimento a um disco de metal condutor. O motor utilizado para
os ensaios é um motor de indução monofásico com capacitor de partida, com as seguintes
características:

Tabela 1: Dados do motor
Potência nominal, Pout (W) 736
Tensão nominal, Vmotor (V) 127/220
Corrente nominal, Imotor (A) 14, 60/6, 75
Velocidade nominal, ωnom (rpm) 1740
Frequência do motor, fmotor (Hz) 60
Número de polos 4
Fator de Serviço, Fs 1, 15
Ip/In 5, 60

Fonte: Elaborado pelo autor.

O conjugado nominal de um motor é dado por:

Tnom = Pout

ωnom

(4.1)

onde Pout é a potência de saída do motor e ωnom é a velocidade angular nominal. De acordo
com a tabela 1, a velocidade angular nominal em rad/s é:

ωnom = 182, 2 (rad/s) (4.2)

Substituindo os valores da tabela 1 e da equação (4.2) na equação (4.1), o torque
nominal é:

Tnom = 4, 039 (N.m) (4.3)
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A não linearidade das equações (3.22), (3.24), (3.25), (3.26) e também a própria
característica da curva torque x velocidade do motor de indução dificulta o projeto do freio.
Por esse motivo, optou-se por utilizar pontos de interesse na curva torque x velocidade
e projetar o freio de Foucault de forma que se consiga atingir tais pontos. Os pontos de
interesse escolhidos foram o de conjugado máximo e o de conjugado nominal.

De acordo com Chapman (2013), o conjugado máximo de um motor de indução é
cerca de 200 a 250% de seu conjugado nominal e geralmente ocorre entre 80 a 90% da
velocidade síncrona. Como não havia à disposição informações a respeito do conjugado
máximo do motor, foi suposto que o conjugado máximo seria de 250% de seu conjugado
nominal.

Tmax = 10, 10 (N.m) (4.4)

A velocidade síncrona é dada por:

ωsinc = 120f
n◦polos

(4.5)

onde f é a frequência elétrica da rede.

Supondo que o conjugado máximo desse motor ocorra em 90% da velocidade
síncrona, tem-se que:

ωmax = 1620 (rpm) (4.6)

Assim, o freio de Foucault deve ser capaz de produzir um conjugado resistente de
valor igual a (4.3) e (4.4) para uma velocidade dada por (4.2) e (4.6), respectivamente.

4.2 Protótipo do freio de Foucault

A vista frontal do protótipo proposto pode ser observada na figura 11 a seguir.

Figura 11: Vista frontal do freio de Foucault.

Fonte: Elaborado pelo autor.
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Os componentes enumerados na figura 11 representam:

• (1): base rígida;

• (2): eixo que liga a base rígida ao suporte dos eletroímãs;

• (3): suporte dos eletroímãs, onde eles estão fixados;

• (4): disco de material condutor acoplado ao motor;

• (5): dinamômetro ou célula de carga;

• ra: comprimento do braço de alavanca;

A vista superior do protótipo proposto pode ser observada na figura 12 abaixo.

Figura 12: Vista superior do freio de Foucault (medidas em cm).

Fonte: Elaborado pelo autor.

A figura 12 não ilustra a base rígida, o dinamômetro e o suporte dos eletroímãs.
Os componentes demarcados na figura 12 são:

• (1): eletroímã;

• (2): eletroímã;

• (3): disco de material condutor acoplado ao motor;

• (4): eixo que liga o disco ao motor;



48

Quando os eletroímãs forem ligados e o disco estiver em movimento, o freio de
Foucault irá atuar e será induzida uma força, consequentemente, um torque resistivo.
Como explicado pela terceira lei de Newton, a força produzida pelo freio no disco resultará
em um força de igual intensidade, porém em sentido contrário, exercido pelo disco no freio.
Devido aos eletroímãs estarem presos ao suporte e este poder girar livremente em torno
de seu eixo, a força de reação produzirá um torque, fazendo com que a alavanca tenda a
girar. Entretanto, o movimento de rotação do suporte é interrompido pelo dinamômetro
(ou célula de carga), que irá ler a força exercida nele. De posse do valor de ra e a força
lida no dinamômetro, é possível então calcular o torque resistivo induzido pelo freio de
Foucault, dado por:

Tr = Fdra (4.7)

onde Fd é a força lida no dinamômetro ou célula de carga.

Como ambos os eletroímãs da figura 12 são iguais e estão dispostos simetricamente,
caso as correntes que circulem em suas bobinas forem as mesmas, ambos os eletroímãs
contribuirão igualmente na produção do torque resistivo. Os eletroímãs são alimentados
através de uma fonte de alimentação CC ajustável. O valor da corrente que flui no eletroímã
é obtido através de um multímetro digital.

4.3 Simulação do freio de Foucault

Com o intuito de se obter um freio de Foucault capaz de atingir os pontos de
interesse discutidos na seção 4.1, foram realizadas diversas simulações com diferentes
valores para cada componente do freio (dimensão do disco, dimensão dos eletroímãs,
número de espiras, etc) até que se atingisse valores reproduzíveis.

Foi utilizado como ponto de partida as dimensões dos componentes utilizadas no
trabalho de (PEREIRA, 2016), porém, algumas alterações foram necessárias. Por exemplo,
o disco de metal utilizado no trabalho de Pereira (2016) possuía um raio de 30 (cm).
Como é difícil encontrar tornos que consigam produzir um disco dessa dimensão, o raio foi
reduzido para se adequar a valores que tornos convencionais consigam produzir.

Após diversas simulações, foi possível obter dimensões dos componentes que fossem
reproduzíveis e que atingissem os pontos de interesse. Os valores utilizados para o raio do
disco, raio efetivo, espessura do disco e o comprimento do entreferro estão ilustrados na
figura 12. Para que a seção transversal do núcleo do eletroímã fosse quadrada, foi utilizada
uma espessura de 3 (cm). Para o material do disco, foi utilizado o alumínio. Os valores
dos componentes estão dispostos na tabela 2.
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Tabela 2: Dados dos componentes
Raio do disco, r (m) 0, 15
Raio efetivo, re (m) 0, 115
Espessura do disco, δ (m) 8, 0.10−3

Área do núcleo, Ac (m2) 9, 0.10−4

Comprimento do entreferro do eletroímã, x (m) 12.10−3

Diâmetro do núcleo relativo, D (m) 3, 39.10−2

Resistividade elétrica do disco, ρ (Ω.m) 38, 3.10−9

Velocidade angular síncrona do motor, ωnom (rad/s) 188, 5
Capacidade de corrente nominal das bobinas (AWG19), (A) 7
Resistência por km do fio (AWG19), Rcobre (Ω/km) 26, 15.10−3

Diâmetro do fio (AWG19), Df (m) 0, 9116.10−3

Número de espiras das bobinas, N (espiras) 1000
Parâmetro geométrico do núcleo, ξ 1

Fonte: Elaborado pelo autor.

Com os dados da tabela 2, é possível determinar a densidade de fluxo magnético B
por meio da equação (2.15), a constante c através da equação (3.22), a velocidade crítica
através da equação (3.26) e a força magnética exercida pelo freio de Foucault por meio
das equações (3.24) e (3.25). A figura 13 ilustra o comportamento do torque resistivo do
freio de Foucault para alguns valores de corrente nas bobinas, plotadas com o auxílio do
MATLAB® (o código utilizado está disponível no apêndice A).

Figura 13: Gráfico de torque x velocidade do freio de Foucault.

Fonte: Elaborado pelo autor.
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Como é possível observar na figura 13, após uma certa velocidade (dada pela
equação (3.26)) o torque resistivo começa a diminuir com o aumento dela. É possível notar
também que os requisitos estipulados na seção 4.1 foram cumpridos. Para a velocidade
na qual supostamente ocorre o torque máximo (equação (4.6)), o freio consegue fornecer
um torque resistivo maior que o dado pela equação (4.4) com uma corrente de 5 (A).
Assim, bastaria uma corrente menor para atingir o valor desejado. O mesmo ocorre para o
torque nominal. Para uma velocidade dada por (4.2), o freio consegue produzir um torque
resistivo maior que o dado pela equação (4.3) com uma corrente de 3,5 (A).
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5 MANUFATURA E MONTAGEM DO FREIO DE FOUCAULT

Este capítulo descreve brevemente o trabalho realizado para a manufatura de cada
componente do freio de Foucault, além de apresentar discussões a respeito dos materiais e
métodos utilizados em cada etapa de sua construção.

5.1 Manufatura do disco

Para a manufatura do disco, foi cogitada a utilização de dois tipos de materiais:
o cobre e o alumínio. O cobre possui menor resistividade elétrica em comparação com o
alumínio, o que resultaria numa maior força magnética resistiva, como pode-se observar na
equação (3.21). Porém, a quantidade de fornecedores que trabalham com chapas de cobre
com as dimensões necessárias para a confecção do disco é bastante limitada. Soma-se a isso
o seu custo elevado em comparação com o alumínio. Por conta dos fatores mencionados, o
material escolhido foi o alumínio.

Foi então adquirida uma chapa de alumínio quadrada para então ser torneada, a
fim de se obter o formato de um disco. Foi realizada a retificação de todas as suas faces
para eliminar deformações e melhorar o acabamento do disco. Por fim, foi feita a abertura
para o encaixe do eixo no centro do disco, que foi fixado no disco por 4 parafusos, como
pode-se observar nas figuras 14 e 15.

Figura 14: Eixo e chapa de alumínio quadrada.

Fonte: Elaborado pelo autor.
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Figura 15: Fixação do eixo no disco de alumínio.

Fonte: Elaborado pelo autor.

O eixo possibilita o ajuste da distância entre o disco e o motor. Dessa forma,
pode-se adaptar a posição do disco para que fique entre o entreferro dos eletroímãs.

5.2 Manufatura da base

A manufatura da base foi feita a partir de barras e chapas de aço, soldadas entre si
utilizando uma máquina de solda MIG. A base possui uma chapa na qual é fixo o motor
de indução, possuindo também um vão de tamanho suficiente para que o disco, acoplado
ao motor, possa girar livremente, como pode-se observar na figura 16.

Na extremidade da base estão soldados dois mancais com rolamento, que possibili-
tam que o suporte dos eletroímãs possa girar com o mínimo de atrito em torno de seu eixo.
O suporte dos eletroímãs consiste numa barra de aço com a furação necessária, em ambas
as extremidades, para prender os eletroímãs com parafusos, como ilustra a figura 17.

A base também possui um parafuso com regulagem de altura, servindo como um
fim de curso para o suporte dos eletroímãs. Do lado oposto, existe um suporte para a
fixação da célula de carga.
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Figura 16: Vista lateral do freio de Foucault.

Fonte: Elaborado pelo autor.

Figura 17: Vista frontal do freio de Foucault.

Fonte: Elaborado pelo autor.

5.3 Eletroímãs

Os núcleos dos eletroímãs foram feitos a partir de barras de ferro, cortadas no
tamanho necessário e soldadas entre si para se obter o formato desejado. As barras foram
limadas para se conectarem o mais rente possível, para não haver ar entre elas, o que
aumentaria a relutância magnética do núcleo.
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Um detalhe importante a ser mencionado é a fixação do eletroímã em seu suporte.
Duas chapas de poliamida (Technyl) foram fixadas no núcleo e elas são fixadas no suporte
dos eletroímãs por meio de parafusos. Assim, não existe contato direto do núcleo de ferro
do eletroímã com o suporte de aço, o que evitaria uma possível fuga de corrente para a
base do freio, caso ocorra a perda de isolamento dos fios de cobre do eletroímã. A figura
18 ilustra um dos núcleos de ferro do eletroímã.

Figura 18: Vista superior do núcleo de ferro do eletroímã.

Fonte: Elaborado pelo autor.

Foi aplicada fita isolante antichama na face do núcleo onde o fio de cobre esmaltado
foi enrolado, tanto para evitar que o fio sofra danos em contato com as imperfeições do
núcleo quanto para evitar uma possível fuga de corrente, caso o fio de cobre perca seu
isolamento.

Devido ao formato do núcleo do eletroímã, o enrolamento das bobinas foi feito
manualmente. Assim, tomou-se o cuidado para que o fio fosse enrolado firmemente ao
redor do núcleo, a fim de que a quantidade de fluxo magnético concatenado nele fosse
maximizada.

Existem duas formas de se conectar as duas bobinas dos eletroímãs: em série e
em paralelo. A vantagem de se conectar em série é o controle da corrente, pois a mesma
corrente passará por ambas as bobinas. A desvantagem está no fato dessa conexão resultar
no aumento da resistência elétrica. Assim, é necessária uma tensão elevada para se atingir
a corrente desejada. A vantagem de se conectar em paralelo é a redução na resistência
equivalente, consequentemente, uma menor tensão é necessária para se atingir a corrente
desejada. A desvantagem está no fato de, como a corrente será repartida para ambas as
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bobinas, metade da corrente máxima suportada pela fonte de alimentação é direcionada
para cada bobina (caso elas fossem idênticas). Além disso, o controle de corrente se torna
mais trabalhoso, pois na prática a resistência elétrica das bobinas não será a mesma.

Analisando as equações (3.24) e (3.25) da força resistiva exercida pelo freio de
Foucault, é possível notar que a densidade de fluxo magnético B é elevada ao quadrado
e ela é diretamente proporcional à corrente elétrica nas bobinas (vide equação (2.15)).
Ou seja, o objetivo é utilizar-se da máxima corrente possível fornecida pela fonte de
alimentação. Portanto, é mais vantajoso o método de se ligar as bobinas dos eletroímãs
em série, devido ao fator quadrático atrelado à corrente elétrica.

Entretanto, devido à limitação de tensão da fonte de alimentação disponível, foi
necessário estimar corretamente o valor da resistência elétrica que as bobinas teriam. Caso
contrário, a corrente elétrica necessária poderia não ser alcançada. O método utilizado
para estimar a resistência elétrica que a bobina teria está descrito a seguir.

Foi calculada a quantidade de espiras que cada camada da bobina teria, utilizando
a equação (5.1).

Nc = ln
Df

(5.1)

onde Nc é a quantidade de espiras por camada, ln é o comprimento da parte do núcleo
onde a bobina será enrolada, em metros, e Df o diâmetro do fio de cobre, em metros.

A quantidade de camadas Ct necessárias para enrolar N espiras é então:

Ct = N

Nc

(5.2)

A altura hb que a bobina atinge, em metros, é:

hb = CtDf (5.3)

O comprimento da bobina lb, em metros, foi estimado como:

lb = 4 (lw + hb)N (5.4)

onde lw é a largura, em metros, do núcleo. A equação (5.4) considera que a altura que
a bobina atingiria em relação a uma face do núcleo é somada em cada um dos 4 lados
dele (os 4 lados possuem a mesma dimensão). Assim, a quantidade de fio necessária para
enrolar cada espira é incrementada.

Finalmente, a resistência elétrica do fio Rfio, em Ω, é:

Rfio = lbRcobre (5.5)

onde Rcobre é a resistência elétrica por metro do fio de cobre.
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Para uma bobina de 1000 espiras e substituindo os dados da figura 12 e da tabela
2 nas equações (5.1) até (5.5), tem-se que:

Rfio = 4, 23 (Ω) (5.6)

Logo, como a fonte de alimentação fornece um máximo de 30 (V) e 5 (A), a fonte
conseguiria fornecer uma tensão suficiente para entregar seu valor limiar de corrente.
Porém, caso a ligação fosse feita em série, o valor da resistência dobraria e a fonte não
conseguiria fornecer a corrente desejada. Para contornar esse problema, seria necessário
uma fonte de alimentação diferente para cada eletroímã.

Entretanto, feitos ensaios com apenas um eletroímã, foi possível gerar um torque
resistivo maior que o torque máximo do motor. Assim, não houve necessidade de adquirir
outra fonte de alimentação. O capítulo 6.1 fornece mais informações sobre esse caso.

A figura 19 ilustra um dos eletroímãs com uma bobina de 1020 espiras presa ao
suporte do freio de Foucault. Uma abraçadeira de nylon foi utilizada para prender os
terminais da bobina.

Figura 19: Vista superior do eletroímã fixo no suporte.

Fonte: Elaborado pelo autor.
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5.4 Célula de Carga

A célula de carga escolhida suporta um limite de 5 kg. Como o comprimento do
braço de alavanca é ra = 0, 255(m), o torque máximo lido pelo sensor é dado por:

Tsensor_max = 5gra (5.7)

onde g é a aceleração gravitacional.

Tomando g = 9, 81(m/s2) e substituindo na equação (5.7), obtém-se:

Tsensor_max = 12, 51(N.m) (5.8)

Como o valor obtido na equação (5.8) é maior que o obtido na equação (4.4),
pode-se concluir que o sensor está devidamente dimensionado para esse projeto.

O circuito amplificador escolhido foi o módulo Hx711 que, além de amplificar o
sinal advindo da célula de carga, converte o sinal analógico para digital com uma precisão
de 24 bits. A leitura do sinal digital é feita utilizando-se uma placa arduino Leonardo, que
converterá o sinal lido para valores de torque. A figura 20 ilustra a célula de carga fixada
na base do freio de Foucault.

Figura 20: Célula de carga fixada na base do freio de Foucault.

Fonte: Elaborado pelo autor.

Para a calibração e validação da célula de carga, foram utilizados pesos de balança
que possuem valores abrangendo de 1 grama até 200 gramas, conforme mostra a figura 21.
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Figura 21: Pesos utilizados para calibração da célula de carga.

Fonte: Elaborado pelo autor.

A célula se mostrou muito precisa nos testes, detectando valores na ordem de 1
grama. O erro médio ficou em torno de 0,1% do valor medido.

5.5 Proteção

Para a proteção do motor, foi escolhido um disjuntor motor da marca Steck,
ajustável de 13 (A) a 18 (A). Assim, esse disjuntor atende aos requisitos do motor, que
possui uma corrente nominal de 14,60 (A) (conforme tabela 1) e uma corrente de 16,79
(A) se considerado o fator de serviço. Por ser um disjuntor tripolar, foi feito um ajuste nas
ligações dos terminais para a conexão do motor monofásico, como ilustra a figura 22 e 23.

Figura 22: Diagrama elétrico de ligação do motor.

Fonte: Elaborado pelo autor.
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Figura 23: Disjuntor motor.

Fonte: Elaborado pelo autor.

5.6 Medição dos componentes

Terminada a construção do freio, foram realizadas medições para obter as dimensões
reais dos componentes. Houve pequenas diferenças na espessura do disco, no comprimento
do entreferro e no número de espiras da bobina se comparado com os valores estipulados
no projeto do freio, como é possível observar comparando-se as tabelas 2 e 3.

Tabela 3: Dimensões reais do freio de Foucault
Raio do disco, r (m) 0, 150
Raio efetivo, re (m) 0, 115
Espessura do disco, δ (m) 8, 80.10−3

Área do núcleo, Ac (m2) 9, 0.10−4

Comprimento do entreferro do eletroímã, x (m) 12, 15.10−3

Diâmetro do núcleo relativo, D (m) 3, 39.10−2

Número de espiras das bobinas, N (espiras) 1020

Fonte: Elaborado pelo autor.
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6 ENSAIOS E RESULTADOS EXPERIMENTAIS

6.1 Metodologia para ensaio do motor de indução

Com o objetivo de se traçar a curva torque x velocidade na região de operação
(região estável) do motor de indução monofásico, foi necessário percorrer diferentes pontos
de operação do motor. Para isso, é necessário variar o conjugado resistente da carga
aplicada ao motor, ou seja, variar o conjugado resistente produzido pelo freio de Foucault.
Analisando a equação (3.25), é possível concluir que a única variável com possibilidade de
variação é a densidade de fluxo magnético B, sendo as restantes relacionadas à geometria ou
à construção física do freio. É possível controlar a corrente através da fonte de alimentação,
consequentemente, controlando a densidade de fluxo magnético (vide equação (2.15)).

A rotação do disco foi obtida através de um tacômetro digital, modelo DT-2234C+
(vide figura 24), sendo que a fita reflexiva foi colada na lateral do disco de alumínio. As
leituras de torque foram obtidas diretamente no computador, através da conexão serial
com a Arduino.

Figura 24: Tacômetro digital DT-2234C+.

Fonte: Elaborado pelo autor.

A fonte de alimentação utilizada, modelo MPS-3005B da Minipa, possui um limite
de 5 (A) de corrente e 30 (V) de tensão. Ela suporta trabalhar em sua potência máxima
sem restrições de tempo.

Ao ligar o motor, já com o disco acoplado, foi obtida uma velocidade de 1796 (rpm).
Partindo dessa velocidade, a célula de carga foi "zerada", a fonte de alimentação ligada e
sua corrente foi ajustada até que a velocidade lida no tacômetro fosse reduzida para 1790
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rpm. Feito isso, a seguinte metodologia foi utilizada:

a. A corrente elétrica na fonte foi ajustada até que o freio conseguisse reduzir em 5
(rpm) a leitura anterior;

b. Os valores da corrente elétrica no eletroímã e torque lido na célula de carga foram
inseridos em uma planilha;

c. A fonte de alimentação foi desligada, e foram feitas medições de temperatura na
bobina, no disco e no motor, utilizando um termômetro infravermelho ilustrado na
figura 25;

d. Caso a temperatura de todos esses componentes estivessem abaixo de 45°C1, os
dados obtidos no item b eram armazenados. Caso contrário, os dados obtidos eram
descartados e o ensaio era interrompido para o resfriamento dos componentes, visto
que a temperatura influencia na resistividade dos materiais, o que impossibilitaria
uma análise mais rigorosa dos resultados. Assim, o ensaio era repetido até que
fossem obtidos os dados com os componentes numa temperatura inferior a 45°C.
Quando necessário, foi utilizado ar comprimido para auxiliar no resfriamento dos
componentes.

Essas etapas foram repetidas até que o torque máximo de operação do motor fosse
atingido, ou seja, no limiar da região estável de operação.

Figura 25: Termômetro infravermelho modelo MT-350 da marca Minipa.

Fonte: Elaborado pelo autor.

1 O tempo levado para ajustar a corrente elétrica nos eletroímãs até que o motor se estabilizasse
na velocidade desejada para a obtenção dos dados acarretava no aquecimento dos componentes.
Então, foi escolhida a temperatura de 45°C como limite, pois era uma condição possível de se
atingir nos ensaios. O ideal seria tentar manter a mesma temperatura para todas as medições.
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6.2 Resultados experimentais

A tabela 4 foi obtida após a realização de diversas medições seguindo as etapas
descritas na seção 6.1. A partir desses dados, foi possível traçar a curva torque x velocidade
da região estável de operação do motor de indução monofásico, como mostra a figura 26.

Tabela 4: Resultados experimentais
Velocidade (rpm) Torque Experimental (N.m) Corrente (A)

1790 0,178 0,880
1785 0,350 1,275
1780 0,450 1,475
1775 0,590 1,742
1770 0,720 1,914
1765 0,838 2,134
1760 0,971 2,292
1755 1,056 2,421
1750 1,163 2,584
1745 1,291 2,717
1740 1,381 2,829
1735 1,466 2,922
1730 1,548 2,978
1725 1,619 3,093
1720 1,679 3,156
1715 1,761 3,250
1710 1,791 3,258
1705 1,831 3,327
1700 1,911 3,362
1695 1,966 3,452
1690 2,011 3,497
1685 2,064 3,550
1680 2,101 3,567
1675 2,131 3,602
1670 2,156 3,606
1665 2,196 3,637
1660 2,241 3,677
1655 2,259 3,677
1650 2,271 3,669
1645 2,289 3,674
1640 2,306 3,682
1635 2,311 3,707
1630 2,324 3,716
1625 2,339 3,740
1620 2,384 3,752
1615 2,422 3,773
1610 2,429 3,742
1605 2,434 3,763
1600 2,439 3,765

Fonte: Elaborado pelo autor.
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Figura 26: Curva torque x velocidade obtida experimentalmente.

Fonte: Elaborado pelo autor.

Foi observado que, quando o motor estava com uma velocidade acima de 1710
(rpm) (5% de escorregamento), era necessário um variação considerável na corrente elétrica
(na ordem de uma centena de miliampères) das bobinas para alcançar a velocidade
desejada. Isso quer dizer que o freio de Foucault precisou elevar o valor do torque resistivo
consideravelmente entre duas medições, como pode ser observado na tabela 4.

Entre 1710 (rpm) e 1650 (rpm), a variação na corrente necessária era mais discreta,
ou seja, a variação de torque resistivo que o freio de Foucault precisou gerar para reduzir a
velocidade do motor em 5 (rpm) foi pequena se comparado com o caso anterior, como pode
ser observado na tabela 4. Nessa região, a corrente do eletroímã estava superior a 3,2 (A),
o que causou um aquecimento considerável tanto na bobina quanto no disco de alumínio
(este último, devido ao aumento da intensidade das correntes parasitas decorrentes do
aumento do fluxo magnético do eletroímã). Entre uma medição e outra, foi necessário
aguardar alguns minutos para o resfriamento desses componentes, mesmo com o auxílio
do ar comprimido.

Entre 1650 (rpm) e 1600 (rpm), a variação na corrente necessária entre as medições
passou a ser ínfima (na ordem de dezenas de miliampères), o que dificultou a realização
das medições. Ou seja, uma pequena variação no torque resistivo gerado pelo freio causava
uma alteração expressiva na velocidade de rotação do motor. Observado os dados da tabela
4, uma redução de 1790 (rpm) para 1740 (rpm) necessitou de um aumento de 1,203 (N.m)
no torque resistivo, enquanto a mesma redução de 50 (rpm), mas na faixa de 1650 (rpm)
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a 1600 (rpm), necessitou de um aumento de apenas 0,168 (N.m).

Outra variável que dificultou o controle da velocidade do motor foi a temperatura.
Como a corrente elétrica no eletroímã estava acima de 3,6 (A), o aquecimento da bobina e
do disco foram ainda mais perceptíveis. Ao final de algumas medições, a bobina chegou a
ultrapassar 50°C, enquanto o disco chegou em 42°C. Assim, foi necessário aguardar um
tempo ainda maior entre as medições. Outro efeito observado foi um aumento considerável
das vibrações mecânicas nessa faixa de velocidade, que é uma característica intrínseca dos
motores de indução monofásicos.

Abaixo de 1600 (rpm), um pequeno aumento do conjugado resistivo do freio fez com
que a velocidade do motor diminuísse de maneira rápida e contínua, o que possivelmente
levaria o motor à parada completa caso o freio não fosse desativado ou o disjuntor desligado
para evitar danos ao equipamento. Analisando a tabela 4, pode-se observar que os valores
de torque do motor entre 1610 (rpm) e 1600 (rpm) se alteram minimamente, na ordem de
0,005 (N.m). Assim, foi concluído que o motor atinge o torque máximo em 1600 (rpm), ou
seja, a região instável da curva torque x velocidade se encontra para velocidades inferiores
a essa, razão pela qual ocorreu a queda brusca na velocidade de rotação do motor.

Como o freio de Foucault foi capaz de produzir, com apenas um eletroímã, um
conjugado resistente superior ao conjugado máximo do motor utilizado, não foi necessário
enrolar uma bobina no segundo eletroímã. Pelo motor de indução monofásico utilizado
possuir um capacitor de partida, um torque superior ao máximo atingido no experimento
poderia ser alcançado quando o capacitor estivesse conectado ao circuito. Porém, como
explicado no capítulo 2, a função do capacitor é apenas realizar a partida do motor.
Portanto, o conjugado máximo considerado é aquele em que o capacitor de partida não
está conectado ao circuito do motor.

6.3 Análise dos resultados experimentais

Uma análise dos resultados obtidos experimentalmente pode ser feita comparando-
se com resultados obtidos através de simulações. De posse dos valores de corrente nos
eletroímãs e da velocidade de rotação do motor resultantes do experimento, além dos
dados construtivos do freio (tabela 3), foram feitas novas simulações do torque resistivo
teórico através das equações (3.24) a (3.26).

Os dados obtidos estão dispostos na tabela 5. A coluna ”Torque Experimental”
indica o torque obtido experimentalmente, a coluna ”Torque Simulação” indica o torque
teórico obtido através de simulações e a coluna ”Variação” indica a diferença percentual
do torque teórico em relação ao torque experimental.
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Tabela 5: Resultados experimentais e simulações
Velocidade

(rpm)
Torque

Experimental (N.m)
Torque Simulação

(N.m) Variação Corrente
(A)

1790 0,178 0,152 -14,6% 0,880
1785 0,350 0,319 -8,92% 1,275
1780 0,450 0,428 -4,97% 1,475
1775 0,590 0,598 1,34% 1,742
1770 0,720 0,724 0,49% 1,914
1765 0,838 0,902 7,66% 2,134
1760 0,971 1,043 7,48% 2,292
1755 1,056 1,167 10,5% 2,421
1750 1,163 1,332 14,5% 2,584
1745 1,291 1,477 14,4% 2,717
1740 1,381 1,605 16,2% 2,829
1735 1,466 1,716 17,1% 2,922
1730 1,548 1,787 15,4% 2,978
1725 1,619 1,932 19,4% 3,093
1720 1,679 2,017 20,1% 3,156
1715 1,761 2,144 21,7% 3,250
1710 1,791 2,160 20,6% 3,258
1705 1,831 2,258 23,3% 3,327
1700 1,911 2,311 20,9% 3,362
1695 1,966 2,443 24,2% 3,452
1690 2,011 2,513 24,9% 3,497
1685 2,064 2,596 25,8% 3,550
1680 2,101 2,627 25,0% 3,567
1675 2,131 2,686 26,0% 3,602
1670 2,156 2,699 25,1% 3,606
1665 2,196 2,752 25,3% 3,637
1660 2,241 2,820 25,8% 3,677
1655 2,259 2,827 25,1% 3,677
1650 2,271 2,822 24,2% 3,669
1645 2,289 2,838 24,0% 3,674
1640 2,306 2,856 23,8% 3,682
1635 2,311 2,904 25,6% 3,707
1630 2,324 2,924 25,8% 3,716
1625 2,339 2,969 26,9% 3,740
1620 2,384 2,996 25,7% 3,752
1615 2,422 3,037 25,4% 3,773
1610 2,429 2,995 23,3% 3,742
1605 2,434 3,036 24,8% 3,763
1600 2,439 3,047 24,9% 3,765

Fonte: Elaborado pelo autor.

Os dados da tabela 5 foram organizados em um gráfico de eixo duplo, ilustrado na
figura 27. A curva azul, laranja e branca representam o torque obtido experimentalmente,
o torque obtido teoricamente e a corrente elétrica no eletroímã, respectivamente.
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Figura 27: Curva torque e corrente x velocidade.

Fonte: Elaborado pelo autor.

Analisando a tabela 5 e a figura 27, pode-se observar que para velocidades entre
1785 e 1760 (rpm), os resultados obtidos através da simulação e experimentalmente estão
próximos. Já entre 1755 (rpm) e 1700 (rpm), a variação começa a aumentar com a
diminuição da velocidade. A partir de 1695 (rpm) até 1600 (rpm), a variação se estabiliza
em torno de 25%. Assim, percebe-se que os valores obtidos experimentalmente foram, em
geral, menores que os obtidos teoricamente.

Existem 3 principais motivos que podem explicar a discrepância entre os resultados
teóricos e experimentais, sendo o primeiro a própria fórmula teórica utilizada. Como
explanado no capítulo 3, ainda não há uma fórmula na literatura que expresse de maneira
precisa o comportamento de um freio eletromagnético por ação de correntes parasitas.
Como explicado anteriormente, Wouterse (1991) propôs uma solução geral que fosse válida
para todas as faixas de velocidade, porém, concluiu que seu equacionamento não era
completamente preciso, embora fornecesse uma boa aproximação.

O segundo são as simplificações utilizadas. A fórmula teórica utilizada para o cálculo
da densidade de fluxo magnético foi a equação (2.15), que considera que a relutância no
núcleo do entreferro é muito menor que a do entreferro, portanto, poderia ser desprezada.
Caso fosse levada em consideração, a relutância magnética total teria um incremento, o que
reduziria o valor da densidade de fluxo magnético, consequentemente, reduzindo o torque
resistivo gerado pelo freio (efeito é agravado devido ao termo B ser elevado ao quadrado
na equação (3.25)). Outro ponto é o efeito de espraiamento, que não foi considerado nas
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simulações. Além disso, o próprio disco de alumínio acoplado ao motor gera um torque
resistente, que também não foi considerado nas simulações. Por esses motivos, é possível
afirmar que os valores de torque obtidos teoricamente tendem a ser maiores que os obtidos
experimentalmente.

O terceiro motivo é o aquecimento dos componentes durante os ensaios. O aumento
da temperatura no disco faz com que a resistência elétrica dele aumente, o que diminui
a intensidade das correntes parasitas, consequentemente, diminuindo o torque resistivo
produzido pelo freio de Foucault. É possível observar na tabela 5 e no gráfico 27 o efeito do
aumento da temperatura nos ensaios realizados. Pode-se tomar como exemplo os valores de
corrente e torque para 1660 (rpm) e 1645 (rpm). Embora o torque obtido para 1645 (rpm)
tenha sido superior ao obtido para 1660 (rpm), a corrente elétrica necessária foi menor. Isso
se deve à temperatura do disco, pois como explicado na seção 6.2, para essas velocidades
o disco aquecia consideravelmente, tornando necessário a espera entre as medições para o
resfriamento dos componentes. Dessa maneira, a temperatura na qual foram realizadas as
medições não foram as mesmas, o que gerou tal variação.

Analisando a tabela 5, pode-se notar que, para sua velocidade nominal, o motor
fornece um torque muito aquém do calculado em 4.3. Por esse motivo, não foi necessário
utilizar o segundo eletroímã, diferentemente do previsto no capítulo 4. Uma possibilidade
levantada para esse fenômeno está no fato do motor ser antigo (fabricado em 2007) e já
ter sido muito utilizado. Como não foi feito nenhuma manutenção desde a sua aquisição, é
provável que o desgaste natural tenha comprometido o funcionamento do motor.
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7 PROPOSTA DE MELHORIA PARA O FREIO DE FOUCAULT

Existem dinamômetros no mercado que funcionam a partir de um freio de Foucault.
Tais dinamômetros conseguem traçar a curva completa de torque x velocidade de motores
de indução, ou seja, incluindo a região instável da curva. Assim, são propostas neste
capítulo melhorias que poderiam ser implementadas no freio de Foucault deste estudo,
baseado nos dinamômetros comerciais.

Teoricamente, é possível atingir quase que a totalidade dos pontos existentes na
curva torque x velocidade devido à característica da própria curva de atuação do freio
de Foucault. A figura 28 demonstra esse fenômeno, onde ela ilustra a superposição dos
gráficos de torque resistivo produzido pelo freio de Foucault e o torque produzido pelo
motor. As curvas coloridas indicam o torque resistivo produzido pelo freio de Foucault
para diferentes valores de corrente elétrica no eletroímã, enquanto a curva preta indica a
curva torque x velocidade típica de um motor de indução.

Figura 28: Curva torque resistivo e torque do motor x velocidade.

Fonte: Elaborado pelo autor.

Porém, é possível notar na figura 28 que, na região entre a partida do motor e o
conjugado máximo, o freio conseguiria atingir pontos estáveis de operação apenas quando
o conjugado resistivo do freio aumenta com o aumento da velocidade do motor, sendo os
demais pontos instáveis. Para realizar as medições de torque nesses pontos de operação
instáveis, seria necessário um sistema de controle que conseguisse controlar o conjugado
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resistivo do freio de modo que o motor mantivesse a velocidade requerida.

Outro problema que ocorre na região entre a partida do motor e o conjugado
máximo é a elevada corrente elétrica que flui nas bobinas do motor (valores muito acima do
nominal), o que levaria o motor a esquentar excessivamente. Para contornar esse problema,
os dinamômetros comerciais possuem um sistema robusto de resfriamento, tanto para o
motor quanto para os componentes do freio. Porém, ainda é necessária uma rápida leitura
das variáveis de interesse, razão pela qual são utilizados sensores de força e velocidade,
eliminando a necessidade de um tacômetro. Ainda assim, esses sensores devem possuir
uma frequência de captação de dados elevada e uma alta precisão, principalmente para a
medição nos pontos de operações instáveis citados anteriormente.

Para controlar a velocidade do motor para a realização das leituras, poderia ser
utilizado um sistema de controle do tipo PID. A partir dos dados de velocidade obtidos
(por um encoder ou tacogerador, por exemplo), o sistema de controle atuaria para variar a
intensidade da corrente nas bobinas do eletroímã, consequentemente, alterando o conjugado
resistivo até que a velocidade desejada seja atingida.

O controle da corrente elétrica no eletroímã pode ser feito através de um transistor
de potência controlado por PWM, a fim de variar a tensão em sua bobina. Um sensor de
corrente ligado em série com a bobina faz a leitura e transmite o sinal para o controlador.

Também é possível implementar sensores de temperatura no motor e na bobina do
eletroímã. O sinal também é enviado para o controlador, a fim de desligar o sistema caso
a temperatura atinja um valor crítico.

Como a apresentação de maiores detalhes em relação ao sistema de controle e seus
respectivos cálculos fogem do escopo deste trabalho, é apresentado na figura 29 apenas
um diagrama de blocos simplificado do sistema proposto.

Figura 29: Diagrama de blocos simplificado do circuito de controle.

Fonte: Elaborado pelo autor.
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8 CONCLUSÃO

O objetivo deste trabalho foi apresentar uma análise do funcionamento do freio
de Foucault tanto teoricamente como experimentalmente. A construção do freio e sua
aplicação para a realização de ensaios no motor de indução possibilitou a constatação de
diversos fatos descritos pela teoria, como por exemplo: a produção de correntes parasitas
quando um material condutor em movimento é submetido a um campo magnético; a
produção de uma força causada justamente pela presença do campo magnético em conjunto
com as correntes parasitas; a força produzida pelo freio ter sentido oposto ao movimento
do disco; a força de frenagem ser proporcional à intensidade do campo magnético; o
aquecimento do disco devido à circulação das correntes parasitas, dentre outros.

Os resultados obtidos experimentalmente se aproximaram bem da formulação
teórica para velocidades entre 1785 (rpm) e 1760 (rpm). Para velocidades abaixo dessa
faixa, houve um aumento na diferença entre os resultados, até se estabilizar em torno de
25%. As hipóteses para essa discrepância vão desde simplificações utilizadas nas fórmulas
teóricas até o aquecimento dos componentes durante os ensaios do motor, como discutido
na seção 6.3.

O freio de Foucault projetado, simulado e construído pode ser utilizado para a
obtenção da curva de torque x velocidade na região estável de operação de motores de
indução, podendo ser utilizada para prever o desempenho do motor a depender da carga
aplicada à ele, conforme apresentado no capítulo 6. Dessa maneira, é possível dizer que o
objetivo principal deste trabalho foi cumprido.

Entretanto, houve diversos aspectos que dificultaram o projeto e a construção do
freio. Primeiramente, existem as dificuldades da própria teoria. Como apresentado no
capítulo 3, ainda não há um consenso sobre uma equação que descreva precisamente o
conjugado resistivo produzido pelo freio, para todas as faixas de velocidade.

Há também as dificuldades relacionadas aos aspectos construtivos do freio de
Foucault. Conforme demonstrado nas equações (3.22), (3.24), (3.25) e (3.26), o número de
variáveis envolvidas é significativo. Uma pequena variação em alguma delas pode fazer
com que os resultados sejam muito diferentes do esperado. Para tanto, é de grande valia o
conhecimento dos materiais utilizados para a construção do freio, para diminuir o número
de simplificações e aproximações utilizadas.

Conforme discutido no capítulo 7, existem diversas melhorias que podem ser
implementadas neste freio de Foucault. Um dos principais problemas é o aquecimento
dos componentes, conforme discutido no capítulo 6. A leitura do torque e da velocidade
através de sensores iria aprimorar consideravelmente o desempenho do freio, pois os dados
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seriam obtidos mais rapidamente, o que diminuiria o tempo necessário para a execução
dos ensaios. Logo, os problemas com aquecimento tendem a ser minimizados, acarretando
em um menor erro devido às variações na resistividade dos materiais. Em conjunto com
esses incrementos, se fosse implementado um sistema de controle, o freio de Foucault
apresentado poderia se tornar um dinamômetro completo o suficiente para se traçar a
curva completa de torque x velocidade de motores elétricos.
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APÊNDICE A – CÓDIGO EM MATLAB DA SIMULAÇÃO DO FREIO



 1 clear
 2 clc
 3 
 4 count = 1; % contador
 5 r = 0.15; % Raio do disco, em (m)
 6 re = 0.115; % Raio efetivo, em (m)
 7 delta = 0.0088; % Espessura do disco, em (m)
 8 Ac = 0.03*0.03; % Área do núcleo, em (m^2)
 9 g = (12.15*10^-3-delta); % Comprimento do entreferro, em (m) (sem contar espessura 
do disco, apenas a parte com "ar")
10 D = sqrt(Ac*4/pi); % diâmetro de um círculo de mesma área da secção transversal do 
núcleo, em (m)
11 c = 0.5*(1-((1/4)*(1/(power((1+re/r),2)*power((r-re)/D,2))))); % Fator c
12 rho = (38.3*10^-9)*1; % Resistividade elétrica do disco, em (Ohm.m)
13 w_nom = 188.5; % Velocidade síncrona do motor, em(rad/s)
14 v_nom = w_nom*re; % Velocidade linear(tangencial) nominal do disco, em (m/s)
15 N = 1020; % Número de espiras no eletroímã
16 I_max = 5.0; % Capacidade nominal da fonte de corrente, em (A)
17 mi_0 = 4*pi*10^-7; % Permeabilidade magnética do vácuo
18 x = g+delta; % Comprimento total do entreferro do núcleo (Entreferro + Espessura do 
disco), em (m)
19 epsilon = 1; % Parâmetro da geometria do núcleo, autor recomenda utilizar 1.
20 
21 vk = (2/mi_0)*sqrt(1/(c*epsilon))*(rho/delta)*sqrt(x/D); % Velocidade crítica
22 v = 0:(v_nom/1800):v_nom;
23 w = (v/re)*(30/pi);
24 
25 for I=0:0.5:I_max
26     B = N*I*mi_0/x; % v.1.1: Alterado o denominador para "g" Densidade de fluxo 
magnético, em (T)
27     Fk = (1/mi_0)*sqrt(c/epsilon)*(pi/4)*power(D,2)*power(B,2)*sqrt(x/D); % Força 
crítica
28     Fr = Fk.*(2./((vk./v)+(v./vk))); % Força resistiva do freio de Foucault
29     Tr = Fr*re; % Torque resistivo exercido pelo freio. Se utilizado 2 eletroímãs, 
multiplicar por 2.
30     figure(1)
31     plot(w,Tr);
32     title('Força resistiva para alguns valores de corrente, com um eletroímã')
33     if count == 1
34         hold
35     count = count+1;
36     end
37 end
38 
39 hold
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