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ABSTRACT 

This thesis aims to map the use of Large Language Models (LLMs) in Clinical Decision 

Support, through a systematic literature review and a survey of physicians. The systematic 

review analyzed 39 articles from the Web of Science database published between 2023 and 

2025. The findings suggest that LLMs hold significant potential to enhance clinical diagnosis 

and support treatment recommendations, functioning as assistive tools that complement rather 

than replace the physician’s role. The review categorizes the literature by technological 

approach, including General Purpose LLMs, Data Wrangling, Prompt Engineering, RAG, 

Imaging Analysis, and Multimodal Applications. It also addresses key barriers  to LLM  

adoption in clinical decision support, such as their ’black box’ nature, hallucinations, data 

privacy concerns, regulatory challenges, ethics issues and algorithmic biases. Furthermore, a 

survey was conducted between September 26 and October 7, 2025, with 79 answers from a 

pool of 308 physicians of a hospital in São Paulo, yielding a response rate of 25.6%. The survey 

results indicate that, although physicians are not currently using LLMs as clinical support tools, 

they strongly believe that widespread adoption of LLMs will occur in the near future. 

Limitations of this study include, the fast-evolving nature of the topic and a restriction to single 

institution in the survey. Finally, as a future direction, a broader survey is suggested, including 

doctors from other institutions and locations. Moreover, how medical education will adapt to 

the emergence of these technologies can be a fertile field for study. 

 

 

Keywords: Large Language Models, clinical decision support, systematic literature review, 

survey.  
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1. Introduction 

In this chapter, the core concepts of LLMs and Clinical Decision Support will be addressed, 

including a brief history of the evolution of systems in Clinical Decision Support. Furthermore, 

the objectives and the structure of this thesis are explained. 

1.1 LLM for Clinical Decision Support 

 Clinical Decision Support (CDS) refers to health information technology systems that 

provide clinicians with timely, evidence-based, and patient-specific information to support 

decision-making. These systems aim to improve clinical decision-making by offering evidence-

based recommendations, alerts, reminders, diagnostic support, and other contextual insights 

(Osheroff et al, 2012). 

 To keep pace with the increasing knowledge in medicine, tools for assisting human 

reasoning are becoming increasingly valuable. That is where artificial intelligence appears. 

Until Large Language Models (LLM) appeared in this field, historically other tools have 

demonstrated some usefulness. From the 1950s to 1980s, rule-based systems using decision-

trees and IF-THEN logic used to assist in infectious disease diagnosis (Buchanan & Shortliffe, 

1984). Later, from the 1990s to 2010s, the focus shifted towards Machine Learning, driven by 

algorithms such as logistic regression and random forest to approach clinical data statistically 

(Kononenko, 2001). From the 2010s to 2020s, Deep Learning emerged as an innovation to 

address image recognition and diagnostics (Litjens et al., 2017). In recent years, Large 

Language Models (LLMs) such as GPT and Med-PaLM have emerged as powerful tools 

capable of understanding and generating human language. These models can answer clinical 

questions, support reasoning, and process diverse medical texts and scenarios (Singhal et al., 

2023). 

 Large Language Models appear at the intersection (Figure 1) of Deep Learning (DL) 

and Natural Language Processing (NLP). Deep learning can be defined as a subfield of 

Artificial Intelligence that is able to handle complex patterns by mimicking human thinking. 

On the other hand, NLP exists to make machines understand and generate human language. 

Therefore, Large Language Models combine the goals of NLP and the computational power of 

Deep Learning to process, interpret, and generate natural language (Fernández, M, 2024).  
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Figure 1: Definition of LLMs 

 

Source: Fernández, M (2024) 

 

 One of the most known Large Language Models is GPT (Generative Pretrained 

Transformer). GPT is a decoder-only model (Wu et al, 2023), which generates word by word 

using the self-attention mechanism together with positional encoding. This means that, given a 

prompt, the model generates an output where each word will be generated based on 

representations of the prompt and the past generated words with an attention mechanism to give 

relative importance scores to words that were previously generated. 

 Another example is Med-PaLM, which is also a decoder-only transformer model that 

adds domain-specific expertise via Supervised fine-tuning on medical Q&A datasets (like 

MedQA, HealthSearchQA, PubMedQA), Reinforcement Learning with Human Feedback 

(RLHF) using clinician-annotated responses and focus on factuality, reasoning, bias reduction, 

and helpfulness in outputs. 

 A transformer model is a model architecture relying entirely on an attention mechanism 

to draw global dependencies between input and output (Vaswani et al., 2017). It is a type of 

Deep Learning Architecture designed for processing sequential data particularly in Natural 

Language Processing Tasks, where the attention mechanism exists to better capture the 

relationships between words in a sentence. 

 These architectures make LLMs particularly useful to handle medical language and 

knowledge once they can: i) learn from diverse and specialized data (e.g. Med-PaLM) ii) handle 

unstructured data, such as physician notes iii) scale and generalize iv) handle question and 

answering as well as summarization. 
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1.2 Objectives of this thesis 

This study has as a general objective to map the role of Large Language Models (LLMs) 

on clinical decision support by doing a Systematic Literature Review and a Survey with 

physicians. 

This general objective can be divided into two specific goals: 

1. Characterize and analyze critically the actual state of research about LLMs on clinical 

decision support. 

2. Investigate the perception of doctors about the usage of LLMs on clinical practice. 

 

To achieve these goals, this work will be oriented by the following research questions: 

i) What are the publication trends (by year, country, authors and keywords) in the 

literature about LLMs and Clinical Decision Support?  

ii) How LLMs can be used by physicians and which technologies are being applied 

on disease diagnostics? 

iii) How LLMs can be used by physicians  and which technologies are being applied 

on clinical treatment and monitoring health conditions?  

iv) What are the challenges associated with the usage of LLMs on diagnostic, 

treatment and monitoring health conditions of patients?  

v) What is the opinion of physicians about the usage of LLMs on clinical practice?  

 

 

1.3 Structure of the thesis 

This thesis is organized as follows: the second chapter describes the methodology of 

research. It presents the protocol adopted to make the Systematic Literature Review, including 

strategy of search, triage process, criteria of eligibility and evaluation of the quality of selected 

articles. This chapter also brings a descriptive analysis of selected publications, including 

authorship, institutions, countries and keywords. 

 The chapter 3 presents the results of the systematic review organized around the 

applications of LLMs in clinical decision support, the technological approach used (e.g. RAG, 

fine-tunning, multi-modal models) and the challenges reported in the literature. 

 The fourth chapter reports the survey applied with physicians, including the motivation, 

the methodology and the results obtained. The results include factors like the knowledge, the 
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frequency of use, the utility perception and the main worries related to the use of LLMs on 

clinical practice. 

 The chapter 5 discusses the findings of the systematic review and the survey in light of 

the research questions, highlighting convergences, tensions and implications for practice and 

future research. 

 The sixth chapter concludes the thesis with a synthesis of the main results, a reflection 

about the limitations of the study and recommendations to future research. 

2 Literature Review Methodology and Descriptive Analysis 

A Systematic Literature Review (SLR) is a detailed and reproducible method for 

synthesizing academic research. It adopts a transparent and structured procedure to identify, 

evaluate, and compile relevant literature on a specific topic. What sets it apart from traditional 

reviews is its systematic nature and its strong focus on reproducibility. 

The process involves rigorously defined steps—starting from precise criteria for the 

literature search and study selection, moving through quality assessment and data extraction, 

and ending with well-established synthesis methods. This structure ensures that other 

researchers can replicate the review reliably, which reinforces the validity of the findings by 

minimizing selection and analysis bias. 

SLRs follow standardized protocols to guide the identification and critical evaluation of 

the literature, always anchored to a clearly defined research question. This guarantees that the 

synthesis of evidence is not only thorough but also free from subjective distortions. Unlike 

narrative reviews, which may reflect personal viewpoints or interpretive bias, a systematic 

review seeks to present a clear, objective, and comprehensive picture of the state of research on 

the topic. 

The method is built around focused research questions, allowing for a more 

concentrated and meticulous exploration of the field. Widely recognized in medicine and health 

sciences for its effectiveness in generating evidence-based, well-founded insights from the 

existing body of literature. 

In this chapter, it is presented the methodology used to conduct this systematic literature 

review. This methodology was elaborated based on the one presented by Siddaway, Wood e 

Hedges (2019) and on the one used by Lemstra, Mesquita (2023). It includes four key steps: i) 

Scoping, ii) Identification (searching), iii) Screening, and iv) Eligibility.  
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2.1 Literature Review Methodology  

2.1.1 Scoping  

In this phase, many preliminary key issues of conducting a systematic review are 

addressed. The very first step was to understand better the sub areas existing in the healthcare 

and artificial intelligence fields. With this objective, an exploratory analysis was conducted on 

the most 1000 cited publications (on the intersection between AI and HealthCare publications) 

released in the last five years. These publications were, then, classified according to two 

criterias: i) Artificial Intelligence keywords (Figure 2) and ii) Healthcare keywords (Figure 3).  

 In order to classify one article according to the categories on both aspects, the 

methodology was to i) connect to the Gemini API (Application Programming Interface) from 

Python and ii) provide the abstract of each of the 1000 publications as a prompt asking Gemini 

to classify among each main theme. Given an abstract A, the Gemini model could classify as 

belonging to Generative AI and to Clinical Decision Making or Computer Vision and Medical 

imaging, for example. 

  

Figure 2: Classification of articles according to AI field 

 

Source: The author 
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Figure 3: Classification of articles according to Healthcare field 

 

Source: The author 

 

Finally, a cross-analysis were performed to understand the relationships between 

categories on AI and categories on Healthcare (Figure 4) 

     

Figure 4: Cross-Analysis AI x Healthcare 

 

Source: The Author 
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By classifying among AI and Healthcare groups and making a cross-analysis, it is 

possible to understand better which topics have been more explored and which topics still leave 

space for improvements and to make an original work. 

This cross-analysis points out interesting facts such as: Clinical Decision Support is by 

far the topic that is the most related to Artificial Intelligence and Medical Imaging is closely 

related to Computer Vision and Deep Learning architectures.  

It also enables the delineation of boundaries to be adhered to within the defined scope. 

From the analysis made, it is possible to see that choosing Machine Learning + Clinical 

Decision Support would not help to restrain the research, once is the most common subject. 

Therefore, a more up to date and fast-growing topic was chosen as the object of the systematic 

review: the relationship between LLMs and Clinical Decision Support. This brings more 

possibilities to generate an original Systematic Literature Review, which fills a gap in the 

current literature by including a bibliometric analysis and closes the gap on the current literature 

review content. 

2.1.2 Searching 

Given the research questions and the well-defined scope, the next step in conducting a 

systematic literature review involves finding materials for the review. For producing a review 

of quality, the underlying material is extremely relevant. Therefore, the well-known electronic 

database Web of Science (WoS) was the one chosen to be the means of research. 

In order to get all the possible relevant articles, it is important to define a research query 

that is, at the same time, broad and focused. This means that the research query should include 

all possible studies that can help to answer the research questions, but not deviating from them. 

After careful design, the following research structure was established to find the articles: 

(LLMs OR Generative AI) AND (healthcare OR medicine) AND (clinical decision support) 

AND (language English).  This was determined in order to conduct a methodical and 

comprehensive literature search, filtering first the articles related to healthcare and medical 

fields and including only the ones related to clinical decision support on this field. 

 With the forementioned query, on Web of Science database, 324 results were found. 

2.1.3 Screening 

Search results need to be screened for potential inclusion (Siddaway, Wood, & Hedges, 

2019). Therefore, with the database of articles generated via search engines on Web of Science, 
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it is important to guarantee that the articles are relevant to the theme of the thesis: LLMs on 

Clinical Decision Support.  

The screening process is extremely important to determine the quality of the systematic 

review to be realized. To assure this quality and the fit with the topic proposed, a screening 

process using Artificial Intelligence was conducted. 

 The first step relied on using Gemini API (Application Programming Interface) on 

Python to answer 2 questions, rating from 1 to 5. The questions were: i) Is it related to 

Generative AI or LLMs? and ii) Is it related to Clinical Decision Support? Where 1 is not related 

and 5 is highly related. 

 Then, it was also asked for the Gemini API to summarize in 5 topics the abstracts of the 

papers. This was important to effectively perform a pre-screening process. Based on these 

topics and the ratings for the two questions forementioned 101 papers were selected. 

2.1.4 Eligibility 

 The selection criteria was based on the inclusion of studies that are within the defined 

scope (LLMs + clinical decision support) and that could help answering one or more of the 

research questions proposed. After a careful reading of the full abstracts, 48 articles were 

chosen. 

 Finally, it was possible to determine if an article should be eligible or not (inclusion or 

exclusion criteria). This last step included full reading of the papers. After careful analysis, 39 

articles remained to perform bibliometric and content analysis. 

 

2.2 Descriptive Analysis 

 The bibliometric analysis is usually used in systematic literature reviews to describe the 

papers selected for the review, including publications by year, publications by country, keyword 

density map, co-citation network and others. Thus, once the methodology used for the search, 

selection and analysis of the papers has already been presented, a bibliometric analysis is the 

following step. 

 Figure 5 shows the number of publications by year of chosen articles. It has 3 papers 

from 2023, 22 from 2024 and 21 from 2025, highlighting the importance that this topic has 

gained in recent years after the launch of ChatGPT in November of 2022. 
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Figure 5: Publications by year 

 

Source: The author 

 

 A co-authorship analysis is used to analyze collaboration patterns, understanding how 

scholars work together and identifying key authors. Therefore, a co-authorship analysis was 

made using VOSviewer, which is a software tool for constructing and visualizing bibliometric 

networks. By settling the default properties and the minimum number of documents of an author 

to 2, we obtained one connected component with 3 authors, as seen in Figure 6. This points out 

a very important characteristic of the topic covered in this systematic review: the topic is very 

new and for the moment research efforts are still isolated, with a potential fragmentation, where 

researches may be still working independently or in isolated silos. 
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Figure 6: Co-authorship network for papers included in the review 

 

Source: The author 

 

A co-authorship by country was also performed in order to understand collaboration 

patterns across countries. By analyzing Figure 7, we can clearly see that USA plays an important 

role as a central author for research in this field. 

 

Figure 7: Co-authorship by country for papers included in the review 

 

Source: The author 
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This key role that USA has is confirmed by the number of publications by country, as 

shown in figure 8. 

 

Figure 8: Publications by country 

 

Source: The author 

 

Furthermore, the software was also used to generate a bibliographic coupling to 

understand how similar are documents based on the similarity of citations they made. The 

results can be seen in the Figure 9. 

Figure 9: Bibliographic coupling for papers included in the review 

 

Source: The author 
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VOSviewer was also used to generate a keyword co-occurrence density map. The 

minimum number of occurrences of a keyword to be displayed in the map was considered as 

three in order to limit the number of keywords and allow a proper visualization.  

 

Figure 10: Keyword density map for papers included in the review 

  

Source: The author 

  

 Finally, the analysis of papers selected reveals that MDPI is the main publisher for the 

topic, followed by Springer Nature and Elsevier as shown in Figure 11. 
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Figure 11: Publishers 

 

Source: The author 
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3 Literature Review 

The previous chapter included a descriptive analysis of the selected articles to give a 

general view of the research made regarding the topic of clinical decision support using LLMs. 

In this chapter, the focus shifts towards a content review of the selected articles. 
To present the content analysis in this chapter, the content was grouped in 2 main topics: 

1) LLMs on Clinical Diagnosis and Treatment and 2) Challenges of using LLMs on Clinical 

Decision Support.  

LLMs on Clinical Diagnosis and Treatment is subdivided into: 

1) General Purpose LLMs 

2) Data Wrangling, Data Analysis, Risk Assessment and Visual Analytics 

3) RAG 

4) Prompt Engineering 

5) Multi-Modal models and Imaging Analysis 

6) Other specific technologies 

Challenges of using Clinical Decision Support is subdivided into: 

1) Black-box 

2) Hallucinations 

3) Data privacy issues 

4) Data regulations 

5) Others 

  

3.1 LLMs on Clinical Diagnosis and Treatment  

LLMs can process vast amounts of medical data, including patient histories, imaging 

results, and laboratory findings, to assist clinicians in making accurate and timely diagnoses 

(Chen D. et al, 2025).  

3.1.1 General Purpose LLMs 

 Chen A. et al. (2024) found an evaluation involving 38 complex diagnostic cases 

published by the New England Journal of Medicine (NEJM), where ChatGPT-4 was tested 

against the diagnostic performance of NEJM readers. Results showed that ChatGPT-4 correctly 

identified the diagnosis in 57% of the cases, significantly outperforming the average NEJM 

reader, who achieved a 36% accuracy rate. 
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Borna et al (2024) evaluated and compared the diagnostic capabilities of two leading 

large language models—ChatGPT-4 and Google Gemini—across typical emergency cases in 

plastic and reconstructive surgery. The models’ performances were tested both with and without 

physical examination data. Thirty medical vignettes were developed based on real patient 

scenarios, covering a broad range of topics including hand surgery, burns, lip, ear, and eyelid 

lacerations, skull fractures, sternal wounds, facial hematomas and nerve injuries, parotid duct 

injuries, mandibular fractures, nasal fractures, and nasal septal hematomas. 

The LLMs were prompted with clinical scenarios describing patient presentations and 

relevant findings. One example scenario involved a 36-year-old woman presenting with 

forearm pain and muscle weakness after trauma, with physical exam findings of pain on passive 

stretching, sensory deficits, and elevated compartment pressure at 42 mmHg. These clinical 

details guided the models’ diagnostic reasoning. 

Both ChatGPT-4 and Google Gemini demonstrated strong diagnostic abilities, with 

ChatGPT-4 achieving higher accuracy, particularly when physical examination data was 

available. Three healthcare professionals independently rated the answers, resolving 

discrepancies through consensus to ensure consistent evaluation. ChatGPT-4’s diagnostic 

accuracy reached 90% without physical exam data and 100% with it, compared to Gemini’s 

73.33% and 86.67%, respectively. The absence of physical exam details limited ChatGPT-4’s 

specificity, as it could detect skull fractures but not specify types such as frontal sinus fractures. 

Inclusion of physical examination information improved diagnostic accuracy for both models, 

underscoring the critical role of clinical data in enhancing AI-supported diagnosis (Borna et al, 

2024). 

Another usability of LLMs researched by Rosen et al (2023) included using a LLM to 

suggest which exams a patient should undergo. This study evaluated ChatGPT's ability to 

recommend appropriate imaging tests by comparing its responses to those of the ESR iGuide, 

a clinical decision support system (CDSS) based on ACR (American College of Radiology) 

guidelines and adapted for European practice. A total of 97 clinical cases were analyzed. For 

each case, the question posed to ChatGPT was: “What are the most recommended imaging 

exams in this case?” Its free-text responses were then compared to the ESR iGuide’s graded 

recommendations.  

 The findings by Rosen et al (2023) showed a high degree of consistency between 

ChatGPT and the ESR iGuide, with 87.6% agreement across all cases. In the 66 relevant 

Computed Tomography cases evaluated by the specialists, ChatGPT’s recommendations 

received a mean appropriateness score of 6.02 out of 7. These results indicate that ChatGPT 
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can deliver imaging suggestions that closely align with expert opinion and established 

guidelines. While the study confirms ChatGPT’s potential as a CDSS tool, it also notes that 

integration with domain-specific models as well as accordance with medical regulations and 

guidelines would be required for practical clinical use. 

 However, while some research, as shown, highlights their proficiency in generating 

accurate diagnostics, other studies, particularly in specialized fields like precision oncology, 

indicate that LLMs may not yet achieve the reliability and personalized insight provided by 

human experts (Vrdoljak et al, 2025).  

 Another research made by Benary et al. (2023) showed that different LLMs including 

ChatGPT and BioMedLM, are not currently suitable for routine use as tools to assist in 

personalized clinical decision-making in oncology. 

Besides, on a study conducted by Hager et al (2024), the limitations of current open-

source LLMs in clinical decision-making were further demonstrated, revealing significant 

performance gaps between these models and clinicians in patient diagnosis. The research found 

that existing open-source LLMs (specifically Llama 2 Chat (70B), Open Assistant (70B), Wiz 

ardLM (70B), Camel (70B) and Meditron (70B)) struggled to follow diagnostic guidelines and 

encountered difficulties with fundamental tasks such as laboratory result interpretation. The 

authors concluded that these models are not yet suitable for autonomous clinical decision-

making and require substantial clinician oversight.  

Yet, Hager et al (2024) stated that their study may not reflect the capabilities of the most 

recent open-source models, such as Llama 3 70b and 405b, which have demonstrated 

performance comparable to GPT-4. This rapid advancement in model capabilities highlights a 

persistent challenge in AI research: the potential for studies to become outdated during the 

publication process due to the accelerated pace of technological development. Consequently, 

the reported underperformance of open-source models may not accurately represent the current 

state of the field, as the latest iterations have shown marked improvements across relevant 

benchmarks. 

Sanduleanu et al. (2024) evaluated GPT-3.5's ability to support clinical decision-making 

in determining whether patients with suspected appendicitis should undergo surgery or receive 

conservative antibiotic treatment. Using a cohort of 63 confirmed appendicitis cases and 50 

control patients with right lower abdominal pain, the model was prompted with comprehensive 

clinical, laboratory, and radiological data to recommend either laparoscopic 

exploration/appendectomy or non-surgical management. GPT-3.5 achieved an accuracy of 
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90.3%, showing strong concordance with decisions made by a panel of six board-certified 

surgeons, which served as the reference standard.  

Sanduleanu et al. (2024) noted that GPT-3.5 outperformed traditional machine learning 

models when given full-text clinical data and specific prompts, though machine learning 

provided more transparency into the role of individual variables. Importantly, the study 

emphasized the need to ask the model to commit to clear treatment recommendations despite 

clinical uncertainty. While the authors did not view GPT-3.5 as a replacement for surgical 

judgment, they proposed its potential use as a decision support tool in acute care, particularly 

when time pressure demands rapid, informed decisions. 

Harari et al. (2024) investigated how generative AI systems, particularly when 

supervised by clinical experts, can support real-time decision-making in emergency scenarios 

such as cardiac arrest. Unlike rule-based AI, generative models can respond dynamically, 

making them valuable in high-pressure, evolving contexts. The study tested this potential 

through a simulated CPR (Cardiopulmonary Resuscitation) intervention with participants 

lacking medical experience, comparing three guidance methods: a traditional paper checklist, 

ChatGPT alone, and ChatGPT with real-time supervision by an emergency physician. This 

hybrid approach was designed to explore whether integrating human oversight could improve 

AI usability, trust, and decision accuracy. 

In the supervised ChatGPT group, an emergency physician validated AI-generated 

instructions before they were delivered to the participants. A color-coded system indicated 

whether suggestions were safe or required caution, and participants could query the clinician 

directly. Compared to the ChatGPT-only and paper-based groups, the supervised ChatGPT 

group demonstrated higher decision accuracy and lower physiological stress. Although the 

ChatGPT-only group asked significantly more questions, suggesting greater uncertainty, the 

supervised group relied less on clarification, reflecting greater trust and confidence in the 

guidance provided (Harari et al, 2024). 

The use of augmented reality and detailed performance metrics—including completion 

times, cognitive load, and physiological indicators—allowed for a nuanced evaluation of each 

intervention. Despite improvements in decision quality, the supervised ChatGPT group had 

longer scenario completion times, illustrating a tension between speed and accuracy. In real 

clinical environments, this trade-off must be carefully managed, as delays can carry significant 

consequences. The study echoes patterns seen in other critical fields like aviation, where expert 

input improves safety but can impact response time (Harari et al, 2024). 
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The findings show that while generative AI can assist with emergency care, its optimal 

use lies in supervised systems that preserve clinical oversight. Trust in AI was highest when 

human validation was present, suggesting that supervised AI could help mitigate the "black 

box" effect often associated with these technologies. Harari et al. (2024) suggest that combining 

scalable AI tools with human expertise offers a promising route toward improving clinical 

decision-making without fully relinquishing control to autonomous systems. 

3.1.2 Data Wrangling, Data Analysis, Risk Assessment and Visual Analytics 

Data wrangling is the process of transforming raw, messy data into a clean, structured 

format suitable for analysis. It involves collecting data from various sources, assessing its 

quality, cleaning inaccuracies (like missing values or duplicates), transforming it into consistent 

formats (e.g., encoding, scaling, joining datasets), and validating its integrity. Once cleaned and 

structured, the data is stored or exported for downstream use. This process ensures that data is 

reliable, accurate, and ready for meaningful insights or model training. 

LLMs are increasingly being used as data wranglers in clinical research, helping 

neurologists manage and explore large, unstructured medical datasets. Stroke-related data often 

suffer from inconsistent terminology, irregular time intervals, and a lack of standardization, 

making analysis difficult and time-consuming. Traditional workflows rely heavily on 

neurologists’ cognitive effort to clean and interpret this data, leading to delays and missed 

insights. PhenoFlow, in a study developed by Kim J. et al (2024) introduces a new approach 

where LLMs handle the data wrangling, enabling neurologists to focus on higher-order clinical 

reasoning. To ensure reliability, the system includes a visual inspection view for validating 

LLM-generated outputs. 

The PhenoFlow workflow incorporates GPT-4 with few-shot prompting, multi-step 

reasoning, and self-reflection to manage complex tasks such as cohort construction and query 

generation. By offloading these tasks to the LLM, the system significantly reduces the cognitive 

burden on neurologists. It was tested using the CRCS-K dataset, a large, multicenter dataset 

with over 100,000 acute ischemic stroke cases and 324 variables. The dataset had already been 

reviewed by expert neurologists, making it well-suited for evaluating LLM-assisted workflows 

in a realistic clinical context. 

Key bottlenecks identified in the traditional process included data wrangling, 

interpreting cohort conditions, and navigating large datasets through multiple visualizations. 

Neurologists found descriptive statistics too abstract and visualizations too complex when 

working with layered conditions, such as age, sex, blood pressure, and specific stroke subtypes. 
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Through natural language interaction and guided visual exploration, PhenoFlow helped them 

manage these tasks more intuitively. This need for simplicity and mental clarity led to a human-

LLM collaborative design, where natural language replaced manual query building and 

visualization was tied to clinical questions, not just raw data. 

PhenoFlow automates key data wrangling steps: standardizing terminology, identifying 

regions of interest, and generating queries through LLM-based reasoning. The LLM then 

creates executable code to extract and visualize the relevant data. Results are reviewed using a 

visual interface, allowing neurologists to quickly verify the output. What used to take up to an 

hour for a cohort to be created and validated was reduced to minutes. Most importantly, the tool 

proposed by Kim J. et al (2024) addressed the persistent issue that medical datasets are rarely 

clean. By using LLMs for the data wrangling step, PhenoFlow enables neurologists—who are 

not data analysts—to work efficiently with messy, complex datasets and concentrate on what 

matters most: clinical insight and decision-making. 

Abadir et al. (2024) present Decipher-AI, a Natural Language Processing model under 

development at Harvard aimed at improving dementia management by analyzing both 

structured and unstructured data within electronic health records (EHRs). Based on a gold-

standard dataset of 767 patients from Massachusetts General Brigham Young Health Care, 

whose records were manually reviewed by expert clinicians, the model is designed to identify 

early signs of cognitive decline. Unlike conventional tools that often overlook the specific needs 

of older adults, Decipher-AI addresses these limitations by tailoring its design to this 

demographic. It demonstrates potential not only as a screening tool but also as a clinical 

assistant capable of summarizing medical histories and predicting risk trajectories. For 

healthcare providers, the broader implication lies in the ability to interact with patient data 

through real-time querying, reducing the burden of manual chart review and enabling more 

efficient clinical decision-making 

Garcia Valencia et al. (2023) emphasized the chatbot’s role in supporting predictive 

modeling and risk stratification. By analyzing patient-specific data—including demographics, 

comorbidities, and lab results—the chatbot can estimate outcome probabilities such as graft 

rejection or survival. When integrated into clinical decision support systems (CDSSs), it enables 

personalized treatment recommendations, optimizes monitoring schedules, and improves 

medication dosing by assessing potential interactions. These capabilities allow for more 

targeted interventions, particularly in high-risk patients, thereby enhancing post-transplant care 

and contributing to long-term graft survival. 
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 Roshani et al. (2025) developed a generative AI-powered mobile application that 

leverages fine-tuned white-box LLMs—including LLaMA2, Flan-T5, and T0—to classify 

COVID-19 patients as having either severe or nonsevere outcomes based on real-time QA 

interactions. Using a dataset of 393 patient records characterized by binary features spanning 

demographics, clinical history, and social determinants, severity was defined by objective 

criteria such as mechanical ventilation, vasopressor use, or death within four weeks post-

discharge. Compared to traditional machine learning methods, these LLMs outperformed 

models like logistic regression and XGBoost in low-data settings and provided personalized 

severity predictions using attention-based feature attribution. The app enables interactive, 

natural language–based risk assessments that can run locally to safeguard data privacy, while 

also delivering instance-specific explanations to enhance clinical interpretability. By excelling 

in zero-shot and streaming formats, LLMs demonstrated robust adaptability to real-world 

healthcare scenarios, especially when labeled data is scarce. 

Kottlors et al. (2025) explored the use of large language models (LLMs) to support 

decision-making in the treatment of acute ischemic stroke (AIS), a time-critical condition where 

eligibility for mechanical thrombectomy (MT) depends on a combination of clinical criteria and 

imaging findings. MT, while effective, is indicated only for selected patients based on 

guidelines that consider factors such as symptom onset time, neurological status, and thrombus 

location. Given the complexity of this decision and the demand on healthcare providers, 

particularly less experienced physicians, there is a clear need for tools that can assist in rapidly 

and consistently determining patient suitability for MT. 

In this study, GPT-3 (via ChatGPT) was prompted to assess MT eligibility based on a 

combination of radiology report narratives, patient age, symptom onset times, and NIHSS 

scores. This setup simulated real-world scenarios where the LLM was asked to give a binary 

decision—yes or no—regarding MT indication. The model’s responses were then compared 

against the gold-standard consensus of experienced clinicians. Despite not being specifically 

trained for this task, GPT-3 demonstrated strong performance, with a specificity of 0.96, 

sensitivity of 0.8, and overall accuracy of 0.88, highlighting its potential for augmenting clinical 

decision processes, particularly under time pressure. 

Kottlors et al. (2025) proposed a valuable clinical use case: integrating LLMs into 

radiology workflows as silent background monitors. Such a system could flag potential MT 

cases in reports written by junior staff or in high-volume settings, prompting senior consultation 

when necessary. While LLMs are not replacements for clinical judgment, they could serve as 
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effective support systems, enhancing decision consistency and ensuring adherence to evolving 

stroke treatment guidelines.  

 

3.1.3 Prompt Engineering 

Prompt engineering refers to the practice of crafting carefully designed inputs (prompts) 

to guide large language models (LLMs) toward producing more accurate, relevant, and coherent 

outputs—without altering the model’s internal parameters. By structuring prompts with 

instructions, context, examples, or persona definitions, prompt engineering leverages the 

knowledge embedded in pre-trained models to perform complex tasks. 

According to Sahoo et al. (2024), prompt engineering spans a range of methods—from 

zero-shot and few-shot prompting to more advanced strategies such as chain-of-thought 

prompting and role-based prompting. These methods help models reason through multi-step 

tasks, adopt expert-like personas, and remain aligned with task-specific objectives, boosting 

performance in areas like summarization, reasoning, and question answering. 

 An example of adopted prompting engineering is MedPrompt, introduced by Nori et al 

(2023). It improves diagnostic accuracy by guiding the model through structured medical 

reasoning steps using few-shot chain-of-thought examples. These examples simulate how 

clinicians think through differential diagnoses, encouraging the model to consider symptoms, 

rule out conditions, and justify its decisions. 

 Leypold et al. (2024) adopted prompt engineering techniques aiming lipedema care. 

Lipedema is a chronic adipofascial disorder that mainly affects women and often leads to pain, 

swelling, and discomfort caused by the symmetrical buildup of subcutaneous fat. Despite its 

distinctive clinical presentation, patients are frequently misdiagnosed with conditions such as 

obesity or lymphedema. These patients typically have long and complex medical histories, 

which contribute to longer consultation times and diagnostic challenges. 

In response to these challenges, Leypold et al. (2024) developed six simulated outpatient 

clinic scenarios using GPT-4, tailored for lipedema care. The AI, referred to as “Lipo-GPT,” 

was tasked with conducting initial patient interviews, gathering medical history before patients 

met with the physician. After these interviews, GPT-4 generated a structured case summary for 

the physician, including diagnostic hypotheses, staging and typing of lipedema, and suggestions 

for diagnostics and treatment options. The setup allowed for a focused pre-assessment, aiming 

to streamline the physician’s workflow while maintaining clinical depth. 
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The prompt design applied in this study included “role prompting,” assigning GPT-4 

the function of a lipedema-focused assistant operating within a specialized outpatient setting. 

Directive instructions further shaped Lipo-GPT’s behavior, requiring it to ask patients about 

their history, symptoms, and lifestyle in a step-by-step manner. Specific reminders like “Ask 

your questions one at a time” were necessary to avoid the model delivering multiple prompts 

simultaneously, which could negatively affect the flow of patient interaction. 

To emulate expert-level reasoning, Leypold et al. (2024) framed GPT-4 as a “high-end 

professional tool” assisting plastic surgeons. This use of “expertise emulation” aimed to ensure 

a formal, medically accurate tone in its summaries and suggestions. In LLMs context, the 

temperature of a large language model controls how random or creative its responses are—

higher values make replies more varied, while lower values make them more predictable. 

Temperature settings were adjusted based on interaction type: during patient interviews, a value 

of 0.7 was used to allow for variation and conversational flexibility; for interactions with 

physicians, a more conservative setting of 0.4 was chosen to prioritize clarity, accuracy, and 

predictability. 

Each of GPT-4’s outputs was rated using a Likert scale based on six key criteria: 

understanding the clinical case, providing a likely diagnosis, suggesting next diagnostic steps, 

assessing surgical necessity, summarizing the case clearly for the doctor, and gathering the 

patient history at a human-comparable level. Evaluations were carried out independently by 

three board-certified plastic surgeons. Overall, GPT-4 scored an average of 4.24 out of 5, with 

strong performance in history-taking and case summarization, and relatively lower scores in 

diagnosis and surgical planning, reflecting the complexity of these tasks. 

The study by Leypold et al. (2024) highlights the strength of GPT-4 in managing 

structured, routine clinical tasks when effectively guided through prompt engineering 

techniques such as role prompting and chain-of-thought. Although the AI showed more limited 

capacity in clinical decision-making, especially in areas requiring years of training and tacit 

expertise, it excelled in documentation and communication—tasks that consume a significant 

portion of clinical time. In this context, LLMs can function as valuable assistants, reducing 

administrative burden and allowing physicians to focus more on direct patient care. As the 

technology continues to evolve, it will be essential for clinicians to understand its capabilities, 

limitations, and best practices for integration. 

Savage et al (2024) evaluated the diagnostic reasoning performance of GPT-3.5 and 

GPT-4 on open-ended clinical questions. The study used a modified MedQA USMLE (United 

States Medical Licensing Exam) dataset to assess both models, with a further evaluation of 
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GPT-4 on challenging cases from the NEJM (New England Journal of Medicine) case series. 

The focus lied on whether LLMs can replicate clinical reasoning through specialized 

instructional prompts that blend clinical expertise with advanced prompting techniques. Savage 

et al (2024) hypothesized that GPT models would perform better with diagnostic reasoning 

prompts compared to traditional chain-of-thought (CoT) prompting. 

Clinical reasoning involves a set of problem-solving methods tailored for diagnosing 

and managing patient conditions. Common diagnostic approaches include forming differential 

diagnoses, intuitive reasoning, analytical reasoning, and Bayesian inference. Prompt 

engineering has emerged as a key discipline because LLM performance varies greatly 

depending on how questions and prompts are framed. Advanced prompting methods, such as 

CoT prompting—where tasks are broken into smaller, sequential reasoning steps—have shown 

improved outcomes and offer insight into the model’s decision-making process. Savage et al 

(2024) conducted several experiments on challenging cases based on their intuition that given 

that clinical reasoning naturally follows stepwise logic, modifying CoT prompts to reflect 

clinicians’ cognitive processes would enhance LLM understanding and performance in clinical 

tasks. 

Results obtained by Savage et al (2024) were that GPT-3.5 achieved 46% accuracy with 

traditional CoT prompting, outperforming its 31% accuracy on zero-shot non-CoT prompts. Its 

best performance was with intuitive reasoning (48%), while analytic reasoning (40%) and 

differential diagnosis (38%) scored lower. Bayesian inference hovered near significance at 

42%. GPT-4 showed marked improvement, scoring between 72% and 78% across different 

reasoning prompts, with similar performance for traditional and diagnostic CoT methods. This 

indicates GPT-4 can more closely imitate physician cognitive processes, enhancing 

interpretability. Notably, prompts encouraging step-by-step reasoning without overly 

specifying steps yielded better results, and focusing on a single diagnostic strategy 

outperformed combined approaches. 

Rao et al (2023) explored ChatGPT’s potential as a clinical decision support system 

(CDSS) for radiologic triage, specifically for breast pain and breast cancer screening scenarios. 

The authors evaluated ChatGPT’s ability to recommend appropriate imaging procedures using 

the American College of Radiology (ACR) Appropriateness Criteria as the reference standard. 

Both ChatGPT-3.5 and ChatGPT-4 were tested across different input formats to assess how 

model improvements and prompt design impact clinical performance. The study hypothesized 

that ChatGPT could support imaging decision-making and had the objective to identify 

performance differences between the two model versions. 
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Two prompt formats were used: an Open-Ended (OE) format, where ChatGPT was 

asked to provide a single most appropriate imaging procedure without being given a list of 

options, and a Select All That Apply (SATA) format, where the model assessed a predefined 

list of imaging modalities for each case. Each prompt was tested in a new session to eliminate 

prior response influence, and results were averaged over three replicates scored independently 

by two evaluators. This approach enabled both quantitative scoring and qualitative insight into 

how ChatGPT reasons through imaging decisions (Rao et al, 2023). 

ChatGPT-4 outperformed ChatGPT-3.5 across both prompt types, with particularly 

strong performance on SATA prompts—achieving over 95% accuracy in breast cancer 

screening scenarios. SATA prompts allowed the model to better differentiate between 

appropriate and inappropriate imaging, while OE prompts encouraged more detailed reasoning, 

often referencing relevant ACR criteria. Despite some limitations in identifying when no 

imaging was indicated, GPT-4 showed clear improvement in choosing the right imaging tests, 

suggesting it could be useful in helping manage imaging decisions (Rao et al, 2023). 

While ChatGPT still shows some maximalist tendencies—occasionally recommending 

multiple tests when only one was asked for—the hybrid use of both prompt formats may offer 

an optimal balance between accuracy and clinical rationale. Given the rise in imaging volumes 

and demand for efficient triage, these findings highlight ChatGPT’s growing capability to 

support radiologic decision-making, especially when paired with structured options and human 

oversight (Rao et al, 2023). 

 Haim et al (2024), in another study, investigate how effectively GPT-4 can assign 

Emergency Severity Index (ESI) scores to patients in a clinical setting. The ESI is a five-level 

triage tool widely used across emergency departments worldwide to determine the urgency of 

a patient's condition, with Level 1 being the most urgent and Level 5 the least. To test GPT-4's 

ability, researchers compared its scoring against that of experienced emergency nurses and one 

senior physician. The goal was to understand whether the model could match human judgment 

when applied to real-world cases in a fast-paced emergency environment. 

 In their evaluation, Haim et al (2024) included 100 adult patients who presented to the 

emergency department within a single day. These patients represented diverse demographics 

and clinical presentations, typical of everyday emergency care. For each case, data were 

collected from electronic health records, including vital signs, chief complaints, and notes from 

the triage nurse. Each patient received four ESI assessments: one from the triage nurse, three 

from separate experienced emergency nurses reviewing the case retrospectively, one from GPT-

4, and one from an emergency medicine attending physician. GPT-4 received its prompt in a 
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standardized format, asking it to read a simulated clinical note and return only the numerical 

ESI score. 

A key observation from the study was that GPT-4 tended to assign lower ESI scores, 

suggesting higher urgency. Its median score was 2, whereas human evaluators consistently gave 

a median score of 3 (Figure 12). This trend shows that GPT-4 may be inclined to over-triage 

patients, possibly as a protective measure to avoid underestimating risk. While this cautious 

approach could prevent adverse outcomes, it could also strain emergency department resources 

and delay treatment for the most critical patients. Therefore, there's a need to balance safety 

with operational efficiency. 

 

Figure 12: ESI distributions among evaluators 

 

Source: Haim et al (2024) 

 

The model’s over-cautious behavior may stem from the data it was trained on, 

particularly if severe outcomes were overrepresented. Moreover, GPT-4 lacks the ability to 

replicate the subtle, experience-based judgment that seasoned nurses apply during triage. To 

improve future AI applications in emergency medicine, systems like GPT-4 require more 

advanced technologies, such as RAG or fine-tuning, to better interpret clinical nuance.  

Saad et al. (2025) examined the effect of prompt length on clinical reasoning in GenAI 

models by comparing unconstrained full responses with 10-word-limited outputs across four 

diagnostic scenarios. Each scenario, designed by senior nurses with over 30 years of experience, 
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included two possible diagnoses and required assessment of case details, interpretation of 

diagnostic data, and treatment decisions. Three GenAI models and 114 academic nurses 

participated. The models were prompted twice per scenario—once without word limits and 

once with a strict 10-word constraint—to evaluate how response length influenced reasoning 

accuracy and clarity. 

The findings revealed mixed performance across cases. Nurses outperformed GenAI in 

cardiac and anaphylactic shock scenarios, while full versions of Claude and Gemini achieved 

perfect accuracy in the pregnancy-related UTI case. Although GenAI models responded 

significantly faster (Figure 14), nurses consistently used fewer words (Figure 13) and delivered 

more clinically relevant and actionable insights. When the models are limited to providing a 

focused solution of up to 10 words, their accuracy is compromised and falls short of the nurses’ 

expertise. Additionally, short GenAI responses often lacked the nuance required for complex 

clinical decisions. 

Saad et al. (2025) concluded that GenAI systems, while fast and scalable, struggle to 

filter essential content from noise and tend to obscure critical clinical insights. The study 

underscores the current limitation of GenAI in producing concise, contextually appropriate 

recommendations under strict word limits. These systems should be viewed as complementary 

tools to human clinical judgment rather than replacements. As GenAI technology continues to 

mature, its role in healthcare will depend on its ability to support—not substitute—the nuanced 

decision-making capabilities of experienced professionals. 

 

Figure 13: Word counts between nurses and LLMs 

 

Source: Saad et al, 2025 
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Figure 14: Difference in time response between nurses and LLMs 

 

Source: Saad et al, 2025 

Berry et al. (2025) emphasized that refining prompt structure—such as requesting "List 

first-line and second-line treatments for Hepatitis C based on fibrosis stage" rather than posing 

open-ended questions—can significantly reduce output variability and improve clinical 

precision. To ensure consistency, they proposed techniques including the use of controlled 

vocabulary, which standardizes terminology (e.g., specifying “F3 fibrosis stage” instead of 

vague expressions like “moderate liver scarring”), and applying formatting constraints to 

structure responses predictably (e.g., “Genotype → Preferred regimen → Treatment duration” 

for Hepatitis C management). Additionally, Berry et al. (2025) highlighted the value of iterative 

prompt refinement, where prompts are continuously adjusted to optimize the accuracy and 

completeness of AI-generated outputs, ultimately strengthening the reliability of clinical 

decision support systems 

Gumilar et al. (2024) evaluated the clinical performance of three LLMs—ChatGPT-4 

(CG-4), Gemini Advanced (GemAdv), and Copilot—across gynecologic oncology scenarios 

using a structured three-part framework: answer accuracy, answer consistency, and quality of 

performance. Fifteen clinical questions of varying difficulty, sourced from the AMBOSS 

platform, served as the evaluation tool. Prompts played a crucial role in this test. We designed 

them to be specific, with clear instructions, consistently asking the Chatbot to assume the role 

of a gynecologist. We initiated the test by presenting the following sentence: “You are a 

gynecologist dealing with a gynecology-oncology patient problem. Give the correct answer to 

the following question.”. Each LLM underwent five trials per day for five consecutive days (25 

trials per question), with prompts standardized to minimize variability. All responses were 
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anonymized and assessed by six gynecologic oncologists using a five-point Likert scale for 

clarity, coherence, focus, depth, and relevance. 

GemAdv consistently outperformed both CG-4 and Copilot, achieving 80% accuracy 

on initial testing and exceeding 70% accuracy across all difficulty levels throughout the study. 

CG-4 demonstrated moderate performance with 66.7% accuracy, while junior doctors and 

Copilot scored 54.67% and 53.33%, respectively. While the overall consistency among the 

three Chatbots was comparable, GemAdv distinguished itself by generating a higher proportion 

of correct answers each day. Both CG-4 and GemAdv delivered treatment recommendations 

closely aligned with NCCN guidelines, with Copilot performing significantly lower across all 

evaluative domains. Notably, Focus and Depth emerged as the most discriminative parameters 

in differentiating model output quality (Gumilar et al, 2024). 

Despite these strengths, the study also highlighted a recurring concern: both CG-4 and 

Copilot produced consistent but incorrect answers when faced with higher-difficulty questions, 

reinforcing the risk of error propagation in undertrained or less robust LLMs. Gumilar et al. 

(2024) emphasized the need for ongoing validation and model refinement to ensure clinical 

safety. Nonetheless, the high daily accuracy and evidence-based outputs of GemAdv 

underscore its potential to augment clinical decision-making in gynecologic oncology, offering 

a valuable adjunct to physician-led care when appropriately supervised (Gumilar et al, 2024). 

Rinderknecht et al. (2024) conducted a study at two German hospitals—St. Josef 

Medical Center (University of Regensburg) and St. Elisabeth Hospital Straubing—to evaluate 

the therapeutic recommendations of publicly available LLMs in comparison to real 

multidisciplinary tumor boards (MTBs) for genitourinary cancer (GUC) cases. Forty realistic 

but fictitious clinical scenarios were developed to reflect typical GUC cases discussed by 

MTBs, and both human and LLM-generated recommendations were rated using the modified 

System Causability Scale (mSCS).  

Rinderknecht et al. (2024) used a structured prompt to guide treatment 

recommendations, asking for concise, 80-word responses based on German-approved therapies 

and clinical guidelines. The prompt instructed the model to identify specific medications and 

non-drug options, structured into five components: (1) preferred therapy, (2) alternatives, (3) 

justification, (4) supportive measures, and (5) additional explanations. It emphasized tailoring 

the recommendation to the individual patient and considering prior treatments and case-specific 

findings. To reduce bias and preserve blinding, a bullet-point format was enforced. Ratings 

were conducted by two independent uro-oncologists, with discrepancies resolved by a third 

expert. 
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The original System Causability Scale (SCS), introduced by Holzinger et al. in 2020 to 

evaluate AI-generated explanations, was adapted for this study to better assess therapeutic 

recommendations within an oncology context. While the general nature of the original SCS 

permitted broad application, Rinderknecht et al. (2024) highlighted its limitations in evaluating 

the clinical quality of treatment decisions. Therefore, the SCS was modified with input from 

two uro-oncology specialists, preserving the structure of the original tool while tailoring the 

content to assess the clinical adequacy and plausibility of GUC treatment plans. The modified 

version retained ten items rated on a 5-point Likert scale, supporting consistency and 

reproducibility in evaluation. 

The results demonstrated that the real MTB recommendations achieved a near-perfect 

mean mSCS score (0.992±0.013), while the LLM-generated outputs showed only slight 

inferiority (0.897±0.144), suggesting that LLMs can produce well-founded, guideline-

consistent clinical recommendations. However, Rinderknecht et al. (2024) emphasized that 

while LLMs are capable of delivering structured and scientifically coherent guidance, they 

cannot yet replace the interdisciplinary depth and individualized decision-making offered by 

MTBs. In light of growing personnel and financial constraints in healthcare systems, the study 

positions LLMs as potentially valuable tools to support—but not supplant—multidisciplinary 

cancer care. 

 

3.1.4 RAG  

Retrieval-Augmented Generation (RAG) is a generative AI architecture that enhances 

language models by coupling a retrieval system with a text generator. When presented with a 

user query, RAG first retrieves relevant passages from an external knowledge base using a 

dense retriever. These retrieved texts are then supplied to a pre-trained sequence-to-sequence 

model (the generator), which produces an answer grounded in that external content. Compared 

to traditional generative models relying solely on learned parameters, RAG enables more 

accurate, up-to-date, and factually supported responses (Lewis et al, 2020). 

The study presented by Choi et al (2025) introduces a novel application of Retrieval-

Augmented Generation (RAG) to PET (Positron Emission Tomography) imaging report 

generation. A custom LLM-based system was developed using a large single-center dataset 

containing over 211,000 PET reports from 118,107 patients. By embedding these reports into a 

vector space, the system enables efficient case retrieval and enriched response generation, 

tailored for nuclear medicine workflows.  
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The integration of Large Language Models (LLMs) into radiological reporting 

introduces a transformative approach to clinical documentation. LLMs, particularly when 

combined with retrieval mechanisms, can analyze and summarize complex medical data with 

minimal supervision. This allows for automation of tasks such as drafting conclusions, 

comparing prior imaging findings, and offering diagnostic support, ultimately enhancing both 

reporting efficiency and clinical decision-making. 

Technically, the system architecture introduced by Choi et al (2025) includes a sentence 

embedding layer for transforming queries and report text into numerical vector representations. 

These embeddings are stored and indexed using Chroma, a vector database optimized for 

semantic retrieval. When a clinician submits a prompt—such as searching for similar cases or 

requesting potential diagnoses—the system retrieves contextually similar reports and feeds 

them into a Llama-3 (7B) language model via the LangChain framework, producing informed, 

context-aware answers. 

The RAG framework operates by retrieving relevant documents from the PET report 

database before generating a final response. This architecture improves both the specificity and 

accuracy of the output, as it grounds generation in verified prior examples. In a clinical context, 

this enables support for differential diagnosis, clarification of ambiguous findings, and faster 

identification of disease patterns, particularly in cases with atypical presentations. 

To evaluate performance, Choi et al (2025) conducted simulated clinical tasks. Prompts 

such as “find similar cases and summarize the reports” or “suggest potential diagnoses for this 

finding” were tested using the conclusion and findings sections of PET reports. Three nuclear 

medicine physicians independently rated the system’s outputs on a 3-point scale, 1 (poor), 2 

(fair), 3 (good), for clinical relevance. Firstly, for the similar cases queried by specific reports, 

16 out of 19 (84.2%) were appropriately identified, with all three readers rating these as better 

than ‘Fair’ in relevance. Furthermore, the appropriateness of potential diagnoses for specific 

findings was evaluated, with 15 out of 19 (78.9%) cases receiving a better than ‘Fair (2)’ grade 

from all readers for the suggested potential diagnoses. The LLM with RAG consistently 

outperformed the model without retrieval, with significantly higher appropriateness scores for 

both similar case retrieval and diagnosis suggestion. 

In another study, Barrit et al (2025) developed Neura (Sciense, New York, NY), a 

platform that allows large language models (LLMs) to be used with custom instructions and 

carefully selected information sources. It uses RAG, which helps the model give more accurate 

answers by grounding them in relevant content. To make information retrieval fast and accurate, 

Neura combines vector search (based on meaning) and metadata search (based on exact terms) 
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into a single system. This setup allows the model to find the right information efficiently and 

also track where it came from. For this study, they used GPT-4 Turbo (OpenAI, San Francisco, 

CA) with a specialized dataset built from five trusted neurology textbooks and the neurologic 

disorders section of the Merck Manual for Retrieval Augmented Generation. 

Barrit et al (2025) selected five detailed clinical scenarios based on published case 

reports to reflect the kind of complex decision-making that happens in real neurological 

practice. Each case was divided into two parts. In the first part, participants had to come up with 

a full list of possible diagnoses based on the initial patient presentation. In the second part, they 

were given more information to reach a final diagnosis. They asked board-certified neurologists 

and senior residents from teaching hospitals to complete these tasks. In the first part, they could 

not use any outside resources. In the second part, they could. The AI system worked from the 

same materials as the human participants. All answers were anonymized and time-stamped. 

Two academic neurologists, who train residents, reviewed and graded the answers without 

knowing whether they were written by AI or a person. 

The results showed that AI outperformed the human group across all cases. The model 

scored 86.17% overall, compared to 55.11% for the neurologists. For the first part—creating a 

differential diagnosis—the AI scored 85%, while the neurologists scored 46.15%. For the final 

diagnosis, the AI reached 88.24%, compared to 70.93% for the human group. The neurologists 

included both residents and experienced physicians. The AI showed strong performance in both 

forming hypotheses and selecting the correct final diagnosis, which suggests it was able to 

reason through complex cases effectively (Barrit et al, 2025). 

In addition to being accurate, the AI was much faster. It completed each task in under a 

minute, compared to about 10 minutes for the differential diagnosis and 9 minutes for the final 

diagnosis by the human participants. While the doctors often used reference materials to reach 

their conclusions, the AI used only its built-in knowledge from the curated dataset. This shows 

the potential of AI to save time in clinical workflows. However, Barrit et al (2025) states that 

this tool is not meant to replace human decision-making. It should be seen as a supportive 

system that helps doctors work more efficiently. Future studies should test how well this setup 

works with larger, more varied sources of information, especially when sources may include 

conflicting or unclear content. Human oversight will continue to be essential in interpreting and 

applying AI-generated answers in real-world care. 

Zhou et al (2024) conducted a study applying RAG to clinical gastroenterology in China, 

addressing the rising burden of Helicobacter pylori infections and the increasing incidence of 

gastric cancer. The team developed a specialized chatbot, GastroBot, by integrating large 
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language models with 25 clinical guidelines and 40 recent publications in gastrointestinal 

medicine. GastroBot was designed to deliver accurate diagnostic and therapeutic suggestions 

for gastrointestinal conditions, with the goal of improving care quality and clinical decision-

making outcomes. 

The model architecture incorporated zero-shot chain-of-thought prompting, using 

phrasing such as “Let us work this out step by step to ensure we have the correct answer.” This 

method was found to promote more thorough reasoning by the model. Upon receiving a user 

question, the system generated a query embedding, retrieved the top three relevant text 

segments from a vector database, and used these segments—along with the original prompt—

as inputs for answer generation via GPT-3.5 Turbo. Both the query and the retrieved content 

were embedded into the same vector space, enabling semantic similarity-based retrieval and 

reinforcing the grounding of each response  

To assess the performance of GastroBot, Zhou et al (2024) employed RAGAS, a large-

scale evaluation framework for retrieval-augmented generation. RAGAS evaluates LLM 

outputs based on multiple criteria, including Faithfulness, Answer Relevance, and Context 

Recall. Faithfulness measures the extent to which an answer aligns with the supporting content. 

Answer Relevance evaluates how well the response matches the user’s original question, based 

on similarity to AI-generated alternative questions. Context Recall reflects how effectively the 

retrieved information supports the ground truth answer. Together, these metrics offer a robust 

assessment of a model’s reliability in clinical applications  

While the RAGAS framework provided a quantitative benchmark, Zhou et al (2024) 

emphasized the importance of human evaluation to capture safety, flexibility, and ethical 

considerations. They developed a human-centered scoring system termed SUS—Safety, 

Usability, and Smoothness. “Safety” measured the potential of model responses to cause harm 

or mislead. “Usability” assessed the depth of professional knowledge reflected in the answers, 

while “Smoothness” gauged fluency and functional performance as a clinical assistant. Each 

domain was rated on a three-point scale, with 1 indicating poor performance and 3 indicating 

high competency. This combined framework enabled a balanced assessment across both 

technical and clinical dimensions. 

Evaluation results demonstrated significant performance improvements. Under 

RAGAS, GastroBot achieved a context recall rate of 95%, faithfulness of 93.73%, and answer 

relevance of 92.28%. In SUS evaluations, GastroBot scored 2.87 for safety, 2.72 for usability, 

and 2.88 for smoothness—approaching the maximum score of 3 in each category. These 

findings underscore GastroBot’s effectiveness as a trustworthy, clinically useful tool. 
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Moreover, the authors note that this approach holds promise for broader deployment in other 

medical domains, particularly in underserved regions where early diagnosis and guideline-

based decision support could meaningfully improve access to care. 

Berry et al. (2025) emphasize the importance of setting clear clinical objectives when 

implementing LLMs. In their scenario, the goal is to develop an AI-driven recommendation 

system that delivers personalized Hepatitis C treatment plans by analyzing genotype, viral load, 

fibrosis stage, and prior therapy history. The model integrates real-time clinical guidelines to 

generate evidence-based, patient-specific recommendations while supporting clinical safety 

through risk stratification and decision optimization. Real-time EHR integration ensures that 

relevant data are automatically retrieved, eliminating redundant input and allowing clinicians 

to access tailored treatment suggestions directly within the patient's record. This approach 

reduces workflow disruption and enhances centralized clinical decision-making. 

To achieve this adaptability, Berry et al. (2025) advocate for the use of Retrieval-

Augmented Generation over fine-tuning. In Hepatitis C management, where treatment 

protocols evolve frequently, RAG supports ongoing model relevance across institutions without 

requiring retraining. Evaluating LLMs in this setting should involve both qualitative criteria—

such as relevance, coherence, and safety—and quantitative clinical metrics, including cure rates 

and side effect profiles, to ensure the model contributes meaningfully to improved patient care. 

 Lammert et al. (2024) present MEREDITH (Medical Evidence Retrieval and Data 

Integration for Tailored Healthcare), a large language model system built on Google’s Gemini 

Pro and designed to support personalized treatment recommendations in precision oncology. 

Leveraging a RAG framework, MEREDITH addresses the limitations of general-purpose 

LLMs by integrating a wide range of data sources commonly used by Molecular Tumor Boards 

(MTBs). These include full-text literature from PubMed, clinical trial registries, national and 

international oncology guidelines, and authorized drug availability lists. Through this approach, 

the system mirrors expert clinical reasoning by generating molecularly targeted treatment 

suggestions based on tumor-specific profiles, enabling the model to evaluate patient cases with 

an evidence-based, guideline-informed rationale. 

To refine its outputs, MEREDITH incorporates chain-of-thought prompting across four 

stages: literature summarization, identification of applicable guidelines and drug availability, 

retrieval of ongoing trials, and synthesis into treatment recommendations. A curated corpus was 

assembled using PyMed with diagnosis- and mutation-specific search terms, enriched with 

expert-validated literature to contextualize molecular targets. In a two-stage evaluation, a 

multidisciplinary MTB panel (including clinicians, pathologists, and geneticists) compared 
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MEREDITH’s outputs to their own, first assessing a draft version and then an enhanced version 

that integrated their feedback. Without being informed of the improvements, the panel assessed 

alignment with clinical guidelines, consistency with expert decisions, and potential 

hallucinations or factual inconsistencies. Cosine similarity was used to quantify agreement. 

The enhanced model demonstrated improved performance, achieving a mean cosine 

similarity of 0.76 with MTB recommendations compared to 0.71 in the initial draft. Final 

concordance with expert decisions reached 94.7%, indicating the model's ability to replicate the 

nuanced contextualization performed by human specialists. Importantly, MEREDITH avoided 

hallucinations and retrieved all relevant references identified by experts, highlighting its 

reliability and utility in literature synthesis. Lammert et al. (2024) argue that such systems can 

reduce cognitive burden, provide real-time evidence access, and assist MTBs in high-stakes 

decision-making by grounding LLM outputs in robust, up-to-date clinical data. 

 Kresevic et al. (2024) introduced a novel large language model framework combining 

retrieval-augmented generation and guideline reformatting to improve clinical decision support. 

This approach outperformed baseline GPT-4 Turbo performance in producing guideline-

specific recommendations, particularly in managing Hepatitis C Virus (HCV). When clinical 

guidelines were reformatted—by converting image-based tables into .csv or text-based lists—

and combined with structured prompts, accuracy increased progressively from 43.0% to 99.0%. 

Notably, custom prompt engineering accounted for the largest improvement, while additional 

few-shot learning showed no further gains. The framework also incorporated both manual 

expert review and text similarity metrics to evaluate model outputs, revealing a predominance 

of fact-conflicting hallucinations in earlier versions. 

To assess clinical relevance, expert hepatologists developed 20 representative questions 

addressing screening, treatment, adverse reactions, and drug–drug interactions based on the 

European Association for the Study of the Liver (EASL) HCV guidelines. The LLM was 

queried five times per question across multiple experimental settings, with expert graders 

assessing binary accuracy. Disagreement between graders occurred in only 5.0% of outputs and 

was resolved through consensus. Results demonstrated that table parsing remains a major 

limitation for LLMs—GPT-4 Turbo alone achieved only 16.0% accuracy in interpreting non-

textual sources, emphasizing the need for preprocessing to support structured knowledge 

extraction. 

While text-similarity metrics detected significant differences between model 

configurations, they did not always correlate with expert-graded accuracy. Kresevic et al. 

(2024) argue that semantic metrics lack sensitivity to factual correctness, medical nuance, and 
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contextual relevance—core requirements in clinical reasoning. These findings reinforce the 

necessity of expert oversight, as automated grading remains unreliable for complex clinical 

queries. Ultimately, the study offers a reproducible strategy for integrating clinical guidelines 

into LLM workflows and highlights that accuracy hinges more on guideline structure and 

prompt design than on additional training examples. 

 

3.1.5 Imaging Analysis and Multimodal Applications  

More recent advances in generative AI have made it possible to give images as input to 

LLMs. Multimodal Applications appear with models that are capable of handling multiple types 

of input, such as text, images and audios. 

Chen A. et al. (2024) evaluated a generative AI model in a diagnostic study using a 

representative dataset of 500 emergency department chest radiographs from 500 individual 

patients. The study found that the GenAI-generated reports demonstrated clinical accuracy 

comparable to standard radiology reports and offered higher textual quality than those produced 

by teleradiology services. 

Furthermore, on processing ophthalmic imaging data of 136 cases, Chen A. et al (2024) 

stated that ChatGPT-4 was able to answer 70% of all multiple-choice questions correctly.  

Kim S. et al. (2025) conducted a study to evaluate the diagnostic performance of large 

language models (LLMs) using Eurorad, a peer-reviewed database of radiological case reports 

maintained by the European Society of Radiology. From an initial dataset, 2,894 cases with 

clearly stated diagnoses were excluded, resulting in 1,933 challenging cases that primarily 

involved neuroradiology, abdominal, and musculoskeletal imaging. These were chosen to 

assess the models’ reasoning abilities based on inference rather than direct extraction. The study 

also used Meta’s Llama-3-70B as an automated evaluator, which showed 87.8% agreement 

with expert radiologists in a subset of cases, supporting its role in broader model assessment. 

Among the LLMs tested, GPT-4o demonstrated the highest diagnostic accuracy at 

79.6%, followed by Llama-3-70B (73.2%), the best-performing open-source model. These 

models were also applied to a local brain MRI dataset, where GPT-4o and Llama-3-70B 

achieved 76.7% and 71.7% accuracy, respectively—results comparable to experienced 

radiologists. Reader 2, a board-certified radiologist, reached 83.3% accuracy, while Reader 1, 

with two years of experience, scored 75.0%, placing their performance close to that of the top-

performing LLMs. 
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Kim S. et al. (2025) used free-text clinical case descriptions to better reflect the 

complexity of real-world diagnostic tasks. Performance varied by subspecialty, with models 

achieving higher accuracy in genital imaging and lower accuracy in musculoskeletal cases. 

These differences may be attributed to case complexity or dataset imbalance. Interestingly, 

smaller models such as Llama-3-8B occasionally outperformed larger versions, and models 

fine-tuned for medical tasks did not consistently surpass their base counterparts. 

To ensure consistent behavior, all models were run with a temperature of 0, producing 

deterministic outputs. The ground truth for evaluation was based on the final diagnoses 

available in Eurorad. These findings suggest that the gap between proprietary and open-source 

LLMs is narrowing, with some open-source models now demonstrating near-expert 

performance in specific radiology domains. 

The study by Lu et al (2024) presents PathChat, a multimodal generative AI copilot for 

diagnostic pathology, built on a custom fine-tuned multimodal large language model (MLLM). 

The development began with UNI3, a vision-only encoder pretrained on over 100 million 

histology image patches from more than 100,000 whole-slide images using self-supervised 

learning. To enable reasoning across both image and language inputs, additional vision-

language pretraining was performed using 1.18 million image-caption pairs from pathology 

sources. The resulting model allows interaction through natural language while reasoning over 

histopathology images, effectively aligning visual and textual domains specific to diagnostic 

workflows. 

To evaluate its diagnostic capability, PathChat was tested on PathQABench—a 

benchmark comprising high-resolution regions of interest (ROIs) curated from 105 

hematoxylin and eosin (H&E)-stained whole-slide images by a board-certified pathologist. 

Diagnostic accuracy was assessed using multiple-choice questions in two formats: one with 

image-only input and the other with both image and clinical context. The questions spanned 54 

diagnoses across 11 major organ systems, with carefully constructed distractors to reflect real-

world differential diagnosis tasks. Results showed that PathChat significantly outperformed the 

open-source LLaVA 1.5 and LLaVA-Med baselines. It achieved 78.1% accuracy in the image-

only setting and improved to 89.5% when clinical context was provided, highlighting the 

model’s effective use of multimodal inputs. In contrast, performance dropped when only 

clinical context was given without the image, suggesting strong reliance on visual features for 

diagnostic reasoning. 

In open-ended diagnostic tasks, PathChat again outperformed competing models. Expert 

pathologists evaluated model responses based on relevance, correctness, and explanatory 
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clarity. PathChat responses were more frequently ranked as most preferable and demonstrated 

higher factual accuracy compared to all other MLLMs evaluated. It achieved an overall 

accuracy of 78.7% on the open-ended subset, outperforming GPT-4V (52.3%), LLaVA 1.5 

(29.8%), and LLaVA-Med (30.6%). These results confirm that PathChat delivers both higher 

precision and more interpretable responses, attributes critical for differential diagnosis in 

pathology. 

The model architecture consists of three core components: a vision encoder, a 

multimodal projection module, and a language model. The vision encoder transforms high-

dimensional RGB image data into lower-dimensional representations. The multimodal 

projector aligns these representations with the text embedding space, enabling joint 

interpretation with the language model. Together, the components support autoregressive 

reasoning that integrates visual cues, clinical context, and medical guidelines, producing natural 

language responses with minimal fine-tuning. The ability to support multi-turn diagnostic 

queries further positions PathChat as a domain-specific copilot capable of assisting with 

complex pathology assessments involving both morphological interpretation and structured 

clinical reasoning. 

 

3.1.6 Other specific technologies 

 Fine-tuning refers to the process of further training a pre-trained model on a specific 

dataset to specialize it for a particular task or domain. This allows the model to adapt its 

knowledge and behavior based on more targeted examples. In healthcare, fine-tuning helps 

align general language understanding with medical terminology and diagnostic reasoning. In 

the medical domain, examples are Med-PaLM2 and Med-Gemini 

 Zhou et al (2024), in the development of GastroBot, used domain-specific fine-tuning 

of the embedding model to improve the relevance of retrieved information in generating 

responses. This step is particularly important in the medical field, where rare or evolving 

terminology often complicates retrieval accuracy. The authors selected the gte-base-zh model 

from Alibaba DAMO Academy as the base and applied fine-tuning using domain-specific data. 

The resulting model showed an 18% improvement over the original gte-base-zh and 

outperformed OpenAI’s text-embedding-ada-002 by 20%. 

 An agent in the LLM context is a semi-autonomous or autonomous system—typically 

powered by an LLM—that interacts with users and its environment via natural language 

interfaces. These agents perceive inputs, reason over them, and generate appropriate responses 
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or actions without continuous human intervention. A multi-agent system (MAS) consists of 

multiple specialized LLM-based agents that collaborate, communicate, and coordinate to solve 

complex tasks. Each agent may adopt a distinct role or expertise, and through inter-agent 

messaging and planning, the system can tackle problems beyond the capability of a single agent 

(Cheng et al, 2024). 

 Bani-Harouni et al (2025) introduces MAGDA (Multi-Agent Guideline-driven 

Diagnostic Assistance), a multi-agent framework designed to support diagnostic reasoning by 

combining clinical guidelines, image analysis, and transparent decision-making processes. 

MAGDA incorporates three agents: a screening agent that uses a vision-language model (CLIP) 

to extract findings from medical images based on clinical guidelines; a diagnosis agent that 

interprets these findings to reach a diagnosis; and a refinement agent that evaluates diagnostic 

dependencies and reasoning quality to produce a final prediction. The framework operates 

without fine-tuning and enables zero-shot classification of unseen diseases through dynamic 

prompting, supported by chain-of-thought reasoning that mirrors clinician thinking. This 

approach demonstrates how LLMs and VLMs can work in tandem to interpret clinical 

knowledge and imaging data in a transparent, explainable manner. 

The model developed by Bani-Harouni et al (2025) was tested using the Mixtral 8×7B 

instruct model from Mistral AI, chosen for its balance between speed, memory efficiency, and 

performance. Evaluation was conducted on two large chest X-ray datasets: CheXpert and 

ChestXRay14 Longtail. CheXpert included 14 diagnostic categories across 700 annotated 

cases, while ChestXRay14 Longtail extended the classification to 20 categories, accounting for 

common to rare pathologies. MAGDA achieved a micro-recall of 83.43 on CheXpert, with an 

F1-score of 46.18 and a precision of 31.93. Accuracy on ChestXRay14 Longtail was 18.5, 

showing the method’s potential in long-tail, low-data settings. These results underscore the 

valfue of embedding guideline-based reasoning within multi-agent LLM systems to enhance 

diagnostic performance and interpretability, especially for underrepresented conditions  

Delourme et al. (2025) developed and evaluated a question-answering (QA) system 

leveraging open-access large language models (LLMs) to automate the decision support process 

originally implemented by OncoDoc2, a computer-supported guideline system for breast cancer 

management. OncoDoc2 is based on a detailed decision tree containing 69 clinical parameters 

that guide therapeutic recommendations for non-metastatic breast cancer, comprising over 

2,300 possible decision paths. The system integrates breast cancer patient summaries 

(BCPSs)—narrative clinical documents summarizing patient status, diagnosis reasoning, and 

multidisciplinary tumor board (MTB) decisions—to feed into the LLM reasoning process. The 
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goal was to streamline MTB clinicians’ workflow by generating patient-specific treatment 

recommendations consistent with OncoDoc2’s validated decision tree. 

The methodology involved extracting relevant data from BCPSs, crafting targeted 

prompts for LLMs, and using the OncoDoc2 decision tree structure to guide response 

generation. Delourme et al (2025) performed a two-step evaluation: first comparing LLM and 

MTB clinician responses characterizing clinical cases, and second comparing treatment 

recommendations generated by LLMs and clinicians. Among the tested models, Mistral and 

OpenChat performed best, achieving accuracies of approximately 64% and 70%, respectively, 

with the enhanced Zero-Shot prompting technique outperforming other approaches by refining 

question and answer formulations without providing explicit examples. The combined use of 

Mistral and OpenChat further improved results, although identical recommendations to MTB 

clinicians occurred in only 17.9% of cases, highlighting ongoing challenges in fully replicating 

clinical decision-making. 

Despite reasonable performance as a question-answering tool, LLMs showed limitations 

when applied as decision support systems, with only 3.34% identical and 13.33% comparable 

recommendations to clinicians. Delourme et al. (2025) identified that errors during decision 

tree navigation, such as answering one question incorrectly, often led to divergent treatment 

pathways and recommendations. Additionally, some inaccuracies stemmed from missing 

information within BCPSs rather than model misunderstanding. These findings underscore the 

complexity of aligning LLM-driven recommendations with nuanced clinical practice and 

emphasize the need to distinguish between contextual data gaps and model reasoning errors to 

improve system reliability in supporting multidisciplinary breast cancer management. 

 Michalowski et al. (2024) describe multimorbidity guideline-based clinical decision 

support systems (MGCDSSes) as innovative tools designed to optimize the management of 

patients with multiple chronic conditions. These systems generate personalized treatment plans 

by integrating information from diverse clinical data sources, such as computer-interpretable 

guidelines (CIGs), adverse drug interaction databases, and electronic health records. A critical 

factor behind their effectiveness lies in their capacity to provide clear explanations that justify 

the recommended treatments, thereby enhancing transparency and clinician trust. 

Traditionally, treatment explanations have been manually crafted by physicians, 

ensuring high accuracy and clinical relevance. However, this process is time-consuming and 

demands substantial effort, which can detract from direct patient care. To address these 

challenges, Michalowski et al. (2024) evaluated the performance of Meditron70B, a large 

language model (LLM), in generating treatment explanations within the MGCDSS framework. 
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Their exploratory, survey-based study compared physician-curated explanations with those 

automatically generated by the LLM, revealing that while the LLM shows significant promise, 

it remains vulnerable to hallucinations and occasional clinical inaccuracies. 

The study also investigated physicians’ attitudes toward manual versus LLM-generated 

explanations in complex multimorbidity cases managed by the MitPlan MGCDSS. 

Michalowski et al. (2024) report that explanations produced by the LLM—fine-tuned on a 

medical corpus—were often considered equal to or preferred over manually generated ones, 

particularly regarding evidence alignment and self-contained clarity. Despite most LLM-

generated explanations being accurate and relevant, some errors were detected. These findings 

underscore the importance of using LLM-generated explanations as part of a broader clinical 

decision support system with human oversight to mitigate risks associated with hallucinations 

and ensure patient safety. 

 

 

3.2 Challenges of using LLMs on Clinical Decision Support 

3.2.1 Black Box  

Berry et al. (2025) identified transparency and explainability as persistent challenges for 

LLM deployment in healthcare. Unlike conventional clinical algorithms, which provide step-

by-step reasoning, LLMs often operate as opaque systems, making it difficult to trace the 

rationale behind recommendations. While techniques such as feature attribution and saliency 

mapping can clarify influential factors—highlighting, for example, specific genotypes, fibrosis 

stages, or prior treatment failures—the underlying decision-making process remains largely 

inaccessible.  

Kottlors et al. (2025) reported that models may overlook critical local variables, such as 

facility-specific resources, personnel availability, or the interventionist’s skills, when making 

decisions like those for mechanical thrombectomy. These limitations underscore the importance 

of LLMs citing exact sources and guidelines, thus enabling traceable and guideline-concordant 

decision-making. 

Harari et al. (2024) emphasized that inaccurate or misleading outputs can have serious 

clinical consequences, compounding mistrust when the model’s reasoning process is not 

visible. Rajashekar et al. (2024) similarly found that participants were reluctant to rely on LLM-

augmented CDSS without citations or knowledge of the data sources used, noting that source 
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transparency could positively influence trust. Participants also expressed a preference for 

outputs formatted in familiar clinical reference styles, such as bullet points and clearly 

highlighted management steps, suggesting that both presentation and provenance of 

information are crucial for adoption. Gargari et al. (2025) reinforced this by emphasising that, 

even with retrieval-augmented generation (RAG), the reasoning chain must be traceable to 

specific evidence for accountability in medical contexts. 

Yang et al. (2025), referencing Wu et al. (2024), demonstrated that while LLMs 

integrated with image-to-text technology may not match the task-specific accuracy of deep 

learning (DL) models for thyroid nodule diagnosis, their interpretability offers distinct 

advantages for clinical education and decision-making. Multimodal LLMs (MLLMs) enable 

broader system coverage, zero-shot learning, and richer human–computer interaction, although 

they have to deal with higher computational demands and potential privacy concerns. In 

contrast, DL models remain more resource-efficient and easier to deploy locally but lack the 

cross-domain adaptability and explanatory potential of MLLMs. These contrasts highlight that 

enhancing transparency is not only a matter of improving clinician trust but also a defining 

factor in determining which AI systems are best suited to particular clinical applications. 

 

3.2.2 Hallucinations 

 Sblendorio et al. (2024) propose a comprehensive and dynamic framework for 

evaluating large language models (LLMs) in complex clinical settings, carefully aligned with 

OECD ethical and responsible AI guidelines. Their framework integrates human assessment 

with an automated metric, MPNetv2, which quantifies semantic variability over time in model 

responses—referred to as the Automated Assessment of Temporal Variability of Responses. 

This combined approach addresses key safety concerns such as hallucinations, where LLMs 

generate inaccurate or fabricated information stemming from overgeneralization or 

unsupported assumptions derived from their training data. Specifically, hallucinations can 

manifest as false statements, invented entities or events, or logically inconsistent conclusions, 

with fabrications representing an especially problematic subclass involving fictional facts, 

names, or dates that can mislead users and propagate misinformation. To mitigate these risks, 

Sblendorio et al. (2024) introduce the innovative use of hallucinative texts as hard negative 

examples, improving the alignment of textual and visual tokens in multimodal LLMs and 

effectively reducing hallucination frequency and severity across benchmarks. 
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Further advancements in dealing with hallucinations are demonstrated by Choi et al. 

(2025) and Woo et al. (2025) through the adoption of Retrieval Augmented Generation (RAG) 

frameworks. RAG enhances LLM outputs by grounding responses in curated, domain-specific 

datasets rather than relying solely on the vast but unregulated and often outdated information 

from the open Internet. This grounding enables more accurate, contextually relevant, and 

trustworthy answers, especially critical in specialized medical fields such as nuclear medicine. 

Choi et al. (2025) emphasize that RAG’s ability to reference prior clinical cases not only 

mitigates hallucinations but also increases clinicians’ trust in model outputs. Woo et al. (2025) 

further demonstrate that integrating RAG with AI agentic systems can boost the accuracy of 

LLMs by an average of 39.7%, underscoring the transformative potential of these hybrid 

approaches in improving the reliability of AI-assisted medical decision-making. Nonetheless, 

they note ongoing challenges with rare case retrieval and the variability introduced by differing 

disease prevalences across hospitals, which constrain the generalizability and robustness of 

current systems. 

On the fundamental causes and solutions for hallucinations, Roustan et al. (2025) 

explain that hallucinations largely arise from the auto-regressive architecture of most LLMs, 

which generate text by predicting the most probable next token(s) based on preceding outputs. 

This token-by-token prediction, while powerful, can cause the model to produce plausible yet 

incorrect continuations, especially when training data is insufficient or ambiguous. Importantly, 

Roustan et al. (2025) cite Yin et al. (2023), who found that “the larger the training dataset size 

for LLMs, the more likely the model will be capable of recognizing its limitations and 

acknowledging uncertainty”. This suggests that scaling training data, alongside improved 

uncertainty modeling, can help LLMs better flag when they “don’t know” an answer, reducing 

hallucination risks. Building on this, Roustan et al. advocate for fine-tuning LLMs with expert-

curated medical datasets and clinician feedback to tailor models to the nuances of healthcare 

and further suppress hallucinations. 

Supporting these conclusions, Gargari et al. (2025) report on a study by Quidwai et al. 

(2024) that evaluated a RAG-based chatbot specifically designed for precision medicine in 

multiple myeloma. Their RAG model was benchmarked against state-of-the-art LLMs such as 

GPT-3.5-turbo-16k and GPT-4-32k on a set of expert-curated, challenging oncology questions. 

The key advantage highlighted was the RAG model’s ability to effectively mitigate 

hallucinations by providing truthful responses even when relevant information was not found 

within its primary corpus, a critical feature in clinical contexts where misinformation can lead 

to harmful consequences (Gargari et al., 2025 citing Quidwai and Lagana, 2024). This 
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underscores the necessity of domain-specific retrieval frameworks and curated knowledge 

bases for safe clinical AI deployment. 

Together, these studies highlight a multi-layered approach to combat hallucinations in 

clinical LLMs: from the architectural roots (auto-regressive token prediction) and training 

dataset scale (Yin et al., 2023), to the practical frameworks combining human and automated 

evaluation (Sblendorio et al., 2024), and finally, the integration of retrieval-based augmentation 

systems (Choi et al., 2025; Woo et al., 2025; Gargari et al., 2025). This combined evidence 

strongly supports the continued development and validation of LLMs in healthcare with built-

in mechanisms for reducing hallucinations, ensuring patient safety. 

 

3.2.3 Data Privacy 

 From a data privacy perspective, Woo et al. (2025) stated that open-source large 

language models (LLMs) offer significant advantages for healthcare institutions by allowing 

them to host models on their own secure servers. This setup ensures complete control over 

sensitive patient information and prevents exposure to external cloud providers or third parties. 

Such control is essential for maintaining patient confidentiality and complying with strict 

privacy regulations like HIPAA in the United States.  

Vrdoljak et al. (2025) emphasized that open-source models also enable reproducible 

research, as their transparency allows other researchers to access the same code and datasets, 

verify results, and build upon previous work, which can accelerate innovation in medical AI. 

However, Woo et al. (2025) noted that deploying open-source LLMs requires expertise 

to maintain and update the models, which often improve incrementally rather than providing 

robust capabilities immediately. Additionally, the computational resources necessary to run 

large open-source models can be substantial, potentially offsetting the cost savings from 

avoiding licensing fees. They also suggested that some models might be more amenable to 

agentic augmentation, but this process can sometimes lead to “overthinking” and erroneous 

judgments, indicating room for improvement in internal agent optimization. 

Vrdoljak et al. (2025) raised concerns about the ethical and regulatory challenges 

associated with integrating LLMs in healthcare, particularly focusing on patient privacy and 

data security. They pointed out that outsourcing patient data to closed-source API providers 

like OpenAI or Anthropic raises risks of data misuse or unintended use in future model training. 

To mitigate these risks, Vrdoljak et al. (2025) recommended that hospitals host their own open-

source models, ensuring full HIPAA compliance and protection of sensitive information. They 
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further stressed the importance of clear protocols for data handling, storage, and transmission 

when using LLMs to process patient records. 

Valencia et al. (2023) highlighted specific security measures essential for protecting 

healthcare data, especially in sensitive areas such as kidney transplant care. They argued for 

strong encryption methods both at rest and in transit, along with the use of encrypted databases 

or secure cloud services with stringent security protocols. Valencia et al. (2023) also 

recommended implementing strict access controls and multi-factor authentication to prevent 

unauthorized access, complemented by regular auditing and monitoring to identify and address 

vulnerabilities promptly. 

The importance of anonymization and de-identification techniques was also emphasized 

by Valencia et al. (2023), who stated that these approaches balance data utility with patient 

privacy by removing identifiable information while still allowing extraction of valuable 

insights. They further called for clear regulatory frameworks and standardized guidelines to 

govern AI use in healthcare, advocating for collaboration between regulatory authorities and 

professional organizations to ensure ethical, interoperable, and seamless integration of LLM-

powered tools. 

Kwan et al. (2025) noted that the introduction of LLMs creates additional points of 

vulnerability to cyber-attacks in healthcare, which is already a prime target for malicious actors. 

They emphasized the critical importance of robust security protocols, including encryption, 

secure data transmission, and regular security audits to protect patient data. 

In the context of precision oncology, Lammert et al. (2024) discussed the heightened 

ethical concerns related to patient privacy, advocating for robust anonymization techniques and 

secure data storage to mitigate risks associated with patient data use in LLMs. 

Sanduleanu et al. (2024) explained that ChatGPT’s medical training relies mainly on 

widely available general medical knowledge from the internet due to the difficulty of 

incorporating large datasets of patient-specific information while maintaining privacy and 

ethical standards. Consequently, they noted that ChatGPT’s responses to medical queries may 

lack the depth and specificity that come from direct access to extensive patient data. 

Finally, Sblendorio et al. (2024) emphasized the importance of transparency when using 

LLMs in clinical or research settings. They recommended informing users, such as research 

nurses, that their data might be reused for further model fine-tuning or reinforcement learning 

and obtaining explicit consent before data collection and use. 
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3.2.4 Data Regulations 

Ethical and regulatory considerations are paramount when integrating large language 

models (LLMs) into healthcare. Berry et al. (2025) stated that approval from ethics committees 

or institutional review boards is necessary to ensure compliance with ethical standards. They 

also emphasized adherence to key data protection laws such as HIPAA in the United States and 

the General Data Protection Regulation (GDPR) in Europe. Importantly, Berry et al. (2025) 

noted that patients typically do not provide consent waivers for the use of their de-identified 

data in model development, highlighting a critical consent challenge. 

Regular audits play a crucial role in maintaining compliance with evolving regulatory 

requirements. Berry et al. (2025) recommended conducting both internal and external audits by 

independent bodies post-deployment. They further advocated for periodic reviews of the 

model’s impact on patient outcomes and healthcare practices to ensure ongoing benefit and 

avoid unintended negative consequences. 

Kwan et al. (2025) pointed out that healthcare is one of the most heavily regulated 

industries, with strict rules governing patient safety, data privacy, and clinical efficacy. They 

stressed that integrating LLMs into healthcare workflows must comply with these regulations 

to mitigate legal risks and protect patients. Kwan et al. (2025) also acknowledged the 

complexity and ambiguity of the regulatory landscape, which creates uncertainty for both 

healthcare providers and technology developers. They underscored that meeting regulatory 

standards requires rigorous testing, validation, and certification processes, which are often time-

consuming and costly. 

Kwan et al. (2025) further identified a critical knowledge gap regarding the long-term 

effects of LLM deployment on patient outcomes. While initial results show promise in 

improving medication adherence and patient engagement, they cautioned that long-term 

impacts remain largely unstudied and warrant further research. 

Rao et al. (2023) highlighted the limitations that must be considered when designing 

clinically oriented prompts for LLMs like ChatGPT and when developing regulations 

governing AI use in clinical settings. They emphasized the need for applicable approvals from 

agencies such as the U.S. Food and Drug Administration (FDA) to ensure safety and efficacy. 

Kim S. H. et al. (2025) discussed the considerable challenge of establishing effective 

regulatory frameworks for LLM-based clinical tools. They pointed out that LLMs involved in 

clinical decision-making must meet rigorous safety and reliability standards, but the vast 

diversity of possible inputs and outputs complicates the creation of comprehensive guidelines. 
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Kim et al. (2025) argued that regulatory authorities like the FDA and the European Medicines 

Agency (EMA) should develop oversight mechanisms that are both adaptable and robust, 

balancing innovation with patient protection. 

Chen et al. (2024) emphasized that the rapid advancement of generative AI (GenAI) like 

ChatGPT introduces significant ethical and regulatory challenges in healthcare. They 

highlighted the urgent need for new data regulations and laws to ensure responsible 

development and application of GenAI, safeguarding patient safety, privacy, and equity. The 

authors pointed out risks related to AI hallucinations, transparency, and accountability, 

especially regarding liability when AI-driven decisions cause harm. Furthermore, the 

unpredictable nature of GenAI’s probabilistic outputs and self-learning capabilities complicates 

risk control within existing regulatory frameworks. 

Zhang et al. (2024) acknowledged the transformative potential of generative AI and 

large language models (LLMs) to enhance clinical decision-making, improve diagnostic 

accuracy, and reduce physician burnout. However, they stressed that significant challenges 

remain, including concerns about bias, variability, and ethical implications. To address these 

issues, Zhang et al. called for robust regulatory frameworks, comprehensive standards, and 

continuous improvements in model explainability and performance. They emphasized that 

successful integration of these technologies into healthcare requires ongoing research, 

stakeholder collaboration, and strict oversight to ensure positive impacts on patient care and 

clinical practice. 

In addition, Vrdoljak et al. (2025) discussed the need to clearly define the legal 

responsibility of LLM-assisted decisions, emphasizing that LLMs should serve as decision 

support tools rather than autonomous decision-makers. 

Roustan et al. (2025) concluded that although LLM advancements present significant 

opportunities for enhancing patient care, robust legal frameworks are essential for guiding their 

safe and ethical use at national levels. They also emphasized that strong institutional governance 

will be key to successful implementation in everyday clinical practice. 

 

3.2.5 Ethics and Bias 

 Berry et al. (2025) found that bias detection tools, such as demographic parity analysis, 

can help identify whether certain patient groups receive different treatment suggestions. To 

mitigate such bias, they recommended strategies like re-weighting underrepresented patient 

populations in training data or supplementing models with diverse clinical trial data to promote 
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fairer recommendations. For instance, if a model consistently under-recommends direct-acting 

antivirals for certain racial groups due to historical underrepresentation in trials, re-weighting 

the data can help correct this imbalance (Berry et al., 2025). 

Janumpally et al. (2025) warned that relying on generative AI (GenAI) as a source of 

factual information in important clinical or academic contexts remains risky. They emphasized 

that assertions made by GenAI should be validated by users to avoid misinformation, and 

advised that graduate medical education (GME) trainees should not use GenAI to directly guide 

patient care decisions outside controlled research settings. Janumpally et al. (2025), citing 

Goddard et al. (2011), also highlighted the risk of automation bias — the cognitive tendency to 

overly trust automated systems — which can influence clinical decision-making negatively. 

Kwan et al. (2025) cited Ferrara (2024), who noted that if an LLM is trained 

predominantly on data from a specific demographic, its recommendations might be less 

accurate or even harmful when applied to patients from different backgrounds. This 

demographic bias poses a significant challenge for ensuring fairness in AI-driven healthcare 

(Kwan et al., 2025). 

Rinderknecht et al. (2024) stressed that AI-generated clinical decisions or 

recommendations profoundly impact patient care depending on context. They argued that safe 

integration of these models into routine practice requires addressing challenges related to 

accuracy, transparency, accountability, and ethical concerns, while maintaining the physician’s 

central role as the ultimate decision-maker. As such, widespread clinical adoption remains early 

and requires significant validation. 

Abadir et al. (2024) reported on Decipher-AI, a natural language processing model in 

development at Harvard aimed at improving dementia diagnosis. Early analysis revealed that 

the algorithm underperforms with some demographic groups, reflecting bias related to 

socioeconomic status, race, and age — challenges common in both traditional medicine and AI. 

They also discussed broader ethical issues including bias and fairness at the population level, 

privacy concerns, LLM hallucinations, clinician acceptance, and the need to responsibly 

manage rapid AI advancements (Abadir et al., 2024). 

Kim S. H. et al. (2025) pointed out that in radiological diagnosis, LLMs can generate 

multiple hypotheses quickly but raise concerns about the mentioned automation bias. They also 

noted that implementing open-source LLMs locally demands significant technical 

infrastructure and expertise, often available only in large academic centers, raising equity and 

economic concerns across healthcare settings (Kim S. H. et al., 2025). 
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Roustan et al. (2025) highlighted that LLMs may incorrectly attribute clinical or 

radiological features to diseases based on user input and model probabilistic behavior. This, 

combined with cognitive biases like anchoring and confirmation bias, could lead clinicians 

down wrong diagnostic or therapeutic paths with serious patient consequences. They stressed 

that LLMs often rely on incomplete or outdated data, may not prompt for crucial missing 

clinical or social information, and could inadequately account for patient cultural preferences 

(Roustan et al., 2025). 

Gargari et al. (2025) emphasized the importance of high-quality data for retrieval-

augmented generation (RAG) models, warning that errors, missing data, or embedded biases 

— especially those reflecting healthcare disparities — can negatively affect model fairness and 

performance. 

Sblendorio et al. (2024) suggested that minimizing bias in LLMs could be supported by 

establishing continuous feedback mechanisms among nurses, patients, and LLM developers, 

enabling real-time reporting of potential issues or biases encountered in everyday clinical use. 

 

3.2.6 Others 

 Roustan et al. (2025) highlighted that consistency, and therefore reliability, remains a 

significant issue when using LLMs to make care plan recommendations. They found that even 

when the exact same user query is repeated, the LLM’s response can vary substantially. This 

variability is a critical factor clinicians must consider before integrating LLMs into patient care 

workflows. 

Gargari et al. (2025) pointed out that medical domains and clinical guidelines are often 

highly complex and heterogeneous. Guidelines may have varying structures, with essential 

information presented in different formats such as text, tables, or flow charts. This complexity 

makes it challenging for retrieval-augmented generation (RAG) systems to accurately interpret 

and extract relevant information. 

Yang et al. (2025) argued that addressing the challenges of effectively implementing 

LLMs in medical diagnostics requires a comprehensive and multifaceted approach. They 

emphasized the need to promote unified data exchange standards, real-time synchronization 

mechanisms, and open APIs to enable seamless integration with existing electronic health 

record systems. Concurrently, they stressed the importance of enhancing data security and 

privacy protections. 
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Yang et al. (2025) further noted that the inherent diversity of evaluation methods across 

different diseases and clinical progression stages poses major challenges. Evaluation metrics 

often rely on human experts and include measures such as diagnostic accuracy, readability, or 

subjective scores tailored to specific task scenarios. The variation in experimental designs and 

evaluation criteria complicates comparisons between studies and underscores the need for 

standardized, robust evaluation frameworks. They recommended the development of more 

standardized test-question datasets and increasing the number of high-quality randomized 

controlled trials (RCTs) using consistent methodologies as promising steps toward improving 

LLM reliability and applicability in medical diagnostics. 
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4 Physician Survey 

To further understand the opinion of doctors regarding LLMs usage in clinical scenarios, a 

survey was conducted. 

4.1 Previous Surveys on LLMs in Clinical Practice 

Five recent studies were identified about the usage of LLMs by healthcare practitioners: 

 The first is a survey conducted by Kisvarday et al. (2024) with 390 pediatric 

professionals in the USA. Most of them knew ChatGPT, but only half used it, mainly for 

administrative tasks (emails, teaching materials). Very few used it for diagnosis or treatment. 

75% said they would use a version compliant with HIPAA. 

 The second, conducted by Sumner et al. (2025) was a national survey with 1144 students 

and professors of medicine in the USA. Two thirds already used LLMs, mostly to summarize 

articles and to create study materials. Main concerns included hallucinations, plagiarism and 

biases. The majority supported the inclusion of LLMs in the curriculum, with supervision. 

 The third was a survey with 791 psychiatrists in France supervised by Blease et al. 

(2024a). Less than one third used LLMs, mainly to write academic texts. A few applied it to 

clinical decisions. There was skepticism about therapeutic usage, with focus on ethical and 

privacy risks. 

 The fourth, made by Blease et al. (2024b), was a survey with 1006 general physicians 

in United Kingdom. 20% used LLMs, mainly for clinical documentation (29%) and differential 

diagnosis (28%). Even without institutional policies, physicians were already using LLMs in 

practice. 

 The fifth, performed by Kharko et al (2025) was made with 1005 general physicians in 

the United Kingdom. Most of them saw potential for administrative tasks, but had doubts about 

empathetic communication and privacy. More than half expected that patients would use it for 

self-diagnosis. 

 Together, these results show that: 

1. The usage of LLMs by physicians is still low and concentrated on non-clinical tasks 

2. There is interest in safer tools (like HIPAA-compliant versions) 

3. Worries about precision, privacy and biases are common 

4. There is little institutional orientation, but informal adoption is already happening 

These findings helped the design of the survey presented in the next section. 
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4.2 Survey Method 

Survey research is a structured approach to collecting information from individuals by 

means of predetermined questions, enabling the generation of quantitative data that can be 

statistically analyzed and, under appropriate conditions, generalized to a larger population 

(Goodfellow, 2023). It is particularly useful in health sciences for assessing attitudes, behaviors, 

and perceptions. 

According to Creswell (2008), a robust survey design must address four key elements: 

1) a clear sampling strategy, 2) careful instrument development, 3) pilot testing for clarity, and 

4) strategies to maximize response rates. Leedy et al. (2015) further note that surveys can be 

administered via interviews or questionnaires. This study adopted a self-administered online 

questionnaire, which offers cost efficiency, wide reach, and anonymity, which are factors that 

can encourage honest responses, particularly on emerging and sensitive topics such as AI in 

clinical practice. 

The survey was guided by the following research question: “What is the opinion of 

physicians about the use of LLMs in diagnosis, treatment, and patient monitoring?” 

The instrument consisted of nine closed-ended questions using a 5-point Likert scale 

and one open-ended question for qualitative insights. Table 1 describes each question, its 

purpose, and response format. 

 

Table 1: Survey Questions and Objectives 

Question 

Related 

Research 

Question 

Purpose of the 

Question 
Type of Response 

How often do you use ChatGPT 

or similar models for clinical 

decision support? 

RQ5 
Assess current use 

of LLMs 
Scale (1–5) 

How do you rate your knowledge 

of Artificial Intelligence (AI) 

tools, such as ChatGPT, in 

medical practice? 

RQ5 
Assess  knowledge 

about LLMs 
Scale (1–5) 

How would you evaluate your 

overall experience with Artificial 

Intelligence (AI) in clinical 

decision support? 

RQ5 
Understand  

acceptance of LLMs 
Scale (1–5) 
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In your opinion, is AI a reliable 

tool for diagnostic support? 

RQ2 and 

RQ5 

Assess  opinions 

about AI-assisted 

diagnosis 

Scale (1–5) 

In your opinion, can AI facilitate 

(now or in the future) the creation 

of personalized treatment plans 

for patients? 

RQ3 and 

RQ5 

Understand  

opinions about AI-

assisted treatment 

Scale (1–5) 

In your perception, do patients 

use AI tools to validate medical 

diagnoses? 

RQ5 

Understand 

perceptions of 

patients’ use of 

LLMs 

Scale (1–5) 

How do you assess the following 

aspects as barriers to using AI: 1) 

Lack of source transparency 2) 

Hallucinations (generating 

incorrect answers) 3) Data 

privacy concerns 4) Regulations 

5) Ethical and bias issues 

RQ4 and 

RQ5 

Identify perceived 

barriers to adoption 

Scale (1–5) — one 

scale per barrier 

What most motivates you to use 

AI tools such as ChatGPT? 1) 

Convenience 2) Response speed 

3) Productivity 4) Personalized 

answers 5) Curiosity 6) 

Anonymity 7) None 

RQ5 

Understand main 

advantages of LLMs 

according to 

physicians 

7 options 

To what extent do you believe 

physicians will adopt Artificial 

Intelligence in the next 10 years? 

RQ5 

Explore  views on 

the future adoption 

of LLMs 

Scale (1–5) 

In your opinion, in which medical 

area does Artificial Intelligence 

seem most promising, and why? 

RQ5 

Explore most 

relevant potential 

uses of LLMs 

Open-ended 

Source: The author 

 

 

 The questionnaire was implemented via Google Forms, with responses automatically 

recorded in Google Sheets. It was open from September 26 to October 7, 2025. Invitations were 

sent by email to 308 physicians at a hospital in São Paulo, followed by one reminder on October 

4. A total of 79 responses were collected, yielding a response rate of 25.6%. Daily response 

trends are shown in Figure 15.  
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The results are presented in the following section.Figure 15: Number of answers by day 

 

Source: The Author 

4.3 Survey Results 

4.3.1 Frequency of LLM utilization 

67% of physicians reported low or very low use of LLMs to support clinical decision. 

Only 16% indicated high or very high use (5%high and 11% very high). The others (17%) 

declared moderate use (Figure 16). 

Figure 16: Frequency of LLM utilization by doctors 

 

Source: The author 
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4.3.2 Knowledge about LLMs 

65% said they had very limited or basic knowledge about LLMs. Another 21% reported 

moderate knowledge, 9% good, and 5% extensive (Figure 17). 

Figure 17: Doctors' knowledge about LLMs 

 

Source: The author 

 

4.3.3 Quality of experience with LLMs 

Most participants rated their experience as poor or very poor (61%). Another 23% said 

it was neutral, 12% good, and 4% excellent (Figure 18). 

Figure 18: Quality of experience for doctors using LLMs 

 

Source: The author 
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4.3.4 Reliability for diagnosis support 

 44% rated LLMs as moderately reliable. Another 24% said reliable, 21% said slightly 

reliable, 8% not reliable, and 3% very reliable (Figure 19). 

 

Figure 19: Reliability for diagnosis support according to doctors 

 

Source: The author 

 

4.3.5 LLMs on personalized treatment 

67% considered LLMs effective or very effective for supporting personalized treatment 

plans. Only 12% judged them ineffective or very ineffective; 21% were neutral (Figure 20). 
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Figure 20: Opinion of doctors regarding LLMs on personalized treatments 

 

Source: The Author 

 

 

4.3.6 Patients using LLMs to validate doctors’ diagnosis 

 23% of physicians believe their patients always use LLMs to confirm diagnoses; 35% 

said often, 27% sometimes, and 15% rarely or never (Figure 21). 

Figure 21: Doctors perceptions about patients using LLMs to validate diagnosis 

 

Source: The Author 

 

Very Ineffective
3%

Ineffective
9%

Neutral
21%

Effective
32%

Very Effective
35%

Never
9% Rarely

6%

Sometimes
27%

Often
35%

Always
23%



70 

 

4.3.7 Barriers to adopt LLMs 

Main reported obstacles: 

• Lack of transparency (‘black box’): 66% said relevant or very relevant; 

• Hallucinations: 67% said relevant or very relevant; 

• Ethics and bias: 63% (45% very relevant + 18% relevant); 

• Data privacy: 59% (28% very relevant + 31% relevant); 

• Regulation: 60% (31% very relevant + 29% relevant) (Table 1). 
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Table 2: Opinion of doctors regarding barriers to adopt LLMs 

Barrier 1: Not knowing from where the answers came from 

 

Barrier 2: Hallucinations 

 

Barrier 3: Data privacy 

 

Barrier 4: Regulations 

 

Barrier 5: Ethics and bias 

 

Source: The Author 
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4.3.8 Motivation to use LLMs 

Main reasons to use LLMs were: productivity (30%), fast responses (28%), convenience 

(19%), and curiosity (14%). No participant mentioned anonymity as a motivation (Figure 22). 

Figure 22: Doctors motivations to use LLMs 

 

Source: The Author 
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Figure 23: Perspectives on the adoption of LLMs by doctors in the future 

 

Source: The Author 

 

4.3.10 Promising areas in the future 

Of the 79 respondents, 68 (86%) answered the open question. The responses are 

categorized in Table 3.  

Table 3: Frequency of mentions by category 

Category Frequency 

Medical Imaging/Pathology 40 

Clinical Medicine 7 

All Areas 6 

Triage/Initial Care 1 

Emergency Room/Emergency Care 1 

Psychiatry 2 

Dermatology 1 

Preventive Medicine 1 

Public Health/Epidemiology 1 

Medical Education 1 

Research/Data 1 

Moderate
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20%
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Management/Medical Records 1 

Multiple Areas 2 

Multiple Applications 1 

General Diagnosis 2 

Source: The Author  
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5 Discussion 

This chapter aims to answer the research questions proposed in chapter 1, considering the results 

obtained in the systematic literature review and in the survey with physicians. 

5.1 Publication Trends, Key Contributors, and Keywords (RQ1) 

 The bibliometric analysis shows that research about Large Language Models in Clinical 

Decision support has expanded rapidly recently. Until 2022, there were few studies in the field 

(with none selected to be part of this systematic review). Then, in 2023 more studies started to 

show up, with a few selected to be part of the current study. This growth coincides with the 

release of ChatGPT in November 2022, which may have catalyzed research in this area. In 2024 

and 2025, the growth on publications became even more notable. This rapid increase suggests 

that LLMs have quickly attracted attention of researchers.  

 It is also possible to note significant trends in the geographic distribution of publications. 

The co-authorship by country analysis clearly shows that the United States accounts, by far, for 

the largest share of publications, followed by the United Kingdom, Germany, China and South 

Korea. The collaboration across research group is still limited, as shown in the co-authorship 

network on Figure 6. This fragmented structure is consistent with the novelty of the topic. 

 Another important result is the distribution of publishers. MDPI is the main publisher in 

this area, followed by Springer Nature and Elsevier. This shows that most LLM research is 

being published in multidisciplinary and open-access journals. The presence of major 

publishers like Springer and Elsevier also indicates that the topic has gained scientific 

credibility. 

 The multidisciplinary characteristic is reinforced by the keyword density map. The most 

frequent keywords include “Large Language Models,” “Clinical Decision Support,” “Artificial 

Intelligence,” “Healthcare,” “Diagnosis,” “Treatment,” “Generative AI,” “Ethics,” “Retrieval-

Augmented Generation,” and “Prompt Engineering”. These words are mainly related to the 

computational, linguistic and healthcare domains, but also contains “Ethics”, showing that there 

is concern beyond technological advances. 

Overall, the bibliometric analysis confirms that research on LLMs in CDS is recent, 

rapidly growing, and involves multiple disciplines, as evidenced by the diversity of authors, 

institutions, and keywords. 
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5.2 LLMs in Clinical Diagnostics (RQ2) 

The studies in this review show that Large Language Models (LLMs) can improve how 

doctors diagnose patients, interpret information, and make clinical decisions. LLMs can read 

and understand unstructured text, such as medical notes, radiology reports, and lab results. 

Therefore, they can perform tasks that older systems could not (traditional Machine Learning, 

for example, requires structured data). 

In several contexts, LLMs showed diagnostic performance similar to physicians. Chen 

et al. (2024) found that GPT-4 identified the correct diagnosis in more than half of the 38 New 

England Journal of Medicine cases, doing better than the average performance of the doctors 

who took the same test. Borna et al. (2024) reported perfect diagnosis accuracy in emergency 

plastic surgery scenarios when clinical exam data were included. However, results vary by 

specialty. In precision oncology the models are still unreliable (Benary et al., 2023; Vrdoljak et 

al., 2025), while in settings with clear decision rules, such as suspected appendicitis, accuracy 

is high (Sanduleanu et al., 2024). 

To improve reliability, many studies combine LLLMs with complementary 

technologies. Retrieval-Augmented Generation (RAG) allows models to search medical 

databases while generating answers. Choi et al. (2025) used RAG to analyze more than 200,000 

PET reports, with clinicians considering almost all outputs clinically relevant. Barrit et al. 

(2025) also applied RAG to neurological diagnosis and found higher accuracy and faster 

completion times compared to clinicians. 

Prompt engineering also plays an important role. Structured prompts that follow clinical 

reasoning step by step produce better diagnostic accuracy than simple open prompts (Savage et 

al., 2024; Leypold et al., 2024). 

New multimodal systems go further by combining text with images or signals, allowing 

the model to interpret image exams and written reports together. This integration may become 

essential in areas like radiology and pathology. 

LLMs are also used in earlier stages of diagnostic work (data wrangling). Kim et al. 

(2024) introduced PhenoFlow, a GPT-4–based system that automates data preparation for 

stroke research, reducing preprocessing time from hours to minutes. This allows doctors to have 

more time to analyze patient data instead of spending time pre-processing it. 

Overall, the literature shows that LLMs contribute to diagnosis through: 1) direct 

support in well-defined scenarios, 2) RAG-enhanced systems, 3) structured prompt strategies, 

and 4) multimodal integration. The results are strong in structured clinical domains but still 
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limited in complex areas like oncology. Across all studies, human supervision is seen as 

essential. 

 

5.3 LLMs in  Treatment and Patient Monitoring (RQ3) 

The reviewed literature also shows that Large Language Models (LLMs) are being used 

to support treatment decisions and continuous patient monitoring. These systems help doctors 

interpret complex information, compare it with clinical guidelines, and generate suggestions 

based on medical evidence.  

In oncology, Rinderknecht et al. (2024) compared LLM-generated treatment 

recommendations with decisions made by multidisciplinary tumor boards for genitourinary 

cancers. The models performed slightly worse than human experts but followed clinical 

guidelines closely. The authors highlight that LLMs can act as preliminary support tools, not 

replacements for specialist judgment, which is important to keep in mind as the technology 

evolves. 

Retrieval-Augmented Generation (RAG) is widely used to make treatment reasoning 

more reliable. Lammert et al. (2024) developed MEREDITH, a system based on Gemini Pro 

combined with RAG, which gets information from sources such as PubMed and clinical trial 

registries to propose molecularly guided therapies. When evaluated by experts, MEREDITH 

showed more than 94% agreement with human recommendations, avoided hallucinations, and 

cited all sources, increasing trust and transparency. 

Other systems work in a similar way. GastroBot (Zhou et al., 2024), created for 

gastroenterology, uses RAG with 25 clinical guidelines and produces therapeutic strategies that 

achieve safety and usability levels comparable to those of trained professionals. These systems 

show how LLMs can be constantly updated through retrieval instead of full model retraining. 

For patient monitoring, LLMs can analyze electronic health records to detect patterns in 

clinical evolution. Abadir et al. (2024) developed Decipher-AI, which is able to predict 

cognitive decline in dementia patients using both structured and unstructured data. Roshani et 

al. (2025) built a mobile app that classifies COVID-19 severity and provides explanations 

showing how the model reached each prediction. 

In summary, LLMs contribute to treatment and monitoring through: 1) generating 

recommendations aligned with clinical guidelines, 2) using RAG to access external evidence 

safely and 3) analyzing patient records to detect clinical patterns. 
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5.4 Key Challenges in Clinical Applications of LLMs (RQ4) 

The reviewed literature consistently identifies six major challenges in the use of Large 

Language Models (LLMs) for diagnosis, treatment, and patient monitoring. These challenges 

appear repeatedly across different studies, suggesting that they are structural, not occasional 

issues. 

 

1. Lack of transparency (black-box problem) 

LLMs function as not transparent reasoning systems, making it difficult to identify how 

a decision was produced. Hager et al. (2024) showed that even when the output is correct, 

models often fail to provide clear justifications. This lack of explanation reduces clinicians’ 

trust, especially in high-risk domains where every decision must be justified. Without knowing 

why a model suggests something, it becomes hard for a physician to rely on it. 

 

2. Hallucinations 

Sometimes these models can generate information that sounds plausible but is false. 

Benary et al. (2023) described oncology cases where LLMs suggested treatments that do not 

exist or misread molecular data. RAG-based systems can reduce hallucinations because it bases 

the outputs in external evidence, but they do not eliminate the risk completely, especially when 

something that is outside their training domain (or RAG domain) appears. This is a problem 

that can have serious clinical consequences, once the models can appear assertive even when 

they tell to the user something they do not know about. 

 

3. Privacy and regulatory compliance 

Using sensitive health data in training or inference raises concerns about anonymization, 

consent, and the risk of data leaks. Many LLMs rely on internet corpora with unclear origins, 

making it difficult to ensure compliance with rules like HIPAA (United States) or GDPR 

(Europe). In addition, cloud-based models may expose patient information outside secure 

hospital environments. This creates a complicated space where there is a clear trade-off between 

technical progress and legal and ethical boundaries. 

 

4. Bias and inequality 



79 

 

Because LLMs learn from human data, they reproduce existing biases found in their 

training sources. Sanduleanu et al. (2024) pointed out that unbalanced datasets can produce 

systematic errors for underrepresented groups, increasing disparities in healthcare. If the 

healthcare and technological area do not deal with it, these biases could reproduce unfair 

patterns in diagnosis and treatments rather than improve care. This shows that AI inherits both 

the strengths and the weaknesses of human knowledge. 

 

5. Regulatory uncertainty and responsibility 

There is still no clear definition of who is accountable when an LLM influences a clinical 

decision. It could be the physician, the hospital, the developer, or even the data provider. This 

ambiguity makes many institutions hesitant to integrate these tools directly into clinical 

workflows. The cultural dimension matters too: many clinicians remain skeptical about 

delegating parts of their judgment to systems that cannot fully explain themselves (relation with 

‘black box’ nature and hallucinations). 

 

6. Practical integration 

Integrating LLMs into electronic health record systems requires technical adjustments 

and infrastructure. Without institutional support, these tools tend to remain limited to research 

prototypes rather than becoming part of everyday practice and support. In other words, the gap 

between having a good model and actually using it in a hospital can still be quite large. The 

practical integration issue also brings up an important topic: education. Physicians would 

possibly require training to use safely and their help could be useful to develop good models. 

 

In summary, the challenges reported in the literature highlights technical issues (‘black 

box’, hallucinations), ethical concerns (bias, privacy), regulatory uncertainty (accountability), 

and operational barriers (integration into clinical systems). Across almost all studies, human 

supervision appears not just recommended but essential for safe adoption. And even if the 

technology is evolving quickly, these issues remind us that implementing AI in healthcare is as 

much a social and organizational task as it is a technical one. 
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5.5  Physicians’ Perceptions of Clinical Applications of LLMs 

(RQ5) 

The survey results show that the use of Large Language Models (LLMs) in clinical 

practice is still very limited. Most doctors reported low or very low levels of usage (67%), 

meaning that LLMs are not yet part of daily medical routines (Figure 16). 

Most respondents still have a weak understanding of how to use LLMs effectively. Most 

reported only basic or very limited knowledge (65%) (Figure 17). 

In terms of experience, perceptions were mostly negative. A total of 61% rated their 

experience with LLMs as “Poor” or “Very Poor,” while only 16% described it as “Good” or 

“Excellent.” (Figure 18). 

When asked about diagnostic reliability, doctors expressed cautious. Most respondents 

did not consider LLMs completely unreliable, but the majority placed them in the “Moderately 

Reliable” (44%) or “Slightly Reliable” (21%) categories. Only a minority viewed them as very 

reliable (3%). (Figure 19). 

Perceptions changed significantly when the focus shifted from diagnosis to treatment 

planning. Most doctors (67%) rated LLMs as “Effective” or “Very Effective” for helping 

personalize therapeutic plans, while only 12% considered them ineffective. This suggests that 

clinicians see more potential for LLMs in synthesizing patient data, clinical guidelines, and 

medical literature to support personalized care (Figure 20). 

The survey also shows a growing gap between patient and physician use. Many 

physicians believe their patients frequently use LLMs to validate diagnoses (58% said always 

or often) (Figure 21), even when physicians themselves report low usage and limited 

understanding of these tools. 

When analyzing perceived barriers, the “black-box” nature of LLMs, where the 

reasoning behind outputs cannot be traced, was one of the main concerns. The risk of 

hallucinations was also heavily considered. Ethical issues related to bias and fairness were 

another major worry. Although privacy and regulation were also noted as challenges, they were 

seen as secondary compared to the core concerns of transparency and accuracy (Table 21). 

Regarding motivations for using LLMs, the data indicate that physicians value 

productivity (30%), speed (28%) and convenience (19%), being the main reasons cited for 

adoption. Personalized responses accounted only for 4% and no one considered anonymity as 

the main reason to use LLMs on clinical practices (Figure 22). 



81 

 

Despite the challenges, the survey results show strong optimism about the future. Even 

though current usage and knowledge levels are low, most respondents believe LLM adoption 

will increase substantially over the next decade (94% said they believe the adoption will be 

high or very high). This suggests that clinicians can distinguish between present difficulties 

and long-term potential.   
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6 Conclusion 

6.1 Synthesis 

 This work presents a comprehensive study on the role of Large Language Models 

(LLMs) in Clinical Decision Support (CDS), examining how these technologies are applied in 

the diagnosis, treatment, and monitoring of patients, as well as how they are perceived by 

healthcare professionals. The research followed a structured approach that combined a 

systematic literature review and empirical data collection through a physician survey. 

The study began with a theoretical contextualization of artificial intelligence in 

healthcare, showing the evolution of machine learning and the emergence of LLMs as tools 

capable of understanding and generating human language. The introduction and background 

chapters defined the main concepts related to clinical decision support systems, large-scale 

neural architectures, and the integration of generative AI in medical workflows. These sections 

also contained the motivations behind the study, the relevance of exploring adopting AI in 

healthcare, and the specific research questions guiding the work.  

A systematic literature review was performed with two main objectives: 1) identify 

publication trends, key authors, institutions, countries, and journals contributing to the field and 

2) examine the main studies addressing the use of LLMs in medical diagnostics, treatment 

support, and patient monitoring.  

The first part involved the bibliometric analysis, conducted using Scopus Database. Data 

were, then, processed with VOSviewer to generate visualizations of co-authorship networks, 

keyword co-occurrence maps, and temporal publication patterns.  

The second part started with the selection process, followed by inclusion and exclusion 

criteria to ensure relevance and scientific rigor. Each selected article was analyzed for their 

objectives, methods, findings, and technological approaches. This stage allowed the 

identification of the most common applications of LLMs in clinical contexts, as well as the 

specific technologies used to enhance their performance, such as Retrieval-Augmented 

Generation (RAG), multimodal modeling, and prompt engineering. 

After the literature review, a quantitative survey was developed to obtain empirical data 

on the opinions and experiences of medical professionals regarding LLMs. The questionnaire 

included sections about awareness, frequency of use, perceived usefulness, and ethical concerns 

associated with these technologies. Responses were analyzed statistically and presented in 
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graphs and tables, providing an overview of doctors’ perspectives on the benefits, limitations, 

and potential risks of using generative AI in clinical environments. 

The discussion synthesized these results in relation to the research questions, describing 

rapid publication trends, the concentration of research in a few countries, and the most recurrent 

keywords. It also discussed how LLMs are applied in diagnostic tasks, treatment 

recommendation systems, and patient monitoring, as well as the technological advances 

supporting their development. The chapter also described the challenges reported in the 

literature, including lack of transparency, data security, and bias, and presented the general 

perception of doctors obtained through the survey. 

In summary, this work mapped the scientific production on LLMs in Clinical Decision 

Support, reviewed the main technological applications and limitations described in the 

academic literature, and captured the perspectives of medical professionals with respect to their 

integration into clinical practice. Together, these steps offer a structured and comprehensive 

overview of an emerging field that continues to evolve rapidly at the intersection of artificial 

intelligence and medical decision-making. 

 

6.2 Limitations 

Although this research gives a current view of how Large Language Models relate to 

Clinical Decision Support, it is important to recognize its methodological and conceptual 

limitations. Acknowledging these limits is essential for transparency and to guide future studies 

that want to improve, expand, or question the findings presented here. 

The first limitation is the scope and representativeness of the literature reviewed. 

Despite a systematic selection process, the field is exceptionally dynamic. New models, 

methods, and benchmarks appear all the time. Because of this, the publications included here 

represent a snapchat of one moment, not the whole picture. Certain developments that appeared 

after the conclusion of data collection may already have modified the landscape, particularly 

regarding multimodal architecture and real-world clinical validation. This temporal aspect is 

inherent to studies of emerging technologies and should be acknowledged when interpreting 

the findings. 

Another limitation is related to the survey. It brings useful professional perspectives, but 

it also has self-report bias (people may want to look better, they may misunderstand the 

question, they may not remember things well and they may guess instead of giving precise 

information). The number of participants was sufficient to show general tendencies, but it 
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cannot represent all medical specialties or regions. Also, because participation was voluntary, 

physicians more interested in technology maybe were more likely to answer. This could lead to 

an overrepresentation of curiosity and openness toward LLMs compared to the whole medical 

population. The survey also comes from only one hospital in one city, which limits 

generalization.  

The fast evolution of LLMs also affects the stability of the conclusions. Models are 

updated and fine-tuned all the time, so the versions analyzed in the literature may already be 

different from the ones used today. This means the object of study may change faster than the 

research designed to understand it. As a result, any summary of current findings should be seen 

as temporary and open to change when new data appears. In fast-moving fields like AI in 

medicine, this instability is inherent and represents a key challenge for maintaining scientific 

relevance. 

In summary, these limitations show the complexity of studying LLMs in medicine. The 

findings here should be understood as part of a changing landscape, a step in a process that will 

continue to evolve as models become more interpretable, datasets grow, and clinical institutions 

use AI more in practice. These limitations should be considered when interpreting the findings, 

especially given the fast-paced evolution of LLMs in clinical settings. 

 

6.3 Future Research Directions 

The limitations found in this study points to future investigations. First, the fast 

evolution of language models suggests the necessity of periodic updates in the systematic 

review, specially to keep pace with advances in the literature. A new study with more recent 

data would allow to verify if the current barriers, such as hallucinations and the ‘black box’ 

nature, are being effectively mitigated.  

Second, another direction is to make the content analysis more specific. Future studies 

could compare different medical specialties, model types, or evaluation methods to see if 

challenges and ethical concerns are similar across fields or not. 

Third, the survey was applied in a single hospital and had 79 respondents. Future studies 

could include a bigger sample, including physicians of different regions, health systems and 

experience levels. 

Fourth, other people in the clinical process should also be heard. Nurses, medical 

students, hospital managers and data scientists have different papers in the decision making 
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process and can offer complementary perspectives about risk, benefits and conditions of safe 

use of AI. 

Fifth, the use of qualitative methods, such as structured interviews with professionals 

who already used AI tools could reveal practical situations where LLMs bring value or generate 

doubt, going beyond general perceptions captured by the survey. 

Finally, the present study indicates the need to understand and investigate how the 

medical education can prepare future professionals to use LLMs in a critical and responsible 

way. 
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