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Resumo 

 

 

Análises de segurança dinâmica em sistemas elétricos de potência requerem a 

avaliação de estabilidade do sistema para um número grande de contingências (falhas) 

plausíveis. Este problema exige grande esforço computacional, pois os sistemas elétricos de 

potência são sistemas de grande dimensão (mais de 3.000 nós elétricos no caso do sistema 

brasileiro), não lineares e o número de contingências a serem analisadas também é grande 

(centenas ou milhares). Ferramentas para análise rápida de estabilidade foram desenvolvidas 

para o problema de análise estática de estabilidade de tensão e para o problema de 

estabilidade transitória (métodos diretos). Entretanto, o problema de avaliação rápida de 

estabilidade a pequenas perturbações ainda é um problema em aberto na literatura. 

Avaliações de estabilidade a pequenas perturbações requerem cálculos repetidos de 

autovalores de matrizes de grande dimensão. Nesta monografia, investiga-se técnicas para 

diminuir o esforço computacional de avaliação de estabilidade a pequenas perturbações com 

o objetivo de viabilizar a implementação de ferramentas de análise de segurança dinâmica 

que contemplem avaliações da estabilidade do sistema a pequenas perturbações em tempo 

real. Em particular, as técnicas dos discos de Gershgorin, Bauer - Fike e aproximação linear 

foram investigadas. Os resultados obtidos indicam que esses métodos não apresentam um 

limite bem definido para a região de estabilidade para os autovalores que modelam o sistema 

elétrico. Seriam necessários trabalhos futuros que investiguem a margem de estabilidade dos 

autovalores definindo regiões de estabilidade bem mais refinadas e bem comportadas. 

 

 

 

 

 

 

 

Palavras Chave: Sistemas Elétricos de Potência, Segurança Dinâmica, Estabilidade 

a Pequenas Perturbações, Autovalores e Sensibilidade de Matrizes. 
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Abstract 

 

Dynamic safety analysis in electrical power systems requires the evaluation of system 

stability for a large number of plausible contingencies (failures). This problem requires a great 

computational effort, since the power systems are large systems (more than 3,000 electric 

nodes in the case of the Brazilian system), nonlinear and the number of contingencies to be 

analyzed is also large (hundreds or thousands). Tools for rapid stability analysis were 

developed for the static analysis of voltage stability problem and for the transient stability 

problem (direct methods). However, the problem of rapid assessment of small signal stability 

is still an open problem in the literature. Small signal stability assessment requires repeated 

calculations of eigenvalues of matrices of high dimension. In this monography we investigate 

techniques to reduce the computational effort of small signal stability with the objective of 

enabling the implementation of dynamic security analysis tools that contemplate assessment 

of small signal stability of power systems in real time. In particular, the techniques of the 

Gershgorin, Bauer - Fike and linear approximation discs were investigated. The results indicate 

that these methods do not present a well defined limit for the stability region for the eigenvalues 

that model the electrical system. Further work would be needed to investigate the stability 

margin of eigenvalues by defining much more refined and well-behaved regions of stability. 

 

 

 

 

 

 

 

 

 

 

Keywords: Electrical Power Systems, Dynamic Safety, Small Signal Stability, 

Eigenvalues and Matrix Sensitivity. 
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1 Introdução 

O desenvolvimento industrial em meados da década de 1950 e 1960 impulsionou a 

necessidade de crescimento e interligação dos sistemas elétricos (RAMOS; 1999). No sistema 

elétrico, os diversos dispositivos que formam a rede elétrica devem obrigatoriamente trabalhar 

de forma harmônica para que haja a estabilidade. Além disso, devido às necessidades 

crescentes de demanda de energia pelas unidades consumidoras, o sistema passou a operar 

próximo às condições críticas e, consequentemente, pequenas variações no sistema 

passaram a ser agentes responsáveis por fazer com que o sistema deixe de operar dentro 

dos limites de segurança.  

Devido a essa nova forma de operação da rede, tornaram-se mais frequentes 

problemas de instabilidade, motivando intensa pesquisa sobre estabilidade em sistemas 

elétricos de potência. 

A complexidade dos sistemas elétricos de potência associada às incertezas 

operacionais impostas pelos mercados de energia impede que os operadores consigam 

planejar a operação do sistema de forma antecipada com garantia de estabilidade para grande 

parte dos cenários possíveis. Existe, portanto, a necessidade cada vez maior de 

implementação de ferramentas de análise de segurança dinâmica nos centros de operação 

de sistemas elétricos de potência que sejam capazes de auxiliar o operador em tempo real e 

garantir a operação segura evitando blecautes ou interrupções de fornecimento de energia.  

Na análise de segurança dinâmica, avalia-se a estabilidade de um sistema elétrico de 

potência não apenas para a situação de operação atual, mas também para uma lista de 

cenários plausíveis que denominamos contingências. Um sistema elétrico de potência é 

considerado seguro, do ponto de vista dinâmico, se este se mantém estável a todas as 

contingências da lista. 

A avaliação de segurança de sistemas elétricos de potência exige grande esforço 

computacional, pois estes sistemas elétricos são sistemas de grande dimensão (mais de 

3.000 nós elétricos no caso do sistema brasileiro), não lineares e cujo número de 

contingências a serem analisadas também é grande (centenas ou milhares). Dado a 

necessidade de avaliação em tempo real, digamos em uma janela de 5 a 10 minutos após a 

determinação do estado da rede, verifica-se que a implementação de uma ferramenta de 

avaliação de segurança dinâmica é ainda um problema desafiador mesmo considerando o 

grande desenvolvimento da tecnologia de computadores e processamento paralelo. 
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Análises de estabilidade em sistemas elétricos de potência são comumente divididas 

em função das variáveis de interesse e da intensidade da perturbação. Neste trabalho 

estaremos interessados no problema de avaliação de estabilidade a pequenas perturbações 

(RAMOS et al., 2000).  

O problema de avaliação de estabilidade a pequenas perturbações aparece em 

problemas de avaliação de taxas de amortecimento dos modos de oscilação de sistemas 

elétricos e também de forma complementar nas análises de estabilidade de tensão para a 

identificação de ocorrência de bifurcações. A necessidade de avaliação de estabilidade a 

pequenas perturbações também surge nas avaliações de estabilidade em escalas de tempo 

propostas em (CHOQUE; 2015) para avaliação de estabilidade do subsistema rápido.  

No caso particular de avaliações de estabilidade a pequenas perturbações, o modelo 

do sistema pode ser aproximado em um modelo linear e a análise de estabilidade exige o 

cálculo dos autovalores de uma matriz de grande dimensão para cada contingência 

considerada. Em um sistema com aproximadamente 3.000 barras e uma centena de 

geradores, teríamos que calcular autovalores de uma matriz de dimensão da ordem de 103 

por um número de vezes igual ao número de contingências consideradas.  

Análises de segurança dinâmica em sistemas elétricos de potência requerem a 

avaliação de estabilidade do sistema para um número grande de contingências. Porém, o 

grande problema está na complexidade de avaliação da estabilidade da rede. Esta última é 

representada  por meio de matrizes que descrevem a relação entre a tensão, a corrente e a 

carga, entretanto tais matrizes sofrem alterações mediantes as pequenas perturbações que o 

sistema está sujeito. 

Como o ponto de operação do sistema varia de forma contínua com a variação das 

cargas ao longo do dia e dado à incerteza maior do ponto de operação em função das 

transações comerciais do mercado de energia, é importante que estas avaliações de 

segurança sejam feitas em um curto intervalo de tempo. Sendo assim é desejável desenvolver 

ferramentas de avaliação de estabilidade a pequenas perturbações que sejam adequadas 

para ferramentas de análise de segurança em tempo real. 

 

1.1 Objetivos 

Esta monografia investiga a possibilidade da utilização de métodos numéricos rápidos 

para a avaliação da estabilidade de sistemas elétricos de potência. Para isso investigou-se a 

modelagem matricial do Modelo de Sensibilidade de Potência presente em (ANDERSON e 
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FOUAD; 2003) e (RAMOS; 1999), para o estudo de estabilidade a pequenas perturbações em 

sistemas de potência, avaliando-se os efeitos de variações de parâmetros sobre os 

autovalores do sistema. 

Os objetivos principais desta monografia são: 

1. Investigar a estabilidade dos sistemas elétricos de potência frente à pequenas 

perturbações. Dessa forma, conhecer a modelagem do sistema e a obtenção 

da matriz de estado que descreve o seu comportamento tanto no ponto de 

operação quanto na perturbação. 

2. Analisar o uso das técnicas de avaliação de sensibilidade e limites de variação 

dos modos de oscilação devido à variação de parâmetros do sistema. Com 

base no estudo matemático a respeito da sensibilidade de matrizes, verificar a 

eficiência do uso de métodos rápidos aqui estudados e que trabalham com a 

região do movimento dos autovalores no espaço complexo no âmbito de 

sistemas elétricos de potência.  

3. Investigar também os métodos rápidos de avaliação da margem de 

estabilidade a pequenas perturbações que possam ser traduzidas em termos 

de limites de transferência de potência. 

Dessa forma o trabalho é uma análise investigativa dos métodos matemáticos 

presentes na literatura a fim de avaliar a eficiência da aplicabilidade dos mesmos na 

segurança dinâmica de sistemas elétricos de potência submetidos a pequenas perturbações.  

 

1.2 Organização dos Capítulos 

O texto está organizado de forma que os elementos necessários para a compreensão 

dos métodos utilizados na abordagem desenvolvida nesta monografia sejam apresentados. 

Os capítulos que compõem este trabalho são descritos, em sequência:  

 Capítulo 2:  Modelo de Estados do Sistema de Potência – Neste capítulo são 

apresentados fundamentos de Sistemas Elétricos de Potência, apresentando 

a modelagem da rede elétrica e da matriz que representa a dinâmica do 

sistema. Nele também são apresentados os equacionamentos dos 

equipamentos geradores e controladores que farão parte da modelagem aqui 

apresentada. 
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 Capítulo 3: Estabilidade de Sistemas Lineares – Os conceitos teóricos que 

definem as condições de estabilidade através da análise dos autovalores da 

matriz de estado modeladora do sistema dinâmico. 

 Capítulo 4: Técnicas para avaliação da sensibilidade e limite de variações dos 

modos de oscilações devido à variação de parâmetros do sistema – Neste 

capítulo são apresentados os métodos rápidos de análise matricial, detalhando 

cada teorema investigado a fim de apresentar ao leitor os fundamentos da 

aplicação de cada método utilizado nos resultados práticos dessa monografia. 

 Capítulo 5: Desenvolvimento – São apresentados os resultados investigativos 

da aplicação de cada método apresentado no capítulo 4 sobre um sistema base 

formado por 4 geradores 11 barras (sistema 2 áreas). 

 Capítulo 6: Conclusão – Considerações finais sobre a análise desenvolvida 

nesta monografia e perspectivas futuras.   

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

2 Modelo de Estados do Sistema de Potência 

 Este capítulo aborda a modelagem matemática no domínio do tempo dos elementos 

que constituem o sistema elétrico de potência em estudo, apresentando os equacionamentos 

que definem a modelagem dos sistemas elétricos de potência no ponto de operação e em 

seguida o equacionamento para o sistema submetido a uma pequena perturbação. 

 Em cada item será feito tanto uma abordagem para o modelo Máquina x Barramento 

infinito quanto para o sistema multimáquinas. 

 

2.1 Máquina síncrona  

Uma máquina síncrona é dotada de um sistema estático denominado de estator e 

possui também uma parte móvel chamada rotor. Para existir torque no equipamento, deve-se 

alimentar o circuito de campo (rotor) com corrente contínua. O movimento do rotor em 

velocidade angular constante induz nos circuitos do estator um campo induzido senoidal.  

Na representação do modelo da máquina é bastante comum a utilização da 

transformação de Park, com a utilização de uma referência girante. A partir dessa 

transformação as variáveis passam a ser projetadas em dois eixos: eixo direto (d) e eixo em 

quadratura (q) e está representada na  Figura 1.  

Em (ANDERSON e FOUAD; 2003) detalhes da modelagem da máquina são 

apresentados, inclusive o modelo de dois eixos, o qual é bastante utilizado em problemas de 

pequena perturbação. 

 

Figura 1 - Modelo de uma máquina síncrona (Fonte: RAMOS, R. A; et al, adaptado). 
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No estudo de estabilidade, a máquina síncrona pode ser representada pelo modelo 

clássico, o qual é definido por uma fonte de tensão constante (E) e uma reatância série x’d 

(reatância transitória), projetada sobre o eixo direto, devido ao fluxo nos enrolamentos 

principais da máquina. 

A modelagem detalhada do gerador pode ser encontrada em (RAMOS, R. A, et al.; 

2000) e cujas equações simplificadas são apresentadas no Anexo A. 

A Figura 2 mostra essa configuração do gerador inserido na rede elétrica sobre um 

barramento infinito (a), em uma linha de transmissão com uma referência V (b) e o circuito 

equivalente (c) do sistema: 

 

Figura 2 - Circuito de um gerador clássico sem regulação conectado a uma linha de transmissão 
(Fonte: ANDERSON, P.M. e FOUAD, A. A; 2003). 

 

A Figura 2 apresenta o modelo clássico máquina versus barramento infinito. Para esse 

tipo de modelagem algumas hipóteses serão consideradas: 

1. Potência mecânica de entrada constante. 

2. Efeito de “damping” desconsiderado. 

3. Gerador modelado por uma tensão constante em série com uma reatância transitória 

x’d. 
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4. Ângulo mecânico do rotor coincidente com o ângulo de tensão anterior a reatância 

transitória 

5. Cargas representadas por impedâncias constantes. 

A partir dessas considerações podemos desenvolver o modelo do fluxo de potência do 

sistema. 

 

2.2 Rede Elétrica 

2.2.1 Sistema Máquina x Barramento Infinito 

O sistema máquina versus barramento infinito é uma alternativa para o estudo de um 

sistema multimáquinas de tal forma que simplifica as análises dos problemas de sistemas 

elétricos. Este sistema é utilizado quando o sistema interligado é maior em termos de potência 

que o equipamento que se deseja estudar. A representação do modelo pode ser encontrada 

na Figura 2. Pode-se verificar que o sistema é dotado de um gerador e uma barra com 

capacidade infinita de geração ou absorção de potência. 

Na Figura 2 (b) temos: Vt (tensão terminal da máquina síncrona), V∟0 (Tensão do 

barramento infinito), x’d (reatância transitória da máquina síncrona), ZTL (Impedância série da 

rede de transmissão) e Zs (Impedância shunt). Este esquema mostra o modelo do sistema 

máquina versus barramento infinito. 

A rede elétrica pode ser descrita por uma matriz de admitância Y em cujos elementos 

estão todas as admitâncias séries e shunts, bem como as reatâncias transitórias de cada 

gerador, como apresentado no sistema equivalente da Figura 2 (c).  

A matriz Y é obtida por meio da Lei de Kirchoff, ou seja, a corrente que entra em um 

nó é a soma das correntes que saem do mesmo. Se por exemplo uma rede é descrita por 

dois terminais. O terminal (a) é por onde a corrente entra e o terminal (b) por onde ela sai. 

Dessa maneira conhecemos que o terminal (a) tem uma tensão maior que o terminal (b). Se 

entre eles encontramos uma impedância série Z, temos que Ia = (1/Zab) Va, ou seja, 

conhecendo a tensão e a corrente de entrada, conhecemos a admitância (1/Zab) entre os 

terminais de entrada e saída. Agora uma rede não apresenta apenas dois nós, mas sim é 

formada por um conjunto de “n” nós. Dessa forma, se estamos analisando um nó “k”, a 

corrente que entra nesse nó “k” irá fluir dele para todos os outros nós adjacentes a ele. Assim, 

este problema é tratado de forma matricial. 

Para a análise do fluxo de potência, considera-se que a rede é caracterizada por: 
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1) A carga é conectada entre a barra de carga e o nó terra. 

2) Quando o sistema é modelado por impedâncias, estas devem ser transformadas 

em admitâncias. 

3) Num sistema multimáquinas, um gerador é formado por barras auxiliares internas 

identificadas pelo subscrito n (ou seja, 1, 2,..., n) e as barras remanescentes na 

rede com o subscrito r (ou seja, 1, 2,..., r). 

Primeiramente, será estudado o modelo equivalente da Figura 2 (c). Levando em 

consideração a lei dos nós, para o modelo equivalente, tem-se que a rede é representada, 

por:   

�
��
��
� = �

��� ���
��� ���

� �
�
�
�                                                (1) 

onde em (1) Y11 = Y11 ∟ θ11° = y12+ y10 ,  Y12 =  Y21 = Y12 ∟ θ12° = -y12 e Y22 = y22 =  0, sendo 

y as admitâncias do circuito.  

 A partir da matriz de admitância (1) e sabendo que a potência ativa em um nó do 

circuito, por exemplo o nó 1, é dada por Re{E1·I1*} ou: 

�� = ����� cos��� +  ����� cos(��� − �)                                  (2) 

Agora definindo G11 = Y11cos θ11  e γ = θ12 – π/2, então: 

�� = ����� +  ����� sen(� −  �)                                        (3) 

 Dessa forma, modelamos o sistema máquina versus barramento infinito. 

 

2.2.2 Sistema Multimáquinas  

Para o modelo máquina versus barramento infinito teremos uma rede com dimensão 

menor se comparado ao sistema multimáquinas representado pela Figura 3. 
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Figura 3 - Rede multimáquinas (Fonte: ANDERSON, P.M. e FOUAD, A. A; 2003, adaptado). 

 

 Realizando-se a mesma análise do modelo máquina versus barramento infinito e 

projetando para um sistema multimáquinas, deve-se tomar como referência uma máquina 

com maior potência, assim, a corrente injetada nos nós da rede é determinada pela seguinte 

equação matricial: 

I = YE                                                            (4) 

�
��
0
�= �

��� ���
��� ���

� �
��
��
�                                              (5) 

onde em (5), tem-se que  Yii = Yii ∟ θii° = Gii+jBii é a soma das admitâncias ligadas ao nó i e 

Yij = Yij ∟ θij° = Gij + j·Bij é o negativo da admitância entre os nós i e j. A partir de (4), Y pode 

ser particionada em Ynn, Yrn ,Ynr, Yrr, para a construção da matriz reduzida (Yred). 

 A fim de trabalhar apenas com os nós internos de geração, isto é, como o interesse 

está em avaliar o ângulo dos geradores, pode-se reduzir a rede e construir uma matriz de 

admitância reduzida (Yred) dada por: 

Yred = (Ynn – Ynr·Yrr
-1·Yrn)                                                (6) 

Dessa forma, através da matriz de admitâncias, é possível modelar a rede que compõe 

o circuito elétrico multimáquinas. Agora, quando a rede está em regime permanente há uma 

configuração de equilíbrio de tensão e fluxos de potência de tal forma que para uma certa 

barra “k” a potência gerada (Pgk, Qgk) deve ser igual a soma das potências transmitidas à 
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outras barras conectadas à “k” (∑ �����∈�  e  ∑ �����∈� ) mais a potência consumida presente na 

barra “k“ (Pck, Qck), ou seja, deve satisfazer a seguinte condição de balanço de potência: 

��� −  �����
�∈�

− ��� = 0                                           (7)     

��� −  �����
�∈�

− ��� = 0                                       (8)     

Dessa maneira, as equações permitem entender a modelagem da rede elétrica em um 

sistema máquina versus barramento infinito e desenvolver a teoria para um sistema 

multimáquinas. Esse desenvolvimento será importante para entender e montar matriz de 

estado de um sistema elétrico de potência vinculando estas equações com as equações 

mecânicas do gerador. 

 

2.3 Equação Mecânica e elétrica – Gerador Clássico não regulado 

2.3.1 Máquina versus Barramento Infinito 

Numa máquina síncrona existe a conversão da energia mecânica em energia elétrica 

para ser transmitida à rede. Porém, se parte da energia mecânica não é convertida em energia 

elétrica, esta irá ser transformada em potência de aceleração do rotor. 

A modelagem mecânica da máquina síncrona inicia-se pela equação de torque 

resultante: 

Tr = Tm – Te      [Nm]                                            (9) 

onde Tr é o torque resultante, Tm é o torque mecânico e Te  o torque elétrico. 

Em regime permanente a velocidade do rotor pode ser considerada como muito 

próxima da velocidade síncrona (60Hz no Brasil), dessa forma tem-se que: 

θ(t) = (ωst + α) + δm(t)                                             (10) 

onde (ωst + α) é a referência girante à 60 Hz, α é o ângulo de defasagem entre a referência 

fixa e a referência girante no tempo t = 0 e δm é o ângulo mecânico entre o rotor e a referência 

girante, como pode ser visto na Figura 1. 

 Diferenciando (10) duas vezes e sabendo que Tr é igual a J��̈, sendo J o momento 

de inércia do rotor da máquina, tem-se: 
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�̇ = ��+  ��̇                                                      (11) 

�̈ = ��̈                                                           (12) 

���̈ = �� – ��                                                     (13) 

Multiplicando o torque pela velocidade angular (ωm), pode-se escrever a equação (13) 

na forma de potência da seguinte forma: 

�����̈ = �� – ��                                                 (14) 

A quantidade ��� é usualmente aproximada por uma constante de inércia e é 

denotada por M conforme demonstrado em (ANDERSON e FOUAD; 2003). Ela está 

relacionada com a energia cinética das massas em rotação (Wk), onde Wk = (1/2) ���� joules. 

Então M é calculada como: 

Momento angular = M = ��� = 2 � �/��       [J.s] 

Substituindo ��� por M (constante de inércia da máquina), dividindo toda a equação 

pela potência base do sistema (SB) e sabendo que Pm – Pe = Pa, isto é, potência de aceleração 

que é dada por Pa = Pm – Pe = (2H/ωr)� ,̇ onde ω é velocidade angular elétrica e ωr é velocidade 

angular do rotor e H é definida como a relação dada por Wk/SB [s], isto é, a razão entre a 

energia cinética na velocidade síncrona pela potência base, tem-se:  

��

��
 δ̈= P� – P�                                                    (15) 

A equação (15) é denominada equação de “swing” da máquina síncrona. Ela se trata 

da equação do movimento da máquina síncrona conectada a um barramento infinito. A 

potência Pe é a potência elétrica injetada na rede que é uma função dos ângulos da rede. 

Realizadas as transformações o ângulo mecânico (δm) é escrito em termos de ângulo elétrico 

(δ) 

A dedução matemática da relação entre os ângulos e potência elétrica pode ser 

encontrada com detalhes em (ANDERSON e FOUAD; 2003, pp. 13 – 16).  

Aplicando-se o conceito para uma única máquina ligada a um barramento infinito, ao 

submetê-la a um pequeno distúrbio, sabe-se que o sistema irá se mover em torno do ponto 

de operação. Assim, pode-se analisar esse sistema dinâmico e obter as respostas a pequenas 

perturbações aplicando a metodologia de linearização em torno do ponto de operação.  
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Nesta abordagem, por ser uma pequena perturbação considera-se que o sistema não 

se afasta significativamente do seu ponto de operação. Assim, é possível aproximar o modelo 

não linear por equações lineares por meio da expansão em série de Taylor. 

Por exemplo, seja um sistema não-linear representado por �(̇�)= �(�(�),�) , onde x(t) 

representa o vetor de estados do sistema e u é uma variação paramétrica, e seja x(0) = x0 a 

condição de equilíbrio do sistema. Ao aplicar um deslocamento xΔ = x – x0, podemos expandir 

f(x,u) em uma série de Taylor em torno do ponto de equilíbrio: 

�(�,�)≅ �(��,�)+
��(�,�)

��
�
��

(� − �0)+ ⋯  

assim, eliminando-se os termos superiores, pode-se encontrar uma  função de 1º grau que 

aproxima f(x,u) em uma vizinhança do ponto (x0,u). 

A partir de (15) e aplicando as relações:  �� = �� +  �� ���(� −  �), sendo δ = δ0 + δΔ, 

Pe = Pe0 + PΔ, Pm = Pm0 e, além disso, usando a relação sin(δ - γ) = sin(δ0 -γ + δΔ) ≈ sin(δ0 - γ) 

+ cos(δ0 – γ)δΔ (onde Δ refere-se a uma pequena perturbação sobre o ponto de operação), 

tem-se a linearização da equação swing: 

��

��
 �∆̈ + ���∆ = 0                                                  (16) 

Ressalta-se que para o modelo máquinas versus barramento infinito,   
���

��
�
��
= �� = 

Pm·cos(δ0 - γ), �� é o ponto de operação do sistema em regime permanente e �∆ é o desvio 

da variável δ mediante a uma perturbação em torno do ponto de operação do ângulo ��. A 

equação (16) foi desenvolvida para um sistema de uma máquina versus barramento infinito 

avaliando o comportamento da potência elétrica mediante a variação do ângulo mecânico 

entre o rotor e a referência girante. 

 O sistema descrito tem uma margem de estabilidade para Ps > 0. Onde a resposta 

oscilatória, isto é, as raízes da equação característica que modela o sistema ((2H/ωr)s2 + Ps 

= 0), são dadas por s = ± j �����/2� . 

 

2.3.2 Sistema Multimáquinas  

Como já definido anteriormente a rede é definida pela equação (I = YE). Para um 

sistema multibarras, cada termo da matriz de admitância é descrito por uma parcela real e 
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imaginária entre as admitancias da barra em estudo (i) e das barras vizinhas (j): Yii = Gii+jBii, 

Yij = Gij + j·Bij . Além disso, a potência ativa no circuito é dada por Re{Ei·Ii*}.  

A potência de saída da i-ésima máquina em um sistema multimáquinas, é: 

��� = ��
���� + �������� cos(��� − ���)

���
���

 

= ��
���� + �����[��� sen�����+ ���cos(���)]

���
���

                     (17) 

Onde: δij = δi - δj , Ei  é a constante de tensão anterior a reatância transitória da máquina 

i, Yii = Gii + jBii (elementos da diagonal da matriz de admitância Y que modela a rede) e Yij = 

Gij + jBij (elementos fora da diagonal da matriz de admintância Y). 

Aplicando o mesmo conceito de pequena perturbação, mas agora para o sistema 

multimáquinas, ou seja, usando o modelo incremental tal que: δij = δij0 - δijΔ, temos sen(δij) ≈ 

sin δij0 + δijΔcos(δij0) e cos(δij) ≈ cos δij0  - sen(δij0). Finalmente, para PeiΔ,  

���∆ =�����[−��� sen������+ ���cos������]
���
���

δ��∆                    (18) 

Dado que as condições iniciais sen(δij0) e cos(δij0) sejam conhecidas e o termo em 

colchetes de (18) seja constante, tem-se: 

���∆ =��������∆
���
���

                                                        (19) 

em que ���� ≜  
����

����
�
����

= ����[−��� ���������+ ������(����)]. Assim, a mudança na potência 

elétrica da máquina i deve-se a uma mudança no ângulo δ entre máquina i e j, com todos os 

outros ângulos mantidos constantes. Ou seja, a mudança na potência elétrica de uma 

máquina  deve-se a mudança no ângulo entre a tensão interna e a barra de saída, desde que 

todos os outros ângulos sejam mantidos constantes. 

 Usando o modelo inercial da máquina síncrona, nós temos o seguinte conjunto de 

equações diferenciais linearizadas, 
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2H�
ω�

 
�2��∆

��2
+  �����[−���sen����0�+ ���cos(���0)]

�=1
�≠�

δ��∆ = 0           � = 1,2,… �      (20) 

Ou 

2H�
ω�

 
�2��∆

��2
+  �����

�=1
�≠�

δ��∆ = 0           � = 1,2,… �                         (21) 

Assim, para a i-ésima máquinas tem-se: 

�2��∆

��2
+  

ω�
2H�

 �����
�=1
�≠�

δ��∆ = 0           � = 1,2,… �                         (22) 

 Subtraindo a n-ésima equação da i-ésima equação, tem-se: 

�2��∆

��2
−  
�2��∆

��2
+
ω�
2H�

 �����

�

�=1
�≠�

δ��∆ −  
ω�
2H�

 �����

�−1

�=1

δ��∆ = 0                   (23) 

A fim de encontrar os modos de oscilações do sistema, é necessário montar uma 

equação do tipo �̇ = �� e calcular os autovalores de A. 

Seja o gerador “n” uma referência do sistema, ou seja, tomando como constante a 

tensão e o ângulo desse gerador, subtraindo-se a n-ésima equação de oscilação da i-ésima 

equação (22) encontram-se n-1 equações independentes (23). Após algumas manipulações 

matemáticas, que podem ser encontradas com mais detalhes em (ANDERSON e FOUAD; 

2003), a equação (23) pode ser reescrita da seguinte forma: 

 

�2���∆

��2
+
ω�
2H�

 �����

�

�=1
�≠�

δ��∆ −  
ω�
2H�

 �����

�−1

�=1

δ��∆ = 0     � = 1,2,… � − 1              (24) 

desde que δijΔ = δinΔ - δjnΔ. Logo: 

�2���∆

��2
+  �������∆

�−1

�=1

= 0                � = 1,2,… ,� − 1                     (25) 

sendo os coeficientes αij dependentes dos coeficientes inerciais da máquina e da potência 

síncrona. A matriz de estado que modela o sistema multimáquinas é descrito em (26). 
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⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
���̇
���̇
…

�����̇
���̇
���̇
…

�����̇ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 ⋯ 0 | 1 0 0
⋮ 0 ⋮ | 0 ⋱ 0
0 ⋯ 0 | 0 0 1
− − − | − − −
��� ⋯ ��,��� | 0 ⋯ 0

��� ��� ��,��� | ⋮ 0 ⋮

����,� ⋯ ����,��� | 0 ⋯ 0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

.

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
���
���
…

�����
���
���
…

�����⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                  (26) 

onde  

��� = − ��
ω�

2H�
�����

�

���
���

  − �
ω�

2H�
�����                                      (27)  

��� = �
ω�

2H�
�����  − �

ω�

2H�
�����                                             (28) 

Essa modelagem matemática foi implementada em MATLAB® e os resultados podem 

ser encontrados no capítulo 5 “desenvolvimento”. 

 

2.5 Modelos com geradores regulados 

A teoria desenvolvida até o momento se baseia no modelo de gerador clássico não 

regulado, isto é, a matriz de estado trabalha apenas com as equações mecânicas da máquina 

(ângulo do rotor δ e velocidade angular ω) escritas pelas equações (29) e (30): 

�∆�� 

��
=

1

2�
(�� − �� − ��∆��)= 

1

2�
(��� − ���� − ��∆��)              (29)  

�∆� 

��
= ����                                                                      (30) 

Sendo Δ a perturbação sobre um determinado parâmetro, H a constante de inércia, ωr 

velocidade do rotor, Tm é o torque mecânico, Te é o torque elétrico, KD é o torque de 

amortecimento e Ks é o torque sincronizante. 

As equações (29) e (30) foram definidas para uma única máquina, descrevendo o 

comportamento do gerador mediante uma variação do ângulo mecânico �. Quando um 

sistema elétrico é formado por geradores não regulados e a taxa de amortecimento (KD) é 

nula, consequentemente obtém-se autovalores puramente imaginários como serão 

observados nos resultados da rede teste 9 Barras 3 Geradores. Alterando-se a carga ocorrerá 
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apenas a movimentação da parte imaginaria desses autovalores no plano real x imaginário. 

Dessa forma não traz resultados satisfatórios para o objetivo desta monografia, isto é, não é 

possível avaliar a reação dos autovalores mediante a alteração na carga do sistema 

(verificação de estabilidade), já que a parcela real do autovalor é que definirá a estabilidade 

do sistema.  

Assim, serão implementados geradores regulados, ou seja, serão inseridos 

reguladores de tensão a fim de se obter equações de estado e autovalores com parcelas reais 

e imaginárias que representem de forma mais exata o comportamento de um sistema elétrico 

de potência. Dessa forma, será possível analisar o comportamento da parte real dos 

autovalores mediante a variação na carga do sistema.  

Os sistemas de excitação e seus reguladores de tensão têm como finalidade principal 

estabelecer a função de controle para que seja possível obter um bom desempenho operativo 

dos geradores e consequentemente do sistema de potência. 

Dessa forma, avaliou-se a implantação do sistema AVR (Regulador Automático de 

tensão) que têm como função controlar a tensão terminal dos geradores. Sua ação é 

desenvolvida através de variações na corrente de campo suprida pelo sistema de excitação. 

A entrada de controle do sinal de tensão é normalmente a tensão terminal do gerador que 

agora será representado por meio de variáveis de estado. Dessa forma modelamos o gerador 

como do tipo 2 (o modelo clássico não regulado é chamado tipo 1, definido pelo manual de 

instruções do PACDYN programa que será utilizado na determinação do estado do sistema 

estudado) que introduzirá para cada gerador uma nova equação de estado da máquina (E’q) 

e uma equação do sistema de controle AVR (Efd). 

O controle implementado inicialmente é o controle AVR dado por um sistema de 

excitação a tiristor, descrito pelo diagrama de blocos da Figura 4.  

 

Figura 4 - Sistema de excitação a tiristor com AVR. 
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��� = ��(���� −
�

�����
��)                                          (31) 

Em que TR é a constante de tempo dos elementos sensores (sinais de entrada do 

regulador) dado em segundos, KA é o ganho do regulador de tensão, EFD é a tensão de campo 

do gerador, Et é a tensão terminal e Vref é a tensão de referência de controle obtido do fluxo 

de carga. 

A avaliação dos autovalores do sistema será realizada por meio de simulação 

computacional utilizando 2 programas disponibilizados pela CEPEL ®  (ANAREDE e 

PACDYN) para facilitar a obtenção e analise dos autovalores do sistema mediante uma 

perturbação na carga. 

A modelagem a respeito dos reguladores AVR está presente em (KUNDUR, P; 1994) 

onde pode ser encontrada com maior detalhe. 

 

2.6 Nova matriz de estado 

A inserção de reguladores nos geradores do sistema faz com que apareçam novas 

equações de estado no sistema. Para cada gerador no modelo 1 (clássico) temos apenas as 

equações (29) e (30) para a representação do estado dinâmico do circuito sendo portanto 

uma matriz de estado 2 x 2 representada pelo equacionamento matricial (32). Porém, agora, 

com a adição de controladores de tensão surgem para cada gerador mais duas equações de 

estados: uma advinda do regulador estático e outra representado o gerador(E’q). 

                     (32) 

O modelo adotado nas simulações e que foram suficientes para se obter resultados 

conclusivos foi o modelo do gerador de 1 eixo. Nesta modelagem, surge a equação da tensão 

transitória de eixo em quadratura (E’q) que fará parte do modelo dinâmico do sistema. A Figura 

5 ilustra a transformação dos enrolamentos da máquina síncrona sobre o eixo direto e sobre 

o eixo em quadratura. 
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Figura 5 - Modelo E'q do gerador. 

 

 Desenvolvendo o equacionamento matemático baseando-se num sistema máquina 

versus barramento infinito encontramos uma nova equação de estado: 

���
�

��
=

1

����
���� − ��

� − (�� − ��
� )���                                        (33) 

 Onde E’q é a tensão transiente de eixo em quadratura, T’do é a constante de tempo 

transitória de eixo direto, EFD é a tensão proporcional à tensão de campo, Xd e X’d são as 

reatâncias de eixo direto e a reatância transitória de eixo direto. 

 Assim, além das equações (29) e (30) já enunciadas, teremos a equação (33) fazendo 

parte da matriz de estado. Além disso, temos também que a inserção do controle AVR aparece 

na matriz de estados uma nova equação EFD.  Dessa forma, temos que a matriz de estado 

linearizado pode ser resumida na seguinte forma (KUNDUR, P; 1994, adaptado): 

⎣
⎢
⎢
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⎡
∆���̇
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 Onde K1 é a variação do conjugado elétrico com relação à variação do ângulo do rotor, 

admitindo E’q constante, K2 é a variação do conjugado elétrico com relação à variação da 

tensão E’q, admitindo constante o ângulo do rotor, K3 é o fator de impedâncias, K4 é o efeito 

desmagnetizante devido à variação do ângulo do rotor, K5 é a variação da tensão terminal do 

gerador devido à variação do ângulo do rotor, admitindo E’q constante e K6 é a variação da 
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tensão terminal do gerador devido à variação da tensão E’q, admitindo constante o ângulo do 

rotor. As expressões dessas constantes podem ser encontradas no Anexo B. 

 Para um sistema multimáquinas, um sistema formado por “n” geradores regulados será 

composto 4 x n equações de estados já que para cada máquina síncrona encontramos 4 

equações que definem a dinâmica do sistema. Por se tratar de uma modelagem complexa, foi 

utilizado o programa PacDyn CEPEL® que fornece a matriz de estado do sistema ao se 

programar os reguladores AVR para cada gerador.  
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3 Estabilidade de Sistemas Lineares 

3.1 Autovalores e autovetores 

Como esperado, através da modelagem matemática descrita anteriormente, foi 

possível encontrar uma matriz A de estado associado ao sistema linearizado de equações 

diferenciais �̇ = ��. Para determinar os autovalores da matriz A, podemos empregar técnicas 

matemáticas como o método do polinômio característico, o método iterativo QR, o das 

potências entre outros que serão abordados no item 3.2.  

Seja λ um autovalor de A e a ele um autovetor v associado, a resposta do sistema 

pode ser descrita conforme uma combinação linear dada por �(�)= ∑ ���
����

���  sendo c uma 

constante obtida das condições iniciais do sistema que está sendo investigado (KUNDUR, P; 

1994). O autovalor λ que pode ser descrito por uma parcela real (�) e uma parcela imaginária 

(�), isto é, � = � + �� indicará a estabilidade do sistema, conforme: 

a) Um autovalor real (σ ≠ 0 e jω=0) corresponde a um sistema não oscilatório. Se 

negativo, o autovalor indica comportamento estável. Caso apresente um autovalor 

real positivo o sistema apresentará uma instabilidade aperiódica. 

b) Um autovalor complexo (σ ≠ 0 e jω ≠ 0) corresponde que o sistema possui um par 

conjugado de autovalores, ou seja, � = σ ± �ω . A componente real do autovalor 

corresponde a taxa de amortecimento do sistema e a parcela imaginária a 

frequência de oscilação. Para σ < 0, temos que o sistema irá amortecer mediante 

uma perturbação mantendo-se estável, já para σ > 0 irá indicar que o sistema irá 

ter um incremento na sua amplitude ao longo do tempo perdendo a estabilidade. 

Então, se o sistema tiver autovalores no semiplano direito do plano complexo, o 

sistema será instável, pois o termo ��� tenderá ao infinito, caso contrário será estável 

(RAMOS, R. A; 1999). A Figura 6 demonstra algumas diferentes combinações dos 

autovalores e as respectivas trajetória no espaço de estados. 
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Figura 6 - Autovalores no plano complexo e a trajetória no espaço de estados. (1), (3) e (5) 
representam situação de estabilidade local (Fonte: KUNDUR;1994). 

 

A frequência de oscilação em Hz é dada por f = ω/2π. O damping ratio (ξ) ou fator de 

amortecimento é a taxa de decaimento da amplitude da oscilação é calculado pela expressão: 

� = −
�

√�� +  ��
∙ 100% 

Vale mencionar que o fator de amortecimento mínimo aceitável do ponto de vista do 

sistema de transmissão é usualmente de 5% e será observado nos resultados obtidos. Do 

ponto de vista prático, o fator de amortecimento de 5% representa como as oscilações se 

extinguem em tempo satisfatório de modo a evitar possíveis prejuízos ao sistema (desgaste 

prematuro das máquinas e limitação na transferência de potência). 

Uma medida que demonstra a relação entre os modos de resposta e as variáveis de 

estado do sistema �̇ = �� é o chamado fator de participação, dada pela matriz de participação 

P. Através dessa ferramenta que combina os autovalores à direita e a esquerda de matriz A 

pode-se medir a contribuição relativa das variáveis de estado na resposta dos modos, assim 

como identificar a participação dos modos na resposta do sistema. A matriz P é dada por:  

P = [p1, p2, ..., pn] 

�� = �

���
���
…
���

� = �

������
������
…

������

� 

em que v são os autovetores à direita e Φ os autovetores à esquerda. O desenvolvimento 

matemático pode ser encontrado em (KUNDUR, P; 1994). 
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3.2 Técnicas de cálculo de autovalores 

No caso particular de avaliações de estabilidade a pequenas perturbações, o modelo 

do sistema é linear e a análise de estabilidade exige o cálculo dos autovalores de uma matriz 

de grande dimensão para cada contingência considerada (RAMOS, R. A; 1999). 

O sistema linearizado é caracterizado por uma equação de espaços do tipo: 

� =̇ ��                                                                (35) 

como já apresentado no item 3.1. 

A análise das soluções da equação (35) pode ser realizada pelo cálculo dos 

autovalores (λ) e autovetores (v) de A. Sendo assim, as soluções da equação (35) podem ser 

determinadas a partir da resolução não trivial do seguinte problema de autovalores e 

autovetores: 

 (A - λI)v = 0                                                            (36) 

O estudo de estabilidade do sistema é realizado por meio do cálculo de autovetores e 

autovalores dessa matriz A, logo, no contexto atual (contínuas variações das cargas ao longo 

do dia), um grande esforço computacional é exigido devido, também, a grande dimensão 

matricial.  

Vários métodos para o cálculo de autovetores e autovalores são encontrados na 

literatura, dentre os quais citamos: o método do polinômio característico (BURDEN e FAIRES; 

2008), o algoritmo QR (BURDEN e FAIRES; 2008), métodos iterativos (de potência, potência 

inversa e subespaços) (RAMOS, R. A; 1999).  

O método do polinômio característico consiste em resolver a função dada por 

f (λ) = det (A - λI) = �

��� − � ��� … ���
��� ��� − � … ���
⋮ ⋮ ⋱ ⋮
��� ��� … ��� − �

�                        (37) 

De (37) as raízes de f (λ) (polinômio de grau n) correspondem aos autovalores de A. 

Entretanto este método requer grande esforço computacional, devido à complexidade em 

trabalhar com sistemas polinomiais de grandes dimensões.  

O algoritmo QR é um método de auto-análise de grande eficiência. Esse método busca 

obter uma matriz Ak em cuja diagonal principal estão presentes os autovalores da matriz A. O 

princípio fundamental desse algoritmo consiste na transformação por similaridade, em que A 
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é transformada em uma matriz R (triangular superior) e Q (Ortogonal) utilizando, por exemplo, 

a decomposição de Givens ou Householder (BURDEN e FAIRES; 2008).  

O primeiro passo é fazer: 

A1 = Q1R1                                                            (38) 

No passo seguinte uma nova matriz A2 é obtida formada pela multiplicação de Q1 e R1 

na ordem reversa, isto é,  

A2 = R1Q1                                                             (39) 

A partir daí, realiza-se o processo sucessivamente k vezes de acordo com as 

equações: 

Ak = QkRk                                                             (40) 

Ak+1 = RkQk                                                           (41) 

É fácil verificar que cada passo completo é uma transformação por similaridade, pois 

Ak+1 = RkQk = Qk
-1AkQk e, portanto, Ak tem os mesmos autovalores que Ak+1. Nesse caso Ak 

irá convergir para uma matriz triangular superior, de acordo com: 

|λ1| >|λ2| >...>|λn| 

lim
�→�

�� = 

⎣
⎢
⎢
⎡
�� ��

�� … ��
��

0 �� … ��
��

⋮ ⋮ ⋱ ⋮
0 0 … �� ⎦

⎥
⎥
⎤

                                          (42) 

Onde a expressão “ lim
�→�

” simboliza que para um grande número de iterações, os 

autovalores encontrados tornam-se mais precisos. Um ponto negativo da aplicação deste 

método deve-se ao fato das diversas transformações destruírem a esparsidade da matriz 

original que compõe, por exemplo, um sistema elétrico de potência. 

Métodos iterativos consistem em encontrar o autovalor por aproximação, isto é, não 

são necessárias infinitas iterações e sim algumas de tal forma que essa aproximação é 

refinada para uma determinada precisão. 

O método de potências faz parte da classe dos métodos iterativos. Esse algoritmo 

parte da escolha arbitrária de um vetor U0 e produz uma sequência de vetores Uk definida por: 

Uk+1 = A∙Uk    ,    k = 0, 1, 2, ...                                          (43) 
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com Uk ϵ ₵n e A ϵ ₵nxn. Se A tem autovalores λi ϵ ₵ e autovetores Vi ϵ ₵n linearmente 

independente tais que |λ1| >|λ2| >...>|λn|, pode-se, então, representar um vetor arbitrário U0 

como combinação linear dos autovalores, isto é:  

�� = ∑ ����
�
���                                                         (44) 

Realizando o seguinte processo Uk+1 = AUk iterativo este vetor irá convergir para  

Uk = ��
�[���� +  ��(��/��)

��� + ⋯ + ��(��/��)
���]                        (45) 

e dessa forma  

lim
�→�

�� = ��
�����                                          (46) 

O autovalor λ1 e o autovetor V1 são chamados de dominantes em relação a matriz A. 

Para evitar instabilidade numérica, redefine-se (43) da seguinte forma normalizada: 

Yk+1 = AUk 

���� = 
����

||����||�
    , k = 0, 1, 2, ...                     (47) 

Assim, calculado o autovalor e autovetor dominante, podem-se aplicar deslocamentos 

para se conhecer o intervalo que contém os autovalores como será explicado. 

O método de potência inversa tem como base o mesmo princípio do método anterior, 

porém com uma modificação: o método consiste em encontrar o autovalor de menor módulo 

(λn). Se λ é o autovalor de A, então λ-1 é autovalor de A-1. Além disso, se λn é o menor autovalor 

de A, então λn
-1 será o maior autovalor de A-1. Então, para obter o menor autovalor (em 

módulo) de A, o que fazemos é aplicar o método das potências (que calcula o maior autovalor 

em módulo) à matriz inversa, A-1. 

Assim: 

Yk+1 = A -1Uk                                                                                   (48) 

���� = 
����

||����||�
    , k = 0, 1, 2, ...                           (49) 

e dessa forma para obtermos λn
-1: 

��
�� = lim

�→�

���� 

��+1
                                              (50) 
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Logo, obtemos o autovalor com menor módulo de A. Porém, notemos que na prática 

não é necessário calcular A-1, pois: 

Y��� = �
��U�  ⇒  � Y��� = U�                                 (51) 

e assim resolvemos o sistemas usando a Decomposição LU (BURDEN e FAIRES, 2008). 

Este método é particularmente conveniente pois as matrizes L e U são independentes de k e, 

portanto, basta obtê-las uma única vez. 

Os dois métodos anteriores tem uma característica que é descobrir apenas o autovalor 

dominante e inferior. Se λ1 > λ2 ≥ ... ≥ λn são os autovalores de A, uma propriedade que pode 

ser aplicada para encontrar os autovalores intermediários é a propriedade do deslocamento 

(BURDEN e FAIRES; 2008). Assim, 

Yk+1 = (A - sI)Uk                                                                      (52) 

���� = 
����

||����||�
    , k = 0, 1, 2, ...                             (53) 

os autovalores de A são deslocados “s” unidades no eixo real. 

No método de potência e potência inversa, quando aplicamos um deslocamento para 

encontrar outros autovalores, corremos o risco de obter novamente o autovalor já calculado. 

Para evitar a convergência do método para um autovalor já calculado, aplica-se o processo 

de deflação implícita por ortonormalização ou através da multiplicação por (A - λiI).  

O primeiro consiste em ortonormalizar o vetor obtido ao final de cada passo com 

relação aos vetores já calculados.  

A segunda estratégia consiste em multiplicar o vetor obtido, a cada passo, por (A - λiI), 

sendo λi o autovalor para o qual a convergência deve ser inibida. Suponhamos que com o 

método das potências inversas obtemos o par dominante V1 e λ1. Aplicando novamente sem 

alterar o deslocamento, mas no final de cada passo o vetor obtido será multiplicado por (A – 

λ1I). Sendo V1, V2,..., Vn os autovetores desta matriz e Uk o vetor de término do passo k, vemos 

que (RAMOS; 1999): 

(A – λ1I) k Uk  =  ∑ �� (�� −  ��)��
�
���   =  ∑ �� (�� −  ��)��

�
���              (54) 

e pode-se ver que esta sequência irá convergir para o autovalor λ2. Obtido esse autovalor, o 

processo é reiniciado para obter λ3.  



46 
 

A grande maioria das pesquisas em estabilidade a pequenas perturbações em 

sistemas de potência procura calcular autovalores com parte imaginária diferente de zero e 

próximas do eixo imaginário, identificando tais autovalores como modos críticos do sistema 

(RAMOS, 1999). O algoritmo de subespaços invariantes toma como base o método de 

potências, porém vê cada uma das iterações AUk como representante do subespaço 

span(AUk). 

A essa ideia, se ���
(�)
,��

(�)
,… ,��

(�)
� é uma base de U é possível mostrar que os vetores 

����
(�)
,����

(�)
,… ,����

(�)
 formam uma base de ���.  

Dessa forma, o algoritmo final é o seguinte: 

1. Calcular ��
(�)

 a partir de (A - sI) ��
(�)

 = ��
(�)

, i = 1, 2, ..., m. 

2. Ortonormalizar ��
(�)

 para obter ����
(�)

, i = 1, 2, ..., m. 

Logo, através desses métodos podemos obter os autovalores e autovetores de uma 

determinada matriz. Para determinados tipos de matriz (exemplos matrizes esparsas) um 

método pode ser mais eficiente que outro, mas esse assunto não é abordado nesse projeto. 

A avaliação da eficiência bem como implementações de melhoramento dos métodos de 

cálculo de autovalores e autovetores, pode ser encontrada em (RAMOS, R. A; 1999). 
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4 Técnicas para avaliação da sensibilidade e limite de variações dos 

modos de oscilações devido à variação de parâmetros do sistema 

4.1 Teoria da perturbação 

Como já discutido, as análises de segurança dinâmica em sistemas elétricos de 

potência requerem a avaliação de estabilidade do sistema para um número grande de 

contingências. Além disso, sabe-se que no estudo a pequenas perturbações o sistema elétrico 

é modelado por meio de equações matriciais resultantes do procedimento de linearização do 

modelo não linear do sistema em torno de um ponto de operação. Porém o grande problema 

na análise da estabilidade da rede por meio destas matrizes, deve-se primeiramente ao fato 

de que as matrizes de estado que descrevem o sistema apresentam grande dimensão e 

posteriormente ao fato de que pequenas variações no ponto de operação da rede geram uma 

nova matriz de estado. Assim para cada configuração é necessário calcular novamente os 

autovalores a fim de identificar a estabilidade do sistema, o que demanda um certo tempo e 

esforço computacional. 

Dessa maneira esta monografia visa estudar e entender a perturbação de matrizes e 

os possíveis efeitos que estas variações causam nos autovalores e autovetores, a fim de 

encontrar uma margem de estabilidade para o sistema.  

Na literatura, encontram-se métodos e estudos que analisam e tentam estimar os 

efeitos de perturbações sobre os autovalores e autovetores da matriz perturbada. Essas 

técnicas fazem parte do assunto Teoria da Perturbação (Perturbation Theory) e Sensibilidade 

de Autovalores (Eigenvalue Sensitivity). 

A teoria da perturbação se inicia definindo um problema de autovalores em um espaço 

vetorial de dimensão finita. O problema típico desta teoria baseia-se na investigação dos 

autovalores e autovetores de um operador linear T quando este é submetido a uma pequena 

perturbação. Para lidar com este problema, é conveniente considerar uma família de 

operadores lineares da forma: 

T(ε) = T + εT’                                                   (55) 

em que  ε é um parâmetro escalar supostamente pequeno, T(0) = T é chamado de operador 

não perturbado e εT’ a perturbação. 

Para melhor entendimento deste problema, deve-se ter um bom conhecimento das 

propriedades dos autovalores e de subespaços invariantes. Para fins explicativos, toma-se 

uma matriz A ϵ ₵nxn . Os autovalores dessa matriz são as raízes do polinômio característico 
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f(λ) = det (A - λI) e o conjunto destas raízes é chamado de spectrum denotado por λ(A). Duas 

propriedades importantes são:  

1) Se λ(A) = {λ1, λ2, ... , λn}, então o det(A) = λ1λ2...λn. 

2) Definimos o traço de A como tr(A) = ∑ ���
�
���   

Além disso, se λ ϵ λ(A), então o vetor não nulo u ϵ ₵n, que satisfaz Au = λu, é chamado 

autovetor associado ao autovalor λ. Além disso, um autovetor define um subespaço 

unidimensional que é invariante. Um subespaço S ⊆ ₵n tal que para todo x ϵ S tem-se Ax ϵ S 

é dito invariante com respeito a A. 

Muitos problemas computacionais que envolvem cálculos de autovalores são 

resolvidos quebrando o problema em coleções de pequenos problemas de autovalores, isto 

é, realiza-se a dissociação do problema original. Logo, Se T ϵ ₵nxn é particionado como, 

� = �
��� ���
0 ���

� ,  onde Tij são blocos de matrizes. 

então λ(T) = λ(T11) ∪  λ(T22). 

Neste sentido, uma teoria que auxilia o estudo dos problemas de perturbação é a 

chamada decomposição unitária básica de (GOLUB; 1996). Através da transformação por 

similaridade, é possível reduzir o problema em uma das formas canônicas encontrada na 

álgebra linear. As formas canônicas diferem na forma como eles exibem informações dos 

valores próprios e do tipo de subespaços invariantes que elas fornecem. Devido à sua 

estabilidade numérica podemos encontrar reduções que podem ser alcançados com 

similaridade unitária1. 

A decomposição de Schur é uma das mais importantes decomposições de matrizes 

em outras por similaridade. Segundo o teorema: 

Se A ϵ ₵nxn, então existe uma matriz unitária Q ϵ ₵nxn, tal que: 

��� � = � = � + �                                                 (56) 

                                                
1 Similaridade Unitária: a propriedade de dois operadores ou matrizes de ser similar via uma matriz 
unitária: A = UBU*, com U unitária. Qualquer matriz complexa normal é unitariamente similar a uma 
matriz complexa diagonal, que é real se, e somente se, a matriz é Hermitiana (H: uma matriz transporta 
conjugada). Uma matriz real simétrica é real ortogonalmente similar a uma matriz real diagonal. 
Exemplo: Teorema de Schur. 
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em que D = diag (λ1, ..., λn) e N ϵ ₵nxn é estritamente triangular superior. Além disso, Q pode 

ser escolhido de modo que os valores próprios λi aparecem em qualquer ordem ao longo da 

diagonal. 

Tomando como base a teoria até aqui discutida, podemos, agora, melhor entender os 

problemas de perturbação de matrizes e sensibilidade de autovalores. 

Diversas rotinas de cálculo de autovalores realizam uma sequência de transformações 

por similaridade Xk transformando uma matriz A progressivamente em uma “mais diagonal”. 

Como já discutido, uma matriz diagonal possui como autovalores os seus próprios elementos 

da diagonal principal. Assim, a questão é saber quão próximos os elementos da diagonal de 

uma matriz estão de seus valores próprios.  

A primeira ferramenta teórica é o importante Teorema dos Discos de Gershgorin 

(GOLUB; 1996) (STOER et al.; 1992). Ele decorre da seguinte análise:  

Se A é uma matriz complexa n × n, podemos sempre escrever A em X-1AX = D + F, 

onde D = diag (a11, ... , ann) é a matriz diagonal formada pela diagonal principal de A e F 

consiste dos elementos restantes de A, possuindo uma diagonal principal nula. O Teorema 

de Gershgorin dá uma estimativa precisa e simples de calcular os raios destes discos em 

função das entradas restantes da matriz A. Denote o disco complexo fechado de centro em 

aii e raio R por:  

��(���)= {μ ∈ � ∶ |μ − ���| ≤ �}                                        (57) 

e seja µ raiz do polinômio característico, se, 

��(�)= ∑ |���|
�
�� �
��� 

                                              (58) 

denota a soma dos valores absolutos dos elementos da linha i de A, excetuando o elemento 

da diagonal principal, então todos os autovalores de A estão contidos na união dos n discos 

de Gershgorin: 

�(�)⊆ ����(�) (���)

�

���

 

Além disso, se uma união de k destes discos forma uma região que é disjunta dos n−k 

discos restantes, então existem exatamente k autovalores de A nesta região. Para melhor 

entendimento segue um exemplo dado: 
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� = �
1 0.1 −0.1
0 2 0.4

−0.2 0 3
� 

�� = {�| |� − 1| ≤ 0.2} 

�� = {�| |� − 2| ≤ 0.4} 

�� = {�| |� − 3| ≤ 0.2} 

 

Figura 7 - Resultado da implementação da Teoria dos Discos apresentada no Anexo C. 

 

A teoria dos discos de Gershgorin foi implementada no Matlab® a partir de um código 

disponibilizado no site da Mathworks® e pode ser encontrado no Anexo C. 

Desta análise, se considerarmos, agora, Aε = D + εF, então A0 = D (sendo A0 formada 

pelos elementos da diagonal principal de A) e A1 = A = D + F (sendo A1 a própria matriz A). 

Consequentemente, os autovalores de D são a11, ... , ann, enquanto que os autovalores de Aε 

devem estar localizados nas vizinhanças dos pontos a11, ... , ann, desde que ε seja 

suficientemente pequeno. 

Assim, a aplicação mais comum desse teorema está na estimativa dos autovalores de 

uma matriz, permitindo o conhecimento mais preciso da localização dos autovalores da matriz 

e correspondentemente melhores estimativas para o raio espectral da mesma. 
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É muito importante saber que rotinas empregadas no cálculo de autovalores buscam 

exatidão nos resultados de matrizes como A + E, onde E denota uma matriz com pequena 

norma (uma perturbação em A). Consequentemente, nós devemos entender como os 

autovalores da matriz são afetados por pequenas perturbações. O seguinte teorema de Bauer 

– Fike (GOLUB; 1996) e (STOER et al.; 1992) aborda essa questão. 

Se µ é um autovalor de A + E ϵ ₵nxn e X-1AX = D = diag (λ1, ..., λn), então: 

min
� � �(�)

|� − μ | ≤ ����(�). |�|� 

onde | . |p denota qualquer norma – p, e cond(X) = ||X||.||X-1||. 

Como se pode observar, o condicionamento do problema de autovalores, ou seja, a 

sensibilidade dos autovalores, não depende do número de condição da matriz A, mas é 

controlada pelo fator cond(X) da matriz de transformação X. Por esse teorema, verifica-se que 

se cond(X) é grande, então pequenas mudanças em A podem induzir largas mudanças nos 

autovalores. Isso é discutido no livro “Matrix Computations” (GOLUB; 1996, p.322, p.323). 

Vale ressaltar que para encontrar a matriz X basta encontrar os autovetores da matriz 

original e dessa forma obter com eles a matriz X, já que XA = LX, onde L é a matriz diagonal 

de autovalores e A a matriz original em estudo. 

Para facilitar o entendimento do teorema de Bauer-Fike considere o exemplo: 

Seja � = �
1 2 3
0 4 5
0 0 4,001

� a matriz não perturbada e � = �
0 0 0
0 0 0

0,001 0 0
� a perturbação 

aplicada em A. 

 Então, λ(A + E) ={1,0001; 4,0582, 3,9427} e cond(X) ≈ 1,3548·104 e  |�|� = 10-3. Logo 

o intervalo dado será min
� � �(�)

|� − μ | ≤ 13,248.  

A extrema sensibilidade de uma matriz A não pode ocorrer se A é normal, isto é, AA* 

= A*A. Por outro lado, a não normalidade não se faz necessária para concluir sobre a 

sensibilidade de um autovalor. Na verdade, a não normalidade pode ser uma mistura de 

autovalores bem e mal condicionados (GOLUB; 1996), isto é, se o algoritmo para encontrar 

um autovalor irá obter um valor preciso ou apresentará resultados piores onde o erro cresce 

durante os cálculos. Por essa razão, é vantajoso refinar a teoria da perturbação para um 

autovalor específico e não para todo o espectro. 
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Então, vamos considerar a sensibilidade para um autovalor λ de A mediante a uma 

pequena perturbação A → A + εC, ε → 0. Limitamos a análise para um zero simples do 

polinômio característico.  

Se λ é uma raiz simples do polinômio característico da matriz Anxn, e x e yH 

correspondem aos autovalores à direita e à esquerda de A, respectivamente, Ax = λx,  yHA = 

λyH, x ≠ 0, y ≠ 0. 

Se C é uma matriz n × n arbitrária, então, há uma função λ(ε) que é analítica para ε 

suficientemente pequeno ( |ε| < ε0 , ε0 > 0 ), tal que: 

�(0)=  � , �’(0)= 
����

���
, 

e λ(ε) é um zero simples do polinômio característico A + εC. Em verdade, a primeira 

aproximação para o autovalor perturbado é dada por: 

� (�)=̇  � +  � 
����

���
. 

Denotando, para a norma Euclidiana || . ||2, por: 

cos(�,�)≔ 
����

�|�|� ��|�|��

 

o cosseno do ângulo entre os autovetores x e y, o precedente resultado implica na seguinte 

estimativa: 

|�’(0)| ≤
����(�)

|cos (�,�)|
 

em que lub(C) é a norma induzida da matriz C (STOER et al.; 1992).  

A sensibilidade de λ irá aumentar com o decremento de |cos(x, y)|. A discussão acima 

indica que um autovalor simples λ de A é relativamente insensível para perturbações A → A 

+ εC, no sentido que para o correspondente autovalor λ(ε) de A + εC existe uma constante K 

e ε0 > 0 tal que |λ(ε) - λ| ≤ K ∙ |ε| para |ε| ≤ ε0. 

Logo, como se pode verificar o tema que envolve a teoria da perturbação de matrizes 

e análise de sensibilidade de autovalores é bastante complexo por se tratar de um assunto 

que ainda está em discussão e em desenvolvimento. Vários autores buscam desvendar 

métodos pertinentes que possam auxiliar o entendimento desse assunto. Tomando como 



53 
 

base os critérios disponíveis sobre a teoria da perturbação, essa monografia busca estudar a 

aplicação desses métodos nas análises de segurança dinâmica em sistemas elétricos de 

potência. 

 

4.2 Medidas de Matrizes 

A noção de medida de matrizes ou matricial é baseada nas propriedades de normas 

induzidas e propriedades de espaço vetorial. Com sua definição, pode-se encontrar uma 

estimativa para a região onde se encontram os autovalores conhecendo apenas as partes 

reais dos mesmos. Dessa forma é possível avaliar a estabilidade conhecendo essa região 

desde que ela não esteja do lado direito do plano real imaginário. 

Inicialmente devemos entender o conceito de norma induzida de matrizes. Seja Cnxn o 

conjunto de todas as matrizes nxn com elementos complexos, então Cnxn é um  espaço vetorial 

no corpo dos complexos se tomarmos as leis da adição e multiplicação por escalar. Além 

disso, para cada matriz A ϵ Cnxn , há um correspondente operador linear α de Cn definido por 

�(�)= ��,∀� ∈ ��. Assim, há uma correspondência unívoca entre matrizes em Cnxn e 

operadores lineares de Cn em si mesmo. Em geral, não distinguimos entre uma matriz em 

Cnxn e o operador linear correspondente em Cn. Esta correspondência é a motivação por trás 

do conceito da norma induzida de uma matriz. 

Seja || . || uma norma em Cn. Então para cada matriz A ϵ Cnxn, a quantidade ||A||i, 

definida por:  

�|�|�� = ���
���,�∈��

||��||

||�||
= ���

||�||��
||��|| = ���

||�||��
||��||  

que é chamada de norma induzida da matriz A correspondente à norma do vetor || . ||. 

 Esta teoria é discutida em (VIDYASAGAR,M.; 1993) onde podem ser encontrados 

mais detalhes do assunto. Em suma, a teoria de matriz induzida pode ser resumida da 

seguinte forma: 

Norma em Cn Norma induzida em Cnxn 

�|�|�� = max
�
|��| �|�|�

��
= max

�
� |���|

�

���
 

�|�|�
�
=� |��|

�

���
 �|�|�

��
= max

�
� |���|

�

���
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�|�|�
�
= �� |��|

�
�

���
�
�/�

 �|�|�
��
= [����(�

��)]
�
� 

Com esse conceito, discute-se a análise de medidas de matrizes. Seja || . ||i uma norma 

induzida em Cnxn, então a correspondente medida matricial é a função μ(.):Cnxn →R definido 

por: 

�(�)= lim
�→��

�|� + ��|�
�
− 1

�
 

A medida matricial μ(A) pode ser entendida como uma derivada direcional da norma 

induzida || . ||i , isto é, avalia a matriz identidade na direção de A. A função de medida tem 

várias propriedades úteis, como mostrado em seguida (VIDYASAGAR,M., 1993): 

Se || . ||i é uma norma induzida em Cnxn e μ(.) corresponde a medida matricial, então 

μ(.) tem as seguintes propriedades: 

(M1) Para cada A ϵ Cnxn o limite existe e é bem definido. 

(M2) -||A||i ≤ μ(A) ≤ ||A||i , ∀� ∈ ����. 

(M3) μ(αA)=α μ(A), ∀� ≥ 0,∀� ∈ ���� 

(M4) max{ μ(A) - μ(-B), μ(B) - μ(-A)}≤ μ(A+B)≤ μ(A)+ μ(B), ∀�,� ∈ ���� 

(M5) μ(.) é uma função convexa, isto é, μ [ αA+(1-α)B] ≤ αμ(A) + (1-α)μ(B), 

∀��[0,1],∀�,� ∈ ����. 

(M6) Se λ é um autovalor de A ϵ Cnxn, então - μ(-A)≤ Re λ≤ μ(A). 

A propriedade (M6) oferece uma estimativa para a região onde estão os autovalores 

de uma matriz. Em suma, temos: 

Norma em Cn Medida matricial em Cnxn 

�|�|�� = max
�
|��| ��(�) = max

�
(���  + � �����

�

���
) 

�|�|�
�
=� |��|

�

���
 ��(�)= max

�
(���  + � |���|)

�

���
 

�|�|�
�
= �� |��|

�
�

���
�
�/�

 ��(�)= [����(�
� +  �)/2] 



55 
 

 

Com essas definições, podemos encontrar uma estimativa para a parte real dos 

autovalores como pode-se observar no exemplo seguinte: 

 Seja � = � 
−6 2 1
0 −1 2
1 3 0

� e portanto −� = � 
6 −2 −1
0 1 −2
−1 −3 0

� utilizando a teoria de medida 

matricial calcula-se:  

Para j = 1, µ1(A) = -6 + (1 + 0) = -5; µ1(-A) = 6 + (|-1| + 0) = 7. 

Para j = 2, µ1(A) = -1 + (2 + 3) = 4; µ1(-A) = 1 + (|-2| + |-3|) = 6. 

Para j = 3, µ1(A) = 0 + (2 + 1) = 3, µ1(-A) = 0 + (|-2| + |-1|) = 3. 

Portanto os máximos são: µ1(A) = 4 e µ1(-A) = 7. 

Para i = 1, µ∞(A) = -6 + (2 + 1) = 4; µ∞(-A) = 6 + (|-2| + |-1|) = 9. 

Para i = 2, µ∞(A) = -1 + (2 + 0) = 1; µ∞(-A) = 1 + (|0| + |-2|) = 3. 

Para i = 3, µ∞(A) = 0 + (1 + 3) = 4; µ∞(-A) = 0 + (|-1| + |-3|) = 4. 

Portanto os máximos são: µ∞(A) = 4, µ∞(-A) = 9.  

Agora usando a propriedade (M6) para estimar a parcela real dos autovalores de A, 

obtém-se: -7 ≤ Re λi ≤ 4, para a medida µ1; e -9 ≤ Re λi ≤ 4, para a Medida µ∞. Agora, 

calculando-se os autovalores exatos de A (λ = {-6,0426; -3,1271; 2,1698}) pode-se provar que 

a estimativa [-7 ; 4] é satisfatória.  

Vale ressaltar que se fosse aplicado a medida µ2 seria encontrado um intervalo mais 

preciso, porém o esforço computacional seria maior. 
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5 Desenvolvimento 

5.1 Sistema exemplo para análise inicial 

Seguindo o equacionamento matemático a respeito da análise dos sistemas elétricos 

de potência a pequenas perturbações que foram desenvolvidas no capítulo 2, foi previamente 

investigado um caso exemplo de um circuito IEEE 9 barras e 3 geradores conforme a Figura 

8.  

 

Figura 8 - Circuito teste padrão IEEE 9 barras e 3 geradores. (Fonte: ANDERSON,P.M. e FOUAD, 
A.A.; 2003). 

 

Agora como apresentado em (ANDERSON e FOUAD; 2003), pp. 63-64, exemplo 3.2, 

vamos considerar o sistema de 3 máquinas e 9 barras previamente num estado de operação 

de equilíbrio como apresentado pela Figura 8. Uma pequena carga de 10 MVA (cerca de 3% 

da carga total do sistema de 315 MW) é subitamente adicionada a barra 8 por adição de uma 

falta trifásica para a barra 8 através da adição de uma impedância de 10,0 p.u. Agora 

admitindo como potência base 100 MVA e assumindo que a carga do sistema depois da 

perturbação é constante e igual à carga original mais a resistência 10 p.u., desenvolveremos 

o problema.  
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O circuito da Figura 8 contém 3 barras com geradores clássicos sem regulação, sendo 

escolhido um para ser a referência angular do sistema. Dessa maneira, adotou-se o gerador 

de número 3 como referência a fim de facilitar a montagem da matriz de estados do circuito, 

para o cálculo dos modos de oscilação (autovalores).  

Os dados dos geradores são apresentados na Tabela 1 e as características das linhas 

são dadas na Tabela 2. 

Tabela 1 - Dados dos Geradores. 

Gerador 1 2 3 

Potencia Nominal (MVA) 247,5 192,0 128,0 

Tensão (kV) 16,5 18,0 13,8 

Fator de Potência (pu) 1,0 0,85 0,85 

Xd (pu) 0,1460 0,8958 1,3125 

X’d (pu) 0,0608 0,1198 0,1813 

Xq (pu) 0,0969 0,8645 1,2578 

X’q (pu) 0,0969 0,1969 0,25 

τ'd0 (s) 8,96 6,00 5,89 

τ'q0 (s) 0 0,535 0,600 

Energia Armazenada à Velocidade 
Nominal 

2364 MW·s 640 MW·s 301 MW·s 

 

Tabela 2 - Dados da rede. 

 Barra N ° 

Impedância Admitância 

R (p.u.) X (p.u.) G (p.u.) B (p.u.) 

Transformador*  

Nº1 1-4 0 0,1184   

Nº2 2-7 0 0,1823   
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Nº3 3-9 0 0,2399   

Linha  

 4-5 0,0100 0,0850   

 4-6 0,0170 0,0920   

 5-7 0,0320 0,1610   

 6-9 0,0390 0,1700   

 7-8 0,0085 0,0720   

 8-9 0,0119 0,1008   

Admitância 
Shunt + 

 

Carga A 5-0   1,261 -0,2634 

Carga B 6-0   0,8777 -0,0356 

Carga C 8-0   0,9690 -0,1601 

 4-0    0,1670 

 7-0    0,2275 

 9-0    0,2835 

* Dados da impedância do transformador adicionada a x’d. 
+A susceptância da linha foi adicionada a admitância da carga. 

 

 

O circuito se encontra em um estado de operação estável, satisfazendo o fluxo de 

potência descrita pelas equações (7) e (8) do capítulo 2. Dessa maneira, são conhecidas as 

condições de tensão e ângulo sobre cada barra. A Figura 9 apresenta esses dados. 
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Figura 9 - Sistema no seu estado de operação (todos os fluxos em p.u.). (Fonte: ANDERSON, P.M. e 
FOUAD, A.A.; 2003). 

 

Seguindo o raciocínio enunciado no capítulo 2, esse sistema teste foi implementado 

utilizando o software MATLAB®. A partir da solução da matriz de estado obtida pela 

linearização das equações elétricas e mecânicas, obtivemos os seguintes modos de oscilação 

para o estado de operação indicado na Figura 9, dados na Tabela 3. 

Tabela 3 - Modos de oscilação do sistema de 9 barras 3 geradores. 

Resultado Autovalor 1 e 2 Autovalor 3 e 4 

λ ±13,360j ±8,689j 

 

Fica evidente que os autovalores do sistema estão sobre o eixo imaginário. Segundo 

o critério de estabilidade enunciada no capítulo 3, os autovalores estão em condições de 

estabilidade crítica, isto é, qualquer perturbação capaz de deslocar os autovalores para a 

parte positiva do eixo real, cria, sobre o sistema, um efeito de oscilação não amortecida. Esse 

estado pode ser considerado um estado de insegurança do sistema.  
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Para avaliar o comportamento do sistema representado pela Figura 8 mediante uma 

perturbação aplicada sobre as cargas, realizaram-se  alguns testes sobre a carga A. 

Perturbou-se o sistema de -30% a 30% na potência da carga A e calcularam-se os autovalores 

do sistema. A Tabela 4 resume estes dados. 

Tabela 4 - Autovalores do sistema para algumas perturbações sobre a carga A. 

Simulação 
Variação 

% na 
Carga A 

Pa 

(pu) 

Qa 

(pu) 
Autovalores 1 e 2 Autovalores 3 e 4 

1 -30 0,875 0,35 ±j13,348 ±j8,676 

2 -20 1 0,4 ±j13,352 ±j8,681 

3 -10 1,125 0,45 ±j13,356 ±j8,686 

Original 0 1,25 0,5 ±j13,360 ±j8,689 

5 10 1,375 0,55 ±j13,364 ±j8,692 

6 20 1,5 0,6 ±j13,368 ±j8,693 

7 30 1,625 0,65 ±j13,372 ±j8,692 

 

Observando-se a Tabela 4, vemos que pela existência de geradores clássicos não 

regulados e sem amortecimento, no sistema em estudo, aparecem apenas autovalores 

puramente imaginários. Dessa forma, qualquer perturbação aplicada em uma das cargas faz 

com que os autovalores do sistema caminhem sobre o eixo imaginário, mantendo sua parcela 

real nula. Com a simulação, pode-se verificar este fato e concluir que serão necessários a 

aplicação de controladores AVR no sistema a fim de aparecerem autovalores com parcela 

real e imaginária para que possam ser realizadas as análises de perturbação e avaliações de 

limites de estabilidade. 

A teoria sobre esses tipos de geradores regulados pode ser encontrado no capítulo 2. 

Com objetivo de se obter uma análise mais realística e efetiva dos dados, além de utilizar um 

novo tipo de modelo de gerador no sistema, bem como inserir os reguladores AVR, será 

estudado um novo sistema teste composto por 11 barras e 4 geradores (2 áreas) e que pode 

ser encontrado com mais detalhes no livro (KUNDUR, P.; 1994). 
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5.2 Análise aplicada em um sistema de 2 áreas (11 barras 4 geradores)  

 Para a avaliação mais prática e obtenção de resultados mais realísticos, será estudado 

uma rede um pouco mais complexa, dotada de 11 barras e 4 geradores representada pela 

Figura 10. Esta rede é a padrão 2 áreas dotada de 11 barras e 4 Geradores, cuja 

característica principal é determinada pela simetria entre essas duas áreas existentes. 

 

Figura 10 - Sistema duas áreas. 

 

Para esta rede, os parâmetros de todas as linhas de transmissão são r = 0,0001pu/km, 

xl = 0,001 pu/km e bc = 0,00175 pu/km, nas bases de 100MVA e 230 kV. As linhas são 

representadas no modelo π e os detalhes podem ser encontrados na Tabela 5. 

Tabela 5 - Dados da linha de transmissão. 

Barra de 
saída 

Barra de 
chegada 

Comprimento 
(km) 

R (%) X(%) 
Carregamento 

(MVar) 

5 6 25 0,25 2,5 4,3750 

6 7 10 0,10 1,0 1,7500 

7 8 110 1,10 11,0 19,2500 

7 8 110 1,10 11,0 19,2500 

8 9 110 1,10 11,0 19,2500 

8 9 110 1,10 11,0 19,2500 

9 10 10 0,1 1,0 1,7500 

10 11 25 0,25 2,5 4,3750 
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Cada transformador elevador tem impedância de j0,15 pu na base de 900MVA e 

20/230 kV. O sistema é dotado de 4 geradores, 2 cargas e 2 bancos de capacitores. Os dados 

são: 

G1: P = 700 MW; Q = 185; Et = 1.03 ângulo 20.1º; H = 6.5 MW.s/MVA. 

G2: P = 700 MW; Q = 234.6; Et = 1.01 ângulo 20.1º; H = 6.5 MW.s/MVA. 

G3: P = 719.1 MW; Q = 176; Et = 1.03 ângulo 20.1º; H = 6.175 MW.s/MVA. (referência) 

G4: P = 700 MW; Q = 202; Et = 1.01 ângulo 20.1º; H = 6.175 MW.s/MVA. 

Barra 7 (Carga A): Pload:967Mw; QLoad: 100 MVar; Qshunt: 200MVar. 

Barra 9 (Carga B): Pload:1767Mw; QLoad: 100 MVar; Qshunt: 350MVar. 

Para cada gerador, temos os parâmetros presentes na Tabela 6. 

Tabela 6 - Parâmetros dos geradores (Fonte: KUNDUR,P.;1994). 

Parâmetros 
Valor Unidade 

Descrição Símbolo 

Potência nominal aparente - 900 MVA 

Constante de tempo transitória de 
circuito aberto do eixo d 

T’d0 8,0 s 

Constante de tempo sub - transitória 
de circuito aberto do eixo d 

T”d0 0,03 s 

Constante de tempo transitória de 
circuito aberto do eixo q 

T’q0 0,4 s 

Constante de tempo Sub - transitória 
de circuito aberto do eixo q 

T”q0 0,05 s 

Inércia H 
Informado 

anteriormente 
MW.s/MVA 

Coeficiente de amortecimento D 0 pu 

Reatância Síncrona eixo d Xd 1,8 pu 

Reatância Síncrona eixo q Xq 1,7 pu 

Reatância transitória eixo d X’d 0,3 pu 

Reatância transitória eixo q X’dq 0,55 pu 
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Reatância sub-transitória Xd” = Xq” 0,25 pu 

Reatância de dispersão Xl 0,20 pu 

Parâmetro A de saturação A 0,015 - 

Parâmetro B de saturação B 9,6 - 

Parâmetro C de saturação C 0,9 - 

 

Além desses parâmetros, como já observado pelos resultados do sistema 9 barras e 

3 geradores, com o objetivo de encontrar autovalores que não estejam sobre o eixo 

imaginário, será inserido um controlador como descrito no capítulo 2, transformando os 

geradores clássicos em geradores regulados (AVR). Realizando-se essas alterações serão 

avaliados os autovalores e as matrizes de estado do sistema. Vale ressaltar que a Tabela 6 

apresenta todos os parâmetros que descrevem os geradores de ordem superior, porém serão 

utilizadas somente aqueles parâmetros que participam da formulação do modelo de 4ª ordem 

do gerador como apresentado no capítulo 2. 

Para avaliar a estabilidade da rede, serão utilizados 2 programas disponibilizados pela 

CEPEL (o ANAREDE e o  PACDYN) que são encarregados de avaliar o fluxo de carga de um 

sistema e avaliar o estado dinâmico da rede, respectivamente.  

O ANAREDE é um programa computacional utilizado no Brasil para o desenvolvimento 

de estudos em regime permanente em Sistemas Elétricos de Potência. Com ele pode-se obter 

dados de fluxo de potência, equivalente de redes, pode-se analisar contingências bem como 

sensibilidade de tensão e de fluxo entre outras análises. O programa tem como objetivo o 

cálculo do estado da rede elétrica a partir de dados de entradas definidos pelo usuário 

(condição de carga, geração, dados das linhas e barras). Para solucionar a avaliação do fluxo 

de potência, o programa dispõe de 3 métodos: Desacoplado Rápido, de Newton ou o 

Linearizado.  

Já o PACDYN é um programa voltado à análise e ao controle de oscilações resultantes 

de pequenas perturbações em sistemas elétricos de grande porte. Os estudos realizados pelo 

programa permitem a identificação da natureza das oscilações crescentes, ou pouco 

amortecidas, e o ajuste dos diversos controladores para aumento dos seus amortecimentos. 

Através desse programa, podem-se obter os autovalores do sistema segundo os 

controladores inseridos no código de entrada e os parâmetros conhecidos dos geradores do 

sistema. Além disso, podemos obter a matriz de estados que será bem útil nesta monografia 

para avaliação do comportamento da mesma mediante variação na carga do sistema. 
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A partir do uso desses programas podemos obter os autovalores do sistema, bem 

como as matrizes de estados no formato descrito no capítulo 2. Com esses resultados 

podemos investigar os limites de estabilidade do sistema segundo uma dada variação na 

carga. 

 

5.3 Resultados do sistema de duas áreas 

5.3.1 Simulação do fluxo de carga 

Primeiramente, realizou-se o fluxo de carga do sistema para obter todos os dados de 

tensão e ângulo das barras do sistema, bem como o fluxo de potência do circuito (utilizando-

se as equações de multimáquinas apresentadas no capítulo 2). Usufruindo-se do ANAREDE, 

obtemos os seguintes dados de simulação para o fluxo de carga da situação original, isto é, 

sem aplicar qualquer perturbação no sistema. A Tabela 7 mostra esses dados. O arquivo de 

saída do programa que mostra o fluxo de potência do sistema de duas áreas pode ser 

encontrado no Anexo D.  

Tabela 7 - Resultados da simulação do Fluxo de carga. 

Número da 
Barra 

Nome da 
Barra 

Base kV 
Tipo de 
barra 

Tensão (pu) 
Ângulo 
(graus) 

1 Gerad-01-- 20,0 PV 1,030 20,1 

2 Gerad-02-- 20,0 PV 1,010 10,3 

3 Gerad-03-- 20,0 Swing 1,030 -7,0 

4 Gerad-04-- 20,0 PV 1,010 -17,2 

5 Barra01 230,0 PQ 1,006 13,6 

6 Barra02 230,0 PQ 0,978 3,5 

7 Barra03 230,0 PQ 0,961 -4,9 

8 Barra04 230,0 PQ 0,949 -18,8 

9 Barra05 230,0 PQ 0,971 -32,3 

10 Barra06 230,0 PQ 0,983 -23,9 

11 Barra07 230,0 PQ 1,008 -13,6 
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Para determinar o comportamento dos autovalores do sistema em estudo, realizou-se 

uma perturbação sobre a carga A isoladamente, isto é, alterou-se a potência da carga A (Barra 

7) mantendo-se constante o valor da carga B a fim de simular pequenas perturbações na rede. 

Para uma primeira análise realizaram-se 8 alterações conforme mostradas na Tabela 8. 

Dessa forma, realizaram-se 9 simulações de fluxo de carga (incluindo a situação original) para 

obter o estado do circuito sobre esta situação de perturbação. Os resultados dessas 

simulações podem ser encontrados no Anexo E. 

Tabela 8 - Perturbações iniciais realizadas sobre as cargas. 

Situação Variação % 
Carga A (Potência 

Ativa kW) 
Carga A (Potência 

Reativa kVar) 

    

1 -20 773,60 80,00 

2 -15 821,95 85,00 

3 -10 870,30 90,00 

4 -5 918,65 95,00 

Original 0 967,00 100,00 

6 5 1015,35 105,00 

7 10 1063,70 110,00 

8 15 1112,05 115,00 

9 20 1160,40 120,00 

 

A partir dos dados das simulações será possível realizar o controle de tensão 

inserindo-se os reguladores AVR (capítulo 2) nos geradores, fazendo com que este 

mantenha-se dentro da faixa de tensão operacional do sistema. Através do programa 

PACDYN foi possível simular um sistema n-barras com geradores regulados, a fim de obter 

os autovalores e matrizes de estados do sistema para realizar as análises do comportamento 

deles sobre o eixo Real x Imaginário. Nos itens seguintes, serão avaliadas as matrizes de 

estados de cada situação e posteriormente será avaliada uma situação crítica estimando a 

perturbação que levaria o circuito à instabilidade. 

 

5.3.2 Autovalores do sistema exemplo e seu comportamento – Resultados do 
PACDYN 

 Os primeiros passos para a determinação dos autovalores do sistema é a simulação 

do fluxo de carga do sistema como realizado no item anterior. A partir disso, utilizaremos o 

programa PACDYN para a determinação do estado dinâmico da rede inserindo o regulador 
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AVR como descrito no capítulo 2. No cartão de entrada do programa são inseridos os dados 

das máquinas presentes na Tabela 6, além dos dados do regulador. O regulador foi 

determinado a partir de exemplos disponíveis em (KUNDUR, P; 1994), e o modelo de 1ª 

ordem foi adotado. O ajuste do ganho Ka do regulador foi realizado de modo que permitisse o 

sistema flutuar entre a zona de estabilidade e instabilidade. Dessa forma, foram realizados 

vários estudos de ganhos e concluiu-se que para ganhos elevados como por exemplo Ka igual 

a 50, 100, 200, ou valores superiores, o amortecimento do sistema não ocorre de forma 

adequada deixando a rede instável para qualquer situação de carga. Porém, executando os 

estudos para valores de ganho Ka mais baixos, verificou-se que a rede está dentro da 

estabilidade em certas condições de carga, porém pequenas perturbações podem fazer com 

que o sistema entre na instabilidade, sendo este o objetivo da investigação. Esta última análise 

será mais bem detalhada e será base do estudo de perturbação. 

 A Tabela 9 resume os dados do AVR inserido no programa de PACDYN criado e que 

pode ser encontrado no Anexo F. 

Tabela 9 - Variáveis do AVR. 

Parâmetros Valores 

TR 0,01 

Ka 10 

 

 Agora, contendo os dados dos geradores presentes na Tabela 6, do regulador AVR 

(Tabela 9) e do fluxo de potência para cada situação de carga (arquivo de saída do 

ANAREDE) pode-se realizar a simulação dinâmica do sistema. A simulação foi realizada 

mantendo constante a geração e alterando apenas o valor da carga isoladamente. Os testes 

foram realizados alterando a carga A da rede em estudo, a fim de avaliar o comportamento 

dos autovalores do sistema. 

 Para o sistema base, foram encontrados os dados presentes na Tabela 10. Vale 

ressaltar algumas informações para os seguintes autovalores: 1 e 2 são relativamente nulos 

e apareceram devido a referência angular do sistema, 3 e 4 são os modos inter área, 5 e 6 

apresentam os modos locais na área 1 e os autovalores  7 e 8 os modos locais na área 2. 

 

 

 



68 
 

Tabela 10 - Arquivo de saída do PACDYN do sistema base. 

Situação de Carga: Original 

Autovalores Parte Real Parte Imaginária Freq. (Hz) Damp(%) Part. Factor 

1 7,26E-12 3,59E-06 5,72E-07 -0,0002 WW     Gerad-02--  #    2 

2 7,26E-12 -3,59E-06 -5,72E-07 -0,0002  

3 -0,04982 3,4252 0,5451 1,4544 WW     Gerad-03--  #    3 

4 -0,04982 -3,4252 -0,5451 1,4544  

5 -0,1606 6,2942 1,0018 2,5501 DELT   Gerad-02--  #    2 

6 -0,1606 -6,2942 -1,0018 2,5501  

7 -0,1678 6,51 1,0361 2,5771 WW     Gerad-04--  #    4 

8 -0,1678 -6,51 -1,0361 2,5771  

9 -99,556 0. 0. 100 x 0005 AVR3        #     3 

10 -99,545 0. 0. 100 x 0005 AVR1        #     1 

11 -99,041 0. 0. 100 x 0005 AVR2        #     2 

12 -98,638 0. 0. 100 x 0005 AVR4        #     4 

13 -1,5906 0. 0. 100 EQ'    Gerad-02--  #    2 

14 -1,1562 0. 0. 100 EQ'    Gerad-03--  #    3 

15 -0,5876 0. 0. 100 EQ'    Gerad-01--  #    1 

16 -0,5673 0. 0. 100 EQ'    Gerad-04--  #    4 

 

 A Tabela 11 resume os autovalores encontrados para cada situação de carga, 

mostrando também o estado com maior participação naquele modo, frequência e o damping. 

Tabela 11 - Arquivo de saída do PACDYN do sistema para cada situação de carga. 

Situação de Carga: 1 (-20% de Perturbação sobre a Potência da Carga A) 

Autovalores Parte Real Parte Imaginária Freq. (Hz) Damp(%) Part. Factor 

1 4,57E-08 0,00007 0,00001 -0,06489 WW     Gerad-01--  #    1 

2 4,57E-08 -0,00007 -0,00001 -0,06489  

3 -0,04072 3,0376 0,4835 1,3405 DELT   Gerad-03--  #    3 

4 -0,04072 -3,0376 -0,4835 1,3405  

5 -0,1449 6,2229 0,9904 2,3277 WW     Gerad-02--  #    2 

6 -0,1449 -6,2229 -0,9904 2,3277  

7 -0,1674 6,3185 1,0056 2,6485 DELT   Gerad-04--  #    4 

8 -0,1674 -6,3185 -1,0056 2,6485  

9 -99,533 0. 0. 100 x 0005 AVR4        #     4 



69 
 

10 -99,524 0. 0. 100 x 0005 AVR1        #     1 

11 -98,971 0. 0. 100 x 0005 AVR2        #     2 

12 -98,696 0. 0. 100 x 0005 AVR4        #     4 

13 -1,5819 0. 0. 100 EQ'    Gerad-02--  #    2 

14 -1,1742 0. 0. 100 EQ'    Gerad-03--  #    3 

15 -0,6305 0. 0. 100 EQ'    Gerad-01--  #    1 

16 -0,6102 0. 0. 100 EQ'    Gerad-04--  #    4 

Situação de Carga: 2 (-15% de Perturbação sobre a Potência da Carga A) 

Autovalores Parte Real Parte Imaginária Freq. (Hz) Damp(%) Part. Factor 

1 2,02E-09 0,00004 5,88E-06 -0,00546 WW     Gerad-01--  #    1 

2 2,02E-09 -0,00004 -5,88E-06 -0,00546  

3 -0,04854 3,1944 0,5084 1,5192 DELT   Gerad-03--  #    3 

4 -0,04854 -3,1944 -0,5084 1,5192  

5 -0,1503 6,2467 0,9942 2,4061 WW     Gerad-02--  #    2 

6 -0,1503 -6,2467 -0,9942 2,4061  

7 -0,1725 6,3891 1,0169 2,6983 DELT   Gerad-04--  #    4 

8 -0,1725 -6,3891 -1,0169 2,6983  

9 -99,54 0. 0. 100 x 0005 AVR4        #     4 

10 -99,531 0. 0. 100 x 0005 AVR1        #     1 

11 -98,993 0. 0. 100 x 0005 AVR2        #     2 

12 -98,673 0. 0. 100 x 0005 AVR4        #     4 

13 -1,5856 0. 0. 100 EQ'    Gerad-02--  #    2 

14 -1,1561 0. 0. 100 EQ'    Gerad-03--  #    3 

15 -0,6153 0. 0. 100 EQ'    Gerad-01--  #    1 

16 -0,5911 0. 0. 100 EQ'    Gerad-04--  #    4 

Situação de Carga: 3 (-10% de Perturbação sobre a Potência da Carga A) 

Autovalores Parte Real Parte Imaginária Freq. (Hz) Damp(%) Part. Factor 

1 1,74E-10 0,00001 2,32E-06 -0,0012 WW     Gerad-01--  #    1 

2 1,74E-10 -0,00001 -2,32E-06 -0,0012  

3 -0,05224 3,3032 0,5257 1,5814 WW     Gerad-03--  #    3 

4 -0,05224 -3,3032 -0,5257 1,5814  

5 -0,1546 6,266 0,9973 2,4668 WW     Gerad-02--  #    2 

6 -0,1546 -6,266 -0,9973 2,4668  

7 -0,1738 6,4454 1,0258 2,6959 DELT   Gerad-04--  #    4 

8 -0,1738 -6,4454 -1,0258 2,6959  

9 -99,547 0. 0. 100 x 0005 AVR4        #     4 

10 -99,537 0. 0. 100 x 0005 AVR1        #     1 
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11 -99,012 0. 0. 100 x 0005 AVR2        #     2 

12 -98,657 0. 0. 100 x 0005 AVR4        #     4 

13 -1,5874 0. 0. 100 EQ'    Gerad-02--  #    2 

14 -1,1485 0. 0. 100 EQ'    Gerad-03--  #    3 

15 -0,6037 0. 0. 100 EQ'    Gerad-01--  #    1 

16 -0,5784 0. 0. 100 EQ'    Gerad-04--  #    4 

Situação de Carga: 4 (-5% de Perturbação sobre a Potência da Carga A) 

Autovalores Parte Real Parte Imaginária Freq. (Hz) Damp(%) Part. Factor 

1 2,73E-11 6,64E-06 1,06E-06 -0,00041 DELT   Gerad-02--  #    2 

2 2,73E-11 -6,64E-06 -1,06E-06 -0,00041  

3 -0,05256 3,3777 0,5376 1,5559 WW     Gerad-03--  #    3 

4 -0,05256 -3,3777 -0,5376 1,5559  

5 -0,158 6,2817 0,9998 2,5139 DELT   Gerad-02--  #    2 

6 -0,158 -6,2817 -0,9998 2,5139  

7 -0,1721 6,4858 1,0322 2,6533 DELT   Gerad-04--  #    4 

8 -0,1721 -6,4858 -1,0322 2,6533  

9 -99,552 0. 0. 100 x 0005 AVR3        #     3 

10 -99,541 0. 0. 100 x 0005 AVR1        #     1 

11 -99,028 0. 0. 100 x 0005 AVR2        #     2 

12 -98,645 0. 0. 100 x 0005 AVR4        #     4 

13 -1,5887 0. 0. 100 EQ'    Gerad-02--  #    2 

14 -1,1491 0. 0. 100 EQ'    Gerad-03--  #    3 

15 -0,5946 0. 0. 100 EQ'    Gerad-01--  #    1 

16 -0,5707 0. 0. 100 EQ'    Gerad-04--  #    4 

Situação de Carga: 6 (+5% de Perturbação sobre a Potência da Carga A) 

Autovalores Parte Real Parte Imaginária Freq. (Hz) Damp(%) Part. Factor 

1 3,70E-12 2,34E-06 3,73E-07 -0,00016 WW     Gerad-02--  #    2 

2 3,70E-12 -2,34E-06 -3,73E-07 -0,00016  

3 -0,0442 3,4494 0,549 1,2812 WW     Gerad-03--  #    3 

4 -0,0442 -3,4494 -0,549 1,2812  

5 -0,1613 6,5183 1,0374 2,4731 DELT   Gerad-04--  #    4 

6 -0,1613 -6,5183 -1,0374 2,4731  

7 -0,1625 6,3037 1,0033 2,5767 DELT   Gerad-02--  #    2 

8 -0,1625 -6,3037 -1,0033 2,5767  

9 -99,558 0. 0. 100 x 0005 AVR3        #     3 

10 -99,547 0. 0. 100 x 0005 AVR1        #     1 

11 -99,052 0. 0. 100 x 0005 AVR2        #     2 
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12 -98,635 0. 0. 100 x 0005 AVR4        #     4 

13 -1,5943 0. 0. 100 EQ'    Gerad-02--  #    2 

14 -1,1683 0. 0. 100 EQ'    Gerad-03--  #    3 

15 -0,5823 0. 0. 100 EQ'    Gerad-01--  #    1 

16 -0,5675 0. 0. 100 EQ'    Gerad-04--  #    4 

Situação de Carga: 7 (+10% de Perturbação sobre a Potência da Carga A) 

Autovalores Parte Real Parte Imaginária Freq. (Hz) Damp(%) Part. Factor 

1 2,20E-12 1,88E-06 2,99E-07 -0,00012 WW     Gerad-02--  #    2 

2 2,20E-12 -1,88E-06 -2,99E-07 -0,00012  

3 -0,03564 3,4531 0,5496 1,0322 DELT   Gerad-03--  #    3 

4 -0,03564 -3,4531 -0,5496 1,0322  

5 -0,1527 6,5119 1,0364 2,3444 WW     Gerad-04--  #    4 

6 -0,1527 -6,5119 -1,0364 2,3444  

7 -0,1638 6,3103 1,0043 2,5947 DELT   Gerad-02--  #    2 

8 -0,1638 -6,3103 -1,0043 2,5947  

9 -99,558 0. 0. 100 x 0005 AVR3        #     3 

10 -99,549 0. 0. 100 x 0005 AVR1        #     1 

11 -99,06 0. 0. 100 x 0005 AVR2        #     2 

12 -98,635 0. 0. 100 x 0005 AVR4        #     4 

13 -1,6009 0. 0. 100 EQ'    Gerad-02--  #    2 

14 -1,1842 0. 0. 100 EQ'    Gerad-03--  #    3 

15 -0,5784 0. 0. 100 EQ'    Gerad-01--  #    1 

16 -0,5711 0. 0. 100 EQ'    Gerad-04--  #    4 

Situação de Carga: 8 (+15% de Perturbação sobre a Potência da Carga A) 

Autovalores Parte Real Parte Imaginária Freq. (Hz) Damp(%) Part. Factor 

1 -1,76E-12 1,84E-06 2,94E-07 0,0001 WW     Gerad-02--  #    2 

2 -1,76E-12 -1,84E-06 -2,94E-07 0,0001  

3 -0,02373 3,4372 0,5471 0,6905 DELT   Gerad-03--  #    3 

4 -0,02373 -3,4372 -0,5471 0,6905  

5 -0,1423 6,4913 1,0331 2,1917 DELT   Gerad-04--  #    4 

6 -0,1423 -6,4913 -1,0331 2,1917  

7 -0,1645 6,3144 1,005 2,6041 WW     Gerad-02--  #    2 

8 -0,1645 -6,3144 -1,005 2,6041  

9 -0,5769 0,00188 0,0003 99,999 EQ'    Gerad-04--  #    4 

10 -0,5769 -0,00188 -0,0003 99,999  

11 -99,557 0. 0. 100 x 0005 AVR3        #     3 

12 -99,55 0. 0. 100 x 0005 AVR1        #     1 
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13 -99,067 0. 0. 100 x 0005 AVR4        #     4 

14 -98,639 0. 0. 100 x 0005 AVR4        #     4 

15 -1,612 0. 0. 100 EQ'    Gerad-02--  #    2 

16 -1,2034 0. 0. 100 EQ'    Gerad-03--  #    3 

Situação de Carga: 9 (+20% de Perturbação sobre a Potência da Carga A) 

Autovalores Parte Real Parte Imaginária Freq. (Hz) Damp(%) Part. Factor 

1 -1,90E-12 2,14E-06 3,41E-07 0,00009 DELT   Gerad-02--  #    2 

2 -1,90E-12 -2,14E-06 -3,41E-07 0,00009  

3 -0,00873 3,4033 0,5416 0,2564 DELT   Gerad-03--  #    3 

4 -0,00873 -3,4033 -0,5416 0,2564  

5 -0,1309 6,4588 1,028 2,0266 DELT   Gerad-04--  #    4 

6 -0,1309 -6,4588 -1,028 2,0266  

7 -0,1643 6,3156 1,0052 2,6013 DELT   Gerad-02--  #    2 

8 -0,1643 -6,3156 -1,0052 2,6013  

9 -99,554 0. 0. 100 x 0005 AVR3        #     3 

10 -99,551 0. 0. 100 x 0005 AVR1        #     1 

11 -99,072 0. 0. 100 x 0005 AVR4        #     4 

12 -98,645 0. 0. 100 x 0005 AVR4        #     4 

13 -1,6284 0. 0. 100 EQ'    Gerad-02--  #    2 

14 -1,2236 0. 0. 100 EQ'    Gerad-03--  #    3 

15 -0,5863 0. 0. 100 EQ'    Gerad-04--  #    4 

16 -0,576 0. 0. 100 EQ'    Gerad-02--  #    2 

 

Algumas conclusões a respeito das Tabelas 10 e 11: 

1) Como esperado foram obtidos 16 autovalores, pois existem 4 variáveis de estado para 

cada gerador. Como já descrito pelo equacionamento matricial no capítulo 2,  onde a 

matriz de estado para um gerador é 4x4. 

2) Existem autovalores praticamente nulos. Isso se deve a referência angular do sistema. 

Além disso, pode-se observar que ele não se movimenta relativamente a ponto de 

perder a estabilidade, isto é, ele fica praticamente fixo sobre a origem. No PacDyn 

estes autovalores indicam quem é a referência angular do sistema. 

3) O sistema com a inserção do regulador AVR apresenta autovalores tanto puramente 

reais quanto mistos. 



73 
 

4) Em todas as situações os modos eletromecânicos estão com amortecimento abaixo 

de 5%. 

 Como já enunciado, a estabilidade do sistema é dada a partir da parcela real dos 

autovalores. Para uma melhor análise do comportamento dos autovalores, foram realizados 

a construção de gráficos das parcelas reais dos autovalores para cada situação (%) de carga 

alterada. A Tabela 12 organiza alguns dados para a construção dos gráficos das Figuras 11 

a 17. 

Tabela 12 - Parte real de alguns autovalores segundo a variação % na carga. 

Autovalor 
/ Situação 

Parte real 
Alteração na 

Carga (%) 
Damp(%) 

Fator de 
Participação 

Gráfico 

1 -0,04072 -20 1,3405 

Variáveis mecânicas 
do Gerador 3 

1 

2 -0,04854 -15 1,5192 

3 -0,05224 -10 1,5814 

4 -0,05256 -5 1,5559 

Original -0,04982 0 1,4544 

6 -0,0442 5 1,2812 

7 -0,03564 10 1,0322 

8 -0,02373 15 0,6905 

9 -0,00873 20 0,2564 

Autovalor 
/ Situação 

Parte real 
Alteração na 

Carga (%) 
Damp(%) 

Fator de 
Participação 

Gráfico 

1 -0,1674 -20 2,6485 

Variáveis mecânicas 
do Gerador 4 

2 

2 -0,1725 -15 2,6983 

3 -0,1738 -10 2,6959 

4 -0,1721 -5 2,6533 

Original -0,1678 0 2,5771 

6 -0,1613 5 2,4731 

7 -0,1527 10 2,3444 

8 -0,1423 15 2,1917 

9 -0,1309 20 2,0266 

Autovalor 
/Situação 

Parte real 
Alteração na 

Carga (%) 
Damp(%) 

Fator de 
Participação 

Gráfico 

1 -0,1449 -20 2,3277 

Variáveis mecânicas 
do Gerador 2 

3 
2 -0,1503 -15 2,4061 

3 -0,1546 -10 2,4668 

4 -0,158 -5 2,5139 
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Original -0,1606 0 2,5501 

6 -0,1625 5 2,5767 

7 -0,1638 10 2,5947 

8 -0,1645 15 2,6041 

9 -0,1643 20 2,6013 

Autovalor 
/ Situação 

Parte real 
Alteração na 

Carga (%) 
Damp(%) 

Fator de 
Participação 

Gráfico 

1 -0,6102 -20 100 

EQ' gerador 4 4 

2 -0,5911 -15 100 

3 -0,5784 -10 100 

4 -0,5707 -5 100 

Original -0,5673 0 100 

6 -0,5675 5 100 

7 -0,5711 10 100 

8 -0,5769 15 100 

9 -0,5863 20 100 

Autovalor 
/ Situação 

Parte real 
Alteração na 

Carga (%) 
Damp(%) 

Fator de 
Participação 

Gráfico 

1 -1,5819 -20 100 

EQ' gerador 2 5 

2 -1,5856 -15 100 

3 -1,5874 -10 100 

4 -1,5887 -5 100 

Original -1,5906 0 100 

6 -1,5943 5 100 

7 -1,6009 10 100 

8 -1,612 15 100 

9 -1,6284 20 100 

Autovalor 
/ Situação 

Parte real 
Alteração na 

Carga (%) 
Damp(%) 

Fator de 
Participação 

Gráfico 

1 -1,1742 -20 100 

EQ' gerador 3 6 

2 -1,1561 -15 100 

3 -1,1485 -10 100 

4 -1,1491 -5 100 

Original -1,1562 0 100 

6 -1,1683 5 100 

7 -1,1842 10 100 

8 -1,2034 15 100 

9 -1,2236 20 100 
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Segue as Figuras 11 a 17 apresentando os gráficos para cada um dos autovalores 

organizados na Tabela 12. Em algumas figuras a escala do eixo horizontal foi aproximada 

para melhor visualização do caminhar da parcela real do autovalor mediante a perturbações 

causadas no sistema.   

 

Figura 11 – Fator de Participação: Gerador 3. 
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Figura 12 – Fator de Participação: Gerador 4. 

 

Figura 13 – Fator de Participação – Gerador 2. 
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Figura 14 – Fator de Participação – EQ' gerador 4. 

 

Figura 15 – Fator de Participação – EQ' gerador 2. 
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Figura 16 – Fator de Participação – EQ' gerador 3. 

 
 
 
 
 
O gráfico da Figura 17 mostra os cinco gráficos anteriores unidos. 

 

-25

-20

-15

-10

-5

0

5

10

15

20

25

-1,23 -1,22 -1,21 -1,2 -1,19 -1,18 -1,17 -1,16 -1,15 -1,14

V
ar

ia
çã

o
 P

e
rc

e
n

tu
al

Parcela Real

Gráfico 6 - Parte Real x Variação % de Carga



79 
 

 

Figura 17 – Comportamento dos Autovalores. 

 

Algumas conclusões dos gráficos das Figuras 11 a 17: 

1) Observando os gráficos das Figuras 11 a 16 vemos que cada autovalor tem um 

comportamento específico, sendo que um deles se move mais rapidamente para o 

lado positivo do eixo real (instabilidade). Este autovalor se trata do modo inter área 

e irá praticamente determinar quando o sistema estará estável ou não. 

2) Pela observação do gráfico da Figuras 11, verifica-se que este demonstra o 

comportamento do autovalor mais crítico, isto é, aquele que dependendo da carga 

perturbada, ele tende a passar o eixo real mais rapidamente que os outros e indicar 

instabilidade do sistema.  
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3) Outro autovalor que vale destacar é aquele apresentado pelas Figuras 14 e 16. 

Para uma determinada perturbação de carga próxima do estado original do 

sistema, seus autovalores ficam próximos do eixo real (não ultrapassando a 

estabilidade) e, além disso, com o aumento ou diminuição significativa de carga, 

ele tende a se afastar do eixo real mantendo-se estável. Isso ocorre pelo fato 

desses autovalores estarem ligados às variáveis elétricas do gerador 3 e 4. 

A partir dos dados obtidos serão realizadas mais algumas análises com objetivo de 

determinar a variação crítica de carga do sistema que leva o sistema a instabilidade. Além 

disso, este exemplo será utilizado para avaliar os métodos de perturbação de matrizes para 

descobrir se é possível adotar tais métodos para a verificação de estabilidade dos sistemas 

de potência. 

 

5.3.3 Investigação dos métodos de perturbação para análise da estabilidade 

transitória de pequenas perturbações 

 Nesta seção serão aplicados alguns dos teoremas estudados a respeito de 

perturbação de matrizes e sensibilidade de autovalores. Dessa maneira será possível avaliar 

se tais métodos são adequados para serem aplicados no problema de avaliação rápida de 

Estabilidade a Pequenas Perturbações em Sistema Elétricos de Potência.   

Como já esclarecido, alguns dos métodos fornecem uma região de localização dos 

autovalores, não fornecendo o valor exato dos mesmos. Porém, quando possível, serão 

computados os autovalores exatos dentro das regiões encontradas para os autovalores do 

sistema para ilustrar o resultado de cada um dos teoremas que serão investigados. 

O nosso objetivo é a investigação de métodos rápidos para avaliação de estabilidade 

a pequenas perturbações em problemas de análise de segurança dinâmica. Como se sabe, 

o modelo linearizado de um sistema elétrico é descrito por meio de matrizes. Perturbações na 

rede resultam em alterações nos elementos dessas matrizes. Dessa maneira, será avaliado 

se os métodos de perturbação e medidas de matrizes são aplicáveis no problema de avaliação 

de estabilidade de sistemas elétricos. 

O sistema teste é o sistema de duas áreas composto por 11 barras, 4 geradores 

regulados com AVR como já apresentado. Novamente, para o estudo do sistema foi utilizado 

o programa disponibilizado pelo CEPEL o PACDYN ®. Por meio deste, foi possível obter a 

matriz de estado do sistema. As variáveis para cada gerador foram apresentadas no capítulo 

2, na matriz de estado apresentada em (34). Porém, o PACDYN fornece uma matriz de estado 

com variáveis de estado em uma ordem diferente da apresentada na matriz do 
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equacionamento (34). A ordem do programa é: [E’q1, ω1, δ1, E’q2, ω2, δ2, ... , Efd1 , ..., Efdn], ou 

seja, as equações dos controladores são alocadas no final. 

 Após realizar a simulação, as matrizes de estado da situação não perturbada bem 

como as matrizes para a situação perturbada estão apresentadas no Anexo H. 

 Essas matrizes serão importantes para avaliar os métodos de perturbação e tirar 

conclusões sobre eles.  

 

Método 1 – Discos de Gershgorin  

 A discussão teórica deste teorema está presente no  capítulo 4. Aqui foram realizados 

os testes sobre a matriz original do sistema e sobre o sistema perturbado. Vale ressaltar que 

as mesmas perturbações aplicadas pelo PacDyn foram utilizadas para a análise do método 

dos Discos de Gershgorin.  

 Inicialmente realizou-se o teste sobre o sistema original como apresentado na Figura 

18. Vemos que o círculo maior externo deve-se ao elemento de valor de 376,9911 que está 

presente na matriz de estado (valor de ω0 que não irá se alterar com a inclusão de perturbação 

na carga). Para melhor visualização e análise dos resultados, os discos relativos aos 

autovalores próximos da origem foram enfatizados. 
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Figura 18 - Discos de Gershgorin para a situação original. Os autovalores estão representados pelos 
simbolo "X". Algumas regiões foram ampliadas para melhor visualização e estão indicadas pelas 

setas. 

 

As Figuras 19 a 26 apresentam os resultados para cada uma das 9 situação de 

perturbação simuladas na carga A (-20% a +20%). 
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Figura 19 - Discos de Gershgorin para a situação 1 (-20% de perturbação sobre a potência da carga 
A). 

 

Figura 20 - Discos de Gershgorin para a situação 2 (-15% de perturbação sobre a potência da carga 
A). 
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Figura 21 - Discos de Gershgorin para a situação 3 (-10% de perturbação sobre a potência da carga 
A). 

 

Figura 22 - Discos de Gershgorin para a situação 4 (-5% de perturbação sobre a potência da carga 
A). 
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Figura 23 - Discos de Gershgorin para a situação 6 (+5% de perturbação sobre a potência da carga 
A). 

 

Figura 24 - Discos de Gershgorin para a situação 7 (+10% de perturbação sobre a potência da carga 
A). 
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Figura 25 - Discos de Gershgorin para a situação 8 (+15% de perturbação sobre a potência da carga 
A). 

 

Figura 26 - Discos de Gershgorin para a situação 9 (+20% de perturbação sobre a potência da carga 
A). 
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Vale ressaltar que os discos criados são centralizados nos elementos da diagonal 

principal da matriz em estudo. Dessa maneira, observando a Figura 18 que apresenta o 

modelo base (sem perturbação) do nosso sistema, verifica-se que o intervalo dado pelos 

discos será [-375,8 ; +377] independente da perturbação, uma vez que os elementos fora da 

diagonal principal e que participam da construção do raio dos discos apresentam grande 

magnitude.  

Porém a fim de avaliar os autovalores mais próximos do eixo imaginário, a Tabela 13 

apresenta os intervalos dados pelos discos mais próximos deste eixo. Através dessa tabela 

será possível avaliar o comportamento da região dos discos críticos.  

Tabela 13 - Intervalo dado pelos discos mais próximos do eixo imaginário. 

Situação 
Perturbação sobre a 
Potência da carga A 

Intervalo Re(λ) 

1 -20% [ -2,105; 1,293] 

2 -15% [-2,118 ; 1,308] 

3 -10% [ -2,127; 1,318] 

4 -5% [-2,133 ; 1,325] 

Original 0 [ -2,135; 1,330] 

6 +5% [ -2,132; 1,332] 

7 +10% [ -2,133; 1,331] 

8 +15% [ -2,128; 1,328] 

9 +20% [ -2,121; 1,323] 

 

Observando-se as Figuras 19 a 26 e a Tabela 13, pode-se tirar algumas conclusões: 

1) As pequenas perturbações na carga quase não alteram a região dos discos de 

Gershgorin e por sua vez os autovalores não saem da região se tomarmos como 

referência a região dos discos da situação original. Ou seja, prova que pequenas 

perturbações fazem com que os autovalores mudem pouco. 

2) A Teoria dos Discos fornece uma região onde estão situados os autovalores, 

muitas vezes, elementos com grande magnitude geram grandes regiões de 

localização dos autovalores (conclui-se pela Figura 18). Dessa forma, o resultado 

obtido através do teorema, embora permita concluir que pequenas perturbações 

não implicam em grandes mudanças nos autovalores e na região de localização 

dos mesmos, o teorema apresenta grande imprecisão sobre instabilidade, uma vez 

que esse elemento de grande magnitude faz com que os círculos tenham 

intersecção não vazia com o semiplano direito do plano complexo. 



88 
 

3)  Pode-se dizer que quando o círculo está com maior área dentro da zona estável 

(esquerda do plano complexo), temos que o sistema necessitaria de grandes 

perturbações para que entre em instabilidade. Se após uma perturbação, realizam-

se os cálculos da nova matriz de estados (A), e  os discos aparecessem 

completamente à esquerda do eixo real, é garantido que o sistema seria estável 

após a perturbação. 

4) Por meio da Tabela 13,  verifica-se que mesmo para os autovalores que estão 

próximos do eixo imaginário, a região dos discos abrange parte do semiplano 

direito, informando que os autovalores críticos possam caminhar para dentro da 

zona de instabilidade. Mesmo apresentando uma região pequena e bem definida, 

esta região não fornece garantia para a estabilidade do sistema.  

Conclui-se que este método é pouco eficaz para a determinação da instabilidade do 

sistema, porém apresenta uma estimativa da região possível dos autovalores mesmo quando 

o sistema esteja perturbado conhecendo apenas a situação original. No Anexo C, tem-se o 

algoritmo de Matlab ® implementado. 

 

Método 2 – Bauer - Fike  

O teorema de Bauer – Fike foi descrito no capítulo 4. Dada uma matriz A ϵ Cnxn que no 

caso seria a matriz na situação original sem perturbação e considerando que os autovalores 

dela sejam λ, quando inserimos uma perturbação A + E ϵ Cnxn cujos autovalores sejam μ, tem-

se que:  

���
���(�)

|� −  �| ≤ ||�||�||�
��||�||�||�  

em que || . || p  é qualquer norma matricial e ||�||�||�
��||� é o número de condicionamento do 

problema de autovalores de A. 

Para o problema em consideração, adotou-se a norma de Frobenius (p=2). Pela 

Tabela 10 e 11, vemos que esses autovalores não sofrem alterações consideráveis e se 

mantêm praticamente parados no plano complexo. Aplicando-se Bauer-Fike sobre cada 

situação simulada, encontrou-se os resultados apresentados pela Tabela 14. 
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Tabela 14 - Resultados do teorema de Bauer-Fike. 

Situação 
Perturbação sobre a 
Potência da carga A 

���
���(�)

|� −  �| ≤ ||�||��|�
��|�

�
||�||�  

1 -20% 3,1816·109 

2 -15% 2,4911·109 

3 -10% 1,7159·109 

4 -5% 8,7928·108 

Original* 0 0 

6 +5% 8,9094·108 

7 +10% 1,7810·109 

8 +15% 2,6707·109 

9 +20% 3,5084·109 

*Situação não perturbada, implica distância mínima nula. 

 

Observando-se os resultados da Tabela 14, pode-se tirar algumas conclusões: 

1) Embora pelos dados da Tabela 10 e 11 seja possível  concluir que pequenas 

perturbações sobre o sistema implica que os autovalores perturbados estarão na 

proximidade dos autovalores não perturbados, de fato pela Tabela 14, observa-se que 

a estimativa para a possível região compreendida entre os autovalores originais e 

perturbados é muito grande, dificultando a utilização exclusiva desta teoria para 

garantir a estabilidade do sistema elétrico em estudo. Isso deve-se ao comportamento 

mal condicionado dessa matriz. Espera-se que para sistemas modelados com maior 

número de controle e equações dinâmicas, este teorema possa apresentar resultados 

significativos. 

2) Um dos problemas deste teorema está em conhecer como cada elemento da matriz 

foi perturbado, ou seja, é necessário conhecer “E”. Porém, nos problemas de sistemas 

de potência a perturbação sobre a matriz A é conhecida após a simulação do fluxo de 

potência e das características dos geradores e reguladores. 

3) Conhecendo a matriz A, podemos determinar os limites dos módulos dos novos 

autovalores se descobrirmos a perturbação sobre cada elemento da matriz A (matriz 

E). Ou seja, deve-se para cada alteração na carga determinar a nova matriz A e dela 

retirar a matriz E de acordo com a variação ocorrida em cada elemento. Após isso, 

calcula-se a parcela ||�||�||�
��||�||�||� , e com isso obtém-se a diferença entre os 

autovalores originais e perturbados.  
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Para problemas que apresentem matrizes “mais diagonais”, o teorema de Bauer-Fike 

apresentará resultados mais eficientes, capazes de tirar conclusões e análises mais seguras. 

Este teorema foi implementado via Matlab® e pode ser encontrado no Anexo G. 

 

Método 3 – Medidas de Matrizes  

O conceito de medidas de matrizes foi apresentado no capítulo 4. Como já foi 

explicado, este conceito trabalha com a estimativa da parcela real dos autovalores, sem 

calculá-los diretamente. Ou seja, os autovalores de uma matriz A podem ser encontrados em 

uma região tal que se λ é um autovalor de A ϵ Cnxn, então - μ(-A)≤ Re λ≤ μ(A). 

Dessa forma, conhecemos algumas informações sobre a estabilidade de um sistema 

conhecendo a região onde estão os autovalores. Aplicando-se o método já enunciado 

encontramos algumas regiões possíveis dos autovalores para cada situação de carga, a 

Tabela 15 resume estes dados.  

Tabela 15 - Região dos autovalores dada pela teoria de medidas de matrizes. 

Situação de carga 
Perturbação sobre a 
Potência da carga A 

- μ1 (-A) ≤  Re λ ≤  μ1 (A) 

1 -20% -116,6687≤ Re λ≤+115,9529 

2 -15% -117,7034≤ Re λ≤+116,9820 

3 -10% -119,0599≤ Re λ≤+118,2455 

4 -5% -121,8907≤ Re λ≤+121,0778 

Original 0 -124,2467≤ Re λ≤+123.4354 

6 +5% -126,1485≤ Re λ≤+152,3390 

7 +10% -127,6403≤ Re λ≤+126,8327 

8 +15% -128,7543≤ Re λ≤+127,9488 

9 +20% -129,4400≤ Re λ≤+128,6367 

 

Vale ressaltar que como as matrizes de estado apresentam um elemento com valor de 

376,9911 referente ao ωo, a região dos autovalores seria -376,9911 e +376,9911 independente 

dos outros elementos da matriz, já que este fator tem grande magnitude. Porém, este 

elemento não sofre modificação com a variação na carga, dessa forma decidiu-se excluir este 

ponto durante a construção da região - μ(-A)≤ Re λ≤ μ(A), refinando mais os dados.  
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Outro fato que deve ser ressaltado é que foi utilizado a aplicação da aproximação “μ1” 

para encontrar a região dos autovalores já que segundo o livro do (VIDYASAGAR,M; 1993) 

está é uma boa aproximação. 

De fato vemos que com o aumento da carga, a faixa da região de localização dos 

autovalores aumenta, porém os autovalores desse sistema como já calculado estão 

perfeitamente antes do eixo real. Porém, pela aplicação desse teorema vemos que a faixa 

obtida é muito grande e prejudica ainda a determinação da estabilidade de sistema de 

potência apenas com a aplicação deste método. Seria efetivo se toda a região encontrada 

estivesse com limites negativos ou bem próximos de zero. 

Vale ressaltar que dentre os 3 teoremas que investigam a área de deslocamento dos 

autovalores da matriz perturbada, este apresenta resultados mais satisfatórios. Mas ainda 

está longe do resultado esperado cuja região limitante de deslocamento dos autovalores seja 

a menor e mais exata possível, isto é, com um melhor refino para uma dada perturbação 

matricial conhecida. 

 

Método 4 – Determinação do caminho dos autovalores por aproximação linear  

Como observado a maioria dos métodos apresentam uma região de localização dos 

autovalores, principalmente da sua parte real, mas quanto a possibilidade de utilização desses 

métodos para a verificação de estabilidade da rede é baixa. 

Observando-se os dados dos gráficos das Figuras 11 a 16 optou-se em realizar aqui 

o estudo dos autovalores obtidos pela perturbação do sistema, realizando uma aproximação 

linear dos dados: parcela real x percentual de perturbação na carga. 

Vemos pelos resultados gráficos que um dos autovalores se aproxima mais 

rapidamente do eixo real do que os outros autovalores (ver Figura 11). Assim foi verificado 

por aproximação linear o caso mais crítico quando este autovalor caminha e toca o eixo real.  

Realizando-se este estudo sobre este autovalor mais crítico, obtiveram-se os 

seguintes resultados: 
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Figura 27 - Gráfico com aproximação linear para determinação da situação crítica para a estabilidade 
segundo variação percentual na carga. 

 

Adicionando-se uma linha de tendência linear sobre o gráfico, observa-se que para se 

obter uma parcela real do autovalor mais crítico (aquele apresentado pela Figura 27) que 

passe para a direita do eixo, isto é, fique positivo adquirindo instabilidade seria quando 

ocorresse uma perturbação de aproximadamente 27,505% sobre a carga A. Dessa forma foi 

analisado o fluxo de potência dessa situação e os autovalores desse instante. As Tabelas 16 

e 17 resume estes dados. 

Tabela 16 - Fluxo de Carga do Sistema na situação crítica. 

Situação Crítica (27,505% de perturbação) 

Número da barra Tensão (pu) Ângulo (graus) 

1 1,030 -7,1 

2 1,010 -16,9 

3 1,030 -7,0 

4 1,010 -24,0 

5 1,008 -13,6 

6 0,981 -23,6 

7 0,967 -32,0 

8 0,973 -36,5 

9 0,965 -41,0 

y = 695,01x + 27,505
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10 0,973 -30,8 

11 0,997 -16,2 

 

Tabela 17 - Saída do PACDYN ® para a situação crítica. 

Situação de Carga: Crítica (Perturbação de 27,505% sobre a Potência da Carga A) 

Autovalores 
Parte 
Real 

Parte 
Imaginária 

Freq. (Hz) Damp(%) Part. Factor 

1 0,02115 3,3172 0,5279 -0,6377 
WW     Gerad-03--  #    

3 
2 0,02115 -3,3172 -0,5279 -0,6377  

3* 
9,19E-13 3,46E-06 5,51E-07 -0,00003 

DELT   Gerad-02--  
#    2 

4* 
9,19E-13 -3,46E-06 -5,51E-07 -0,00003  

5 -0,1137 6,3897 1,0169 1,7786 
WW     Gerad-04--  #    

4 
6 -0,1137 -6,3897 -1,0169 1,7786  

7 -0,1608 6,3122 1,0046 2,5468 
DELT   Gerad-02--  

#    2 
8 -0,1608 -6,3122 -1,0046 2,5468  

9 -99,549 0,0011 0,00017 100 
x 0005 AVR3        #     

3 
10 -99,549 -0,0011 -0,00017 100  

11 -99,075 0. 0. 100 
x 0005 AVR4        #     

4 

12 -98,66 0. 0. 100 
x 0005 AVR4        #     

4 

13 -1,6678 0. 0. 100 
EQ'    Gerad-03--  #    

3 

14 -1,2543 0. 0. 100 
EQ'    Gerad-01--  #    

1 

15 -0,6062 0. 0. 100 
EQ'    Gerad-04--  #    

4 

16 -0,5771 0. 0. 100 
EQ'    Gerad-02--  #    

2 
*Referência angular. 

  

Pela observação da tabela se justifica a conclusão da estimativa linear presente no 

gráfico da Figura 27 sobre a instabilidade do sistema. Nessa situação, a simulação mais 

realística promovida pelo programa computacional nos informa observando os autovalores 1 

e 2 a presença de instabilidade pela parcela real positiva desses autovalores. 

Dessa forma conhecendo-se alguns pontos de operação do sistema segundo uma 

variação na carga é possível determinar o caminhar dos autovalores no plano Real x 

Imaginário e calcular uma estimativa para a situação crítica de perturbação do sistema. 
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6 Conclusão  

 

Os estudos da modelagem dos sistemas elétricos de potência permitiram entender o 

funcionamento básico do gerador síncrono clássico, o fundamento matemático por trás desse 

dispositivo e também a importância de inserir reguladores de tensão sobre o circuito para 

melhorar o amortecimento dos geradores, permitindo com que a rede permaneça mais 

estável. A linearização das equações elétricas e mecânicas que descreve o gerador permitiu 

dar início à investigação da análise dos efeitos de pequenas perturbações sobre o circuito. 

A investigação começou com a avaliação de um sistema básico dotado de 9 barras e 

3 geradores clássicos não regulados. Depois investigou-se novos tipos de redes, geradores e 

reguladores, obtendo-se alguns resultados mais realísticos e satisfatórios. 

A análise dos métodos numéricos para cálculo de autovalores é essencial para auxiliar 

a investigação dos modos de resposta do sistema em operação. Dessa maneira é possível 

descobrir o estado de funcionamento da rede, isto é, determinar se ela está estável ou não, 

bem como sua importância para o estudo de sensibilidade de matrizes. Com esse estudo foi 

possível avaliar os efeitos que uma pequena variação nos parâmetros provoca sobre os 

autovalores do sistema. Foi possível estimar o caminho que os autovalores seguem dentro do 

plano Real x Imaginário além de verificar a existência de um autovalor crítico, isto é, aquele 

que caminha mais rapidamente para a instabilidade dada uma variação na carga. 

Através da investigação da sensibilidade dos autovalores com relação a parâmetros 

do sistema que foi realizada, bem como a investigação dos principais métodos de perturbação 

de matrizes encontrou-se que a maioria dos métodos estabelecem uma determinada região 

limitante para a presença dos autovalores. Conhecendo que pequenas perturbações fazem 

os autovalores caminharem em torno dos autovalores originais, pode-se utilizar as mesmas 

regiões calculadas para o ponto de operação original. Mas, grande parte destes métodos não 

deixam de forma clara a localização dos autovalores no plano dificultando o processo de 

determinação do estado do sistema, porém em casos que a região estimada está no lado de 

estabilidade (esquerda do plano Real x Complexo) pode-se afirmar com certeza que o sistema 

será estável. 

Embora esta monografia aborde uma análise investigativa dos métodos matemáticos 

encontrados na literatura que descrevem o comportamento dos autovalores de uma matriz e 

a sua possível aplicação no âmbito de sistemas elétricos de potência, sugere-se possíveis 

continuidades para futuros estudos, que seguem a mesma linha de pesquisa, como: explorar 
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especificadamente a teoria dos Discos de Gershgorian onde seria possível implementar esta 

ferramenta dentro do processo iterativo QR. Dessa forma, seria possível a cada iteração obter 

os discos da matriz Ak e comparar os limites da região definida por eles com o plano Real x 

Imaginário. Assim o processo iterativo pararia quando os discos da iteração estivessem 

contidos todos no lado esquerdo do plano (região de estabilidade). Esse processo diminuiria 

o esforço computacional do processo de cálculo do autovalor, já que não trabalharia com a 

obtenção do valor exato do autovalor e ao mesmo tempo garantiria que o sistema estaria 

estável.    

De fato, o objetivo de investigação dos métodos de sensibilidade de matrizes sendo 

aplicada nos problemas de Sistemas Elétricos de Potência foi realizado. 
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Anexo A – Modelagem Máquina Síncrona de dois eixos 

Neste anexo segue as equações que modelam a máquina síncrona em dois eixos 

(direto e quadratura): 

  

 

Em que E’q é a tensão transiente do eixo em quadratura, E’d a tensão transiente do 

eixo direto, ωe é a velocidade angular da referência girante, δ ângulo elétrico de defasagem 

entre rotor e referência girante, Vq é a tensão sobre os enrolamentos do eixo direto, Vd é a 

tensão sobre os enrolamentos do eixo em quadratura, Τ’do é a constante de tempo transitória 

de circuito aberto do eixo direto, Τ’qo é a constante de tempo transitória de circuito aberto do 

eixo em quadratura, xd é a reatância síncrona do eixo direto,  x’d é a reatância transitória do 

eixo direto, xq é a reatância síncrona de eixo em quadratura, x’q é a reatância transitória do 

eixo em quadratura, H é a constante de inércia, Efd é a tensão de campo, Id é a corrente 

circulante nos enrolamentos do eixo direto, Iq é a corrente circulante nos enrolamentos do eixo 

em quadratura, Pm é a potência mecânica, r é a resistência dos enrolamentos. 
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Anexo B – Constantes da Matriz de estados com Geradores 

Regulados 

 

 Como já enunciado, o modelo de gerador que será utilizado para realizar simulações 

mais reais do sistema teste estudado, será o modelo de 1 eixo. A dedução matemática das 

equações pode ser encontrada em qualquer livro de Estabilidade de Sistemas de Potência e 

por se tratar de manipulações bastante complicadas não se vê necessário a transcrição dessa 

dedução no projeto. Porém, devem-se conhecer as constantes K1 a K6 que formam a matriz 

de estado equacionada por (34). Assim temos: 
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onde Xe é a reatância equivalente de um sistema radial, isto é, relacionando a reatância do 

transformador elevador e a reatância série da linha. 
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Anexo C – Programa Discos de Gershgorian 

 

Função adaptada no Matlab® a partir de uma implementação disponível na central de 

arquivos da Mathworks® para a determinação dos discos de Gershgorian dado uma matriz 

quadrada como entrada. Como resultado obtém-se de forma gráfica a região possível para os 

autovalores do sistema.  

 Função Principal 

function  [G, e] = gersh(A, noplot) 
%GERSH    Discos de Gershgorin. 
%         gersh(A) desenha os disco de Gershgorin para uma matriz quadrada 
A. 
%         Os autovalores são plotados com o simbolo 'x'. 
%         Uso Alternativo: [G, E] = GERSH(A, 1) evita plotar o gráfico. 
%         Mas retorna os dados em G, com autovalores de A em E. 
% 
  
  
% Testa se a matriz é quadrada ou não: 
% size (A) = retorna um vetor com a dimensão da matriz. 
% diff(size(A)) = retorna a diferença entre o segundo elemento e o 
% primeiro. 
  
if diff(size(A)), error('Erro! A matriz deve ser quadrada.'), end 
  
  
n = length(A); 
m = 40; 
G = zeros(m,n); 
  
d = diag(A); % cria um vetor coluna com os elementos diagonais de A 
r = sum( abs( A-diag(d) )' )'; 
% Primeiro criou-se uma matriz quadrada com os elementos da diagonal de A. 
% Depois Subtraiu A dessa matriz criada (diag(d)). A cada subtação pega seu 
% valor absoluto e cria um vetor r (raio) com a soma dos elementos de 
% cada coluna. 
  
e = eig(A); 
% A fim de verificar se o autovalor está dentro do Disco de Gershgorin, 
% iremos plotá-los também. 
  
radvec = exp(i * linspace(0,2*pi,m)'); 
% linspace(0,2*pi,m) -> retorna um vetor linha de m pontos uniformemente  
% espaçados entre 0 e 2pi. 
  
for j=1:n 
    G(:,j) = d(j)*ones(m,1) + r(j)*radvec; 
end 
  
if nargin < 2 
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   ax = cpltaxes(G(:)); % função extra para plotar um gráfico com eixos 
quadrados 
                        % encontrado na internet! 
   for j=1:n 
       plot(real(G(:,j)), imag(G(:,j)),'-')      % Plota o Disco. 
       hold on 
   end 
   plot(real(e), imag(e), 'x')    % Plota os autovalores também. 
   axis(ax) 
   axis('square') 
   hold off 
  
end 
 

 Função adicional 

function x = cpltaxes(z) 
%CPLTAXES   Determine suitable AXIS for plot of complex vector. 
%           X = CPLTAXES(Z), where Z is a complex vector, 
%           determines a 4-vector X such that AXIS(X) sets axes for a plot 
%           of Z that has axes of equal length and leaves a reasonable 
amount 
%           of space around the edge of the plot. 
  
%           Called by FV, GERSH, PS and PSCONT. 
  
% Set x and y axis ranges so both have the same length. 
  
xmin = min(real(z)); xmax = max(real(z)); 
ymin = min(imag(z)); ymax = max(imag(z)); 
  
% Fix for rare case of `trivial data'. 
if xmin == xmax, xmin = xmin - 1/2; xmax = xmax + 1/2; end 
if ymin == ymax, ymin = ymin - 1/2; ymax = ymax + 1/2; end 
  
if xmax-xmin >= ymax-ymin 
   ymid = (ymin + ymax)/2; 
   ymin =  ymid - (xmax-xmin)/2; ymax = ymid + (xmax-xmin)/2; 
else 
   xmid = (xmin + xmax)/2; 
   xmin = xmid - (ymax-ymin)/2; xmax = xmid + (ymax-ymin)/2; 
end 
axis('square') 
  
% Scale ranges by 1+2*alpha to give extra space around edges of plot. 
  
alpha = 0.1; 
x(1) = xmin - alpha*(xmax-xmin); 
x(2) = xmax + alpha*(xmax-xmin); 
x(3) = ymin - alpha*(ymax-ymin); 
x(4) = ymax + alpha*(ymax-ymin); 
  
if x(1) == x(2), x(2) = x(2) + 0.1; end 
if x(3) == x(4), x(4) = x(3) + 0.1; end 
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Anexo D – Arquivo de Entrada do ANAREDE e Saída do Fluxo de 

Potência 

Segue o arquivo .pwf de entrada do ANAREDE CEPEL ® para a simulação base. 
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Abaixo encontramos o arquivo de saída da simulação da rede de duas áreas montada 

no ANAREDE CEPEL®. Nele pode-se observar a tensão e ângulo de cada barra do sistema 

bem como o fluxo de potência sobre elas. 
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Anexo E – Fluxo de Potência de cada situação de carga Perturbada 

  

Como já enunciado, foi descrito que as simulações de fluxo de potência foram 

realizadas através do programa computacional ANAREDE da CEPEL®. As Tabelas 18 e 19 

resumem esses dados. 

 

Tabela 18 - Barras do sistema de duas áreas (11 Barras 4 Geradores). 

Número da 
Barra 

Nome da Barra Base Kv 
Tipo de 
barra 

1 Gerad-01-- 20.0 PV 

2 Gerad-02-- 20.0 PV 

3 Gerad-03-- 20.0 Swing 

4 Gerad-04-- 20.0 PV 

5 Barra01 230.0 PQ 

6 Barra02 230.0 PQ 

7 Barra03 230.0 PQ 

8 Barra04 230.0 PQ 

9 Barra05 230.0 PQ 

10 Barra06 230.0 PQ 

11 Barra07 230.0 PQ 

Vale ressaltar que na barra 7 está localizada a carga A cuja sua potência será alterada 

para realizar simulações de pequenas perturbações sobre o sistema estudado e na barra 9 

está conectada a carga B. 

Tabela 19 - Resultado do fluxo de carga para cada situação de carga. 

Situação 1 2 3 

Número da 
barra 

Tensão 
(pu) 

Ângulo 
(graus) 

Tensão 
(pu) 

Ângulo 
(graus) 

Tensão 
(pu) 

Ângulo 
(graus) 

1 1,030 43,4 1,030 36,8 1,030 30,8 

2 1,010 33,6 1,010 26,9 1,010 21,0 

3 1,030 -7,0 1,030 -7,0 1,030 -7,0 

4 1,010 -13,1 1,010 -14,0 1,010 -15,0 

5 1,000 36,9 1,002 30,3 1,004 24,3 

6 0,961 26,7 0,968 20,1 0,972 14,2 
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7 0,931 17,9 0,942 11,5 0,950 5,7 

8 0,874 -5,0 0,901 -8,8 0,921 -12,2 

9 0,944 -27,5 0,955 -28,6 0,963 -29,7 

10 0,972 -19,9 0,977 -20,8 0,981 -21,8 

11 1,006 -12,0 1,008 -12,4 1,009 -12,8 

Situação 4 Original 6 

Número da 
barra 

Tensão 
(pu) 

Ângulo 
(graus) 

Tensão 
(pu) 

Ângulo 
(graus) 

Tensão 
(pu) 

Ângulo 
(graus) 

1 1,030 25,3 1,030 20,1 1,030 15,0 

2 1,010 15,5 1,010 10,3 1,010 5,3 

3 1,030 -7,0 1,030 -7,0 1,030 -7,0 

4 1,010 -16,1 1,010 -17,2 1,010 -18,3 

5 1,005 18,8 1,006 13,6 1,007 8,6 

6 0,976 8,7 0,978 3,5 0,980 -1,5 

7 0,956 0,3 0,961 -4,9 0,964 -9,8 

8 0,936 -15,5 0,949 -18,8 0,958 -21,9 

9 0,968 -31,0 0,971 -32,3 0,973 -33,7 

10 0,983 -22,8 0,983 -23,9 0,983 -25,1 

11 1,009 -13,2 1,008 -13,6 1,007 -14,1 

Situação 7 8 9 

Número da 
barra 

Tensão 
(pu) 

Ângulo 
(graus) 

Tensão 
(pu) 

Ângulo 
(graus) 

Tensão 
(pu) 

Ângulo 
(graus) 

1 1,030 10,1 1,030 5,2 1,030 0,3 

2 1,010 0,4 1,010 -4,6 1,010 -9,4 

3 1,030 -7,0 1,030 -7,0 1,030 -7,0 

4 1,010 -19,5 1,010 -20,7 1,010 -22,0 

5 1,008 3,7 1,008 -1,3 1,008 -6,1 

6 0,981 -6,4 0,982 -11,3 0,982 -16,2 

7 0,967 -14,7 0,968 -19,6 0,968 -24,5 

8 0,965 -25,1 0,970 -28,3 0,973 -31,5 

9 0,974 -35,2 0,973 -36,8 0,971 -38,4 

10 0,983 -26,2 0,981 -27,5 0,978 -28,8 

11 1,006 -14,5 1,004 -15,0 1,001 -15,5 
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Anexo F – Cartão de Entrada PACDYN ® 

 

Como citado no projeto, foi necessário utilizar geradores regulados. Dessa forma, a 

implementação matemática torna-se muito difícil. Dessa maneira, optou-se em utilizar o 

programa de simulação PACDYN disponibilizado pela CEPEL® para executar os cálculos e 

realizar as simulações dos Sistemas de Potências estudados, a fim de obter os dados 

necessários para o projeto. Isso elimina diversos esforços e permite obter uma resposta mais 

precisa e real. Os geradores regulados foram descritos neste projeto e para a simulação dos 

mesmos, foi criado o arquivo para controle dos geradores e obtenção dos autovalores e 

matrizes de estado do sistema em questão. 
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Anexo G – Implementação do Teorema Bauer – Fike 

  

Foi realizada a implementação de Matlab® do teorema de Bauer – Fike para cada 

simulação de carga. Cada uma dessas simulações geram uma dada matriz de estado A 

que foi armazenada nos vetores Ai que são as saídas do programa PACDYN® e 

correspondem as matrizes presentes no Anexo H. 

 

clear all 
clc 
format long 
  
[Ao,bo,co,do] = pacstat('matlab_original.out'); 
[A1,b1,c1,d1] = pacstat('matlab_v1.out'); 
[A2,b2,c2,d2] = pacstat('matlab_v2.out'); 
[A3,b3,c3,d3] = pacstat('matlab_v3.out'); 
[A4,b4,c4,d4] = pacstat('matlab_v4.out'); 
[A6,b6,c6,d6] = pacstat('matlab_v6.out'); 
[A7,b7,c7,d7] = pacstat('matlab_v7.out'); 
[A8,b8,c8,d8] = pacstat('matlab_v8.out'); 
[A9,b9,c9,d9] = pacstat('matlab_v9.out'); 
  
E1 = A1 - Ao; 
E2 = A2 - Ao; 
E3 = A3 - Ao; 
E4 = A4 - Ao; 
E6 = A6 - Ao; 
E7 = A7 - Ao; 
E8 = A8 - Ao; 
E9 = A9 - Ao; 
  
  
%  Teorema de Bauer - Fike: Considerando que exista uma matiz A não 
%  perturbada pertencente ao conjunto Cnxn, que safisfaz X^-1*A*X 
%  e que seus autovalores sejam dados por L. Se esta for perturbada R+E  
%  e os autovalores dessa nova matriz seja "mu", temos que 
% 
%                   min |L-mu| < ||X|| ||X^-1|| ||E|| 
% 
%   Considere no programa (X,L) os autovetores e autovalores de A. 
%   "mu" os autovalores da matriz perturbada. 
%   Saida Gráfica demonstrando teorema. 
  
% Matrizes R e Matriz E. Considere A a matriz original sem perturbação, 
% e a matriz E a matriz perturbação da matriz A. 
  
% Dados de Entrada 
  
A=Ao;  %Alterar manualmente para cada situação de carga (A1...A9) 
E = E9; %Alterar manualmente para cada situação de carga (E1...E9) 
        % Matriz perturbação. (A situação - A original) 
  
% Manipulação Matemática 
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[X,L]=eig(A);                           % Decomposição em autovalores e  
                                        % autovetores, X é o conjunto de  
                                        % eigenectors XiR=LiA. 
  
mu=eig(E+A);                            % mu é os autovalores da matriz  
                                        % original mais a perturbada  
  
r=norm(X,'fro')*norm(inv(X),'fro');   % Condition number, r pode ser usada  
                                      % a função 'cond'. 
T=norm(E,'fro');                      % Utilizou-se a norma de Frobenius  
                                      % como no teorema. 
[q1,a]=min(abs(diag(L)-mu)); 
  
q2=r*T; 
  
logical_verfification=q1<q2 
  
figure,  
stem(abs(mu)) 
hold on, stem(abs(diag(L)),'r'), 
legend('\mu','\lambda'); 
xlabel(' Autovalores'); 
ylabel(' Spectrum'); 
  
title('Teorema de Bauer-Fike. Situação: Original'); 

 

  



 
 

Anexo H – Matrizes de Estados 

 Neste anexo está apresentado as matrizes de estado para cada situação de carga perturbada. 
 
  Situação 1 
 E’q1 -0,31668 0 -0,1335 0,100465 0 0,120444 -0,01696 0 0,007381 -0,02747 0 0,00568 -1,25 0 0 0 
 ω1 -0,08515 0 -0,03996 -0,00576 0 0,050945 -0,01241 0 -0,00365 -0,01892 0 -0,00734 0 0 0 0 
 δ1 0 376,9911 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 E’q2 0,135554 0 0,099396 -0,35793 0 -0,13591 -0,01454 0 0,017478 -0,025 0 0,019035 0 -1,25 0 0 
 ω2 0,025533 0 0,061594 -0,10706 0 -0,05353 -0,01421 0 -0,00219 -0,02192 0 -0,00588 0 0 0 0 
 δ2 0 0 0 0 376,9911 0 0 0 0 0 0 0 0 0 0 0 
 E’q3 0,01576 0 0,016985 0,018354 0 0,022192 -0,34232 0 -0,13694 0,085559 0 0,097761 0 0 -1,25 0 
 ω3 0,003973 0 0,014534 -0,00106 0 0,014777 -0,09569 0 -0,06167 -0,008 0 0,032361 0 0 0 0 
 δ3 0 0 0 0 0 0 0 376,9911 0 0 0 0 0 0 0 0 
 E’q4 0,023562 0 0,023688 0,028389 0 0,03165 0,093183 0 0,098045 -0,40888 0 -0,15338 0 0 0 -1,25 
 ω4 0,006249 0 0,020092 -0,00014 0 0,020764 0,000264 0 0,038382 -0,13438 0 -0,07924 0 0 0 0 
 δ4 0 0 0 0 0 0 0 0 0 0 376,9911 0 0 0 0 0 
 Efd1 59,19549 0 -9,24784 34,02262 0 -2,91024 4,366025 0 4,935659 6,179702 0 7,222423 -100 0 0 0 
 Efd2 19,28235 0 -13,906 67,75366 0 -1,06131 5,433471 0 6,070446 7,699958 0 8,896846 0 -100 0 0 
 Efd3 1,649311 0 -5,88544 6,17429 0 -4,54123 66,01957 0 5,96311 31,05555 0 4,46356 0 0 -100 0 
 Efd4 2,391327 0 -6,99644 8,099034 0 -5,20779 26,1012 0 1,525048 65,83615 0 10,67918 0 0 0 -100 
                  

  Situação 2 
 E’q1 -0,31812 0 -0,13665 0,099868 0 0,119202 -0,01491 0 0,010062 -0,02623 0 0,007392 -1,25 0 0 0 
 ω1 -0,08672 0 -0,04133 -0,00513 0 0,049569 -0,01241 0 -0,00218 -0,0195 0 -0,00606 0 0 0 0 
 δ1 0 376,9911 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 E’q2 0,133782 0 0,101853 -0,36073 0 -0,14211 -0,01154 0 0,020186 -0,02305 0 0,020073 0 -1,25 0 0 
 ω2 0,025015 0 0,060623 -0,10931 0 -0,05595 -0,01381 0 -0,00034 -0,02217 0 -0,00434 0 0 0 0 
 δ2 0 0 0 0 376,9911 0 0 0 0 0 0 0 0 0 0 0 
 E’q3 0,014746 0 0,020166 0,015193 0 0,024514 -0,34207 0 -0,14355 0,081909 0 0,098871 0 0 -1,25 0 
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 ω3 0,002821 0 0,015091 -0,00307 0 0,014634 -0,09957 0 -0,06221 -0,00986 0 0,032488 0 0 0 0 
 δ3 0 0 0 0 0 0 0 376,9911 0 0 0 0 0 0 0 0 
 E’q4 0,022333 0 0,026272 0,025283 0 0,033347 0,096959 0 0,100991 -0,40796 0 -0,16061 0 0 0 -1,25 
 ω4 0,004805 0 0,019945 -0,00217 0 0,019828 0,003332 0 0,040972 -0,13646 0 -0,08075 0 0 0 0 
 δ4 0 0 0 0 0 0 0 0 0 0 376,9911 0 0 0 0 0 
 Efd1 59,01734 0 -9,10619 33,95881 0 -2,504 5,113934 0 4,704575 7,192538 0 6,905617 -100 0 0 0 
 Efd2 19,51616 0 -13,8381 67,2557 0 -0,45721 6,361417 0 5,784057 8,962159 0 8,511279 0 -100 0 0 
 Efd3 2,29393 0 -5,50106 6,959838 0 -3,834 64,92792 0 4,394316 32,37244 0 4,940751 0 0 -100 0 
 Efd4 3,081294 0 -6,56157 8,908321 0 -4,41723 25,86859 0 0,218864 66,40163 0 10,75994 0 0 0 -100 
                  

  Situação 3 
 E’q1 -0,31959 0 -0,13926 0,098917 0 0,117951 -0,01267 0 0,012645 -0,02504 0 0,008665 -1,25 0 0 0 
 ω1 -0,08812 0 -0,0426 -0,0049 0 0,04829 -0,01206 0 -0,00068 -0,01981 0 -0,00501 0 0 0 0 
 δ1 0 376,9911 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 E’q2 0,131954 0 0,103525 -0,36351 0 -0,14714 -0,00852 0 0,022838 -0,02138 0 0,02078 0 -1,25 0 0 
 ω2 0,024356 0 0,059692 -0,11136 0 -0,05807 -0,01308 0 0,001496 -0,0222 0 -0,00311 0 0 0 0 
 δ2 0 0 0 0 376,9911 0 0 0 0 0 0 0 0 0 0 0 
 E’q3 0,013341 0 0,022685 0,011744 0 0,02605 -0,34179 0 -0,14843 0,077377 0 0,099699 0 0 -1,25 0 
 ω3 0,001569 0 0,015373 -0,00514 0 0,014231 -0,10291 0 -0,06208 -0,01239 0 0,032472 0 0 0 0 
 δ3 0 0 0 0 0 0 0 376,9911 0 0 0 0 0 0 0 0 
 E’q4 0,020952 0 0,027945 0,022389 0 0,03416 0,100744 0 0,103582 -0,4072 0 -0,16569 0 0 0 -1,25 
 ω4 0,003425 0 0,019497 -0,00401 0 0,018706 0,006376 0 0,043757 -0,13796 0 -0,08196 0 0 0 0 
 δ4 0 0 0 0 0 0 0 0 0 0 376,9911 0 0 0 0 0 
 Efd1 58,94857 0 -8,87584 33,92903 0 -2,07413 5,619216 0 4,376949 7,946363 0 6,57302 -100 0 0 0 
 Efd2 19,78088 0 -13,6227 66,89627 0 0,141597 6,987702 0 5,376557 9,902595 0 8,104591 0 -100 0 0 
 Efd3 2,900921 0 -4,96504 7,635077 0 -3,03531 63,66836 0 2,483825 33,56417 0 5,516532 0 0 -100 0 
 Efd4 3,721595 0 -5,99409 9,60224 0 -3,5639 25,29998 0 -1,29116 66,92346 0 10,84915 0 0 0 -100 
                  

  Situação 4 
 E’q1 -0,32104 0 -0,14148 0,097756 0 0,116679 -0,01036 0 0,015143 -0,02391 0 0,009658 -1,25 0 0 0 
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 ω1 -0,08937 0 -0,04381 -0,00493 0 0,047061 -0,01145 0 0,000864 -0,01993 0 -0,00412 0 0 0 0 
 δ1 0 376,9911 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 E’q2 0,130135 0 0,104616 -0,36623 0 -0,15132 -0,00554 0 0,02541 -0,01987 0 0,021295 0 -1,25 0 0 
 ω2 0,023625 0 0,058761 -0,11321 0 -0,06 -0,01213 0 0,00334 -0,0221 0 -0,0021 0 0 0 0 
 δ2 0 0 0 0 376,9911 0 0 0 0 0 0 0 0 0 0 0 
 E’q3 0,011632 0 0,024583 0,008096 0 0,026892 -0,34138 0 -0,15171 0,072293 0 0,100239 0 0 -1,25 0 
 ω3 0,000237 0 0,015383 -0,00725 0 0,01357 -0,10569 0 -0,06123 -0,01542 0 0,03228 0 0 0 0 
 δ3 0 0 0 0 0 0 0 376,9911 0 0 0 0 0 0 0 0 
 E’q4 0,019526 0 0,029004 0,019701 0 0,034413 0,10439 0 0,105677 -0,40645 0 -0,16909 0 0 0 -1,25 
 ω4 0,002122 0 0,018837 -0,00567 0 0,017464 0,009337 0 0,04661 -0,13897 0 -0,08291 0 0 0 0 
 δ4 0 0 0 0 0 0 0 0 0 0 376,9911 0 0 0 0 0 
 Efd1 58,95 0 -8,57692 33,92255 0 -1,62368 5,929944 0 3,960573 8,519811 0 6,240034 -100 0 0 0 
 Efd2 20,05446 0 -13,2987 66,63836 0 0,744947 7,37181 0 4,857753 10,61834 0 7,695954 0 -100 0 0 
 Efd3 3,451308 0 -4,31207 8,18502 0 -2,17636 62,32958 0 0,328179 34,62191 0 6,160249 0 0 -100 0 
 Efd4 4,301603 0 -5,32583 10,17734 0 -2,67002 24,49546 0 -2,95639 67,41168 0 10,95223 0 0 0 -100 
                  

  Situação Original 
 E’q1 -0,32245 0 -0,1434 0,096452 0 0,115382 -0,00803 0 0,01755 -0,0228 0 0,010466 -1,25 0 0 0 
 ω1 -0,09048 0 -0,04497 -0,00512 0 0,045857 -0,01067 0 0,002442 -0,01994 0 -0,00333 0 0 0 0 
 δ1 0 376,9911 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 E’q2 0,128351 0 0,10526 -0,36888 0 -0,15483 -0,00263 0 0,027872 -0,01844 0 0,021698 0 -1,25 0 0 
 ω2 0,022857 0 0,057812 -0,11486 0 -0,06178 -0,01101 0 0,005195 -0,0219 0 -0,00123 0 0 0 0 
 δ2 0 0 0 0 376,9911 0 0 0 0 0 0 0 0 0 0 0 
 E’q3 0,009687 0 0,02591 0,004308 0 0,027121 -0,34077 0 -0,15355 0,066807 0 0,100518 0 0 -1,25 0 
 ω3 -0,00116 0 0,015121 -0,00937 0 0,012656 -0,10796 0 -0,05968 -0,01886 0 0,031905 0 0 0 0 
 δ3 0 0 0 0 0 0 0 376,9911 0 0 0 0 0 0 0 0 
 E’q4 0,018103 0 0,029637 0,017185 0 0,034295 0,107832 0 0,10718 -0,40564 0 -0,17111 0 0 0 -1,25 
 ω4 0,000897 0 0,01802 -0,0072 0 0,016141 0,012192 0 0,049463 -0,13955 0 -0,08362 0 0 0 0 
 δ4 0 0 0 0 0 0 0 0 0 0 376,9911 0 0 0 0 0 
 Efd1 58,99748 0 -8,22092 33,92846 0 -1,15394 6,082838 0 3,464055 8,958151 0 5,9108 -100 0 0 0 



116 
 

 Efd2 20,32306 0 -12,8879 66,45399 0 1,358794 7,55921 0 4,238499 11,16531 0 7,290653 0 -100 0 0 
 Efd3 3,93208 0 -3,56923 8,598871 0 -1,28206 60,96891 0 -1,99998 35,54058 0 6,851273 0 0 -100 0 
 Efd4 4,81417 0 -4,57889 10,62949 0 -1,75201 23,52053 0 -4,73571 67,86874 0 11,06661 0 0 0 -100 
                  

  Situação 6 
 E’q1 -0,32381 0 -0,14504 0,095055 0 0,114079 -0,00575 0 0,019817 -0,02174 0 0,011142 -1,25 0 0 0 
 ω1 -0,09147 0 -0,04607 -0,00545 0 0,044684 -0,00976 0 0,004021 -0,01984 0 -0,00263 0 0 0 0 
 δ1 0 376,9911 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 E’q2 0,12664 0 0,105541 -0,37142 0 -0,15772 0,000171 0 0,030152 -0,01707 0 0,022032 0 -1,25 0 0 
 ω2 0,022084 0 0,056852 -0,1163 0 -0,0634 -0,0098 0 0,007021 -0,02163 0 -0,00047 0 0 0 0 
 δ2 0 0 0 0 376,9911 0 0 0 0 0 0 0 0 0 0 0 
 E’q3 0,007592 0 0,026697 0,000486 0 0,026809 -0,33996 0 -0,15408 0,061082 0 0,100571 0 0 -1,25 0 
 ω3 -0,00256 0 0,014601 -0,01144 0 0,011517 -0,10975 0 -0,05748 -0,0226 0 0,031358 0 0 0 0 
 δ3 0 0 0 0 0 0 0 376,9911 0 0 0 0 0 0 0 0 
 E’q4 0,016726 0 0,029959 0,014846 0 0,033927 0,110988 0 0,107993 -0,40475 0 -0,17188 0 0 0 -1,25 
 ω4 -0,00023 0 0,017096 -0,00857 0 0,014782 0,014892 0 0,052222 -0,13973 0 -0,0841 0 0 0 0 
 δ4 0 0 0 0 0 0 0 0 0 0 376,9911 0 0 0 0 0 
 Efd1 59,07363 0 -7,82144 33,93563 0 -0,67465 6,1051 0 2,906224 9,282199 0 5,58987 -100 0 0 0 
 Efd2 20,57159 0 -12,4118 66,32375 0 1,97499 7,583647 0 3,542408 11,56916 0 6,894423 0 -100 0 0 
 Efd3 4,326521 0 -2,77228 8,862826 0 -0,38882 59,6496 0 -4,4016 36,30238 0 7,562697 0 0 -100 0 
 Efd4 5,245895 0 -3,78356 10,94768 0 -0,83918 22,43925 0 -6,56098 68,28631 0 11,18372 0 0 0 -100 
                  

  Situação 7 
 E’q1 -0,32511 0 -0,14644 0,093574 0 0,112769 -0,00354 0 0,021935 -0,02069 0 0,011732 -1,25 0 0 0 
 ω1 -0,09233 0 -0,04713 -0,00587 0 0,043532 -0,00878 0 0,005592 -0,01966 0 -0,00199 0 0 0 0 
 δ1 0 376,9911 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 E’q2 0,124999 0 0,105532 -0,37387 0 -0,16008 0,002852 0 0,032223 -0,01569 0 0,022329 0 -1,25 0 0 
 ω2 0,021315 0 0,055875 -0,11756 0 -0,0649 -0,00852 0 0,008811 -0,02129 0 0,000218 0 0 0 0 
 δ2 0 0 0 0 376,9911 0 0 0 0 0 0 0 0 0 0 0 
 E’q3 0,005389 0 0,026998 -0,00334 0 0,026024 -0,33893 0 -0,15346 0,055135 0 0,100443 0 0 -1,25 0 
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 ω3 -0,00397 0 0,013831 -0,01343 0 0,010169 -0,1111 0 -0,05465 -0,0266 0 0,030652 0 0 0 0 
 δ3 0 0 0 0 0 0 0 376,9911 0 0 0 0 0 0 0 0 
 E’q4 0,015397 0 0,03006 0,012636 0 0,03339 0,113854 0 0,108058 -0,40379 0 -0,17151 0 0 0 -1,25 
 ω4 -0,00128 0 0,016091 -0,00981 0 0,0134 0,017445 0 0,054869 -0,13955 0 -0,08436 0 0 0 0 
 δ4 0 0 0 0 0 0 0 0 0 0 376,9911 0 0 0 0 0 
 Efd1 59,16704 0 -7,38465 33,93531 0 -0,18758 6,021988 0 2,297943 9,512361 0 5,274287 -100 0 0 0 
 Efd2 20,79372 0 -11,8812 66,22972 0 2,594233 7,476482 0 2,783192 11,85515 0 6,503746 0 -100 0 0 
 Efd3 4,630213 0 -1,94056 8,973677 0 0,486489 58,39971 0 -6,83042 36,90734 0 8,284483 0 0 -100 0 
 Efd4 5,594884 0 -2,95389 11,13024 0 0,05789 21,28696 0 -8,39943 68,66301 0 11,29543 0 0 0 -100 
                  

  Situação 8 
 E’q1 -0,32639 0 -0,14763 0,09199 0 0,111435 -0,00137 0 0,02392 -0,01964 0 0,012278 -1,25 0 0 0 
 ω1 -0,09309 0 -0,04817 -0,00637 0 0,04238 -0,00771 0 0,007164 -0,01941 0 -0,00138 0 0 0 0 
 δ1 0 376,9911 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 E’q2 0,123404 0 0,105282 -0,37629 0 -0,16198 0,005449 0 0,034079 -0,01428 0 0,022614 0 -1,25 0 0 
 ω2 0,020544 0 0,054868 -0,11865 0 -0,06631 -0,00719 0 0,010575 -0,02088 0 0,00087 0 0 0 0 
 δ2 0 0 0 0 376,9911 0 0 0 0 0 0 0 0 0 0 0 
 E’q3 0,003079 0 0,026845 -0,00719 0 0,024796 -0,33769 0 -0,15181 0,04888 0 0,100171 0 0 -1,25 0 
 ω3 -0,00538 0 0,012805 -0,01534 0 0,008605 -0,1121 0 -0,0512 -0,03092 0 0,029786 0 0 0 0 
 δ3 0 0 0 0 0 0 0 376,9911 0 0 0 0 0 0 0 0 
 E’q4 0,014093 0 0,03 0,010488 0 0,032724 0,116455 0 0,107291 -0,40273 0 -0,17001 0 0 0 -1,25 
 ω4 -0,00226 0 0,015003 -0,01095 0 0,011983 0,019887 0 0,057421 -0,13902 0 -0,08441 0 0 0 0 
 δ4 0 0 0 0 0 0 0 0 0 0 376,9911 0 0 0 0 0 
 Efd1 59,27156 0 -6,90887 33,91994 0 0,311618 5,849631 0 1,640608 9,662936 0 4,956645 -100 0 0 0 
 Efd2 20,98732 0 -11,296 66,15768 0 3,22363 7,257713 0 1,962782 12,04096 0 6,109555 0 -100 0 0 
 Efd3 4,840956 0 -1,07931 8,924843 0 1,339548 57,22846 0 -9,2796 37,35561 0 9,019361 0 0 -100 0 
 Efd4 5,861433 0 -2,09025 11,17246 0 0,940585 20,07472 0 -10,244 68,99902 0 11,39368 0 0 0 -100 
                  

  Situação 9 
 E’q1 -0,32759 0 -0,14857 0,090359 0 0,110129 0,000659 0 0,025664 -0,01862 0 0,012781 -1,25 0 0 0 
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 ω1 -0,09372 0 -0,04913 -0,00692 0 0,041278 -0,00663 0 0,008649 -0,01909 0 -0,0008 0 0 0 0 
 δ1 0 376,9911 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 E’q2 0,121918 0 0,104821 -0,3786 0 -0,16331 0,007846 0 0,035599 -0,01287 0 0,022892 0 -1,25 0 0 
 ω2 0,019808 0 0,053875 -0,11952 0 -0,06757 -0,00587 0 0,012216 -0,02042 0 0,001478 0 0 0 0 
 δ2 0 0 0 0 376,9911 0 0 0 0 0 0 0 0 0 0 0 
 E’q3 0,000801 0 0,02628 -0,01087 0 0,023229 -0,33629 0 -0,14933 0,042593 0 0,099818 0 0 -1,25 0 
 ω3 -0,0067 0 0,011579 -0,01705 0 0,006916 -0,11275 0 -0,04731 -0,03533 0 0,028819 0 0 0 0 
 δ3 0 0 0 0 0 0 0 376,9911 0 0 0 0 0 0 0 0 
 E’q4 0,012864 0 0,029824 0,008457 0 0,031991 0,118665 0 0,105664 -0,40163 0 -0,16748 0 0 0 -1,25 
 ω4 -0,00315 0 0,013892 -0,01195 0 0,010599 0,022115 0 0,059755 -0,13818 0 -0,08425 0 0 0 0 
 δ4 0 0 0 0 0 0 0 0 0 0 376,9911 0 0 0 0 0 
 Efd1 59,37624 0 -6,41915 33,88026 0 0,795971 5,610995 0 0,976094 9,733165 0 4,647081 -100 0 0 0 
 Efd2 21,13622 0 -10,6879 66,09848 0 3,82979 6,956086 0 1,133643 12,12556 0 5,724491 0 -100 0 0 
 Efd3 4,946089 0 -0,24393 8,715364 0 2,116649 56,20982 0 -11,6006 37,62005 0 9,727904 0 0 -100 0 
 Efd4 6,030745 0 -1,24359 11,06805 0 1,75805 18,88192 0 -11,9779 69,27246 0 11,46344 0 0 0 -100 



 
 

 


