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Resumo

Analises de seguranga dindmica em sistemas elétricos de poténcia requerem a
avaliagdo de estabilidade do sistema para um numero grande de contingéncias (falhas)
plausiveis. Este problema exige grande esfor¢o computacional, pois os sistemas elétricos de
poténcia séo sistemas de grande dimensao (mais de 3.000 nds elétricos no caso do sistema
brasileiro), ndo lineares e o numero de contingéncias a serem analisadas também é grande
(centenas ou milhares). Ferramentas para analise rapida de estabilidade foram desenvolvidas
para o problema de anadlise estatica de estabilidade de tensdo e para o problema de
estabilidade transitéria (métodos diretos). Entretanto, o problema de avaliagdo rapida de
estabilidade a pequenas perturbacbes ainda € um problema em aberto na literatura.
Avaliacbes de estabilidade a pequenas perturbacbes requerem calculos repetidos de
autovalores de matrizes de grande dimensao. Nesta monografia, investiga-se técnicas para
diminuir o esforco computacional de avaliagcao de estabilidade a pequenas perturbacdes com
o objetivo de viabilizar a implementacédo de ferramentas de analise de seguranga dindmica
que contemplem avaliagbes da estabilidade do sistema a pequenas perturbagdes em tempo
real. Em particular, as técnicas dos discos de Gershgorin, Bauer - Fike e aproximagéo linear
foram investigadas. Os resultados obtidos indicam que esses métodos ndo apresentam um
limite bem definido para a regido de estabilidade para os autovalores que modelam o sistema
elétrico. Seriam necessarios trabalhos futuros que investiguem a margem de estabilidade dos

autovalores definindo regides de estabilidade bem mais refinadas e bem comportadas.

Palavras Chave: Sistemas Elétricos de Poténcia, Seguranga Dindmica, Estabilidade

a Pequenas Perturbacgotes, Autovalores e Sensibilidade de Matrizes.
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Abstract

Dynamic safety analysis in electrical power systems requires the evaluation of system
stability for a large number of plausible contingencies (failures). This problem requires a great
computational effort, since the power systems are large systems (more than 3,000 electric
nodes in the case of the Brazilian system), nonlinear and the number of contingencies to be
analyzed is also large (hundreds or thousands). Tools for rapid stability analysis were
developed for the static analysis of voltage stability problem and for the transient stability
problem (direct methods). However, the problem of rapid assessment of small signal stability
is still an open problem in the literature. Small signal stability assessment requires repeated
calculations of eigenvalues of matrices of high dimension. In this monography we investigate
techniques to reduce the computational effort of small signal stability with the objective of
enabling the implementation of dynamic security analysis tools that contemplate assessment
of small signal stability of power systems in real time. In particular, the techniques of the
Gershgorin, Bauer - Fike and linear approximation discs were investigated. The results indicate
that these methods do not present a well defined limit for the stability region for the eigenvalues
that model the electrical system. Further work would be needed to investigate the stability

margin of eigenvalues by defining much more refined and well-behaved regions of stability.

Keywords: Electrical Power Systems, Dynamic Safety, Small Signal Stability,

Eigenvalues and Matrix Sensitivity.
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1 Introducgao

O desenvolvimento industrial em meados da década de 1950 e 1960 impulsionou a
necessidade de crescimento e interligacao dos sistemas elétricos (RAMOS; 1999). No sistema
elétrico, os diversos dispositivos que formam a rede elétrica devem obrigatoriamente trabalhar
de forma harmoénica para que haja a estabilidade. Além disso, devido as necessidades
crescentes de demanda de energia pelas unidades consumidoras, o sistema passou a operar
préximo as condigbes criticas e, consequentemente, pequenas variagdes no sistema
passaram a ser agentes responsaveis por fazer com que o sistema deixe de operar dentro

dos limites de seguranca.

Devido a essa nova forma de operagdo da rede, tornaram-se mais frequentes
problemas de instabilidade, motivando intensa pesquisa sobre estabilidade em sistemas
elétricos de poténcia.

A complexidade dos sistemas elétricos de poténcia associada as incertezas
operacionais impostas pelos mercados de energia impede que os operadores consigam
planejar a operagao do sistema de forma antecipada com garantia de estabilidade para grande
parte dos cenarios possiveis. Existe, portanto, a necessidade cada vez maior de
implementacédo de ferramentas de andlise de seguranca dindmica nos centros de operagao
de sistemas elétricos de poténcia que sejam capazes de auxiliar o operador em tempo real e

garantir a operagao segura evitando blecautes ou interrupgdes de fornecimento de energia.

Na analise de seguranca dindmica, avalia-se a estabilidade de um sistema elétrico de
poténcia ndo apenas para a situacdo de operagdo atual, mas também para uma lista de
cenarios plausiveis que denominamos contingéncias. Um sistema elétrico de poténcia é
considerado seguro, do ponto de vista dindmico, se este se mantém estavel a todas as

contingéncias da lista.

A avaliagdo de seguranga de sistemas elétricos de poténcia exige grande esforgo
computacional, pois estes sistemas elétricos sdo sistemas de grande dimens&o (mais de
3.000 nos elétricos no caso do sistema brasileiro), ndo lineares e cujo numero de
contingéncias a serem analisadas também é grande (centenas ou milhares). Dado a
necessidade de avaliagdo em tempo real, digamos em uma janela de 5 a 10 minutos apos a
determinagédo do estado da rede, verifica-se que a implementagdo de uma ferramenta de
avaliagdo de seguranga dinamica é ainda um problema desafiador mesmo considerando o

grande desenvolvimento da tecnologia de computadores e processamento paralelo.
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Analises de estabilidade em sistemas elétricos de poténcia sdo comumente divididas
em fungdo das variaveis de interesse e da intensidade da perturbagédo. Neste trabalho
estaremos interessados no problema de avaliagdo de estabilidade a pequenas perturbacbes
(RAMOS et al., 2000).

O problema de avaliagdo de estabilidade a pequenas perturbagdes aparece em
problemas de avaliagdo de taxas de amortecimento dos modos de oscilagdo de sistemas
elétricos e também de forma complementar nas analises de estabilidade de tensao para a
identificacdo de ocorréncia de bifurcagdes. A necessidade de avaliagdo de estabilidade a
pequenas perturbacdes também surge nas avaliagdes de estabilidade em escalas de tempo

propostas em (CHOQUE; 2015) para avaliagdo de estabilidade do subsistema rapido.

No caso particular de avaliagées de estabilidade a pequenas perturbacgdes, o modelo
do sistema pode ser aproximado em um modelo linear e a analise de estabilidade exige o
célculo dos autovalores de uma matriz de grande dimens&o para cada contingéncia
considerada. Em um sistema com aproximadamente 3.000 barras e uma centena de
geradores, teriamos que calcular autovalores de uma matriz de dimens&do da ordem de 103

por um numero de vezes igual ao numero de contingéncias consideradas.

Andlises de seguranga dindmica em sistemas elétricos de poténcia requerem a
avaliagdo de estabilidade do sistema para um numero grande de contingéncias. Porém, o
grande problema esta na complexidade de avaliagdo da estabilidade da rede. Esta ultima é
representada por meio de matrizes que descrevem a relagéo entre a tensdo, a corrente e a
carga, entretanto tais matrizes sofrem alteragdes mediantes as pequenas perturbagdes que o
sistema esta sujeito.

Como o ponto de operacao do sistema varia de forma continua com a variacdo das
cargas ao longo do dia e dado a incerteza maior do ponto de operagdo em fungédo das
transacdes comerciais do mercado de energia, é importante que estas avaliagdes de
segurancga sejam feitas em um curto intervalo de tempo. Sendo assim é desejavel desenvolver
ferramentas de avaliagdo de estabilidade a pequenas perturbagdes que sejam adequadas

para ferramentas de analise de seguranga em tempo real.

1.1 Objetivos

Esta monografia investiga a possibilidade da utilizagdo de métodos numéricos rapidos
para a avaliagdo da estabilidade de sistemas elétricos de poténcia. Para isso investigou-se a

modelagem matricial do Modelo de Sensibilidade de Poténcia presente em (ANDERSON e
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FOUAD; 2003) e (RAMOS; 1999), para o estudo de estabilidade a pequenas perturbacdes em

sistemas de poténcia, avaliando-se os efeitos de variagdes de parametros sobre os

autovalores do sistema.

Os objetivos principais desta monografia s&o:

1.

2.

Investigar a estabilidade dos sistemas elétricos de poténcia frente a pequenas
perturbagdes. Dessa forma, conhecer a modelagem do sistema e a obtencéo
da matriz de estado que descreve o seu comportamento tanto no ponto de

operagao quanto na perturbacgao.

Analisar o uso das técnicas de avaliacédo de sensibilidade e limites de variagcao
dos modos de oscilagdo devido a variagdo de parametros do sistema. Com
base no estudo matematico a respeito da sensibilidade de matrizes, verificar a
eficiéncia do uso de métodos rapidos aqui estudados e que trabalham com a
regido do movimento dos autovalores no espago complexo no ambito de

sistemas elétricos de poténcia.

Investigar também os métodos rapidos de avaliacdo da margem de
estabilidade a pequenas perturbagbes que possam ser traduzidas em termos

de limites de transferéncia de poténcia.

Dessa forma o trabalho € uma analise investigativa dos métodos matematicos

presentes na literatura a fim de avaliar a eficiéncia da aplicabilidade dos mesmos na

seguranga dindmica de sistemas elétricos de poténcia submetidos a pequenas perturbagdes.

1.2 Organizagao dos Capitulos

O texto esta organizado de forma que os elementos necessarios para a compreensao

dos métodos utilizados na abordagem desenvolvida nesta monografia sejam apresentados.

Os capitulos que comp6em este trabalho sdo descritos, em sequéncia:

Capitulo 2: Modelo de Estados do Sistema de Poténcia — Neste capitulo sdo
apresentados fundamentos de Sistemas Elétricos de Poténcia, apresentando
a modelagem da rede elétrica e da matriz que representa a dindmica do
sistema. Nele também s3o apresentados os equacionamentos dos
equipamentos geradores e controladores que fardo parte da modelagem aqui

apresentada.
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Capitulo 3: Estabilidade de Sistemas Lineares — Os conceitos tedricos que
definem as condigcbes de estabilidade através da analise dos autovalores da

matriz de estado modeladora do sistema dindmico.

Capitulo 4: Técnicas para avaliacdo da sensibilidade e limite de variagbes dos
modos de oscilagbes devido a variagdo de pardmetros do sistema — Neste
capitulo sdo apresentados os métodos rapidos de analise matricial, detalhando
cada teorema investigado a fim de apresentar ao leitor os fundamentos da
aplicacdo de cada método utilizado nos resultados praticos dessa monografia.

Capitulo 5: Desenvolvimento — Sao apresentados os resultados investigativos
da aplicacao de cada método apresentado no capitulo 4 sobre um sistema base
formado por 4 geradores 11 barras (sistema 2 areas).

Capitulo 6: Conclusdo — Consideragoes finais sobre a analise desenvolvida

nesta monografia e perspectivas futuras.
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2 Modelo de Estados do Sistema de Poténcia

Este capitulo aborda a modelagem matematica no dominio do tempo dos elementos
que constituem o sistema elétrico de poténcia em estudo, apresentando os equacionamentos
que definem a modelagem dos sistemas elétricos de poténcia no ponto de operagédo e em

seguida o equacionamento para o sistema submetido a uma pequena perturbagéao.

Em cada item sera feito tanto uma abordagem para o modelo Maquina x Barramento

infinito quanto para o sistema multimaquinas.

2.1 Maquina sincrona

Uma maquina sincrona é dotada de um sistema estatico denominado de estator e
possui também uma parte mével chamada rotor. Para existir torque no equipamento, deve-se
alimentar o circuito de campo (rotor) com corrente continua. O movimento do rotor em

velocidade angular constante induz nos circuitos do estator um campo induzido senoidal.

Na representacdo do modelo da maquina é bastante comum a utilizacdo da
transformacado de Park, com a utilizagdo de uma referéncia girante. A partir dessa
transformacao as variaveis passam a ser projetadas em dois eixos: eixo direto (d) e eixo em

quadratura (q) e esta representada na Figura 1.

Em (ANDERSON e FOUAD; 2003) detalhes da modelagem da maquina s&o
apresentados, inclusive o modelo de dois eixos, o qual € bastante utilizado em problemas de

pequena perturbagéo.

Referéncia
Fixa ao estator

Eixo Direto )
« Eixoem

guadratura

Enrolamento de

Campo = A
@ : Enrolamento de
& armadura

+

Figura 1 - Modelo de uma maquina sincrona (Fonte: RAMOS, R. A; et al, adaptado).
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No estudo de estabilidade, a maquina sincrona pode ser representada pelo modelo
classico, o qual é definido por uma fonte de tensédo constante (E) e uma reatancia série x’q
(reatancia transitéria), projetada sobre o eixo direto, devido ao fluxo nos enrolamentos

principais da maquina.

A modelagem detalhada do gerador pode ser encontrada em (RAMOS, R. A, et al.;

2000) e cujas equagdes simplificadas sao apresentadas no Anexo A.

A Figura 2 mostra essa configuragdo do gerador inserido na rede elétrica sobre um
barramento infinito (a), em uma linha de transmissdo com uma referéncia V (b) e o circuito

equivalente (c) do sistema:

Figura 2 - Circuito de um gerador classico sem regulagédo conectado a uma linha de transmisséo
(Fonte: ANDERSON, P.M. e FOUAD, A. A; 2003).

A Figura 2 apresenta o modelo classico maquina versus barramento infinito. Para esse

tipo de modelagem algumas hipoteses serdo consideradas:
1. Poténcia mecanica de entrada constante.
2. Efeito de “damping” desconsiderado.

3. Gerador modelado por uma tensao constante em série com uma reatancia transitoria
x'd.
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4. Angulo mecanico do rotor coincidente com o angulo de tens&o anterior a reatancia

transitoria
5. Cargas representadas por impedancias constantes.

A partir dessas consideragdes podemos desenvolver o modelo do fluxo de poténcia do

sistema.

2.2 Rede Elétrica

2.2.1 Sistema Maquina x Barramento Infinito

O sistema maquina versus barramento infinito € uma alternativa para o estudo de um
sistema multimaquinas de tal forma que simplifica as analises dos problemas de sistemas
elétricos. Este sistema é utilizado quando o sistema interligado é maior em termos de poténcia
que o equipamento que se deseja estudar. A representagdo do modelo pode ser encontrada
na Figura 2. Pode-se verificar que o sistema é dotado de um gerador e uma barra com
capacidade infinita de geragédo ou absorgéo de poténcia.

Na Figura 2 (b) temos: V; (tens&o terminal da maquina sincrona), VL 0 (Tensdo do
barramento infinito), X’q (reatancia transitéria da maquina sincrona), Zr. (Impedancia série da
rede de transmissao) e Zs (Impedancia shunt). Este esquema mostra o modelo do sistema

maquina versus barramento infinito.

A rede elétrica pode ser descrita por uma matriz de admitancia Y em cujos elementos
estdo todas as admitancias séries e shunts, bem como as reatancias transitérias de cada

gerador, como apresentado no sistema equivalente da Figura 2 (c).

A matriz Y é obtida por meio da Lei de Kirchoff, ou seja, a corrente que entra em um
nd é a soma das correntes que saem do mesmo. Se por exemplo uma rede & descrita por
dois terminais. O terminal (a) & por onde a corrente entra e o terminal (b) por onde ela sai.
Dessa maneira conhecemos que o terminal (a) tem uma tens&o maior que o terminal (b). Se
entre eles encontramos uma impedancia série Z, temos que la = (1/Zs) Va, ou seja,
conhecendo a tensio e a corrente de entrada, conhecemos a admitancia (1/Zas) entre os
terminais de entrada e saida. Agora uma rede ndo apresenta apenas dois nés, mas sim é
formada por um conjunto de “n” nés. Dessa forma, se estamos analisando um né “k”, a
corrente que entra nesse no “k” ira fluir dele para todos os outros nés adjacentes a ele. Assim,

este problema é tratado de forma matricial.

Para a analise do fluxo de poténcia, considera-se que a rede é caracterizada por:
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1) A carga é conectada entre a barra de carga e o no terra.

2) Quando o sistema é modelado por impedancias, estas devem ser transformadas

em admitancias.

3) Num sistema multimaquinas, um gerador é formado por barras auxiliares internas
identificadas pelo subscrito n (ou seja, 1, 2,..., n) e as barras remanescentes na

rede com o subscrito r (ou seja, 1, 2,..., r).

Primeiramente, sera estudado o modelo equivalente da Figura 2 (c). Levando em
consideracao a lei dos nds, para o modelo equivalente, tem-se que a rede é representada,
por:

11] [Yu le] E

= 1
I Y1 Yo [V] M
onde em (1) Y11 = Y11 L 611° =yt Y10, Y12= Y21= Y12 L 612° =-y12€ Y22 = y2p = 0, sendo
y as admitancias do circuito.

A partir da matriz de admitancia (1) e sabendo que a poténcia ativa em um né do

circuito, por exemplo o n6 1, é dada por Re{E-1;*} ou:
P, = E?Y;;co%9,, + EVY;,c0$0;, — 5) (2)
Agora definindo Gy1 = Yy1c0s 011 € y = 012 — 11/2, entéo:
P, = E2Gy, + EVYj,selfd — y) (3)

Dessa forma, modelamos o sistema maquina versus barramento infinito.

2.2.2 Sistema Multimaquinas

Para o modelo maquina versus barramento infinito teremos uma rede com dimensao

menor se comparado ao sistema multimaquinas representado pela Figura 3.
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Figura 3 - Rede multimaquinas (Fonte: ANDERSON, P.M. e FOUAD, A. A; 2003, adaptado).

Realizando-se a mesma analise do modelo maquina versus barramento infinito e
projetando para um sistema multimaquinas, deve-se tomar como referéncia uma maquina
com maior poténcia, assim, a corrente injetada nos nés da rede é determinada pela seguinte

equacgao matricial:
1=YE (4)
In [Ynn an] [Vn]
= 5
[0] Yo Y. ALV, (%)
onde em (5), tem-se que Y; =Y; L 6;° = G;+B; é a soma das admitancias ligadas aond i e

Yi =Y L 6;°=G;j +j-Bjé o negativo da admitancia entre os nos i e j. A partir de (4), Y pode

ser particionada em Ynn, Y, Yar, Y, para a construgao da matriz reduzida ( Yreq).

A fim de trabalhar apenas com os nés internos de geracao, isto €, como o interesse
esta em avaliar o angulo dos geradores, pode-se reduzir a rede e construir uma matriz de

admitancia reduzida ( Yreq) dada por:
Yred = (Ynn - an'Yrr-1'an) (6)

Dessa forma, através da matriz de admitancias, € possivel modelar a rede que compoe
o circuito elétrico multimaquinas. Agora, quando a rede esta em regime permanente ha uma
configuragdo de equilibrio de tenséo e fluxos de poténcia de tal forma que para uma certa

barra “k” a poténcia gerada (Pg, Qg) deve ser igual a soma das poténcias transmitidas a
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outras barras conectadas a “kK” (Y;ex Prki € Yiek Qii) Mais a poténcia consumida presente na

barra “k* (Pc, Qck), OU seja, deve satisfazer a seguinte condigdo de balango de poténcia:

Py = ) Pat = Pei = 0 7
iEK
Qo= ) Qexi = Qe =0 ®
IEK

Dessa maneira, as equagdes permitem entender a modelagem da rede elétrica em um
sistema maquina versus barramento infinito e desenvolver a teoria para um sistema
multimaquinas. Esse desenvolvimento sera importante para entender e montar matriz de
estado de um sistema elétrico de poténcia vinculando estas equagbes com as equacgoes

mecanicas do gerador.

2.3 Equacao Mecanica e elétrica — Gerador Classico nao regulado

2.3.1 Maquina versus Barramento Infinito

Numa maquina sincrona existe a conversao da energia mecanica em energia elétrica
para ser transmitida a rede. Porém, se parte da energia mecénica ndo é convertida em energia

elétrica, esta ira ser transformada em poténcia de aceleracao do rotor.

A modelagem mecanica da maquina sincrona inicia-se pela equacédo de torque
resultante:

T=Tm—Te [Nm] 9)
onde T, é o torque resultante, T, € o torque mecanico e T, o torque elétrico.

Em regime permanente a velocidade do rotor pode ser considerada como muito

proxima da velocidade sincrona (60Hz no Brasil), dessa forma tem-se que:
0(t) = (wst + a) + Om(t) (10)

onde (wst + a) é a referéncia girante a 60 Hz, a é o &ngulo de defasagem entre a referéncia
fixa e a referéncia girante no tempo t = 0 e 6, € 0 angulo mecénico entre o rotor e a referéncia

girante, como pode ser visto na Figura 1.

Diferenciando (10) duas vezes e sabendo que T, é igual a J&m, sendo J o momento

de inércia do rotor da maquina, tem-se:



29

0 =ws+ 6, (11)
6= 8, (12)
Jom = Ty~ Te (13)

Multiplicando o torque pela velocidade angular (wm), pode-se escrever a equagao (13)
na forma de poténcia da seguinte forma:

J @ = B - P (14)

A quantidade | @, € usualmente aproximada por uma constante de inércia e é
denotada por M conforme demonstrado em (ANDERSON e FOUAD; 2003). Ela esta
relacionada com a energia cinética das massas em rotagao (W), onde Wi = (1/2) Jw?  joules.

Entdo M é calculada como:
Momento angular =M =] &, = 2 Wy /wn, [J.s]

Substituindo J «),, por M (constante de inércia da maquina), dividindo toda a equacgéao
pela poténcia base do sistema (Sg) e sabendo que P, — Pe = P, isto &, poténcia de aceleragéo
que € dada por Ps = Pn— Pe = (2H/w;)w, onde w é velocidade angular elétrica e w: é velocidade
angular do rotor e H & definida como a relagdo dada por Wi/Ss [s], isto €, a razdo entre a

energia cinética na velocidade sincrona pela poténcia base, tem-se:
—&8=Pn-F (15)

A equagéo (15) é denominada equagao de “swing” da maquina sincrona. Ela se trata
da equacdo do movimento da maquina sincrona conectada a um barramento infinito. A
poténcia P. é a poténcia elétrica injetada na rede que é uma fungdo dos a&ngulos da rede.
Realizadas as transformagdes o angulo mecanico (dn) € escrito em termos de angulo elétrico

(5)

A deducgdo matematica da relagdo entre os angulos e poténcia elétrica pode ser
encontrada com detalhes em (ANDERSON e FOUAD; 2003, pp. 13 — 16).

Aplicando-se o conceito para uma Unica maquina ligada a um barramento infinito, ao
submeté-la a um pequeno disturbio, sabe-se que o sistema ira se mover em torno do ponto
de operacgao. Assim, pode-se analisar esse sistema dindmico e obter as respostas a pequenas

perturbagbes aplicando a metodologia de linearizagdo em torno do ponto de operagéo.
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Nesta abordagem, por ser uma pequena perturbagao considera-se que o sistema néo
se afasta significativamente do seu ponto de operagéo. Assim, € possivel aproximar o modelo

nao linear por equagdes lineares por meio da expansao em série de Taylor.

Por exemplo, seja um sistema nao-linear representado por x(t) = f(x(t),u) , onde x(t)
representa o vetor de estados do sistema e u € uma variagdo paramétrica, e seja x(0) = xo a
condic&o de equilibrio do sistema. Ao aplicar um deslocamento xx = x — xo, podemos expandir

f(x,u) em uma série de Taylor em torno do ponto de equilibrio:

flouw) = f(xg,u) +———=  (x —x0) + -

daf (x,u)
dx 0

assim, eliminando-se os termos superiores, pode-se encontrar uma fungao de 1° grau que

aproxima f(x,u) em uma vizinhanga do ponto (xo,u).

A partir de (15) e aplicando as relagbes: P, = P, + B, sin(8§ — y), sendo 0 = &g + O,,
Pe = Peo + Pa, Pm = Pmo €, além disso, usando a relacao sin(6 - y) = sin(do-y + 64) = sin(do - y)
+ cos(dop — y)0a (onde A refere-se a uma pequena perturbagao sobre o ponto de operagao),

tem-se a linearizagdo da equacéao swing:

= Sy + P8y =0 (16)

e

. . . s dP,
Ressalta-se que para o modelo maquinas versus barramento infinito, E] = P =
8o

Pm-cos(do - y), 6, € o ponto de operagdo do sistema em regime permanente e §, € o desvio
da variavel 6 mediante a uma perturbacdo em torno do ponto de operagéo do angulo §,. A
equacgao (16) foi desenvolvida para um sistema de uma maquina versus barramento infinito
avaliando o comportamento da poténcia elétrica mediante a variagdo do angulo mecanico

entre o rotor e a referéncia girante.

O sistema descrito tem uma margem de estabilidade para Ps > 0. Onde a resposta

oscilatoria, isto é, as raizes da equacéo caracteristica que modela o sistema ((2H/wr)s? + Ps

= (), sdo dadas por s =+ ,/Pw,/2H.

2.3.2 Sistema Multimaquinas

Como ja definido anteriormente a rede é definida pela equagéo (I = YE). Para um

sistema multibarras, cada termo da matriz de admitancia é descrito por uma parcela real e
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imaginaria entre as admitancias da barra em estudo (i) e das barras vizinhas (j): Yi = GitjBi,

Yi = G; + j-B; . Além disso, a poténcia ativa no circuito é dada por Re{E;"Ii*}.

A poténcia de saida da i-ésima maquina em um sistema multimaquinas, é:

Pe = El Gy + z EiE;Y;j cof0;; — 6i5)
=
J#i

:ELZGLL+ZE1E][Bljser(6l])+GUCO{8U)] (17)

=1
J#i

Onde: 6;=0d;- §;, E; é a constante de tens&o anterior a reatancia transitéria da maquina

i, Yi = Gj + jBj (elementos da diagonal da matriz de admitancia Y que modela a rede) e Yj =

Gj + jB; (elementos fora da diagonal da matriz de admintancia Y).

Aplicando o mesmo conceito de pequena perturbacdo, mas agora para o sistema
multimaquinas, ou seja, usando o modelo incremental tal que: &; = &jo - Ojs, temos sen(d;) =

sin &jo + 6jac08(dj0) e cos(d;) = cos djp - sen(djy). Finalmente, para Peia,

Peip = Z EiEj[—Gyj s ex{;jo) + Bijc 0€8yj0)] 8ija (18
=1
j#i
Dado que as condic¢des iniciais sen(6jo) e cos(djo) sejam conhecidas e o termo em
colchetes de (18) seja constante, tem-se:

Peip = Z P ii6ijn (19
=
JE
em que Py;; & %ﬂ = E;Ej[—G;j sen(8;j0) + Bijcos(8;j0)]. Assim, a mudanga na poténcia

i p

elétrica da maquina i deve-se a uma mudanga no angulo é entre maquina i e j, com todos os
outros angulos mantidos constantes. Ou seja, a mudanga na poténcia elétrica de uma
maquina deve-se a mudanga no angulo entre a tenséo interna e a barra de saida, desde que

todos os outros angulos sejam mantidos constantes.

Usando o modelo inercial da maquina sincrona, nos temos o seguinte conjunto de

equacoes diferenciais linearizadas,
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2H; d*6;, |
o a2 T ZEiEf[_Gij s e dyj0) + Bijc 0£8;0)] 8 =0 i=12,..n (20)
" =1
Ou
2H; d*68; _
w,  dt? + ;Psij 8ijn =0 i=12,..n (21)

j#i
Assim, para a i-ésima maquinas tem-se:

d*8,
dt?

+ 2001-; ZPSU 6;ja =0 i=12,..n (22)
L =1

Subtraindo a n-ésima equagéo da i-ésima equagéo, tem-se:

-1
28, d*6, o, Wy
- +—§P--5-.A——§P 8pia =0 (23)
2 2 i sy Yy sny ~¥ny
dt dt 2H; = 2H, =
J#Fi

A fim de encontrar os modos de oscilagbes do sistema, é necessario montar uma

equacéo do tipo x = Ax e calcular os autovalores de A.

Seja o gerador “n” uma referéncia do sistema, ou seja, tomando como constante a
tensado e o angulo desse gerador, subtraindo-se a n-ésima equagéo de oscilagao da i-ésima
equacgao (22) encontram-se n-1 equagodes independentes (23). Apds algumas manipulagdes
matematicas, que podem ser encontradas com mais detalhes em (ANDERSON e FOUAD;
2003), a equacgao (23) pode ser reescrita da seguinte forma:

d*s; A W Zn ) nz_l
dtlzn + 21_; Psij SijA - ﬁ Psn]' 8njA =0 i= 1,2, .n—1 (24‘)
= ni=
J#i

desde que ja = Oina - Ojna. LOgoO:

PO | O
dtlzn + Z“ij5jm:0 i=12,..,n=1 (25
=1

sendo os coeficientes a; dependentes dos coeficientes inerciais da maquina e da poténcia

sincrona. A matriz de estado que modela o sistema multimaquinas € descrito em (26).
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5#— 0 0 |100-'51A
824 0 s
: 0 w0 1o o aff -
6n71A = - - - == Z)_M (20)
W1a Apn o A |0 0 iy
W24 A21 Aii AZn—l | 0 e
_a)r:m- [Ap_11 v Ap-qin-1 | O - 0 Wy -1
onde
n
W Wy
A = — 2, (2_Hl_>Psij _<2Hn>Psni @7
j#i
s (wT)P (O)r)P (28)
Y 2H;) Y 2H,/ ™

Essa modelagem matematica foi implementada em MATLAB® e os resultados podem

ser encontrados no capitulo 5 “desenvolvimento’.

2.5 Modelos com geradores regulados

A teoria desenvolvida até o momento se baseia no modelo de gerador classico n&o
regulado, isto €, a matriz de estado trabalha apenas com as equagdes mecénicas da maquina
(adngulo do rotor 6 e velocidade angular w) escritas pelas equagdes (29) e (30):

ddw, 1 1

dAS

7 = (L)OA5 (30)

Sendo A a perturbacgao sobre um determinado parametro, H a constante de inércia, wr
velocidade do rotor, T, é o torque mecéanico, T. é o torque elétrico, Kp é o torque de

amortecimento e K € o torque sincronizante.

As equacgbes (29) e (30) foram definidas para uma unica maquina, descrevendo o
comportamento do gerador mediante uma variagdo do angulo mecanico §. Quando um
sistema elétrico é formado por geradores nao regulados e a taxa de amortecimento (Kp) é
nula, consequentemente obtém-se autovalores puramente imaginarios como serao

observados nos resultados da rede teste 9 Barras 3 Geradores. Alterando-se a carga ocorrera



34

apenas a movimentagéo da parte imaginaria desses autovalores no plano real x imaginario.
Dessa forma nao traz resultados satisfatorios para o objetivo desta monografia, isto €, ndo é
possivel avaliar a reagdo dos autovalores mediante a alteracdo na carga do sistema
(verificagcdo de estabilidade), ja que a parcela real do autovalor é que definira a estabilidade
do sistema.

Assim, serdo implementados geradores regulados, ou seja, serdo inseridos
reguladores de tens&o a fim de se obter equagbes de estado e autovalores com parcelas reais
e imaginarias que representem de forma mais exata o comportamento de um sistema elétrico
de poténcia. Dessa forma, sera possivel analisar o comportamento da parte real dos

autovalores mediante a variagdo na carga do sistema.

Os sistemas de excitagao e seus reguladores de tensdo tém como finalidade principal
estabelecer a fungdo de controle para que seja possivel obter um bom desempenho operativo

dos geradores e consequentemente do sistema de poténcia.

Dessa forma, avaliou-se a implantagdo do sistema AVR (Regulador Automatico de
tensédo) que tém como fungdo controlar a tensdo terminal dos geradores. Sua acdo é
desenvolvida através de variagdes na corrente de campo suprida pelo sistema de excitagao.
A entrada de controle do sinal de tensdo é normalmente a tens&o terminal do gerador que
agora sera representado por meio de variaveis de estado. Dessa forma modelamos o gerador
como do tipo 2 (o modelo classico nao regulado é chamado tipo 1, definido pelo manual de
instrugcbes do PACDYN programa que sera utilizado na determinagédo do estado do sistema
estudado) que introduzira para cada gerador uma nova equagao de estado da maquina (E%)
e uma equagéo do sistema de controle AVR (E).

O controle implementado inicialmente é o controle AVR dado por um sistema de

excitagao a tiristor, descrito pelo diagrama de blocos da Figura 4.
V ref

Excitagio

1 vi . Esa

T K
1+sTr \'\_/{ )

Et

Figura 4 - Sistema de excitagéo a tiristor com AVR.
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Epg = Ko(Vpop ———Ey) (31)

1+sTs

Em que Tr é a constante de tempo dos elementos sensores (sinais de entrada do
regulador) dado em segundos, Kx € o ganho do regulador de tenséo, Erp € a tensdo de campo
do gerador, E; é a tensdo terminal e V. € a tensdo de referéncia de controle obtido do fluxo

de carga.

A avaliagdo dos autovalores do sistema sera realizada por meio de simulag&o
computacional utilizando 2 programas disponibilizados pela CEPEL ® (ANAREDE e
PACDYN) para facilitar a obtengdo e analise dos autovalores do sistema mediante uma

perturbagéo na carga.

A modelagem a respeito dos reguladores AVR esta presente em (KUNDUR, P; 1994)

onde pode ser encontrada com maior detalhe.

2.6 Nova matriz de estado

A insercdo de reguladores nos geradores do sistema faz com que apare¢cam novas
equagdes de estado no sistema. Para cada gerador no modelo 1 (classico) temos apenas as
equacgdes (29) e (30) para a representagdo do estado dindmico do circuito sendo portanto
uma matriz de estado 2 x 2 representada pelo equacionamento matricial (32). Porém, agora,
com a adigao de controladores de tensdo surgem para cada gerador mais duas equacgbes de
estados: uma advinda do regulador estatico e outra representado o gerador(E%).

ro] oo Ksiaor L
A7 | 2 2H|| |4 |2H|AT
dt "
s (el

(32)

O modelo adotado nas simulagdes e que foram suficientes para se obter resultados
conclusivos foi o modelo do gerador de 1 eixo. Nesta modelagem, surge a equagao da tensao
transitoria de eixo em quadratura (E’;) que fara parte do modelo dindmico do sistema. A Figura
5 ilustra a transformagao dos enrolamentos da maquina sincrona sobre o eixo direto e sobre

0 eixo em quadratura.
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Figura 5 - Modelo E'q do gerador.

Desenvolvendo o equacionamento matematico baseando-se num sistema maquina
versus barramento infinito encontramos uma nova equacao de estado:
dE, 1
q
@t T, (Erp — Eq — (Xa — X2)1g) (33)
o
Onde E; é a tensédo transiente de eixo em quadratura, T4, € a constante de tempo
transitoria de eixo direto, Erp € a tens&o proporcional a tensdo de campo, Xy € Xy sdo as

reatancias de eixo direto e a reatancia transitéria de eixo direto.

Assim, além das equagdes (29) e (30) ja enunciadas, teremos a equacgéo (33) fazendo
parte da matriz de estado. Além disso, temos também que a insercao do controle AVR aparece
na matriz de estados uma nova equagdo Erp. Dessa forma, temos que a matriz de estado

linearizado pode ser resumida na seguinte forma (KUNDUR, P; 1994, adaptado):

! Koy L 0 0
AE' K3Tc,lo Téo Tc,lo AE! 0 0
26 y L I | VY 1|y,
=| -k ~K, -K 0 —[ ref
Aw 2 — 2 9 Aw + 2H|[ AT, (34)
: 2H 2H  2H AE K,
AEp KKs _KaKs 1|9t 120
T, T, T, ¢

Onde K; é a variagao do conjugado elétrico com relagéo a variagdo do angulo do rotor,
admitindo E’; constante, K; € a variagdo do conjugado elétrico com relagéo a variagdo da
tensdo E%, admitindo constante o angulo do rotor, K3 € o fator de impedancias, K4 é o efeito
desmagnetizante devido a variagao do angulo do rotor, Ks é a variagao da tensao terminal do

gerador devido a variagdo do angulo do rotor, admitindo E% constante e Ks € a variagdo da
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tensao terminal do gerador devido a variagcéo da tenséo E’;, admitindo constante o &ngulo do

rotor. As expressdes dessas constantes podem ser encontradas no Anexo B.

Para um sistema multimaquinas, um sistema formado por “n” geradores regulados sera
composto 4 x n equagdes de estados ja que para cada maquina sincrona encontramos 4
equagdes que definem a dindmica do sistema. Por se tratar de uma modelagem complexa, foi
utilizado o programa PacDyn CEPEL® que fornece a matriz de estado do sistema ao se
programar os reguladores AVR para cada gerador.
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3 Estabilidade de Sistemas Lineares

3.1 Autovalores e autovetores

Como esperado, através da modelagem matematica descrita anteriormente, foi
possivel encontrar uma matriz A de estado associado ao sistema linearizado de equacgdes
diferenciais x = Ax. Para determinar os autovalores da matriz A, podemos empregar técnicas
matematicas como o método do polindbmio caracteristico, o método iterativo QR, o das

poténcias entre outros que serdo abordados no item 3.2.

Seja A um autovalor de A e a ele um autovetor v associado, a resposta do sistema
pode ser descrita conforme uma combinagéo linear dada por x(t) = ¥, c;e*i* sendo ¢ uma
constante obtida das condig¢des iniciais do sistema que esta sendo investigado (KUNDUR, P;
1994). O autovalor A que pode ser descrito por uma parcela real (o) e uma parcela imaginaria

(w), isto é, 1 = 0 + j windicara a estabilidade do sistema, conforme:

a) Um autovalor real (g # 0 e jw=0) corresponde a um sistema néo oscilatério. Se
negativo, o autovalor indica comportamento estavel. Caso apresente um autovalor

real positivo o sistema apresentara uma instabilidade aperiddica.

b) Um autovalor complexo (o # 0 e jw # 0) corresponde que o sistema possui um par
conjugado de autovalores, ou seja, A = o * jw. A componente real do autovalor
corresponde a taxa de amortecimento do sistema e a parcela imaginaria a
frequéncia de oscilacdo. Para o < 0, temos que o sistema ira amortecer mediante
uma perturbagdo mantendo-se estavel, ja para ¢ > 0 ira indicar que o sistema ira

ter um incremento na sua amplitude ao longo do tempo perdendo a estabilidade.

Entdo, se o sistema tiver autovalores no semiplano direito do plano complexo, o
sistema sera instavel, pois o termo e*’ tendera ao infinito, caso contrario sera estavel
(RAMOS, R. A; 1999). A Figura 6 demonstra algumas diferentes combinagdes dos
autovalores e as respectivas trajetéria no espaco de estados.
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. K,
N7

Figura 6 - Autovalores no plano complexo e a trajetéria no espago de estados. (1), (3) e (5)
representam situacéo de estabilidade local (Fonte: KUNDUR;1994).

A frequéncia de oscilagdo em Hz é dada por f = w/2m. O damping ratio (£) ou fator de
amortecimento é a taxa de decaimento da amplitude da oscilagéo é calculado pela expresséo:

o
= ———-100%
Vo2 + w?

Vale mencionar que o fator de amortecimento minimo aceitavel do ponto de vista do
sistema de transmiss&o é usualmente de 5% e sera observado nos resultados obtidos. Do
ponto de vista pratico, o fator de amortecimento de 5% representa como as oscilagdes se
extinguem em tempo satisfatério de modo a evitar possiveis prejuizos ao sistema (desgaste

prematuro das maquinas e limitagdo na transferéncia de poténcia).

Uma medida que demonstra a relagdo entre os modos de resposta e as variaveis de
estado do sistema x = Ax é o chamado fator de participagdo, dada pela matriz de participagéo
P. Através dessa ferramenta que combina os autovalores a direita e a esquerda de matriz A
pode-se medir a contribuicao relativa das variaveis de estado na resposta dos modos, assim

como identificar a participagdo dos modos na resposta do sistema. A matriz P é dada por:

P = [p1l p2: weny p"]

P1i 11;Pix

P2i V2P
pi = =

Pni VniPin

em que v sdo os autovetores a direita e @ os autovetores a esquerda. O desenvolvimento
matematico pode ser encontrado em (KUNDUR, P; 1994).
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3.2 Técnicas de calculo de autovalores

No caso particular de avaliages de estabilidade a pequenas perturbacgdes, o modelo
do sistema é linear e a analise de estabilidade exige o calculo dos autovalores de uma matriz

de grande dimensao para cada contingéncia considerada (RAMOS, R. A; 1999).
O sistema linearizado é caracterizado por uma equacgao de espacos do tipo:
X = Ax (35)
como ja apresentado no item 3.1.

A andlise das solugbes da equacdo (35) pode ser realizada pelo calculo dos
autovalores (A) e autovetores (v) de A. Sendo assim, as solugdes da equagao (35) podem ser
determinadas a partir da resolugao nao trivial do seguinte problema de autovalores e

autovetores:
(A-A)v=0 (36)

O estudo de estabilidade do sistema é realizado por meio do calculo de autovetores e
autovalores dessa matriz A, logo, no contexto atual (continuas variagbes das cargas ao longo
do dia), um grande esforco computacional é exigido devido, também, a grande dimenséao

matricial.

Varios métodos para o calculo de autovetores e autovalores sdo encontrados na
literatura, dentre os quais citamos: o método do polinébmio caracteristico (BURDEN e FAIRES;
2008), o algoritmo QR (BURDEN e FAIRES; 2008), métodos iterativos (de poténcia, poténcia
inversa e subespacgos) (RAMOS, R. A; 1999).

O método do polinémio caracteristico consiste em resolver a fungéo dada por

a;; — A a1 QA1in
FO)=det(A-an=| %21 G274 - o (37)

an1 an2 e Opn— A

De (37) as raizes de f (A) (polinbmio de grau n) correspondem aos autovalores de A.
Entretanto este método requer grande esforgo computacional, devido a complexidade em

trabalhar com sistemas polinomiais de grandes dimensdes.

O algoritmo QR é um método de auto-analise de grande eficiéncia. Esse método busca
obter uma matriz Ax em cuja diagonal principal estdo presentes os autovalores da matriz A. O

principio fundamental desse algoritmo consiste na transformacao por similaridade, em que A
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é transformada em uma matriz R (triangular superior) e Q (Ortogonal) utilizando, por exemplo,
a decomposigao de Givens ou Householder (BURDEN e FAIRES; 2008).

O primeiro passo € fazer:
A1 = Q1 R1 (38)

No passo seguinte uma nova matriz A; é obtida formada pela multiplicagdo de Q1 e R4

na ordem reversa, isto é,
A2 = R1Qy (39)

A partir dai, realiza-se o processo sucessivamente k vezes de acordo com as

equacoes:
Ax = QkR« (40)
Ax+1 = RxQx (41)

E facil verificar que cada passo completo é uma transformacao por similaridade, pois
Ax+1 = RkQk = Q' AkQx e, portanto, Ax tem os mesmos autovalores que Ax+1. Nesse caso Ax

ira convergir para uma matriz triangular superior, de acordo com:

[A] >]|A2] >...>|Aq|
A oa? oL at
2n
lima,=|9 A2 oo % (42)
0 0 .. A,

Onde a expresséao “Ilim ” simboliza que para um grande numero de iteragbes, os
—00

autovalores encontrados tornam-se mais precisos. Um ponto negativo da aplicagado deste
método deve-se ao fato das diversas transformacdes destruirem a esparsidade da matriz

original que compde, por exemplo, um sistema elétrico de poténcia.

Métodos iterativos consistem em encontrar o autovalor por aproximacao, isto é, ndo
sdo necessarias infinitas iteragbes e sim algumas de tal forma que essa aproximagao é

refinada para uma determinada precisao.

O método de poténcias faz parte da classe dos métodos iterativos. Esse algoritmo

parte da escolha arbitraria de um vetor Ug e produz uma sequéncia de vetores Ui definida por:

Us=AUc , k=0,1,2, .. (43)



44

com U e ¢" e A e ¢™. Se A tem autovalores Ai € € e autovetores Vi € ¢” linearmente
independente tais que |A1| >|A2] >...>|Aq|, pode-se, entdo, representar um vetor arbitrario U

como combinacéo linear dos autovalores, isto é:
— n
Uy = X a;V; (44)

Realizando o seguinte processo Uk+1 = AU iterativo este vetor ira convergir para

Uk = A’f[a1V1 + az(lz/ﬂ1)kv1 + o+ an(ln/}q)kvn] (45)
e dessa forma
lim U = LA S (46)

O autovalor As e o autovetor V1 sdo chamados de dominantes em relacdo a matriz A.

Para evitar instabilidade numérica, redefine-se (43) da seguinte forma normalizada:

Yk+1 = AUk

Vi1
Uiy1 = ——— .k=0,1,2,... (47)
Y k+1lloo
Assim, calculado o autovalor e autovetor dominante, podem-se aplicar deslocamentos

para se conhecer o intervalo que contém os autovalores como sera explicado.

O método de poténcia inversa tem como base o mesmo principio do método anterior,
porém com uma modificagcdo: o0 método consiste em encontrar o autovalor de menor médulo
(An). Se A é o autovalor de A, entdo A7 é autovalor de A™'. Além disso, se A, & o menor autovalor
de A, entdo A," serd o maior autovalor de A'. Entdo, para obter o menor autovalor (em
maodulo) de A, o que fazemos é aplicar o método das poténcias (que calcula o maior autovalor

em modulo) a matriz inversa, A™.

Assim:
Yisq = A'1Uk (48)
Upyp = —X2 1—0.1,2
k+1 — ) YUy 1y &y . (49)
1Y k+1llo
e dessa forma para obtermos A, ”:
A7 = lim X (50)

k—oo Ujq
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Logo, obtemos o autovalor com menor médulo de A. Porém, notemos que na pratica

nao é necessario calcular A", pois:
Yit1 = AU = AYiyq = Uy (51)

e assim resolvemos o sistemas usando a Decomposi¢ao LU (BURDEN e FAIRES, 2008).
Este método é particularmente conveniente pois as matrizes L e U sdo independentes de k e,

portanto, basta obté-las uma unica vez.

Os dois métodos anteriores tem uma caracteristica que € descobrir apenas o autovalor
dominante e inferior. Se A; > A2 = ... 2 A, sdo os autovalores de A, uma propriedade que pode
ser aplicada para encontrar os autovalores intermediarios € a propriedade do deslocamento
(BURDEN e FAIRES; 2008). Assim,

Yi+1= (A - s)Ux (52)
_ Y _
Uyi1= —— .,k=0,1,2,.. (53)
Y k+1ll2

(1]

os autovalores de A sdo deslocados “s” unidades no eixo real.

No método de poténcia e poténcia inversa, quando aplicamos um deslocamento para
encontrar outros autovalores, corremos o risco de obter novamente o autovalor ja calculado.
Para evitar a convergéncia do método para um autovalor ja calculado, aplica-se o processo

de deflagéo implicita por ortonormalizagdo ou através da multiplicagdo por (A - Al).

O primeiro consiste em ortonormalizar o vetor obtido ao final de cada passo com

relacdo aos vetores ja calculados.

A segunda estratégia consiste em multiplicar o vetor obtido, a cada passo, por (A - Ail),
sendo A o autovalor para o qual a convergéncia deve ser inibida. Suponhamos que com o
meétodo das poténcias inversas obtemos o par dominante V1 e As. Aplicando novamente sem
alterar o deslocamento, mas no final de cada passo o vetor obtido sera multiplicado por (A —
Aql). Sendo V4, Va,..., Vh 0s autovetores desta matriz e Uk o vetor de término do passo k, vemos
que (RAMOS; 1999):

A-MD U= Xin @ (4 — 4)Vi = Tl (4 — 4)V; (54)

e pode-se ver que esta sequéncia ira convergir para o autovalor A2 Obtido esse autovalor, o

processo é reiniciado para obter Az,
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A grande maioria das pesquisas em estabilidade a pequenas perturbagbes em
sistemas de poténcia procura calcular autovalores com parte imaginaria diferente de zero e
proximas do eixo imaginario, identificando tais autovalores como modos criticos do sistema
(RAMOS, 1999). O algoritmo de subespacos invariantes toma como base o método de
poténcias, porém vé cada uma das iteracdbes AUx como representante do subespaco
span(AUy).

Aessaideia, se {U(()l), U(()Z), Ugm)} € uma base de U é possivel mostrar que os vetores

AP, akuP, ..., Akul™ formam uma base de A*U.
Dessa forma, o algoritmo final é o seguinte:
1. Calcular ¥ a partirde (A-sh) ¥V =ul,i=1,2, ., m.

2. Ortonormalizar Y,(f) para obter U,(fil, i=1,2,...,m.

Logo, através desses métodos podemos obter os autovalores e autovetores de uma
determinada matriz. Para determinados tipos de matriz (exemplos matrizes esparsas) um
método pode ser mais eficiente que outro, mas esse assunto ndo é abordado nesse projeto.
A avaliagdo da eficiéncia bem como implementagcdes de melhoramento dos métodos de

calculo de autovalores e autovetores, pode ser encontrada em (RAMOS, R. A; 1999).
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4 Técnicas para avaliagao da sensibilidade e limite de variagdes dos

modos de oscilagoes devido a variagao de parametros do sistema

4.1 Teoria da perturbagao

Como ja discutido, as analises de seguranga dindmica em sistemas elétricos de
poténcia requerem a avaliagdo de estabilidade do sistema para um numero grande de
contingéncias. Além disso, sabe-se que no estudo a pequenas perturbagdes o sistema elétrico
€ modelado por meio de equa¢des matriciais resultantes do procedimento de linearizagéo do
modelo ndo linear do sistema em torno de um ponto de operacéo. Porém o grande problema
na analise da estabilidade da rede por meio destas matrizes, deve-se primeiramente ao fato
de que as matrizes de estado que descrevem o sistema apresentam grande dimenséo e
posteriormente ao fato de que pequenas variagdes no ponto de operagéo da rede geram uma
nova matriz de estado. Assim para cada configuragdo é necessario calcular novamente os
autovalores a fim de identificar a estabilidade do sistema, o que demanda um certo tempo e

esforgco computacional.

Dessa maneira esta monografia visa estudar e entender a perturbagcao de matrizes e
os possiveis efeitos que estas variagcbes causam nos autovalores e autovetores, a fim de

encontrar uma margem de estabilidade para o sistema.

Na literatura, encontram-se métodos e estudos que analisam e tentam estimar os
efeitos de perturbagbes sobre os autovalores e autovetores da matriz perturbada. Essas
técnicas fazem parte do assunto Teoria da Perturbagdo (Perturbation Theory) e Sensibilidade

de Autovalores (Eigenvalue Sensitivity).

A teoria da perturbacéo se inicia definindo um problema de autovalores em um espaco
vetorial de dimenséo finita. O problema tipico desta teoria baseia-se na investigagdo dos
autovalores e autovetores de um operador linear T quando este é submetido a uma pequena
perturbacdo. Para lidar com este problema, € conveniente considerar uma familia de

operadores lineares da forma:
T(e) =T+eT’ (55)

em que ¢ é um parametro escalar supostamente pequeno, 7(0) = T é chamado de operador

nao perturbado e €T’ a perturbagao.

Para melhor entendimento deste problema, deve-se ter um bom conhecimento das
propriedades dos autovalores e de subespagos invariantes. Para fins explicativos, toma-se

uma matriz A € ¢™" . Os autovalores dessa matriz sdo as raizes do polinémio caracteristico
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f(A) = det (A - Al) e o conjunto destas raizes é chamado de spectrum denotado por A(A). Duas

propriedades importantes sao:
1) Se A(A) ={A+, Ao, ..., Ag}, entdo o det(A) = Aha...An,
2) Definimos o trago de A como tr(A) = Y-, a;;

Além disso, se A € A(A), entdo o vetor ndo nulo u € ¢, que satisfaz Au = Au, é chamado
autovetor associado ao autovalor A. Além disso, um autovetor define um subespaco
unidimensional que é invariante. Um subespaco S < ¢ tal que para todo x € S tem-se Ax € S

e dito invariante com respeito a A.

Muitos problemas computacionais que envolvem calculos de autovalores sao
resolvidos quebrando o problema em cole¢des de pequenos problemas de autovalores, isto

é, realiza-se a dissociagdo do problema original. Logo, Se T € ¢™" é particionado como,

T = [Tn T;,

] , onde Ty sdo blocos de matrizes.
0 T,

entdo A(T) = A(T11) U A(T22).

Neste sentido, uma teoria que auxilia o estudo dos problemas de perturbacéo é a
chamada decomposicao unitaria basica de (GOLUB; 1996). Através da transformagao por
similaridade, é possivel reduzir o problema em uma das formas canbnicas encontrada na
algebra linear. As formas canénicas diferem na forma como eles exibem informagdes dos
valores préprios e do tipo de subespacos invariantes que elas fornecem. Devido a sua
estabilidade numérica podemos encontrar redugdes que podem ser alcancados com

similaridade unitaria®.

A decomposicdo de Schur € uma das mais importantes decomposicées de matrizes

em outras por similaridade. Segundo o teorema:
Se A € ™", entao existe uma matriz unitaria Q € ¢™", tal que:

Q"AQ=T=D+N (56)

1 Similaridade Unitaria: a propriedade de dois operadores ou matrizes de ser similar via uma matriz
unitaria: A = UBU*, com U unitaria. Qualquer matriz complexa normal é unitariamente similar a uma
matriz complexa diagonal, que é real se, e somente se, a matriz € Hermitiana (": uma matriz transporta
conjugada). Uma matriz real simétrica € real ortogonalmente similar a uma matriz real diagonal.
Exemplo: Teorema de Schur.
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em que D = diag (A4, ..., An) € N € ¢™" é estritamente triangular superior. Além disso, Q pode
ser escolhido de modo que os valores préprios A; aparecem em qualquer ordem ao longo da

diagonal.

Tomando como base a teoria até aqui discutida, podemos, agora, melhor entender os

problemas de perturbagdo de matrizes e sensibilidade de autovalores.

Diversas rotinas de calculo de autovalores realizam uma sequéncia de transformacoes
por similaridade Xi transformando uma matriz A progressivamente em uma “mais diagonal”.
Como ja discutido, uma matriz diagonal possui como autovalores os seus proprios elementos
da diagonal principal. Assim, a questao é saber quao préximos os elementos da diagonal de

uma matriz estdo de seus valores proprios.

A primeira ferramenta tedrica € o importante Teorema dos Discos de Gershgorin
(GOLUB; 1996) (STOER et al.; 1992). Ele decorre da seguinte analise:

Se A é uma matriz complexa n x n, podemos sempre escrever A em X'AX =D + F,
onde D = diag (a1, ... , am) € a matriz diagonal formada pela diagonal principal de A e F
consiste dos elementos restantes de A, possuindo uma diagonal principal nula. O Teorema
de Gershgorin da uma estimativa precisa e simples de calcular os raios destes discos em
fungéo das entradas restantes da matriz A. Denote o disco complexo fechado de centro em

aj e raio R por:
Dr(ay) ={n € C: |p—ayl <R} (57)
e seja yu raiz do polinbmio caracteristico, se,

Ri(4) = Yi-1layjl (58)
j#i
denota a soma dos valores absolutos dos elementos da linha i de A, excetuando o elemento
da diagonal principal, entdo todos os autovalores de A estédo contidos na unido dos n discos
de Gershgorin:

n
A(4) € U Dgicay (a;)
i=1

Além disso, se uma unido de k destes discos forma uma regido que € disjunta dos n—k
discos restantes, entdo existem exatamente k autovalores de A nesta regido. Para melhor

entendimento segue um exemplo dado:
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1 0.1 -01
A=] 0 2 0.4
-02 O 3

Dy ={ulln—-1=02}
D, ={ul ln—2| < 0.4}

Dy ={ul|n—31=<02}

05t E

G
=

At _

Figura 7 - Resultado da implementagéo da Teoria dos Discos apresentada no Anexo C.

A teoria dos discos de Gershgorin foi implementada no Matlab® a partir de um cédigo

disponibilizado no site da Mathworks® e pode ser encontrado no Anexo C.

Desta analise, se considerarmos, agora, Ac =D + ¢F, entdo Ay = D (sendo A, formada
pelos elementos da diagonal principal de A) e A = A =D + F (sendo A; a propria matriz A).
Consequentemente, os autovalores de D s&o ayy, ... , amn, €nquanto que os autovalores de Ae
devem estar localizados nas vizinhangas dos pontos ass, ... , am, desde que ¢ seja

suficientemente pequeno.

Assim, a aplicagdo mais comum desse teorema esta na estimativa dos autovalores de
uma matriz, permitindo o conhecimento mais preciso da localizagdo dos autovalores da matriz

e correspondentemente melhores estimativas para o raio espectral da mesma.
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E muito importante saber que rotinas empregadas no célculo de autovalores buscam
exatiddo nos resultados de matrizes como A + E, onde E denota uma matriz com pequena
norma (uma perturbagdo em A). Consequentemente, ndés devemos entender como os
autovalores da matriz sdo afetados por pequenas perturbagdes. O seguinte teorema de Bauer
— Fike (GOLUB; 1996) e (STOER et al.; 1992) aborda essa questéo.

Se yé um autovalorde A + E € ¢™ e X""AX = D = diag (A4, ..., An), entéo:

. < .
,min |4 —p| < cond(X).|E],

onde | . | denota qualquer norma — p, e cond(X) = || X]|.||X""]|.

Como se pode observar, o condicionamento do problema de autovalores, ou seja, a
sensibilidade dos autovalores, ndo depende do numero de condigdo da matriz A, mas é
controlada pelo fator cond(X) da matriz de transformagéo X. Por esse teorema, verifica-se que
se cond(X) é grande, entdo pequenas mudangas em A podem induzir largas mudangas nos
autovalores. Isso é discutido no livro “Matrix Computations” (GOLUB; 1996, p.322, p.323).

Vale ressaltar que para encontrar a matriz X basta encontrar os autovetores da matriz
original e dessa forma obter com eles a matriz X, ja que XA = LX, onde L é a matriz diagonal

de autovalores e A a matriz original em estudo.

Para facilitar o entendimento do teorema de Bauer-Fike considere o exemplo:

1 2 3 0 0 0
SejaA=|(0 4 5 ]] a matriz ndo perturbadae E=| 0 0 Ol a perturbagéo
0 0 4,00 0001 0 O

aplicada em A.

Entdo, A(A + E) ={1,0001; 4,0582, 3,9427} e cond(X) = 1,3548-10% e |E|, = 102. Logo

o intervalo dado sera _min |A—p| < 13,248
A€ A(A)

A extrema sensibilidade de uma matriz A ndo pode ocorrer se A é normal, isto €, AA”
= A'A. Por outro lado, a ndo normalidade nio se faz necessaria para concluir sobre a
sensibilidade de um autovalor. Na verdade, a ndo normalidade pode ser uma mistura de
autovalores bem e mal condicionados (GOLUB; 1996), isto €, se o algoritmo para encontrar
um autovalor ira obter um valor preciso ou apresentara resultados piores onde o erro cresce
durante os calculos. Por essa razdo, € vantajoso refinar a teoria da perturbagédo para um

autovalor especifico e ndo para todo o espectro.
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Entao, vamos considerar a sensibilidade para um autovalor A de A mediante a uma
pequena perturbagdo A — A + ¢C, € — 0. Limitamos a andlise para um zero simples do

polindmio caracteristico.

Se A é uma raiz simples do polindmio caracteristico da matriz Ann, € x € "
correspondem aos autovalores a direita e a esquerda de A, respectivamente, Ax = Ax, y"A =
Ay, x#0,y#0.

Se C é uma matriz n x n arbitraria, entdo, ha uma funcao A(¢) que é analitica para ¢

suficientemente pequeno ( |g] < &, &> 0), tal que:

yACx

yHx’

A(0) = 14, A(0) =

e A() € um zero simples do polindmio caracteristico A + €¢C. Em verdade, a primeira
aproximacao para o autovalor perturbado é dada por:

yHCx

A(e) = A+ e ——
yHx

Denotando, para a norma Euclidiana || . ||2, por:

yHCx

cogx,y) = ————
Y L,

0 cosseno do angulo entre os autovetores x e y, o precedente resultado implica na seguinte

estimativa:

, lub, (C)
O < o]

em que lub(C) é a norma induzida da matriz C (STOER et al.; 1992).

A sensibilidade de A ira aumentar com o decremento de |cos(X, ¥)|. A discussdo acima
indica que um autovalor simples A de A é relativamente insensivel para perturbagées A — A
+ £C, no sentido que para o correspondente autovalor A(€) de A + €C existe uma constante K
e &> 0tal que [A(g) - A| < K - |¢] para || < €.

Logo, como se pode verificar o tema que envolve a teoria da perturbacdo de matrizes
e analise de sensibilidade de autovalores é bastante complexo por se tratar de um assunto
que ainda estd em discussdao e em desenvolvimento. Varios autores buscam desvendar

métodos pertinentes que possam auxiliar o entendimento desse assunto. Tomando como
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base os critérios disponiveis sobre a teoria da perturbagéo, essa monografia busca estudar a
aplicagdo desses meétodos nas anadlises de seguranga dindmica em sistemas elétricos de

poténcia.

4.2 Medidas de Matrizes

A nogao de medida de matrizes ou matricial € baseada nas propriedades de normas
induzidas e propriedades de espacgo vetorial. Com sua definicdo, pode-se encontrar uma
estimativa para a regido onde se encontram os autovalores conhecendo apenas as partes
reais dos mesmos. Dessa forma é possivel avaliar a estabilidade conhecendo essa regido

desde que ela nao esteja do lado direito do plano real imaginario.

Inicialmente devemos entender o conceito de norma induzida de matrizes. Seja C™" o
conjunto de todas as matrizes nxn com elementos complexos, entdo C™" € um espaco vetorial
no corpo dos complexos se tomarmos as leis da adicdo e multiplicacdo por escalar. Além
disso, para cada matriz A € C™" , ha um correspondente operador linear a de C" definido por
a(x) = Ax,Vx € C™. Assim, ha uma correspondéncia univoca entre matrizes em C™ e
operadores lineares de C" em si mesmo. Em geral, ndo distinguimos entre uma matriz em
C™n e o operador linear correspondente em C". Esta correspondéncia € a motivagéo por tras

do conceito da norma induzida de uma matriz.

Seja || . || uma norma em C". Entdo para cada matriz A € C™, a quantidade ||A]li,

definida por:

[1Ax|| _ _
sup ||Ax|| = sup ||Ax||

xzoxecn |IXI|  jpxi=1 llx||=1

1ai]i =

que é chamada de norma induzida da matriz A correspondente a norma do vetor || . ||.

Esta teoria é discutida em (VIDYASAGAR,M.; 1993) onde podem ser encontrados
mais detalhes do assunto. Em suma, a teoria de matriz induzida pode ser resumida da

seguinte forma:

Norma em C" Norma induzida em C™"
n
[l = max | 1atl,, = max ) lay

n n
I, =) 1All,, = max }  ay
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1/2 1
| |A] |i2 = [Amatx(AHA)]2

etl, = (37 bxl?)

Com esse conceito, discute-se a andlise de medidas de matrizes. Seja || . ||i uma norma

induzida em C™", entdo a correspondente medida matricial € a fungéo u(.):C™ —R definido

por:
I +eal] -1
K= T
A medida matricial y(A) pode ser entendida como uma derivada direcional da norma
induzida || . || , isto &, avalia a matriz identidade na direcdo de A. A funcdo de medida tem

varias propriedades uteis, como mostrado em seguida (VIDYASAGAR,M., 1993):

Se || . ||i € uma norma induzida em C™" e y(.) corresponde a medida matricial, entdo

H(.) tem as seguintes propriedades:
(M1) Para cada A € C™" o limite existe e € bem definido.
(M2) -[|A[li = p(A) < ||Al]i, VA € CT™7.
(M3) p(aA)=a py(A), Va = 0,VA € C™™"
(M4) max{ 4(A) - B(-B), H(B) - U(-A)}< H(A+B)< p(A)+ p(B), VA, B € C™™

(M5) p(.) é uma fungdo convexa, isto é, y [ aA+(1-a)B] < ap(A) + (1-a)u(B),
Vael[0,1],VA, B € C™".

(M6) Se A é um autovalor de A € C™", entéo - p(-A)< Re A< p(A).

A propriedade (M6) oferece uma estimativa para a regido onde estdo os autovalores

de uma matriz. Em suma, temos:

Norma em C" Medida matricial em C™"
n
[xl]eo = max | peo(4) = max(a + ) ay))
ji
n n
|lxl], = Z |;| 1 (A) = max(a;; +z_ aiil)
i=1 J L#]

1/2

||x||2 = (zzllxiP) ta(A) = [Amax(AH + A)/Z]
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Com essas definicbes, podemos encontrar uma estimativa para a parte real dos

autovalores como pode-se observar no exemplo seguinte:

-6 2 1 6 -2 -1
Sejad=| 0 -1 2|eportanto—A=| 0 1 —2| utilizando a teoria de medida
1 3 0 -1 -3 0

matricial calcula-se:
Paraj=1, mi(A)=-6+(1+0)=-5, l(-A) =6+ (-1|+0)=7.
Paraj =2, pi(A) =-1+(2+3)=4 u(-A)=1+(-2| +|-3]) = 6.
Paraj=3, y1(A)=0+(2+1)=3, y1(-A) =0+ (|-2| + |-1]) = 3.
Portanto os maximos s&o: pyi(A) =4 e pi(-A) = 7.
Parai=1, uy-(A)=-6+ (2+ 1) =4; y-(-A) =6 + (|-2| + |-1]) = 9.

Parai=2, u=(A) =-1+(2+0)=1; y=(-A) =1 + (|0] + |-2|)

3.
Parai=3, yo(A)=0+ (1 +3)=4; y-(-A) =0 + (]-1]| + |-3]) = 4.
Portanto os maximos séo: p«(A) = 4, p«(-A) = 9.

Agora usando a propriedade (M6) para estimar a parcela real dos autovalores de A,
obtém-se: -7 < Re A £ 4, para a medida pi; € -9 < Re A\ < 4, para a Medida u~. Agora,
calculando-se os autovalores exatos de A (A = {-6,0426; -3,1271; 2,1698}) pode-se provar que

a estimativa [-7 ; 4] é satisfatoria.

Vale ressaltar que se fosse aplicado a medida 2 seria encontrado um intervalo mais

preciso, porém o esforgo computacional seria maior.
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5 Desenvolvimento

5.1 Sistema exemplo para analise inicial

Seguindo o equacionamento matematico a respeito da anadlise dos sistemas elétricos
de poténcia a pequenas perturbagdes que foram desenvolvidas no capitulo 2, foi previamente
investigado um caso exemplo de um circuito IEEE 9 barras e 3 geradores conforme a Figura

18 kv 230 kv = ledC v 13.8 kV
j0.0625
l 0.0085 + 0,072 0.0119 + j0. 1008 3 ‘?“ |
: V2 = j0.0745 .
é'a”g’ 3 s mm.a
@ == Ble @
i s
o L] —
L] 8|
o ig

O,
©

g g
ladA 2|8 S, Loads
g n h n

S 230kv = So

n
-
S8
:! —
6.5k ==

Figura 8 - Circuito teste padréo IEEE 9 barras e 3 geradores. (Fonte: ANDERSON,P.M. e FOUAD,
A.A.; 2003).

Agora como apresentado em (ANDERSON e FOUAD; 2003), pp. 63-64, exemplo 3.2,
vamos considerar o sistema de 3 maquinas e 9 barras previamente num estado de operagao
de equilibrio como apresentado pela Figura 8. Uma pequena carga de 10 MVA (cerca de 3%
da carga total do sistema de 315 MW) é subitamente adicionada a barra 8 por adicdo de uma
falta trifasica para a barra 8 através da adicdo de uma impedancia de 10,0 p.u. Agora
admitindo como poténcia base 100 MVA e assumindo que a carga do sistema depois da
perturbagéo € constante e igual a carga original mais a resisténcia 10 p.u., desenvolveremos

0 problema.
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O circuito da Figura 8 contém 3 barras com geradores classicos sem regulagéo, sendo
escolhido um para ser a referéncia angular do sistema. Dessa maneira, adotou-se o gerador
de numero 3 como referéncia a fim de facilitar a montagem da matriz de estados do circuito,

para o calculo dos modos de oscilagao (autovalores).

Os dados dos geradores sao apresentados na Tabela 1 e as caracteristicas das linhas

sdo dadas na Tabela 2.

Tabela 1 - Dados dos Geradores.

Gerador 1 2 3

Potencia Nominal (MVA) 2475 192,0 128,0
Tensao (kV) 16,5 18,0 13,8

Fator de Poténcia (pu) 1,0 0,85 0,85
Xa (pu) 0,1460 0,8958 1,3125
X’a (pu) 0,0608 0,1198 0,1813
Xq (pu) 0,0969 0,8645 1,2578

X’q (pu) 0,0969 0,1969 0,25

T'40 (S) 8,96 6,00 5,89

T'q0(S) 0 0,535 0,600

Energia Armazenada a Velocidade 2364 MW-s 640 MW-s 301 MW-s

Nominal
Tabela 2 - Dados da rede.
Impedancia Admitancia
BarraN°
R (p.u.) X (p.u.) G (p.u.) B (p.u.)
Transformador*
N°1 1-4 0 0,1184

N°2 2-7 0 0,1823
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N°3

Linha

Admitancia
Shunt +

Carga A
Carga B

CargaC

3-9

4-5

5-7

6-9

7-8

5-0

6-0

8-0

4-0

7-0

9-0

0,0100
0,0170
0,0320
0,0390
0,0085

0,0119

0,2399

0,0850
0,0920
0,1610
0,1700
0,0720

0,1008

1,261
0,8777

0,9690

-0,2634
-0,0356
-0,1601
0,1670
0,2275

0,2835

* Dados da impedéancia do transformador adicionada a xX'y.
+A susceptancia da linha foi adicionada a admitancia da carga.

O circuito se encontra em um estado de operagao estavel, satisfazendo o fluxo de

poténcia descrita pelas equagbes (7) e (8) do capitulo 2. Dessa maneira, sdo conhecidas as

condicdes de tensdo e angulo sobre cada barra. A Figura 9 apresenta esses dados.
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Figura 9 - Sistema no seu estado de operacao (todos os fluxos em p.u.). (Fonte: ANDERSON, P.M. e

FOUAD, A.A.; 2003).

Seguindo o raciocinio enunciado no capitulo 2, esse sistema teste foi implementado
utilizando o software MATLAB®. A partir da solugao da matriz de estado obtida pela
linearizagéo das equagdes elétricas e mecanicas, obtivemos os seguintes modos de oscilagao

para o estado de operacao indicado na Figura 9, dados na Tabela 3.

Tabela 3 - Modos de oscilagéo do sistema de 9 barras 3 geradores.

Resultado

Autovalor 1 e 2 Autovalor3 e 4

A

+13,360j +8,689j

Fica evidente que os autovalores do sistema estdo sobre o eixo imaginario. Segundo

o critério de estabilidade enunciada no capitulo 3, os autovalores estdo em condi¢des de

estabilidade critica, isto é, qualquer perturbacdo capaz de deslocar os autovalores para a

parte positiva do eixo real, cria, sobre o sistema, um efeito de oscilagdo ndo amortecida. Esse

estado pode ser considerado um estado de inseguranga do sistema.
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Para avaliar o comportamento do sistema representado pela Figura 8 mediante uma
perturbagdo aplicada sobre as cargas, realizaram-se alguns testes sobre a carga A.
Perturbou-se o sistema de -30% a 30% na poténcia da carga A e calcularam-se os autovalores

do sistema. A Tabela 4 resume estes dados.

Tabela 4 - Autovalores do sistema para algumas perturbagdes sobre a carga A.

Variagao P. Q.
Simulagao % na Autovalores 1 e 2 Autovalores 3 e 4
Carga A (pu)  (pu)

1 -30 0,875 0,35 +j13,348 1j8,676
2 -20 1 0,4 1j13,352 1j8,681
3 -10 1,125 0,45 *j13,356 18,686
Original 0 1,25 0,5 1j13,360 1j8,689
5 10 1,375 0,55 *j13,364 18,692
6 20 1,5 0,6 1j13,368 1j8,693
7 30 1,625 0,65 +j13,372 18,692

Observando-se a Tabela 4, vemos que pela existéncia de geradores classicos néo
regulados e sem amortecimento, no sistema em estudo, aparecem apenas autovalores
puramente imaginarios. Dessa forma, qualquer perturbagao aplicada em uma das cargas faz
com que os autovalores do sistema caminhem sobre o eixo imaginario, mantendo sua parcela
real nula. Com a simulagéo, pode-se verificar este fato e concluir que serdo necessarios a
aplicagdo de controladores AVR no sistema a fim de aparecerem autovalores com parcela
real e imaginaria para que possam ser realizadas as analises de perturbacéo e avaliagbes de

limites de estabilidade.

A teoria sobre esses tipos de geradores regulados pode ser encontrado no capitulo 2.
Com objetivo de se obter uma analise mais realistica e efetiva dos dados, além de utilizar um
novo tipo de modelo de gerador no sistema, bem como inserir os reguladores AVR, sera
estudado um novo sistema teste composto por 11 barras e 4 geradores (2 areas) e que pode

ser encontrado com mais detalhes no livro (KUNDUR, P.; 1994).
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5.2 Analise aplicada em um sistema de 2 areas (11 barras 4 geradores)

Para a avaliagdo mais pratica e obtengao de resultados mais realisticos, sera estudado

uma rede um pouco mais complexa, dotada de 11 barras e 4 geradores representada pela

Figura 10. Esta rede é a padrdo 2 areas dotada de 11 barras e 4 Geradores, cuja

caracteristica principal é determinada pela simetria entre essas duas areas existentes.

Transformador1

1 5 6

~l

Transformador3

9 10 1 3

@_l_@l 1

L | @J_@

Gerador3

Gerador1 F%

Transformador2

i iﬁn}-l

(2]

9
a8 Transformadord

2 4

Gerador2 Geradord

Figura 10 - Sistema duas areas.

Para esta rede, os parametros de todas as linhas de transmiss&o sao r = 0,0001pu/km,
xi = 0,001 pu/km e b; = 0,00175 pu/km, nas bases de 100MVA e 230 kV. As linhas sao
representadas no modelo 1T e os detalhes podem ser encontrados na Tabela 5.

Tabela 5 - Dados da linha de transmisséo.

Ceaida chegada  lm . ROA X SAEERRN
5 6 25 0,25 25 4,3750
6 7 10 0,10 1,0 1,7500
7 8 110 1,10 11,0 19,2500
7 8 110 1,10 11,0 19,2500
8 9 110 1,10 11,0 19,2500
8 9 110 1,10 11,0 19,2500
9 10 10 0,1 10 1,7500

10 11 25 0,25 2,5 4,3750
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Cada transformador elevador tem impedancia de j0,15 pu na base de 900MVA e

20/230 kV. O sistema é dotado de 4 geradores, 2 cargas e 2 bancos de capacitores. Os dados

sdo:
G1: P =700 MW; Q = 185; Et = 1.03 angulo 20.1°; H = 6.5 MW.s/MVA.
G2: P =700 MW; Q = 234.6; Et = 1.01 angulo 20.1°; H = 6.5 MW.s/MVA.
G3: P=719.1 MW; Q =176; Et = 1.03 &ngulo 20.1°; H = 6.175 MW.s/MVA. (referéncia)
G4: P =700 MW; Q = 202; Et = 1.01 angulo 20.1°; H = 6.175 MW.s/MVA.
Barra 7 (Carga A): Pioag:967Mw; Qroas: 100 MVar; Qshunt: 200MVar.
Barra 9 (Carga B): Pioag:1767Mw; Qroad: 100 MVar; Qshunt: 350MVar.
Para cada gerador, temos os parametros presentes na Tabela 6.

Tabela 6 - Parametros dos geradores (Fonte: KUNDUR,P.;1994).

Parametros
Valor Unidade
Descrigcao Simbolo
Poténcia nominal aparente - 900 MVA
Constante de tempo transitoéria de T 8.0 s
circuito aberto do eixo d a0 ’
Constante de tempo sub - transitoria ”
de circuito aberto do eixo d Tao 0,03 s
Constante de tempo transitoria de T 0.4 s
circuito aberto do eixo q a0 ’
Constante de tempo Sub - transitoria »
de circuito aberto do eixo q T 0.05 s
Inércia H Informado iy o /mvA
anteriormente
Coeficiente de amortecimento D 0 pu
Reatancia Sincrona eixo d X4 1,8 pu
Reatancia Sincrona eixo q Xq 1,7 pu
Reatancia transitéria eixo d Xy 0,3 pu

Reatancia transitéria eixo q Xaq 0,55 pu
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Reatancia sub-transitoria Xd" = X" 0,25 pu

Reatéancia de dispersao X 0,20 pu
Parametro A de saturagao A 0,015 -
Parametro B de saturagao B 9,6 -
Parametro C de saturagao C 0,9 -

Além desses parametros, como ja observado pelos resultados do sistema 9 barras e
3 geradores, com o objetivo de encontrar autovalores que n&o estejam sobre o eixo
imaginario, sera inserido um controlador como descrito no capitulo 2, transformando os
geradores classicos em geradores regulados (AVR). Realizando-se essas alteragbes serao
avaliados os autovalores e as matrizes de estado do sistema. Vale ressaltar que a Tabela 6
apresenta todos os paradmetros que descrevem os geradores de ordem superior, porém serao
utilizadas somente aqueles parametros que participam da formulagdo do modelo de 4% ordem

do gerador como apresentado no capitulo 2.

Para avaliar a estabilidade da rede, ser&o utilizados 2 programas disponibilizados pela
CEPEL (o ANAREDE e o PACDYN) que sao encarregados de avaliar o fluxo de carga de um

sistema e avaliar o estado dindmico da rede, respectivamente.

O ANAREDE é um programa computacional utilizado no Brasil para o desenvolvimento
de estudos em regime permanente em Sistemas Elétricos de Poténcia. Com ele pode-se obter
dados de fluxo de poténcia, equivalente de redes, pode-se analisar contingéncias bem como
sensibilidade de tensdo e de fluxo entre outras anadlises. O programa tem como objetivo o
calculo do estado da rede elétrica a partir de dados de entradas definidos pelo usuario
(condicao de carga, geragao, dados das linhas e barras). Para solucionar a avaliagao do fluxo
de poténcia, o programa dispde de 3 métodos: Desacoplado Rapido, de Newton ou o

Linearizado.

Ja o PACDYN é um programa voltado a analise e ao controle de oscilagdes resultantes
de pequenas perturbagdes em sistemas elétricos de grande porte. Os estudos realizados pelo
programa permitem a identificagdo da natureza das oscilagbes crescentes, ou pouco
amortecidas, e o ajuste dos diversos controladores para aumento dos seus amortecimentos.
Através desse programa, podem-se obter os autovalores do sistema segundo os
controladores inseridos no codigo de entrada e os paradmetros conhecidos dos geradores do
sistema. Além disso, podemos obter a matriz de estados que sera bem util nesta monografia

para avaliagdo do comportamento da mesma mediante variagao na carga do sistema.
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A partir do uso desses programas podemos obter os autovalores do sistema, bem
como as matrizes de estados no formato descrito no capitulo 2. Com esses resultados
podemos investigar os limites de estabilidade do sistema segundo uma dada variagdo na

carga.

5.3 Resultados do sistema de duas areas

5.3.1 Simulagao do fluxo de carga

Primeiramente, realizou-se o fluxo de carga do sistema para obter todos os dados de
tensdo e angulo das barras do sistema, bem como o fluxo de poténcia do circuito (utilizando-
se as equacgoes de multimaquinas apresentadas no capitulo 2). Usufruindo-se do ANAREDE,
obtemos os seguintes dados de simulagao para o fluxo de carga da situagéo original, isto é,
sem aplicar qualquer perturbacéo no sistema. A Tabela 7 mostra esses dados. O arquivo de
saida do programa que mostra o fluxo de poténcia do sistema de duas areas pode ser

encontrado no Anexo D.

Tabela 7 - Resultados da simulagéo do Fluxo de carga.

Nieroda  Nemeds gpsely  TEOU Tansao) Ao
1 Gerad-01-- 20,0 PV 1,030 20,1
2 Gerad-02-- 20,0 PV 1,010 10,3
3 Gerad-03-- 20,0 Swing 1,030 -7,0
4 Gerad-04-- 20,0 PV 1,010 -17,2
5 Barra01 230,0 PQ 1,006 13,6
6 Barra02 230,0 PQ 0,978 3,5
7 Barra03 230,0 PQ 0,961 -4,9
8 Barra04 230,0 PQ 0,949 -18,8
9 Barra05 230,0 PQ 0,971 -32,3
10 Barra06 230,0 PQ 0,983 -23,9

11 Barra07 230,0 PQ 1,008 -13,6
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Para determinar o comportamento dos autovalores do sistema em estudo, realizou-se
uma perturbagao sobre a carga A isoladamente, isto &, alterou-se a poténcia da carga A (Barra
7) mantendo-se constante o valor da carga B a fim de simular pequenas perturbagdes na rede.
Para uma primeira analise realizaram-se 8 alteragées conforme mostradas na Tabela 8.
Dessa forma, realizaram-se 9 simulagdes de fluxo de carga (incluindo a situagéo original) para
obter o estado do circuito sobre esta situagdo de perturbagdo. Os resultados dessas

simulagées podem ser encontrados no Anexo E.

Tabela 8 - Perturbagdes iniciais realizadas sobre as cargas.

Carga A (Poténcia Carga A (Poténcia

Situagdo Variagdo % Ativa kW) Reativa kVar)

1 20 773,60 80,00

2 15 821,95 85,00

3 10 870,30 90,00

4 5 918,65 95,00
Original 0 967,00 100,00

6 5 1015,35 105,00

7 10 1063,70 110,00

8 15 1112,05 115,00

9 20 1160,40 120,00

A partir dos dados das simulagbes sera possivel realizar o controle de tenséo
inserindo-se os reguladores AVR (capitulo 2) nos geradores, fazendo com que este
mantenha-se dentro da faixa de tens&o operacional do sistema. Através do programa
PACDYN foi possivel simular um sistema n-barras com geradores regulados, a fim de obter
os autovalores e matrizes de estados do sistema para realizar as analises do comportamento
deles sobre o eixo Real x Imaginario. Nos itens seguintes, serdo avaliadas as matrizes de
estados de cada situagdo e posteriormente sera avaliada uma situagéo critica estimando a

perturbagéo que levaria o circuito a instabilidade.

5.3.2 Autovalores do sistema exemplo e seu comportamento — Resultados do
PACDYN

Os primeiros passos para a determinagao dos autovalores do sistema € a simulagéo
do fluxo de carga do sistema como realizado no item anterior. A partir disso, utilizaremos o

programa PACDYN para a determinagédo do estado dinamico da rede inserindo o regulador
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AVR como descrito no capitulo 2. No cartdo de entrada do programa sao inseridos os dados
das maquinas presentes na Tabela 6, além dos dados do regulador. O regulador foi
determinado a partir de exemplos disponiveis em (KUNDUR, P; 1994), e o modelo de 12
ordem foi adotado. O ajuste do ganho K, do regulador foi realizado de modo que permitisse o
sistema flutuar entre a zona de estabilidade e instabilidade. Dessa forma, foram realizados
varios estudos de ganhos e concluiu-se que para ganhos elevados como por exemplo Ka igual
a 50, 100, 200, ou valores superiores, 0 amortecimento do sistema ndo ocorre de forma
adequada deixando a rede instavel para qualquer situagdo de carga. Porém, executando os
estudos para valores de ganho K, mais baixos, verificou-se que a rede esta dentro da
estabilidade em certas condigbes de carga, porém pequenas perturbagdes podem fazer com
que o sistema entre na instabilidade, sendo este o objetivo da investigagdo. Esta ultima analise

sera mais bem detalhada e sera base do estudo de perturbagéo.

A Tabela 9 resume os dados do AVR inserido no programa de PACDYN criado e que

pode ser encontrado no Anexo F.

Tabela 9 - Variaveis do AVR.

Parametros Valores
Tr 0,01
Ka 10

Agora, contendo os dados dos geradores presentes na Tabela 6, do regulador AVR
(Tabela 9) e do fluxo de poténcia para cada situagdo de carga (arquivo de saida do
ANAREDE) pode-se realizar a simulagado dindmica do sistema. A simulagéo foi realizada
mantendo constante a geragao e alterando apenas o valor da carga isoladamente. Os testes
foram realizados alterando a carga A da rede em estudo, a fim de avaliar o comportamento

dos autovalores do sistema.

Para o sistema base, foram encontrados os dados presentes na Tabela 10. Vale
ressaltar algumas informagdes para os seguintes autovalores: 1 e 2 sdo relativamente nulos
e apareceram devido a referéncia angular do sistema, 3 e 4 sdo os modos inter area, 5 e 6

apresentam os modos locais na area 1 e os autovalores 7 e 8 os modos locais na area 2.
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Tabela 10 - Arquivo de saida do PACDYN do sistema base.

Situagao de Carga: Original

Autovalores Parte Real Parte Imaginaria Freq. (Hz) Damp(%) Part. Factor

1 7,26E-12 3,59E-06 5,72E-07  -0,0002 WW Gerad-02-- # 2
2 7,26E-12 -3,59E-06 -5,72E-07  -0,0002

3 -0,04982 3,4252 0,5451 1,4544 WW  Gerad-03-- # 3
4 -0,04982 -3,4252 -0,5451 1,4544

5 -0,1606 6,2942 1,0018 2,5501 DELT Gerad-02-- # 2
6 -0,1606 -6,2942 -1,0018 2,5501

7 -0,1678 6,51 1,0361 25771 WW Gerad-04-- # 4
8 -0,1678 -6,51 -1,0361 2,5771

9 -99,556 0. 0. 100 x 0005 AVR3 # 3
10 -99,545 0. 0. 100 x 0005 AVR1 # 1
11 -99,041 0. 0. 100 x 0005 AVR2 # 2
12 -98,638 0. 0. 100 x 0005 AVR4 # 4
13 -1,5906 0. 0. 100 EQ" Gerad-02-- # 2
14 -1,1562 0. 0. 100 EQ Gerad-03- # 3
15 -0,5876 0. 0. 100 EQ" Gerad-01-- # 1
16 -0,5673 0. 0. 100 EQ' Gerad-04-- # 4

A Tabela 11 resume os autovalores encontrados para cada situagcdo de carga,

mostrando também o estado com maior participagdo naquele modo, frequéncia e o damping.

Tabela 11 - Arquivo de saida do PACDYN do sistema para cada situagéo de carga.

Situagao de Carga: 1 (-20% de Perturbagao sobre a Poténcia da Carga A)

Autovalores Parte Real Parte Imaginaria Freq. (Hz) Damp(%) Part. Factor
1 4,57E-08 0,00007 0,00001 -0,06489 WW  Gerad-01-- # 1
2 4,57E-08 -0,00007 -0,00001  -0,06489
3 -0,04072 3,0376 0,4835 1,3405 DELT Gerad-03-- # 3
4 -0,04072 -3,0376 -0,4835 1,3405
5 -0,1449 6,2229 0,9904 2,3277 WW  Gerad-02-- # 2
6 -0,1449 -6,2229 -0,9904 2,3277
7 -0,1674 6,3185 1,0056 2,6485 DELT Gerad-04-- # 4
8 -0,1674 -6,3185 -1,0056 2,6485
9 -99,533 0. 0. 100 x 0005 AVR4 # 4
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10 -99,524 0 0 100 x 0005 AVR1 # 1
11 -98,971 0 0 100 x 0005 AVR2 # 2
12 -98,696 0 0 100 x 0005 AVR4 # 4
13 -1,5819 0 0 100 EQ" Gerad-02-- # 2
14 -1,1742 0 0 100 EQ Gerad-03-- # 3
15 -0,6305 0 0 100 EQ" Gerad-01-- # 1
16 -0,6102 0. 0. 100 EQ Gerad-04-- # 4

Situagao de Carga: 2 (-15% de Perturbagao sobre a Poténcia da Carga A)

Autovalores Parte Real Parte Imaginaria Freq. (Hz) Damp(%) Part. Factor
1 2,02E-09 0,00004 5,88E-06 -0,00546 WW Gerad-01-- # 1
2 2,02E-09 -0,00004 -5,88E-06 -0,00546
3 -0,04854 3,1944 0,5084 1,5192 DELT Gerad-03- # 3
4 -0,04854 -3,1944 -0,5084 1,5192
5 -0,1503 6,2467 0,9942 2,4061 WW Gerad-02-- # 2
6 -0,1503 -6,2467 -0,9942 2,4061
7 -0,1725 6,3891 1,0169 2,6983 DELT Gerad-04-- # 4
8 -0,1725 -6,3891 -1,0169 2,6983
9 -99,54 0. 0. 100 x 0005 AVR4 # 4
10 -99,531 0 0 100 x 0005 AVR1 # 1
11 -98,993 0 0 100 x 0005 AVR2 # 2
12 -98,673 0 0 100 x 0005 AVR4 # 4
13 -1,5856 0 0 100 EQ" Gerad-02-- # 2
14 -1,1561 0 0 100 EQ Gerad-03-- # 3
15 -0,6153 0. 0. 100 EQ" Gerad-01-- # 1
16 -0,5911 0. 0. 100 EQ Gerad-04-- # 4
Situagao de Carga: 3 (-10% de Perturbacao sobre a Poténcia da Carga A)
Autovalores Parte Real Parte Imaginaria Freq. (Hz) Damp(%) Part. Factor
1 1,74E-10 0,00001 2,32E-06  -0,0012 WW Gerad-01-- # 1
2 1,74E-10 -0,00001 -2,32E-06  -0,0012
3 -0,05224 3,3032 0,5257 1,5814 WW Gerad-03-- # 3
4 -0,05224 -3,3032 -0,5257 1,5814
5 -0,1546 6,266 0,9973 2,4668 WW Gerad-02-- # 2
6 -0,1546 -6,266 -0,9973 2,4668
7 -0,1738 6,4454 1,0258 2,6959 DELT Gerad-04-- # 4
8 -0,1738 -6,4454 -1,0258 2,6959
9 -99,547 0. 0. 100 x 0005 AVR4 # 4
10 -99,537 0. 0. 100 x 0005 AVR1 # 1
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11 -99,012 0. 0. 100 x 0005 AVR2 # 2

12 -98,657 0. 0. 100 x 0005 AVR4 # 4

13 -1,5874 0. 0. 100 EQ" Gerad-02-- # 2

14 -1,1485 0. 0. 100 EQ Gerad-03-- # 3

15 -0,6037 0. 0. 100 EQ Gerad-01-- # 1

16 -0,5784 0. 0. 100 EQ Gerad-04-- # 4

Situacao de Carga: 4 (-5% de Perturbagao sobre a Poténcia da Carga A)

Autovalores Parte Real Parte Imaginaria Freq. (Hz) Damp(%) Part. Factor

1 2,73E-11 6,64E-06 1,06E-06  -0,00041 DELT Gerad-02-- # 2

2 2,73E-11 -6,64E-06 -1,06E-06  -0,00041

3 -0,05256 3,3777 0,5376 1,55659 WW Gerad-03-- # 3

4 -0,05256 -3,3777 -0,5376 1,5559

5 -0,158 6,2817 0,9998 2,5139 DELT Gerad-02-- # 2

6 -0,158 -6,2817 -0,9998 2,5139

7 -0,1721 6,4858 1,0322 2,6533 DELT Gerad-04-- # 4

8 -0,1721 -6,4858 -1,0322 2,6533

9 -99,552 0. 0. 100 x 0005 AVR3 # 3

10 -99,541 0. 0. 100 x 0005 AVR1 # 1

11 -99,028 0. 0. 100 x 0005 AVR2 # 2

12 -98,645 0. 0. 100 x 0005 AVR4 # 4

13 -1,5887 0. 0. 100 EQ Gerad-02-- # 2

14 -1,1491 0. 0. 100 EQ Gerad-03-- # 3

15 -0,5946 0. 0. 100 EQ Gerad-01-- # 1

16 -0,5707 0. 0. 100 EQ Gerad-04-- # 4

Situacao de Carga: 6 (+5% de Perturbagao sobre a Poténcia da Carga A)

Autovalores Parte Real Parte Imaginaria Freq. (Hz) Damp(%) Part. Factor

1 3,70E-12 2,34E-06 3,73E-07 -0,00016 WW Gerad-02-- # 2

2 3,70E-12 -2,34E-06 -3,73E-07 -0,00016

3 -0,0442 3,4494 0,549 1,2812 WW Gerad-03-- # 3

4 -0,0442 -3,4494 -0,549 1,2812

5 -0,1613 6,5183 1,0374 2,4731 DELT Gerad-04-- # 4

6 -0,1613 -6,5183 -1,0374 2,4731

7 -0,1625 6,3037 1,0033 2,5767 DELT Gerad-02-- # 2

8 -0,1625 -6,3037 -1,0033 2,5767

9 -99,558 0. 0. 100 x 0005 AVR3 # 3

10 -99,547 0. 0. 100 x 0005 AVR1 # 1

11 -99,052 0. 0. 100 x 0005 AVR2 # 2
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12 -98,635 0. 0. 100 x 0005 AVR4 # 4

13 -1,5943 0. 0. 100 EQ" Gerad-02-- # 2

14 -1,1683 0. 0. 100 EQ Gerad-03-- # 3

15 -0,5823 0. 0. 100 EQ Gerad-01-- # 1

16 -0,5675 0. 0. 100 EQ Gerad-04-- # 4

Situacao de Carga: 7 (+10% de Perturbacao sobre a Poténcia da Carga A)

Autovalores Parte Real Parte Imaginaria Freq. (Hz) Damp(%) Part. Factor

1 2,20E-12 1,88E-06 2,99E-07 -0,00012 WW Gerad-02-- # 2

2 2,20E-12 -1,88E-06 -2,99E-07 -0,00012

3 -0,03564 3,4531 0,5496 1,0322 DELT Gerad-03-- # 3

4 -0,03564 -3,4531 -0,5496 1,0322

5 -0,1527 6,5119 1,0364 2,3444 WW Gerad-04-- # 4

6 -0,1527 -6,5119 -1,0364 2,3444

7 -0,1638 6,3103 1,0043 2,5947 DELT Gerad-02-- # 2

8 -0,1638 -6,3103 -1,0043 2,5947

9 -99,558 0. 0. 100 x 0005 AVR3 # 3

10 -99,549 0. 0. 100 x 0005 AVR1 # 1

11 -99,06 0. 0. 100 x 0005 AVR2 # 2

12 -98,635 0. 0. 100 x 0005 AVR4 # 4

13 -1,6009 0. 0. 100 EQ'" Gerad-02-- # 2

14 -1,1842 0. 0. 100 EQ Gerad-03-- # 3

15 -0,5784 0. 0. 100 EQ" Gerad-01-- # 1

16 -0,5711 0. 0. 100 EQ'" Gerad-04-- # 4

Situacao de Carga: 8 (+15% de Perturbacao sobre a Poténcia da Carga A)

Autovalores Parte Real Parte Imaginaria Freq. (Hz) Damp(%) Part. Factor

1 -1,76E-12 1,84E-06 2,94E-07 0,0001 WW Gerad-02-- # 2

2 -1,76E-12 -1,84E-06 -2,94E-07  0,0001

3 -0,02373 3,4372 0,5471 0,6905 DELT Gerad-03-- # 3

4 -0,02373 -3,4372 -0,5471 0,6905

5 -0,1423 6,4913 1,0331 2,1917 DELT Gerad-04-- # 4

6 -0,1423 -6,4913 -1,0331 2,1917

7 -0,1645 6,3144 1,005 2,6041 WW Gerad-02-- # 2

8 -0,1645 -6,3144 -1,005 2,6041

9 -0,5769 0,00188 0,0003 99,999 EQ" Gerad-04-- # 4

10 -0,5769 -0,00188 -0,0003 99,999

11 -99,557 0. 0. 100 x 0005 AVR3 # 3

12 -99,55 0. 0. 100 x 0005 AVR1 # 1
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13 -99,067 0. 0. 100 x 0005 AVR4 # 4
14 -98,639 0. 0. 100 x 0005 AVR4 # 4
15 -1,612 0. 0. 100 EQ" Gerad-02-- # 2
16 -1,2034 0. 0. 100 EQ Gerad-03-- # 3
Situacao de Carga: 9 (+20% de Perturbagao sobre a Poténcia da Carga A)
Autovalores Parte Real Parte Imaginaria Freq. (Hz) Damp(%) Part. Factor

1 -1,90E-12 2,14E-06 3,41E-07  0,00009 DELT Gerad-02-- # 2
2 -1,90E-12 -2,14E-06 -3,41E-07  0,00009

3 -0,00873 3,4033 0,5416 0,2564 DELT Gerad-03-- # 3
4 -0,00873 -3,4033 -0,5416 0,2564

5 -0,1309 6,4588 1,028 2,0266 DELT Gerad-04-- # 4
6 -0,1309 -6,4588 -1,028 2,0266

7 -0,1643 6,3156 1,0052 2,6013 DELT Gerad-02-- # 2
8 -0,1643 -6,3156 -1,0052 2,6013

9 -99,554 0. 0. 100 x 0005 AVR3 # 3
10 -99,551 0. 0. 100 x 0005 AVR1 # 1
11 -99,072 0. 0. 100 x 0005 AVR4 # 4
12 -98,645 0. 0. 100 x 0005 AVR4 # 4
13 -1,6284 0. 0. 100 EQ Gerad-02-- # 2
14 -1,2236 0. 0. 100 EQ Gerad-03-- # 3
15 -0,5863 0. 0. 100 EQ" Gerad-04-- # 4
16 -0,576 0. 0. 100 EQ" Gerad-02-- # 2

Algumas conclusdes a respeito das Tabelas 10 e 11:

1) Como esperado foram obtidos 16 autovalores, pois existem 4 variaveis de estado para

2)

cada gerador. Como ja descrito pelo equacionamento matricial no capitulo 2, onde a

matriz de estado para um gerador € 4x4.

Existem autovalores praticamente nulos. Isso se deve a referéncia angular do sistema.

Além disso, pode-se observar que ele ndo se movimenta relativamente a ponto de

perder a estabilidade, isto &, ele fica praticamente fixo sobre a origem. No PacDyn

estes autovalores indicam quem é a referéncia angular do sistema.

O sistema com a inser¢éo do regulador AVR apresenta autovalores tanto puramente

reais quanto mistos.
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4) Em todas as situa¢cdes os modos eletromecanicos estdo com amortecimento abaixo
de 5%.

Como ja enunciado, a estabilidade do sistema é dada a partir da parcela real dos
autovalores. Para uma melhor analise do comportamento dos autovalores, foram realizados
a construgao de graficos das parcelas reais dos autovalores para cada situagao (%) de carga
alterada. A Tabela 12 organiza alguns dados para a construgédo dos graficos das Figuras 11
a17.

Tabela 12 - Parte real de alguns autovalores segundo a variagdo % na carga.

RO e AOSS amptn et oo
1 -0,04072 -20 1,3405
2 -0,04854 -15 1,5192
3 -0,05224 -10 1,5814
4 -0,05256 -5 1,5559

Original -0,04982 0 1,4544 Va”j‘c‘)’%i gggfgicas 1

6 -0,0442 5 1,2812
7 -0,03564 10 1,0322
8 -0,02373 15 0,6905
9 -0,00873 20 0,2564

AT paroren S dampty i de s
1 -0,1674 -20 2,6485
2 -0,1725 -15 2,6983
3 -0,1738 -10 2,6959
4 -0,1721 -5 2,6533

Original 10,1678 0 25771 oTavels mecanicas g

6 -0,1613 5 2,4731
7 -0,1527 10 2,3444
8 -0,1423 15 2,1917
9 -0,1309 20 2,0266

e s N R
1 -0,1449 -20 2,3277
2 -0,1503 -15 2,4061  Variaveis mecanicas 3
3 -0,1546 -10 2.4668 do Gerador 2
4 -0,158 -5 2,5139
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Original -0,1606 0 2,5501
6 -0,1625 5 2,5767
7 -0,1638 10 2,5047
8 -0,1645 15 2.6041
9 -0,1643 20 2,6013
[Stuncae  Fartereal  AGIEINT DamRUR) e Gréfico
1 -0,6102 -20 100
2 -0,5911 -15 100
3 -0,5784 -10 100
4 -0,5707 -5 100
Original -0,5673 0 100 EQ' gerador 4 4
6 -0,5675 5 100
7 -0,5711 10 100
8 -0,5769 15 100
9 -0,5863 20 100
AT panersal AN amp)  oFOT9 s
1 -1,5819 -20 100
2 -1,56856 -15 100
3 -1,5874 -10 100
4 -1,5887 -5 100
Original -1,5906 0 100 EQ' gerador 2 5
6 -1,5943 5 100
7 -1,6009 10 100
8 -1,612 15 100
9 -1,6284 20 100
AT parerenl ALECSE Damp) L% s
1 -1,1742 -20 100
2 -1,1561 -15 100
3 -1,1485 -10 100
4 -1,1491 -5 100
Original -1,1562 0 100 EQ' gerador 3 6
6 -1,1683 5 100
7 -1,1842 10 100
8 -1,2034 15 100
9 -1,2236 20 100
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Segue as Figuras 11 a 17 apresentando os graficos para cada um dos autovalores
organizados na Tabela 12. Em algumas figuras a escala do eixo horizontal foi aproximada
para melhor visualizagdo do caminhar da parcela real do autovalor mediante a perturbagdes

causadas no sistema.

Grafico 1 - Parte Real x Varia¢do % de Carga
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Figura 11 — Fator de Participagdo: Gerador 3.



Grafico 2 - Parte Real x Variagdao % de Carga
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Figura 12 — Fator de Participagédo: Gerador 4.

Grafico 3 - Parte Real x Varia¢dao % de Carga
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Figura 13 — Fator de Participagdo — Gerador 2.

76



Grafico 4 - Parte Real x Varia¢ao % de Carga
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Figura 14 — Fator de Participagdo — EQ' gerador 4.

Variagdo percentual

Grafico 5 - Parte Real x Variagdo % de Carga
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Figura 15 — Fator de Participagdo — EQ' gerador 2.
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Grafico 6 - Parte Real x Variagdo % de Carga
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Figura 16 — Fator de Participagdo — EQ' gerador 3.

O grafico da Figura 17 mostra os cinco graficos anteriores unidos.
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Parte Real dos autovalores x Variagdo Percentual de carga
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Figura 17 — Comportamento dos Autovalores.

Algumas conclusdes dos graficos das Figuras 11 a 17:

1) Observando os graficos das Figuras 11 a 16 vemos que cada autovalor tem um
comportamento especifico, sendo que um deles se move mais rapidamente para o
lado positivo do eixo real (instabilidade). Este autovalor se trata do modo inter area
e ira praticamente determinar quando o sistema estara estavel ou nao.

2) Pela observagdo do grafico da Figuras 11, verifica-se que este demonstra o
comportamento do autovalor mais critico, isto €, aquele que dependendo da carga
perturbada, ele tende a passar o eixo real mais rapidamente que os outros e indicar
instabilidade do sistema.
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3) Outro autovalor que vale destacar é aquele apresentado pelas Figuras 14 e 16.
Para uma determinada perturbacdo de carga proxima do estado original do
sistema, seus autovalores ficam préximos do eixo real (ndo ultrapassando a
estabilidade) e, além disso, com o aumento ou diminui¢do significativa de carga,
ele tende a se afastar do eixo real mantendo-se estavel. Isso ocorre pelo fato

desses autovalores estarem ligados as variaveis elétricas do gerador 3 e 4.

A partir dos dados obtidos serdo realizadas mais algumas analises com objetivo de
determinar a variagéo critica de carga do sistema que leva o sistema a instabilidade. Além
disso, este exemplo sera utilizado para avaliar os métodos de perturbacdo de matrizes para
descobrir se é possivel adotar tais métodos para a verificacdo de estabilidade dos sistemas
de poténcia.

5.3.3 Investigacao dos métodos de perturbagao para analise da estabilidade

transitoria de pequenas perturbagoes

Nesta segdo serdo aplicados alguns dos teoremas estudados a respeito de
perturbacédo de matrizes e sensibilidade de autovalores. Dessa maneira sera possivel avaliar
se tais métodos sdo adequados para serem aplicados no problema de avaliagdo rapida de

Estabilidade a Pequenas Perturbagdes em Sistema Elétricos de Poténcia.

Como ja esclarecido, alguns dos métodos fornecem uma regido de localizagdo dos
autovalores, ndo fornecendo o valor exato dos mesmos. Porém, quando possivel, serdo
computados os autovalores exatos dentro das regides encontradas para os autovalores do

sistema para ilustrar o resultado de cada um dos teoremas que serado investigados.

O nosso objetivo € a investigagao de métodos rapidos para avaliagao de estabilidade
a pequenas perturbagdes em problemas de andlise de seguranga dindmica. Como se sabe,
o0 modelo linearizado de um sistema elétrico é descrito por meio de matrizes. Perturbagdes na
rede resultam em alteragbes nos elementos dessas matrizes. Dessa maneira, sera avaliado
se 0s métodos de perturbacao e medidas de matrizes s&o aplicaveis no problema de avaliagdo
de estabilidade de sistemas elétricos.

O sistema teste € o sistema de duas areas composto por 11 barras, 4 geradores
regulados com AVR como ja apresentado. Novamente, para o estudo do sistema foi utilizado
o programa disponibilizado pelo CEPEL o PACDYN ®. Por meio deste, foi possivel obter a
matriz de estado do sistema. As variaveis para cada gerador foram apresentadas no capitulo
2, namatriz de estado apresentada em (34). Porém, o PACDYN fornece uma matriz de estado

com variaveis de estado em uma ordem diferente da apresentada na matriz do
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equacionamento (34). A ordem do programa é: [E’q1, w1, 81, E’q2, W2, O2, ..., Et1, ..., Efan], OU

seja, as equagdes dos controladores sado alocadas no final.

ApOs realizar a simulagcao, as matrizes de estado da situagdo nao perturbada bem

como as matrizes para a situagao perturbada estao apresentadas no Anexo H.

Essas matrizes serao importantes para avaliar os métodos de perturbacéo e tirar

conclusodes sobre eles.

Método 1 — Discos de Gershgorin

A discussao tedrica deste teorema esta presente no capitulo 4. Aqui foram realizados
os testes sobre a matriz original do sistema e sobre o sistema perturbado. Vale ressaltar que
as mesmas perturbagdes aplicadas pelo PacDyn foram utilizadas para a analise do método

dos Discos de Gershgorin.

Inicialmente realizou-se o teste sobre o sistema original como apresentado na Figura
18. Vemos que o circulo maior externo deve-se ao elemento de valor de 376,9911 que esta
presente na matriz de estado (valor de wo que ndo ira se alterar com a inclusao de perturbagao
na carga). Para melhor visualizagdo e analise dos resultados, os discos relativos aos

autovalores proximos da origem foram enfatizados.
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Dizcos de Garshgorin - Situagdo Original Dizcos de Garshgorin - Situagao Criginal
- - . - . - - - 8 T T T T T T

Figura 18 - Discos de Gershgorin para a situagéo original. Os autovalores estéo representados pelos
simbolo "X". Algumas regioes foram ampliadas para melhor visualizagéo e estao indicadas pelas
setas.

As Figuras 19 a 26 apresentam os resultados para cada uma das 9 situagédo de

perturbagéo simuladas na carga A (-20% a +20%).
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Discos de Gershgorin - Situagdo V1
B T T T T T T

Figura 19 - Discos de Gershgorin para a situagédo 1 (-20% de perturbagao sobre a poténcia da carga
A).

Discos de Gershgoarin - Situagio V2
8 T T T T T T

Figura 20 - Discos de Gershgorin para a situagéo 2 (-15% de perturbagao sobre a poténcia da carga
A).
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Discos de Gershgotin - Situagdo V3
B T T T T T T

_B 1 1 1 1 1 1
-4 -3 -2 -1 0 1 2 3

Figura 21 - Discos de Gershgorin para a situagéo 3 (-10% de perturbagao sobre a poténcia da carga
A).

Discos de Gershgorin - Situagio W4
B T T T T T T

_B 1 1 1
-4 -3 -2 -1 il 1 2 3

Figura 22 - Discos de Gershgorin para a situagéo 4 (-5% de perturbagéo sobre a poténcia da carga
A).



Discos de Gershgorin - Situagio VG
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Figura 23 - Discos de Gershgorin para a situagéo 6 (+5% de perturbagéo sobre a poténcia da carga

Discos de Gershgorin - Situagdo W7

A).

-8 L

-4 3 7,

-1

0

1

Figura 24 - Discos de Gershgorin para a situagéo 7 (+10% de perturbagéo sobre a poténcia da carga

A).
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Discos de Gershgorin - Situagdo Y8
B T T T T T T

Figura 25 - Discos de Gershgorin para a situagédo 8 (+15% de perturbagdo sobre a poténcia da carga
A).

Discos de Gershgorin - Situagdo %9
E T T T T T T

-4 -3 -2 -1 0 1 2 3

Figura 26 - Discos de Gershgorin para a situagdo 9 (+20% de perturbagao sobre a poténcia da carga
A).



87

Vale ressaltar que os discos criados s&o centralizados nos elementos da diagonal
principal da matriz em estudo. Dessa maneira, observando a Figura 18 que apresenta o
modelo base (sem perturbagédo) do nosso sistema, verifica-se que o intervalo dado pelos
discos sera [-375,8 ; +377] independente da perturbagio, uma vez que os elementos fora da
diagonal principal e que participam da construgdo do raio dos discos apresentam grande

magnitude.

Porém a fim de avaliar os autovalores mais proximos do eixo imaginario, a Tabela 13
apresenta os intervalos dados pelos discos mais proximos deste eixo. Através dessa tabela
sera possivel avaliar o comportamento da regido dos discos criticos.

Tabela 13 - Intervalo dado pelos discos mais proximos do eixo imaginario.

Perturbacao sobre a

Situagao Poténcia da carga A Intervalo Re(A)
1 -20% [-2,105; 1,293]
2 -15% [-2,118; 1,308]
3 -10% [-2,127; 1,318]
4 -5% [-2,133 ; 1,325]
Original 0 [-2,135; 1,330]
6 +5% [-2,132; 1,332]
7 +10% [-2,133; 1,331]
8 +15% [-2,128; 1,328]
9 +20% [-2,121; 1,323]

Observando-se as Figuras 19 a 26 e a Tabela 13, pode-se tirar algumas conclusdes:

1) As pequenas perturbagdes na carga quase nao alteram a regido dos discos de
Gershgorin e por sua vez os autovalores ndo saem da regido se tomarmos como
referéncia a regiao dos discos da situagao original. Ou seja, prova que pequenas
perturbagdes fazem com que os autovalores mudem pouco.

2) A Teoria dos Discos fornece uma regidao onde estdo situados os autovalores,
muitas vezes, elementos com grande magnitude geram grandes regibes de
localizagao dos autovalores (conclui-se pela Figura 18). Dessa forma, o resultado
obtido através do teorema, embora permita concluir que pequenas perturbagdes
nao implicam em grandes mudancgas nos autovalores e na regido de localizagao
dos mesmos, o teorema apresenta grande imprecisao sobre instabilidade, uma vez
que esse elemento de grande magnitude faz com que os circulos tenham

interseccdo ndo vazia com o semiplano direito do plano complexo.
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3) Pode-se dizer que quando o circulo estd com maior area dentro da zona estavel
(esquerda do plano complexo), temos que o sistema necessitaria de grandes
perturbagdes para que entre em instabilidade. Se apds uma perturbagéo, realizam-
se os calculos da nova matriz de estados (A), e os discos aparecessem
completamente a esquerda do eixo real, € garantido que o sistema seria estavel
apos a perturbacéo.

4) Por meio da Tabela 13, verifica-se que mesmo para os autovalores que estdo
préximos do eixo imaginario, a regido dos discos abrange parte do semiplano
direito, informando que os autovalores criticos possam caminhar para dentro da
zona de instabilidade. Mesmo apresentando uma regido pequena e bem definida,
esta regido nao fornece garantia para a estabilidade do sistema.

Conclui-se que este método é pouco eficaz para a determinacao da instabilidade do
sistema, porém apresenta uma estimativa da regiao possivel dos autovalores mesmo quando
o sistema esteja perturbado conhecendo apenas a situagao original. No Anexo C, tem-se o

algoritmo de Matlab ® implementado.

Método 2 — Bauer - Fike

O teorema de Bauer — Fike foi descrito no capitulo 4. Dada uma matriz A € C™" que no
caso seria a matriz na situagao original sem perturbagao e considerando que os autovalores

dela sejam A, quando inserimos uma perturbacéo A + E € C™" cujos autovalores sejam p, tem-

se que:
min |2 — ul < [I1X||,11X ", |E
Jmin (2= ul < XX EL],

emque || . ||, é qualquer norma matricial e ||X||,||X ||, € o nimero de condicionamento do

problema de autovalores de A.

Para o problema em consideragdo, adotou-se a norma de Frobenius (p=2). Pela
Tabela 10 e 11, vemos que esses autovalores ndo sofrem alteragbes consideraveis e se
mantém praticamente parados no plano complexo. Aplicando-se Bauer-Fike sobre cada

situagao simulada, encontrou-se os resultados apresentados pela Tabela 14.
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Tabela 14 - Resultados do teorema de Bauer-Fike.

Situagio perturbagao ::r';f 2 min A= pl < |IX1|,|1X ] IIEIL,
1 -20% 3,1816-10°
2 -15% 2,4911-10°
3 -10% 1,7159-10°
4 -5% 8,7928-108
Original’ 0 0
6 +5% 8,9094-108
7 +10% 1,7810-10°
8 +15% 2,6707-10°
9 +20% 3,5084-10°

*Situagao nao perturbada, implica distdncia minima nula.

Observando-se os resultados da Tabela 14, pode-se tirar algumas conclusoes:

Embora pelos dados da Tabela 10 e 11 seja possivel concluir que pequenas
perturbagdes sobre o sistema implica que os autovalores perturbados estardo na
proximidade dos autovalores nao perturbados, de fato pela Tabela 14, observa-se que
a estimativa para a possivel regidao compreendida entre os autovalores originais e
perturbados € muito grande, dificultando a utilizagdo exclusiva desta teoria para
garantir a estabilidade do sistema elétrico em estudo. Isso deve-se ao comportamento
mal condicionado dessa matriz. Espera-se que para sistemas modelados com maior
numero de controle e equagdes dindmicas, este teorema possa apresentar resultados
significativos.

Um dos problemas deste teorema esta em conhecer como cada elemento da matriz
foi perturbado, ou seja, € necessario conhecer “E”. Porém, nos problemas de sistemas
de poténcia a perturbagao sobre a matriz A é conhecida apés a simulagao do fluxo de
poténcia e das caracteristicas dos geradores e reguladores.

Conhecendo a matriz A, podemos determinar os limites dos modulos dos novos
autovalores se descobrirmos a perturbagao sobre cada elemento da matriz A (matriz
E). Ou seja, deve-se para cada alteragdo na carga determinar a nova matriz A e dela
retirar a matriz E de acordo com a variagcao ocorrida em cada elemento. Apds isso,

calcula-se a parcela ||X||,||X~*|I,||El|, , € com isso obtém-se a diferenga entre os

autovalores originais e perturbados.
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Para problemas que apresentem matrizes “mais diagonais”, o teorema de Bauer-Fike

apresentara resultados mais eficientes, capazes de tirar conclusdes e analises mais seguras.

Este teorema foi implementado via Matlab® e pode ser encontrado no Anexo G.

Método 3 — Medidas de Matrizes

O conceito de medidas de matrizes foi apresentado no capitulo 4. Como ja foi
explicado, este conceito trabalha com a estimativa da parcela real dos autovalores, sem
calcula-los diretamente. Ou seja, os autovalores de uma matriz A podem ser encontrados em

uma regiao tal que se A € um autovalor de A € C™", entdo - u(-A)< Re A< u(A).

Dessa forma, conhecemos algumas informagdes sobre a estabilidade de um sistema
conhecendo a regido onde estdo os autovalores. Aplicando-se o método ja enunciado
encontramos algumas regides possiveis dos autovalores para cada situagdo de carga, a

Tabela 15 resume estes dados.

Tabela 15 - Regido dos autovalores dada pela teoria de medidas de matrizes.

Perturbacéo sobre a

Situagdo de carga Poténcia da carga A

-p1(-A) S Re A S i (A)

1 -20% -116,6687< Re A<+115,9529
2 -15% -117,7034< Re A<+116,9820
3 -10% -119,0599=< Re A<+118,2455
4 -5% -121,8907< Re A<+121,0778
Original 0 -124,2467< Re A<+123.4354
6 +5% -126,1485< Re As+152,3390
7 +10% -127,6403< Re A<+126,8327
8 +15% -128,7543< Re A<+127,9488
9 +20% -129,4400< Re As+128,6367

Vale ressaltar que como as matrizes de estado apresentam um elemento com valor de
376,9911 referente ao w,, a regido dos autovalores seria-376,9911 e +376,9911 independente
dos outros elementos da matriz, jd que este fator tem grande magnitude. Porém, este
elemento ndo sofre modificagdo com a variagdo na carga, dessa forma decidiu-se excluir este

ponto durante a construgdo da regido - u(-A)< Re A< u(A), refinando mais os dados.
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Outro fato que deve ser ressaltado é que foi utilizado a aplicagdo da aproximacgao “u+”
para encontrar a regido dos autovalores ja que segundo o livro do (VIDYASAGAR,M; 1993)

estd é uma boa aproximacéao.

De fato vemos que com o aumento da carga, a faixa da regido de localizagdo dos
autovalores aumenta, porém os autovalores desse sistema como ja calculado estdo
perfeitamente antes do eixo real. Porém, pela aplicacdo desse teorema vemos que a faixa
obtida é muito grande e prejudica ainda a determinagado da estabilidade de sistema de
poténcia apenas com a aplicagdo deste método. Seria efetivo se toda a regido encontrada

estivesse com limites negativos ou bem préximos de zero.

Vale ressaltar que dentre os 3 teoremas que investigam a area de deslocamento dos
autovalores da matriz perturbada, este apresenta resultados mais satisfatérios. Mas ainda
esta longe do resultado esperado cuja regido limitante de deslocamento dos autovalores seja
a menor e mais exata possivel, isto €, com um melhor refino para uma dada perturbacgéo

matricial conhecida.

Método 4 — Determinacao do caminho dos autovalores por aproximacgao linear

Como observado a maioria dos métodos apresentam uma regido de localizagdo dos
autovalores, principalmente da sua parte real, mas quanto a possibilidade de utilizagao desses

métodos para a verificagao de estabilidade da rede € baixa.

Observando-se os dados dos graficos das Figuras 11 a 16 optou-se em realizar aqui
o estudo dos autovalores obtidos pela perturbagao do sistema, realizando uma aproximacgéao
linear dos dados: parcela real x percentual de perturbagdo na carga.

Vemos pelos resultados graficos que um dos autovalores se aproxima mais
rapidamente do eixo real do que os outros autovalores (ver Figura 11). Assim foi verificado

por aproximacao linear o caso mais critico quando este autovalor caminha e toca o eixo real.

Realizando-se este estudo sobre este autovalor mais critico, obtiveram-se os

seguintes resultados:
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Situagao Critica de Perturbacao

25

y =695,01x + 27,505

® 20
15
10
5
0
-0,06 . -0,05 -0,04 -0,03 -0,02 -0,01 - 0

-10

Perturbacgao (%)

-15
-20

25
Parcela Real dos Autovalores

Figura 27 - Grafico com aproximagao linear para determinagao da situagao critica para a estabilidade
segundo variacao percentual na carga.

Adicionando-se uma linha de tendéncia linear sobre o grafico, observa-se que para se
obter uma parcela real do autovalor mais critico (aquele apresentado pela Figura 27) que
passe para a direita do eixo, isto €, fique positivo adquirindo instabilidade seria quando
ocorresse uma perturbagao de aproximadamente 27,505% sobre a carga A. Dessa forma foi
analisado o fluxo de poténcia dessa situagdo e os autovalores desse instante. As Tabelas 16

e 17 resume estes dados.

Tabela 16 - Fluxo de Carga do Sistema na situagao critica.

Situagao Critica (27,505% de perturbagao)
Namero da barra Tensao (pu) Angulo (graus)

1 1,030 -7,1

2 1,010 -16,9
3 1,030 -7,0

4 1,010 -24,0
5 1,008 -13,6
6 0,981 -23,6
7 0,967 -32,0
8 0,973 -36,5
9 0,965 -41,0
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10 0,973 -30,8
11 0,997 -16,2

Tabela 17 - Saida do PACDYN ® para a situacao critica.

Situacao de Carga: Critica (Perturbacao de 27,505% sobre a Poténcia da Carga A)

Autovalores I:‘;;r;? |m:§ir,:g,ia Freq. (Hz) Damp(%) Part. Factor

1 0,02115 3,3172 0,5279 -0,6377 Ww Ge3rad-03-- #
2 0,02115 -3,3172 -0,5279  -0,6377

¥ 919E-13  346E-06  551E-07 000003 Oo- Serad0z-
4 9,19E-13  -346E-06  -551E-07 -0,00003

5 -0,1137 6,3897 1,0169 1,7786 Www Ge4rad-04-- #
6 -0,1137 -6,3897 14,0169  1,7786

7 -0,1608 6,3122 10046 25468 DT #Ge;ad'OZ"
8 -0,1608 6,3122 11,0046 2,5468

9 199,549 0.0011 0.00017 100 XO005 AVRS #
10 -99,549 -0,0011 -0,00017 100

11 199,075 0 0 100 XOOOSAVR4 4
12 98,66 0. 0. 100~ XO000SAVRE#
13 -1,6678 0. 0. 100 E@ Ge;ad-03-- #
14 -1,2543 0. 0. 100 EQ Ger1ad-01-- #
15 -0,6062 0. 0. 100 EQ' Gezad-04-- #
16 0.5771 0. o 100 ~ EQ' Gerad02- #

*Referéncia angular.

Pela observacédo da tabela se justifica a conclusdo da estimativa linear presente no
grafico da Figura 27 sobre a instabilidade do sistema. Nessa situagdo, a simulagao mais
realistica promovida pelo programa computacional nos informa observando os autovalores 1

e 2 a presencga de instabilidade pela parcela real positiva desses autovalores.

Dessa forma conhecendo-se alguns pontos de operagdo do sistema segundo uma
variagdo na carga € possivel determinar o caminhar dos autovalores no plano Real x

Imaginario e calcular uma estimativa para a situagéao critica de perturbagéo do sistema.
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6 Conclusao

Os estudos da modelagem dos sistemas elétricos de poténcia permitiram entender o
funcionamento basico do gerador sincrono classico, o fundamento matematico por tras desse
dispositivo e também a importancia de inserir reguladores de tensdo sobre o circuito para
melhorar o amortecimento dos geradores, permitindo com que a rede permaneg¢a mais
estavel. A linearizacao das equacgdes elétricas e mecanicas que descreve o gerador permitiu

dar inicio a investigagao da analise dos efeitos de pequenas perturbagdes sobre o circuito.

A investigagdo comegou com a avaliagdo de um sistema basico dotado de 9 barras e
3 geradores classicos ndo regulados. Depois investigou-se novos tipos de redes, geradores e

reguladores, obtendo-se alguns resultados mais realisticos e satisfatorios.

A analise dos métodos numéricos para célculo de autovalores é essencial para auxiliar
a investigacado dos modos de resposta do sistema em operagdo. Dessa maneira € possivel
descobrir o estado de funcionamento da rede, isto é, determinar se ela esta estavel ou nao,
bem como sua importancia para o estudo de sensibilidade de matrizes. Com esse estudo foi
possivel avaliar os efeitos que uma pequena variagdo nos pardmetros provoca sobre os
autovalores do sistema. Foi possivel estimar o caminho que os autovalores seguem dentro do
plano Real x Imaginario além de verificar a existéncia de um autovalor critico, isto &, aquele

que caminha mais rapidamente para a instabilidade dada uma variagao na carga.

Através da investigagdo da sensibilidade dos autovalores com relagéo a parametros
do sistema que foi realizada, bem como a investigagéo dos principais métodos de perturbacéo
de matrizes encontrou-se que a maioria dos métodos estabelecem uma determinada regido
limitante para a presenga dos autovalores. Conhecendo que pequenas perturbagdes fazem
os autovalores caminharem em torno dos autovalores originais, pode-se utilizar as mesmas
regides calculadas para o ponto de operagdo original. Mas, grande parte destes métodos n&o
deixam de forma clara a localizacdo dos autovalores no plano dificultando o processo de
determinagéo do estado do sistema, porém em casos que a regido estimada esta no lado de
estabilidade (esquerda do plano Real x Complexo) pode-se afirmar com certeza que o sistema

sera estavel.

Embora esta monografia aborde uma analise investigativa dos métodos matematicos
encontrados na literatura que descrevem o comportamento dos autovalores de uma matriz e
a sua possivel aplicagdo no ambito de sistemas elétricos de poténcia, sugere-se possiveis

continuidades para futuros estudos, que seguem a mesma linha de pesquisa, como: explorar
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especificadamente a teoria dos Discos de Gershgorian onde seria possivel implementar esta
ferramenta dentro do processo iterativo QR. Dessa forma, seria possivel a cada iteragéo obter
os discos da matriz Ax e comparar os limites da regido definida por eles com o plano Real x
Imaginario. Assim o processo iterativo pararia quando os discos da iteragdo estivessem
contidos todos no lado esquerdo do plano (regido de estabilidade). Esse processo diminuiria
o esforgo computacional do processo de calculo do autovalor, ja que nao trabalharia com a
obtencado do valor exato do autovalor e ao mesmo tempo garantiria que o sistema estaria

estavel.

De fato, o objetivo de investigacao dos métodos de sensibilidade de matrizes sendo

aplicada nos problemas de Sistemas Elétricos de Poténcia foi realizado.
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Anexo A — Modelagem Maquina Sincrona de dois eixos

Neste anexo segue as equagdes que modelam a maquina sincrona em dois eixos

(direto e quadratura):

. 1
E:;r = TT [EFD - Eé - (;Ifd - .E;)Id}
do
. 1
E, = o [Eq + (g — x3) 1]
qo
1
b = 5= [Pn— Ejly— Byl
0 = we

V, = E —rl,+I,

Vi = Ey—rly—abl,

Em que E’; é a tensao transiente do eixo em quadratura, E; a tensao transiente do
eixo direto, we € a velocidade angular da referéncia girante, & angulo elétrico de defasagem
entre rotor e referéncia girante, V, é a tensdo sobre os enrolamentos do eixo direto, V, € a
tenséo sobre os enrolamentos do eixo em quadratura, T4 € a constante de tempo transitoria
de circuito aberto do eixo direto, T4 € a constante de tempo transitéria de circuito aberto do
eixo em quadratura, x, € a reaténcia sincrona do eixo direto, x’y € a reatancia transitéria do
eixo direto, x4 € a reatancia sincrona de eixo em quadratura, x’; € a reatancia transitoria do
eixo em quadratura, H € a constante de inércia, Ex € a tensdo de campo, Ils € a corrente
circulante nos enrolamentos do eixo direto, I, é a corrente circulante nos enrolamentos do eixo

em quadratura, P, € a poténcia mecanica, r é a resisténcia dos enrolamentos.
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Anexo B — Constantes da Matriz de estados com Geradores

Regulados

Como ja enunciado, o modelo de gerador que sera utilizado para realizar simulagdes
mais reais do sistema teste estudado, sera o modelo de 1 eixo. A deducdo matematica das
equacobes pode ser encontrada em qualquer livro de Estabilidade de Sistemas de Poténcia e
por se tratar de manipulagdes bastante complicadas nao se vé necessario a transcricao dessa
deducgao no projeto. Porém, devem-se conhecer as constantes Ki a Ks que formam a matriz

de estado equacionada por (34). Assim temos:

!

K, = i Vcos(8,) + u Vsen(6y)1
P\, + X 7T \X, + X, 07740

(Xt Xe B Vsen(8,)
2T\XL+ X)) T XL+ X,

X4t X
3T X, + X,

Xq—X'
d d Vsen(dy)

K, =-2_"~°¢
YTXL X,

_ Xq thOVcos((So)_ X;  ViaoVsen(8y)
X+ X, Vi X +X, Vg

Ks

X e thO

Ke=———
T X a+ X Vi

onde X. € a reatancia equivalente de um sistema radial, isto €, relacionando a reatancia do

transformador elevador e a reatancia série da linha.
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Anexo C — Programa Discos de Gershgorian

Funcdo adaptada no Matlab® a partir de uma implementacao disponivel na central de
arquivos da Mathworks® para a determinagéo dos discos de Gershgorian dado uma matriz
quadrada como entrada. Como resultado obtém-se de forma grafica a regido possivel para os

autovalores do sistema.

e Funcio Principal

function [G, e] = gersh (A, noplot)

$GERSH Discos de Gershgorin.

% gersh (A) desenha os disco de Gershgorin para uma matriz quadrada
A.

% Os autovalores sé&o plotados com o simbolo 'x'.

% Uso Alternativo: [G, E] = GERSH(A, 1) evita plotar o grafico.
% Mas retorna os dados em G, com autovalores de A em E.

% Testa se a matriz é quadrada ou néo:

% size (A) = retorna um vetor com a dimensdo da matriz.

% diff(size(A)) = retorna a diferenca entre o segundo elemento e o

% primeiro.

if diff(size(A)), error('Erro! A matriz deve ser quadrada.'), end

n = length(A);

m = 40;

G = zeros (m,n);

d = diag(A); % cria um vetor coluna com os elementos diagonais de A

r = sum( abs( A-diag(d) )' )';

% Primeiro criou-se uma matriz quadrada com os elementos da diagonal de A.
% Depois Subtraiu A dessa matriz criada (diag(d)). A cada subtacgdo pega seu
% valor absoluto e cria um vetor r (raio) com a soma dos elementos de

% cada coluna.

e = eig(A);

o\°

A fim de verificar se o autovalor estéd dentro do Disco de Gershgorin,
iremos ploté-los também.

o\°

radvec = exp(i * linspace(0,2*pi,m)");
% linspace(0,2*pi,m) —-> retorna um vetor linha de m pontos uniformemente
% espacgados entre 0 e 2pi.

for j=1:n
G(:,3) = d(j)*ones(m,1l) + r(j)*radvec;

end

if nargin < 2
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cpltaxes(G(:)); % funcédo extra para plotar um grafico com eixos

os

% encontrado na internet!

for j=1:n
plot(real (G(:,3)), imag(G(:,3)),'-") % Plota o Disco.
hold on

end

o)

o

plot(real(e), imag(e), 'x') % Plota os autovalores também.

axis

(ax)

axis ('square')

hold

end

functio
$CPLTAX

off

n x
ES

Funcgao adicional

= cpltaxes(z)

Determine suitable AXIS for plot of complex vector.

X = CPLTAXES(Z), where Z is a complex vector,

determines a 4-vector X such that AXIS(X) sets axes for a plot
of Z that has axes of equal length and leaves a reasonable

of space around the edge of the plot.

Called by FV, GERSH, PS and PSCONT.

% Set x and y axis ranges so both have the same length.

xmin = min(real(z)); xmax = max(real(z));
ymin = min(imag(z)); ymax = max(imag(z)):

o

% Fix for rare case of “trivial data'.

if xmin == xmax, xmin = xmin - 1/2; xmax = xmax + 1/2; end
if ymin == ymax, ymin = ymin - 1/2; ymax = ymax + 1/2; end

if xmax-xmin >= ymax-ymin

ymid

ymin
else

xmid

xmin
end

=

(

ymin + ymax)/2;
ymid - (xmax-xmin)/2; ymax = ymid + (xmax-xmin)/2;

xmin + xmax)/2;

= xmid - (ymax-ymin)/2; xmax = xmid + (ymax-ymin)/2;

axis ('square')

o

alpha =
x (1)

0.1

= xmin

xmax
ymin
ymax

% Scale ranges by 1l+2*alpha to give extra space around edges of plot.

’

’

- alpha* (xmax-xmin

)
+ alpha* (xmax-xmin) ;
- alpha* (ymax-ymin) ;
+ alpha* (ymax-ymin) ;
x(2), x(2) = x(2) + 0.1; end
x(4), x(4) = x(3) + 0.1; end
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Anexo D — Arquivo de Entrada do ANAREDE e Saida do Fluxo de

Poténcia

Segue o arquivo .pwf de entrada do ANAREDE CEPEL ® para a simulagao base.

1 TITO
2 4 zeradores 11 Barras
3 DCTE
2 (Mn) ( Wal) (Mn) ( Wal) (Mn) ( Val) (Mn) { Val) (Mn) ( WVal) (Mn) ( WVal)
5 BASE 100. DASE 100. TEPA .0001 EXST .0004 TETE 5. TBE2 5.
€ TLEF l. TEFR .0001 QLST .0004 TLER 1. TLPQ 2. TSBZ .01
7 TSBA 5. RASTFP .05 WVSTF 5. TLVC .5 TLTC .01 TSFR .1E-7
= IMRX 500. TLEV -5 VDM Z00. VDVH 40. TUDC .001 TADC .01
) PEER 30. TPST .000Z WELD 70. ZMIN .001 HIST 470 LFIT 10
10 ACIT 20 LFCV 1 DCIT 10 WSIT 10 LPIT 50 LFLF 10
11 PDIT 10 LCRT 24 LERT €0 CSTP 500.
12 ICIT 20 DMRX 5 FDIV 2. ICMW .05 WART 5. TSTFE 33
13 ICMV .5 RPRS 50. CERR 70. VAVT Z. VAVFE 5. VMVF 15.
14 VEVT z2. VEVF 5. WEMF 10. WVSVF 20. VINF 1. WVSUE 1.
15 599999
lg DEAR
17 (Num) CETGEE ( nome IGLE Wil B Pl Qgil @nij{ Qm) (Be ) { P1L){ Q1) { Sh)Are(VE)
18 1l L1 lGerad-0l1-- 11030Z0.1 TO00.185.0-995959553593 11000
1k Z Ll lGerad-0zZ-- 1101010.3 TOO.Z234.6-99599553593 11000
20 3 LI lGerad-03-- 11030-7.0 Tl5.17€.0-99559555355 11000
21 4 L1 lFerad-04-- 11010-17. TOO0.Z0Z2.0-995555355 11000
22 5 L0 ZBarra-0l1-- 11000 a.0 11d00
23 & L0 ZBarra-0Z2-- 11000 a.0 11d00
7 L0 ZBarra-03-- 11000 4.0 S&7 100. Z0o. 11000
2 L0 ZBarra-04-- 11000 4.0 11000
% L0 ZBarra-05-- 11000 0.0 17&€7. 100. 350. llDDd
27 10 Ld ZBarra-0O&-- 11000 a.0 11000
28 11 Ld ZBarra-07-- 11000 a.d 11000
25 599999
3 DLIN
31 (De Jd © d{Pa JNcEP { BR% ) { X% ) (Mwvar) (Tap) (Trn) (Tmx) (Phs) (Bc ) {Cn) (CellNs
32 1 51 0.000 1.666 1.0 S00.
2 g 1 0.000 1.€66 1.0 800.
3 11 1 0.000 1.€66 1.0 800.
4 10 1 0.000 1.€6€ 1.0 S00.
[ 51 0.250 Z.500 4.375 S00.
37 [ 71 0.100 1.000 1.750 1200
38 7 g1 1.100 11.00 15.25 S00.
25 7 2z 1.100 11.00 15.25 S00.
40 2 51 1.100 11.00 15.25 S00.
41 2 5 z2 1.100 11.00 15.25 S00.
4z ] 10 1 0.100 1.000 1.750 1200
43 10 11 1 0.250 Z_500 4_375 500 .

44 5935939
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30 DLIN

31 (De )d O d(Pa )NcEP ( BR% ) { E% ) (Mvar) (Tap) (Tmn) (Tmx) (Phs) (Bc ) (Cn) (Ce)Ns
32 1 51 0.000 1.&6868 1.0 S00.
33 2 g1 0.000 1.€€€ 1.0 S00.
34 3 11 1 0.000 1.&666 1.0 Q00.
35 4 1d0 1 0.000 1.8€€ 1.0 500.
3€ [ 51 0.250 Z.500 4.375 500.
37 £ 71 0.100 1000 1.750 1300
38 7 21 1.100 11.00 15.25 S00.
35 7 gz 1.100 11.00 15.Z25 S00.
40 g 91 1.100 11.00 19.25 Q00.
41 g 5z 1.100 11.00 15.25 500.
4z 3 1d0 1 0.100 1.000 1.750 1200
43 10a 11 1 0.250 Z.500 4.375 S00.
44 98555

45 DEBT

4e = { kv

47 z Z30.

45 1 zo.

45 955595

5 exlf newt

51 FIM

Abaixo encontramos o arquivo de saida da simulagcéo da rede de duas areas montada
no ANAREDE CEPEL®. Nele pode-se observar a tenséo e angulo de cada barra do sistema

bem como o fluxo de poténcia sobre elas.

CEPEL -

4 Geradores 11 Barras
RELATORIO COMPLETO DO SISTEMA * AREA 1+

CENTRO DE PESQUISAS DE ENERGIA ELETRICA - PROGRAMA DE ANWALISE DE REDES - V10.00.01

500.0 80.1% 10 Barra-06-- 1 700.0 202.0 721 .3 1 _000F o

X DADOS - BARRA X FLUXOS - CIRCUITOS X
D& BARRA TENSAD GERACAD TNJ EQV CARGA ELO CC SHUNT MOTOR
NUM. KV TIPO won/ W/ MW/ MW/ MW/ Mvar/ W/ PERDAS TENSAO0
HOME ANC Mvar Mvar Mvar Mvar EQUIV Mvar PARA BARRA FLUXOS ATIVA REATIVA CIR. ABERTO
MVA_NOM MVA_EMR FLUXO % SHUNT L . NOME nc MW Mvar MVA/V_d TAP DEFAS TIE MW Mvar Moo ANG
X X X X X X X X X————- X X--X- X X H-——— H--—— 2 A ) H-—— ] e X————- X
1 20 1 1.030 700.0 0.0 0.0 0.0 0.0 0.0
Gerad-01-—— 20.1 185 0.0 o 0.0 0.0 0.0
300.0 300.0 T8.1% 5 Barra-01-- 1 700.0 185.0 702.2 1.000F 0.00 82.32
2 20 1 1l.010 700.0 0.0 0.0 0.0 0.0 0.0
Gerad-02-- 10.3 234 5 o0 o.o0 0.0 0.0 0.0
300.0 300.0 8l.2% 6 Barra-02-- 1 700.0 234.5 730.2 1.000F 0.00 £9.01
CEPEL - CENTRO DE PESQUISAS DE ENERGIA ELETRICA - PROGRAMA DE ANALISE DE REDES - V10.00.01 PAG. 2
4 Ceradores 11 Barras
RELATORIO COMPLETO DO SISTEMA * AREA 1 *
Ko DADOS - BARRA X FLUXOS - CIRCUITOS .8
DA BARRA TENSAD GERACAD INJ EQV CARGA ELO CC SHUNT MOTOR
N KV TIPO Tanky S L/ W/ W/ Mvar/ S PERDAS TENSA0
HOME ANG Mvar Mvar Mvar Mvar EQUIV Mvar PARA BARRA FLUXOS ATIVA REATIVA CIR. ABERTO
MVA_NOM MVA _EMR FLUXO % SHUNT L HuM. NOME HC MW Mvar MVA/V_d TAP DEFAS TIE MW Mvar HOoD ANC
X X X X X X X X K————- X X--X- X X K-————- K--——- 2 A ) D X-———- K————- X
3 20 2 1.030 719.1 0.0 0.0 0.0 0.0 0.0
Cerad-03-- -7.0 175.3 0.0 0.0 0.0 0.0 0.0
soo.0  s00.0 79.9% 11 Barra-07-— 1 713.1 175.9 718.7 1.000F 0.00 86.06
4 20 1 1.010 700.0 0.0 0.0 0.0 0.0 0.0
Gerad-04-- -17.2 202.0 0.0 0.0 0.0 0.0 0.0
oo
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CEPEL - CENTRO DE PESQUISAS DE ENERGIA ELETRICA - PROGRAMA DE ANALISE DE REDES - V10.00.01 PAG 3
4 Geradores 11 Barras
RELATORIO COMPLETO DO SISTEMA * AREA 1 =
A-—mmmmm oo DADOS - BARRA X FLUXOS - CIRCUITOS X X
DA BARRA TENSAD GERACAO INJ EQV CARGA ELO CC SHUNT MOTOR
WUM. KV TIPO  MOD/ MW/ M/ MW/ MWW/ Mvar/ W/ PERDAS TENSAD
HOME ANG Mrar Mvar Mrar Mvar  EQUTV Mvar PARA BARRA FLIXOS ATIVA REATIVA CIR. ABERTO
MVA_NOM MVA_EMR FLUXD & SHUNT L UM NOME e 1o Mvar MVA/V_d TAP DEFAS TIE
X X X X X X X X X--X- X X ———-X---
5 230 0 1.006 0.0 0.0 0.0 0.0 0.0 0.0
Barra-01 13.6 0.0 0.0 0.0 0.0 0.0 0.0
300.0  300.0 78.1% 1 Gerad-01-- 1 -700.0 -102.6 702.9 0.00 82.32
s00.0  300.0 78.1% € Barra-02-- 1 700.0 102.6 702.% 12.36 119.33
6 230 0 0.378 0.0 0.0 0.0 0.0 0.0 0.0
Barra-02-- 3.5 0.0 0.0 0.0 0.0 0.0
900.0  900.0 81.2% 2 Gerad-02-- 1 -700.0 -145.5 730.9 0.00 89.01
00.0  300.0 78.1% 5 Barra-01- 1 -687.6 16.7  703.2 12.36  113.33
1800.0 1800.0 79.2% 7 Barra-03-- 1 1387.6 128.8 1424.7 20.30 201.36
CEPEL - CENTRO DE PESQUISAS DE ENERGIA ELETRICA - PROGRAMA DE ANALISE DE REDES - V10.00.01 PAG 2
4 Geradores 11 Barras
RELATORIO COMPLETO DO SISTEMA * AREA 1 =
A-—mmmmm oo DADOS - BARRA X FLUXOS - CIRCUITOS X X
DA BARRA TENSAD GERACAO INJ EQV CARGA ELO CC SHUNT MOTOR
WUM. KV TIPO  MOD/ MW/ M/ MW/ MWW/ Mvar/ W/ PERDAS TENSAD
HOME ANG Mrar Mvar Mrar Mvar  EQUTV Mvar PARA BARRA FLIXOS ATIVA REATIVA CIR. ABERTO
MVA_NOM MVA_EMR FLUXD & SHUNT L UM NOME e 1o Mvar MVA/V_d TAP DEFAS TIE M Mvar MOD  ANG
X X X X X X X X X--X- X X
7 230 0 0.361 0.0 0.0 387.0 0.0 184.7 0.0
Barra-03-—- -4.9 0.0 0.0 100.0 0.0 0.0 0.0
1800.0 1800.0 79.2% & Barra-02-- 1 -1367.3 72.5 1424.8 20.30  201.36
s00.0  300.0 23.2% 3 Barra-04-- 1 z200.2 6.1 208.4 4.80 30.44
900.0  900.0 2329 8 Barra-04-- 2 =200.2 6.1 208.4 4.80 30.44
CEPEL — CENTRO DE PESQUISAS DOE ENERGIA ELETRICA - PROGRAMA DE ANALISE DE REDES - V10.00.01 PAG 5
4 Geradores 11 Barras
RELATORIO COMPLETO DO SISTEMA * AREA 1 *
Hommmmm oo mmmm o DADOS - BARRA X FLUXOS - CIRCUITOS X X X
DA BARRA TENSAD GERACAD INJ EQV CARGA ELO CC SHUNT MOTOR
WM. KV TIPO OO/ MW/ MW/ i/ MW/ Mvar/ W/ PERDAS TENSAD
NOME ANG ar Mvar Mvar Mvar  EQUIV Mvar PARA BARRA FLUXOS ATIVA REATIVA CIR. ABERTO
MVA_NOM MVA EMR FLUXD % SHUNT L NI NOME Jiled MW Mvar MVA/V d TAP DEFAS TIE 10 Mvar MOD  ANG
X X X X X X X X X--X- X X .
8 230 0 0.949 0.0 0.0 0.0 0.0 0.0 0.0
Barra-04-- -18.8 0.0 0.0 0.0 0.0 0.0 .o
900.0 900.0 23.1% 7 Barra-03-- 1 -195.4 24.3  207.5 4.80 30.44
900.0 300.0 23.1% 7 Barra-03-- 2 -195.4 24.3  207.5 4.80 30.44
900.0  900.0 23.1% 9 Barra-05-- 1 155.4 -24.3 207.5 4.70 29.21
900.0 300.0 23.1% 9 Barra-05-- 2 195.4 -24.3 207.5 4.70 29.21
CEPEL - CENTRO DE PESQUISAS DE ENERGIA ELETRICA - PROGRAMA DE ANALISE DE REDES - V10.00.01 TAG [
4 Geradores 11 Barras
RELATORIO COMPLETO DO SISTEMA * AREA 1 *
H-mmmmmmmm e DADOS - BARRA X FLUXOS - CIRCUITOS X X X
D& BARRA TENSAO GERACAD INJ EQV CARGA ELO CC SHUNT MOTOR
NUM. KV TIFO MOD/ M/ MW/ i/ MW/ Mvar/ W/ PERDAS TENSAD
NOME ANG Mvar Mvar Mrar Mvar  EQUIV Mvar PARA BARRA FLIMOS ATIVA REATIVA CIR. ABERTO
MVA_NOM MVA_EMR FLUXD # SHUNT L NI NOME nc jii0g Mvar MVA/V_d TAP DEFAS TIE M Mvar MOD  ANG
X X X X X X X X X X X
3 230 0 0.371 0.0 0.0 1747.0 0.0 330.3 0.0
Barra-05-- -32.3 0.0 0.0 100.0 0.0 0.0 0.0
500.0  300.0 22.7% & Barra-04-- 1 -150.7 53.6 203.3 4.70 29.21
900.0 900.0 22.7% 8 Barra-04-— 2 -190.7 53.6 203.9 2.70 29.21
1800.0 1800.0 79.6% 10 Barra-06-- 1 -1385.7 123.2 1432.1 20.51  203.44
10 230 0 0.383 0.0 0.0 0.0 0.0 0.0 0.0
Barra-06-- -23.9 0.0 0.0 0.0 0.0 0.0 0.0
900.0 300.0 80.1% 4 Gerad-04-- 1 -700.0 -115.3 721.3 0.00 86.63
1800.0 1800.0 79.6% 9 Barra-05-- 1 1406.2 80.3 1432.1 20.51  203.44
900.0 900.0 79.9% 11 Barra-07-- 1 -706.2 35.0 718.9 12.92  124.91
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CEPEL - CENTRO DE PESQUISAS DE ENERGIA ELETRICA - PROGRAMA DE ANALISE DE REDES - V10.00.01 PAG 7

4 Geradores 1l Barras
RELATORTO COMPLETO DO SISTEMA * AREA 1=+

Ho—mmmmmm oo DADOS - BARRA X FLUXOS - CIRCUITOS X X X X
DA BARRA TENSAD GERACAD INJ EQV CARGA ELO CC  SHUNT MOTOR
HUM. KV TIFO  MOD/ i/ i/ MW/ MW/ Mvar/ MW/ PERDAS TENSAED
NOME ANG Mvar Mvar Mvar Mvar  EQUIV Mvar PARA BARRA FLUXOS ATIVA REATIVA CIR. ABERTO
MVA_NOM MVA_EMR FLUXO % SHUNT L ity NOME nC MW Mvar MVA/V_d TAP DEFAS TIE 5.0y Mvar MDD ANG
X X X X X X X X s S X X--X- X X——-————X-————-X-———-X---X-——-————X-————— - X--——-X-----X
11 230 0 1.008 0.0 0.0 0.0 0.0 0.0 0.0
Barra-07-- -13.6 0.0 0.0 0.0 0.0 0.0 0.0
300.0  300.0 79. 9% 3 Gerad-03-- 1 -715.1  -83.%  718.7 0.00 86.06
900.0  300.0 79.9% 10 Barra-06-- 1 715.1 8%.9  718.7 12,52  124.91
CEPEL - CENTRO DE PESQUISAS DE ENERGIA ELETRICA - PROGRAMA DE ANALISE DE REDES - V10.00.01 PAG ]
4 Geradores 11 Barras
TOTAIS DA AREA 1
X X X X X X X X X
GERACAD INJ EQV CARGA ELO CC SHUNT EXPORT IMPORT  PERDAS
MW/ i/ b/ b/ Mvar/ MW/ W/ MW/
Mvar Mvar Mvar Mvar EQUIV Mvar Mvar Mvar
X X X X X X X 3 ¢ X
2819.1 0.0 2734.0 0.0 §15.0 0.0 0.0 85.1
757.4 0.0 200.0 0.0 0.0 0.0 0.0 1112.4
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Anexo E - Fluxo de Poténcia de cada situagao de carga Perturbada

Como ja enunciado, foi descrito que as simulagdes de fluxo de poténcia foram
realizadas através do programa computacional ANAREDE da CEPEL®. As Tabelas 18 € 19

resumem esses dados.

Tabela 18 - Barras do sistema de duas areas (11 Barras 4 Geradores).

Numero da Nome da Barra Base Kv Tipo de
Barra barra
1 Gerad-01-- 20.0 PV
2 Gerad-02-- 20.0 PV
3 Gerad-03-- 20.0 Swing
4 Gerad-04-- 20.0 PV
5 Barra01 230.0 PQ
6 Barra02 230.0 PQ
7 Barra03 230.0 PQ
8 Barra04 230.0 PQ
9 Barra05 230.0 PQ

10 Barra06 230.0 PQ
11 Barra07 230.0 PQ

Vale ressaltar que na barra 7 esta localizada a carga A cuja sua poténcia sera alterada
para realizar simulag¢des de pequenas perturbagdes sobre o sistema estudado e na barra 9

esta conectada a carga B.

Tabela 19 - Resultado do fluxo de carga para cada situagdo de carga.

Situacgao 1 2 3

Numeroda  Tensdo  Angulo Tensdo  Angulo Tensdo  Angulo

barra (pu) (graus) (pu) (graus) (pu) (graus)
1 1,030 43,4 1,030 36,8 1,030 30,8
2 1,010 33,6 1,010 26,9 1,010 21,0
3 1,030 -7,0 1,030 -7,0 1,030 -7,0
4 1,010 -13,1 1,010 -14,0 1,010 -15,0
5 1,000 36,9 1,002 30,3 1,004 24,3
6 0,961 26,7 0,968 20,1 0,972 14,2
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0,931 17,9 0,942 11,5 0,950 57

0,874 -5,0 0,901 -8,8 0,921 -12,2

0,944 -27,5 0,955 -28,6 0,963 -29,7

10 0,972 -19,9 0,977 -20,8 0,981 -21,8

11 1,006 -12,0 1,008 -12,4 1,009 -12,8

Situagao 4 Original 6

Numeroda  Tensdo  Angulo Tensdo  Angulo Tensdo  Angulo
barra (pu) (graus) (pu) (graus) (pu) (graus)

1 1,030 25,3 1,030 20,1 1,030 15,0

2 1,010 15,5 1,010 10,3 1,010 53

3 1,030 -7,0 1,030 -7,0 1,030 -7,0

4 1,010 -16,1 1,010 -17,2 1,010 -18,3

5 1,005 18,8 1,006 13,6 1,007 8,6

6 0,976 8,7 0,978 3,5 0,980 -1,5

7 0,956 0,3 0,961 -4,9 0,964 -9,8

8 0,936 -15,5 0,949 -18,8 0,958 -21,9

9 0,968 -31,0 0,971 -32,3 0,973 -33,7

10 0,983 -22,8 0,983 -23,9 0,983 -25,1

11 1,009 -13,2 1,008 -13,6 1,007 -14,1

Situacgao 7 8 9

Numeroda  Tensdo  Angulo Tensdo  Angulo Tensdo  Angulo
barra (pu) (graus) (pu) (graus) (pu) (graus)

1 1,030 10,1 1,030 52 1,030 0,3

2 1,010 0,4 1,010 -4,6 1,010 -9,4

3 1,030 -7,0 1,030 -7,0 1,030 -7,0

4 1,010 -19,5 1,010 -20,7 1,010 -22,0

5 1,008 3,7 1,008 -1,3 1,008 -6,1

6 0,981 -6,4 0,982 -11,3 0,982 -16,2

7 0,967 -14,7 0,968 -19,6 0,968 -24,5

8 0,965 -25,1 0,970 -28,3 0,973 -31,5

9 0,974 -35,2 0,973 -36,8 0,971 -38,4

10 0,983 -26,2 0,981 -27,5 0,978 -28,8

11 1,006 -14,5 1,004 -15,0 1,001 -15,5
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Como citado no projeto, foi necessario utilizar geradores regulados. Dessa forma, a

implementacdo matematica torna-se muito dificil. Dessa maneira, optou-se em utilizar o

programa de simulagdo PACDYN disponibilizado pela CEPEL® para executar os calculos e

realizar as simulagbes dos Sistemas de Poténcias estudados, a fim de obter os dados

necessarios para o projeto. Isso elimina diversos esforgos e permite obter uma resposta mais

precisa e real. Os geradores regulados foram descritos neste projeto e para a simulagéo dos

mesmos, foi criado o arquivo para controle dos geradores e obtencdo dos autovalores e

matrizes de estado do sistema em questao.

01
02
03
04
05
06
07
08
o9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

=

=

=]

=

=

PACDYN

11 Barras 4 Geradores

ANAREDE Fomatted File
ANAREDE History
Formatted File

TITU
Yrra IEEE
11/
DSYS
# H = Network File: A =
# H =
# P =
# P = Network printout | T
#({freq) (base) (no) NPTV ISE

60.000 100.00 0001 H W N N

A1N

File

e

I/

(DEFAULT)
| V = Voltstab analysis

Initial conditions test

DGEN
#
# (Nb1) noRM (base) (-HH-) (-X'd) (-X'q) (-Xd-} (-Xg-) (-Ra-) (T'd0) (T'g0) (Xp-) (-Sat-) (--D-)
#(Nbl)no (-X"d) (-X"q) (T"d0) (T"go) (-X1-) (-A--) (-B—-) (-C-—-) (-Xt-)
1 2 900.0 6.500 0.3 0.55 1.8 1.7 0.0025 8.0 0.4
8 1110.25 0.25 0.03 0.05 0.2 0.015 9.6 0.9
2 2 900.0 6.500 0.3 0.55 1.8 1.7 0.0025 8.0 0.4
+ 2110.25 0.25 0.03 0.05 0.2 0.015 9.6 0.9
3 2 900.0 6.175 0.3 0.55 1.8 1.7 0.0025 8.0 0.4
8 3110.25 0.25 0.03 0.05 0.2 0.015 9.6 0.9
4 2 900.0 6.175 0.3 0.55 1.8 1.7 0.0025 8.0 0.4
8 4110.25 0.25 0.03 0.05 0.2 0.015 9.6 0.9
-999
DUDC
# (NUDC) (---Name-—-)
D001 AVE1
#Flag (Nb) (Type) S5(Vinp) (Vout) (---A---—-) (-—-B-—-——-} (-——-C----) (-——D-——-} (-—-E-—--)
1 OUT EFD EFD #BUS
2 IN VB T #BUS
3 IN VREF  VREF #BUS
#Flag (Wk) (Type) 5(Vinp) (Vout) (---A----) (---B----} (---C----) (---D----} (---E----)
5 LDLG VT X1 1 0 1 BTr
6 SUM SVREF X2
-X1 X2
7 GATN X2 EFD #Ra

# DPAR

(——Par—-—-)

{(——Valune-)
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38
39
40
41
42
43
44
45
46
47
48
49
50
51
22
a3
54
55
56
57
58
a9
60
61
62
63
64
&5
1
&7
&8
69
70
71
72
73
74

73
76
7T
78
79
80
81
52
83
54
85
6
&7
&8
&9
a0
91

=]

=]

=

DPAR
DPAR
DPAR
STOP
#(NUDC) (---NHName---)
0002 AVR2
#Flag (Hk) (Type) S(Vinp)
1 00T EFD
2 IN VB
3 IN VREF
#Flag (Nb) (Type) S(Vinp)
5 LDLG VT
& SUM +VREF
-¥1
7 GAIN 2
# DPAR
DPAR
DPAR
DPAR
STOP
#(NUDC) (---Name——-}
0003 AVR3
#Flag (k) (Type) S5(Vinp)
1 00T EFD
2 IN VB
3 IN WVREF
#Flag (Wb} (Type) S(Vinp)
5 LDLG vT
& SUM +VREF
-¥1
7 GATH X2
# DPAR
DPAR
DPAR
DPAR
STOP
#(NUDC) (---Name——-}
0004 AVR4
#Flag (Hb) (Type) S5(Vinp)
1 00T EFD
2 IN VB
3 IN VREF
#Flag (b} (Type) S(Vinp)
5 LDLG VT
6 SUM +VREF
-¥1
T GAIN X2
# DPAR
DPAR
DPAR
DPAR
STOP
—-999
END

(Vont)
EFD
vT
VREF
(Vout)
X1
X2
2
EFD

(Vout)
EFD
VT
VREF
(Vont)
H1
X2
X2
EFD

{(Vont)
EFD
VT
WVREF
(Vont)
p.a §

2

2
EFD

#BUS
#Tr
#Fa

#Fa
{--Par---)

#BUS

#Tr

#Ka

#Fa
{--Par---)

#BUS

#Tr

#Ka

#Ea
(——Par-—-)

#BUOS

#Tr

#Fa

1
0.01
10
(---B----)
(-—-B----}
o]
{(--Value-)
2
0.01
10
(-=-B----)
(-—-B----)
o]
(--Valne-)
3
0.01
10
(==-B----)
(-—-B-—--)
o]
(——Value-)
4
0.01
10

C----)
C---—-)
C--=-)
c--—-)
C--=-)
c--—-)

{(---D----)

(~—-D----)
#Tr

(-=-D----)

(-=-D----)
#Tr

(-=-D----)

(-—-D———-)
#Tr

(-—-E-——-)
(-——E-——)
(-—-E----)
(-——E-——)
(-=-E----)
(-——E--—-)
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Anexo G - Implementacao do Teorema Bauer — Fike

Foi realizada a implementagdo de Matlab® do teorema de Bauer — Fike para cada
simulagdo de carga. Cada uma dessas simulagbes geram uma dada matriz de estado A
que foi armazenada nos vetores Ai que s&o as saidas do programa PACDYN® e

correspondem as matrizes presentes no Anexo H.

clear all
clc
format long

Ao, bo,co,do
Al,bl,cl,dl

[ ] = pacstat('matlab original.out');
[ ] = pacstat('matlab vl.out'");
[A2,b2,c2,d2] = pacstat('matlab vZ.out'");
[A3,b3,c3,d3] = pacstat('matlab v3.out');
[Ad,bd,cd4,d4] = pacstat('matlab vd.out');
[ 1 (
[ ] (
[ 1 (
[ ] (

A6,b6,c6,d6] = pacstat('matlab v6.out');
A7,b7,c7,d7] = pacstat('matlab v7.out');
A8,b8,c8,d8] = pacstat('matlab v8.out');
A9,b9,c9,d9] = pacstat('matlab v9.out');
El = Al - Ao;

E2 = A2 - Ao;

E3 = A3 - Ao;

E4 = A4 - Ao;

E6 = A6 - Ao;

E7 = A7 - Ao;

E8 = A8 - Ao;

E9 = A9 - Ao;

% Teorema de Bauer - Fike: Considerando que exista uma matiz A néo

o\°

perturbada pertencente ao conjunto Cnxn, que safisfaz X"-1*A*X
e que seus autovalores sejam dados por L. Se esta for perturbada R+E
e os autovalores dessa nova matriz seja "mu temos que

oe

o o°

o\°

min [L-mu| < [[X]] [[X*=1]] [IEI]

o\°

o\°

Considere no programa (X,L) os autovetores e autovalores de A.
"mu" os autovalores da matriz perturbada.
Saida Grafica demonstrando teorema.

o\°

o\°

o\°

Matrizes R e Matriz E. Considere A a matriz original sem perturbacdo,
e a matriz E a matriz perturbacdo da matriz A.

o\°

% Dados de Entrada

A=Ao0; S%Alterar manualmente para cada situacdo de carga (Al...A9)
E = E9; %Alterar manualmente para cada situacdo de carga (El...E9)
% Matriz perturbacdo. (A situacgdo - A original)

% Manipulacdo Matemética



[X,L]l=eig(A);

mu=eig (E+A) ;

r=norm (X, 'fro') *norm(inv(X), 'fro'");
T=norm(E, "fro');

[gl,a]l=min (abs(diag(L)-mu)) ;
q2=r*T;

logical verfification=gl<qg2

0P o0 o

oe

figure,

stem (abs (mu) )

hold on, stem(abs(diag(L)),'r"),
legend('"\mu', "\lambda') ;

xlabel (' Autovalores');

ylabel (' Spectrum');

title('Teorema de Bauer-Fike. Situacédo:

112

oe

Decomposicdo em autovalores e
autovetores, X é o conjunto de
eigenectors XiR=LiA.

oe

oe

oe

mu é os autovalores da matriz
original mais a perturbada

oe

Condition number,
a funcao 'cond'.
Utilizou-se a norma de Frobenius
como no teorema.

r pode ser usada

Original');
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Anexo H — Matrizes de Estados

Neste anexo esta apresentado as matrizes de estado para cada situagao de carga perturbada.

-0,31668
-0,08515
0
0,135554
0,025533
0
0,01576
0,003973
0
0,023562
0,006249
0
59,19549
19,28235
1,649311
2,391327

-0,31812
-0,08672
0
0,133782
0,025015
0
0,014746

0

0
376,9911

0

(= ele el =R =lolele e el =]

0

0
376,9911

0

0
0
0

-0,1335
-0,03996
0
0,099396
0,061594
0
0,016985
0,014534
0
0,023688
0,020092
0
-9,24784
-13,906
-5,88544
-6,99644

-0,13665
-0,04133
0
0,101853
0,060623
0
0,020166

0,100465
-0,00576
0
-0,35793
-0,10706
0
0,018354
-0,00106
0
0,028389
-0,00014
0
34,02262
67,75366
6,17429
8,099034

0,099868
-0,00513
0
-0,36073
-0,10931
0
0,015193

S O O O

0
376,9911
0

S O O O O o o o o

oS O O O

0
376,9911
0

0,120444
0,050945
0
-0,13591
-0,05353
0
0,022192
0,014777
0
0,03165
0,020764
0
2,91024
-1,06131
-4,54123
-5,20779

0,119202
0,049569
0
-0,14211
-0,05595
0
0,024514

Situacg

-0,01696
-0,01241
0
-0,01454
-0,01421
0
-0,34232
-0,09569
0
0,093183
0,000264
0
4,366025
5,433471
66,01957
26,1012

1

coocoococococod

376,9911

Situacao 2

-0,01491
-0,01241
0
-0,01154
-0,01381
0
-0,34207

0

S O O O o O

0,007381
-0,00365
0
0,017478
-0,00219
0
-0,13694
-0,06167
0
0,098045
0,038382
0
4,935659
6,070446
596311
1,525048

0,010062
-0,00218
0
0,020186
-0,00034
0
-0,14355

-0,02747
-0,01892
0
20,025
-0,02192
0
0,085559
-0,008
0
-0,40888
-0,13438
0
6,179702
7,699958
31,05555
65,83615

-0,02623
-0,0195
0
-0,02305
-0,02217
0
0,081909

376,9911
0

0
0
0

S O O O O O O

0,00568
-0,00734
0
0,019035
-0,00588
0
0,097761
0,032361
0
-0,15338
-0,07924
0
7222423
8,896846
4,46356
10,67918

0,007392
-0,00606
0
0,020073
-0,00434
0
0,098871

1,25
0

S O O OO O o o O

-~
[\
(9

S O O

=l el el ==l el el

S O O O O

1,25

S O O O O O o o o

1
—_
[\S}
(9}

oS O O O

S O O O O O O
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Efa
Etas
Etas

Eta1
Er2
Efss

Efas

Eq

0,002821
0
0,022333
0,004805
0
59,01734
19,51616
2,29393
3,081294

-0,31959
-0,08812
0
0,131954
0,024356
0
0,013341
0,001569
0
0,020952
0,003425
0
58,4857
19,78088
2,900921
3,721595

-0,32104

S O O O o O o oo

0

0
376,9911

0

S DO O OO oo o o oo

0,015091
0
0,026272
0,019945
0
-9,10619
-13,8381
-5,50106
-6,56157

-0,13926
-0,0426
0
0,103525
0,059692
0
0,022685
0,015373
0
0,027945
0,019497
0
-8,87584
-13,6227
-4,96504
-5,99409

-0,14148

-0,00307
0
0,025283
-0,00217
0
33,95881
67,2557
6,959838
8,908321

0,098917
-0,0049
0
-0,36351
-0,11136
0
0,011744
-0,00514
0
0,022389
-0,00401
0
33,92903
66,89627
7,635077
9,60224

0,097756

S O O O O O o o o

oS O O O

0
376,9911
0

S O O O O o o o o

0,014634
0
0,033347
0,019828
0
-2,504
-0,45721
-3,834
-4,41723

0,117951
0,04829
0
-0,14714
-0,05807
0
0,02605
0,014231
0
0,03416
0,018706
0
2,07413
0,141597
-3,03531
-3,5639

0,116679

-0,09957 0

0 376,9911
0,096959 0
0,003332 0

0 0
5,113934 0
6,361417 0
64,92792 0
25,86859 0

Situacao 3

-0,01267 0
-0,01206 0

0 0
-0,00852 0
-0,01308 0

0 0
-0,34179 0
-0,10291 0

0 376,9911
0,100744 0
0,006376 0

0 0
5,619216 0
6,987702 0
63,66836 0
25,29998 0

Situacio 4

-0,01036 0

-0,06221
0
0,100991
0,040972
0
4,704575
5,784057
4394316
0,218864

0,012645
-0,00068
0
0,022838
0,001496
0
-0,14843
-0,06208
0
0,103582
0,043757
0
4,376949
5,376557
2,483825
-1,29116

0,015143

-0,00986
0
-0,40796
-0,13646
0
7,192538
8,962159
32,37244
66,40163

-0,02504
-0,01981
0
-0,02138
-0,0222
0
0,077377
-0,01239
0
-0,4072
-0,13796
0
7,946363
9,902595
33,56417
66,92346

-0,02391

S O O

0
376,9911
0

0
0
0

SO OO OO O o oo o

0
376,9911
0

0
0
0

0,032488
0
-0,16061
-0,08075
0
6,905617
8,511279
4,940751
10,75994

1
cooocooco oo

0,008665 -1,25

-0,00501 0
0 0
0,02078 0
-0,00311 0
0 0
0,099699 0
0,032472 0
0 0
-0,16569 0
-0,08196 0
0 0
6,57302 -100
8,104591 O
5,516532 0
10,84915 0

0,009658 -1,25

S O O O O

-100
0
0

S O O

1
—
SIS NS N
(9]

[

-100
0
0

0
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(=]

-100
0

1
[N

S O OO0 OO L oo o oo
(9]

=)

-100
0

0

—
TR
W

S O O O

-100

S OO O OO o o0

—
S O O Oy,
W

(=]

-100



o)
E'p

&
E’g

83
E'w
o
d4
Eta1
Efa
Efas

Efas

Erar

-0,08937
0
0,130135
0,023625
0
0,011632
0,000237
0
0,019526
0,002122
0
58,95
20,05446
3,451308
4,301603

-0,32245
-0,09048
0
0,128351
0,022857
0
0,009687
-0,00116
0
0,018103
0,000897
0
58,99748

0
376,9911
0

S OO O OO o oo o oo

0

0
376,9911

0

S O O O oo o oo

-0,04381
0
0,104616
0,058761
0
0,024583
0,015383
0
0,029004
0,018837
0
-8,57692
-13,2987
431207
-5,32583

-0,1434
-0,04497
0
0,10526
0,057812
0
0,02591
0,015121
0
0,029637
0,01802
0
-8,22092

-0,00493
0
-0,36623
-0,11321
0
0,008096
-0,00725
0
0,019701
-0,00567
0
33,92255
66,63836
8,18502
10,17734

0,096452
-0,00512
0
-0,36888
-0,11486
0
0,004308
-0,00937
0
0,017185
-0,0072
0
33,92846

oS O O

0
376,9911
0

S O O O O o o o o

S O O O

0
376,9911
0

S O O O O O

0,047061
0
-0,15132
-0,06
0
0,026892
0,01357
0
0,034413
0,017464
0
-1,62368
0,744947
-2,17636
-2,67002

0,115382
0,045857
0
-0,15483
-0,06178
0
0,027121
0,012656
0
0,034295
0,016141
0
-1,15394

-0,01145
0
-0,00554
-0,01213
0
-0,34138
-0,10569
0
0,10439
0,009337
0
5,929944
737181
62,32958
24,49546

S O O O O O

0
376,9911
0

S O O O O O

0,000864
0
0,02541
0,00334
0
-0,15171
-0,06123
0
0,105677
0,04661
0
3,960573
4,857753
0,328179
-2,95639

Situacdo Original

-0,00803
-0,01067
0
-0,00263
-0,01101
0
-0,34077
-0,10796
0
0,107832
0,012192
0
6,082838

o

376,9911
0

0
0
0

0,01755
0,002442
0
0,027872
0,005195
0
-0,15355
-0,05968
0
0,10718
0,049463
0
3,464055

-0,01993
0
-0,01987
-0,0221
0
0,072293
-0,01542
0
-0,40645
-0,13897
0
8,519811
10,61834
34,62191
67,41168

-0,0228
-0,01994
0
-0,01844
-0,0219
0
0,066807
-0,01886
0
-0,40564
-0,13955
0
8,958151

S OO OO OO OO

0
376,9911
0

0
0
0

S OO OO OO o oo

0
376,9911
0

-0,00412
0
0,021295
-0,0021
0
0,100239
0,03228
0
-0,16909
-0,08291
0
6,240034
7,695954
6,160249
10,95223

0,010466
-0,00333
0
0,021698
-0,00123
0
0,100518
0,031905
0
0,17111
-0,08362
0
5,9108

S O OO OO oo oo

(=]

-100
0
0
0

1,25

(=]

S O OO OO o o0

0
-100

L
)
[0

S O O O o o o O S O

=)

-100

0
0

S o O

o

S O O O oo o oo
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-100

S O OO OO, oo oo

=)

0
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S O O o o O

S DO O, OO0 o0 oo oo
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Er
Efss
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20,32306
3,93208
4,81417

-0,32381
-0,09147
0
0,12664
0,022084
0
0,007592
-0,00256
0
0,016726
-0,00023
0
59,07363
20,57159
4,326521
5,245895

-0,32511
-0,09233
0
0,124999
0,021315
0
0,005389

[

0

0
376,9911

0

S O O O OO oo o o oo

0

0
376,9911

0

0
0
0

-12,8879
-3,56923
-4,57889

-0,14504
-0,04607
0
0,105541
0,056852
0
0,026697
0,014601
0
0,029959
0,017096
0
-7,82144
12,4118
-2,77228
-3,78356

-0,14644
-0,04713
0
0,105532
0,055875
0
0,026998

66,45399
8,598871
10,62949

0,095055
-0,00545
0
0,37142
-0,1163
0
0,000486
-0,01144
0
0,014846
-0,00857
0
33,93563
66,32375
8,862826
10,94768

0,093574
-0,00587
0
-0,37387
-0,11756
0
-0,00334

S O O O

0
376,9911
0

S O O O O O o o o

oS O O O

0
376,9911
0

1,358794
-1,28206
-1,75201

0,114079
0,044684
0
-0,15772
-0,0634
0
0,026809
0,011517
0
0,033927
0,014782
0
-0,67465
1,97499
-0,38882
-0,83918

0,112769
0,043532
0
-0,16008
-0,0649
0
0,026024

7,55921
60,96891
23,52053

Situacg

-0,00575
-0,00976
0
0,000171
-0,0098
0
-0,33996
-0,10975
0
0,110988
0,014892
0
6,1051
7,583647
59,6496
22,43925

0
0
0

(=)

cocoocoocoocoood

376,9911
0

S O O O O O

Situacao 7

-0,00354
-0,00878
0
0,002852
-0,00852
0
-0,33893

0

S O O O O O

4,238499
-1,99998
-4,73571

0,019817
0,004021
0
0,030152
0,007021
0
-0,15408
-0,05748
0
0,107993
0,052222
0
2,906224
3,542408
-4,4016
-6,56098

0,021935
0,005592
0
0,032223
0,008811
0
-0,15346

11,16531
35,54058
67,86874

-0,02174
-0,01984
0
-0,01707
-0,02163
0
0,061082
-0,0226
0
-0,40475
-0,13973
0
9,282199
11,56916
36,30238
68,28631

-0,02069
-0,01966
0
-0,01569
-0,02129
0
0,055135

(=]

S OO OO OO oo O

S

376,9911
0

0
0
0

S O O O O o O

7,290653
6,851273
11,06661

0,011142
-0,00263
0
0,022032
-0,00047
0
0,100571
0,031358
0
-0,17188
-0,0841
0
5,58987
6,894423
7,562697
11,18372

0,011732
-0,00199
0
0,022329
0,000218
0
0,100443

-1,25

(=]

1
OOOEOOOOOOOOOO

(=]
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(9

0
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[

-100

0
0
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-0,00397
0
0,015397
-0,00128
0
59,16704
20,79372
4,630213
5,594884

-0,32639
-0,09309
0
0,123404
0,020544
0
0,003079
-0,00538
0
0,014093
-0,00226
0
5927156
20,98732
4,840956
5,861433

-0,32759

S O O O o O o oo

0

0
376,9911

0

S DO O OO oo o o oo

0,013831
0
0,03006
0,016091
0
-7,38465
-11,8812
-1,94056
-2,95389

-0,14763
-0,04817
0
0,105282
0,054868
0
0,026845
0,012805
0
0,03
0,015003
0
-6,90887
11,296
-1,07931
-2,09025

-0,14857

-0,01343
0
0,012636
-0,00981
0
33,93531
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