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Resumo

A voz humana bem como todo seu sistema de geracdo vem sendo alvo de
estudos por cientistas de diversas areas ha décadas. As diversas teorias sobre a
caoticidade de sinais vém se mostrando eficiente também para a andlise de sinais de
voz humana e, consequentemente, poder auxiliar no diagndstico de algumas
patologias. Dentre os diversos conceitos existentes, a andlise das perturba¢des de um
sinal de voz pode ser util nas triagens e nas avaliagées vocais, e, em alguns casos,

pode ser o correlato de uma paciente com uma voz ruidosa ou soprosa.

As técnicas de andlise de voz baseadas em modelos nao lineares (como é o
caso da reconstrugao de um sinal em um espago de fase) permitem uma andlise visual
da presenca da componente caética e da deterministica, bem como dos fatores de
variacao de frequéncia e amplitude.

O objetivo deste trabalho foi criar um quantificador para as perturbacdes do
sinal de voz a partir da observagao do mesmo reconstruido em um espaco de fase.
Para esta reconstrugao, utilizou-se do auxilio de algoritmos computacionais. A técnica
se mostrou eficiente, pois a quantificagcdo de um grupo de 20 vozes apresentou um

valor final maior para vozes patolégicas.

E importante ressaltar que este método ndo substitui os tradicionais métodos
utilizados pelos fonoaudidlogos, mas mostra-se Gtil no aperfeicoamento e

complemento dos mesmos.

Palavras-Chave: Andlise de Voz, Caos Deterministico, Informacédo Mutua, Espacgo de
Fase, Variaveis de Perturbacao, Quantificador.



Abstract

The human voice, as well as the system that produces it, has been studied by
scientists of different fields for decades. Many theories regarding the chaotic nature of
signals were proven effective on human voice analysis, allowing the diagnosis of
certain pathologies. Among the diverse existing concepts, disturbance analysis of a
voice signal can be useful on vocal tests and evaluations, and, in some cases, may be

the connection of a patient to a breathy or a noisy voice.

The voice analysis techniques based on non-linear systems (as is the case of
signal reconstruction in a phase space) allow a visual examination of the presence of a
chaotic component and a deterministic one, as well as the variance of amplitude and
frequency disturbances.

This work suggests a quantifier for disturbances on the voice signal based on
the observation of the signal’s recontruction in a phase space. The use of
computational algorithms will be applied in this reconstruction. The technique was
proven efficient, because the quantification of a group of thirty voices presented a
higher value for pathological voices.

It is important to stand out that this method is not a replacement to traditional
methods applied by speech therapists, but was proven useful on the improvement and
accompaniment of these methods.

Keywords: Voice analysis, Deterministic Chaos, Mutual Information, Phase Space,
Disturbance Variables, Quantifier.
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1 — Introducao

Sem duvida, o principal elemento responsavel por comunicagdo € a voz

humana. Porém, ha certa complexidade em seu processo de formagéo.

Embora ndo seja sua funcao principal, a laringe é o principal elemento
responsavel pela produgdo de voz. Pode ser subdividida em diversos musculos e
cartilagens e a formacao da voz em trés sistemas: respiratorio, vibratério e ressonador.

Pela sua enorme complexidade, este processo sempre foi alvo de diversos estudos.

Diversos estudos (Banbrook,M.;Mclaughlin, S.; Mann, 1.,1999) ja constataram
gue neste sinal de voz existem algumas variacoes de freqiéncia e amplitude que se

comportam de forma cadtica deterministica

A perturbagdo em amplitude (shimmer) em um sinal vocal, por sua vez,
normalmente esta relacionada com a presenga de rouquidao ou soprosidade (Andrade
et. al., 2002). A perturbagéao em frequéncia (jitter) deve ter uma andlise mais minuciosa
antes de ser relacionada com algum tipo de patologia, pois sua presenca pode
acontecer simplesmente pela presenca de muco nas cordas vocais (Baken, 1987).

Dentre as diversas possiveis técnicas de andlise nao linear, a reconstrugéo do
sinal em um espago de fase mostrou-se eficaz para na identificagdo visual de tais
perturbacdes. O grafico do espagco de fase € constituido por pontos onde a
coordenada do eixo das abscissas representa um valor da amplitude de uma
determinada amostra do sinal e a coordenada do eixo das ordenadas representa o
valor da amplitude desta amostra defasada de um numero p de amostras, ou seja,

(x(n),x(n-p)).

O numero p é determinado a partir da funcdo de informagao muatua do sinal, e,
a partir dela, é levantado um grafico mostrando o nivel de correlacdo de duas
amostras no sinal em relagdo ao seu nivel de distancia, ou seja, o numero de
amostras de defasagem entre elas. Diante do gréafico de informacao mutua, toma-se o

primeiro minimo como o valor 6timo para o numero de amostras p.

Diante do espaco de fase reconstruido, é possivel identificar visualmente no
espago de fase a presenca de perturbagdes, pois os fatores de variagdo de amplitude
(shimmer) e frequéncia (jitter) do sinal ao longo do tempo provocam espalhamentos

nas Orbitas dos atratores. Porém, por ser uma identificagdo visual, um quantificador



para determinar o grau de intensidade da presencga destes padrbes se mostra uma

ferramenta util.

1.1 - Objetivo

Este trabalho tem como objetivo criar um quantificador para a dinamica do
sinal. A técnica utilizada, porém, nao é o calculo através de férmulas, mas sim, a
criacao de um algoritmo que estime um valor através da visualizagéo grafica do sinal
reconstruido no espago de fase.

2 — O Sistema Vocal Humano

2.1 - Laringe

A laringe € um o6rgao envolvido nas fungdes de respiragdo, degluticdo e
fonacao. Esta situada na regido cervical anterior, logo acima da traquéia. E constituida
por um esqueleto cartilaginoso sustentado por ligamentos e membranas fibroelasticas,
apresentando ainda musculatura intrinseca e extrinseca. A Figura 1 faz uma
esquematizacao basica da laringe.
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Figura 1 - Laringe (http://nutrifranca.vilabol.uol.com.br/srespiratorio.html&usg= vmvoAWwGLP-

IrglUacWWi1lanwwMU=&h=430&w=50)

2.1.1 - Musculatura Intrinseca da Laringe

A musculatura intrinseca da laringe é constituida por masculos que tém origem

e insergao na proépria laringe e séo responsaveis pela mobilidade das cordas vocais.

e Musculo Cricotiredideo (CT): E o principal tensor das cordas vocais. Sua
contracao acarreta no alongamento e estiramento das cordas vocais. Figura 2 -

Cricotiredideo

e Mdusculo Cricoaritendideo Lateral (CAL): Este musculo é um musculo adutor do
proccesso vocal. Ele promove a rotagdo da cartilagem aritendidea sobre a
cartilagem cricéidea.

e Mdusculo Cricoariten6ideo Posterior (CAP): Este musculo é um abdutor das
pregas vocais. Sua contragao promove a agao contraria do CAL.
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e Musculo Interatinedéideo (IA): Este musculo participa na adugéao fechando a
glote cartilaginosa, efeito ndo atingido pela contracéo isolada do TA e CAL.

e Mdusculo Tireoaritendideo (TA): A contragao deste musculo promove aducao na
porgdo membranosa da prega vocal aumentando a tensdo em seu corpo.

2.1.2 - Muisculos Extrinsecos

Os musculos extrinsecos tém como fungado principal manter e proporcionar
estabilidade a laringe nas estruturas do pescoco e participam de forma indireta na
formacgao, além de assegurarem os movimentos da laringe e ligarem-na aos 6rgaos

vizinhos.

e Supra-hioideu: Ligam a laringe ao maxilar inferior.

e Supensore inferiores: Ligam a laringe a parte superior do esterno.

e Suspensores superiores: Ligam a laringe a base do cranio

e Esterno-tiroideu: baixa a laringe e fixa 0 musculo tiro-hioideu.

e Tiro—hioideu: baixa o osso hiéide, contribuindo para o abaixamento da
mandibula.

z

E notério, pela descricdo anterior, que os musculos extrinsecos nao tém
intensa participacdo na formacdo da voz como os musculos intrinsecos, mas €
importante menciona-los pois sdo responsaveis por um mecanismo secundario de

controle da freqiiéncia da voz (Le Huch, F. 1993).

2.2 - Pregas Vocais

A prega vocal é constituida por elementos que Ihe conferem uma estrutura
dupla: um corpo e uma cobertura (Hirano. 1989). O corpo € formado pelo musculo
vocal, que pode ser considerado rigido no momento da fonagao, tanto pela adugéo e
tensdo das pregas vocais (gerada pela contracdo dos musculos intrinsecos), como
pela contragao do préprio musculo vocal.
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A cobertura € a mucosa da prega vocal, formada pelo epitélio e pela camada
superficial da lamina propria (espago de Reinke). Como sao frouxamente conectados
ao ligamento e musculo vocal, apresentam grande mobilidade e elasticidade. A
transicdo é formada pelas camadas intermediaria e profunda da lamina prépria (ou
ligamento vocal). Desta forma, embora o corpo seja uma estrutura rigida, ha uma
cobertura extremamente moével, capaz de vibrar sob agao do fluxo aéreo expiratério. A
Figura 2 ilustra o modelo de Hirano.

Musculo Vocal

Figura 2 - Camadas das pregas vocais segundo o modelo de Hirano

As propriedades funcionais da Iamina propria decorrem principalmente de seus
componentes extracelulares (matriz extracelular que consiste em fibras elasticas,
colagenas, agua, minerais, glicoproteinas e glicosaminoglicanas). As fibras elasticas
conferem elasticidade a diversos tecidos e podem ser esticadas a até 5 vezes seu
tamanho original. Na prega vocal humana estas fibras estdo concentradas nas
camadas intermediaria e profunda (principalmente) da I|amina propria. Suas
propriedades elasticas estdo limitadas pela presenca das fibras colagenas, que
também desempenham um importante papel na fisiologia vocal. Estas fibras garantem
resisténcia e ao mesmo tempo elasticidade ao ligamento vocal, permitindo esta
estrutura suportar forgas tensionais da musculatura intrinseca da laringe durante a
fonagéo através do balanceamento das forgas da prépria lamina (Hirano; Kakita, 1985)
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(Hirano, 1996). A Figura 3 mostra uma imagem eletroestroboscépica de pregas vocais

em fonagéo.

Figura 3 - Imagem eletroestroboscopica das pregas vocais

(http://www.rc.unesp.br/pef/2003_projetos/Pedro/fotos/normal.jpg)

O mecanismo responsavel pela vibragdo das pregas vocais foi motivo de muita
controvérsia até 1960, quando Van Den Berg apresentou a teoria mioelastica —
aerodindmica. De acordo com esta teoria, uma massa de ar subglético sob pressao
age sobre as cordas vocais aduzidas e tensas, até que a coluna de ar comprimido
supere a resisténcia glética, criando fluxo de ar de alta velocidade através das pregas
vocais. A corrente de ar proveniente do pulmao é a fonte de energia para a voz
(presséao subglética). Para manter um corpo em vibracdo duas forcas antag6nicas
devem agir alternadamente. Para vibragdo das pregas vocais estas sao as forgas de
abertura, decorrente da pressdao subglética, e de fechamento, proveniente da
elasticidade da prega vocal e do efeito Bernoulli.

7

Segundo Bernoulli, a velocidade do fluxo € alta em uma regido de
estreitamento (pregas vocais aduzidas), criando queda de pressao perpendicular a
parede dessa regido que “aspira” as pregas vocais, como se pode observar na Figura
4.
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Figura 4 - Fl: Press3o Subglética/FB: Pressdo de Bernoulli/FM: For¢a Mioelastica

2.3 - Modelo do Sistema Vocal

Embora os ultimos dois elementos descritos anteriormente sejam os conceitos
chave na formacao de voz, o sistema, como um todo, apresenta outros elementos,
podendo ser subdividido em sistema respiratorio, sistema fonatério, sistema de

ressonancia, articuladores e sistema nervoso central e periférico como mostra a Figura
5.
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Figura 5 - Sistemas Vocais (http://www.brasilfonoaudiologia.com.br/images/fonacion.jpg)

e Sistema Respiratorio: Tem por funcao o fornecimento de energia para
os sistemas. O ar comprimido langado na prega vocal provem dos
pulmdes e movimenta as pregas vocais devido ao efeito de Bernoulli
descrito anteriormente.

e Sistema Articulatério: Consiste nos articuladores, ou seja, a lingua, os
labios, a mandibula, o palato e os dentes. E responsavel pela producéo
dos diversos fonemas.

e Sistema de Ressonancia: Responsavel pela geragédo de ressonancia no
sinal vocal, além de servir como filtro. E constituido pelas cavidades oral
e nasal.

e Sistema Fonatério: Fungao atribuida as pregas vocais

e Sistema Nervoso Central e Periférico: E formado pelo cértex, nervos e
estruturas sub-corticais. Tem a funcdo de coordenar a atuagao

simultanea dos sistemas.



3 — Analise do Sinal de Voz

3.1 — Presenca do Caos Deterministico em Sinais de Voz

A vibracao das pregas vocais produz um pulso de ar glotal quase periddico.
Esta quase periodicidade, embora normal no funcionamento da laringe, esta limitada a
certos valores. A utilizacdo de medidas de perturbagdo do periodo do sinal acustico
pode discriminar casos patolégicos dos normais.

Foram propostas na literatura diversas medidas para estas perturbacdes. A
primeira foi o Fator de Perturbacédo de Frequéncia ou PFF (Lieberman, P., 1961), que
consiste na diferenca de tempo entre as duragdes dos periodos do sinal de voz de
uma vogal sustentada. Além desta analise, destacam-se também o Quociente de
Perturbacédo de Frequéncia (FPQ) e o Quociente de Perturbacdo de Periodo de Pitch
(PPQ). A vibragao das pregas vocais produz um pulso de ar glotal quase periddico,
porém, esta periodicidade esta limitada a certos valores. A utilizacdo de medidas de
perturbacdo do periodo do sinal acustico pode distinguir casos patolégicos de casos
normais (Dajer M. E., 2006).

Estas teorias podem ser sintetizadas basicamente na definicdo dos dois

principais parametros de perturbagédo em sinais temporais: o jitter e 0 shimmer.

O jitter define-se pela variacdo da duracdo de cada periodo em um sinal, ou
seja, variacao de frequéncia. No estudo de sinais de voz, o jitter mostra-se relacionado
com o aspecto de aspereza da voz (Andrade et. al.,2002). A Figura 6 ilustra a
presenca do jitter destacando a diferenga temporal entre os ciclos.
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Figura 6 - llustragao da presenca de jitter

O shimmer, por sua vez, é definido como a variagao do valor da amplitude de
cada periodo do sinal. No estudo de sinais de voz, mostra-se relacionado com a
presencga de rouquiddo ou soprosidade em sinais vocais voz (Andrade et. al.,2002). A
Figura 7 ilustra a presenga do shimmer destacando a variacao de amplitude em cada

ciclo.
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3.2 — Analise Linear — A Transformada Rapida de Fourier

Uma técnica classica na analise de sinais é a transformada rapida de Fourie ou
FFT (do inglés, Fast Fourier Transformer). Sinais periédicos ou quase periddicos
apresentam frequéncias dominantes, as quais se revelam na forma de picos bem
definidos no espectro de poténcia gerado pela FFT. A Figura 8 mostra, para as
Equagdes 1, 2 e 3, suas respectivas FFTs:

x+(x*=-Dx+x=0

Equagdo 1

18



x+(x* - l);c+ x =0,5cos(1,1¢)

Equagdo 2

x+0,25 x+ x* +x = 0,3 cos(?)

Equagdo 3
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Figura 8 — FFTs das Equagoes 1, 2 e 3 respectivamente
(http://www.ifi.unicamp.br/~kleinke/f082/caos_deterministico.pdf)

Esta técnica pode identificar a componente fundamental de um sinal,
conseguindo, assim, distinguir os ruidos. Porém, em um sinal de voz, a frequéncia
fundamental sofre uma pequena variacao ao longo do tempo devido a anatomia da
prega vocal, o que faz a FFT se tornar imprecisa na andlise de sinais vocais.
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3.3 — Analise Nao Linear

3.3.1 — Teoria do Caos

Até a década de 50, os sistemas dinamicos eram classificados em trés
categorias, segundo o padrao de variagdo no tempo das grandezas que caracterizam
0s seus estados: estaveis, convergindo para um valor fixo; periédicos, estabelecendo-

se em oscilagdes periddicas e imprevisiveis, caracterizado por flutuagdes irregulares.

Sistemas imprevisiveis eram também denominados randémicos ou ruidosos.
Porém, em 1963, Edward Lorenz fez uma descoberta que surpreendeu o mundo,
enquanto estudava um modelo de previsdo do tempo (Lorenz., E., 1963). Seu modelo
seguiu um curso que ndo se enquadrava como randdmico, periddico, ou convergente,
exibindo um comportamento bastante complexo, embora fosse definido apenas por
poucas e simples equacgdes diferenciais. A dindmica gerada pelo modelo exibia uma
caracteristica ndao usual: dois pontos localizados a uma distancia infima seguiam rotas
temporais bastante divergentes. Esta observacao levou Lorenz a concluir que a
previsao do tempo em um intervalo de tempo longo néo seria possivel. Sistemas como
o de Lorenz sdao denominados “cadtico deterministicos” ou simplesmente “cadticos”;
ou seja, embora apresentem um comportamento aperidédico e imprevisivel, a sua

dindmica é governada por equacgodes diferenciais deterministicas simples.

A divergéncia de rotas proximas observada por Lorenz é uma das
caracteristicas principais de sistemas complexos que exibem resposta cadtica. Este
efeito € denominado sensibilidade critica as condi¢des iniciais. Uma analogia a este
efeito € o chamado efeito borboleta, que diz que pequenas flutuagdes no ar, causadas
pelas das asas de uma borboleta, podem gerar consequéncias inimaginaveis
(G.,Jaimes, 1987).

A sensibilidade critica as condigcdes iniciais € a caracteristica fundamental que
diferencia os sistemas complexos cadticos deterministicos dos sistemas que
apresentam respostas randémicas ou estocésticas. Para estes sistemas (randémicos
ou estocésticos), a mesma condigédo inicial pode conduzi-los a estados bastante
distintos em pequenos intervalos de tempo, o que nao ocorre nos sistemas caéticos

deterministicos (Bricmont, J., 1996).

Atualmente, o caos é utilizado como uma ferramenta de observacdao de

fendbmenos previamente mal compreendidos do ponto de vista deterministico, tais
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como fendmenos epidemioldgicos, turbuléncia em fluidos, fluxo de calor, ritmos
biol6égicos e movimentos populacionais, sociais e econdémicos (G.,Jaimes, 1987).
Historicamente, o estudo da quimica tem enfatizado o estudo de fenémenos néo-
lineares complexos por aproximacgdes lineares simples. Whitesides e Ismagliov (1999)
falaram do crescente interesse no estudo de processos quimicos complexos, e da

importancia do entendimento dos mesmos no estudo dos sistemas vivos.

Na andlise de um sistema temporal discreto, procura-se, normalmente,
encontrar equacoes que descrevam por completo sua dinamica. Se este sistema for
cadtico, deseja-se determinar se é caotico deterministico ou randémico. No caso de
um sistema caoético deterministico, espera-se poder descrever a sua dinamica por
meio de um conjunto finito de equacgdes diferenciais. Sendo o sistema randémico, este
nao seria descrito por um conjunto de equacgdes diferenciais (devido ao seu elevado
grau de liberdade), mas sim por funcdes de probabilidade.

3.3.2 - Atratores e Espaco de Fase

Define-se por espaco de fases um sistema de coordenadas associado as
variaveis independentes que descrevem a dindmica deste sistema. Por exemplo, o
espaco de fases de um péndulo simples é definido por suas coordenadas de posicao e
velocidade. O atrator € a representacdo da dindmica de um sistema no espacgo de
fases. Sistemas que apresentam comportamento estavel, peridédico ou cadtico
possuem atratores caracteristicos. Um sistema estavel é representado por um ponto
atrator no espago de fases; enquanto um sistema periédico apresenta uma érbita
fechada e, portanto, possui um atrator chamado de atrator periédico.

No caso de sistemas cadticos, as oOrbitas do atrator nunca repetem o mesmo
caminho, contudo, ficam confinadas (atraidas) a uma regido limitada do espaco de
fase. Atratores de sistemas cadticos sdo denominados atratores estranhos (Ruelle,
D.;Takens, F., 1971). Através de atratores estranhos, pode-se fazer uma distingao
entre aleatoriedade e o caos. O comportamento caético é determinista e padronizado
e os atratores estranhos nos permitem transformar os dados aparentemente aleatérios
em formas visiveis distintas. As Figuras 9,10 e 11 ilustram o comportamento do
atratores para estes 3 tipos de sistemas.
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Figura 9 - Exemplo de ponto atrator

Figura 10 - Exemplo de atrator periédico
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Figura 11 - Exemplo de atrator estranho (http://www.didyf.unizar.es/info/jlsubias/lorenz2.gif)

3.3.3 — Métodos de Analise Nao Linear

3.3.3.1 — Dimensao de Correlacao

De acordo com Grassberger e Procaccia (1983), a dimensao de correlagao, Dc,
€ uma medida da densidade (ou dispersao) do atrator dentro de um espago de fases.
No caso de atratores reconstruidos, o numero de variaveis independentes nao é
conhecido. Assim, para reconstruir o atrator, € necessario arbitrar-se a dimensao do

espaco de fases, dimensao esta conhecida como dimensao de imersao Di.

Nos sistemas randdémicos, Dc cresce indefinidamente com o aumento de Dj;
por outro lado, Dc atinge um valor constante quando o sistema for cadtico. Em outras
palavras, pode-se dizer que, para sistemas randémicos, a densidade do atrator varia
sempre que Di aumentar. Se o sistema for cadtico, havera uma dimensédo do espaco
de fases a partir da qual a densidade do atrator se tornara constante (e assim Dc). A
dimensao de correlagéo fornece uma estimativa do nimero de equagdes diferenciais
necessarias para descrever a dindmica global do sistema (Scudiero, Langford,
Dickinson, 1995). A equagéao da dimensao de correlacdo é dada por:
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D = lim 102€(#)

£—0 logg

Equacdo 4

onde € é o raio de uma esfera imaginaria centrada em pontos do atrator e C(g)
representa a soma de correlagéo definida por:

\1 .\

-‘ Al—l

Equacdo 5

onde N é o numero de pontos analisados no atrator e 6(x) a fungao degra unitario.

O algoritmo de Grassberger-Procaccia baseia-se no célculo de Dc para
sucessivos valores de dimensao de imersao (Di=2, 3, 4,...), sendo que, para cada uma
destas dimensdes, obtém-se um valor da dimensado de correlagdo. Dimensdes de
imersao baixas (em referéncia a dimensao adequada de reconstrugao) fardo com que
a dimensao de correlagao seja aproximadamente igual, isto €, Dc ~Di. Dimensdes de
imersdo suficientemente elevadas fardo com que Dc convirja para um valor que se
mantém (aproximadamente) fixo. Sugere-se que, para confirmar a convergéncia de
Dc, deve-se proceder ao seu calculo até dimensdes de imersdo da ordem 2Dc + 1
(Ferrara, N..; Prado, C.; 1994). Porém, quando o procedimento acima é aplicado em
um sistema com elevado grau de ruido ou um sistema randémico, a convergéncia de

Dc nao é observada com o incremento de Di.

Em resumo, este método se mostra eficaz na distincao de caos e ruido branco,
visto que, no primeiro, Dc converge para um valor finito de Di, enquanto, no segundo,

a convergéncia nao ocorre.
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3.3.3.2 — Expoente de Lyapunov

O expoente de Lyapunov, é um parametro de caracterizagdo dinamica de
atratores. Ele mede a taxa de divergéncia de érbitas vizinhas (e consecutivas) dentro
do atrator e, assim, quantifica a dependéncia, ou sensibilidade do sistema as
condi¢des iniciais. Analogamente, pode-se dizer que o expoente de Lyapunov fornece
uma indicacao de quao rapido perde-se informagdo movendo-se ao longo do atrator.
Nos sistemas cadticos, associados a um atrator estranho, a dependéncia das
condi¢des iniciais implica na existéncia de pelo menos um expoente de Lyapunov

positivo.

Em séries temporais experimentais, o ponto de partida para o calculo dos
expoentes € o atrator reconstruido, em uma dimensao de imersao adequada (Ferrara,
N..; Prado, C.; 1994). Uma vez reconstruido o atrator, define-se uma trajetéria fiducial
a partir da sequéncia de vetores reconstruidos. A seguir, deve-se analisar o que ocorre
com pontos vizinhos desta trajetéria. Com as informacdes sobre as taxas de
divergéncia destes ponto, podem ser obtidos, entdo, os expoentes de Lyapunov.

Existem varios métodos para o célculo dos expoentes, os quais diferem na
maneira de analisar a dindmica ao longo da trajetéria fiducial. O método utilizado aqui
para esta explicacdo sera método de Wolf (Wolf; Swift; Swinney; Vastano; 1985).

O método baseia-se no acompanhamento das distancias entre pontos
convenientemente selecionados e a trajetoria fiducial. Seja essa trajetéria descrita pela
sequéncia de pontos y(ty),y(t1),y(t,)... Seja Zy(t,) 0 vizinho mais proximo de

y(to) no atrator reconstruido, e L, a distancia entre y(t,) € Z,(t,) ; isto é,

L,= |.1'(t0) -Z, (t())|

Equacdo 6
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Definindo-se uma hiperesfera de raio ¢ centrada em y(t,), de modo que Z,(t,)
esteja contido nesta hiperesfera, ou seja,

L, = |."(t0) - Zo([o)| <&

Equacdo 7

acompanha-se entao a evolugao temporal de y(ty)e Z,(t,) até que num instante t; a
disténcia entre esses pontos, L', , exceda €. Nesse momento substitui-se Z, por um

novo vizinho, mais préximo de y(t;), que esteja na dire¢cdo do segmento L', e tal que

L =|y@t)-Z)<e

Equacdo 8

O processo prossegue até que todos os pontos y(t;) tenham sido percorridos.
O maior expoente de Lyapunov positivo é obtido como a média de log,(L;/L;) ao
longo da trajetéria fiducial, isto é,

Equacdo 9

onde M é o numero total de vezes que se escolheu um novo vizinho préximo a

trajetéria fiducial. Este procedimento é representado na Figura 12.
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y(ty) )

Trajetoria Fiducial y(t,)

Figura 12 - Esquematizagao do processo de calculo do expoente de Lyapunov
(http://www.ifi.unicamp.br/~kleinke/f082/caos_deterministico.pdf)

Em experimentos praticos, onde o numero de pontos da série temporal é
finito e a presenca de ruidos € usual, torna-se impraticavel a selecdo de um ponto
vizinho situado na direcdo do segmento L';_;. O critério adotado neste caso é a
selecdo de um ponto que esteja contido em um cone de altura €, com um angulo de
abertura 6 = 9 e cujo eixo de simetria coincida com o segmento L;_;. Se nenhum
ponto for encontrado, aumenta-se o angulo 6. Em ultimo caso, o vizinho mais préximo
€ escolhido, independentemente dos valores de 6 e €. A Figura 13 ilustra este tipo de
selecéo.
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> 0=n/9

" “.»  Novo ponto Z(T)

Figura 13 - Seleg¢do do ponto através do cone
(http://www.ifi.unicamp.br/~kleinke/f082/caos_deterministico.pdf)

O maior expoente de Lyapunov (4,), calculado a partir do método descrito,
também €& chamado de expoente maximo de Lyapunov. Este elemento se mostra
eficiente na caracterizagdo do comportamento de sistemas, pois seu valor pode indicar
estabilidade, instabilidade, periodicidade, ou, até mesmo, caoticidade (Wolf).

Para um valor negativo de A,, ou seja, para A;< 0, o sistema em analise
caracteriza-se como um sistema dissipativo e, portanto, um sistema instavel. No caso
de 1, = —oo, 0 sistema apresenta um comportamento de super estabilidade, ou ainda
podendo ser dito como um ponto super estavel. Um sistema que apresenta A, = 0, por

sua vez, é caracterizado como um sistema periddico.

Se o valor calculado de A, é maior do que zero, tem-se entdo que o sistema é
caotico, pois os pontos vizinhos divergirdo de forma arbitraria tanto em sistemas

discretos como em continuos.
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3.3.3.3 — Reconstrucao do Espaco de Fase

Como ja fora descrito anteriormente, o espaco de fase é um sistema de
coordenadas de variaveis independentes que descrevem a dinamica do sistema nao
linear. Para a reconstrugcao de um espaco de fase para um sistema caotico composto
por uma série temporal (no caso, o sinal de voz humana), € recomendavel o uso da
técnica do tempo de atraso (Packard; Crutchfield; Farmer; Shaw, 1980). O método é
baseado na obtencao de vetores atrasados da série temporal original, de modo que o
espaco de fases passe a ser definido pelo conjunto de vetores dado por

Jw |

= {x(e )x( + p s x(t, +(m=1)p)}

Equagao 10

onde x(t;) é a série temporal registrada, p € o tempo de atraso e m é a dimenséo de
imersdo do espagco de fases. Os atratores obtidos desta maneira sdo chamados
atratores reconstruidos. A qualidade do atrator reconstruido é bastante sensivel ao
valor escolhido para o tempo de atraso. Por qualidade do atrator, entende-se quéao
bem definidas sdo as trajetorias que constituem a dinamica do atrator. Na prética,
atratores gerados com p pequeno sao fechados e mal definidos, valores elevados de p
geram atratores dispersos, ao que passo valores adequados de p geram atratores
abertos e com dinamica bem definida. Estas situacdes estao ilustradas no exemplo da

Figura 14.
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Figura 14 - Espacos de fase para sinais com valor pequeno de p, valor correto de p e valor grande de p
respectivamente (http://www.ifi.unicamp.br/~kleinke/f082/caos_deterministico.pdf)

Existem varios métodos para a selecdo do tempo de atraso, porém, ha dois
métodos que sdo os mais difundidos: O uso da fungao de autocorrelagao (Ferrara, N.;
Prado, C.; 1994)., e 0 uso da fungdo de informacdo mutual (Frase,A.; Swinney, H.;
1986).

3.3.3.3.1 — Funcao de Autocorrelacao

Em processamento de sinais, existe um termo chamado correlagéo cruzada de
sinais, que, em resumo, € uma medida para a similaridade entre dois sinais podendo

serem estes continuos ou discretos (amostrados). Esta técnica possui diversas
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utilidades no processamento de sinais e no reconhecimento de padrées como em

andlises criptograficas e neurofisiolégicas.

Para sinais continuos, a fun¢do de correlagéo cruzada para dois sinais f e g

sera:

Equagdo 11

Para sinais discretos, a fungao sera:

rg tA‘ 3 V;'.

Equagdo 12

onde f* representa o conjugado de f.

Esta féormula, basicamente, desliza a fun¢do g ao longo do eixo das abscissas
(no caso da fungao continua, o eixo representado pelo tempo t, e no caso da fungao
discreta, o eixo representado pela amostra n) calculando a integral do produto das
duas fungdes para todos os valores de atraso (pois a integral vai do infinito negativo ao
infinito positivo).

A autocorrelacado de um sinal por sua vez, representa a correlagao cruzada de
um sinal com si préprio. Desta forma, € possivel analisar a similaridade de uma fungao
com ela propria no futuro e no passado, o que faz o calculo da autocorrelagdo de um
sinal se tornar uma ferramenta interessante na separagdo de ruido da freqiiéncia
fundamental e suas harménicas, como também para encontrar elementos

deterministicos em sinais caéticos.

Para os sinais amostrados a técnica também é vélida, porém, ao invés do
atraso temporal, ele € medido em amostras. A determinagéo do valor de atraso de
amostras sera o primeiro valor que faz com que a fungao de autocorrelagao seja igual
a zero (Ferrara, N.; Prado, C.; 1994).
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3.3.3.3.2 — Informacao Mutual

Na estimativa do valor k ideal, foi proposto por Fraser e Swinney (1986) que se
utilize o Método de Informacdo Mutual. Este método dita que o valor étimo para o
tempo de atraso seria o0 primeiro valor minimo na curva de informacdo mutual por
numero de amostras de atraso (para sinais amostrados), pois, assim, as variaveis

defasadas serdo o mais independente possivel.

A funcao de informagédo mutal indica em que grau parte de uma série temporal
contém informagéo, ou relembra outras partes da mesma série temporal (Horgan, J.;
1995). Ela mede a dependéncia geral de duas variaveis, e fornece uma estimativa
melhor para a escolha do tempo de atraso que o primeiro zero da fungdo de
autocorrelagao, onde é considerada apenas a dependéncia linear.

E possivel se levantar um gréfico do valor da informagéo mutual por tempo de
atraso (em sinais continuos) ou por amostras de atraso (em sinais discretos ou
amostrados). A partir de uma analise do gréafico é possivel escolher o primeiro minimo
manualmente. As Figuras 15 e 16 mostram a curva de informacdo mutual para
algumas funcgoes.
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Figura 15 — Sendide pura e sua curva de informag¢ao mutual

2 . . v . - 28 . : 5 ! , : .
2,61 ....... S— -— — — — — — i
71| RO SUUUOON SOUOPORN OPPUUNE SURNOOO SOROOOE SOOI SO
- 1 . N— .................................. -

3 P
2 5 : i
3 : :
gte- b
=16 o f oo
14} wepedendeohef-
12 : :
1 1 1 i i 1 1 1
2 . . . . . 0 10 20 30 40 5 60 70 80
0 5 10 15 20 25 30 atraso (amostras)

Figura 16 — Senéide com um harmonico e sua curva de informag¢dao mutual

3.3.3.3.3 — Analise do Sinal no Espaco de Fase

Na reconstrucdo do espaco de fases, o eixo das abscissas consiste nas
amostras x(n), enquanto o eixo das ordenadas consiste nas amostras x(n-p), onde p é
0 numero de amostras de atraso determinada pela escolha do primeiro minimo na
funcédo de informacao mutual. As Figuras 17 e 18 mostram os espacos de fase das
funcées utilizadas nas Figuras 15 e 16 respectivamente.
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Figura 17 — Espago de fase de uma sendide pura

Figura 18 — Espaco de fase de uma sendide com um harménico

4 - O Experimento

4.1 — Materiais

Foi utilizado um banco de sinais de vozes humanas contendo 20 sinais de voz
de individuos na faixa etaria de 19 a 39 anos. Os sinais consistem na pronuncia
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sustentada da vogal ‘a’ do portugués brasileiro e foram gravados com taxa de
amostragem de 22.050Hz no formato WAV com 16 bits.

A gravacao foi realizada com o individuo em posi¢ao sentada, com tronco reto,
costas encostadas no respaldar da cadeira, bragos e maos relaxadas sobre as pernas;
o microfone “de cabecga” é ajustado a cabecga do sujeito e colocado cuidadosamente a
uma distancia de 5 cm da boca a uma inclinagéo de 45°.

O microcomputador utilizado trata-se de um processador AMD Turion™ X2
Dual-Core Mobile RM-70 2.00GHz 64-bit com meméria 3,0 GB RAM 800Mhz DDR2
com o sistema operacional Windows 7 Professional 64-bit.

Um pacote de auxilio para o calculo da informagao mutua de sinais também foi
necessario, sendo utilizado o TISEAN 3.0.1 (disponivel para download em

http://www.mpipks-dresden.mpg.de/~tisean/Tisean 3.0.1/index.html).

4.2 — Métodos

O experimento realizado baseia-se na reconstrugao de espagos de fases para
sinais de voz para andlise de possiveis patologias. Neste trabalho, adicionou-se, em
um algoritmo j& existente, um quantificador para a dinamica destes sinais. A idéia de
se tentar quantificar a dinamica visivel no espago de fase se mostra interessante, pois
as perturbacdes do sinal podem, muitas vezes, estarem relacionadas com patologias
vocais, tais como soprosidade e rouquidao.

Para a realizagédo, implementou-se um algoritmo, que, diante de uma entrada
de um sinal de voz em formato .WAV, retorna ao usuério sinal de voz plotado em
funcdo do tempo. A partir deste grafico, o usuario escolhe qual parte do sinal sera
analisada. Para este trabalho, em todos os sinais analisados foi selecionado um trecho
de dez ciclos, para que a medigéo final seja em uma mesma escala para todos os

sinais.
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Figura 19 - Exemplo de sinal de voz da vogal /a/ sustentada, analisado no tempo
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Figura 20 - Sinal de voz anterior ja com um pouco de aproximagdo com a presenca do cursor para selegao
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Figura 21 - Sinal de voz com trecho de 10 ciclos selecionado para analise.

Escolhido o trecho, é feito o céalculo da informacao mutua. Através do vetor que
contém as amostras do sinal escolhido por passo de tempo, é possivel calcular a
informacao mutual deste sinal. Para isto, utilizou-se o pacote TISEAN 3.1. Este pacote
consiste em um algoritmo feito em linguagem C que, tendo como entrada o vetor de
amostras do sinal, retorna como saida um vetor que descreve a informag¢dao mutual

para cada valor de defasagem de amostras.

Na sequéncia, plota-se o gréafico deste vetor e deve-se determinar o primeiro
minimo da informagéo, sendo este valor a quantidade de amostras de atraso usada
para a criagdo do eixo das ordenadas do espaco de fase. Este minimo ndo é calculado
automaticamente pelo programa, mas sim, definido manualmente pelo usuario. Assim
que o grafico é exibido na tela o usuario deve, com dois cliques de mouse, determinar
a regiao em que esta o valor minimo. O primeiro clique deve ser em um ponto
proximo, porém anterior ao ponto minimo, enquanto segundo clique deve ser em um
ponto préximo, porém posterior. O algoritmo calcula entdo o valor minimo entre estes

dois pontos eliminando, assim, a imprecisao provocada pela escolha manual.
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Figura 22 - Grafico da informagdao mutual em relagdo ao atraso de amostras com o cursor de sele¢do do primeiro

minimo.

De posse do valor de amostras necessario para o primeiro minimo de

informacao mutual, plota-se entao o espaco de fase do sinal.

)

x(n)

Figura 23 - Espago de fase do sinal de voz
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Figura 24 - Sinal com grande quantidade de perturbagao

No plano do espaco de fase, o usuario deve, manualmente, selecionar pares de
pontos para a quantificagdo da perturbacdo. Para tal, deve-se selecionar um ponto do
lado exterior da fronteira da 6rbita e o outro lado interior, de maneira perpendicular a
Orbita. A figura 25 ilustra o método, sendo, cada circulo, um ponto de selegéo,
resultando em quatro pares de pontos. Os dois pontos que constituem o par sdo, na
figura, os circulos proximos cuja reta formada por eles cruza perpendicularmente a
Orbita.
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x(n7)

x(n)

Figura 25 — Método de coleta dos pares de pontos

Os valores dos dois pontos obtidos de cada par sao armazenados em um vetor
e 0 usuario pode, entao, selecionar o préximo par. O numero de pares de pontos de
que deve ser adicionado fica a critério do usuario, porém, nos testes que serao
descritos adiante, foram selecionados trinta pares para cada sinal de forma aleatéria.
O usuario tem a opgao de aplicar zoom no grafico de modo que possa aumentar a
precisdo do par de pontos. Terminada a coleta, o programa calcula a distancia entre
os pontos do par e faz uma média das distancias encontradas chegando a um valor
final. Este numero encontrado sera proporcional varia de 0 (sinais periédicos puros)
até 1(sinais totalmente aleatérios) a quantidade de perturbacao presente.

As Figuras 30 e 31 consistem nas reconstrugcoes em espaco de fases de sinais
artificiais com perturbacdo pura em amplitude. A Figura 30 apresenta um sinal
modulado em amplitude com um indice de modulagédo pequeno (0 que acarreta em
pouca variacdo de amplitude) e a figura 31 mostra o mesmo sinal com um indice de
modulagdo um pouco maior (0 que acarreta em uma maior variagdo de amplitude). Em
ambos aplicou-se o quantificador obtendo os valores de 0,02 para o sinal de menor
indice de modulacao e 0,2 para o de maior indice.
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Figura 26 — Sinal de shimmer puro quantificado em 0.02 de perturbagado

x(n-6)
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Figura 27 - Sinal com shimmer puro quantificado em 0.2 de perturbacdo

4.3 — Resultados e Discussao

Ao se olhar para a reconstrugdo de um sinal de voz real em um espago de

fase, é possivel distinguir visualmente os sinais que apresentam maior perturbacao
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dos sinais que apresentam menor perturbacdo, pois as variagdes de frequéncia e
amplitude provocam visiveis alteragdes no tracado das érbitas dos atratores.

Para o fendbmeno da perturbagcado de amplitude (shimmer), observa-se que os
atratores apresentam um comportamento de espagcamento homogéneo no percurso
das orbitas do espacgo de fase. Quando maior a variagdo de amplitude no sinal, maior
sera o espalhamento provocado.

No fenbmeno da perturbagdo de frequéncia (jitter), os atratores tracam
trajetérias que no decorrer da dindmica contorcem sobre si, apresentando uma

seqléncia de convergéncias e divergéncias ao longo das érbitas.

O ruido, por sua vez, provoca uma aleatoriedade no tracado das oérbitas,

fazendo com que as mesmas se moldem de uma forma irregular e imprevisivel.

O algoritmo quantificador apresentou resultados condizentes com essas
perturbagdes visuais, apresentando valores maiores para sinais com mais perturbacao

e valores menores para sinais com menos perturbacgao.

Na realizagdo deste experimento, foram selecionadas do banco de vozes 10
vozes diagnosticadas clinicamente como saudaveis e 10 vozes diagnosticadas

clinicamente como patolégicas.

4.3.1 — Vozes Saudaveis

Foram obtidos os valores de quantificagdo para 10 diferentes vozes
diagnosticadas clinicamente como saudaveis. Os valores encontrados oscilaram entre
0,03 e 0,10. A figura (colocar numero depois) mostra a reconstru¢cdo do espacgo de

fase para cada uma das vozes com seus respectivos valores encontrados.
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Figura 29 - Voz Saudavel 2 - Q = 0,0847
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Figura 30 - Voz Saudavel 3 - Q = 0,0609
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Figura 33 - Voz Saudavel 6 - Q= 0,0618
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Figura 36 - Voz Saudavel 9 - Q =0,1016
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Figura 37 - Voz Saudavel 10 - Q = 0,0907

4.3.2 — Vozes Patoldgicas

Foram obtidos os valores de quantificagdo para 10 diferentes vozes
diagnosticadas clinicamente como patolégicas. Os valores encontrados oscilaram
entre 0,11 e 0,47. A figura (colocar nimero depois) mostra a reconstrugao do espago

de fase para cada uma das vozes com seus respectivos valores encontrados.

x(n-6)

Figura 38 — Voz Patolégica 1 - Q = 0,1150
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Figura 44 - Voz Patolégica 7 - Q = 0,1224

49



x(n-14)

0.5 T  § T T T T T T T
DNy N
AN .14«\\ :

l "\“ 2 s - /’" '\ 3
r%‘}?’ﬁ&%g D)
ol- \‘“ _ _____ f ' o
) L LAY
e S
4 I 1 | | I I I I

i :
12 41 -08 06 -0. -0.2 0 02 04 06 08

x(n-15)

Figura 47 - Voz Patolégica 10 - Q = 0,1792
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4.3.3 — Analise Estatistica dos Resultados

Para uma melhor determinacdo da legitimidade dos resultados, foi feita uma
andlise estatistica com os valores obtidos. Tal analise consistiu na divisdo dos valores
em dois grupos: vozes clinicamente diagnosticadas saudaveis e vozes clinicamente

diagnosticadas como patoldgicas.

Feita a divisdo foi determinado, para cada grupo, o valor maximo, o valor
minimo, a média e a variancia. Em seguida foi realizado o Teste T — Student para um
intervalo de confianga de 0,05 (unicaudal) e para um intervalo de confian¢a de 0,1
(bicaudal). Com os dados obtidos, montou-se a Tabela 1.

Saudaveis Patoldgicas
0,0323 0,115
0,0562 0,1224
0,0609 0,1274
0,0618 0,1358
Valores 0,0709 0,1436
0,0757 0,1792
0,0847 0,194
0,0907 0,2367
0,1016 0,2787
0,1042 0,4735
Méximo 0,1042 0,4735
Minimo 0,0323 0,115
Média 0,0739 0,20063
Variancia 0,000495084 0,012069736
Teste T Unicaudal 0,000969342
Teste T Bicaudal 0,001938683

Tabela 1 - Andlise estatistica dos resultados

E vélido ressaltar que o teste T mostrou um resultado satisfatério para a diviséo
de valores entre os dois grupos, podendo o quantificador ser considerado um
complemento interessante na elaboracao de diagnosticos de patologias vocais.
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5 — Conclusao

Pode-se concluir depois das anélises e testes realizados, que a quantificagao
da dinamica mostrou-se uma ferramenta Gtil e complementar na anélise de sinais de
voz através da reconstrucao do espaco de estado. O quantificador apresentou um
valor numérico para o grau da dispersao das érbitas dos atratores no espaco de fases,
podendo, também, diferenciar sinais que parecem ter o mesmo grau de dispersao a
olho nu.

A dispersao dos atratores € um reflexo da variacao de freqiéncia (jitter) e da
variacao de amplitude (shimmer), e do ruido de um sinal ao longo do tempo, o que
mostra a eficiéncia do espaco de fases na descricdo da dinamica dos sinais, além de

uma excelente forma de analise.

E valido colocar que este método de andlise ndo linear e quantificacdo pode
servir como complemento de um exame clinico vocal, visto que foi estatisticamente
comprovada a existéncia de uma separacdo numérica entre vozes saudaveis e

patoldgicas.
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