qkm“\\

2

ESCOLA POLITECNICA DA UNIVERSIDADE DE SAO PAULO

DEPARTAMENTO DE ENGENHARIA MECATRONICA E DE
SISTEMAS MECANICOS

PMC 581 — Projeto Mecanico li

Sistemas de Informacgao para Automacao Predial
Relatério Final

Prof. Orientador: José Reinaldo Silva

Aluno: Nimero Usp

Marco Dyedi Takahashi 2368088

Patrick M. von Schaaffhausen 2238621
Sao Paulo

2001

1

2

INDICE

INTRODUCAO 5
SISTEMA DE CONTROLE ereesrasnsssssssssesasaassnsssanasnen eusBuo R 8 veses O
21 SISTEMA DE SEGURANGA ...ovoeuruemrassinsessesstsssntasisssssbssmssasmsssssssssisssssssisssassses 8
2.1.1 Modelagem do sistema de detecgdo de INITUSAO.ooovvriimriniisinenne: 9
2.1.2 Modelagem do sistema de detec¢do de iINCEATIO.cvuvevirenrennnnnenns 10
2.2 SISTEMA DE JLUMINAGADcoviiiiimmnnnesresissstrmmeiisiasrassssonibnssasmremnenisptsssereniy 12
221 Modelagem do sistema de [UMINAEAO:cc.oovirivcrivniimreiiiesinenns 12
2.3 SISTEMA DE VENTILACAO . 1ecvtiueeemiiininsuessirsasaesosnissmsrssnssasesssassissssninssasssonss 13
2.3.1 Modelagem do Controle de [eMPErIUNToocovnneririiisnmmninnnes: 15
232 Modelagem do Ventilador..............ocoooivninininrnnes 16
2.4 SISTEMA DE SEGURANGA DO ELEVADORcctiiimimmimmnnsinnsisisiinimsscsesaes 16
24.1 Modelagem do controle do elevador em caso de emergéncia............... 17
IMPLEMENTAGCAOQ ..ucovvmscsssrnrserorssessssssssasissasssssssssnssssansssossss 19
31 CONTROLE DAS SALAS . cirereriitiorisarteratstnssisiorsssas sttt titsiassorssissassmanss 19
32 CONTROLE DO ELEVADOR ...coutitiiiiimirnisnasesssnsnsstessansstsnesascosisssassasassansencess 19
3.2.1 Elevador — Controle do mOVIFRENIOc..ccourvvireiiiiiniiniinsininaaes 19
322 Placa da National INSTFUMENIScoccoviivuirnciinenteeenecss it 21
3.3 CONTROLE DO VENTILADOR ..ccucitiirenecemmnstimssmmsirsrsrassessssim sttt e 23
3.4 CONEXAO DOS SISTEMAS ...cceeeremrriressssnansssserarsistisinsssamanesssssssissasissnnisesssassess 24
DESENVOLVIMENTO DO SOFTWARE DE CONTROLE.....ccccvcuccecsenes vess 26
A1 CLP oeeeoeeeeeeveeeeressestesvestrasasessess s srasa s b b s e st e e s e st RS a R e eSSt s 26
4.1.1 Moédulo de Programa Principal do CLP Mestre.............ccoococvvvinnnnnen. 29
4.1.2 Mbdulo de Programa Principal do CLP ESCravocccoovvviinnces 30
4.1.3 Fungdio FCNCOMUN ..ottt 31
4.1.4 Fung@o FONLDTMP..........occovomiimiieneciniieinsnis st e 32
4.15 Func@io FON INVA...cooooiiiiniiininie i 33
4.1.6 Fungdo FCN ALRMoooomiiiiiiiiinsiniiis et 34

4.1.7 Fung@o FOCNVENTIL ..ottt 36

Sistema de Informacio para Automagio Predial

4.2 SISTEMA SUPERVISOR.....0ecreescereossmrserserssssssssssssssssnsnssssnississssnissssssssesbisssassas 38
4.2.1 SOFIWAFC....eveevereeevinsssssess st e 38
4.2.2 TALErTACE COM O USUATIO ... s 38
423 Fung@o FCNARRAY........coomrvemeinimiinissssen s 48
424 Fungdo SPDCONVERT e TEMPCONVERT ... 48

5 CONCLUSOES CONSIDERA(;OES PARA O FUTURO. 49
6 BIBLIOGRAFTAccovrnetsssasssenencsssssssrmsmsssassessansnsassssssasstssssssssssastiasasssssssssssssases 50
APENDICE L. LISTAGEM DAS FUNCOES DE CONTROLE c..coocvenuinsnsssssaseens 51

APENDICE I.1 PROGRAMA PRINCIPAL DO CLP MESTRE......ccviieirainmnecisinasninmrnsnenenses 51

APENDICE .2 PROGRAMA PRINCIPAL DO CLP ESCRAVO..ccviemiiiiiinniinniiesiessniecns 56

APENDICE .3 FUNCAO FCN ALRM....uoiiiieimtienmiiisnetiasss it 60

APENDICE L4 FUNCAO FCNARRAY ..ot 62

APENDICE 1.5 FUNCAO FCN_INVA ...ttt 71

APENDICE 1.6 FUNCAO FONLDTIMP ...ttt ssssanees 72

APENDICE 1.7 FUNCAQO FCNVENTILocimieniininisreerisnnnns s sses st snenene 73

APENDICE [.8 FUNCAO SPDCONV L.ttt st s 75

APENDICE 1.9 FUNCAO TMPCONV L..ovimiiineicnintinbiaisiinesss sttt esisens 76

APENDICE II. LISTAGEM DO PROGRAMA DO SISTEMA SUPERVISOR...77

APENDICE 11.1 LISTAGEM DO PROGRAMA EM SUPERVIOSOR.C oeuvvrremeersacrunssnsiveenvarsens T
APENDICE I1.2 LISTAGEM DO PROGRAMA SUPERVISOR.Hoiriiieiririicrecniniiisrssneninens 109

Sistema de Informacfio para Automacio Predial

Indice de Figuras

Figura 2-1: Esquema dos Sensores Na MAQUELEcocrveemememienseass e snsnsusicn ittt 6
Figura 2-2: Esquema da Maguetecoooeiiemiicnmiii s 7
Figura 2-3: FOto da MaqUete.........coeiemrerierncrrerianieniniii sttt s 7
Figura 2-4:Rede de controle de detecglo de Presengao vreeeeerieniein s 9
Figura 2-5: Rede de controle de detecgdo de inendio ... 11
Figura 2-6: Rede de controle de Iluminagiocooommmiminiinmiini e 13
Figura 2-7: Rede de controle de Temperatura. ..o 15
Figura 2-8: Rede de controle do Ventilador ...t 16
Figura 2-9: Rede de controle do elevador em emergencia........ocvevcnernneiacnensnanens 18
Figura 3-1: Esquema do elevador ... 20
Figura 3-2: Circuito de controle do motor de PasS0cvcevssreninninseiiierinnonsescssenianss 21
Figura 3-3: Placa para controle do elevador........ccoiiiiinii e 22
Figura 3-4: Circuito de controledo PWM ..o 24
Figura 3-5: Esquema de controle do SIStema.......cveeerieuiiimiiiii e 24
Figura 4-1: Configuracfo de conexo entre 08 CLPS ..o 27
Figura 4-2: Foto da conexfio entre 08 CLPS ..o 27
Figura 4-3: Troca de dados entre 05 CLPS ...coceeriveiieeninieiincinii it 28
Figura 4-4: Fluxograma do programa principal do CLP mestre.........cooevvvennvcrnninennnne. 29
Figura 4-5: Fluxograma do programa principal do CLP escravococoveiciinnene. 30
Figura 4-6: Fluxograma fa fungio FCNCOMUN. ...t 31
Figura 4-7: Fluxograma da fungio FCNLDTMP ..o 32
Figura 4-8: Fluxograma da fungio FCN_INV A ... 33

Figura 4-9:

Fluxograma da fungio FCNALARM ..o 35

Sistema de Informagdio para Automagio Predial

Figura 4-10: Fluxograma da fungfio FCNVENTIL ..o, 37
Figura 4-11: Painel de interface COM 0 USUATIOcovvimimmmssmrmsinissenisnissnsnisri s 39
Figura 4-12: Modulo de Controle do Elevador ... 39
Figura 4-13: MOAulo de Presengaocvmeeresimcrsiniimiinnisiessis st 42
Figura 4-14: Indicador de INVASHOcvueeevcmviiintinne st 43
Figura 4-15: Modulo de Controle de Temperatura..........ocoeieeeisissescnnrcniissnsenscnnns 44
Figura 4-16: Painel com informagdes detalhadas referente a temperatura 45

Figura 4-17: Painel de TESe.........ouveiimrieienicresrcicnsiia st sasiinenas 47

Sistema de Informag#o para Automagdo Predial 5

1 Introducio

Atualmente a integragio de sistemas € uma estratégia capaz de garantir uma melhoria
significativa no uso dos recursos energéticos, devido o aumento da eficiéncia da
coordenagfio das fungdes realizadas pelas diversas partes de um sistema resultando em

uma melhora qualitativa e quantitativa do funcionamento do sistema como um todo.

No entanto, em grande parte dos “edificios inteligentes” atualmente em funcionamento,
0 que se observa sic sistemas em que nfo hd uma integragfio entre os diversos sub-

sistemas que o compde ndo havendo assim um compartilhamento das informacdes.

Nossa proposta ¢ apresentar um modelo de controle predial integrando as diversas
partes do sistema com o objetivo de diminuir os custos de operag8o, diminuir o gasto

energético, aumentar a vida 1til do sistema e garantir seu uso com conforto € seguranga.

Em um sistema integrado os dados de diversos sub-sistemas sfo compartilhados. Por
exemplo, o sub-sistema de iluminac@io e de presenga, apesar de possuirem finalidades
distintas, possuem os mesmos dados de entrada. Em sistemas nfio integrados estes dados
sdo coletados independentemente; aumentando o custo do sistema, aumentando os
requisitos computacionais e gerando margem para inconsisténcia entre as informagdes.
Ja em sistemas integrados, como o proposto, esses problemas e inconsisténcias sdo
eliminados. Além de permitir uma maior flexibilidade, possibilitando altera¢ées e novas

implementacdes com maior facilidade.

Sistema de Informagdio para Automagio Predial 6

2 Sistema de Controle

Neste trabalho, construiremos uma maquete com trés andares, onde se deseja monitorar
e controlar os sistemas de iluminagdo, seguranga, conforto térmico e elevador. Ao todo
<0 cinco ambientes, um no piso térreo e mais dois ambientes no primeiro e segundo

pisos.

Serdo instalados sensores de presenga, temperatura € de fumaga, além de iluminagdo ¢

ventiladores para o controle térmico, conforme o diagrama.

Térren 1. Piso

] [ERE] [l

2. Piso sy sdazg

T | T
P P |
_I P; Sensor de Presenga

F: Sensor de Fumaca
I_T__l L—ﬂ'l__l m" T: Sensor de Temperatura

I fluminacan

Sala3 Salag

Figura 2-1: Esquema dos sensores na magquete

Sistema de Informagdo para Automacio Predial

Este sistema serd implementado em uma maquete conforme o modelo a seguir:

Tt de 150

(1(30 i oy

- JTH|

Sk [—

latroinii /

Espag e par colocar
aekircnire
conetares [y [RN Salx
ecake
Conatoares circuitos
ds controk
Fairn
[] Comedex
skuler
copetoges

Figura 2-2: Esquema da Maquete

A maquete projetada conforme a figura acima pode ser vista na foto abaixo:

Figura 2-3: Foto da maquete

Sistema de Informaggo para Automagfio Predial 8

A seguir serd apresentada uma descricio dos diferentes subsistemas, que serdio tratados
neste trabalho, com sua modelagem em Redes de Petri feitas através do programa Visual

Object 2.0.

2.1 Sistema de Seguranga

O sistema de seguranga é responsével pela verificagdio da ocorréncia de situagdes ndo
esperadas e que possam afetar a integridade fisica das pessoas, das instalagdes
presentes, ou interferéncia com 0s Processos inerentes aos usudrios do prédio (obtengio

indevida de informag#o, etc.)

Em nosso projeto teremos duas preocupagdes referentes & seguranga que serfo divididos

em dois sub-sistemas: o controle de acesso aos ambientes € a deteccdo de incéndio.

Quanto ao controle de acesso, 0s ambientes podem estar habilitados ou nio para o uso,
conforme o plano da administragdo do prédio. Estando desabilitados, a detecglio de
presenca sera tratada como uma intrusdo e esta informagdo deverd ser passada para o
sistema supervisor que tomara as providéncias necessarias na sala em que se encontra a
situagdo detectada. Isto permite uma certa flexibilidade ao sistema, conforme os
recursos disponiveis. O supervisor pode ainda, fazer verificagdes adicionais para melhor
definir o que estd acontecendo, podendo acionar um gistema de alarme, alertar um
servico de vigildncia conectado a uma central de policia, ou tomar medidas no sentido

de isolar os ambientes que se encontram na vizinhanga do ambiente invadido.

Sistema de Informagéio para Automaggio Predial 9

2.1.1 Modelagem do sistema de detecgéo de intruséo:

SENSOR DE PRESENCA

SALA DESOCUPADA

INTRUSC NA SALA

Figura 2-4:Rede de controle de deteccio de presenga

Para este modelo tem-se como pardmetro definido pelo usuério, a administragio do
prédio: a politica de acesso, isto é, a permissdo ou ndo do acesso naquele momento. Esta
permissdo estd representada na rede GHENeSys (General Hierarchical Enhanced Net
System) da figura 2-4 através de um pseudo-box (em amareio). Os pseudo-boxes
representam elementos cuja marcacio nfio estd no controle do sub-sistema em questdo,
mas sim de elementos externos (outros sub-sistemas, usuarios externos, ou sinais
originarios do mundo externo ao sub-sistema). Na rede GHENeSys os pseudo-boxes séo
usados para representar eventos previsiveis porém ndo controlaveis, por exemplo, a
chegada de um individuo ao ambiente (elemento associado ao sensor de presenca na

figura 2-4).

Sistema de Informagéio para Automagdo Predial 10

Os dois estados possiveis para este modelo sdo: sala ocupada ou desocupada,

habilitado a partir do sinal proveniente do sensor de presenca.

A situagdo de incéndio pode ser detectada com os seguintes eventos: detecgdo de
fumaga na sala e detecglio de foco de temperatura clevada. Essa detecgfio funciona da
seguinte forma: em presenca de fumaga o sistema comeca a estudar o comportamento
da temperatura do local nos ultimos dez minutos, dessa forma, mantida a temperatura
elevada a hip6tese de incéndio pode ser confirmada. Confirmado o foco de incéndio o
sistema procura contactar o Supervisor para que as medidas adequadas sejam tomadas.
Em caso de impossibilidade de comunicagdo com o0 supervisor os sprinklers séo

acionados.

Ao receber a informacdo de incéndio o supervisor pode tanto confirmar a existéncia de
incéndio, 0 que acionard os sprinklers imediatamente, ou negé-la, informando que as

condigdes estdo normais. Neste caso o sistema de emergéncia é desativado.

Os sprinklers também podem ser acionados manualmente, caso isso seja necessario por

questdes emergenciais.

2.1.2 Modelagem do sistema de detec¢do de incéndio.

Neste modelo os pardmetros em que pode haver interferéncia do sistema supervisdrio
sdo

¢ Condigdes normais

e Confirmagdo de incéndio

e Atuacdio manual dos sprinkler
As entradas do sistema s&0:
o Sensor de fumaga

e Sensor de temperatura

Os estados possiveis sdo:

Sistema de Informagio para Automago Predial

¢ Emergéncia

Normal

As saidas sfo:

Atuag#io nos sprinklers

Comunicagfio de incéndio para sistema supervisorio

ACIONAMENTO MANUAL

DESATIVAR EMERGENCIA

CONDIGOES NORMAIS, ~ -

o

-
3

AR SF";IN(LERS

T

o AGLARDANDOQ ORDEM

Figura 2-5: Rede de controle de detecgdo de incéndio

11

Sistema de Informagdo para Automagdo Predial 12

2.2 Sistema de lluminagéo

O aciopamento da iluminacio das salas serd permitido caso o uso da sala esteja
habilitado. A habilitacdo ou nfio da sala ¢ feita pelo sistema supervisor, de acordo com a
politica de ocupacdo do edificio. Estando habilitada o usudrio tera a possibilidade de
acendé-la através do interruptor. Uma vez acesa, a luz se apagard ou através do
interruptor ou se ndo for mais detectada presenca na sala, quando a iluminagdo retorna

ao seu estado default, que € apagada.

2.2.1 Modelagem do sistema de iluminagé&o:

Parametros:

e Habilitacdio das luzes

Entradas:

e Sensor de presenca

Estados:
e Luzes apagadas

e Luzes disponiveis

Sistema de Informagiio para Automacio Predial 13

Figura 2-6: Rede de controle de Iuminagfio

2.3 Sistema de Ventilag&o

O sistema que ser4 implementado & umg simplificagio de um sistema real de conforto
térmico em ambiente predial, que envolvem diversas salas e instalacGes mais

complexas.

O sistema de ventilagdo permitira que o usudrio defina a temperatura que deseja para a
sala através do sistema supervisor (entre 20°C ¢ 26°C). Sempre que a sala estiver
habilitada e seja detectada presenca, o sistema manters a temperatura em torno de 0,5°C
da temperatura definida. Caso a sala esteja desocupada o ventilador funcionard com
velocidade constante e baixa, para que economize energia e néio cause desconforto

excessivo quando a sala for ocupada.

A modelagem do sistema de ventilagio foi feita em duas etapas para facilitar sua

implementaco.

Sistemna de Informagfo para Automacio Predial 14

Um sub-sistema verifica a necessidade de se manter, elevar ou baixar a
temperatura. Esta informagfio é o dado de entrada para outro sub-sistema de controle do

ventilador.

O ventilador possui dez diferentes niveis de velocidades e seu controle é dado pelo
mimero de niveis ativados. Desta forma, enquanto a temperatura desejada for menor que
a temperatura ambiente os niveis do ventilador serdo ativados at¢ atingir-se o equilfbrio.

Na situagdo contraria os niveis serdo gradativamente desativados.

Sistema de Informagio para Automagiio Predial

2.3.1 Modelagem do Controle de temperatura

VERIFICAR PRESENGA

TEMP. CORRETA g
MANTER, VEL. '

0
TEMP. ALTA

R

ALMENTAR VEL. T

ATIVAR VEL FIXA Y
#

VERFICAR TEMP,

Figura 2-7: Rede de controle de Temperatura

Parametros:

¢ Temperatura desejada

¢ Temperatura atual
Entradas::

e Sensor de presenga
Saidas:

e Atuacfo na velocidade do ventilador

15

Sistema de Informagéo para Automacgo Predial 16

2.3.2 Modelagem do ventilador

L AUMENTAR VEL.

NIVEL DESAT A QT1V. DE

v or—

DIMINUIR

0

Figura 2-8: Rede de controle do Ventilador

Entradas:
¢ Aumentar velocidade

¢ Diminuir velocidade

Saida

o Niveis ativados do ventilador

2.4 Sistema de Seguranga do Elevador

Quando o sistema de seguranga for acionado, através do sinal de incéndio ou
manualmente, verifica-se se o elevador estd em movimento. Neste caso ele ird para o

proximo andar € mantera a porta aberta até que nfio seja mais

Sistema de Informagio para Automagio Predial 17

detectado presenga, quando a porta sera fechada e travada, mantendo-se assim até que o

sistema de seguranca seja desativado.

Dessa forma pode-se garantir que em caso de incéndio, nenhum usudrio utilizara os

elevadores nem ficara preso dentro deles.

2.4.1 Modelagem do controle do elevador em caso de emergéncia

Parfmetro definido pelo supervisor:

e Condi¢des normais

Entradas:
o Movimento do elevador
e Presenca no elevador

e Sinal de incéndio

Estados:
e Emergéncia ativada

» Emergéncia desativada

Saidas:
¢ Controle do movimento do elevador

» Controle das portas do elevador

Sistema de Informagdo para Automnagdo Predial

EMWERG. ELEY. DESAT.

Figura 2-9: Rede de controle do elevador em emergéncia

18

Sistema de Informagdo para Automagdo Predial 19

3 Implementacéo

3.1 Controle das Salas

O primeiro e segundo andares serfio controlados por quairo CLPs (PS4-102-MM1).
Cada CLP controlard os sensores e atuadores de duas salas. Serdo controlados os
sensores de presenca, fumaca, temperatura, um relé para acionamento do sistema de
iluminagdo € um outro para o acionamento do sistema de ventilagdo. O controle de

velocidade deste ventilador sera feito por uma placa controladora conectada ao CLP.

3.2 Controle do Elevador

O elevador tera dentro da cabine um sensor de presenga e um atuador na porta para sua
abertura. Em cada andar sera fixado um sensor de presenga com a finalidade de detectar

a posicéo do elevador.

Um motor de passo, controlado por pela placa da National Instruments que sera
detalhada em seguida, ¢ acionado pelo programa LabWindows sera responsavel pela

movimentacdo do elevador.

3.2.1 Elevador — Controfe do movimento

O movimento do elevador seré controlado através de um motor de passo conforme a

figura a seguir:

Sistema de Informagéio para Automacfio Predial 20

Figura 3-1: Esquema do clevador

A escolha do motor de passo deve as suas caracteristicas de baixo custo ¢ facilidade de

controle. Sua precisdo é limitada, porém suficiente para a aplicagdo.

O controle do motor sera feito através do LabWindows, que a partir da compilagdo dos
pardmetros monitorados enviar4 um sinal de controle ao motor. Os sinais de controle

possiveis sdo: mover em sentido horario ou anti-hordrio, em full ou half-step.

O sinal proveniente do LabWindows ird para a placa da National Instrument e
posteriormente para um circuito de poténcia e controle, que serd apresentado a seguir,

que efetivamente controlard o motor de passo.

O circuito de controle do motor de passo é composto essencialmente de dois Cis, o
1297 e o 1.298. Onde o L297 gera o sinal de controle, enviando seqiiencialmente os
pulsos para as fases do motor e o L298 ¢é utilizado como driver. A montagem do circuito

¢ a seguinte:

Sistema de Informagdo para Automagcfo Predial 21

QM pasn

o ‘:i LT I ‘ Lene

‘[L-u
L] ,'“ itk

1o A FART EFORE 4

Figura 3-2: Circuito de controle do motor de passo

3.2.2 Placa da National Instruments
A placa da National Instruments utilizada para o controle do elevador € a PCI-6024E.
As principais caracteristicas da placa sdo:

e 16 canais de entrada analogica
¢ 2 canais de saida anal6gica
¢ 8 portas de [/O digitais

¢ resolugio maxima de 50ns

Sistema de Informagio para Automagéo Predial 22

A imagem da placa segue abaixo:

Figura 3-3: Placa para controle do elevador

Para o controle do elevador foram utilizadas seis portas digitais. (Portas 0 a 5).
Correspondentes as conexdes da placa nimeros 52, 17, 49, 47, 51 e 19,

respectivamente. Além da porta 18, onde deve ser ligado o terra.

As portas de 0 a 2 foram utilizadas para obter os sinais dos sensores de detecciio do

elevador; do térreo, primeiro e segundo andar, respectivamente.

A porta 3 foi utilizada para enviar ao driver do motor de passo o sentido de rotagéo.

Hordrio (+5V) e anti-horario (0V).

A porta 4 foi utilizada para enviar o sinal de enable (+5V) e disable (OV) para o driver.

Sistema de Informagdo para Automagio Predial 23

E a porta 5 foi utilizada para receber o sinal de presenca no elevador, para detectar

se ele esta ocupado ou nio.

O sinal de full ou half-step ndo foi utilizado para o controle, pois neste trabalho nfio ¢
feito o controle da velocidade do elevador. A entrada do driver foi colocada em OV, o

que corresponde a0 movimento full-step, adotado como padrio neste trabalho.

3.3 Controle do Ventilador

O controle do ventilador foi feito através do uso de um circuito PWM — Pulse Width
Modulator. Que faz uma modulagfio de voltagem através da varia¢io da largura de

pulso de voltagem.

Neste trabalho, utilizou-se o CI 3524 para realizar o controle. Este CI ja possui wm
oscilador responsével pela geragdo do sinal de onda triangular, ¢ permite a entrada de

um sinal de voltagem invertido ou n3o.

O sinal de entrada varia entre 0 e 100% de uma voltagem de referéncia, e a saida sera 0

ou 100% da voltagem méxima. A velocidade do ventilador serd proporcional ao tempo
que o sinal de saida fica em 0 ou 100%. Isso & obtido através da comparacéo do sinal de
entrada com a onda de forma triangular.

Assim, conforme o sinal de entrada aumenta, aumenta o tempo em que o sinal de saida

fica em 100% e vice-versa.

Sistema de Informagéio para Automagio Predial 24

O circuito de controle do PWM segue abaixo:

J 12V +12\?

Vel

00 ~3 LA B Wt

= GND

Figura 3-4: Circuito de controledo PWM

3.4 Conexdo dos Sistemas

O programa LabWindows da National Instruments é responsdvel por coletar ¢ processar
os dados e atuar através de uma placa propria. A figura 3,1 representa o esquema do

controle do sistema.

' Software

CLP < » DDE < > LabWin dows‘ » Oracle

i
Y

Placa
National
Intruments
A

¥

| Elevador

Figura 3-5: Esquema de controle do sistema

Sistema de Informagfio para Automagéo Predial 25

O controle do elevador & efetuado pela placa da National Instruments. Os dados serdo
trocados entre os CLPs e o programa LabWindows via DDE. As variaveis definidas pelo
supervisor do sistema e os dados coletados pelo LabWindows sio trocados com o

programa supervisor através de um Banco de Dados Oracle.

Sistema de Informagdo para Automaco Predial 26

4 Desenvolvimento do Software de Controle

41 CLP

O sofiware implementado no CLP deve permitic o seu funcionamento
independentemente do supervisor. Isto se deve a possiveis falhas na comunicagdo com o
supervisor € a necessidade de agOes quando for detectada alguma situagio de
emergéncia. Desta forma o CLP tem a fungiio de ler os sinais dos sensores € de atuar
nos ventiladores, luzes e sprinklers de acordo com dados padrdes ou de acordo com

dados enviados pelo supervisor.

Neste trabalho utilizou-se CLPs da Klockner Moeller modelo PS4-201-MM1, para a
aquisicio de sinais ¢ para atuar nas quatro salas da magquete projetada. Foram
necessdrios quatro CLPs, um para cada sala, e por limitagdes do modelo de CLP a
melhor solucfio encontrada foi utilizar um CLP como mestre (Master) e os outros 3
como escravos inteligentes (Slave). Nesta configuragdo todos os CLPs devem ter um
programa de controle independente e suas varidveis devem ser trocadas com o CLP

mestre para que este gerencie o fluxo de dados com o SUpErvisor.

Portanto, na configuragio de sistema escolhida todas as salas passam a ter um controle
independente gerenciadas por uma das salas que faz a comunicagiio com 0 supervisor. A

figura abaixo demonstra como foi montada a rede de CLPs.

Sistema de Informag#io para Automaggio Predial 27

PS4.201-MM1
SLAVE 1
120

s -

Stapzven=|

e
PS4-201-MM1
SLAVE_3

Figura 4-1: Configuragio de conexio entre os CLPs

Na configuracio demonstrada acima, as varidveis sio trocadas por comandos de envio e
recebimento de valores. Todos os sinais lidos nos CLPs escravos sio enviados ao CLP
mestre que fard a conexdo com o supervisor. Da mesma forma as varidveis de
intervencéio do supervisor sdo enviados primeiramente ao CLP mestre que repassari ao

CLP referente a sala que se deseja atuar.

A ligagéio dos CLPs implementada pode ser vista na foto abaixo:

Figura 4-2: Foto da conexio entre os CLPs

Sistema de Informagio para Automagéo Predial

A figura abaixo demonstra o fluxo de informagdes nos CLPs.

Supervisor
A
Sinais dos sensores de todas
as salas
© varidvels de controle do
Y
CLP MESTRE ~ Frossssa sansores casala
SALA 1 CLPs escravos
JSensoreseoontroleda sata 2
Sensores e controle da sala 3
Sensores e controle da sala 4
Y 4 h 4
CLP ESCRAVO 1 CLP ESCRAVO 2 CLP ESCRAVO 3
SALA2 SALA 3 SALA 4
Processa sensores da sela Processa sensores da sala Processa sensores da sala
2 a troca dados com CLP 3 & troca dados com CLP 4 o troca dades com GLP
mestre mestre mestre

Figura 4-3: Troca de dados entre os CLPs

28

Sistema de Informagdo para Automagdo Predial 29

4.1.1 Moédulo de Programa Principal do CLP Mesire

Como j4 foi descrito anteriormente o CLP principal tem a fungfio de controlar nfo
somente a sua sala, mas também controlar as transferéncia de dados entre o supervisor e
os CLPs escravos. O diagrama abaixo demonstra o funcionamento do programa

principal:

\

Verifica Comunicagio com o prog. Supervisério

4

Obtém dados do supervisor para todas as salas

v

Envia dados para o processamento em outras
salas

h 4
Obtém temperatura da sala 1
Atualiza estado de iluminacgéo, presenca e
intruséo

v

Ajusta Velocidade do Ventilador

v

Atualiza histérico de velocidade e
temperatura

v

Verifica se ha indicios de incéndio

¥

Alualiza estado dos sprinklers e do alarme

v

Recebe dados dos outros CLPs e os envia ao
prog. Supervisério

Figura 4-4: Fluxograma do programa principal do CLP mestre

Sistema de Informagéo para Automagéo Predial 30

4.1.2 Médulo de Programa Principal do CLP Escravo

A rotina principal do CLP escravo é semelhante a rotina principal para controle da sala
1 do CLP mestre. A principal diferenca € que as variaveis de controle séo recebidas ¢

enviadas ao CLP mestre, que fard a interface com o supervisor.

v

Recebe dados do CLP Mestre

A4

Confere comunimacio do CLP mestre com o
prog. supervisor

Y

Obtém temperatura da sala

Y

Atualiza estado de iluminagéo, presenga e
infrusdo

¥

Ajusta Velocidade do Ventilador

h 4

Atualiza historico de velocidade e temperatura

L 4

Verifica se ha indicios de incéndio

Y

Atualiza estado dos sprinklers e do alarme

¥

Envia dados ao CLP mestre

I

Figura 4-5: Fluxograma do programa principal do CLP escravo

Sistema de Informagio para Automagdo Predial 31

4.1.3 Fungdo FCNCOMUN

Essa fungfio recebe como sinal o estado atual do sinal de verificagdo de comunicagio
enviado pelo supervisor e retorna o estado atual da comunicag3o. Internamente, possui
uma varidvel que indica se houve alteragio nesse sinal desde a Gltima atualizagfo e um
temporizador para gerar o periodo em que se deve atualizar o estado da variavel de

estado de comunicagfio. Abaixo, enconira-se o diagrama de funcionamento desse bloco:

Temporizador indica
que se deve atualizar?

A4

Y Houve deteccéo de
borda desde a Gltima
atualizagao?

Estao atual & diferente
doanterior?

v Y
5 Ajusta flag de comunicagao Ajusta flag de comunicacao

v OK para ON OK para OFF

$eta flag de borda detectada

v
L 4 Zera flag de detecgao de
i 3 borda
Copia estado atual para estado anterior

- v

\

Retorna

Figura 4-6: Fluxograma fa fingio FCNCOMUN

Sistema de Informagfio para Automaggio Predial 32

4.1.4 Fungdo FCNLDTMP

Esta fungfio permite que se faga a atualizagio das temperaturas méxima e minima
admissiveis na sala. Para isso, recebe como parimetros a temperatura de ajuste enviada
pelo supervisor, a temperatura ajustada no potenciémetro do préprio CLP e o estado da
comunicagio. Com estes dados a fungiio escolhe se o ajuste a ser feito é em relagio ao

local ou ao supervisor.

Comunicagio com N
0 supenvisor OK?
r
Temperatura Méxima = Temperatura Méxdima =
Temp. enviada ao supenvisor + 1 Temp. ajustada do potenciometro + 1
r
Temperatura Minima = Temnperatura Minima =
Temp. erviada ao supervisor - 1 Ternp. gjustada do potenciometro - 1

Retorna

Figura 4-7: Fluxograma da fungio FCNLDTMP

Sistema de Informagfio para Automaciio Predial 33

4.1.5 Fungdo FCN_INVA

Esta fungéo recebe como entrada a indicagfo, a leitura de presenca na sala e o estado da
sala (habilitada/desabilitada) do supervisor. Com estes dados a funcdo retorna o estado

da sala (ocupagéo e se h4 intrusos) e habilita a acionamento das luzes.

N
Presenca na Sala?
A 4
S
Zera indicador de sala ocupada
A4
0 N '
Sala Habilitada? Zera indicador de intruséio
s
v 4
Grava indicador de sala ocupada Seta indicador de sala ocupada
v 4
Zera indicador de intrusao Seta Indicador de intrusdo
A
-4
4
Retorna

Figura 4-8: Fluxograma da fin¢fio FCN_INVA

Sistema de Informacfio para Automagio Predial 34

4.1.6 Fungdo FCN_ALRM

Esta fungfo recebe 0s seguintes sinais:

¢ indicador de possivel na sala

e estado da comunicacdo entre CLP e supervisor

e sinal de acionamento de estado de emergéncia do supervisor

e sinal de acionamento dos sprinklers na sala enviado pelo supervisor
e sinal de retorno ao estado normal enviado pelo supervisor

e sinal de desligamento dos sprinklers acionado localmente

A partir destes sinais a fungdo gera o estado de acionamento dos alarmes e dos
sprinklers. Para isso, decide-se os sinais locais ou os enviados pelo supervisor devem
ser levadas em conta. Isto pode ser visto no seu diagrama de funcionamento mostrado a

seguir:

Sistema de Informagdo para Automagfo Predial

Comunicacio com o
superasor OK?

*N

Sinal local para desligar
sprinkler?

S
v

Desliga Srpinkler

Existe indicios de
incéncio?

s
A4

Aciona Sprinkier

H4 situagéo de
emergéncia?

S
v

Aciona alarme

Sinal de desligamento
de sprinkler?

s
¥

Desliga Sprinkles?

Sinal de sprinkler pelo
supenisor?

S
A 4

Aciona sprinkier?

v

Sinal de situagao
normalizada pelo
supervisor?

v
Reseta flag de incéndio

s

Retorna

Figura 4-9: Fluxograma da fungéio FCNALARM

35

Sistema de Informacdo para Automacio Predial 36

4.1.7 Fungdo FCNVENTIL

Essa fun¢do realiza o ajuste da velocidade do ventilador de acordo com as condiges do

ambiente. Para isso, recebe as seguintes variaveis:

* temperatura atual da sala

¢ maxima temperatura admissivel na sala
e minima temperatura admissivel na sala
e presenca na sala

e sala habilitada

e velocidade atual do ventilador

e incremento da velocidade do ventilador

o velocidade fixa de operagdio

Internamente, essa fungfo possui um temporizador que thz com que cada vez que a
velocidade seja alterada, aguarde-se um intervalo de 30s até que se possa ser novamente
ajustada. Isso permite que a velocidade do ventilador nfo passe quase instantaneamente

para 0 ou 100% conforma o caso.

O retorno dessa fungfio é o novo valor percentual da velocidade do ventilador. A seguir,

mostra-se o fluxograma responsavel pela execugdo da fungfo:

Sistema de Informagdo para Automagfio Predial 37

Sala habititada e B
ocupada? > Ajusta a rotagso para a rotacéo fixa

Temporizader indica >
instante de verificacso?

Temperatura é maior Temperatura & menor

do que a maxima? b do uge a minima? ™
5 5
v k 4
Rotagso & aumentada de acordo com Rotac3o & reduzida de acordo com
incremento incremenio
¥

Reinicializa temporizador

<
v

Retorna

Figura 4-10: Fluxograma da funcio FCNVENTIL

Sistema de Informagfo para Automagio Predial 38

4.2 Sistema Supervisor

4.2.1 Software

Como foi citado anteriormente 0 sistema supervisor foi desenvolvido no software
LabWindows/CVI 5.0. A programacdo no LabWindows ¢é feita em linguagem C e
permite a criagdo de uma interface grifica a partir de elementos pré-definidos como

botdes, Leds e displays.

4.2.2 Interface com o usuario

A partir da interface grafica o usudrio terd acesso ao controle dos pardmetros de
temperatura, presenga ¢ do controle do elevador, assim como informagdes sobre o status

do sistema; como presenca de fumaga, fogo ou de invasgo.

Os procedimentos de emergéncia, por questdes de Scguranga, ndo poderdo ser alterados

pelo usudrio comum, Apenas através do codigo fonte.

Procurou-se desenvolver uma interface simples e de fici] compreensdo, de forma que
qualquer usudrio, mesmo sem treinamento, possa controlar o edificio sem colocar o

mesmo em risco.

A interface € composta de 3 modulos basicos:

® Moédulo do Elevador
® Moddulo de Presenca
® Méddulo de Temperatura

Além de um médulo de teste, desenvolvido apenas para efeito de simulagfo, onde &

possivel simular diversos cendrios. Este moédulo ndio far4 parte em um sistema real.

A interface desenvolvida segue abaixo:

Sistema de Informagfo para Automagéo Predial 39

Figura 4-11; Painel de interface com o usuério

A seguir cada médulo seré detalhado.

4.2.2.1 Modulo do Elevador

O médulo do elevador possui a interface apresentada abaixo:

Figura 4-12: Médulo de Controle do Elevador

Sistema de Informagcio para Automacio Predial 40

As fungdes presentes neste modulo sdo:

. Power

Este switch liga ou desliga o sistema do elevador. Quando desligado (off) todas as
outras funcdes do elevador sfo desabilitadas imediatamente, permanecendo assim até
que seja novamente religado. Caso algum comando de movimentagdo seja acionado
enquanto o power_estiver desligado, nada vai ocorrer, simulando a situagdo real em que

um elevador esta desligado e fora de servigo.

Com o power na posiciio on o elevador estars liberado para o uso e atendersd aos

comandos de movimentacfo.

Ao se ativar o elevador uma rotina de inicializagdo ¢ executada, visando verificar a
posigdo inicial do elevador. Esta rotina funciona da seguinte maneira: primeiramente
verifica-se o estado dos sensores de detec¢fio do elevador, para detectar se este se
encontra em um dos andares e ndo entre eles. No caso de um dos sensores estar ativo, o

elevador estara pronto para uso, pois elevador ja se encontra em um dos andares,

Caso todos os sensores estejam inativos, indicando que o elevador se encontra entre dois
pisos, o motor de passo que controla o movimento do elevador ser4 acionado no sentido
horério (movimentando o elevador para baixo) até que um dos sensores detecte a
presenca do elevador. Nesse momento o movimento sers mnterrompido e o elevador

estara disponivel para o uso.
o Status
O indicador de status indica o estado atual do elevador. Ele possui trés indicagdes

possiveis que sfo:

* Not Ready: indica que o elevador nfio esta disponfvel para uso, ou por estar

desligado, ou por estar executando a rotina de inicializa¢do.

* Ready: indica que o elevador esta disponivel para uso

Sistema de Informacio para Automaggo Predial 41

e Emergency: o indicador de emergéncia aparecerd em caso de detecgdo de
fogo pelo sistema supervisor, neste momento o elevador entrard em uma rotina

especifica que sera detalhada a Seguir.

Procedimento de Emergéncia para o elevador

Caso seja detectado incéndio o movimento do elevador devera ser interrompido, porém
ndo deve prender pessoas dentro do mesmo. Para isso, os sensores de detecclo do
clevador sio verificados, identificando se o elevador encontra-se em movimento ou

parado.

Se estiver parado, o sensor de presenca de pessoas dentro do elevador ¢ verificado, se
estiver inativo. Indicando que ndo ha pessoas no elevador, as portas sdio fechadas e
travadas. Se estiver ativo, indicando que ha pessoas no elevador, as portas

permanecero abertas, até que nio haja mais ninguém no elevador.

Caso o elevador esteja em movimento, ele continuard a se movimentar até o andar
seguinte, quando sera executado o procedimento descrito acima para a condi¢iio de

elevador parado.

O status permanecerd na condicdo de emergéncia até que o procedimento de incéndio
seja desabilitado. Neste momento o elevador passard para a condiglo desligada (rof

ready) ¢ terd que ser religado para voltar ao funcjonamento normal.
e Botdes de Comando
Os trés botdes de comando (G, Ist, 2nd) movimentardo o clevador para os andares

térreo, primeiro e segundo, respectivamente, desde que o elevador esteja ligado. Caso

contrario, ndo surtirio nenhum efeito.

Sistema de Informacio para Automagio Predial 42

o [leds

Os Leds estdo ligados aos sensores de detecgdo do elevador ¢ indicam o andar em que o

elevador se encontra.

e Floor

O indicador floor indica numericamente o andar atual do elevador.

s Occupation

O Led de ocupagfo estd ligado ao sensor de presen¢a no elevador, indicando se o

mesmo esta ocupado ou ndo.

4.2.2.2 Modulo de Presenca

Abaixo segue o painel do médulo de presenga:

Figura 4-13: Médulo de Presenca

Sistema de Informaggo para Automag3o Predial 43

O médulo de presenga é subdividido em cinco partes anlogas, uma para cada sala.

Além do indicador de invasdo, comum para as cinco salas,

E através deste modulo que o usurio define a politica de ocupagdo das salas. Esta pode
estar habilitada on desabilitada para o uso, através dos switchs nas posi¢des enable ou

disable, respectivamente.

Existe ainda um Led para cada sala, que se acenderd em caso de detecgdo de presenca

na mesma.

Na situacdo em que a sala esta habilitada para o uso, podera ser ocupada normalmente ¢
as luzes estarfio disponiveis para serem acesas. Caso ndo esteja habilitada, as Juzes ndo
poderdio se acesas e se for detectada presenca na sala o indicador de invasdo serd

acionado, conforme a figura a seguir:

Figura 4-14: Indicador de Invaséo

Este controle de presenga e de disponibilidade da iluminagio nas salas permite o uso
mais racional da energia. Principalmente condiderando-se locais com um grande
nimero de ambientes. Pois através da desabilitacio das salas em horérios de desuso,
como madrugada por exemplo, garante-se de uma forma simples e eficiente que

nenhuma luz ficara acesa desnecessariamente.

Além disso, o controle de invasdo est4 centralizado em um mesmo ponto para todas as

salas, possibilitando a tomada de atitudes cabiveis de forma mais rapida ¢ sistematica.

Sisterna de Informag3o para Automagio Predial 44

4.2.2.3 Mdbdulo de controle de temperatura

O médulo de controle de temperatura esta disponivel para as duas salas do primeiro e do

segundo andar. O painel de temperatura segue abaixo:

Figura 4-15: Médulo de Controle de Temperatura

Este painel indica a temperatura atual em graus Celsius de cada sala, assim como o
status da mesma. O Led de status se acendera caso seja detectado fumaga ou fogo na
sala. Os sinais de fumaga ou fogo assim como o valor da temperatura atual, sfo

provenientes dos CLPs, que realizam um monitoramento constante dos ambientes.

Para cada sala existe o botdio de Detail que abre uma nova janela com informagdes

detalhadas sobre aquela sala, conforme figura a seguir:

47

Dessa forma ¢ Sistema SUPETVisor pode ST testado sem 4 Decessidade g,
Comunicaggo com os CLpg,

O paine] de teste segue abaixo:

Sistema de Informaggo bara Automaggo Predia] 48

4.2.3 Fungao FCNARRAY

Sistema de Informagiio para Automagio Predial 49

5 Conclusies Consideracdes para o Futuro

A partir do projeto desenvolvido neste texto, pode-se citar como préximos passos para

melhorar e continuar a desenvolver sistemas de automago predial os seguintes itens:

* Integracio do CLP com o LabWindows através de uma interface DDE;

® Definir o método de cabeamento dos sensores pela estrutura da maquete a fim de
otimizar o espago disponivel;

* Integracsio do sistema de automagdo predial com um supervisor via internet
utilizando-se da mesma base de dados para evitar duplicidade;

* Implementagiio de base de dados Oracle integrada ao LabWindows para
armazenamento de dados;

* Anilise dos dados coletados ¢ definir uma estratégia para otimizacsio das salas
pelo supervisor;

* Implementagio da cdmera no térreo e sua integragio & base de dados Oracle;

Este projeto permitiu o desenvolvimento de técnicas de gerenciamento de dados e sinais
adquiridos para melhorar os sistemas de automacfo de dados j4 existentes. O esforco
bata que se mantivesse a coeréncia nos dados lidos em diferentes partes do projeto foi o
principal objetivo e direcionamento do projeto. Também foj possivel desenvolver
técnicas de estruturagio e programagdo de CLP ¢ sistemas de aquisicio e andlise de
sinais.

Sistema de Informagfo para Automacio Predial 30

6 Bibliografia

[1] Del Foyo, P.G. y Silva, LR. Sistema Supervisorio Descentralizado Baseado em

Integrons,, Universidade de Sdo Paulo, Escola Politécnica.

[2] Silva, J.R.(1998). Interactive Design of Integrated Systems, BASYS 98, Praga,
Tchec Republic, 1998.

[3] Silva, José Reinaldo, e Ramos, Roberto L. C.Barroso Ramos. Controle Integrado:
Aplicacdo em Sistemas Prediais. 3° SBAI, Vitoria, 1997

[4] Silva, José Reinaldo, Miyagi, Paulo e. PFS/MFG: A High Level Net for the
Modeling of Discrete Manufacturing System. in Balanced Automation Systems,
IEEE/ECLA/IFIP Proceedings, vol.I — Architectures and desingn methods, 1995.

[5] Silva, José Reinaldo, Ramos, R.L.C.B., Miyagi, Paulo E. — Supervisory Control of
integrated building systems: a balanced approach. in Balanced Automation Systems,
IEEE/ECLA/IFIP Proceedings, vol.Il — Implementation Chanllenges for anthropocentric
manufacturing, 1995

[6] Del Foyo, P.G., GHENeSys: Uma Rede Estendida Orientada a Objetos para
Projetos de Sistemas Discretos. Tese de mestrado, Prof. José Reinaldo Silva, orientador.
2001

Sistema de Informagdo para Automagcdo Predial

APENDICE 1. LISTAGEM DAS FUNCOES DE CONTROLE

Apéndice L1 Programa Principal do CLP Mestre

VAR
(*Comunicacao com o Supervisorio*)
ComunicOK : BOOL =0;
UltSinal : Byte :=0;
SinalOK : BOOL :=0;

(*Variaveis enviadas ao Supervisorio*)

Incendio AT %M0.0.0.20.0 : BOOL =0;
Intrusao AT %M0.0.0.22.0 : BOOL;
SalaOcupada AT %M0.0.0.24.0 : BOOL;
TempAtual AT %MB0.0.0.26 : BYTE;
VelAtual AT %MBO0.0.0.28 : BYTE;
FumacaSala AT %MB0.0.0.30 : BYTE;
AckSitNormal AT %M0.0.0.32.0 : BOOL:=0;
(*Variaveis enviadas ao Supervisorio da Sala 1%)
Incendio 1 AT %RD1.1.0.2.0 : BOOL :=0;
Intrusao 1 AT %RD1.1.0.4.0 : BOOL;
SalaOcupada 1 AT %RD1.1.0.6.0 : BOOL;
TempAtual 1 AT %RDBI1.1.0.8 : BYTE;
VelAtual 1 AT %RDBI1.1.0.10 : BYTE;
FumacaSala 1 AT %RDBI1.1.0.12 : BYTE;
AckSitNormal 1 AT %RD1.1.0.14.0 : BOOL:=0;
(*Entradas provenientes do Supervisorio*)
SalaHabilitada AT %M0.0.0.4.0 : BOOL;
Emergencia AT %M0.0.0.6.0 : BOOL;
UserTemp AT %MB0.0.0.8 :BYTE;
SinalAtual AT %MB0.0.0.10 : BYTE;

SituacaoNormal AT %MO0.0.0.12.0 : BOOL;
SupervIncendio AT %M0.0.0.14.0 : BOOL;
IncrementoPerc AT %MB0.0.0.16 : BYTE := 5;
VelocFixa AT %MB0.0.0.18 :BYTE = 20;

(*Entradas provenientes da Sala 1*)

SalaHabilitada 1 AT %8D1.1.0.30.0 : BOOL;
Emergencia 1 AT %SD1.1.0.16.0 : BOOL;
UserTemp 1 AT %SDB1.1.0.18 : BYTE;
SinalAtual 1 AT %SDB1.1.0.20 : BYTE;

Sistema de Informagio para Automagio Predial

SituacaoNormal 1 AT %SD1.1.0.22.0 : BOOL;
Supervincendio 1 AT %SD1.1.0.24.0 : BOOL;
IncrementoPerc 1 AT %SDB1.1.0.26 : BYTE :=5;
VelocFixa 1 AT %SDB1.1.0.28 :BYTE := 20;

MaxTemp : UINT;
MinTemp : UINT;

(*Entradas da Maquete*)

Presenca AT %10.0.0.0.0 : BOOL;
Fumaca AT %I0.0.0.0.1 : BOOL;
Desliga Sprinkler AT %I0.0.0.0.7 : BOOL;
Reseta Incendio AT %I10.0.0.0.6 : BOOL;
IA00 AT %IAWO0.0.0.0 : WORD;
[A04 AT %IAW0.0.0.4 : WORD;

TempPotenc : UINT;
Temperatura: UINT;

(*Historico de temperatura e velocidade*)
Array_Temp : ARRAY[1..20] OF UINT;
Array Vel : ARRAY[1..20] OF INT;

TempCrescente : BOOL;
VelCrescente : BOOL;

(*Saidas enviadas para a planta*)

Luzes AT %Q0.0.0.0.0 : BOOL;
Alarme AT %Q0.0.0.0.1 : BOOL;
Sprinkler AT %Q0.0.0.0.2 : BOOL;
VelocVent AT %QAW0,0.0.0 : WORD;

Q06 AT %Q0.0.0.0.0 : BOOL;
Q07 AT %Q0.0.0.0.7 : BOOL;

(*Parametros*)

TEMP RANGEMAX : UINT:=55;
TEMP_ RANGEMIN : UINT:=15;
Incremento INT;

(*Variaveis Auxiliares*)

VelocPerc : INT;

WDVelocPerc: WORD;

TempEMax BOOL:=0;

(*Funcoes e variaveis de temporizacao*)

52

Sistema de Informac#io para Automacio Predial

TimerGetTemp : TP;
DTempGetTEmp N TIME:=T#35s;
TrigGetTemp : BOOL:=0;
(*Funcoes de Controle*)

Ctrl_Alarme : FCN_ALRM;
Ctrl_Acesso FCN INVA;

Ctrl_ Temp FCNVENTIL;
Ctrl_Array FCNARRAY;

(*VerificaComunic : FCNCOMUN;*)
LoadlnputTemp : FCNLDTMP;

(*Funcoes de Conversao*)

SPEEDCONVERT : SPDCONV;
CURRENTTEMP TEMPCONV;
END VAR

(*Considera comunicacao com o supervisorio OK*)
LD 1
ST ComunicOK

(*Entradas provenientes do supervisorio*)

CarregaUserTemp:

CAL LoadinputTemp(In_SupervTemp := UserTemp,
In_PotencTemp :=1A00,
In_ComumicOK := ComunicOK)

LD LoadlnputTemp.Out MaxTemp

ST MaxTemp

LD LoadInputTemp.Out MinTemp
ST MinTemp

LoadTemperatura:

CAL CURRENTTEMP(TEMPWORD :=1A04,
TEMPMAX :=TEMP RANGEMAX,
TEMPMIN := TEMP RANGEMIN)

LD CURRENTTEMP.TEMPGRAUS

ST TempAtual

BYTE_TO UINT

ST Temperatura

(*Controle de acesso e iluminacao*®)

CAL Ctrl Acesso(In Presenca :=Presenca,
In_SalaHabilitada := SalaHabilitada)

LD Cirl_Acesso.Out_SalaOcupada

ST SalaOcupada

LD Cirl_Acesso.Out_Intrusao

ST Intrusao

LD Ctrl Acesso.Out_Luzes

53

Sistemna de Informagio para Automagio Predial 54

ST Luzes

(*Controle Ventilador*)

CAL Ctrl Temp(In Presenca :=Presenca,
In_SalaHabilitada := SalaHabilitada,
In MaxTemp :=MaxTemp,
In MinTemp :=MinTemp,
In Temperatura = Temperatura,
In_IncrementoPerc := IncrementoPerc,
In_VelocFixa :=VelocFixa,
Ext_VelocPerc := VelocPerc)

LD VelocPerc

INT_TO_BYTE

ST VelAtual

LD VelocPerc

INT TO WORD

ST WDVelocPerc

CAL SPEEDCONVERT(SPDPC := WDVelocPerc)

LD SPEEDCONVERT.SPDBITS

ST VelocVent

AtualizaArrays:

CAL Ctrl_Array(In_Temperatura := Temperatura,
In_VelocPerc = VelocPerc)

LD Ctrl Array.Out TempCrescente

ST TempCrescente

LD Citrl_Array.Out_VelCrescente

ST VelCrescente

LD 0

ST TempEMax

LD Temperatura

EQ TEMP_RANGEMAX
S TempEMax

(*Verifica Incendio*)

LD Fumaca

JMPCN FimVerificalncendio
LD TempCrescente

AND VelCrescente

OR TempEMax

JMPCN FimVerificaIncendio
LD 1

ST Incendio

FimVerificalncendio:

CAL Ctrl Alarme(Ext_Incendio := Incendio,
In_Supervincendio := Supervincendio,
In_SituacaoNormal := SituacaoNormal,

Sistema de Informagfio para Automacio Predial 45

Figura 4-16: Painel com informagdes detalhadas referente a temperatura

Este painel esta subdividido em:

o Temperature Set-Point
Onde o usudrio seleciona a temperatura desejada para a sala na situacio em que a

estiver habilitada e com presenca.

e Actual Temperature

Onde ¢ indicada a temperatura atual da sala.

o Fan Default Speed

Esta op¢éo permite o usudrio definir uma velocidade padréo de funcionamento para o
sistema de ventilagdo da sala na situaco em que a estiver desocupada. O sistema de
ventilacio possui dez niveis de operagfio e caso o usudrio deseje manter a temperatura
da sala mais baixa, independente da presenca, deve regular esta op¢io para um valor

maior. Caso deseje aumentar a economia de energia, deve regular esta opgéo para um

Sistema de Informagdo para Automagfo Predial 46

valor minimo; havendo neste caso o inconveniente de ¢ sistema requerer um tempo
maior para atingir a temperatura de set-point quando a sala for ocupada. (Considerando

a temperatura de set-point menor que a temperatura atual).

Na situagiio em que a sala estiver habilitada e ocupada o sistema de ventilagdo buscara a

velocidade ideal para atender 4 temperatura de sef-point através da rotina ja apresentada.

e Fire/Smoke

Os indicadores de fumaga e fogo serdio acionados, caso o sistema supervisor receba esta
informacio do CLP. Na figura apresentada, o sensor de fumaga estd ativo e o de
incéndio inativo. Indicando que foi detectada a presenga de fumaca na sala, mas devido

ao hist6rico e & temperatura atual ainda nfio foi caracterizada uma situago de incéndio.

Caso o incéndio seja detectado o indicador se acenderd e o Fire Procedure passara para
a posicio on. Dando inicio ao procedimento de emergéncia previamente apresentado.
Porém, se o usudrio definir que a situagfio ndio é de incéndio, apesar da indicagdo do
CLP. Basta ele desligar o Fire Procedure, que o procedimento de emergéncia serd
interrompido. O usudrio possui também a opgdo de acionar o procedimento de

emergéncia a qualquer momento, independente da indicagéo do CLP.

e Show History
Se o botdo de Show History for acionado, sera plotado nos gréficos os histéricos de
temperatura € da velocidade do ventilador dos 1itimos 5 minutos. Isso permite o usuario

monitorar a temperatura e verificar a eficiéncia do sistema de ventilaggo.

4.2.2.4 Modulo de Teste

Como citado anteriormente foi criado um painel de teste, para a realizagdo de testes e

simulagbes de cendrios. Este médulo simula todas as entradas provenientes do CLP.

Sistema de Informagfio para Automagiio Predial 55

In_ComunicOK := ComunicOk,
In_Emergencia = Emergencia,
In Desliga_Sprinkler := Desliga_Sprinkler,
In Reseta Incendio :=Reseta Incendio,
Ext_AckSitNormal := AckSitNormal)

LD Ctrl Alarme.Out_Alarme

ST Alarme

LD Ctrl Alarme.Out_Sprinkler
ST Sprinkler

LD Fumaca

ST FumacaSala.0

SendComunicOK:
LD ComunicOK
ST Q07

Sistema de Informagfo para Automacio Predial

Apéndice 1.2 Programa Principal do CLP Escravo

VAR

(*Comunicacao com o Supervisorio*)
ComunicOK : BOOL :=0;

UltSinal : Byte :=0;

SinalOK : BOOL :=0;

(*Variaveis enviadas ao Supervisorio*)

Incendic AT %SD0.0.0.2.0 : BOOL :=0;
Intrusao AT %S5D0.,0.0.4.0 : BOOL;
SalaOcupada AT %SD0.0.0.6.0 : BOOL;
TempAtual AT %SDB0.0.0.8 : BYTE;
VelAtual AT %SDB0.0.0.10 : BYTE;
FumacaSala AT %SDB0.0.0.12 : BYTE;
AckSitNormal AT %SD0.0.0.14.0 : BOOL:=0;
(*Entradas provenientes do Supervisorio*)
SalaHabilitada AT %RD0.0.0.30.0 : BOOL;
Emergencia AT %RDM0.0.0.16.0 : BOOL;
UserTemp AT %RDB0.0.0.18 : BYTE;
SinalAtual AT %RDB0.0.0.20 : BYTE;

SituacaoNormal AT %RD0.0.0.22.0 : BOOL;
Supervincendio AT %RD0.0.0.24.0 : BOOL;
IncrementoPerc AT %RDB0.0.0.26 : BYTE =35;

VelocFixa AT %RDB0.0.028 : BYTE :=20;
MaxTemp : UINT;

MinTemp : UINT;

(*Entradas da Maquete*)

Presenca AT %10.0.0.0.0 : BOOL;

Fumaca AT %I10.0.0.0.1 : BOOL;

Desliga Sprinkler AT %I0.0.0.0.7 : BOOL;
Reseta_Incendio AT %I0.0.0.0.6 : BOOL;
IA00 AT %IAWO0.0.0.0 : WORD;

1A04 AT %lAW0.0.0.4 : WORD;

TempPotenc : UINT;
Temperatura: UINT;

(*Historico de temperatura e velocidade*)
Array Temp : ARRAY([1..20] OF UINT;
Array_Vel : ARRAYT1..20] OF INT;

56

Sistema de Informagio para Automagiio Predial

TempCrescente : BOOL;
VelCrescente : BOOL;

(*Saidas enviadas para a planta*)

Luzes AT %Q0.0.0.0.0 : BOOL;
Alarme AT %Q0.0.0.0.1 : BOOL;
Sprinkler AT %Q0.0.0.0.2 : BOOL;
VelocVent AT %QAW0.0.0.0 : WORD;

Q06 AT %Q0.0.0.0.0 : BOOL;
Q07 AT %Q0.0.0.0.7 : BOOL:

(*Parametros*)

TEMP_RANGEMAX : UINT:=55;
TEMP_RANGEMIN : UINT:=15;
Incremenio INT;

(*Variaveis Auxiliares*)

VelocPerc ; INT;

WDVelocPerc: WORD;

TempEMax BOOL:=0;
(*Funcoes e variaveis de temporizacao*)
TimerGetTemp : TP;
DTempGetTEmp " TIME:=T#5s;
TrigGetTemp : BOOL:=0;
(*Funcoes de Controle*)

Ctrl Alarme FCN_ALRM,;
Ctrl_Acesso FCN_INVA;

Ctrl Temp FCNVENTIL,;
Ctrl_Array FCNARRAY;

(*VerificaComunic : FCNCOMUN;*)
LoadlnputTemp : FCNLDTMP;

(*Funcoes de Conversao*)
SPEEDCONVERT : SPDCONV;
CURRENTTEMP : TEMPCONV;

END VAR

(*Considera comunicacao com o supervisorio OK*)

1
ComunicOK.

(*Entradas provenjentes do supervisorio*)
CarregaUserTemp:
CAL LoadInputTemp(In_SupervTemp := UserTemp,

In_PotencTemp := IAQ0,

57

Sistema de Informagio para Automagfio Predial

In_ComunicOK := ComunicOK)
LD LoadInputTemp.Out MaxTemp

ST MaxTemp

LD LoadInputTemp.Out_MinTemp
ST MinTemp

LoadTemperatura:

CAL CURRENTTEMP(TEMPWORD :=1A04,
TEMPMAX := TEMP_RANGEMAX,
TEMPMIN :=TEMP_RANGEMIN)

LD CURRENTTEMP.TEMPGRAUS

ST TempAtual

BYTE_TO _UINT

ST Temperatura

(*Controle de acesso e fluminacao*)

CAL Ctrl Acesso(In_Presenca :=Presenca,
In_SalaHabilitada := SalaHabilitada)

LD Ctrl_Acesso.Out_SalaOcupada

ST SalaOcupada

LD Ctrl_Acesso.Out Intrusao

ST Intrusao

LD Cirl_Acesso.Out_Luzes

ST Luzes

(*Controle Ventilador*)

CAL Ctrl Temp(In Presenca :=Presenca,
In_SalaHabilitada := SalaHabilitada,
In MaxTemp :=MaxTemp,
In MinTemp :=MinTemp,
In_Temperatura = Temperatura,
In_IncrementoPerc ;= IncrementoPerc,
In_VelocFixa = VelocFixa,
Ext_VelocPerc := VelocPerc)

LD VelocPerc

INT TO BYTE

ST VelAtual

LD VelocPerc

INT_TO _WORD

ST WDVelocPerc

CAL SPEEDCONVERT(SPDPC := WDVelocPerc)

LD SPEEDCONVERT.SPDBITS

ST VelocVent

AtualizaArrays:

CAL Ctrl Array(In Temperatura := Temperatura,
In_VelocPerc := VelocPerc)

LD Ctrl_Array.Out_TempCrescente

ST TempCrescente

58

Sistema de Informago para Automacfio Predial

LD Ctrl_Array.Out_VelCrescente
ST VelCrescente

LD 0

ST TempEMax

LD Temperatura

EQ TEMP RANGEMAX
S TempEMax

(*Verifica Incendio*)

LD Fumaca

JMPCN FimVerificalncendio
LD TempCrescente

AND VelCrescente

OR TempEMax

JMPCN FimVerificalncendio

LD 1

ST Incendio

FimVerificalncendio:

CAL Ctrl_Alarme(Ext Incendio := Incendio,
In_Supervincendio := Supervincendio,
In_SituacaoNormal := SituacaoNormal,
In ComunicOK = ComunicOk,
In_Emergencia = Emergencia,
In_Desliga_Sprinkler := Desliga Sprinkler,
In_Reseta Incendioc := Reseta Incendio,

Ext_AckSitNormal := AckSitNormal)
LD Ctrl_Alarme.Out_Alarme

ST Alarme
LD Ctrl Alarme.Out Sprinkler
ST Sprinkler

LD Fumaca
ST FumacaSala.0

SendComunicOK:
LD ComunicOK
ST Qo7

59

Sistema de Informagao para Automaciio Predial

Apéndice 1.3 Fun¢do FCN ALRM

VAR_INPUT
In_ComunicOK : BOOL ;
In_SituacaoNormal : BOOL ;
In_Desliga Sprinkier : BOOL ;
In_Reseta Incendio : BOOL ;
In_Emergencia : BOOL ;
In_Supervincendio : BOOL ;

END VAR

VAR _OUTPUT
Out_Alarme : BOOL ;
Out_Sprinkler : BOOL ;
Out_Incendio : BOOL ;
Out_SituacaoNormal : BOOL ;

END VAR

VAR_IN _OUT
Ext_AckSitNormal : BOOL ;
Ext_Incendio ;: BOOL ;

END VAR

VAR
OldSituacaoNormal : BOOL ;

END VAR

LD Ext AckSitNormal

ANDN In_SituacaoNormal

R Ext_AckSitNormal

(* Comunicacao com o supervisorio OK*)

LD In ComunicOK
JMPCN ComunicLost

LD In SituacaoNormal
ST Ext_AckSitNormal

LD In_SituacaoNormal
ANDNIn_Supervincendio
R Out_Sprinkler

R Ext_Incendio

LD In_Supervincendio
S Out_Sprinkler

JMP Fim Incendio

Sistema de Informagio para Automacio Predial

(* Comunicacao Perdida*)

ComunicL.ost:

LD
S

LD
R

LD
R

Ext_Incendio
Out_Sprinkler

In Desliga Sprinkler
Out_Sprinkler

In Reseta Incendio
Ext_Incendio

Fim_Incendio:

LD
S

LDN
R

LD
ST

LD
R

In_Emergencia
Out_Alarme

In_Emergencia
Out_Alarme

In_SituacaoNormal
Out_SituacaoNormal

Ext_AckSitNormal
Out_SituacaoNormal

61

Sistema de Informagfio para Automacio Predial

Apéndice 1.4 Fun¢do FCNARRAY

VAR _INPUT
In_Temperatura : UINT ;
In_VelocPerc : INT ;

END VAR

VAR OUTPUT
Out_TempCrescente : BOOL ;
Out_VelCrescente : BOOL ;

END VAR

VAR
TrigGetTemp : BOOL:=0 ;
DTEmpGetTemp : TIME := T#ls ;
TimerGetTemp : TP ;
Array_Temp : ARRAY [1..20] OF UINT;
Array Vel : ARRAY [1..20] OF INT;

END_VAR

AtualizaArrays:
CAL TimerGetTemp(IN:=TrigGetTemp,
PT:=DTEmpGetTemp)

TTempl:

LD TimerGetTemp.Q
JIMPC TTemp0

LD 1

ST TrigGetTemp

LD Array Temp[2]
ST Array Temp|[1]

LD Array Temp[3]
ST Array_Temp[2]

LD Array Temp[4]
ST Array Temp[3]

LD Array_Temp[5]
ST Array Temp[4]

LD Array Temp[6]
ST Array_Temp[5]

LD Array Temp[7]

62

Sistema de Informacfo para Automacio Predial

ST Array_Temp[6]

LD Array Temp[8]
ST Array_Temp[7]

LD Array Temp|9]
ST Array Temp[8]

LD Array Temp[10]
ST Array_Temp[9]

LD Array Temp[11]
ST Array Temp[10]

LD Array Tempf12]
ST Array Temp[l1]

LD Array Temp[13]
ST Array Temp[12]

LD Array Temp[14]
ST Array Temp[13]

LD Array Temp{15]
ST Array Temp|14]

LD Array Temp[16]
ST Array Temp[15]

LD Array Temp{17]
ST Array Temp(16]

LD Array Temp|18]
ST Array Temp[17]

LD Array Temp[19]
ST Array Temp[18]

LD Array Temp[20}
ST Array Temp[19]

LD In_Temperatura
ST Array Temp}20]

LD 1
ST Out TempCrescente

Compl:
LD Array Temp[2]

Sistema de Informagio para Automacio Predial

GT Array Temp[1]
JMPC Comp2
LD 0
ST Out_TempCrescente

Comp2:

LD Array Temp{3]

GT Array Temp|2]
JMPC Comp3

LD 0

ST Out_TempCrescente

Comp3:

LD Array Temp|4]

GT Array_Temp[3]
IMPC Comp4

LD 0

ST Out_TempCrescente

Comp4:

LD Array Temp|5]

GT Array Temp[4]
JMPC Comp5

ID 0

ST Out_TempCrescente

Comp35:

LD Array Temp[6]

GT Array_Temp[5]
JMPC Compb

LD O

ST Out_TempCrescente

Comp6:

LD Array Temp[7]

GT Array Temp[6]
JMPC Comp7

LD 0

ST Out_TempCrescente

Comp7:

LD Array Temp|8]

GT Array_Temp[7]
JIMPC Comp8

LD 0

ST Out_TempCrescente

Comp8:
LD Array Temp[9]

64

Sistema de Informagio para Automagio Predial

GT Array Temp[8]
JMPC Comp9
LD 0
ST Out_TempCrescente

Comp9:

LD Array Temp[10]
GT Array Temp[9]
JMPC Compl0

LD 0

ST Out_TempCrescente

Compl10:

LD Array Temp[11]
GT Array Temp[10]
JMPC Compl1

ID 0

ST Out_TempCrescente

Compl1:

LD Array Temp[12]
GT Array Temp|11]
JMPC Compl2

LD 0

ST Out_TempCrescente

Compl2:

LD Array Temp[13]
GT Array Temp[12]
JMPC Compl3

LD 0

ST Out_TempCrescente

Compl3:

LD Array Temp[14]
GT Array_Temp[13]
JMPC Compl4

LD 0

ST Out_TempCrescente

Compi4:

LD Array Temp[15]
GT Array Temp[14]
JMPC Compl5

LD 0

ST Out_TempCrescente

Compl5:
LD Array Temp[16]

65

Sistema de Informagfio para Automagio Predial

GT Array Temp[15]
JIMPC Complé6
LD 0
ST Out_TempCrescente

Complé6:

LD Array Temp[17]
GT Array Temp[16]
IMPC Compl7

LD ¢

ST Out_TempCrescente

Compli7:

LD Array Temp[i8]

GT Array Temp[17]
JMPC Compl8

LD ¢

ST Out_TempCrescente

Compl18:

LD Array_Temp[19]
GT Array Temp[18]
IMPC Comp19

LD ¢

ST Out_TempCrescente

Comp19:

LD Array Temp[20]
GT Array Temp[19]
JMPC EndUpdateTemp
ID ¢

ST Out_TempCrescente
EndUpdateTemp:

LD Array Vel[2]
ST Array Vel[l]

LD Array Vel[3]
ST Array Vel[2]

LD Array Vel[4]
ST Array Vel[3]

LD Array Vel[5]
ST Array Vel[4]

LD Array Vel[6]
ST Array Vel[5]

66

LD
ST

LD
ST

LD
ST

LD
ST

LD
ST

LD
ST

LD
ST

LD
ST

LD
ST

LD
ST

LD
ST

LD
ST

LD
ST

LD
ST

LD
ST

LD
ST

Array_Vel[7]
Array Velf6]

Array Vel 8]
Array Vel[7]

Array_Vel[9]
Array Vel[8]

Array_Vel[10]
Array Vel[9]

Array Vel[11]
Array Vel[10]

Array Vel[12]
Array Vel[11]

Array_Vel[13]
Array Vel[12]

Array Vel[14]
Array Vel[13]

Array Vel[15]
Array_Vel[14]

Array Vel[16]
Array Vel[15]

Array Vel[17]
Array Vel[16]

Array Vel[18]
Array Vel[17]

Array Vel[19]
Array Vel[18]

Array_Vel[20]
Array _Vel[19]

In_VelocPerc
Array_Vel[20}]

1

Sistema de Informacfio para Automaco Predial

Out_VelCrescente

67

Sistema de Informagfio para Automagio Predial

CompVell:
LD Array Vel[2]
GT Array Vel[l]
IMPC CompVel2
LD 0
ST Out_VelCrescente

CompVel2:

LD Array Vel[3]

GT Array Vel[2]
JMPC CompVel3

LD 0

ST Out VelCrescente

CompVel3:

LD Array Vei[4]

GT Array Vel[3]
JMPC CompVeld

LD ¢

ST Out_VelCrescente

CompVeld:

LD Array Vel[5]

GT Array Vel[4]
JIMPC CompVel5

LD 0

ST Out_VelCrescente

CompVel5:

LD Array Vel[6]

GT Array Vel[5]
JMPC CompVel6

LD 0

ST Out VelCrescente

CompVel6:

LD Array Veli7]

GT Array Vel[6]
JIMPC CompVel7

LD ¢

ST Out_VelCrescente

CompVel7:

LD Array Vel[8]

GT Array Vel[7]
JIMPC CompVel8

LD ¢

ST Out_VelCrescente

68

Sistema de Informag#io para Automaciio Predial

CompVel8:
LD Array Vel[8]
GT Array Vel[8]
JMPC CompVel9
LD ¢
ST Out_VelCrescente

CompVel9:

LD Array Vel[10]
GT Array Vel[9]
JMPC CompVell0

LD 0

ST Out_VelCrescente

CompVell0:

LD Array Vel[l1]

GT Array Vel[10]
JMPC CompVelil

LD 0

ST Out_VelCrescente

CompVell1:

LD Array Vel[12]
GT Array Vel[l1]
JIMPC CompVell2

LD ¢

ST Out_VelCrescente

CompVell2:

LD Array Vel[13]
GT Array Vel[12]
JIMPC CompVell3

LD o

ST Out_VelCrescente

CompVell3:

LD Array_Vel[14]
GT Array Vel|13]
JMPC CompVell4

LD o0

ST Out_VelCrescente

CompVell4:

LD Array Veljl5]

GT Array Vel[14]
JMPC CompVell5

LD 0

ST Out_VelCrescente

69

Sistema de Informagfio para Automagio Predial

CompVell5:

LD Array Vel[16]
GT Array Vel[15]
JMPC CompVell6

LD 0

ST Out_VelCrescente

CompVellé6:

LD Array Vel[l17]
GT Array_Vel[16]
IMPC CompVell7

LD ¢

ST Out_VelCrescente

CompVell7:

LD Array Vel[18]
GT Array Velf17]
JMPC CompVeli8

LD 0

ST Out VelCrescente

CompVell8:

LD Array Vel[19]
GT Array Vel18]
JMPC CompVell9

LD 0

ST Out_VelCrescente

CompVell9:

LD Array Vel[20]

GT Array Vel[19]
JMPC EndUpdateVel
LD 0

ST Out_VelCrescente
EndUpdateVel:

TTempO:

LDN TimerGetTemp.Q
JMPC EndGetArrays
ID 0

ST TrigGetTemp

EndGetArrays:

70

Sistema de Informagfo para Automagéo Predial

Apéndice 1.5 Funcdo FCN_INVA

VAR_INPUT
In_Presenca : BOOL ;
In_SalaHabilitada : BOOL ;

END VAR

VAR_OUTPUT
Out_SalaOcupada ;: BOOL ;
Out_Intrusao : BOOL ;
Out_Luzes : BOOL ;

END VAR

(*Algoritmo de controle de acesso a sala*)

LD In Presenca
IMPC SalaVazia

LD In_SalaHabilitada
JMPCN ExisteIntruso
S Out_Luzes

S Out_SalaOcupada
R Out_Intrusao

JMP EndContrAcesso

Existelntruso:

LD 1

ST Out_Intrusao

ST Out_SalaOcupada
LD 0

ST Out_Luzes

JMP EndContrAcesso

SalaVazia:

LD 0

ST Out_SalaOcupada
ST Out_Intrusao

ST Out Luzes

EndContrAcesso:

71

Sistema de InformagHo para Automagdo Predial

Apéndice 1.6 Funcido FCNLDTMP

VAR_INPUT
In ComunicOK : BOOL ;
In_Superviemp : BYTE ;
In_PotencTemp : WORD ;
END VAR
VAR OUTPUT
Out_MaxTemp : UINT;
Out_MinTemp : UINT;
END VAR
VAR
TempPotenc : UINT ;
POTENCTEMP : TEMPCONV ;
END VAR
CarregaUserTemp:
LD In ComunicOk
JMPCN NoComunic

LD In_SupervTemp (*Temperatura do Superv*)
BYTE _TO UINT

ADD 1

ST Out_MaxTemp

SUB 2

ST Out_MinTemp

JMP EndCarregaUserTemp

NoComunic:

CAL POTENCTEMP(TEMPWORD:=In PotencTemp,
TEMPMAX:=26,
TEMPMIN:=20)

LD POTENCTEMP.TEMPGRAUS

BYTE TO_UINT

ST TempPotenc (*Temp.do potenciometro*)

ADD 1

ST Out_MaxTemp

SUB 2

ST Out_MinTemp

EndCarregaUserTemp:

72

Sistema de Informag3o para Automagio Predial

Apéndice 1.7 Funcido FCNVENTIL

VAR _INPUT
In_Presenca : BOOL ;
In_Temperatura : UINT ;
In_MaxTemp : UINT ;
In MinTemp : UINT ;
In IncrementoPerc : BYTE ;
In_VelocFixa : BYTE ;
In_SalaHabilitada : BOOL ;
In_VelocPerc : INT ;
END VAR
VAR_IN OUT
Ext VelocPerc : INT ;
END_VAR
VAR
CounterFlag : BOOL ;
Delay : TIME:=T#10s ;
Timer : TP ;
Incremento : INT ;
VelocFxaPerc : INT ;
END VAR

LD In_IncrementoPerc
BYTE_TO_INT
ST Incremento

LD In VelocFixa
BYTE TO INT
ST Incremento

(*Controle do Ventilador*)

ContrVentilador:

CAL Timer(IN:=CounterFlag,
PT:=Delay)

LD Timer.Q

EQ 1

R CounterFlag

JMPCN AjustaVelocidadeVent

LD In_SalaHabilitada
JMPCN Desabilitada

LD In_Presenca
JMPCN VentSalaVazia

LD In Temperatura

73

Sistema de Informago para Automagiio Predial

LE In MaxTemp
JMPC ComparaMenor
LD Ext VelocPerc
ADD Incremento
ST Ext VelocPerc
LD 1
S CounterFlag
JMP AjustaVelocidadeVent

ComparaMenor:

LD In Temperatura

GE In MinTemp

JIMPC AjustaVelocidadeVent
LD Ext VelocPerc

SUB Incremento

ST Ext_VelocPerc

LD 1

S CounterFlag

JMP AjustaVelocidadeVent

VentSalaVazia:

LD VelocFixaPerc

ST Ext_VelocPerc

JMP AjustaVelocidadeVent

Desabilitada:
LD VelocFixaPerc
ST Ext_VelocPerc

AjustaVelocidadeVent:
LD Ext Velocperc
LE 100

JMPC Menor100

LD 100

ST Ext VelocPerc
Menor100:

LD Ext VelocPerc
GE ©0©

JMPC PercOK

LD o

ST Ext VelocPerc

PercOK:

74

Sistema de Informagfo para Automacio Predial

Apéndice 1.8 Fun¢ido SPDCONYV

VAR_INPUT
SPDPC : WORD ;

END_VAR

VAR_OUTPUT
SPDBITS : WORD;

END VAR

VAR
TEMPORARIO : UINT ;
DELTASPD : UINT:=100 ;
VOLTMIN : UINT:=614 ;
DELTABITS : UINT:=820 ;

END_VAR

LD SPDPC

WORD_TO UINT

DIV 2

MUL DELTABITS

DIV DELTASPD

MUL 2

ST TEMPORARIO

LD VOLTMIN

ADD TEMPORARIO

UINT TO_WORD

ST SPDBITS

75

Sistema de Informacfo para Automacéo Predial

Apéndice 1.9 Fung¢ido TMPCONV

VAR _INPUT
TEMPWORD : WORD ;
TEMPMIN : UINT ;
TEMPMAX : UINT ;
END VAR
VAR_OUTPUT
TEMPGRAUS : BYTE;
END VAR
VAR
TEMPORARIO : UINT ;
DELTATEMP : UINT ;
MAXBITS : UINT:=1023 ;
END VAR
LD TEMPMAX
SUB TEMPMIN
ST DELTATEMP

LD TEMPWORD
WORD_TO_UINT
MUL DELTATEMP
DIV MAXBITS
ADD TEMPMIN
ST TEMPORARIO
LD TEMPORARIO
UINT TO BYTE
ST TEMPGRAUS

76

Sistema de Informagdo para Automagdo Predial

APENDICE L. LISTAGEM DO PROGRAMA DO SISTEMA SUPERVISOR

Apéndice IL1 Listagem do programa em Superviosor.C

#inciude <ansi_c.h>

#include <Dataacq.bh>

#include <cvirte.h> /* Needed if linking in external compiler; harmless
otherwise */

#include <userint.h>

#include "Supervisor.h”

#define enable 1

#define disable 0

#define CW 1

#define CCW 0

#define ON 1

#define OFF 0

#define vetor_size 300
#define vetor_fan_size 30

[femmmmemmmeae
// Prototypes

static int control;

static int testing;

static int tempRooml;

static int tempRoom?2;

static int tempRoom3;

static int tempRoom4;

static int initialize(void);

static int check ground(void);
static int check_first(void);

static int check_second(void);
static int check presence(void);
static int update leds_presence(void);
static int display _emergency(void);
static int check permission(void);
static int check_temp(int);

static int check_fan(int);

static int selected room(void);

Sistema de Informagiio para Automagfo Predial

static int update fan matrix(int,int,int);
static int check_smoke_fire(void);
static int elevator_status_display(int);
static int fire _actions(void);

//variaveis globais

int dagErr;

/* status da linha digital*/

short instate0,

int

vent.*/

instatel,

instate2,

instate3,

instate4,

instate5,

instate6,

instate7, /*Entradas Digitais*/

outstate0,

outstatel,

outstate2,

outstate3,

outstate4,

outstate5,

outstate6,

outstate7, /* Saidas Digitais*/
presenca_elev; /*sensor de presenca no elev*/
actual floor, /*posicao atual do elevador®/
sensor(,sensorl, sensor2, /*variaveis dos sensores de posicao */
powerstate, /*status do elevador, habilitado ou niio*/
occupation|[6], /*vetor de presenca nas salas*/
permission[6], /*vetor de permissdo de presenga */
fan_historic[5]{vetor_fan_size],

fanspeed[5], /*armazena vel. atual do vent.*/
smoke[5], /*armazena status de fumaga das salas*/
fire[S], /*armazena status de incéndio das salas*/

=1, /*variavel aux. utilizada p/ atualizar vetor de temp.*/
k=1; /*variavel aux. utilizada p/ atualizar matriz da vel do

double temp historicl[vetor_size], /*vetores de historico de temperatura*/

temp_historic2[vetor_size],
temp_historic3[vetor_size],
temp_historic4[vetor_size];

! ¥kx¥%x FI EVATOR MODULE ***********8

/{Verifica Sensor Terreo

78

Sistema de Informagiio para Automagio Predial 79

static int check_ground(void)

{
dagErr = DIG_Prt_Config (1, 0, 0, 0); /*Configura placa*/
dagErr = DIG In_Line (1, 0, 0, &instate0);
return (instateQ);

}

/fVerifica Sensor 1.andar

static int check_first(void)

{
daqErr = DIG_Prt_Config (1, 0, 0, 0); /*Configura placa®*/
daqErr = DIG_In_Line (1, 0, 1, &instatel);
return (instatel);
}
/fVerifica Sensor 2.andar
static int check second(void)
{
dagErr = DIG _Prt_Config (1, 0, 0, 0); /*Configura placa*/
daqErr = DIG In_Line (1, 0, 2, &instate2);
return (instate2);
}
//Atualiza Sensores

static int update sensor(void)
{
sensor(= check _ground();
sensorl = check_first();
sensor2 = check_second();
daqErr = DIG_Prt_Config (1, 0, 0, 0); /*Configura placa*/
daqErr = DIG_In Line (1, 0, 5, &presenca_elev); /*verifica presenca no elev */

return 0;

}

// Atualiza Leds dos andares do clevador

static int update leds(void)

{
SetCtrIVal (control, CONTROL_GROUND_FLOOR, sensor0);
SetCtrlVal (control, CONTROL_FIRST _FLOOR, sensorl);
SetCtriVal (control, CONTROL_SECOND_FLOOR, sensor2);
SetCtrIVal (control, CONTROL_QCCUPIED, presenca_elev);
return 0;

Sistema de Informacio para Automacio Predial

}
// Inicializa Elevador
static int initialize(void)
{
int floor;
daqErr =DIG_Prt_Config (1, 0, 0, 1); /*Configura placa*/
daqErr = DIG_Out_Line (1, 0, 3, CW); /*porta 3 - sent. hor*/
update_sensor();
/*verifica sensores elev.*/
while (sensor(Hsensor1+sensor2==0) /*move elevador ate prox. piso (CW)*/
{
dagErr = DIG_Prt_Config (1, 0, 0, 1); /*Configura placa*/
daqErr = DIG_Out_Line (1, 0, 4, enable); /*porta 4 - inicia mov.*/
update sensor();
3
dagErr = DIG_Prt_Config (1, 0, 0, 1); /*Configura placa*/
dagErr = DIG_Out_Line (1, 0, 4, disable); /*porta 4 - interrompe mov.*/
update leds();
if (sensor(==1)
{
floor = 0;
}
if (sensor1==1)
{
floor=1;
¥
if (sensor2==1)
{
floor =2;
}
daqErr = DIG_Prt_Config (1, 0, 0, 1);
daqErr = DIG_Out_Lire (1, 0, 4, disable);
return floor;
}
// Finaliza Controle

int CVICALLBACK Shutdown (int panel, int control, int event,

{

void *callbackData, int eventDatal, int eventData2)

switch (event)

Sistema de Informagfo para Automagio Predial 81

{
case EVENT COMMIT:

QuitUserInterface (0);
break;
case EVENT RIGHT CLICK:

break;

return 0;

// Move para primeiro andar

int CVICALLBACK go_first (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

{
switch (event)
{
case EVENT COMMIT:
GetCtrlVal (CONTROL, CONTROL_POWER, &powerstate);
if (actual_floor>1 & powerstate==0N)
{
dagErr = DIG_Prt_Config (1, 0, 0, 1); /*Configura
placa*/
dagErr = DIG_Out_Line (1, 0, 3, CW); /*porta 3 - sent.
hor*/
while (sensor1==0)
{
daqErr = DIG_Prt_Config (1, 0, 0, 1); ‘
/*Configura placa*/ 5

daqErr = DIG_Out_Line (1, 0, 4, enable);
/*porta 4 - inicia mov.*/
update_sensor();
update_leds();
}
dagErr = DIG_Prt Config (1, 0, 0, 1);
/*Configura placa*/
daqErr = DIG_Out_Line (1, 0, 4, disable); /*porta |
4 - interrompe mov.*/
update_sensor();
update_leds(); |
actual floor =1; ‘
}

if (actual_floor<1 & powerstate=—=0ON)

Sistema de Informacgio para Automacio Predial 82

{
daqErr = DIG_Prt_Config (1, 0, 0, 1); /*Configura
placa*/
daqErr = DIG_Out_Line (1, 0, 3, CCW); /*porta
3 - sent. ahor*/

while (sensor1==0)
{
daqErr = DIG_Prt_Config (1, 0, 0, 1);
/*Configura placa*/
dagErr = DIG_Out_Line (1, 0, 3, CCW);
/*porta 3 - sent. hor*/
dagErr = DIG_Out Line (1, 0, 4, enable);
/*porta 4 - inicia mov.*/
update_sensor();
update leds();
}

update _sensor();
update leds();
actual_floor =1;
}
break;
case EVENT RIGHT CLICK:

break;

¥
SetCtrlVal (CONTROL, CONTROL NUMERIC, actual floor);

daqErr = DIG Prt_Config (1, 0, 0, 1); /*Configura placa*/
dagErr = DIG_Out_Line (1, 0, 4, disable); /*porta 4 - interrompe mov.*/
return 0;

}

// move para andar térreo

int CVICALLBACK go_ground (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

{
switch (event)
{
case EVENT COMMIT:
GetCtrlVal (CONTROL, CONTROL_POWER, &powerstate);
if (actual_floor>0 & powerstate==0N)
{
dagErr = DIG_Prt_Config (1, 0, 0, 1); /*Configura
placa*/

dagqErr = DIG_Out_Line (1, 0, 3, CW); /*porta 3
- sent. hor*/

Sistema de Informagdo para Automacio Predial 23

while {sensor0==0)
{
dagErr = DIG Prt Config (1,0, 0, 1);
/*Configura placa*/
daqErr = DIG_Out_Line (1, 0, 4, enable);
/*porta 4 - inicia mov.*/
update sensor();
update_leds();
}

update_sensor();
update_leds();
actual_floor =0;

break;
case EVENT RIGHT CLICK:

break;

}
SetCtrIVal (CONTROL, CONTROL_NUMERIC, actual floor);

daqErr = DIG_Prt_Config (1, 0, 0, 1); /*Configura placa*/
daqErr = DIG_Out_Line (1, 0, 4, disable); /*porta 4 - interrompe mov.*/
return Q;

}
//Move para segundo andar

int CVICALLBACK go_second (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

{
switch (event)
{
case EVENT COMMIT:
GetCtrlVal (CONTROL, CONTROL POWER, &powerstate);
daqErr = DIG_Prt_Config (1, 0, 0, 1); /*Configura placa*/
dagErr = DIG_Out_Line (1, 0, 3, CCW); /*porta 3 - sent.
a.hor*/

if (actual floor<2 & powerstate=—0ON)
{
while (sensor2==0)

{
dagErr = DIG_Prt_Config (1, 0, 0, 1); /*Configura placa*/
dagErr = DIG_Out_Line (1, 0, 3, CCW); /*porta 3 - sent. a.hor*/
dagErr = DIG_Out_Line (1, 0, 4, enable); /*porta 4 - inicia mov.*/

update sensor();

update leds();

Sistema de Informagfio para Automacfio Predial 84

}

update_sensor();
update_leds();
actual_floor =2;
!
break;
case EVENT _RIGHT_ CLICK:

break;

}
SetCtrlVal (CONTROL, CONTROL_NUMERIC, actual_floor);

daqErr = DIG_Prt_Config (1, 0, 0, 1); /*Configura placa*/
dagErr = DIG_Out_Line (1, 0, 4, disable); /*porta 4 - interrompe mov.*/
return Q;

// Atualiza display de status do elevador
static int elevator_status_display(int status)
{ if (status = 0)

{
ResetTextBox (control, CONTROL STATUS, "NOT READY™"),
H
if (status = 1)
{
ResetTextBox (control, CONTROL_STATUS, "NOT READY™);
}
if (status == 2)
{
ResetTextBox (control, CONTROL_STATUS, "EMERGENCY™");
}
return 0;

}

//Permite ou nfio movimentacio do elevador

int CVICALLBACK power_function (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

{

switch (event)

{
case EVENT _COMMIT:

GetCtrIVal (CONTROL, CONTROL POWER, &powerstate);

Sistema de Informacgdo para Automagéo Predial

if (powerstate==0FF)
{
daqErr = DIG_Prt_Config (1, 0, 0, 1); /*Configura placa*/
daqErr = DIG_Out_Line (1, 0, 4, disable); /*porta 4 - interrompe mov.*/
update_sensor();
update_leds();
elevator_status_display(0);

}
if (powerstate==0N)
{
actual_floor = initialize();
clevator_status_display(1);
SetCtrlVal (CONTROL,
CONTROL_NUMERIC,actual floor);
}
break;
case EVENT_RIGHT_CLICK:
break;
}
return 0;

//chama e fecha painel de teste

int CVICALLBACK display_testing (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

{
switch (event)
{
case EVENT_COMMIT:
DisplayPanel (testing);
break;
case EVENT RIGHT CLICK:
break;
¥
return 0;
H

int CVICALLBACK close_testing (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

{

switch (event)

{

85

Sistema de Informagfio para Automagio Predial 86

case EVENT COMMIT:

HidePanel (testing);
break;
case EVENT _RIGHT_CLICK:
break;
}
return 0;

JEEEE END ELEVATOR dodkok e ke ke dkok ok sk skok ok skokok ko

[EEE MATN MODULR %% sk e s sk sk ok o koo ok

int main (int argc, char *argv[])
{
short placa;
it (InitCVIRTE (0, argv, 0) ==0) /* Needed if linking in external compiler;
harmless otherwise */
return -1; /* out of memory */
if {(testing = LoadPanel (0, "Supervisor.uir", TESTING)) < 0)
return -1;
if ((control = LoadPanel (0, "supervisor.uir", CONTROL)) < 0)
return -1;
if ((tempRooml = LoadPanel (0, "supervisor.uir", TEMP_ROOM1)) < 0)
return -1;
if ((tempRoom2 = LoadPanel (0, "supervisor.uir", TEMP_ROOM2)) < 0)
return -1;
if ((tempRoom3 = LoadPanel (0, "supervisor.uir", TEMP_ROOM3)) < 0)
return -1;
if ((tempRoom4 = LoadPanel (0, "supervisor.uit", TEMP_ROOM4)) < 0)
return -1;

DisplayPanel (control);

DisplayPanel (testing);

RunUserlInterface ();

daqErr = Init DA Brds (1, &placa); /*Iniciakiza placa*/

dagErr = DIG_Prt_Config (1, 0, 0, 1); /*Configura placa*/

daqErr = DIG_Out_Line (1, 0, 4, disable); /*porta 4 - mov. desabilitado*/

/*inicializa velocidade dos ventiladores*/

GetCirlval (tempRooml, TEMP_ROOMI_FAN_SPEEDI, &fanspeedf1]);
GetCtrlVal (tempRoom2, TEMP_ROOM2_FAN_SPEED?2, &fanspeed[2]);
GetCtriVal (tempRoom3, TEMP_ROOM3_FAN SPEED3, &fanspeed[3]);
GetCtriVal (tempRoom4, TEMP_ROOM4_FAN SPEED4, &fanspeed[4]);

Sistema de Informacio para Automacio Predizal

return 0;

J) *EddkE Rk END MAJN *4% %k ks
/] *** PRESENCE MODULE *#*#*##%# %% % %%
/{Verifica presenca nas salas

static int check_presence(void)

{
GetCtrlVal (testing, TESTING_PRESENCEL!, &occupation[1]);

GetCtrlVal (testing, TESTING_PRESENCE?2, &occupation[2]);
GetCtrlVal (testing, TESTING_PRESENCE3, &occupation|3]);
GetCtrlVal (testing, TESTING_PRESENCE4, &occupation[4]);
GetCirlVal (testing, TESTING PRESENCES, &occupation|5]);

return(Q);

3

// Atualiza Leds de presenca

static int update_leds_presence(void)

{
SetCtrlVal (control, CONTROL PRESENCE LEDI, occupation[1]);
SetCtrlVal (control, CONTROL_PRESENCE_LED?2, occupation|[2]);
SetCtrlVal (control, CONTROL PRESENCE_LED3, occupation[3]);
SetCtrlVal (control, CONTROL PRESENCE_LED4, occupation[4]);
SetCtrlVal (control, CONTROL PRESENCE_LEDS3, occupation[5]);

return 0;

}

//Verifica permissao de presenca nas salas

static int check permission(void)

{
GetCtrlVal (control, CONTROL ENABLE]1, &permission[1]);
GetCtrlVal (control, CONTROL ENABLE2, &permission[2]);
GetCtrIVal (control, CONTROL_ENABLE3, &permission[3]);
GetCtrIVal (control, CONTROL_ENABLE4, &permission[4]);
GetCtrlVal (control, CONTROL_ENABLES, &permission[5]);

return(0);

87

Sistema de Informacdo para Automaciio Predial
// Verifica se existe presenca em alguma sala nfo habilitada, neste caso dispara alarme.
static int display_emergency(void)
{
int i, intruder = 0;
for (i=1; i<6; i++)
{
if(permission[i]==0 & occupation[i}—1)
{intruder = 1;}
}
if (intruder == 1)
{
SetCtrlVal (control, CONTROL_EMERGENCY, intruder);
ResetTextBox (control, CONTROL_EMERGENCY TEXT, "
INTRUDER");
}
if (intruder == ()
{
SetCtrlVal (control, CONTROL EMERGENCY, intruder);
ResetTextBox (control, CONTROL_EMERGENCY TEXT, " ");
'
return(0);
}

int CVICALLBACK timer_update (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

{
switch (event)
{
case EVENT TIMER TICK:
check presence();
update leds presence();
check permission();
display_emergency();
break;
}
return 0;
¥

//#%%* END PRESENCE ***##%x

/fxx¥%% TEMPERATURE MODULE*#s%#k k%%

88

Sistema de Informacdo para Automagio Predial

int CVICALLBACK show_rooml (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

switch (event)

{
case EVENT_COMMIT:

DisplayPanel (tempRooml);

break;
case EVENT RIGHT CLICK:

break;
}

return 0;
}

mt CVICALLBACK close_room! (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)
{

switch (event)

{
casc EVENT COMMIT:

HidePanel (tempRooml1);

break;
case EVENT RIGHT CLICK:

break;

return 0;

mt CVICALLBACK show_room2 (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)
{

switch (event)
{
case EVENT_COMMIT:
DisplayPanel (tempRoom?2);
break;
case EVENT_RIGHT CLICK:

break;
3

return 0;

}

int CVICALLBACK close_room?2 (int panel, int control, int event,

89

Sisterna de Informagiio para Automagéo Predial

void *callbackData, int eventDatal, int eventData2)

switch (event)
{
case EVENT _COMMIT:
HidePane! (tempRoom?2);
break;
case EVENT RIGHT CLICK:

break;

return 0;

int CVICALLBACK show_room3 (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

{
switch (event)
{
case EVENT COMMIT:
DisplayPanel (tempRoom3);
break;
case EVENT RIGHT CLICK:
break;
3
return (;
¥

int CVICALLBACK close_room3 (int panel, mt control, int event,
void *callbackData, int eventDatal, int eventData2)
{

switch (event)
{
case EVENT COMMIT:
HidePanel (tempRoom?3);
break;
case EVENT RIGHT CLICK:

break;
¥

return (;

}

int CVICALLBACK show room4 (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData?)
{

switch (event)

90

Sistema de Informagéio para Automagiio Predial

91

{
case EVENT _COMMIT:

DisplayPanel (tempRoom4);
break;

case EVENT_RIGHT_CLICK:
break;
}
return 0;
}
it CV

{

ICALLBACK close roomd (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

switch (event)

{
case EVENT _COMMIT:

HidePanel (tempRoom4);
break;

case EVENT_RIGHT CLICK:

break:
}

return (;

int CVICALLBACK send templ (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)
{

switch (event)

{
case EVENT _COMMIT:

break;
case EVENT_RIGHT_CLICK:

break:
}

return 0;

}

int CVICALLBACK send_fan_speed1 (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)
{

switch (event)

{
case EVENT COMMIT:

Sistema de Informagdo para Automagio Predial

92

break;
case EVENT_RIGHT_CLICK:
break;
}
return 0;

// Verifica qual sala esta ativa para atualizacao
static int selected_room(void)

{
int room_to_update;
GetCtrlVal (testing, TESTING_ACTUAL ROOM, &room_to_update);
return(room_to_update);

}

// Verifica temperatura das salas

static int check_temp(int position)

{ introom;
int j; /*variavel auxiliar para percorrer o vetor*/

if (position<vetor_size)
{ room= selected_room(); /* verifica qual sala deve ser atualizada */

//********Sala 1*******
if (room == 1)

{
GetCtrlVal (testing, TESTING_ROOM_TEMP, &temp_historic1[position));
SetCtrlVal (control, CONTROL_ACTUAL_TEMPI, temp_historic] [position]);

SetCtrlVal (tempRoomi, TEMP_ROOM1 _ACTUAL_TEMPI,
temp_historic1[position]);

H
se outra sala for a selecionada. mantem temp.atual */

{

temp_historicl [position]=temp historicl [position-1];

else /*

//********Sala 2*******
if (room = 2)

{
GetCtrlVal (testing, TESTING_ROOM_TEMP, &temp_hjstoriCZ[position]);

SetCtrlVal (control, CONTROL_ACTUAL_TEMP2, temp_historic2[position]);

Sistema de Informacio para Automacio Predial

SetCtrlVal (tempRoom?, TEMP_ROOMZ_ACTUAL_TEMP2,
temp_historic2[position]);

}

else

{

temp_historic2[po sition]=temp _historic2 [position-1];

//********Sala 3*******
if (room == 3)

{
GetCtrlVal (testing, TESTING_ROOM_TEMP, &tem

p_historic3[position));
SetCtrlVal (control, CONTROL‘ACTUAL_TEMPS, temp_historic3[position]);

SetCtriVal (tempRoom3,
TEMP_ROOM3_ACTUAL_TEMP3, temp_historic3[position]);
}
else
{

temp_historic3 [position]=temp historic3 [position-1];

//********Sala 4% %k ek e ok

if (room == 4)

{
GetCtrlVal (testing, TESTING_ROOM_TEMP, &temp_historic4[position]);
SetCtrlVal (control, CONTROL_ACTUAL_TEMP4, temp_historic4{position));

SetCtrlVal (tempRoomd, TEMP__ROOM4_ACTUAL_TEMP4,
temp_historic4[position);

}
else

{

temp_hjstoric4[position]=temp_hjstoric4 [position-1];
}

else /* se vetor ja estiver cheio, temp. entra no final*/
{
room = selected_room(); /* verifica qual sala deve ser
atualizada */

/*** Sala 1 ******/
if (room == 1)

for (j7=0; j<vetor size-1; i)
temp_historic[j]=temp_historic] +17;

GetCtrlVal (testing, TESTING_ROOM TEMP, &temp historicl [vetor_size-1]);

SetCtrIVal (control, CONTROL_ACTUAL_TEMPI - temp_historic1[vetor size-1 D;

Sistema de Informagio para Automagiio Predial

SetCtrlVal (tempRoom1, TEMP_ROOM 1 ACTUAL_TEMPI,
temp_historic1[vetor_size-1]);

}

/*** Sa.la 2 ******/‘
if (room == 2)

{

for (j=0: j<vetor_size-1; j+)
{
temp_historic2[j]=temp_historic2 [+1];

}
GetCtriVal (testing, TESTING ROOM TEMP. &temp_historicZ[vetor_size—1]);

SetCtriVal (control, CONTROL_ACTUAL TEMP2, temp_historic2[vetor_size-1]);

SetCtriVal (tempRoom?2, TEMP_ROOM2_ACTUAL_TEMP2,
temp_historic2[vetor_size-1]);

}

fRE® gala 3 ok ok ok
if (room = 3)
{

for (j=0; j<vetor_size-1;)
temp_historic3[j]=temp _historic3 [+17;
}

GetCtrlVal (testing, TESTIN G_ROOM_TEMP, &temp _historic3 [vetor_size-1]);
SetCtrlVal (control, CONTROL_ACTUAL_TEMP?:, temp_historic3{vetor_size-1]);
SetCtrlVal (tempRoom3, TEMP_ROOM3_ACTUAL_TEMP3,

temp_historic3[vetor_size-1]);

b

JER* galg g *kkskdsny
if (room == 4)
{

for (j=0; j<vetor_size-1; jH)
{
temp_historic4[j]=temp_historic4{j+1];

GetCtrlVal (testing, TESTING_ROOM_TEMP. &temp_historic4[vet0r_size-1]);
SetCtrlVal (control, CONTROL_ACTUAL_TEMP4, temp_historic4[vetor_size-1]);
SetCtrlVal (tempRoomd, TEMP_ROOM4_ACTUAL_ TEMP4,

temp_historic4[vetor_size-11);

}

return 0;

94

Sistema de Informagdo para Automagdo Predial

}

//Verifica status de fumaga e incendio dag salas
static int check_smoke_ﬁre(void)
{ intkm;

int room;

room = selected_room(); /*Verifica qual sala esta ativa*/

/*Executa leitura dos dados para cada sala*/
for (k=1; k<5; k++)
{

if (room==k)

{
GetCtrlVal (testing, TESTING_ROOM_SMOKE, &smoke[k]):
GetCtrlVal (testing, TESTING_ROOM_FIRE, &fire[k]);
}
H
/*Atualiza Leds dos paineis de detalhes*/
SetCtrlVal (tempRoom1 - TEMP_ROOMI1_SMOKE] » smoke[1]);
SetCtrlVal (tempRoom2, TEMP_ROOM2_SMOKE2, smoke[2]);

SetCtriVal (tempRoom3, TEMP_ROOM3__SMOKE3, smoke[3]);
SetCtriVal (tempRoomd4, TEMP__ROOM4_SMOKE4, smoke[4]);

SetCtrIVal (tempRooml, TEMP_ROOM 1_FIREI, fire[1]):
SetCtrlVal (tempRoom2, TEMP_ROOMZ_FIREZ, fire[2]);

SetCtrlVal (tempRoom3, TEMP_ROOM3_FIRE3, fire[3]);
SetCtrlVal (tempRoomd, TEMP_ROOM4__FIRE4, fire[4]);

/*Atualiza Leds do painel de controle*/

J[¥¥% Sala | *#k+
iffsmoke{1] || fire[1] = 1)
{SetCtrIVal (control, CONTROL_STATUS_TEMPI, ON);
ilse

{
SetCtrlVal (control, CONTROL__STATUS_TEMP] ,» OFF);

}
//*** Sala 2****

ismoke[2] || fire[2] = 1)

{

SetCtrlVal (control, CONTROL_STATUS_TEMP2, ON);
}

else

95

Sistema de Informagio para Automacio Predial 96

{
SetCtrlVal (control, CONTROL_STATUS_TEMP2, OFF);

}
//*** Sala 3****

iftsmoke(3] || fire[3] = 1)
{

SetCtrlVal (control, CONTROL
}
else

{
SetCtrlVal (control], CONTROL_STATUS_TEMP3, OFF);

}

/%% Sal 4#x+x

STATUS_TEMP3, ON);

if{smoke[4] || fire[4] = 1)
{

SetCtriVal (control, CONTROL__STATUS_TEMP4, ON);

}
else

{
SetCtrlVal (control, CONTROL_STATUS_TEMP4, OFF);

}

// Aciona controle de incendio para a sala que estiver com sinal de incendio
if (fire[1]==1)
{
SetCtrlVal (tempRooml1, TEMP_ROOMI _F IRE_PROCEDURE, ON);
fire_actions();

}
if (fire[2]=1)
{
SetCtrlVal (tempRoom2, TEMP_ROOM2_FIRE‘PROCEDURE, ON);
fire_actions();

}
if (fire[3]==1)
{
SetCtrlVal (tempRoom3, TEMP__ROOMB_FIRE_PROCEDURE, ON);
fire_actions();

if (fire[4]==1)
{
SetCtrlVal (tempRoomd, TEMP_ROOM4_FIRE__PROCEDURE, ON);
fire_actions();

Sistema de Informagio para Automagio Predial

return (;

// Loop de rotinas referentes a temperatura

int CVICALLBACK timer2_update (int panel. int control, int event,
void *callbackData, int eventDatal, int eventData2)

{

switch (event)

{
case EVENT TIMER_TICK:

check _temp(i);
check smoke fire();

i++;

2

break;
}

return 0;

}

/*Realiza agbes referentes ao
static int fire_actions(void)
{
elevator_status_display(2);
/finitialize();

SetCtrlVal (control, CONTROL POWER. OF F);
return 0;

}

procedimento de incendio*/

// Procedimento executado €m caso de incendio
int CVICALLBACK fire _procedure
void *callbackData,
{ int fire_status[5];
int p;

(int panel. int control, int event,
it eventDatal, int eventData?)

switch (event)

{

case EVENT COMMIT:

GetCtrlVal(temp
atusf1]);

Rooml,TEMP_ROOMI_FIRE_PROCEDURE,&ﬁre_st

97

Sistema de Informagiio para Automacio Predial 08

GetCtrlVal (tempRoom?2, TEMP_ROOMZ_FIRE_PROCEDURE,
&fire_statusf2]);
GetCtrlVal (tempRoom3, TEMP_ROOMS3 F IRE_PROCEDURE,
&fire_status|31);
GetCtriVal (tempRoomd, TEMP_ROOM4 F IRE_PROCEDURE,
&fire_status[4]);

for (p=1; p<5; p++)

{
ﬁre[p]=ﬁre_status[p];

if (fire_status[1]+ﬁre__status[2]+ﬁre_status[3]+ﬁre_status[4]>=1)
fire_actions();
if (fire_status[1 J+fire_status [2]+ﬁre_status[3]+ﬁre_status[4]=0)

elevator_status_display(O);

}

break;
case EVENT RIGHT CLICK:
break;
}
return 0;

// Plota histérico de temperatura e de velocidade do ventilador

int CVICALLBACK show_history! (int panel. int control, int event,
void *callbackData, int eventDatal, int eventData2)

{

switch (event)

{
case EVENT COMMIT:

DeleteGraphPiot (tempRooml, TEMP_ROOMI_GRAPH_TEMPI, -1,
VAL_IMMEDIATE_DRAW);

PlotY (tempRoomi, TEMP_ROOM 1_GRAPH TEMPI, temp_historicl,

vetor_size.VAL_DOUBLE, VAL THIN LINE, VAL_EMPTY SQUARE,
VAL_SOLID, 1,VAL_RED);

DeleteGraphPlot (tempRoom], TEMP_ROOMI_GRAPH_F ANT1, -1,
VAL_IMMEDIATE_DRAW);

Sistema de Informagiio para Automagfo Predial

PlotY (tempRooml, TEMP_ROOM 1_GRAPH FANI, fan_historic[1],
vetor_fan size, VAL INTEGER, VAL _THIN LINE, VAL_EMPTY_SQUARE,
VAL_SOLID, 1, VAL_RED);

break;
case EVENT_RIGHT__CLICK:

break;
}

return 0;

}

mt CVICALLBACK show_history2 (int panel. int control, int event,
void *callbackData, int eventDatal, int eventData2)
{

switch (event)
{
case EVENT COMMIT:
DeleteGraphPlot (tempRoom2, TEMP_ROOM2_GRAPH_TEMP2, -1,
VAL_IMMEDIATE_DRAW);

PlotY (tempRoom2, TEMP_ROOM2_GRAPH_TEMP2, temp_historic2,

vetor_size, VAL_DOUBLE, VAL THIN LINE, VAL_EMPTY SQUARE,
VAL_SOLID, 1, VAL_RED);

DeieteGraphPlot (tempRoom2, TEMP_ROOM2_GRAPH_FAN2, -1,
VAL_IMMEDIATE_DRAW);

PlotY {tempRoom2, TEMP_ROOM2_GRAPH_FAN2, fan_historic[2],
vetor_fan_size, VAL INTEGER, VAL_THIN LINE, VAL_EMPTY_SQUARE,
VAL_SOLID, 1, VAL_RED);
break;
case EVENT_RIGHT CLICK:

break;
}

return 0;

}

int CVICALLBACK show_history3 (int panel. int control, int event,
void *callbackData, int eventDatal, int eventData2)
{

switch (event)
{
case EVENT COMMIT:
DeleteGraphPiot (tempRoom3, TEMP_ROOMB_GRAPH_TEMPB, -
1, VAL__IMMEDIATE_DRAW);

99

Sistema de Informagio para Automacio Predial

PlotY (tempRoom3, TEMP_ROOM3_GRAPH_TEMP3, temp_historic3,

vetor_size, VAL_DOUBLE, VAL_THIN_LINE, VAL_EMPTY SQUARE,
VAL SOLID, 1, VAL_RED);

DeleteGraphPlot (tempRoom3, TEMP_ROOM?,_GRAPH_FANB, -1,
VAL_IMMEDIATE_DRAW);

PlotY (tempRoom3, TEMP_ROOM3_GRAPH_FAN3, fan_historic[3],
vetor_fan_size, VAL INTEGER, VAL THIN LINE, VAL_EMPTY_SQUARE,
VAL_SOLID, 1, VAL_RED);

break;

case EVENT_RIGHT CLICK:

break;
;

return 0;

}

mnt CVICALLBACK show_history4 (int panel. int control, int event,
void *callbackData, int eventDatal, int eventData2)
{

switch (event)
{
case EVENT COMMIT:
DeleteGraphPlot (tempRoomd, TEMP_ROOM4_GRAPH_TEMP4, -1,
VAL_IMMEDIATE_DRAW);

PlotY (tempRoomd4, TEMP_ROOM4_GRAPH_TEMP4, temp_historic4, vetor size,
VAL DOUBLE, VAL_THIN LINE, VAL_EMPTY SQUARE, VAL _SOLID, 1,
VAL _RED);

DeleteGraphPlot (tempRoom4, TEMP_ROOM4_GRAPH_FAN4, -1,
VAL_IMMEDIATE _DRAW);

PlotY (tempRoomd4, TEMP_ROOM4__GRAPH_FAN4, fan_historicf4],
vetor_fan size, VAL INTEGER, VAL_THIN LINE, VAL_EMPTY SQUARE,
VAL _SOLID. 1, VAL _RED);

break;
case EVENT_RIGHT_CLIC K:

break;
}

return 0;

int CVICALLBACK send_temp4 (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

100

Sistema de Informagio para Automagéo Predial 101

{

switch (event)

{
case EVENT COMMIT:

break;
case EVENT_RIGHT CLICK:

break;
}

return 0;

}

int CVICALLBACK send _fan _speed4 (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)
{

switch (event)

{
case EVENT COMMIT:

break;
case EVENT RIGHT CLICK:

break;

return 0;

int CVICALLBACK send _temp3 (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

{

switch (event)

{
case EVENT COMMIT:

break:
case EVENT_RIGHT_CLICK:
break;
}
return O;

}

int CVICALLBACK send _fan_speed3 (int panel, int control, int event,
void *callbackData int eventDatal, int eventData2)

{

switch (event)

Sistema de Informago para Automacio Predial

102

{
case EVENT COMMIT:

break;
case EVENT_RIGHT__CLICK:

break:
}

return (;

}

int CVICALLBACK send_temp2 (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)
{

switch (event)

{
case EVENT COMMIT:

break;
case EVENT RIGHT CLICK:

break;
}

return (;

1

int CVICALLBACK send fan_speed?2 (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)
{

switch (event)

{
case EVENT_COMMIT:

break;
case EVENT _RIGHT CLICK:

break:
}

return 0;

//I***¥* Modulo do Ventilador*******;///

int CVICALLBACK fan_timer (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)
{

switch (event)

{

Sistema de Informagéio para Automacdo Predial 103

case EVENT TIMER TICK:
check_fan(k);

k++;
break;
}
return (;

}

// Verifica status dos ventiladores e atualiza velocidade e dados historicos
static int check fan(int position_fan)
{ int presencal habilital ,presenca2,habi]jta2,presenca3,habilita3,presenca4,habilita4;
int fan_speed;
int room_fan;
double actual_templ .actual_temp2,actual_temp3 ,actual_tempd;
double temp_setpoint1 ,temp_setpoint2,temp_setpoint3,temp_setpoint4;

/***Sa.la 1****/

GetCtrlVal (testing, TESTING _PRESENCEL, &presencal); //Recebe dados da sala
GetCtrlVal (control, CONTROL_ENABLE], &habilital); // presenca e habilitagio

/* Se sala desabilitada ou vazia, ventilador vai para velocidade padrao*/
if (presencal ==0 || habilital ==())

GetCtrIVal (tempRooml, TEMP_ROOM!_FAN SPEEDI, &fan speed);
update fan matrix(1,position_fan, fan_speed);

}

/* Se sala habilitada e com presenca, velocidade ajustada em funcao da temp. */
if (presencal==1 && habilital =)

{
GetCtrlVal (tempRoom1, TEMP_ROOMI1_TEMP ROOMI, &temp_setpoint]);
GetCtrlVal (tempRoom], TEMP_ROOM1_ACTUAL_TEMPI, &actual_temp1);

/* Se temp = setpoint mantém velocidade */
if (abs(temp_setpoint1 -actual_temp1)<=0.5)
{
update fan matrix(1,po sition_fan, fanspeed[1]);

}

/* Se temp > setpoint aumenta vel. ate limite de 10 L/
if ((actual_temp] -temp_setpoint1)>0.5)
{
if(fanspeed[1]=10)
{

update fan_matrix(1 .position_fan.fanspeed[1]);

}

Sistema de Informagio para Automagiio Predial 104

else
{
update_fan_matrix(1,position_fan, fanspeed[1]+1);
}
i

/* Se temp < setpoint diminui vel. ate limite de 0 */
if ((actual_templ-temp_setpoint])<-0.5)
{
if{fanspeed[1]==0)
{

update_fan matrix(1,position_fan,fanspeed[1]);
}

else

{
update_fan_matrix(1 .Jposition_fan,fanspeed[1]-1);
H

}

}
//***Sala 2****/

GetCtrlVal (testing, TESTING_PRESENCE2, &presenca2); //Recebe dados da sala
GetCtriVal (control, CONTROL_ENABLE2. &habilita2); // presenca e habilitagio

/* Se sala desabilitada ou vazia, ventilador vai para velocidade padrao*/
if (presenca2==(|| habilita2 ==0)
{
GetCtrlVal (tempRoom2, TEMP_ROOM2_FAN SPEED?2, &fan_speed);
update_fan matrix(2,position_fan,fan_speed);

}

/* Se sala habilitada e com presenca. velocidade ajustada em funcao da temp, */
if (presenca2—1 && habilita2 ==1)

{
GetCtrlVal (tempRoom2, TEMP_ROOM2 _TEMP ROOM2, &temp_setpoint2);
GetCtrlVal (tempRoom?2, TEMP_ROOM2_ACTUAL TEMP2, &actual_temp2);

/* Se temp = setpoint mantém velocidade */
if (abs(temp_setpoint2-actual_temp2)<=0.5)
{
update_fan_matrix(2,position_fan, fanspeed[2]);

}

/* Se temp > setpoint aumenta vel. ate limite de 10 */
if ((actual_temp2-temp_setpoint2)>0.5)
{

if{ fanspeed[2]=10)

Sistema de Informagiio para Automagcio Predial

{

update_fan_matrix(2, position_fan,fanspeed[2]);
h

else

{

update_fa.n_matrix(Z,position_fan,fanspeed[2]+1);
}

}

/* Se temp < setpoint diminui vel. ate limite de 0 */

if ((actual_temp2-temp_setpoint2)<-0.5)
{

if{fanspeed[2]==0)
{
update__fan_matrix(2,position_fan,fanspeed{2]);
}

else

{

update_fan_matrix(2,position_fan,fanspeed[2]- 1);
H

}

}

/***Sala 3****/

GetCtrlVal (testing, TESTIN G_PRESENCE3. &

presencal); //Recebe dados da sala
GetCtrlVal (control, CONTROL_ENABLES3, &

habilita3); // presenca e habilitaggo

/* Se sala desabilitada ou vazia, ventilador vai para velocidade padrao*/

if (presenca3==0 || habilita3 ==())
{

GetCtrlVal (tempRoom3, TEMP__ROOM3__FAN_SPEED3,
&fan_speed);

update_fan matrix(3, position_fan.fan_speed);

)

/* Se sala habilitada e com presenca, velocidade ajustada em funcao da temp. */
if (presenca3==1 && habilita3 ==1)

{
GetCtrlVal (tempRoom3, TEMP_ROOM3_TEMP_ROOM3. &temp_setpoint3);
GetCtrlVal (tempRoom3, TEMP_ROOM3_ACTUAL_TEMP3, &actual_temp3);

/* Se temp = setpoint mantém velocidade */
if (abs(temp_setpoint3 -actual_temp3)<=0.5)
{

update_fan_matrix(3,position_fan,fanspeed[fl]);
}

/* Se temp > setpoint aumenta vel. ate limite de 10 */

105

Sistema de Informaciio para Automacio Predial

if ((actual_temp3-temp_setpoint3 >>0.5)
{
if{fanspeed[3]==10)
{

update_fan_matrix(3,position_fan,fanspeed[3]);
}

else

{
update_fan_matrix(3,position_fan, fanspeed[3]+1 %
!

}

/* Se temp < setpoint diminui vel. ate limite de 0 */
if ((actual temp3 -temp_setpoint3)<-0.5)
{
if{fanspeed|3]==0)
{

update_fan_matrix(3,po sition_fan, fanspeed[3]);

}

else

{
update_fan_matrix(3 ,position__fan,fanspeed[B]—1);
}

}

}

/***Sala 4****/

GetCtrlVal (testing, TESTING PRESENCE4. &presencad); //Recebe dados da sala
GetCtrlVal (control, CONTROL_ENABLEA4. &habilitad); // presenca e habilitacio

/* Se sala desabilitada ou vazia, ventilador vaj para velocidade padrao*/
if (presencad4==0 || habilitad ==())
{

GetCtrlVal (tempRoomd, TEMP_ROOM4_FAN SPEED4, &fan_speed);
update__fan_matrix(4,position_fan,fan_speed);

}

106

/* Se sala habilitada e com presenca. velocidade ajustada em funcao da temp. */

if (presencad==1 && habilitad =)

{
GetCtrlVal (tempRoomd4, TEMP_ROOM4_TEMP_ROOMA4, &temp_setpoint4);
GetCtrIVal (tempRoom4, TEMP_ROOM4_ACTUAL_TEMP4, &actual _temp4);

/* Se temp = setpoint mantém velocidade */
if (abs(temp_setpoint4-actual_ternp4)<=0.5)
{

update_fan_matrix(4,position_fan,fanspeed[4]);

Sistema de Informagfo para Automagiio Predial 107

}

/* Se temp > setpoint aumenta vel. ate limite de 10 */
if ((actua.l__temp4-temp__setpoint4)>0.5)
{
if(fanspeed[4]==10)
{

update__fan_matrix(4,position_fan,fanspeed[4]);
}
else

{
update_fan_matrix(4,po sition_fan,fanspeed[4]+1);

}

/* Se temp < setpoint diminui vel. ate limite de 0 */
if ((actual_temp4-temp_setpoint4)<-0.5)
{
i fanspeed[4]==0)
{

update_fan_matrix(4,po sition_fan, fanspeed[4]);

}

else

{

update_fan_matrix(4,position_fan,fanspeed[4]- 1);

}

}
}

return(0);
}

/*funcao que atualiza matriz de velocidade do ventilador*/

static int update _fan_matrix(int roomint column, int speed)
{ int p; /*variavel auxiliar para percorrer vetor*/

if (column<vetor_fan_size)

{
fan_historic[room|[column] = speed;
fanspeed[room]=speed:;

else

{

for (p=0; p<vetor_fan_size-1; p++)

Sistema de Informacdo para Automagio Predial

108

{
fan_historicfroom] [p]=fan_historic{room] [pt1];
¥

fan_historic[room] [vetor_fan_size-1]=speed;
fanspeed{roomJ=speed;

return 0;

Sistema de Informagiio para Automacéio Predial 109

Apéndice II.2 Listagem do programa Supervisor. H

Este arquivo contém as definigies das funges utilizadas no programa. As fungdes
chamadas através da iteragsio do usudrio e de todos os elementos presentes na interface

COm O USUArio.

/**

Hokdkok /

/* LabWindows/CVI User Interface Resource (UIR) Include File */

/* Copyright (c) National Instruments 2001. All Rights Reserved. */

/* =

/* WARNING: Do not add to, delete from, or otherwise modify the contents */
e of this include file. o/

/**
****/

#include <userint.h>
#ifdef _ cplusplus

extern "C" {
#endif

/* Panels and Controls: */

#define CONTROL 1

#define CONTROL QUIT 2 /* callback function: Shutdown */
#define CONTROL_SECOND FLOOR 3

#define CONTROL_FIRST FLOOR 4

#define CONTROL_GROUND FLOOR 5

#define CONTROL _OCCUPIED 6

#define CONTROL_POWER 7 /* callback function: power function */
#define CONTROL_CALL_SECOND 8 /* callback function: go second */
#define CONTROL_CALL_FIRST 9 /* callback function: go_first */
#define CONTROL_CALL_GROUND 10 /* callback function: go_ground
*/

#define CONTROL NUMERIC 11

#define CONTROL_PRESENCE_LEDI 12

#define CONTROL_PRESENCE_LED?2 13

#define CONTROL_PRESENCE_LED3 14

#define CONTROL_PRESENCE_LED4 15

#define CONTROL_PRESENCE_LEDS5 16

#define CONTROL ENABLES 17

#define CONTROL_ENABLE4 18

#define CONTROL ENABLE3 19

#define CONTROL_ENABLE2 20

Sistema de Informaciio para Automagio Predial 110

#define CONTROL_ENABLFE1

#define

CONTROL_EMERGENCY

#define CONTROL_EMERGENCY TEXT

#define

CONTROL_DETAIL1

24

#define CONTROL_TESTING BUTTON
display _testing */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
fdefine

CONTROL_STATUS_TEMPI
CONTROL_DETAIL2
CONTROL_STATUS_TEMP2
CONTROL_DETAIL4
CONTROL_DETAIL3
CONTROL_STATUS_TEMP3
CONTROL_STATUS_TEMP4
CONTROL_ACTUAL_TEMP2
CONTROL_ACTUAL TEMP1
CONTROL_ACTUAL_TEMP3
CONTROL_ACTUAL TEMP4
CONTROIL,_STATUS
CONTROL_TEXTMSG
CONTROL_DECORATION 2
CONTROL_TEXTMSG 2
CONTROL_TEXTMSG 3
CONTROL_TEXTMSG 4
CONTROL_TEXTMSG_5
CONTROL_TEXTMSG_6
CONTROL_DECORATION 3
CONTROL_DECORATION
CONTROL_DECORATION 4
CONTROL_DECORATION 5
CONTROL_DECORATION 6
CONTROL_DECORATION 7
CONTROL_DECORATION_8
CONTROL_DECORATION_10
CONTROL_DECORATION 11
CONTROL_DECORATION 12
CONTROL_DECORATION 13
CONTROL_TEXTMSG 7
CONTROL_DECORATION 9
CONTROL_TIMER
CONTROL_TIMER 2

CONTROL_TIMER 3
TEMP _ROOM1 2
TEMP_ROOMI1_TEMP_ROOMI

send_temp] */
#define TEMP_ROOMI1_ACTUAL _TEMP1

#define
#define
#define

TEMP_ROOMI1_CLOSE1
TEMP_ROOMI_FIRE]
TEMP_ROOM1_SMOKE]1

27

58

59
60

=)

21
22
23
/* callback function: show rooml */
25 /* callback function:

26
/* callback function: show room2 */
28
/* callback function: show room4 */
/* callback function: show room3 */
31
32
33
34
35
36

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
/* callback function: timer update */
/* callback function: timer2 update */
/* callback function: fan_timer */

2 /* callback function:

3

4 /* callback function: close_rooml */

6

Sistema de Informagdo para Automacio Predial

#define TEMP_ROOM!_FIRE PROCEDURE

fire_procedure */

#define TEMP_ROOMI_FAN SPEEDI
send_fan speedl */

#define TEMP_ROOMI1_GRAPH FANI
#define TEMP_ROOMI1_GRAPH_TEMPI
#define TEMP_ROOMI1_COMMANDBUTTON
show_historyl */

#define TEMP_ROOMI1 DECORATION
#define TEMP_ROOMI1_DECORATION 2
#define TEMP_ROOMI1_DECORATION 3
#define TEMP_ROOMI1_DECORATION 4

8

#define TEMP_ROOM?2 3
#define TEMP_ROOM2 TEMP_ROOM?2
send_temp2 */

#define TEMP_ROOM2_ACTUAL_TEMP?2
#define TEMP_ROOM?2 CLOSE2 4
#define TEMP_ROOM2_FIRE2 5
#define TEMP_ROOM2 SMOKE2 6
#define TEMP_ROOM?2 FIRE_PROCEDURE
fire_procedure */

#define TEMP_ROOM?2_FAN SPEED2
send_fan speed2 */

#define TEMP_ROOM2_GRAPH_FAN2
#defme TEMP_ROOM2_GRAPH TEMP2
#define TEMP_ROOM2 _COMMANDBUTTON
show_history2 */

#define TEMP_ROOM2_DECORATION
#define TEMP_ROOM2_DECORATION 2
#define TEMP_ROOM2_DECORATION 3
#define TEMP_ROOM2_DECORATION 4

8

#define TEMP_ROOM3 4
#define TEMP_ROOM3_TEMP ROOM3
send_temp3 */

#define TEMP_ROOM3_ACTUAL_TEMP3

#define TEMP_ROOM3_CLOSE3 4
#define TEMP_ROOM3_FIRE3 5
#define TEMP_ROOM3_SMOKE3 6

#define TEMP_ROOM3_FIRE_PROCEDURE
fire procedure */

#define TEMP_ROOM3 FAN SPEED3
send_fan speed3 */

#define TEMP_ROOM3_GRAPH_FAN3
#define TEMP_ROOM3_GRAPH TEMP3
#define TEMP_ROOM3 COMMANDBUTTON
show _history3 */

#define TEMP_ROOM3 DECORATION

8

111

i /* callback function:

/* callback function:

9

10
11 /* callback function:
12
13
14
15

2 /* callback function:

3
/* callback function: close_room?2 */

7 /* callback function:

/* callback function:

9

10
11 /* callback function:
12
13
14
15

2 /* callback function:

3
/* callback function: close room3 */

7 /* callback function:

/* callback function:

9

10

11 /* callback function:

12

Sistema de Informacdo para Automagio Predial it2

#define TEMP_ROOM3_DECORATION 2 13
#define TEMP ROOM3 DECORATION 3 14
#define TEMP_ROOM3 DECORATION 4 15

#define TEMP_ROOM4 5

#define TEMP_ROOM4 TEMP_ROOM4 2 /* callback function:
send_temp4 */

#define TEMP_ROOM4 ACTUAL TEMP4 3

#define TEMP_ROOM4 CLOSE4 4 /* callback function: close _room4 */
#define TEMP_ROOM4 FIRE4 5

#define TEMP_ROOM4 SMOKE4 6

#defime TEMP_ROOM4_FIRE PROCEDURE 7 /* callback function:
fire_procedure */

#define TEMP_ROOM4 FAN SPEED4 8 /* callback function:

send_fan speed4 */

#defimne TEMP_ROOM4 GRAPH FAN4 9

#define TEMP_ROOM4 GRAPH TEMP4 10

#define TEMP_ROOM4 COMMANDBUTTON 11 /* callback function:
show_history4 */

#define TEMP_ROOM4 DECORATION 12

#define TEMP_ROOM4_DECORATION 2 13

#define TEMP_ROOM4 DECORATION 3 14

#define TEMP_ROOM4 DECORATION 4 15

#define TESTING 6
#define TESTING PRESENCES 2
#define TESTING PRESENCE4
#define TESTING_CLOSE_TEST 4 /* callback function: close testing */
#define TESTING PRESENCE3
#define TESTING_PRESENCE2
#define TESTING PRESENCEI1
#define TESTING_ROOM_TEMP 8
#define TESTING_ROOM _FIRE
#define TESTING ROOM_SMOKE 10
#define TESTING ACTUAL ROOM 11
#define TESTING TEXTMSG 12
#define TESTING DECORATION 13
#define TESTING_DECORATION 2 14

~1 O\ Lh (V8]

o

/* Menu Bars, Menus, and Menu Items: */

/* (no menu bars in the resource file) */

/* Callback Prototypes: */

int CVICALLBACK close_rooml (int panel, int control, int event, void *callbackData,
int eventDatal, int eventData2);

Sistema de Informacio para Automagio Predial 113

int CVICALLBACK close_room2(int panel, int control, int event, void
*callbackData, int eventDatal, int eventData2);
int CVICALLBACK close_room3(int panel, int control, int event, void *callbackData,
int eventDatal, int eventData2);
int CVICALLBACK close room4(int panel, int control, int event, void *callbackData,
int eventDatal, int eventData2);
int CVICALLBACK close testing(int panel, int control, int event, void *callbackData,
int eventDatal, int eventData2);
int CVICALLBACK display_testing(int panel. int control, int event, void
*callbackData, int eventDatal, int eventData2);
int CVICALLBACK fan_timer(int panel, int control, int event, void *callbackData, int
eventDatal, int eventData2);
int CVICALLBACK fire procedure(int panel, int control, int event, void
*callbackData, int eventDatal, int eventData2);
int CVICALLBACK go_first(int panel, int control, int event, void *callbackData, int
eventDatal, int eventData2);
int CVICALLBACK go_ground(int panel, int control, int event, void *callbackData,
int eventDatal, int eventData2);
int CVICALLBACK go_second(int panel, int control, int event, void *callbackData, int
eventDatal, int eventData2);
int CVICALLBACK power_function(int panel. int control, int event, void
*callbackData, int eventDatal, int eventData2);
int CVICALLBACK send_fan_speed1(int panel, int control, int event, void
*callbackData, int eventDatal, int eventData2);
int CVICALLBACK send fan speed2(int panel, int control, int event, void
*callbackData, int eventDatal, int eventData?);
int CVICALLBACK send_fan_speed3(int panel, int control, int event, void
*callbackData, int eventDatal, int eventData2);
int CVICALLBACK send fan speed4(int panel, int control, int event, void
*callbackData, int eventDatal, int eventData2);
int CVICALLBACK send templ(int panel, int control, int event, void *callbackData,
int eventDatal, int eventData2);
int CVICALLBACK send_temp2(int panel, int control, int event, void *callbackData,
int eventDatal, int eventData2);
int CVICALLBACK send temp3(int panel, int control, int event, void *callbackData,
int eventDatal, int eventData2);
int CVICALLBACK send_temp4(int panel, int control, int event, void *callbackData,
int eventDatal, int eventData2);
int CVICALLBACK show_history1(int panel. int control, int event, void
*callbackData, int eventDatal, int eventData2):
int CVICALLBACK show_history2(int panel. int control, int event, void
*callbackData, int eventDatal, int eventData2);
int CVICALLBACK show_history3(int panel. int control, int event, void
*callbackData, int eventDatal, int eventData2);
int CVICALLBACK show_history4(int panel. int control, int event, void
*callbackData, int eventDatal, int eventData2);
int CVICALLBACK show rooml(int panel. int control, int event, void *callbackData,
int eventDatal, int eventData2);

Sistema de Informagdo para Automagio Predial 114

int CVICALLBACK show_room2(int panel, int control, int event, void
*callbackData, int eventDatal, int eventData2);
int CVICALLBACK show _room3 (int panel, int control, int event, void *callbackData,
int eventDatal, int eventData2);
int CVICALLBACK show_roomd4(int panel, int control, int event, void *callbackData,
int eventDatal, int eventData2);
int CVICALLBACK Shutdown(int panel, int control, int event, void *callbackData, int
eventDatal, int eventData2);
int CVICALLBACK timer2_update(int panel, int control, int event, void
*callbackData, int eventDatal, int eventData2);
mt CVICALLBACK timer_update(int panel, int control, int event, void *callbackData,
int eventDatal, int eventData2);

#ifdef _ cplusplus
}
#endif

