
GABRIEL SCHECHTER SALDANHA MARINHO

LUIS GUSTAVO GONÇALVES GALVÃO DE CASTRO

RODRIGO RISKALLA LEAL

IMPLEMENTAÇÃO E PROVA DE CONCEITO DO PROTOCOLO

SECURETCG: PROTOCOLO DE DETECÇÃO DE TRAPAÇAS EM

JOGOS DE CARTAS COLECIONÁVEIS MULTIJOGADORES EM

AMBIENTE P2P

São Paulo

2015

GABRIEL SCHECHTER SALDANHA MARINHO

LUIS GUSTAVO GONÇALVES GALVÃO DE CASTRO

RODRIGO RISKALLA LEAL

IMPLEMENTAÇÃO E PROVA DE CONCEITO DO PROTOCOLO

SECURETCG: PROTOCOLO DE DETECÇÃO DE TRAPAÇAS EM

JOGOS DE CARTAS COLECIONÁVEIS MULTIJOGADORES EM

AMBIENTE P2P

Monografia apresentada à Escola

Politécnica de Universidade de São

Paulo

São Paulo

2015

GABRIEL SCHECHTER SALDANHA MARINHO

LUIS GUSTAVO GONÇALVES GALVÃO DE CASTRO

RODRIGO RISKALLA LEAL

IMPLEMENTAÇÃO E PROVA DE CONCEITO DO PROTOCOLO

SECURETCG: PROTOCOLO DE DETECÇÃO DE TRAPAÇAS EM

JOGOS DE CARTAS COLECIONÁVEIS MULTIJOGADORES EM

AMBIENTE P2P

Monografia apresentada à Escola

Politécnica de Universidade de São

Paulo

Área de Concentração: Engenharia

Elétrica com ênfase em Computação

Orientador: Prof. Dr. Marcos Antonio

Simplicio Junior

São Paulo

2015

RESUMO

O objetivo desse estudo é avaliar a viabilidade do emprego do protocolo SecureTCG

para obtenção de segurança contra trapaças em jogos de cartas colecionáveis em

ambientes par-a-par, ou seja, sem a presença de um servidor confiável. Devem ser

considerados fatores como eficácia na prevenção e detecção de trapaças, flexibilidade

na adaptação a diferentes cenários encontrados em diversos jogos típicos e eficiência

na utilização de recursos computacionais. Essa avaliação se realiza através do

desenvolvimento de uma Prova de Conceito, que consiste da implementação de um

jogo exemplo em um ambiente de rede com arquitetura par-a-par e suporte a múltiplos

jogadores, e que oferece mecanismos para realizar tentativas de trapaça. O protocolo

mostra-se bastante robusto na prevenção e detecção de trapaças, atuando de forma

transparente aos usuários e sem degradar a fluidez do jogo, indicando a versatilidade

e eficiência das funções de resumo criptográfico, em que se baseia, para aplicações

relativas à segurança da informação.

Palavras-chave: Segurança da informação. Jogos de cartas colecionáveis. Prevenção

e detecção de trapaças. Arquitetura par-a-par. Funções de resumo criptográfico.

Prova de Conceito.

ABSTRACT

The aim of this study is to evaluate the feasibility of the SecureTCG protocol for

obtaining security against cheating in trading card games in peer-to-peer

environments, i.e. without the presence of a trusted server. It must consider factors

such as its effectiveness in preventing and detecting cheating, its flexibility in adapting

to different scenarios typically found in many games and the efficient use of computing

resources. This assessment takes place through the development of a Proof of

Concept, which consists of implementing an example game in a network environment

with peer-to-peer architecture and support for multiple players, and provides

mechanisms to perform cheating attempts. The protocol proved to be quite robust in

cheating prevention and detection, acting transparently to the users and without

degrading the game flow, showing the versatility and efficiency of hash functions, in

which it is based on, for applications related to information security.

Keywords: Information security. Trading card games. Cheating prevention and

detection. Peer-to-peer architecture. Hash functions. Proof of Concept.

LISTA DE ILUSTRAÇÕES

Figura 1 – Receita global estimada de Mobile Gaming ... 8

Figura 2 – Tipos de jogos online mais jogados ... 9

Figura 3 – Tipos de jogos online mobile mais jogados .. 9

Figura 4 - Exemplos de jogos de cartas colecionáveis .. 10

Figura 5 – Hierarquia dos decks em um TCG ... 13

Figura 6 – Dinâmica típica de um turno de uma partida de TCG 15

Figura 7 – Ambientes de jogo dependente de um TTP (servidor) e P2P 16

Figura 8 – Geração de Deck Base do protocolo SecureTCG 27

Figura 9 – Etapas 1, 2 e 3 da inicialização do jogo e construção do Deck de Jogo do

protocolo SecureTCG .. 29

Figura 10 – Etapas 4 e 5 da inicialização do jogo e construção do Deck de Jogo do

protocolo SecureTCG .. 30

Figura 11 – Etapa 6 da inicialização do jogo e construção do Deck de Jogo do

protocolo SecureTCG .. 30

Figura 12 – Compra de carta do protocolo SecureTCG .. 32

Figura 13 – Revelação de carta do protocolo SecureTCG .. 33

Figura 14 – Esquema de utilização de cartas não autorizadas do Deck Base 34

Figura 15 – Esquema de utilização de cartas não autorizadas do Deck de Jogo 35

Figura 16 – Esquema de fraude sobre a aleatoriedade de compra de cartas 36

Figura 17 – Esquema de conluio para prejudicar jogador honesto 37

Figura 18 – Esquema de conluio para beneficiar jogador desonesto 38

Figura 19 – Tecnologias utilizadas no desenvolvimento da Prova de Conceito 52

Figura 20 – Diagrama de componentes .. 53

Figura 21 – Diagrama de pacotes do Game.Core.Domain 55

Figura 22 – Diagrama de pacotes do Game.Communication 56

Figura 23 – Diagrama de pacotes do SecureTCG.CypherEngine 57

SUMÁRIO

1 INTRODUÇÃO ... 8

1.1 Motivação ... 8

1.2 Objetivo .. 10

2 DEFINIÇÃO DO CENÁRIO .. 12

2.1 Cartas colecionáveis e Decks – os “baralhos” dos TCGs 12

2.2 Dinâmica típica de uma partida de TCG .. 14

2.3 Ambientes virtuais de TCG .. 15

2.4 Arquitetura básica de um TCG em ambiente P2P ... 17

2.4.1 Servidor de jogo .. 18

2.4.2 Jogadores ... 19

2.5 Definições do TCG exemplo .. 20

3 TRAPAÇAS .. 22

4 PROTOCOLO SELECIONADO .. 25

4.1 Protocolo SecureTCG .. 25

4.1.1 Geração do Deck Base ... 25

4.1.2 Inicialização do jogo e Construção do Deck de Jogo 28

4.1.3 Retirando uma carta do Deck de Jogo para a Mão 31

4.1.4 Revelando uma carta na mesa ... 32

4.2 Detecção de trapaças em ambiente P2P ... 33

4.2.1 Consistência de Decks .. 34

4.2.2 Distribuição Aleatória das Cartas .. 35

4.2.3 Confidencialidade Completa das Cartas ... 36

4.2.4 Efeitos Mínimos de Coalisão ... 36

4.2.5 Detecção de trapaças com alta probabilidade .. 38

5 ESPECIFICAÇÕES .. 39

5.1 Requisitos .. 39

5.1.1 Requisitos do Sistema ... 39

5.1.2 Requisitos do Jogo TCG exemplo ... 40

5.1.3 Requisitos do módulo de prevenção e detecção de trapaças 41

5.2 Casos de uso ... 45

6 AMBIENTE DE DESENVOLVIMENTO .. 52

7 ARQUITETURA DO SOFTWARE .. 53

7.1 Diagrama de componentes .. 53

7.2 Diagrama de Pacotes ... 55

8 DEFINIÇÃO DA ACEITAÇÃO .. 58

9 CONCLUSÃO E TRABALHOS FUTUROS .. 59

10 REFERÊNCIAS .. 61

APÊNDICE A – DIAGRAMAS DE PACOTES ... 63

8

1 INTRODUÇÃO

1.1 Motivação

Com a popularização dos aparelhos móveis, existe hoje um mercado bilionário relativo

aos aplicativos de jogos, apresentando receita global de US$ 25 bilhões em 2014, e

que em 2015 deve atingir a marca de US$ 30.3 bilhões, superando pela primeira vez

o mercado de jogos de console, que deve atingir US$ 26.4 bilhões. Esse crescimento

não é limitado a um tipo de mercado, sendo observado tanto nos mercados ocidentais

mais "maduros" quanto nos emergentes, e vem atraindo investimentos pesados

inclusive das empresas de games mais tradicionais (GAUDIOSI, 2015).

Figura 1 – Receita global estimada de Mobile Gaming

Dentre os jogos dessa nova plataforma, encontram-se categorias anteriormente

inexistentes, como os jogos sociais e casuais (ESSENTIAL..., 2014), mas diversos

aplicativos de entretenimento são virtualizações para mobile de jogos que já existiam.

Dentre estes encontram-se os TCG (Trading Card Games, ou jogos de cartas

colecionáveis), assunto esse de escopo do projeto.

9

Figura 2 – Tipos de jogos online mais jogados

Figura 3 – Tipos de jogos online mobile mais jogados

Os TCGs apareceram a partir de 1993 com o jogo “Magic: The Gathering”, e outros

logo foram criados, como “Lord of the Rings CCG”, “Duels Warstorm”, “Yu-Gi-Oh” e

“Pokémon”. Esses jogos são similares a jogos de carta tradicionais, mas o número de

cartas existentes (que o criador do jogo disponibiliza aos jogadores) não é limitada a

52, como no baralho tradicional. Existe uma variedade imensa de cartas e os

jogadores podem comprar essas cartas ou trocar com outros jogadores, montando a

sua coleção de cartas, da qual pode selecionar aquelas que desejar para montar um

monte de cartas para o jogo (Deck). Essa seleção de cartas por vezes deve seguir

algumas regras estabelecidas, como um limite inferior, superior, ou limite de cartas

repetidas, entre outras. Existem cartas com diversas habilidades e cada uma tem um

10

efeito no jogo e a combinação delas pode gerar outros efeitos, assim a escolha de um

deck é essencial nesse estilo de jogo.

Figura 4 - Exemplos de jogos de cartas colecionáveis

Assim como o mercado de games online, o mercado dos TCGs é um mercado

bilionário, que só no ano de 2013 movimentou US$ 4.1 bilhões, dos quais US$ 1.3

bilhão se deve ao mercado digital (DIGITAL..., 2013). Isso se deve às compras de

cartas e subscrições nos jogos digitais e campeonatos (digitais e físicos). Porém, um

problema enfrentado nesse tipo de jogo é o método de garantir um jogo honesto entre

os jogadores. Por TCGs terem um deck muito diverso do outro e haver certa liberdade

da parte do jogador para montar esse deck, identificar trapaças é uma tarefa difícil.

1.2 Objetivo

Enquanto em um ambiente com uma TTP (Trusted Third Party ou Terceira Parte

Confiável) a detecção de trapaças é simples, em ambientes P2P (peer-to-peer ou par-

a-par) ela é bem mais difícil, pois as cartas dos jogadores têm de ser confidenciais e

mesmo assim os seus adversários precisam ter certeza que elas estão nos conformes

das regras, que a compra de carta do deck seja aleatória, dentre outros requisitos de

segurança. Essa abordagem (P2P) requerer soluções mais custosas para a

prevenção de trapaças (BETHEA; COCHRAN; REITER, 2011; ROCA, 2005). Essa

dificuldade pode acabar levando à insatisfação dos jogadores honesto e

consequentemente à sua remoção da subscrição.

11

A forte participação de jogos TCGs no mercado de jogos digitais fomenta

oportunidades que visem garantir maior segurança, eficiência e flexibilidade aos

produtos deste setor. Desta forma, este trabalho visa consubstanciar uma prova de

conceito do Protocolo SecureTCG que tem por objetivo garantir que não haja

trapaças em um cenário de jogo de cartas colecionáveis em ambiente P2P. Para isto,

este trabalho descreve os conceitos necessários para o entendimento do protocolo,

bem como as ferramentas a serem utilizadas para a construção da prova de conceito.

Essa deve ser desenvolvida de forma modular para fácil integração com sistemas de

terceiros (jogos já desenvolvidos).

12

2 DEFINIÇÃO DO CENÁRIO

2.1 Cartas colecionáveis e Decks – os “baralhos” dos TCGs

Em meados dos anos 90, surgiu um novo tipo de jogo de cartas, diferente dos jogos

de cartas convencionais – que utilizam o baralho tradicional de 52 cartas, por exemplo.

Ele era diferente porque o conjunto de cartas existentes no jogo é enorme – e ainda é

comum que seja periodicamente expandido – portanto o jogador não pode adquirir

todas as cartas de uma vez. Em vez disso, ele deve começar adquirindo baralhos

básicos, e depois incrementar sua coleção através de novos pacotes de cartas, ou

mesmo através de compra ou troca de cartas individuais. Além disso, essas cartas

possuem características individuais, como por exemplo as ações que podem realizar,

sua “força” e até mesmo sua raridade. Essas características são utilizadas como

critério pelos jogadores para escolher quais cartas irão incrementar suas coleções –

normalmente visando adquirir maior competitividade no jogo ou maior exclusividade

na coleção.

O que surgiu com isso foi um tipo de jogo que possui cartas colecionáveis, produzidas

em massa para viabilizar as coleções e trocas, e que possuam regras para que sejam

utilizáveis em um jogo de estratégia (WILLIAMS, 2006). O primeiro jogo de cartas

colecionáveis criado – e também o mais bem sucedido – foi “Magic: The Gathering”,

inventado por Richard Garfield, e patenteado pela Wizards of the Coast em 1993

(FIRST..., 1993; ROTHAERMEL; KOTHAAND; MOXON, 1998).

Também diferentemente dos jogos de cartas convencionais – como pôquer, por

exemplo – o “baralho” utilizado nos TCGs, chamado de deck, deve ser construído por

seus jogadores. Cada um utiliza seu próprio deck, construído a partir de um grande

conjunto de cartas disponibilizado pelo provedor do jogo, e essa construção está

normalmente sujeita a um conjunto de regras, específicas para cada jogo ou mesmo

para diferentes contextos – regras diferentes das convencionais para um jogo podem

existir em um campeonato, por exemplo.

Seguindo a notação de Pittman e GauthierDickey (2013), chamamos o conjunto de

todas as cartas disponíveis de Deck Universal (Du), o conjunto de cartas que o jogador

possui de Deck Base (Db) e o conjunto de cartas que o jogador pode usar numa

13

determinada partida de Deck de Jogo (Dp), tal que Dp ⊂ Db ⊂ Du, conforme pode ser

visto no diagrama abaixo:

Deck Universal (Du)

Deck Base (Db)

Deck de Jogo (Dp)

Figura 5 – Hierarquia dos decks em um TCG

O tamanho desses decks pode variar de jogo para jogo, podendo inclusive ser

arbitrário em alguns casos, dependendo unicamente da vontade do jogador. Além

disso, a construção dos decks pode ter que obedecer a outras regras, como por

exemplo limitações sobre o número de cartas repetidas que um deck pode conter.

Alguns estilos de jogo comuns que apresentam conjuntos de regras específicas

incluem (PITTMAN; GAUTHIERDICKEY, 2013):

 Deck Construído: os jogadores constroem seus Decks de Jogo escolhendo as

cartas dentre as que eles possuem, isto é, a partir de seus Decks Base pessoais;

 Deck Uniforme: os jogadores recebem exatamente o mesmo Deck Base, a partir

do qual eles podem escolher livremente as cartas para seus Decks de Jogo;

 Deck Selado: são fornecidos aos jogadores conjuntos aleatórios de cartas como

seus Deck Base, no lugar das cartas que eles possuem em suas próprias

coleções. Eles devem então construir seus Decks de Jogo a partir desses Decks

Base. Este estilo razoavelmente comum em torneios, uma vez que leva a

partidas que dependem mais de habilidades estratégicas e de jogo do que de

poder aquisitivo;

 Deck Selecionado: cada jogador seleciona cartas de um conjunto aleatório de

uma forma cíclica, revezando-se a respeito de quem começa a pegar. Mais

especificamente, no caso de um jogo com cartas físicas, um jogador recebe um

14

pequeno conjunto de cartas aleatórias, escolhe uma e depois passa as cartas

restantes para o próximo jogador; o processo é repetido até que todas as cartas

sejam selecionadas, e então um novo conjunto aleatório é oferecido a todos os

jogadores. Obviamente, o primeiro jogador a escolher tem uma vantagem sobre

os seus adversários, mas essa vantagem é igualmente oferecida a todos os

jogadores nas diferentes rodadas de escolha. As cartas selecionadas desta

maneira constituem os Decks Base dos jogadores, a partir do qual os Decks de

Jogo podem ser construídos como desejado.

A análise destes estilos mostra que existem basicamente dois tipos de Decks Base:

os determinísticos e os aleatórios. Os Decks Construídos e os Uniformes se encaixam

na primeira categoria, em que só é necessário assegurar que o jogador está

autorizado a usar as cartas no Deck de Jogo empregado em uma partida. Os Decks

Selados e Selecionados pertencem à segunda categoria, em que é necessário

assegurar a aleatoriedade dos Decks Base de cada jogador. A principal peculiaridade

dos Decks Selecionados é que o processo de geração aleatória deve ser repetido

algumas vezes e exige que, depois que um jogador escolhe uma carta, o próximo

jogador só tome conhecimento das cartas restantes.

2.2 Dinâmica típica de uma partida de TCG

A primeira fase de um jogo de Cartas Colecionáveis é a montagem do Deck de Jogo.

Isso pode ser feito de diversas formas, como descrito no tópico anterior. Depois de

construído o deck de jogo, pode se iniciar a partida propriamente dita. Como em

diversos jogos tradicionais de cartas, os TCGs são jogados em turnos. Por isso,

quando se diz que são jogos com suporte a grande número de usuários, significa que

é suportado um grande número de jogadores participando de partidas diferentes, e

não de uma única, pois quanto maior o número de jogadores na mesma partida, mais

tempo cada um deve esperar por sua chance de jogar.

A dinâmica dos turnos pode apresentar diversas variações, de acordo com as regras

específicas de cada TCG. Apesar dessa variabilidade, algumas ações típicas

permitidas a um jogador em seu turno podem ser definidas:

 Comprar cartas, que consiste em pegar determinado número de cartas do

próprio deck de jogo e colocá-las na mão, sem revelá-las aos outros jogadores;

15

 Revelar cartas, que consiste em revelar algumas cartas presentes na mão,

colocando-as em jogo se seu efeito for permanente, ou numa pilha de descarte

se for temporário;

 Usar as cartas de efeito permanente que já estejam em jogo repetidamente, até

que elas saiam de jogo de acordo com as regras do jogo.

Figura 6 – Dinâmica típica de um turno de uma partida de TCG

A partida termina quando um jogador atinge determinado objetivo, sendo um dos mais

comuns reduzir a zero o número de “pontos de vida” de todos os outros jogadores da

partida ou ser o último jogador a ainda possuir cartas fora da pilha de descarte.

2.3 Ambientes virtuais de TCG

Jogos multijogador em rede podem ser implementados usando várias abordagens

diferentes, que podem ser categorizadas em dois grupos: impositivas, que

pressupõem a existência de uma entidade central (servidor) para controlar o estado

16

do jogo entre as entidades finais (clientes, nesse caso); e não impositivas, onde não

há entidade central e cada entidade final (peer, nesse caso) é responsável por

controlar seu estado de jogo (BEVILACQUA, 2013).

Para a implementação de um TCG, as abordagens mais comuns são, no grupo

impositivo, a TTP utilizando a arquitetura cliente-servidor, enquanto no grupo não

impositivo é a P2P.

Figura 7 – Ambientes de jogo dependente de um TTP (servidor) e P2P

O cenário TTP é definido pela presença de um servidor que atua como intermediário

entre os clientes que participam como usuários do jogo, e cada cliente conectado ao

servidor recebe dados dele constantemente, criando localmente uma representação

do estado do jogo. Se um cliente executa uma ação, essa informação, antes de ser

efetivada, é enviada para o servidor. O servidor verifica se as informações estão

corretas e, em seguida, atualiza seu estado jogo. Depois, ele propaga a informação a

todos os clientes – inclusive para o que realizou a ação – para que eles possam

atualizar o seu estado de jogo (BEVILACQUA, 2013). Nessa situação, fica evidente

que o servidor é capaz de garantir, de maneira relativamente simples, dado o controle

que possui sobre o desenrolar do jogo, a honestidade do jogo.

Já no caso do cenário P2P, como não há a presença de um servidor, cada peer deve

mandar dados para todos os outros peers e receber dados deles. Portanto, nessa

abordagem, cada peer deve controlar seu próprio estado de jogo, comunicando cada

mudança e ação importante aos outros. Consequentemente, o jogador vê um cenário

de jogo composto pelas suas entradas no jogo e por uma simulação de todas as

entradas controladas pelos outros jogadores. Diz-se uma simulação, pois as ações

17

dos demais jogadores, diferentemente das do próprio jogador, podem representar não

o estado real, mas uma simplificação. Isso porque não é desejável que todos saibam

as ações dos outros jogadores, apenas que elas ocorreram (BEVILACQUA, 2013).

Levando-se em conta esses fatores, nota-se que os jogos de TCG apresentam ótima

aptidão a uma implementação P2P, pois a questão do controle do estado de jogo

neles é bastante simplificada, devido à dinâmica de turnos e ao fato de as mensagens

que precisam ser trocadas entre os peers serem em geral bastante enxutas.

O uso da arquitetura P2P é motivado principalmente pelos menores custos, menores

dificuldades de implantação, pela disponibilidade menos dependente de um ponto

único (servidor) e pela maior escalabilidade em relação à arquitetura cliente-servidor

com TTP. As evoluções dos jogos online, que usuários agora jogam em dispositivos

heterogêneos – seus PCs e consoles, mas também em seus smartphones, apenas

com uma conectividade intermitente – motivam cada vez mais a utilização de

arquiteturas descentralizadas. Além disso, fora os jogos online clássicos, jogos de

“realidade mista", onde a localização física dos jogadores impacta no jogo, parecem

perfeitamente adequados para rodar sobre esse tipo de arquitetura (NEUMANN,

2007).

Por outro lado, a descentralização do controle do jogo faz com que a abordagem P2P

apresente, entre outros, maiores desafios relativos a detecção e prevenção de

trapaças, que é uma questão de crescente importância, à medida que os jogos vão se

tornando mais populares e complexos, e fundamental para assegurar que jogadores

honestos continuem interessados em jogar. Torna-se necessária, portanto, a

presença de um protocolo executado nos peers de forma a garantir que as trapaças

não ocorram ao longo da partida.

2.4 Arquitetura básica de um TCG em ambiente P2P

Como é discutido por Pittman e GauthierDickey (2013), a arquitetura básica de jogos

de cartas colecionáveis P2P é composta por duas entidades básicas: servidor de jogo

e jogadores.

18

2.4.1 Servidor de jogo

O servidor do jogo é responsável pela definição de quais cartas estão disponíveis no

jogo, informando os usuários sobre novas edições quando são liberadas, e também

pelo gerenciamento de contas de usuários. No entanto, as interações do servidor com

os jogadores devem idealmente ocorrer apenas entre partidas, enquanto os jogos em

si devem ser tratados de forma puramente P2P. Mais especificamente, o servidor de

jogo em um TCG P2P pode assumir as seguintes responsabilidades:

 Geração de IDs únicos: toda carta e jogador está associada a um identificador

único. Um novo identificador do usuário deve ser gerado sempre que uma nova

conta é criada – poderia ser, por exemplo, o nome de usuário do jogador no

sistema. O identificador de cartas, por outro lado, deve identificar univocamente

uma carta dentre todas as existentes e também distinguir duas cartas idênticas

pertencentes a diferentes jogadores – poderia ser composto, por exemplo, de

um número único de 128 bits concatenados com um contador de 128 bits

incrementado toda vez que uma cópia dessa carta é comprada por algum

jogador. Estas identificações são utilizadas em todas as operações que

requerem a identificação de cartas ou jogadores, tais como quando uma carta é

jogada durante uma partida;

 Assinatura de identidades de jogadores: cada usuário recebe um certificado

digital assinado pelo servidor – portanto, eles são capazes de se identificar de

forma segura perante outros usuários que utilizam seus pares de chaves

público/privadas;

 Assinatura de propriedade de cartas: quando um jogador compra cartas do

provedor do jogo, o servidor é responsável por adicionar as cartas

correspondentes à conta do jogador e por fornecer uma assinatura que

comprove esta propriedade e a data em que a carta foi comprada. Um jogador

está autorizado a jogar apenas com cartas para os quais exista uma assinatura

digital válida que associa a carta com o ID do jogador;

 Intermediação de negociação de cartas: Quando os jogadores querem trocar

cartas, o servidor deve atuar como um intermediário confiável, provendo uma

assinatura ao novo proprietário com o instante da negociação. Um grande

problema que surge neste cenário de negociação é que o antigo proprietário

19

pode manter uma cópia da carta original e sua assinatura, utilizando-a

posteriormente apesar de não ser mais o seu proprietário;

 Estabelecimento de conexão: o servidor pode agir como um ponto de encontro

central, ajudando jogadores a conectar-se uns aos outros antes de a partida

começar e permitindo-lhes superar inconveniências da rede, tais como NAT e

firewalls;

 Auditoria do jogo: depois que uma partida termina, os jogadores podem querer

fornecer informações sobre o seu resultado para o servidor para, por exemplo,

resgate de prêmios ou para fins de classificação (ranking). Em alguns casos,

também pode ser desejável provar a terceiros que um jogador tentou trapacear

durante a partida, o que afetaria a sua reputação no sistema.

Em um cenário de jogo real, a existência de servidores que sejam capazes de cumprir

suas responsabilidades de maneira satisfatória é crucial para o sucesso da plataforma

e a manutenção de sua atratividade aos seus jogadores. Para os efeitos do estudo

dos mecanismos de detecção de trapaças durante as partidas propostos pelo

protocolo SecureTCG, que são o foco da Prova de Conceito desenvolvida nesse

projeto, no entanto, a modelagem de um servidor e seus mecanismos foge do escopo

e será, portanto, deixada como tópico para trabalhos futuros.

2.4.2 Jogadores

Os TCGs online P2P são disputados por dois ou mais jogadores. Numa partida, os

jogadores estabelecem uma conexão usando qualquer canal de comunicação

disponível, como a Internet ou uma conexão ad hoc (e.g., Bluetooth), que pode ter o

servidor de jogo atuando como intermediador na sua inicialização. O servidor pode,

opcionalmente, atuar como ponto de encontro e como intermediador para

estabelecimento da conexão inicial entre os jogadores.

Em cenários P2P, os jogadores devem ser capazes de controlar conjuntamente toda

a dinâmica da uma partida, mandando e recebendo dados constantemente entre si,

podendo assim controlar o estado de jogo, comunicando cada mudança e ação

importante aos outros. Consequentemente, a detecção de trapaças também fica sob

responsabilidade de todos os jogadores. Os mecanismos propostos pelo protocolo

20

SecureTCG para isso, que são o alvo do estudo da Prova de Conceito desenvolvida,

estão descritos na seção “Protocolo Selecionado”.

2.5 Definições do TCG exemplo

Para a Prova de Conceito desenvolvida neste projeto, viu-se a necessidade do

desenvolvimento de um jogo TCG exemplo, que apresentasse um conjunto de regras

e uma dinâmica que o tornassem minimamente jogável, e ao mesmo tempo fossem

suficientes para permitir a simulação de trapaças para exercitar os mecanismos de

detecção propostos pelo protocolo SecureTCG.

As entidades básicas do TCG exemplo são:

 Cartas: existem no total 60 cartas definidas no jogo (constituindo portanto o Deck

Universo), e todas são do mesmo tipo, e apresentam duas características

fundamentais: pontos de ataque e pontos de vida. A primeira determina o quanto

um ataque dessa carta remove dos pontos de vida de outra carta ou de um

jogador adversário atacados. A segunda, obviamente, determina quantos pontos

de vida a carta possui, valor que deve ser decrementado a cada ataque sofrido

por outra carta;

 Decks: conforme visto na especificação das cartas, o Deck Universo definido é

composto por 60 cartas diferentes. O tamanho do Deck Base estipulado é de 40

cartas, e segue o estilo de Deck Selado, ou seja, deve ser construído

aleatoriamente a partir das cartas disponíveis no Deck Universo. Por fim, o Deck

de Jogo deve ser composto por 20 cartas que devem ser escolhidas pelo jogador

a partir das cartas disponíveis no Deck Base;

 Jogador: a característica fundamental dos jogadores são os pontos de vida.

Cada jogador apresenta, ao início da partida, 2000 pontos de vida, que devem

ser decrementados a cada vez que eles sofrerem um ataque.

Com isso, tem-se que as etapas de construção dos Decks Base e determinação da

ordem dos turnos dos jogadores (aleatória) serão automatizadas e não sofrerão

interferência dos jogadores. Disponibilizados os Decks Base, os jogadores devem

construir seus Decks de Jogo.

Quando a partida propriamente dita tiver início, ela deverá seguir uma dinâmica

próxima da dinâmica de turnos padrão dos TCG. Os turnos, por sua vez, devem

21

consistir de três operações que só podem ser realizadas no máximo uma vez por

turno, na ordem aqui apresentada, e cada carta só pode estar envolvida em uma

operação por turno. Essas operações são:

 Compra de carta: o jogador pega uma carta de seu Deck de Jogo e a coloca em

sua mão, sem revelá-la aos outros jogadores;

 Revelação de carta: o jogador escolhe uma das cartas em sua mão e a coloca

em jogo, revelando-a agora a todos os jogadores. A partir do fim do turno

corrente, essa carta poderá ser usada para atacar (no próximo turno do jogador)

ou para defender, ou seja, sofrer o dano proveniente de um ataque de uma carta

de outro jogador;

 Ataque: o jogador escolhe uma de suas cartas em jogo (já reveladas) para

realizar um ataque, e determina qual jogador adversário deseja atacar. O jogador

atacado deve, então, escolher uma única de suas cartas em jogo, se tiver, para

sofrer o dano proveniente do ataque, ou seja, ter seus pontos de vida

decrementados do valor dos pontos de ataque da carta atacante. Caso esse

valor seja maior ou igual ao total de pontos de vida da carta atacada, a carta

“morre” (sai de jogo e vai para uma pilha de descarte), e qualquer dano

excedente deve ser decrementado dos pontos de vida do jogador atacado. Caso

o jogador atacado não possua cartas em jogo ao sofrer o ataque, seus pontos

de vida devem ser decrementados do valor total dos pontos de ataque da carta

atacante;

 Fim de turno: o jogador sinaliza, através de um botão, que deseja encerrar seu

turno, ou o turno se encerra automaticamente caso o jogador já tenha realizado

todas as operações permitidas.

O término do jogo se dá quando restar apenas um jogador com vida diferente de zero

ou quando restar apenas um jogador com cartas ativas (no Deck de Jogo, na mão ou

em jogo), o que ocorrer primeiro.

22

3 TRAPAÇAS

Trapaças são ações desonestas com o intuito de obter alguma vantagem indevida em

alguma situação em que há competição. Especificamente no caso dos TCGs, as

trapaças consistem em ações que desobedeçam às regras definidas pelo jogo ou que

forneçam informações indevidas a quem as executa, proporcionando-lhe uma

vantagem indevida e desleal em relação aos oponentes do jogo. Elas podem ser

divididas em duas categorias: Trapaças Sigilosas e Trapaças de jogabilidade.

Trapaças de jogabilidade são intrínsecas do jogo em questão e podem ser facilmente

reconhecidas por um jogador que saiba as regras do jogo. Essa categoria de trapaça

não será tratada pelo sistema tratado nesse documento. Ou seja, o sistema irá

implementar um jogo em conformidade com a seção de Definições do TCG Exemplo

sem qualquer tipo de verificação de trapaças desta categoria (alterações no

comportamento do sistema acessando o código, ou por alteração de memória durante

execução) e não será implementado nenhum módulo de simulação de trapaças dessa

Categoria. Alguns exemplos de possíveis trapaças são:

 Aumento da vida do jogador desonesto;

 Redução da vida de um jogador pelo jogador desonesto;

 Alteração dos efeitos e habilidades de uma carta (vida, ataque, magia, entre

outros);

 Realização de mais compras do que o máximo permitido pelas regras em um

turno;

 Realização de mais ataques do que o máximo permitido pelas regras em um

turno.

Trapaças Sigilosas, por outro lado, são difíceis de serem identificadas pelos usuários

sem um sistema de segurança. Elas devem ser:

Prever ou até mesmo controlar a ordem em que ele mesmo ou algum outro

jogador retira as cartas do Deck de Jogo

Um jogador não deve ser capaz de prever ou controlar a ordem das cartas no seu

deck. Isso em um jogo real é garantido por todos os jogadores, pois todos se certificam

23

que os decks foram embaralhados corretamente e que a compra da carta se deu de

forma correta. Porém, um sistema digital no qual não existe o deck físico e esse é

controlado apenas pelo seu dono é análogo a um jogador embaralhar as cartas e

realizar suas compras em baixo de uma mesa. Portanto, se faz necessário um módulo

de segurança para garantir a honestidade.

Adulterar o deck de jogo durante a partida, ou seja, comprar ou revelar cartas

que não estavam presentes no deck de jogo no início da partida

Um jogador não deve ser capaz de inserir cartas em seu deck depois do início do jogo.

Isso em um jogo real é garantido por todos os jogadores, pois todos se certificam que

os decks foram criados conforme as regras e que durante o jogo ninguém inseriu

cartas no deck. Porém, um sistema digital no qual não existe o deck físico é análogo

a um jogador ter seu deck em baixo de uma mesa junto de diversas outras cartas que

ele poderia pegar. Portanto, se faz necessário um módulo de segurança para garantir

a honestidade.

Tomar conhecimento antes do momento de compra (para o caso das cartas do

próprio deck de jogo) ou de revelação (para os outros casos) das cartas

presentes em qualquer um dos decks de jogo da partida ou na mão de

qualquer oponente

Um jogador deve descobrir quais cartas existem no deck de seus adversários apenas

quando elas forem reveladas na mesa. Isso em um jogo real é garantido, pois todos

se certificam que os decks foram embaralhados corretamente, que a compra da carta

se deu de forma correta, mas mesmo assim, não sabem qual carta o jogador comprou.

Porém, em um sistema digital, os jogadores precisam saber as cartas dos demais

jogadores para poderem se certificar de que não houve trapaças na compra e

embaralhamento.

24

Revelar cartas do seu deck de jogo sem tê-las comprado, ou seja, sem que

elas estivessem em sua mão

Um jogador não deve ser capaz de prever ou controlar a ordem das cartas no seu

deck. Isso em um jogo real é garantido por todos os jogadores, pois todos se certificam

que os decks foram embaralhados corretamente e que a compra da carta se deu de

forma correta. Porém, um sistema digital no qual não existe o deck físico e esse é

controlado apenas pelo seu dono é análogo a um jogador embaralhar as cartas e

realizar suas compras em baixo de uma mesa. Portanto, se faz necessário um módulo

de segurança para garantir a honestidade.

Entrar em conluio com outros jogadores, em caso de partidas com mais de

dois jogadores, para obter informações indevidas ou mesmo influenciar em

aspectos do andamento da partida que não deveriam sofrer interferências dos

jogadores, como a ordem das cartas do deck de jogo de um adversário

Um jogador não deve ser capaz de prever ou controlar a ordem das cartas no seu

deck. Isso em um jogo real é garantido por todos os jogadores, pois todos se certificam

que os decks foram embaralhados corretamente e que a compra da carta se deu de

forma correta. Porém, um sistema digital no qual não existe o deck físico e esse é

controlado apenas pelo seu dono é análogo a um jogador embaralhar as cartas e

realizar suas compras em baixo de uma mesa. Portanto, se faz necessário um módulo

de segurança para garantir a honestidade.

Protegendo os jogadores honestos das Trapaças silenciosas permite que o jogo

ocorra de forma honesta, pois as demais regras poderão ser garantidas pelos próprios

jogadores e pelos sistemas destes (um software que implemente o jogo sabe as regras

do jogo e pode identificar trapaças de jogabilidade), possibilitando o reconhecimento

e encaminhamento das informações a uma entidade responsável para devidas

providencias e punições.

25

4 PROTOCOLO SELECIONADO

O protocolo selecionado para a implementação da prova de conceito é o SecureTCG,

pois atende aos requisitos gerais enumerados anteriormente com baixo custo

computacional. O protocolo SecureTCG é baseado na associação de um hash único

por carta envolvida no jogo e no sequenciamento de cadeias de hash refletindo as

ocorrências incrementais do jogo. Dessa forma, o protocolo garante que caso algum

dos jogadores participantes cometa alguma trapaça dos tipos enumerados, está será

detectada e as medidas pré-estabelecidas pelo sistema serão tomadas. Para a

visualização dos eventos gerados pelo protocolo durante a atividade da prova de

conceito, será implementada uma interface de Log para a melhor compreensão do

funcionamento do protocolo.

4.1 Protocolo SecureTCG

O protocolo selecionado pode ser dividido em duas fases independentes: a geração

do Deck Base e Proteção contra trapaças. Essa última pode ainda ser dividida em

outras duas partes: a fase de difusão inicial de informações e a fase de jogo.

A fase de geração de Deck Base é opcional, pois, como comentado na secção que

detalha a dinâmica de um jogo de cartas colecionáveis, o Deck Base existe apenas

em alguns campeonatos. Porém, por questão de completude, o protocolo selecionado

e a implementação descrita neste documento abrangem essa fase.

4.1.1 Geração do Deck Base

Nesta fase os provedores do jogo (organizadores dos campeonatos reais ou os

softwares que simulam esses campeonatos) geram um conjunto aleatório de cartas

sem beneficiar nenhum dos jogadores que irão montar seus decks de Jogo inserindo

cartas melhores para um do que para outro. No mundo real, a honestidade desta

distribuição aleatória é garantida por meio de uma comissão organizadora, já em um

sistema digital é necessário um mecanismo que garanta a honestidade, ainda mais se

essa geração aleatória for realizada localmente por cada aplicação de cada jogador

26

sem passar por uma terceira parte confiável (TTP). E esse problema se intensifica no

cenário que os jogadores não podem saber quais cartas estão sendo selecionadas

pelos demais.

Descrição do mecanismo

Dado que todos os jogadores concordem em utilizar tamanho do Deck Base sendo

base:

1. Todos devem gerar uma sequência com base números randômicos vi
1, ..., vi

base.

E mais um número aleatório ui que irá influenciar na geração dos decks Bases

dos demais jogadores;

2. Depois cada jogador calcula o UCommiti = Hash(ui) e VCommiti = [Hash(vi
1), ...,

Hash(vi
base)]. E encaminha UCommiti e VCommiti para todos os demais

jogadores;

3. Após o jogador Pi ter recebido o UCommitj e Vcommitj de todos os jogadores,

este deve enviar aos demais o número aleatório ui. Assim que o jogador recebe

um ui ele verifica se o UCommiti enviado no segundo passo coincide com o

Hash(ui). Se não coincidir o protocolo já para aqui;

4. Quando o jogador Pi tiver recebido todos os uj e verificado se o Hash(uj) batem

com o UCommitj, ele irá calcular uma semente randômica seedBi = Hash (Pi || u1

|| ... || up) que será utilizada pelo algoritmo prf para gerar uma sequência Rand

com base números aleatórios [ri
1,..., ri

base];

5. Então os jogadores utilizam seus valores randômicos privados vi
1, ..., vi

base, e

realiza uma operação “ou exclusivo” (XOR) com seu número randômico público

ri
1, ..., ri

base para gerar um número refij utilizado para selecionar uma carta do

Deck Universo e colocar no Deck Base com Id = 1 + (refij mod univ), onde univ é

o número de cartas no Deck Universo.

27

Figura 8 – Geração de Deck Base do protocolo SecureTCG

Depois de terminado o protocolo, cada jogador deve guardar algumas informações

para poder verificar posteriormente se não houve trapaças na geração do deck Base.

Os valores randômicos privados vi
1, ..., vi

base devem ser guardados junto das cartas

selecionadas do deck Base, pois assim, quando o jogador mostrar a carta no jogo vi
k

para os outros jogadores, esses poderão verificar se (vi
k ⊕ ri

k) mod univ = Id.

E como é possível deduzir pelo cálculo realizado a cima, os jogadores precisam

armazenar os rj
k (vetor Rand) de todos os jogadores, porém se desejar diminuir o

espaço necessário para armazenamento em detrimento de um processamento maior,

é possível armazenar apenas o seedBj de cada jogador, pois é possível gerar o vetor

Rand através da função prf(seedB).

28

4.1.2 Inicialização do jogo e Construção do Deck de Jogo

Anteriormente ao início do jogo, existe uma parte do protocolo de inicialização que

garante que, por mais que o deck de jogo escolhido por cada jogador seja de

conhecimento apenas deste jogador, caso este revele alguma carta que não estava

inicialmente no Deck de Jogo, uma trapaça será detectada. Assim que as cartas que

irão constituir o deck de jogo sejam escolhidas por cada jogador, esta etapa do

protocolo é iniciada.

Descrição do mecanismo

Dado que todos os jogadores concordem em utilizar um tamanho do Deck de Jogo e

que as cartas que irão constituir o deck de jogo sejam escolhidas por cada jogador:

1. O jogador Pi associará a cada uma das cartas (com um total de di cartas) do

Deck de Jogo um valor randômico maski
j (1 < j < di). Na prática, cada carta do

Deck de Pi é representada por ci
j = (maski

j, IDi
j) de forma que IDi

j é o identificador

universal da carta e Decki do jogador Pi possa ser descrito como Decki = [ci
1,

ci
di]. Este vetor do Decki é armazenado por Pi e mantido em segredo até que

alguma carta deva ser revelada. Neste ponto, a ordem em que as cartas se

encontram no vetor Decki não influenciam a probabilidade de serem sacadas do

Deck de Jogo mais tarde;

2. O jogador Pi calcula um hash para cada carta contida no Decki, de forma que

para cada carta ci
j é calculado seu Hash hi

j = Hash(maski
j || IDi

j) gerando uma

sequência Pilei = [hi
1, ..., hi

di]. É importante notar que o tamanho de hi
j deve ser

suficientemente grande para garantir que a probabilidade de duas cartas

possuírem hashes iguais seja muito baixa;

3. Cada jogador envia a sequência Pilei e di aos demais jogadores, se

comprometendo com a sequência e a ordem do Deck de Jogo;

4. Após a recepção das mensagens de todos os jogadores, Pi produz e guarda um

valor randômico seedCi, de tal forma que ele seja secreto durante todo o intervalo

do jogo. Após esta etapa, o jogador produz e armazena uma cadeia de hashes

com comprimento li igual a unidade mais a somatória do total de cartas dos

demais jogadores. Esta cadeia de hashes é calculada tomando-se o linki
0 como

29

seedCi e calcula os demais hashes da cadeia como linki
k = Hash(linki

k-1) de tal

forma que 1 ≤ k ≤ li;

5. Cada jogador Pi envia o último valor de sua cadeia de hash taili = linki
li;

6. O jogador Pi armazena as seguintes informações acerca dos demais jogadores

da partida: a cauda da cadeia de hashes tailb; a sequência de hashes para as

cartas do deck de jogo Pileb; os hashes para as cartas na mão do jogador, Handb

que é inicialmente vazia e finalmente os hashes relativos às cartas já utilizadas

pelo jogador Usedb, que também é vazia inicialmente.

Figura 9 – Etapas 1, 2 e 3 da inicialização do jogo e construção do Deck de Jogo do protocolo

SecureTCG

30

Figura 10 – Etapas 4 e 5 da inicialização do jogo e construção do Deck de Jogo do protocolo

SecureTCG

Figura 11 – Etapa 6 da inicialização do jogo e construção do Deck de Jogo do protocolo SecureTCG

31

4.1.3 Retirando uma carta do Deck de Jogo para a Mão

No cenário em que o jogador Pa queira retirar uma carta do Deck de Jogo, não deve

ser permitido que este seleciona qualquer carta que queira. Dessa forma, torna-se

necessário aplicar o mecanismo descrito abaixo para garantir que a próxima carta

sacada pelo jogador Pa tenha probabilidade uniformemente distribuída com relação

às demais cartas do Deck de Jogo.

Descrição do mecanismo

1. Cada jogador, exceto Pa, envia seu próximo valor da cadeia de hashes para

todos os demais jogadores;

2. Todos os jogadores verificam se a mensagem enviada pelos demais jogadores

corresponde a um valor válido da cadeia de hashes do outro jogador. Isto é feito

verificando se Hash(linki
k) = linki

k+1, de forma que linki
k+1 é valor atualmente

associado à cauda da cadeia de hashes de Pi (i ≠ a). Se esta situação for

validada, o jogador Pa atualiza a informação acerca do valor da cadeia de hashes

de Pi para linki
k. Caso a validação falhe, uma trapaça é detectada e o

procedimento adequado é disparado para este cenário;

3. Para que se determine o índice da carta a ser retirada do Deck de Jogo de Pa,

todos os jogadores executam a seguinte conta para calcular a posição com base

nos valores da cadeia de hashes recebidos anteriormente por cada um: pos =

Hash(link1
k || ... || linka-1

k || linka+1
k || ... || linkp

k) mod (ga)

em que ga representa a quantidade restante de cartas no Deck de jogo de Pa;

4. Todos os jogadores atualizam a informação acerca do jogador de Pa de forma a

remover o ha
pos (correspondente à carta retirada do Deck) de Pilea, adicionando

este hash a Handa, referente a mão do jogador Pa.

Cabe ressaltar que este mecanismo não impõe restrição na ordem em que os

jogadores retiram cartas dos seus respectivos de Deck de Jogo. Por exemplo, existem

jogos em que os jogadores retiram cartas dos Decks de jogo um por vez e outros em

que cada jogador retira todas as cartas necessárias sequencialmente antes do

próximo jogador retirar as suas.

32

Figura 12 – Compra de carta do protocolo SecureTCG

4.1.4 Revelando uma carta na mesa

No cenário em que o jogador Pa queira revelar uma carta e colocá-la no jogo, este só

poderá escolher dentre as cartas que estão na sua mão, ou seja, que estão descritas

pela estrutura de dados Handa armazenada localmente em todos os demais

jogadores. Para a validação de que nenhuma trapaça ocorreu, o mecanismo descrito

abaixo deve ser seguido.

Descrição do mecanismo

1. Supondo que o jogador Pa queira revelar a carta com a identificação IDa
j, o

jogador Pa revela o valor de ca
j = (maska

j, IDa
j) definindo os parâmetros de jogo

params associados a esta carta para todos os demais jogadores. Se o Deck

Base do jogador Pa foi gerado de acordo com o protocolo de geração de Deck

Base descrito anteriormente, Pa também revela va
b para a carta e o

correspondente índice b;

2. Todos os demais jogadores da partida calculam ha
j = Hash(maska

j, IDa
j) e

verificam se o resultado corresponde a uma das cartas armazenadas localmente

33

em Handa. Para o caso de jogos com a geração randômica de Deck Base, os

jogadores também verificam se Hash(va
b) = VCommita[b] e se refab = va

b ⊕ ra
b

corresponde a IDa
j, o que significaria que va

b foi utilizado no protocolo de geração

de Deck Base e que a carta revelada foi de fato uma seleção randômica do Deck

Universal. Se as verificações anteriores falharem, um alerta de trapaça é

disparado e as medidas adequadas para a situação devem ser tomadas;

3. Finalmente, todos os jogadores removem o valor ha
j de Handa e o armazenam

na estrutura de Useda de forma a indicar que esta carta já foi utilizada pelo

jogador Pa.

Figura 13 – Revelação de carta do protocolo SecureTCG

4.2 Detecção de trapaças em ambiente P2P

A solução proposta não requer a intervenção de uma terceira entidade atuando entre

os jogadores durante toda a partida para garantir os requisitos de segurança da

aplicação. Mais especificamente, as atividades que envolvem o servidor do jogo são

transações restritas que ocorrem antes da partida começar, como a compra de cartas

e a troca das mesmas, e após a partida terminar, no caso da auditoria do jogo se fazer

necessária.

34

4.2.1 Consistência de Decks

Ao revelar os valores de hash de todas as cartas no protocolo de inicialização, os

jogadores se comprometem às cartas dos Decks de jogo bem como a ordenação do

mesmo. Dessa forma, a não ser que um jogador desonesto Pd seja capaz de gerar cd
j'

que satisfaz Hash(cd
j') = Hash(cd

j) para um dado j, violando as propriedades de

segurança da função de hash, o jogador Pd não pode modificar a informação contida

em Deckd e Piled sem que apareçam inconsistências nestas estruturas de dados

armazenas nos demais jogadores durante o protocolo de revelação de cartas. Isto é,

quanto o jogador Pd tenta colocar cd
j' no jogo, os demais jogadores são capaz de

detectar que Hash(cd
j') não existe em suas versões de Handd.

Além disso, no final do jogo, após cada jogador Pi revelar todos seus valores de maski

randômicos, os demais jogadores poderiam verificar se o Deck foi construído da

maneira correta.

Figura 14 – Esquema de utilização de cartas não autorizadas do Deck Base

35

Figura 15 – Esquema de utilização de cartas não autorizadas do Deck de Jogo

4.2.2 Distribuição Aleatória das Cartas

A ordem em que as cartas são retiradas pelo jogador Pa depende da variável pos

calculada no protocolo de retirada de cartas do Deck de Jogo. A variável pos segue

uma distribuição uniforme, visto que é calculada a partir da aplicação de funções hash

na cadeia de links proveniente de todos os jogadores com exceção de Pa. Sendo

assim, desde que a entrada da função de hash não seja manipulada, cada carta tem

a mesma probabilidade de ser retirada. Na solução proposta, a manipulação desta

entrada é impraticável devido ao uso de cadeias de hash. Isto é todos os jogadores

revelam a variável tail durante a fase de inicialização de forma que se comprometem

a contribuir com uma sequência de variáveis pseudoaleatórias para o cálculo de pos.

36

Figura 16 – Esquema de fraude sobre a aleatoriedade de compra de cartas

4.2.3 Confidencialidade Completa das Cartas

A solução proposta sugere que concatenar uma variável randômica maski
j a uma carta

identificada com ID é necessário, visto que no caso em que isso não ocorra algumas

situações indesejadas podem ocorrer: duas cartas com o mesmo ID iriam mapear o

mesmo hi
j, revelando que a existência de cartas repetidas no mesmo Deck; Um

jogador Pd que sabe quais cartas existentes no Deck de Jogo de um outro jogador Pi

(numa situação hipotética em que algumas cartas sejam memorizadas após a

finalização de um jogo anterior com o mesmo Deck) poderia calcular a função hash

de uma carta IDi
j do jogador Pd e tentar localizar este valor na estrutura de dados Pilei,

identificando sua localização. Cabe ressaltar também que a não repetição de mask i
j

para cada carta do jogador Pi em diferentes jogos é necessária, dado que na situação

em que isto não aconteça, os demais jogadores poderiam reconhecer os valores de

hashi
j localizados em Pilei.

4.2.4 Efeitos Mínimos de Coalisão

Jogadores atuando em coalisão não podem ganhar nenhuma informação útil acerca

das cartas de um outro jogador não participante da coalisão, visto que todos os

jogadores têm acesso apenas a suas próprias cartas e contribuem com sua parcela

de aleatoriedade para o cálculo do índice de retirada de uma carta por outro jogador.

37

Por outro lado, jogadores em coalisão não podem subverter a natureza aleatória do

processo de retirar uma carta do Deck de outro jogador desde que haja pelo menos

um jogador honesto no jogo. Por exemplo, supondo que o jogador Pa queira retirar

uma carta do Deck de jogo, um outro jogador desonesto Pd poderia esperar até que

todos os demais jogadores contribuíssem com o próximo valor de suas respectivas

cadeias de hashes para que o índice da carta a ser retirada fosse determinado e,

somente então, escolhesse um valor para enviar que combinado com o valor enviado

pelos demais jogadores resultaria em um índice desejado. Esta manobra não

beneficiaria Pd diretamente, já que as contribuições de cada jogador não são utilizadas

para calcular o índice de retirada da carta do próprio jogador. Entretanto, dois

jogadores Pi e Pd poderiam formar uma coalisão de forma a tentar colocar uma carta

interessante nas mãos um do outro.

Sendo assim, mesmo que existam alguns jogadores atuando em coalisão, estes não

poderão subverter a segurança e calcular a priori a posição do índice da carta a ser

retirada por um outro jogador. Isto se deve ao fato de que a existência de um único

jogador honesto garante uma parcela de aleatoriedade no cálculo do índice pos que

tornaria inviável o seu descobrimento a priori pelos jogadores atuando em coalisão.

Finalmente, no caso extremo em que todos os jogadores com exceção de Pa estejam

atuando em coalisão, por mais que fosse possível calcular a priori o índice de retirada

da carta por Pa, isto não revelaria nenhuma informação útil acerca da carta a ser

retirada por Pa porque nenhum outro jogador a não ser Pa conhece o valor verdadeiro

do ID das cartas descritas na estrutura Pilea.

Figura 17 – Esquema de conluio para prejudicar jogador honesto

38

Figura 18 – Esquema de conluio para beneficiar jogador desonesto

4.2.5 Detecção de trapaças com alta probabilidade

A solução adotada pelo SecureTCG detecta com alto grau de confiança tentativas de

trapaças como a tentativa de manipulação da ordem em que as cartas são retiradas

por algum jogador, jogar uma carta que não esteja na mão do jogador em questão e

a tentativa de construção de um Deck que vá contra as regras do jogo. Entretanto,

está afirmação se baseia na hipótese de que a solução utilize uma implementação da

função de hash que garanta suas propriedades de segurança e que sejam utilizados

comprimentos suficientemente grandes de hashes, visto que este é o principal

ferramental criptográfico em que se baseia o SecureTCG.

Conluio

Deck de
Jogo

Mão Cartas Reveladas
(e.g., no campo de

batalha ou na pilha de
descarte)

Jogador 2

Jogador 1

Jogador p

Jogador a (ativo)

Influenciar na Compra de carta

de um jogador em conluio

link i

pos = hash(link1 ||...|| linka-1 || linka+1 ||...|| linkp) mod δa

hash(link i) = link i

Compra (1)

Compra (2)

Compra (3)

?

39

5 ESPECIFICAÇÕES

5.1 Requisitos

5.1.1 Requisitos do Sistema

A implementação proposta para a Prova de Conceito consiste no desenvolvimento de

um software que permita a um ou mais usuários, denominados jogadores, se

encontrarem através da rede, estabelecerem um canal de comunicação entre si e

disputar uma partida de um jogo exemplo do estilo TCG, cujo andamento deve ser

protegido de trapaças pelos mecanismos propostos pelo protocolo SecureTCG.

Devem existir também funcionalidades que ofereçam a possibilidade de realizar

tentativas de trapaça, de modo a permitir a verificação da eficácia dos mecanismos

do protocolo implementados.

Desta forma, foram levantados os seguintes requisitos para a plataforma principal do

sistema:

Requisitos funcionais

 Servir como ponto de encontro: o sistema básico deve, logo após a inicialização,

oferecer ao jogador a possibilidade de encontrar outros jogadores interessados

em disputar uma partida de TCG;

 Estabelecer conexão: o sistema deve cuidar do estabelecimento de um canal de

comunicação entre os jogadores que entrarem em acordo entre si sobre iniciar

uma partida TCG;

 Registrar e apresentar logs: o sistema deve oferecer um mecanismo de log que

registre e exiba de maneira legível todas as etapas do seu funcionamento,

principalmente as mensagens trocadas entre os jogadores na inicialização e no

decorrer de uma partida, tanto relacionadas ao estado da partida em si quanto à

execução dos mecanismos do protocolo de detecção e prevenção de trapaças.

Esse registro será valioso na avaliação da eficácia do protocolo e da

implementação desenvolvida.

40

Requisitos não funcionais

 Usabilidade: apresentar uma experiência de usuário simples e intuitiva,

permitindo que em pouco tempo o usuário consigam realizar as tarefas

desejadas eficientemente;

 Desempenho: apresentar tempos de resposta reduzidos às interações com o

usuário;

 Segurança: assegurar que a conexão estabelecida seja segura e que as

informações restritas do usuário sejam protegidas;

 Portabilidade: oferecer suporte a diferentes plataformas e canais de

comunicação diretamente ou através de poucas adaptações;

 Escalabilidade: suportar conexões entre múltiplos jogadores, mantendo a

estabilidade inclusive em situações críticas, como grande número de jogadores

numa mesma partida ou abandono de um jogador durante uma partida em

andamento.

5.1.2 Requisitos do Jogo TCG exemplo

Como descrito na seção "Definições do TCG exemplo", viu-se a necessidade de

implementar para a Prova de Conceito um jogo TCG exemplo, que apresentasse um

conjunto de regras e uma dinâmica que o tornassem minimamente jogável, e ao

mesmo tempo fossem suficientes para apresentar situações suscetíveis a trapaças,

para permitir exercitar os mecanismos de detecção propostos pelo protocolo

SecureTCG. Os requisitos a serem atendidos pelo TCG exemplo são:

Requisitos funcionais

 Permitir a realização de partidas: a implementação do jogo deve permitir aos

jogadores realizar partidas conforme a dinâmica e as regras estabelecidas na

seção de "Definições do TCG exemplo" e nos casos de uso, desde as etapas de

inicialização até o controle dos turnos e da eliminação de jogadores derrotados;

41

 Permitir a execução de trapaças: o TCG exemplo deve disponibilizar uma

ferramenta que permita a execução deliberada de tentativas de trapaça, para

poder exercitar e avaliar a eficácia dos mecanismos de prevenção

implementados.

Requisitos não funcionais

 Simplicidade de dinâmica e regras: o jogo exemplo deve ser simples de entender

e jogar, dado que ele seu intuito principal é testar a implementação do protocolo

de segurança;

 Interesse: as regras definidas devem ser suficientes para manter minimamente

o interesse dos jogadores ao longo de uma partida;

 Custo computacional reduzido: o jogo deve apresentar reduzida utilização de

operações de alto custo computacional, de dados armazenados e de trocas de

de mensagens entre os jogadores durante a partida, e as mensagens que

inevitavelmente precisem ser enviadas devem ter um tamanho reduzido;

 Escalabilidade: assim como os outros componentes do sistema, a lógica do jogo

deve oferecer bom suporte a múltiplos jogadores.

5.1.3 Requisitos do módulo de prevenção e detecção de trapaças

Como descrito na seção de "Trapaças”, a violação de algumas regras do jogo que

envolvem cartas já reveladas pode ser facilmente detectada por outros jogadores,

afinal qualquer jogador pode verificar se o seu efeito sobre o jogo está de acordo com

o conjunto de regras estabelecido. O mesmo não se aplica, no entanto, à detecção de

trapaças relacionadas às cartas na mão ou no Deck de Jogo do jogador, bem como à

construção aleatória do Deck Base, nos estilos de jogo em que ele é utilizado.

Levando-se em conta esses fatores e as peculiaridades apresentadas pela utilização

da arquitetura P2P, é possível identificar um conjunto de requisitos para o módulo de

detecção e prevenção dessas Trapaças Sigilosas, que deve ser aplicável a uma

grande variedade de TCGs:

42

Requisitos funcionais

 Garantir a consistência do Deck de Jogo: ainda que os jogadores em um TCG

geralmente sejam autorizados a construir seus próprios Decks de Jogo, a

seleção de cartas que o compõem não pode ser alterada após o início de uma

partida. Além disso, deve haver um mecanismo para que os jogadores possam

verificar se os decks dos adversários foram construídos de acordo com as regras

do jogo (por exemplo, verificar a aleatoriedade de um Deck Base, quando

aplicável);

 Garantir a compra aleatória e uniforme de cartas: a composição da mão de cada

jogador, ou seja, a ordem das cartas que ele retira do seu Deck de Jogo, deve

depender de contribuições de todos os jogadores da partida, de tal forma que

nenhum deles seja capaz de prever ou controlar a ordem em que as cartas são

compradas por um determinado jogador. Esse requisito deve ser assegurado

sempre que um baralho precisar ser embaralhado, o que geralmente ocorre

antes do início da partida;

 Manter a confidencialidade completa das cartas: normalmente, os jogadores só

são autorizados a saber das cartas que possuem em suas próprias mãos, ou das

que estão em jogo ou na pilha de descarte, e não das cartas em nenhum dos

Decks de Jogo (que estariam "viradas para baixo", no mundo real) ou na mão

dos adversários. Ou seja, a confidencialidade das cartas em relação a cada

jogador deve ser mantida até o momento que ele esteja autorizado a conhecê-

las;

 Garantir a utilização de cartas autorizadas: os jogadores numa partida devem

poder revelar somente cartas presentes em sua mão, que por sua vez tenham

sido compradas do seu Deck de Jogo, ou seja, cartas que eles estejam

autorizados a utilizar. Deve haver um mecanismo que permita aos adversários

perceber se houver violação dessa regra;

 Minimizar os efeitos de conluio: em partidas envolvendo mais de dois jogadores,

alguns deles podem decidir estabelecer um canal de comunicação paralelo e,

em seguida, trocar informações sobre o jogo (por exemplo, as cartas em suas

mãos) ou sobre o protocolo do jogo (por exemplo, uma chave secreta). Se isso

acontecer, a quantidade de informação obtida por esses jogadores deve ser

43

equivalente ao que eles já sabiam separadamente e insuficiente para violar os

requisitos anteriores. Por exemplo, eles podem compartilhar informações sobre

suas próprias mãos, mas eles não podem conseguir obter nenhuma nova

informação sobre as cartas no Deck de Jogo ou na mão de um jogador honesto.

Requisitos não funcionais

 Independência de um TTP: a detecção de trapaças não deve depender da

intervenção de uma entidade de confiança, seja humana ou máquina, durante a

partida. Em outras palavras, não deve haver interferência de um TTP durante

uma partida;

 Alta probabilidade de detecção de trapaças: qualquer tentativa de fraude deve

ser detectada pela solução, seja no final do jogo ou, de preferência, no momento

em que acontece;

 Custo computacional reduzido: o módulo de segurança deve se utilizar pouco de

operações de alto custo computacional, tais como as comumente utilizadas por

algoritmos de criptografia assimétrica. Além disso, não deve exigir que os

jogadores armazenem grandes estruturas de dados durante a partida.

Finalmente, não deve envolver trocas de um grande número de mensagens entre

os jogadores, e as mensagens que inevitavelmente precisem ser enviadas

devem ter um tamanho reduzido;

 Escalabilidade e suporte a múltiplos jogadores: os mecanismos de segurança

devem ser flexíveis o suficiente para suportar, sem impactos significativos nos

custos computacionais e na performance, dois ou mais jogadores simultâneos

na mesma partida;

 Tolerância a abandono de jogador: se um jogador deixa a partida, intencional ou

acidentalmente, os jogadores remanescentes devem ser capazes de continuar

a jogar. Este requisito é essencial para assegurar a continuidade da partida na

ocasião de eliminação de um jogador derrotado, e ainda, no contexto de jogos

online, nos casos de problemas de conexão;

 Transparência: os mecanismos de segurança devem operar de forma

transparente aos jogadores, exceto quando eles deliberadamente tiverem

44

interesse em verificá-los (através dos logs) e nos casos em que forem detectadas

trapaças.

Deve se ressaltar que grande parte desses requisitos devem ser atingidos utilizando

mecanismos baseados no cálculo de funções de hash que, simplificadamente, têm o

objetivo de gerar de resumos criptográficos (com tamanho fixo) de mensagens, e de

maneira unidirecional (isto é, não invertível). Elas são amplamente empregadas pelo

protocolo SecureTCG por permitirem: prevenir que se obtenha o conteúdo da

mensagem a partir do seu hash (devido à unidirecionalidade); criar mecanismos de

comprometimento dos jogadores com suas mensagens pois, divulgado um hash de

uma mensagem, o jogador estará comprometido com ela, dado que é muito

improvável que consiga obter outra mensagem que possua o mesmo hash; gerar

cadeias de hash, em que o comprometimento apenas com o último elo resulta

automaticamente no comprometimento com todos os outros. Além disso, elas ainda

podem ser utilizadas na construção de geradores pseudoaleatórios.

Portanto, para o atendimento dos requisitos da solução, é essencial a utilização de

uma função de hash ofereça (SIMPLICIO, 2015):

 Resistência a primeira inversão: dado um valor de Hash R, é

computacionalmente inviável encontrar uma mensagem M tal que R = H(M);

 Resistência a segunda inversão: dado um valor de Hash R e uma mensagem M1

tal que R = H(M1), é computacionalmente inviável encontrar uma outra

mensagem M2 ≠ M1 tal que R = H(M2);

 Resistência a colisões: é computacionalmente inviável encontrar duas

mensagens M1 e M2 tais que H(M1) = H(M2);

 Boa performance: a ampla utilização das funções de hash pelo protocolo

implementado significa que a sua performance possui grande impacto no

desempenho e na experiência de usuário da solução final.

45

5.2 Casos de uso

Caso de uso UC01

Nome: Construir Decks Base.

Descrição: O Sistema gera, a partir do Deck Universal, diferentes Decks Base para

cada um dos Jogadores, cujas cartas são selecionadas aleatoriamente e são

desconhecidas pelos Jogadores adversários.

Objetivo: Gerar Decks Base aleatórios e confidenciais para os Jogadores adversários.

Fase: Construção dos Decks.

Ator(es): Sistema, Jogadores.

Pré-condições: Existe um Deck Universal.

Fluxo normal:

1. Os Jogadores informam ao Sistema que pretendem disputar uma partida, para

a qual eles precisam de Decks de Jogo, que devem ser gerados a partir de Decks

Base.

2. O Sistema, a partir da escolha aleatória das cartas disponíveis no Deck Universal

do jogo, constrói diferentes Decks Base e os atribui a cada um dos Jogadores,

sem permitir que eles conheçam a composição dos Decks uns dos outros.

Fluxo de exceção A:

1. Os Jogadores informam ao Sistema que pretendem disputar uma partida, para

a qual eles precisam de Decks de Jogo, que devem ser gerados a partir de Decks

Base.

2. Um ou mais Jogadores adulteram o mecanismo de escolha aleatória de cartas

utilizado pelo Sistema.

3. O Sistema constrói diferentes Decks Base a partir do Deck Universal e os atribui

a cada um dos Jogadores, porém a aleatoriedade e a confidencialidade das

cartas não pode ser assegurada.

Fluxo de exceção B:

1. Os Jogadores informam ao Sistema que pretendem disputar uma partida, para

a qual eles precisam de Decks de Jogo, que devem ser gerados a partir de Decks

Base.

2. O Sistema, a partir da escolha aleatória das cartas disponíveis no Deck Universal

do jogo, constrói diferentes Decks Base e os atribui a cada um dos Jogadores.

46

3. Um ou mais Jogadores burlam o mecanismo de confidencialidade de cartas

utilizado pelo Sistema, desvendando a composição de Decks Base que não

deveria(m) conhecer.

Pós-condições: Existem diferentes Decks Base atribuídos a cada um dos Jogadores,

construídos de maneira aleatória e cuja composição de cartas é desconhecida pelos

seus adversários.

Caso de uso UC02

Nome: Construir Deck de Jogo.

Descrição: O Jogador constrói seu Deck de Jogo selecionando as cartas desejadas

dentre as disponíveis no seu Deck Base, mantendo-as confidenciais para seus

adversários.

Objetivo: Construir Deck de Jogo de composição confidencial para os Jogadores

adversários.

Fase: Construção dos Decks.

Ator(es): Jogador.

Pré-condições: O Jogador possui um Deck Base.

Fluxo normal:

1. O Jogador escolhe um subconjunto de cartas de seu Deck Base para compor

seu Deck de Jogo, de forma confidencial para seus adversários.

Fluxo de exceção:

1. O Jogador escolhe um subconjunto de cartas de seu Deck Base para compor

seu Deck de Jogo.

2. Um ou mais Jogadores adversários burlam o mecanismo de confidencialidade

de cartas utilizado pelo Sistema, obtendo conhecimento indevido sobre a

composição de Deck de Jogo.

Pós-condições: O Jogador possui um Deck de Jogo, formado por cartas selecionadas

do seu Deck Base e confidenciais para seus adversários.

47

Caso de uso UC03

Nome: Comprar carta.

Descrição: O Jogador, uma vez a cada turno seu, retira uma carta aleatória de seu

Deck de Jogo e a coloca em sua mão, sem revelá-la aos Jogadores adversários.

Objetivo: Retirar uma carta do Deck de Jogo e colocá-la em sua mão, sem revelá-la

aos Jogadores adversários.

Fase: Turnos da partida.

Ator(es): Jogador.

Pré-condições: O Jogador possui cartas no seu Deck de Jogo e está em um turno seu

da partida, em que ainda não comprou nenhuma carta.

Fluxo normal:

1. O Jogador retira aleatoriamente uma carta de seu Deck de Jogo, sem revelá-la

aos Jogadores adversários.

2. O Jogador coloca a carta em sua mão, também sem revelá-la aos Jogadores

adversários.

Fluxo de exceção A:

1. O Jogador adultera o mecanismo de escolha aleatória de cartas do Sistema.

2. O Jogador retira uma carta de sua escolha de seu Deck de Jogo, sem revelá-la

aos Jogadores adversários.

3. O Jogador coloca a carta em sua mão, também sem revelá-la aos Jogadores

adversários.

Fluxo de exceção B:

1. Um ou mais Jogadores adversários adulteram o mecanismo de escolha aleatória

de cartas do Sistema.

2. O Jogador retira uma carta de seu Deck de Jogo cuja escolha foi influenciada

por um ou mais Jogadores adversários.

3. O Jogador coloca a carta em sua mão.

Fluxo de exceção C:

1. O Jogador retira aleatoriamente uma carta de seu Deck de Jogo, sem revelá-la

aos Jogadores adversários.

2. O Jogador coloca a carta em sua mão, também sem revelá-la aos Jogadores

adversários.

48

3. Um ou mais Jogadores adversários burlam o mecanismo de confidencialidade

de cartas utilizado pelo Sistema, obtendo conhecimento indevido sobre a carta

comprada.

Pós-condições: O Jogador possui uma carta a mais em sua mão, retirada

aleatoriamente do seu Deck de Jogo e sem que seus adversários a conhecessem, e

não pode mais comprar cartas no turno.

Caso de uso UC04

Nome: Revelar carta.

Descrição: O Jogador, uma vez a cada turno seu, retira uma carta de sua escolha de

sua mão e a coloca em jogo, revelando-a aos Jogadores adversários.

Objetivo: Retirar uma carta de sua mão e colocá-la em jogo, revelando-a aos

Jogadores adversários.

Fase: Turnos da partida.

Ator(es): Jogador.

Pré-condições: O Jogador possui cartas em sua mão e está em um turno seu da

partida, em que ainda não revelou nenhuma carta.

Fluxo normal:

1. O Jogador retira uma carta de sua escolha de mão.

2. O Jogador coloca a carta em jogo, revelando-a aos Jogadores adversários.

Fluxo de exceção:

1. O Jogador adultera o mecanismo de controle das cartas do Sistema.

2. O Jogador escolhe uma carta que não estava em sua mão.

3. O Jogador coloca a carta em jogo, revelando-a aos Jogadores adversários.

Pós-condições: O Jogador possui uma carta escolhida da sua mão a mais em jogo,

revelada aos seus adversários a conhecessem, e não pode mais revelar cartas no

turno.

49

Caso de uso UC05

Nome: Atacar um adversário.

Descrição: O Jogador, uma vez a cada turno seu, escolhe uma de suas cartas em

jogo e a utiliza para atacar um dos Jogadores adversários.

Objetivo: Atacar um Jogador adversário utilizando uma de suas cartas em jogo.

Fase: Turnos da partida.

Ator(es): Jogador.

Pré-condições: O Jogador possui cartas em jogo e está em um turno seu da partida,

em que ainda não atacou.

Fluxo normal:

1. O Jogador escolhe uma de suas cartas em jogo.

2. O Jogador escolhe um dos Jogadores adversários para atacar, que deve arcar

com o dano determinado pelos pontos de ataque da carta utilizada.

Pós-condições: O Jogador realizou um ataque a um Jogador adversário com uma

carta escolhida de seu jogo, e não pode mais atacar no turno.

Caso de uso UC06

Nome: Defender um ataque.

Descrição: O Jogador, ao sofrer um ataque de um Jogador adversário, escolhe uma

de suas cartas em jogo, se tiver, e a utiliza para absorver o ataque.

Objetivo: Defender um ataque de um Jogador adversário utilizando uma de suas

cartas em jogo ou os próprios pontos de vida.

Fase: Turnos da partida.

Ator(es): Sistema, Jogador.

Pré-condições: O Jogador sofre um ataque de um Jogador adversário.

Fluxo normal:

1. O Sistema notifica o Jogador que ele está sofrendo um ataque por um Jogador

adversário.

2. O Jogador obrigatoriamente escolhe uma de suas cartas em jogo para se

defender, cujo valor de pontos de vida é maior que o valor dos pontos de ataque

da carta atacante.

50

3. O Sistema decrementa os pontos de vida da carta defensora do valor dos pontos

de ataque da carta atacante.

Fluxo alternativo A1:

1. O Sistema notifica o Jogador que ele está sofrendo um ataque por um Jogador

adversário.

2. O Jogador obrigatoriamente escolhe uma de suas cartas em jogo para se

defender, cujo valor de pontos de vida é menor ou igual ao valor dos pontos de

ataque da carta atacante.

3. A Sistema zera os pontos de vida da carta defensora.

4. O Jogador retira a carta defensora de jogo e a coloca na pilha de descarte.

5. Se o valor de pontos de vida da carta defensora era menor que o valor dos pontos

de ataque da carta atacante, o Sistema decrementa o dano excedente dos

pontos de vida do Jogador.

Fluxo alternativo A2:

1. O Sistema notifica o Jogador que ele está sofrendo um ataque por um Jogador

adversário.

2. O Jogador não possui cartas em jogo para se defender, então o Sistema

decrementa seus pontos de vida do valor dos pontos de ataque da carta

atacante.

Fluxo de exceção E1:

1. O Sistema notifica o Jogador que ele está sofrendo um ataque por um Jogador

adversário.

2. O Jogador obrigatoriamente escolhe uma de suas cartas em jogo para se

defender, cujo valor de pontos de vida é menor que o valor dos pontos de ataque

da carta atacante.

3. A Sistema zera os pontos de vida da carta defensora.

4. O Jogador retira a carta defensora de jogo e a coloca na pilha de descarte.

5. O Sistema decrementa os pontos de vida do Jogador do valor excedente do

ataque não absorvido pela carta defensora, resultando em um valor de pontos

de vida menor ou igual a zero.

6. O Sistema remove o Jogador derrotado da partida.

Fluxo de exceção E2:

1. O Sistema notifica o Jogador que ele está sofrendo um ataque por um Jogador

adversário.

51

2. O Jogador não possui cartas em jogo para se defender, então o Sistema

decrementa seus pontos de vida do valor dos pontos de ataque da carta

atacante, resultando em um valor de pontos de vida menor ou igual a zero.

3. O Sistema remove o Jogador derrotado da partida.

Pós-condições: O Jogador absorveu um ataque de um Jogador adversário com os

pontos de vida de uma carta escolhida de seu jogo, com seus próprios pontos de vida

ou com uma combinação dos dois.

Caso de uso UC07

Nome: Encerrar turno.

Descrição: O turno do Jogador é encerrado voluntariamente ou pelo Sistema.

Objetivo: Encerrar o turno do Jogador.

Fase: Turnos da partida.

Ator(es): Sistema, Jogador.

Pré-condições: O Jogador está em um turno seu da partida.

Fluxo normal:

1. O Sistema encerra automaticamente o turno corrente do Jogador após ele ter

realizado todas as ações permitidas.

Fluxo alternativo:

1. O Jogador encerra voluntariamente seu turno corrente no momento desejado.

Pós-condições: O Jogador encerrou o seu turno.

52

6 AMBIENTE DE DESENVOLVIMENTO

A prova de conceito para o protocolo SecureTCG será desenvolvida em linguagem

orientada a objeto Java em ambiente de desenvolvimento NetBeans. A principal razão

para a escolha da linguagem Java foram a alta portabilidade oferecida por essa

linguagem (para migração da aplicação para ambiente Mobile, por exemplo) e a boa

oferta de bibliotecas de criptografia.

O framework de interface a ser utilizado para a prototipação das telas será o Swing,

dado que possui rápida curva de aprendizado e extensa documentação com

exemplos.

Optou-se nesta prova de conceito por realizar a comunicação entre os dispositivos

(PCs) através de conexão Wi-Fi, dado a sua maior estabilidade em relação à

tecnologia Bluetooth, o que torna o ambiente mais robusto para testes.

No que diz respeito à escolha do algoritmo de cálculo da função hash, sendo este

amplamente utilizado para a implementação do módulo criptográfico do protocolo, foi

selecionado a rotina Blake2 devido a sua performance ser semelhante ao MD5 e sua

estrutura de segurança ser robusta, atendendo bem, dessa forma, a todos os

requisitos definidos.

Para este projeto, o repositório remoto de código escolhido para gerenciar as entregas

de novas implementações pelos membros do grupo foi o BitBucket, utilizando a

tecnologia git para a criação e manutenção de novos branches e atualizações de

versões de código.

Figura 19 – Tecnologias utilizadas no desenvolvimento da Prova de Conceito

53

7 ARQUITETURA DO SOFTWARE

A arquitetura do sistema seguirá os princípios SOLID conforme as boas práticas da

estrutura de um programa escrito em linguagem de paradigma de orientação a

objetos. A solução possuirá um módulo SecurityTCGCore que será implementado

pelos demais componentes da aplicação e será responsável pela gestão do protocolo

de segurança. Também serão definidas como componentes do sistema as camadas

relativas à interface visual, ao acesso a dados, à comunicação entre jogadores e à

modelagem de entidades do jogo. A arquitetura de uma possível aplicação Android

poderá seguir a mesma organização de projeto descrita levando em conta algumas

particularidades do sistema operacional embarcado.

7.1 Diagrama de componentes

Figura 20 – Diagrama de componentes

Como o projeto visa criar um mecanismo de fácil acoplagem com sistema já

existentes, o diagrama explicita a parte do jogo (pacote “Game”) e a parte de garantia

de honestidade no jogo (pacote “SecureTCG.ChyperEngine”). Na primeira, é

implementado um jogo simples para exemplificar o protocolo, porém poderia ser

 cmp

POC

Game

SecureTCG.CypherEngine

Game.Infra

Game.Core

SecureTCG.ChyperEngine.Domain

SecureTCG.ChyperEngine.MessageBroker

Game.Core.Auth

Game.Core.ViewModels

Game.Core.Logs

SecureTCG.ChyperEngine.Domain

Game.Data

Game.Communication

Game.Presentation

Game.Presentation.ViewControllers

Game.Presentation.Views

SecureTCG.ChyperEngine.MessageBroker

Game.Communication.Transportation

Game.Data.MappingGame.Data.Repositories

Game.Data.DBAccess

54

qualquer jogo de cartas colecionáveis, podendo até mesmo representar jogos

comerciais modernos que se utilizariam da arquitetura mostrada no documento atual.

Esse programa referencia o pacote “SecureTCG.ChyperEngine” para implementar

todos os protocolos de segurança definidos em SecureTCG. Assim, o sistema fica

mais modular e de possível implantação por terceiros em sistemas já em produção.

Alguns jogos do mercado foram estudados para se chegar no diagrama apresentado

para o pacote “Game”. Nele pode ser identificado um modelo que se enquadra no

tradicional padrão de arquitetura Model-View-Controller (MVC). Podemos identificar

as Views, que são as telas especificadas e os controladores das telas no pacote

“Game.Presentation”.

Para separar mais ainda o acesso aos dados foi inserida uma camada de acesso aos

dados “Game.Data”. Nela estão todos os repositórios “Game.Data.Repositories”

juntamente dos mapeadores “Game.Data.Mapping” que irão, respectivamente,

acessar a camada de dados para inserir, atualizar, buscar e remover e mapear os

modelos definidos nas tabelas, e suas colunas, do banco de dados que é acessado

pelo “Game.Data.DBAcess” (Obs.: Gamedata.dbAccess não feito, para o estudo

fizemos acesso a tabelas pré-definidas, o método utilizado para alternar entre tabelas

e banco de dados será demonstrado a baixo).

Toda a definição dos dados está no pacote “Game.Core”, nele são definidas as

entidades relacionadas ao jogo de cartas colecionáveis, como por exemplo: Cartas,

jogadores, magias, etc.

O pacote “Game.Communication” trata o estabelecimento de comunicação, e as

trocas de mensagens entre as partes. Nas partes constituintes deste pacote ocorrerão

diversas trocas referentes ao protocolo sendo implementado.

Para desacoplar todos os módulos e possibilitar mudanças nas implementações do

sistema, foi inserido o módulo “Game.Infra” nele é implementado o injetor de

dependências que o sistema utiliza. Esse conceito faz parte do Padrão de arquitetura

conhecido como Injeção de Dependências. Nesse padrão, os clientes (classes)

delegam a um terceiro (o injetor) a responsabilidade de prover suas dependências.

Assim, é possível ter diversas implementações das interfaces e dependendo da

situação o injetor irá devolver a mais apropriada. No exemplo descrito, onde o acesso

ao banco de dados não foi desenvolvido, só foi necessário dizer ao injetor que em

qualquer momento que for necessária uma implementação de um objeto que acesse

55

o banco de dados, este deverá retornar uma implementação em memória do mesmo.

Isso possibilita um acoplamento fraco entre pacotes.

O pacote “SecureTCG.CypherEngine” possui classes abstratas referentes a

comunicações entre as partes e possui classes abstratas referentes às entidades

relativas ao jogo. Assim, o programa precisará estender as classes relativas pelas

definidas neste pacote, adicionando propriedades e métodos específicos do protocolo

ao programa.

7.2 Diagrama de Pacotes

Para melhor visualização colocamos apenas os diagramas referentes ao domínio e a

camada de comunicação. Os demais podem ser encontrados no Apêndice A.

Game.Core.Domain

Figura 21 – Diagrama de pacotes do Game.Core.Domain

Neste pacote estão as principais classes do sistema. Nota-se que a Classe Player é

que possui todas as informações do estado do jogo. Nela estão informações do próprio

jogador, como cartas na mão, cartas no deck, Cartas no cemitério e informações dos

 pkg

Game.Core

Game.Core.Domain

Game.Core.Logs

- lifeScore : int

+ SufferDamage(attacker : Card) : boolean

- puid : int

- cuid : int

- Name : String

Card

+ Attack(Card : Card, Victim : Player) : void

+ Resurrect(card : Card) : void

+ Reveal(card : Card) : void

+ WithDraw() : void

- lifeScore : int

- otherPlayers : List<SecurePlayer>

- battleField : Battlefield

- discardPile : DiscardPile

- hand : Hand

- deck : Deck

- puid : int

- Name : String

Player

- LogMessage : LogMessage

- User : User

- MessageName : String

- Time : TimeStamp

LogRecord

Game.Core.Auth

Game.Data

- PUID : String

- PasswordHash : HashSet

- Player : List<Player>

- Name : String

User

- Message : String

- LogParameter : List<LogParameter>

LogMessage

+ StartupMap(string ConnectionString : int) : void

+ DeleteData(Id : int) : Object

+ UpdateData(entity : BaseEntity) : Object

+ SaveData(entity : BaseEntity) : Object

+ GetData(Id : int) : Object

DataAccessContext

Game.Core.ViewModels

Game.UI

LoginViewModel

+ Logoff() : boolean

+ Login(name : String, password : String) : boolean

- CurrentUser : User

PlayerManager

- LogRecord : LogRecord

- ParameterValue : String

- ParameterName : String

- MessageName : String

LogParameter

Game.Core.Network

+ MapEntity<TEntity>() : void

DataMapping

Game.UI.View

+ operation24() : void

GameManagerView

Game.UI.Infra

+ InitComponents() : void

- ListComboBox : List<JComboBox>

- ListTextFields : List<JTextField>

- ListLabels : List<JLabel>

- ListButtons : List<JButton>

BaseView

- NetworkConfig : NetworkConfig

- IsActive : Boolean

- connectionString : String

Listener

- Id : int

BaseEntity

+ DeleteData(Id : int) : Object

+ UpdateData(entity : BaseEntity) : Object

+ SaveData(entity : BaseEntity) : Object

+ GetData(Id : int) : Object

- AppContext : DataAccessContext

Repository

+ operation23() : void

PlayerManagerView

AppResolveMe: IResolveMe

- DeviceName : String

- MACadress : String

NetworkConfig

Game.Communication

CardsManagerView

+ GetListeners() : List<Listener>

+ Connect(connectionString : String) : boolean

- ListenersInRange_0 : List<Listener>

- ListenersInRange : List<Listener>

- ActiveListeners : List<Listener>

NetworkManager

+ NotifyMessage(Message : String, Origin : Listener) : boolean

+ BroadCastMessage() : boolean

+ SendMessage(message : int, listeners : List<Listener>) : boolean

- NetworkManager : NetworkManager

MessageBroker

BlueToothMessageBroker WifiMessageBroker LANMessageBroker
+ ExecuteOnBackground(Operation : Predicate) : void

- ThreadPool : Threads

AsyncWorkRunnable

Game.Infra

+ Get(service : Class) : Object

+ Register(service : Class, implementation : Class) : Boolean

+ GetContainer() : Container

+ Init() : void

- appContainer : Container

DependencyInjectionContainer

+ ResolveMe() : void

IResolveMe

LoginView PairedConnectionsView GamesScreensView

+ WithDraw() : Card

Deck

+ Reveal(card : Card) : Card

Hand

+ Resurrect(card : Card) : Card

DiscardPile

+ Add(index : int) : boolean

+ Remove(index : int) : boolean

listOfCards : List<Card>

CardCollection

+ Attack(Attacker : Card, Victim : Card) : void

Battlefield

SecureTCG.CypherEngine

SecureTCG.CypherEngine.Domain SecureTCG.CypherEngine.Communication

+ Attack(card : SecureCard, victim : SecurePlayer) : void

+ Resurrect(card : SecureCard) : void

+ Reveal(card : SecureCard) : void

+ WithDraw() : void

+ GetHashTail() : HashSet

- Tail : String

- SeedC : String

- U : String

- V : List<String>

- pub : PublicKey

- priv : PrivateKey

- HashChain : LinkedHashSet

SecurePlayer

+ NotifyMessage() : void

+ BroadcastMessage() : void

+ SendMessage() : void

- SecureNetworkManager : SecureNetworkManager

SecureMessageBroker

- Mask : int

- HashMaskedId : String

- TimeAdquired : TimeStamp

SecureCard

+ MonitorConnections() : Event

+ AckDisconnect() : void

+ Disconnect() : void

- DisconnectedListeners : List<Listener>

SecureNetworkManager

56

demais jogadores, pois existe a lista otherPlayers que representa todas as

informações que esse jogador sabe dos demais até o momento. Além destas,

informações comuns a todos no estão no Battlefield, Objeto que possui todas cartas

em jogo.

Game.Communication

Figura 22 – Diagrama de pacotes do Game.Communication

Neste pacote se encontram as classes que administram a conexão e realizam a troca

de mensagens entre os usuários. Foi desenvolvido ao longo do projeto o módulo de

comunicação via BlueTooth e LAN, porém, para demonstração e facilidade de

depuração seguimos com a implementação em LAN. Foi incluída ainda uma classe

para controlar o paralelismo do sistema, assim, o sistema se tornou mais responsivo,

por não esperar a resposta dos demais usuários para liberar o processo. Vale ressaltar

que o estabelecimento da comunicação se dá na etapa inicial do jogo e deste ponto

em diante qualquer mensagem que tiver de ser mandada pode ser corretamente

encaminhada para o destinatário ou para todos os Listeners registrados (multicast).

 pkg

Game.Core

Game.Core.Domain

Game.Core.Logs

- lifeScore : int

+ SufferDamage(attacker : Card) : boolean

- puid : int

- cuid : int

- Name : String

Card

+ Attack(Card : Card, Victim : Player) : void

+ Resurrect(card : Card) : void

+ Reveal(card : Card) : void

+ WithDraw() : void

- lifeScore : int

- otherPlayers : List<SecurePlayer>

- battleField : Battlefield

- discardPile : DiscardPile

- hand : Hand

- deck : Deck

- puid : int

- Name : String

Player

- LogMessage : LogMessage

- User : User

- MessageName : String

- Time : TimeStamp

LogRecord

Game.Core.Auth

Game.Data

- PUID : String

- PasswordHash : HashSet

- Player : List<Player>

- Name : String

User

- Message : String

- LogParameter : List<LogParameter>

LogMessage

+ StartupMap(string ConnectionString : int) : void

+ DeleteData(Id : int) : Object

+ UpdateData(entity : BaseEntity) : Object

+ SaveData(entity : BaseEntity) : Object

+ GetData(Id : int) : Object

DataAccessContext

Game.Core.ViewModels

Game.UI

LoginViewModel

+ Logoff() : boolean

+ Login(name : String, password : String) : boolean

- CurrentUser : User

PlayerManager

- LogRecord : LogRecord

- ParameterValue : String

- ParameterName : String

- MessageName : String

LogParameter

Game.Core.Network

+ MapEntity<TEntity>() : void

DataMapping

Game.UI.View

+ operation24() : void

GameManagerView

Game.UI.Infra

+ InitComponents() : void

- ListComboBox : List<JComboBox>

- ListTextFields : List<JTextField>

- ListLabels : List<JLabel>

- ListButtons : List<JButton>

BaseView

- NetworkConfig : NetworkConfig

- IsActive : Boolean

- connectionString : String

Listener

- Id : int

BaseEntity

+ DeleteData(Id : int) : Object

+ UpdateData(entity : BaseEntity) : Object

+ SaveData(entity : BaseEntity) : Object

+ GetData(Id : int) : Object

- AppContext : DataAccessContext

Repository

+ operation23() : void

PlayerManagerView

AppResolveMe: IResolveMe

- DeviceName : String

- MACadress : String

NetworkConfig

Game.Communication

CardsManagerView

+ GetListeners() : List<Listener>

+ Connect(connectionString : String) : boolean

- ListenersInRange_0 : List<Listener>

- ListenersInRange : List<Listener>

- ActiveListeners : List<Listener>

NetworkManager

+ NotifyMessage(Message : String, Origin : Listener) : boolean

+ BroadCastMessage() : boolean

+ SendMessage(message : int, listeners : List<Listener>) : boolean

- NetworkManager : NetworkManager

MessageBroker

BlueToothMessageBroker ZigBeeMessageBroker LANMessageBroker
+ ExecuteOnBackground(Operation : Predicate) : void

- ThreadPool : Threads

AsyncWorkRunnable

Game.Infra

+ Get(service : Class) : Object

+ Register(service : Class, implementation : Class) : Boolean

+ GetContainer() : Container

+ Init() : void

- appContainer : Container

DependencyInjectionContainer

+ ResolveMe() : void

IResolveMe

LoginView PairedConnectionsView GamesScreensView

+ WithDraw() : Card

Deck

+ Reveal(card : Card) : Card

Hand

+ Resurrect(card : Card) : Card

DiscardPile

+ Add(index : int) : boolean

+ Remove(index : int) : boolean

listOfCards : List<Card>

CardCollection

+ Attack(Attacker : Card, Victim : Card) : void

Battlefield

SecureTCG.CypherEngine

SecureTCG.CypherEngine.Domain SecureTCG.CypherEngine.Communication

+ Attack(card : SecureCard, victim : SecurePlayer) : void

+ Resurrect(card : SecureCard) : void

+ Reveal(card : SecureCard) : void

+ WithDraw() : void

+ GetHashTail() : HashSet

- Tail : String

- SeedC : String

- U : String

- V : List<String>

- pub : PublicKey

- priv : PrivateKey

- HashChain : LinkedHashSet

SecurePlayer

+ NotifyMessage() : void

+ BroadcastMessage() : void

+ SendMessage() : void

- SecureNetworkManager : SecureNetworkManager

SecureMessageBroker

- Mask : int

- HashMaskedId : String

- TimeAdquired : TimeStamp

SecureCard

+ MonitorConnections() : Event

+ AckDisconnect() : void

+ Disconnect() : void

- DisconnectedListeners : List<Listener>

SecureNetworkManager

57

SecureTCG.CypherEngine

Figura 23 – Diagrama de pacotes do SecureTCG.CypherEngine

Esse pacote contém a implementação necessária para transformar o jogo

representado pelos pacotes anteriores em um jogo seguro contra trapaças. Podemos

notar que foram inseridas informações às classes das cartas e do jogador. Essas

informações foram detalhadas no estudo do algoritmo selecionado, e são essenciais

para os métodos seguros. Os métodos WithDraw, Reveal, Resurrect e Attack são os

métodos que possibilitam a dinâmica do jogo. Mas as implementações destes também

incluem trocas de informações criptográficas definidas no protocolo SecureTCG.

Além de prover classes abstratas relacionadas ao domínio do sistema (ao jogo

especificamente), esse pacote prove abstrações para a comunicação adicionando

suporte a saída de jogador no meio do jogo, avisando os demais jogadores e decidindo

o que fazer, esperar o jogador voltar ou desconsiderar o turno dele.

 pkg

Game.Core

Game.Core.Domain

Game.Core.Logs

- lifeScore : int

+ SufferDamage(attacker : Card) : boolean

- puid : int

- cuid : int

- Name : String

Card

+ Attack(Card : Card, Victim : Player) : void

+ Resurrect(card : Card) : void

+ Reveal(card : Card) : void

+ WithDraw() : void

- lifeScore : int

- otherPlayers : List<SecurePlayer>

- battleField : Battlefield

- discardPile : DiscardPile

- hand : Hand

- deck : Deck

- puid : int

- Name : String

Player

- LogMessage : LogMessage

- User : User

- MessageName : String

- Time : TimeStamp

LogRecord

Game.Core.Auth

Game.Data

- PUID : String

- PasswordHash : HashSet

- Player : List<Player>

- Name : String

User

- Message : String

- LogParameter : List<LogParameter>

LogMessage

+ StartupMap(string ConnectionString : int) : void

+ DeleteData(Id : int) : Object

+ UpdateData(entity : BaseEntity) : Object

+ SaveData(entity : BaseEntity) : Object

+ GetData(Id : int) : Object

DataAccessContext

Game.Core.ViewModels

Game.UI

LoginViewModel

+ Logoff() : boolean

+ Login(name : String, password : String) : boolean

- CurrentUser : User

PlayerManager

- LogRecord : LogRecord

- ParameterValue : String

- ParameterName : String

- MessageName : String

LogParameter

Game.Core.Network

+ MapEntity<TEntity>() : void

DataMapping

Game.UI.View

+ operation24() : void

GameManagerView

Game.UI.Infra

+ InitComponents() : void

- ListComboBox : List<JComboBox>

- ListTextFields : List<JTextField>

- ListLabels : List<JLabel>

- ListButtons : List<JButton>

BaseView

- NetworkConfig : NetworkConfig

- IsActive : Boolean

- connectionString : String

Listener

- Id : int

BaseEntity

+ DeleteData(Id : int) : Object

+ UpdateData(entity : BaseEntity) : Object

+ SaveData(entity : BaseEntity) : Object

+ GetData(Id : int) : Object

- AppContext : DataAccessContext

Repository

+ operation23() : void

PlayerManagerView

AppResolveMe: IResolveMe

- DeviceName : String

- MACadress : String

NetworkConfig

Game.Communication

CardsManagerView

+ GetListeners() : List<Listener>

+ Connect(connectionString : String) : boolean

- ListenersInRange_0 : List<Listener>

- ListenersInRange : List<Listener>

- ActiveListeners : List<Listener>

NetworkManager

+ NotifyMessage(Message : String, Origin : Listener) : boolean

+ BroadCastMessage() : boolean

+ SendMessage(message : int, listeners : List<Listener>) : boolean

- NetworkManager : NetworkManager

MessageBroker

BlueToothMessageBroker ZigBeeMessageBroker LANMessageBroker
+ ExecuteOnBackground(Operation : Predicate) : void

- ThreadPool : Threads

AsyncWorkRunnable

Game.Infra

+ Get(service : Class) : Object

+ Register(service : Class, implementation : Class) : Boolean

+ GetContainer() : Container

+ Init() : void

- appContainer : Container

DependencyInjectionContainer

+ ResolveMe() : void

IResolveMe

LoginView PairedConnectionsView GamesScreensView

+ WithDraw() : Card

Deck

+ Reveal(card : Card) : Card

Hand

+ Resurrect(card : Card) : Card

DiscardPile

+ Add(index : int) : boolean

+ Remove(index : int) : boolean

listOfCards : List<Card>

CardCollection

+ Attack(Attacker : Card, Victim : Card) : void

Battlefield

SecureTCG.CypherEngine

SecureTCG.CypherEngine.Domain SecureTCG.CypherEngine.Communication

+ Attack(card : SecureCard, victim : SecurePlayer) : void

+ Resurrect(card : SecureCard) : void

+ Reveal(card : SecureCard) : void

+ WithDraw() : void

+ GetHashTail() : HashSet

- Tail : String

- SeedC : String

- U : String

- V : List<String>

- pub : PublicKey

- priv : PrivateKey

- HashChain : LinkedHashSet

SecurePlayer

+ NotifyMessage() : void

+ BroadcastMessage() : void

+ SendMessage() : void

- SecureNetworkManager : SecureNetworkManager

SecureMessageBroker

- Mask : int

- HashMaskedId : String

- TimeAdquired : TimeStamp

SecureCard

+ MonitorConnections() : Event

+ AckDisconnect() : void

+ Disconnect() : void

- DisconnectedListeners : List<Listener>

SecureNetworkManager

58

8 DEFINIÇÃO DA ACEITAÇÃO

Baseado nos requisitos levantados, a seguir estão os critérios para aceitação da Prova

de Conceito do protocolo SecureTCG:

 Desenvolvimento de aplicação desktop de jogo TCG com suporte a múltiplos

jogadores, que trate dos processos de estabelecimento de comunicação entre

jogadores interessados em disputar uma partida e apresente boa performance e

usabilidade;

 Implementação das regras e da dinâmica comumente encontradas nos TCGs

comerciais definidas para o jogo TCG exemplo, que permitam a disputa de

partidas completas e o surgimento de cenários suscetíveis a trapaças;

 Implementação dos mecanismos protocolo SecureTCG na aplicação, de forma

a garantir a prevenção ou detecção das trapaças estipuladas na inicialização e

no decorrer de uma partida, de maneira puramente P2P;

 Implementação de ferramentas de execução deliberada de trapaças na

inicialização e no transcorrer de uma partida, que permitam exercitar a

implementação dos mecanismos de segurança propostos pelo protocolo;

 Criação de mecanismo de gravação e exibição de log, rodando em todas as

etapas do jogo, cobrindo principalmente a troca de mensagens do protocolo, de

forma a evidenciar a sua atuação na garantia de prevenção e detecção de

trapaças em uma partida;

 Elaboração de interface gráfica amigável e intuitiva na solução final, que permita

fluidez nas ações do usuário, inclusive no jogo;

 Obtenção de uma solução final que permita, através da operação conjunta das

implementações acima citadas, validar a viabilidade de utilização do protocolo

SecureTCG na obtenção de segurança contra trapaças em partidas TCG online

sobre arquitetura P2P, atingindo a meta principal da Prova de Conceito.

59

9 CONCLUSÃO E TRABALHOS FUTUROS

O projeto de prova de conceito do protocolo SecureTCG foi concluído de forma a

evidenciar o funcionamento esperado fornecendo as garantias de segurança

adequadas a um Trading Card Game. Para isso, foi desenvolvido uma aplicação de

jogo de cartas com regras simples de ataque e defesa com interface amigável e log

de monitoramento dos processos criptográficos em tempo real.

A implementação do projeto apresentou desafios no que diz respeito à necessidade

de refatorar certas partes do projeto do SecureTCG original de forma a garantir uma

maior modularidade do sistema e do projeto do protocolo em si. Além disso, o

desenvolvimento das rotinas base do gestor de mensageria criptográfica e de entidade

que utilizam bibliotecas gráficas representaram desafios importantes no decorrer do

projeto.

Os membros do grupo, no decorrer do projeto, evoluíram tanto tecnicamente através

da implementação de uma aplicação utilizando o paradigma de orientação a objetos

quanto no que diz respeito a conceitos de segurança e criptografia envolvidos na

solução proposta.

Os trabalhos futuros propostos pelo grupo se dividem em dois grupos de atividades:

os relacionados a melhorias do protocolo SecureTCG descrito e os relativos a

implementações de provas de conceito do protocolo de segurança em ambientes que

não foram explorados neste trabalho.

No que diz respeito a melhorias do protocolo SecureTCG, podemos destacar que no

formato atual da solução o servidor do jogo participa tanto no processo de aquisição

de cartas pelo jogador como nas trocas de cartas entre os jogadores. A possibilidade

de os jogadores trocarem cartas sem a intervenção de um servidor central é uma

questão que não foi explorada na versão atual do protocolo. Este tópico apresenta

alguns desafios semelhantes aos encontrados no estudo de dinheiro eletrônico. Por

exemplo, usar um cartão que foi trocado com outro jogador múltiplas vezes é

semelhante a gastar a mesma moeda digital mais de uma vez. Dessa forma, avanços

no protocolo SecureTCG de forma a incorporar tais problemáticas à narrativa do jogo

é um item a ser potencialmente explorado no futuro.

Além disso, apesar do protocolo proposto englobar a maioria das operações básicos

de um Trading Card Game, algumas operações particulares presentes em alguns

60

jogos como por exemplo uma carta presente em Hand ou em Used ser novamente

inserida no Deck de Jogo não estão presentes no escopo da versão atual do protocolo.

Cabe ressaltar também que operações específicas do jogo de prova de conceito como

a ação de atacar um outro jogador não fazem parte dos requisitos de segurança do

protocolo, de forma que a garantia de segurança destas também poderia constituir

material para trabalhos futuros.

Já no que diz respeito a melhorias futuras relativas à implementação do jogo de prova

de conceito, o desenvolvimento de aplicações focadas em dispositivos móveis

também apresenta potencial para trabalhos futuros.

61

10 REFERÊNCIAS

BETHEA, D.; COCHRAN, R.; REITER, M. Server-side verification of client behavior in

online games. ACM Transactions on Information and System Security (TISSEC)

Journal, New York, NY, USA, v. 14, n. 4, a. 32, 2011.

BEVILACQUA, F. Building a Peer-to-Peer Multiplayer Networked Game. Tuts+ Free

Game Development Tutorials, 2013. Disponível em:

<http://gamedevelopment.tutsplus.com/tutorials/building-a-peer-to-peer-multiplayer-

networked-game--gamedev-10074> Acesso em: 06 nov., 2015.

DIGITAL CARD GAMES REPORT. New York, NY, USA: SuperData, 2013. Disponível

em: <https://www.superdataresearch.com/market-data/digital-card-games/> Acesso

em: 26 jun., 2015.

ESSENTIAL FACTS ABOUT THE COMPUTER AND VIDEO GAME INDUSTRY.

Washington, DC, USA: Entertainment Software Association, 2014. Disponível em:

<http://www.theesa.com/wp-content/uploads/2014/10/ESA_EF_2014.pdf> Acesso

em: 26 jun., 2015.

FIRST MODERN TRADING CARD GAME. London, UK: Guinness World Records,

1993. Disponível em: <http://www.guinnessworldrecords.com/world-records/first-

modern-trading-card-game/> Acesso em: 30 out., 2015.

GAUDIOSI, J. Mobile game revenues set to overtake console games in 2015. Fortune

- Fortune 500 Daily & Breaking Business News. Jan. 15, 2015. Disponível em:

<http://fortune.com/2015/01/15/mobile-console-game-revenues-2015/> Acesso em:

26 jun., 2015.

LEAL, R. et al. SecureTCG: A lightweight cheating-detection protocol for P2P

multiplayer online trading card games. São Paulo, Universidade de São Paulo, 2013.

29 p.

62

NEUMANN, C. et al. Challenges in Peer-to-Peer Gaming. ACM SIGCOMM Computer

Communication Review Newsletter, New York, NY, USA, v. 37, n. 1, p. 79-82, 2007.

PITTMAN, D.; GAUTHIERDICKEY, C. Match+guardian: a secure peer-to-peer trading

card game protocol. In MULTIMEDIA Systems, Springer Berlin Heidelberg, 2013. v.

19, n. 3, p. 303-314.

ROCA, J. Contributions to Mental Poker. 2005. Tese (PhD) – Universitat Autònoma de

Barcelona, Barcelona, 2005.

ROTHAERMEL, F.; KOTHAAND, S.; MOXON, D. Wizards of the Coast. Seattle, WA,

USA: University of Washington Business School, 1998. 12 p. Case para discussão em

aula. Disponível em:

<http://faculty.bschool.washington.edu/skotha/website/cases%20pdf/Wizards%20of%

20the%20coast%201.4.pdf> Acesso em: 30 out., 2015.

SIMPLICIO, M. Segurança em Redes de Computadores - Funções de Hash, Códigos

de Autenticação e Números Aleatórios. São Paulo: Epusp, 2015. p. 11. Slides

utilizados para aulas da disciplina PCS2582 – Segurança da Informação.

WILLIAMS, J. Consumption and Authenticity in the Collectible Strategy Games

Subculture. In: WILLIAMS, J.; HENDRICKS, S.; WINKLER, W. Gaming as Culture:

Essays on Reality, Identity and Experience in Fantasy Games. Jefferson, NC, USA:

McFarland & Company, 2006. p. 77-99. Disponível em:

<http://www3.ntu.edu.sg/home/patrick.williams/PDFs/Williams%20-%20CSGs.pdf>

Acesso em: 30 out., 2015.

63

APÊNDICE A – DIAGRAMAS DE PACOTES

 pkg

Game.Core

Game.Core.Domain

- Id : int

BaseEntity

Game.Core.Logs

- lifeScore : int

+ SufferDamage(attacker : Card) : boolean

- puid : int

- cuid : int

- Name : String

Card

+ Attack(Card : Card, Victim : Player) : void

+ Resurrect(card : Card) : void

+ Reveal(card : Card) : void

+ WithDraw() : void

- lifeScore : int

- otherPlayers : List<SecurePlayer>

- battleField : Battlefield

- discardPile : DiscardPile

- hand : Hand

- deck : Deck

- puid : int

- Name : String

Player

- LogMessage : LogMessage

- User : User

- MessageName : String

- Time : TimeStamp

LogRecord

Game.Core.Auth

Game.Data

- PUID : String

- PasswordHash : HashSet

- Player : List<Player>

- Name : String

User

- Message : String

- LogParameter : List<LogParameter>

LogMessage

+ StartupMap(string ConnectionString : int) : void

+ DeleteData(Id : int) : Object

+ UpdateData(entity : BaseEntity) : Object

+ SaveData(entity : BaseEntity) : Object

+ GetData(Id : int) : Object

DataAccessContext

Game.Core.ViewModels

Game.UI LoginViewModel

+ Logoff() : boolean

+ Login(name : String, password : String) : boolean

- CurrentUser : User

PlayerManager

- LogRecord : LogRecord

- ParameterValue : String

- ParameterName : String

- MessageName : String

LogParameter

Game.Core.Network

+ MapEntity<TEntity>() : void

DataMapping

Game.UI.View

GameManagerView

Game.UI.Infra

+ InitComponents() : void

- ListComboBox : List<JComboBox>

- ListTextFields : List<JTextField>

- ListLabels : List<JLabel>

- ListButtons : List<JButton>

BaseView

- NetworkConfig : NetworkConfig

- IsActive : Boolean

- connectionString : String

Listener

+ DeleteData(Id : int) : Object

+ UpdateData(entity : BaseEntity) : Object

+ SaveData(entity : BaseEntity) : Object

+ GetData(Id : int) : Object

- AppContext : DataAccessContext

Repository

PlayerManagerViewAppResolveMe: IResolveMe

- DeviceName : String

- MACadress : String

NetworkConfig

Game.Communication

CardsManagerView

+ GetListeners() : List<Listener>

+ Connect(connectionString : String) : boolean

- ListenersInRange_0 : List<Listener>

- ListenersInRange : List<Listener>

- ActiveListeners : List<Listener>

NetworkManager

+ NotifyMessage(Message : String, Origin : Listener) : boolean

+ BroadCastMessage() : boolean

+ SendMessage(message : int, listeners : List<Listener>) : boolean

- NetworkManager : NetworkManager

MessageBroker

BlueToothMessageBroker ZigBeeMessageBroker LANMessageBroker
+ ExecuteOnBackground(Operation : Predicate) : void

- ThreadPool : Threads

AsyncWorkRunnable

Game.Infra

+ Get(service : Class) : Object

+ Register(service : Class, implementation : Class) : Boolean

+ GetContainer() : Container

+ Init() : void

- appContainer : Container

DependencyInjectionContainer

+ ResolveMe() : void

IResolveMe

LoginView

PairedConnectionsView

GamesScreensView

+ WithDraw() : Card

Deck

+ Reveal(card : Card) : Card

Hand

+ Resurrect(card : Card) : Card

DiscardPile

+ Add(index : int) : boolean

+ Remove(index : int) : boolean

listOfCards : List<SecureCard>

CardCollection

+ Attack(Attacker : Card, Victim : Card) : void

Battlefield

SecureTCG.CypherEngine

SecureTCG.CypherEngine.Domain SecureTCG.CypherEngine.Communication

+ Attack(card : SecureCard, victim : SecurePlayer) : void

+ Resurrect(card : SecureCard) : void

+ Reveal(card : SecureCard) : void

+ WithDraw() : void

+ GetHashTail() : HashSet

- Tail : String

- SeedC : String

- U : String

- V : List<String>

- pub : PublicKey

- priv : PrivateKey

- HashChain : LinkedHashSet

SecurePlayer

+ NotifyMessage() : void

+ BroadcastMessage() : void

+ SendMessage() : void

- SecureNetworkManager : SecureNetworkManager

SecureMessageBroker

- Mask : int

- HashMaskedId : String

- TimeAdquired : TimeStamp

SecureCard

+ MonitorConnections() : Event

+ AckDisconnect() : void

+ Disconnect() : void

- DisconnectedListeners : List<Listener>

SecureNetworkManager

