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Resumo

Uma previsao adequada da demanda de poténcia elétrica é de fundamen-
tal importancia para o planejamento e operacao do sistema de distribuicao
de eletricidade. Perante este contexto, o objetivo deste trabalho foi estudar
técnicas de previsao e suas aplicagoes na estimativa de demanda de poténcia
elétrica ativa a curtissimo prazo. Primeiramente, diferentes topologias das
redes neurais denominadas focused time delay neural network (FTDNN)
e nonlinear autoregressive network with exogenous inputs (NARX) foram
avaliadas, e, as melhores configuracoes selecionadas. Em seguida, as topolo-
gias escolhidas foram comparadas com os métodos autoregressivo de média
movel integrado (ARIMA) e suavizag¢ao exponencial, denominados clssicos.
Utilizou-se os dados de cinco dias de observacao das demadas de poténcia
ativa e reativa da Subestagdo Andorinha (CPFL). Todas as técnicas foram
avaliadas através do critério MAPE para previsoes de 1 e 5 passos adiante.
Conclui-se que as redes neurais apresentam os menores erros, no entanto, o
tempo necessario para que estas fornecam o resultado pode implicar em um
preterimento destas em relacao aos métodos cléssicos.

Palavras-chave: Previsao, redes neurais, ARIMA, suavizacdo exponen-
cial, demanda de poténcia elétrica






Sumario

1 Introdugao 9
1.1 RedesNeurais. . . .. ... .. ... .. ... ... ...... 10
1.1.1  Arquitetura Bésica de uma Rede . . . . . . . .. ... 11

1.1.2 O métodos backpropagation . . . . . .. .. ... ... 13

1.2 Métodos Classicos . . . . . . . . . . . i e 16
1.2.1 Suavizagao Exponencial . . . ... ... ... ... .. 16

1.2.2 ARIMA . ... ... e 19

1.2.3 Previsao Inocente . . . . . . . ... ... ... .. 20

2 Objetivos 23
3 Material e Métodos 25
3.1 Definicao das arquiteturas derede . . .. ... ... .. ... 26
3.2 Comparagao dos modelos . . . . . . .. ... 33

4 Resultados e Discussao 39
4.1 Definigao das arquiteturas derede . . . . . .. . . ... ... 39
4.2 Comparagao dos modelos . . . . . . ... ... L. 41

5 Conclusoes 49

6 Trabalhos Futuros 51






Lista de Figuras

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9

3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

Representagao do neuronio. . . . . . . .. ... 10
Perceptron, o modelo computacional do neurénio. . . . . . . . 11
Arquitetura MLP com uma camada escondida. . . . . . ... 12
Trés fungoes tipo sigmdide (c=1, c=2 e c=3). . . . . . . ... 13
Ezemplo de funcdo de erro. . . . . . ... 14
Esquema geral de uma rede ”feedforward”. . . . . . . . .. .. 15
Adaptagdo da rede incluindo funcdo de erro. . . . . . . . . .. 16
Ezemplo de previsao inocente - 5 passos. . . . . . .. .. ... 21
Série modificada da demanda de poténcia ativa. . . . . . . . . 26
Série modificada da demanda de poténcia reativa. . . . . . . . 26
Representacao da rede FTDNN. . . . . . . . ... ... .... 27
Representagdo da rede NARX. . . . . . . . ... ... .... 28
Configuracoes paralela e série-paralela, rede NARX. . . . .. 28
Funcao tangente hiperbolica. . . . . . . . . . ... 30
Rede neural para previsao de 1 passo. . . . . . . . . . .. ... 30
Algoritmo utilizado para a definicao da arquitetura étima das

redes NARX e FTDNN. . . . . . . . .. ... ... ...... 32
Algoritmo utilizado para a previsdo - rede FTDNN. . . . . . . 34
Algoritmo utilizado para a previsdo - rede NARX. . . . . . .. 35
Algoritmo utilizado para a previsdo - Suavizacdo Ezxponencial. 36
Algoritmo utilizado para a previsdo - método ARIMA. . . . . 37
MAPE das melhores arquiteturas FTDNN. . . . . . . ... .. 39
MAPE das melhores arquiteturas NARX. . . . . ... .. .. 40
Previsdo de 1 passo - Rede FITDNN. . . . .. ... ... ... 41
Previsao de 1 passo - Rede NARX. . . . . . ... .. ..... 42
Previsao de 1 passo - Suavizacdo Fxponencial. . . . . . . . . . 42
Previsdo de 1 passo - ARIMA. . . . . ... .. ... ..... 43
Previsao de 5 passos - Rede FTDNN. . . . . .. .. ... ... 43
Previsao de 5 passos - Rede NARX. . . .. ... ... .... 44
Previsdo de 5 passos - Suavizagao Fxponencial. . . . . . . .. 44
Previsdao de 5 passos - ARIMA. . . . . ... ... ... .... 45

Ganho em relagdo a Previsdo Inocente - 1 passo. . . . . . .. 47






Lista de Tabelas

1.1
1.2

4.1
4.2
4.3
4.4

Classificacao dos modelos de Suavizacao Exponencial. . . . . 17
Equacgoes para o cdlculo dos parametros recursivos e previsao 18

Sumdrio dos resultados FTDNN. . . . . . . ... ... .... 40
Sumdrio dos resultados NARX. . . . . . . . . . . ... .... 40
Sumdrio dos resultados finais. . . . . . ... 45

Tempo gasto para previsao de uma observacdo. . . . . . . . . 46






Capitulo 1

Introducao

Uma previsao adequada do consumo de energia elétrica por parte de uma
empresa distribuidora é de fundamental importancia tanto para planeja-
mento quanto para operacao do sistema de distribuicao. Indices como confia-
bilidade de suprimento e até mesmo uma operacao mais racional e econémica
estdo ligados a esta previsdo. Atualmente, diversos métodos se propoem a
realizar esta tarefa a partir dos dados histéricos de demanda de poténcia,
denominados séries temporais.

Uma série temporal é um conjunto de observagoes tomadas seqiiencial-
mente no tempo. Para as aplicacoes pretendidas se deve exigir que as ob-
servagoes estejam dispostas em intervalos de tempo discretos e fixos. Em
geral, as séries apresentam como caracteristica fundamental a dependéncia
entre observagoes adjacentes [4]. A andlise de séries temporais tem por ob-
jetivo utilizar técnicas para analisar esta dependéncia e desenvolver modelos
dinamicos que representem a evolucao dos dados.

Como o interesse do estudo é previsao, deve-se construir modelos que, a
partir das observagoes disponiveis até o instante ¢, possam estimar os valores
futuros da série em um dado tempo ¢ + h. Desta forma, a quantidade y; de
poténcia demandada no instante ¢, e os valores y;—1, y1—2, ¥t—3,... , podem
ser utilizados para a previsao da demanda em h = 1,2,3,... intervalos de
tempo a frente. Denotaremos por ;(h) a previsao feita em ¢ da demanda
Yrrn que serd observada no tempo ¢t + h. A fungao 9:(h), que nos oferece
a previsao para todo tempo futuro, serd chamada fun¢do de previsdo na
origem t. Deve-se obté-la garantindo que os desvios |y — 9:(h)| sejam os
menores possiveis para cada h.

Ha alguns anos os modelos baseados em técnicas de estatistica cldssica
eram considerados como ferramenta principal disponivel para atingir tal
meta. Porém, atualmente, as redes neurais tém apresentado excelentes re-
suldados surgindo como candidatas para a realizacao desta tarefa.



1.1 Redes Neurais

Redes Neurais sao sistemas de processamento em paralelo inspirado no
comportamento do sistema nervoso humano. McCulloch e Pitts (1943)
foram os primeiros a criarem o neurénio computacional baseado no mo-
delo do neurdnio biolégico. Este primeiro modelo caracteriza-se por ser um
dispositivo binario, com limiares fixos, que se conecta a outros neuronios
por sinapses [41]. As principais partes constituintes do neurénio, ou seja, o
corpo celular com seu nucleo, os dendritos que alimentam o corpo celular
com os sinais externos e o axénio que carrega os sinais para fora da célula,
sao apresentadas pela figura 1.1.

Dendritos

Neurdnio

Figura 1.1: Representacao do neuronio.

A lista dos primeiros contribuintes deste campo ¢é vasta, com destaque
para o pesquisador Rosenblatt (1958) [15], quem estendeu a idéia do neurdnio
computacional para o perceptron (figura 1.2), como um elemento auto-
organizdvel capaz de aprender por feedback. Widrow e Hoff (1960) [3]
criaram os dispositivos conhecidos como ADALINE (Adaptive Linear E-
lement) e MADALINE (multiple ADALINE) que, utilizando-se do algo-
ritmo conhecido como regra delta, sao treinados a partir de vetores padroes
apresentados a rede. Em 1969, Minsky e Papert [37] (1969), mostraram
que os sistemas perceptron multicamadas (MLP, figura 1.3) apresentavam
limitagoes de apredizado similares aos de camada tnica. Rumelhart e Mc-
Clelland (1986) [11] provaram que a visao de Minsky e Papert estava errada,
mostrando que o sistema MLP apresenta grande sucesso na tarefa de dis-
criminacao nao linear, sendo também capaz de aprender padroes complexos
através do método backpropagation (retropropagagao).

Apés um periodo de estagnacao, o interesse da pesquisa na area passou
a ser o desenvolvimento de arquiteturas de redes modificadas, tais como,
self-organizing networks [12](Mari e Maginu, 1988), resonating neu-
ral networks [35] (Grossberg, 1988), feedforward network (Werbos,
1974) [26], associative memory networks (Kohonen, 1989) [38], coun-
terpropagation networks (Hecht-Nielsen, 1987a), [30] recurrent net-
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works(Elman, 1990) [22], radial basis function networks (Broomhead
and Lowe, 1988)[7], probabilistic networks (Specht, 1988) [9], etc.

Entradas Pesos Xo =1 Limiar Saida
X
Elemento Elemento R
xz Nao Linear ya
X, Perceptron

Figura 1.2: Perceptron, o modelo computacional do neurénio.

Desde o principio, as redes neurais tém se mostrado como poderosas
ferramentas para analise de sinais, extragdo de caracteristicas, classificagdo
de dados, reconhecimento de padroes, etc. Devido a sua capacidade de
aprendizado e generalizagao, as redes tém sido largamente utilizadas por
pesquisadores como ferramenta para o processamento de dados experimen-
tais.

Suas principais aplicagoes incluem: (i) Mapeamento da relacao entre os
valores passados e futuros de uma série temporal (previsao); (i) Captura
da relacao funcional essencial entre dados quando esta nao é conhecida a
priori ou é de dificil descricdo matemaética;(iii) Aproximacao de fungoes
para qualquer grau de acurdcia; e (iv) Aprendizado e generalizacao a partir
de exemplos.

Hu (1964) [25] foi o primeiro a demonstrar, em um exemplo de previsao
de tempo, a capacidade preditiva de uma rede neural. Werbos (1974) [26]
utilizou esta ferramenta para prever o comportamento de outra série tem-
poral. Entretanto, os modelos até entao pouco adequados, nao motivaram
avangos significativos na area. KEste periodo de estagnagao chegou ao fim
quando Rumelhart e colaboradores (1986)[34] reformularam o algoritmo de
treinamento backpropagation.

1.1.1 Arquitetura Basica de uma Rede

Inspirado nos trabalhos de McCulloch e Pitts (1943), Rosenblatt (1958)
criou o perceptron (figura 1.2), onde a parte central do dispositivo contém
um elemento somador e um elemento nao linear, também conhecido como
fungao de ativagao, os multiplos sinais de entrada x; sao conectados via
ponderacao w; a parte central do elemento, o sinal de saida observado em
Yo € dado pela soma das entradas x; ponderadas pelos pesos w; aplicada na
funcao de ativacao, a entrada adicional wg é chamada limiar de ativacao do
neuroénio.
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Nestas condigoes, o sinal de saida é dado por
Yo = f(Zwil‘ri-wo) (1.1)
i=1

Originalmente, Rosenblatt propos uma funcao de ativacao tipo degrau
unitario. Desta forma, a funcao é ativada, isto é, produz sinal de saida se, e
somente se, a condicio w’ x 4+ wg > 0 é observada.

O perceptron é capaz de ”aprender”, isto €, os pesos de suas interconexoes
sao automaticamente ajustados de acordo com o conjunto de dados apre-
sentados. Para realizar esta tarefa, Widrow e Hoff (1960) propuseram ori-
ginalmente o uso da regra delta, que caracteriza-se por ser um algoritmo
de aprendizado recursivo baseado no gradiente do erro de saida (também
chamado a-LMC Algorithm). Embora simples, o aprendizado através da
regra delta tem, na maioria dos casos, demonstrado uma alta eficiéncia e
excelente taxa de convergéncia.

Um simples perceptron nao é capaz de solucionar problemas complexos,
no entanto, para estes casos, uma rede mais sofisticada denominada per-
ceptron multicamadas (MLP) foi construida. Esta rede apresenta, além
da camada de entrada e camada de saida, as camadas escondidas (hidden
layers) que sao inseridas entre as primeiras para formar uma rede em cascata,
como nos mostra a figura 1.3. O termo ”camada escondida” significa que es-
tas nao podem ser acessadas diretamente, mas apenas através das camadas
de entrada (input layer) e/ou saida (output layer). Na pratica, apenas uma
Unica camada escondida é capaz de extender a capacidade computacional
da rede e prover boas solugao para a maioria dos problemas praticos [8].

Rede Perceptron Multicamadas

Y

Y2

Ym

Entradas Saidas
Camada Camada Camada
de Entrada Escondida de Saida

Figura 1.3: Arquitetura MLP com uma camada escondida.
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1.1.2 O métodos backpropagation

Considerado como uma generalizagao da regra delta, foi inicialmente desen-
volvido por Paul Werbos em 1974 mas sé ficou conhecido apés seu ”redesco-
brimento” por Parker em 1982. O algoritmo, entretanto, tornou-se popu-
lar somente quando reformulado por Rumelhart e colaboradores (1986), e
passa a ser intensivamente utilizado para treinar as redes perceptron multi-
camadas. Atualmente o backpropagation é utilizado, em uma forma modi-
ficada, para treinar também outros tipos de rede.

Neste processo de treinamento, o algoritmo procura pelo minino da
funcédo de erro aplicada no espago dos pesos sindpticos através do método
gradiente descendente. A combinacado de pesos que minimiza a funcdo de
erro ¢ considerada a solugao do processo de aprendizagem. Como o método
requer o calculo do gradiente da funcao de erro, deve-se garantir que esta
seja continua e diferenciavel. Uma forma de obter esta garantia é utilizar
fungoes de ativagao que apresentam estas caracteristicas, como por exemplo,
fungoes do tipo sigmdide definida por

1

= 1.2
14+ e c® (1.2)

Se(x)

e apresentada pela figura 1.4.

X

4 2 0 2 4

Figura 1.4: Trés fungoes tipo sigmdide (c=1, c=2 e c¢=3).

Adotando sem perda de generalidade ¢ = 1, encontra-se a derivada desta
funcao em relacao a x,

d —x
—s1(2) = =

Areme s(z)(1 — s(z))

e nota-se que s.(x) é claramente, continua e diferenciavel para todo x € R
O maior problema na utilizacdo destas funcoes é que, em determinadas

circunstancias, minimos locais aparecem na funcao de erro, o que nao ocor-

reria se fossem utilizadas fungoes do tipo degrau. A figura 1.5 mostra um

exemplo de funcao de erro que apresenta um minimo local referente a um

alto valor de erro se comparado ao minimo global. O gréfico foi obtido a
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partir de uma unidade simples com dois pesos, limiar constante, e quatro
conjuntos de entrada e saida apresentados durante o treinamento. Existe
um vale na funcao de erro e, se o gradiente partir desta regiao, jamais o
algoritmo convergird para o minimo global.

Figura 1.5: Ezemplo de fungdo de erro.

Em uma rede tipo feedforward (figura 1.6) a informagao move-se em ape-
nas uma direcao, nao havendo retrocesso como no caso das redes recorrentes.
Cada unidade da rede é capaz de avaliar somente os valores de suas proprias
entradas. A rede neural representa uma cadeia de fungoes compostas que
transformam um conjunto de entradas em um vetor de saida. Desta forma,
a rede configura-se como uma funcao composta, denominada funcdo de rede
que leva uma dada entrada a um ponto no conjunto espacial da saida. O
aprendizado consiste em encontrar a combinacao 6tima de pesos para que
a fungao de rede ¢ se aproxime o maximo possivel de uma dada funcao f.
Entretanto, nés nao temos a funcao f explicitamente mas apenas de forma
implicita através de alguns exemplos.

Considere uma rede feedforward com n entradas, m unidades de saidas e
um numero qualquer de camadas escondidas, tal qual nos mostra a figura 1.7.
Considere também um conjunto de treinamento {(x1,t1),...,(xp,tp)} que
consiste de p pares ordenados de vetores n e m dimensional respectivamente.
Adotaremos as fungoes de cada né como continuas e diferenciaveis. Os pesos
iniciais da rede sao reais e dados aleatoriamente. Quando uma entrada
padrao x; pertencente ao conjunto de treinamento é apresentada a rede,
esta produz uma saida o; diferente, em geral, de t;. O que queremos é fazer
com que o; seja idéntico a t; para ¢ = 1,...,p, utilizando um algoritmo de
aprendizagem. Mais precisamente, queremos minimizar a funcao de erro da
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rede, definida por
12
E= 5.2; I o; —ti |2
1=

O algoritmo de backpropagation é utilizado para encontrar um minimo local
desta funcdo. O primeiro passo deste processo é estender a rede para que
sua nova saida apresente de forma direta a funcao de erro, como apresentado
pela figura 1.7. Agora, cada uma das j unidades de saida é conectada a um
né que calcula a fungao 1/2(0;; — tij)Q, onde 0;; e t;; denotam o j—ésimo
componente do vetor de saida o; e do vetor alvo t;. O resultado dos m
nos sao coletados e somados para gerar a saida F;. Somando todos os erros
quadraticos K7 + ... + E, encontramos a funcao de erro E.

Camada de
Entrada

Camada
Escondida

Camada de
Saida

Figura 1.6: Esquema geral de uma rede ”feedforward”.

Como F é uma composicao das funcoes de cada né, este é por sua vez uma
fungao continua e diferenciavel em relagao aos [ pesos da rede, wy, wo, . . ., w;.
Para minimizar FE deve-se calcular seu gradiente através da equacgao

E OF E
vp- (2F OF OF
871)1 871)2 awl
e atualizar cada peso utilizando-se o incremento

oF

onde 1=1,...,l e v representa a taxa de aprendizado, isto é, um parametro
que define o tamanho do passo que serd dado a cada iteracdo na direcao
oposta ao crescimento do gradiente. Neste sentido, espera-se encontrar um
minimo local da funcao de erro, quando VE = 0. Em geral, assume-se que
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a taxa de aprendizado é fixa e uniforme para todos os pesos. Para assegurar
a convergéncia do algoritmo, v deve ser o menor possivel. Entretanto, taxas
muito pequenas acarretam baixa velocidade de convergéncia. Por outro lado,
valores elevados podem resultar em um processo de aprendizado instdvel.
Atualmente, alguns algoritmos calculam a taxa 6tima de aprendizado em
cada iteragao, isto faz com que o método convirja rapidamente para a solugao
enquanto mantém o processo de aprendizado estavel.

Figura 1.7: Adaptacdo da rede incluindo funcao de erro.

1.2 Métodos Classicos

1.2.1 Suavizacao Exponencial

Embora este método tenha sido desenvolvido a partir da década de 50,
algoritmos capazes de selecionar o melhor modelo para uma dada série foram
desenvolvidos recentemente [33], [36] e [32]

Os métodos de suavizacao exponencial foram originalmente classificados
por Pegels’ (1969)[6] e posteriormente estendidos por [14], modificados por
[36], e estendidos novamente por [21], apresentando um total de 15 métodos
como nos mostra a Tabela 1.2.

Estao apresentadas, para ilustrar, as equacoes correspondentes ao método
(A,A), também conhecido como Holt- Winters aditivo

Nivel: It = a(yr — st—m) + (1 — a)(lt—1 + bi—1)
Tendéncia: by = (I — l—1) + (1 — 5%)bt—1
Sazonalidade: s; = y(ys — li—1 — bi—1) + (1 — 7)St—m
Previsao: §i(h) =l +bh+s,_ 1+

onde m é o tamanho da sazonalidade, [; representa o nivel da série, b; a
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tendéncia ou crescimento, s; 0 componente sazonal, g;(h) é a previsao para
h periodos a frente, e h,t, = [(h—1)mod m]+1 . Como este é um método re-
cursivo, para calcular g (h) precisa-se dos estados iniciais Iy, by € S1—m, - - -, So
e dos parametros «, * e v. A Tabela 1.2 mostra as demais equagoes.

Tabela 1.1: Classificagcdo dos modelos de Suavizagao Exponencial.

Componente de Componente Sazonal
Tendéncia N A M
(Nenhum) (Aditivo) (Multiplicativo)
N (Nenhum) N,N N,A N,M
A (Aditivo) A,N AA A,M
Ay (Aditivo amortecido) Ag,N Ag,M Aq,M
M (Multiplicativo) M,N M,A M,M
My (Multiplicativo amortecido) Mgy,N Mg, A My,M

Para cada método apresentado pela Tabela 1.1, sdo possiveis duas mod-
elagens no espaco de estados, uma correspondendo ao erro classificado como
aditivo e a outra ao erro multiplicativo. Desta forma, o método compreende
ao todo 30 modelos candidatos a descrever uma série temporal. A deter-
minacao do modelo final inclui o célculo dos parametros e, em seguida, a
determinagao da quantidade dos mesmos que otimizam a previsao.

Nesta primeira etapa, precisa-se conhecer os valores dos parametros
0=(a,B,v,6) e de xg = (lp,bo, S0, S—1,---,5_m+1) . Esta tarefa é realizada
utilizando-se o estimador de mdzimo verossimilhang¢a definido por

n n
L*(0,%0) = n zog(zs§> +2) loglr(xi-1)| (1.3)
t=1 t=1
condicionado aos parametros 0 e xg, onde n é o nimero de observacoes.
Os parametros sao entao estimados para todos os modelos enquanto se
procura minimizar L*.
Para definir o nimero de parametros, o algoritmo utiliza o critério de
informacao Akaike (AIC) [17] , definido por

AIC = L*(0,%¢) + 2q (1.4)

onde ¢ ¢ o nimero de parametros em # adicionado a quantidade de
estados em xg, e 0 e X denotam os valores estimados na etapa anterior. O
modelo que apresentar o menor AIC dentre todas as combinagoes citadas
é selecionado. Detalhes do funcionamento do algoritmo sao encontrados em
[13].
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Tabela 1.2

Tendéncia Sazonalidade
N A M
L=ay:+(1—-a)l;_; O =aly: — st—m) + (1 — )b, € =aly:/si—m) + (1 — o)y
N st =Yy — b—1) + (1 = ) 8t-m st =YW/ le—1) + (1 = ¥)$t-m
Geanp = b Peanie =4 + 8, 40 Dernje = 68y inz
b=ay+ (1 —a)(lo1 +b_y) G=a(ys — St—m) + (1 —a)(l—1 +b—1) & =aly/st—m) + (L —a)(lemy +0:-1)
A by =3y — 1)+ (1= 3")biy by =36 — i)+ (1= 3% )by by = 3% (6 — L_1) + (1 — 37)br—y

se=(y— by — b)) (L —7)S—m st = (e (b1 — be—1)) + (L — 7)se—m

Ut = Le + hby Deanje = L + hbe + Sy mtht Grtne = (& + gbm»lzi.rm

L =ay: + (1 —a)(lm + obi_1) G=a(y: —si—m)+ (L —a)(li—i +0b_1) € =alys/ss—m) + (1 — a) (i + 0bi—1)

>n— &.»H m*ﬁm»lmwlwvx_vﬁ_ﬁ},.m*vnvwwlw @wHQ*hﬁ[malpvx_vﬁ._.\ ,w*vgaIH 9 H.r.w_*ﬁmulm.»lwv;vﬁh\nrw.*vnkulp
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1.2.2 ARIMA

Uma maneira comumente empregada para compreender o comportamento
de uma série temporal, é assumir que estes sao a realizagao de um processos
estocdstico. Assim posto, considera-se a série como os valores gerados por
uma varidvel aleatoria indexada no tempo, que se comporta de acordo com
uma lei probabilistica. Entao, supoe-se que a seqiiéncia de dados em estudo
é uma realizagao particular de um processo estocastico.

Um processo estocdstico é dito estritamente estaciondrio se sua dis-
tribuicao de probabilidade conjunta nao é afetada pela alteracao da origem
temporal, isto é, o processo apresenta um certo equilibrio estatistico. Um
processo apresenta estacitonariedade fraca quando sua média e matriz de
covariancia independem do tempo.

O desenvolvimento e aplicacao dos modelos lineares que serao apresenta-
dos sao justificados quando a presenca da estacionariedade fraca é observada.
A partir de entao se utliza a palavra ”estacionaria” para aludir a propriedade
recém definida.

Uma série temporal gerada por processo estacionario tipo ARM A(p, q)
pode ser modelada pela equacao

Yt — Q1Yt-1— - — OplYt—p = 2t + 01241 + ... + 04204 (1.5)

onde {Z;} ~ WN(0,0?), isto é, a série {Z;} é um ruido branco com
média zero e variancia o2.
De forma equivalente reescreve-se as equagao como

P(B)yr = 0(B)z (1.6)

onde B é o operador de atraso, isto é, Bly; = y;_q, e, ¢(.) e (.) sdo os
polindmios

P(z) =1—1z— ... — pp2¥

O(z) =1+61z+ ...+ 6427

Os modelos ARIMA nao sazonal e ARIMA sazonal sdo generalizagoes do
modelo ARMA. No entanto, esta inclusa nestes modelos uma pré-diferenciacao
da série com o objetivo de fazer com que os comportamentos de tendéncia
e sazonalidades sejam removidos, ou seja, produzir uma série aproximada-
mente estacionaria.

Um processo ARIMA(p, d, q) nao sazonal é dado por:

¢(B)(1 - B)"y, = 0(B)z (1.7)

onde {Z;} é um ruido branco com média zero e variancia 02, B é o operador
de atraso e ¢(z) e 0(z) sao polinomios de ordem p e ¢ respectivamente.
O processo ARIMA(p,d, q)(P, D, Q),, sazonal é definido como:
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®(B™)$(B)(1 — B™)P(1 — B)ly, = ©(B™)8(B)z (1.8)

onde ®(z) e ©(z) sdo polinomios de ordem P e ) respectivamente, e m é o
tamanho da sazonalidade.

A escolha do melhor modelo ARIMA para representar uma série é con-
siderada uma tarefa subjetiva e de grande dificuldade. No entanto, o pacote
desenvolvido por Hyndman implementa uma série de algoritmos desenvolvi-
dos nos tltimos 25 anos capazes de automatizar este processo. Alguns destes
algoritmos sao encontrados em [19], [1], [23] e [20] dentre outros.

Para se construir um modelo ARIMA, a principal tarefa resume-se em
definir os valores de p,q, P,Q, D e d, como também os coeficientes de cada
polinémio ®(.), ¢(.), O(.) e 8(.). A selecao automatica destes valores também
baseia-se no critério de informagao Akaike (AIC), definido de maneira sutil-
mente diferente da anterior. Para d e D conhecidos define-se

AIC = =2log(L) +2(p+q+ P+ Q+1) (1.9)

que estima os valores dos parametros que melhor representam a série, e
concomitantemente, penaliza os pardmetros de ordem elevada, na tentativa
de construir modelos precisos e a0 mesmo tempo simples.

Os parametros d e D nao sao escolhidos diretamente por AIC pois, em
geral, este processo leva a uma sobrediferenciacao da série, provocando queda
na acuricia da previsdo. Para resolver este impasse, outros testes, tais como
Dick-Fuller [42], HEGY [2] e KPSS [45], sao aplicados previamente. Maiores
detalhes do funcionamento do algoritmo sao encontrados em [13].

1.2.3 Previsao Inocente

Consiste em adotar os valores futuros da série como iguais ao valor atual, isto
é, y¢(h) = y¢, para todo h > 0. Esta técnica é utilizada para avaliar o ganho
preditivo ao se adotar os métodos mais elaborados e pode ser trivialmente
implementada através de uma translacao da série. Como exemplo, a figura
1.8 apresenta uma previsao para 5 passos adiante.

Cabe observar que previsao inocente é um caso especial do método de
suavizagao exponencial (N,N) quando a = 1.
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x 10’ Previs&o - 5 passos — Método "Previs&o Inocente”
181

Previséo
Demanda observada

161

Demanda de Poténcia Ativa (W)

06 1 1 1 1 1 J
0 100 200 300 400 500 600

Periodos (5 min)

Figura 1.8: Ezemplo de previsdo inocente - 5 passos.
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Capitulo 2

Objetivos

Podem ser divididos em

e Encontrar as arquiteturas das redes FTDNN e NARX que ap-
resentam o menor erro médio na previsao a curtissimo prazo
da maxima demanda de poténcia ativa;

e Levando em consideragao o erro médio e o tempo gasto para
previsao, comparar as arquiteturas previamente encontradas
com as técnicas classicas na previsao a curtissmo prazo da
maxima demanda de poténcia ativa de uma subestacao, onde
a alta freqiiéncia de observagoes exige uma constante recons-
trucao do modelo empregado.

Esta divisao é necessaria pois, como veremos a seguir, antes da utilizacao
dos modelos neurais é necessario um minucioso estudo para determinar a
melhor arquitetura capaz de solucionar o problema proposto. Por outro
lado, os modelos classicos dispensam um estudo prévio, pois sao gerados de
forma automatica a partir dos critérios definidos na secao 1.2.
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Capitulo 3

Material e Métodos

Todos os processos referentes as redes neurais foram implementados através
do software MATLAB (MATrix LABoratory) [24], um programa de alta
performance amplamente utilizado na comunidade académica que integra
andlise numérica, cdlculo com matrizes e construgao de gréficos [43]. Para
a aplicacao dos métodos classicos, foi utilizada a linguagem de programacao
R [39], que caracteriza-se por ser uma linguagem de programagao e um
software voltado para a criacdo de graficos e andlises estatisticas [44].

As séries de demanda de poténcia ativa e reativa utilizadas apresentam
um total de 5 dias de observacoes coletados em periodos fixos de 10 segundos,
referente & Subestagdo Andorinha, SE40 da CPFL (Companhia Paulista de
Forga e Luz). As demandas sdo caracterizada por parcelas de consumo
residencial, industrial e comercial.

Apés a divisdo dos dados em intervalos de 5 minutos (ou 30 observagoes),
foi construida uma série modificada considerando somente as demandas
maximas observadas em cada intervalo. Entao foi prevista a poténcia maxima
demandada nos 5 minutos vindouros (1 passo a frente) e no intervalo de 20
a 25 minutos (5 passos a frente), a partir das demandas maximas ocorridas
em intervalos passados e presente. As séries obtidas estao representadas nas
figuras 3.1 e 3.2.
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x 10" Série modificada
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Figura 3.1: Série modificada da demanda de poténcia ativa.
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Figura 3.2: Série modificada da demanda de poténcia reativa.

3.1 Definicao das arquiteturas de rede

Pode-se sintetizar a seqiiéncia de agoes desta etapa em (i) preparacao dos
dados, (ii) variacao da arquitetura da rede, (iii) treinamento e (iv) avaliagao
e (v) selecao da melhor arquitetura.

Utilizou-se as redes classificadas como feedforwards conhecidas como Fo-
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cused Time-Delay Neural Network (FTDNN) e Nonlinear Autoregressive
Network with Exogenous Inputs (NARX). A vantagem de utilizarmos re-
des pertecentes a esta classe reside na elevada rapidez com que estas sao
treinadas através do método backpropagation. Esta caracteristica é alta-
mente desejavel em aplicagoes que exige um retreinamento constante.

A rede FTDNN (figura 3.3) apresenta a arquitetura mais simples dentre
as integrantes do conjunto denominado focused networks.

Entrada Camada 1 Camada 2
N7 N7 N\
pi2) (1) ()
w" I'l'l:t) ' LW X S x1
S'x(R'.f} fl 5'x1 xS’ n { ) fg
e
b' £'x1 19
R' 5'x1 5! Fx1 5
\_ J J

Figura 3.3: Representacao da rede FTDNN.

A rede NARX (figura 3.4) apresenta uma topologia similar a rede an-
terior, porém, além dos valores da série a ser prevista, é possivel adicionar
também como entrada valores exégenos. Neste trabalho foi utilizada como
entrada exdgena os valores da demanda de poténcia reativa com o objetivo
de investigar se estes refletem melhorias na previsdo. A rede ilustrada pela
figura 3.4 apresenta a versao denominada paralela, em que os valores de
entradas previstos, {g;}, sdo realimentados na entrada.

No presente trabalho utilizou-se a configuracao série-paralela (figura 3.5,
lado direito), onde os valores reais da série, {y; }, sdo utilizados como entrada
e, portanto, nao ha realimentacao de estados. Esta arquitetura apresenta
duas vantagens em relacdo a paralela. A primeira, é que produz resultados
mais precisos. A segunda, é que se trata de uma arquitetura feedforward, o
que lhe confere as vantagens supracitadas.
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Entrada Camada 1 Camada 2
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Figura 3.4: Representa¢do da rede NARX.
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Arquitetura Paralela Arquitetura Série-Paralela

Figura 3.5: Configuracoes paralela e série-paralela, rede NARX.

Preparacao dos dados
Objetivando melhorar a eficiéncia do treinamento das redes, adotou-se
uma normalizagao linear dos dados para que estes ficassem compreendidos
dentro do conjunto imagem das funcoes de ativacdo. Esta transformacao
obedeceu a seguinte equagao
Yi — Ymin
Yni = ———— (3.1)
Ymaz — Ymin
onde y,; € o valor normalizado da observagao ¥;, € Ymin € Ymaz SA0 O
menor e o maior valor da série, respectivamente.

Variagao do modelo neural

A determinacao do modelo neural é uma tarefa fundamental em qual-
quer aplicagdo de redes neurais. Deve-se encontrar a configuracao de rede
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otima capaz de resolver o problema em questao, ou seja, definir o nimero de
noés de entrada, o nimero de camada escondida, o nimero de neurénios na
camada escondida, o niimero de neuronios na camada de saida, as fungoes
de ativacao, etc., para os quais a rede apresenta os melhores resultados.

Para os objetivos do trabalho, o nimero de entrada reflete a quanti-
dade de observacoes passadas, adjacentes a observagao presente, que podem
trazer informagoes significativas para a previsao. Para definir o nimero de
entradas, iniciou-se um processo investigativo que implicou em variar este
numero enquanto se monitorava a eficiéncia da previsao. No presente tra-
balho testou-se os seguintes valores: 1, 2, 3, 5,6, 7, 8, 9 e 11.

O numero de saidas é, em geral, dedutivel diretamente das necessidades
do problema. Neste caso pretendeu-se fazer a previsao de um tunico valor
que se encontrava 1 passo a frente, o que implicou na adocao de apenas um
noé de saida.

Como ja mencionado, para a maioria das aplicagoes de redes neurais,
a adocao de uma tunica camada escondida ¢é suficiente para solucionar o
problema (teorema de superposicao de Kolmogorov), enquanto garante uma
arquitetura simples e de rapido treinamento. Assim, as arquiteturas com
nenhuma ou uma camada escondida foram avaliadas.

Decidir pelo nimero de neurénios na camada escondida, mais uma vez,
implica em um procedimento sem uma regra geral. No entanto, algumas su-
gestoes nos guiaram nesta tarefa. Sugere-se utilizar de 0.5 a 3 vezes o niimero
de neurénios da camada de entrada. A regra da piramide geométrica,
por outro lado, aconselha

Nh = 05\2/ NiNo

neuronios na camada escondida quando esta é unica, onde N; é o niimero
de entradas da rede, Ny é o nimero de saida, e « é o fator multiplicativo que
depende da complexidade do problema a ser resolvido (0.5 < o < 2). Como
exemplo, para uma rede tipo FTDNN adotando o maximo valor de «, 11
neuronios na camada de entrada e 1 na saida, obtemos Nj, = 6.6332. Con-
siderando as duas sugestoes, foram testados para cada valor de neuronios na
camada de entrada, os seguintes nimeros de neurénio na camada escondida:
1,2, 3, 4,6, 8,10, 12, 14 ¢ 16, e 0 (auséncia da camada).

Para todos os neuronios da camada de saida utilizou-se a funcao de
ativagao purelin (Matlab), que tem como saida a regressao linear dos va-
lores de entrada. Como a adocao de uma funcao de ativagao simétrica
implica vantagens no processo de aprendizagem dos perceptrons e melhoras
na eficiéncia da rede, para todos os outros neurdnio foi implementada a
funcao denominada tansig (Matlab), dada pela equagao

1—e%

S(z) =2s(x) —1= e

e apresentada pela figura 3.6.
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Figura 3.6: Funcdao tangente hiperbolica.

Como as funcoes de ativacdo foram fixadas, o estudo do impacto da
alteracao destas na eficiéncia da rede esta fora do escopo deste trabalho.

Finalizando, observa-se que foram avaliadas um total de 121 diferentes
arquiteturas para cada tipo de rede.

Treinamento

As fungoes do tipo sigmoéide apresentam baixas derivadas para grandes
valores de entrada. Durante o treinamento, isto pode causar pequenas varia-
¢Oes nos pesos, mesmo que estes estejam longe do valor étimo. Assim, foi
utilizado em todos os casos o algoritmo de treinamento Levenberg-Marquardt,
denominado trainlm no Matlab, que se utiliza de aproximagoes matriciais
para acelerar a convergeéncia dos pesos.

O numero de épocas de treinamento foi definido como 100, isto é, os
dados foram apresentados no méaximo 100 vezes para cada rede antes da
obtencao dos valores finais dos pesos. Cada configuracao foi treinada 8
vezes para se aumentar as chances de encontrar os minimos globais.

Saida

y(t+1)

Entradas

Camada de Entrada Camada Escondida

Figura 3.7: Rede neural para previsdo de 1 passo.
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Durante o treinamento da rede FTDNN, foram apresentados em sua
entrada os valores do vetor de demanda de poténcia ativa de acordo com
o numero n de entradas configurado, enquanto na saida foi apresentado o
valor do vetor referente a um passo a frente, como nos mostra a figura 3.7.
Neste caso, procurou-se construir a seguinte funcao

?)t+1 = f(ytaytfhytf% <. 7ytfn)

onde y; é a série de demanda de poténcia ativa.
Jé para o treinamento da rede NARX, forneceu-se também como entrada
a série de poténcia reativa. Desta forma, encontrou-se a seguinte funcao

?)t+1 = f(ytuytfhytf% cee s Yty Uty Ut—1, Ut—2, - - - ,Utfn)

onde y; € a série de demanda de poténcia ativa e u; a série de demanda
de poténcia reativa.

Ambas as arquiteturas foram implementadas em ambiente Matlab através
das fungoes newfftd e newnarz, respectivamente.

Avaliacao

Para avaliar cada arquitetura de rede os dados foram divididos em dois
conjuntos. O primeiro evidenciado nas figuras 3.1 e 3.2 pelas cores azul e
preta, denomina-se conjunto de treinamento, ou seja, sao os dados que foram
utilizados para treinar a rede. Compreende as observacoes efetuadas em ¢
igual 1 até 864. O segundo, em cor vermelha, é dito conjunto de teste, uti-
lizado para avaliar a rede previamente treinada. Corresponde ao conjunto
das observagoes efetuadas em t igual 865 até 1440.

Selecao da melhor arquitetura

O erro médio percentual absoluto, também denominado como MAPE
(mean absolute percentage error), foi definido como indice de avaliagao das
arquiteturas e é dado por

1 wilh) = gu(h)
MAPE = — Z; \ - \ (3.2)

onde n é o nimero de pontos da série.

O indice da arquitetura foi tomado como o menor MAPE dos 8 treina-
mentos executados. Ja a configuragdo 6tima das redes FTDNN e NARX
foram tomadas como as configuragdes que apresentaram o menor erro den-
tre todos as variagoes do modelo. A figura 3.8 mostra o algoritmo utilizado
para encontrar estas arquiteturas.
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Inicio

J

Criacdo das novas redes

newfftdn()
newnarxsp()

J

Variagao da Arquitetura

Treinamento a partir do
“conjunto de treinamento”
train()

J

Simulagao a partir do
“conjunto de teste”
sim()

= Célculo do M-

_% MAPE do treinamento “j
M,

Definigdo do MA, -
MAPE da Arquitetura “k”
MA, = Min (M,,...M,)

!

1 MA Definicao da Arquitetura

) MA: [ 3 Otima “k”

MA, = Min (MA,,...MA,,)

121 MA,

Figura 3.8: Algoritmo utilizado para o definicdo da arquitetura dtima das
redes NARX e FTDNN.
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3.2 Comparacao dos modelos

Para a comparagao entre os modelos foi avaliado o erro de cada método
quando submetidos a um conjunto de treinamento com nidmero crescente
de dados. Primeiramente, as redes foram treinadas e os modelos cléssicos
definidos para o mesmo conjunto de treinamento adotado anteriormente (fi-
guras 3.1 e 3.2, cores azul e preto). Depois disso, cada modelo imprimiu
suas previsoes para 1 e 5 passos adiante. A préxima observacao da série, ja
pertencente ao conjunto de teste (cor vermelha), foi adicionada ao conjunto
de treinamento e o processo se repetiu até que o conjunto de treinamento
contivesse todos os dados das séries (com excegdo do ultimo). O resultado
desta sequécia de agoes é a previsao da demanda para os dois ultimos dias
dos dados.

Redes Neurais

Os dados foram normalizados como definidos na secao 3.1. As arquite-
turas FTDNN e NARX selecionadas na etapa anterior foram treinadas 8
vezes para cada novo valor inserido no conjunto de treinamento. Apés cada
treinamento, foi calculado o MAPE quando a mesma foi simulada com o
préprio conjunto de treinamento. A rede que apresentou o menor erro den-
tre os treinamentos foi selecionada para realizar as previsoes.

Para obter a previsao de 1 passo adiante, o processo foi direto. Inseriu-se
na entrada da rede os valores vy, yi—1,Yi—2, .., Yi—n para FTDNN e, adi-
cionalmente, os valores wug, us_1,us_o9,...,u—, para NARX, e obteve-se na
salda §;+1. Como a rede foi treinada para prever apenas o valor seguinte da
série, a previsao de 5 passos adiante nos exigiu a estimativa dos passos inter-
mediarios. Desta forma, para a rede FTDNN, o calculo de ;5 foi alcangado
a partir da obtencdo dos valores ¢11,. .., Jr+4. Assim apresentou-se na en-
trada da rede o conjunto gi44,. . - \Grr1,Y¢:Yt—15- - - yYt—n+4, Para obter a saida
desejada. No caso de NARX deve-se dispor também de @4 1,. . . ,d¢4+4, NO €n-
tanto, devido & propria construcao da rede, obtem-se em sua saida somente
a previsao para a série de poténcia ativa. Para solucionar este problema sem
alterar a topologia da rede, adotou-se a previsao inocente. Assim, inseriu-se
como entradas exdgenas as variaveis Uii4q,. - . ;U 1,Ug,Ug—15- - - y Ut—p+4, ONdE
Upyd,. - - Upp] SAO igualis a uy.

As figuras 3.9 e 3.10 apresentam esta sequéncia de acoes, bem como as
principais fungoes utilizadas em ambiente MATLAB. As previsoes para 1
passo foram armazenadas no vetor forl_FTDNN e forl_ NARX. Jas para
5 passos adiante, as previsoes foram gravadas nos vetores ford5_ FTDNN e
for5_NARX.
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ftdnn_net = newfftd(ya(7:i),ya(7:i),[1:6],6);
ftdnn_net = train(ftdnn_net,ya(7:i),ya(7:i),ya(1:6));
yp = sim(ftdnn_net,ya(7:i),ya(1:6));
mapef(1,j)=100*mean(abs((yp-ya(7:i)).lya(7:i)));
ftdnn_net_vet(1,j)=ftdnn_net;

| ftdnn_net=ftdnn_net_vet(1,find(mapef==min(mapef))); |

’ for1_ftdnn(i+1-864) = sim(ftdnn_net,{[0]},ya(end-6+1:end));

temp_f_ya=sim(ftdnn_net,{[0]},ya(end-6+1:end));
ya=[ya temp_f_ya];

for5_ftdnn(i+1-864) = temp_f_ya;

Figura 3.9: Algoritmo utilizado para a previsao - rede FTDNN.
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Figura 3.10: Algoritmo utilizado para a previsio - rede NARX.
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Modelos Classicos

Tendo em vista que valores elevados da série podem causar problemas
numéricos nos algoritmos de definicdo dos modelos classicos, os dados foram
previamente normalizados da seguinte maneira

Yi

ymam

Yni =

onde y,; é o valor normalizado da observagao y; € Ymaz € 0 maior valor da
série.

Os modelos de Suavizacdo Exponencial e ARIMA foram determinados
automaticamente com a ajuda das fungoes ets() e auto.arima() inclusas no
pacote forecast [13] do programa R. Estas fungoes recebem como entrada
uma séries temporal e retornam o melhor modelo a partir dos critérios a-
presentados nas secgoes 1.2.1 e 1.2.2.

As figuras 3.11 e 3.12 apresentam a sequéncia de acoes, bem como as
principais fungoes utilizadas em linguagem R. As previsoes para 1 passo
foram armazenadas no vetor forl_ets e forl_arima. Jas para 5 passos adi-
ante, as previsoes foram gravadas nos vetores ford_ets e ford_arima.

fitvet_ets<-ets(ya[1:i], model="ZZZ", opt.crit=c("lik"), ic=c("aic"))

for1_ets[i+1-864]<-forecast(fitvet_ets,5)$mean[1]
for5_ets[i+1-864]<-forecast(fitvet_ets,5)$mean[5]

Figura 3.11: Algoritmo utilizado para a previsao - Suavizagdo Ezrponencial.
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Figura 3.12: Algoritmo utilizado para a previsdo - método ARIMA.
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Capitulo 4

Resultados e Discussao

4.1 Definicao das arquiteturas de rede

Os graficos 4.1 e 4.2 nos revelam o MAPE médio, minimo e seu desvio
padrao, das redes FTDNN e NARX que apresentaram os melhores desem-
penho para cada nimero de neurdnios na camada de entrada. As tabelas
4.1 e 4.2 apresentam os detalhes de cada ponto mostrado nos graficos recem
citados.

Rede FTDNN - Melhores resultados

*  MAPE minimo
MAPE médio

0.55-

0.5

MAPE

04r *

0.35

0.3 . . . . . )
0 2 4 6 8 10 12

Ndmero neurdnios na camada de entrada

Figura 4.1: MAPE das melhores arquiteturas FTDNN.
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Tabela 4.1: Sumdrio dos resultados FTDNN.
Rede NNIL NNHL MAPE médio | MAPE max MAPE min MAPE dp
FTDNN 1 0,608177245| 0,608177245| 0,608177245| 3,33733E-13
FTDNN 2 41 0,441748463 | 0,453502795| 0,432327463 | 0,007663887
FTDNN 3 10| 0,421835742 | 0,437862455| 0,406823435| 0,012099027
FTDNN 5 8| 0,398833866 | 0,409767211 | 0,388969813 | 0,007197783
FTDNN 6 6| 0,375435433 | 0,391955345 | 0,366284783 | 0,008671219
FTDNN 7 6| 0,386521076| 0,40745615| 0,376256644| 0,01052197
FTDNN 8 6| 0,401685642 | 0,425390005 | 0,377919341| 0,018686587
FTDNN 9 8| 0,440218914 | 0,460780308 | 0,410405146| 0,014546498
FTDNN 11 41 0,423592608 | 0,452003139| 0,397325321| 0,017723766
Rede NARX — Melhores resultados
*  MAPE minimo
MAPE médio
0.6
0.55
0.5
w
o
<
=
0.45F
*
04r
0.35+ 1
0.3 . . . . . )
0 2 4 6 8 10 12

NUmero neurdnios na camada de entrada

Figura 4.2: MAPE das melhores arquiteturas NARX.

Tabela 4.2: Sumdrio dos resultados NARX.
Rede NNIL NNHL | MAPE médio | MAPE max MAPE min MAPE dp
NARX 1 3| 0,61701041| 0,666802032 | 0,586771249| 0,024572245
NARX 2 2| 0,447409324| 0,461470231| 0,433350013| 0,010001525
NARX 3 2| 0,412016769| 0,433420234| 0,399739118| 0,012392889
NARX 5 4| 0,410274466| 0,428086372 | 0,385299911| 0,01777174
NARX 6 2| 0,392627436| 0,414689768 | 0,378014995| 0,011019812
NARX 7 4| 0,447823979| 0,698901869| 0,38169242 | 0,102861648
NARX 8 1| 0,392814663| 0,392814663 | 0,392814663 1,5029E-12
NARX 9 2| 0,422723572 | 0,445943473 | 0,417525962 | 0,010703694
NARX 1 1] 042135978| 042135978 0,42135078| 5,0005E-11
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A partir dos resultados encontrados foram definidas como arquiteturas
Otimas:

e FTDNN - 6 neuronios na camada de entrada e 6 na camada de es-
condida;

e NARX - 6 neurdnios na camada de entrada e 2 na camada de escon-
dida.

As redes escolhidas para representar o grupo apresentaram um desvio
padrao do erro relativamente pequeno. Isto sugere que a cada treinamento
da rede, o MAPE calculado sera proximo ao valor minimo, o que implica
em confiabilidade da eficiéncia de ambas.

4.2 Comparacao dos modelos

Previsao de 1 passo

x 10" Previsé&o 1 passo — Rede FTDNN
15¢
Previséo
14 Demanda observada

=
w

I
[N

Demanda de Poténcia Ativa (W)
-
B [

154
©

o
)

0 100 200 300 400 500 600
Periodo (5 min)

Figura 4.3: Previsao de 1 passo - Rede FTDNN.
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x 10" Previséo 1 passo — Rede NARX

=
0
)

Previséo
Demanda observada’

Demanda de Poténcia Ativa (W)
o [ I [ I
© = - N w S

©
0

0.7 . . . . . )
0 100 200 300 400 500 600

Periodo (5 min)

Figura 4.4: Previsao de 1 passo - Rede NARX.

15 x 10’  Previsé@o - 1 passo — Método "Suavizag8o Exponencial”

Previs&o
Demanda observada’

Demanda de Poténcia Ativa (W)

0.7 . . . . . )
0 100 200 300 400 500 600

Periodos (5 min)

Figura 4.5: Previsao de 1 passo - Suaviza¢cdo Exponencial.
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x 10" Previséo - 1 passo - Método "ARIMA"

Previséo
Demanda observada

Demanda de Poténcia Ativa (W)

0.7 . . . . . )
0 100 200 300 400 500 600

Periodos (5 min)

Figura 4.6: Previsdo de 1 passo - ARIMA.

Previsao de 5 passos

s x 10" Previsdo 5 passo — Rede FTDNN

Previsdo
Demanda observada

16r

Demanda de Poténcia Ativa (W)
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1 1 1 1 1 J
0 100 200 300 400 500 600
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Figura 4.7: Previsao de 5 passos - Rede FTDNN.
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s x 10" Previs&o 5 passo - Rede NARX

Previséo
Demanda observada

161

Demanda de Poténcia Ativa (W)

06 1 1 1 1 1 J
0 100 200 300 400 500 600

Periodo (5 min)

Figura 4.8: Previsao de 5 passos - Rede NARX.

x 10’ Previséo - 5 passos - Método "Suavizagéo Exponencial
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Previsdo

Demanda observada
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Figura 4.9: Previsdo de 5 passos - Suavizagcdo FExponencial.
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Figura 4.10: Previsdo de 5 passos - ARIMA.

A Tabela 4.3 apresenta os indices obtidos por cada técnica para a pre-
visao de 1 e 5 passos. A coluna denominada Ganho (%) revela o ganho
médio obtido pela utilizagao do método em relacao a previsao inocente para
ambos os dias. Por fim, a ultima coluna mostra o tempo total gasto por
cada algoritmo em todo o processo.

Tabela 4.3: Sumdrio dos resultados finais.

. Tempo
Método h | MAPE (%) | Ganho (%) -
h min s
Prev. Inocente 1 0,611278 00000 0 0 O
Suav. Exponencial 1 0,439393 28,119 1 56 38
ARIMA 1 0,380200 37,802 2 6 36
Rede FTDNN 1 0,372249 39,103| 13 22 51
Rede NARX 1 0,370660 39,363| 16 25 58
Prev. Inocente 5 2,335423 0,000 0 0
Suav. Exponencial 5 2,634627 -12,812 56 38
ARIMA 5 2,126752 8,935 6 36
Rede FTDNN 5 2,1919597 6,141| 13 22 51
Rede NARX 5 2,087889 10,599 16 25 58
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O tempo total (7;) gasto na execucao dos algoritmos apresentados pelas
figuras 3.9, 3.10, 3.12 e 3.11, foi encontrado a partir de

1439
Ty= ) tin (4.1)
i=864
onde t;4+1 foi o tempo necessario para que a técnica realizasse a previsao
da observacao ¢ + 1. O tempo dos algoritmos considerados apresentam,
aproximadamente, uma relacdo linear com o numero de observacoes uti-
lizadas na construgao de cada modelo, da seguinte forma

ti+1 = knz = ki (42)

onde k£ é uma constante e n; é o tamanho do conjunto de dados utilizado
para a previsao da observagao i + 1. A dltima igualdade da equacao 4.2
decorre diretamente de n; = i. A partir destas consideragoes construimos a
Tabela 4.4.

Tabela 4.4: Tempo gasto para previsao de uma observagao.

Método k (s/obs) tges (s) ty440(8)
Suav. Exponencial 0.0106 9,116 15,183
ARIMA 0.0115 9,895 16,480
Rede FTDNN 0.0726 62,750 104,511
Rede NARX 0.0901 77,844 129,649

O gréfico apresentado pela figura 4.11 mostra a média do ganho de cada
modelo em relacdo a previsao inocente para cada dia de previsao. Clara-
mente se observa um aumento da eficiéncia dos algoritmos para um maior
numero de observacoes utilizados na construcao dos modelos. No entanto,
da Tabela 4.4, nota-se que este aumento de eficiéncia é compensado negati-
vamente por um maior tempo necessirio a previsao.

Werbos (1989,1990)[27], Ansuj e colaboradores (1996) [10], Kohzadi e
colaboradores [18], Chin e Arthur [29], Hill [40] e colaboradores e Caire
[5] e colaboradores [28] concluiram que as redes neurais podem apresentar
resultados superiores aos obtidos pela estatistica cldssica. Da mesma forma,
Lapedes e Farber (1988) [31] obtiveram sucesso na utilizagao de redes neurais
para modelar e prever séries temporais nao lineares. No entanto, Maier e
Dandy [16] sugerem que os modelos ARIMA apresentam melhores resultados
para previsoes a curto prazo e que as redes neurais se ajustam melhor para
as previsoes a longo prazo. Em suma, ndao ha um modelo que prevaleca, e a
escolha deste esta diretamente relacionada com a aplicagao desejada.

Como o objetivo do presente trabalho foi realizar uma previsao a curtissi-
mo prazo a cada nova observagao, obviamente o tempo utilizado pela técnica
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Figura 4.11: Ganho em rela¢do a Previsdo Inocente - 1 passo.
também é importante para a escolha do melhor modelo. A rede NARX
apresentou o menor erro e o maior tempo gasto para a previsao. No entanto,

para o apontamento do modelo ideal, faz-se necessario um detalhado estudo
que pondere a importancia de cada parametro para o caso considerado.
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Capitulo 5

Conclusoes

A arquitetura NARX que apresentou o menor erro médio na previsao a
curtissimo prazo da méaxima demanda de poténcia ativa apresentou 6 en-
tradas e 2 neur6nios na camada escondida. Ja a rede FTDNN registrou o
valor 6 para ambas as caracteristicas.

Na comparagao das técnicas, a rede NARX apresentou o menor erro de
previsao. No entanto, para a definicao do melhor modelo para a previsao a
curtissimo prazo da méaxima demanda ativa, deve-se considerar também o
tempo gasto na previsao. Sendo assim, o modelo adequado deve apresentar
um ajuste étimo entre acuracia e tempo. Como a rede NARX gastou mais
tempo durante o processo de previsao, a escolha de um modelo torna-se
dificil quando esses dois parametros sao considerados concomitantemente.
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Capitulo 6

Trabalhos Futuros

A partir de um conjunto de dados maior, investigar de forma mais detalhada
a relacao entre acuracia dos modelos e tempo gasto para a previsao. Estudar
o impacto gerado por uma previsao menos erronea e pelo tempo necessario a
previsao. A partir destes definir o melhor modelo para resolver o problema
em questao.
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