
Departamento de Engenharia Elétrica - SEL - EESC - USP

Trabalho de Conclusão de Curso

Comparação Entre Redes Neurais e Técnicas
Clássicas na Previsão a Curt́ıssimo Prazo de

Demanda de Potência Elétrica Ativa

Aluno: Luiz Henrique Barchi Bertolucci
Orientador: Prof. Dr. Ivan Nunes da Silva

10 de dezembro de 2008

.

Aos meus pais.

Resumo

Uma previsão adequada da demanda de potência elétrica é de fundamen-
tal importância para o planejamento e operação do sistema de distribuição
de eletricidade. Perante este contexto, o objetivo deste trabalho foi estudar
técnicas de previsão e suas aplicações na estimativa de demanda de potência
elétrica ativa a curt́ıssimo prazo. Primeiramente, diferentes topologias das
redes neurais denominadas focused time delay neural network (FTDNN)
e nonlinear autoregressive network with exogenous inputs (NARX) foram
avaliadas, e, as melhores configurações selecionadas. Em seguida, as topolo-
gias escolhidas foram comparadas com os métodos autoregressivo de média
móvel integrado (ARIMA) e suavização exponencial, denominados clássicos.
Utilizou-se os dados de cinco dias de observação das demadas de potência
ativa e reativa da Subestação Andorinha (CPFL). Todas as técnicas foram
avaliadas através do critério MAPE para previsões de 1 e 5 passos adiante.
Conclui-se que as redes neurais apresentam os menores erros, no entanto, o
tempo necessário para que estas forneçam o resultado pode implicar em um
preterimento destas em relação aos métodos clássicos.

Palavras-chave: Previsão, redes neurais, ARIMA, suavização exponen-
cial, demanda de potência elétrica

Sumário

1 Introdução 9
1.1 Redes Neurais . 10

1.1.1 Arquitetura Básica de uma Rede 11
1.1.2 O métodos backpropagation 13

1.2 Métodos Clássicos . 16
1.2.1 Suavização Exponencial 16
1.2.2 ARIMA . 19
1.2.3 Previsão Inocente . 20

2 Objetivos 23

3 Material e Métodos 25
3.1 Definição das arquiteturas de rede 26
3.2 Comparação dos modelos . 33

4 Resultados e Discussão 39
4.1 Definição das arquiteturas de rede 39
4.2 Comparação dos modelos . 41

5 Conclusões 49

6 Trabalhos Futuros 51

Lista de Figuras

1.1 Representação do neurônio. 10

1.2 Perceptron, o modelo computacional do neurônio. 11

1.3 Arquitetura MLP com uma camada escondida. 12

1.4 Três funções tipo sigmóide (c=1, c=2 e c=3). 13

1.5 Exemplo de função de erro. 14

1.6 Esquema geral de uma rede ”feedforward”. 15

1.7 Adaptação da rede incluindo função de erro. 16

1.8 Exemplo de previsão inocente - 5 passos. 21

3.1 Série modificada da demanda de potência ativa. 26

3.2 Série modificada da demanda de potência reativa. 26

3.3 Representação da rede FTDNN. 27

3.4 Representação da rede NARX. 28

3.5 Configurações paralela e série-paralela, rede NARX. 28

3.6 Função tangente hiperbólica. 30

3.7 Rede neural para previsão de 1 passo. 30

3.8 Algoritmo utilizado para a definição da arquitetura ótima das
redes NARX e FTDNN. 32

3.9 Algoritmo utilizado para a previsão - rede FTDNN. 34

3.10 Algoritmo utilizado para a previsão - rede NARX. 35

3.11 Algoritmo utilizado para a previsão - Suavização Exponencial. 36

3.12 Algoritmo utilizado para a previsão - método ARIMA. 37

4.1 MAPE das melhores arquiteturas FTDNN. 39

4.2 MAPE das melhores arquiteturas NARX. 40

4.3 Previsão de 1 passo - Rede FTDNN. 41

4.4 Previsão de 1 passo - Rede NARX. 42

4.5 Previsão de 1 passo - Suavização Exponencial. 42

4.6 Previsão de 1 passo - ARIMA. 43

4.7 Previsão de 5 passos - Rede FTDNN. 43

4.8 Previsão de 5 passos - Rede NARX. 44

4.9 Previsão de 5 passos - Suavização Exponencial. 44

4.10 Previsão de 5 passos - ARIMA. 45

4.11 Ganho em relação à Previsão Inocente - 1 passo. 47

Lista de Tabelas

1.1 Classificação dos modelos de Suavização Exponencial. 17
1.2 Equações para o cálculo dos parâmetros recursivos e previsão 18

4.1 Sumário dos resultados FTDNN. 40
4.2 Sumário dos resultados NARX. 40
4.3 Sumário dos resultados finais. 45
4.4 Tempo gasto para previsão de uma observação. 46

Caṕıtulo 1

Introdução

Uma previsão adequada do consumo de energia elétrica por parte de uma
empresa distribuidora é de fundamental importância tanto para planeja-
mento quanto para operação do sistema de distribuição. Índices como confia-
bilidade de suprimento e até mesmo uma operação mais racional e econômica
estão ligados a esta previsão. Atualmente, diversos métodos se propõem a
realizar esta tarefa a partir dos dados históricos de demanda de potência,
denominados séries temporais.

Uma série temporal é um conjunto de observações tomadas seqüencial-
mente no tempo. Para as aplicações pretendidas se deve exigir que as ob-
servações estejam dispostas em intervalos de tempo discretos e fixos. Em
geral, as séries apresentam como caracteŕıstica fundamental a dependência
entre observações adjacentes [4]. A análise de séries temporais tem por ob-
jetivo utilizar técnicas para analisar esta dependência e desenvolver modelos
dinâmicos que representem a evolução dos dados.

Como o interesse do estudo é previsão, deve-se construir modelos que, a
partir das observações dispońıveis até o instante t, possam estimar os valores
futuros da série em um dado tempo t + h. Desta forma, a quantidade yt de
potência demandada no instante t, e os valores yt−1, yt−2, yt−3,... , podem
ser utilizados para a previsão da demanda em h = 1, 2, 3, ... intervalos de
tempo à frente. Denotaremos por ŷt(h) a previsão feita em t da demanda
yt+h que será observada no tempo t + h. A função ŷt(h), que nos oferece
a previsão para todo tempo futuro, será chamada função de previsão na
origem t. Deve-se obtê-la garantindo que os desvios |yt+h − ŷt(h)| sejam os
menores posśıveis para cada h.

Há alguns anos os modelos baseados em técnicas de estat́ıstica clássica
eram considerados como ferramenta principal dispońıvel para atingir tal
meta. Porém, atualmente, as redes neurais têm apresentado excelentes re-
suldados surgindo como candidatas para a realização desta tarefa.

9

1.1 Redes Neurais

Redes Neurais são sistemas de processamento em paralelo inspirado no
comportamento do sistema nervoso humano. McCulloch e Pitts (1943)
foram os primeiros a criarem o neurônio computacional baseado no mo-
delo do neurônio biológico. Este primeiro modelo caracteriza-se por ser um
dispositivo binário, com limiares fixos, que se conecta a outros neurônios
por sinapses [41]. As principais partes constituintes do neurônio, ou seja, o
corpo celular com seu núcleo, os dendritos que alimentam o corpo celular
com os sinais externos e o axônio que carrega os sinais para fora da célula,
são apresentadas pela figura 1.1.

Figura 1.1: Representação do neurônio.

A lista dos primeiros contribuintes deste campo é vasta, com destaque
para o pesquisador Rosenblatt (1958) [15], quem estendeu a idéia do neurônio
computacional para o perceptron (figura 1.2), como um elemento auto-
organizável capaz de aprender por feedback. Widrow e Hoff (1960) [3]
criaram os dispositivos conhecidos como ADALINE (Adaptive Linear E-
lement) e MADALINE (multiple ADALINE) que, utilizando-se do algo-
ritmo conhecido como regra delta, são treinados a partir de vetores padrões
apresentados à rede. Em 1969, Minsky e Papert [37] (1969), mostraram
que os sistemas perceptron multicamadas (MLP, figura 1.3) apresentavam
limitações de apredizado similares aos de camada única. Rumelhart e Mc-
Clelland (1986) [11] provaram que a visão de Minsky e Papert estava errada,
mostrando que o sistema MLP apresenta grande sucesso na tarefa de dis-
criminação não linear, sendo também capaz de aprender padrões complexos
através do método backpropagation (retropropagação).

Após um periodo de estagnação, o interesse da pesquisa na área passou
a ser o desenvolvimento de arquiteturas de redes modificadas, tais como,
self-organizing networks [12](Mari e Maginu, 1988), resonating neu-
ral networks [35] (Grossberg, 1988), feedforward network (Werbos,
1974) [26], associative memory networks (Kohonen, 1989) [38], coun-
terpropagation networks (Hecht-Nielsen, 1987a), [30] recurrent net-

10

works(Elman, 1990) [22], radial basis function networks (Broomhead
and Lowe, 1988)[7], probabilistic networks (Specht, 1988) [9], etc.

Figura 1.2: Perceptron, o modelo computacional do neurônio.

Desde o prinćıpio, as redes neurais têm se mostrado como poderosas
ferramentas para análise de sinais, extração de caracteŕısticas, classificação
de dados, reconhecimento de padrões, etc. Devido à sua capacidade de
aprendizado e generalização, as redes têm sido largamente utilizadas por
pesquisadores como ferramenta para o processamento de dados experimen-
tais.

Suas principais aplicações incluem: (i) Mapeamento da relação entre os
valores passados e futuros de uma série temporal (previsão); (ii) Captura
da relação funcional essencial entre dados quando esta não é conhecida a
priori ou é de dificil descrição matemática;(iii) Aproximação de funções
para qualquer grau de acurácia; e (iv) Aprendizado e generalização a partir
de exemplos.

Hu (1964) [25] foi o primeiro a demonstrar, em um exemplo de previsão
de tempo, a capacidade preditiva de uma rede neural. Werbos (1974) [26]
utilizou esta ferramenta para prever o comportamento de outra série tem-
poral. Entretanto, os modelos até então pouco adequados, não motivaram
avanços significativos na área. Este peŕıodo de estagnação chegou ao fim
quando Rumelhart e colaboradores (1986)[34] reformularam o algoritmo de
treinamento backpropagation.

1.1.1 Arquitetura Básica de uma Rede

Inspirado nos trabalhos de McCulloch e Pitts (1943), Rosenblatt (1958)
criou o perceptron (figura 1.2), onde a parte central do dispositivo contém
um elemento somador e um elemento não linear, também conhecido como
função de ativação, os múltiplos sinais de entrada xi são conectados via
ponderação wi à parte central do elemento, o sinal de sáıda observado em
y0 é dado pela soma das entradas xi ponderadas pelos pesos wi aplicada na
função de ativação, a entrada adicional w0 é chamada limiar de ativação do
neurônio.

11

Nestas condições, o sinal de sáıda é dado por

y0 = f
(

n
∑

i=1

wixi + w0

)

(1.1)

.

Originalmente, Rosenblatt propôs uma função de ativação tipo degrau
unitário. Desta forma, a função é ativada, isto é, produz sinal de sáıda se, e
somente se, a condição wT x + w0 ≥ 0 é observada.

O perceptron é capaz de ”aprender”, isto é, os pesos de suas interconexões
são automaticamente ajustados de acordo com o conjunto de dados apre-
sentados. Para realizar esta tarefa, Widrow e Hoff (1960) propuseram ori-
ginalmente o uso da regra delta, que caracteriza-se por ser um algoritmo
de aprendizado recursivo baseado no gradiente do erro de sáıda (também
chamado α-LMC Algorithm). Embora simples, o aprendizado através da
regra delta tem, na maioria dos casos, demonstrado uma alta eficiência e
excelente taxa de convergência.

Um simples perceptron não é capaz de solucionar problemas complexos,
no entanto, para estes casos, uma rede mais sofisticada denominada per-
ceptron multicamadas (MLP) foi constrúıda. Esta rede apresenta, além
da camada de entrada e camada de sáıda, as camadas escondidas (hidden
layers) que são inseridas entre as primeiras para formar uma rede em cascata,
como nos mostra a figura 1.3. O termo ”camada escondida” significa que es-
tas não podem ser acessadas diretamente, mas apenas através das camadas
de entrada (input layer) e/ou sáıda (output layer). Na prática, apenas uma
única camada escondida é capaz de extender a capacidade computacional
da rede e prover boas solução para a maioria dos problemas práticos [8].

Figura 1.3: Arquitetura MLP com uma camada escondida.

12

1.1.2 O métodos backpropagation

Considerado como uma generalização da regra delta, foi inicialmente desen-
volvido por Paul Werbos em 1974 mas só ficou conhecido após seu ”redesco-
brimento” por Parker em 1982. O algoritmo, entretanto, tornou-se popu-
lar somente quando reformulado por Rumelhart e colaboradores (1986), e
passa a ser intensivamente utilizado para treinar as redes perceptron multi-
camadas. Atualmente o backpropagation é utilizado, em uma forma modi-
ficada, para treinar também outros tipos de rede.

Neste processo de treinamento, o algoritmo procura pelo mı́nino da
função de erro aplicada no espaço dos pesos sinápticos através do método
gradiente descendente. A combinação de pesos que minimiza a função de
erro é considerada a solução do processo de aprendizagem. Como o método
requer o cálculo do gradiente da função de erro, deve-se garantir que esta
seja cont́ınua e diferenciável. Uma forma de obter esta garantia é utilizar
funções de ativação que apresentam estas caracteŕısticas, como por exemplo,
funções do tipo sigmóide definida por

sc(x) =
1

1 + e−cx
(1.2)

e apresentada pela figura 1.4.

Figura 1.4: Três funções tipo sigmóide (c=1, c=2 e c=3).

Adotando sem perda de generalidade c = 1, encontra-se a derivada desta
função em relação a x,

d

dx
s1(x) =

e−x

(1 + e−x)2
= s(x)(1 − s(x))

e nota-se que sc(x) é claramente, cont́ınua e diferenciável para todo x ∈ R

O maior problema na utilização destas funções é que, em determinadas
circunstâncias, mı́nimos locais aparecem na função de erro, o que não ocor-
reria se fossem utilizadas funções do tipo degrau. A figura 1.5 mostra um
exemplo de função de erro que apresenta um mı́nimo local referente a um
alto valor de erro se comparado ao mı́nimo global. O gráfico foi obtido a

13

partir de uma unidade simples com dois pesos, limiar constante, e quatro
conjuntos de entrada e sáıda apresentados durante o treinamento. Existe
um vale na função de erro e, se o gradiente partir desta região, jamais o
algoritmo convergirá para o mı́nimo global.

Figura 1.5: Exemplo de função de erro.

Em uma rede tipo feedforward (figura 1.6) a informação move-se em ape-
nas uma direção, não havendo retrocesso como no caso das redes recorrentes.
Cada unidade da rede é capaz de avaliar somente os valores de suas próprias
entradas. A rede neural representa uma cadeia de funções compostas que
transformam um conjunto de entradas em um vetor de sáıda. Desta forma,
a rede configura-se como uma função composta, denominada função de rede
que leva uma dada entrada a um ponto no conjunto espacial da sáıda. O
aprendizado consiste em encontrar a combinação ótima de pesos para que
a função de rede ϕ se aproxime o máximo posśıvel de uma dada função f .
Entretanto, nós não temos a função f explicitamente mas apenas de forma
impĺıcita através de alguns exemplos.

Considere uma rede feedforward com n entradas, m unidades de sáıdas e
um número qualquer de camadas escondidas, tal qual nos mostra a figura 1.7.
Considere também um conjunto de treinamento {(x1, t1), . . . , (xp, tp)} que
consiste de p pares ordenados de vetores n e m dimensional respectivamente.
Adotaremos as funções de cada nó como cont́ınuas e diferenciáveis. Os pesos
iniciais da rede são reais e dados aleatoriamente. Quando uma entrada
padrão xi pertencente ao conjunto de treinamento é apresentada à rede,
esta produz uma sáıda oi diferente, em geral, de ti. O que queremos é fazer
com que oi seja idêntico a ti para i = 1,. . .,p, utilizando um algoritmo de
aprendizagem. Mais precisamente, queremos minimizar a função de erro da

14

rede, definida por

E =
1

2

p
∑

i=1

‖ oi − ti ‖
2

O algoritmo de backpropagation é utilizado para encontrar um mı́nimo local
desta função. O primeiro passo deste processo é estender a rede para que
sua nova sáıda apresente de forma direta a função de erro, como apresentado
pela figura 1.7. Agora, cada uma das j unidades de sáıda é conectada a um
nó que calcula a função 1/2(oij − tij)

2, onde oij e tij denotam o j−ésimo
componente do vetor de sáıda oi e do vetor alvo ti. O resultado dos m
nós são coletados e somados para gerar a sáıda Ei. Somando todos os erros
quadráticos E1 + . . . + Ep encontramos a função de erro E.

Camada de
Entrada

Camada
Escondida

Camada de
Saída

Figura 1.6: Esquema geral de uma rede ”feedforward”.

Como E é uma composição das funções de cada nó, este é por sua vez uma
função cont́ınua e diferenciável em relação aos l pesos da rede, w1, w2, . . . , wl.
Para minimizar E deve-se calcular seu gradiente através da equação

∇E =

(

∂E

∂w1

,
∂E

∂w2

, . . . ,
∂E

∂wl

)

e atualizar cada peso utilizando-se o incremento

∆wi = −γ
∂E

∂wi

onde i=1,. . .,l e γ representa a taxa de aprendizado, isto é, um parâmetro
que define o tamanho do passo que será dado a cada iteração na direção
oposta ao crescimento do gradiente. Neste sentido, espera-se encontrar um
mı́nimo local da função de erro, quando ∇E = 0. Em geral, assume-se que

15

a taxa de aprendizado é fixa e uniforme para todos os pesos. Para assegurar
a convergência do algoritmo, γ deve ser o menor posśıvel. Entretanto, taxas
muito pequenas acarretam baixa velocidade de convergência. Por outro lado,
valores elevados podem resultar em um processo de aprendizado instável.
Atualmente, alguns algoritmos calculam a taxa ótima de aprendizado em
cada iteração, isto faz com que o método convirja rápidamente para a solução
enquanto mantém o processo de aprendizado estável.

Figura 1.7: Adaptação da rede incluindo função de erro.

1.2 Métodos Clássicos

1.2.1 Suavização Exponencial

Embora este método tenha sido desenvolvido a partir da década de 50,
algoritmos capazes de selecionar o melhor modelo para uma dada série foram
desenvolvidos recentemente [33], [36] e [32]

Os métodos de suavização exponencial foram originalmente classificados
por Pegels’ (1969)[6] e posteriormente estendidos por [14], modificados por
[36], e estendidos novamente por [21], apresentando um total de 15 métodos
como nos mostra a Tabela 1.2.

Estão apresentadas, para ilustrar, as equações correspondentes ao método
(A,A), também conhecido como Holt-Winters aditivo

Nı́vel: lt = α(yt − st−m) + (1 − α)(lt−1 + bt−1)
Tendência: bt = β∗(lt − lt−1) + (1 − β∗)bt−1

Sazonalidade: st = γ(yt − lt−1 − bt−1) + (1 − γ)st−m

Previsão: ŷt(h) = lt + bth + s
t−m+h

+
m

onde m é o tamanho da sazonalidade, lt representa o ńıvel da série, bt a

16

tendência ou crescimento, st o componente sazonal, ŷt(h) é a previsão para
h peŕıodos à frente, e h+

m = [(h−1)mod m]+1 . Como este é um método re-
cursivo, para calcular ŷt(h) precisa-se dos estados iniciais l0, b0 e s1−m, . . . , s0

e dos parâmetros α, β∗ e γ. A Tabela 1.2 mostra as demais equações.

Tabela 1.1: Classificação dos modelos de Suavização Exponencial.

Para cada método apresentado pela Tabela 1.1, são posśıveis duas mod-
elagens no espaço de estados, uma correspondendo ao erro classificado como
aditivo e a outra ao erro multiplicativo. Desta forma, o método compreende
ao todo 30 modelos candidatos à descrever uma série temporal. A deter-
minação do modelo final inclui o cálculo dos parâmetros e, em seguida, a
determinação da quantidade dos mesmos que otimizam a previsão.

Nesta primeira etapa, precisa-se conhecer os valores dos parâmetros
θ=(α,β,γ,φ) e de x0 = (l0, b0, s0, s−1, . . . , s−m+1)

′. Esta tarefa é realizada
utilizando-se o estimador de máximo verossimilhança definido por

L∗(θ,x0) = n log

(

n
∑

t=1

ε2
t

)

+ 2
n
∑

t=1

log|r(xt−1)| (1.3)

condicionado aos parâmetros θ e x0, onde n é o número de observações.
Os parâmetros são então estimados para todos os modelos enquanto se
procura minimizar L∗.

Para definir o número de parâmetros, o algoritmo utiliza o critério de
informação Akaike (AIC) [17] , definido por

AIC = L∗(θ̂, x̂0) + 2q (1.4)

onde q é o número de parâmetros em θ adicionado à quantidade de
estados em x0, e θ̂ e x̂0 denotam os valores estimados na etapa anterior. O
modelo que apresentar o menor AIC dentre todas as combinações citadas
é selecionado. Detalhes do funcionamento do algoritmo são encontrados em
[13].

17

Tabela 1.2: Equações para o cálculo dos parâmetros recursivos e previsão

18

1.2.2 ARIMA

Uma maneira comumente empregada para compreender o comportamento
de uma série temporal, é assumir que estes são a realização de um processos
estocástico. Assim posto, considera-se a série como os valores gerados por
uma variável aleatória indexada no tempo, que se comporta de acordo com
uma lei probabiĺıstica. Então, supõe-se que a seqüência de dados em estudo
é uma realização particular de um processo estocástico.

Um processo estocástico é dito estritamente estacionário se sua dis-
tribuição de probabilidade conjunta não é afetada pela alteração da origem
temporal, isto é, o processo apresenta um certo equiĺıbrio estat́ıstico. Um
processo apresenta estacionariedade fraca quando sua média e matriz de
covariância independem do tempo.

O desenvolvimento e aplicação dos modelos lineares que serão apresenta-
dos são justificados quando a presença da estacionariedade fraca é observada.
A partir de então se utliza a palavra ”estacionária” para aludir à propriedade
recém definida.

Uma série temporal gerada por processo estacionário tipo ARMA(p, q)
pode ser modelada pela equação

yt − φ1yt−1 − . . . − φpyt−p = zt + θ1zt−1 + . . . + θqzt−q (1.5)

onde {Zt} ∼ WN(0, σ2), isto é, a série {Zt} é um rúıdo branco com
média zero e variância σ2.

De forma equivalente reescreve-se as equação como

φ(B)yt = θ(B)zt (1.6)

onde B é o operador de atraso, isto é, Bdyt = yt−d, e, φ(.) e θ(.) são os
polinômios

φ(z) = 1 − φ1z − . . . − φpz
p

e
θ(z) = 1 + θ1z + . . . + θqz

q

Os modelos ARIMA não sazonal e ARIMA sazonal são generalizações do
modelo ARMA. No entanto, está inclusa nestes modelos uma pré-diferenciação
da série com o objetivo de fazer com que os comportamentos de tendência
e sazonalidades sejam removidos, ou seja, produzir uma série aproximada-
mente estacionária.

Um processo ARIMA(p, d, q) não sazonal é dado por:

φ(B)(1 − B)dyt = θ(B)zt (1.7)

onde {Zt} é um rúıdo branco com média zero e variância σ2, B é o operador
de atraso e φ(z) e θ(z) são polinômios de ordem p e q respectivamente.

O processo ARIMA(p, d, q)(P,D,Q)m sazonal é definido como:

19

Φ(Bm)φ(B)(1 − Bm)D(1 − B)dyt = Θ(Bm)θ(B)zt (1.8)

onde Φ(z) e Θ(z) são polinômios de ordem P e Q respectivamente, e m é o
tamanho da sazonalidade.

A escolha do melhor modelo ARIMA para representar uma série é con-
siderada uma tarefa subjetiva e de grande dificuldade. No entanto, o pacote
desenvolvido por Hyndman implementa uma série de algoritmos desenvolvi-
dos nos últimos 25 anos capazes de automatizar este processo. Alguns destes
algoritmos são encontrados em [19], [1], [23] e [20] dentre outros.

Para se construir um modelo ARIMA, a principal tarefa resume-se em
definir os valores de p, q, P,Q,D e d, como também os coeficientes de cada
polinômio Φ(.), φ(.), Θ(.) e θ(.). A seleção automática destes valores também
baseia-se no critério de informação Akaike (AIC), definido de maneira sutil-
mente diferente da anterior. Para d e D conhecidos define-se

AIC = −2log(L) + 2(p + q + P + Q + 1) (1.9)

que estima os valores dos parâmetros que melhor representam a série, e
concomitantemente, penaliza os parâmetros de ordem elevada, na tentativa
de construir modelos precisos e ao mesmo tempo simples.

Os parâmetros d e D não são escolhidos diretamente por AIC pois, em
geral, este processo leva a uma sobrediferenciação da série, provocando queda
na acurácia da previsão. Para resolver este impasse, outros testes, tais como
Dick-Fuller [42], HEGY [2] e KPSS [45], são aplicados previamente. Maiores
detalhes do funcionamento do algoritmo são encontrados em [13].

1.2.3 Previsão Inocente

Consiste em adotar os valores futuros da série como iguais ao valor atual, isto
é, ŷt(h) = yt, para todo h > 0. Esta técnica é utilizada para avaliar o ganho
preditivo ao se adotar os métodos mais elaborados e pode ser trivialmente
implementada através de uma translação da série. Como exemplo, a figura
1.8 apresenta uma previsão para 5 passos adiante.

Cabe observar que previsão inocente é um caso especial do método de
suavização exponencial (N,N) quando α = 1.

20

0 100 200 300 400 500 600
0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

7 Previsão − 5 passos − Método "Previsão Inocente"

Periodos (5 min)

D
em

an
da

 d
e

P
ot

ên
ci

a
A

tiv
a

(W
)

Previsão
Demanda observada

Figura 1.8: Exemplo de previsão inocente - 5 passos.

21

22

Caṕıtulo 2

Objetivos

Podem ser divididos em

• Encontrar as arquiteturas das redes FTDNN e NARX que ap-
resentam o menor erro médio na previsão a curt́ıssimo prazo
da máxima demanda de potência ativa;

• Levando em consideração o erro médio e o tempo gasto para
previsão, comparar as arquiteturas previamente encontradas
com as técnicas clássicas na previsão a curt́ıssmo prazo da
máxima demanda de potência ativa de uma subestação, onde
a alta freqüência de observações exige uma constante recons-
trução do modelo empregado.

Esta divisão é necessária pois, como veremos a seguir, antes da utilização
dos modelos neurais é necessário um minucioso estudo para determinar a
melhor arquitetura capaz de solucionar o problema proposto. Por outro
lado, os modelos clássicos dispensam um estudo prévio, pois são gerados de
forma automática a partir dos critérios definidos na seção 1.2.

23

24

Caṕıtulo 3

Material e Métodos

Todos os processos referentes às redes neurais foram implementados através
do software MATLAB (MATrix LABoratory) [24], um programa de alta
performance amplamente utilizado na comunidade acadêmica que integra
análise numérica, cálculo com matrizes e construção de gráficos [43]. Para
a aplicação dos métodos clássicos, foi utilizada a linguagem de programação
R [39], que caracteriza-se por ser uma linguagem de programação e um
software voltado para a criação de gráficos e análises estat́ısticas [44].

As séries de demanda de potência ativa e reativa utilizadas apresentam
um total de 5 dias de observações coletados em peŕıodos fixos de 10 segundos,
referente à Subestação Andorinha, SE40 da CPFL (Companhia Paulista de
Força e Luz). As demandas são caracterizada por parcelas de consumo
residencial, industrial e comercial.

Após a divisão dos dados em intervalos de 5 minutos (ou 30 observações),
foi constrúıda uma série modificada considerando somente as demandas
máximas observadas em cada intervalo. Então foi prevista a potência máxima
demandada nos 5 minutos vindouros (1 passo à frente) e no intervalo de 20
a 25 minutos (5 passos à frente), a partir das demandas máximas ocorridas
em intervalos passados e presente. As séries obtidas estão representadas nas
figuras 3.1 e 3.2.

25

0 500 1000 1500
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
x 10

7 Série modificada

Periodos (5 min)

D
em

an
da

 d
e

P
ot

ên
ci

a
A

tiv
a

(W
)

Figura 3.1: Série modificada da demanda de potência ativa.

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6 Série modificada

Periodos (5 min)

D
em

an
da

 d
e

P
ot

ên
ci

a
R

ea
tiv

a
(V

ar
)

Figura 3.2: Série modificada da demanda de potência reativa.

3.1 Definição das arquiteturas de rede

Pode-se sintetizar a seqüência de ações desta etapa em (i) preparação dos
dados, (ii) variação da arquitetura da rede, (iii) treinamento e (iv) avaliação
e (v) seleção da melhor arquitetura.

Utilizou-se as redes classificadas como feedforwards conhecidas como Fo-

26

cused Time-Delay Neural Network (FTDNN) e Nonlinear Autoregressive
Network with Exogenous Inputs (NARX). A vantagem de utilizarmos re-
des pertecentes a esta classe reside na elevada rapidez com que estas são
treinadas através do método backpropagation. Esta caracteŕıstica é alta-
mente desejável em aplicações que exige um retreinamento constante.

A rede FTDNN (figura 3.3) apresenta a arquitetura mais simples dentre
as integrantes do conjunto denominado focused networks.

Figura 3.3: Representação da rede FTDNN.

A rede NARX (figura 3.4) apresenta uma topologia similar à rede an-
terior, porém, além dos valores da série a ser prevista, é posśıvel adicionar
também como entrada valores exógenos. Neste trabalho foi utilizada como
entrada exógena os valores da demanda de potência reativa com o objetivo
de investigar se estes refletem melhorias na previsão. A rede ilustrada pela
figura 3.4 apresenta a versão denominada paralela, em que os valores de
entradas previstos, {ŷt}, são realimentados na entrada.

No presente trabalho utilizou-se a configuração série-paralela (figura 3.5,
lado direito), onde os valores reais da série, {yt}, são utilizados como entrada
e, portanto, não há realimentação de estados. Esta arquitetura apresenta
duas vantagens em relação à paralela. A primeira, é que produz resultados
mais precisos. A segunda, é que se trata de uma arquitetura feedforward, o
que lhe confere as vantagens supracitadas.

27

Figura 3.4: Representação da rede NARX.

Figura 3.5: Configurações paralela e série-paralela, rede NARX.

Preparação dos dados
Objetivando melhorar a eficiência do treinamento das redes, adotou-se

uma normalização linear dos dados para que estes ficassem compreendidos
dentro do conjunto imagem das funções de ativação. Esta transformação
obedeceu à seguinte equação

yni =
yi − ymin

ymax − ymin

(3.1)

onde yni é o valor normalizado da observação yi, e ymin e ymax são o
menor e o maior valor da série, respectivamente.

Variação do modelo neural
A determinação do modelo neural é uma tarefa fundamental em qual-

quer aplicação de redes neurais. Deve-se encontrar a configuração de rede

28

ótima capaz de resolver o problema em questão, ou seja, definir o número de
nós de entrada, o número de camada escondida, o número de neurônios na
camada escondida, o número de neurônios na camada de sáıda, as funções
de ativação, etc., para os quais a rede apresenta os melhores resultados.

Para os objetivos do trabalho, o número de entrada reflete a quanti-
dade de observações passadas, adjacentes à observação presente, que podem
trazer informações significativas para a previsão. Para definir o número de
entradas, iniciou-se um processo investigativo que implicou em variar este
número enquanto se monitorava a eficiência da previsão. No presente tra-
balho testou-se os seguintes valores: 1, 2, 3, 5, 6, 7, 8, 9 e 11.

O número de sáıdas é, em geral, dedut́ıvel diretamente das necessidades
do problema. Neste caso pretendeu-se fazer a previsão de um único valor
que se encontrava 1 passo à frente, o que implicou na adoção de apenas um
nó de sáıda.

Como já mencionado, para a maioria das aplicações de redes neurais,
a adoção de uma única camada escondida é suficiente para solucionar o
problema (teorema de superposição de Kolmogorov), enquanto garante uma
arquitetura simples e de rápido treinamento. Assim, as arquiteturas com
nenhuma ou uma camada escondida foram avaliadas.

Decidir pelo número de neurônios na camada escondida, mais uma vez,
implica em um procedimento sem uma regra geral. No entanto, algumas su-
gestões nos guiaram nesta tarefa. Sugere-se utilizar de 0.5 a 3 vezes o número
de neurônios da camada de entrada. A regra da pirâmide geométrica,
por outro lado, aconselha

Nh = α 2
√

NiNo

neurônios na camada escondida quando esta é unica, onde Ni é o número
de entradas da rede, N0 é o número de sáıda, e α é o fator multiplicativo que
depende da complexidade do problema a ser resolvido (0.5 < α < 2). Como
exemplo, para uma rede tipo FTDNN adotando o máximo valor de α, 11
neurônios na camada de entrada e 1 na sáıda, obtemos Nh = 6.6332. Con-
siderando as duas sugestões, foram testados para cada valor de neurônios na
camada de entrada, os seguintes números de neurônio na camada escondida:
1, 2, 3, 4, 6, 8, 10, 12, 14 e 16, e 0 (ausência da camada).

Para todos os neurônios da camada de sáıda utilizou-se a função de
ativação purelin (Matlab), que tem como sáıda a regressão linear dos va-
lores de entrada. Como a adoção de uma função de ativação simétrica
implica vantagens no processo de aprendizagem dos perceptrons e melhoras
na eficiência da rede, para todos os outros neurônio foi implementada a
função denominada tansig (Matlab), dada pela equação

S(x) = 2s(x) − 1 =
1 − e−x

1 + e−x

e apresentada pela figura 3.6.

29

Figura 3.6: Função tangente hiperbólica.

Como as funções de ativação foram fixadas, o estudo do impacto da
alteração destas na eficiência da rede está fora do escopo deste trabalho.

Finalizando, observa-se que foram avaliadas um total de 121 diferentes
arquiteturas para cada tipo de rede.

Treinamento

As funções do tipo sigmóide apresentam baixas derivadas para grandes
valores de entrada. Durante o treinamento, isto pode causar pequenas varia-
ções nos pesos, mesmo que estes estejam longe do valor ótimo. Assim, foi
utilizado em todos os casos o algoritmo de treinamento Levenberg-Marquardt,
denominado trainlm no Matlab, que se utiliza de aproximações matriciais
para acelerar a convergência dos pesos.

O número de épocas de treinamento foi definido como 100, isto é, os
dados foram apresentados no máximo 100 vezes para cada rede antes da
obtenção dos valores finais dos pesos. Cada configuração foi treinada 8
vezes para se aumentar as chances de encontrar os mı́nimos globais.

Figura 3.7: Rede neural para previsão de 1 passo.

30

Durante o treinamento da rede FTDNN, foram apresentados em sua
entrada os valores do vetor de demanda de potência ativa de acordo com
o número n de entradas configurado, enquanto na sáıda foi apresentado o
valor do vetor referente a um passo à frente, como nos mostra a figura 3.7.
Neste caso, procurou-se construir a seguinte função

ŷt+1 = f(yt, yt−1, yt−2, . . . , yt−n)

onde yt é a série de demanda de potência ativa.
Já para o treinamento da rede NARX, forneceu-se também como entrada

a série de potência reativa. Desta forma, encontrou-se a seguinte função

ŷt+1 = f(yt, yt−1, yt−2, . . . , yt−n, ut, ut−1, ut−2, . . . , ut−n)

onde yt é a série de demanda de potência ativa e ut a série de demanda
de potência reativa.

Ambas as arquiteturas foram implementadas em ambiente Matlab através
das funções newfftd e newnarx, respectivamente.

Avaliação
Para avaliar cada arquitetura de rede os dados foram divididos em dois

conjuntos. O primeiro evidenciado nas figuras 3.1 e 3.2 pelas cores azul e
preta, denomina-se conjunto de treinamento, ou seja, são os dados que foram
utilizados para treinar a rede. Compreende as observações efetuadas em t
igual 1 até 864. O segundo, em cor vermelha, é dito conjunto de teste, uti-
lizado para avaliar a rede previamente treinada. Corresponde ao conjunto
das observações efetuadas em t igual 865 até 1440.

Seleção da melhor arquitetura
O erro médio percentual absoluto, também denominado como MAPE

(mean absolute percentage error), foi definido como ı́ndice de avaliação das
arquiteturas e é dado por

MAPE =
1

n

n
∑

i=1

|
yi(h) − ŷi(h)

yi(h)
| (3.2)

onde n é o número de pontos da série.
O ı́ndice da arquitetura foi tomado como o menor MAPE dos 8 treina-

mentos executados. Já a configuração ótima das redes FTDNN e NARX
foram tomadas como as configurações que apresentaram o menor erro den-
tre todos as variações do modelo. A figura 3.8 mostra o algoritmo utilizado
para encontrar estas arquiteturas.

31

MA8

...

121

Arquitetura

MA1

MA2

...

k

1

2

for j=1:8

for k=1:121

newfftdn()
newnarxsp()

Criação das novas redes

train()

Treinamento a partir do
“conjunto de treinamento”

sim()

Simulação a partir do
“conjunto de teste”

MA = Min (M ,...M)k 1 8

Definição do MA -
MAPE da Arquitetura “k”

k

MA = Min (MA ,...MA)k 1 121

Definição da Arquitetura
Ótima “k”

Cálculo do M-
MAPE do treinamento “j”

j

MAPE

M1

M2

...

M8

...

2

8

1

j

Variação da Arquitetura

Início

Figura 3.8: Algoritmo utilizado para a definição da arquitetura ótima das
redes NARX e FTDNN.

32

3.2 Comparação dos modelos

Para a comparação entre os modelos foi avaliado o erro de cada método
quando submetidos a um conjunto de treinamento com número crescente
de dados. Primeiramente, as redes foram treinadas e os modelos clássicos
definidos para o mesmo conjunto de treinamento adotado anteriormente (fi-
guras 3.1 e 3.2, cores azul e preto). Depois disso, cada modelo imprimiu
suas previsões para 1 e 5 passos adiante. A próxima observação da série, já
pertencente ao conjunto de teste (cor vermelha), foi adicionada ao conjunto
de treinamento e o processo se repetiu até que o conjunto de treinamento
contivesse todos os dados das séries (com exceção do último). O resultado
desta seqüêcia de ações é a previsão da demanda para os dois últimos dias
dos dados.

Redes Neurais
Os dados foram normalizados como definidos na seção 3.1. As arquite-

turas FTDNN e NARX selecionadas na etapa anterior foram treinadas 8
vezes para cada novo valor inserido no conjunto de treinamento. Após cada
treinamento, foi calculado o MAPE quando a mesma foi simulada com o
próprio conjunto de treinamento. A rede que apresentou o menor erro den-
tre os treinamentos foi selecionada para realizar as previsões.

Para obter a previsão de 1 passo adiante, o processo foi direto. Inseriu-se
na entrada da rede os valores yt, yt−1, yt−2, . . . , yt−n para FTDNN e, adi-
cionalmente, os valores ut, ut−1, ut−2, . . . , ut−n para NARX, e obteve-se na
sáıda ŷt+1. Como a rede foi treinada para prever apenas o valor seguinte da
série, a previsão de 5 passos adiante nos exigiu a estimativa dos passos inter-
mediários. Desta forma, para a rede FTDNN, o cálculo de ŷt+5 foi alcançado
a partir da obtenção dos valores ŷt+1,. . . , ŷt+4. Assim apresentou-se na en-
trada da rede o conjunto ŷt+4,. . . ,ŷt+1,yt,yt−1,. . . ,yt−n+4, para obter a sáıda
desejada. No caso de NARX deve-se dispor também de ût+1,. . . ,ût+4, no en-
tanto, devido à propria construção da rede, obtem-se em sua sáıda somente
a previsão para a série de potência ativa. Para solucionar este problema sem
alterar a topologia da rede, adotou-se a previsão inocente. Assim, inseriu-se
como entradas exógenas as variáveis ût+4,. . . ,ût+1,ut,ut−1,. . . , ut−n+4, onde
ût+4,. . . ,ût+1 são iguais a ut.

As figuras 3.9 e 3.10 apresentam esta sequência de ações, bem como as
principais funções utilizadas em ambiente MATLAB. As previsões para 1
passo foram armazenadas no vetor for1 FTDNN e for1 NARX. Jás para
5 passos adiante, as previsões foram gravadas nos vetores for5 FTDNN e
for5 NARX.

33

ya=load(’maxdema.dat’);

for i=864:1439

for j=1:8

ftdnn_net = newfftd(ya(7:i),ya(7:i),[1:6],6);
ftdnn_net = train(ftdnn_net,ya(7:i), , 1 6);ya(7:i) ya(:)
yp = sim(ftdnn_net,ya(7:i), 1 6);ya(:)
mapef(1,j)=100*mean(abs((yp-)./));ya(7:i) ya(7:i)
ftdnn_net_vet(1,j)=ftdnn_net;

for1_ftdnn()i+1-864 = sim(ftdnn_net,{[0]},ya(end-6+1:end));

ftdnn_net=ftdnn_net_vet(1,find(mapef==min(mapef)));

temp_f_ya=sim(ftdnn_net,{[0]},ya(end-6+1:end));
ya=[ya temp_f_ya];

for k=1:5

for _ftdnn()5 i+1-864 = temp_f_ya;

Figura 3.9: Algoritmo utilizado para a previsão - rede FTDNN.

34

narx_net = newnarxsp(yr(7:i),ya(7:i), 6 , 6 ,2);[1:] [1:]
narx_net = train(narx_net, ,ya(7:i), 1 6 1 6);[yr(7:i);ya(7:i)] [yr(:);ya(:)]
yp = sim(narx_net, ,);[yr(7:i);ya(7:i)] [yr(1:6);ya(1:6)]
mape (1,)=100*mean(abs((yp-)./));n j ya(7:i) ya(7:i)
narx narx_net_vet(1,j)= _net;

for1_narx() =i+1-864 sim(narx_net,{[0];[0]},[yr(end-6+1:end);ya(end-6+1:end)]);

narx_net=narx_net_vet(1,find(mapen==min(mapen)));

ya=load(’maxdema.dat’);
yr=load(’maxdemr.dat’);

for i=864:1439

for j=1:8

temp_n_ya sim(narx_net,{[0];[0]},[yr(end-6+1:end);ya(end-6+1:end)]);=
ya=[ya temp_n_ya];
yr=[yr yr(end)];

for k=1:5

for _narx() =5 i+1-864 temp_n_ya;

Figura 3.10: Algoritmo utilizado para a previsão - rede NARX.

35

Modelos Clássicos
Tendo em vista que valores elevados da série podem causar problemas

numéricos nos algoritmos de definição dos modelos clássicos, os dados foram
previamente normalizados da seguinte maneira

yni =
yi

ymax

onde yni é o valor normalizado da observação yi e ymax é o maior valor da
série.

Os modelos de Suavização Exponencial e ARIMA foram determinados
automaticamente com a ajuda das funções ets() e auto.arima() inclusas no
pacote forecast [13] do programa R. Estas funções recebem como entrada
uma séries temporal e retornam o melhor modelo a partir dos critérios a-
presentados nas seções 1.2.1 e 1.2.2.

As figuras 3.11 e 3.12 apresentam a sequência de ações, bem como as
principais funções utilizadas em linguagem R. As previsões para 1 passo
foram armazenadas no vetor for1 ets e for1 arima. Jás para 5 passos adi-
ante, as previsões foram gravadas nos vetores for5 ets e for5 arima.

ya<-scan(file="maxdema.dat")

fitvet_ets<-ets(ya[1:i], model="ZZZ", opt.crit=c("lik"), ic=c("aic"))

for1_ets[i+1-864]<-forecast(fitvet_ets,5)$mean[1]
for5_ets[i+1-864]<-forecast(fitvet_ets,5)$mean[5]

for (i in 864:1439)

Figura 3.11: Algoritmo utilizado para a previsão - Suavização Exponencial.

36

ya<-scan(file="maxdema.dat")

fitvet_arima<-auto.arima(ya[1:i], stationary = FALSE, ic = c("aic"))

for1_arima[i+1-864]<- $mean[1]
-864

forecast(fitvet_arima,5)
for5_arima[i+1]<-forecast(fitvet_arima,5)$mean[5]

for (i in 864:1439)

Figura 3.12: Algoritmo utilizado para a previsão - método ARIMA.

37

38

Caṕıtulo 4

Resultados e Discussão

4.1 Definição das arquiteturas de rede

Os gráficos 4.1 e 4.2 nos revelam o MAPE médio, mı́nimo e seu desvio
padrão, das redes FTDNN e NARX que apresentaram os melhores desem-
penho para cada número de neurônios na camada de entrada. As tabelas
4.1 e 4.2 apresentam os detalhes de cada ponto mostrado nos gráficos recem
citados.

0 2 4 6 8 10 12
0.3

0.35

0.4

0.45

0.5

0.55

0.6

Rede FTDNN − Melhores resultados

Número neurônios na camada de entrada

M
A

P
E

MAPE mínimo
MAPE médio

Figura 4.1: MAPE das melhores arquiteturas FTDNN.

39

Tabela 4.1: Sumário dos resultados FTDNN.

0 2 4 6 8 10 12
0.3

0.35

0.4

0.45

0.5

0.55

0.6

Rede NARX − Melhores resultados

Número neurônios na camada de entrada

M
A

P
E

MAPE mínimo
MAPE médio

Figura 4.2: MAPE das melhores arquiteturas NARX.

Tabela 4.2: Sumário dos resultados NARX.

40

A partir dos resultados encontrados foram definidas como arquiteturas
ótimas:

• FTDNN - 6 neurônios na camada de entrada e 6 na camada de es-
condida;

• NARX - 6 neurônios na camada de entrada e 2 na camada de escon-
dida.

As redes escolhidas para representar o grupo apresentaram um desvio
padrão do erro relativamente pequeno. Isto sugere que a cada treinamento
da rede, o MAPE calculado será próximo ao valor mı́nimo, o que implica
em confiabilidade da eficiência de ambas.

4.2 Comparação dos modelos

Previsão de 1 passo

0 100 200 300 400 500 600
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
x 10

7 Previsão 1 passo − Rede FTDNN

Periodo (5 min)

D
em

an
da

 d
e

P
ot

ên
ci

a
A

tiv
a

(W
)

Previsão
Demanda observada

Figura 4.3: Previsão de 1 passo - Rede FTDNN.

41

0 100 200 300 400 500 600
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
x 10

7 Previsão 1 passo − Rede NARX

Periodo (5 min)

D
em

an
da

 d
e

P
ot

ên
ci

a
A

tiv
a

(W
)

Previsão
Demanda observada

Figura 4.4: Previsão de 1 passo - Rede NARX.

0 100 200 300 400 500 600
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
x 10

7 Previsão − 1 passo − Método "Suavização Exponencial"

Periodos (5 min)

D
em

an
da

 d
e

P
ot

ên
ci

a
A

tiv
a

(W
)

Previsão
Demanda observada

Figura 4.5: Previsão de 1 passo - Suavização Exponencial.

42

0 100 200 300 400 500 600
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
x 10

7 Previsão − 1 passo − Método "ARIMA"

Periodos (5 min)

D
em

an
da

 d
e

P
ot

ên
ci

a
A

tiv
a

(W
)

Previsão
Demanda observada

Figura 4.6: Previsão de 1 passo - ARIMA.

Previsão de 5 passos

0 100 200 300 400 500 600
0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

7 Previsão 5 passo − Rede FTDNN

Periodo (5 min)

D
em

an
da

 d
e

P
ot

ên
ci

a
A

tiv
a

(W
)

Previsão
Demanda observada

Figura 4.7: Previsão de 5 passos - Rede FTDNN.

43

0 100 200 300 400 500 600
0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

7 Previsão 5 passo − Rede NARX

Periodo (5 min)

D
em

an
da

 d
e

P
ot

ên
ci

a
A

tiv
a

(W
)

Previsão
Demanda observada

Figura 4.8: Previsão de 5 passos - Rede NARX.

0 100 200 300 400 500 600
0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

7 Previsão − 5 passos − Método "Suavização Exponencial"

Periodos (5 min)

D
em

an
da

 d
e

P
ot

ên
ci

a
A

tiv
a

(W
)

Previsão
Demanda observada

Figura 4.9: Previsão de 5 passos - Suavização Exponencial.

44

0 100 200 300 400 500 600
0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

7 Previsão − 5 passos − Método "ARIMA"

Periodos (5 min)

D
em

an
da

 d
e

P
ot

ên
ci

a
A

tiv
a

(W
)

Previsão
Demanda observada

Figura 4.10: Previsão de 5 passos - ARIMA.

A Tabela 4.3 apresenta os ı́ndices obtidos por cada técnica para a pre-
visão de 1 e 5 passos. A coluna denominada Ganho (%) revela o ganho
médio obtido pela utilização do método em relação à previsão inocente para
ambos os dias. Por fim, a última coluna mostra o tempo total gasto por
cada algoritmo em todo o processo.

Tabela 4.3: Sumário dos resultados finais.

45

O tempo total (Tt) gasto na execução dos algoritmos apresentados pelas
figuras 3.9, 3.10, 3.12 e 3.11, foi encontrado a partir de

Tt =

1439
∑

i=864

ti+1 (4.1)

onde ti+1 foi o tempo necessário para que a técnica realizasse a previsão
da observação i + 1. O tempo dos algoritmos considerados apresentam,
aproximadamente, uma relação linear com o número de observações uti-
lizadas na construção de cada modelo, da seguinte forma

ti+1 = kni = ki (4.2)

onde k é uma constante e ni é o tamanho do conjunto de dados utilizado
para a previsão da observação i + 1. A última igualdade da equação 4.2
decorre diretamente de ni = i. A partir destas considerações constrúımos a
Tabela 4.4.

Tabela 4.4: Tempo gasto para previsão de uma observação.

O gráfico apresentado pela figura 4.11 mostra a média do ganho de cada
modelo em relação à previsão inocente para cada dia de previsão. Clara-
mente se observa um aumento da eficiência dos algoritmos para um maior
número de observações utilizados na construção dos modelos. No entanto,
da Tabela 4.4, nota-se que este aumento de eficiência é compensado negati-
vamente por um maior tempo necessário à previsão.

Werbos (1989,1990)[27], Ansuj e colaboradores (1996) [10], Kohzadi e
colaboradores [18], Chin e Arthur [29], Hill [40] e colaboradores e Caire
[5] e colaboradores [28] conclúıram que as redes neurais podem apresentar
resultados superiores aos obtidos pela estat́ıstica clássica. Da mesma forma,
Lapedes e Farber (1988) [31] obtiveram sucesso na utilização de redes neurais
para modelar e prever séries temporais não lineares. No entanto, Maier e
Dandy [16] sugerem que os modelos ARIMA apresentam melhores resultados
para previsões a curto prazo e que as redes neurais se ajustam melhor para
as previsões a longo prazo. Em suma, não há um modelo que prevaleça, e a
escolha deste está diretamente relacionada com a aplicação desejada.

Como o objetivo do presente trabalho foi realizar uma previsão a curt́ıssi-
mo prazo a cada nova observação, obviamente o tempo utilizado pela técnica

46

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Ganhos relativos à Previsão Inocente

Periodo (1 dia)

G
an

ho
 (

%
)

SE
ARIMA
FTDNN
NARX

Figura 4.11: Ganho em relação à Previsão Inocente - 1 passo.

também é importante para a escolha do melhor modelo. A rede NARX
apresentou o menor erro e o maior tempo gasto para a previsão. No entanto,
para o apontamento do modelo ideal, faz-se necessário um detalhado estudo
que pondere a importância de cada parâmetro para o caso considerado.

47

48

Caṕıtulo 5

Conclusões

A arquitetura NARX que apresentou o menor erro médio na previsão a
curt́ıssimo prazo da máxima demanda de potência ativa apresentou 6 en-
tradas e 2 neurônios na camada escondida. Já a rede FTDNN registrou o
valor 6 para ambas as caracteŕısticas.

Na comparação das técnicas, a rede NARX apresentou o menor erro de
previsão. No entanto, para a definição do melhor modelo para a previsão a
curt́ıssimo prazo da máxima demanda ativa, deve-se considerar também o
tempo gasto na previsão. Sendo assim, o modelo adequado deve apresentar
um ajuste ótimo entre acurácia e tempo. Como a rede NARX gastou mais
tempo durante o processo de previsão, a escolha de um modelo torna-se
dificil quando esses dois parâmetros são considerados concomitantemente.

49

50

Caṕıtulo 6

Trabalhos Futuros

A partir de um conjunto de dados maior, investigar de forma mais detalhada
a relação entre acurácia dos modelos e tempo gasto para a previsão. Estudar
o impacto gerado por uma previsão menos errônea e pelo tempo necessário à
previsão. A partir destes definir o melhor modelo para resolver o problema
em questão.

51

52

Referências Bibliográficas

[1] Gómez V. Maravall A. Programs tramo and seats, instructions for the
users. Working paper 97001, Dirección General de Anilisis y Progra-
mación Presupuestaria, Ministerio de Economia y Hacienda, 1998.

[2] Hylleberg S. Engle R. Granger C. Yoo B. Seasonal integration and
cointegration. Journal of Econometrics, 44:215 238, 1990.

[3] Reinsel G. C. Box, G. E. P. Jenkins G. M. Adaptive Switching Circuits.
In: Anderson J and Rosenfeld E. (eds.) Neurocomputing. MIT Press,
1960.

[4] G. M. Reinsel G. C. Box G. E. P. Jenkins. Time Series Analysis,
Forecasting and Control. Prentice Hall, 1994.

[5] Caire D. Hatabian G. Muller C. Progress in forecasting by neural net-
works. Int. Conf. Neural Networks II, page 540 545, 1992.

[6] Pegels C.C. Exponential forecasting: some new variations. Management
Science, 15(5):311 15, 1969.

[7] Broomhead D.S. Lowe D. Multivariable functional interpolation and
adaptive networks. Complex Systems, 2:321 355, 1988.

[8] Palit A. K. Popovic D. Computational Intelligence in Time Series
Forecasting Theory and Engineering Applications. Springer, 2005.

[9] Specht D.F. Probabilistic neural networks for classification, or associa-
tive memory. Proc. of IEEE Intern. Conf. on Neural Networks, 1:525
532, 1988.

[10] Ansuj A.P. Camargo M.E. Radharamanan R. Petry D.G. Sales forecast-
ing using time series and neural networks. Comput. Ind. Eng, 31(1):421
424, 1996.

[11] McClelland J. L. Rumelhart D. E. Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition. MIT Press, 1986.

53

[12] Amari S e Maginu K. Statistical neurodynamics of associative memory.
Neural Networks, 1:63 73, 1988.

[13] Rob J. Hyndman e Yeasmin Khandakar. Automatic time series fore-
casting: the forecast package for r. Journal of Statistical Software,
26(3), 2008.

[14] Gardner Jr. E.S. Exponential smoothing: The state of the art. Journal
of Forecasting, 4:1 28, 1985.

[15] Rosenblatt F. The perceptron: A probabilistic model for information
storage and organisation of the brain. Psych. Review, 65:386 408, 1958.

[16] Maier H.R. Dandy G.C. Neural network models for forecasting univari-
ate time series. Neural Networks World, 6(5):747 772, 1996.

[17] Akaike H. A new look at the statistical model identification. IEEE
Transactions on Automatic Control, 19(6):716 723, 1974.

[18] Kohzadi N. Boyd M.S. Kermanshahi B. Kaastra I. A comparison of ar-
tificial neural network and time series model for forecasting commodity
prices. Neurocomputing, 10(2):169 181, 1996.

[19] Hannan E.J. Rissanen J. Recursive estimation of mixed autoregressive-
moving average order. Biometrika, 69(1):81 94, 1982.

[20] Mélard G. Pasteels J.M. Automatic arima modeling including inter-
vention, using time series expert software. International Journal of
Forecasting, 16:497 508, 2000.

[21] Taylor J.W. Exponential smoothing with a damped multiplicative
trend. International Journal of Forecasting, 19:715 725, 2003.

[22] Elman J. L. Finding structure in time. Cognitive Science, 14:179 211,
1990.

[23] Liu L.M. Identification of seasonal arima models using a altering
method. Communications in Statistics Part A Theory and Methods,
18:2279 2288, 1989.

[24] The MathWorks. MATLAB technical documentation. The MathWorks,
Inc, Natick, Massachusetts, 2008.

[25] Hu M.J.C. Application of the adaline system to weather forecasting.
master thesis 6775 1, stanford el. lab., stanford, ca. Technical Report,
1964.

[26] Werbos P.J. Beyond regression: New tool for prediction and analysis
in the behavioural sciences. Ph.D. Thesis, Harvard University, Cam-
bridge, MA., 1974.

54

[27] Werbos P.J. Backpropagation and neural control: A review and
prospectus. internat. Joint Conf of Neural Networks, Washington, 1:209
216, 1989.

[28] Werbos P.J. Backpropagation through time what it does and how to
do it. Proc. of IEEE, 78(10):1550 1560, 1990.

[29] Chin K. Arthur R. Neural network vs. conventional methods of fore-
casting. J. Bus. Forecast., 14(4):17 22, 1996.

[30] Hecht-Nielsen R. Counterpropagation networks. Applied Optics,
26(23):4979 4984, 1987a.

[31] Lapedes A. Farber R. Nonlinear signal processing using neural net-
work: prediction and system modelling. Joint Conf of Neural Networks,
Washington, 1987.

[32] Hyndman R.J. Koehler A.B. Ord J.K. Snyder R.D. Prediction intervals
for exponential smoothing using two new classes of state space models.
Journal of Forecasting, 24:17 37, 2005.

[33] Ord J.K. Koehler A.B. Snyder R.D. Estimation and prediction for a
class of dynamic nonlinear statistical models. Journal of the American
Statistical Association, 92:1621 1629, 1997.

[34] Rumelhart D.E. Hinton G.E. Williams R.J. Learning internal repre-
sentation by back-propagation errors. In: Rumelhart DE, McClelland
JL, the PDP Research Group(Eds.), Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. MIT Press, 1986.

[35] Grossberg S. Competitive Learning: From interactive activation to
adaptive resonance, Neural Networks and Neural Intelligence. MIT
Press, 1988.

[36] Hyndman R.J. Koehler A.B. Snyder R.D. Grose S. A state space frame-
work for automatic forecasting using exponential smoothing methods.
International Journal of Forecasting, 18(3):439 454, 2002.

[37] Minsky M. L. Papert S. Perceptrons. MIT Press, 1960.

[38] Kohonen T. Self-Organisation and Associative Memory. 3rd Edition.
Springer, 1989.

[39] R Development Core Team. R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing, Vienna,
Austria, 2005. ISBN 3-900051-07-0.

[40] Hill T. O Connor M. Remus W. Neural network models for time series
forecasts. Manage. Sci., 42(7):1082 1092, 1996.

55

[41] McCulloch W.S. Pitts W. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5:115 133, 1943.

[42] Dickey D.A. Fuller W.A. Likelihood ratio statistics for autoregressive
time series with a unit root. Econometrica, 49:1057 1071, 1981.

[43] WIKIPEDIA. http://en.wikipedia.org/wiki/MATLAB.

[44] WIKIPEDIA. http://en.wikipedia.org/wiki/R.

[45] Kwiatkowski D. Phillips P.C. Schmidt P. Shin Y. Testing the null
hypothesis of statioanrity against the alternative of a unit root. Journal
of Econometrics, 54:159 178, 1992.

56

