
FABIO CORREIA KUNG

KENZO MARCELO OKAMURA
RAFAEL ANICET ZAN INI

USBTV:
A TV Digital no seu computador

São Paulo
2007

FABIO CORREIA KUNG

KENZO MARCELO OKAMURA
RAFAEL ANICET ZANINI

USBTV:
A TV Digital no seu computador

Monografia apresentada à Escola
Politécnica da Universidade de São

Paulo para obtenção do título de
Bacharel em Engenharia.

Área de Concentração:
Engenharia de Computação

São Paulo
2007

FABIO CORREIA KUNG

KENZO MARCELO OKAN4URA
RAFAEL ANICET ZAN INI

USBTV:
A TV Digital no seu computador

Monografia apresentada à Escola
Politécnica da Universidade de São

Paulo para obtenção do título de
Bacharel em Engenharia.

Área de Concentração :
Engenharia de Computação

Orientador: Prof. Dr. Moacyr Martucci
Junior

São Paulo
2007

Às nossas famílias e companheiras,

pelo apoio e compreensão em mais

uma etapa de nossas vidas. Aos

mestres, pelo conhecimento e pela

inspiração em nossos caminhos.

"Pequenas oportunidades são muitas

vezes o começo de grandes

empreendimentos."

Demóstenes

Político e pensador grego

(384 a.C. - 322 a.C)

Resumo

A TV digital desempenhará papel importante no processo de inclusão digital previsto pelo

Governo Brasileiro. Com o intuito de contribuir para o desenvolvimento da mesma no país,

este trabalho apresenta a especificação e implementação de um dispositivo de captura de

TV digital via USB. São detalhados os requisitos técnicos e escolhas de projeto realizadas

para a implementação do dispositivo, que foi baseado em um kit de desenvolvimento USB

com uma FPGA como unidade de tratamento e processamento de sinais. O dispositivo

opera em diferentes sistemas operacionais, uma vez que a portabilidade é um dos obje-

tivos deste trabalho. Os resultados são apresentados através de aplicações que realizam

a reprodução dos vídeos no computador e também sua gravação em dispositivos de ar-

mazenamento. O trabalho aborda também a integração do dispositivo ao padrão brasileiro

de TV Digital, além de analisar e caracterizar os diferentes tipos de aplicações e níveis

de interatividade possíveis de serem utilizados com o middleware brasileiro Ginga. Por

fim, são discutidas e propostas algumas aplicações interativas que utilizam a conexão nor-

mal à Internet como canal de interatividade, expandindo assim a usabilidade dos serviços

disponíveis na Internet para as aplicações de TV digital, agregando maior valor às apli-

cações interativas possíveis de serem desenvolvidas.

Palavras-chave: Engenharia. Engenharia da Computação. TV Digital. USB. Canal de
Retorno.

Abstract

The Digital TV has appeared as the new paradigm for interaction between viewers and TV

shows. Its development in the country also represents the great effort the Brazilian gov-

ernment has shown for digital inclusion. The aim of this project is to specify and develop

a portable device for Digital TV signal capturing through the USB protocol. The technical

requirements and project specifications are detailed through this paper, which includes the

complete description of the necessary steps for developing the device. It is based on an

USB development kit, which counts on an FPGA for dealing and processing of the digital

signals. The device can be used on several operating systems, which guarantees the porta-

bility desired for this project. The main results are shown through example applications that

use the device as main source for displaying and recording video streams, delivered by a

transport stream generator device. This paper also describes the use of the device with

the Brazilian Digital TV standard (SBTVD), besides analyzing different kinds of interactivity

possible to exist on Digital TV applications running over the Brazilian middleware Ginga. In

conclusion, this paper presents and discusses new applications that may use an existing

connection to the Internet as the return channel, bringing the services already available on

the Internet to the Digital TV world and expanding their functional capabilities and visual

appeal .

Keywords: Engineering. Computer Engineering. Digital TV. USB. Return Channel.

Lista de Figuras
1

2.1 Quadro resumo para o plano de transição da TV Digital no Brasil

2.2 Sensibilidade da evolução do preço ao preço inicial
2.3 Sensibilidade da difusão segundo o preço inicial do terminal de acesso

7

8

8

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Diagrama de blocos da aplicação principal
Diagrama de blocos do hardware completo para a aquisição do sinal

Processo de simplificação para este projeto
Parte do cabeçalho dos pacotes .
Diagrama do Canal de Interatividade
Aplicação SMS utilizando interatividade intermitente.
Aplicação de e-mail com interatividade permanente.

13

14

15

17

20

22

23

4.1 Descrição da metodologia de desenvolvimento ágil Scrum 29

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

Visão geral da arquitetura do dispositivo USB
Topologia da arquitetura USB .
Gerador de TS da Rohde & Schwarz com interface SPI
Camadas da interface ASI .

Interface de transmissão paralela (SPI)
Formato de transmissão de pacotes de 188 bytes
lnterconexão entre transmissor e receptor dos sinais
Geração de sinal lógico a partir dos sinais analógicos
Kit de Desenvolvimento XEM:3001 da Opal Kelly
Diagrama dos blocos funcionais do Kit de Desenvolvimento XEM3001

Visão geral da arquitetura lógica desenvolvida em VHDL
Diagrama lógico da unidade FIFO desenvolvida
Diagrama lógico do módulo de interface com o controlador USB

Diagrama lógico do principal módulo do dispositivo
Requisição de bytes ao FIFO pelo programa cliente
Duas threads (produtora e consumidora) manipulando o butter

Reprodução de um Transport Stream lido através do USBTv no Ginga

Definição de mídia video/mpeg-ts em NCL para ser reproduzida com o

Definição de mídia video/usbtv em NCL
O popular jogo Space lnvaders .
Exemplo de uso de classes Java em um documento NCL

31

32

34

35

36

36

37

37

39

39

41

43

44

46

48

48

51

52

52

53

54

VLC

5.22 Expondo métodos da classe como propriedades em um documento NCL

5.23 Space lnvaders rodando no Ginga, junto com a exibição de um TS . . .

5.24 Produtos relacionados a emagrecimento, em um filme sobre obesidade .

5.25 Dados sendo carregados de forma assíncrona
5.26 Imagens sendo carregadas pouco a pouco por threads separadas . . .

54

55

56

58

59

6.1 Arquivos de Transport Streams utilizados nos testes
6.2 Resultado dos testes efetuados ,
6.3 Aplicação desenvolvida para efetuar testes nos vídeos amostrados

60

61

62

77

78

84

85

85

A. 1 Inicialização e configuração dinâmica do dispositivo via software .

A.2 Seqüência de chamadas à API para leitura de dados do dispositivo

B.1 Configuração dos 25 pinos do conector D-subminiatura na interface SPI

B.2 Relação entre os pinos da FPGA e do kit de desenvolvimento

B.3 Relação entre os fios do conector SPI e pinos do kit de desenvolvimento

Sumário
111

1 INTRODUÇÃO

1.1 Objetivo

1.2 Motivação

1

1

1

3 ESP

3.1

3.2

1.3 Escopo . . . H B 8 B P n H e B B B n R R H B n • • • • • • • • • • • • • • • • • • 2

31.4 Organização B R n 0 a B R B B H H B H B •

2 ASPECTOS CONCEITUAIS

2.1 O Ambiente .
5

5

5

6

6

8

9

10

10

2.1.1 Cenário

2.1.2 Plano de Transição

Terminal de Acesso (set-top box)
Modelo de Serviços

2.1.3

2.1.4

2.1.5 Serviços Interativos
2.1.6 Plataforma brasileira para interatividade (Ginga)

Equipamento Utilizado2.2

ECIFICAÇÃO DO PROJETO

Funcionalidades principais .
Conexão USB .
3.2.1 Software .
3.2.2 Hardware .
Formato dos dados .

3.3.1 O padrão MPEG-2 .
3.3.2 Conteúdo como fluxo de dados: MPEG-2 Transport Stream
Middleware .
Canal de retorno .
3.5.1 Conceito .

3.5.2 Aplicações .
3.5.3 Implementação .
Planejamento e Métodos .
3.6.1 TV Digital eMiddleware .
3.6.2 Capturado Sinal via USB
3.6.3 Canal de Retorno pela Internet

13

13

13

13

14

15

16

17

18

20

20

21

23

24

24

25

26

3.3

3.4

3.5

3.6

IV

4 METODOLOGIA 28
4.1 Metodologia Ágil . 28

4.2 Desenvolvimento do Hardware . 29

5 PROJETO E IMPLEMENTAÇÃO

5.1 Dispositivo USB

31

31

32

33

34

38

40

47

49

51

53

55

5.1.1 Arquitetura USB

Gerador de Transport Stream5.1.2

5.1.3 Interfaces e Padrões
5.1.4 Kit de Desenvolvimento

5.1.5 Implementação VHDL
Lendo os dados do dispositivo USB

Demultiplexação e decodificação . .

Adequando ao Ginga
Aplicação com Interatividade Local .

Uso do canal de retorno

5.2

5.3

5.4

5.5

5.6

6 TESTES E AVALIAÇÃO
6.1 Hardware

60

60

6.2 Aplicação com Interatividade Local
Aplicação com Canal de Retorno .

62

6.3 63

7 CONSIDERAÇÕES FINAIS
7.1 Análise dos Resultados

7.2 Trabalhos Futuros . . .

64

64

65

Referências Bibliográficas 67

71Glossário

Apêndice 76

A API FrontPanel

A.1 Utilização da API

A.2 Overview

76

76

78

B Pinagem
B.1 Conector SPI

83

83

B.2 FPGA e Kit de Desenvolvimento 84

Capítulo 1

INTRODUÇÃO

1.1 Objetivo

O objetivo principal deste projeto é criar um dispositivo que possibilite a captura de

sinais de vídeo digital pelo computador através da interface USB e permita assistir à pro-

gramação de forma interativa através do envio de dados por um canal de retorno imple-

mentado por uma conexão comum à Internet, dando suporte aos padrões brasileiros de

TV digital e incentivando o desenvolvimento de novas tecnologias puramente nacionais.

1.2 Motivação

A TV Digital desempenhará em breve um dos principais papéis na difusão de infor-

mação, conteúdo e conhecimento, além de entretenimento. A convergência tecnológica

percebida nos dias atuais cria demanda para a integração entre esse mundo de conteúdo

digital e o principal instrumento de manipulação de informação: o computador. Neste
contexto, tornam-se necessárias alternativas para a captura do sinal de TV Digital pelo

computador, tanto como forma de facilitar a inclusão dos telespectadores neste novo sis-

tema de TV, quanto melhorar a experiência de usuário. O perfil brasileiro dá preferência a

alternativas simples e baratas, que acabam tendo um maior alcance.

Uma vez que o computador oferece uma ótima plataforma para desenvolvimento, o

projeto também possibilita que aplicações possam ser construídas oferecendo a infra-

estrutura e a interatividade para que se beneficiem do sinal de TV Digital na sua totalidade.

Embora a interatividade seja uma das metas da implantação da TV Digital no Brasil,

o funcionamento do canal de retorno de dados, essencial para a sua existência - pois

é por esse canal que trafegam os dados do usuário - ainda não está adequadamente

adaptado para o público brasileiro. Na Europa utiliza-se a transmissão por GSM, que em

princípio não tem apelo comercial por tornar mais caro quanto maior a sua utilização. De

fato, poucas pessoas utilizam a rede celular como forma de transmissão de dados. A

transmissão dos dados pela Internet já está prevista em todos os padrões de TV Digital,

porém muito pouco explorada. Deste modo, a criação de uma estrutura alternativa para a

implementação deste canal de retorno é altamente justificável, e para tal, a proposta deste

CAPÍTULO 1. INTRODUÇÃO 2

projeto é o desenvolvimento desta através de uma conexão comum à Internet, seja ela por

linha discada, banda larga, ou comunicação wireless (Wi-FI ou WiMax).

Disponibilizar o sinal de TV Digital para o computador abre inúmeras portas para apli-

cações, manipulação e tratamento deste. Como alguns exemplos podem ser citados a

gravação agendada de programas, a conversão para diversos formatos de vídeo (WMV,

DivX, XVid, Mov, entre outros), a transmissão do vídeo on-line - via Internet, armazena-

mento dada a crescente capacidade dos discos rígidos em computadores pessoais, fa-

cilidade para criação de multimídia (CDs, DVDs). É importante novamente ressaltar que

dispor o sinal de TV Digital aos computadores facilita a criação de plataformas de desen-

volvimento para conteúdo interativo destinado a TV Digital.

1.3 Escopo

O projeto teve início em Janeiro de 2007 e a idéia inicial envolvia a captura de sinais
analógicos de TV aberta através de uma interface USB, para a visualização da progra-

mação comum de TV no computador. O projeto evoluiu após a identificação da crescente

demanda por tecnologia envolvendo TV Digital. Assim, o foco do projeto foi redirecionado

para a implementação do canal de interatividade pela Internet. Este projeto desencadeou

uma pesquisa profunda sobre as tecnologias atualmente existentes e toda a polêmica so-
bre o assunto no Brasil.

O grupo percebeu que o assunto tomava volume ao longo do ano, e que diversas

equipes espalhadas pelo país estavam apostando em pesquisa e desenvolvimento técnico

na área. A oportunidade de contribuir para a especificação do padrão brasileiro também

incentivou o grupo a continuar o seu trabalho e a envolver-se cada vez mais nas pesquisas

de TV Digital.

Com o projeto já direcionado à TV Digital, foi prevista a implementação de um receptor,

sintonizador e decodificador de sinal de TV Digital para a sua captura através do disposi-

tivo USB. Devido ao tempo e recursos limitados para a realização do projeto, houve uma

redução nas características funcionais.

O projeto é caracterizado por dois grandes blocos. O primeiro deles trata mais do hard-

ware e provê um dispositivo USB responsável pela captura do fluxo de vídeo, som e dados

multiplexados no padrão MPEG-2 Transport Stream. O MPEG-2 é a tecnologia de cod-

ificação do vídeo adotada pelos três principais padrões de TV Digital: o DVB (europeu),

o ATSC (americano) e o ISDB (japonês). O padrão brasileiro, conhecido como Sistema

Brasileiro de TV Digital (SBTVD), definiu a adoção de uma tecnologia mais atual para a

CAPÍTULO 1. INTRODUÇÃO 3

codificação do vídeo, o MPEG-4, que é totalmente compatível com o MPEG-2 e consid-

erado a sua evolução já que permite maior compressão. Para o transporte dos dados, o

padrão adotado no Brasil continua sendo o MPEG2 Transport Stream. Por basear-se no

padrão MPEG-2 Transport Stream, o projeto torna-se independente do padrão de trans-

missão utilizado.

O segundo bloco está relacionado ao software necessário, responsável pela leitura do

fluxo MPEG-2 através da interface USB, pela apresentação do vídeo e som e pela exe-

cução de aplicativos para a TV Digital. O ambiente de execução de aplicativos é conhecido

como middleware e deverá possibilitar a implementação de um canal de retorno através da

conexão disponível com a Internet, seja ela uma conexão discada, banda larga, sem fio ou

qualquer outra.

O foco do projeto é a pesquisa e desenvolvimento de uma infra-estrutura completa para

a implementação do middleware que possibilite o canal de retorno através da Internet. Isto

inclui as funcionalidades do lado cliente e do lado servidor, além da definição de padrões,

estrutura e protocolos de comunicação utilizados. Este middleware também possibilita

a criação de um poderoso ambiente de desenvolvimento, já que aplicações poderão ser

desenvolvidas e testadas na mesma plataforma – o computador.

É importante enfatizar a possibilidade de expansão das funcionalidades, uma vez que

o projeto visa ser independente de tecnologias de transmissão, recepção e decodificação

do sinal de TV Digital. Desta forma, tantos os padrões europeus, americanos, japoneses e

brasileiros poderão tirar proveito dos resultados obtidos neste trabalho.

1.4 Organização

O presente documento está dividido nas seguintes seções:

• Capítulo 2 - Aspectos Conceituais: são definidos os conceitos básicos a serem dis-

cutidos ao longo de todo o documento, o cenário atual da TV Digital no país, o estado

da arte da tecnologia existente e os equipamentos utilizados durante a concepção do

projeto ;

• Capítulo 3 - Especificação do Projeto: nesta seção são definidos todos os requisitos

necessários para o projeto, bem como o impacto destes na definição do escopo do

projeto. São levantadas as características técnicas dos equipamentos e padrões que

serão estudados e utilizados ao longo do projeto;

CAPiTULO l. INTRODUÇÃO 4

• Capítulo 4 - Metodologia: este capítulo descreve os principais métodos e técnicas

utilizadas para a implementação do projeto baseado nos requisitos levantados previ-

arnente ;

• Capítulo 5 - Projeto e Implementação: este capítulo descreve todas as atividades,

especificações técnicas e componentes de hardware e software que foram desen-

volvidos para a implementação do projeto;

• Capítulo 6 - Testes e Avaliação: este capítulo descreve os principais testes execu-

tados para a validação das funcionalidades do dispositivo USB e do software imple-
mentado, bem como a avaliação dos resultados obtidos;

• Capítulo 7 - Considerações finais: este capítulo avalia os resultados globais do pro-

jeto, analisando as dificuldades e aspectos positivos do projeto, além de ressaltar os

projetos futuros que poderão se basear no presente projeto;

• Apêndice A - API FrontPanel: este apêndice relata o uso da API do kit de desenvolvi-

mento, bem como apresenta um overview da API utilizada;

• Apêndice B - Pinagem: este apêndice relata a configuração de pinos e conexões

utilizada ao longo da implementação do dispositivo USB;

Capítulo 2

ASPECTOS CONCEITUAIS

2.1 O Ambiente

2.1.1 Cenário

Iniciado em 2003 e coordenado pelo Centro de Pesquisa e Desenvolvimento em Tele-

comunicações (CPqD), o comitê do Sistema Brasileiro de Televisão Digital (SBTVD) foi

responsável pelos estudos que definiriam o padrão a ser adotado no país. Após estu-

dos conduzidos juntamente com universidades e companhias de comunicação, em 13 de

novembro de 2005 o sistema foi apresentado pelo presente Ministro das Comunicações

Hélio Costa. O sistema resultante dos estudos foi baseado no sistema ISDB-T utilizado no

Japão, porém com a adição de padrões desenvolvidos no país que deveriam proporcionar

alta definição e interatividade segundo as diretivas do governo.

A definição do padrão brasileiro de TV Digital e o forte compromisso do governo e de

instituições privadas levam a crer que a TV Digital, incluindo o serviço de interatividade, terá

ampla penetração no Brasil. Uma vez instaurados, os serviços de interatividade estarão

vinculados a programas de televisão e a publicidade, exigindo assim demanda constante

por produção. A eficiência deste processo será fator crítico para a redução de custos de

produção e impactará na margem de lucro das produtoras e emissoras.

Todas as expectativas são de forte adoção da TV Digital pelos espectadores (conforme

estudo realizado pelo CPqD [1]). A penetração da tecnologia para 2016 está estimada em

40% dos domicílios brasileiros atendidos para o pior caso e 70% de domicílios atendidos

no melhor caso. Esta estimativa nem leva em consideração eventos importantes, como as

Olimpíadas de 2008 em Pequim, as Eleições de 2010 e principalmente a Copa do Mundo

de 2010 na África, Tais eventos têm grande chance de alavancar ainda mais a adoção,

já que historicamente sempre foram um incentivo às vendas de televisores (que podem

já integrar o set-top box) e ao aumento da demanda por publicidade e propaganda, que

certamente serão um atrativo à interatividade. Há ainda a questão do uso da propaganda,

que já está sendo utilizada como estratégia de implantação pelo governo e que promete

alavancar a difusão da TV Digital trazendo a estimativa (no melhor caso) para 80% dos

domicílios atendidos já em 2010.

CAPiTULO 2. ASPECTOS CONCEITUAIS 6

Além de o cenário ser bastante promissor, estudos mostram que a influência dos novos

serviços oferecidos TV Digital para as emissoras e produtoras de conteúdo (principais
clientes do produto proposto) é sempre positiva. Especificamente, a interatividade influi

positivamente sobre as receitas das emissoras e produtoras de conteúdo.

A TV Digital ainda não é uma realidade no Brasil, uma vez que só existe para assinantes

de TV por assinatura. Além disso, a tecnologia utilizada pelas operadoras de TV a cabo é

estrangeira, baseada nos padrões europeus de TV Digital (DVB e MHP). O projeto de TV

Digital brasileiro incentiva a pesquisa de diferentes setores, tanto no meio acadêmico como

no meio privado. Estas pesquisas e incentivos do governo brasileiro permitem a definição

de um padrão brasileiro para transmissão e middleware para a execução de aplicações
sobre conteúdo multimídia.

2.1.2 Plano de Transição

O governo elaborou também um plano de transição que deverá ser cumprido tanto por

emissoras comerciais como públicas a fim de organizar e estabelecer um prazo para que

a tecnologia de TV Digital seja implantada e esteja disponível para todos os brasileiros.

A Figura 2.1 contém um quadro onde são apresentadas as etapas do cronograma de

digitalização para esse plano de transição.

O estado de São Paulo já possui a infra-estrutura e tem início das transmissões do

novo padrão marcado para dezembro de 2007. Ao final do processo de transição, em

2013, todo o país terá acesso a TV Digital. Regulamentado pelo governo e também em

conseqüência das perspectivas futuras de mercado, fabricantes de televisão deverão entrar

em conformidade com o novo padrão sendo obrigados, também a partir de 2013, a produzir

aparelhos seguindo os padrões da TV Digital brasileira.

Até atingir a conformidade com o padrão, o país pretende continuar transmitindo ambos

os sinais analógicos e digitais, o chamado simulcasting, pelo menos até 2016. Se houver

necessidade, o governo prorrogará o prazo de transição.

2.1.3 Terminal de Acesso (set-top box)

O usuário deverá possuir um terminal de acesso que será responsável pela recepção e

decodificação do sinal para o aparelho televisor. Este equipamento, chamado set-top box,

inicialmente será vendido como um aparelho externo; os consumidores poderão comprar e

utilizar em seus televisores analógicos ou digitais. Porém, a tendência é que, com o tempo,

o set-top box virá integrado aos novos aparelhos de televisão já adaptados a tecnologia

digital .

CAPITULO 2. ASPECTOS CONCEITUAIS 7

Fases Regiões Emissoras
Calendário

1 As duas maiores Regiões
Metropolitanas (RJ e SP)

5 maiores emissoras mmerciais
e a maior emissora pública
(8/ou operador(85) de rede)

5 rnaioras emissoras wmerciais
e a maior emissora pública
(8/ou operador(88) de red©}

5 rnaior©s emIssoras mmerciais
g a maior emissora pública
(8/ou operador(88) de rede)

5 rnaior8s emissoras oomerciais
8 a maior emissora pública
(8/ou operador(es} de rede}

Todas as 98íadoras e
retransmissora$

(8/ou operador(as} de rede)

Todas as gwadora$ e
retransmissoras

(8/ou operador(es} de rede)

T„ + 6 meses

2
RMs com mais de 2 milhões

de habitantes e Brasília

Tn + 12 meses

3 Demais RMs, capitais 8 cida-
des com mais de 300 mil hab.

Tc. + 24 meses

4 Cidad8s com mais de 100 mil
habitantes

TrI + 36 meses

5
Cidades com mais de 100 mil

habitantes

TE, + 48 rnes8s

T,:1 + 72 meses
6 Talo o país

RM - Região Metropolitana T,1 - instante gm que as primeiras frBqüências são consignacÍas

Figura 2.1 : Quadro resumo para o plano de transição da TV Digital no Brasil

Muito se tem especulado sobre o preço do set-top box. Governo e indústria divergem

nos valores, porém este deve variar entre R$ 200 e R$ 800. Nos gráficos da Figura 2.2

e da Figura 2.3 observa-se o estudo feito pelo CPqD sobre o comportamento de alguns

indicadores à variação do preço inicial do terminal de acesso à TV Digital.

Com relação à evolução dos preços, tem-se que quanto maior o preço inicial, maior o

preço médio ao longo do período, conforme ilustrado na Figura 2.2. Em todos os casos, o

preço cai mais intensamente nos primeiros anos, estabilizando por volta de oito a dez anos

após o início da comercialização do terminal de acesso.

Preços mais elevados implicam em um percentual menor de domicílios atendidos, como

é mostrado no gráfico da Figura 2.3. O estudo mostra que após 15 anos e com as pre-

missas consideradas, o percentual de domicílios atendidos no caso mais favorável (a R$

200) chega a 81%, enquanto que no caso mais desfavorável (a R$ 800) esse percentual

fica em torno de 52%. É importante lembrar que, para efeito de simulação, esses valores

foram divididos em 10 parcelas, segundo o procedimento de venda a prazo.

CAPÍTULO 2. ASPECTOS CONCEITUAIS

Evolução do preço X preço inicial

(9000 aI VCD ooo cv RICO ooo
o o q- c + 9- T- CN CN cq cu nJ c+)ooooooooooo Ó ÔDa nJ ageNcy ol01 CN cv 61 cANaã

'– RS 200 R$ 400 R$ 600 R$ 800

Figura 2.2: Sensibilidade da evolução do preço ao preço inicial

Difusão X preço inicial

1008
E 80ID

g 60

! iI 2
:8i :9 é g É g ;g ;g g é g ig g

n-RS2ÜO –R§400 ---Rs6aa '–R§800

Figura 2.3: Sensibilidade da difusão segundo o preço inicial do terminal de acesso

Pode-se concluir que a longo prazo, mesmo com o preço elevado do terminal de acesso,

a difusão da TV Digital será ampla sobre o território brasileiro e substituirá a TV analógica
convencional.

2.1.4 Modelo de Serviços

Entende-se por modelo de serviços como o leque de serviços e aplicações de que um

sistema de TV digital terrestre pode dispor. Para que tais serviços cheguem ao usuário

é necessário que não apenas das tecnologias habilitadoras e de toda infra-estrutura de

serviços subjacentes mas também do perfil de demanda dos usuários e da estratégia e

capacidade de atendimento dos provedores de serviço (emissoras/programadores e outros

agentes associados) .

O modelo de serviços é, portanto, um reflexo do quanto será explorado das poten-

cialidades funcionais da TV Digital, ressaltando-se a importância do conteúdo, e de sua

CAPÍTULO 2. ASPECTOS CONCEITUAIS 9

formatação, para que o usuário perceba valor no usufruto da nova tecnologia. Entre os

principais serviços possíveis para a TV Digital, estão a interatividade, a alta definição e a

portabilidade em diversos dispositivos móveis.

Neste âmbito a interatividade aparece como principal fator potencializador de inovação

de conteúdo agindo também como ponto chave na percepção do usuário sobre o conteúdo.

2.1.5 Serviços Interativos

Os serviços interativos permitem uma maior participação do usuário na escolha e for-

matação de conteúdo, o que, no limite dessa funcionalidade, pode trazer para o mundo

da televisão um novo universo de aplicações e possibilidades similares às da Internet.

Entre as novas aplicações providas com interatividade local, encontram-se multicâmeras,

serviços extras vinculados ao programa, portal de informação, novos formatos de publici-

dade e Guia Eletrônico de Programação (GEP). Dependendo do cenário, a existência do

canal de retorno permite, entre outros, serviços e aplicações como cursos e jogos on-line,

envio de mensagens curtas, correio eletrônico, participação em programas com respostas

individualizadas, TV-Gov (declarações, prontuários, agendamentos de serviços etc.), por-

tal de informações, noticias personalizadas, comércio eletrônico e publicidade dirigida com

resposta.

Este tipo de conteúdo é novo no mercado de televisão. Apenas algumas empresas

de TV por assinatura fornecem serviços de interatividade, porém de maneira muito mais

restrita: uma vez instalado o terminal de acesso, os serviços de interatividade já estão
definidos e não mudam de acordo com a programação.

Quando vinculados aos programas de televisão e às publicidades, os serviços de in-

teratividade passam a exigir uma demanda constante por produção. Desta maneira, a

eficiência do processo de produção reduzirá os custos de produção impactando conse-

qüentemente na margem de lucro das produtoras. O projeto apresentado por este docu-

mento, possibilita a criação de ferramentas de autoria de conteúdo, portanto contribui de

forma indireta na melhoria deste processo de produção.

Basicamente, aplicações interativas podem ser classificadas em três diferentes níveis

de interatividade, sendo que o produtor poderá misturá-los para obter o apelo comercial ou

aplicativo desejado. São os níveis:

• Nível reativo: as opções de conteúdo e feedback são fornecidas pelo próprio pro-

grama, e o usuário basicamente seleciona as informações e conteúdo ao qual deseja

ter acesso. Temos aqui aplicações como seleção de legendas, canais, apresentação

CAPiTULO 2. ASPECTOS CONCEITUAIS 40

de informações ao vivo, informações sobre preço e característica de produtos em

cena, entre outras aplicações;

• nível coativo: o usuário pode escolher a seqüência de ações, telas, controlar o ritmo e

interagir com as aplicações. Temos aqui aplicações com interatividade local, ou seja,

podemos ter aplicações do tipo “Quiz”, jogos interativos, propagandas interativas com

seleção de cenas e modificação da estrutura do vídeo e conteúdo multimídia;

• nível proativo: o usuário poderá controlar tanto a estrutura quanto o conteúdo. Temos

o nível máximo de interatividade, no qual o usuário poderá demandar outros tipos

de conteúdo, interagir e enviar dados de volta ao transmissor de conteúdo, acessar

conteúdos multimídia em sites da Web, postar dados, acessar e-mail, aplicações de

e-banking, entre outras.

Com estes três níveis de interatividade, o produtor de conteúdo poderá criar e produzir

conteúdos muito mais ricos e que atinjam diretamente o seu telespectador, podendo inter-

agir com ele e efetuar vendas e consultas de mercado durante a própria transmissão do
conteúdo.

2.1.6 Plataforma brasileira para interatividade (Ginga)

Resultado de anos de pesquisas lideradas pela Pontifícia Universidade Católica do

Rio de Janeiro (PUC - Rio) e pela Universidade Federal da Paraíba (UFPB), o Ginga é

a camada de software intermediário (middleware) que permite o desenvolvimento de apli-

cações interativas para a TV Digital de forma independente da plataforma de hardware dos

fabricantes de terminais de acesso (set-top boxes). Este padrão brasileiro reúne um con-

junto de tecnologias e inovações brasileiras que o tornam a especificação de middJeware

mais avançada e, ao mesmo tempo, mais adequada à realidade do país.

Durante a elaboração deste documento, a especificação completa do GINGA esteve

em processo de aprovação pública, sendo analisada por todas as entidades de pesquisas

envolvidas com a produção de tecnologia para a TV Digital brasileira. A aprovação do

padrão é praticamente certa.

2.2 Equipamento Utilizado

Nesta seção, são detalhados todos os equipamentos, ferramentas, software e compo-

nentes utilizados no desenvolvimento do projeto.

CAPÍTULO 2. ASPECTOS CONCEITUAIS 11

Equipamentos-.

Recorder Generator DVRG da Rohde & Schwarz : gerador de TS utilizado como

fonte de transmissão para o dispositivo USB;

• SFU Broadcast Test System da Rohde & Schwarz: modulador para transmissão de

DVB-T para recepção pelo set-top box;

• Set-top box DVB Philips: utilizado para visualização dos vídeos transmitidos em uma

TV comum;

• Osciloscópio Tektronix TDS220 de 100MHz: utilizado para visualização dos sinais

analógicos e digitais durante o desenvolvimento do projeto;

• MacBook, HP Pavilion, Notebook DELL: utilizados pelos integrantes do grupo para

desenvolvimento do projeto;

Software-.

• lntelliJ IDEA: IDE para desenvolvimento de aplicações em JAVA;

• Eclipse: IDE para desenvolvimento de aplicações em JAVA;

• Xilinx ISE 9.2i WebPack: IDE para desenvolvimento do modelo em VHDL do dispos-

itivo e geração dos arquivos de configuração da FPGA;

• ModelSim XE III 6.2: simulador de circuitos lógicos integrado ao ambiente da Xilinx

para simulação do dispositivo ;

Componentes e materiais.

• Kit Opal Kelly XEM 3001 v2: kit de desenvolvimento USB com FPGA Spartan-3 da

Xilinx utilizado como base para o dispositivo USB;

• Conector D-subminiatura 25 pinos: utilizado para encaixe com a interface SPI do

gerador de TS e interconexão com os pinos de entrada do kit de desenvolvimento;

• Cabo USB: utilizado para interconectar o kit de desenvolvimento ao computador host,

• Solda de estanho/chumbo: utilizada para a elaboração do conector e interconexão

dos pinos no kit de desenvolvimento;

Ferramentas.

CAPÍTULO 2. ASPECTOS CONCEITUAIS

, Ferro de solda 25W: utilizado para realizar a solda de componentes;

• Alicate pela fio;

• Alicate cortador de fio;

12

Capítulo 3
13

nu

ESPECIFICAÇ,AO DO PROJETO

3.1 Funcionalidades principais

As funcionalidades principais do dispositivo são:

• Captura de vídeo digital a partir de stream MPEG2 de entrada.

• Visualização do vídeo capturado na tela do computador.

• Interface com outros programas para edição, compressão e armazenamento dos

vídeos capturados em diferentes formatos (MPEG, DivX, XVid, entre outros).

• Suporte a novos módulos de aplicações para TV Digital (flexibilidade).

• Interatividade através de canal de retorno via conexão de Internet.

Operadoras

TV/\Sinal de TV
Digital \ 11!bb 1

i- >

“-71

USBTv

Internet DI REC TV
--1

waHb

Interatividade

Aplicações de TV DigItal

Figura 3.1 : Diagrama de blocos da aplicação principal

3.2 Conexão USB

3.2.1 Software

Para o funcionamento do dispositivo através da conexão USB do computador faz-se

necessário a criação de um driver para transferência dos dados. O desenvolvimento de

drivers para plataforma Windows foi simplificado no final do ano de 2005 com a adição do

CAPÍTULO 3. ESPECIFICAÇÃO DO PROJETO 14

framework Windows Driver Foundation (WDF), uma camada acima e em nível mais alto

que o Windows Driver Model (WDM). Tal tecnologia tem possibilitado agilidade na criação

dos drivers e maior segurança através do encapsulamento de itens como a estrutura de

dispositivos Plug and Play (PnP), gerenciamento de energia, requisições de 1/O, eventos e

interrupções.

3.2.2 Hardware

Inicialmente o hardware a ser utilizado no projeto consistia em um receptor de TV Digital

por Radio Freqüência (RF), abrangendo assim todas as etapas de tratamento do sinal.

Visando a simplificação, uma vez que a recepção do sinal não é o objetivo principal, o

projeto foi reduzido para capturar uma saída MPEG2 Transport Stream aá digital) de um

aparelho de geração de sinais, ao invés de obtê-lo a partir da demodulação e decodificação

de um sinal RF. A Figura 3.2 mostra o diagrama em blocos que representa o esquema do

hardware necessário.

USBTv

Condicionador
e conversor de

Sinais

Controle do

dispositivo vla
USBDemultiplexador

Figura 3.2: Diagrama de blocos do hardware completo para a aquisição do sinal

o gerador de sinais DVR(J, da Rohde & Schwarz, dispõe de uma saída serial assín-

crona com conector BNC a 270 Mbits/s e uma saída paralela síncrona de 25 pinos que

transmitem dados em MPEG2-TS, facilitando o projeto e o desenvolvimento do sistema de

CAPÍTULO 3. ESPECIFICAÇÃO DO PROJETO 15

+
AqUISIÇãO dO SInaIS

Processamento de SInais

Buffer de Saída

Conversor AnalóglcoDlgltal

De mtIlllplexador

+
Buffer de Saida

+ Lt
J

FIgura 3.3: Processo de simplificação para este projeto

aquisição de sinais. Como o padrão USB 2.0 estabelece uma taxa de transferência de 480

Mbits/s, a viabilidade da transmissão do sinal para o computador não é comprometida.

A Figura 3.3 apresenta o diagrama de blocos do projeto original e a sua simplificação

para o projeto no estágio atual.

3.3 Formato dos dados

Tecnologias de transmissão e modulação dos dados estão fora do escopo deste pro-

jeto. Não há nenhuma suposição sobre como são feitas a transmissão e a modulação

dos dados. Apesar de o foco estar no modelo brasileiro de TV Digital, SBTVD, o projeto

se encaixa com qualquer um dos padrões existentes para modulação e transmissão de

conteúdo: o europeu DVB [1 3], o norte americano ATSC [1 0] e o japonês ISDB [1 4].

CAPÍTULO 3. ESPECIFICAÇÃO DO PROJETO 16

Para alcançar tal independência, o conteúdo será capturado no formato definido pelo

padrão MPEG-2 [9], suportado por todos os padrões e tecnologias de transmissão do sinal

de TV Digital.

3.3.1 O padrão MPEG-2

De uma forma geral, o padrão MPEG-2 define como informações de som, imagem

e dados são codificadas, decodificadas, comprimidas, armazenadas e transmitidas. Ele

também é um padrão internacional, o ISO/IEC 1 3818 e é divido em dez partes. São listadas

abaixo as sete mais importantes:

• Parte 1 - Sistemas: sincronização e multiplexação de som, vídeo e dados. Também
conhecida como ITU-T Rec. H.222.0.

• Parte 2 - Vídeo: codificação e compressão de vídeo. Também conhecida como ITU-
T Rec. H.262.

• Parte 3 - Áudio: codificação e compressão de áudio.

• Parte 4 - testes de compatibilidade com a especificação.

• Parte 5 - descreve sistemas de simulação por software.

• Parte 6 - mecanismos de proteção contra fraude (cópias e armazenamento) - DSM-

CC (Digital Storage Media Command and Control).

• Parte 7 - formato avançado para codificação e compressão de áudio, AAC (Advanced

Audio Coding).

Para o projeto, a primeira parte (Sistemas) é a mais importante, pois define como são

misturadas (ou multiplexadas) as informações de som, vídeo e dados a serem transmitidas.

Esta parte ainda se divide em duas, sendo uma divisão adequada a aplicações de trans-

missão (broadcast) , conhecida como MPEG-2 Transport Stream e uma divisão adequada

a sistemas de armazenamento, conhecida como MPEG-2 Program Stream.

O projeto assume que os dados entram no formato MPEG-2 Transport Stream. A re-

cepção e demodulação deste sinal estão fora do escopo.

CAPÍTULO 3. ESPECIFICAÇÃO DO PROJETO 17

Byte de Sincronia
0x47 Ft ags Sequência

Figura 3.4: Parte do cabeçalho dos pacotes

3.3.2 Conteúdo como fluxo de dados: MPEG-2 Transport Stream

O padrão MPEG-2 Transport Stream é formalmente um protocolo de comunicação de

áudio, vídeo e dados que tem como objetivo principal permitir a transmissão dos três com-

ponentes em um mesmo fluxo de dados, através da multiplexação no tempo. O protocolo

ainda prevê recursos para sincronização entre os componentes e correção de erros no

transporte sobre meios não confiáveis.

Os pacotes são a unidade básica do protocolo e geralmente têm tamanho de 188 bytes.

Um fluxo MPEG-2 é composto de pacotes pertencentes a diversos fluxos elementares,

misturados pela multiplexação no tempo. A Figura 3.4 mostra a composição de uma parte

do cabeçalho dos pacotes, que iniciam por um byte de sincronização de valor 0x47.

Um dos componentes mais importantes dos cabeçalhos dos pacotes é o Program ID -

PID, de 13 bits. Pacotes de mesmo PID formam um fluxo elementar, que pode transportar

vídeo, áudio ou dados.

Um Programa é formado por um conjunto de fluxos elementares. Geralmente há um

fluxo elementar para vídeo, dois para áudio (som estéreo) e um para dados, mas um pro-

grama pode ter quais fluxos elementares forem necessários. Os Programas são popu-

larmente conhecidos como canais de televisão e comumente cada fluxo MPEG-2 pode

carregar três deles.

Para a definição dos programas existentes em um fluxo MPEG-2, existem alguns pa-

cotes especiais de PID 0x00. São pacotes pertencentes à PAT (Program Association Ta-

bIel , que listam os PIDs de quais pacotes contém informações sobre os programas.

Os pacotes que contém informações sobre os programas são conhecidos como PMTs

(Program Map Tables) e definem quais são os conjuntos de PIDs que formam os Progra-

mas. Em outras palavras, os PMTs agrupam conjuntos de fluxos elementares em Progra-

mas e ainda contém metadados sobre cada um dos fluxos elementares; mostrando, por

exemplo, se um fluxo elementar carrega vídeo, áudio ou dados.

CAPiTULO 3. ESPECIFICAÇÃO DO PROJETO 18

3.4 Middleware

O nome vem de sua principal função: prover a interação entre as aplicações da TV

Digital e o hardware do set-top box. Dito de outra maneira, o middleware é o software

responsável pelo tratamento, decodificação e reprodução do áudio e do vídeo e pela exe-

cução das aplicações de TV Digital. O middleware é uma plataforma para a execução de

aplicações de TV Digital.

Existem diversas especificações para middlewares. O mais famoso de todos é o MuI-

timedia Home Platform (MHP) [16], definido no padrão europeu DVB [13] e baseado na

tecnologia JavaTV. O MHP foi tão bem visto que acabou baseando diversas outras especi-

ficações de middlewares e fez com que fosse criado o Globally ExecutabJe MHP (GEM

[17]), pedaço do MHP sem os detalhes específicos do DVB, para ser usado como base em

outras tecnologias de transmissão e decodificação.

O GEM é a base que impulsiona uma das duas abordagens para middlewares de TV

Digital; a abordagem procedural. Nesta abordagem, as aplicações de TV Digital são es-

critas como programas convencionais em alguma linguagem de alto nível (quase sempre

em Java). Exemplos de middlewares que seguem esta abordagem são o europeu DVB-J

(o próprio MHP, o “J“ vem de Java), o norte americano OCAP (OpenCable Application Plat-

form [12]), o outro norte americano ACAP (Advanced Application Platform [1 1]), o japonês

ARIB B.23 [7] e o brasileiro Ginga-J (o “J“ vem de Java [18]), coordenado pelo Laboratório

de Aplicações de Vídeo Digital (LAViD) do Departamento de Informática (DI) da Universi-

dade Federal da Paraíba (UFPB).

A outra abordagem para middJewares de TV Digital é a declarativa, onde as aplicações

de TV Digital são programas declarados em linguagens derivadas do XML, como o XHTML.

É um modelo de desenvolvimento parecido com o atualmente empregado na Internet, onde

as páginas são geralmente declaradas em linguagem XHTML.

A abordagem declarativa ainda permite o uso de algum tipo de linguagem ou script para

conseguir oferecer as mesmas funcionalidades que a abordagem procedural. Geralmente

é possível descrever algumas funcionalidades específicas da aplicação de TV Digital de

forma procedural através destas linguagens embutidas. Um exemplo de linguagem larga-

mente utilizada para este fim é o ECMAScript, popularmente conhecida como JavaScript.

O pioneiro da abordagem declarativa é o padrão de middleware japonês definido pela

organização ARIB que usa a linguagem BML (Broadcast Markup Language) baseada no

XHTML. Outros exemplos de middlewares existentes que seguem a abordagem declarativa

são o europeu DVB-HTML, o norte americano ACAP-X e o brasileiro Ginga-NCL, que usa

CAPÍTULO 3. ESPECIFICAÇÃO DO PROJETO 19

a Nested Context Language (NCL) e é desenvolvido pelo Departamento de Informática da

Pontíficia Universidade Católica do Rio de Janeiro (PUC - Rio).

A especificação que define o middleware incluído no padrão brasileiro de TV Digital –

SBTVD – é o Ginga, incluindo tanto o Ginga-J quanto o Ginga-NCL.

Para o projeto, foram consideradas duas alternativas para adoção: o europeu DVB-

J/MHP como abordagem procedural, ou o brasileiro Ginga-NCL como abordagem declar-

ativa. A escolha teve de ser feita com base nas ferramentas e implementações existentes

para ambas as alternativas, tendo em vista que o projeto visa estender uma alternativa de

middleware livre existente para prover as funcionalidades desejadas.

A primeira escolha foi trabalhar com o padrão europeu MHP, já que o padrão brasileiro

Ginga ainda vinha sendo desenvolvido e não estava facilmente disponível para consulta.

Porém durante o desenvolvimento do projeto, foi anunciado o lançamento público das

especificações do Ginga e a implementação de referência do Ginga-NCL foi disponlbi-

lizada ao público através do portal Software Público, do governo federal (http: //www .

softwarepubllco . gov . br).

Tais fatos fizeram com que o direcionamento da tecnologia de middleware para a inter-

atividade fosse firmada na utilização do Ginga [18] (em oposição ao MHP), por ser parte

integrante da especificação do padrão do Sistema Brasileiro de TV Digital e pela possi-

bilidade de participar e contribuir com a implementação da especificação, por tratar-se de

software livre.

Esta foi uma decisão importante, que afetou de maneira crítica o direcionamento do

projeto, que originalmente estava dimensionado e baseado no padrão europeu MHP Feliz-

mente, todos os padrões mundiais de middleware para TV Digital têm pontos em comum,

padronizados pelo GEM. Oportunamente, o padrão de middleware brasileiro adotado, tam-

bém é baseado neste padrão internacional, o que permitiu o aproveitamento da maior parte

do trabalho já realizado no projeto.

Dadas as desvantagens de se mudar a direção do projeto já em estágio avançado, a

importante decisão foi tomada principalmente levando em consideração a potencial con-

tribuição social e tecnológica deste Projeto de Formatura ao país. O Brasil está criando o

seu próprio padrão de middleware para TV Digital, o que incentiva diretamente o desen-

volvimento de tecnologia nacional. Além disso, cria-se uma reserva de mercado, já que as

empresas multinacionais do setor ainda não têm a tecnologia para produção em escala,

baseada no middleware brasileiro. Esta reserva abre oportunidade para novos empreende-

dores dentro do país.

CAPÍTULO 3. ESPECIFICAÇÃO DO PROJETO 20

Redes de Televisão

: Canal de Descida no Canal de ::

Radiodifusão (TS)
' Broadcast
' Multicast
' Unicast

E

f+ b 9 1 1 1 1 F • r f p 1\ 1 1 1 1 1 r 1

Y
/ Lccus de
1, interatividade

l}fBI B
h f

Ir
!

Canal de Retorno
IBIBllBBBllBllilBIBr;81 181 lllBIBB ll 188 IBIRI IBIBI IR III IBIBI 16881 IBllBIHBBI ll BRI 188 IRIBlllB

iH181 iBI 11 18111 iHiBBiBI ii 181 11 isi 18881 11 iReiIHIBiiBlliBBilllPIBI iBI 11 eBI 8118188181 lliBIBBIB18BiBI

Canal de Descida Cornplementar
• Untcast
' Multicast

Redes de Comunicações

Canal de Interatividade

Figura 3.5: Diagrama do Canal de Interatividade

3.5 Canal de retorno

3.5.1 Conceito

O Canal de Retorno, ou Canal de Interatividade, é a camada responsável por viabilizar

a comunicação das aplicações interativas, no terminal de acesso, com os servidores de

aplicação do provedor de conteúdo. Desta forma, pode-se conceituar o Canal de lnterativi-

dade como o subsistema que permite que cada usuário, individualmente, possa interagir

de forma própria com o conteúdo multimídia disponibilizado pelas emissoras, enviando

e/ou recebendo informações e complementando atividades e aplicações disponíveis.

A arquitetura prevista para o Canal de Retorno tende a utilizar múltiplas tecnologias de

comunicação, o que permite um aumento na capacidade de acesso, cobertura e número

de usuários com acesso a conteúdos adicionais ao conteúdo normal disponibilizado.

No caso do SBTVD, o uso de diferentes meios de comunicação para a implementação

do Canal de Retorno é essencial, já que a maior meta do SBTVD é a inclusão digital de

regiões longínquas, onde o acesso à informação e cultura é escasso e limitado. Portanto,

o canal de retorno deve possibilitar interatividade a partir dos meios disponíveis em tais

CAPÍTULO 3. ESPECIFICAÇÃO DO PROJETO 21

regiões, havendo assim a necessidade de se adaptar a diferentes subsistemas de comu-

nicação, desde as redes GSM, como as redes de telefonia discada, comunicação via RF e
outras.

3.5.2 Aplicações

A interatividade pode ser dividida em três níveis, como já descrito na Seção 2.1.5.

Além disso, sob o ponto de vista das aplicações interativas que se utilizam do Canal de

Retorno, podemos dividi-las em dois tipos de interatividade, sendo estas as aplicações de
Interatividade Intermitente e Interatividade Permanente.

Aplicações de Interatividade Intermitente

Para este tipo de aplicações, a comunicação entre o telespectador e o emissor de

conteúdo se dá de forma unidirecional, ou seja, o telespectador apenas envia informações

para o emissor, sem esperar nenhuma resposta a cerca das informações enviadas.

Neste tipo de aplicação se enquadram o envio de votos de enquetes, pesquisas de

opinião, jogos do tipo quiz, envio de mensagens SMS, entre outras aplicações. Neste caso,

o usuário apenas utiliza o canal de retorno como forma de enviar informações, utilizando

alguma aplicação do emissor de conteúdo para tratar os dados enviados. Assim, não é

necessária a comunicação do emissor de conteúdo para o telespectador através do canal

de retorno, pois todos os dados necessários já foram enviados através das aplicações de

dados recebidas no terminal de acesso.

Apesar de possuírem um grau de interatividade limitado, tais aplicações já permitem

que o emissor de conteúdo interaja com seus telespectadores, porém não há emissão

de conteúdo individual e exclusivo para cada telespectador, há apenas a coleta de infor-

mações e tratamento das mesmas pelo emissor.

Aplicações de Interatividade Permanente

Para este tipo de aplicações, a comunicação entre o telespectador e o emissor de con-

teúdo passa a ser bidirecional, ampliando o nível de interatividade e permitindo a emissão

de conteúdo exclusivo do emissor para o telespectador.

Tais aplicações passam a incorporar funções que poderiam existir em um computador

conectado à Internet, tais como envio e recebimento de e-mails, jogos multiusuários, home

banking, chat, educação à distância, compras on-line, pesquisa, etc. Este nível de inter-

CAPÍTULO 3. ESPECIFICAÇÃO DO PROJETO 22

SMS - Application

A Cab cá á ã
A

restam 1 30 caracteres

ulillz\3 us llÜlllelys Llü
controlo lemolo pam e3çr«ver

Figura 3.6: Aplicação SMS utilizando interatividade intermitente.

atividade permite inclusive que conteúdo multimídia extra seja enviado ao telespectador,

conforme suas necessidades e serviços disponíveis.

Outra aplicação acrescentada é a possibilidade de comunicação entre os telespecta-

dores, permitindo a discussão de conteúdos e uma interação completa entre todos os

receptores de conteúdo do mesmo emissor.

Como um exemplo do uso extensivo deste grau de comunicação, podemos ilustrar a

seguinte situação. Um telespectador está assistindo a um evento esportivo de seu gosto,

como por exemplo, uma partida de futebol. Ele se interessa em comprar a mesma chuteira

que o seu jogador predileto usa. Utilizando os dados já enviados pelo emissor de conteúdo,

ele sabe a marca e modelo da chuteira que o jogador está usando (interatividade local).

Ele pode utilizar uma aplicação que compare o preço do produto em diferentes lojas on-

line. Após isto, ele pode entrar em um fórum de discussão onde outros telespectadores

comentam sobre o produto e sobre o atendimento das lojas nas quais eles compraram o

produto. Utilizando uma aplicação de home banking, ele consulta o seu saldo no banco.

Baseado em todas as informações, o telespectador decide comprar o produto e acessa via

alguma aplicação a loja na qual o produto está mais barato. Efetua a compra e continua

assistindo ao jogo, feliz em saber que em alguns dias terá a mesma chuteira que a de seu

jogador favorito.

CAPÍTULO 3. ESPECIFICAÇÃO DO PROJETO 23

á; b AOLTV

LI,. , [1.1,, 1l! ' [, .- l !

;f (,1 :J tI\': ’: ',

!E
8818 MaIIN+w MAit

am
iii04rDa { P}iT
Re. A(>Roll

181#ã@l&cIa.mniiDa©a

Figura 3.7: Aplicação de e-mail com interatividade permanente.

3.5.3 Implementação

Como foco principal do projeto, é realizada a implementação do Canal de Retorno

do dispositivo USBTv através de uma conexão qualquer com a Internet, seja através de

conexão discada, ADSL, cabo, sem fio, ou qualquer outra forma disponível para o usuário.

Como já previsto no SBTVD, o canal de retorno deve ser de fácil implementação e

permitir o uso de diferentes tecnologias. Supondo que, para a maior parte dos usuários de

computador, já existe uma conexão com a Internet, nada melhor do que utilizá-la como o

canal de retorno, permitindo assim uma integração total das aplicações de TV Digital com

as aplicações disponíveis para um computador comum através da Internet.

Assim sendo, o projeto deve analisar e implementar a camada de interface entre as apli-

cações de TV Digital e os serviços disponíveis na Internet, inicialmente para o middleware

escolhido, porém expansível para os demais tipos de middleware existentes.
O uso da Internet como canal de retorno viabiliza tanto a interatividade intermitente

como a permanente, ampliando-as ainda mais, pois permite a interação com os sistemas

já existentes de conteúdo multimídia na Internet. Poderíamos citar, por exemplo, uma apli-

cação de TV digital que permitisse a busca por vídeos no YouTube similares ao conteúdo

que está sendo atualmente transmitido pelo emissor de conteúdo e, através do canal de

retorno, carregar e apresentar o vídeo simultaneamente à transmissão de TV. Ou ainda,

CAPÍTULO 3. ESPECIFICAÇÃO DO PROJETO 24

poderíamos prever uma integração com os serviços já disponibilizados via Web Services

de lojas como Amazon, permitindo o reuso das tecnologias já existentes na Internet para o

uso com aplicações de TV Digital.

Assim, o projeto deve viabilizar e formalizar o canal de retorno através da Internet,

analisando quais os protocolos de comunicação mais adequados a serem utilizados e re-

alizando sua implementação como modelo de referência e prova de conceito.

3.6 Planejamento e Métodos

Todas as tarefas desenvolvidas pelos integrantes do grupo podem ser divididas em três

grandes conjuntos de tarefas, as quais são desenvolvidas por cada um dos integrantes do

grupo de acordo com seu grau de interesse pelo assunto.

Foram previstas etapas de integração das tarefas desenvolvidas individualmente, para

que o grupo como um todo possa entender e acompanhar o funcionamento de cada uma

das partes do projeto.

Cada grupo de tarefas representa problemas distintos, necessitando para tanto o uso

de diferentes abordagens para sua resolução. A seguir estão detalhados cada um dos

conjuntos de tarefas, assim como os métodos e técnicas que serão utilizados para o seu
desenvolvimento.

3.6.1 TV Digital e Middleware

Este conjunto de tarefas engloba todas as etapas de pesquisa e desenvolvimento

necessários para o entendimento e uso das atuais tecnologias e plataformas de desen-

volvimento para a TV Digital.
São necessários o entendimento dos formatos de dados, fluxos, codificação, modu-

lação, empacotamento e transmissão do sinal multimídia em fluxo de dados, bem como o

entendimento profundo do middleware a ser utilizado como plataforma para as aplicações

de TV Digital.

Fica de responsabilidade deste conjunto de tarefas o entendimento e uso adequado das

ferramentas de desenvolvimento, simulação e execução de aplicações, além da geração

e/ou simulação da transmissão de TV Digital a ser captada e apresentada pelo dispositivo
USB Tv.

CAPÍTULO 3. ESPECIFICAÇÃO DO PROJETO 25

Sinal de TV Digital

Esta tarefa consiste em obter e utilizar dispositivos de geração, transmissão e recepção

de sinal de TV Digital para o uso como entrada para o dispositivo de captura. Isto tem como

função principal simular o sinal recebido por um telespectador transmitido por um provedor

de TV Digital, baseado nos padrões disponíveis atualmente no mercado. É dada prioridade

ao formato escolhido pelas especificações do padrão brasileiro de TV Digital (SBTVD),

porém outros padrões poderão ser utilizados, desde que se obtenha como produto final o

MPEG-2 Transport Stream para o uso com o dispositivo de captura USBTv.

Complementação do Middleware

Esta tarefa consiste em testar e analisar os diferentes padrões de middleware previstos

para o SBTVD (Ginga-J e Ginga-NCL) e verificar qual padrão oferece melhor suporte e

viabilidade técnica para o desenvolvimento das aplicações de TV Digital com suporte ao

canal de retorno pela Internet.

Inicialmente foram abordados os padrões GINGA-NCL e o MHP, sendo analisadas as

suas especificações e ferramentas disponíveis no mercado para o desenvolvimento e sim-

ulação de aplicações em cada um dos middlewares.

3.6.2 Captura do Sinal via USB

Este conjunto de tarefas engloba todas as etapas de pesquisa e desenvolvimento

necessárias para a implementação das camadas de hardware e software, que permitam

o envio do sinal de TV Digital no formato MPEG-2 Transport Stream como fluxo serial de

dados para o uso nas plataformas de aplicações de TV Digital no computador, através de

uma porta USB.

Este conjunto é a parte do projeto que permite que o mundo da TV Digital possa ser

aproveitado, assistido e utilizado em qualquer computador que possua interface USB. Para

tanto, deverá implementar não só o hardware mas também os drivers e componentes de

software necessários para o uso do sinal de TV Digital no computador.

Este conjunto de funcionalidades pode ser simulado ao longo do projeto para o desen-

volvimento das outras etapas, permitindo o paralelismo do trabalho. Existem no mercado

softwares que geram arquivos no formato MPEG-2 Transport Stream, que podem ser uti-

lizados como sinal de entrada para as plataformas de middleware e para o desenvolvimento

e testes do canal de retorno. Porém, o projeto deve implementar tal interface de hardware

CAPÍTULO 3. ESPECIFICAÇÃO DO PROJETO 26

para que os objetivos de portabilidade e usabilidade especificados no projeto sejam com-

pletamente alcançados.

Hardware USB

Esta tarefa consiste em especificar, detalhar e implementar o hardware necessário para

a captura do MPEG-2 Transport Stream e seu envio em formato serial para o computador

através do padrão USB.

Como método, pode ser citado o uso de diagramas de blocos funcionais, que a cada

nível detalham os requisitos específicos de cada módulo, detalhando suas entradas e saí-

das. A arquitetura é detalhada até a obtenção de módulos compatíveis com componentes

existentes no mercado, de forma a facilitar a implementação do hardware necessário.

Está aberta a possibilidade do uso de kits de desenvolvimento, que forneçam suporte

ao tratamento dos dados e comunicação USB, além de ser necessária a completa es-

pecificação e elaboração do circuito lógico e físico dedicados para a aplicação USBTv,

permitindo assim uma possível implementação comercial do projeto.

Software USB

Esta tarefa consiste em especificar, detalhar e implementar os drivers e aplicativos

necessários para o tratamento da entrada de dados USB e sua correta formatação para o

uso do sinal como entrada para aplicações de TV Digital.

Inicialmente está previsto o desenvolvimento de drivers para o Sistema Operacional

Windows, uma vez que já existem bibliotecas padrão que facilitam a implementação da

comunicação USB. Para o desenvolvimento é utilizado o WDK (Windows Driver Kit) , que

já possui extensões para a implementação de drivers USB.

São utilizadas as ferramentas e padrões de desenvolvimento estabelecidos por órgãos

internacionais, como os padrões definidos [19].

Caso possível, podem ser desenvolvidos também drivers e aplicações para outros sis-

temas operacionais, como o Linux e o Mac OS X.

3.6.3 Canal de Retorno pela Internet

Este conjunto de tarefas engloba todas as etapas de pesquisa e desenvolvimento

necessárias para a implementação da interface e protocolos de comunicação que pos-
sibilitem o canal de interatividade via conexão com a Internet.

CAPÍTULO 3. ESPECIFICAÇÃO DO PROJETO 27

Tais tarefas devem apresentar como resultado final um arcabouço que permita que

qualquer aplicação de TV Digital consiga acessar serviços disponibilizados na Internet

por emissores de conteúdo, de preferência independentemente do padrão de middleware

utilizado.

Dentro destas tarefas, está também a migração de algum serviço disponível na Internet

como serviço para aplicações de TV Digital, utilizando os protocolos e bibliotecas desen-

volvidas para fazer a comunicação e interfaces necessárias como canal de retorno. Ou

seja, deve ser criada uma aplicação de exemplo que utilize o canal de retorno implemen-

tado para executar alguma tarefa atualmente só disponível para aplicações de computa-

dores

Como métodos de desenvolvimento, podem ser citados o uso das camadas do modelo

OSI, sendo definidas as interfaces, entradas e saídas (protocolos) para cada uma das

camadas necessárias para a implementação do canal de retorno via Internet.

São utilizados os padrões da UML para documentação do software a ser desenvolvido,

sendo utilizadas ferramentas abertas de modelagem de software (como, por exemplo, a

ferramenta ArgoUML para modelagem UML) e dadas as características da equipe e do

projeto, optou-se por uma metodologia ágil e iterativa de desenvolvimento, baseada em

resultados e metas parciais.

28

Capítulo 4

METODOLOGIA

4.1 Metodologia Ágil

Como metodologia de processo de desenvolvimento de software o grupo adotou méto-

dos ágeis, utilizando como base para gerenciamento de projetos a metodologia SC;RUM.

Esta metodologia consiste em um processo incremental e iterativo, no qual desen-

volvedores e interessados têm uma relação muito próxima e versões intermediárias são

entregues assim que determinadas funcionalidades são completadas.

São realizadas pequenas reuniões diárias para avaliação do andamento das equipes

no desenvolvimento de cada funcionalidade, havendo assim uma troca de experiências,

problemas e soluções entre os integrantes da equipe. Ao final de prazos pré-estabelecidos

(para este projeto o prazo foi de uma semana), são entregues versões das funcionali-

dades para que os interessados possam testá-las, sugerir modificações e propor melho-

rias. Desta forma, é garantida a qualidade e prazos para funcionalidade e, ao final de todo

o processo iterativo, o produto é finalizado com todas as suas funcionalidades testadas e

aprovadas pelos interessados.

A Figura 4.1 exibe o fluxo do processo de desenvolvimento iterativo adotado.

CAPÍTUL04. METODOLOGIA 29

ProductBacklog
• Client pôoritized product

fe atu res

SprintBaeklog
• Features assigned to

Sprint
• Estimat8d try team
• Team C;anlrnÊtment

Working Code Ready
for Deployment

eüoxed
Test/ Develop

'-,, &Product Backlog Backlogta5ks

Sprint Plannin g Meeting
• Review Product 8acklog
• Estim ate Sprint Backlog
• Com rn it

DaIly Serum Meetings
'Doneslnce last meeting
• PIa n fortoday
• Roadblacks/Accelerators ?

! Sprint Review Meeting
1 • Demo features to all
• Retrospective on theS print

Ê Adjustments

TIme-bax«1 " Sprint" Cycles

Figura 4.1 : Descrição da metodologia de desenvolvimento ágil Scrum

4.2 Desenvolvimento do Hardware

Como metodologia para o desenvolvimento do hardware, também foi adotado o modelo

incremental e iterativo, no qual a cada iteração novas funcionalidades foram sendo agre-

gadas ao dispositivo em desenvolvimento. Assim, foi possível gerar versões intermediárias

do dispositivo, a medida das quais ele se tornava mais complexo e apto a realizar comple-
tamente determinadas funcionalidades.

Como modelo de arquitetura de desenvolvimento de sistemas digitais, foi utilizado o

modelo de máquina de estados com “datapath“, no qual existe uma máquina de estados

que controla as entradas, saídas e transições da unidade de controle, porém com interli-

gação direta entre os diferentes componentes da arquitetura para a realização do fluxo de
dados.

Assim, foi possível utilizar todas as técnicas comumente utilizadas no desenvolvimento

de sistemas digitais [31] baseados em máquinas de estados, no qual é possível acompan-

har o estado atual do dispositivo e o andamento do fluxo de dados ao longo das transições

entre estados. Desta forma, foi possível validar o sistema com simulações de sua lógica

interna, antes mesmo de tê-lo implementado no hardware físico.

CAPÍTULO 4. METODOLOGIA 30

Desta forma, foi possível garantir em ambiente de desenvolvimento e simulação o fun-

cionamento lógico do dispositivo, validando-se inclusive o fluxo de dados entre os difer-

entes componentes desenvolvidos.

Para o design e avaliação individual de cada componente, foram utilizadas as metodolo-

gias de projeto lógico digital descritas em [32], no qual são definidas técnicas para desen-

volvimento de memórias e componentes lógicos digitais.

Capítulo 5
31

PROJETO E IMPLEMENTAÇÃO

5.1 Dispositivo USB

Baseando-se nas especificações dos requisitos funcionais e não funcionais para o dis-

positivo de captura de vídeo digital através da porta de comunicação USB, foi possível

elaborar uma arquitetura que implementasse todo o tratamento do sinal de TV Digital até

a comunicação serial com o computador de destino dos dados.

A arquitetura resume-se a componentes de hardware que efetuam o tratamento dos

sinais transmitidos pela interface SPI do Gerador de Transport Stream, tornando-os com-

patíveis para o tratamento lógico digital. Em seguida, os dados são amostrados e ar-

mazenados em unidades de memória organizadas como um FIFO, e por fim lidas pela

interface USB pelo computador host.

A Figura 5.1 ilustra a arquitetura adotada, representando os principais blocos utilizados

para a implementação do dispositivo de captura USB. As demais seções irão detalhar o

funcionamento de cada bloco individualmente, bem como os componentes lógicos e de

hardware, além padrões de interfaces utilizados na implementação de tal arquitetura.

P = = = = e = = = = = nM = = = UM = = n+ \/

Gerador de
TS

/

1

1

1

Kit C&aI Kelly XEM3001

\

\

1

1

Interface SPI
Microcorttrolador

USB 2.O Çyp[91 91

68103
USB

FIgura 5.1 : Visão geral da arquitetura do dispositivo USB

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 32

Host (Root Tier)

Figura 5.2: Topologia da arquitetura USB

5.1.1 Arquitetura USB

Para desenvolver um dispositivo de captura USB, é necessário entender a arquitetura

e o funcionamento do padrão USB, para que o dispositivo a ser interconectado possa

implementar a interface de comunicação com o dispositivo host.

De acordo com [1 9], um sistema USB é descrito por três áreas fundamentais: a inter-

conexão, os dispositivos e o host. A interconexão descreve como os dispositivos USB são

conectados e se comunicam com o host, isto inclui a definição da topologia do barramento,

as relações inter-camadas, os modelos de fluxo de dados e a listagem USB. O host é o

dispositivo controlador, do qual se iniciam todas as transações. Os dispositivos são itens

periféricos que recebem ou enviam dados ao host. Em geral, o host é um computador, e

os dispositivos são periféricos tais como mouses, teclados, webcams, entre outros.

A topologia do barramento USB é a topologia conhecida por tiered-star (estrela disposta

em camadas/níveis). Esta topologia permite que cada nó possa representar uma função

ou outro hub no qual se interliguem mais dispositivos.

Todas as transações do barramento envolvem a transmissão de até três pacotes. Cada

transação se inicia pelo controlador USB do host, que envia um pacote USB descrevendo

o tipo e a direção da transação, o endereço do dispositivo USB e o número do ponto final

(endpoint). O ponto final de um dispositivo é a porção endereçável dele, que é a fonte de

informação em um fluxo de comunicações entre o host e o próprio. O número de endpoint

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 33

é um valor de 4 bits entre 0H e FH, inclusive, associado a um ponto final de um periférico
USB

A arquitetura USB compreende quatro tipos básicos de transferências de dados:

• Transferência de Controle: Usada para configurar um dispositivo no instante de sua

conexão e pode ser usada para outros propósitos específicos, incluindo controle de

outros pipes no dispositivo;

• Transferência do tipo Bulk: Gerada e consumida em grandes quantidades e simul-

taneamente. Possui uma ampla e dinâmica latitude em transmissões de reserva;

• Transferência de Interrupção: Usada para caracteres ou coordenadas com per-

cepções humanas ou características de respostas regenerativas;

• Transferência lsossíncrona de Dados: Ocupa uma quantidade pré-negociável da

banda de transmissão do barramento, com a distribuição de pulsos. Chamada tam-

bém de transferência de correntes em tempo real (streaming real-time transfers);

Estes tipos de transferência são implementados por componentes simples no kit de

desenvolvimento escolhido para o projeto. Maiores detalhes sobre os tipos de transferência

e como elas são utilizadas estão descritos nas próximas seções deste documento.

5.1.2 Gerador de Transport Stream

Como o objetivo do projeto é a captura do sinal de TV Digital, foram utilizadas as insta-

lações e equipamentos de TV Digital disponíveis no Laboratório de Sistemas Abertos da

Escola Politécnica da USP O equipamento é um gerador e gravador de Transport Stream,

baseado no padrão europeu de TV Digital (DVB). Portanto, foram necessárias adaptações

aos padrões de Transport Stream, de forma que vídeos gerados e obtidos pelo grupo

pudessem ser transmitidos adequadamente pelo equipamento.

O DTV Recorder Generator DVR(3 da Rohde & Schwarz possui diversas interfaces de

entrada e saída de Transport Stream, sendo responsável pela sincronização e geração dos

sinais de clock e sincronização do sinal nas diferentes saídas. Os padrões mais utilizados

para realizar a interface entre dispositivos de geração e transmissão de Transport Stream

são a interface SPI (Synchronous Parallel Interface) e a interface ASI (Asynchronous Serial

Interface), detalhadas posteriormente neste documento.

O gerador pode ser controlado via acesso remoto, pelo qual os arquivos de vídeo são

carregados e codificados no padrão proprietário do equipamento. Devido a restrições em

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 34

FIgura 5.3: Gerador de TS da Rohde & Schwarz com interface SPI

relação à capacidade do equipamento ao gerar os sinais de sincronia, é necessário gerar

arquivos de Transport Stream sem variação de taxa de bits (bitrate constante), além de

outras especificações que permitam ao equipamento transmitir os pacotes contidos no

arquivo.

5.1.3 Interfaces e Padrões

Conforme mencionado anteriormente, os padrões mais utilizados para a transmissão

são os padrões definidos na especificação técnica do padrão europeu DVB [23]. Nesta

especificação são definidas duas interfaces para transmissão dos pacotes de TS, cada

uma com diferentes taxas de transmissão e formato dos dados. A seguir serão detalhadas

as duas interfaces, bem como a utilização da interface SPI na implementação do dispositivo

de captura USB.

Interface ASI

A interface ASI é uma interface cujo objetivo é ter uma grande taxa de transmissão de

dados, uma vez que pode ser implementada sob diferentes meios físicos de transmissão,

seja via cabo coaxial, fibra ótica ou outros. Por se tratar de um canal serial, todos os

bits são transmitidos em série, havendo necessidade de uma organização dos pacotes de

forma que seja possível sincronizar o sinal e obter informações sobre o clock e bitrate do
vídeo sendo transmitido.

Para tanto, a interface ASI está organizada em três camadas. Conforme pode ser

observado pela Figura 5.4 A camada dois é a responsável pela definição dos pacotes de TS

(188 ou 204 bytes), bem como a inserção do byte de sincronia (0x47) para sincronização

dos pacotes. A camada um é a responsável pela codificação dos dados no formato 8B/1 0B,

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 35

Layer-2

';’"-' l ';’''-' 1
ContInuou.s

8'/to .
Svnct\roDou s

Flb n-C>ptc
Cable

Continuous Byte-
5/nchrünDus
FvlPE(3-2 TS

$8rlal„Paral18F
CanvÊr SIon

Figura 5.4: Camadas da interface ASI

de forma a inserir bits de redundância para correção de erros. Finalmente, a camada zero

é a física, responsável pela transmissão e recepção dos bits.

A interface prevê uma taxa constante de 270 Mbps, e caso a fonte não possua dados

a serem transmitidos nesta taxa, devem ser inseridos pacotes extra de sincronia de forma

a manter a taxa de bits constante. Devido a esta taxa relativamente alta de operação, o

grupo optou pelo padrão SPI detalhado a seguir, de forma que a freqüência de leitura dos

dados fosse menor, por se tratar de uma interface paralela ao invés de serial como a ASI.

Interface SPI

A interface SPI baseia-se na transmissão paralela dos bytes, além de acrescentar

bits de sincronia e clock de forma a facilitar a transmissão e recepção dos bits de infor-

mação. Como a interface utiliza o padrão LVDS para a transmissão física dos dados, são

necessários dois fios para a transmissão de um único sinal lógico. Assim, a interface utiliza

um conector D-subrniniatura de 25 pinos [26], destinando 16 pinos para a transmissão do

byte de dados, dois para o sinal de clock, dois para o sinal de sincronia e outros dois para

o bit de sinalização da validade do byte, conforme pode ser observado na Figura 5.5.

Conforme a Figura 5.6, a sincronização do sinal é feita pelo bit de sincronia (PSYNC),

cuja função é sinalizar o início de cada pacote de 188 ou 204 bytes que está sendo trans-

mitido. A sincronia também é garantida pelo sinal de clock, que é um sinal cuja freqüência

varia conforme a taxa de dados do TS sendo transmitido. Assim, um TS de bitrate de

20Mbps irá gerar um sinal de clock de aproximadamente 2,5MHz.

O bit de validade (DVALID) serve para sinalizar a validade dos bytes transmitidos, es-

pecificamente quando a transmissão utilizar pacotes de tamanho variável ou de 204 bytes.

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 36

CIDCk

Data (0-7)

DVALID

P SYNC

Figura 5.5-. Interface de transmissão paralela (SPI)

r:: ;::Ryr i:;: : + = : ::;::9 ?+ :#1 : : n
;187

Clock

Data {0-7)w : : : 1|):éi|:1 |:):é!::T:; }:T ! :;::+ o 1 :
DVAL ID

PSYNC

Figura 5.6: Formato de transmissão de pacotes de 188 bytes

Este sinal irá então ser ativado toda vez que bytes vazios forem transmitidos para completar

a quantidade total de 204 bytes.

Esta foi a interface escolhida para o projeto do dispositivo de captura USB, uma vez

que podemos aproveitar a interface paralela para obtermos taxas de transmissão altas

com uma baixa freqüência de clock, algo limitante no caso de uso de FPGAs e da interface

USB, cuja maior freqüência de operação é 48MHz. Foi possível assim utilizar a grande

\

quantidade de pinos de 1/O disponíveis no Kit de Desenvolvimento para a implementação

da interface paralela entre a FPGA e a porta paralela SPI. Além disso, o sinal de clock e bit

de sincronia existente nessa interface permite um controle maior na recepção dos dados.

Desta forma, o dispositivo desenvolvido consegue capturar vídeos com taxa variável

de bitrate, podendo capturar vídeos com taxas de bitrate de até 300Mbps. Durante os

testes do dispositivo, foram utilizados arquivos de TS com taxas de 7, 19 e até 49 Mbps,

demonstrando o funcionamento correto do dispositivo para diferentes taxas de transmissão

de dados.

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 37

Driver Receiver

Figura 5.7: lnterconexão entre transmissor e receptor dos sinais

N

B'

R OUT

Figura 5.8: Geração de sinal lógico a partir dos sinais analógicos

Padrão LVDS

Ambas as interfaces de transmissão definidas anteriormente utilizam o padrão elétrico

Low-Voltage Differential Signaling (LVDS), padrão que utiliza técnicas de circuitos analógi-

cos de alta velocidade para prover transferência de dados de vários gigabits sobre um
condutor de cobre.

Baseando-se em uma dupla de condutores, o padrão utiliza sinais de baixíssima am-

plitude (cerca de 180 milivolts) que reduzem a quantidade de interferência causada pela

irradiação eletromagnética dos sinais. Além disso, o padrão permite a redução da potência

dissipada no circuito de transmissão, uma vez que trabalha com sinais de base constante,

havendo somente a variação de milivolts para a modulação dos sinais lógicos.

O sinal lógico é obtido a partir da comparação entre os dois sinais analógicos, gerando

um sinal digital “1 ” caso a diferença seja positiva, e “0” caso contrário. O padrão foi desen-

volvido principalmente para aplicações de TV Digital, que necessitam de grandes taxas de

transmissão e baixo consumo de energia e simplicidade nos meios de transmissão.

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 38

Além disso, o padrão também é suportado pela maioria das FPG As existentes no mer-

cado, uma vez que disponibiliza uma forma de barramento de alta velocidade e baixo con-

sumo. O padrão é utilizado também para comunicação entre unidades de processamento

e memórias, uma vez que permite taxas de até gigabits e pode ser utilizado sem maiores

problemas em relação à interferência eletromagnética.

5.1.4 Kit de Desenvolvimento

Para o desenvolvimento do dispositivo USB, o grupo levantou os requisitos funcionais

e não-funcionais que o dispositivo deveria ter e chegou-se a conclusão que um Kit de De-

senvolvimento USB seria o ideal para a implementação do projeto, uma vez que a maioria

dos Kits disponíveis no mercado são altamente flexíveis e permitem que projetos sejam

desenvolvidos rapidamente.

Assim, após a pesquisa de diversos modelos e fabricantes, concluiu-se que o melhor

kit para o desenvolvimento do projeto era o kit XEM 3001 da Opal Kelly, empresa ameri-

cana que desenvolve kits para desenvolvimento com FPG As. Este modelo possui todos os

componentes necessários para o desenvolvimento do projeto, além de apresentar um dos

menores custos no mercado. Apesar de seu custo reduzido, o grupo teve grandes proble-

mas em importá-to, uma vez que o processo de desembaraço alfandegário é demorado e

caro. As taxas de importação aumentaram em 100% o valor do Kit, algo que fora ignorado

inicialmente nas projeções dos custos do projeto.

O kit integra diversas funcionalidades, entre elas um controlador USB 2.0 da Cypress,

um gerador de clock, a FPGA Spartan-3 da Xilinx como dispositivo de processamento e

pinos para entrada e saída de sinais conectados diretamente aos pinos de 1/O da FPGA.

Na Figura 5.10 é possível verificar a interligação dos componentes disponíveis no kit XEM

3001

O controlador USB 2.0 é o ideal para a aplicação em questão, uma vez que para a

captura do TS é necessária uma alta taxa de transmissão de dados entre o dispositivo e

o computador host. Além disto, o controlador já está interconectado aos pinos de configu-

ração da FPG A, sendo que o software incluído no kit permite uma rápida transferência dos

arquivos de programação da FPGA do computador host para o dispositivo.

A FPGA da família Spartan-3 da Xilinx utilizada é do modelo XC3S400-4PQ208, que

já possui internamente 16 blocos de RAM para o desenvolvimento de componentes de

memória, algo crítico para o projeto, uma vez que é necessário o armazenamento tem-

porárío da informação no dispositivo, até a efetuação da leitura por parte do host. Além

disso, as FPGAs desta família são destinadas justamente ao processamento de sinais

CAPiTULO 5. PROJETO E IMPLEMENTAÇÃO 39

t-1:

$ -T\'oXf
88-

Õ

+

:F + P

hand

E:
Figura 5.9: Kit de Desenvolvimento XEM3001 da Opal Kelly

PLL CLK

XBUS (JP3

36 i/a : CCLK

' 4 1/0

2€CLK

1 2 IPO

4Pusht:ru
1 GCLK36 1./0 8 LEDs

P

USB Micro
(Cy§801 3)

PLL

(:CY22 1 501 b+

Mst IF;:;if:=
Bus

e >•
3 PLL CLFQ

’ PLL CLK

+

Spartan-3 FPC; A
(XC3S40&4PQ2Ô8}

tons

Figura 5.10: Diagrama dos blocos funcionais do Kit de Desenvolvimento XEM3001

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 40

multimídia, devida a alta freqüência de operação e flexibilidade nos padrões dos sinais de

entrada e saída. Devido ao suporte a entradas LVDS, foi possível interconectar a interface

SPI do gerador de TS diretamente aos pinos de 1/O da FPGA, algo que reduziu bastante o

tempo de desenvolvimento do projeto e garantiu melhores resultados.

Além disso, o kit possui drivers e APIs simples que permitem executar funções bási-

cas de intercomunicação USB entre o computador host e o dispositivo. Desta forma, foi

possível utilizar parte destas funcionalidades no desenvolvimento do projeto, adaptando os

comandos de controle e leitura de dados via USB para utilizar ao máximo os recursos do

kit. É possível obter maiores informações sobre as interfaces do kit em [25].

Por possuir também um tamanho reduzido, o kit garante um dos objetivos do projeto,

que é o desenvolvimento de um dispositivo pequeno e portátil, que permita que o usuário

o transporte e utilize de maneira simples e intuitiva. Além disso, o kit possui drivers para

diferentes sistemas operacionais, algo que garante a portabilidade do dispositivo entre

diferentes sistemas operacionais. Durante o desenvolvimento, o projeto foi testado com o

Microsoft Windows XP e o Apple Mac OS X 10.4.

5.1.5 Implementação VHDL

Esta seção apresenta a arquitetura que foi utilizada na implementação lógica em VHDL

do dispositivo de captura de vídeo USB. O maior desafio do grupo foi desenvolver uma

arquitetura que permitisse que os sinais analógicos da interface SPI fossem corretamente

amostrados pelo computador host via interface USB, algo nada trivial, uma vez que as

freqüências de transmissão de dados pela interface SPI e pela interface USB são bastante

distintas, sendo que a interface USB trabalha melhor com transferência de grandes blocos

de informação.

Adicionalmente, foi necessário integrar e adaptar a arquitetura aos componentes de

interface do kit, garantindo a comunicação entre a FPGA e o controlador USB, o gerador

de clock e os pinos de entrada e saída disponíveis no kit. Além disso, foi necessário

desenvolver toda a lógica de controle e leitura do dispositivo pelo host, uma vez que todo

o controle do dispositivo deve ser feito pela interface USB.

A Figura 5.11 apresenta o diagrama de interconexão entre os componentes desenvolvi-

dos. A partir dos sinais de entrada analógicos, foram utilizados módulos para conversão

dos sinais positivo e negativo analógico para um sinal digital. Assim, todos os sinais de

dados, clock e bits de sincronização estão interconectados a módulos de conversão LVDS.

Estes sinais estão interconectados ao módulo FIFO desenvolvido especialmente para a

aplicação e à unidade de controle, que por sua vez está interconectada aos sinais de cont-

CAPiTULO 5. PROJETO E IMPLEMENTAÇÃO 41

Interface SPI okHost Interface

FI FO_8_16 (32kB}
Dados pilha [15..O]

Conversão
sinais

analógIcos

(LVDS) +
digitais

LeItura pilha

Clock hostClock

,PSYNC
]

Unidade
de

ControleDVA Ll D

Figura 5.11 . Visão geral da arquitetura lógica desenvolvida em VHDL

role disponíveis pela interface USB do dispositivo, dando acesso aos sinais de controle do

computador host. A seguir, estão detalhados os funcionamentos de cada um dos módulos
desenvolvidos.

Como IDE de desenvolvimento, foi utilizada a versão gratuita da IDE de desenvolvi-

mento da Xilinx, o Xilinx ISE 9.2i WebPack, disponível no site da Xilinx. Esta IDE pos-

sui todas as ferramentas para edição, simulação e geração do código de execução a ser

carregado no FPG A para a execução da lógica implementada. Apesar de ser bastante

flexível, foi necessário simular a lógica do projeto sem considerar os sinais de entrada

como analógicos, pois não há suporte para tal tipo de sinal no ambiente de simulação.

Assim, foi possível simular somente o tratamento lógico dos dados de entrada e saída

dos módulos desenvolvidos, sendo que cada unidade foi testada separadamente e depois

foram realizadas as simulações do módulo integrado.

Unidade FIFO

Inicialmente, baseando-se nos recursos do dispositivo, foi implementada uma arquite-

tura que utilizava os módulos de memória RAM existentes na FPGA como módulos de

memória simples, nos quais os endereços de memória eram controlados pela unidade de

controle e era disparado um trigger ao host USB toda vez que metade da memória RAM

estivesse completa. Assim, toda vez que metade da memória disponível (16kB) fosse es-

crita, a unidade de controle ficaria responsável por notificar o host e fazer a requisição de

um ciclo de leitura. Assim o host ficaria inativo até receber tal requisição. Esta arquitetura

não funcionou corretamente, uma vez que cada ciclo de ativação de leitura do host demor-

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 42

ava muito para ser iniciado, e assim triggers sucessivos eram perdidos, fazendo com que

parte do vídeo amostrado fosse descartado.

Para corrigir tal problema, foi necessário projetar uma arquitetura que mantivesse o

ciclo de leitura do host sempre ativo, de forma que não houvesse a necessidade de acionar

a leitura baseada em triggers. Assim, foi criada uma arquitetura na qual o host efetua

um loop infinito, no qual a cada iteração é realizada uma operação de leitura. Porém,

desta forma, era necessário notificar o host quanta informação de fato deveria ser lida, e

implementar uma unidade de controle que ficasse responsável por corrigir continuamente

os endereços de leitura e escrita.

Para tanto, foi desenvolvida uma unidade de memória do tipo FIFO (First in First Out),

de forma que os dados escritos a partir da interface SPI digital fossem escritos seqüen-

cialmente na memória, permitindo posteriormente que o host obtivesse os dados também

na seqüência correta. A unidade FIFO foi desenvolvida baseada nos blocos de memória

disponíveis na FPGA Spartan-3 da Xilinx, de forma a utilizar totalmente os 16 blocos de

2kB disponíveis internamente à FPGA, totalizando uma unidade FIFO de 32kB. Além disso,

como a largura das palavras de entrada é de oito bits e a interface de pilha disponível pela

interface USB é de palavras de 16 bits, foi necessário criar uma unidade FIFO com entrada

de 8bits e saída de 16, algo que afetou o tratamento do endereçamento interno do FIFO.

Além disso, a unidade foi criada de forma a trabalhar com dois clocks independentes,

um para a escrita e outro para a leitura. Dessa forma, é possível escrever e ler dados em

freqüências diferentes, desde que esta diferença respeite os limites de memória existentes

no módulo. Este módulo portanto funciona como um buffer dos dados lidos, armazenando-

os temporariamente para que a interface USB possa lê-los em forma de bloco posterior-

mente. A Figura 5.12 apresenta o diagrama lógico do FIFO desenvolvido para o projeto.

Pelo diagrama pode-se perceber a existência dos sinais de entrada e saída, sinais de

controle de leitura e escrita, além de um contador, que informa quantas palavras estão

armazenadas internamente e disponíveis para serem lidas pelo host. Este sinal é espe-

cialmente importante, uma vez que notifica o host sobre o número de bytes que ele pode

requisitar em uma operação de leitura. Com este sinal, é possível ler continuamente a

partir do host, aumentando assim a taxa de leitura e otimizando a utilização do FIFO.

Unidade de Controle

A unidade de controle desenvolvida é a unidade responsável pela sincronização dos

sinais e controle dos sinais de leitura e escrita no FIFO, e controle da leitura de dados

pela pilha da interface USB. Sua implementação foi baseada em um diagrama de estados,

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 43

rd clk empty

rd_en
full

wr clk dout(15:0)

wr en
rd_data_count(1 4 ,0)

din (7: 0)

Figura 5.12: Diagrama lógico da unidade FIFO desenvolvida

que inicia a escrita dos dados na FIFO caso um flag START seja disparado, interrompendo

assim que o flag STOP for ativado. Além disso, esta unidade filtra os pacotes de sincronia

emitidos pela interface SPI, baseando-se para tanto no sinal de entrada PSYNC.

O sinal de entrada DVALID não está sendo efetivamente utilizado para o controle, uma

vez que a saída do gerador de TS está configurada para utilizar a transmissão síncrona de

pacotes de apenas 188 bytes. Desta forma, o sinal DVALID nunca estará ativo, pois não é

necessário reconhecer bytes inválidos de preenchimento de pacotes.

A unidade de controle é responsável também por ativar os sinais de leitura da FIFO,

baseando-se para isso nos sinais de controle de pilha disponibilizados pelo componente

okHostlnterface. Assim, a unidade de controle garante que o sinal RD-EN, responsável

por permitir a leitura, esteja ativo de acordo com a requisição do host. Este controle está

sincronizado com o clock de leitura do host, que funciona a uma taxa de 48MHz. Além

disso, a unidade de controle efetua o tratamento de disparo de FLAGs entre o dispositivo

e o host, de forma a notificar ações de leitura e quantidade de palavras disponíveis para
serem lidas.

Unidade okHostlnterface

Esta unidade é a responsável por efetuar o controle da interface USB disponível no kit.

Ela está disponível juntamente com a documentação original do Kit e com a documentação

da API baseada nos drivers do mesmo. Assim, através dos sinais de controle disponíveis

CAPiTULO 5. PROJETO E IMPLEMENTAÇÃO 44

okHost l nterface
a hi_in(7:0) ti clk E

o) a
ok1 (30:o) b

a ok2{16:0biJnout< 15:0)

hi out(1

Figura 5.13: Diagrama lógico do módulo de interface com o controlador USB

nessa unidade, é possível efetuar operações simples de leitura de blocos de memória, bem

como o disparo de flags entre o dispositivo e o host.

Esta interface define Endpoints do protocolo USB, que são como endereços do dispos-

itivo que realizam a comunicação direta com a API disponível do kit. Existem três tipos de

Endpoints para o dispositivo, citados a seguir:

• Triggerln e TriggerOut: são endpoints que realizam o disparo de flags entre o dis-
positivo e o host. Estes triggers são sincronizados e atualizados de acordo com

chamadas via API, disponibilizando informações de até 16bits. Este endpoint é o re-

sponsável pelo disparo das flags de START e STOP que controlam o início e parada

da captura dos dados da interface SPI pelo dispositivo;

• Wireln e WireOut: são endpoints que realizam interligações virtuais entre o dispos-
itivo e o host. Também oferecem um barramento de 16 bits e são atualizados com

chamadas a funções da API, sincronizados com o clock do host. Este tipo de end-

point é utilizado para transmitir a informação de quantas palavras estão disponíveis

para leitura a partir do sinal de contador do FI FO;

• Pipeln e PipeOut: são endpoints que permitem a leitura e escrita de blocos de

memória entre o dispositivo e o host. Estes sinais oferecem um barramento de 16 bits

também, sendo sincronizados com o clock do host, fornecendo flags que notificam o

desejo do host de se comunicar com o dispositivo. Através deste módulo é possível

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 45

transferir blocos inteiros de memória armazenados na FIFO, uma vez que os sinais

de leitura sejam devidamente controlados pela unidade de controle;

Com estes blocos funcionais simples, é possível desenvolver aplicações bastante com-

plexas utilizando a devida lógica de controle. Assim, a partir de um endereço de endpoint,

é possível ativar e ler informações a partir do código do usuário, realizando a atualização

de flags e leitura de blocos da pilha.

Unidade TSReader

Esta unidade é a representação global do dispositivo, mostrando os seus pinos de en-

trada e saída globais utilizados na comunicação com a interface SPI. Este é o módulo

principal desenvolvido em VHDL, que integra os demais blocos de FI FO, unidade de cont-

role e okHostlnterface, realizando as interligações necessárias entre os módulos.

Este módulo interliga também os pinos físicos de comunicação do kit com os pinos de

entrada e saída da FPGA, de acordo com a pinagem disponível em [25]. Na Figura 5.14

temos a representação do diagrama lógico do módulo, na qual podemos verificar a existên-

cia dos pinos de entrada analógicos (pinos p e n), e a saída para os leds e interface do
controlador USB.

O funcionamento básico do dispositivo se resume às seguintes etapas:

• Início da leitura: o host envia um trigger sinalizando a flag START para que o disposi-

tivo inicie a captura dos bytes pela interface de saída digital dos sinais analógicos da

interface SPI já convertidos;

• Escrita da informação : sincronizado com o clock de escrita da interface SPI, os bytes

são escritos na memória FIFO, incrementando o contador de palavras disponíveis

para leitura;

• Rotina de leitura: periodicamente o host atualiza os sinais de WireOut para avaliar o

sinal de quantidade de palavras disponíveis. O host então executa a rotina de leitura

de blocos de informação da pilha, passando como parâmetro a quantidade de bytes

que ele deseja ler para que os sinais de requisição de leitura sejam ativados. A
unidade de controle trata estes sinais e ativa o sinal de leitura da memória FIFO. A

leitura é então sincronizada com o clock do host, que se mantém ativo durante todo

o tempo.

Após ter lido a quantidade desejada de bytes, os sinais de pilha são atualizados e a

unidade de controle realiza os ajustes na memória FIFO para interromper o processo

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 46

TSReader
clock hostsp Id ka_p

spicl ka_n

spi sync_p

hi_out(1 : o) b
splsync n

d valid_p

led{7: 0}d valid_n

hi in<7:0)

dataina p(7:0)
hi inout<15 Cl)

dataina n(7:0)

Figura 5.14: Diagrama lógico do principal módulo do dispositivo

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 47

de leitura. A cada palavra lida, o contador de palavras disponíveis é decrementado

de duas unidades, uma vez que o barramento de saída é de 16 bits, e as palavras de

entrada são de apenas 8 bits;

• Parada da leitura: o host envia outro trigger sinalizando a flag STOP para que o dis-

positivo pare com a captura dos bytes. Este sinal também é controlado pela unidade

de controle, e atualiza os estados atuais do dispositivo para que este deixe de cap-

turar os bytes vindos da interface SPI ;

Este processo é executado indefinidamente, até que sejam efetuadas operações de

parada ou reinício de leitura dos dados. Baseada nesta implementação, é possível utilizar

freqüência de entrada de até IOOMHz de clock, o que garante a transmissão de vídeo

a uma taxa de até 100MBps. Porém, como a taxa de leitura do host não ultrapassa

os 48MBps, o gargalo do dispositivo continua sendo a leitura do host via interface USB.

Porém, com as taxas obtidas, foi possível transmitir praticamente todos os arquivos de

vídeo disponíveis no laboratório, fossem eles de alta resolução ou não. Isto demonstra a

viabilidade comercial do projeto, uma vez que ele pode ser adaptado para sua redução de

custos e apresenta excelente desempenho para captura de vídeo, inclusive para vídeos de

alta resolução.

5.2 Lendo os dados do dispositivo USB

A leitura dos dados via USB é feita de forma síncrona, ou seja, o programa cliente

(leitor) requisita uma quantidade de bytes ao dispositivo de hardware e fica travado, es-

perando a resposta.

A leitura de um byte por vez é proibitiva e para minimizar o overhead de comunicação, a

leitura dos dados é feita em blocos de tamanho variável. Como já exposto, o dispositivo de

hardware dispõe os dados através de um buffer, implementado com uma fila do tipo First

In First Out (FIFO). Desta forma, periodicamente o programa cliente pergunta ao buffer

FIFO quantos bytes estão disponíveis para leitura e requisita exatamente esta quantidade

de bytes. O esquema pode ser visto na Figura 5.15

Contínua e periodicamente, os bytes são então lidos e despachados para demultiplex-

ação e decodificação; operações estas que são extremamente custosas. O programa

cliente não pode ficar travado esperando os bytes serem processados para só então req-

uisitar mais bytes, já que isto pode fazer com que o buffer do hardware estoure e dados

sejam perdidos.

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 39

:,'IW@'= “-':'C-=+-"C;: 1
h. age

Figura 5.9: Kit de Desenvolvimento XEM3001 da Opal Kelly

’ PLL CLK
XBU$ (JP3

36 i/a f CCLKUSB Micro
(CY6801 3)

14 1/0

2CCLK

: 2 1/Cl

4 Push bu

8 LEDs

Ft}st tntar ;;;
Bus

PLL
3 PLL CLICE

(CY22 1501
' PLL CLK

>

Spartan-3 FPC3 A
(xc3s40&4PQ2a8 }

1 GCLK36 i/a

J

tOII 5

Figura 5.10: Diagrama dos blocos funcionais do Kit de Desenvolvimento XEM3001

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 40

multimídia, devida a alta freqüência de operação e flexibilidade nos padrões dos sinais de

entrada e saída. Devido ao suporte a entradas LVDS, foi possível interconectar a interface

SPI do gerador de TS diretamente aos pinos de 1/O da FPG A, algo que reduziu bastante o

tempo de desenvolvimento do projeto e garantiu melhores resultados.

Além disso, o kit possui drivers e APIs simples que permitem executar funções bási-

cas de intercomunicação USB entre o computador host e o dispositivo. Desta forma, foi

possível utilizar parte destas funcionalidades no desenvolvimento do projeto, adaptando os

comandos de controle e leitura de dados via USB para utilizar ao máximo os recursos do

kit. É possível obter maiores informações sobre as interfaces do kit em [25].

Por possuir também um tamanho reduzido, o kit garante um dos objetivos do projeto,

que é o desenvolvimento de um dispositivo pequeno e portátil, que permita que o usuário

o transporte e utilize de maneira simples e intuitiva. Além disso, o kit possui drivers para

diferentes sistemas operacionais, algo que garante a portabilidade do dispositivo entre

diferentes sistemas operacionais. Durante o desenvolvimento, o projeto foi testado com o

Microsoft Windows XP e o Apple Mac OS X 10.4.

5.1.5 Implementação VHDL

Esta seção apresenta a arquitetura que foi utilizada na implementação lógica em VHDL

do dispositivo de captura de vídeo USB. O maior desafio do grupo foi desenvolver uma

arquitetura que permitisse que os sinais analógicos da interface SPI fossem corretamente

amostrados pelo computador host via interface USB, algo nada trivial, uma vez que as

freqüências de transmissão de dados pela interface SPI e pela interface USB são bastante

distintas, sendo que a interface USB trabalha melhor com transferência de grandes blocos

de informação.

Adicionalmente, foi necessário integrar e adaptar a arquitetura aos componentes de

interface do kit, garantindo a comunicação entre a FPGA e o controlador USB, o gerador

de clock e os pinos de entrada e saída disponíveis no kit. Além disso, foi necessário
desenvolver toda a lógica de controle e leitura do dispositivo pelo host, uma vez que todo

o controle do dispositivo deve ser feito pela interface USB.

A Figura 5.11 apresenta o diagrama de interconexão entre os componentes desenvolvi-

dos. A partir dos sinais de entrada analógicos, foram utilizados módulos para conversão

dos sinais positivo e negativo analógico para um sinal digital. Assim, todos os sinais de

dados, clock e bits de sincronização estão interconectados a módulos de conversão LVDS.

Estes sinais estão interconectados ao módulo FIFO desenvolvido especialmente para a

aplicação e à unidade de controle, que por sua vez está interconectada aos sinais de cont-

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 41

Interface SPI okHost Interface

FiFa 8_16(32kB) Dados pilha [15..O]

Conversão
sinais

analógicos

(LVDS) +
digitais

Leitura pilha

Clock hostClock

PSYNC Unidade
de

ControleDVALI D

Figura 5.11 : Visão geral da arquitetura lógica desenvolvida em VHDL

role disponíveis pela interface USB do dispositivo, dando acesso aos sinais de controle do

computador host. A seguir, estão detalhados os funcionamentos de cada um dos módulos

desenvolvidos.

Como IDE de desenvolvimento, foi utilizada a versão gratuita da IDE de desenvolvi-

mento da Xilinx, o Xilinx ISE 9.2i WebPack, disponível no site da Xilinx. Esta IDE pos-

sui todas as ferramentas para edição, simulação e geração do código de execução a ser

carregado no FPGA para a execução da lógica implementada. Apesar de ser bastante

flexível, foi necessário simular a lógica do projeto sem considerar os sinais de entrada

como analógicos, pois não há suporte para tal tipo de sinal no ambiente de simulação.

Assim, foi possível simular somente o tratamento lógico dos dados de entrada e saída

dos módulos desenvolvidos, sendo que cada unidade foi testada separadamente e depois

foram realizadas as simulações do módulo integrado.

Unidade FIFO

Inicialmente, baseando-se nos recursos do dispositivo, foi implementada uma arquite-

tura que utilizava os módulos de memória RAM existentes na FPGA como módulos de

memória simples, nos quais os endereços de memória eram controlados pela unidade de

controle e era disparado um trigger ao host USB toda vez que metade da memória RAM

estivesse completa. Assim, toda vez que metade da memória disponível (16kB) fosse es-

crita, a unidade de controle ficaria responsável por notificar o host e fazer a requisição de

um ciclo de leitura. Assim o host ficaria inativo até receber tal requisição. Esta arquitetura

não funcionou corretamente, uma vez que cada ciclo de ativação de leitura do host demor-

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 42

ava muito para ser iniciado, e assim triggers sucessivos eram perdidos, fazendo com que

parte do vídeo amostrado fosse descartado.

Para corrigir tal problema, foi necessário projetar uma arquitetura que mantivesse o

ciclo de leitura do host sempre ativo, de forma que não houvesse a necessidade de acionar

a leitura baseada em triggers. Assim, foi criada uma arquitetura na qual o host efetua

um loop infinito, no qual a cada iteração é realizada uma operação de leitura. Porém,

desta forma, era necessário notificar o host quanta informação de fato deveria ser lida, e

implementar uma unidade de controle que ficasse responsável por corrigir continuamente

os endereços de leitura e escrita.

Para tanto, foi desenvolvida uma unidade de memória do tipo FIFO (First in First Out),

de forma que os dados escritos a partir da interface SPI digital fossem escritos seqüen-

cialmente na memória, permitindo posteriormente que o host obtivesse os dados também

na seqüência correta. A unidade FIFO foi desenvolvida baseada nos blocos de memória

disponíveis na FPGA Spartan-3 da Xilinx, de forma a utilizar totalmente os 16 blocos de

2kB disponíveis internamente à FPGA, totalizando uma unidade FIFO de 32kB. Além disso,

como a largura das palavras de entrada é de oito bits e a interface de pilha disponível pela

interface USB é de palavras de 16 bits, foi necessário criar uma unidade FIFO com entrada

de 8bits e saída de 16, algo que afetou o tratamento do endereçamento interno do FI FO.
Além disso, a unidade foi criada de forma a trabalhar com dois clocks independentes,

um para a escrita e outro para a leitura. Dessa forma, é possível escrever e ler dados em

freqüências diferentes, desde que esta diferença respeite os limites de memória existentes

no módulo. Este módulo portanto funciona como um buffer dos dados lidos, armazenando-

os temporariamente para que a interface USB possa lê-los em forma de bloco posterior-

mente. A Figura 5.12 apresenta o diagrama lógico do FIFO desenvolvido para o projeto.

Pelo diagrama pode-se perceber a existência dos sinais de entrada e saída, sinais de

controle de leitura e escrita, além de um contador, que informa quantas palavras estão

armazenadas internamente e disponíveis para serem lidas pelo host. Este sinal é espe-

cialmente importante, uma vez que notifica o host sobre o número de bytes que ele pode

requisitar em uma operação de leitura. Com este sinal, é possível ler continuamente a

partir do host, aumentando assim a taxa de leitura e otimizando a utilização do FI FO.

Unidade de Controle

A unidade de controle desenvolvida é a unidade responsável pela sincronização dos

sinais e controle dos sinais de leitura e escrita no FIFO, e controle da leitura de dados

pela pilha da interface USB. Sua implementação foi baseada em um diagrama de estados,

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 43

fifo 8 16
rd clk empty

rd_en
full

rst

dout(IS:O) bv/r_clk

en

rd_data_count{ 1 4 :0)

B din(7:0)

Figura 5.12: Diagrama lógico da unidade FIFO desenvolvida

que inicia a escrita dos dados na FIFO caso um flag START seja disparado, interrompendo

assim que o flag STOP for ativado. Além disso, esta unidade filtra os pacotes de sincronia

emitidos pela interface SPI, baseando-se para tanto no sinal de entrada PSYNC.

O sinal de entrada DVALID não está sendo efetivamente utilizado para o controle, uma

vez que a saída do gerador de TS está configurada para utilizar a transmissão síncrona de

pacotes de apenas 188 bytes. Desta forma, o sinal DVALID nunca estará ativo, pois não é

necessário reconhecer bytes inválidos de preenchimento de pacotes.

A unidade de controle é responsável também por ativar os sinais de leitura da FIFO,

baseando-se para isso nos sinais de controle de pilha disponibilizados pelo componente

okHostlnterface. Assim, a unidade de controle garante que o sinal RD-EN, responsável

por permitir a leitura, esteja ativo de acordo com a requisição do host. Este controle está

sincronizado com o clock de leitura do host, que funciona a uma taxa de 48MHz. Além

disso, a unidade de controle efetua o tratamento de disparo de FLAGs entre o dispositivo

e o host, de forma a notificar ações de leitura e quantidade de palavras disponíveis para
serem lidas.

Unidade okHostlnterface

Esta unidade é a responsável por efetuar o controle da interface USB disponível no kit.

Ela está disponível juntamente com a documentação original do Kit e com a documentação

da API baseada nos drivers do mesmo. Assim, através dos sinais de controle disponíveis

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 44

okHost Interface
ti clk& hi_in(7:0)

hi out(1:0)

ok1 <30:0)

ok2(16:CJhi inout(15:0)

Figura 5.13: Diagrama lógico do módulo de interface com o controlador USB

nessa unidade, é possível efetuar operações simples de leitura de blocos de memória, bem

como o disparo de flags entre o dispositivo e o host.

Esta interface define Endpoints do protocolo USB, que são como endereços do dispos-

itivo que realizam a comunicação direta com a API disponível do kit. Existem três tipos de

Endpoints para o dispositivo, citados a seguir:

• Triggerln e TriggerOut: são endpoints que realizam o disparo de flags entre o dis-

positivo e o host. Estes triggers são sincronizados e atualizados de acordo com

chamadas via API, disponibilizando informações de até 16bits. Este endpoint é o re-

sponsável pelo disparo das flags de START e STOP que controlam o início e parada

da captura dos dados da interface SPI pelo dispositivo;

• Wireln e WireOut: são endpoints que realizam interligações virtuais entre o dispos-
itivo e o host. Também oferecem um barramento de 16 bits e são atualizados com

chamadas a funções da API, sincronizados com o clock do host. Este tipo de end-

point é utilizado para transmitir a informação de quantas palavras estão disponíveis

para leitura a partir do sinal de contador do FIFO;

• Pipeln e PipeOut: são endpoints que permitem a leitura e escrita de blocos de

memória entre o dispositivo e o host. Estes sinais oferecem um barramento de 16 bits

também, sendo sincronizados com o clock do host, fornecendo flags que notificam o

desejo do host de se comunicar com o dispositivo. Através deste módulo é possível

CAPiTULO 5. PROJETO E IMPLEMENTAÇÃO 45

transferir blocos inteiros de memória armazenados na FIFO, uma vez que os sinais

de leitura sejam devidamente controlados pela unidade de controle;

Com estes blocos funcionais simples, é possível desenvolver aplicações bastante com-

plexas utilizando a devida lógica de controle. Assim, a partir de um endereço de endpoint,

é possível ativar e ler informações a partir do código do usuário, realizando a atualização

de flags e leitura de blocos da pilha.

Unidade TSReader

Esta unidade é a representação global do dispositivo, mostrando os seus pinos de en-

trada e saída globais utilizados na comunicação com a interface SPI. Este é o módulo

principal desenvolvido em VHDL, que integra os demais blocos de FIFO, unidade de cont-

role e okHostlnterface, realizando as interligações necessárias entre os módulos.

Este módulo interliga também os pinos físicos de comunicação do kit com os pinos de

entrada e saída da FPGA, de acordo com a pinagem disponível em [25]. Na Figura 5.14

temos a representação do diagrama lógico do módulo, na qual podemos verificar a existên-

cia dos pinos de entrada analógicos (pinos p e n), e a saída para os leds e interface do
controlador USB.

O funcionamento básico do dispositivo se resume às seguintes etapas:

• Início da leitura: o host envia um trigger sinalizando a flag START para que o disposi-

tivo inicie a captura dos bytes pela interface de saída digital dos sinais analógicos da

interface SPI já convertidos;

• Escrita da informação: sincronizado com o clock de escrita da interface SPI, os bytes

são escritos na memória FIFO, incrementando o contador de palavras disponíveis

para leitura;

• Rotina de leitura: periodicamente o host atualiza os sinais de WireOut para avaliar o

sinal de quantidade de palavras disponíveis. O host então executa a rotina de leitura

de blocos de informação da pilha, passando como parâmetro a quantidade de bytes

que ele deseja ler para que os sinais de requisição de leitura sejam ativados. A
unidade de controle trata estes sinais e ativa o sinal de leitura da memória FIFO. A

leitura é então sincronizada com o clock do host, que se mantém ativo durante todo

o tempo.

Após ter lido a quantidade desejada de bytes, os sinais de pilha são atualizados e a

unidade de controle realiza os ajustes na memória FI FO para interromper o processo

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 46

TSReader
clock hostspicl ka_p

§picl ka_n

splsy nc_p
hi out(1:0)

spi sync_n

d valid_p

led{7: 0)dvalid n

hi in(7:0)

dataina p(7:0)
hi inout{15' 0) IE

dataina n(7-0)

Figura 5.14: Diagrama lógico do principal módulo do dispositivo

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 47

de leitura. A cada palavra lida, o contador de palavras disponíveis é decrementado

de duas unidades, uma vez que o barramento de saída é de 16 bits, e as palavras de

entrada são de apenas 8 bits;

• Parada da leitura: o host envia outro trigger sinalizando a flag STOP para que o dis-

positivo pare com a captura dos bytes. Este sinal também é controlado pela unidade

de controle, e atualiza os estados atuais do dispositivo para que este deixe de cap-

turar os bytes vindos da interface SPI ;

Este processo é executado indefinidamente, até que sejam efetuadas operações de

parada ou reinício de leitura dos dados. Baseada nesta implementação, é possível utilizar

freqüência de entrada de até 100MHz de clock, o que garante a transmissão de vídeo

a uma taxa de até 100MBps. Porém, como a taxa de leitura do host não ultrapassa

os 48MBps, o gargalo do dispositivo continua sendo a leitura do host via interface USB.

Porém, com as taxas obtidas, foi possível transmitir praticamente todos os arquivos de

vídeo disponíveis no laboratório, fossem eles de alta resolução ou não. Isto demonstra a

viabilidade comercial do projeto, uma vez que ele pode ser adaptado para sua redução de

custos e apresenta excelente desempenho para captura de vídeo, inclusive para vídeos de

alta resolução.

5.2 Lendo os dados do dispositivo USB

A leitura dos dados via USB é feita de forma síncrona, ou seja, o programa cliente

(leitor) requisita uma quantidade de bytes ao dispositivo de hardware e fica travado, es-

perando a resposta.
A leitura de um byte por vez é proibitiva e para minimizar o overhead de comunicação, a

leitura dos dados é feita em blocos de tamanho variável. Como já exposto, o dispositivo de

hardware dispõe os dados através de um buffer, implementado com uma fila do tipo First

In First Out (FIFO). Desta forma, periodicamente o programa cliente pergunta ao buffer

FIFO quantos bytes estão disponíveis para leitura e requisita exatamente esta quantidade

de bytes. O esquema pode ser visto na Figura 5.15

Contínua e periodicamente, os bytes são então lidos e despachados para demultiplex-

ação e decodificação; operações estas que são extremamente custosas. O programa

cliente não pode ficar travado esperando os bytes serem processados para só então req-

uisitar mais bytes, já que isto pode fazer com que o buffer do hardware estoure e dados

sejam perdidos.

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 48

à'*"'
in Finst-.out (l;IEO)
tI a a

Figura 5.15: Requisição de bytes ao FIFO pelo programa cliente

Produtor ConsumIdor

FiFa

Figura 5.16: Duas threads (produtora e consumidora) manipulando o buffer

De modo a contornar este problema, a necessidade de tornar o programa concorrente

ficou evidente. A concorrência leva o sistema a um nível de complexidade bem superior,

mas neste caso foi necessária, já que a leitura dos dados oriundos do hardware não pode

ser interrompida pelo processamento dos bytes. O programa foi dividido em duas linhas

de execução (threads) , uma responsável pela leitura contínua dos bytes via USB e outra

responsável pelo processamento e demultiplexação do vídeo.

Esta divisão em duas linhas de execução é um padrão conhecido como produtor/-

consumidor, onde uma linha de execução faz o papel de produtora de dados, e a outra

consome os dados sendo responsável pelo tratamento. Os dados são transferidos através

de um buffer compartilhado entre todas as linhas de execução, e para este caso foi uti-

lizado mais um buffer implementado com uma fila do tipo FIFO, como esquematizado na

Figura 5.16.

O padrão produtor/consumidor tem a interessante característica de permitir um número

indeterminado de produtores e/ou consumidores (também conhecidos como workers) . Para

este projeto foi necessário apenas um produtor e um consumidor.

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 49

O ponto crítico em deixar o programa concorrente, foi justamente a implementação do

buffer. Como existem duas linhas de execução o manipulando, pode-se dizer que é um

recurso compartilhado e portanto deve ter o acesso sincronizado entre todas as threads, a

fim de evitar os clássicos problemas de concorrência também conhecidos como condições

de corrida.

Felizmente, a plataforma Java tem facilidades para programação concorrente e acesso

sincronizado a recursos compartilhados. Para este fim, foi utilizada a palavra chave syn-

chonized da linguagem Java nos pontos críticos de concorrência do programa. Este é um

recurso da linguagem que garante o acesso exclusivo ao recurso compartilhado, através

de semáforos e/ou travas (locks, mutex) e evita as condições de corrida. A desvantagem

é que tem um overhead associado, portanto o acesso exclusivo não deve ser usado indis-

criminadamente; apenas nos pontos críticos.

O buffer FIFO foi implementado como uma lista ligada e com acesso sincronizado nos

pontos críticos de concorrência. Teoricamente tem capacidade infinita de armazenamento,

porém na prática está limitado ao tamanho máximo do heap de objetos da máquina vir-

tual Java que executa o programa. O tamanho padrão (32 MB) para o heap da máquina

virtual Java mais popular, da Sun Microsystems, se mostrou suficiente nos diversos testes
executados.

Neste ponto do projeto, foi desenvolvida uma aplicação que lê o fluxo e salva em um

arquivo. Há uma infinidade de usos para a aplicação, como a gravação agendada de

programas e a conversão para outros formatos de vídeo. A escrita dos bytes no arquivo

pode ser mais lenta que a leitura do buffer em alguns momentos de carga elevada do

computador host, porém tal problema não afeta o funcionamento da aplicação justamente

pela existência do buffer FIFO, que se mostrou bastante eficiente.

O buffer desacopla a leitura do stream a partir da porta USB da escrita em um arquivo,

possibilitando que cada um opere no seu ritmo, sem afetar o outro.

5.3 Demultiplexação e decodificação

O grupo iniciou esta tarefa com o objetivo de implementar um demultiplexador completo

para pacotes do MPEG Transport Stream, que seriam então passados a um decodificador

e reprodutor de vídeo compatível com Java. Inicialmente foi previsto o uso do Java Media

Framework (JMF) associado à extensão FOBS (http , //f obs . sourceforge . net), que

permite um número maior de formatos e compressão de vídeo.

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 50

Nesta etapa do desenvolvimento, foi crucial o estudo e entendimento completo do for-

mato dos pacotes MPEG Transport Stream (TS). Tipicamente, um pacote TS tem 188

bytes, é iniciado com o byte de sincronia 0x47, contém um identificador conhecido como

Program ID (PID) e encapsula um pacote do tipo Packetized Elementary Stream (PES).

Diversos pacotes TS com o mesmo PID formam um programa. O programa pode ser

então composto por diversos Elementary Streams (ES), que representam as informações

básicas do programa, como canais de áudio, vídeo e metadados. Para serem inclusos em

pacotes TS, cada um dos Elementary Streams precisa ser quebrado em pacotes e para

isso foi definido o padrão Packetized Elementary Stream (PES), que basicamente carrega

informações de seqüencia e continuidade.

Durante o desenvolvimento do demultiplexador, o grupo teve contato com o VLC media

player [21], um fantástico reprodutor de mídias capaz de demultiplexar e decodificar todos

os padrões especificados pelo Sistema Brasileiro de TV Digital.

Um estudo sobre o código fonte do VLC (que é livre), permitiu concluir que seria uma

alternativa viável para reprodução do Transport Stream lido através do dispositivo de hard-

ware. O VLC possui o módulo ts-demux, que o torna capaz de entender e demultiplexar
completamente os pacotes TS, e o módulo libdvbspi, que proporciona o processamento

das tabelas do padrão europeu DVB-MHP, adotado também pelo padrão brasileiro.

O grande problema do uso do VLC é que não é escrito em Java e sim em C. Desta

forma, precisa ser iniciado como um processo externo e isto uma grande dificuldade para

passar os bytes lidos do hardware, já que exige a complicada comunicação entre processos

(IPC). Há uma alternativa sendo desenvolvida pelo time do VLC conhecida como jVLC, que

nada mais é do que uma forma facilitada de iniciar o VLC usando Java, através da Java

Native Interface (JNI).

Mesmo o jVLC não resolve a dificuldade de comunicação entre processos, visto que

não fornece uma interface simplificada para prover os bytes do vídeo ao VLC. A solução

encontrada pelo grupo foi utilizar um modo do VLC que lê os dados da sua entrada padrão.

O programa em Java que lê os bytes do hardware USB inicia um processo VLC externo e

passa os bytes lidos através de sua entrada padrão. Esta técnica é largamente utilizada

pelos sistemas operacionais baseados em UNIX e é conhecida como pipe entre proces-

sos. A solução se mostrou muito satisfatória nos diversos sistemas operacionais testados:

Windows XP, Mac OS X 10.4 e Linux.

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 51

br.pucrlo.telemldl&ginga.ncl.Qui.Ging8PlayerWfndow e1 [H P11 e 141 (Ch«geO

OK n MoI

Figura 5.17: Reprodução de um Transport Stream lido através do USBTv no Ginga

5.4 Adequando ao Ginga

A última tarefa relativa à exibição do vídeo no computador através da porta USB foi

integrar a exibição do Transport Stream lido pelo dispositivo USBTv ao middleware para a

TV Digital brasileira: o Ginga.

O processo para embutir o reprodutor de Transport Streams no Ginga começou com

um estudo profundo sobre a implementação do Ginga e da linguagem Nexted Context

Language (NCL) desenvolvida pelo grupo Telemídia, da PUC-RJ. O Ginga-NCL, como é

popularmente conhecido tem uma arquitetura flexível para a inclusão de novos tipos de

mídia suportadas e novos reprodutores para a exibição destas mídias.

O primeiro passo foi estudar como funciona o suporte aos formatos de vídeo atuais. O

Ginga-NCL permite associar um tipo de arquivo (mime type) a uma classe responsável pela

sua exibição (Player, ou Adapter) de forma simples, através de um arquivo de configuração:

mimedefs.ini, que se encontra na pasta gingaNclConfig/players. Um exemplo é o suporte

a vídeos do tipo MPEG-2 através do Java Media Framework; para tal existe no arquivo de

configuração a seguinte entrada: video/mpeg=pacote.JmfVideoPlayerAdapter .

O suporte completo ao USBTv no Ginga, foi incluso em duas etapas. O objetivo ini-

cial foi tornar o Ginga capaz de reproduzir Transport Streams salvos no computador (um

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 52

<body>

< ! --++++++ +++ +++ +'1 + 11 ' 1++ } 1 + + t '} 1 1 1 + 1 +'1'+ I1 - 1+ t +'++ 1 1 1 + 1 1 + tI 1 1 1 1+1 11 -1'

! PONTO DE ENTRADA :
! indica o componente onde o program inicia
!+bEn++H+++bbbbH-F»FFH+} 111111111111 IIiI 1111111111111 IIII 11-->

<port ict=''plntcto" canponent="videol"/>

<! --+H++#}+++F+ 1 1+'1' 1111 ' 1 IIII 11 1 1 1+ 1111 1 1 14 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

i yíorÃs:
! defíne o local dos arquivos de mídia e as associa can seus descritores
! -+.W+ 1-b++W+++++W++++++++++++++++++H+ 1 + +'1 + +++ t't-+++++-1 + 1 1 ++'t' + +' -->

1/ <media typen''IM+!ZMIE" icb''videol'' srcn"file://MARIA-TS. ts" descriptoh"dVideol"/>

Figura 5.18: Definição de mídia video/mpeg-ts em NCL para ser reproduzida com o VLC

<Êled ia typb:'v{deo/usbtv" i&“videol'' descriptok’'dVtdeol"/>

Figura 5.19: Definição de mídia video/usbtv em NCL

arquivo no formato MPEG-TS disponível no sistema de arquivos). Na etapa posterior foi

adicionado o suporte de leitura através da porta USB para a reprodução ao vivo de Trans-

port Streams.

O primeiro novo tipo de mídia criado foi o video/mpeg-ts e a ele foi associada à classe

Java VlcPlayerAdapter, responsável por ler os bytes do arquivo e iniciar um processo do

VLC para reproduzi-lo. A Figura 5.18 mostra a definição de urna mídia deste tipo em

um documento NCL. Nesta etapa, grande parte da integração com o Ginga foi resolvida, já

que o VLC passa a ser iniciado através da execução de um documento NCL e de dentro do

middleware para TV Digital. Além disso, configurações do video como tamanho e volume

do som, passam a ser definidas no documento NCL e interpretadas pelo próprio Ginga.

O segundo novo tipo de mídia criada, finalizando a integração do USBTv com o Ginga,

foi o video/usbtv. A este tipo de mídia foi associada uma classe desenvolvida pelo grupo

(UsbTvPlayerAdapter) , responsável por iniciar o processo do VLC, pela leitura dos dados

através da interface USB, e pelo controle da concorrência e armazenamento em buffer já

discutido. Para fazer com que um Transport Stream sendo lido pelo dispositivo USBTv seja

exibido em uma aplicação para TV Digital, basta agora incluir uma mídia do tipo video/usbtv

no documento NCL, como mostra a Figura 5.19.

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 53

JÜAEHIM GARRAUD

BMEE INVADERS ARE BAEK

Figura 5.20: O popular jogo Space lnvaders

5.5 Aplicação com Interatividade Local

De modo a explorar as capacidades e possibilidades do Ginga, foi implementada uma

aplicação para a TV Digital que explora a interatividade local (sem canal de retorno).

O conhecido e antigo jogo Space lnvaders (Figura 5.20), originalmente criado no Japão,

foi portado para rodar sobre o middleware para TV Digital como forma de exploração do

Ginga e com o objetivo de aprofundamento nas especificações para a interatividade.

Os aspectos sobre a apresentação como posicionamento e tamanho, além de toda a

interação com o usuário (resposta às teclas do controle remoto) foram definidos através de

um documento NCL. O restante do funcionamento do jogo foi desenvolvido usando a parte

procedural do middleware, em Java.

Um dos problemas enfrentados pela comunidade de desenvolvedores do Ginga é a falta

de exemplos de aplicações para a TV Digital que misturem aspectos da parte declarativa

(Ginga-NCL) e da parte procedural (Ginga-Java). O Space lnvaders para a TV Digital

poderá ser fornecido como exemplo de integração entre as duas partes do Ginga.

Um documento NCL pode incluir mídias do tipo application/x-ginga-NCLet, que são

classes Java a serem utilizadas pela aplicação. Caso o arquivo da mídia tenha a ex-

tensão .class, não é obrigatória a definição explícita do tipo e se a classe em questão

ainda implementar a interface javax.tv.xlet.Xlet, o Ginga cuida do seu ciclo de vida. Há

ainda outra forma de embutir código procedural em um documento NCL, através de mídias

application/x-ginga-NCLua, que devem conter código na linguagem Lua [22].

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 54

<?xml vers ior»" 1 .0" erICH/ing="ISC)-8859-1"?>
«lcl fé"t nvaders'’ xml/1>"http ://www . ncl .org . br/NCL3 . O/EDTVProfile">

<head>

<descrtptorBase>
<descriptor ícÊ"gaíneDescriptor'' r€gío/>"gameRegion">

<descriptorParan nm7+''x-classpath'’ value" ./'’/>
</descriptor>

</descriptQrBase>
</head>

<body">
<port ícÉ"pInicto" component>" garne'’ />

<India fc#"game'‘
sre ''br/usp/polt/usbtv/i nvaders/Spacelnvade rs . class "
de5rríptoh''gameDe$criptor'’ />

</body>
</ncl>

Figura 5.21 -. Exemplo de uso de classes Java em um documento NCL

kmdia ÍA"game " sra"br/usp/poli/usbtv/invaders/SpaceInvaders,cla5s'’>
<property na#e" start "/>
<property nan e" fire" />
<property nm#"leftPressed" />
<property nan e" right Pres5ed "/>

</media>

Figura 5.22: Expondo métodos da classe como propriedades em um documento NCL

As mídias podem conter um conjunto de classes Java, contanto que indiquem a classe

inicial a ser executada através do atributo src do nó media e especifiquem o classpath

contendo todas as outras classes a serem utilizadas, através de descritores NCL. Um

exemplo pode ser visto na Figura 5.21

Para mídias que contenham classes Java também é possível definir propriedades desta

classe (no padrão JavaBeans, com accessors e modificadores) para que sejam manipu-

ladas pelos elementos NCL. No Space lnvaders, alguns métodos da classe foram expostos

como propriedades (Figura 5.22) para serem chamados em eventos durante a execução

do documento NCL (como o pressionamento de uma tecla do controle remoto).

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 55

84 OÓ br.pucrlo.telemldl8.ging8.ncl.QuI,CIne&PlayerWlndow â O :8 $R @“ qua 21 nov, 00:‘

Figura 5.23: Space lnvaders rodando no Ginga, junto com a exibição de um TS

A parte procedural - Ginga-Java - ainda não está publicamente disponível devido a

restrições sobre uso de software de terceiros, porém a parte em Java da aplicação aqui

descrita não faz uso de nenhum recurso específico do padrão brasileiro, podendo ser uti-

lizada em qualquer middleware de TV Digital que siga os padrões do Java TV (inclusos to-

dos aqueles que seguem o (,EM). Assim que o middleware Ginga-Java for disponibilizado,

aplicações Java com mais recursos poderão ser desenvolvidas com maior simplicidade.

5.6 Uso do canal de retorno

Um dos grandes desafios da implantação da interatividade completa no Sistema Brasileiro

de TV Digital é a definição do canal de retorno. A tecnologia já oferece diversas alternati-

vas1 porém ainda não se sabe exatamente qual é a mais viável para a situação brasileira.

Algumas empresas de TV por assinatura já fornecem set-top boxes com um modem

interno, que possibilita o uso de um canal de retorno via conexão discada. Muito se fala do

uso das redes de telefonia celular como o GPRS para transferência de dados e conexões

permanentes através de Wi-FI, Ethernet ou WiMax começam a surgir como opções promis-

soras. Além disso, há um cenário de convergência tecnológica no país; muitas fornecedo-

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 56

0Ó br.pucrlo.telemldl&glngü,ncl.QuIBinO8PlayerWIndow Ml â O ::8 IR+ i + F {chargea dam 25 nov 9 21.56 i

Ab Ton•r/Sh•p+ Enugnbç» E Tonina SÓ It$ 19,90 Aprweit8ll
Pr8duto ElrdR#vndtnlo , <lddnla» e De Aid•d#n Quurlld«le
ht»1//WbLrtHfud- IXExa9w/llmVttem7dü&n
Ht 19.90

Figura 5.24: Produtos relacionados a emagrecimento, em um filme sobre obesidade

ras de TV a cabo e Internet prometem integrar em um só aparelho o set-top box e um

modem (ADSL ou cable modem).

O USBTv traz a TV Digital para dentro dos computadores de uso pessoal, que nat-

uralmente já possuem uma conexão a Internet. Tal fato não pode ser ignorado, já que

a constante conectividade que pode ser associada aos computadores traz uma enorme

facilidade para a implementação do canal de retorno, através da Internet.

De modo a explorar esta possibilidade, foi desenvolvida uma aplicação interativa para a

TV Digital, compatível com o middleware brasileiro, Ginga. A aplicação busca aproveitar a

conexão provida pelo canal de retorno para acessar serviços disponíveis na Internet. Neste

caso específico, informações sobre o vídeo sendo exibido (metadados) são utilizadas para

a consulta de produtos relevantes no popular site de comércio eletrônico Mercado Livre

(http : //www . mercadolivre . com . br).
Foram feitos testes com a aplicação rodando junto a um vídeo sobre obesidade. A apli-

cação exalta a opção de interatividade exibindo um ícone com a cor da tecla do controle

remoto adequada. A qualquer momento enquanto este ícone estiver sendo exibido, o es-

pectador pode usar o seu controle remoto para ativar a pesquisa de produtos relacionados

a emagrecimento. Uma foto da aplicação pode ser vista na Figura 5.24.

CAPÍTULO 5. PROJETO E IMPLEMENTAÇÃO 57

Para a consulta dos dados no Mercado Livre, a aplicação se beneficia do suporte ao

protocolo HyperText Transfer Protocol (HTTP) previsto no padrão brasileiro de TV Digital.

De fato, tal suporte já está previsto no GEM, porém mesmo que o set-top box não o suporte,

poderia ser facilmente implementado pela própria aplicação, já que o set-top box fornece

no mínimo o suporte ao protocolo TCP.

Uma requisição HTTP é feita ao serviço oferecido pelo Mercado Livre. A esta requi-

sição, está associado um parâmetro que indica quais serão as palavras relativas à pesquisa.

O resultado é um texto contendo informações sobre produtos e categorias relacionados às

palavras da pesquisa, no formato XML.

A aplicação então processa este XML, exibindo as informações em um formato ade-

quado a realidade da TV. Nesta etapa do trabalho houve desafios interessantes. O pro-

cessamento do XML teve de ser feito com muita cautela, levando sempre em conta as

restrições impostas pelo set-top box, que costuma ser um hardware simples e com baixo

poder de processamento.

Com isto em mente, o processamento do XML teve de ser feito utilizando apenas as

APIs disponíveis em um ambiente de TV Digital (especificadas primariamente no padrão

Java TV, que o padrão brasileiro Ginga adota). Além disso, para que o processamento

fosse extremamente rápido e leve, a equipe baseou-se no padrão XML Pull Parsing [27],

implementado pela biblioteca XPP3 [28]. Tal biblioteca é adequada para ser usada em

pequenos dispositivos já que é rápida, leve e eficiente.

Como o Ginga-Java, responsável por definir como será feito o carregamento de bibliote-

cas de terceiros por aplicações de TV Digital ainda não foi publicamente lançado, o uso de

uma biblioteca leve como o XPP3 minimiza o risco, já que pode ser facilmente integrada

à aplicação e tem o código fonte disponível. Desta forma, caso necessário, não precisará

mais ser carregada como uma biblioteca (arquivo JAR) extra.

A apresentação dos dados na tela trouxe ainda outros grandes desafios. O primeiro
relacionado à usabilidade de aplicações para a TV Digital, que exige atenção especial

já que tem restrições de processamento gráfico e o controle remoto é a única interface

para interação com o usuário. Cores, fontes e disposição dos elementos na tela foram

cuidadosamente estudados para levar uma boa experiência ao usuário e não fazer com

que a aplicação destoe daquilo que o usuários está habituado a ver em uma TV.

Nas primeiras versões da aplicação, todo o carregamento dos dados era feito de forma

síncrona. A aplicação ficava travada, esperando até que todos os dados fossem carrega-

dos. Isto fez com que a experiência do usuário fosse terrível, já que a aplicação não
respondia prontamente aos seus comandos e nunca indicava o que estava acontecendo.

CAPiTULO 5. PROJETO E IMPLEMENTAÇÃO 58

0Ó br.pucrlo.tülemldl&9íngâ,ncl.QuI,GlngaPlayerWlndow Ml â a {:H # e> .-+[(Charged) dom 25 nov,

7aiT§t a lote Control

&OZhlDLBB44B

Figura 5.25: Dados sendo carregados de forma assíncrona

O carregamento assíncrono dos dados ficou evidente. Mais uma vez, foi utilizada a

programação concorrente e desta vez para melhorar a experiência do usuário. O carrega-

mento dos dados é feito em uma linha de execução (thread) separada; a thread principal

da aplicação fica exibindo uma animação indicando que os dados estão sendo carregados,

provendo feedback ao usuário, como mostra a Figura 5.25.

Assim que os dados terminam de ser carregados, a thread que os carrega substitui a

imagem de carregamento por um painel que mostra dados sobre os produtos relacionados
aos metadados incluídos no vídeo.

No XML de retorno do Mercado Livre estão também inclusos endereços para ima-

gens associadas a cada um dos produtos. A aplicação utiliza novamente o canal de re-

torno através da Internet para carregar cada uma dessas imagens. Isto trouxe mais um

grande problema a ser enfrentado já que as imagens costumam ter tamanhos relativa-

mente grandes se comparadas ao texto XML com a resposta. O tempo para carregamento

de todas as imagens fazia com que demorasse muito até que o usuário pudesse ver as

informações sobre os produtos.

Desta forma, a concorrência novamente precisou ser empregada. Usando o mesmo

raciocínio de carregamento assíncrono o texto da resposta é exibido primeiro e diversas

CAPÍTULO 5. PROJETO E IMPLEMENTAÇAO 59

1.57 4 OÓ br.pucrlo.telemldl8.glngâ.ncl.QuI.tiIno&PlayerWindow Ml â O }:H + @ "

Ab Toner/Shap+ Em,•grB9e E Ton#ia SÓ It$ 19,gO Aprw»it8ll
HBdub &vü«ndudo , <ld4qla» e De Aiü8drru Qtrrrlld«l•

R4 19.90

!H’'hü J#++#
+ 2

Figura 5.26: Imagens sendo carregadas pouco a pouco por threads separadas

threads separadas vão carregando as imagens sob demanda, que pouco a pouco vão

aparecendo. O usuário pode ir analisando o resultado da pesquisa enquanto espera as

imagens serem carregadas. o exemplo das imagens sendo carregadas sob demanda

pode ser visto na Figura 5.26.

Assim como na aplicação Space lnvaders, para esta aplicação de consulta ao Mercado

Livre foram empregados conceitos de ambas as partes do middleware brasileiro Ginga;

declarativa e procedural. Esta aplicação também pode servir de exemplo de como integrar

as funcionalidades providas pelas duas abordagens e quais tarefas cada uma delas se

mostra mais adequada a resolver.

Capítulo 6
60

TESTES E AVALIAÇÃO

6.1 Hardware

Durante o desenvolvimento do projeto de hardware, foram utilizadas IDEs de simulação

de circuitos lógicos, para validar se a lógica da unidade de controle estava correta, e se

os sinais estavam sendo corretamente lidos e escritos na memória FIFO. Porém, não foi

possível simular os efeitos dos sinais LVDS como entrada do dispositivo, algo que dificultou

a simulação e testes do dispositivo como um todo.

Para tanto, foram colocados alguns pinos de saída com sinais intermediários da lógica

interna do dispositivo, para avaliar se os sinais analógicos estavam gerando corretamente

os sinais de CLOCK, PSYNC e DVALID, bem como os sinais dos dados de entrada. Para

verificar se os sinais estavam sendo gerados corretamente, foi utilizado um osciloscópio

fornecido pelo Departamento de Computação e Sistemas Digitais, de forma a verificar se

as formas de onda e freqüências estavam de acordo com o esperado.

Durante esta fase, foram utilizados 3 diferentes tipos de TS com diferentes bitrates para

a validação dos sinais e freqüências que estavam sendo transmitidas ao dispositivo. A

figura 6.1 ilustra as diferentes características de cada um dos vídeos utilizados durante os
testes

Após a fase de implementação, foi necessário validar se a taxa de leitura do host es-

tava de acordo com o esperado. Nesta fase, gastou-se grande parte do tempo de desen-

volvimento do projeto até que fosse encontrada uma seqüência de chamadas da API que

permitisse que o host pudesse ler os dados na freqüência adequada, evitando assim perda

de pacotes do TS. Para tanto, também foram utilizados pinos de debug no dispositivo, que

Nome do Arquivo
Shark ATSC 420 59.ts
flowerga ,ts
trans qu.ts
MHP INTRO.ts
SHARK DVB 1280 720 59HZ.ts
Shark ATSC 720 29.ts
SHARK DVB 1920 1080 29HZ.ts
Shark ATSC 720 59,ts
maria .ts

FPS DimensãoFormato

ATSC(59Hz)
DVB(25Hz)
DVB(25Hz)
DVB(25Hz)
DVB(59Hz)

ATSC(29Hz)
DVB(29Hz)

ATSC(59Hz)
DVB(25Hz)

59
25

25
25

59
29

29
59

25

704 x 480
720 x 576

720 x 576
720 x 576

128[1 x 72D
1280 x 72tl

1920 x IC180
128[3 x 720

720 x 576

Bitrate

19.155Mbps
19.155Mbps

19.155Mbps
5Mbps

19.155Mbps
19.155Mbps

1g.155Mbps
19.155Mbps

7Mbps

1

3

3
1

l
1

1

1

1

1

3

3

1

1

1

1

1

1

Figura 6.1 : Arquivos de Transport Streams utilizados nos testes

CAPÍTULO 6. TESTES E AVALIAÇÃO 61

Pacotes perdidos por % Pacotes perdidos
Bytes Aceitos desconlinuidade por descontinuidade

0 .42
108.154.896 5

107.992 0
To.576 2

15 mr2
m21621796

gRTixiiRHHmiHiB
flowe
mr ,tE

MHP INTRO.h
hr1
720 29.bAT

WO

ark A
.B

Pacoles Esperados Pacotes Aceitos % Pacotes Aceitos

T4
m1

Figura 6.2: Resultado dos testes efetuados

permitiam avaliar a freqüência com que o sinal de leitura do host estava ativo. Isto permitiu

avaliar os problemas de leitura que ocorreram no início de desenvolvimento do projeto, o

que acarretava com falhas na visualização do vídeo por perdas de pacotes.

Para validar a leitura dos vídeos, foram utilizados novamente os vídeos apresentados

na figura 6.1, que permitiram avaliar o correto funcionamento do dispositivo para vídeos de

diferentes taxas de transmissão. Foram testadas tanto a aplicação de gravação do TS em

um dispositivo de armazenamento, como a aplicação de visualização simultânea do vídeo
amostrado.

Para avaliar quantitativamente a qualidade do vídeo amostrado, foi utilizada a aplicação

de gravação de vídeo. Assim, foi possível salvar o vídeo amostrado em um arquivo e
posteriormente analisá-lo, de forma a avaliar corretamente as características obtidas na

amostragem do vídeo. Inicialmente, utilizou-se o TSReaderLite [33] para verificar os pa-

cotes, porém a qualidade da informação não pareceu adequada.

Assim, foi criada uma aplicação que verifica o tamanho dos pacotes e da sua correta

seqüencia dentro do TS, fornecendo os resultados obtidos na figura 6.2. Os resultados

contemplam os testes para cada tipo distinto de arquivo amostrado. Nestes resultados, o

número de pacotes aceitos é a quantidade de pacotes com tamanhos válidos. A quan-

tidade de pacotes esperados foi calculada baseada na quantidade de bytes do arquivo

obtido a partir da amostra, algo que contempla não só os pacotes de informação de vídeo,

mas também todos os pacotes de identificação dos programas e sincronia do vídeo.

A quantidade de bytes aceitos é apenas a multiplicação do número de pacotes aceitos

por 188, que no caso é o tamanho em bytes de cada pacote. Os pacotes perdidos por

descontinuidade foram calculados baseados no número de seqüencia dos pacotes, o que

é de certa forma impreciso, uma vez que não se pode detectar perdas de mais de 15

pacotes consecutivos para um mesmo Program ID (PID). Pacotes de vários PIDs diferentes

são intercalados entre si e com pacotes nulos (de PID 0x1 FFF) em um Transport Stream.

Portanto, a detecção de pacotes perdidos por descontinuidade não leva em consideração

a perda de pacotes nulos, uma vez que nem todos utilizam o número de seqüencia.

CAPÍTULO 6. TESTES E AVALIAÇÃO 62

u@M®m

[C :\ternp\usbtv>java – jar O\'8Tools. jar SHI DVR_1280_720_5 ghZ, ts
Processando DVB_1280_720_59ttZ. ts
Pacotes aceitos : 425884 de 469820 previstos (gD. 65 %)
Bytes aceitos : 8QD66192..."883263B2 (90, 65
&cütes perdidos (caIr base na descontinl Édde) : 715 (D, 15 $)

\ternp\usbtv>Fl 2 ; ' 1 - . ' 4 :t' 5 - 1 € ' i ; r ? - 1 8 ' ' g - i a

Figura 6.3: Aplicação desenvolvida para efetuar testes nos vídeos amostrados

Em todos os casos, a perda de pacotes não afetou a qualidade do vídeo, uma vez que

somente parte destes pacotes perdidos é de fato dado útil para a visualização do vídeo. Os

resultados demonstram que, para TS com maiores taxas de resolução, bitrate e número

de programas dentro do mesmo TS, a perda de pacotes é mais elevada. Porém, para

vídeos com taxas menores, a perda é praticamente insignificante, não afetando em nada a

qualidade do vídeo exibido.

6.2 Aplicação com Interatividade Local

Para a validação da aplicação com interatividade local, o jogo Space lnvaders foi exe-

cutado na presença das diversas mídias possíveis, como vídeos simples salvos no disco

rígido, vídeos lidos a partir de Transport Streams também salvos no disco e por fim junto a

Transport Streams lidos através do dispositivo USBTv.

Além disso, o Space lnvaders foi extensivamente jogado, para validar todas as situ-

ações possíveis.

Os testes foram executados em três dos principais sistemas operacionais do mercado:
Windows XP, Mac OS X 10.4 e Ubuntu Linux 7.10.

CAPÍTULO 6. TESTES E AVALIAÇÃO 63

6.3 Aplicação com Canal de Retorno

A aplicação que faz a consulta no Mercado Livre através do canal de retorno imple-
mentado sobre a conexão comum à Internet pôde ser validada comparando as pesquisas

feitas com a mesma palavra chave tanto no próprio site Mercado Livre, quanto através da

aplicação rodando dentro do Ginga.

Os produtos exibidos são sempre os mesmos, já que a consulta é feita por um serviço

WEB que o site Mercado Livre oferece. Assim como anteriormente, estes testes foram

executados nos três principais sistemas operacionais: Windows XP, Mac OS X 10.4 e

Ubuntu Linux 7.10, garantindo a alta portabilidade.

64

Capítulo 7

HeI

CONSIDERAÇOES FINAIS

7.1 Análise dos Resultados

O projeto obteve como resultado um dispositivo USB completamente funcional, que

possibilita a captura de streams de vídeo digital de alta resolução e taxa de dados, sem

perda de qualidade, seja para a gravação ou visualização imediata do vídeo. O dispositivo

final é compatível e passível de ser utilizado sob qualquer sistema operacional, algo que

garante a portabilidade desejada inicialmente no projeto.

Com o sucesso de sua integração como fonte de vídeo para as aplicações baseadas no

middleware Ginga, o dispositivo expande as fronteiras de usabilidade do padrão brasileiro

de TV digital, uma vez que disponibiliza um canal eficaz e portátil para sua visualização

e aplicação. Ficam ainda pendentes as tarefas de demultiplexação de Transport Streams

na estrutura do padrão brasileiro, contendo aplicações Ginga em forma de pacotes TS.

Tal aplicação não foi possível de ser realizada dentro do escopo do projeto, urna vez que

não havia a disponibilidade de um multiplexador eficiente para a geração de tal formato

de transmissão de vídeo. O grupo estimula que trabalhos futuros englobem tal aplicação,

de forma a validar o uso do dispositivo para a captura de streams no formato SBTVD que

incluam aplicações interativas.

A recepção do sinal de TV Digital RF puro esteve fora do escopo deste projeto, que trata

apenas do sinal MPEG2 Transport Stream, já demodulado. Futuros projetos de pesquisa

poderão contemplar a parte de recepção e demodulação do sinal oferecido pelas trans-

missoras, que chega a casa dos espectadores. Desta forma, o projeto pode se tornar

comercialmente viável, tornando o computador uma potencial alternativa a set-top boxes.

Quanto à análise e execução de aplicações interativas, fica clara a necessidade de

uma atenção especial quanto a interface homem máquina e usabilidade. Foi comprovado

na prática, que as aplicações devem responder prontamente as ações dos espectadores e

prover feedback constante. Para tal, técnicas de concorrência, carregamento e processa-

mento assíncronos podem ser amplamente exploradas.

Este projeto, também pôde expor alguns meios de utilização conjunta das funcionali-

dades oferecidas por ambas as abordagens para o middleware brasileiro para a TV Digital,

Ginga. Aplicações interativas para a TV Digital completas podem ser escritas tanto com o

CAPÍTULO 7. CONSIDERAÇÕES FINAIS 65

Ginga-NCL, quanto com o Ginga-Java. A integração, pontos de conflito e complementari-

dade entre os dois ainda é pouco documentada e pouco explorada pela comunidade.

As aplicações desenvolvidas durante este projeto levam a crer que a parte declarativa

do Ginga é poderosa na definição dos elementos pertencentes a aplicação, as interações

entre eles no espaço e no tempo, como reagirão a eventos (comandos das teclas do cont-

role remoto, por exemplo) e a sincronia temporal e espacial. A parte procedural se mostra

mais adequada para a definição do comportamento de cada um dos elementos na reação

a estímulos e na especificação de suas tarefas e algoritmos.

Com o intuito de ajudar no estabelecimento de uma arquitetura padrão para a imple-

mentação de um canal de retorno e a viabilização da interatividade propiciada pela TV

Digital, este grupo tem se empenhado nas pesquisas sobre as tecnologias adotadas no

mundo e as em curso no país. A generalização das soluções propostas visa a fácil adap-

tação para quaisquer tecnologias que venham a ser adotadas no Sistema Brasileiro de TV

Digital.

É desejo deste grupo que possam ser apresentadas as idéias deste projeto em con-

venções da área, fomentando a discussão e a análise das direções escolhidas, contribuindo

assim para o desenvolvimento tecnológico do país. Como os padrões de TV Digital definidos

no país ainda não são realidade, este trabalho pode não ser compatível com eventuais

adaptações das especificações, porém são buscadas soluções que mais se adéqüem à

realidade brasileira.

7.2 Trabalhos Futuros

O início do desenvolvimento da TV Digital no país abriu portas para todo o tipo de

pesquisa, seja ela na área de equipamentos, frameworks ou aplicações destinadas a fazer

crescer o uso e produção de conteúdo para a TV Digital. O projeto em questão estimula

a pesquisa de novos dispositivos que permitam uma integração ainda maior com o padrão

brasileiro de TV Digital, possibilitando talvez sua produção em larga escala com fins com-

erciais

Em relação às aplicações interativas, é possível explorar ainda mais profundamente o

uso da Internet como fonte de aplicações e serviços a serem reutilizados pela TV Digital.

Uma vez que o acesso à Internet é cada vez mais amplo no país, a integração dos seus

serviços já existentes agrega às aplicações de TV Digital um grande valor, expandindo

assim aplicações comumente utilizadas na Internet para a TV Digital.

CAPÍTULO 7. CONSIDERAÇÕES FINAIS 66

Este trabalho também proporciona a base para o desenvolvimento de novas formas de

implementação do canal de retorno, pois este é um tópico ainda em discussão e desen-
volvimento pela equipe responsável pelo middleware brasileiro GINGA. O canal de retorno

e as aplicações interativas ainda não foram completamente estabelecidas para o padrão

brasileiro, e até mesmo nos padrões internacionais o uso da interatividade em aplicações

de TV Digital é muito restrita. Ficam abertas, portanto, diversas possibilidades de pesquisa

na área.

Referências Bibliográficas
67

[1] BRASIL. Centro de Pesquisas e Desenvolvimento em Telecomunicações (CPqD).

MODELO DE REFERÊNCIA: Sistema Brasileiro de Televisão Digital Terrestre. Versão

PD.30.12.36A.0002A/RF08-AB. [Campinas]: CPqD, 13 fev. 2006. (Relatório Técnico,

Cliente: FUNTTEL, OS: 40539) Disponível em <http: //sbt„d . cpqd. com.br/>

(seção de Divulgação). Acesso em 12 ago. 2007.

[2] BRASIL. Centro de Pesquisas e Desenvolvimento em Telecomunicações (CPqD).
VISÃO DE LONGO PRAZO DA ECONÔMIA. Versão PD.30.12.36A.0002A/RF01-AA.

[Campinas]: CPqD, 25 mai. 2004. (Relatório Técnico, Cliente: FUNTTEL, OS: 40539)

Disponível em <http : //sbtvd . cpqd . com . br/> (seção de Divulgação). Acesso em

10 ago. 2007.

[3] BRASIL. Centro de Pesquisas e Desenvolvimento em Telecomunicações (CPqD). AR--

QUITETURA DE REFERÊNCIA: Sistema Brasileiro de Televisão Digital Terrestre. Ver-

são PD.30.12.34A.0001 A/RF13/AA. [Campinas] : CPqD, 10 fev. 2006. (Relatório Téc-

nico, Cliente: FUNTTEL, OS: 40541) Disponível em <http , //sbt,rd. cpc{d . com .

br/> (seção de Divulgação). Acesso em 12 ago. 2007.

[4] BRASIL. Centro de Pesquisas e Desenvolvimento em Telecomunicações (CPqD). ES-

PECIFICAÇÃO TÉCNICA DE REFERÊNCIA: Sistema Brasileiro de Televisão Digital

Terrestre. Versão PD.30.12.34A.0001 A/RF14/AA. [Campinas]: CPqD, 10 fev. 2006.

(Relatório Técnico, Cliente: FUNTTEL, OS: 40544) Disponível em <http ,//sbtvd .

cpqd . com . br/> (seção de Divulgação). Acesso em 12 ago. 2007.

[5] BRASIL. Centro de Pesquisas e Desenvolvimento em Telecomunicações (CPqD).

PLANO DE DESENVOLVIMENTO: Sistema Brasileiro de Televisão Digital Terrestre.

Versão PD.30.12.34A.0001 A/RF15/AA. [Campinas]: CPqD, 10 fev. 2006. (Relatório

Técnico, Cliente: FUNTTEL, OS: 40544) Disponível em <http , / /sbt„d . cpqd . com .

br/> (seção de Divulgação). Acesso em 12 ago. 2007.

[6] BRASIL. Centro de Pesquisas e Desenvolvimento em Telecomunicações (CPqD),
Fundacão Padre Urbano Thiesen. CARTOGRAFIA AUDIOVISUAL BRASILEIRA DE

2005: um estudo quali-quantitativo de TV e cinema.

[Campinas]: CPqD, 2006. (Relatório de Pesquisa, Coordenadora: Prof. Dra. Cosette

Castro) Disponível em <http: //sbt„d. cpqd . co„,.br/> (seção de Divulgação).

Acesso em 10 ago. 2007.

REFERÊNCIAS BIBLIOGRÁFICAS 68

[7] ARIB Standard for Digital Broadcasting. Padrões para o sistema de TV Digital japonês.

Disponível em <http://www.dibeg.org/aribstd/ARIBSTD.htm>. Acesso em 10 out. 2007.

[8] OLIVEIRA, Carina Teixeira de. UM ESTUDO SOBRE OS PADRÕES DE MID-

DLEWARE PARATELEVISAO DIGITAL INTERATIVA. Fortaleza: CEFEF

CE, 2007. Disponível em <http : / /www . gta .ufrj .br /-carina/artigos /
MonografiaCarina . pdf>. Acesso em 06 out. 2007.

[9] FAIRHURST, Gorry. MPEG-2 Overview. Aberdeen: Department of Engineering – Uni-

versity of Aberdeen, 2001. Disponível em <http : //elg. abdn . ac . uk/research/

future–net /digItal–video/mpe(32 . html>. Acesso em 14 set. 2007.

[10] Advanced Television Systems Comittee Inc (ATSC). Padrões para o sistema de TV

Digital norte americano. Disponível em <http , //„„„„„„ . at,c . org>. Acesso em 13
set. 2007.

[1 1] Advanced Common Application Platform (ACAP). Padrões para interatividade do sis-

tema de TV Digital norte americano. Disponível em <http : //ww„„ . acap . tv>. Acesso

em 13 set. 2007.

[12] OpenCable Platform (OCAP). Padrões da OpenCable para o sistema de TV Digital

norte americano. Disponível em <http : //www . opencable . com/ocap>. Acesso em
13 set. 2007.

[13] Digital Video Broadcasting (DVB). Padrões para o sistema de TV Digital europeu.

Disponível em <http : //www . dvb . org>. Acesso em 13 set. 2007.

[14] JAPÃO. Japan Broadcasting Corporation (NHK). Outline of the Specification for

ISDB-T. [S.1.]: 1999. Disponível em <http , //,„„„„. „hk.or.jp/strt/oper,99/
de–2/shosal–e . html>. Acesso em 23 set. 2007.

[15] Sistema Brasileiro de TV Digital (SBTVD). Padrões para o sistema de TV Digital
brasileiro. Disponível em <http , //sbtvd . cpqd . com . br>. Acesso em 12 set. 2007.

[16] Digital Video Broadcasting Multimedia Home Platform (DVB-MHP). Padrões para inter-

atividade do sistema de TV Digital europeu. Disponível em <http : //w„„„„ . mhp . org>.
Acesso em 12 set. 2007.

[17] Globally Executable Multimedia Home Platform (GEM). Conjunto comuns de todos

os padrões de TV Digital mundiais. Disponível em <http: //„„„w . „,hp . org/mhp.

technology/gem>. Acesso em 12 set. 2007.

REFERÊNCIAS BIBLIOGRÁFICAS 69

[18] Projeto Ginga. Página do projeto do middleware brasileiro. Disponível em <http,
//www .softwarepublico . gov .br/dotlrn/clubs/gInga>. Acesso em 12 out.
2007

[19] Universal Serial Bus (USB). Página dos padrões para a porta serial de dados.

Disponível em <http : //www . usb . org>. Acesso em 23 ago. 2007.

[20] GIANSANTE, M.; OGUSHI, C.M.1; MENEZES, E.; BONADIA, G.C.; GERO-

LAMO, G.P.B.; RIOS J.M.; PORTO, P.C.S.; HOLANDA, G.M.; DALLANTONIA,

J.C. Cadeia de Valor: Projeto Sistema Brasileiro de Televisão Digital. Versão AB

PD.30.12.36A.002A/RF02-AB. Campinas: CPqD, 2004, 95 p. (Relatório Técnico,

Cliente: Funttel, atividade 1236, OS: 40539).

[21] VideoLAN - VLC media player. Free Software and Open Source video streaming solu-

tion for every OS. Disponível em <http://www.videolan.org>. Acesso em 02 nov. 2007.

[22] The Programming Language Lua. Lua programming language official website.

Disponível em <http://www.lua.org>. Acesso em 18 nov. 2007.

[23] European Committee for Electrotechnical Standardization (CENELEC). Euro-

pean Standard EN 50083-9 (Interfaces for CATV/SMATV headends and simi-
lar professional equipment for DVB/MPEG-2 transport streams) Disponível em

<http : / /www . b jpace . com . cn/data/tec/tec–DVB/DVBBlueBooksSt anciards /

SpecificationsandSt andards/interfacing/dvb–pi/En500 83_9 . pdf>.
Acesso em 15 nov. 2007.

[24] The International Engineering Consortium (IEC). LVDS Tutorial Disponível em
<http : //www . iec . org/online/tutorials/low_voltage/>. Acesso em 15 nov.
2007

[25] Opal Kelly. XEM3001v2 User’s Manual Disponível em <http: //„„„„„, . opalkelly .
com/library/XEM300rv2–uM . pdf>. Acesso em 10 out. 2007.

[26] Entry in Wikipedia, the free encyclopedia. D-subminiature Disponível em <http ,
/ /en . wikipedIa . org/wiki/D–subrniniature>. Acesso em 10 out. 2007.

[27] XML Pull Parsing. Standards for general Pull parsing Disponível em <http , //„„„w .

xmrpull . org>. Acesso em 18 nov. 2007.

REFERÊNCIAS BIBLIOGRÁFICAS 70

[28] MXPI : Xml Pull Parser 3rd Edition (XPP3). Uma das principais implemen-
tações dos padrões do XML Pull Parsing Disponível em <http : / /www . extreme .
indiana . edu/xgws/xsoap/xpp/m><pl/>. Acesso em 18 nov- 2007-

[29] International Organization for Standardization (ISO) & International Electrotechnical

Commission (IEC). International Standard ISO/IEC 13818 Part 1. Information tech-

nology – Generic coding of moving pictures and associated audio information: Sys-

tems, second edition. ISO/IEC 13818-1 :2000(E).

[30] Digital Video Broadcasting Project. DVB Document A086 Rev. 6. Transport of MPEG

2 Transport Stream (TS) Based DVB Services over IP Based Networks, 2007.

[31] HENNESSY, J.L.; PATTERSON, D.A. Arquitetura de Computadores: Uma abor-
dagem quantitativa. Tradução da 3a Edição Americana. Tradução de Vandenberg D-

de Souza. Rio de Janeiro: Editora Campus, 2003, 828 p.

[32] rREGNI, E.; SARAIVA, A.M. Projeto Lógico Digital: Conceitos e Prática. São Paulo:

Editora Edgard Blücher, 1995, 498 p.

[33] TSREADER Lite. MPEG-2 Transport Stream Analysis and Recording Disponível
em ..,ht_tp : //www . coolst f . com/tsreader />. Acesso em 18 nov. 2007.

71

Glossário

• ADSL-. acrônimo de Asymmetric Digital Subscriber Line, é uma forma de transmissão

de dados de alta velocidade utilizando linhas telefônicas comuns, em freqüências

maiores que os seres humanos conseguem escutar.

• BNC-. é um tipo de conector cujo nome vem de seus criadores: “bayonet Neil-Concelman'’.

Sua grande característica é o sistema de trava, tipo twist-lock (gira e trava) , que pos-

sibilita grande segurança na conexão. É bastante utilizado nos equipamentos profis-

sionais de vídeo.

• Broadcast-. é um modo de difusão de sinais em que é transmitido o mesmo conteúdo

para todos os receptores. Numa transmissão de TV, por exemplo, todas as pessoas

sintonizadas no mesmo canal assistem ao mesmo programa. Em Internet, o termo é

usado muitas vezes para designar o envio de uma mensagem par todos os membros

de um grupo, em vez da remessa para membros específicos.

• Buffer: é uma área de armazenamento que compensa diferentes velocidades de

fluxos de dados ou temporizações de eventos, ao transferir dados de um dispositivo

para outro.

• CD: acrônimo de Compact Disc, é um padrão de armazenamento óptico para dados

digitais. Conversor A/D: um Conversor Analógico-Digital é componente de um sis-

tema responsável por converter dados analógicos para digitais através da amostragem

de um sinal contínuo e sua posterior discretização gerando valores numéricos digi-

tais

• Classpath-. é um argumento passado para a Java Virtual Machine indicando onde

procurar classes e pacotes para carregamento dinâmico.

• CPqD. Centro de Pesquisa e Desenvolvimento em Telecomunicações.

• DivX-. é um formato de compactação de vídeo criado pela DivxNetworks Inc.

• Driver . um driver é um componente de software responsável por estabelecer a comu-

nicação entre hardware e software, provendo comandos para enviar e receber dados

de um dispositivo instalado.

e DVD-. acrônimo de Digital Versatile Disc, é a geração seguinte ao CD, possibilitando
um armazenamento maior de dados.

REFERÊNCIAS BIBLIOGRÁFICAS 72

• ECMAScript-. é uma linguagem de programação baseada em scripts, padronizada

pela Ecma International na especificação ECMA-262. A linguagem é bastante usada

em tecnologias para Internet, sendo esta base para a criação do JavaScript/JScript

e também do ActionScript.

• FIFO. acrônimo para First in, First Out (que em português significa primeiro a entrar,

primeiro a sair) refere-se a estruturas de dados do tipo fila onde os elementos vão

sendo colocados e retirados (ou processados) por ordem de chegada.

• GEM-. acrônimo de Globally Executable MHP [17], é uma parte do MHP indepen-
dente dos padrões de transmissão europeus, criado com a finalidade de padronizar

partes de todos os padrões de middleware mundiais e possibilitar a criação de apli-

cações que funcionem em qualquer middleware que seja compatível com o GEM.

• GSM-. acrônimo de Global System for Mobile Communications é um dos principais

padrões para telefonia móvel existente.

• Heap-. Heap de objetos é o nome dado a parte da memória do computador que

contém a estrutura de dados responsável por armazenar todos os objetos durante a

execução da máquina virtual Java.

• HTTP 1 acrônimo para HyperText Transfer Protocol (Protocolo de Transferência de

Hipertexto), utilizado para transferência de dados na rede mundial de computadores,
a World Wide Web.

• IPC (Inter- Process Communication)-. é o grupo de mecanismos que permite aos pro-

cessos transferirem informação entre si. Entre estes mecanismos podem ser citados

pipes, filas de mensagens e memória compartilhada.

• Java. é uma linguagem de programação orientada a objeto desenvolvida na década

de 90 pelo programador James Gosling, na empresa Sun Microsystems.

• JavaBeans. são componentes reutilizáveis de software escritos em linguagem Java,

e que seguem algumas convenções de modo a permitir que ferramentas possam

utilizá-los e manipulá-los.

• JavaTV. é uma biblioteca Java que contempla a maior parte dos recursos necessários

para a operação de sistemas receptores de TV digital, simplificando assim o desen-

volvimento de softwares, uma vez que os programadores de aplicativos podem se

voltar ao tema principal da aplicação em desenvolvimento.

REFERÊNCIAS BIBLIOGRÁFICAS 73

• JNI (Java Native Interfacey. é um padrão de programação que permite que a máquina

virtual da linguagem Java acesse bibliotecas construídas com o código nativo de um

sistema.

• Lista ligada-. é uma estrutura de dados linear e dinâmica composta por células que

apontam para o próximo elemento da lista.

e Metodologia (Processo) de Desenvolvimento Ágil-. metodologias de desenvolvimento

ágil foram pensadas de forma a minimizar riscos no desenvolvimento de software

através períodos mais curtos de lançamento, chamados iterações, que tipicamente

levam de uma quatro semanas. Métodos ágeis prezam mais a comunicação face-a-

face que a documentação, como forma de acelerar o processo de desenvolvimento.

e MHP: acrônimo de Multimedia Home Platform [1 6], é um padrão aberto de middle-

ware para TV Digital, adotado principalmente pelos países europeus. Está incluso

em outro padrão maior, o Digital Video Broadcasting (DVB) [1 3] que agrupa todas as

características da tecnologia de TV Digital européia.

• Middleware (conforme [18]): é a camada de software intermediário que permIte o

desenvolvimento de aplicações interativas para a TV Digital de forma independente

da plataforma de hardware dos fabricantes de terminais de acesso (set-top boxes) .

• MPEG-. acrônimo para Moving Picture Experts Group, é o grupo de trabalho da Orga-

nização Internacional para Padronização (ISO) para o desenvolvimento de padrões

para vídeo e áudio digitais.

• MPE(32-. é um padrão de compressão e codificação de vídeo para difusão e comu-

nicações, bem como para armazenamento em meios diversos, tais quais os ópticos.

• MPEG-TS-. MPEG Transport Stream (TS, TP, ou MPEG-TS) é um protocolo de comu-

nicação para transmissão de áudio, vídeo e dados, especificado pelo padrão ISO/IEC

13818-1. Permite multiplexar vídeo e áudio digital sincronizando a saída. Possui cor-

reção de erro e transporte, e é usado para difusão de aplicações como DVB e ATSC.

• MOU: formato de vídeo criado pela Apple, é um container para imagem, diversas

trilhas, efeitos e textos. Sua base foi aprovada pela ISO como padrão para MPEG4
Part. 14

• Multiplexação no tempo-. a multiplexação no tempo consiste na transmissão de dois

ou mais sinais ou fontes de bits simultaneamente através de um único canal pela

REFERÊNCIAS BIBLIOGRÁFICAS 74

divisão do tempo em pequenos compartimentos de tamanhos fixos, onde são trans-

mitidos alternadamente um pouco de cada sinal.

• Overhead-. Em computação overhead é geralmente considerado qualquer processa-

mento ou armazenamento em excesso, seja de tempo de computação, de memória,

de largura de banda ou qualquer outro recurso que seja requerido para ser utilizado

ou gasto para executar uma determinada tarefa.

• Pipe (UNIX)-. é o redirecionamento da saída padrão de um programa para a entrada

padrão de outro.

• Set-top Box (STB)-. é o termo que descreve um equipamento que se conecta a um

televisor e a uma fonte externa de sinal, transformando este sinal em conteúdo no

formato que possa ser apresentado em uma tela.

• SBTVD [1 5]: acrônimo para Sistema Brasileiro de TV Digital.

• SMS-. acrônimo para Short Message Service. Tecnologia amplamente utilizada em

telefonia celular para a transmissão de mensagens de texto curtas.

• SOAP-. acrônimo de Service Oriented Architecture Protocol, é um protocolo de troca

de mensagens em formato XML.

• Thread: é uma forma de um processo dividir a si mesmo em duas ou mais tarefas

que podem ser executadas simultaneamente.

• UML-. acrônimo de Unified Modelling Language, é um padrão gráfico de especifi-

cação para modelagem de objetos, e uma ferramenta importante no processo de
desenvolvimento de software.

• USB-. acrônimo de Universal Serial Bus, é uma especificação para interfaces de co-

municação serial de dados. É padronizado pelo USB lmplementers Forum (USB-IF),

que possui membros como Apple Inc., Hewlett-Packard, NEC, Microsoft e Intel.

PW3C: acrônimo de World Wide Web Consortium, é o principal órgão de padronização

para a Web (Internet).

• YVeó Services-. é definido pelo W3C como um sistema de software projetado para

dar suporte à comunicação interoperável entre duas máquinas utilizando uma rede.

Essa comunicação é feita através de mensagens XML utilizando-se servidores web,

em um padrão denominado SOAP

REFERÊNCIAS BIBLIOGRÁFICAS 75

• Wi-Fi-. é uma marca registrada pertencente à Wireless Ethernet Compatibility Al-

liance (WECA), e é a abreviatura de wireless fidelity, sendo uma tecnologia de inter-

conexão entre dispositivos sem fio, usando o protocolo IEEE 802.11.

• WiMax. acrônimo de Worldwide lnteroperability for Microwave Access, é o nome

comercial para o padrão IEEE 802.16, que especifica uma interface sem fio para

redes metropolitanas, agregando conhecimentos e recursos mais recentes ao padrão

Wi-FI visando melhor performance de comunicação.

• UWA4V: Windows Media Video é o nome para uma série de formatos de vídeo com-

pactados criados pela Microsoft.

• XHTML acrônimo para eXtensible HyperText Markup Language, é uma linguagem de

marcação com as mesmas marcas do HTML, porém com uma sintaxe mais rigorosa

pois é baseada no XML, e dessa podem ser validadas com bibliotecas XML.

• XML-. acrônimo para eXtensible Markup Language, é uma especificação para uma

linguagem de marcação de uso geral, permitindo que possam ser criados novas
linguagens.

• XviD. formato de compactação de vídeo competidor direto do DivX. Enquanto o DivX

é um formato proprietário, o XVid é livre e de código aberto, disponível para diferentes

plataformas.

• YouTube: é um site na Internet que permite que seus usuários carreguem, assistam

e cornpartilhem vídeos em formato digital. Foi fundado em fevereiro de 2005 por três

pioneiros do PayPal, um famoso site da internet ligado a gerenciamento de doações.

Foi comprada em 9 de Outubro de 2006 pelo Google, pela quantia de US$1,65 bil-

hões em ações.

Apêndice A
76

API FrontPanel

A.1 Utilização da API

A partir da API FrontPanel disponibilizada com o kit de desenvolvimento, foi possível

implementar as rotinas de leitura em blocos dos dados e leitura dos triggers e valores

definidos no dispositivo. A API facilitou o desenvolvimento das aplicações cliente, uma vez

que disponibiliza os métodos tais como UpdateTriggerOutso, UpdateWireOutso, e Read-

FromPipeOuto, que realizam a transferência de dados conforme os endpoints definidos no

dispositivo. Para maiores detalhes da API disponível, a mesma está anexada a seguir.

No software desenvolvido, a seqüência de charnadas à API para a configuração dinâmica

do dispositivo com a lógica a ser executada pela FPGA está ilustrada na figura A. 1, e está
detalhada a seguir:

• lnstanciação do objeto: ao ser instanciado, o objeto inicia as bibliotecas da API, já

realizando a verificação de dispositivos atualmente conectados ao computador host;

• OpenBySerialo: realiza a abertura da comunicação com o dispositivo cujo identifi-

cação é aquela passada como parâmetro. No caso do dispositivo desenvolvido, a

identificação de série é '’lotORXnsdt’';

• ResetFPGAo: chamada utilizada para resetar todos os sinais da FPGA, limpando

a área de memória destinada ao programa a ser executado pela FPGA. Esta rotina

deve ser chamada para que configurações antigas sejam descarregadas da FP(3A;

• LoadDefaultPLLConf igurationo: utilizada para utilizar as configurações padrões de

geração de clock e do controlador USB disponível no kit de desenvolvimento;

• ConfigureFPGAo: utilizada para carregar o arquivo de configuração com a lógica

desenvolvida para o dispositivo de captura USB. Pode-se perceber que a configu-

ração da FPGA pode ser realizada dinamicamente, algo que facilita o desenvolvi-

mento, uma vez que diferentes configurações da FPGA podem ser executadas e

simuladas, sem haver necessidade de reconfiguração do software desenvolvido, tor-

nando assim o desenvolvimento do hardware e software desacoplados;

APÊNDICE A. API FRONTPANEL 77

pub:LIa boo:lean InitializeDevice () {
// Creace an irtstünce of the device .
rn dev = nov okFrontPanel t) ;

// Open the device for coxuüunicat;Ion
ErrorCode code = m dev. OpenBySerial ep’lotoRxnsdc“) ;
If ecode .swigValue () ! = ErrorCode . NoError.suigValue ()) (

System. out . print;In ("Error whIle openIng device . Abort;
return falso;

)

! ! ") ;

// Reset previous conf lguraclon3
rn clev.ResetFPGA tJ ;

// Setup the PLL from delaults .
n dev . LoaclDefaultPLI,Conf igurncion () ;

// Configure the FPÇA with Lhe TSReacier binaries
code = m dev . Conf igureFPGJL (“tsreacler . tlf o .bit ") ;

Figura A.1 : Inicialização e configuração dinâmica do dispositivo via software

Já para a seqüência de leitura dos dados do dispositivo, são utilizadas chamadas à

API responsáveis pela comunicação direta com os Endpoints definidos previamente. A

seqüência de chamadas está ilustrada na figura A.2, e detalhada a seguir:

• ActivateTriggerlno: ao ser chamada, esta função ativa um Endpoint do tipo Trig-

ger, que será um flag setado no dispositivo. Esta chamada é feita para inicializar a

memória RAM utilizado no módulo FIFO e para iniciar a captura de dados pelo dis-

positivo. Esta chamada também é feita para setar os flags de parada de leitura do

dispositivo ;

• UpdateWireOutso: realiza a leitura de valores fixos em um Endpoint do tipo WireOut

a partir do dispositivo. Esta chamada serve para obter do dispositivo a quantidade

de endereços que deverão ser lidos pelo host. Pode-se perceber que a quantidade é

multiplicada por 2, uma vez que cada endereço lido pelo host retorna 2 bytes, já que

o barramento de saída da pilha é de 16 bits. Isto garante que a chamada seguinte de

leitura da pilha tente ler a quantidade correta de bytes, ao invés da metade de bytes

disponíveis para leitura;

• ReadFromPipeOuto: esta chamada à API passa como parâmetros o Endpoint da

pilha do dispositivo, a quantidade de bytes que deverão ser lidos da pilha e um

buffer de bytes como saída. Esta chamada é a responsável por disparar os flags de

leitura de pilha no dispositivo, permitindo assim que a unidade de controle comande

a memória FI FO para leitura dos dados nela armazenados;

APÊNDICE A. API FRONTPANEL 78

// P.eset the RAH address pointer .
rn_dev.ActivateTriggerIn (lam reset , (short) O) ;

m dev. Act.lvateTriggertn (s edIt, (short) O) ;

byte[] but ;

whIle (tru8) {

Int transfer length = O;

m dev . UpdateWireOutis () ;

transfer_length = rn_dev .GetWíreOutValue (call read_ 1,dre) t2 ;

but = nov byte [transfer length] ;

Int retorno = m dev.ReadFtomPipeOut; (pipe, transfer length, but) ;

gynohronlzod (bytebuf) {

bytebuf . addLast; (but) ;

»rtvüt8 voId StopTSReader o {
if (m dev ! = nllll) {

if (m dev.IsOpen ()) {

m dev.ActivateTriggerIn (stop, C8hort) O) ;
)
B etuFlt ;

tO tUttI ;

Figura A.2: Seqüência de chamadas à API para leitura de dados do dispositivo

A.2 Overview

Overview (Version 3.0.0) The FrontPanel API provides a powerful C++ interface to Opal

Kelly USB-based FPGA boards. The library is able to communicate with any Opal Kelly de-

vice supported by the USB-FPGA driver, including the XEM3001 , XEM3005, and XEM301 0.

To build an application using this API, you need to include the file okCUsbFrontPanel.h

in files that access the API, and also add the library okFrontPanel.lib to be linked with your

project. The library was built under Microsoft Visual Studio .NET (Version 7.1) with the

Multi-threaded DLL setting.

To use the library, you create an instance of okCUsbFrontPanel which encapsulates

communication with the USB driver and provides access to FrontPanel endpoints. Call

GetDeviceCount to determine how many XEMs are attached to the USB. You can use the

GetDeviceListXXX methods to determine specific information about the boards attached,

then call OpenBySerial to open one of them by referring to its serial number. (if no serial

number is provided, this method opens the first available device.)

ConfigureFPGA is used to download a configuration file to the FPGA, Sending data to

Wire in endpoints is done with calls to SetWirelnValue followed by a call to UpdateWirelns

to simultaneously update all Wire Ins. ActivateTriggerln is used to trigger the XEM.

APÊNDICE A. API FRONTPANEL 79

The API uses polling to query the values of output endpoints such as Wire Outs and

Trigger Outs. The methods UpdateWireOuts and UpdateTriggerOuts perform these queries.

Once the wire and trigger values have been updated by these methods, you can retrieve

the values using the methods GetWireOutValue and lsTriggered.

FrontPanel API Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

okc,Event A base class enc.apsulating the concept of a generic event coming from the

XEM device

okCEventHandler The base class used to create FrontPanel event handlers in your own

code

okc,PLL22150 This is mainly a container class which holds the appropriate configuration

parameters for a Cypress 22150 PLL

okCPLL22393 This is mainly a container class which holds the appropriate configuratIon

parameters for a Cypress 22393 PLL

okCTriggerOutEvent Encapsulates a Trigger Out event coming from the XEM

okCUsbFrontPanel This class encapsulates the functionality of an Opal Kelly FrontPanel-

enabled USB device including FPGA configuration, PLL configuration, and FrontPanel end-

point access

okCWireOutEvent Encapsulates a Wire Out event coming from the XEM

Here is a list of all documented class members with links to the class documentation for

each member:

a

ActivateTriggerlno : okCUsbFrontPanel

AddEventHandlero : okCUsbFrontPanel

C

classifyDeviceo : okCUsbFrontPanel

ConfigureFPGAO : okCUsbFrontPanel

ConfigureFPGAFromMemoryo : okCUsbFrontPanel

ConnectHandlero : okCEventHandler

- d - doReadFromBlockPipeOuto : okCUsbFrontPanel

doWriteToBlockPipelno : okCUsbFrontPanel

e

enable16Bito : okCUsbFrontPanel

EnableAsynchronousTransferso : okCUsbFrontPanel

f

APÊNDICE A. API FRONTPANEL 80

fpgaToFrontPanelErroro : okCUsbFrontPanel

GetAddressO : okCEvent

GetBoardModelo : okCUsbFrontPanel

GetDeviceCounto : okCUsbFrontPanel

getDevicelDO : okCUsbFrontPanel

GetDevicelDO : okCUsbFrontPanel

GetDeviceListModelO : okCUsbFrontPanel

GetDeviceListSerialO : okCUsbFrontPanel

GetDeviceMajorVersionO : okCUsbFrontPanel

GetDeviceMinorVersionO : okCUsbFrontPanel

GetDiv1 Dividero : okCPLL22150

GetDiv1 Sourceo : okCPLL22150

GetDiv2DÉviderO : okCPLL22150

GetDiv2Sourceo : okCPLL22150

GetEepromPLL22150ConfigurationO : okCUsbFrontPanel

GetEepromPLL22393ConfigurationO : okCUsbFrontPanel

GetLastTransferLengtho : okCUsbFrontPanel

GetMasko : okCTriggerOutEvent

GetOutputDividero : okCPLL22393

GetOutputFrequencyo : okCPLL22393, okCPLL22150

GetOutputSourceo : okCPLL22393, okCPLL22150

GetPLL22150Configurationo : okCUsbFrontPanel

GetPLL22393Configurationo : okCUsbFrontPanel

GetPLLFrequencyo : okCPLL22393

GetPLLPO : okCPLL22393

GetPLLQO : okCPLL22393

GetProgramminglnfoo : okCPLL22393, okCPLL22150

GetReferenceO : okCPLL22393, okCPLL22150

GetSerialNumbero : okCUsbFrontPanel

GetValueo : okCWireOutEvent

GetVCOFrequencyo : okCPLL22150

GetVCOPO : okCPLL22150

GetVCOQO : okCPLL22150

GetWireOutValueO : okCUsbFrontPanel

APÊNDICE A. API FRONTPANEL 81

- h -

Has16BitHostInterfaceo : okCUsbFrontPanel

- i -

InitFromProgrammingInfoo : okCPLL22393, okCPLL22150

IsFrontPane13Supportedo : okCUsbFrontPanel

lsFrontPanelEnabledo : okCUsbFrontPanel

lsHighSpeedo : okCUsbFrontPanel

is12CAddressRestrictedo : okCUsbFrontPanel

lsOpeno : okCUsbFrontPanel

lsOutputEnabledo : okCPLL22393, okCPLL22150

lsPLLEnabledo : okCPLL22393

lsTriggeredo : okCUsbFrontPanel

-1 -

LoadDefaultPLLConfigurationo : okCUsbFrontPanel

- o -

okCPLL221500 : okCPLL22150

okCPLL223930 : okCPLL22393

okCUsbFrontPanelo : okCUsbFrontPanel

okMilliSleepo : okCUsbFrontPanel

OpenBySerialo : okCUsbFrontPanel

openBySerialo : okCUsbFrontPanel

P

ProcessTriggerOutso : okCEventHandler

ProcessWireOutso : okCEventHandler

- r -

ReadFromBlockPipeOuto : okCUsbFrontPanel

ReadFromPipeOuto : okCUsbFrontPanel

Read12CO : okCUsbFrontPanel

ResetFPGAO : okCUsbFrontPanel

resetValueso : okCUsbFrontPanel

- s -

SetAddresso : okCEvent

SetBTPipePollingIntervaIO : okCUsbFrontPanel

SetCrystalLoado : okCPLL22393, okCPLL22150

SetDevicelDO : okCUsbFrontPanel

APÊNDICE A. API FRONTPANEL 82

SetDiv1 o : okCPLL22150

SetDiv20 : okCPLL22150

SetEepromPLL22150ConfigurationO : okCUsbFrontPanel

SetEepromPLL22393Configurationo : okCUsbFrontPanel

SetMasko : okCTriggerOutEvent

SetOutputDlvidero : okCPLL22393

SetOutputEnableo : okCPLL22393, okCPLL22150

SetOutputSourceo : okCPLL22393, okCPLL22150

SetPLL22150Configurationo : okCUsbFrontPanel

SetPLL22393Configurationo : okCUsbFrontPanel

SetPLLLFO : okCPLL22393

SetPLLParameterso : okCPLL22393

SetReferenceo : okCPLL22393, okCPLL22150

SetTimeouto : okCUsbFrontPanel

SetValueo : okCWireOutEvent

SetVCOParameterso : okCPLL22150

SetWirelnValueo : okCUsbFrontPanel

U

UnregisterAllo : okCUsbFrontPanel

UpdateTriggerOutso : okCUsbFrontPanel

UpdateWirelnso : okCUsbFrontPanel

UpdateWireOutso : okCUsbFrontPanel

- w -

Write12CO : okCUsbFrontPanel

WriteToBlockPipelno : okCUsbFrontPanel

WriteToPipelno : okCUsbFrontPanel

okCUsbFrontPanelo : okCUsbFrontPanel

83

Apêndice B

Pinagem

B.1 Conector SPI

A partir da API FrontPanel disponibilizada com o kit de desenvolvimento, foi possível

implementar as rotinas de leitura em blocos dos dados e leitura dos triggers e valores

definidos no dispositivo. A API facilitou o desenvolvimento das aplicações clientel uma vez

que disponibiliza os métodos tais como UpdateTriggerOutso, UpdateWireOuts01 e Read-

FromPipeOut01 que realizam a transferência de dados conforme os endpoints definidos no

dispositivo. Para maiores detalhes da API disponível, a mesma está anexada a seguir-

APÊNDICE B. PINAGEM 84

Clock A

System GrId

Data 7 A(MS8)

Data 6 A

Data 6 A

Data 4 A

Data 3 A

Data 2 A

Data 1 A

Data 0 A

DVALID A

P SYNC A

Cable Shield

Clock B

System GIId

Data 7 B

Data 6 B

Data 6 B

Data 4 B

Data 3 B

Data 2 8

Data 1 B

Data 0 B

DVALID B

PSYNC B

Figura B.1 : Configuração dos 25 pinos do conector D-subminiatura na interface SPI

B.2 FPG A e Kit de Desenvolvimento

Nesta seção são detalhadas as pinagens envolvidas com os pinos de entrada e saída

da FPGA e os pinos do kit de desenvolvimento, bem como sua interligação com o conector

SPI construído pelo grupo.

A figura B.2 representa a interconexão dos pinos da FPGA Spartan-3 nos pinos do kit

de desenvolvimento. Já a figura B.3 representa a interconexão entre os pinos do conector

SPI com os pinos do kit de desenvolvimento (JP3). É importante verificar que o pino de

DEBUG foi utilizado durante a fase de testes para analisar os sinais lógicos através de um

osciloscópio.

APÊNDICE B. PINAGEM 85

i:on noction
DG ND

DGND
1/0 156
1/0 155
1/0 154

1/0 152
l;F1 50
1/0 149
F3.3VDD
F3 .3VDD

Connection

mma
1/0 147
1/0 146
1/0 144
1/0 143

)/0 141
1/0 140
1/0 139
DGMD

DGND

Connection

1/0 138

70 1'3}
-l:;à ii 5

1/0 133

1/0 132

1/0 131

1/0 130

1/0 128

1/0 126

1/0 125

ConnectIon

B®BIB

DGND

1/0 124
1/0 123
1/0 122
to 12à

m/ 119
1/0 117
1/0 116
1/0 115

Connection

1/0 114

1/0 113

R) 111

1/0 109
1/O / GCLK4 180
SYS CLK 4
DGND

DGND

Figura B.2: Relação entre os pinos da FPGA e do kit de desenvolvimento

Pino JP3 Fio SPI Pina JP3 Fio SPI

Figura B.3: Relação entre os fios do conector SPI e pinos do kit de desenvolvimento

