GILBERTO MOREIRA MARTINS

DOCUMENTANDO OS ARTEFATOS DE PROJETO NO PROPRIO
CODIGO: ESTUDO DE FERRAMENTAS NO AMBIENTE JAVA

Monografia apresentada A Escola
Politécnica da Universidade de Séo
Paulo para conclusfio do curso de MBA
em Engenharia de Software

Area de Concentragiio:
Engenharia de Software

Orientador:
Professora Maria Alice Ferreira

SAO PAULO
2003

RESUMO

A figura da documentagdo, no escopo do desenvolvimento de sistemas
informatizados, ¢ apresentada como um meio para garantir o registro de todo o
conhecimento do produto e a comunicagio efetiva entre todos os envolvidos nas
diversas fases do desenvolvimento. Sua relagio com o processo de desenvolvimento
permite definir sua forma e contelido. As qualidades exigidas e as dificuldades na sua
producio também sdo enfocadas neste estudo. Técnicas e ferramentas open source
existentes no ambiente de programagio Java para a documentagdo de sistemas
informatizados sdo descritas. Tais técnicas, de uma forma ou de outra auxiliam a
incluir a documentagiio dentro do préprio codigo fonte, como uma maneira simples,
flexivel e de baixo custo, para permitir o sincronismo entre as alteragoes do codigo e

a documentagio.

SUMARIO

Lista de Figuras

Listra de Tabelas

1 INTRODUCAQ...... A8, s st - 9
1.1 Motivacio..... . N “ .9
1.2 Objetivos . ; we 10
1.3 Metodologia.. N 3 . . 16
1.4 Estrutura do trabalho. . . A1

2 IMPORTANCIA DA DOCUMENTACAOQ NO DESENVOLVIMENTO DE
SISTEMAS...... " " . 12

2.2 Relacio da documentacdio com o processo de desenvolvimento utilizado

14
2.2.1 Processo Unificado.. .- 16
2.2.2 Processos ageis... . “ STRT— 19
2.2.2.1 Extreme Programing (XP).... . 20
2.2.3 Relacio entre os artefatos XP e RUP ... 22

2.3 Principais itens que constituem uma boa documentagio..........ccoereeveeee 23

2.4 Documentacio e qualidade do software . vee 20

2.5 Principais artefatos que documentam um projete de software............. 29
2.5.1 As vérias “visges” da documentagio........ - “ 29
2.5.2 Taxonomia da documentacio. : . S 31
2.6 Fatores de qualidade dos documentos de SOTtWAres.......cocccecnisisascrsens 33
2.6.1 Problemas relacionados com o processo de documentagio................ 33
2.7 Conclusdes .- . 35

3 TECNICAS E FERRAMENTAS PARA A CRIACAO E MANUTENCAO DA

DOCUMENTACAO. " e S 36
3.1 Gerenciadores de documentagio o emsra v 36
3.1.1 REM . . 37
3.2 Geracio automatica da documentacgio . " .38
3.2.1 Literate Programming (LP)..... 39
3.1.1.1 NoWEB. .) |
3.1.2 Elucidative Programming........... 5 By
3.2.3 Theme-based Literate Programing............. S 43
3.2.5 Documentacio em comentarios...... . . 46
3.2.5.1 Javadoc ¢ doclets 46

3.2 Especifica¢iio Formal e Semi-Formal . g 49

3.2.1 Design by Contract = T

3.2.1.1 Icontract

3.3 Anotaciio de decisdes de projeto e descricdo da arquitetura.........c.oueene

3.3.1 Explicit Programming,..........

3.3.1.1 Elide.

3.3.2 Aspect Oriented Programming

3.3.2.1 Aspectd. BT Ters L ST e R sESSETRER e e

3.3.3 Architecture Description Languages...

3.3.3.1 ArchJava

3.4 Geracio de cadigos a partir de modelos UML.

3.4.1 Ferramentas CASE (Computer-Aided Software Engineering)...........

3.4.1.1 Poseidon/ArgoUML (ferramenta CASE em UML)

3.4.2 xUML - Actions Semantics.... ST — NN -
3.5 Conclusio

4 ESTUDO DE CASO: DOCUMENTACAO NO CODIGO JAVA......connmmrsenee
4.1 Conclusio. L I

5 CONCLUSOES.....ccnenes

Lista de Figuras:

Figura 2.1 — Ciclo de Vida do RUP (fonte: JACOBSON et al., 1999)..........cooonevne 17
Figura 2.2 — Modelo de estimativa para reuso de software do COCOMOII (retirado de
BOEhm, 2000).........coveeeeecteteseee et reeie e e e e s 27
Figura 3.1 - Tela da ferramenta REM mostrando alguns recursos (fonte: Duran et

AL, 2000).. ... eeeeeeececeeeeeeiees e eeete s s e ees R Rt s bR et 37
Figura 3.2 - Arquitetura REM.......cocoooiiic e 38
Figura 3.3 Exemplo de “Hello World” escrito em NOWEB............cooiiiinn 42
Figura 3.4 - Exemplo de Elucidative Programming apresentado num browser......... 43
Figura 3.5 - Modelo de Trechos........ccooeriieieinncc e 45
Figura 3.6 - Modelo de Temas.c.oc..vveeeocececciieii e 45
Figura 3.7 - Modelo de ProCesso.........cc...ooooiiinninciini s 45
Figura 3.8 - Programa com comentarios em JavadoC.........oooneieccnininnnnnnnn: 47
Figura 3.9 - Documento HTML correspondente ao cédigo fonte da Fig. 38.....47
Figura 3.10 - Diagrama de classes UML obtido com UMLGraph..........coccconiininnns 48
Figura 3.11 - Saida do Patternity Doclet.................cooe, 49
Figura 3.12 - Exemplo de iCONTAct..........ocooiiiiii s s 53
Figura 3.13 - Exemplo de transformagao usando ELIDE............cos 35
Figura 3.14 - Representagio de Um aspecto.........cooeiivieiiiiissis s 56
Figura 3.15 — Trecho de Programa...............ccooimiiincnn s 58
Figura 3.16 — Aspecto Getlnfo (com informagfes no pointcut)...........ooovveeeeiines 59
Figura 3.17 ~ Arquitetura do Web Server..........oii 61
Figura 3.18 — Programa ArchJava que implementa a arquitetura do Web Server...... 63
Figura 3.19 — Tela do sistema Poseidon for UML...........ons 63
Figura 3.20 — Exemplo de Diagrama de Estados com XUML...........ccnninnnnes 66

Figura 3.21 - Exemplo de um conjunto de agdes de uma implementagio da XUML...67
Figura 4.1 — Mddulo de exerplo MDCBe.........oooii e 71
Figura 4.2 — Documentagio para 0 modulo exemplo MDCBe.......coooiiininns 73

Lista de Tabelas:

Tabela 2.1 — Boas praticas levadas ao extremo na XP (transcrita de Paulk, 2001)....21
Tabela 2.2 — Relagéo entre os artefatos do XP ¢ do RUP (transcrita de Boochetal.,

Tabela 2.4 — Influéncia de alguns fatores no custo/esforgo de manutengio (UNFM)..28
Tabela 2.5- Principais fatores de qualidade do software que estdo diretamente ligados

& AOCUMENEAGHO. ..., ceoeeeeececeetet e et ctbe s a b e 29
Tabela 2.6 - principais documentos por fase do Projeto..............ooevviviiic 30
Tabela 2.7 - Principais documentos por tipo de USHANO..........ccceniinnninncniniicns 31

Tabela 2.8 - ftens basico de uma documentagio de SIStEMA.cevrevrececcucercrinnieans 31

1 INTRODUCAO

Projeto e programagdo sdo atividades humanas,
esqueca isso e tudo estard perdido.

Bjarne Stroustrup

... documentagdo que ndo tem sido usada antes de ser
publicada, documentacdo que ndo é imporiante para o seu

autor, sempre serd uma documentagdo ruim.

Paul C. Clements

Este trabalho visa apresentar as dificuldades do desenvolvimento de software
oriundas da falta ou desatualizagio da documentagio, principalmente na fase de
manutencdo. Visa também dar uma visdo introdutdria das metodologias e ferramentas
existentes no ambiente Java, muitas do tipo open source ou baseadas em estudos
académicos, enfatizando as vantagens de manter a documentagio no proprio ¢ddigo
fonte como forma de complementar e ajudar a manter atualizada a documentagio, pela

sua proximidade com a implementacio.

1.1 Motivacio

A grande parte do tempo despendido na minha atividade como desenvolvedor, e
na de outros desenvolvedores dentro da empresa em que trabalho, pode ser resumida
em duas atividades: acrescentar novas funcionalidades a um sistema de sofiware ¢
realizar correcdo de “bugs”. Minha empresa possul um sistema computacional
principal e praticamente 95% do trabalho da 4rea de sistemas esté relacionado a esse
produto: instalagdo, suporte, treinamento, corregdes, acréscimo de funcionalidades e

suporte a novo hardware.

As duas atividades citadas enfatizam uma tmica fase do ciclo de vida do

software: a manutengio. O problema é que o niamero de corregdes € de novos recursos

10

tem crescido e o tempo gasto - € o correspondente custo - com cada um deles também
tem crescido, tornando-se um grande gargalo para nossa area. Resta-nos duas

alternativas: contratar mais desenvolvedores ou melthorar a produtividade dos atuais.

No fimdo, o problema n#o é tanto da qualidade dos profissionais, mas de alguns
aspectos da qualidade do produto: manutebilidade ¢ um deles. Em van Deursen
(2001), é apresentado que 40 a 60% do tempo gasto com manutencdo esta relacionado
com a compreensio do software. Assim, melhorando a qualidade interna do produto -
aqueles aspectos que ndo sdo vistos diretamente pelo cliente -, melhorando sua
compreensdo e diminuindo a possibilidade de defeitos, estar-se-a melhorando a
produtividade na fase de manutengio. O caminho escolhido €, portanto, buscar o
aumento da produtividade na manuten¢ao com uma diminui¢io conjunta na ocorréncia
de defeitos a fim de reduzir o gargalo do desenvolvimento, liberando recursos para

focar o acréscimo de novas funcionalidades para a conquista de mercado.

1.2 Objetivos

O objetivo deste trabalho ¢ o enfoque no problema da compreensio do produto,
e a conseqilente elaboragiio da documentagio, como forma de garantir a manutengdo
de todo o conhecimento sobre um sistema de software e uma maneira efetiva de
comunicagio entre 0s diversos elementos envolvidos nas diversas fases do

desenvolvimento.

Esse trabalho serve de ponto de partida sobre o que pode ser feito em projetos

de software para desenvolver codigo que custe menos para ser mantido.

Deve-se apresentar a documentagdo como algo simples de ser produzido,
reaproveitdvel, e, de alguma forma, manter-se consistente com o produto
desenvolvido. Deve-se ter em mente que a documentagio também tem de evoluir em

conjunto com o produto.

Este trabalho apresenta ferramentas existentes no ambiente Java, geralmente do
tipo free € open source, ¢ sua aplicagio na manutencéio da documentagio no proprio
codigo fonte, como forma de complementar e ajudar em manter atualizada a

documentacdo pela sua proximidade com a implementagdo.

1.3 Metodologia

11

Para a elaboragdio deste trabalho, utilizou-se de pesquisa na Internet sobre o
tema bésico “gerenciamento de documentacdo”, além da pesquisa sobre diversas
ferramentas para a linguagem Java relacionadas a documentagdo, especificacdo formal

¢ extensdes da linguagem.

1.4 Estrutura do trabalho
Este trabalho constitui-se cinco capitulos, conforme se descreve a seguir.

O Capitulo 1 ¢é formado por esta introdugdo, na qual se descrevem as

motivagdes, objetivos, metodologia e estruturagio da monografia.

Apresenta-se este trabalho introduzindo, no Capitulo 2, a importincia da
documentagiio e sua relagdo com o processo de desenvolvimento ¢ com a qualidade
do produto, os diversos artefatos que compdem o processo de produgdo € quais sdo

mais adequados para determinadas audiéncias.

Em seguida, no capitulo 3, apresentam-se as mais diversas técnicas e
ferramentas open source ¢ baseadas em Java, usadas para a criagio ¢ mamutencio da
documentagiio dentro do proprio cddigo, ou no sentido oposto, gerando o codigo a

partir dos documentos de projeto, operando como uma linguagem de mais-alto-nivel.

Finalmente, no Capitulo 4, mostram-se alguns exemplos de documentagdo,

extraidos de um cddigo fonte devidamente comentado.

No Capitulo 5 sido apresentadas as consideraces finais.

12

2 IMPORTANCIA DA DOCUMENTACAO NO DESENVOLVIMENTO DE
SISTEMAS

Programadores vém e vio: o grupo inicial, que uma vez compreendeu o
problema e as questdes envolvidas, escreveu o codigo e se foi; novos programadores
vieram, deixaram suas pequenas contribuigdes no codigo e também se foram.
Eventualmente, nenhum individuo ou grupo conhece toda a abrangéncia do problema
por tras do programa, as solugdes que foram escolhidas, as que foram rejeitadas e

porque isso ocorreu.

Essa constatacio & claramente apresentada em Kaplan (2003). Mesmo que se
tenha o caodigo fonte na frente, existem limites que um leitor humano pode absorver de
milhares de linhas concebidas fundamentalmente para exprimir uma funcionalidade,
ndo para conter significado. Quando o conhecimento passa para o codigo, ele muda de
estado, como quando a agua passa para gelo, tormando-se uma coisa nova, com novas

propriedades.
E necessério, assim, complementar o codigo com algo mais:
- “Porque foi escolhido se fazer desta forma? *
- “Quermn tomou essa decisdo ¢ quando?”
- “Quais requisitos essa fungio implementa?”

- “Que outros clementos mais podem ser afetados por uma mudanga nesse

procedimento?”

Sdo perguntas que também devem estar claras para quem tenta entender um

programa, além daquela mais comum: “Para que serve?”.

Em Arkley et al. (2002) ¢ apresentada uma proposta de pesquisa para se
conhecer melhor os problemas de rastreabilidade, tentando entender porque € tido

dificil responder a questdo sobre o impacto das alteragdes no resto do sistema.

2.1 Documentaciio de sistema: ferramenta ou estorvo?

Em Kaplan (2003), mostra-se que enquanto é verdade que qualquer

programador experiente, fluente na linguagem utilizada para a construgdo do software,

13

pode entender o que o software faz, ele pode também levar um grande tempo para
compreender porque ele foi estruturado daquela maneira. Comentérios ndo estdo ld
para descrever as fimgdes Obvias do codigo, mas para explicar a arquitetura do
software e as interagdes dos componentes. Isso é que nfo ¢ visto quando se 1€ um

programa.

Os programas mais dificeis de entender sdio aqueles com alguns comentarios €
pouca documentacdo extermna. E evidente que a documentagdo ¢ a chave para se
produzir software com uma manutengdo mais facil. Se o codigo tiver comentirios
claros e alguma documentagéio que descreva a arquitetura de alto nivel, sera possivel
entender mais rapidamente o que faz este cddigo e corrigir os defeitos detectados em
menos tempo. A solugdo ndo € tdo simples, pois antes duas perguntas tém de ser

esclarecidas:
- Qual a forma que a documentacéo deve ter?

- Como os analistas/programadores podem ser encorajados a escrever a

documentagio, o que eles relutam tanto em fazer?

Stout (2001) apresenta uma nog¢do bem conhecida de que os desenvolvedores
ndo sio apaixonados por documentagio. Eles acreditam que manter uma
documentagdo rastreavel e consistente produz como efeito colateral, uma diminuigéo

na sua produtividade didria, além de impor uma burocracia adicional.

QOutro ponto negativo é uma tendéncia de nio saber quando parar. Algumas
vezes podemos ser tio detalhistas na geragio da documentagdo que o esforco

resultante ndo & produtivo e impde custo elevado para o projeto.

Parnas e Madey (1995) mostram que, em muitas organiza¢des que desenvolvem
software, a documentagio nfo é vista como uma parte da atividade de projeto, mas
como uma tarefa adicional, ds vezes entediante, mas que deve ser completada por
razdes burocriticas. Com freqiiéncia, os programas sdo escritos antes da
documentagdo, e também, a documentagio pode ser escrita por um grupo separado,
que ndo inclui os projetistas. Usualmente, os programadores consideram a
documentacio que chega ds suas mdos vaga e praticamente inutil. Conseqiientemente,
os docurnentos de projeto de um sistema computacional sfio usualmente inapropriados,

quando disponibilizados, e raramente s3o atualizados.

14

2.2 Relaciio da documentagiio com o processo de desenvolvimento utilizado

Em Booch et al. (1998), é apresentada uma nogdo verdadeira, mas no minimo
curiosa, sobre¢ a necessidade de se impor um processo no desenvolvimento de

software: o medo! Sim, medo basicamente de que:

0 projeto ira produzir o produto errado;

- o projeto ira produzir um produto de qualidade inferior,
- o projeto atrase,

- todos terdo de trabalhar 80 horas por semana;

- todos terdo que quebrar compromissos;

- ndo se tera prazer no que se faz.

Sob um outro ponto de vista também, Booch et al. (1998), apresentam que o
objetivo de um processo de software € garantir o cumprimento do que é chamado
“Relagdo de direitos dos clientes ¢ desenvolvedores™, cujos principais pontos s3o 0s

Direitos do Desenvolvedor e os Direitos do Cliente.
Direi Desenrv I
- tem o direito de conhecer o que ¢é solicitado, através de requisitos claros e com
uma priorizagdo definida;

- tem o direito de dizer quanto tempo cada requisito ira levar para ser implementado

e de revisar essas estimativas através de sua experiéncia;

- tem o direito de aceitar as suas responsabilidades, ao invés de que elas lhe sejam
atribuidas;

- tem o direito de produzir com qualidade durante todo o tempo;

- tem o direito de trabalhar em ambiente calmo, alegre, produtivo e agradavel;

Direi lien

- tem o direito a wm planejamento geral, conhecer o que pode ser resolvido, quando

€ a que custo;

- tem o direito de ver o progresso em um sistema executando, provando que
funciona ao passar por testes repetitiveis que a equipe de desenvolvimento

especificou;

15

- tem o direito de mudar a sua opinifo, substituindo fincionalidade e alterando

prioridades;

- tem o direito de ser informado sobre mudangas de cronograma, em tempo de
escolher como reduzir o escopo para restaurar a data original. Pode cancelar o
projeto a qualquer momento, ¢ ficar com um sistema funcionando, que reflita o

investimento at¢ aquela data.

Para atender a esses direitos inerentes das duas partes principais envolvidas na
elaboragio de um produto de software, fica clara a necessidade de se registrar
necessidades, decisSes, cronogramas, custos ¢ prioridades, a fim de que ambas as
partes estejam cientes e de acordo com o que for estabelecido. O registro e
comunicagio desses itens consiste no papel principal da documentagdio em um

processo de desenvolvimento de software.

Produzir essa documentaciio, no entanto, esbarra em wma série de dificuldades.
Em DeMarco {1995), duas variantes sdo apresentadas, que mostram os extremos do

problema da documentagio:

a) A equipe produz toda a documentagio intema que sabe que é necessdria e

“paga” umterrivel prego por ela.

b) A equipe ndo produz toda a documentagio que precisa e “paga” um terrivel

Preco por isso.

Qual é a quantidade adequada de documentagio depende, principalmente, da
relacdo entre o custo de produzi-la e o custo de ndo produzi-la. Quais itens devem ou
néo ser produzidos esta relacionado com o processo de desenvolvimento de software
que se esta adotando, com a andlise de riscos do projeto e com os requisitos de

qualidade do produto.

Muitos autores relacionam a falta de atualizagdo da documentacio com a
auséncia de um processo de Geréncia de Configuragio, uma vez que a documentagdo ¢
considerado um dos produtos do processo de Engenharia de Software. Em sen
trabalho sobre o controle de documentagio em pequenas companhias, Pacheco e
Sanches (2000) explicam que, durante o ciclo de vida do software, os documentos
evoluem e sdo alterados, sendo criadas novas versdes do item em guestdo. Para
manter um melthor controle desta situagdo, é necessario que sejam estabelecidas

normas para a criagio ¢ alteragdo dos documentos. Essas normas constituem a pratica

16

da Geréncia de Configura¢o de Software, que, inclusive, constitui uma das principais
key process areas - KPA - do CMM.

Varios processos de desenvolvimento de sofiware foram sugeridos ao longo do
tempo, mas duas vertentes tém se sobressaido atualmente: o Processo Unificado, mais
burocratico, académico e abrangente em oposi¢do aos Métodos Ageis, mais dindmico,
enxuto ¢ guiado por “boas praticas”. Nos itens a seguir serd detalhado um pouco

desses dois métodos, enfatizando sua relagéo com a documentagéo produzida.

2.2.1 Processo Unificado

O Processo Unificado, também conhecido como RUP (Rational Unified
Process), é o resultado da integragio do trabalho de trés autores, Ivar Jacobson,
Grady Booch e James Rumbaugh na Raftional Software Corporation. Segundo
[Booch] , podemos sintetizar o RUP como um framework de projeto que descreve uma
classe de processos que s#o iterativos e incrementais. Ele produz funcionalidades em
pequenos incrementos, cada um construido baseado no anterior, sendo guiados por
“casos de usos”ao invés da construgdo de subsistemas. No RUP as atividades de
estimativa e de planejamento de tarefas sfo feitas com base nas iteragGes anteriores.
As primeiras iteragdes do projeto s3o altamente focadas sobre uma arquitetura de
software: uma implementacio rapida dos recursos do produto sdo postergadas até que

uma arquitetura robusta e confidvel seja identificada e testada.
Fm sua forma mais simples, RUP consiste de alguns fluxos findamentais:
- Engenharia de negocio: entendendo as necessidades do negocio;,

- Requisitos: traduzindo as necessidades do negocio no comportamento do

sistema automatizado;
- Anilise e projeto: traduzindo os requisitos em uma arquitetura de software;

- Construgiio: criacdo de sofiware que se ajusta a arquitetura proposta e

possui os comportamentos desejados;

- Teste: garantir que os comportamentos desejados s@o corretos que todos

estdo presentes;

- Configuragiio e gerenciamento de mudangas: mantendo uma referéncia de de

todas as diferentes versdes de todos os produtos.;

17

- Gerenciamento do projeto: atribvindo e mantendo o ambiente de

desenvolvimento;

- Entrega: tudo que é necessario para a implantagdo do projeto;

Incepﬁqﬁj Elaborudéﬁ Constructiﬁu'___.t? Transltlﬂ.fﬁ

Business Modeling /—l—‘“‘:—‘ﬁ—gg l._ _i E
Requirements M E
Analysis & Design _

i] [l !
impiementation ﬁ D A
] ' 1
i 4 e
!] i i |
Deployment _[i _'_,,Jf-"‘J’““\
| ! | - i
S |
Configuration Mgmt _-—-—*'--"'— ? ¥ ““"‘“-h-f-..._
Management . ____..;..-\ - ___f P
Environment : | | |
Preliminary | Iter | tter | ner. 1 iter |Ilar| ﬁ'r,[‘,;
w2 U an lanst lans2® gm |

iteration(s)® #1

Figura 2.1 — Ciclo de Vida do RUP (fonte: JACOBSON et al., 1999)

Essas atividades niio sdo separadas no tempo. Ao contrdrio, elas sdo executadas
concorrentemente durante o ciclo de vida do projeto. Como se vé na Fig. 2.1,
pouquissimo codigo € escrito no imicio, mas sua quantidade ndo ¢é zero.
Posteriorniente, muitos dos requisitos sdo conhecidos, mas alguns novos requisitos

ainda serdo identificados.

Assim, conforme o projeto evolui, a énfase em certas atividades avmenta ou
diminui, mas os diferentes tipos de atividades ainda podern ser executados a qualquer

momento, durante o ciclo de vida do projeto.

O projeto evolui em incrementos, chamados iteragdes. O objetivo de cada
iteragdo ¢ desenvolver algum software funcional que possa ser demonstrado aos

solicitantes, € que eles possam aché-lo funcional.

18

Existem quatro fases em um projeto RUP: iniciagdo, elaboragido, construgio e
transigdo. Essas fases representam uma certa énfase em algurnas atividades dentro de
uma iteragio. A transigdo de uma fase a4 outra ¢ reconhecida ao se completar

determinados artefatos. Os artefatos produzidos em cada uma das fases estdo listados
a seguir.

Iniciacdo:
- Relagiio simples dos principais requisitos, possivelmente na forma de casos de

uso;

- Quadro geral da arquitetura do sofiware;
- Descri¢do dos objetivos do software;
- Planejamento do projeto preliminar;
- Plano de negdcio para o projeto.

Elaboracéo:
- Corpo geral do sofiware, na forma de um prototipo arquitetural;
- Casos de uso que descrevem a maior parte do comportamento do sofiware,
- Plano de projeto detalhado, descrevendo as itera¢des seguintes;
- Principais testes para verificar a operacdo do software.

onstrucdo:

- O sistema de software: composto por suas vérias partes como codigo fonte,

executavel, componentes e suas interfaces, arquivos, bibliotecas e outros;

- Os testes do sistema incluindo planos de testes, procedimentos e casos de testes €

resultados dos testes;
- O manual do usudrio;

- Planos de integragdo das partes.

- Basicamente os mesmos da constru¢do, apenas s#o ajustados de acordo com as

necessidades da instalagio. Pode envolver o planejamento de novas atividades

19

como a realizagio de testes Beta e a migracio de dados para o novo sistema.

2.2.2 Processos dgeis

Os processos ageis indicam procedimentos e recomendagGes para ganhar tempo

na produgio de sofiware. Isto muitas vezes vai de encontro a produgiio de

documentagdo, por ser considerado que o tempo gasto na produgdo da documentacdo

n#o foi usado para a produgio do sofiware.

Com um visio mais focada na modelagem do que na produgido do codigo,

Ambler (2001), relacionou alguns pontos criticos que devem nortear a producio da

documentagio, segundo essa perspectiva de agilidade:

O problema fimdamental ¢ a comunicagdo, nio a documentagdo;
A documentagiio deve ser enxuta e objetiva;

A documentac#o deve ser apenas boa o suficiente;

0s modelos n#o sdo, necessariamente, documentos e vice-versa,
A documentago faz tanto parte do sistema guanto o codigo fonte;

O objetivo principal da equipe de desenvolvimento ¢ desenvolver sofiware; o

segundo € capacitar o seu proximo esforgo;

O beneficio de se ter a documentagio deve ser maior que o cusio de cria-la e
manté-la;

Nunca confiar na documentagio, sem ter garantias de que ela esta atualizada;

Cada sistema tem a sua propria necessidade de documentacdo, ndo existe
“tamanho Gnico”;

Questionar a necessidade da documentagéio, e ndo considera-la como uma vontade;
O investimento na documentagdo de um sistema é uma decisfo de negdcio, e nio
técnica;

Criar a documentagiio apenas quando ela se fizer necesséria;

Atualizar a documentagio somente quando quando houver uma necessidade

explicita para isso.

20

A seguir apresentamos o processo agil mais comentado - Exireme

Programming - e o papel da documentagao nesse processo.

2.2.2.1 Extreme Programing (XP)

O método XP é comumente atribuido a Kent Beck, Ron Jeffries, ¢ Ward
Cunningham. Ele é direcionado a equipes de tamanho pequeno a médio, construindo
software com pouco conhecimento dos requisitos, ou que sejam alterados
rapidamente. As equipes do XP estdo normalmente situadas num mesmo local fisico e

se compdem de menos de 10 membros (Paurx, 2001).

O ciclo de vida na XP tem quatro atividades basicas: codificago, teste, captura

e projeto. O dinamismo é demonstrado através dos seguintes valores:
- comunicagfo continua com o cliente € o time,

- simplicidade, através do foco constante na solu¢io minimalista;

- réapido feedback através dos testes de unidades ¢ funcionais;

- coragem para lidar com os problemas pré-ativamente.

Muitos dos principios da XP, como minimalismo, simplicidade, ciclo de vida
evolutivo e envolvimento do usudrio, sdo praticas de senso comum que fazem parte de
qualquer processo disciplinado. A tabela 2.1 resume o “extremo” na XP, que vem de

levar essas comentadas boas praticas para niveis extremos.

Sob o ponto de vista da documentagdo, a XP segue o principio de minimalismo:
praticamente toda a documentagdo é descartada depois de utilizada, pode ser feita a

mao livre ou num quadro-branco e deve existir enquanto sirva ao seu propagsito.

Os requisitos sio capturados na forma de um conjunto de estorias’, que podem
ser acrescidas de novas estorias a qualquer momento. O segredo estd em programar a
entrega de partes do produto a cada duas semanas, facilitando o gerenciamento dessa

volatilidade.

1 wser stories — em Ambler, S. W. Modelagem Agil: Praticas eficazes para a programagéo
eXtrema e o Processo Unificado. Trad. Acauan Fermandes. Porto Alegre: Bookman, 2004, a
tradugéio para o termo é histérias. Aqui se traduz por estorias, por se achar este termo mais

correto.

21

Tabela 2.1 — Boas praticas levadas ao extremo na XP (transcrita de Paulk, 2001)

[Senso comum | Extremo no XP I Pritica de
implementaciio
| Revisdo de codigo | Revisar o codigo todo o tempo | Pair programming
lTeste Testar todo o tempao, € pelo cliente Teste de unidade e
Ifl.me:ional
\ 1
\Proj eto Fazer o projeto parte deas atividades didrias de |Refactoring |
[todos
Simplicidade ' Sempre trabalhe com o projeto mais simples | A coisa mais simples que
1 que proporcione a fimcionalidade atual do E possa funcionar |
| | sistema }
i) :]
Arquitetura ' Todos trabalham para refinar a arquitetura o l AMetifora |
l 'fempo todo |
t I - -
Teste de Integragio ‘Integre e teste varias vezes ao dia lhtegrag:ﬁo continua
. - - 1 . 1
Tieragles curtas | Torne as itera¢des curtas, em dias ou horas Planning game
| - o _— S]

Os desenvolvedores do XP aceitam a idéia de ter uma visdo geral do sistema,
enfatizando o projeto, enquanto que ao mesmo tempo minimizam a necessidade de
documentagio do projeto. Por adotar o principio de reprojeto’ continuo para melhoria
do codigo, uma documentagio detathada faciimente torna-se obsoleta € o custo de
produzir e manter uma documentagdo dessas, fora do cédigo, toma-se proibitivo. Os

responsaveis pela manutengio geralmente s6 confiam no préprio c6digo fonte.

Em Jeffries (2001), ¢ resumido de forma clara que, para a XP, a documentagdo
deve ser produzida quando ela é importante. “Externamente do seu projeto XP, vocé
provavelmente ir4 necessitar de documentagfo escrita: de qualquer forma, escreva-a.
Internamente no entanto, existe tanta comunicagio verbal que vocé precisard de muito

pouca documentagdo. Verifigue se vocé sabe a diferenca.”

Em van Deursen (2001), sdo apresentados dois aspectos que tornam XP um

processo interessante sob o ponto de vista da compreensdo de um sistema:

- o codigo fonte tem um papel dominante em todos os passos do XP: o codigo €
documentado através dos testes, os testes sdo baseados em programas ¢ ndo em
dados, o codigo ¢ melhorado continuamente para manter o projeto simples e esse

refactoring substitui uma fase de projeto explicita;

2 redesign

22

- a comunicagio do time é explicitada no XP, através da codificagdo por pares,
onde duas pessoas, trabalhando juntas, discutem a melhor forma de implementar
um recurso. O planejamento é feito em comjunto com toda a equipe de
desenvolvimento, discutindo o impacto de cada um dos recursos a serem

implementados.

- Como se v&, a énfase que XP coloca no codigo fonte e nas pessoas, sugere que a
necessidade das pessoas em compreender os trechos de codigo € o coraglo da

manuten¢io no XP.

O principal artefato produzido, porém geralmente descartado séo as estdrias.
Elas sdo o ponto de partida no desenvolvimento XP. E através da escolha delas que o
cliente d4 inicio ao processo iterativo. Sdo definidas como uma “coisa” que o cliente
quer que o sistema faga, tém uma estimativa entre uma € cinco semanas de

programacdo ideal e devem ser testdveis.

Assumindo que a documentagdo do sistema produzida pelo XP € o codigo, uma
forma de enriquecer essa documentagdio, mantendo a visdo do XP, é agregando as
estérias (requisitos do sistema) ao produto final, o codigo. O que ndo esta claro ¢ a

forma de como fazer isso.

2.2.3 Relaco entre os artefatos XP ¢ RUP

Na tabela 2.2 relacionam-se os principais artefatos produzidos pelo XP e pelo

RUP, ajustados para pequenos projetos, segundo apresentado em Booch et al. (1998).

Tabela 2.2 — Relagio entre os artefatos do XP ¢ do RUP (transcrita de
Booch et al., 1998)

— = : |

1_XP RUP para pequenos projetos
Estorias Visdo 7
Documentos adicionais das conversages Glossario

‘lMode[o de Casos de Uso i
IRessalvas, resirigtes ;Especiﬁcagsaes complementares B
Testes de aceitagéo [Modelo de testes
Testes de unidades
Dados para testes

Resultados de testes

1L

23

xXp RUP para pequenos projetos |

i—Cédigo fonte | Modelo de implementagdo

IJ‘wielf:a.';’es I Produtos |
Notas dos releases

;Metéfora Documento de arquitetura do software |

Projeto; CRC, esbogos em UUML Modelo de Projeto

Tarefas

Dogumentos de projetos, produzidos ao final do

projeto

1 Documentagdo de suporte

[Padrﬁes de codificagio ﬂReferéncias de projeto
IReferiénc.ias de programacio

ma de trabalho (desenvolvimento ¢ outros) | Ferramentas

i

Ferramentas para testes

e | :

'Plano de releases Plano de desenvolvimento de software !
Estimativas das estorias Plano de iteragdes |
Estimativas das tarefas]

Plano de iteragdes '
Plano geral — custos/orgamento | Plano de negocios 1
Lista de riscos

Plano de aceitagio de produto

Relatorios de progresso Avaliagio de estado
Registros de horas de trabalho em tarefas
Dados de métricas: recursos, escopo, qualidade,
Itempo

Cutras métricas
Rastreamento de resultados
:Relatérios e notas de reunides

- 1

| Defeitos e dados associados IReq;isis;ﬁes de mudangas J

hl;:;s“l'r:a.rxflle:ntats de gerenciamento de codigo - ' Plano de gerenci;tmento de configuracio -
Repositdrio de projeto

| | Ambiente de trabalbo

:Spike (ponta) iI“rot()tipos. i

| [Plano de desenvolvimento
| Template paraprojetos especificos

!

2.3 Principais itens que constituem uma boa decumentacio
Ao se discutir documentagdo de projeto, algumas questdes emergem:

“Qual documentagio de um projeto realmente deve ser criada™?

24
“Existe uma real utilidade para a documentacio que justifique o esforgo e o custo
de produzi-la?”

Tenta-se aqui expor alguns motivos que respondam positivamente essas

questdes, desde que se leve em consideragdo uma série de limites.

Em Ambler (2001), sdo citados alguns dos motivos vélidos para se criar
documentagdo:

- Os participantes do projeto a estdo requisitando;

- Ela é usada para definir um modelo de contratagio;

- Ela é usada para apoiar a comunicacdo com grupos externos;

- Ela pode ser empregada como ajuda para raciocinar sobre alguma coisa.
Outros, no tio validos, sdo:

- O solicitante quer parecer que estd no controle;

- O solicitante quer justificar sua existéncia;

- O solicitante ndo conhece coisa melhor;

- O seu processo exige a criagdo da documentagio;,

- Alguém quer ter certeza de que tudo esta indo bem;

- Esta-se especificando um trabalho para outro grupo.

Assim como Smith (1999), acredita-se na documentagdo como fator
preponderante para melhorar a capacidade de manutencdio de um software. Ele cita
que a documentagio que ¢ estruturada e contida no programa € capaz de satisfazer
imediatamente a demanda de alteragdes de informagSes para o responsavel pela tarefa

de modificagcZo de um software. Exemplos dessas necessidades sdo:

- para solucionar erros nio-triviais ou problemas de meodificagdo, o mantenedor

deve possuir uma compreensio detalhada do programa;
- para localizar uma parte do c6digo, é necessario conhecimento da estrutura do
programa;

- saber como uma seqiiéncia de instrugdes se relaciona com outras partes do

programa ¢ importante para a alteragdo e teste de software.

25

A informagio pode ser apresentada para a equipe de manutengfo do software de
diversas formas. Ao colocar-se a documentagdo ho proprio fonte, trés formas sdo
possiveis. Uma é um resumo de utilizagdo no inicio de cada rotina. Outra ¢ através de
cabecalhos de segdes de procedimentos posicionados na seqiéncia (bloco) de
instrugdes. A terceira ¢ através de sentengas curtas colocadas ao lodo do codigo. A
complexidade ¢ o tamanho do médulo vdo determinar qual tipo de informagdo serd

usada.

Como o objetivo bésico deste trabalho € mostrar a importincia da
documentagio, principalmente na fase de manutenciio, cita-se a seguir quatro assuntos
que necessariamente a documentacdo do sistema deve, como um todo, cobrir. Ter
esses itens documentados € um dos principais motivos de produzir a documentagio

com qualidade, e determina wm minimo ideal de documentagio que se deseja atingir.
1) Verificagio e validagio dos requisitos

Segundo Parnas ¢ Madey (1995), a validagio de um projeto ¢ uma tarefa técnica
que pode ser conduzida se a documentacio do projeto for suficientemente precisa
para permitir wmna andlise sistemdtica. Muitos dos documentos produzidos antes da
implementagdio ndo sdo técnicos, mas narrativas explicando o papel do sistema,
cenarios descrevendo como eles podem ser usados ou descrigio das qualidades
que ele deveria ter. Pouca analise técnica pode ser feita com base nesse tipo de
documentos. Qutros documentos fornecem analises precisas de algoritmos
abstratos, mas ignoram muito do codigo atual. Uma andlise real de todo o projeto
deve esperar até que a implementagfio esteja praticamente completa. Neste ponto,
correcdes sdo muito mais dificeis - e caras - do que aquelas que poderiam ter sido

feitas anteriormente.
2) Rastreabilidade dos requisitos

Tanto na fase de modelagem quanto na de implementacdo, deve-se ter
documentados, e de alguma forma relacionados, os requisitos que motivaram a

criacdo dos itens sendo criados. Este conhecitmento permite:
- relacionar todos os itens afetados por uma modificagio nos requisitos;

- os requisitos dependentes e como sfo afetados, quando for necessario alterar

w item.

26

Modelos podem facilmente capturar essas informagdes, principalmente requisitos
funcionais, mas no c6digo, geralmente, essa referéncia ¢ mais dificil. Alguma

forma de anotag#o deve ser fornecida nesse caso.
3) Registro das decisdes de projeto

Segundo Arkley et al. (2002), ao analisarmos as causas da falta de registro das

decisoes de projeto, aparecem trés problemas principais:

- programadores sobrecarregados ndo sfo muito compreensivos, quando se pede

para registrar a razio de toda decisfio tomada;

- ndo é suficiente documentar a decisdo de projeto, mas ela também deve estar

acessivel, quando alguém realmente precisar saber porque uma decisio foi feita,

- uma justificagio desatualizada & potencialmente mais perigosa do que nenhuma

justificativa. As alteragBes no sistema devem estar refletidas na documentaggo.
4) Especificagdo da arquitetura

E extremamente importante descrever de alguma forma como o sistema lida ou ird
lidar com os problemas relacionados com os requisitos ndo funcionais, como
desempenho € escalabilidade. A forma de modularizagio do sisterna, o
agrupamento das funcionalidades em componentes, a distribuigio destes
compornentes entre os diversos equipamentos de um ambiente distribuido e os
mecanismos de ativagdo e troca de informacio entre os componentes € a maneira
de representar a arquitetura de um sistema, juntamente com o registro das decisdes
de projeto que levaram a escolher tal estrutuora de componentes. Esta
documentagio deve guiar a implementagdo e os testes, de forma a comprovar que

a arquitetura escolhida satisfaz os requisitos néo fimcionais previstos.

2.4 Documentaciio e qualidade do software

A produgio de uma documentacio influencia na qualidade do software
produzido, principalmente daqueles fatores de qualidade ligados a compreensio (vide
tabela 2.5). Por sua vez, essa capacidade de compreensdo influencia diretamente no

custo de reuso, ou de manutencdo, de um software.

No modelo para célculo de estimativas COCOMO-II, apresentado em Boehm

(2000), sio introduzidos conceitos relacionados ao efeito de um software ser bem ou

27

mal estruturado e compreensivel no calculo do custo/esforgo de manutencdo. Estes
conceitos estio representados por trés fatores usados no cilculo da quantidade de
linhas de codigo equivalentes a se fosse produzir o software do inicio (fig 2.2). Esses

fatores sdo:

- Avaliagdo e Assimilagio indica quanto tempo e esforgo estard envolvido no teste,
avaliagdo e documentagic de telas € outras partes do programa para saber o que

pode ser reutilizado;

- Compreensio de Software (SU) estima a dificuldade em entender o cédigo que se
estd alterando, ¢ como a estruturagio do codigo, sua correlagdio com a aplicagio ¢

seus comentarios podem auxiliar na compreensao.

- Desconhecimento do Programador (UNFM) indica quanto sua equipe ja estd
familiarizada com o codigo em questdo, se é a primeira vez que estdo vendo ou ele

j4 é muito familiar.

Reuse-Model

Egnivaten _ KSLOC = Adapred _RSLOC » [1— 14—01‘;- | - A4M

AAF = (04*DM) = (0.3 CM)—(0.3% IM}
A4+ AAF - (1« [0.02 - SU - UNFM])
100
Ad+ AAF + (8L~ UNFM)
100

CAAF < 50

AdNM =
.AAF - 50

DM = percentage design modified

CM = percentage code modified

IM= percentage of integration effori

AAF = amount of mmodification

AAM = adaptation adjustment modifier

AA = Assessment and Assimilation

AT = percentage of adapted KSLOC that is re-engineered by automatic transhtion
SU= software nnderstandability

UNFM = programmers realative unfamitiarity

Figura 2.2 — Modelo de estimativa para reuso de sofiware
do COCOMOII (retirado de Boehm, 2000)

Para a determinacdio do valor para SU consulta-se a Tabela 2.3 para cada um
dos trés fatores que determinam o grau de compreensio — estrutura, clareza da

aplicagéio € auto-descrigio — e pondera-se cada um deles e se obtém a média.

28

Tabela 2.3 — Influéncia de alguns fatores no custo/esforgo de manutencio (SU)

Peso | Estrutura Clareza da Aplicagio ! Auto-descrigio
Muito baixo !Muito baixa coesdo, alto As visBes do mundo daICc')djgo obscuro,
=0,5 | acoplamento, codigo aplicagdio e do programa, documentagio falha,
' |“espaguete” nio combinam obscura ou desatualizada
I_Baixo rBaixa coesdo (moderada),iPouca correlagiio entre o!Poucos comentarios e
=0,4 ;alto acoplamento programa e a aplicagio cabegalhos de codigo e

[pouca documentagio Gtil

Normal |Estrutura bem razoavel, | Razodvel correlagio entre | Razodvel nivel del
=0,3 algumas areas falhas o programae a aplicagio comentarios; cabegalbos de
| | codigo e de documentagdo

J_ﬁtil |
Alto :Aita coesdo, baixo|Boa correlagio entre o Bons comentirios e
=0,2 ‘acoplamento programa e a aplicagio cabecalhos de cddigo e

grande parte da

l_ —
|Muito Alto | Grande

=0,1

|

documentacdo util; algumas
| areas fathas.

| estrutura de
! dados/controle

modularidade,| As visdes do mundo da Cédigo
|informacdo escondida emiaplicagiio e do programa se documentagio

encaixam claramente

alto-mcplicativoj
atualizada, !
bem organizado, com as
decisdes de projeto.

Para a determinagdo do valor do UNFM, basta classificar o codigo pelo o grau

de conhecimento e obter o valor correspondente da tabela 2.4.

Tabela 2.4 — Influéncia de alguns fatores no custo/esfor¢o de manutengio (UNFM)

UNFM Nivel de desconhecimento
0.0 Completamente conhecido_
:- 0.2 Muito conhecido 1
0.4 Razoavelmente conhecido
0.6 Fazoavelmente desconhecido
D.g _i[_Muito desconhecido
1.0 J_Completamente desconheci_dt;:

A Tabela 2.5 apresenta os principais fatores de qualidade ligados &

documentagio, segundo nossa avaliacdo do grau de importdncia desta para a obtengéo

desse fator, tomando como base a relagdo de fatores de qualidade apresentada em

Cysneiros et. Al(2001), e caracteristicas e necessidade de desenvolver o documento
descritc em Ambler (2001).

29

Essa classificagdo ajuda no momento de ponderar se € vantajoso ou ndo a
produgio de determinada documentagdo em relagdo ao esforgo necessdrio para

produzi-14, levando em consideragio os fatores de qualidade desejados no projeto.

Tabela 2.5- Principais fatores de qualidade do sofiware que estéio diretamente ligados

a documentagdo
Fator Fatores Secundirios de Caracteristica da | Graude
Prinecipal de Qualidade l decumentagio ‘ importincia da |
Qualidade documentagio '

| _ [
[Eapacidade de|Facilidade para encontrar onde:Compreensﬁo, rastreabilidade | Muito alto
manuten¢io 1 estd o erro

!
rCapacidade de | Facilidade para modificar IRastreablhdade descrigﬁo:Muito alto i
manutengo | das interfaces _I
Capacidade de Estabilidade, capacidade denDescrl ¢io das decisbes de l Alta
manutengao suportar mudangas projeto e arqultetura , !
___i_ —_— ‘l
|Capamdade de| Facilidade para testar Descrigio dos casos de teste, 'Média
| manuten¢io | rastreabilidade, wvalidagdo e
L verificagdo |
Clareza 1 Informagio compreensivel compreensio Média
Custo IRedug'éo do custo de manutengio | Todos os fatores citados Muito alta |
I —rr——e———ef e ——
Portabilidade | Adaptagiio, instalagdo em|Descrigio das decisdes de!Média ‘
diferentes plataformas ¢|projeto e arquitetura
ambientes
{ — o
Usabilidade Facilidade de uso e de aprender | Compreensio, atualizagdo, Alta
 sem ambiguidade _~
Rastreabilidad | Caminho que algo percorre ou, Rastreablhdade atnalizagio, Média
[_e qual o estado de algo J sincronismo |

2.5 Principais artefatos que documentam um projeto de software

A segnir é apresentada uma relagio dos principais documentos gerados durante
o processo de desenvolvimento de software, com uma breve descrigio de sua

utilizagdo, em duas visdes principais.

2.5.1 Asvirias “visdes” da decumentaciio

Podemos considerar como “visdes”, um aspecto que ¢ enfocado para se

classificar a documentagdo. Observaremos principalmente duas visdes:

— Por fase de projeto: a documentagio cuja produgiio ¢ enfatizada em cada fase

(tabela 2.6).

30

- Por tipo de usuario: a documentacio que € mais adequada a cada usuario (tabela

2.7).

Tabela 2.6 - principais documentos por fase do projeto

‘ Fase do ciclo de
vida do projeto

Documente

I Descrigio '

I
Andlise

Especificagio de requisitos

. P |
Descreve o que o sistema fara e é composto de
um ou mais artefatos como casos de wso e
regras de negécio.

|
|
|

T — 1
Visdo geral executiva /|Visio geral dos objetivos do sistema e um,

Contrato
|

resumo dos custos estimados, beneficios
gsperados, riscos, recursos necessirios e,
| prazos.

]

I1”1&1‘10 de projeto

I]‘Englolm a visio executiva e as ferramentas,
tecnologias e processos empregados, além dos
principais artefatos produzidos e os pontos de
controle do cronograma,

I
| Projeto

Modelo de contrato

Descreve a interface de um sistema ou porgio
do sistema

IDecisGes de Projeto

Um resumo das decisdes criticas pertencentes,
ao projeto e a arquitetura que a equipe fez
durante o desenvolvimento. Visio de alto nivel

Construgio

Il\v‘:'uanual do sistema

|
i

Visiio geral dos sistema, detalhes de arquitetura,
de projeto e uma API dos médulos e fungdes|
| implementadas.

| Manuai do usuvario

[Constitui normalmente de 4 documentos
basicos: Um guia de referéncia, um tutorial, um
£uwia de suporte e material para treinamento

I Instalagdo/
Transigio

|

iManual de operagiio
|

1 -
Manual de Suporie

]
Inclui yma indicagio das dependéncias em que ol
sistema esta envolvido, a relagdo com outros
sistemas, banco de dados, arquivos,
procedimentos de backup e limpeza dcl
histéricos; lista de contatos; requisitos deI
disponibilidade; estimativas de carga e guias de
resolucdo dos principais problemas.

—

,Material de treinamento, a documentag@o do!
usuaric como material de referéncia paral
resolugdo de problemas; lista de contatos da[
equipe de manutengdo; procedimentos para
| atender problemas mais complexos.

|

31

Tabela 2.7 - Principais documentos por tipo de usuario

| Tsuairio 1 Documento i

:Usuério final !Manual do Usuario

Desenvolvedor | Manual do sistema I

Instalador TM_anual de Instalagio i

T;inador |Manu_al (_ie Treinamento

Requisitante Contrato, Espe;iﬁcag?io de
Requisitos

Gerente de Projeto Plano de] Pr;j eto

O;erad:r Manual de Operagfio

Suporte] Manual r_ie Suporte

Comercial Material de Divulgagio

2.5.2 Taxonomia da documentagio

Entendemos que as técnicas de reutilizagdo aplicadas ao software também
devem ser aplicadas aos documentos. Sempre que possivel um documento deve ser
reaproveitado, como copiar sua estrutura basica de wm projeto para outro. Também
levando a nogfio de heranga de classes para a documentagdo, ou seja, quando uma
classe herda métodos de uma outra, tarnbém deve herdar a sua documentagio.

Outra nogio de reuso é dentro do mesmo projeto, quando trechos de um
documento servem em outro. Normalmente isso ocorre quando um documento maior €
formado por outros documentos basicos, que podem aparecer em varios documentos.
A tabela 2.8 listamos alguns itens basicos que compdem documentos maiores. Esta
relacdo, elaborada a partir de uma tabela de possiveis documentos encontrada em
Scott Ambler (2001), pode servir de guia a fim de tornar mais clara a reutilizacéo de
trechos de documentos, evitar retrabalho e proporcionar uma forma de automatizar a

geragdo de trechos da documentagéo.

Tabela 2.8 - {tens basico de uma documentaciio de sistema

itens de documentagio ’ Macro-documentos

| Visio geral do sistema }Plano de Projeto, Mamnual do sistema, Visio gerall
executiva, Especificagio de requisitos, Manual do
| Usuario, Manual de Instalagio

ftens de documentagio Macro-documentos

' Lista de contatos do cliente Plano de Projeto, Manual de InstalagdoManual de
Operagdo

kLista _de desenvolvedores por|Plano de Projeto, Manual de Instalagio, Manual de
caso de uso/ modulo Operagdo, Manual de Suporte

:Tecnologia e ferramentas | Plano de Projeto, Manual de Instalagfo
Iulailizada.s

IDescn't;ﬁo do processo Plano de Projeto

Repositorio do projeto Plano de Proj eto_ |
Cronograma {custo/prazo) Plano de Projeto, Visfio geral executiva

_Requisitos funcionais/ casos de Especificacdo de requisitos N

uso

Requisitos nio funcionais - i Especificagéo de;equisitos N

Requisitos de alto-nivel/!Especiﬁcagio de requisitos, Manual do sistema, Visio

objetivos do negocio geral executiva

Modelos de contrato/ descrigdes Manual do sistema
de interfaces

] —

Procedimentos operacionais | Manual de Treinamento, Manual de Operagdo
(backup, limpeza de historico)

Requisitos de disponibilidade Especificagio de requisitos, Manual de Operagio

Cargaprojetada Especifica¢@o de requisitos, Manual de Operagdo
FAQ e Troubleshooting Manual do Usuario, Manual de Treinamento, Manual de
Operagio, Manual de Suporte

Guiz de referéncia | Manual do Ususrio

lTutmial Manuai do Usudario, Manual de Treinamento

| APIde funges . Manual do sistema

Modificagdes por versdo | Manual do Usuério, Manua! de Treinamento, Manual de!

Operagio, Manual de Suporte, Material de Divulgacio |

L_G*uia de treinamento Manual de Treinamento, Manual de Suparte

’Padrﬁes da Interface Homem- | Manual do sistema

Computador

Requisitos para instalagio (HW e|Manual de Instalagdo, Manual de Operagio, Manuai de
KSW) Suporte, Material de Divulgagio ‘I
| Alternativa/ disponibilidade de!Manual do sistema, Manual de Instalagdo, Manual de
madulos Operagio, Material de Divulgagio |
Instrugdes de instalagdo !Manual de Instalagdo, Manual de Treinamento, Manual de.

! Suporte
Registro de licengas ' Manual de Instalagio
Instrugdes de configuracio !Manual de Instalagio, Manual de Treinamento, Manual de
!Operagﬁo, Manual de Suporie

Decisdes de projeto | Manual do sistema, Plano de Projeto
[Modelo de arquitetura Manual do sisterma, Plano de Projeto
' Glossério iManual do sistema, Mannal do Usudrio, Mannal de;

| :Treinamento, Manual de Suporte |

32

33

2.6 Fatores de qualidade dos documentos de softwares

Ao se produzir um documento de software, deve-se sempre ter em mente alguns
fatores de qualidade que devem ser seguidos e que garantem a adequagdo do
documento aos seus propositos. Os principais fatores listados a seguir aparecem em
grande parte da literatura ligados aos requisitos (ERS), porém pode-se aplici-los em
outros documentos sempre que possivel:

- ndo conter ambigiiidade, quando so existe uma possivel interpretacio,

- ser compreensivel, ou possuir uma linguagem clara ¢ ter um glossario para

referéncia dos termos do dominio do negdcio;
- ser verificavel;
- ser consistente, eliminando conflitos intemos e entre documentos;
- ser concisa, com construgdes objetivas;

- ser completa, incluindo tudo que o software deve fazer, tratadas todas as possiveis

entradas de dados e todas as se¢des do documento foram elaboradas;

- ser rastreavel, permitindo referéncia cruzada, ou seja, cada item deve ser

identificado ¢ também a sua origem ¢ quem o utiliza.

2.6.1 Problemas relacionados com o processo de documentacgio

Em seu ensaio sobre Agile Modeling, Scott Ambler (2001) relaciona uma série
de problemas relacionados com a criagio de documentagio, apresentando algumas
dicas do ponto de vista da Agile Modeling, que basicamente consistem de um
balanceamento da quantidade certa de documentacéo, elaborada no momento certo e

para a audiéncia correta.

Também em Parnas ¢ Clemenis (sem data) sfo relacionados problemas
organizacionais mais dificeis de resolver do que apenas wma documentagio
incompleta e imprecisa; se este somente fosse o problema, bastaria completi-la ou

corrigi-la.

Levantam-se ¢ relacionam-se, a seguir, alguns desses pontos apontados por

ambos os autores sobre o motivo de por que uma documentacio no ¢ bem elaborada:

r

34

o tempo gasto no desenvolvimento da documentacio deixa de ser usado no

desenvolvimento do software;

a falta de habilidade do desenvolvedor para escrever € expressar seus

conhecimentos;

durante o desenvolvimento tenta-se entender o que € para ser feito, sendo diferente
da fase posterior ao desenvolvimento, onde se tenta entender porque foi feito

daquela forma e como opera;

deve-se escrever a documentacdo em conjunto com o desenvolvimento, ou no final
dele. Simultaneamente, seria o ideal, mas num processo altamente incremental é
grande a chance de que o que se escreve num dia tenha de ser reescrito no dia
seguinte. Ao deixar para o final, corre-se o risco de ndo haver mais tempo,

esquecer-se de algumas das razdes ou nio haver mais sentido para 1550,

problema da miopia - quando a documentagio € produzida no final pelo
desenvolvedor que conviveu com todo o processo, este pode documentar
pequenos detalhes em detrimento de consideragBes mais gerais, resultando numa
documentagio util para quem conhece o sistema, mas incompreensfvel para os

novatos;

manter a documentagio interna ao codigo ou externa estd relacionado
principalmente a quem se destina. Além de desenvolvedores, também os usudrios,
gerentes, vendedores e pessoal de operagiio, que ndo tém acesso ao codigo,
necessitam de documentagdo, Nestes casos, documentos extemnos ao codigo sdo
imprescindiveis;

manter a documentagio no nivel da empresa e nio s6 do projeto, para aqueles
itens como defini¢des de regras de negocio, interfaces para sistemas legados € os

meta-dados corporativos. Isso facilita a reutilizagiio da documentagio;

quantidade versus qualidade, depende basicamente da confianca que se pode ter,
se a informagdo contida nos documentos estd correta. E bom lembrar que é mais
facil manter atualizada, ou até mesmo refazer uma documentagio mais enxuta, de
um ponto de vista mais geral, do que uma que entra mais nos detalhes, ¢ por isso

mesmo mais facil de estar inconsistente;

terminologia confusa e inconsistente, falhas em produzir defini¢des de novas

35

terminologias precisas implica na existéncia de muitos termos usados para os

mesmos conceitos e conceitos distintos descritos pelo mesmo termo.

- textos longos, vérias palavras usadas para descrever algo que poderia ser descrito
através de um diagrama ou uma formula, perda de objetividade e concisdo sdo

fatos que sdo repetidos em diversas se¢des.

2.7 Conclusoes

Neste capitulo, apresentou-se a necessidade de produzir uma boa documentagio,
sua relagio com os processos de desenvolvimento que delineiam a quantidade ideal a
ser produzida, a relagio entre qualidade, quantidade e custo, principais itens e sub-

itens e sua reutilizagdo.

Apresentou-se as quatro funges basicas da documentagfio, do ponto de vista de
auxiliar a comunicagfio entre os membros, ndo s6 durante o desenvolvimento, mas
também posteriormente durante a manutengdo: servir de modelo de contrato e permitir
a validagdo e verificagio do produto; localizar cada funcionalidade desejada no
elemento que a implementa;, registrar as decisbes tomadas pelos projetistas e
desenvolvedores durante o processo; permitir uma visualizago geral da organizacdo
dos componentes que implementam o produto. E uma énfase na compreensio do

produto.

Entretanto, a maior contribuicio se relaciona em expor os principais problemas
relacionados & documentagio de sistemas. Falta de definigiio e de antomatizagdo do
processo de documentagdo, sua integragdo no processo de desenvolvimento,
ferramentas de integragdo para reaproveitamento da documentagio para gerar cédigo
e outra documentagio, direcionar a documentagio para a sua audi€ncia especifica,

foram alguns dos itens abordados.

No capitulo seguinte serfio apresentadas ferramentas e técnicas existentes que

podem ser utilizadas para ajudar a minimizar os problemas apresentados.

36

3 TECNICAS E FERRAMENTAS PARA A CRIACAO E MANUTENCAO DA
DOCUMENTACAO

O c6digo & a fonte! - A documentagio registrada no proprio codigo. Essa id¢ia ¢
defendida por muitos pesquisadores, de formas variadas, como serd visto nos itens
que se seguem. Uma vasta gama de desenvolvedores aparece neste grupo, desde
aqueles que ndo escrevem nenhuma documentagdo - nEm MESMO comentarios - mas
mantém uma codificagiio clara, padronizada de nomeagdo de varidveis e fumgdes, o
que torna o codigo “auto-explicavel”, at€¢ os que optam por ndo escrever o codigo
propriamente dito, mas geré-lo através dos modelos (codigo sem documentacdo

versus documentagio sem c6digo).

Em seu trabatho, Kotula (2000) apresenta que a documentagdo no cddigo fonte
é uma pratica de engenharia critica para um desenvolvimento eficiente de software.
Independentc da intengdo do desenvolvedor, todo codigo fonte eventualmente pode
ser reutilizado, seja diretamente ou ndo (apenas para ser compreendido). Seja como
for, ele atua como a especificacdo do comportamento para oufros desenvolvedores.
Sem uma documentagdo, eles sdo forgados a obter a informagio de que precisam
assumindo alguns fatos de forma perigosa, detalhando a implementacio ou

interrogando o desenvolvedor. Nenhuma dessas alternativas sdo aceitaveis.

Apesar de alguns desenvolvedores acreditarem que o codigo fonte pode ser
“suto-documentado”, existe uma grande parte da informacédo sobre o comportamento
do codigo que ndo pode ser expressa na forma de codigo, mas que requer o poder e a
flexibilidade de uma linguagem natural para isso. Assim sendo, a documentagdo do
codigo fonte é uma necessidade, assim como uma disciplina importante para aumentar

a eficiéncia ¢ qualidade do desenvolvimento.

Apresentam-se neste capitulo vérias técnicas relacionadas ao desenvolvimento
de documentacio retiradas da literatura e, quando possivel, exemplos de ferramentas

open-source para o ambiente Java que as implementam ou suportam.

3.1 Gerenciadores de documentacio

Sdo ferramentas especificas para tratar da escrita e manutencdo da

documentacio. Geralmente mantém um repositorio para facilitar o rastreamento ¢ a

37

referéncia cruzada entre os elementos que compde os varios documentos relacionados.

3.1.1 REM

Requirements Manager - REM - ¢ apresentado em Durénet al. (2000) como
parte de sua tese de PhD. A ferramenta REM destina-se a auxiliar na determinagéo e
registro de requisitos. Basicamente este sistema mantém em seu repositério uma
representagio em XML de seus modelos de documentagdo e utiliza ferramentas XLST
para produzir a transformagfio do XML em documentos, que podem ser personalizados
através de templates. Como apresentado, REM trabalha com trés documentos em um
projeto:

- documento de requisitos orientado ao cliente, expresso em linguagem natural;

- documento de requisitos orientado ao desenvolvedor, contendo modelos e
outras informagBes técnicas, basicamente modelado através de um sub-conjunto da
notagdo UML

- ¢ um registro para conflitos e suporte a negociagdes, usando alguns padrdes de

linguagem e templates pré-definidos.

L) REM 0.6 - [Rent a Carrem] s =100 X

P4 VIR QFPEOIE JHBD | B
@ [abbed tree views seriptien The system shall behave as describedin the fulowing use case ﬂ
|& | QL— J when a cagtomes vente 14 190 R 688
© 4 3.4 Capabiny reqrements . Precondifion There 12 ableast tone arailsh ig;
= 4 3.1.} Systam acars Onllnary Sy Actien
‘ %Lﬂiﬂz}m e | J;.cgurt;us'tm:{,%l.t-.lu.) asks for wvadebe cars for

: ‘ renting
_§ 312 Irfarmation storage reqire: = e — N
+ § (RQ-00N7] Irformation abrust Actox Eugdoyes (A TT-0008) quenes the sysienfor
+

(IRQ-DCOZ}Irforraaion about, azsilable carg

(54 [R-9003) trfcrraibien about Th syolem showe a et of available cora
P Acior Cusianmi (ATT-J000) cheoses one svaliable cw
Acior Enployze (ACT-0C0Z) asks for onts; dates

5 ActorCusicmes (AL - LU provadss seetsf detes

1. Actor Customor o WP 1100E LU
& 2. Actw Emplayae 01 @ Move dovn

= @ 3. The systemr shows 7 Actor Enployee (ACTO000) prowvides reptal dstes and
© IFtheicareno o ;. cigtores deiato the sysiem
, et Customer Edt proparties.... -
3 : i E"’ . ; =) § The systempurks tolal smourt and registers the ki
Ilij & I K Deete he custamer hag rented the car
—_— — g x|
Actls & s stap bn the hincticnal requirsnent (use rase) HTM. generated in 0,61 seconds HTWL en M

Figura 3.1 - Tela da ferramenta REM mostrando alguns recursos (fonte: Duran et
al.,2000)

38

A figura 3.1 apresenta uma tela do sistema REM. Nela sdo apresentadas duas
vistas do sistema. A esquerda, apresenta-se uma visdo dos requisitos de um sistema
exemplo, na forma de indice estrutural. A direita apresenta-se a visio da

documentagdio produzida em HTML, segundo o template utilizado.

Através da utilizacdo de transformages XSLT e sendo os requisitos
armazenados eletronicamente em formato XML de acordo com a especificagio DTD
do REM, ¢ possivel que alguns fatores de qualidade exigidos numa boa documentagéo
possam ser automaticamente verificados, como n#o conter ambiguidade, ser

compreensivel, ser verificavel, ser consistente, conciso e permitir referéncia cruzada.

A Figura 3.2 mostra a arquitetura do REM, conforme descrita por Duran et al.
(2000). Nesta figura, a direita apresenta-se os documentos HTML gerados a prtir da
linguagem XML. A esquerda estdo os repositorios de documentos REM. Na parte
inferior da figura estdo as planilhas de estilos de documentos e as especificagdes
DTD (Document Tvpe Definitions).

.-""-"-"!'] * oo
e =
REM tase I :>] ["‘_ﬂ—l
docurment REM |$—> resiell
XMI dutn
= 0
duameent %
Requiremenis '.‘r-.',','.'.'""' il able
Englnewring Projects .
MDE foretat)

Figura 3.2 - Arquitetura REM

3.2 Geracio automitica da decumentacio.

As ferramentas desta classe tem em comum a proximidade fisica da
documentagdo com o codigo, sendo a documentagio registrada no préprio codigo

fonte, ou através de anotagdes especiais (comentarios em Javadoc), ou inversamente,

39

anotando a documentagio com trechos de codigo (Liferate Programing).

Segundo Ducasse e Nierstraz (2000), o principal beneficio desta técnica, é a

redugdo do esforgo necessario para manter o codigo e a documentag¢iio sincronizados.

A técnica proposta foi nomeada Tie Code and Questions, uma espécie de design

pattern para reengenharia, cujo objetivo é relacionar as dividas e informagdes sobre

um codigo {(que esta passando por um processo de reengenharia) no préprio codigo,

para facilitar o rastreamento e manter sincronizado com o cddigo a que se refere.

Os principais beneficios desta abordagem comparado a ter a documentacdo em

um arquivo separado, que ndo se aplicam s6 a reengenharia, mas também as varias

fases do desenvolvimento, sdo:

Reduzir a descrigdo do contexto, ou seja, a necessidade de descrever o trecho de
codigo de que se esta tratando dentro do documento, ou de ter de repetir trechos

desse codigo;

Nio existe a preocupagido de manter dois documentos separados sincronizados, o
gque muitas vezes ndo ¢ feito imediatamente e que pode causar perda de
informagdes. Ressalta-se que a medida que passa o tempo toma-se cada vez mais

dificil de, posteriormente, alocar tempo para essa sincronizagio,

Usudtuir do beneficio da proximidade: sempre que estiver examinando um cédigo
e surgir uma divida, vocé tem a resposta a poucas linhas de distdncia; isto ¢ muito

mais efetivo do que ter de procurar um outro documento para esclarecimentos;

Melhorar a comunicagio da equipe de desenvolvedores, evitando problemas de
acesso a documentos desatualizados ou de versdes diferentes, pois estando no
arquivo fonte, vocé sempre tera certeza de que possui a versio da documentagdo

correspondente ao cddigo.

A seguir examinam-se as principais pesquisas nesta categoria de ferramentas.

3.2.1 Literate Programming (LP)

Em sua forma tradicional, um programa de computador consiste de um arquivo

de texto contendo o coOdigo do programa. Espalhados pelo programa estdo

comentarios, que descrevem as vérias partes do cddigo. Quando Donald Knuth propos
essa filosofia de documentagiio LP, em 1992 (RAMSEY, 1994), justificando seu nome

40

disse:

“l believe that the time is ripe for significantly better documentation of
programs, and that we can best achieve this by considering programs to be works of

1 <C

literature. Hence, my title: 'Literate Programming' .

Em LP, a énfase ¢ o inverso da documentagéo tradicional. Ao invés de escrever
codigo contendo descrigdes, o programador escreve documentagio contendo codigo.
Ao invés de comentarios delimitados por marcadores e restringidos ao inicio dos
arquivos ¢ dos modulos, eles passam a ser o foco principal. O programa ¢
direcionado para a leitura por um ser humano, com o codigo sendo incorporado,

através de delimitadores especiais, como se ele fosse o0 comentario do texto.

Dentro do paradigma da LP, o mesmo texto fonte pode ser processado por dois
programas diferentes para se obter duas saidas distintas. O fonte pode ser
“emaranhado” para produzir o codigo fonte que sera traduzido por um compilador, ou
pode ser “combinado” para produzir a documentacdo que contém uma extensa

referéncia aos elementos do programa.

Devido a alguns problemas implicitos na técnica, cujos detalhes estdo no item
3.2.3, e de estar relacionada com linguagens estruturadas e praticamente ndo suportar
linguagens orientadas a objetos, ela ndo tem sido amplamente utilizada, apesar de
possuir alguns adeptos e, conceitualmente, se encaixar perfeitamente na visio de um
tnico arquivo contendo documentagio e cédigo com a finalidade de manté-los em

sifcronismo.

A seguir apresenta-se a descrigdo de uma ferramenta para o desenvolvimento de
aplicagdes usando LP, bem como exemplo de um programa com ela documentado,
conforme apresentado por Ramsey (1994). A ferramenta NOWEB compila o cddigo
formecido — composto por codigo e documentagio — separando o contedido em dois
arquivos distintos: um de codigo fonte na linguagem escolhida (C, por exemplo) e
outro em formato HTML oun Tex (do Léitex, de Knuth), que pode ser utilizado para
gerar a documentacdo. Segundo Ramsey (1994) a ferramenta pode ser adaptada a

qualquer linguagem através de uma configuragdo conveniente.

A Fig. 3.3 mostra um exemplo, o programa “Hello World” escrito em NOWEB.
Na parte superior da figura (a) apresenta-se o texto original, onde se mescla texto e
cddigo em linguagem C. Abaixo de (a) apresenta-se o codigo do programa em C (b).

41

Na parte inferior da figura (c) apresenta-se a saida documentada.

3.1.1.1 NoWEB

A ferramenta NoWEB foi criada com o objetivo de levar a LP & sua esséncia,
visto que a ferramenta anteriormente desenvolvida, WEB, cra mais complicada de
configurar, especifica para uma linguagem de programagdo (Pascal), possuia cerca de
27 estruturas de confrole e produzia uma saida nurn padriio de processador exclusivo
{LaTex).

O autor dessa ferramenta descreve em Ramsey (1994) que a simplicidade do
NoWEB estd na utilizagdo de um modelo simples de arquivos, que também s#o

marcados com uma sintaxe simples, como pode ser visto no exemplo da figura 3.3.

Nele podemos ver que a separagdo dos trechos se da pelo uso do @ para
indicar um comentario, ou um nome entre << e >>= de um trecho de cddigo , no
comeco da linha. Qualquer linguagem de programagdo pode ser usada, e a saida pode
ser processada em texto simples, LaTex e HTML.

42

The firet program one writes in a new languags
is invaxiably rhe *‘Bells World’’ program.
Here it ig dn C.
SRR =
<z includenss
<edefiniticna>s
eemain progran»s
& The {[<cdefiniticns»>]] chunk hard-codew the texr.
wcdefiniticnas»a
congt char *GREETIHG = “Hella World";
The [{«cmain prograss»]] could be changad to read the
gractes’s name from a command line argument.
<emain programsss
ine smain{int arge, char *sargv} |
princf (*ia", QREETIRJ) ;
!
¢ Only the atandaxd IO library is mesdad.
«cincludes>>c
$include <stdie.hx
& That's all thers is to it.

{a) noweb mput
#include <stdio.h>
const char *GREETING = "Hello World";

int main{int arge, char **argv) |
printf("%¥s”, GREETING);:
}

{b) output of tangle

The first program ane writes in a new language 1s imvariably
the “Hello World™ program. Hese itis n C
igreet) =

includes

‘definitions)

{mary program)
The :definitions; chunk hard-codes the texe.
{definitions)=

const char *GREETING = "Hello World®:
The ‘main program) could be changed to read the greetee’s
oame from a command line argument.
{main program=

int main{int arge, char **argv} {

printf{"%a", GREETING);
}

Only the standard IO library 15 needed.

nchidesy=
#include <stdio.h>

That's ali these 1s toat.

{(c) ountput of weave

Figura 3.3 Exemplo de “Hello World”
escrito em NoWEB

3.1.2 Elucidative Programming

Normark e Vestdam (2001) definem um paradigma de documentagéo
(Elucidative Programming) criado como uma renovacio das idéias da LP, descrita no

item anteior, e que foi introduzida como uma maneira de apresentar 08 programas para

43

seres humanos, a0 contrario de instruir uma maquina, através de uma descrigdo do

programa intercalada com codigo fonte.

Na Elucidative Programming, a idéia ¢ manter as descrigdes e os fragmentos

de programa separados, mas internamente ligados. Para isso, ¢ necessario que a

pratica seja apoiada por uma ferramenta que produza uma navegacio em ambiente

WEB, usando dois “frames”,

um para a documentagfio e outro para o codigo. A

principal vantagem nessa abordagem em relagio ao caso anterior € que o programador

deixa de ser forgado a reorganizar seus trechos de c6digo, quando acrescenta novas

descri¢des. A possibilidade de perda de sincronismo entre a documentacdo e o

codigo, por estarem separados, ¢ minimizada pela edigdo através da ferramenta, que

disponibiliza sempre as duas janelas permitindo a visualizagdo simultinea dos dois

documentos. Um exemplo ¢ apresentado na Fig. 3.4.

D tion views: 0o oy

kot oy e S Fagoet

Project slue,_exgmple] [Project linf] [Resef] [Status] [Help]

3]
Source code viewn; ol o
2
i Y
2 Ratrieving Ads From The Datsbase | . -
ets .au-j‘ mh: oo it raads twe thei 3o an adin e
Jot ha 88 Tolaske pwniic sieanali Sep tng
The Mzl @ mathod Frical) eElnrnArTEy © HeR BRSARFIZS
1mm 33230 AWIFOhING 3 frir CETRING = ™7,
7 = 1e Cullec! 10 1eTHD 9 LR Sraical) Prefersd = néw Scrisglisls
v dotes e floead @ r o et Arcinal] Mmeantan = sew Ecriag(iol;
Hmdmﬂ 2560 N 3 SI0W I - arsinyl] KePrefened = sou String 57
w5 o ey Foery vear S ALK GO W alyie T, Aericol] MeNMeALSE = peu STl s
w\'sE'lm i bl e e berieg -y
: Ftpiny RetrieveldStiring? = “%;
3.The UserprofisAd Matehing Algorithm b i voede;
2 0t Beaxuressmlis,
" Ol i it ||- T U] ~.m‘m|mjril| e | IBT FreTotedsies)
v - 13 izk Wmwantedsize)
_.l tor MPErefareEiiIe;
it XPUnARLEASEZE,
nt kTHT oy
vara pemn v mes Barilg
Lt puspoumter = 017
ol lovarwester = O}
Ly cempuslue = 30
1ot ReEwtrami-oy
- Notﬂ!ll‘-!flclm" it ENCApRLMACASRERF = 47
» PSR T DA € AR 0 S BITRCH0d vhLile (Bagpaeatdtning. shacdt | puasoes - "
"'he !l—‘- vy s ndiat nu BagnestiLs ing. obear bt g pLel
ronl e . ity
1-nt.-e L‘fi"n‘fi b k= s
) Wy
chirs JIRPETE DYE BEIREIO(TCDAE. 4 CoMPYHInE] ¢
Locauss Of 3 K0T IF IMTENaE FET2NY OPSADONG IR T19 W TN T <ok tUm St tompvalue = 9; x3
RO 3 S0 OUS DENsredl Metaad de A 26 2 mEmhar of avays Tl EOROLIE GE T PR ALEGE 4 b;
*rhouid b o o B0 r
while |Reuwegyigrieog cbnehs goacqurten) "
o [t g mgoctm The o o 1 e
Taquast I al 5 5 1 - i 1 0s et ziw dBegrewESTEIng. € FRRTEARIAE Fugunst
Lareairans the o ferert Laramate Fam s ooyt St a0 SOL B e ————— ol

Figura 3.4 - Excmplo de Elucidative Programming apresentado num browser

3.2.3 Theme-based Literate Programing

A LP apresenta uma série de limitagSes. Kacofegitis € Churcher (2002)

44

apresentam em seu trabalho uma discuss#o sobre como ampliar a LP para solucionar
algumas de suas limitagGes, permitindo a sua adogdo por um maior numero de
desenvolvedores, Os autores chamam a sua ferramenta de Theme-based Literate
Programming. Nesta proposta, os tipos de trechos em que o texto se divide no estdo
limitados a cédigo ou documentacio, e as ferramentas para extrair a documentagdo € 0
codigo estdo embutidas em um modelo de processamento mais genérico. E introduzido
o conceito de femas, que permitem uma grande liberdade aos autores para expressar

seus pensamentos, sem necessariamente ter de seguir wna abordagem fop-down.
Principais problemas da LP que a TBLP pretende resolver:

- as linguagens OO necessitam de facilidades de indexagdo e referéncia cruzada que

facilitem a navegagio entre classes com associagdes, por exemplo;

- 08 projetos atuais envolvem varios arquivos fontes, escritos em diferentes
linguagens;

- a distingdo entre codigo ¢ documenta¢dio, em projetos que envolvem paginas
HTML e JSP, imagens e texto, podem ser cddigos em um contexto e documentacio

€m oufros;

- no mundo HTML, a documentagiio tem de ser altamente referenciada, visando a

interatividade, e niio ter a forma monolitica de uma cépia impressa;
- ¢ dificil uma integragio com sistemas de controle de versdo e de configuragio;

- depurar programas ¢ dificil, uma vez que o programador trabalha com a versdo
“literata” do programa e o compilador retoma informagBes de erros por linha do
codigo;

- o problema das “irés sintaxes” (a ferramenta LP, a lingnagem de programacio e a

diagramacéo) ¢ um desafio para a construgio de ferramentas;

- nio est4 claro qual a melhor forma de projetar o software usando LP; a escolha do

nivel de detalhe e a ordem dos trechos é tio dificil como em outras técnicas.
A TBLP é motivada pela criagZo de trés modelos:

- Modelo de trechos: mais tipos de trechos podem ser definidos, cada um com
seus proprios atributos. A Fig. 3.5 apresenta um Modelo de Trechos, expresso

em UML, onde se podem ver diferentes tipos de trechos como codigo,

45

documentos, testes etc.

- Modelo de tema: sdo permitidos varios caminhos de navegacdo sobre um
conjunto de trechos, adequados para diferentes audiéncias e propositos. A Fig,
3.6 apresenta um Modelo de Temas, onde varios niveis estdo inter-
relacionados.

- Modelo de processamento: a aparéncia ¢ contetido dos documentos produzidos

¢ independente do conjunto de trechos fonte e sfo configuraveis pelo usudrio.

A Fig. 3.7 mostra o0 Modelo de Processamento.

| AtomicChunk | | ChunkGroup |

o o

Figura 3.5 - Modelo de Figura 3.6 - Modelo de
Trechos Temas

Web Themes Traceshoam Producis

S
":}O{ —

e o

Figura 3.7 - Modelo de Processo

Uma ferramenta para suportar esse paradigma estd em desenvolvimento pelos
autores, mas muito de sua contribuigdo em esclarecer e propor solugdes para muifos
dos problemas apresentados pela LP pode ser utilizado também para expandir os

conceitos de outras técnicas, como a Javadoc que sera vista a seguir.

46

3.2.5 Documentacio em comentarios

Documentagio embutida em documentarios €, segundo o ponto de vista do autor,
a melhor técnica para manter sincronizados cédigo ¢ documentagdo devido a alta
proximidade. Entretanto, esse sincronismo nfo é automdtico ¢ exige a disciplina do

programador para manté-lo atualizado.

Outras vantagens seriam a simplicidade de implantagio, ndo intrusiva ao
c6digo, aplicavel a qualquer linguagem que implemente um esquema de comentarios
interno ao cédigo. Além disso, é altamente personalizavel, permitindo ao cliente a

especificac¢do de seus proprios itens de documentagiio e formato/ayout de saida.

Como sera visto a seguir, Javadoc ¢ a ferramenta padrio da linguagem Java
usada para implementar docurmentacdo em comentérios, apesar de encontrarnos outras

com a mesma finalidade.

3.2.5.1 Javadoc e doclets

Javadoc é uma ferramenta desenvolvida pela Sun ¢ distribuida junto com o
ISDK (Java Standart Development Kif), que extrai as declaragbes de pacotes,
classes, atributos e métodos e os comentirios da documentagdo de um conjuntio de
arquivos de codigo fonte e produz um conjunto de paginas HIML, descrevendo e
documentando essas declaragtes (SUN, 2003). Para estender essa documentagéo, o
Javadoc faz uso de marcadores especiais nos comentarios que guiam a ferramenta no

tipo de documentagio gerada.

A documentagio gerada pelo Javadoc é conhecida como documentacdo de APl e
descreve a utiliza¢do de classes e métodos e a audiéncia a quem essa documentagdo

se destina, que consiste, basicamente, de programadores.

Um exemplo de fonte documentado com “tags” Javadoc ¢ apresentado na Fig.
38

A documentacgdo gerada em HTML esta apresentada na Fig. 3.9

47

Exemplo:
/i*
* Returns an Image object that can then be painted on the screen.
* The url argument must specify an absolute {@link uri} The name
* argument is a specifier that is relative to the url argument.
* <p>
* This method always returns immediately, whether or not the
* image exists. When this applet attempts to draw the image on
* the screeh, the data will be loaded. The graphics primitives
* that draw the image will incrementally paint on the screen.
*
* @param url an absclute URL giving the base location of the image
* name the location of the image, relative to the url arg.
* @return the image at the specified URL
* @see Image
*/
public Image getImage (URL url, String name) {
try {
return getImage (new URL(url, name)):
} catch {(MalformedURLExceptioh e) {
return null;

}

Figura 3.8 - Programa com comentérios em Javadoc

gethmage

public Image getImage (URL url,
String name)

Retirns an Tmage object that can then be painted on the screen. Theur] argument nmst specily
an absolute YRL, The name argument is a specifier that is relative to the ur argument.

This method always returns immediately, whether or not the image exists. When this applet aftempts
to draw the image on the screen, the data will be leaded. The graphics primitives that draw the image
will incrementally paint on the screen.

Parameters:
url - an absolute URL giving the base location of the image

name - the location of the mage, relalive Lo theur] argument

| Reiurns:
the image at the specified URL |
See Also: l

Imade

Figura 3.9 - Documento HTML correspondente ao cédigo fonte da Fig. 3.8

Doclets sio programas escritos em Java, usando uma API especifica, que

permite estender as marcagdes em Javadoc, criando saidas personalizadas, ou

48

adicionando novas marcagdes. Por exemplo, além do doclet padrdo que produz a
documentacfio em HTML, a Sun também disponibiliza um DocCheck, que faz uma
checagem dos comentdrios e produz um documento apontando 0s erros,
irregularidades e omissdes. Outro exemplo é o MIF Doclet, que permite uma saida em
formato PDF.

Outros doclets sdo produzidos por terceiros como por exemplo:

- UMLGraph: permite uma especificagio usando marcacdes personalizadas e
especificas para a criagio de diagramas de classes em UML, utilizando a
especificagiio de diagramas Graphviz, que permitem que, automaticamente, sejam
gerados documentos em GIF, SVG ou JPEG. Maiores detalhes de sua
implementacdo podem ser encontrados em Spinellis (2003). A Fig, 3.10 mosira
uma saida obtida diretamente do codigo fonte com o uso de UMLGraph.

p— — 1

1
* Advanced relationships
* UML User Guide p. 137 eimerfaces
*/ URLSireamHandier
Srx) Conrdlier | | Embeddedagent | T apenConnedion) Channefarator
* @opt attributes parseURL{) =
* @opt operations satURL) Y,
* @fhidden BExemalForm() y
* f F
class UMLOpticns {}] - /1ﬂmﬁ;
7 re
class Controller {} £
c¢lass EmbeddedAgent {} SefTepControlier
class PowerManager {} puhorizstionleval
sartlip()
Vil shutDown{)
* @fextends Controller connec)
* @extends EmbeddedAgent
* @navassoc - - - PowerManader
*/
tlass SetTopController PowerManager
implements URLStreamHandler {

int authorizationLevel;
void startUp() {}
void shutDown() {}
void connect({) {}

!}

/** @depend - - SetTopController */
class ChannelIterator (}

interface URLStreamHandler { |
void OpenConnection(); I
void parseURL{);
void setURL({); |
void toBExternalForm{); I

Figura 3.10 - Diagrama de classes UML obtido com UMLGraph

49

Outra funcionalidade possivel para os doclets ¢ a sua utilizagdo para a geragdo

de codigo. Um exemplo interessante é o seguinte, do Patternity Doclet.

O Patternity doclet é um doclet para documentacio e geragdo de codigos,
guiado por padrdes de projeto (design-patterns). Este doclet utiliza marcagdes
personalizadas de Javadoc para auxiliar na implementagio de padrdes de projeto,
através da adigdo do codigo gerado - que nunca exclui ou altera um codigo ja existente
-, além de adicionar a documentagiio dos padrdes ao Javadoc (MARTRAIRE, 2002).

A Fig. 3.11 apresenta a saida do Patternity doclet.

Visitor #un Puatternity..
MyBean java My - I
/ o E /* *
] * A simple Visitor class : A simple Visitor class l

i l * (@pattern Visitor node=Visitable
* @pattern Visitor node=Visitable *
&/

public class MyVisitor {

public class My Visitor {

| ¢ The visitor method to handle the OtherNode object, **/

public void visit(OtherNode o) {

H
/** The visitor method to handle the Node object.

)

Nuodejava o FY
public void visittNode o) { 1

public class Node implements Visitable{ ...
v

OtherNode.java .

public class OtherNode mplements Visitable{ ... J

Figura 3.11 - Saida do Patternity Doclet

3.2 Especificagio Formal e Semi-Formal

Especificagio formal é um método de desenvolvimento de software através do
qual se pode definir precisamente um sisterna e desenvolver implementagOes

garantidamente corretas em relagio a esta definigéo.

Uma especificagdo formal ¢ expressa através da utilizagdo de um linguagem
formal. Estas linguagens sdo baseadas em modelos matematicos, oferecendo uma
analise muito mais precisa das especifica¢des, possibilitando a verificagdo dos

modelos, animagdo, reutilizacio ou ainda refinamentos sucessivos.

A especificagio de requisitos funcionais e a especificagio formal podem ser

50

vistas como duas formas de representar o comportamento esperado do sistema, sendo
gue uma diferenca entre elas ¢ o grau de formalismo. Se por um Iado, a especificacio
dos requisitos pode ser utilizada para validar as necessidades do sistema com o
cliente, a especificacio formal pode ser utilizada pelos engenheiros de software nas

fases seguintes do ciclo de vida, através dos recursos supracitados.

A especificagdo pode ser dita semi-formal quando lida com alguns aspectos da
formalidade. Neste estudo, serdo vistos exemplos de formalismo apenas na
especificagdo dos comportamentos desejados por classes e¢ métodos que sdo
compartilhados nas interfaces dos componentes, através da construgdo de assertivas

(assertions) , como sera visto no item seguinte.

3.2.1 Design by Contract

A técnica de desenvolvimento de software conhecida como Design by Contract
(DBC) pretende permitir um software de alta qualidade ao garantir que cada
componente de um sistema fimcione segundo o que é esperado. Usando DBC, deve-se
especificar os contratos do componentes como parte de sua interface. O contrato
especifica o que € esperado pelo componente de seus clientes € o que os outros
componentes esperam deste. (ENSELING, 2001; KRAMER, 1998).

Essa técnica foi desenvolvida por Bertrand Meyer como parte integrante de sua
linguagem de programacdo, Eiffel/. Entretanto, ndo deixa de ser uma técnica valiosa

também para outras linguagens de programagcio.

O conceito central na DBC ¢ a nogio de assertivas (assertions), uma expressao
booleana sobre o estado do sistema. Durante a execugdo, essa express3o € avaliada
em pontos de checagem especificos. Se por algun motivo essa expressio ndo for
verdadeira, entdo podemos considerar que ¢ sistema estd invalido. SZo considerados

trés tipos basicos de assertivas: pré-condi¢des, pos-condi¢des e invariantes.

Pré-condi¢Ges sdo as assertivas que devem ser satisfeitas antes de um método
ser executado. Envolvem o estado do sistema e os argumentos passados para o
método. Especificam obrigagdes que o cliente deste componente deve cumprir antes
de poder chamar o meétodo em questdo. Se a expressdio falhar, € porque o defeito esta

no software cliente,

Pos-condiges sdo as que devem ser satisfeitas apos o método ser completado.

51

Envolvem o estado anterior do sistema, o novo estado, os argumentos do método € o
seu valor de retorno. Elas garantem o que o componente deve fazer para seus clientes.

Se ela falhar, entdo o defeito estd no componente.

Invariantes s3o as assertivas que devem ser satisfeitas em qualquer momento no
qual o cliente possa chamar um método do objeto. Sdo definidas como parte da
definicdo da classe. Sdo avaliadas antes ¢ depois da chamada de um método ¢ na

instanciagio da classe. Pode indicar um defeito tanto no cliente quanto no componente.

Todas as assertivas podem ser especificadas para uma classe e,
automaticamente, se aplicam para suas sub-classes, assim como para classes que

implementam uma interface.

3.2.1.1 Icontract

iContract & uma ferramenta desenvolvida para a utilizacio do DBC em Java,
utilizando-se do mesmo principio do Javadoc, ou seja, incluindo a especificagio das
assertivas através de marcadores especiais nos comentarios de defini¢do das classes e
dos métodos.

Ela é apresentada por Enseling (2001), que a descreve como uma técnica de
pré-processamento para incluir as expressdes no codigo fonte Java. Ou seja, primeiro
processa-se o seu fonte com as marcagdes em comentirios, ¢ depois se compila o
codigo resultante pelo compilador Java. Entretanto, pelo fato de estarem contidas em
comentarios, essas assertivas podem simplesmente ser ignoradas ao se compilar
diretamente o codigo fonte escrito. Assim pode-se usar a vers3o intermediaria com a
inclusiio das assertivas, enquanto se testa o produto ¢ encaminhar a versdo sem as
assertivas para o ambiente de produgfio. As assertivas podem também ser mantidas em
algumas classes do ambiente de produgdo, que ndo tenham restrigdes criticas de

desempenho. A Fig. 3.12 apresenta um exemplo.

I package iContract.doc.tulorial Person;

public interface Person

{

!tt

* @post return > 0 // age always positive
*/

public int getAge();

'W*

* @pre age > 0// age always positive
*f
public void setAge(int age),

}
i Exemplode umainterface

| package iConfract.doc.tutorial Person;

{ public class Employee implements Person
{

J private int age_;

| s

* (@pre age >0

#

public Employee(int age) {
age, =age;

}

public int getAge()
{

return age
}

public void setAge(int age)
{
age_ = age
}
}

Exemplo de ums cIxsse implementando a interface e
acrescentando vma pre condiciio ao construtor

52

53

| package iContract doc. tutorial Person; |
Ii public class Main {

f#*Test dnver method.
J * Create an employee and print its age.

#f
public static void mmain(String argvf]) l
{ |
Employee employee = new Fmployee(23),
System.out.println("Employee’s age is: " + employee.getAge()). 1

employee. setAge(-1); // this will break!
D |
3
| Exemplo desplicagio wiilizandoa classe passando parimetros invélidos —l
I 4 java iContract. doc. tuterial Person. Main
Employee's age is: 25
| java.lang RuntimePxception: Employee.j:22: error: precondition violated |
(iContract doc tutonal Person Errployee:: setAge(mt)):
{(*iContract.doc. tutorial Person Person::setA ge(int)*/ {age > 0)) |
‘ at iContract. doc. tutorial Person Employee. setAge(Employee java: 124)
at iContract doc. tutorial Person Main main(Main java: 14)
] Exemplo de saida apresentando a checagem do errs ocorrida

Figura 3.12 - Exemplo de iContract

A documentagdo das assertivas pode ser feita diretamente do codigo, através da
ferramenta iDoclel, uma extensio do docle/ padrio da SUN para o JDK 1.2, As
assertivas sdo incluidas nos documentos API produzidos (SOURCEFORGE.NET,
2001).

3.3 Anotacdo de decisies de projeto e descricio da arquitetura

by

Uma importante contribuigio a4 melhoria da compreensio do sofiware ¢ a
possibilidade de incluir na documentago os modelos de projetos utilizados, as razies
de sua escolha e a organizagdo estrutural dos componentes e como eles se comunicam,

através da descrigfo da arquitetura utilizada.

Apresentam-se trés métodos e ferramentas que os implementam, relacionados a
“codificar” decistes de projeto e de arquitetura dentro do cédigo fonte de linguagem

Java.

3.3.1 Explicit Programming

Bryant et al. (2002) introduzem o conceito do que foi chamado de Explicit

54

Programming (EP), ou seja, permitir ao desenvolvedor introduzir novo vocabulario
ao codigo fonte. A definigdo de um item de vocabuldrio modulariza os detalhes de
implementagdo associados com a representagdo de um conceito num codigo de
propésito geral. O uso do item do vocabulario no cédigo toma o conceito de projeto,
como um design patiern ou um algoritmo de estruturas de dados, explicito para o

leitor.

Resumidamente, é uma abordagem que suporta modularizagfio, sem separacéo,
de um conceito de projeto. Usando a EP, um desenvolvedor pode fazer com que
decisdes de projeto se tornem explicitas em seu codigo pela introdugdo incremental de
novos vocabuldrios a linguagem, que podem ser usados onde o conceito acontece no

codigo e cuja definigdo modulariza os detathes de implementagdo do conceito.

3.3.1.1 Elide

Com o objetivo de demonstrar a utilizacdo dos conceitos da EP, em Bryant et al.
(2002), é descrita a ferramenta Extension Language for Iterative Design Encoding
(ELIDE). A ferramenta ¢ constituida de um pré-processador que transforma o codigo
escrito na versio estendida de Java em codigo fonte padrio Java, de acordo com suas
especificagdes. Ela prové uma extensdo a linguagem Java, permitindo que o
desenvolvedor crie novos modificadores para classes, atributos € métodos. A técnica
permite que estas extensdes sejam usadas da mesma forma que os modificadores
padrio de Java como public, private e synchronized e, também, podem ser usados

em conjunto com estes.

Cada modificador ELIDE inicia uma transformagdo no codigo fonte, que pode
adicionar novas classes, inserir atributos, modificar métodos existentes ou gerar

Nnovos.

Um exemplo simples, apresentado na Fig. 3.13, mostra a infrodugdo da palavra-
chave property, que adiciona os métodos de acesso (ge? € sef) no estilo JavaBeans a

cada um dos atributos ptiblicos de uma classe.

55

Cdédigo ELIDE Cédigo Java gerado
" public class FlideTest { public class ElideTest]

property<> publicint x; {
property<> public Strng[] v, privateint x;
!) private Siring[] v,

public int getX{() {
’ retiom x;
H
I public void setX(int %) {
thisx=x

}
public String[} get¥() { |
I reflrn v,

}

public void setY (String{] v){

this.y =y,

L]

Figura 3.13 - Exemplo de transformagio usando ELIDE

Outros exemplos de utilizagdo da ELIDE, como um modificador que indica uma
classe como participante de um padrio Visitor, e identifica com qual classe visitor ele

interage, é apresentado a seguir
public visited--NodeVisitor> class ParseNode { ... }

Parametros também podem ser passados, como nesse exemplo que introduz o

DBC usando ELIDE; nesse exemplo, o pardmetro ¢ definido como positivo.
precondition<"positive", %{ x> 0 }%>

void someMethod (intx) { .. }

3.3.2 Aspect Oriented Programming

Em seu artigo Spurlin (2002), apresenta a noc¢do de “Aspecto” dentro de uma
linguagem de programagio, que ¢ similar a uma classe, mas em um nivel de abstragdo

acima. Eles encapsulam um conceito que pode afetar varias classes, mas que seria

56

dificil ou impossivel de ser colocado em uma classe separada. Um exemplo
ilustrativo dessa situagdo € quando se deseja escrever mensagens de Jog sempre que
um método for chamado. Ao invés de procurar em todo o cddigo onde o método é
chamado e inserir manualmente as mensagens de /og em cada classe, um aspecto
poderia ser escrito com uma expressio indicando o ponto de inser¢3o e uma tnica

linha de cédigo para a mensagem de /og.

Conhecida como uma proposta para resolver o problema do entrelagamento de
codigo -por exemplo o entrelagamento do codigo de negdcio com o de controle-, a
separagdo de conceitos € o principio basico da AOP (Mota, Farias,). Caracteristicas
que ndo sdo modularmente acopladas no paradigma orientado a objetos sdo
classificadas como aspectos ¢ isoladas do sistema original. Portanto, se um sistema &
concorrente, podemos separa-lo em duas partes: uma ndo concorrente, que faz mengdo
ao aspecto sobre concorréncia € uma que contém o aspecto sobre como lidar com
concorréncia. Em tempo de compilacio, os compiladores integram o programa

original com o8 aspectos referenciados e geram um codigo na linguagem base.

A Fig. 3.14 mostra a utilizagéio desta técnica, num ambiente grafico.

FigureEtomont
| |
Point = Une
getx()] getP1e)
gety(} g:::?()
setx(int) 1{Point)
SV () setP2(Point &,

2

N,
atter() retwraing: call(veid Poist.setXiiml)}
11 call{wid Point.setY{intj)
1} call{vaid Lime.metFl(Point))
1} call{void Lime .welP2{Point)) {
Pisplay.rofreah();

H

Figura 3.14 - Representagdo de um aspecto.

3.3.2.1 Aspect]

Aspect] € uma das ferramentas que implementam a AOP no ambiente Java. Essa
ferramenta foi desenvolvida peto mesmo gripo que definiu os conceitos da AOP ¢
surgiu nos laboratérios da Xerox-PARC; hoje é mantida pela comunidade de codigo

57

livre.

Alguns conceitos utilizados em AOP sdo representados em Aspect/ conforme

descrito a seguir por Spurlin (2002)

- Join Point: é um ponto de execugfio em um programa Java. E o ponto onde serd

inserida alguma fimcionalidade do aspecto. Exemplos dejoin point séo:
2. Call - o ponto onde um método é chamado,
3. Execution o ponto em um objeto chamado, quando sua execugdo comega;
4. Set — quando um atributo nfio privado recebe um valor.
Exemplo:
execution(* * getGreeting(..))

significa o inicio de execugdo de qualquer método chamado getGreeting com
qualquer pardmetro.

- Pointcut: é essencialmente um predicado, definido sobre um conjunto de join
points. Um poinicul particular pode ser verdadeiro ou falso em cadajoin point no
codigo fonte. Ele consiste do identificador pointcut, de um identificador e de um
predicado, a condig@o que deve ser verdadeira para umjoin point pertencer a este

pointcul,
Exemplo:
pointcut log()
execution(* * getGreeting(_.)) || execution(* *.setGreetingy(..)),

- advice declaration: é a parte executdvel de um aspecto. Consiste de um advice
type, que determina exatamente quando a execugio ocorre, seguido de um

identificador de pointcut e seguido por uma parte executavel chamada de advice
body.
Exemplo:
before() . log() { System.out.println(" Logger: " +
thisJoinPoint.getSignature()); }

- inter-type member declaration: é um mecanismo para adicionar membros a uma

classe de fora da defini¢ciio dessa classe, sem modificar o codigo fonte da classe.

58

Dessa forma ¢ possivel adicionar atributos e métodos que néo estio relacionados

com o propdsito principal da classe.

- aspect: é um construgdo de mais alto nfvel, que pode conter poinicuts, advice
declarations, inter-type members declarations e outras declaragbes que serdo

validas, como numa defini¢io de membros de uma classe Java.

Um programa exemplo, contendo um aspecto para exibir uma mensagem, ¢

mostrado na Fig. 3.15.

public class Demo {
static Demo d;
public static void main(String[} args){
| new Demo().go();
|)
void go(){
l d = new Demo();
d.foo(1,d);
System.out.println(d bar(new Integer(3)});
| }
void foofint i, Object 0){
System.out.println("Demo.foof" +i+","+ 0 + "n"Y;
l }
String bar (Integer j){
System.out.printin(*Demo.bar(" + j + "An");

return "Demo.bar("+} +™)";

Figura 3.15 — Trecho de programa

As Fig. 3.15 e Fig. 3.16 mostram um exemplo de uso de AOP. A Fig. 3.15
apresenta o codigo de negocio enquanto a Fig. 3.16 apresenta o cédigo de controle. O
codigo da Fig. 3.16 mostra o aspecto get/nfo, que intercepta as chamadas aos métodos

foo e bar e mostra as informagdes obtidas no pointcut.

59

aspect. G:Hﬁfo { - h
static final void printle(String){ System.out printlngs); }
pointent goCul(): cilow(this(Demo) && execution{void go())) l
pointcut demoExecs(). within{Demo) && execution(* *(.));
Ohject around(). demoExecs() && lexecution(* go()) && goCut() {
println{"Intercepted message: " + E
thisJoinPointStaticPart. getSignature().getName()),
println("in class: * + l
thisToinPointStaticPart getSignature() getDeclaring Type().getName{)),
printParameters(thisToinPoint),
printin("Running original method: "), I
| Object result = proceed();
| prntln(" resuli: " + resait), 1
| reftmm result,

. 1

static private void printParameters(JoinPoint jp) {

Object[] args =jp.getArgs(),
} String[] names = ((CodeSignature}ip.getSignature()) getParametetNames();

pontln(" Atguments: "), 1

Class[] types = ((CodeSignature)jp. getSignature()). getParameter Tvpes(),
for (int1=0; i< args length; #+)
‘ printn(® * 4i+" " +namesfi]+ " " + types[i] getName()+" =" +args[i]);
}

}

Figura 3.16 — Aspecto GetInfo (com informagSes no pointcut)

3.3.3 Architecture Description Languages

Uma Architeture Description Language (ADL) enfatiza estruturas de alto nivel,
se opondo a detalhes de implementagdo e engloba algumas propriedades que se
tomain desejaveis e importantes para a descri¢do de arquiteturas de um produto de
software. Em Lazilha (2001), é apresentado que uma ADL deve ser simples,
compreensivel € possibilitar uma sintaxe grafica bem compreendida, mas ndo

necessariamente uma seméntica formalmente definida.

ADLs sio linguagens formais que podem descrever ¢ representar produtos de

software, ¢ possuem caracteristicas que permitem especificar a natureza dos

60

componentes, suas propriedades, a seméntica das conexdes e o comportamento do
sistema especificado. Uma ADL suporta a descrigio de um sistema em termos de

componentes € conectores.

A descricdo de uma arquitetura, formalizada através de uma ADL, pode ajudar
na especificagio € analise do projeto de alto nivel. Ela também facilita a
implementagio e evolugdo de grandes sistemas. Aldrich et al. (2002) mostram, porem,
que a analise de arquitetara nas ADLs existentes podem revelar importantes
propriedades arquiteturais, mas ndo garantem que esfejam presentes na
implementacio.

Para mostrar as razdes arquiteturais de uma implementagio, a mesma deve estar

em conformismo com sua arquitetura, segundo trés critérios:

- decomposigio: para cada componente na arquitetura deve haver um na

implementacio;

- conformidade da interface: cada componente na implementacdo deve estar em

conformismo com a interface arquitetural;

- Integridade de comunicagdo: cada componente na implementacio sé pode
comunicar-se diretamente com o componente ao qual estd conectado na

arquitetura.

3.3.3.1 ArchJava

Para o ambiente Java, foi desenvolvida wma ADL, chamada Archlava
(ARCHJAVA), através de uma extensdo da linguagem Java, obtendo o desejavel
enfoque na proximidade com a implementagdo. Aldrich et al. (2002) mostram que a
ArchJava permite um estilo de programagfo orientada a objetos flexivel, permitindo
compartilhamento de dados e dando suporte a arquiteturas dindmicas, onde

componentes sdo criados e conectados em tempo de execugio.

Um recurso da ArchJava que ndo é encontrado em outras ADLs € um sistema
“tipado” que garante a integridade de comumicacdo entre wna arquitetwra e sua
implementagdo, mesmo na presen¢a de objetos compartilhados e configuragdes de

arquiteturas dinfmicas.

Como exemplo de um programa usando ArchJava, apresenta-se a arquitetura de
un WEB Server. O subcomponente ROUTER aceita as requisigbes HITP que

61

chegam, passando-as a um conjunto de componentes WORKER, que processam a
resposta. Quando chega uma requisicio, o ROUTER requisita uma nova conexao a um
WORKER através de sua porta “request’. O WEB Server entfo cria uma nova
instincia de WORKER ¢ o conecta a0 ROUTER. O ROUTER passa as requisi¢des ao
WORKER através de sua porta “workers”. A Fig. 3.17 apresenta esta arquitetura. A
Fig. 3.18 apresenta a descri¢io desta arquitetura.

Caivasee) WebServer
N _ worksre __
eeil] Worker

Figura 3.17 — Arquitetara do Web Server

O compilador ArchJava aceita uma lista de arquivos ArchJava (.archj), compila
cada um para um codigo fonte Java, ¢ chama o compilador javac sobre os arquivos .
java resultantes. O compilador ArchJava traduz cada classe componente em uma
classe comum Java, deixando os atributos e os corpos do métodos praticamente

inalterados.

No trabatho apresentado em Sazawal et al. (2002) ¢é indicado que Archlava
possui a possibilidade de expandir os tipos de conectores, permitindo que o
programador ctie os seus proprios. Um conecior € um elemento de projeto
reutilizavel, que suporta um estilo particular de interaglio entre componentes. Cada
conector ¢ modularmente definido em sua propria classe. Componentes interagem com
conectores de forma clara, usando a sintaxe ji existente da chamada de procedimentos
em Java. Em ArchJava, cada conector & traduzido para uma classe normal em Java

que implementa a estratégia de comunicagio.

Como exemplo dessas estratégias, temos oito principais tipos de conectores
descritos: chamada de procedimento (AsynchronousConnector, TCPConnector),
evento (EventDispatchComnector), acesso a dados (CachingConnector,
PersistConnector), ligagio , encadeamento (BufferedStreamConnector), arbitro
(LoadBalancingConnector), adaptador (AdaptorConnector) e distribuidor
(EventDispatchConnector).

public component class WebServer {
private final Router r = new Router();
connect r.request, create;

connect pattern Router. workers, Worker.serve;

public void runf) { r.listen(}; }
private port create {
provides r.workers requestWorker() {

final Worker newWorker = new Worker(),

r.workers connection = connect(r.workers, newWorker serve) r

return connection;

H
public component class Router {
public port interface workers {

requires void hitpReguest(InputStream in, OutputStream out};
}

public port request { ‘

requires this workers requestWorker();

) |

public veid listen() {
ServerSocket server = new ServerSocket(80};
while (true) {

Socket sock = server.accept();

this. workers conn = request.requestWorker();
conn httpRequest(sock getlnputStream(), sock.getOutputStream|
0%

g |

public component class Worker extends Thread { '

public port serve §

provides void httpRequest(InputStream in, OutputStream out) {

62

63

Figura 3.18 — Programa ArchJava que implementa a arquitetura do Web Server.

No site Archlava (ArchJava) sdo descritos alguns beneficios em se aplicar a

ferramenta Axchlava, a saber:

- Afravés da integridade de comunicagio, pode-se garantir que o cddigo fonte de um
programa permanece consistente com a arquitetura enquanto o mesmo evolui em

resposta as mudangas dos requisitos.

- A arquitetura tormada explicita em wm programa ArchJava ajuda os programadores
a entender a interagio entre diferentes partes de um codigo fonte, o que auxilia a

tratar as tarefas de evolugdo do software de maneira mais eficiente.

- A checagem da integridade de comunicagdo do Archlava ajuda a melhorar a

estrutura do programa ao capturar as violagdes de encapsulamento.

3.4 Geracio de codigos a partir de modelos UML

Um dos maiores argumentos usados por quem ndo produz documentagdo e
modelos do projeto é que praticamente nada pode ser automaticamente aproveitado na
implementagio. O ideal seria a possibilidade de ter um sistema sendo processado
diretamente a partir dos modelos, como se estes fossem uma espécie de linguagem de

programagdo de altissimo nivel.

Este poderia ser o modelo ideal de documentagdo de sistema, que dispensaria o
codigo fonte, eliminando qualquer problema de falta de sincronismo ou de
documentagio desatualizada, principalmente aquela referente a decisdes de projeto e

rastreamento de requisitos.

Utilizando o UML como linguagem de modelagem, por ser esta padronizada ¢
altamente difindida, fica mais facil produzir ferramentas que consigam tal proeza,
apesar das limitaghes existentes. A seguir analisamos duas propostas que tentam

atingir esse objetivo.

3.4.1 Ferramentas CASE (Computer-Aided Software Engineering)

As mais recentes ferramentas CASE do mercado ja apresentam recursos para a

64

geracdio de codigo a partir de modelos UML, com possibilidades de alterar o cédigo
fonte e poder refletir essa alteragdo no modelo e vice-versa. Essas técnicas sdo

conthecidas como forward e reverse engeneering.

Porém, na maioria, essas ferramentas estdo limitadas a utilizacio dos modelos
estaticos: sdo capazes de gerar o codigo estrutural das classes, ou seja, as definigdes
de atributos e métodos. Algumas poucas ferramentas, dispdem de recursos basicos
para incorporar os modelos de comportamento, geralmente o diagrama de estado.

Como neste trabalho estdo sendo abordadas ferramentas open source ¢ apenas
como ilustragio de um conceito, apresenta-se uma ferramenta dessa categoria que

implementa uma funcionalidade bésica de geragdo de cddigo.

3.4.1.1 Poseidon/ArgoUML (ferramenta CASE em UML)

ArgoUML iniciou-se como um projeto de pesquisa de Jason Robbins e depois
colocado como um projeto open-source, ao qual outros colaboradores se juntaram.
Alguns desses colaboradores montaram uma empresa € decidiram criar uma derivagdo
do projeto, mantendo uma versdo comercial do produto, denominada Poseidon for
UML. O foco principal no desenvolvimento dessa ferramenta € a integragdo de UML,
JAVA, MDA e XML, mantendo sempre as caracteristicas de usabilidade e alta
produtividade.

Em Boger et al. (2003), estdo indicados os recursos existentes nesta ferramenta
para a geragdo de codigo, engenharia reversa e round-trip engineering. Neste estudo
apenas nos interessa a geracdo de codigo, visto que é o tinico recurso disponivel na

versio free.

A ferramenta possui um mecanismo flexivel de geragio de codigo baseado em
templates. A geragio de codigo é baseada exclusivamente no diagrama de classes. A
associagdo entre as classe é, por defini¢iio, bidirecional. A geragio para o codigo de

uma associagdo ¢ feita de forma a permitir a navegagio nos dois sentidos.

Existem algumas possibilidades de ajustar a geracdio de cédigo, como por

exemplo:

- métodos de acesso: pode-se marcar quais atributos terdo os métodos de acesso

gerados ou nio;

- tipos de associagio: dependendo da multiplicidade da associagdo, a

65

implementagio pode se dar através de um atributo (1..1, 0..1), um elemento do
tipo Colletion (..¥), ou umarray (..<n>);

-~ definigdo do comando Import: pode ser feito graficamente no diagrama ou atraves
da defini¢do do tag JavalmporiStatement.

Wahicle Reservatien Freseniation Class Madal Wehlete Reservation Dnlity Clas Meodel

A BRhitte-es H2 o1 HE B 0OCK - Y OF

< ErttyObet o P R
L Heservafion

(Teom de. amg: at#tagic elnbes artity) ResermbionBegrOate Dule

<« Kay »>-Number:String ReservingMembar, |- esermfionEndDate Doty

FirdtNamaSeing dw< Ky =-NumbanSining

A-egiNemne Sting

«« Finder ==+ Criterin{VohideNunber Stang) void
w< Flogor va+ember (memberNumber Sting void
wpeltumbae(F Sring
et umbar_Number String) void

<

[

Heezerved Vehicls

== E nilyQhidet 25
Vahicle
from da.. amgr slatavia; vehucle anidy)
Lcenceiumber Sting
DesaiptiorsShing
<< Key»>.Number:Sting
~viehicleClase: Siring

w« Finder ¥+ Cridsria{Vahid sClass String Locslion. String) C dlledion

| Propeties | Styte | ToDotems | Dosumentation | Java Source | Consraints | Tagged Values |
pblic String getHmber{} | o+ lock-srd * (=]
retyrn Nosber;
} and gratMumbar 444 Jock-bagri *,

public void setMwsbar{String Musber) [= Jock-apd */ ij
Hmber = _Number; .
3 -3 satMumbar * lock-begin * ':J

ga:l |IusERT|

Figura 3.19 - Tela do sistema Poseidon for UML

A Fig. 3.19 apresenta uma tela do Poseidon for UML. Na parte superior da tela

apresenta-se o Diagrama de Classes e na parte inferior o codigo gerado,
correspondente.
3.4.2 xUML - Actions Semantics

A Executable UML (XUML) é uma metodologia automatizada que usa um
subconjunto altamente especializado da notagio UML. Esse subconjunto compreende:

66

o diagrama de classe UML, que especifica a estrutura do sistema através da descri¢do
dos objetos que o compdem, diagrama de estado UML, indicando o ciclo de vida de
cada objeto como wna maquina de estado finitos e uma Actions Semantics, uma
proposta de extensdo a UML que permite a especificaciio de comandos executdveis de
alto nivel, que especifica o comportamento dos objetos ao mudarem de estado no seu
ciclo de vida. A natureza “executdvel” desses modelos € que permite que eles
facilmente possam ser implementados em uma linguagem de programagcio tradicional,
on até mesmo screm executados diretamente por um interpretador que pode ser
implementado diretamente na ferramenta CASE. A Fig. 3.20 apresenta um exemplo de

um Diagrama de Estados com notages de agoes em xUML.

...

Foreach Joint{
Generafe
J1:ConfigureiFolmi(Folnt_1D).Joini 11Xy}
arm_siatasoty;
""""""""""""" o 1
MaovingJoints
ARVihdiArm_ 110 37 Not¥alidConfisurgtion) Ann 11
Y AdtuNotValidStatel \rm 113 -4
Valid - ¥ Not_Valid
e o, ¢

e=-- y gmmmmmeds -y
{ arm_status=0; ! | army_statns=l; |
1 et i

Ad toValidState{ Arm_11))

| Asistop{irm_ID) stopped A6 terminatel Yrm_L13}

..................

Figura 3.20 ~ Exemplo de Diagrama de
Estados com xUML

As regras de execugdo do xXUML especificam que os mesmos modelos podem
ser traduzidos em uma variedade de arquiteturas diferentes, sem mudang¢as nos
modelos. Miultiplos modelos xUML podem ser montados juntos, para construir

sistemas mais complexos.

Exemplo desse conjunto de acSes de alto nivel de abstragéo, que resultam em
uma forma de execugio da especificagdo em UML, foi retirado da apresentagio de

Ignjatovic (s/data) da PAL - Pathfinder Solutions Action Language, e sio

apresentados na figura 3.21.

Conditional:

-IF LBooIean Expression} { StaiementBlock }
[ELSE IF (Boolean Expression) {StatementBlock} |
[ELSE { StatementBlotk }]
Heration:

- FOREACH cursor_variable = CLASS class name
[WHERE (Expression)]
{ StatementBlock }

- FOREACH cursor_vaniabie = Navigation [WHERE
(Expression) |
{ StatementBlock }

~ WHILE {Expression} { StatsmentBlock }
Jumps:
- BREAK, CONTINUE, RETURN [Expression]

Object creation, deletion

- CREATE class_name
[{ attribute_name = Expression, ... }] { W inital_state]

- DELETE instahce,_refl
Finding objects:

- FIND [{ FIRST | LAST }] CLASS c/ass_name [WHERE
{Expression)]
Linking:

- LINK instance?1_ref A<number> instance2_ref
[ASSOCIATIVE assoc_ref]

- UNLINK instancel_ref Anumber instance?_ref

Figura 3.21 - Exemplo de um conjunto de
a¢Bes de uma implementagdo da xUML

3.5 Conclusiio

67

Neste capitulo procurou-se apresentar um comjunto representativo de meétodos e

ferramentas relacionados a documentagiio de software, direcionados ao ambiente Java

e disponiveis como open source.

Podemos classificar as técnicas apresentadas neste capitulo em 4 grupos, cada

um com seus pontos positivos, sendo mais indicado para registrar um ou outro aspecto

da documentagao:

- Documentagio independente do codigo fonte (ex.:REM, Elucidative Programming),
a grande desvantagem ¢é a dificuldade de sincronismo com o codigo fonte, porém

pode ser utilizados em documentos em que ndo tenham desenvolvedores como

audiéncia principal;

68

~ Documentagiio gerada a partir do codigo fonte (ex. Javadoc, Literate Programming,
Theme-based Literate Programming), é a mais flexivel e extensivel, permitindo a
criagio de padrdes personalizados de documentagio para cada empresa, cobrindo
todos os tipos de documentos, gerados automaticamente. Permite o
reaproveitamento de um item da documentagio em mais de um documento. Facil de
implementar e de manter o sincronismo com o codigo por estarem fisicamente

Juntos;

- Cédigo fonte gerado a partir da documentacio (ex. Poseidon, xUML), seria a
solugdo ideal, onde, a partir da modelagem de alto nivel, poderia-se ter o produto
diretamente. No entanto nio existe ainda uma implementagdo que cubra toda a
geragdo de codigo fonte, sendo necessdria uma codificagio manual, podendo ser
vista como um retrabatho pelos desenvolvedores. De qualquer forma, € um recurso
que deve ser usado sempre que possivel para automatizar parte do

desenvolvimento;

- O proprio codigo fonte é a documentacio (ex. Icontract, Elide, Aspect], Archlava),
ndo pode ser considerado como uma documentagio, mas um complemento desta.
Podem ser usados como ferramentas de automagdo do processo e de auxilio a

compreensio do software, ao documentarem as decisdes de projeto € arquitetura;

Na analise feita por este autor, compreende-se que a documentacdo por
comentarios dentro do préprio fonte é a que melhor atende as solugdes dos problemas
referentes 4 documentagiio: sincronismo, automagio, reutilizagio, diversas audiéncias,

simplicidade e adaptagio.

Usando docleis personalizados, e definindo uma estrutura para os itens basicos
de documentagiio apresentados no capitulo 2, item 2.5.2, podemos usar o conceito da
Javadoc e criar praticamente toda a documentagiio através de comentdrios do codigo
fonte. A exira¢do e geragio sdo automatizadas, combinando e reutilizando trechos

para gerar os diversos documentos.

No capitulo seguinte, sugerimos uma forma para essa documentagdo em Javadoc

num pequeno exemplo de programa comentado.

69

4 ESTUDO DE CASO: DOCUMENTACAO NO CODIGO JAVA

Apresenta-se um exemplo da utilizagdo de algumas das técnicas apresentadas no
capitulo 3, sempre que possivel, ilustrando o principio da documentagdo no proprio
codigo. Ou seja, todo o codigo fonte da docwmentagio estard escrito em arquivos de
programas fontes em linguagem Java, que podem ser compilados para gerar um
programa executavel, ou passar por outras ferramentas que geram a documentagio em
um formato impresso {como um manual) ou navegavel (como um#help on-line).

Para se atingir alguns itens ndo cobertos pelas ferramentas apresentadas, serdo
feitas algumas sugestdes de como elas podem ser implementadas em expansdes de
ferramentas existentes ou em ferramentas futuras cuja implementagio, entretanto, estd
fora do escopo deste trabalho,

Neste exemplo serdo usados alguns dos itens de documentagdio descritos na
taxonomia apresentada no ftem 2.5.2.

Um moédulo do sistema de Controle de Acesso (MDCBe) |, responsavel pela
comunicagio e controle de placas de comando com comunicagio Ethernet, via
TCP/IP, ser4 usado na exemplificacio. A Fig. 4.1 apresenta este exemplo.

A aplicac¢dio que aqui sera usada como exemplo, serd parcialmente descrita para
fins ilustrativos de sua documentagfo.

As primeiras fases de um projeto de software sio as mais dificeis de se
documentar no cédigo fonte, devido a ndo existir uma relagido “um para um” simples
entre o codigo e os documentos, e também porque a linguagem Java tem a estrutura
montada em um arquivo fonte para cada classe. Assim, documentagfo que se relaciona
a um grupo de classes, ou até mesmo ao sistema inteiro, ndo possui um unico local
onde possa ser registrada. Situa-se neste caso a documentagio da visdio geral do
sistema, dos requisitos ndo-fimcionais e de algumas outras partes.

Entretanto, através da utiliza¢do de ArchJava, pode-se criar essas estrutura de
mais alto nivel, onde podem ficar documentadas as estruturas mais globais de um
projeto de software, além de descrever diretamente no codigo a arquitetura proposta,
ArchJava permite hierarquia de arquiteturas, podendo, assim, descrever as relagdes
entre subsistemas ¢ depois quebrar-se esses subsistemas em partes menores.

Pode-se descrever, em um arquivo fonte ArchJava, o componente principal, que

¢ o programa, ¢ nele acrescentar a documentacio que trata do projeto como um todo.

70

Para registrar tais documentos no codigo fonte, pode-se usar o principio da
JavaDoc, usando tags especificos em comentdrios. Neste caso, utilizam-se fags
novos, personalizados, que efetivamente nédo existem na JavaDoc, mas que podem ser,

facilmente, implementados no futuro.

/**

* @projeto MDCBe:Modulo MDCBe //visdo geral

* Bste modulo é respensavel pelo recebimento das informacdes em tempo-real dos

* crachas lidos em uma placa BeNet, wverificar no banco de dados as condigies para
* a liberacdo e comandar a liberacio (destravar fechadura ou catraca)

* g indicacd@o luminosa (led) adequada, sendo { verde ou vermeiho)

* @contato.solicitante Reginalde, Trielc, Depto. Comercial, £one:xXXXX-XXXX
* @contato.operador Gilberts, Trielo, Depte Techico, fone XXXX-XXXX

* @ferramentas Ambiente IDE: NetBeans
* ArchJava para descrigdo da arquitetura. |
| * Bance de dados: access, Oracle s SQL-Server |

* @repositorio.tipo CVS

* @repositorio.local \\servidor\CVS\projetos\MDC\MDChe

*7
public component class MdcBel()
{...}

Figura 4.1 — Médulo de exemplo MDCBe

Os requisitos do sistema, principalmente os funcionais, podem ser descritos
basicamente de duas maneiras:
através de uma lista de recursos desejados,
através da descrigdo do comportamento através das iteragdes com o usudrio,
conhecido como cendrios ou casos de uso.

Em ambas as situagfes, a principal dificuldade € o fato de um requisito
envolver varias classes na implementagio.

Observando a orientagdo a objetos, percebe-se que a descrigiio de cendrios
apresenta mator facilidade de mapeamento com a implementacédo, principaimente se
0s passos do cendrio forem introduzindo os objetos internos do sistema que interagem
para a produgio da resposta ao estimulo do usuario. Mesmo assim, haveria uma
dispersdo, pois cada “passo” descrito no cenario “estaria” em uma classe distinta. A

solucdio neste caso, € manter nesta classe apenas a referéncia ao cenario/passo, €

71

manter a descrigio do cendrio como um “todo” no componente principal que o
implementa ou ¢ responsdvel pela iniciagdo do processo. E conveniente lembrar que
todos os fags sdo opcionais. Os itens usados na descrigdo dos casos de uso foram
baseados em Gelperin (2003).

Outro item de documentagio importanie € o glossdrio. Nesie caso, os termos que
apresentam definigdo no glossario podem ser definidos a qualquer momento. Os itens
do glossario sdo referenciados no texto dos comentdrios entre sinais de 'V
(‘glossario!), indicando uma possibilidade de hiperlink . A Fig. 4.2 mostra alguns
exemplos de glossario. A figura mostra também exemplos relativos a outros fags.

Decisdes de projeto podem ser documentadas onde elas aparecerem, seja sobre
um componente, uma classe ou método. Normalmente uma decisdo de projeto €
tomada para atender um ou mais requisitos ndo-funcional, € o mesmo deve sempre ser

anotado. A Fig. 4.2 mostra a documentagio dos requisitos funcionais e nfo funcionais.

72

J_“““__‘_‘___ — e T — —]
/i'*

]

*

*

*

2Glossario{ //adiciona itens ao glossario
[leitorai: egquipamento gue interpreta o cddigo existente em wn cracha
do mesmo tipo de tecnoclogia, como cédige de barra, radio-freqiéncia (proximidade)
smart-card, e do mesmo fabricante. O cédigo & entdo transferido a centroladora.
[contreladoral : placa responsavel pela comunicac3o entre os elementos de
bloqueio {catracas, portas) e o sistema MDC. Ela recebe a leitura de um cracha e
aciona um relé e/ou led executando a liberagdo ou aviso de um blogueio.
[BeNet]: modelo de !controladoral com comunicagfo wia rede ethernet. i
[Log da ocorréncial: reglstro no bance de dados do sistemz contendo
hasicamente ¢ nimero do crachi, a data/hora da leitura, o codige da ocorréncia
(tipo de liberagio ou motivo do blogueic) e a contreoladora/leitora.

H

@UC.id UC001l:Recebe crachéa //requisitos funcionais - casos de usoc
@UC. atores ATO0l:Cohtroladora BeNet:Deseja verificar se o crachi apresentado
possul ou ndo !permissdo de acesso! |
@UC.desc Processo de solicitagdo de liberagic de cracha. Quando um usuario
apresenta um crachi numa !leitora! controlada pela !'BeNet!, a mesma envia
uma solicitacdo ao sistema para a checagem e poder enviar a resposta na forma
ge comandos Ge liberagdo ou blogueio para a !Controladora!.
@UC.trigger Mensagem UDP enviada pela placa aoc sistema na porta &6
@UC.pre O sistema deve ter conseguidoe estabelecer conexdo com o banco de dadeos
@UC.pos Deve ter sido registrado o !Log da ocorréncial
@uc.fonte Reginaldo
@UC.risco{Medio} QUC.prioridade{Alta} QUC.custo{Z2HH} @QUC.prazo{DL:15/10/2003}
@UC.1l [Controladora BeNet] envia na perta 66 do IP do hest, a mensagem UDP
<Lnccccccecce>, ohde h=humero da leitora, c=numero do cracha
@UC,1.det //usado para descrever no manual do usudrio mais detalhes
O aplicativo MDCBe & iniciado na linha de comande com a zintaxe:
>java MDCbe mdc.props
QUC.2 {MDCBe] verifica o IP de origem da mensagem no cadastro de placas e envia
a mensagem para ser processado pela thread ProcessafAcesso correspondente
QUC.2a [MDCBe] o IP de origem nic esti cadastrade, entdc é criada uma nova
insatdncia de ProcessaAcesso
BUC.3 [Prepcesahcessc] consulta para verificar a existéncia do craché

RUC.3a.1 [Procesabcesso] nio existe ->» envia sinal de blogueio (Led vermelho) na

porta UDP 37 da placa.
@UC.3a.2 [ProcesahAcesso] registra !Log da ocorréncia! Com ocorréncia 88l-usuwarie
nic cadastrado.

Figura 4.2 — Documentacgo para o moédulo exemplo MDCBe

73

— —]
f/**

* fGdecisac 001:A argquitetura do médule MDC constitui de deis processos (threads),
um <Bscuta> gque fica aguardando uma comunicagdo na porta 66 e depois repassa a
mensagem recebida para o processo <ProcessaRcesso> correspondente a placa que dgerou
a mensagem. #@Satende: (melhcr medularidade]

* @decisac 002:Foi escolhideo usar um <Processahcesso> para cada placa, para liberar
o componente (ue recebe a mensagem para poder processar rapidamente outrol
recebimento. Cada <Processafcesso> processa e responde 4 requisicdo feita pela sua
placa. @Atende:[minimo de 5 req/s), [resposta até 1.5s]

*/

// tradicional comentario Javadoc

JEw

* Classe/Componente principal do médulo MDChe.

! * Este mdédulo impiementa o Casc de Uso 001: Recebe cracha.]
*

] * @autor GMM I
* @version 1.0

|/

public component class MdcBe()

E(
private final Escuta e = new Escutai);
private Connection con=DriverManager.gstConnection (JdpcUrl, JdbcUser, JdbcPass):
private Vector controladoras= new Vector;

conhect e.request, select;

connect pattern Escuta.send, ProcessaAcesso.processaj

i public static void main(){
ResultSet rs = coh.createStatement().executeQuery(™select ip from unidades”);
while (rs.next()) {
’ g = newWw Processafcessol(}}
controladoras.addElement{qg}:
‘ g.start{);
}
e.start();
1
private port select{
provides e.send achalP (Vecter unid, S5tring IP) {
for{int i=0; i<unid.size(); i++) {
t if (unid.elementAt(i).ip.equalsTo{IPF) } (
i final Processahcesso pa= {Processahcesso)unid.elementht(i);

e.send connection = connect(e.send, pa.processa);

N o B

Figura 4.2 — Documentagio para o modulo exemplo MDCBe (Cont.)

4.1 Conclusio

Apresentou-se neste capitulo, um exemplo de como expandir a utilizagdo de

74

tags Javadoc para a inclusdo de novos tipos de documentacio. Este pequeno exemplo
serve para demonstrar a flexibilidade da documentagio inserida no cédigo, e tornar

evidente as tarefas complementares necessérias:

— Construir 0s doclets que implementam as rotinas de extragio ¢ geragdo da
documentacio;

~ FElaborar os femplates para geragdo dos documentos personalizados para cada
organizacao;

~ Selecionar um conjunto de fags representativo do grupo de documentos que s¢
espera gerar,

— Definir um método para mapear os itens de docurnentagio nos elementos estruturais

da Java, como pacotes, classes e métodos.

75

5 CONCLUSOES

Este trabalho apresentou um trabalho de pesquisa sobre as diversas ferramentas
do ambiente Java relacionadas com a documentagfo de um sistema de software. Essa
pesquisa procurou esclarecer alguns pontos sobre os problemas de manter uma
documentacdo atualizada, consistente com o produto, a fim de agilizar a etapa de
compreensdo do codigo e localizagdio das classes e métodos afetados por uma

mudanga de requisito, durante uma ctapa de manutengdo.

Produzindo uma documentagio com qualidade desde o inicio do
desenvolvimento, e fornecendo recursos para facilitar o sincronismo com o codigo ¢
automatizacdio do seu reuso, torna-s¢ cfetiva a comunicagdo entre os diversos
participantes nas varias fases, mesmo aqueles que tem necessidades distintas, pois

pode-se filtrar e apresentar apenas aquilo que lhe é importante.

No inicio do capitulo 2, apresentou-se duas questdes sobre as dificuldades de

se produzir a documentagiio que agora podem ser respondidas:

- A documentagio deve a forma mais adequada ao tipo de projeto, processo
utilizado e caracteristicas da empresa, desde que o custo e prazo para produzi-l1a

nio inviabilize o projeto.

- Os analistas serdo encorajados a escrever a documentagio quando ela é simples de
elaborar, reaproveitivel em grande parte, sem ter de ser reescrita em diversos
documentos diferentes, estd préxima para ser atualizada e sempre ao alcance

quando ela & necessdria.

Apresentou-se a visdo que diferentes processos de desenvolvimento tem da
importancia da documentacdio, os principais artefatos que gniam o desenvolvimento, a
fim de exemplificar os diferentes tipos de documentos e suas formas. Esclareceu-se
também as principais finalidades da documentagio — requisitos, modelo de contrato,
comunicacdo entre os participantes e registro de decisfes — que, conjuntamente com o

processo, definem o contetido da documentagdo.

A simplicidade de implementacio da documentaciio, o reaproveitamento ¢ os
filtros para a geracdio de documentos distintos, ndo 56 reduzem o custo de produgio

da propria documentagdo, como também o custo de manutengio do produto.

76

O capitulo 3 foi reservado 4 apresentagio de varias técnicas ¢ ferramentas
relacionadas. Elas cobrem 4 grupos de documentacio: independente do codigo fonte
¢ o método comumente utilizado, onde se sobressai a dificuldade de sincronismo com
o codigo fonte; gerada a partir do codigo fonte, € a mais flexivel e extensivel, ficil de
implementar e de manter o sincronismo; codigo fonte gerado a partir da
documentagdo, onde poderia-se ter o produto diretamente a partir da modelagem de

alto nivel; ¢ proprio codigo fonte é a documentagdio, através de extensGes da

linguagem Java para registrar conhecimentos das decisdes de projeto.

Encerra-se o trabalho no capitulo 4 indicando que a utilizacdo da técnica de
incluir a documentagio em comentirios nomeados e padronizados, que podem ser
extraidos e transformados nos documentos desejados, ¢ a potencialmente mais
indicada a atender as necessidade de uma boa documenta¢do: simplicidade,
proximidade do codigo, reaproveitamento ¢ automatizagio da geracdo. Atende a

qualidade de se permmitir sincronizar com o codigo fonte.

Entretanto, um trabalho adicional deve ser executado para adaptar a solugdo ao
ambiente do projeto € equipe de desenvolvimento. Esse trabalho consiste nas
atividades de construir as rotinas de extragdo e geragio da documentagéo, daborar os
templates para a personalizagio dos documentos, selecionar um conjunto de fags
representativo e definir um método para mapear os itens de documentacdo nos
elementos estruturais da Java. Este dltimo é o mais complexo, pois Java ndo apresenta
estruturas de alto nivel, e também porque o mapeamento de diversos itens da

documentagio ndo s3o “um para um” com o codigo fonte.

Outras técnicas ¢ ferramentas podem ser utilizadas em conjunto, como descrigo
da arquitetura, formalismo das interfaces e explicitagdo das decisdes de projeto. Elas
auxiliam a comunicagio entre os membros ¢ a compreensido pelos que fardo a

manutengio posteriormente.

77

REFERENCIAS:

Arpwmicy, J.; Cuameers, C.;Norkmwy, D. Architectural Reasoning in Archjava. In
Lecture Notes in Computer Science. Springer-Verlag Heidelberg. v.2548. 2002.
ECOOQP 2002 Workshop, Mélaga, Spain, June/2002. Proceedings. J. Herndndez, A.
Moreira (Eds.). Disponivel em: hitp://archjava fluig nu edu/papers/ecoop02 pdf
Acesso: 10/12/2003.

Ammier, S. W. Agile Documentation. Disponivel em: The Official Agile
Modeling (AM) Site. http://www.ggilemodeling.com/essays/agileDocumentation. htm
Acesso: 05/12/2003.

[ArchJava] ArchJava: Home. Disponivel em: hftp://www.archjava.org .
Acesso em: 10/12/2003.

{Arkley] Arciey, P; Mason P.; Rooie S. Position Paper: Enabling
Traceability. 1*. International Workshop on Traceability in Emerging Forms of
Software Engineering (in conjunction with the 17th IEEE International Conference on
Automated Software Engineering), Edinburgh, UK, 28 September 2002.
Proceedings. p. 61-65.

[Boehm] Bomny, B. Software Cost Estimation with COCOMO II, Prentice Hall,
2000,

[Boger] Booer, M.; Sturm, T.; Scrwonauver, E.; Granam, E Poseidon for UML
Users Guide, 2003, hitp.//www gentleware.com/products/index.php4

[Booch] Boocy, G.; Martmy, R. C.; Newkr, J. Object Oriented Analysis and
Design with Applications. 1998. Addison Wesley Longman, Inc.

[Bryant] Brvant, A.; Catron, A.; pe Vowrr, C.; Muremy, G. C. Explicit
Programming. AOSD’ 2002. 1st International Conference on Aspect-Oriented

Software Development, Enschede, the Netherlands, Apr. 22-26. Proceedings. p. 10-
18.

[Bryant] Brvant, A.; CatroN, A.; bk Voroer, C.; Murey, G. C. ELIDE: Explicit

Programming for Java. Disponivel em:

78

http:/fwww.cs.ube.ca/labs/spl/projects/explicithtml Acesso em: 10/12/2003.
[Bryant] Bryant, A.; Carron, A.; pE Vomper, C.; Murewy, G. C. Explicit
Programming: Improving the Design Vocabulary of Your Program.

Demonstragdo em OOPSLA 2001. Disponivel em:
Acesso:

AUD.//WHWW

10/12/2003.
[Cysneiros] Cysneros, L. M.; Lartg, J. C. 8. P.; Sasar Nero, J. M. 4 Framework

for Integrating Non-Functional Requirements into Conceptual Models,

Requirements Eng, 2001.

[De Marco]De Marco, T. Why Does Software Cost So Much?, Dorset House,

[Ducasse] Ducasse, S.; Nmrsmrasz, O. Tie Code And Questions: a
Reengineering Pattern, University of Bern, 2000.

[Duran] Durin A.; BernArpez, B.; Ruiz A.; Toro, M. An XML -based Approach
Jfor the Automatic Verification of Software Requirements Specifications, 2000,
(REM), University of Seville, 2000.

[Enseling) Ensmmg, O. iContract: Design by Contract in Java, JavaWorld,
fev/2001. Online; ' ' j jw-02- (W~ -
cooltools p.html Acesso: 10/12/2003.

Jacosson, I.; Boocn, G.; RumBauen, J. The Unified Software Development Process.
Addison-Wesley, Boston, Ma. 1999,

[Gelperin] G PRRIN, D. Precise Use Cases, 2003,

[Ignjatovic] Ieniatovic, M.; UML with Action Semantics: Concepts, Application

and Implications, Zuehtke Engineering AG, Margo/2003. Online:
http://wwnw jugs ch/html/events/slides/xUML PDF, Acesso: 14/12/2003
[Jefiries] Jerrrms. R. Fssential XP: Documentation. 21/12/2001. Disponivel

em: Xprogramming.com. An Extreme Programming Resource.

FWW, Xprogramming com/xpag/expDocumentationInXp. hin Acesso em.

79

05/12/2003.

[Kacofegitis] Kacorsairis, A.; CuouraEr, N. Theme-Based Literate
Programming. Relatério Técnico TR-COSC 03/02. 2002. University of Canterbury.

Disponivel emn;

y SZS7] Repsz 822002287 {/theme-based-
i - i Acesso em: 10/12/2003.

[lan03] Karan, I; Software and Documentation, Fev/2003.
3l Acesso em: 14/12/2003

[Kotula] KoruLa, J. Source Code Documentation: An Engineering Deliverable,
Technology of Object-Oriented Languages and Systems (TOOLS 34'00), July 30 -
August 03, Santa Barbara, California. 2000. P. 505.

Kramer, R. iContract — The Java Design by Contract Tool Technology of
Object-Oriented Languages, 1998. TOOLS 26. Proceedings , 3-7 Aug. 1998. p. 295 —
307.

[Lazilha] Laznna, F. R. ; Pricg, R. T.; Gvenes, 1. M. de S. Fundamentos para
uma Proposia de Arquitetura de Linha de Producdo para Workflow Management
Systems. VI Workshop de Teses em Engenharia de Software. SBES 2001. Disponivel

em: http://www.din.uem br/~expsee/docs/artigos/Artigo-Itana_Fabricio.pdf Acesso

em: 10/12/2003,

[Patternity] MartraRe, C. Patternity - Pattern-driven code generation and
documentation doclet. Versio: 2002-11-27. Disponivel em:

hitp://www patternity netliberte.com Acesso em: 10/12/2003.
[Mota] Morta, A.; Farws, A. Identificacdo de Aspectos Apoiada por
Computador - Projefo de Pesquisa. Projeto de Pesquisa. Faculdade Integrada do

Recife — FIR. Disponivel em: www fir be/edital/si/projeto 2.doc. Acesso em:
10/12/2003.

[Normark] Normark, K.; Vesmawn, T. Efucidative Programming in Computer
Science Education. 2001 {umpublished). Disponivel en:

http://dopu.cs.auc.dk/publications/eluc_in_edupdf. Acesso em: 10/12/2003.

[Pacheco] PacrEco, R. F.; Sancres, R. Keeping the Software Documentation Up

80

to Date in Small Companies, CLLEI Electronic Journal 3, 2000.

[Clements] Parvas, D. L.; Ciements, P. C. A RATIONAL DESIGN PROCESS:

HOW AND WHY TO FAKE IT. (sem data) Disponivel em:
i ¢ Acesso em

[Parnas] Parnas, D. L; Maoey, J. Functional Documents for Compuier
Systems, Science of Computer Programming, 1995

[Paulk] Pauik, M. C. Extreme Programming from a CMM Perspective. IEEE
Software, Los Alamitos, v. 18, n. 6, Nov./Dec. 2001. p. 19-26.

Poseidon for UML. Versio 2.1. 15/09/2003. Disponivel em:

http://’www.gentleware.com/. Acesso: 10/12/2003.

Rawmsey, N. Literate Programming Simplified. IEEE Software. Los Alamitos. v.
1T, =n 5 Sept 1994 p. 94-105. (Reprinted). Online:
' ; nl Acesso: 02/11/2003.

[Sazawal] Sazawar V.; Arpricy, J.; Cuameers, C.; Notkmy, D. Language Support
Jor Connector Abstractions. Technical Report UW-CSE-02-04-01. University of

Washington. 2002. Disponivel em: fip:/fip.cs washington edu/tr/2002/04/UW-CSE-
02-04-01.pdf Acesso em: 10/12/2003.
[Smith] Smrte, D. Designing Maintainable Software, Springer-Verlag, 1999.

SourceForge.net. Project: iContract Plus: Summary. Disponivel em:

http.//sourceforge net/projects/icplus/ . Versdio 1.0. 20/09/2001. Acesso em

10/12/2003.

[UMLGraph] Semvmis, D. D. UMLGraph - Declarative Drawing of UML
diagrams. Soflware Piablico. Version 1.24 - 2003/07/30. Disponivel em:

hitp://www spinellis gr/sw/umigraph/ Acesso em: 10/12/2003.

[Spurlin] Seuriny, V. Aspect-Oriented Programming with Sun ONE Studio.

Nov. 2002. Disponivel em;
hitp://developers.sun ls/i Is/articles/ Acesso em:
10/12/2003.

[STOUT]StoUT, G. A. Requirements Traceability and the Effect on the System

81

Development Lifecycle. Research Paper 2. Springer Cluster, 2001,

[Javadoc] SUN. The Javadoc 142 Teol Disponivel em:
http:/java.sun.com/i2se/1.4.2/docs/tooldocs/iavadoc/ . Acesso em 10/12/2003.

[Arie01] van Deursen, A. Program Comprehension Risks and Opportunities in
Extreme Programming, SEN-R0110 May 31, 2001, CWI Report

