
UNIVERSIDADE DE SÃO PAULO
ESCOLA DE ENGENHARIA DE SÃO CARLOS

VÍTOR DA COSTA MATIAS

Ferramenta de Monitoramento de Barramento CAN para o

Protótipo Automobilístico da EESC-USP Tupã

São Carlos

2024

VÍTOR DA COSTA MATIAS

Ferramenta de Monitoramento de Barramento CAN para o
Protótipo Automobilístico da EESC-USP Tupã

Monografia apresentada ao

Curso de Engenharia Elétrica -

ênfase em Eletrônica, da Escola

de Engenharia de São Carlos

da Universidade de São Paulo,

como parte dos requisitos para

obtenção do Título de Engenheiro

Eletricista.

Orientador: Prof. Dr. Pedro Oliveira

VERSÃO CORRIGIDA

São Carlos

2024

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

Matias, Vítor da Costa

 M
433f

Ferramenta de monitoramento de barramento CAN para
o protótipo automobilístico da EESC-USP Tupã / Vítor da
Costa Matias; orientador Pedro Oliveira. São Carlos,
2024.

Monografia (Graduação em Engenharia Elétrica com

ênfase em Eletrônica) -- Escola de Engenharia de São
Carlos da Universidade de São Paulo, 2024.

1. CAN. 2. LoRa. 3. Logger. 4. Dashboard. 5.

Automobilismo. 6. Tupã. I. Título.

Eduardo Graziosi Silva - CRB - 8/8907

Powered by TCPDF (www.tcpdf.org)

 1 / 1

FOLHA DE APROVAÇÃO

Nome: Vitor da Costa Matias

Título: “Ferramenta de Monitoramento de Barramento CAN para
o Protótipo Automobilístico da EESC-USP Tupã”

Trabalho de Conclusão de Curso defendido e aprovado em
29/12/2024,

com NOTA (7,0), pela Comissão Julgadora:

Prof. Dr. Pedro de Oliveira Conceição Júnior - Orientador -

SEL/EESC/USP

Prof. Dr. Maximiliam Luppe - SEL/EESC/USP

Prof. Associado José Roberto Boffino de Almeida Monteiro -

SEL/EESC/USP

Coordenador da CoC-Engenharia Elétrica - EESC/USP:
Professor Associado José Carlos de Melo Vieira Júnior

Este trabalho é dedicado às crianças adultas que,

quando pequenas, sonharam em se tornar cientistas.

AGRADECIMENTOS

Agradeço principalmente aos meus pais, Osmar Joaquim Matias e Cecília Maria Ribeiro

da Costa, por todo o apoio que me deram ao longo de minha vida, pelas portas que abriram

para mim e pela motivação constante, desde a entrada em uma faculdade renomada

até o momento em que me encontro hoje. Sou igualmente grato à minha irmã, Júlia da

Costa Matias, que me acompanha desde que tinha dois anos de idade, e com quem pude

compartilhar meus anos na universidade, ainda que de forma distante, eu aqui e ela na

UNIFAL, em Alfenas.

Também sou profundamente agradecido a todas as pessoas que contribuíram para o

meu crescimento ao longo da graduação, especialmente as que conheci no Tupã, na LESC,

no Consulting Club e no ambiente empreendedor da cidade de São Carlos. Esse convívio

me proporcionou contato com diferentes visões de mundo e enriqueceu minha bagagem

cultural e profissional. Tenho imensa gratidão também às pessoas com quem trabalhei

durante meu estágio na Embraer, no programa do KC-390, onde vivenciei a rotina intensa

de uma equipe de engenharia. Por fim, agradeço ao meu orientador, Prof. Dr. Pedro de

Oliveira Conceição Junior, pela orientação e suporte ao longo deste projeto.

“ The world is complicated, [...].

That’s why it’s interesting.”

(OBAMA, 2020, p. 7)

RESUMO

MATIAS, V. C. Ferramenta de monitoramento de barramento CAN para o protótipo

automobilístico da EESC-USP Tupã. 2024. Monografia (Trabalho de Conclusão de Curso)

– Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2024.

O processo de aquisição de dados desempenha um papel crucial na engenharia, permitindo

a análise do comportamento dos sistemas sob condições adversas e a detecção precoce de

falhas de projeto. No setor automobilístico, essa prática é indispensável tanto na validação

de conceitos quanto na identificação de falhas antes de incidentes. Este trabalho tem como

objetivo desenvolver um equipamento de registro de dados de baixo custo, independente

da arquitetura do projeto, destinado à validação do protótipo da equipe EESC-USP Tupã.

A necessidade deste dispositivo emergiu devido ao fato de que a telemetria é frequente-

mente relegada a uma prioridade inferior nos projetos, em virtude da elevada demanda

de atividades enfrentada pela equipe de desenvolvimento de software. Para resolver esse

problema, foi desenvolvido um sistema que monitora o barramento CAN do protótipo e

transmite os dados via protocolo LoRa para um receptor, que os processa e exibe em um

computador de forma clara e intuitiva. O projeto visa garantir que a leitura dos dados atenda

aos requisitos da equipe, como alcance das antenas superior à extensão da pista e exibição

clara dos parâmetros, sem interferir na arquitetura ou comunicação dos componentes. Este

estudo tem potencial para otimizar a manufatura e a validação de futuros projetos da equipe,

refinando os testes e a análise de desempenho. Por fim, o equipamento desenvolvido

atendeu aos requisitos do projeto, incluindo o alcance das antenas e a exibição dos dados

e custos. Além disso, foi gerada uma documentação utilizando a ferramenta GitHub Pages

para garantir a retenção de conhecimento.

Palavras-chave: CAN. LoRa. Logger. Dashboard. Automobilismo. Tupã.

ABSTRACT

MATIAS, V. C. CAN bus monitoring tool for the EESC-USP Tupã automotive prototype.

2024. Monografia (Trabalho de Conclusão de Curso) – Escola de Engenharia de São Carlos,

Universidade de São Paulo, São Carlos, 2024.

The data acquisition process plays a crucial role in engineering, enabling the analysis of

system behavior under adverse conditions and early detection of design issues. In the

automotive sector, this practice is essential for both concept validation and fault detection

before incidents occur. This work aims to develop a low-cost data logger device, independent

of the project’s architecture, for the validation of the EESC-USP Tupã team’s prototype. The

necessity for this device arose from the fact that telemetry is often deprioritized in projects

due to the high demand for activities faced by the software development team. To address

this issue, a system was developed to monitor the prototype’s CAN bus and transmit the data

via LoRa protocol to a receiver, which processes and displays it on a computer in a clear

and intuitive manner. The project seeks to ensure that data acquisition meets the team’s

requirements, such as antenna range exceeding the track length and clear presentation of

parameters, without interfering with the architecture or communication of the components.

This study has the potential to optimize the manufacturing and validation of future team

projects by refining testing and performance analysis. Finally, the developed equipment met

the project requirements, including the range of the antennas and the display of data and

costs. In addition, documentation was generated using the GitHub Pages tool to ensure

knowledge retention.

Keywords: CAN. LoRa. Logger. Dashboard. Motorsport. Tupã

LISTA DE ILUSTRAÇÕES

Figura 1 – Vista aérea da pista onde ocorre a competição. 23

Figura 2 – Protótipo desenvolvido em 2024 durante a competição. 24

Figura 3 – Esquema do projeto proposto. 25

Figura 4 – Diagrama da Rede CAN, mensagem enviada, recebida e ignorada. . . . 28

Figura 5 – Estrutura de um Frame do protocólo CAN. 29

Figura 6 – Sistema em tempo real como uma sequência de tarefas programáveis. . 36

Figura 7 – Exemplo de dashboard automobilístico encontrado no mercado 40

Figura 8 – Periférico MCP2515. 42

Figura 9 – Periférico SN65HVD230. 43

Figura 10 – Periférico Ra-01. 44

Figura 11 – Diagrama do componente Transmissor (TX). 45

Figura 12 – Diagrama da lógica de programação implementada no transmissor. . . . 45

Figura 13 – Diagrama do componente Receptor (RX) 45

Figura 14 – Diagrama da lógica de programação implementada no receptor. 46

Figura 15 – Vista de satélite da pista de corrida. 50

Figura 16 – Mapa com os valores médios de SNR obtidos por meio de um teste

realizado no Campus I da USP. 50

Figura 17 – Mapa com os valores de RSSI obtidos por meio de um teste realizado no

Campus I da USP. 51

Figura 18 – Mapa e gráfico do painel desenvolvido. 52

Figura 19 – Estados do veículo e registro do painel. 52

Figura 20 – Captura de tela da documentação do projeto. 54

LISTA DE TABELAS

Tabela 1 – Estrutura do Frame CAN . 29

Tabela 2 – Comparação entre os protocolos Wi-Fi, Bluetooth, ZigBee e LoRa. . . . 34

Tabela 3 – Exemplos de sistemas em tempo real. 35

Tabela 4 – Comparação entre os sistemas operacionais de tempo real avaliados. . 39

Tabela 5 – Comparativo entre os transceptores CAN MCP2515 e SN65HVD230. . 43

Tabela 6 – Custo dos componentes presentes no projeto 47

Tabela 7 – preços de Loggers comerciais . 48

Tabela 8 – Média de SNR, RSSI e Distância do Emissor nos Locais Monitorados . 51

LISTA DE ABREVIATURAS E SIGLAS

CAN Controller Area Network

LoRa Long Range

RSSI Received Signal Strength Indication

SNR Signal-to-noise ratio

RTOS Real-Time Operating System

ISR Interrupt Service Routines

ESP32 Espressif Systems de 32 bits.

TX Transmissor

RX Receptor

SQL Structured Query Language

SAE Society of Automotive Engineers

ECPA Esporte Clube Piracicabano de Automobilismo

ECU Eletronic Control Unit

TWAI Two-Wire Automotive Interface

UART Universal Asynchronous Receiver / Transmitter

SPI Serial Peripheral Interface

API Application Programming Interface

SUMÁRIO

1 INTRODUÇÃO . 23

1.1 Objetivos . 25

1.1.1 Objetivos Específicos . 25

2 REVISÃO BIBLIOGRÁFICA . 27

2.1 Sistemas Embarcados . 27

2.2 Telemetria . 27

2.3 Protocolo Controller Area Network (CAN) 28

2.4 Registrador de Dados de um Barramento CAN 29

2.5 Protocolos de Comunicação com Fio 30

2.5.1 Universal Asynchronous Receiver-Transmitter (UART) 30

2.5.2 Serial Peripheral Interface (SPI) . 30

2.6 Protocolos de Comunicação sem Fio 31

2.6.1 Protocolo LoRa . 31

2.6.2 Wi-Fi . 32

2.6.3 Bluetooth . 33

2.6.4 ZigBee . 33

2.6.5 Escolha do Protocolo . 33

2.7 Sistemas Operacionais de Tempo Real 34

2.7.1 Sistemas Hard Real-Time . 34

2.7.2 Sistemas Soft Real-Time . 35

2.7.3 Sistemas Firm Real-Time . 35

2.7.4 Componentes . 35

2.7.4.1 Task . 35

2.7.4.2 Scheduler . 36

2.7.4.3 Kernel . 36

2.7.5 Vantagens . 37

2.7.6 RTOSs Presentes no Mercado . 37

2.7.7 EmbOS . 37

2.7.8 FreeRTOS . 38

2.7.9 Zephyr . 38

2.7.10 Comparações . 38

2.8 Dashboard . 39

3 MATERIAL E MÉTODOS . 41

3.1 Periféricos de CAN . 42

3.2 Módulo LoRa . 43

3.3 ESP32 . 44

3.4 Transmissor e Receptor . 44

3.5 Dashboard . 46

3.6 Comparação de Custo . 47

3.7 Documentação de Código . 48

4 RESULTADOS E DISCUSSÃO . 49

4.1 Transmissor e Receptor . 49

4.2 LoRa . 49

4.3 Dashboard . 51

4.4 Avaliação de Custo . 53

4.5 Documentação . 53

5 CONCLUSÃO . 55

REFERÊNCIAS . 57

23

1 INTRODUÇÃO

A competição Formula SAE BRASIL tem como objetivo proporcionar aos estudantes

de Engenharia a chance de colocar em prática e em equipe os conhecimentos adquiridos

em sala de aula, por meio do desenvolvimento de um veículo do tipo Fórmula que atenda

as regras pré-estabelecidas pela comissão organizadora. Meses antes da competição, os

estudantes enviam para o comitê organizador relatórios de custos, estrutura e projeto. Os

relatórios são avaliados por engenheiros especialistas e são a primeira parte da avaliação

dos protótipos (SAE-BRASIL, 2024).

A competição ocorre durante o período de três dias no Esporte Clube Piracicabano de

Automobilismo (ECPA) em Piracicaba, onde são realizados testes estáticos e dinâmicos

com os carros, com o objetivo de avaliar o desempenho de cada projeto na pista. Além disso,

as equipes apresentam suas propostas técnicas, incluindo detalhes sobre o projeto, custos

e uma apresentação de marketing. Durante a competição, nas provas estáticas, as equipes

devem demonstrar mais detalhadamente se o carro apresentado no projeto equivale ao

que foi apresentado. As provas dinâmicas são realizadas no segundo dia do evento. Todas

as provas são pontuadas, de maneira a garantir que o melhor conjunto de projeto e carro

vença a competição (SAE-BRASIL, 2024).

A pista onde a prova de carros elétricos ocorre está presente na Figura 1, a qual possui

um diâmetro de aproximadamente 200 m (ECPA, 2024). Trata-se de uma pista de campo

aberto, ou seja, não há obstáculos entre o veículo e a equipe. Além disso, os carros correm

individualmente durante as provas dinâmicas. Para que o protótipo possa participar destas

provas, ele deve ser aprovado em todos os testes de inspeção, que consistem em blindagem

contra água, verificação estrutural e de segurança elétrica.

Figura 1 – Vista aérea da pista onde ocorre a competição (ECPA, 2024).

24

A Equipe EESC USP Tupã é uma das equipes de fórmula que adere a esta competição

estudantil. O Tupã projeta, manufatura e valida um protótipo de um carro elétrico de alto

desempenho. A equipe foi oficialmente fundada em 2012, tendo o projeto idealizado pelos

estudantes da Escola de Engenharia de São Carlos. O primeiro lançamento de um protótipo

ocorreu no ano de 2015, com o nome de T01, mas só veio a ser campeã nacional em 2021,

durante a pandemia. Na última edição da competição que ocorreu em 2024, foi conquistado

o 3º lugar de 23 equipes (EESC, 2024) com o protótipo T08, presente na Figura 2.

Figura 2 – Protótipo desenvolvido em 2024 durante a competição.

O processo de aquisição de dados tem sido um desafio na equipe durante sua história,

devido à perda de conhecimento que ocorre periodicamente, quando membros mais antigos

deixam a equipe por motivos de trabalho ou formatura. Também é comum o projeto de

telemetria ser deixado em segundo plano, pois os esforços do time estão voltados em

atividades de maior prioridade como os projetos de controle e de sensoriamento. Desta

forma, a telemetria acaba por não ser terminada a tempo da competição.

No entanto, o processo de coleta de dados é essencial para o desenvolvimento de

um projeto de engenharia, pois ele permite compreender o comportamento do veículo em

situações adversas, a detecção precoce de falhas e possibilita um melhor entendimento

do desempenho dos componentes e otimizar processos de manufatura. Os dados podem

ser coletados tanto em testes que ocorrem no próprio Campus da USP quanto durante as

provas da competição. Ademais, com esse processo cria-se um sistema em malha fechada

onde os resultados das medições em testes geram aperfeiçoamento no projeto, os quais

exigem novos testes e criam uma demanda maior por dados (LI; WANG; KANG, 2021).

25

1.1 Objetivos

Por este motivo, o projeto tem como objetivo desenvolver um equipamento de registro

de dados de baixo custo, que seja independente da arquitetura do projeto, para a validação

do protótipo da equipe EESC-USP Tupã. Notou-se que alguns times nacionais e outros

internacionais fazem o uso de equipamentos de registro em seu projeto, no entanto, esse

tipo de equipamento apresenta alto custo.

A Figura 3 apresenta um esquema do projeto proposto. Para desenvolvê-lo, foram

utilizados microcontroladores ESP32 e periféricos destinados à leitura e ao envio de dados,

como transceptores de CAN e LoRa. Esses dispositivos operam por meio de protocolos de

comunicação, como UART e SPI.

No projeto, o protocolo UART foi empregado em dois contextos distintos. Primeiramente,

ele foi utilizado para estabelecer a comunicação entre o transceptor CAN (SN65HVD230) e

a ESP32. Em um segundo momento, o mesmo protocolo foi empregado na transmissão

de dados entre a ESP32 (conFigurada como transmissor) e o computador, utilizando uma

taxa de transmissão de 115200 bps. Este protocolo tem potencial de alcançar até 10 m de

distância entre o transmissor e o receptor.

Já o protocolo SPI foi utilizado para a comunicação entre o transceptor LoRa (SX1278)

e as ESP32 presentes tanto no receptor quanto no transmissor a comunicação SPI operou

a uma frequência de 8 MHz. Já a comunicação entre os dispositivos LoRa operou em uma

frequência de 433 MHz com um fator de espalhamento de 10. Este protocolo tem alcance

de até um metro de distância entre trasnmissor e receptor.

Figura 3 – Esquema do projeto proposto.

1.1.1 Objetivos Específicos

Desta forma, foram listados os requisitos que o projeto deve atender. Este método

foi utilizado pois o levantamento de requisitos em um projeto de engenharia é essencial

para garantir a definição clara e precisa das expectativas e necessidades das partes

envolvidas. Assegurando que o produto final atenda às especificações funcionais e de

desempenho estipuladas (IEEE, 1998). Levando em consideração o escopo deste projeto

e as características do "cliente", uma equipe universitária composta por estudantes de

graduação da Escola de Engenharia de São Carlos, cujo objetivo é desenvolver um protótipo

26

sem fins lucrativos para participar da competição organizada pela SAE-Brasil, os requisitos

são:

• O equipamento de leitura de dados e registro do barramento CAN deve ter custo

inferior ao de outras alternativas presentes no mercado.

• O equipamento de leitura e registro de dados do barramento CAN deve garantir que o

alcance de sua antena seja maior que 200 metros, considerando o diâmetro da pista

da competição.

• O equipamento de leitura e registro de dados do barramento CAN deve incluir docu-

mentação clara e completa (manual de instalação, uso e desenvolvimento), facilitando

a colaboração de terceiros no projeto.

• O equipamento de leitura e registro de dados do barramento CAN deve ser capaz

de realizar leituras com uma frequência mínima de 100 Hz, garantindo precisão e

consistência nos dados coletados.

• O equipamento de leitura e registro de dados do barramento CAN deve ser capaz de

registrar os estados dos seguintes componentes do veículo:

– APPS (Accelerator Pedal Position Sensor): posição atual do pedal do acelerador;

– Buzzer: estado (ativo ou inativo);

– Brake Light: estado (ativo ou inativo) da luz de freio;

– Botão de Partida: estado (pressionado ou não pressionado);

– Shutdown: status de ativação do sistema de desligamento de emergência.

27

2 REVISÃO BIBLIOGRÁFICA

Na primeira parte, será apresentado o conceito de sistemas embarcados e telemetria,

pois são neles que este projeto se sustenta. Além disso, é feita uma contextualização para

o setor automobilístico. Também é exposta a ideia central do dispositivo desenvolvido, bem

como onde ele é aplicado no contexto deste trabalho. Em seguida, são introduzidos os

principais protocolos empregados, CAN, LoRa, UART, SPI também é feito uma justificativa

do porquê eles foram adotados no projeto. Bem como, é discutido como os dados obtidos

serão armazenados e exibidos para o usuário final, em um contexto de engenharia. Por fim,

é exposta as principais soluções utilizadas para fazer o gerenciamento de acesso a esses

dados. Concluiremos retomando a proposta inicial à luz das discussões desenvolvidas ao

longo da revisão.

2.1 Sistemas Embarcados

Um sistema embarcado é um conjunto de hardware e software projetado para executar

uma tarefa específica, muitas vezes integrado a um escopo maior. Esses sistemas são

utilizados para controlar ou monitorar funções ou processos, sendo, em geral, desenvolvidos

com foco em simplicidade e baixo custo. Seus componentes principais incluem microcontro-

ladores, sensores e atuadores, que, juntos, garantem a eficiência da operação (SOUZA,

2022).

Atualmente, os sistemas embarcados estão amplamente presentes em nosso cotidiano,

com aplicações que vão desde produtos domésticos cotidianos, como eletrodomésticos,

até em áreas de tecnologia de ponta, como equipamentos médicos. Eles também são

encontrados nos setores financeiros, distribuição de energia, telecomunicações, transportes,

construção civil, aeroespacial, entre outros (UEL, 2024).

No âmbito do automobilismo, esses sistemas estão em quase todos os lugares, desde

simples sensores para detecção do encaixe de cintos de segurança quando o veículo está

em movimento, quanto para regular partes mais funcionais como a direção ou frenagem.

Eles também são empregados em funções mais sofisticadas como em assistentes de

direção (CHEN et al., 2009), medindo uma distância ou enviando alertas para notificar o

motorista sobre uma possível colisão (KATARE; EL-SHARKAWY, 2019), ou até mesmo

direção autônoma (MUSTAFA; KHABOUR; MUSTAFEH, 2024).

2.2 Telemetria

O avanço do poder computacional ocorrido nas últimas décadas nos dispositivos mi-

crocontroladores, bem como a constante diminuição do tamanho desses equipamentos,

catalisou um grande avanço no sistema de sensoriamento remoto. Isso proporcionou fenô-

menos como o da indústria 4.0 e internet das coisas. No âmbito do automobilismo, a

28

telemetria apresenta papel crucial pois fornece dados em tempo real sobre o desempenho

do veículo, bem como o comportamento do piloto. Dentre os dados mais comuns podemos

encontrar a velocidade do veículo, consumo de gasolina ou bateria, e temperatura dos

motores e pneus. Com esses dados, os engenheiros podem tomar decisões estratégicas

imediatas, ajustar configurações do carro, além de ajudar na identificação de problemas me-

cânicos antes que se tornem críticos, permitindo a realização de manutenções preventivas

e aumentando a segurança dos pilotos (TOTVS, 2024).

2.3 Protocolo Controller Area Network (CAN)

Para obtenção dos dados do veículo, foi utilizado o protocolo CAN (Controller Area

Network), o qual foi desenvolvido pela BOSCH como um sistema de transmissão de mensa-

gens multimestre. O protocolo é definido pela ISO-11898: 2003 desenvolvido originalmente

para a indústria automotiva para substituir o complexo chicote de fiação por um barramento

de dois fios. No entanto, o protocolo foi difundido e se popularizou em uma variedade de

indústrias, incluindo automação predial, médica e manufatura. A especificação do protocolo

CAN exige alta imunidade à interferência elétrica e a capacidade de autodiagnosticar e repa-

rar erros de dados. Além disso, o protocolo especifica uma taxa máxima de sinalização de 1

megabit por segundo (bps). Ao contrário de uma rede tradicional como USB ou Ethernet, o

CAN não envia grandes blocos de dados entre seus nós (CORRIGAN, 2002).

No protocolo CAN há uma rede composta por um conjunto de nós (dispositivos) que são

interconectados por um par de fios de transmissão de dados, conhecido como barramento,

esses fios são chamados de CAN high e CAN low. Os dados transmitidos são recebidos

por todas as outras ECUs na rede, então cada uma verifica os dados e decida se deseja

aceitá-los ou ignorá-los, como ilustra a Figura 4. A comunicação no protocolo é feita via

CAN frames, ilustrado na Figura 5, que consiste na mensagem enviada pelo barramento,

composta por oito sessões definidas na Tabela 1.

Figura 4 – Diagrama da Rede CAN, mensagem enviada, recebida e ignorada (CSS-
ELECTRONICS, 2023).

29

Figura 5 – Estrutura de um Frame do protocólo CAN (CSS-ELECTRONICS, 2023).

Tabela 1 – Estrutura do Frame CAN

Sigla Descrição Definição
SOF Start of Frame Bit dominante de valor ‘0’, indica o início de uma

nova mensagem CAN, alertando os nós sobre a
transmissão.

ID Identificador do Frame Define a prioridade do frame no barramento, com
prioridade descendente.

RTR Remote Transmission
Request

Informa se a mensagem está enviando ou solici-
tando dados.

Control Controle Inclui o bit de extensão do identificador (IDE), que
é dominante para identificadores de 11 bits, e o
código de comprimento de dados (DLC) de 4 bits,
que especifica o número de bytes de dados (0 a 8)
a serem transmitidos.

Data Dados de Payload Contêm a carga útil da mensagem, constituída por
bytes de dados que incluem sinais CAN específicos,
os quais podem ser extraídos e decodificados para
obter informações relevantes do sistema.

CRC Verificação de Redun-
dância Cíclica

Método para verificar a integridade dos dados trans-
mitidos, garantindo que não houve erros durante a
transmissão do frame.

ACK Acknowledgment Slot Confirma que o frame foi recebido com sucesso por
ao menos um nó, garantindo a comunicação efetiva
na rede.

EOF End of Frame Delimita o final da mensagem CAN, assegurando
que todos os nós reconheçam o término do frame
de dados.

2.4 Registrador de Dados de um Barramento CAN

Um CAN Bus Data Logger é um dispositivo utilizado para capturar e registrar mensagens

transmitidas em uma rede CAN, amplamente utilizada em automóveis e sistemas industriais.

Esse tipo de equipamento de registro monitora o barramento de comunicação, capturando

dados como a velocidade do veículo, status dos sensores, e diagnósticos do motor, para

análise posterior ou em tempo real (ELECTROMATE, 2024). Ele é particularmente útil

em testes, diagnósticos e desenvolvimento de sistemas embarcados, permitindo a aná-

lise de comportamento do veículo ou equipamento em diversas condições operacionais

30

(PHYTOOLS, 2024).

2.5 Protocolos de Comunicação com Fio

Neste projeto, dois protocolos de comunicação amplamente utilizados foram empregados

para garantir a transferência eficiente de dados entre os dispositivos. A primeira parte

envolveu o uso da comunicação Universal Asynchronous Receiver-Transmitter (UART),

enquanto a segunda utilizou a Serial Peripheral Interface (SPI). Ambos os protocolos

desempenharam papéis essenciais na troca de informações entre a ESP32, o transceptor

de CAN e o computador. A seguir, apresentamos uma explicação sobre o funcionamento de

cada um desses protocolos. Mesmo a CAN sendo um protocolo de comunicação com fio,

ela recebeu uma seção própria por causa de sua relevância para o presente projeto.

2.5.1 Universal Asynchronous Receiver-Transmitter (UART)

Neste projeto, a comunicação UART foi utilizada em dois momentos: o primeiro deles

para fazer a comunicação entre o transceptor de CAN e a ESP32. Já em um segundo

momento, esse protocolo foi utilizado para transmitir dados entre o transmissor, também

uma ESP32, e o computador, a um baud rate de 115200 bps.

A UART opera transmitindo dados como uma série de bits, incluindo um bit de início, bits

de dados, um bit de paridade opcional e bits de parada. Diferentemente da comunicação

paralela, em que vários bits são transmitidos simultaneamente, a UART envia dados em

série, um bit de cada vez. Como o nome revela, o protocolo opera de forma assíncrona, o

que significa que ele não depende de um sinal de relógio compartilhado. Em vez disso, ele

usa baud rates predefinidas para determinar o tempo dos bits de dados (SIEBENEICHER,

2024).

Os principais componentes da UART incluem o transmissor, o receptor e a taxa de

transmissão. O transmissor coleta dados de uma fonte, formata-os em bits seriais e os

envia por meio de um pino TX (Transmit). O receptor os recebe por meio de um pino RX

(Receive), processa os dados seriais recebidos e os converte em dados paralelos para

o sistema hospedeiro. A taxa de transmissão determina a velocidade da transmissão de

dados (SIEBENEICHER, 2024).

2.5.2 Serial Peripheral Interface (SPI)

O SPI é uma interface síncrona e full duplex (os dados podem ser transmitidos e

recebidos simultaneamente em ambas as direções), baseada em uma arquitetura de

principal e subnós. Os dados entre o principal e o subnó são sincronizados na borda

ascendente ou descendente do sinal de relógio. Tanto o principal quanto o subnó podem

transmitir dados simultaneamente. A interface SPI pode ser configurada com 3 ou 4 fios, e o

31

dispositivo que gera o sinal de relógio é denominado principal. Os dados transmitidos entre

o principal e o subnó são sincronizados com o clock gerado pelo principal (DHAKER, 2018).

O sinal de seleção de chip do principal é utilizado para selecionar o subnó. Tipicamente,

este é um sinal ativo em nível baixo, que é puxado para alto para desconectar o subnó

do barramento SPI. Quando vários subnós são utilizados, um sinal de seleção de chip

individual para cada subnó é necessário a partir do principal. MOSI e MISO são as linhas de

dados: MOSI transmite dados do principal para o subnó, enquanto MISO transmite dados

do subnó para o principal (DHAKER, 2018).

2.6 Protocolos de Comunicação sem Fio

No projeto, foi utilizado o protocolo de comunicação de rádio frequência LoRa. Nesta

seção, apresentamos os motivos que justificam a escolha deste protocolo, bem como

uma comparação entre o LoRa e outros protocolos disponíveis no mercado, como Wi-

Fi, Bluetooth e ZigBee. Exceto o LoRa, os protocolos mencionados estão integrados no

microcontrolador utilizado no projeto, eliminando a necessidade de periféricos adicionais.

2.6.1 Protocolo LoRa

LoRa, abreviação de long range, consiste em uma técnica de modulação derivada da

tecnologia chirp spread spectrum (CSS). A plataforma LoRa da Semtech, possui longo

alcance e baixo consumo de energia, por isso tornou-se padrão para projetos de Internet

das Coisas (IoT). Dispositivos e redes LoRa, como o LoRaWAN possibilitam soluções para

vários desafios de engenharia como o gerenciamento de energia, diminuição do uso de

recursos naturais, controle de poluição, aumento da eficiência de infraestrutura e prevenção

de desastres (Semtech Corporation, 2015).

O módulo LoRa escolhido foi o RA-01 da fabricante chinesa Ai-Thinker, o componente

foi baseado no chip SX1278, o qual opera na faixa de frequência de 410 a 525MHz, sendo

amplamente utilizado para comunicação de espectro de propagação de distância ultra

longa. O módulo utiliza interface de comunicação SPI com taxa de bits programável de até

300kbps, com potência máxima de saída de 20dBm e sensibilidade de −141dBm. Por fim,

é importante mencionar que o RA-01 possui tensão de alimentação de 3, 3V e deve ter uma

corrente superior a 200mA, caso contrário a transmissão ou o alcance são comprometidos

(Ai-Thinker Technology Co., Ltd., 2024).

Os principais parâmetros para avaliar a qualidade de recepção de um sinal LoRa são

o RSSI e a SNR. Ambos esses parâmetros são fornecidos pelo componente RA-01 e são

essenciais para garantir a integridade e a eficiência da comunicação. O RSSI e a SNR são

utilizados para monitorar e otimizar o desempenho do sistema, permitindo ajustes finos

que asseguram uma transmissão de dados robusta e confiável. Através da análise desses

32

parâmetros, foi possível identificar possíveis interferências ou problemas de sinal, tomando

medidas corretivas para manter a qualidade da comunicação em níveis ideais.

O RSSI, Received Signal Strength Indicator, é uma métrica utilizada em sistemas de

comunicação sem fio para medir a potência do sinal recebido por um dispositivo, expressa

em decibéis-miliwatts (dBm). Esse valor indica a intensidade do sinal que chega ao receptor,

sendo utilizado para avaliar a qualidade da comunicação entre o transmissor e o receptor.

O RSSI geralmente varia de valores mais próximos de 0dBm, que indicam um sinal forte, a

valores negativos mais baixos, como −100dBm, que correspondem a sinais mais fracos

e de menor confiabilidade. No contexto de redes de longa distância e baixa potência,

como LoRa, o RSSI é crucial para determinar a viabilidade de enlaces de comunicação

em cenários desafiadores, onde o sinal pode ser degradado por interferências, distâncias

elevadas ou obstáculos físicos (The Things Network, 2024).

Já a Razão Sinal-Ruído (SNR) é a relação entre a potência do sinal recebido e o nível de

potência do ruído. Normalmente, o piso de ruído é o limite físico de sensibilidade, no entanto,

o LoRa opera abaixo desse nível. Os valores típicos de SNR estão entre −20dB e +10dB.

Um valor mais próximo de +10dB indica que o sinal recebido está menos corrompido.

Além disso, esse protocolo tem a capacidade de demodular sinais entre −7, 5dB a −20dB

abaixo do piso de ruído. Esta característica permite operações em condições nas quais

outros sistemas falhariam, dessa forma garante robustez e adaptabilidade em ambientes de

comunicação desafiadores(The Things Network, 2024).

Nesse projeto foi utilizado a forma de comunicação chamada LoRa P2P (Peer to Peer)

na qual ao invés da criação de uma rede de comunicação complexa, como é feito no caso do

LoRaWan, foi implementado um sistema simples no qual duas antenas trocam mensagens.

Uma segunda simplificação foi feita, na qual uma das antenas é sempre um receptor e outra

é sempre um transmissor. A antena Receptora foi conectada a um computador para realizar

a comunicação com o sistema de banco de dados. Já a antena transmissora foi instalada

no dispositivo de medição.

2.6.2 Wi-Fi

O Wi-Fi teve sua origem no Havaí em 1971, com a criação da rede de pacotes UHF

sem fio chamada ALOHAnet, utilizada para conectar as ilhas. Protocolos subsequentes,

desenvolvidos em 1991 pela NCR e AT&T e denominados WaveLAN, tornaram-se os

precursores dos padrões IEEE 802.11 (WaTech, 2024). Atualmente, o Wi-Fi é amplamente

utilizado em ambientes domésticos e vias públicas, operando nas frequências de 2,4 GHz,

5 GHz e 6 GHz. Seu alcance varia entre 30 e 100 metros, dependendo da frequência e do

ambiente. A taxa de transmissão pode variar de 600 Mbps até 7 Gbps.

33

2.6.3 Bluetooth

O Bluetooth é uma tecnologia de comunicação sem fio padronizada pelo IEEE 802.15.1,

projetada para conexões de curto alcance em aplicações de baixo consumo de energia.

Opera em frequências de 2,4 GHz utilizando a técnica de espectro espalhado por salto

de frequência (FHSS), o que reduz interferências. Seu alcance varia conforme a classe

do dispositivo variando de 10 a 100m, dependendo das condições ambientais e tipo de

dispositivo. As taxas de transmissão de dados também diferem entre versões com taxa de

dados entre 1 Mbps e 3 Mbps (INTEL, 2024).

2.6.4 ZigBee

Em 2002, foi criada a ZigBee Alliance, uma associação de empresas, universidades e

agências governamentais com o objetivo de desenvolver o protocolo ZigBee. Este protocolo

sem fio, baseado no padrão IEEE 802.15.4, foi projetado para redes de baixo consumo de

energia e alta densidade de dispositivos, com foco em aplicações de IoT. Por isso, é comum

sua utilização em monitoramento e controle industrial, automação residencial e sistemas

de energia (UFRJ, 2017). O ZigBee opera principalmente na frequência de 2,4 GHz, mas

também pode usar 868 MHz e 915 MHz em algumas regiões, com taxas de transmissão

de dados variando entre 20 kbps e 250 kbps, dependendo da banda de frequência. Com

alcance de 10 a 75 metros, este protocolo é altamente eficiente no consumo de energia,

permitindo que dispositivos operem por anos com baterias de baixa capacidade.

2.6.5 Escolha do Protocolo

Entre os protocolos citados, foi escolhido o LoRa devido ao seu maior alcance em

comparação com os outros protocolos avaliados. Embora apresente a menor taxa de dados

entre eles, essa taxa é suficiente para atender à demanda do projeto, como indica a Tabela

2. Além disso, o LoRa possui elevada imunidade a obstáculos, uma característica crucial

para um equipamento destinado ao uso em campo.

34

Tabela 2 – Comparação entre os protocolos Wi-Fi, Bluetooth, ZigBee e LoRa (ABDERRAH-
MANE; NOURREDINE; MOHAMMED, 2024).

Critério Wi-Fi Bluetooth ZigBee LoRa
Frequência de banda 2.4 e 5 GHz 2.4 GHz 2.4 GHz

(Global)
868 MHz (Europa),
915 MHz (America
do Norte), 433 MHz
(Asia)

Taxa de dados 600 Mbps- 7
Gbps

1 - 3
Mbps

20-250
kbps

0.3 - 50 kbps

Consumo de potência Relativamente
alto

Baixo a
mode-
rado

Muito baixo Muito baixo

Imunidade a obstáculos
(Shadowing)

Moderado a
baixo

Moderado
a alto

Alto Alto

2.7 Sistemas Operacionais de Tempo Real

Neste projeto, foi utilizado um sistema operacional de tempo real, o FreeRTOS. Assim,

esta seção tem como objetivo, primeiramente, apresentar uma definição desse tipo de

sistema e discutir os principais conceitos relacionados. Além disso, são destacadas as

vantagens que ele pode oferecer em projetos de engenharia. Posteriormente, esta seção

fundamenta a escolha do sistema operacional de tempo real para o projeto. Para isso, foram

listados os RTOS disponíveis no mercado e, ao final, realizado um comparativo entre eles,

justificando a escolha do FreeRTOS.

Para compreender os Sistemas Operacionais de Tempo Real (RTOS), é importante

começar pela definição de um sistema operacional. De acordo com (ANH; TAN, 2009), um

sistema operacional é uma coleção especializada de programas que gerenciam os recursos

físicos de um computador. No entanto, o conceito de "tempo real"pode ser amplamente

mal interpretado. Na linguagem cotidiana, muitas pessoas associam "em tempo real"a

algo "imediato"ou "instantâneo"(TANENBAUM; BOS, 2022). Embora esses sistemas sejam

caracterizados pela relevância do tempo como parâmetro essencial, um sistema em tempo

real é, na realidade, um sistema computacional que deve atender a restrições temporais

rígidas cujo descumprimento pode levar a consequências graves, incluindo falhas críticas

(LAPLANTE, 2011). Os sistemas em tempo real podem ser classificados em três categorias

principais: hard real-time, soft real-time e firm real-time systems. A Tabela 3 apresenta um

resumo dessas categorias, incluindo exemplos práticos.

2.7.1 Sistemas Hard Real-Time

Devem fornecer garantias absolutas de que uma ação ocorrerá dentro de um prazo

específico. A falha em cumprir esse prazo pode resultar em catástrofe. Por exemplo, em uma

linha de montagem automotiva, ações como a soldagem de componentes precisam ocorrer

35

em momentos precisos; um erro de tempo pode comprometer todo o veículo (LAPLANTE,

2011).

2.7.2 Sistemas Soft Real-Time

Permitem algum nível de flexibilidade em relação aos prazos. Embora a perda ocasional

de um prazo seja indesejável, ela é aceitável e não causa danos permanentes. Exemplos

incluem sistemas de áudio ou multimídia digital (LAPLANTE, 2011).

2.7.3 Sistemas Firm Real-Time

Representam uma categoria intermediária entre os dois anteriores. Nesse caso, perder

prazos esporádicos não implica falha total, mas exceder um certo limite pode causar danos

graves ou falhas catastróficas ao sistema (LAPLANTE, 2011).

Tabela 3 – Exemplos de sistemas em tempo real (LAPLANTE, 2011).

Classificação Sistema Explicação
Hard Sistema de lançamento de ar-

mas aviônicas em que pressio-
nar um botão lança um míssil
ar-ar.

Perder o prazo para lançar o mís-
sil dentro de um tempo especificado
após pressionar o botão pode fazer
com que o alvo seja perdido, o que
resultará em catástrofe.

Firm Controlador de navegação para
um robô herbicida autônomo

Perder alguns prazos de navegação
faz com que o robô se desvie de um
caminho planejado e danifique algu-
mas colheitas.

Soft Jogo de hóquei para console Perder até mesmo vários prazos só
irá degradar o desempenho.

2.7.4 Componentes

Um sistema operacional em tempo real é constituído por diversos componentes. As

próximas seções têm como objetivo definir aqueles abordados neste relatório, a saber:

tasks, scheduler e kernel.

2.7.4.1 Task

Uma task (ou "tarefa", em português) é o objeto ativo de um sistema de tempo real e

representa a unidade básica de processamento gerenciada pelo agendador (LAPLANTE,

2011). Ela é definida como uma thread com estado, incluindo elementos como pilha,

registradores, contador de programa (PC), manipuladores de sinal, variáveis de tarefa,

ID e nome da tarefa, prioridade, ponto de entrada e dados relacionados ao estado e à

comunicação entre tarefas (SIEWERT, 2016).

36

2.7.4.2 Scheduler

Um scheduler (ou "agendador", em tradução livre) é o algoritmo utilizado por um RTOS

para organizar a execução de tarefas. O agendador decide qual delas será executada em

cada CPU do sistema em um dado momento como ilustra a Figura 6. Para isso, ele utiliza a

fila de execução, que é composta por tarefas que podem estar em execução ou aguardando

a oportunidade de serem executadas (SIEWERT, 2016).

Figura 6 – Sistema em tempo real como uma sequência de tarefas programáveis (LA-
PLANTE, 2011).

O agendamento é uma função primária de sistemas operacionais, especialmente em

ambientes de tempo real. Para atender aos requisitos temporais de um programa, é fun-

damental adotar uma estratégia sólida que ordene o uso dos recursos do sistema, além

de prever o pior desempenho (ou tempo de resposta) associado a uma política de agenda-

mento específica. De modo geral, as políticas de agendamento podem ser classificadas em

duas categorias principais: pré-tempo de execução e tempo de execução. O objetivo central

de ambas é garantir que as especificações de tempo de resposta sejam rigorosamente

atendidas (LAPLANTE, 2011).

No agendamento de pré-tempo de execução, todas as decisões sobre a ordem de

execução das tarefas são tomadas antes da execução do programa. Essa abordagem

é útil em sistemas onde as tarefas são bem definidas e previsíveis. Por outro lado, o

agendamento de tempo de execução toma decisões durante a execução do programa,

permitindo maior flexibilidade e adaptação a eventos dinâmicos, como a chegada de novas

tarefas ou mudanças nos requisitos do sistema (SIEWERT, 2016)..

2.7.4.3 Kernel

O kernel é o componente central do sistema operacional responsável pelo controle

direto de todos os recursos críticos, como CPU, memória e dispositivos de entrada e saída.

Ele atua como uma ponte entre o hardware e o software, sendo acessado por aplicativos

por meio de APIs, por exemplo (SIEWERT, 2016).

37

2.7.5 Vantagens

Esta seção tem como objetivo explicar as principais vantagens de se utilizar um sistema

em tempo real neste projeto. Conforme já descrito, a priorização de tarefas pode ajudar

a garantir que um aplicativo cumpra seus prazos de processamento. Além disso, o kernel

pode oferecer outros benefícios menos óbvios, como a modularidade, pois as tarefas são

módulos independentes, cada um com um propósito bem definido (BARRY, 2016).

A abstração de informações temporais é outra vantagem significativa. O kernel é respon-

sável pelo gerenciamento do tempo de execução e fornece uma API relacionada ao tempo

para o aplicativo. Isso simplifica a estrutura do código, reduzindo o tamanho geral e as

interdependências entre módulos. Como resultado, o software pode evoluir de forma mais

controlada e previsível. Além disso, o desempenho do aplicativo torna-se menos suscetível

a mudanças no hardware subjacente, uma vez que a abstração temporal é gerenciada pelo

kernel (BARRY, 2016).

Outra vantagem relevante desses sistemas é a maior eficiência energética. Utilizar um

kernel permite que o software seja totalmente orientado a eventos, evitando desperdício de

tempo de processamento ao verificar eventos inexistentes. O código é executado apenas

quando há algo a ser feito, permitindo que o processador permaneça por mais tempo em

modos de baixo consumo de energia (BARRY, 2016).

2.7.6 RTOSs Presentes no Mercado

Nesta seção, são apresentados três dos sistemas operacionais em tempo real (RTOS)

amplamente utilizados em aplicações embarcadas: EmbOS, FreeRTOS e Zephyr. Cada um

deles possui características específicas que os tornam adequados para diferentes tipos

de projetos, variando desde aplicações industriais robustas até dispositivos com recursos

limitados. A seguir, são descritas suas principais características, funcionalidades e casos de

uso, oferecendo uma visão geral de suas vantagens e aplicações no desenvolvimento de

sistemas embarcados.

2.7.7 EmbOS

O EmbOS é uma família de sistemas operacionais em tempo real projetada para

servir como base para o desenvolvimento de aplicativos embarcados, com quatro décadas

de desenvolvimento pela Segger. O EmbOS está disponível para vários processadores,

compiladores e ferramentas de desenvolvimento, o que demonstra alta compatibilidade com

diferentes dispositivos. A família EmbOS inclui o embOS-Safe, embOS-MPU, embOS-Base

e embOS-Ultra.

O EmbOS é adequado para uma ampla gama de aplicações, especialmente no setor

industrial, onde frequentemente opera com microcontroladores ou processadores. Além

38

disso, possui certificações relevantes, como IEC 61508 SIL 3, IEC 62304 Class C e ISO

26262 ASIL D (Segger, 2023).

2.7.8 FreeRTOS

Distribuído gratuitamente sob a licença de código aberto MIT, o FreeRTOS inclui um

kernel e um conjunto crescente de bibliotecas, sendo amplamente utilizado em diversos

setores industriais (FreeRTOS, 2024). Desenvolvido com ênfase na confiabilidade e na

facilidade de uso, o FreeRTOS é mantido pela Real Time Engineers Ltd em parceria com

as principais empresas de chips do mundo há mais de uma década. Esse sistema operaci-

onal oferece um software premiado e de alta qualidade, ideal para aplicações em tempo

real profundamente embarcadas que utilizam microcontroladores ou microprocessadores

pequenos. Esses aplicativos geralmente combinam requisitos de tempo real hard e soft

(BARRY, 2016).

2.7.9 Zephyr

O Zephyr Project é um esforço colaborativo de código aberto hospedado pela Linux

Foundation. Ele reúne desenvolvedores e usuários para construir um sistema operacional

pequeno, escalável e de tempo real, otimizado para dispositivos com recursos limitados e

projetado para suportar diversas arquiteturas (Zephyr, 2023). O projeto Zephyr é neutro e

permite que fornecedores de silício, OEMs, ODMs, ISVs e OSVs contribuam com tecno-

logias que reduzem custos e aceleram o tempo de lançamento de bilhões de dispositivos

embarcados conectados ao mercado. Suas aplicações incluem sensores simples, dispo-

sitivos wearables de LED, modems e pequenos gateways sem fio. O Zephyr é modular,

oferecendo flexibilidade e suporte a múltiplas arquiteturas (Zephyr, 2023).

2.7.10 Comparações

O sistema operacional de tempo real escolhido neste projeto foi o FreeRTOS. Na Tabela

4, apresenta-se uma comparação entre as principais características dos sistemas descritos.

O principal motivo da escolha foi a vasta documentação disponível, tanto em sites da

internet quanto em livros escritos pelo fabricante. Outro motivo foi o suporte a uma ampla

variedade de microcontroladores e arquiteturas de processadores, facilitando a portabilidade

de hardware futuras. O fato de esse sistema ser gratuito também contribuiu para a escolha

final. Por fim, destaca-se o fato de que esse sistema já vem instalado de fábrica no ambiente

de desenvolvimento da ESP32, ou seja, não foi necessário nenhum tipo de configuração

prévia.

39

Tabela 4 – Comparação entre os sistemas operacionais de tempo real avaliados.

EmbOS FreeRTOS Zephyr
Licença Comercial MIT license Apache-2.0 license
Pegada de memória 1,7 kB 5 – 10 kB 7 – 8 kB
Comunidade Menor, mas expe-

riente
Grande, com suporte
comercial (AWS)

Crescente, com su-
porte da Linux Foun-
dation

Nativo na ESP32 Não Sim Não
Especialidade Microcontroladores

de baixo custo
IoT, dispositivos co-
nectados

Aplicações industriais
de alta performance

2.8 Dashboard

A utilização de dashboards, painel de exibição de dados em português, em projetos

de Internet das Coisas é fundamental para a visualização e análise em tempo real dos

dados coletados, permitindo que engenheiros e operadores acompanhem o desempenho

do sistema e identifiquem anomalias rapidamente. Um exemplo de painel disponível no

mercado, que ilustra essa funcionalidade, pode ser visualizado na Figura 7.

O painel desenvolvido para este projeto fornece uma visão detalhada e organizada de

parâmetros críticos do veículo, incluindo dados de localização GPS, velocidade e aceleração.

Além disso, são exibidas os estados de componentes essenciais, como a presença de panes

elétricas ou possíveis sobrecargas da bateria, promovendo uma análise abrangente do

estado operacional do veículo.

Para desenvolver a interface gráfica do painel, utilizou-se o pacote Streamlit, uma ferra-

menta de código aberto que permite criar aplicações web interativas e personalizadas com

facilidade. O Streamlit, lançado em 2018 e cofundado por Adrien Treuille, Amanda Kelly e

Thiago Teixeira, foi criado com o objetivo de fornecer uma interface gráfica de usuário (GUI)

simplificada para aplicações em Python, facilitando a visualização de dados sem a neces-

sidade de conhecimentos avançados em desenvolvimento web (MHADHBI, 2021). Essa

escolha se justificou pela capacidade da ferramenta de atualizar os dados em tempo real e

sua facilidade de integração com bibliotecas de visualização em Python, permitindo que

o dashboard interativo atendesse aos requisitos de responsividade e praticidade exigidos

pelo projeto.

40

Figura 7 – Exemplo de dashboard automobilístico encontrado no mercado (CSS-
ELECTRONICS, 2024).

Para fazer o armazenamento de dados foi utilizado um banco de dados SQLite. Devido

a sua simplicidade de implementação e manutenção. Para realizar a programação do banco

de dados foi utilizado o pacote de Python SQLAlchemy, o qual permite aos desenvolvedores

acessar e gerenciar bancos de dados SQL usando a linguagem de domínio Pythonic (AWAN,

2024). Devido aos acessos simultâneos ao banco e períodos longos de espera de entradas,

foi utilizado o modelo assíncrono de gerenciamento de entrada e saida. Para implementação

foi utilizado a biblioteca asyncio do Python a qual facilitando a execução de múltiplas tarefas

de forma concorrente sem bloquear o fluxo do programa. Com ela é possível lidar com várias

requisições simultaneamente, permitindo que o programa continue executando outras tarefas

enquanto aguarda uma resposta de uma operação (PYTHON-SOFTWARE-FOUNDATION,

2023).

No contexto do módulo de banco de dados, o asyncio foi utilizado para gerenciar

consultas e inserções de dados de maneira eficiente, otimizando o desempenho e o tempo

de resposta do sistema. No âmbito do projeto documentado nesta monografia, o CAN-

BUS Data Logger foi desenvolvido como uma solução de baixo custo para atender as

necessidades de validação de projeto da equipe EESC-USP TUPÃ. Para realizar a leitura

dos dados foi utilizado a leitura dos frames presentes no protocolo CAN, para transmissão

foi utilizado uma antena LoRa com alcance que atendesse as necessidades da equipe no

contexto de prova, levando em consideração o tamanho das pistas. Por fim foi desenvolvida

uma dashboard visando melhor atender as necessidades do usuário final.

41

3 MATERIAL E MÉTODOS

No desenvolvimento tanto dos receptores quanto dos transmissores foram utilizadas

placas de desenvolvimento ESP32. Foi escolhido esta família de dispositivos devido ao baixo

custo e alta quantidade de componentes já embarcadas na placa de desenvolvimento, como

módulos de Wi-Fi e Bluetooth e um controlador de rede CAN, além de possuírem o sistema

operacional FreeRTOS instalado no firmware por padrão. Os transceptores utilizados foram

um SN65HVD230 e outro MCP2515, para leitura dos dados provenientes do veículo, o

primeiro foi utilizado no no módulo que simulava o comportamento do veículo já que esse

estava sendo em fases iniciais de projeto durante a execução do presente trabalho. Já

o SN65HVD230 foi utilizado no transmissor, ou seja é parte integrante desse trabalho.

Também foram utilizados dois módulos de antenas RA-01 cujo chip de rádio é o SX1278.

Para o desenvolvimento do código foi utilizado o framework de Arduino, pois ele oferecia

um vasto conjunto bibliotecas para realizar a interface com os periféricos obtidos. Ademais

foi utilizado o sistema operacional FreeRTOS para fazer o gerenciamento de tasks e

interrupções, bem como da comunicação entre essas funções por meio de filas. Por fim

foi utilizado o ambiente de desenvolvimento PlatformIO, uma extensão do Visual Studio

Code, foi feita esta escolha porque é possível utilizar todo o ambiente de desenvolvimento

do editor de texto e reutilizar o código entre placas da mesma familia.

Como o protótipo do Tupã não estava finalizado durante boa parte do desenvolvimento

deste projeto, foi utilizado um conjunto de dados obtido em Ridha (2019) com dados

de GPS para fazer parte da validação do projeto, através de um módulo que simula do

comportamento do veículo. Estes dados forneciam informações de latitude, longitude e

velocidade. Os dados de latitude e longitude, em especial, deveriam ter uma base de

realidade pois há um mapa exibido a posição do veículo em um mapa e por isso deveria ter

uma sequência lógica de valores. Os estados foram obtidas ou por operações matemáticas

sobre os dados referenciados acima, ou por meio de valores simulados, a citar APPS,

Buzzer, Brake, Botão de Partida e Shutdown.

Foram desenvolvidos dois dispositivos e uma dashboard, tela de exibição de dados. O

dispositivo de transmissão é responsável por ler os dados do barramento CAN do veículo e

transmitir esses dados por meio do protocolo LoRa para o receptor, ele está esquematizado

na Figura 11. O transceiver de CAN utilizado no TX, conectado ao veículo, foi utilizado o

modo de operação Listen Only Mode, pois este modo impede que o dispositivo participe

da atividade do barramento. Neste modo de operação as transmissões de mensagens,

confirmação, quadros de erro serão desativadas. Entretanto, o controlador CAN recebe

mensagens sem confirmação. O que o torna ideal para a aplicação do projeto (ESPRESSIF,

2024).

42

3.1 Periféricos de CAN

Neste projeto, dois dispositivos foram utilizados para interfacear com o protocolo CAN: o

MCP2515 e o SN65HVD230. O MCP2515 foi empregado no microcontrolador que simulava

o comportamento do veículo, desempenhando um papel auxiliar para testes e validações,

mas não fazendo parte do projeto final. Já o SN65HVD230 é o dispositivo responsável por

fazer a interface com a rede CAN no projeto, na Tabela 5 há um comparativo entre esses

dois dispositivos.

O MCP2515, presente na Figura 8, é responsável pela camada de enlace da comuni-

cação, implementando o protocolo CAN, incluindo funções como controle de acesso ao

barramento e manipulação de mensagens padrão e estendidas. Ele se comunica com o mi-

crocontrolador por meio do protocolo SPI e precisa de um transceptor CAN para interfacear

com o barramento físico. Esse controlador é amplamente usado para adicionar suporte a

CAN em microcontroladores que não possuem essa funcionalidade embutida. Entre suas

características estão a compatibilidade com taxas de dados de até 1 Mbps, buffers internos

para mensagens e suporte a mensagens padrão e estendidas (MICROCHIP, 2019).

Figura 8 – Periférico MCP2515.

Por outro lado, o SN65HVD230, presente na Figura 9, atua na camada física, conver-

tendo os sinais digitais do controlador em sinais diferenciais para o barramento CAN e

vice-versa. Ele se conecta ao microcontrolador integrado e ao barramento físico por meio

dos terminais CANH e CANL. Este transceptor possui alta imunidade a ruídos, suporte a

velocidades de até 1 Mbps e é compatível com tensões de 3,3V, sendo ideal para sistemas

modernos (TI, 2018).

43

Figura 9 – Periférico SN65HVD230.

Tabela 5 – Comparativo entre os transceptores CAN MCP2515 e SN65HVD230.

Característica MCP2515 SN65HVD230
Função Controlador CAN Transceptor CAN
Tarefas Gerencia a comunicação, gera fra-

mes, filtra mensagens.
Converte sinais elétricos, isola a
rede.

Interface SPI UART

3.2 Módulo LoRa

Os módulos Ra-01, retratado na Figura 10, possuem o chip de rádio SX1268, que utiliza

o modem remoto LoRa para comunicação de espectro espalhado de longa distância. Ele

apresenta forte capacidade anti-interferência e baixo consumo de corrente. Com a tecnologia

de modulação LoRa patenteada pela SEMTECH, o SX1268 oferece alta sensibilidade

(superior a -148dBm), potência de saída de +22dBm, longa distância de transmissão e

alta confiabilidade. Suas áreas de aplicação incluem leitura automática de medidores,

automação residencial, sistemas de segurança e sistemas de irrigação remota(Ai-Thinker

Technology Co., Ltd., 2024).

44

Figura 10 – Periférico Ra-01.

3.3 ESP32

A ESP32 é uma plataforma de microcontrolador de baixo custo, desenvolvida pela

Espressif Systems. Este dispositivo é equipado com conectividade sem fio, como Wi-Fi

e Bluetooth, tornando-o uma opção popular para aplicações em sistemas embarcados.

A ela integra diversas funcionalidades em um único chip, incluindo múltiplos núcleos de

processamento, memória RAM e flash, além de diversos periféricos para interfaces de

comunicação. Entre eles, destaca-se o suporte a Controller Area Network (CAN) através

de um controlador embarcado. A ISO11898 que define o protocolo CAN é nomeado de

Two-Wire Automotive Interface (TWAI), pois o nome CAN é propriedade intelectual da alemã

Bosch (ESPRESSIF-SYSTEMS, 2024).

3.4 Transmissor e Receptor

O transmissor (TX), esquematizado na Figura 11, funciona da seguinte maneira: quando

uma mensagem CAN chega no barramento, ocorre uma interrupção de hardware que chama

uma função responsável por fazer a leitura da mensagem do barramento CAN. Essa função,

chamada pela ISR (Interruption Service Routine), acessa o barramento CAN e realiza a

leitura do frame de dados.

Uma vez que o frame foi lido, a informação é colocada em uma fila do FreeRTOS,

que irá armazenar os dados de forma segura. Para garantir que as tarefas que precisam

processar essa mensagem CAN não tentem acessar a fila ao mesmo tempo, foram utilizados

45

semáforos. Quando a interrupção é terminada esse dado é lido da fila por uma task

responsável por efetuar a transmissão LoRa, a Figura 12 retrata esses processo.

Figura 11 – Diagrama do componente Transmissor (TX).

Figura 12 – Diagrama da lógica de programação implementada no transmissor.

Já o dispositivo receptor, tem como responsabilidade receber os dados vindos do

transmissor e enviar via serial para o computador, representado pela Figura 13. O dado

chega ao receptor por meio do protocolo LoRa, então ele é transmitido via serial para o

computador. Esse protocolo foi escolhido pois além de sua facil implementação, ele já se

encarrega de fornecer energia a ESP32, essa lógica é ilustrada na Figura 14 . Quando o

dado é recebido no computador é verificado em qual tabela a informação será armazenada,

por meio do ID do frame da CAN, depois possíveis processamentos podem ser feitos, como

mudança de tipos ou operações matemáticas. Essa informação então é salva em um banco

de dados e então exibida para o usuário.

Figura 13 – Diagrama do componente Receptor (RX)

46

Figura 14 – Diagrama da lógica de programação implementada no receptor.

O protocolo LoRa foi escolhido para este projeto devido à sua capacidade de comunica-

ção de longo alcance, essencial para superar a distância entre o veículo (transmissor) e o

notebook (receptor), que pode ultrapassar 200 metros em linha reta. Esse requisito torna

inviável o uso de protocolos de comunicação de curto alcance, como Bluetooth e Wi-Fi,

embora estejam disponíveis no chip ESP32.

Para validar o desempenho do módulo LoRa e sua adequação ao projeto, foram reali-

zados testes de alcance em campo aberto com obstáculos no Campus I da USP, em São

Carlos. Posicionou-se o transmissor (TX) na oficina da equipe EESC-USP Tupã, enquanto

o receptor (RX) foi deslocado por várias regiões do campus para medir o alcance e a

qualidade do sinal. Esses testes avaliaram o índice de SNR (Signal-to-Noise Ratio) e RSSI

(Received Signal Strength Indication) em diferentes distâncias e condições, assegurando

que o módulo LoRa atendesse aos requisitos de comunicação do sistema.

Um script em Python gerencia a recepção de dados do dispositivo receptor, além de

estabelecer a comunicação serial com a placa de desenvolvimento ESP32. Para isso,

foram utilizados os pacotes pyserial-asyncio e serial. O pacote pyserial-asyncio permite

uma recepção de dados assíncrona, essencial para processar as informações em tempo

real sem bloquear outras operações do sistema. Já o pacote serial é utilizado para listar

os dispositivos conectados e estabelecer a conexão inicial com o ESP32, garantindo a

comunicação serial necessária para o projeto.

3.5 Dashboard

O painel de exibição de dados, também denominado dashboard, integra e visualiza as

informações armazenadas no banco de dados. Este painel compreende diversos elementos

para o monitoramento em tempo real do veículo, incluindo um mapa que exibe a trajetória e

a velocidade em forma de um mapa de calor, onde áreas mais quentes indicam velocidades

mais altas. Além disso, o painel apresenta gráficos de barras que demonstram a evolução

da velocidade e aceleração do veículo ao longo do tempo, assim como um gráfico específico

para a temperatura dos pneus e do motor. Em uma seção adicional da interface, são exibidas

os estados dos sistemas de segurança do automóvel, permitindo a rápida identificação

de eventuais alertas. Por fim, um relatório exibe todas as entradas registradas no sistema,

facilitando a rastreabilidade das atividades.

O mapa foi desenvolvido utilizando o pacote Folium, que possibilita a vinculação de

dados diretamente ao mapa, suportando visualizações ricas em HTML, como marcadores

47

personalizados (FOLIUM, 2024). Já os gráficos interativos foram implementados com

Plotly Express, uma biblioteca gratuita e de código aberto para Python que permite gerar

gráficos dinâmicos e visualmente detalhados (PLOTLY, 2024). Adicionalmente, o painel

possui uma seção de controle lateral, na qual é possível ajustar o intervalo de atualização

dos dados, alternar entre o modo de recepção ativa ou passiva, além de configurar a

atualização automática da página para garantir que as informações exibidas estejam sempre

sincronizadas com os dados mais recentes coletados pelo sistema.

3.6 Comparação de Custo

Para realizar a comparação de custo entre o equipamento desenvolvido e seus equi-

valentes disponíveis no mercado, algumas premissas foram adotadas. A primeira delas é

que a mão de obra para desenvolver um equipamento deste tipo em uma equipe como a

EESC-USP Tupã possui custo zero, pois os membros são voluntários. A segunda premissa

é que o equipamento em questão não será produzido em grandes quantidades ou em

atacado, por isso, foi considerado o custo de uma única unidade. Os valores de frete e

tributações não foram considerados, tanto para o equipamento descrito nesta monografia

quanto para os equipamentos disponíveis no mercado, devido à volatilidade dessas taxas,

assim como a variação do valor do dólar e do frete. Dessa forma, a comparação feita aqui

está mais focada em avaliar se é financeiramente vantajoso comprar o equipamento ou

realizar sua fabricação própria, considerando o contexto da atividade extracurricular.

Os componentes utilizados para a criação do logger CAN e suas respectivas quantidades

e preços foram organizados na Tabela 6. Todos os valores estão em reais, sem considerar

frete, visto que este valor pode variar dependendo da região do fornecedor e do destino

da entrega, o valor foi cotado no site AliExpress (ALIEXPRESS, 2023). Também foram

considerados os preços de varejo dado que o objetivo do projeto é a construção de um

dispositivo único, sem previsão de produção em escala.

Tabela 6 – Custo dos componentes presentes no projeto

Componente Quantidade Preço (R$)
ESP32 2 34,99

SN65HVD230 1 7,66
RA-01 2 22,58

Para avaliar a viabilidade do projeto, também foi feito um estudo dos preços de produtos

análogos presentes no mercado esses valores estão presentes na Tabela 7. Como o mer-

cado nacional carece de alternativas foi feito a pesquisa em lojas internacionais (CONNECT,

2023).

48

Tabela 7 – preços de Loggers comerciais

Produto Preço (USD$)
CANedge1 349,95

CL1000 208,95
CL2000 279,95

Ao converter os valores dos produtos comerciais para reais, com uma taxa de câmbio

de aproximadamente 5,00, o custo desses dispositivos varia de R$ 1399,75 a R$ 1.749,75

ou seja um valor médio de R$1399,75.

3.7 Documentação de Código

A documentação de código é uma prática essencial em projetos de engenharia, pois

permite a preservação e disseminação de conhecimento sobre a estrutura e funcionalidades

de um sistema. Em um ambiente de desenvolvimento de software, especialmente quando

se trata de projetos colaborativos ou de longo prazo, a documentação detalhada facilita

a compreensão, manutenção e expansão do código por membros da equipe, bem como

por futuros desenvolvedores que possam trabalhar no projeto. Além disso, ela contribui

para a gestão de conhecimento, permitindo que os conceitos e decisões de projeto estejam

acessíveis de forma clara e concisa, reduzindo a dependência do conhecimento tácito e

assegurando que mudanças no time ou nas demandas do projeto não comprometam o

desenvolvimento e evolução do sistema.

Para alcançar uma documentação de qualidade e padronizada, utilizamos o Sphinx(SPHINX,

2023), uma ferramenta popular para documentação de software. O Sphinx é amplamente

utilizada por sua capacidade de gerar documentação bem estruturada e visualmente ami-

gável, oferecendo suporte para múltiplos formatos de saída, incluindo HTML e PDF, o que

permite uma distribuição acessível. No contexto do projeto, a escolha pelo Sphinx se deu

pela sua flexibilidade e integração com repositórios de código, o que permite manter a

documentação sempre atualizada em sincronia com o código base. Para garantir que a do-

cumentação esteja constantemente atualizada, implementamos uma pipeline de integração

contínua utilizando GitHub Actions, de modo que o Sphinx é executado automaticamente a

cada novo commit na branch principal do projeto gerando a documentação mais recente.

Esse processo automatizado minimiza erros manuais e assegura que as atualizações de

código estejam refletidas na documentação, aumentando a eficiência e confiabilidade da

documentação.

49

4 RESULTADOS E DISCUSSÃO

Nesta seção será analisado a eficácia do leitor de barramento CAN desenvolvido,

destacando-se a eficiência da comunicação via protocolo LoRa e a qualidade dos dados

exibidos e do funcionamento no dashboard. Também será discutido a viabilidade econômica

do projeto, comparando com soluções comerciais disponíveis. Discute-se ainda as limitações

enfrentadas durante o desenvolvimento. Por fim, são abordadas sugestões para futuras

melhorias, incluindo a integração de novas funcionalidades e o aprimoramento da interface

do usuário.

4.1 Transmissor e Receptor

Por meio do uso da ISR e uma fila foi possível fazer a leitura e a transmissão dos dados

da CAN de modo apropriado, o que demonstra que o dispositivo cumpre com a sua principal

utilidade. Nos testes realizados não houve estouro do buffer da fila. O que indica que a taxa

de dados que entram e que saem estão em equilíbrio. A escolha do periférico SN65HVD230

como transceptor de CAN também se mostrou uma boa escolha pois utiliza menos pinos

que outros modelos como o MCP2515 o qual foi utilizado para simular um nodo do veículo,

que se comunica via SPI.

Uma limitação que o projeto pode enfrentar seria o aumento considerável da frequência

do fluxo de dados no barramento CAN, isso ocasiona sobrecarga da fila, cenário onde a

quantidade de entradas é maior que o de saída, isso implicaria em perda de dados, ou

erros de execução. Outro fator limitante é a taxa de envio de dados do periférico RA01 que

também pode ocasionar sobrecarga da pilha, mas agora devido a baixa taxa de consumo

dos dados. Para contornar ambos os problemas poderia ocorrer um aumento da memória

alocada para esta estrutura de dados.

4.2 LoRa

Os resultados dos testes feitos para medir o alcance da antena do protocolo LoRa

podem ser vistos na Figura 16 e 17. Já a dimensão da pista de corrida está presente na

Figura 15 a distância calculada no mapa é entre a posição ende ficaria o receptor e a maior

distância possível que o veículo pode ter deste ponto enquanto ele estiver percorrendo a

pista de corrida.

Por meio dessas análises é possível perceber que a antena utilizada seria capaz de

cobrir a pista de provas pois ela atingiu o alcance necessário mesmo em um cenário com

obstáculos de prédios e arvores, algo que não ocorre no contexto real. Na Tabela 8 temos o

valor médio em decibéis do SNR e RSSI, além da distância em metros do emissor e receptor

o qual está indicado nas Figuras 16 e 17 por um marcador azul. Por meio da Tabela 8 temos

os valores tanto de SNR e RSSI obtidos no Campus I da USP de São Carlos, durante a

50

coleta dos dados houve perdas de pacotes próximos a II e a VI, provavelmente por causa

da distância e grande número de obstáculos presentes como vegetação e construções, por

esses motivos esses locais são considerados os limites de alcance da antena. Quando

houve um caminho mais limpo entre a antena emissora e a receptora o alcance foi de 354m

como indica o ponto I, ana Figura 16.

Figura 15 – Vista de satélite da pista de corrida.

Figura 16 – Mapa com os valores médios de SNR obtidos por meio de um teste realizado
no Campus I da USP.

51

Figura 17 – Mapa com os valores de RSSI obtidos por meio de um teste realizado no
Campus I da USP.

Tabela 8 – Média de SNR, RSSI e Distância do Emissor nos Locais Monitorados

Local Mapa SNR (dB) RSSI (dB) Distância (m)
Departamento de Engenha-
ria de Estruturas (SET)

I -16,1 -106,5 354

Prefeitura do Campus III -16,9 -114,8 330
Bloco D II -19,1 -115,0 320
Salão de Eventos - Campus
da USP São Carlos

IV -14,3 -115,9 263

E1 VI -19,3 -108,2 235
Departamento de Engenha-
ria Elétrica e de Computação
(SEL)

V -27,4 -113,7 117

Laboratórios do SEL VII -28,6 -109,9 83

4.3 Dashboard

A interface de exibição, ilustrada na Figura 18 e 19, consegue ler os dados e apresentá-

los sem interrupções ou travamentos graças ao uso de técnicas de entrada e saída assíncro-

nas. A adoção dos session states do Streamlit possibilitou a atualização dinâmica da página

sem a perda de informações fornecidas pelo usuário ou dados críticos do sistema, como a

conexão com o banco de dados. Além disso, a combinação da comunicação assíncrona com

52

o leitor serial e a integração eficiente com o banco de dados proporciona uma experiência

fluida ao usuário, permitindo uma taxa de atualização adequada. Essa abordagem evita

desconfortos visuais, como a renderização completa e perceptível da interface durante as

atualizações, garantindo uma interação contínua e intuitiva.

Figura 18 – Mapa e gráfico do painel desenvolvido.

Figura 19 – Estados do veículo e registro do painel.

53

4.4 Avaliação de Custo

A comparação de custos presentes nas Tabelas 6 e 7 evidencia que o projeto oferece

uma solução economicamente vantajosa. Mesmo sem considerar produção em escala, o

valor final é significativamente menor que o dos produtos comerciais, atendendo ao objetivo

de viabilidade e baixo custo , presente na Secção 1.1.1. Essa economia permite que o

dispositivo seja uma alternativa para o projeto da EESC-USP Tupã, sem a necessidade de

um grande investimento inicial. Validando o objetivo inicial de baixo custo e viabilidade para

as aplicações da equipe.

4.5 Documentação

A geração de documentação automática alcançou plenamente seu principal objetivo.

Ela permitiu documentar de maneira clara e detalhada as APIs do projeto, garantindo que

informações técnicas relevantes estejam acessíveis a qualquer pessoa interessada por meio

do GitHub Pages. A Figura 20 ilustra a página principal da documentação da dashboard.

Um dos principais benefícios dessa abordagem é a sincronização contínua entre o código

e a documentação, eliminando defasagens que poderiam comprometer a confiabilidade e

a utilidade do material técnico. Dessa forma, assegura-se que as informações disponíveis

sejam sempre precisas e atualizadas, refletindo a realidade do sistema.

Além disso, a documentação desempenha um papel crucial na preservação e dissemi-

nação de conhecimento sobre a estrutura e as funcionalidades do sistema. Ela facilita a

entrada de novos colaboradores no projeto, reduzindo o tempo necessário para compre-

ender o funcionamento do código. Também é um recurso valioso para manutenção futura,

permitindo que alterações ou expansões sejam realizadas de maneira segura e eficiente,

com uma visão clara do impacto potencial no sistema como um todo.

O uso de ferramentas como Git e GitHub potencializa esses benefícios, promovendo

um ambiente colaborativo e organizado para o desenvolvimento de software. O controle

de versão fornecido pelo Git permite rastrear mudanças no código e na documentação,

garantindo um histórico completo das evoluções do projeto. Isso é essencial para identificar

regressões, reverter alterações problemáticas e manter a integridade do sistema.

Por sua vez, o GitHub amplia esses recursos ao oferecer uma plataforma centralizada

para colaboração e compartilhamento. Funcionalidades como pull requests, revisão de

código e issues promovem um fluxo de trabalho estruturado, enquanto a integração com

GitHub Pages viabiliza a publicação de documentação diretamente a partir do repositório.

Dessa forma, a combinação de documentação automática com ferramentas de controle

de versão e hospedagem pública não só melhora a eficiência do desenvolvimento, mas

também garante a transparência e acessibilidade do projeto para a comunidade.

54

Figura 20 – Captura de tela da documentação do projeto.

55

5 CONCLUSÃO

O equipamento atendeu aos requisitos apresentados na Secção 1.1.1, como baixo

custo e a capacidade de se comunicar com o veículo enquanto este realiza provas na pista

do ECPA ou testes prévios a competição, exigindo que o alcance da antena superasse o

diâmetro da pista de corrida que é de aproximadamente 200 m.

Em relação à aquisição de dados, o projeto foi bem-sucedido em atender às demandas

especificadas. Esse resultado foi alcançado devido à utilização do FreeRTOS e das suas

estruturas, como as rotinas de serviço de interrupção (ISR) para lidar com a chegada de

novos frames, as filas para armazenamento temporário das mensagens CAN até que sejam

processadas e o agendador para gerenciar as tarefas de forma eficiente. Caso a frequência

de leitura dos dados aumente significativamente, a ponto de causar perdas, é possível

mitigar o problema ampliando a capacidade da fila, garantindo maior robustez ao sistema.

Quanto à transmissão de dados, foi possível realizá-la a uma distância considerável,

próxima ao tamanho da pista de testes, que representa o limite superior para o uso do

protocolo LoRa. Em testes locais, como os realizados no campus universitário, o alcance

das antenas foi muito superior ao necessário.

A exibição dos dados no dashboard também atendeu às expectativas, uma vez que a

entrada assíncrona garante maior fluidez na visualização das informações. Além disso, a

API de exibição permite uma interface interativa, possibilitando navegação, ampliação de

detalhes e exibição de valores médios. Em relação aos custos, o valor despendido para

o desenvolvimento da aplicação foi consideravelmente inferior ao de produtos comerciais.

Além de oferecer capacidade de personalizações para os objetivos da equipe.

Portanto, este trabalho cumpriu com sucesso as demandas estabelecidas, atingindo

seus objetivos tanto em termos de pesquisa quanto de engenharia, e demonstra potencial

para servir como base para projetos futuros.

57

REFERÊNCIAS

ABDERRAHMANE, T.; NOURREDINE, A.; MOHAMMED, T. Experimental analysis for
comparison of wireless transmission technologies: Wi-fi, bluetooth, zigbee and lora for
mobile multi-robot in hostile sites. International Journal of Electrical & Computer Engineering
(2088-8708), v. 14, n. 3, 2024.

Ai-Thinker Technology Co., Ltd. Ra-01/Ra-02 LoRa Module User Manual. [S.l.], 2024.
Disponível em: https://docs.ai-thinker.com/en/lora/man.

ALIEXPRESS. AliExpress: Affordable Prices on Top Brands with Free Shipping. 2023.
Accessed: 2024-04-06. Disponível em: https://www.aliexpress.com/.

ANH, T. N. B.; TAN, S.-L. Real-time operating systems for small microcontrollers. IEEE
Micro, v. 29, n. 5, p. 30–45, 2009.

AWAN, A. A. Discover SQLAlchemy: A Beginner Tutorial With Examples. 2024.
https://www.datacamp.com/tutorial/sqlalchemy-tutorial-examples.

BARRY, R. Mastering the FreeRTOS™ Real Time Kernel. Real Time Engineers Ltd, 2016.
Disponível em: https://www.freertos.org/media/2018/161204_Mastering_the_FreeRTOS_
Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf.

CHEN, Y.-Y. et al. An embedded system for vehicle surrounding monitoring. In: 2009 2nd
International Conference on Power Electronics and Intelligent Transportation System
(PEITS). [S.l.: s.n.], 2009. v. 2, p. 92–95.

CONNECT, G. Grid Connect: Networking and Embedded Products. 2023. Accessed:
2024-04-06. Disponível em: https://www.gridconnect.com/.

CORRIGAN, S. Introduction to the Controller Area Network (CAN). [S.l.], 2002. Revised May
2016. Disponível em: https://www.ti.com/lit/an/sloa101b/sloa101b.pdf.

CSS-ELECTRONICS. CAN bus - the ultimate guide. [S.l.], 2023. Disponível em:
https://www.csselectronics.com/pages/can-bus-ultimate-guide.

CSS-ELECTRONICS. Telematics Dashboard - Open Source. [S.l.], 2024.

DHAKER, P. Introduction to SPI Interface | Analog Devices. 2018. Publisher: ANALOG
DEVICES. Disponível em: https://www.analog.com/en/resources/analog-dialogue/articles/
introduction-to-spi-interface.html.

ECPA. ECPA - Serviços. 2024. http://www.ecpa.com.br/capa.asp?s=servico&idservico=
1066&confirma=1.

EESC. EESC-USP Tupã conquista 3º lugar na competição Fórmula SAE Brasil. 2024.
https://saocarlos.usp.br/81734-2/.

ELECTROMATE. A Guide to Controller Area Network (CAN) for In-
dustrial Applications. 2024. https://www.electromate.com/news/post/
a-guide-to-controller-area-network-can-for-industrial-applications.

ESPRESSIF. CAN Driver - API Reference. 2024. https://docs.espressif.com/projects/esp-idf/
en/release-v3.3/api-reference/peripherals/can.html.

https://docs.ai-thinker.com/en/lora/man
https://www.aliexpress.com/
https://www.datacamp.com/tutorial/sqlalchemy-tutorial-examples
https://www.freertos.org/media/2018/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://www.freertos.org/media/2018/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://www.gridconnect.com/
https://www.ti.com/lit/an/sloa101b/sloa101b.pdf
https://www.csselectronics.com/pages/can-bus-ultimate-guide
https://www.analog.com/en/resources/analog-dialogue/articles/introduction-to-spi-interface.html
https://www.analog.com/en/resources/analog-dialogue/articles/introduction-to-spi-interface.html
http://www.ecpa.com.br/capa.asp?s=servico&idservico=1066&confirma=1
http://www.ecpa.com.br/capa.asp?s=servico&idservico=1066&confirma=1
https://saocarlos.usp.br/81734-2/
https://www.electromate.com/news/post/a-guide-to-controller-area-network-can-for-industrial-applications
https://www.electromate.com/news/post/a-guide-to-controller-area-network-can-for-industrial-applications
https://docs.espressif.com/projects/esp-idf/en/release-v3.3/api-reference/peripherals/can.html
https://docs.espressif.com/projects/esp-idf/en/release-v3.3/api-reference/peripherals/can.html

58

ESPRESSIF-SYSTEMS. ESP-IDF Programming Guide. 2024. Disponível em:
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/esp-idf-en-v5.3.2-esp32.pdf.

FOLIUM. Folium Documentation. 2024. https://python-visualization.github.io/folium/latest/.

FreeRTOS. FreeRTOS™ - FreeRTOS™. 2024. Disponível em: https://freertos.org.

IEEE. Ieee recommended practice for software requirements specifications. IEEE Std
830-1998, p. 1–40, 1998.

INTEL. How Does Bluetooth® Technology Work? 2024. https://www.intel.com/content/
www/us/en/products/docs/wireless/how-does-bluetooth-work.html#:~:text=Bluetooth%
C2%AE%20short%2Drange%20wireless,cables%20or%20supporting%20network%
20infrastructure.

KATARE, D.; EL-SHARKAWY, M. Embedded system enabled vehicle collision detection: An
ann classifier. In: 2019 IEEE 9th Annual Computing and Communication Workshop and
Conference (CCWC). [S.l.: s.n.], 2019. p. 0284–0289.

LAPLANTE, P. A. Real-Time Systems Design and Analysis: Tools for the Practitioner. 4 th.
ed. [S.l.]: Wiley-IEEE Press, 2011.

LI, Z.; WANG, D.; KANG, Q. [retracted] the development of data acquisition system of
formula sae race car based on can bus communication interface and closed-loop design of
racing car. Wireless Communications and Mobile Computing, v. 2021, n. 1, p. 4211010,
2021. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1155/2021/4211010.

MHADHBI, N. Python tutorial: Streamlit. DataCamp, 2021. Disponível em: https:
//www.datacamp.com/tutorial/streamlit.

MICROCHIP. MCP2515. 2019. Accessed: 2024-04-06. Dispo-
nível em: https://ww1.microchip.com/downloads/en/DeviceDoc/
MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf.

MUSTAFA, D.; KHABOUR, S. M.; MUSTAFEH, I. G. Enhancing real-time embedded system
education with self-driving car models. Human Behavior and Emerging Technologies,
v. 2024, n. 1, p. 8578058, 2024. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.
1155/2024/8578058.

OBAMA, B. A Promised Land. Crown, 2020. ISBN 9781524763183. Disponível em:
https://books.google.com.br/books?id=hvr4DwAAQBAJ.

PHYTOOLS. CAN Data Logger. 2024. https://phytools.com/collections/can-data-logger.

PLOTLY. Plotly Express. 2024. https://plotly.com/python/plotly-express/.

PYTHON-SOFTWARE-FOUNDATION. asyncio: Asynchronous I/O framework. 2023.
https://docs.python.org/3/library/asyncio.html. Accessed: 2024-09-28.

RIDHA, R. Transjakarta Bus GPS Data. 2019. Disponível em: https://www.kaggle.com/
datasets/rasyidstat/transjakarta-bus-gps-data.

SAE-BRASIL. Formula SAE Brasil: Programa Estudantil. 2024. https://saebrasil.org.br/
programas-estudantis/formula-sae-brasil/.

https://docs.espressif.com/projects/esp-idf/en/stable/esp32/esp-idf-en-v5.3.2-esp32.pdf
https://python-visualization.github.io/folium/latest/
https://freertos.org
https://www.intel.com/content/www/us/en/products/docs/wireless/how-does-bluetooth-work.html#:~:text=Bluetooth%C2%AE%20short%2Drange%20wireless,cables%20or%20supporting%20network%20infrastructure.
https://www.intel.com/content/www/us/en/products/docs/wireless/how-does-bluetooth-work.html#:~:text=Bluetooth%C2%AE%20short%2Drange%20wireless,cables%20or%20supporting%20network%20infrastructure.
https://www.intel.com/content/www/us/en/products/docs/wireless/how-does-bluetooth-work.html#:~:text=Bluetooth%C2%AE%20short%2Drange%20wireless,cables%20or%20supporting%20network%20infrastructure.
https://www.intel.com/content/www/us/en/products/docs/wireless/how-does-bluetooth-work.html#:~:text=Bluetooth%C2%AE%20short%2Drange%20wireless,cables%20or%20supporting%20network%20infrastructure.
https://onlinelibrary.wiley.com/doi/abs/10.1155/2021/4211010
https://www.datacamp.com/tutorial/streamlit
https://www.datacamp.com/tutorial/streamlit
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1155/2024/8578058
https://onlinelibrary.wiley.com/doi/abs/10.1155/2024/8578058
https://books.google.com.br/books?id=hvr4DwAAQBAJ
https://phytools.com/collections/can-data-logger
https://plotly.com/python/plotly-express/
https://docs.python.org/3/library/asyncio.html
https://www.kaggle.com/datasets/rasyidstat/transjakarta-bus-gps-data
https://www.kaggle.com/datasets/rasyidstat/transjakarta-bus-gps-data
https://saebrasil.org.br/programas-estudantis/formula-sae-brasil/
https://saebrasil.org.br/programas-estudantis/formula-sae-brasil/

59

Segger. embOS - RTOS, Real-Time Operating System | SEGGER. 2023. Disponível em:
https://www.segger.com/products/rtos/embos/.

Semtech Corporation. LoRa Modulation Basics. [S.l.], 2015. Disponível em:
https://www.frugalprototype.com/wp-content/uploads/2016/08/an1200.22.pdf.

SIEBENEICHER, H. Documentation, Universal Asynchronous Receiver-Transmitter (UART).
2024. Publisher: Arduino C.C. Disponível em: https://docs.arduino.cc/learn/communication/
uart/.

SIEWERT, S. Terminology Guide. 2016. Disponível em: https://experts.colorado.edu/display/
coursename_ECEN-5623.

SOUZA, F. O que são sistemas embarcados? 2022. Disponível em: https://embarcados.
com.br/o-que-sao-sistemas-embarcados/.

SPHINX. Sphinx Documentation. [S.l.], 2023. Accessed: 2024-04-06. Disponível em:
https://www.sphinx-doc.org.

TANENBAUM, A. S.; BOS, H. Modern operating systems. Fifth edition. rental edition.
Hoboken, NJ: Pearson, 2022. OCLC: 1442793663. ISBN 9780137618873.

The Things Network. RSSI and SNR. [S.l.], 2024. Disponível em: https://www.
thethingsnetwork.org/docs/lorawan/rssi-and-snr/.

TI. SN65HVD23x 3.3-V CAN Bus Transceivers. 2018. Accessed: 2024-04-06. Disponível
em: https://www.ti.com/lit/ds/symlink/sn65hvd230.pdf?ts=1733504293169&ref_url=https%
253A%252F%252Fwww.google.com%252F.

TOTVS. Telemetria Veicular: O que é, como funciona e por que utilizar? 2024.
https://www.totvs.com/blog/gestao-de-servicos/telemetria-veicular/.

UEL. Sistemas Embarcados. 2024. https://www.uel.br/pos/ese/?page_id=27.

UFRJ. Protocolo Zigbee. 2017. Publisher: UFRJ. Disponível em: https://www.gta.ufrj.br/
ensino/eel879/trabalhos_vf_2017_2/802154/zigbee.html.

WaTech. WiFi definition and meaning | WaTech. 2024. Disponível em: https:
//watech.wa.gov/wifi-definition-and-meaning.

Zephyr. About the Zephyr Project. 2023. Disponível em: https://zephyrproject.org/
learn-about/.

https://www.segger.com/products/rtos/embos/
https://www.frugalprototype.com/wp-content/uploads/2016/08/an1200.22.pdf
https://docs.arduino.cc/learn/communication/uart/
https://docs.arduino.cc/learn/communication/uart/
https://experts.colorado.edu/display/coursename_ECEN-5623
https://experts.colorado.edu/display/coursename_ECEN-5623
https://embarcados.com.br/o-que-sao-sistemas-embarcados/
https://embarcados.com.br/o-que-sao-sistemas-embarcados/
https://www.sphinx-doc.org
https://www.thethingsnetwork.org/docs/lorawan/rssi-and-snr/
https://www.thethingsnetwork.org/docs/lorawan/rssi-and-snr/
https://www.ti.com/lit/ds/symlink/sn65hvd230.pdf?ts=1733504293169&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ds/symlink/sn65hvd230.pdf?ts=1733504293169&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.totvs.com/blog/gestao-de-servicos/telemetria-veicular/
https://www.uel.br/pos/ese/?page_id=27
https://www.gta.ufrj.br/ensino/eel879/trabalhos_vf_2017_2/802154/zigbee.html
https://www.gta.ufrj.br/ensino/eel879/trabalhos_vf_2017_2/802154/zigbee.html
https://watech.wa.gov/wifi-definition-and-meaning
https://watech.wa.gov/wifi-definition-and-meaning
https://zephyrproject.org/learn-about/
https://zephyrproject.org/learn-about/

	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de abreviaturas e siglas
	Sumário
	INTRODUÇÃO
	Objetivos
	Objetivos Específicos

	REVISÃO BIBLIOGRÁFICA
	Sistemas Embarcados
	Telemetria
	Protocolo Controller Area Network (CAN)
	Registrador de Dados de um Barramento CAN
	Protocolos de Comunicação com Fio
	Universal Asynchronous Receiver-Transmitter (UART)
	Serial Peripheral Interface (SPI)

	Protocolos de Comunicação sem Fio
	Protocolo LoRa
	Wi-Fi
	Bluetooth
	ZigBee
	Escolha do Protocolo

	Sistemas Operacionais de Tempo Real
	Sistemas Hard Real-Time
	Sistemas Soft Real-Time
	Sistemas Firm Real-Time
	Componentes
	Task
	Scheduler
	Kernel

	Vantagens
	RTOSs Presentes no Mercado
	EmbOS
	FreeRTOS
	Zephyr
	Comparações

	Dashboard

	Material e Métodos
	Periféricos de CAN
	Módulo LoRa
	ESP32
	Transmissor e Receptor
	Dashboard
	Comparação de Custo
	Documentação de Código

	Resultados e Discussão
	Transmissor e Receptor
	LoRa
	Dashboard
	Avaliação de Custo
	Documentação

	CONCLUSÃO
	REFERÊNCIAS

