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Resumo

O objetivo da monografia foi estudar como as técnicas de controle linear utilizadas para determinar
os controladores largamente conhecidos como AVR e PSS impactam a margem de estabilidade
transitéria do sistema maquina versus barramento infinito (OMIB, One Machine versus Infinite Bus).

Adota-se 0 modelo de um eixo para um gerador sincrono de polos salientes. Em seguida, estudam-
se modelos de AVR e PSS apresentados na norma IEEE Standard 421.5 (2005) e IEEE Standard
1110 (2002), adotando-se 0 modelo PSS1A (single-input) daquela norma.

As equacoes diferenciais do sistema sdo numericamente integradas, e o sistema é entdo simulado

sob perturbacao, e sua resposta dinamica é analisada.

Sao averiguadas ocorréncias de Bifurcacdes de Hopf no sistema em fungao dos parametros dos
controladores, através da parametrizacdo dos autovalores e analise do comportamento local do

sistema no equilibrio. Tragam-se os Diagramas de Bifurcagéo do sistema.

Baseando-se da teoria de Regides de Estabilidade em Sistemas Dinamicos Nao Lineares, as
simulagdes sdo utilizadas para desenvolver um Método Forga Bruta (MFB) para estimar a Regido
de Estabilidade do sistema em malha aberta, controlado por AVR, controlado por AVR e PSS com
e sem saturadores de excitacdo. Tracam-se também Regides de Estabilidade variando-se alguns
parametros (ganhos) dos controladores. As estimativas sdo comparadas para se concluir acerca
dos impactos dos controladores naquelo tamanho da Regido de Estabilidade.

Conclui-se que, enquanto o sistema em malha aberta possui a maior Regiado, a introducao do
controlador AVR no sistema é extremamente deletéria a Regido de Estabilidade do sistema; em
seguida, o PSS expande a Regido, e a conseguinte introducdo de saturadores diminui significativa-
mente o seu tamanho. Além disso, a medida que se aumentam os ganhos dos controladores, o
tamanho da Regiao tende a diminuir. Consequentemente, altos ganhos e saturadores tém efeito
detrimental no tamanho da Regido de Estabilidade e na margem de estabilidade transitéria de
sistemas elétricos de poténcia.

Palavras-chaves: margem de estabilidade, sistemas elétricos de poténcia, sistemas dindmicos.






Abstract

The main goal of this thesis is to study how linear control techniques, used to design the broadly
known AVR and PSS controllers, impact the transient stability margin of the One Machine versus
Infinite Bus System (OMIB).

The one-axis model is adopted for representint the synchronous machine, which consists of a
salient-pole hydrogenerator. Then the AVR and PSS models, defined in IEEE Standards 421.5
(2005) and 1110, are presented. The model used to represent the PSS was PSS1A (single-input),
defined in Standard 421.5.

The DAE equations of the system are numerically integrated and the system is simulated under

perturbation and its dynamical response is analyzed.

Hopf Bifurcation ocurrences are investigated by parametrization of the system eigenvalues as
functions of the controllers gains and time constants. The Bifurcation Diagrams of the system were
also determined and plotted.

Based on Dynamical Nonlinear Systems Stability Region Theory, the simulations are utilized to
build up a Brute-Force Method (BFM) to estimate the Stability Region in four situations: open-loop
system (no controllers), controlled by AVR solely, AVR and PSS controlled and without saturators,
AVR and PSS controlled but with saturators. Also, the Region is also estimated for various values of
controllers parameters (gains). These estimatives are further compared so as to conclude about
the controllers impacts on the size of the Stability Region.

The main conclusion is that while the open-loop system detains the widest Stability Region, that
Region is extremely decreased by inclusion of AVR; the further introduction of the PSS widens back
the Region, and finally the introduction of saturators significantly reduces the size of Stability Region.
Moreover, when the controllers gains are increased, the Region tends to shrink. Consequently, high
gains and saturators have a detrimental effect in the size of the Stability Region and in the margin
of transitory stability of power systems.

Keywords: stability region, electric power systems, dynamical systems.
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Introducao

Geradores sincronos em sistemas elétricos de poténcia sdo equipados com controladores
de excitagao e reguladores de velocidade. Estes controladores tém por objetivo principal manter a
tenséo e a frequéncia dentro de limites pré-especificados. Além disso, sao também projetados para
rapidamente amortecer oscila¢des eletromecanicas induzidas por perturbagbes. Os Power System
Stabilizers (PSSs), em particular, fazem parte do sistema de excitacdo da maioria dos geradores
do sistema elétrico e sao projetados especificamente para atuar em condi¢cdes nao estacionarias
com o objetivo de amortecer oscilagoes eletromecanicas potecialmente danosas a operag¢ao do

sistema elétrico.

Usualmente, estes controladores sdo lineares e sédo projetados partindo-se do principio de
que as perturbagdes sdo suficientemente pequenas e que 0 modelo do sistema elétrico, intrinseca-
mente nao linear, possa ser representado sem grandes erros por um modelo linearizado. Nestes
projetos, a estabilidade local do ponto de equilibrio é requerida e as restricdes de desempenho
estao associadas aos modos de oscilagdo e taxas de amortecimento do modelo linearizado. Além
disso, técnicas de controle linear ndo levam em consideragao indice algum de desempenho ou
limite de valores do sistema nao-linear em malha fechada. Desta maneira, os projetos tradici-
onais de controladores em sistemas elétricos ndo levam em consideracdo o desempenho do
sistema a grandes perturbacoes; em geral, este desempenho é posteriormente verificado por

meios simulatérios.

Outrossim, parte-se daquele principio de pequenas perturbagbes e projetam-se os contro-
ladores para um dado sistema, negligenciando-se suas caracteristicas nao-lineares. A efetividade
dos controladores projetados é averiguada posteriormente, mas ainda assim geralmente ndao ha
preocupagéo sobre o comportamento do sistema a grandes amplitudes.

Em tempo, a despeito de esta abordagem garantir a estabilidade e o funcionamento de am-
bos o sistema e controlador numa pequena vizinhanga do ponto de operagéo, o impacto do projeto
linear dos controladores no comportamento do sistema a grandes perturbacdes é desconhecido. A
teoria de Sistemas Dindmicos endossa essa andlise local linearizada, especialmente o Teorema
de Hartmann-Grobman, segundo o qual um sistema dindmico comporta-se similarmente ao seu
modelo linearizado numa certa vizinhanca de um equilibrio hiperbdlico sob alguns requisitos. No

entanto, nada se afirma sobre a vizinhanga em si.
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O problema de analise de estabilidade de sistemas elétricos a grandes perturbacoes é
conhecido por estabilidade transitéria, e ndo esta associado ao problema de estabilidade local do
ponto de operagdo mas ao tamanho da regido de estabilidade do ponto de equilibrio assintotica-
mente estavel do sistema em malha fechada.

A questao da regiao de estabilidade é imperativa devido ao seu impacto nas margens de
estabilidade transitoria do sistema elétrico. Métodos de controle linear ndo podem garantir um
impacto positivo no tamanho da regiao de estabilidade. Reconheceu-se, por exemplo, que um
alto ganho de realimentacao pode desestabilizar sistemas em malha fechada (KHALIL, 2008). Por
conseguinte, valores altos de ganho de realimentagao podem diminuir o tamanho da regiao de
estabilidade a margens intoleraveis, impossibilitando garantir-se a estabilidade do sistema elétrico.

O objetivo principal deste trabalho de pesquisa € investigar o impacto dos controladores
lineares e em particular do PSS no tamanho da regido de estabilidade dos sistemas elétricos
e 0 seu impacto na margem de estabilidade transitéria. Pretende-se também investigar como o
projeto do controle linear pode levar em consideragao condicbes de desempenho relacionadas
ao problema de estabilidade transitéria. O comportamento da regido de estabilidade do sistema
¢ investigado através da pesquisa de bifurcacdes do sistema dinamico, ou seja, averiguagao da
ocorréncia de bifurcacdes do sistema em funcao dos parametros dos controladores.

Visao geral da monografia

Os objetivos desta monografia foram:

1. O desenvolvimento de procedimento basado no Método Forga-Bruta para estimar a Regiao
de Estabilidade do sistema, e a comparacéo das regides de estabilidade do sistema em
quatro situagdes, listadas abaixo, para concluir sobre o impacto dos controladores naquela
Regiao.

a) Em malha aberta;
b) Controlado apenas por AVR;
¢) Controlado por AVR e PSS, sem saturadores;
d) Controlado por AVR e PSS, com saturadores.
2. O desenho dos Diagramas de Bifurcagéo do sistema nas situacgdes (b), (c) e (d) e definir

o comportamento do sistema em bifurcagao, para averiguar a existéncia do fenédmeno da

Bifurcagdo de Hopf nos sistemas em funcao dos controladores.

Para o primeiro objetivo, foi necessario desenvolver programas de simulacéo do sistema a

partir de varias condigdes iniciais 0 que, por sua vez, necessitou que se caracterizasse o sistema
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em equilibrio estatico. Para o segundo, conhecer o comportamento local do sistema (célculo dos
autovalores no equilibrio) e ter o equilibrio estatico bem definido, como também determinar o efeito
dos parametros dos controladores nesse comportamento local. Assim, o documento divide-se em

quatro partes.

A primeira compreende a caracterizagdo do sistema, bem como a explicacdo dos modelos
utilizados. Trata-se de uma parte comum a ambos os objetivos finais, uma vez que é necessario
bem conhecer o sistema para desempenhar ambos. Além disto, a primeira parte também lida com
a andlise estatica do sistema a partir das equacdes do fluxo de poténcia, e determinacéo das

condigdes de existéncia das solugdes destas equagdes.

Ja a Parte |l é voltada para a construcao dos programas de simulagao do sistema. Esta parte
tem como fungéo construir os modelos dindmicos (deducao das Equagdes Algébrico-Diferenciais
ou EADs) do sistema a partir do modelo da maquina adotado e dos modelos de controladores AVR
e PSS adotados. Para validar as EADs deduzidas, simula-se o sistema sob perturbacéo.

A Parte Ill empresta do equilibrio calculado na primeira parte, bem como dos sistemas
de EADs deduzidos na segunda parte, para fazer a andlise local dos autovalores no equilibrio.
Seu objetivo € determinar a ocorréncia de bifurcacao no sistema a partir dos pardmetros dos
controladores. A ideia é determinar se de fato ocorrem bifurcagbes no sistema, como indicado na
literatura (GAO; K.T.CHAU, 2004; LI et al., 2002) , e em quais situacdes elas ocorrem. A analise
¢ feita a partir da parametrizacdo do Jacobiano do sistema no equilibrio estatico em funcao das
constantes de ganho e tempo dos controladores.

Finalmente, a Parte IV se vale do equilibrio estatico do sistema, calculado na Parte |,
e dos programas de simulagao, construidos na Parte Il, para tragar estimativas da Regido de
Estabilidade do sistema naquelas quatro situagdes. Ao final, tracaram-se estimativas das Regides
de Estabilidade para se compara-las e concluir sobre o efeito dos controladores nessa Regiao.

Naturalmente, estas duas Ultimas partes empregam extensiva e ostensivamente de conhe-
cimentos de Andlise, Sistemas Dinamicos e Algebra Linear (LIMA, 1981; LIMA, 2017; LIMA, 2016;
WANG, 1993; BRETAS; ALBERTO, 2000; STROGATZ, 2014; CHIANG; ALBERTO, 2015; CHIANG;
ALBERTO, 2012) para que os resultados obtidos sejam coerentes com a teoria mateméatica envol-
vida. Também nota-se que por vezes alguns resultados serdo apresentados e as contas movidas
aos apéndices — como por exemplo os calculos dos polindmios caracteristicos do sistema — para
legibilidade do texto.

Também o texto é largamente baseado na literatura sobre sistemas elétricos de poténcia
como (KUNDUR, 1994; IEEE, 2002; IEEE, 2005). O modelo da maquina utilizado foi retirado de
(ALBERTO; RAMOS; BRETAS, 2000).
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CAPITULO 1

O sistema OMIB

Neste capitulo define-se o sistema Maquina Unica Contra Barramento Infinito (OMIB)
utilizado. Sao apresentados o modelo da maquina utilizado e os seus parametros, que foram
retirados de (DEMELLO; CONCORDIA, 1969). Apresentam-se também as hip6teses simplficadoras
do modelo, que sao descritas em detalhes em (ALBERTO; RAMOS; BRETAS, 2000) e enunciadas

aqui.

1.1

Descricao do sistema

O sistema de Magquina Unica Contra Barramento Infinito (One-Machine-Infinite-Bus Sys-
tem) consiste de um gerador sincrono acoplado a um barramento infinito (de tensdo constante)
através de uma linha de transmisséo. Sendo o gerador suposto de pélos lisos, o sistema pode ser
representado como na figura 1. A maquina recebe, da fonte motriz, uma poténcia mecanica P, e

do sistema de controle uma tenséo de campo Ej, equivalente de modelo fasorial’.

1

mi
8

EI

Figura 1 — Esquematico do sistema OMIB em estudo

' Trata-se de tensdo equivalente porque o sistema diferencial (1.1), que rege a maquina, trata as variaveis de estado
fasorialmente — constituindo portanto simulacéo fasorial e ndo simulagéo de transiente eletromagnético (‘EMT”), na
qual a tensédo de campo Vi p seria de facto a tens@o no enrolamento de campo. A partir deste ponto, cometer-se-&
abuso de nomenclatura designando Efrp por “tensdo no enrolamento de campo” compreendendo-se tratar de
equivalente fasorial.
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Grandeza Sigla | Valor (p.u.)
Impedancia equivalente de regime permanente de eixo direto X, 1.14
Impedancia equivalente de regime permanente de eixo em quadratura Xy 0.66
Impedancia transitéria de eixo direto x; 0.24
Impedancia transitéria de eixo em quadratura x; 0.24
Constante de tempo transitéria de eixo direto Td’o 12
Constante de inércia do rotor H 1.5
Resisténcia equivalente de armadura r 0
Resisténcia equivalente de linha Iy 0.01
Impedancia equivalente de linha X, 0.1
Tens&o de barramento infinito E 1

Tabela 1 — Relagdo dos parametros do sistema OMIB e do gerador sincrono, provindos de (DE-

MELLO; CONCORDIA, 1969).

Os parametros da figura 1 sao listados abaixo:

r e x,; representam a impedancia de eixos direto e em quadratura interna da maquina.

Sendo esta de rotor liso, podemos concluir que as impedancias dos dois eixos coincidem;
r. e X, representam a impedancia da linha de transmisséao;

E’ é a tensao interna da maquina, denotada por E’ = Eé +jE’;

\Z € a tensao nos terminais da maquina, representada por ‘Z =V, +jVy

E_;o € a tensdo do barramento infinito, constante ao longo do tempo. Para claridade do texto,
sera denotada apenas por E;

T é a corrente fornecida pela maquina ao barramento, denotada por I= I+ jls;

P,, é a poténcia mecéanica que o elemento motriz fornece ao gerador. NO artigo [1] de onde
se retiraram os parametros do sistema consta que a maquina faz parte de um hidrogerador;

logo, o elemento motriz € uma turbina hidroelétrica;

Erp é atensao no circuito de campo do gerador.

A tabela 1 define os parametros utilizados da maquina e do sistema. Todos os paradmetros

foram retirados de (DEMELLO; CONCORDIA, 1969).

Dinamicamente, a maquina, em malha aberta, é regida segundo o sistema diferencial (1.1),

retirado de (ALBERTO; RAMOS; BRETAS, 2000), denominado “modelo de um eixo”.
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( ‘ x4—x1+(xd—x(;)ld
X =
1 Tio
P, —xI,— (x4 —x! ) 11,
X, =
17 2H (1.1)
x3 :xz
&.X.:4 :0
Sendo:
° Ec/;:xl;

® (w = X, a velocidade angular do rotor com relagdo ao eixo QD;
e 0 = x3 0 angulo do rotor com relagéo do eixo QD;

e Erp = x, atensdo no enrolamento de campo, que no sistema em malha aberta é constante

e igual ao valor inicial;

e [, e I, respectivamente as componentes em eixo direto e em quadratura da corrente de

barramento;

e P, a poténcia mecénica entregue a maquina.

Naturalmente, o sistema nao esta completo porque ausentam as equagdes das compomen-
tes I; e I, da corrente de barramento. Estas equagdes provém do acoplamento ao barramento
infinito, e sdo deduzidas no capitulo seguinte.

Deve-se sempre ter em mente que o texto utiliza dois sistemas de coordenadas para as
tensdes e correntes: um sendo o eixo imaginario-real, no qual a tensdo do barramento E jaz
sobre o eixo real, e 0 eixo QD (quadratura-direto) que esta em fase com o rotor da maquina, este
proveniente da aplicagéo da Transformacao de Park. Estes sistemas de coordenadas (imaginario-
real e QD) sado similares, a menos de uma rotacao que equivale a posi¢ao angular do rotor da
maquina com relacdo a tensdo do barramento infinito. A razdo para a ado¢éao de dois eixos é
que, ao se utilizar a tensdo do Barramento Infinito como referéncia de fase (originando o eixo
imaginario-real), as contas para calculo do equilibrio estatico sao facilitadas. Enquanto isso, o
sistema dindmico (1.1) que rege a maquina tem como variaveis de estado e variaveis algébricas as
tensdes e correntes expressas no eixo QD, de onde depreende-se a razao para se utilizar este nas

simulagdes dinamicas.

Note-se também que todas as grandezas sdo denotadas no sistema por unidades (P.U.).
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1.2

Modelo linearizado

Para ajustar os controladores e exemplificar as técnicas lineares de controle utilizadas
usualmente neste tipo de sistema, necessitar-se-a do seu modelo linearizado; para obté-lo, calcula-
se o0 jacobiano do sistema dinamico (1.1), resultando no sistema linear (1.2) a seguir. Nos apéndices
B e C constam as contas, omitidas pela legibilidade.

A.xl ]1,1 0 ]1,3 AX1 7 O 0 AEFD
Tdo
Ax, |=| by 0 g3 Ax, [+] o L 0 AP, (1.2)
2H
Ax; 0 1 0 Axs 0 0 0 0

Onde o operador A denota o deslocamento do equilibrio e J,,, ,, denotam as componentes
da matriz jacobiana, denotadas no conjunto de equagdes (1.3). A figura 2 denota o diagrama de
blocos do sistema linearizado correspondente a este sistema linearizado.

. 1
AEgp —| O .
[ B\
AXg
1 AX,
S
AX,
1
S
O]
ap, —f3

Figura 2 — Esquemético de blocos linearizado do sistema OMIB em malha aberta
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S :_T:;O wﬂﬂ
Joa =Tlxz{E[XCOS(x3+¢)+(x;—x(;)Sin(x3+2¢)]—x1[2Xcos(¢)+(x{;—xl’])sm(zq))]}
| ha =E(;+Zcé)cos(x3+¢) (1.3)
B = (] (x4 —x)) cos (s +20)~ XsinCey + )]~ B () — ¥ ) cos 235 +29)}
X =Xelt=(r+r)+j(x) +x)

A este sistema linearizado serdo acoplados os controladores AVR e PSS, para que seus
parédmetros sejam sintonizados. Nos apéndices D e E consta o método de sintonia, realizado a
partir das margens de estabilidade (margens de ganho e de fase) dos sistemas em malha fechada.

1.3

Hipoéteses simplificadoras

O modelo do sistema conta com algumas hipéteses simplificadoras que merecem destaque
e tém implicacoes diretas no seu comportamento. Sado duas as hipoteses: a maquina tem rotor
de polos lisos cujo 0 modelo é o chamado modelo de um eixo, descrito no sistema (4.2), e a

simplificacao através do barramento infinito.

1.3.1 Maquina com rotor de poélos lisos e modelo de um eixo

O modelo usado para o gerador é o modelo de um eixo; o gerador tem rotor de polos
salientes. Estas caracteristicas resultam nas seguintes principais suposigoes:

e A componente de eixo direto da tensdo interna da maquina E; é desprezivel em qualquer

instante de tempo;
e O regime subtransitério da maquina pode ser desprezado por sua brevidade;

e As impedancias equivalentes transitérias de eixo direto e em quadratura x), e x;, séo

proximas, consideradas iguais.

Nota-se que esta suposicdo permite que o sistema seja desenhado como na figura 1. Caso
a maquina tenha pélos salientes ou deseja-se adotar um modelo mais complexo, como por exemplo
o de dois eixos desenvolvido na mesma bibliografia que o de um eixo, entao o sistema nao pode
ser descrito como na figura porque a maquina nao pode mais ser representada por um modelo de

circuito elétrico.
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1.3.2 Barramento infinito

. = . I . . ” Y z . 7

Na figura, a barra E é denominada “barramento infinito”. Fisicamente, a maquina esta

conectada a um sistema elétrico geralmente muito maior que ela e sobre o qual sua influéncia
Ve . ’ ~ = ’ ’ . 7 .

é negligivel. A tensado E é constante em fase e mddulo independente da carga que a maquina

imprima sobre ela.

e . . ~ . = . . . Y .
Em dltima instancia, r,, x, € E representam o circuito equivalente de Thévenin daquele

sistema muito maior ao qual a maquina conecta-se.

E importante lembrar que a suposicao da insignificancia de uma maquina perante o sistema
todo é questao de pesquisas recentes. Por exemplo, (THORP; WANG, 2010) afirmam que a falha
de uma Unica maquina em situagdes de alta demanda de poténcia pode levar a um colapso em
cadeia do sistema elétrico como um todo: se uma méaquina falha, alguma outra precisa compensar
a componente defeituosa, o que por sua vez sobre carrega esta outra, e assim o sistema todo
quebra — significando que a premissa do barramento infinito ndo é absoluta, dado que o mau

funcionamento de uma maquina pode dirimir o sistema.
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CAPITULO 2

Calculando o ponto inicial de operacao

Inicialmente, a maquina se encontra num estado de operagao, fornecendo ao sistema uma

=2 . ~ . n . Ve .
poténcia elétrica aparente S = P + jQ. Nesse momento, uma poténcia mecénica P,, é fornecida
a maquina. As grandezas elétricas do sistema da figura 1 sdo calculadas para este ponto de

operagao.

Dado que os controladores utilizados s&o construidos sobre modelos lineares como o da
figura 2, necessitam-se calcular as variaveis de estado do sistema em equilibrio, para entéo se
calcular a matriz jacobiana do sistema neste equilibrio. Além disso, o estudo de bifurca¢des da
parte lll se vale dessa matriz jacobiana, calculada no equilibrio, para investigar a ocorréncia de
bifurcacdes do sistema.

Tendo isto em vista, este capitulo desenvolve as equacbes de equilibrio do sistema.
Também é definida a Regiao de Factibilidade, que determina as condi¢des de existéncia de solugao
dessas equagdes de equilibrio.

2.1

Equacoes das componentes da corrente de barramento

=4 . . . . ~ 7 . .
Fornecendo uma poténcia aparente S conhecida inicialmente, entdo a maquina deve suprir
duas demandas: um gasto de poténcia nas impedancias da linha, mais a poténcia transmitida ao
barramento. As condi¢des iniciais do sistema séo entédo calculadas segundo a equagao

Gastos nas impedancias Barramento infinito

= =2 /-/\—)
S:[(r+re)+j(x;+xe)]x|l| + ExI*

~P+jQ :[(r+ re)|f|2+EI,]+j[(x;+xe)|f|2—EI,-] (2.1)
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=12
Fazendo |I| =12+ 1I?. Denotando X, + X, =x, e r+71, =1,

P=r(I*+I))+E I,
(2.2)
Q= xt(Ir2 + Il.z)—E I;
Multiplicando a equagéo de cima por x,, € a de baixo por r;,
Px,=rx,(I?+I)+Ex, I,
(2.3)
Qr,=r,x,(I*+I?)—Er, I,
Diminuindo uma da outra,
Px,—Qr, x
o L=—t Q SALEERLSLANNLLY § (2.5)
Er, T
Substituindo na primeira equagao do sistema 2.2,
[ Px r,ox )
P=r, If+( = Q t——tlr) +EI
L Er, r
r,—Px x O\ r,—Px, x
:>P:rt I? +(Q d t) +(—’Ir) +2 L—fIr +EI (2.6)
|7 Er, T Er, T

Multiplicando por r, E? para eliminar os denominadores,

0=—r,PE*+[(r,EPI*+Qr;—Px,Y +(Ex, .Y +2 x,E(Qr,—Px,). |+ r,E® I,

0="*[E*(x*+ )|+ L[rE*+2 x,E(Qr,— Px,)|+[(Qr, — Px,)’ — r,PE?] (2.7)

2.2

Calculo das tensoes e angulo do eixo do rotor

Tem-se portanto o sistema para I, e I;:
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0=12[E¥x?+ )|+, [r,E*+2 x,E(Qr,—Px,)]+[(Qr,— Px,)’ — 1, PE?]

Px,—Qr, x,
=————1I,
Er, T
Onde I, e I; sédo as componentes da corrente de barramento no eixo complexo. Resolvem-

- . - -
se as duas equagoes para I, e I;; em seguida, calculam-se E’ e V;:

-

V,=E+(re+jx) T

I R (2.9)
Er=Vi+(r+jx))1

Falta agora transformar estas grandezas para o eixo QD. Para descobrir a posicao deste

eixo em relagao ao imaginario, utiliza-se do fato que, em se tratando de um modelo de um eixo,

~ = ya .
entdo E’ esta em fase com o eixo Q, de forma que

. E . Im(E"
Q=—=e’’ = tan()= (_)) (2.10)
|E| Re(E)
Girando @ de noventa graus, obtém-se o versor do eixo direto 5, quer dizer:
G =(cos(), sin(8))= D =(—sin(8), cos(5)) (2.11)
De onde as grandezas no eixo QD sao
rE(; =E’)’-(_2)= Re(ﬁ')cos(é')+Im(ﬁ’)sin(5)
E] :E’-ﬁ:—Re(ﬁ’)sin(5)+Im(ﬁ’)cos(ﬁ)
{ v, =I7t (_2)= Re(V)cos(5)+Im(I7)sin(5) (2.12)
V, =V,-D=—Re(V)sin(8)+Im(V)cos(d) '
I, :f-(j: Re(f)cos(5)+lm(f)sm(5)
e =f-5:—Re(f)cos(5)+1m(f)sin(5)

Vale lembrar que o texto utiliza dois sistemas de coordenadas: o eixo imagindrio-real, no
qual a tensdo de barramento infinito € igual a 1 p.u. em fase zero, e o eixo quadratura-direto, no
qual a tenséo E’ & um real. Isso se deve ao fato que, nas equagdes diferenciais do gerador, as
grandezas devem ser utilizadas na sua forma QD, muito embora a tensao de barramento infinito

seja referéncia de fase no eixo imaginario-real.
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2.3

Poténcia mecanica e tensdao de campo no equilibrio

No equilibrio, aplicando x = 0 no sistema diferencial da maquina ( sistema 1.1):

( * % *
. :EFD—Eq +(xd—xc’l)ld
T,
40 _P;—Eq*l;—(x;—x;)lglg (2.13)
2H
0 =x;

Onde o superescrito estrela (*) significa uma grandeza quando no equilibrio da maquina.
Assim, nesse equilibrio, fazendo x =0, resulta que

( p* — /x7* WA R &) £
Pr=E It +(x)—x) ) I I
$ B, =Er—(xa—x))I; (2.14)
\ w*=0

2.4

Algoritmo e aplicacédo no sistema em estudo

Desenvolve-se assim o algoritmo para calculo das condigdes iniciais:

1. Resolver o sistema (2.8), calculando a corrente de barramento no eixo imaginério-real;

2. De posse da corrente, calcular as tensdes interna e terminal através de (2.9);

3. Calcular a corrente e tensdes no eixo QD do rotor da maquina, através das equagdes (2.12);
4. Calcular a tensdo de campo e poténcia mecanica no equilibrio através do sistema (2.14)

Aplicando este algoritmo ao sistema em estudo, com condicao inicial S= P+jQ=1+j0.5,

resulta a tabela 2.4 onde se encontram as variaveis do sistema no estado de equilibrio.

Estas condigdes iniciais sdo apresentadas no diagrama da figura 3. O cddigo em MATLAB
desenvolvido para célculo das condigbes iniciais se encontra no apéndice A, se¢do A.1, pagina
149.

Na figura, sao:
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Grandeza Sigla Valor (p.u.)
Tens&o interna induzida E’ | 1.064+ j0.3350
Componente em quadratura de E/ Ec; 1.115
Tensdo de campo Erp 1.519
Tens&o terminal V, | 1.026+ j0.09741
Componente em quadratura de XZ v, 1.008
Componente em direto de \Z vV, —0.2152
Corrente de barramento T 0.9899— j0.1583
Componente em quadratura de T I, 0.8967
Componente em direto de T 1, —0.4483
Angulo do rotor ) 0.3051 rad
Poténcia mecénica inicial P, 1.000

Tabela 2 — Tabela relacionando as variaveis do sistema em estudo no equilibrio S=1+ jO.5.

onde conclui-se que a maquina esta sobre-excitada — ist est, opera a fator de poténcia indutivo. De

5
A corrente de barramento I em rosa;

A tensao de barramento infinito em verde EZO;

. -
A tensao terminal V em vermelho;

~ . . =
A tensao induzida E’ em azul.

De imediato nota-se que todas as tensdes estao avangadas a corrente de barramento, de

fato, além de a linha de transmissao ser altamente indutiva, a maquina entrega ao sistema uma

poténcia reativa positiva.

Depois, nota-se que a maquina trabalha como gerador, uma vez que o modulo da tensao

induzida é maior que o médulo da terminal, que por sua vez é maior que o médulo da tensao do

barramento infinito.
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Figura 3 — Diagrama das condigdes iniciais do sistema em estudo, explicitadas na tabela 2.4.
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CAPITULO 3

A Regiao de Factibilidade

Nota-se que o sistema (2.8) é quadratico. Logo, nem sempre tem solucao, significando
necessaria uma andlise para determinar os valores de P, Q, r, e x, possiveis que permitem
solucdo das equacbes de fluxo de poténcia. Mostrar-se-a que os valores daquelas grandezas
nao podem ser arbitrarios. Em Ultima instancia, define-se a Regiao de Factibilidade, o lugar
geométrico dos pontos (P, Q) que tornam a equagao factivel, e encontra-se a forma dessa regiao
em fungdo dos valores de r; e x;.

3.1
Definicao
Analisando o discriminante A da equacgao (2.7) obtém-se
2 2
A= [rtE3 +2x,E (Q r, —Px,)] —4[E*(x?+1?)] [(Q r, —Px,) - r,PEZ] (3.1)
X
Agora, dividindo a equagao por E*r; e fazendo z = iy
It
EZ 2 ) ) EZ
G r—t+2z(Q—Pz)] —4(1+23)|(Q—P2z) —Pr—[] =
E* E? E? E?
= —2+4Z (Q—Pz)+¢QQ{P?)%—4[(Q—PZ)2—P—]—4z2 =Pz| +4Pz*— =
rt Iy Iy It
E4 EZ E2 2
= +4—z (Q—Pz)—4[(Q—Pz)2—P— +4PZi= =
Ty I't Iy Iy

E*  E? E? , E?
= +4=2Q-4—%'P—4|(Q-Pz)—P—
rt I't t Iy
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E* E? , _E?
= 442 zQ-4|(Q-PzP-P=—|=
rt Iy Iy

E* E? E?
=— +4—zQ—4(Q2—2zQP+P2z2—P—) =
rt rt rt

5 5 E? E* , A4E?
=—4P?z°+24Q| — +2P |+ — —4Q°+ —P (3.2)
Iy rt Iy

Que é uma forma de enxergar a Regiao de Factibilidade, como uma parabola em z. Isto
quer dizer que dadas as condi¢des iniciais desejadas S=pP+ JQ, entédo encontra-se a regiao dos
z possiveis. Desta forma é possivel encontrar valores de r; e de x; que factibilizam o fluxo de
poténcia do sistema.

No entanto, ha também outra forma de enxergar a regiao: como uma cdnica no eixo de
Argand-Gauss (P, Q), parametrizada por z:

2 2 E? E* , 4E*
=—4P°z°+2z4Q| — +2P |+ — —4Q°+ pP=

E2r} I, I I

4E?  4zE? (E2?Y
T (3.3)

=—4z°P*+8zPQ —4Q? +Pr— +Q

t I It

E importante notar que, como r, = r + r,, sendo que r corresponde a resisténcia equi-
valente de armadura da maquina, entao r, > 0 sempre, de forma que a possibilidade r, =0 nao

precise ser considerada ' . Logo, z existe sempre. Quer-se que, para I, ter solugao, A > 0. Assim,
define-se a Regiao de Factibilidade

Definicao 1. A Regiado de Factibilidade. Sejam as equagbes de equilibrio do fluxo de poténcia

P[EXx*+ )|+ [r,E*+2 x, EQQr;—Px,)|+[(Qr,—Px,} —r,PE*|=0

I,:M_ﬁj
! Er, r, "

Com discriminante

A=[r,E*+2 x,E(Qr, —th)]2—4[E2(xt2 +r)][(Qr,—Px,)’—r,PE?]

' O que é aparentemente oximérico dado que o modelo adotado na tabela 1 possui resisténcia de armadura nula. De

fato, trata-se de uma incongruéncia, mas que foi mantida pelo bem da integridade da fonte — um artigo largamente
conhecido e utilizado, inclusive atualmente.
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Entdo a Regido de Equilibrio é a regido do Plano de Argand-Gauss (P, Q) para os quais
as equacoes tem solugcdo, que ocorre se e somente se o discriminante for ndo-negativo. Trata-se
portanto do conjunto dos pontos (P,Q) para os quais as equagdes de fluxo de poténcia tém
equilibrio garantido, isto é, o lugar geométrico dos (P, Q) que satisfazem

) , 4E? 4zF? (E?Y’
—4z°P2+82PQ—4Q*+P— +Q + =] >0 (3.4)
r I It

3.2

Identificagao da Regiao de Factibilidade

Note-se que a equacéo de A é na verdade uma equagdo de segundo grau com termo
retangular; logo, trata-se de uma cénica, quadrica ou seus equivalentes degenerados. A fim de
identificar precisamente de qual caso se trata, a seguir aplicam-se os procedimentos de Algebra
Linear para definir afinal qual regido € essa, langando-se mao de uma rotagéo de eixos. A equagao
é da forma

(Rp): aP*+bPQ+cQ*+dP+eQ+f>0

Denotando S = (P Q),

(Rp): SAST+BS+f>0

Sendo as matrizes A e B:

b , 8z

a E —4z ? _Z2 z
A= = =4

b 8z z —1

- C — 4

2 2

AE? 4zE?] 4E?
B=[a ]| |- 4]
Iy I It

A
Calculando os autovalores de Z

2

. s =(/1+z2)(/1+1)—z2=

P(A):Oz‘
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:/12+/1(1+z2)—%=
2 {a-[-(1+ 2]} =0

A,l:O

Ay =—4(1+2?)

A diagonalizacdo de A resulta D?:

Fl 0] 0 0
D = =
0 A 0 —4(1+z2)

Encontrando os autovetores: para A, =0:

Assim,

Assim, obtem-se o sistema

2 Note-se que a matriz diagonal D tem determinante nulo, uma vez que A tem um autovetor nulo. Segue disso que a

equacao tem a forma de uma parabola ou seus casos degenerados: uma reta ou um par de retas paralelas.
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—z?’x + zy =—(1+2z%x x + zy =0
s
zx — y =—(1+2z%y zx + z°y =0

Resulta o autovetor v, =(—z,1)”, que normalizado resulta u,:

v1+2z2

Assim, sucede uma nova base

1 —z
z 1

Determina-se assim que a equagao da regido equivale a uma transformacéo para as

=[] ()] = =

coordenadas X =(x, y) tais que

(Rg): XDX"+BKX"+f>0 (3.7)
0 0 X 4E? 1 —z||x| E*
[x ] 12— +Es0
0 —4(1+zz) Y r,4/1+2z2 L7 Lyl =
Expandindo as matrizes,
0 AE? X B2\’
[x ] ez o] (£ 200
t

—4(1+2%)y ry/1+22 y
AE*\[1+22  [py?
2____H()N

(:)—4(1+z2)y — -
t

Iy

(3.8)

Tem-se portanto a equacao final da Regiao de Factibilidade, parametrizada pela razéo de

impedancias z:

(Rp): —4(1 + zz) y

, 4E2\/1+Z2 (E)Z
- x4

Iy
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Que sugere a equagao de uma parabola com eixo horizontal e concavidade para a esquerda
— uma vez que o termo que multiplica y? é sempre negativo, qualquer que seja z (lembrando que
Z é a razao de dois numeros reais, dos quais o denominador é positivo portanto z existe e é

inerentemente real).

A seguir, primeiramente estuda-se a transformagao linear (P, Q) — (x, y ), que corresponde
a uma rotagao de eixos. Em seguida, identifica-se a regido dada pela equagao (3.9) e seu grafico é
tracado.

3.3

Estudo do angulo de rotacao dos eixos

A transformagao linear realizada, que leva a equacgao (3.4) a equacgao (3.9), corresponde a
uma rotacdo de eixos no sentido anti-horario e na magnitude do angulo 6. A figura 4 depicta o
angulo 8 em fungao da razao z. Este angulo corresponde a rotagdo da nova base K com relagéo
ao eixo PQ, ou seja, o argumento do vetor u;, de onde

1
V1+2z2

Z

v1+2z2

cos(0)=
< tan(f) =z < 0 =atan(z) (3.10)
sin(0) =

Lembra-se que os eixos (P, Q) e (x, y) relacionam-se através das equagdes

(P)@ (3.11)
0 .

( p ) [ cos(f) sin(0) ]( X )
& =
Q —sin(0) cos(0) y

R(—0) = R1(0)

R(0)

| cos(8) —sin(0)
- sin(@) cos(6)

Onde R(0) é a matriz rotagdo de magnitude 8. Um fato a se denotar é que z quase
sempre sera um positivo maior que um, implicando na terceira condi¢cdo de 8 (z). Isso porque
as resisténcias de linha e armadura sao pequenas se comparadas as impedancias de eixo e de
linha, de forma que o0 médulo de z seja alto; além disso, tais impedancias serdo quase sempre
indutivas, e z sera quase sempre positivo. Em outras palavras, como a linha de transmisséo tem
caracteristica primordialmente indutiva, e sendo z a razao da parte indutiva da sua impedancia
pela parte resistiva, segue que esta quantidade é grande. Tem-se portanto que z sera, na maioria
dos casos, um positivo de alto valor.
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Angulo de rotacdo versus parametro z

0.5
0.4
0.3
0.2

0.1
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-20 -15 -10 -5 5 10 15 20

o

Figura 4 — Gréfico do angulo de rotagdo € em fungdo do parametro z.

Assim, a rotagdo quase sempre sera de um angulo muito préximo de um quarto de volta.
Conclui-se que, no eixo PQ, a regido sera uma parabola com eixo aproximadamente vertical, uma
vez que em x y ela tem concavidade para a esquerda e, ap0ds rotacionada de aproximadamente
metade de 7, terd concavidade para cima.

E importante notar que fazendo a Série de Laurent da fungéo arctan(.) em x = 0o entdo

3

(=1

nlxn

]

T o
0 = arctan(z) = ) +Z

n=1

(3.12)

N[
S|~

Que é uma aproximagao muito Gtil em calculos exaustivos de fluxos de poténcia.

3.4

Reducgéao a forma canénica: calculo do vértice e do foco

Analisando a equagéo da Regido (3.9), reduz-se a forma canbnica da pardbola. Sabe-se
que

) , b c d cy¥ [(cy b d
ay +bx+cy+d:a(y +Ex+5y+g)=a[(y+g) _(E) +Ex+g]:
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2

c\ ¢ ¢ \2 d c*
= )Y - ibxtd= ( —) blx+Z—
a(y+2a) 4a+ rrda=a y+2a " ( +b 4a b)

Assim,

(R )-( +i)2+é ML I (3.13)
F\Y 7o, a b 4ab )~ '

Relembra-se a forma cannica da parabola:

(y—yo)Z—Zp(x—xo)E(y+i)2+§(x+z— ¢ )(:

2a b 4ab
( yoz—izo
d c? E2Y
! T aap " (Tt) 452\/@ 4rm (3.14)
b 4E2\/E E2
p=——=— =

L 2a 8rt(1+z2) _27}\/1+Z2

2 2
Py =xycos(0)— y,sin(8) = ! E E
\/1+zz4rt\/1+zz 4rr(1+zz)
4 ) 2 (3.15)
Qo = X,sin(6) + ypcos(6) =— ___ <k
| \/1+zz4rt\/1+22 4rt(1+z2)

Onde (xo, J5) € 0 Vértice da parabola e p o seu parametro, isto &, a distancia do foco
ao vértice, que corresponde a distancia do vértice a geratriz. Notadamente, a pardbola tem
concavidade para a esquerda sempre porque p < 0. Note-se também que a equacao inclui a
igualdade, significando que a regiao compreende o interior da parabola e a propria.

Quando a parabola for rotacionada de —6, para ir do eixo XY ao PQ, entdo também
rotacionado sera o vértice da parabola, que no PQ tem a forma (PO, QO):

Como 0 ~ 7, a pardbola no eixo PQ tera eixo quase vertical, significando que o vértice
(P, Qo) sera muito proximo do ponto de menor poténcia reativa que a maquina pode entregar ao
sistema.

Calcula-se também o foco da parabola:
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§
YF=X
3 I I 2 (3.16)
xF=x0+p= - =
\ 4rp\/ 1+ 22 2rﬂ/1+22 4r,\/1+z2
( E?2
Pp =xpcos(0)—ypsin()=——
ar,(1+22)
s (3.17)
zE?
Qr =xpsin(0)+ ypcos(0)= ————
\ 4rt(1+z2)

Observa-se que o foco e o vértice da parabola sdo opostos.

3.5

Ponto de minima poténcia reativa

Dado que o angulo de rotagdo 8 é préximo de 7, decorre que a pardbola que representa a
Regido de Factibilidade é quase vertical, mas ndo completamente. Isso significa que o vértice da
pardbola apenas aproxima o ponto mais baixo possivel; trata-se de um ponto de interesse porque
representa a menor poténcia reativa possivel em regime permanente. Em que pese tratar-se do
ponto mais baixo da parabola, representa na verdade o maior valor de poténcia reativa que a

maquina pode receber do barramento infinito em regime permanente.

Derivando a equacao da parabola (a igualdade da inequagéo 3.4) com relagdo a P:

—8z%P +8z (Q +Pd—Q)—8Q

dQ AE? 2
Q L4Q4zEm
apr

+
apPp r, dP r

(3.18)

da
Aplicando % =0 e chamando de (Pm,-,l, Qm,-,l) 0 ponto de minima poténcia reativa:

E? n  E?
—22°Ppin+22Quin+— =0 P, = Omin . (3.19)
I z 2z2r,

Agora utilizando esta na equagao da parabola:

2 2 2 2 2)?
—4z2(9+ £ )+8zQ(§+ E” )—4Q2+(2+ a )4E +Q4ZE +(E—) =0

2z2r, z 2z%r, ) 1, I, T,
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Q E? Q E? \4E? _4zE*> [E?Y
S—|2z] =+ —2Q =+ +Q +|— | =0
z 2z2r, z
2

2z2r, ) 1, I I

rt

B2\ E? \4E? 4zE? (E?*Y\" TE4

S—— | + Q+ +Q +|— | =0
zZr; z 2zZ%r, ) 1, T T

PR (1)2+(4Qrt+ 2)+Q42rt+1 O(:)4Qrt( +1)+1+ L e
— | — J— = Z —_ _—=
z zEz2  z2 E2 E2 z z2

4Qr, z>+1 z%+1
s + =0
E? z z2

(3.20)

( E? E?
Qmin = C4rz 4x,
-4 (3.21)

P = E? ( 1 1)
T 0z2\2x, T,

3.6

Algoritmo e aplicacao ao sistema em estudo
Desenvolve-se assim o algoritmo com o fim de tracar a Regido de Factibilidade do sistema:

Xy
1. Calcula-se z=—
I
2. Calcula-se 0 (z)=atan(z):

3. Tracar a Regido de Factibilidade no eixo XY, segundo a equacao

(Rp): —4(1 + 22) y

) 4E2‘/1+Z2 (E)Z
—_——X+

Ty
4. Rotacionar o eixo XY de —8, obtendo a regi&o no eixo PQ;
5. Calcular P, e Q.

Aplicando este algoritmo para o sistema em estudo (tabela 1), no equilibrio S=1+ j0.5,

provém a tabela 3, que relaciona os pardmetros da Regido de Factibilidade para este sistema em
estudo. A figura 5 mostra a Regidao, bem como os pontos e parametros da tabela.
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Equacao da Regiao de Factibilidade

—y?—2.939905160189274 x +2.160760587726880 > 0

Grandeza Sigla Valor

Razao de impedancias z 34

Angulo de rotagao 0 0.4906406426783547
Vértice da parabola (Py, Qp) (0.02160760588,—0.73465859983)

Ponto de minima poténcia reativa | (Ppin, Qmin) | (—0.04261652757,—0.73529411764)

Parametro da pardbola p —1.469952580094637

Foco da parabola (Pr,Qr) | (—0.02160760588,0.73465859983)

Tabela 3 — Tabela relacionando os parametros da Regido de Factibilidade do sistema em estudo
aplicando-se o algoritmo desenvolvido.

Como discutido, 0 angulo de rotagdo 6 é préximo de 7, imprimindo sobre a parabola uma
quase verticalidade; para constata-la, tragou-se o eixo da pardbola em laranja, sobre o qual jaz
o foco da parabola (em amarelo). E interessante notar que como o vértice e o foco sdo pontos
opostos, o eixo cruza a origem. Além disso, o vértice (ponto vermelho) é muito préximo do ponto
de menor poténcia reativa (ponto roxo).

Também nota-se que, sendo praticamente vertical, a parabola é quase simétrica no eixo
das ordenadas, significando que o mesmo modelo de maquina pode ser utilizado como motor
sincrono (poténcia P negativa, isto €, a maquina recebe poténcia do barramento) ou como gerador
(P positivo). Ademais, a maquina também pode trabalhar recebendo poténcia reativa do barramento
(Q negativo) até o limite Q,,;,,-



52 Capitulo 3. A Regiéo de Factibilidade

' —
N o N IN o 0o ©
T T T T T T
1
o
1
N
1
N
o
N
N
o
1 ﬁ-U
2 o
T2
S Q ©
or I a
o 7 o
1 | 3 | 1=
°l 4
o 5| S
& QCE; [}
—®
\ o
U o
ot

Figura 5 — Regiao de Factibilidade do sistema OMIB em estudo (tabela 1), hachurada, cujos
parametros sdo dados na tabela 3. Em vermelho, o vértice da parabola; em laranja, o
seu eixo; em verde, o ponto S=1+ j0.5; em roxo, o ponto de minima poténcia reativa;
em amarelo, o foco da parabola.
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CAPITULO 4

EADs do sistema sem controladores

4.1

Descricao da metodologia de simulacao do sistema

A primeira parte desta monografia concentrou-se em caracterizar o sistema no seu equi-
librio, langcando mé&o de analises conhecidas tais como andlise de circuito, balan¢o do fluxo de
poténcia e caracterizagdo da Regido de Factibilidade do sistema. O objetivo foi descrever o
sistema e desenvolver as equagdes do seu equilibrio. E natural, portanto, que siga disso uma
andlise do sistema em regime transitério, quer dizer, estudar o comportamento do sistema frente a

perturbacao.

E doravante mister para o objetivo final do trabalho desenvolver programas de simulagéo do
sistema, porque o tragado das estimativas da Regido de Estabilidade do sistema sera feito através
do método Forga-Bruta — que exige a simulacao repetida do sistema — necessitando portanto

programas simulatérios eficientes.

Nesta parte, estudar-se-a o comportamento do sistema OMIB em condicao transitéria,
complementando a parte anterior na qual estudou-se o comportamento de equilibrio do sistema.
O objetivo primario €, a partir do sistema de equacdes diferenciais em malha aberta, deduzir as
equacoes diferenciais (EADs) do sistema quando controlado apenas por controlador do tipo AVR
(Automatic Voltage Regulator), e também do sistema controlado por AVR e PSS (Power System
Stabilizer), o qual pode ser equipado com saturadores (“sistema saturado”) ou nao (“sistema livre”).
Depois constroem-se os programas de simulag&o do sistema a partir das EADs desenvolvidas.

Também sao deduzidas, a partir das equagdes do circuito da figura 1, as equagdes da
tensdo terminal da maquina e das correntes de barramento em fungao das variaveis de estado.
Outrossim, o sistema sera caracterizado através de equagdes algébrico-diferenciais (EADs), da
forma do sistema (4.1):
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[ i=f(x,y1)
1 y=gx,1) (4.1)
I1=SV

A primeira equacao do sistema resume-se nas equagdes diferenciais da maquina (1.1).
A segunda depicta as equacoes algébricas do sistema, que relacionam as variaveis de estado —
como por exemplo a tensdo terminal V; de equacao (5.7). A terceira, por sua vez, trata da equacao
de interface entre a maquina e a rede externa.

Dado que o sistema diferencial da maquina ja foi obtido, esta parte se concentra em deduzir
as duas ultimas equagdes, que consistem basicamente na obtencédo das correntes de barramento
e da tensao terminal da maquina como funcdes das variaveis de estado, e acoplar estas equacoes
algébricas no sistema diferencial representado pela primeira equagao.

Atencao especial deve ser dada ao fato que uma extensa manipulagéo algébrica é feita em
virtude de as variaveis de estado serem dadas no eixo QD da maquina, enquanto as equagdes
sa0 obtidas (em primeiro momento) no eixo real-imaginario. Em outras palavras, obter as tensées
e correntes do sistema em funcdo das variaveis de estado perpassa uma rotagao de angulo, o

angulo do rotor com relagao ao eixo real-imaginario, resultando em contas e expressdes extensas.

Primeiramente, o sistema sera caracterizado em malha aberta, sem controladores, e
deduzir-se-ao as correntes de barramento como funcdo das variaveis de estado. Em seguida,
de posse da equagao que caracteriza o AVR, este sera introduzido e as equacgdes do sistema
controlado serdo apresentadas. O sistema controlado por AVR sera simulado sob perturbacao.
Entao serd introduzido o controlador PSS, as equacgdes do sistema AVR+PSS serao deduzidas e
simuladas. Finalmente, serao introduzidos saturadores; adaptar-se-ao as equagdes do sistema
livre para obté-las referentes ao sistema saturado.

O modelo de perturbacéo adotado sera um degrau na poténcia mecéanica, de amplitude
AP =0.1.

Em seguida, de posse dos sistemas algébrico-diferenciais, na préxima parte seréo ana-
lisados aspectos de estabilidade do sistema, como regido de estabilidade e o surgimento de
bifurcacdes e de ciclos-limite (érbitas periddicas), e a modificacao da regido de estabilidade do
sistema em fung¢ao do uso de saturadores.

4.2

Equacoes diferenciais da maquina em malha aberta

A maquina em malha aberta é regida segundo o sistema diferencial:
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L X=X+ (xg— X))
x1: 7
do
' Pm—x11q+(x;—x6’])1d[q
Xy =
{7 2H (4.2)
X3=x2
X,=0

Sendo:

~ . . . =
° EC’, = X; a componente de quadratura da tensao interna induzida E’;

e (w = X, a velocidade angular do rotor com relagdo ao eixo QD;

0 = X3 0 angulo do rotor com relacao do eixo QD;

Erp = x, atensdo no enrolamento de campo, que no sistema em malha aberta é constante

e igual ao valor inicial;

P,, a poténcia mecéanica admitida do elemento motriz, variante no tempo e nao controlavel.

A despeito de quarta equacgédo do sistema diferencial ser redundante — uma vez que se
poderia adicionar uma quarta constante Erp — adicionou-se-a para reiterar que, quando sem
controladores, a tensdo de campo Erp da maquina é constante e igual ao valor em equilibrio
calculado através das equacgdes de fluxo de poténcia ao passo que, no sistema AVR, a tenséo de
campo é uma variavel de estado e no sistema AVR+PSS trata-se de uma fung¢éo de variaveis de

estado.

4.3

Equacoes algébricas das componentes da corrente de barramento

I, e 1; sao as componentes no eixo QD da corrente de barramento, calculadas através

das componentes no eixo complexo I, e I;

- -

E'—E _E-E
(r+re)+j(x(;+xe) B I+ jx;

I=1+jI= (4.3)

Mas de posse da igualdade E’ = E(;eﬁ = x,e/* obtem-se:
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X [ cos(x3)+ j sin(xg)] —E

f: - =
e+ ] X

_ {xl [cos(xg)-l-jsin(xg)]—E}(rt—jxt) _

B r2+ x? B

B {[x1 cos(x3)—E]+j [xl sin(xg)]}(rt—jxt) _

B ré+ x? B

[xl cos(x3)— E] 1 + x; sin(x3) x; X, sin(x3)r; — [x1 cos(x3)— E] X,
= 7 2 +] 3 (4.4)
| e+ X}
De onde

[xl cos(x;)— E] r, + x; sin(x3)x,

I =
r2 + x?

X, sin(x3)r, — [xl cos(x;)— E] X,
Ii =

r2+ x?

Fazendo as projecdes em termos do eixo QD:

o S
[l [l
~ o~
o

E sabendo-se que (j =cos(0)+ jsin(0) e D =—sin(6)+ jcos(0):

I, I I, = I,cos(6)+ I;sin(d)
=R(0) =
I I I, =—I.sin(6)+ I;cos(6)

i

O sistema se traduz numa mudanca de base na forma de translagao. Assim,

x,r,—E [ 1, cos(x;3)— X, sin(x3)]

I =
1 r2+ x?
E [rt sin(x;) + x, cos(xg)]—xlxt
Id =

r2+ x?
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Denotando a impedancia total como

X=X/p < B (4.5)
tan(¢) =~

I

Escrevem-se assim I, e I; em fungdo de x, e x3, para utilizar estas equagoes no sistema
diferencial 4.2:

x,cos(¢)—E [cos(¢)cos(xg)—sin(¢)sin(x3)]

I,= X -
_X cos(¢)— E cos(xz + @) (4.6)
X
E [ cos(¢)sin(x;) + sin(¢))COS(x3)] — X, sin(¢)
Id = X -
_ Esin(x; +¢)— x, sin(¢) (4.7)

X

4.4

Sistema algébrico-diferencial e simulacao

Obtém-se assim as equagbes que definem o sistema em malha aberta. Denotou-se as

funcdes algébricas em negrito.

o XX+ (xg—x))Ig
xl = T/
do
By xlgt+(x)— xc’l) I
X, =
I 2H (4.8)
X3 = X
X, =0

_ % cos(¢)— E cos(x; + @)

I
4 X

(4.9)

_ Esin(x;+ ¢)— x; sin(¢)

I4 X

(4.10)
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A simulacao dindmica do sistema em malha aberta ante perturbagao resulta os graficos da
figura 6. O programa de simulagao encontra-se no apéndice A, secdo A.3, pagina 151.

Sob analise desta figura, conclui-se que o sistema em malha aberta possui trés problemas.
O primeiro, que refere-se a baixa regulacao das tensées do sistema, quer dizer, ao fato de o erro
de regime permanente das tensdes ser muito grande; o segundo, que o tempo de acomodacao é
muito alto, cerca de cinco minutos, infactivel para a maioria dos sistemas elétricos de poténcia;

finalmente o terceiro, que as amplitudes das oscilagdes sdo demasiado grandes.

O primeiro problema seré enderecado com a introdug¢éo do AVR, um controlador desenhado
especificamente para melhorar a regulacédo de tensao do sistema. Os dois Ultimos problemas serao
sanados com a subsequente introducao do PSS, cujo objetivo é responder dinamicamente as
variagcbes da frequéncia angular w.
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Figura 6 — Graficos gerados na simulagdo dinamica do sistema em malha aberta ante perturbacao.
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CAPITULO 5

EADs do sistema controlado por AVR

esquematizado no diagrama de blocos da figura 7.

A introdugcao do AVR procura aumentar a regulagdo das tensbes no sistema, que é

Frise-se que o objetivo do AVR é apenas melhorar aquela regulacédo de tensdes do sistema;

0s outros dois problemas (altas amplitudes de oscila¢des e alto tempo de acomodagéo) ndo sédo

enderecados por este controlador. Em verdade, ndo apenas o AVR n&o endereca estes problemas

como também pode amplifica-los; como desenvolvido na Parte IV desta monografia, o sistema

controlado por AVR tende a instabilizar com ganhos K, suficientemente altos.

5.1

AP

m

I_‘

O—
o)
=
m |00

PmO

v

m
-
o
<

EFDO VO
t

Figura 7 — Diagrama esquematico de blocos do sistema controlado por AVR.
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Controle automatico de tensao (AVR)

Um AVR (Automatic Voltage Regulator) é um dispositivo que ajusta a tensao no enrola-
mento de campo da maquina com o objetivo de regular a tensao terminal I‘ZI, denotada apenas
por V;. Sua lei de controle é dada por

AE., K,
AV,  sT,+1

(5.1)

Onde o operador A denota a diferenca entre o valor atual de uma grandeza e o valor da
mesma grandeza no ponto de operacao. Transformando a equacgéao (5.1) para o dominio do tempo,
tem-se a lei de controle do AVR em forma diferencial:

. K,(V,—= V) +(Erp—E
Epp=— (Vi = Vo) T( #p — Erpo) (5.2)
e

Para se poder implementar a lei de controle é necessario obter a relagao da tensao terminal
Lre . = 7 ~ . . ~ = = 7
com as variaveis de estado. Como V; é funcao do divisor de tensdes entre E’ e E, obtém-se
aquela tensdo como fungao destas duas e das impedancias:

V= B (B — B)x — et %e (5.9
q (r+r.)+j(x,+x,)
Denotando
Z=r,+jx,=Z/a (5.4)
- /—:Q /—iCtR
X=(r+r)+jx;+x)=X/¢ (5.5)
Entao
Vt=|V|=
_ . _ Te+ jXe
= E+{x1[cos(x3)+]s1n(x3)] E} AT =
= |E+{[x1 cos(x3)—E]+ jx sin(x3)} (KR+jKI)} = (5.6)

= |[(x1 cos(x3)— E) K — x; K sin(x3) + E] +j [(xl cos(x3)—E)K; + x; Ky sin(xg)]

= \/[(x1 cos(x3)— E) K — x; Ky sin(x3) + E]z + [(xl cos(x3)—E)K; + x, Kg sin(xg)]2 =
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= \/[(x1 cos(x3)—E)* +(x, sin(x3))2](K[2 +K2)+2E [(xl cos(x3)— E)Kg — x, K; sin(xs)] +E2=

= \ [xlz —2E x; cos(x3)+ E2] ()Z—()z +2E [(xl cos(x3)— E)Kr — x;1 K sin(x3)] +E2=

=\ [xlz—ZExl cos(x3)+E2](§)2+2E§[xl cos(x3+a—¢)—Ecos(a—¢)]+E2 (5.7)

Por outro lado, a mesma equacao pode ser deduzida a partir das equagdes da maquina.
Sabendo que

Vi=E+(r+jx ) T=xie/™+(r+jx')(I,+jl, (5.8)
q q q

Substituindo as equagdes de I, (4.9) e I; (4.10) e tomando o modulo deve-se chegar na
mesma expresséo de (5.7).

5.2

Sistema diferencial e simulacao

Assim, adiciona-se o controle AVR ao reescrever a quarta equacgao do sistema 4.2 como

_Ke(‘/t — Vo) +(x4— Erpo)
T,

.7(:'4:

O sistema controlado por apenas um controlador AVR sera descrito entao por

X=X+ (xg—x))ly
xl =
T,
Py xl+(x,— x;) Ll
xz =
2H
1 (5.9)
X3=X,
_ _Ke(Vt — Vo) + (24— Egpo)
L T,

2
V= \J [xlz—ZExl cos(x3)+E2](§) +2E§[x1 cos(x3+a—¢)—Ecos(a_¢)]+Ez (5.10)

_ x,cos(¢p)— E cos(x3 + ¢)

I
4 X

(5.11)
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E sin(x; + ¢)— x, sin(¢)
Id == X

(5.12)

Simulando estas EADs sob perturbacao obtém-se a figura 8. O programa de simulagdo em
MATLAB se encontra no apéndice A, secdo A.4, pagina 155. Os valores escolhidos de K, e T,
sao fruto de sintonia do controlador AVR, que consta no apéndice D. As escolhas em especifico
constam na secao D.5, na pagina 230.

De fato, o sistema AVR tem uma melhor regulagéo de tensao do que o sistema em malha
aberta, dado que os erros de regime permanente das tensbe Eé e V, sao menores. Além disso, 0
sistema controlado é levemente mais lento (isto é, tem tempos de acomodacao levemente maiores)

e as amplitudes das oscilagées sdo um pouco maiores.

Apds uma analise minunciosa do comportamento do sistema, conclui-se que a primeira
reacdo da maquina a perturbacao é a queda da tensdo interna E;, levando a uma conseguinte
queda de V. No sistema em malha aberta, o barramento infinito &€ responsavel por corrigir as
oscilacdes; ja no sistema controlado, além da funcao regulatéria do barramento infinito, assim que

a tensao V; sofre queda, o controlador age aumentando Erp, regulando V;.
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5.2. Sistema diferencial e simulagdo
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Figura 8 — Graficos do comportamento dinamico do sistema controlado por AVR e do sistema em

malha aberta apds perturbagao.
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CAPITULO 6

EADs do sistema controlado por AVR e PSS

O problema da baixa regulagéo de tensao no sistema foi enderegado pelo AVR; no entanto,
este controlador ndo diminui os tempos de acomodagéo, tanto menos diminui as amplitudes das
oscilagdes do sistema. Para remeter-se a estes problemas insere-se no sistema o controlador do
tipo Power System Stabilizer, que ajusta a tensao de campo Erp segundo a performance dinamica
do sistema através das variagdes da frequéncia angular do rotor, poténcia elétrica gerada, tensao
interna e afins. A figura 9 mostra o diagrama de blocos do sistema controlado por AVR e PSS sem

saturadores.

Dentre todos os modelos de PSS disponiveis, nesta monografia adotou-se o PSS1A,
descrito no IEEE Standard 421.5 de 2005, segundo o qual adiciona-se uma componente Vpgs Na

tensdo de excitacdo Erp:

Vpss 1 sT, sTi+1
= X Kpss X (6.1)
Aw sTr+1 sT,+1 shL+1

Onde

O tempo T modela a constante de tempo de um transdutor. Supbs-se que o transdutor é

perfeito e que, portanto, Ty =0 s;

A constante Kpgg € 0 ganho do controlador PSS;

O segundo fator T,, corresponde ao washout;

O terceiro fator € um compensador de avango-atraso, para ajustar a resposta em frequéncia
e margens de estabilidade do controlador;

A tensao de campo deixa de ser uma variavel de estado e passa a adicionar uma equacao

algébrica: EFD = V}’SS + ‘/AVR +EFD0-
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AP

OMIB

Pm 0
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Lead-Lag Washout
Vpss sT+1 || _sT
sT,+ 1 sT,+ 1

Vavr Ke +
ST, +1 )

Figura 9 — Diagrama esquemaético de blocos do sistema controlado por AVR e PSS sem saturado-
res.

6.1

Deducao das EADs do sistema

Passando a lei de controle do PSS (6.1) para o dominio do tempo:

d Vpss Ad*Vpss

d*w dw T
dt w2 qre

T,K hn—+—-
w PSS(Idl_2 dt

) = Vpss +(T + 1) (6.2)

Observe-se que os termos w e & podem ser retirados da equagao de swing, que corres-
ponde a segunda equacao do sistema de equacdes diferenciais da maquina (sistema (4.2)), como

serd feito abaixo. Ja para o AVR, da equagéo (5.2):

dVyyr _ _Ke(Vt — Vo) +(Erp — Egpo)
dt T,

Inserem-se novas variaveis de estado para os controladores:
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Xy = Vpgs
X5 = V};SS (64)
Xs = Vyyr

As equacbes de X, e de X; ja sdo conhecidas, a saber,

X4 = .X:5
(6.5)
. Ko (V= Vig)+ (x4 + x6)
Xg=—
T,
Ja a equacao de X; serd obtida através de (6.2):
TwKPSS(E)E2+x2)_x4_(Tw+E) x5:TwT2 xS (66)
o, Ty Kpgs (T3 + %) — x4 — (T, + L) x5
. X5 = (6.7)

I, T

Precisa-se saber a expressao de X, (uma vez que ja se possui a equagao de X, pois € uma
das equacoes do espaco de estado). Sabemos que, pela segunda equacgao do sistema diferencial
(sistema 4.2),

Py, —x1,—(x,— x;)ldlq

%= 2H
. Pm—(xlfq+J€11q)—(x6’i—x;)(qud+Idfq)
e 2H -
. . | (x44+ X6+ Eppo) — x1 + (x4 —x/)1, : .
Pm—{xllq-l— T 1 = (= X)) (I L+ 1Ty
— do
= (6.8)
2H

Observe-se que, como P,, é um degrau no tempo da forma P,,(t)= P,,o + AP, u(t—tp),
onde P,,, é o valor no ponto de operacéo inicial da poténcia mecanica, AP,, é a amplitude do
degrau na poténcia mecanica e f,, € o instante de tempo em que esse degrau ocorre, entao P,
tem a forma de um impulso:

P,=AP, 6(t—tp)
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Agora deduzam-se as expressdes das derivadas das correntes. Das equagdes (4.9) e

(4.10):
= x, cos(¢)— E cos(x;+ ¢)
7 X
E sin(x3 + ¢)— x, sin(¢)
Id == X
Onde X =(r+r,)+ Jx)+x.)= Xel?. Relembrando que x, = X3, resulta
. X, cos(@)+ x,E sin(x; +
= $1008(@)+ %, E sinly+9) 69)
X
. X, Ecos(x;+¢@)— X sin
= (x3+ @) — %, sin(g) (6.10)
X
Mas a expressao de Xx; é conhecida, de onde
; [(x4+x6+EFD0)—x1 +(xd—x;)ld]cos(¢)+x2Td’oE sin(x; + ¢) o1
"~ TiX o
. X%T; E cos(xgJr(,i))—[(x4+x6+EFD0)—x1 +(xd—x(;)ld]sin(¢) 512
d— Td/OX ( . )
6.2

EADs do sistema controlado por AVR e PSS sem saturadores

Finalmente, o sistema em malha fechada com o controlador AVR+PSS é regido pelas

equacdes algébrico-diferenciais abaixo:
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(. Epp—x;+(x;—x))Ig
xl =
Ty
Py xlg—(x) —x;) I I,
2= 2H
.x:é = x2
X4 = .X:5
b= Ty Kpgs (T1X5 + X5)— x4 — (T, + Tp) X5
’ T,T;
. K(Vi—V,0)+(Epp— Erpo)
Xg=—
\ T

L& cos(¢)— E cos(x; + ¢)

1 X

Epp = X4+ X+ Eppo

_ Esin(x;+ ¢)— x; sin(¢)

I
d X
[EFD —x+(x;— x;)ld] cos(¢)+x, T, Esin(x; + ¢)
q XTd'O
[ x,T; E cos(x; + (,1))—[EFD—x1 +(x, —x;)Id]sin(qb)
d =
XTd’O
. ) Epp— x; +(x; — x4 ) .
Pm—{xllq+[ . 4= (1g = () — x) (TqTq + Taly)
X.ZZ do

2H

V= Q [xf—ZExl COS(X3)+E2]()Z_()2 +2E§ [xl cos(x;3 +a—¢)—Ecos(a—¢)]+ E2

. ~ . = =
Com as impedancias Z e X sendo

Z=r,+jx,=Zel"

X=(r+ re)+ j(x +x,) = Xe'?

(6.13)

(6.14)
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EK,,T,,T, 1,1, Kpss sendo constantes referentes aos controladores. A simulagéo deste

sistema se dara junto com a do préximo, no qual se introduzirdo saturadores.

6.3

EADs do sistema controlado por AVR e PSS com saturadores

Para prevenir sobre-excitacdo do sistema, bem como prevenir oscilacdes de tensao de
grande amplitude, introduzem-se saturadores em lugares especificos dos controladores. Neste
trabalho, os saturadores seréo introduzidos em dois pontos do sistema: primeiramente, na tensao
de campo Erp e, depois, na saida do PSS Vg, gerando a figura 10 a partir de 9:

AP

m

i

l OMIB

Po——(O——| R E——

w
6 —
B W
Lead-Lag Washout
Vpss sh+1 || sTw
sT,+ 1 sT,+ 1
Ke Y Vs
Erpo ST, +1 T
Vio

Figura 10 — Diagrama esquematico de blocos do sistema controlado por AVR e PSS com satura-
dores.

6.3.1 A funcao saturacao S(x)

A funcao saturacdo sera implementada como segue:

S(x) Xmax xmin) = R(x - xmin)_R(x _xmax)+ Xmin (615)
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Onde:

e x é avariavel a ser ceifada;

® X,,,. €0 maximo valor que x pode assumir;

X,,in € 0 maximo valor que x pode assumir;

e R(x)é afungdo rampa, descrita como

R(x)=xu(x) (6.16)

Onde u(x) é a fungao degrau de Heaviside. Para que R(x) seja continua, entdo define-se
R(0)=0.

E importante salientar que ha varias formas de se implementar a fungéo saturacédo; por
exemplo, se poderia adotar

xmaxv Se x 2 xmax
S(x)= X,  Se Xpin <X < Xpax (6.17)

Xmin» S€ X< Xyin

x, sex=>0
R(x)= (6.18)
0, sex<0

Decidiu-se adotar R(x), escrita em termos de u(x) como em (6.16) e S(x) como em
(6.15) porque a resolugao de equacgdes diferenciais do MATLAB (quer dizer, 0 comando solver)
funciona através de variaveis simbdlicas, e a fungdo condicional “if” ndo pode ser implementada
para este tipo de varidveis — rendendo a definicdo mais usual imprépria. Logo, a funcdo S(x) deve
ser definida segundo rotinas com as quais a plataforma numérica consiga trabalhar, como por

exemplo a fungao rampa.

6.3.2 Derivacao da funcao S(x)

No capitulo sobre Estudos em Estabilidade, sera deduzida a matriz jacobiana do sistema.
Para tanto, sera preciso deduzir a derivada da fungao saturagao, o que serd feito nesta secao.

Primeiramente,

R(x) =f wndr < B9 o (6.19)
dx
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Pela Regra da Cadeia,

is(x) _ dR(x _xmin) d(x _xmin) dR(x _xmux) d(x _xmux) _
dx d(x—X,) dx ad(x—X,.y) dx B
= u(x = Xpin)— U(X — Xpax) (6.20)

Que é a funcdo chamada Boxcar, fungao pulso, ou fungéo retangular, de amplitude unitaria,

largura X,,,x — X, € CUja subida ocorre em Xx,,;,:

xmax

d
——s=] @) (6.21)

Xmin

As fungbes S(x) e S’(x) estdo tragadas na figura 11.
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S(x)
A
S(x):xmin S(x)=x S(x):xmax
Xmax [
Xmin |
Xmin Xmax
dS(x)
dx
A
Tr Q Q
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
0 & & >
Xmin Xmax

Figura 11 — Tracados da funcdo S(x) e sua derivada funcéo pulso.
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6.3.3 Sistema de equacoes e simulacao

Finalmente, obtém-se um novo sistema de equagdes que incorpora a fungao saturacao.

[ ES% —x+(xg—x))Ig
xl =
T,
' Pm—xllq—(xc’i—x;)ld I
Xy =
2H
X3 = x2
3 (6.22)
.)é4 == x5
& = Ty Kpss (T X5+ X5)— x, — (T, + T) x5
° T, T
. K, (Vi— Vo) +(E% — Eppy)
Xg =—
\ T,

Denotam-se as fungdes saturadas x,* e E%":

X, = 8 (2, Vogs™, Vogs") (6.23)
ES% =S (x ™+ X+ Eppo, ESi, EJL") (6.24)

Tém-se as equacdes algébricas herdadas do sistema sem saturagdo, mas substituindo as

variaveis antes nao saturadas para suas versdes com saturagao:

L% cos(¢)— E cos(x; + ¢)

q X (6.25)
E si +@)— x; sin
= Eeint ) sinio) 626
) [EFD—x1 +(x;— x(;)Id]cos((/))—i- X, T; Esin(x; + ¢)
I,= 7 (6.27)
do
) szd’OEcos(x3+¢)—[EFD—xl+(xd—x;)ld]sin(¢)
I, = 77 (6.28)
do
. . EFD—x1+(xd—x’)Id . .
Pm—{xllq+l = A= 1g = (= x) (TqTq + TaLy)
X, = do (6.29)

2H
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2
V.= \J [xlz—ZExl cos(x3)+E2](§) +2E§[x1 cos(xs+a—¢))—Ecos(a—¢)]+E2 (6.30)

K, 1,1, 1,1, Kpss sdo constantes referentes aos controladores. As escolhas destes
parametros provém da sintonia do controlador, presente no apéndice E, secdo E.4, pagina 239.
Estas equacdes, simuladas sob perturbagao juntamente com as equagdes do sistema nao-saturado,
resultam os graficos da figura 12. Os limites de saturacao de Erp € Vpgg foram escolhidos de
forma que:

e A tensdo de campo ndo sofresse saturagoes;

e Atensdo Vpgs sofresse leves saturagoes.

O programa de simulagdo em MATLAB encontra-se no apéndice A, secao A.5, pagina 159.

De uma andlise da figura 12, conclui-se que a introdu¢do do PSS de fato melhorou o
comportamento dinamico do sistema como propunha. O sistema controlado por AVR e PSS tem
menor tempo de acomodagao (menos de um minuto) do que aquele controlado apenas por AVR
(cerca de cinco minutos). Além disso, as osilagdes foram diminuidas; por exemplo, enquanto no
sistema controlado por apenas AVR as oscilagoes na frequéncia angular «w chegaram a quase 8%
(vide figura 8), no sistema controlado por AVR e PSS estas mesmas oscilagdes chegaram a menos
de 6%.

Ainda na figura 12, também pode-se notar o efeito da saturag@o na resposta do sistema.
Entre aproximadamente o sexto e o décimo segundos, e o décimo quarto e o décimo sexto, a
tensdo Vpgs atinge a saturagdo. As amplitudes de oscilagao das tensdes sao muito reduzidas —
por exemplo, sem saturagdo a tenséo interna E; oscila em 4%, enquanto que com saturacdo essa
oscilacao ndo passa de 3%.
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Figura 12 — Gréficos do comportamento dindmico do sistema controlado por AVR e PSS, sem

saturadores (curva vermelha) e com saturadores (cor azul).
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CAPITULO 7

Ocorréncia de bifurcacoes no sistema

Nesta parte, serdo estudados os aspectos de estabilidade dos sistemas descritos na parte
anterior. A andlise de estabilidade sera feita através da andlise local dos sistemas, por meio da

determinagao dos autovalores no equilibrio.

O objetivo é a determinagao da ocorréncia de Bifurcagdes de Hopf nos sistemas. Trata-se
de um ponto no qual uma combinagao especifica dos parametros do sistema — das constantes do
controlador — provocam uma mudanga no ponto de equilibrio, a medida que coalesce com uma
solugao periddica (6rbita). Foi constatado, por exemplo, em (GAO; K.T.CHAU, 2004) e (LI et al.,
2002) que motores sincronos de ima permanente podem apresentar uma bifurcacao de Hopf em
funcéo dos parametros dos controladores. Ambos os sistemas (aquele controlado apenas por AVR e
aquele por PSS+AVR) serdo analisados, com o objetivo final de determinar a combinacao especifica
dos parametros que suscita a bifurcacao e, se possivel, tracar a 6rbita periédica resultante.

Primeiramente, para os dois sistemas, serao determinados os polindmios caracteristicos
como combinagdes dos elementos do jacobiano. A deducdo destes elementos em funcédo dos

estados no equilibrio, bem como do polindmio caracteristico, é extensa e esta nos apéndices.

De posse da forma analitica deste polindmio, sdo determinadas as condi¢des de ocorréncia
da bifurcacao, ou seja, a lei que relaciona os parametros do sistema para que o evento ocorra. Em
seguida, os autovalores dos sistemas na bifurcagéo sdo determinados.

7.1

A Bifurcacao de Hopf

Segundo (STROGATZ, 2014; WANG, 1993), uma bifurcacao de Hopf é definida como
segue:

Definicao 2 (Bifurcacédo de Hopf). Suponha um sistema dindmico ndo-linear, ao qual se associa um
equilibrio estavel x* qualquer e um ciclo peridédico instavel; a medida que se alteram os pardmetros
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U do sistema, o ciclo limite paulatinamente se aproxima do equilibrio. Uma bifurcacdo de Hopf
ocorre quando a combinag¢do de pardmetros provoca a coalescéncia do ciclo limite com o equilibrio,
e este torna-se instavel. Em outras palavras, existe um ponto critico = g para o qual o ponto de
equilibrio do sistema dindmico perde estabilidade, a medida que um par conjugado de autovalores

do sistema nesse ponto de equilibrio cruza o eixo imaginario.

A figura 13 mostra como a Bifurcagao de Hopf ocorre. Inicialmente, tem-se um sistema de
equilibrio localmente estavel x*, envolto por um ciclo limite instavel, em vermelho. O ciclo limite é
instavel porque, se levemente perturbado em direcédo a x*, entdo a trajetéria do sistema converge
para o equilibrio (curva verde); caso o ciclo seja perturbado na diregdo contraria a x*, entao a
trajetéria diverge (curva azul), como explicado em 13.(a). Ja em 13.(b) mostra-se que, a medida
que o vetor de parametros u se aproxima de U, 0 ciclo limite diminui, engulfando o equilibrio; até
que, em u = U, 0 equilibrio e o ciclo limite instdvel coalescem; a situacéao final, ilustrada em 13.(c),

mostra o equilibrio instavel resultante.

E preciso notar que ha duas condigdes necessarias e suficientes para a ocorréncia desta
bifurcacado: a primeira, que um par de autovalores do sistema no equilibrio torne-se imaginario puro;
a segunda, chamada Condicao de Transversalidade, que a derivada da parte real dos autovalores
Re(A) com relagao aos parametros u em questdo ndo deve ser nula na bifurcagao:

40 (7.1)

Up

Onde x* é o equilibrio considerado, ¢ € um parametro qualquer e ug é o valor do pardmetro
U que leva a bifurcagédo. Esta condicao garante que aquele par de autovalores de fato transite
entre os semiplanos, ao invés de, por exemplo, assumir valores imaginarios rapidamente ("bater e

voltar"), ou ainda manter-se imaginarios ao longo de um intervalo.

No caso da maquina sincrona controlada por AVR ou AVR+PSS, a bifurcagcido pode
eclodir suscitada pelos parametros de ganho e de tempo dos controladores, quando um par
conjugado de autovalores cruza o eixo imaginario, indo do semiplano esquerdo para o direito. O
objetivo é encontrar a curva conhecida como Diagrama de Bifurcacao, que expressa a relagéao
entre os parametros do sistema (o par (K,, T,), no caso do sistema controlado por AVR, e o
quintuplo (K,, T,, Kpss, T;, T, T,,) no caso do sistema controlado por AVR e PSS) que provoca
a bifurcacgao.

A principio, ndo basta impor, no polindmio caracteristico, que A seja imaginario puro
pois nao ha garantia, por exemplo, que qualquer solugéo do polinémio seja imaginaria, ou ainda
que o polinémio tenha quatro solugdes reais diferentes com uma sendo zero. Para assegurar
a bifurcacdo de Hopf, deve-se garantir que A transite entre os semiplanos, logo a necessidade
da Condigao de Transversalidade. Como os coeficientes daquele polinbmio sdo todos suaves e
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~e_ p—pup -7

Figura 13 — Esquematico de explicacdo da Bifurcacido de Hopf.

continuos (quando existem) com relagéo ao conjunto de estados iniciais (pelas formulas dos J;;), e
as raizes de um polinémio qualquer (e.g., os autovalores do sistema) sao continuas com relagéo
aos coeficientes desse polindmio (TYRTYSHNIKOV, 1997), entdo os autovalores sdo continuos
com relagé@o ao conjunto de estados inicial. Portanto, é razoavel ao menos considerar pelo menos
como candidatos o conjunto dos pontos para os quais a solugao do polindmio seja imaginaria,
mesmo que a bifurcagdo ndo seja garantida.

Para ilustrar que, de fato, ocorre uma bifurcagdo no sistema, tragcou-se na figura 14 o lugar
de raizes em fungao do ganho do controlador, K,, para cinco valores diferentes do tempo 1, do



86 Capitulo 7. Ocorréncia de bifurcagdes no sistema

controlador. A figura mostra um autovalor do sistema, no ponto de equilibrio S=P+ jQ=1+j0.5;
para todos os cinco valores de tempo, o autovalor transita do semiplano esquerdo para o direito,
mantendo-se no semiplano direito para ganhos maiores — como esperado, uma vez que ja se
espera instabilidade para valores altos de ganho. Sabendo que os coeficientes do polinémio
caracteristico do sistema considerado sao reais, entdo com certeza o autovalor ilustrado na figura é
acompanhado de seu par conjugado. Assim, de fato, ha varios pares (K,, T,) que levam o sistema
a bifurcagcdo. Considerando que os coeficientes daquele polindmio sdo continuos no espago de
estados iniciais x;, logo também é o conjunto de solugdes do polindbmio. Isso garante que qualquer
valor de tempo entre 1072 e 10° possua um K, correspondente que, no ponto inicial especifico,
leve o sistema a uma bifurcagdo. Logo, prova-se que para este sistema, no ponto de equilibrio
considerado, ha infinitos pares de parametros do controlador que levam o sistema a uma bifurcagao.

Ademais, nota-se, ao analisar a parte real dos autovalores versus o ganho K., que a
inclinagdo dos graficos em momento algum € horizontal, 0 que sugere conformidade com a
Condicao de Transversalidade.

As duas subsegdes a seguir tém por objetivo:

1. Encontrar a condicao de existéncia da bifurcacao;
2. Determinar os parametros do controlador que levam a bifurcacao;
3. Encontrar os autovalores do sistema no equilibrio bifurcado;

4. Checar a concordancia com a Condigao de Transversalidade.
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Figura 14 — Lugar de raizes do sistema controlado apenas por AVR, em fungao dos parametros
do controlador AVR.
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CAPITULO 8

Sistema controlado por AVR

A figura 14 mostra que para o sistema controlado por AVR ha ocorréncia de bifurcagao

para algumas combinagdes particulares de K, e T,. O objetivo deste capitulo é mostrar que a

bifurcacéo é possivel, e de quais parametros essa existéncia depende. Em seguida, objetiva-se

calcular a relagdo entre aqueles parametros que levam o sistema a bifurcagéo. Tendo este sistema

quatro dimensdes, analogamente seu jacobiano terd dimensao quatro. No apéndice B as contas de

deducéo do Jacobiano, bem como do polindmio caracteristico, estdo deduzidas. Enfim, o polindmio

deste sistema é dado por
4 .
p(;\):zaw =
i=0

At=23

8.1

by 3 O
Jip N3

+]4,4]2,3)+ Jii Nz ha |=0
b1 g3
Jay Jaz Jaa

(8.1)

Existéncia de bifurcacao

No polindmio caracteristico 8.1, fazendo A = j 3, com f real, tem-se

(7B) =+ 1aa) (iB) + (M Jaa— hadan = Joa) (iB) + [ Joa (o1 + Jaa) = oo | (7B) +

+ Jua (]1,3]2,1 - ]1,1]2,3) + /14 (]2,3]4,1 - ]2,1]4,3) =0
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B*—(NJsa—Joadan—Jos) B2+ Joa( s don— JinJos) + Jra(JosJsr— JonJus) =0
(8.2)

(]1,1 + ]4,4) B3+ []2,3 (]1,1 + ]4,4) - ]1,3]2,1] B=0

A equagdo de baixo sugere 3 =0, que ndo é um resultado desejado porque implicaria
A =0 e, portanto, ndo garantiria um par de autovalores imaginarios conjugados. Assim, supondo

B #0,

pB*— (]1,1]4,4 —Jiadin— ]2,3)/52 + Jaa (]1,3]2,1 - ]1,1]2,3) + Ji4 (]2,3]4,1 — ]2,1]4,3) =0

(8.3)
(]1,1 + ]4,4)/52 + []2,3 (]1,1 + ]4,4) - ]1,3]2,1] =0
Desta Ultima equacéo,
B2 = _[]2,3 (114 Jaa)— ]1,3]2,1] _ Nghay 5.
Jii+ Jaa Jii+ Jaa ’
J13)2,1
L p=y| s g 8.4
B \J Tor+ Jan 23 (8.4)
O que resulta uma condigdo de existéncia: sabendo que J;; + J; 4 <0,
J13)2,1
BER, & ———1,3>0 J1351< )a3 (]1,1 + ]4,4) (8.5)
Jii+ Jaa

Perceba-se que a condicao de existéncia ndo depende do controlador, uma vez que as
componentes do jacobiano envolvidas ndo sdo fun¢des dos seus parametros. Assim, conclui-se

que:

1. Se a inequagéo (8.5) for satisfeita, entdo a existéncia da bifurcacéo é garantida, i.e., existe
algum par (K,, T,) que leva o sistema a bifurcagao;

2. A existéncia da Bifurcacao de Hopf esta ligada ao equilibrio escolhido, € ndo ao controlador;
em outras palavras, os parametros do controlador ndo determinam se a Bifurcacao sera
possivel, mas sim o ponto de equilibrio, uma vez que a inequacgao (8.5) independe de K, e
de 1, . Isso quer dizer que ha condigdes iniciais possiveis, mas que nao admitem bifurcagéo;

3. Supondo que a bifurcagao seja possivel, ist est, o ponto inicial seja tal que a condicédo para a
existéncia (8.5) seja satisfeita, entdo existe pelo menos um par (K,, T,) que leva o sistema
a essa bifurcagdo — uma vez que sua existéncia nao depende do controlador.
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Resta entdo analisar se, satisfeita a condi¢ao de existéncia da bifurcagéo, o par (K,, T,)
€ Unico ou ndo para um dado ponto inicial; em caso positivo, determinar o par e, de outra forma,
determinar uma relagdo entre os parametros.

8.2

Parametros na bifurcacao

Substituindo (8.4) na primeira equacgao do sistema (8.3),

]1,3]2,1 )2 ( ]13]21 )
=22 gy | —(hidas— hadan— Tos)| 722 = s |+
(]1’14_]4’4 2,3 ( 1,1/4,4 1,474,1 2,3) ]1’1_’_]4,4 2,3

Joa(Bador—NiJos)+ Toa(Jozdan— JarJus) =0

]1,3]2,1

Ni3)21
@ —_— —_—
( ]2'3) St Jaa

Jig+ Jas

—Jr5+ hoadag— I Jaa+ Jos |+

Jia(halog =T los)+ IalJossn = o Jas) =0 &
A []1,3]2,1 — b3 (]1,1 + ]4,4)] []1,3]2,1 + (]1,4]4,1 - ]1,1]4,4) (]1,1 + ]4,4)] +

[]4,4 (]1,3]2,1 - ]1,1]2,3) + 14 (]2,3]4,1 - ]2,1]4,3)] (]1,1 + ]4,4)2 =0

Esta equacgdo estabelece uma relagao entre o espaco de estados em equilibrio e o par
(K., T,). A principio, olhando para as formas dos componentes ](x’y), faz pensar ser uma equagéao
transcendente. Assim, deve-se lancar mao de solvers numéricos para resolvé-la. No entanto, isto
apresenta uma complicacdo: o chute inicial, necessario ao método numérico. A figura 14 sugere
que, para um tempo 7, fixo, a solugdo em K, é Unica, uma vez que a curva é assintotica dos dois
lados. Assim, uma forma de evitar que o chute inicial tenha muita influéncia na solugao é, para um
dado conjunto de estados de equilibrio x*, fixar T, e resolver a equacgéo para K,. Uma outra forma
é obter uma relagéo direta K, = f (x, 1), que sera feito a seguir.

De fato, em uma primeira vista, (8.2) parece ser uma equacgao de solugdo complexa ou
demorada devido aos grandes coeficientes, especialmente os da quarta coluna. Nao se trata do
caso, porém; como os coeficientes mais sofisticados sdo funcéo dos estados iniciais, em termos
de K, e T, tratam-se de fungdes simples. Em realidade, considerando os estados x; a X, fixos,
ent&o as unicas fungdes do controlador sdo os componentes J 4, J54 € J3 4. Assim, para melhor
representar a finalidade da equacédo — dado um estado inicial x*, encontrar o par (K,, T,) que
instabiliza o sistema e provoca bifurcacao — representar-se-ao os coeficientes da quarta coluna do

jacobiano como:
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( K,
]4,1 = _K4,1 f
K,
] ]4,3 = _K4,3Fe
1
| ]4,4 = _?e

Assim, ressaltando estes termos em (8.2),

[]1,3]2,1 —Jo3 (]1,1 + 14,4)] []1,3]2,1 + (]1,414,1 - ]1,114,4) (]1,1 + ]4,4)]

+ []4,4 (]1,3]2,1 — ]1,1]2,3) + /14 (]2,3]4,1 — ]2,114,3)] (]1,1 + ]4,4)2 =0 (8.6)

Aplicando as igualdades, e denominando K.z 0 ganho do controlador que provoca a
bifurcacao,

1 « K 1 1
[11,312,1 s (11,1 - T—)] [11,312,1 —(11,4 W i) (11,1 - T—)]

1 12 xT3
|- Vsl = T os) = R (K = B Kis) | (a =) =05

& halaTe= I (JaTe=1)][ s Joa T2 = (J1,4Ks, 1 Kep = J11) (11 Te— 1)
+ [ (]1,1]2,3 —]1,3]2,1) + J1,4Kep (]2,1K4,3 - ]2,3K4,1)] (]1,1Te - 1)2 =0
= []1,3]2,1Te — )3 (]l,lTe - 1)] []1,3]2,1T§ + /i1 (]I,ITe — 1)] + (]1,1]2,3 _]1,3]2,1) (]1,1Te - 1)2 +

+Kep { = 114K (1 Te=1)[ L JonTe— Jog (. Te=1) |+ 14 (Jo Kig = o3 Kt 1aTe—1) } =0

[hshoaTe=os haTe= V][ 1 foa T+ iy Ui Te= )]+ (J1 Fos— Dislon ) Ui Te=1)
Ja (o Kag = JoaKan) iaTe—1) = JuaKoy (haTe—1)[JiaJo1 Te— Joa (11 Te—1))

Kep =

B ( 1 ) [113JaTe= Tos (JinTe=1)] [ s Joa T2 = i (o1 Te—=1)|+ (Jin oz = o ) (a Te— 1)
JiaTe—1 Jia (]2,1 Ky5—1Jo3 K4,1) (]l,lTe - 1) —N14Ky ) []1,3]2,1Te — a3 (]l,lTe - 1)]

l 53 ](]1,3]2,1_]1,1]2,3)T2+]2,3T2+]1,1Te_1
-~ Kep =

Jia(i1Te—1) (11Kys— 13Ky ) Te— Ky 3
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Que é uma relagéo deveras simples, e esta graficada na figura 15. Todos os J,, ,, bem como
os K,, , séo fungbes do equilibrio considerado, constantes com relagéo ao controlador. Assim,
definindo-se um vetor de valores para T, obtém-se os valores correspondentes de K,. Outrossim,
de posse das variaveis de estado no equilibrio calculam-se os J,, ,, e os K, ,,; esta expressao
determina que a cada valor de T, corresponde um valor de K, é que leva o sistema a bifurcacao.

Ganho de bifurcagao K.g versus tempo do controlador T,
20 : e : e :

19 -

Equilibrio instavel

Figura 15 — Diagrama de bifurcacao do sistema controlado por AVR no ponto de equilibrio S=
P+jQ=1+j0.5.

8.3

Discussao da figura 15

A figura 15 mostra que para pontos (K., T,) acima da curva o equilibrio é instavel, e que

para pontos abaixo dela é estavel, ou seja:

0 <K, < K, < Equilibrio estavel

K. = K, 3 < Bifurcagéo

K. > K,z < Equilibrio instavel

Lembre-se que o0 ganho é inerentemente positivo, uma vez que qualquer valor nao-positivo

instabiliza o sistema.
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8.3.1 Intervalo em que K, ; nao é bijetora

Ainda assim, nao justificou-se por que o par ganho-tempo € Unico, e néo se trata do caso
no qual um valor de ganho corresponde a trés valores de tempo, como a equacao (8.7) sugere —
uma vez que essa equacao define um polindmio de terceiro grau em T,. Uma analise da figura
14 sugere que, para qualquer um dos cinco valores de tempo considerados, apenas um valor de
ganho corresponde a bifurcagdo, uma vez que o comportamento é assintético no eixo real.

No entanto, de uma andlise da figura 15 infere-se que existe um intervalo de K,, digamos,
Iy, = (Ige,lge] (denotado na figura por tragos), para o qual cada valor de K, possui dois corres-
pondentes em T, quer dizer, para qualquer valor de ganho neste intervalo ha exatamente dois

valores de tempo T, possiveis que bifurcam o sistema.

Calculando o extremo superior de I, : do lado esquerdo da curva, para um T, suficiente-
mente pequeno,

J
=7, 2 (88)
(]1,1K4,3—]1,3K4,1)Te—K4,3 Ky

If = lim K, = lim
e T,—0+ T,—0+

l Ji3 l(]1,3]2,1—11,1]2,3)Tg+]2,3T§+]1,1Te—1 B
N4 (]l,lTe_ 1)

Para o estado inicial considerado, a expressao vale I;e =15.648269934421407. Ja para

calcular o extremo inferior do intervalo I, trata-se do valor para o qual a curva tem derivada nula:

a KeB
aT,

=0 [(]1,1K4,3 _]1,3K4,1)Te_K4,3](]1,1Te_ 1)[3(]1,3]2,1 _]1,1]2,3)T§ +2)3Te + ]1,1] =

=[ (s oa— T Joa) T+ Jog T2+ 1y Te—1][ (11 Ko — JiaKan) (JiaTe— 1)+ i1 (1 Kag = J15Kin ) Te— 11 Ky |
[ (35 Jos =33 n ) (2110 Kos = DrsKan )+ 2011 Fos (s Kus = s % Ko ) =20 (i Kas = s Kin ) (Jos = o + Jiaon )| T€™+
+[(2hnKas=hsKar) (Jos= I b+ hsJon )= I (B Kas=hsKas )= Kas (37 Jos =3 hos ) =2 (211 Kas — FiKan )| Te?+

— I Kys+ 113K =0

Para o equilibrio S= 1+0.5, asolugéo é T, = 0.297935089029690 < I, =14.202015827943844.
Assim, a funcédo K,z ndo é bijetora para T, €( 0, 0.297935089029690 ).

8.3.2 Autovalores na bifurcacao

Assim, denotando o polinémio como P (A1) = A* + a; A3 + a,A* + a, A + a,, com
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as = _(]1,1 + ]4,4)
a, = (]1,1]4,4 —haJag— ]2,3)

a, = []2,3 (]1,1 + ]4,4) - ]1,3]2,1]

ao=Jya(isJor = TiiJos)+ Jra(JosJan — Jon Jus)

Entao dividindo P (1) por (A2 + 2),

P(A)=(22+ %) (A2 + a2+ a,— P2) + (@ — asB?) A+ a— p* (a,— B?) (8.10)

Mas, de 8.4, se (K,, T,) estdo ajustados para a bifurcagao, isto é, K, = K, 3 (T,), entdo

01—613/52:%_/52(612_/32):0 (8.11)
Assim,
P()L)E()L2+[52)(7L2+a37t+a2—&) (8.12)
as

Daonde, na bifurcagao, os autovalores do sistema sao:

A= (8.13)

. ] a,
+ =+ _
L JB=%]\ a

Perceba-se que o radicando é sempre positivo — condigdo de existéncia de e, logo, para

a bifurcacéo — e logo os autovalores sdo sempre complexos; logo, a estabilidade destes autovalores
fica a cabo de a;. Sabendo que este coeficiente € sempre positivo, entao estes autovalores tém
sempre parte real negativa. Vale lembrar que estes autovalores s6 sdo validos para o ponto exato
da bifurcagao, isto é, quando K, = K, 3.

8.4

Checagem da condicao de transversalidade

Tém-se assim os parametros que levam o sistema a bifurcagéao (equacgéo 8.7) e os autova-
lores do sistema na bifurcacao (8.13). Falta checar se a condigcao de transversalidade confere, quer
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dizer: sendo u o vetor de pardmetros do sistema de tamanho p, se up é tal que EI?L(,uB) e C—R,
entdo também é necessario que o gradiente da parte real dos autovalores na bifurcagao seja nulo,
ou seja,

dRe[2(u)]

3 40 (8.14)

u=up

Para uma Bifurcagdo de Hopf em u = ug. Assim, calcular-se-4 agora a forma desta
derivada parcial. Sabemos que, para os autovalores,

4
P(A)=> a;A'=0
i=0

E que tanto os a; como A sdo fungdes do equilibrio e dos parametros do controlador.
Segue que, derivando implicitamente a igualdade com relagdo a um parédmetro u, que pode ser
tanto K, quanto 7,,

—=—= (8.15)

Note-se que o denominador desta, que equivale a derivada do polinémio P (x) aplicada em
x = A, ndo é zero se A néo tiver multiplicidade maior que um. Com efeito, a raiz de um polinémio
qualquer é também raiz da sua derivada se, e somente se, tal raiz tiver multiplicidade superior
a um. Como neste caso a andlise é feita sobre a bifurcacao, e provado esta que nela todos os
autovalores séao distintos, segue que o polindmio nao tem raizes duplas e, portanto, sua derivada

nao comunga de nenhuma de suas raizes.

Agora, sabendo que A = f(,u) :RP — C, entéo
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6/1_6Re(7t)+ dIm(A)
ou  ou J ou

_ORe(d) _110A (07
" du _2l3u+(3u)]

As duas provas abaixo s&o feitas por reductio ad absurdum, ou seja, aplicando

u=up

E provando que esta condicdo ndo acontece.

8.4.1 Prova 1

Assumindo (8.14) entédo

ORe(A) 1 6/1+(3/1) 0
ou  2|ou \ou)|
()
ou \ou)
.-.QGCP—R’”
ou
, . A .
Aplica-se entdao — = jy, y e R™:
4
0
Z}Uﬁ
i 9K .
~ 2 =Jjre
Ziai/l“_l)
i=1
da,; 2
_ i i_ . : (i-1)
= ou —]yZzalA
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1I
o

—
[
o

—=—j(k+1)rai, k€{l,2,3}

Enquanto a primeira equagéo € verdadeira, ndo o sdo as outras quatro. Primeiramente
porque a segunda é imediatamente falsa, ja que a, é fungao de ambos K, e T,; depois, porque as
trés Ultimas assertivas requerem que os a,; sejam fungées complexas do vetor de pardmetros u —
uma vez que, por hipétese, y € R” — quando, sendo os a,;. valorados reais, isso ndo é possivel. O
caso ¥ =0 também é contraditério, porque neste caso os a; devem ser idependentes de u, que

nao é o caso.

8.4.2 Prova 2

Deduzindo a forma do conjugado da derivada parcial de Re(A) com relagéo a u, e sabendo

que todos os a; sao fungoes reais, i.e.,

da;
“=g(u) | g R R

a;=f(p) | RV >R ou

Cl_l':al'

Entéo
— .da T Nda;
7 | 2Ya | 2
|3 e
D ia A > ia(a-n)
i=1 i=1
Daonde
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Fazendo a prova por redugao a absurdo, aplicando a negagao da transversalidade:

Ao ) ) (575 i)

i=1 i=0 i=1

=233 8 ()

Decorre disto que a expressao a esquerda é imaginaria pura; outrossim, sua parte real é

nula:

.-.(24:/1"‘2—‘;") (24: iaim) €C—R& ReKiA" ZZ)(i iai(/l(i—l)))] —0e

=0 i=1 i=0 i=1

4

& Re (gzi 22" ) Re (Z iai(/l(i—l))) — Im( ; Ai%) Im (24: ia,-()ui—n)) —0

i=1 i=1

Sendo as operagdes Re(.) e Im(.) distributivas, e utilizando novamente a valoragéo real
dos a; e suas derivadas com relacéo a u,

4

2 1m (%]

i=0

+

”iiai Im(/l(“))] =0

0 a;
a‘u i=1

Que aparentemente é uma equacéo transcendente. Para reduzi-la, adota-se u = K,,
calculando-se as derivadas em K, = K, 5. Pode-se fazé-lo porque a condi¢édo de transversalidade é

aplicada na bifurcagao (i.e., u = ug), condi¢éo que serd utilizada agora para simplificar a expresséo:

[ S Re(2) ;

i€{0,2}

” S oy Re (0°1)

i=1

5 Im(af)%l[imilm(aw—n)lzo

i€{0,2} i=1

da;
ou

Na bifurcacdo, K, = K,z = A= jf '. Assim, A’ é real para i par, zerando o primeiro fator
da segunda parcela. Além disso, o segundo somatério é reduzido:

[ > el 22

] l Z ia;Re (7&”‘”)] =0
Kep I Lie{1,3}

i€{0,2}
da, ,0a, ) B
@(aKe—ﬂ aKe)KeB(—?)agﬁ +a1)—0

' Note-se que o outro par de autovalores nao é considerado porque a Condicdo de Transversalidade se aplica

apenas ao par de autovalores que de fato transita entre os semiplanos, que neste caso é o par A==£j .
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Substituindo 2 = — 2,
as
([mo alaaz)
+_
0K, a;0K,
da, a,da
@4@1( 0,4 )
0K, a;0K, K.p
Sabe-se que a, # 0 e a; # 0; finalmente,
oRe|A(u)] ( day
— = 2 e a
ou oK,
Up

a,
(Ba:})_ + al) = 0 =
KeB ds

=0

O que é um absurdo, pelas férmulas dos a;. Logo, a condi¢cao de transversalidade esta

satisfeita sempre que a condi¢do econtrada ocorrer, ou seja, K, = K, 5 (TQ) € de fato uma ocorréncia

da Bifurcag¢édo de Hopf.
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CAPITULO 9

Sistema controlado por AVR e PSS

O polindmio caracteristico deste sistema é dado por 9.1. As formas dos componentes do
jacobiano, bem como as contas do calculo do polinémio, encontram-se no apéndice C.

6
P(x):Zu,,)l”
n=0
h3s ha ha e
Jo3 a0 0
ag=—

I3 sy e s
Jo3  Jo1  Jea  Jos

b3 ba O b3 a0 J23 by 0
ay=Js5| hs Nha1 e |—| hs Iy e || B2he e Jes
Jos  Jea1  Jes Js3 Js1 Jsa Jsoha  Jsa Jea

Jsa  Js5 O i hs e ha ha e
T I
ay=—J1 LA S bl ha 1 =1 |=| b1 b3z 0 |=| k1 Ja Jse
Js5 52
Josg O 1 oo T3 Jes Jon  Joa T
Js6  Jsa Nha i N1 e
az=—lahs+ s (]1,1 +]5,5+]6,6)_ - +J55
Jos o 51 Jsa Je1  Jes

Ny e

|

a3y =1y Jo3—Jsa+J55 (]1,1 + ]6,6) +
Jo1  Jes

as = —(]1,1 +J55+ ]6,6)

ag=1
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9.1

Parametros na bifurcacao

Tem-se portanto o polindmio monico caracteristico P (x), cujas raizes sdo os autovalores do
sistema. Na bifurcagéo, estes autovalores serdo imaginarios puros; aplicando entdo A = ja,a €R,,

entao

—a®+ jasa® + a,at — ja;a’ —a,d + jaa+ay =0 <
—ab+a,a*—a,a®+ay,=0
asa®—aza+a,a=0

5 3 1% —

Eliminando a solugdo nula desta Ultima equagao (porque @ =0 A =0¢ C—R, quando
se quero A€ C—R):

ab—a,at+ a,a? —ay, =0
asa*—aza*+a; =0

Denotar-se-do Q(x) e R(x) tais que

Qx)=x3—a,x*+a,x —a,
R(x)=asx*—asx +a,

Nota-se que:

e A solucdo procurada deve ser solucdo de ambos Q(x?) e R(x?); logo, o Diagrama de
Bifurcagéo pode ser obtido substituindo as raizes de Q(x?2) em R(x?). A reciproca, no
entanto, ndo é verdadeira porque ha duas raizes de R(x?) ndo contempladas por Q(x?);

e O sistema possui pelo menos um par de autovalores imaginéarios se Q(x) tiver pelo menos
uma solugao positiva. Assim, se faz necessario analisar a posicao das raizes de Q(x);

e A solugéo trivial ocorre se e somente se a, =0.

Supondo a5 =0, entao



9.1. Pardmetros na bifurcagdo 103

Suponho as # 0 entéo, para esta Ultima equagao,

as x4/ ai —4a,a;

a== (9.4)
2as

Em primeiro lugar, é imperativo notar que, enquanto em 9.3 ha duas solugdes possiveis,
em 9.4 ha quatro. Isso significa que a5 = 0 implica em apenas um par de autovalores ser capaz de
bifurcar; quando a5 # 0, dois pares sdo capazes de bifurcagéo.

Estas formulas nao garantem que a € R, . Nota-se portanto que a existéncia de «, e logo
a existéncia da bifurcacao, esta atrelada a regido a,a; > 0 na primeira equacao e as regides
A=a®—4a,a;>0, a; £+/A> 0 naseguda, significando que estas inequagdes representem na
verdade o Diagrama de Bifurcacao.

Embora relativamente simples, a formula revela alguns aspectos sobre a bifurcagéo nos sis-
temas controlados por AVR e PSS, especialmente referindo-se ao determinante. Ha a possibilidade
de haver duas raizes possiveis, uma raiz possivel ou nenhuma. Seja ug um elemento bifurcante no

espaco dos parametros, e os polindmios Q(x)=asx?+as;x +a, e R(x)= x3—a, x>+ a, x — ay:

1. Se houver duas solugdes possiveis para 0 memso U, isso quer dizer que dois pares de
autovalores bifurcam ao mesmo tempo. Neste caso, o polindmio Q(x) tem duas solugdes
positivas;

2. Se houver apenas uma solugédo possivel para 0 mesmo U, € porque Q(x) admite duas
solugdes de sinais opostos ou apenas uma solugao positiva;

3. Se nao houver solugao possivel, é porque Q(x) ndo admite solugdo positiva;

4. Dado que os parametros do sistema sem saturagéo sao diferentes daqueles para o sistema
com saturacdo, entdo é possivel que para um g seja possivel a bifurcacdo em um deles,
mas nao no outro.

Up € obtido substituindo as solugdes de Q(x) em R(x). No entanto, primeiramente é
preciso analisar a posicédo das solugdes de Q(x), que sera feito na segcdo seguinte.

9.2
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Andlise da posicao das solucdes de Q(x)

Como Q(x) é quadratico e R(x) é cubico, entdo a analise das solugdes do sistema 9.2
comecara por aquele por duas razdes: primeiramente pela dificuldade de se analisar a posigao das
raizes de um polindmio cubico; segundo, porque ha duas raizes de R(x?) n&o previstas por Q(x?),
entdo substituir as raizes daquele neste representa sobretrabalho.

Primeiramente, supondo a5 = 0, entao, por 9.3, havera solugao se a,a; > 0.

Ja para as # 0, é preciso analisar a posigao das solugées de um polinémio de segundo
grau. Lembra-se que o objetivo é encontrar a bifurcacéo, e para tanto Q(x) deve ter pelo menos
uma raiz positiva. De posse do lema a seguir, pode-se analisar melhor este caso:

Lema 1 (Posicéo das solucdes da equacéo quadratica). Seja P(x)=ax?>+bx+c | a,b,c €
R, a # 0 uma equacgéo quadratica genérica valorada real, com duas raizes x,, x, € R hipotéticas.

Entdo ha cinco possibilidades para as raizes:

1. As duas raizes existem, sdo diferentes e sdo positivas:

b —ba>0
xl,X2>0 ——:x1+x2>0
a xa
o << ca>0
c
A>0 —=X1%>0
a | b*—4ac>0

2. As duas raizes existem, sdo diferentes e sdo negativas

b [ —ba <0
X1, X, <0 ——=Xx+x<0
a xa
o << ca>0
c
A>0 _:xle>O
a | b*—4ac>0

3. As duas raizes existem e alternam sinais:

C xa?
<0<, & —<0<=ca<0
a

b x2a?

4. Existe apenas uma raiz dupla, digamos, x,: A=0,x, S0 5 S0<—-bas0
a

5. As raizes nao existem: A < 0.

Utilizando este lema, entdo para Q(x):
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1. Hé& duas raizes positivas, e logo dois a possiveis para dois pares de autovalores bifurcantes
se
([ a’—4a,a5>0

{ —azas;>0

\ a,a5>0
2. Ha uma raiz positiva e outra negativa, ou seja, apenas um par de autovalores bifurca, se

n<0<x, & aa5<0

3. Ha apenas uma raiz dupla positiva, ou seja, dois pares de autovalores bifurcantes que

convergem para o mesmo valor, se

2 —
a;—4a,a;=0
—azas >0

4. Nao ha raizes positivas, ou seja, ndo ha ¢ imaginario se a§ —4a,a;<0ou se

([ a’—4a,a5;>0

{ —azas;<0

\ @a5>0

Pode-se, no entanto, simplificar a discussao ao analisar as;. Sabe-se que

as = _(]1,1 + J55+ ]6,6) =

_B+T, 1Y 1 [(xa—xy)sin(9)

+—= X2+ X6+ Eppo |+ =~ +1
TéTw Te ( 4 6 FDO) Td/o X

min
EFD

A primeira parcela é positiva dada a natureza das constantes de tempo T, e T.

A terceira parcela é também sempre positiva; isso porque Td’o € inerentemente positivo,
X;— x(; € naturalmente positivo porque as impedancias permanentes sao naturalmente maiores
que seus pares transitérios, X é positivo por definicao, e sin(gb) € muito préximo da unidade

porque ¢ é a fase de uma impedancia marjoritariamente indutiva.

J& a segunda parcela também sera, via de regra, positiva. No equilibrio estatico, a tensédo

de saida do excitador €, por definigéo, igual a tensdo Epp, (ou a E/7'*, mas néo faz sentido
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construir um saturador cujo limite € menor que o valor da variavel no equilibrio). Se preferir, no

equilibrio estatico, os controladores nao atuam; logo, neste equilibrio, Vpgs = Va4, r =0. Como T, é,

por definicao, positivo, entdo a primeira parcela também é positiva, de onde as > 0.

Sob esta analise, entdo a possibilidade a; = 0 € descartada, tal qual a solugdo 9.3;

simplificam-se também as condigdes sob a suposicdo as # 0: dividindo as inequagdes apropriadas

por as, entao

1. Ha duas raizes positivas, e logo dois a possiveis para dois pares de autovalores bifurcantes

se
[ a?—4a,a;>0

{ a;<0

\ a1>0

2. H& uma raiz positiva e outra negativa, ou seja, apenas um par de autovalores bifurca, e outro

éreal, se

X <0<x,<a,<0

3. Ha apenas uma raiz dupla positiva, ou seja, dois pares de autovalores bifurcantes que

convergem para 0 mesmo valor, se

2 —
a;—4a,a;=0

as; <0

<=>a3=—2v ala5

4. Nao ha raizes positivas, ou seja, ndo ha ¢ imaginario se

ai—4a,a;<0& ay e(—Z\/alaS : 2\/a1a5)

ou se

[ a?—4a,a5>0

{ as>0

a, >0

as > 24/ a,as

a, >0
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9.3

Substituindo as solucdes de Q(x?) em R(x?)

Sabemos portanto que a solugao de Q(x?) é

as+1/ai—4a,as

2as

a=

Substituindo esta solugdo em R(x?2), tem-se a relagéo entre os a;, e portanto entre os
parametros dos controladores, para ocorrer bifurcagéo:

3 2
az 4/ a; —4a,a; az 4/ a; —4a,a; az 4/ a; —4a,as

+a —a +a,=0
2as ! 2as 2 2as 0

Multiplicando por 86153 para eliminar os denominadores,

3 2
(a3:t\/a32—4a1a5) +2a5a4(a3:|:\/a32—4a1a5) —4a52a2(a3:l:‘/a§—4a1a5)+8a§a0=0(:>
2
= (a3i\/a§—4a1a5) (asi\/a§—4a1a5) +2a5a4(a3i\/a§—4a1a5)—4a§a2
2
2 2 2 2
= (a3ﬂ:‘/a3—4a1a5) (a3+a5a4i\m3—4ala5) —as(a4+4a2)

+8a’a,=0&<

+8a’a,=0

9.4

Analise paramétrica do Diagrama de Bifurcacao

Através da secao passada, se pode concluir acerca de quatro dos seis autovalores do
sistema. Este fato surge do grau dos polinémios R(x?) e Q(x?), uma vez que eles ndo comungam
de um par de raizes.

Para poder representar melhor o Diagrama de Bifurcacao e analisa-lo eficientemente, os

parametros K, e Kpgg dos controladores serdo variados; os outros serao fixados.

Vamos supor que o sistema tem autovalores A;, i € {1,2,...,6}. Destes seis, se pode

concluir sobre os primeiros quatro a partir dos resultados a seguir:
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e Se a, <0, entdo Q(x) admite uma solugdo positiva e outra negativa. H4 apenas um par de
autovalores bifurcantes, digamos, A, e A,:

as+ 1/ a; —4a, as

2a;

A(1,2) = ij

Ja os outros dois autovalores serdo reais:

E o diagrama de bifurcacédo é dado por

3
+8a;a,=0

2
(a3+ V a§—4a1a5) (a3+a5a4+\/ a§—4a1a5) —a’ (af+4a2)

Note-se que a3 pode asssumir qualquer valor.

e Se a, =0, entdo Q(x?) assume solucéo trivial mas R(x?) néo; logo, o zero n&o é solugéo

do sistema (9.2), a menos que a, =0.

— Se az <0, um par de autovalores é bifurcante, dado por

| lasl
Aaz=%] \ @

Os outros dois autovalores sao complexos nao reais. O diagrama de bifurcagao é dado
por

8ala,=0

- Se a; =0, entdo Q(x?) s6 admite solugéo nula, o que impossivel a menos que a, = 0.

* Se a, for de fato nulo, entdo o sistema admite um par de solugdes triviais, e apenas
duas. Se a, também for nulo, entdo o sistema admite quatro. Se a, também for

nulo, entdo o sistema admite cinco. Se as, entdo todas as solugdes serao triviais.

— Se a; > 0, entdo um par de autovalores é real, dado por

a
A=+ =
as

Os outros dois autovalores sdo complexos nao-reais.

[ Sea1>0
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— Se a3 <—24/ a,as, entdo ha dois pares de autovalores bifurcantes:

as+ 4/ a;—4a,as

2as

A(1,2,3,4) =+j

E o diagrama de bifurcagao é dado por

2
(a3 +4/ a§—4a1a5) (a3 +asa, £/ a§—4a1a5) —a’ (af +4a2)

— Se a; =—24/ a,as, entdo ha dois pares de autovalores bifurcantes idénticos iguais a

.. a3
Aa) = Aeay = £]\ .

E o diagrama de bifurcagcao é dado por

3
+8a;a,=0

a, [ (ag + a5a4)2 —a’ (aj + 4a2)] +8ala;, =0

— Se |as| < 24/ a, a5 entdo todos os quatro autovalores sdo complexos, ndo ha nenhum

real ou imaginario puro;

— Se a; =24/ a,as entdo nao ha bifurcacédo; ha dois pares de autovalores reais idénticos

e iguais a

— Se a3 > 24/ a,as os dois pares de autovalores sdo complexos ndo-reais.

¢ E importante notar que a solucio trivial ocorre se e somente se a, = 0. Neste caso, entio
com certeza havera pelo menos mais um autovalor real, uma vez que os complexos ocorrem

aos pares.

Assim sendo, conclui-se que o sistema admite bifurcacdo apenas se, para algum par
(Ke’KPSS):

e a, <0;ou
e a,=0ea3<0;0u

0a1>Oea3S2 a1a5;
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Como discutido no apéndice C, os coeficientes ay, a,, ase as séo fungdes dos controladores

e do estado considerado:

Lel =AK.+ B (9.5)

T T,+T s Jon | T4 Ty+Te| f3 J21 Jas
a; = Kpgs — 0 ]2,3 ]2,1 —K. = ]1,6 +=—"—= - (9.6)
T, Ty T.T, KB 3 KG 1 T T, Ty A 3 Ji1 T.T,Ty,
he Nz i
= CKe+DKpss+E (97)
T N e | Ksg—K JorJ Ty +T
3 = —Kpss T, yBoe " Rsa | Sa1dia K Y 2 Ko 1 Jy ot
T T, T T,T,Te
2 K5 1 K5’4 e 2 2twte
Jor s+ T (] Tut Tz 1) ! o2t Tt e o s GRpss+ H (9.8)
2,171,3 2,3 1,1 TZTW Te TeTsz 1,1 TWT2 - e PSS .

Sendo assim, e lembrando que K., Kpgs > 0, tem-se que o sistema admite bifurcacao se:

e a,<0< CE<OVDE <0;

e Oua; =0Naz3<0&

= CKe+DKpss+E=0/\FKe+GKpss+H<0<:>

GC GE GC GE x| C D || D E
s | F-— |K,+H-—<0&s | F—— ||H-— |< 0= >0 (9.9)
D D D D r clle H

e Ou se existir algum par (K¢, Kpss) : a; > 0Aag < —24/a;a5 <&
S a; >0/ag<0A|ag| =24/ aa <
2
& CK,+ DKpss + E > 0A FKo + GKpss + H <A (FKe + GKpss + H | 2 4a5(CK, + DKpss + E) &

CK,+ DKpgs + E >0
= FK.+ GKpgs+H <0
F?K,.2 + G?Kpss? + 2F GK Kpss + (2FH—4a5C)Ke +(2GH —4a5D | Kpss + H2—4asE > 0

(9.10)

9.5
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Averiguacao da existéncia de Bifurcacao no sistema controlado por AVR e PSS

Como discutido na sec¢ao anterior, o Diagrama de Bifurcagao sera representado bidimen-
sionalmente para melhor se poder visualiza-lo. Os ganhos K, e T, serdo variados e os outros
parametros serdo mantidos constantes:

) (2)
T 3

T, 1
L) \1)

Substituindo nas férmulas os valores dos componentes J,, , e K, , do jacobiano no

equilibrio S=1+ j0.5, e também os valores de T,, T,, T,,.T, nas expressoes (9.5) a (9.8) entdo

ay =K, 0.008969302610266 + 0.099845713151587

a, =K, 0.035877210441062 + 0.849764645906651
{ (9.11)
a; = Kpgg 0.009195121241277 +K,, 0.032506650440767 +3.592841222631569

as =2.637064246614808

Valendo-se do fato que K., Kpgs = 0 entdo todos os coeficientes sdo sempre positivos,
eliminando grande parte da analise paramétrica do Diagrama de Bifurcacdo. Restam apenas trés
possibilidades:

1. Se az < 24/ a, a5 entdo todos os quatro autovalores sdo complexos, ndo ha nenhum real ou

imaginario puro;

2. Se asz =24/ a,as entdo ndo ha bifurcacdo; ha dois pares de autovalores reais idénticos e

A=\ B
as

3. Se a3 > 24/ a a5 os dois pares de autovalores sdo complexos nao-reais.

iguais a

Valendo-se do sistema (9.11) conclui-se que a,, a; > 0 para quaisquer valores de K, e

Kpgs possiveixs.
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Pelas conclusdes da secao passada isto implica portanto que este sistema, no equilibrio
N

S =1+ j0.5 considerado, e com as escolhas de Ty, T,, T,,.T, fixas, ndo é capaz de bifurcacao
para nenhum par (K, Kpgg)-
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CAPITULO 1 0

Motivacao, definicao e caracterizacao

10.1

Motivacao

Nesta parte o objetivo é comparar as Regides de Atragdo do sistema em quatro condigdes:
malha aberta, controlado por AVR apenas, e controlado por AVR e PSS, com e sem saturacoes.
Para estimar essas regides, utilizar-se-a de método numérico denominado “Forga Bruta”, que
se baseia na simulagao do sistema para uma grade de valores iniciais. Para tanto, é necessario
caracterizar o equilibrio do sistema, para entdo poder simular o sistema a partir de condicoes
iniciais diversas. Ora, trata-se exatamente do que fora feito nas primeiras partes.

A analise seguiu da seguinte forma:

1. Caracterizacdo da maquina elétrica e do barramento infinito, constituindo o sistema OMIB;

2. Célculo do equilibrio do sistema, seguido de desenvolvimento do algoritmo para calculo
desse equilibrio baseado na poténcia aparente fornecida pela maquina inicialmente;

3. Definicdo da Regido de Factibilidade do sistema e desenvolvimento de algoritmo para
caracterizar essa regiao;

4. Deducédo dos modelos dos controladores AVR e PSS, além da funcdo saturagdo S(x);

5. Dedugao dos modelos algébrico-diferenciais do sistema em malha aberta e fechada, a partir
do modelo da maquina:
a) Sistema em malha aberta;
b) Controlado por AVR,;
c) Controlado por AVR e PSS, sem saturagdes (sistema “livre”);

d) Controlado por AVR e PSS com saturagdes (sistema saturado);
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6. Validagdo dos modelos deduzidos a partir de simulagbes numéricas do sistema sob pertur-
bacao do tipo degrau na poténcia mecanica.

Os passos culminam com a estimativa da Regiao de Estabilidade do sistema. O objetivo
principal é estudar como a introducao de saturadores altera aquela Regiéo.

Para estima-la, foi utilizado o método Brute Force, ou Forca Bruta, que consiste em simular
o sistema a partir de varias condicdes iniciais e averiguar, individualmente, quais trajetorias séo

assintoticamente estaveis ao equilibrio.

10.2

Definicao

Antes de se analisar o comportamento dinamico frente a uma perturbacao do equilibrio, é
imperativo que se entendam as possiveis classificacdes dos pontos de equilibrio. H4 basicamente
dois critérios de classificacdo: o primeiro, que diz respeito ao comportamento da trajetéria do
sistema quando da perturbacado do equilibro; e o segundo, que diz respeito a analise local do
sistema no equilibrio através dos autovalores do seu jacobiano calculado nesse equilibrio.

Define-se primeiramente o conceito de equilibrio. A ideia de “equilibrio” € um ponto no qual

o0 sistema permanece se ndo perturbado. Matematicamente,

Definicao 3 (Pontos de equilibrio). Seja um sistema dindmico x = f(x), f : @ x I — R" no
auténomo, com condig¢ao inicial x (ty) = Xy, cuja trajetéria é x = ¢ (x,,t). Supbem-se f e ¢
C'-continuas em Q2. Um ponto x* é chamado de equilibrio do sistema se f (x*) = 0. Pode-se

também definir o conjunto dos pontos de equilibrio, dado por

E={xeq| f(x)=0} (10.1)

Esta definigao, no entanto, advém do valor da derivada do sistema exatamente nos pontos
de equilibrio, ou seja, ndo depreende nenhuma caracteristica do sistema quando perturbado desse
equilibrio. Além disso, frise-se que em muitos sistemas os equilibrios podem nao ser isolados, isto

€, o conjunto E pode representar uma linha ou até mesmo um plano .

A criagao de uma classificagdo dos equilibrios em fungcao do comportamento dindmico do
sistema na sua vizinhanga toma por base o comportamento de sistemas lineares. Exemplifica-se

assim o caso de sistemas lineares bidimensionais.

10.3
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Comportamento de sistemas lineares bidimensionais

Imagine um sistema do tipo x = Ax, A € R?*2, Sendo assim, pode-se tomar a forma
candnica de Jordan J = PAP™! de A, tal que o sistema z = J z tenha comportamento similar,
mas as suas duas variaveis tenham acoplamento minimo. Este sistema, por sua vez, tem dois
autovalores que podem ser reais ou complexos.

A classificacdo do equilibrio z = 0 tem por base dois critérios: primeiro, o fato de os
autovalores serem complexos, imaginarios, ou reais, e o segundo, a parte real dos autovalores ser

menor, igual ou maior que zero.

Definicao 4 (Pontos de equilibrio em sistemas lineares bidimensionais). Seja um sistema dindmico
x =Ax,A€R>*?2, com um ponto de equilibrio x*. Entdo x* é classificado como segue:

e x* é um no estavel se todos os autovalores de A forem reais negativos;
e Por outro lado, se todos os autovalores forem reais positivos, entao x* é um no instavel;
e Se 0s autovalores de A forem complexos de parte real negativa, entdo x* é um foco estavel;

e Ja se os autovalores de A forem complexos de parte real positiva, entdo x* é um foco

instavel;

e Finalmente, se todos os autovalores do sistema forem imaginarios puros, entao o equilibrio
é chamado centro.

O comportamento do sistema linear é esquematizado nas figuras 16 e 17, que ilustram
os planos de fase do sistema em oito situacdes possiveis. A primeira ilustra o comportamento
do sistema quando seus autovalores séo reais, e a segunda ilustra 0 comportamento do sistema
quando seus autovalores sdo complexos.

Se os autovalores forem reais negativos, entdo o sistema decai exponencialmente ao
equilibrio, que é global e assintoticamente estavel. Se forem ambos positivos, o sistema explode
exponencialmente, e o equilibrio é instavel.

Por outro lado, se os autovalores forem complexos ndo-reais, o sistema apresenta compor-
tamento oscilatério. Se os autovalores tiverem parte real negativa, o equilibrio é estavel; se tiverem
parte real positiva, o equilibrio é instavel.

Finalmente, se os autovalores forem imaginarios puros, o equilibrio ndo é estavel, e o

sistema apresenta infinitas 6ribtas periédicas (mas nenhum ciclo-limite).

A ideia da préxima secao é: dado que o Teorema de Hartman-Grobman garante que,
para equilibrios hiperbdlicos, o sistema nao linear comporta-se similarmente a linearizacao, entao
pode-se classificar o equilibrio do sistema nao-linear baseando-se no comportamento do sistema
linearizado.
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Figura 16 — Graficos qualitativos do comportamento de sistema bidimensional com autovalores
reais ao redor do equilibrio
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Figura 17 — Graficos qualitativos do comportamento de sistema bidimensional com autovalores
complexos ao redor do equilibrio
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10.4

Expansao da classificacao de equilibrio para sistemas nao-lineares

Dado que o Teorema de Hartman-Grobman garante que o sistema nao linear se comporta
similarmente & sua linearizagdo numa vizinhanca de um equilibrio hiperbélico, analogamente ao
caso dos sistemas lineares bidimensionais, classificam-se os equilibrios de sistemas nao lineares

a partir dos autovalores do sistema linearizado calculado no ponto de equilibrio.

Definicao 5 (Classificacdoe de pontos de equilibrio de sistemas néo lineares). Seja um sistema
dindmico x = f (x), f C'-continua em ). Seja também um ponto de equilibrio x* tal que f (x*)=0.
Denotando o jacobiano de f com relagdo a x no equilibrio x* por ] b (x*), entdo x* é classificado
como segue:

e O equilibrio x* & um equilibrio hiperbdlico se todos os autovalores de J;(x*) tém parte
real ndo-nula, e pode ser subclassificado em:

— Se os autovalores forem complexos nao-reais, entao x* é um:

* Foco estavel se todos os autovalores tém parte real negativa;
* Foco instavel se todos os autovalores tém parte real positiva;

x Equilibrio hiperbdlico tipo k se exatamente k autovalores tém parte real positiva;
— Se os autovalores forem reais, entdo x* é um:

* NO estadvel se todos os autovalores sdo negativos;
x NO instavel se todos os autovalores sdo positivos;

x Cela se alguns autovalores sdo positivos e outros negativos;
e Do contrario, x* é chamado centro se todos os autovalores tém parte real nula;

e (Os casos em que alguns autovalores tém parte real nula e outros ndo sdo chamados
“casos elipticos”. Ha classificacées para estes casos, mas ndo serdo postas aqui dado
que os sistemas dinamicos lineares bidimensionais, que serviram de inspiracao para esta
classificac&o, ndo contemplam estes casos.

E seja as definicao de equilibrio atrativo em (LUO, 2014; CHIANG; ALBERTO, 2015):

Definicao 6 (Equilibrio atrativo). Seja um sistema dindmico x = f(x), com condigao inicial
x (ty) = x,, cuja trajetdria é x = ¢ (xy, t), com x €Q e t €R. Supbe-se f C'-continua em ). Seja
também um ponto de equilibrio x* tal que f (x*)= 0. Denotando o jacobiano de f com relagcao
a x no equilibrio x* por J¢(x*), entdo x* é um equilibrio atrativo se existe uma vizinhanga de
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x*, suponha U (x*), tal que o sistema converge para x* a medida que t — o0 se x, € U (x*).

Matematicamente, x* é atrativo se

A3N>0| lx*—xll <n= tllrglo”qb(to,xo, t)—x*||=0 (10.2)

A ideia de caracterizar a estabilidade do equilibrio é definir padrdes de analise para
determinar se o sistema tendera ao equilibrio se perturbado levemente. Sendo assim, classifica-se
o equilibrio de duas formas.

A primeira forma de caracterizar o equilibrio x* é através dos autovalores de f em x*,
quer dizer, através da solugdo det[]f (x*)—/l[] = 0. Esta forma foi inspirada no comportamento

de sistemas lineares bidimensionais.

J& segunda consiste na andlise através do comportamento da trajetéria x = ¢ (x,, ¢), com
X, uma condigdo inicial proxima ao equilibrio x*, ou seja, x, € U (x*) com U (x*) uma vizinhanga
do equilibrio. Trata-se de um equilibrio atrativo estavel se U (x*) existe, ou seja, se o sistema for

solto suficientemente proximo do equilibrio, retornard ao mesmo equilibrio em tempo infinito.

O Teorema de Hartman-Grobman garante que, se o campo vetorial do sistema dinamico f
for C!, e x* for um equilibrio hiperbolico, entdo seré atrativo se for um foco ou né estavel, e ndo
serd atrativo se for um foco ou né instavel; se x* nao for hiperbdlico, entdo ndo se pode garantir
que o sistema comporta-se similarmente a sua linearizagdo. Assim, para esta classe de sistemas,
a atratividade do ponto de equilibrio hiperbdlico e a caracteristica dos autovalores nesse equilibrio

sdo intercambiaveis.

No entanto, a andlise local dos autovalores do sistema no equilibrio deixa passar uma
questdo importante que a analise de trajetéria menciona. Se todos os autovalores do sistema
dinamico no equilibrio tém parte real negativa, entdo existe uma vizinhanga U (x*) D {x*} dentro
da qual o equilibrio é atrativo (novamente pelo Teorema de Hartman-Grobman), mas nada pode ser
dito sobre a vizinhanga em si — exceto por sua existéncia. A questao é determinar essa vizinhanga;
em geral, nos sistemas dindmicos ndo-lineares, ao se soltar o sistema de uma condic¢ao inicial

suficientemente longe do equilibrio, a trajetéria ¢ (x,, t) pode divergir do equilibrio considerado.

Na pratica, na maioria dos sistemas dindmicos, ao se soltar o sistema de um ponto inicial
suficientemente longe do equilibrio, entao esse sistema nao é capaz de voltar ao mesmo equilibrio.
Assim, trata-se de determinar quais as condi¢des X, a partir das quais se pode abandonar o
sistema sem que ele divirja do equilibrio x* — ou seja, sem que o sistema encontre outro ponto de

equilibrio e sem que as variaveis de estado admitam valores muito grandes (“explodam”).
A regido U (x*) se denomina Regido de Estabilidade ou Atracdo, ou seja, o conjunto das

condigdes iniciais x, que levam o sistema ao equilibrio x*.

Definicao 7 (Regiéo de Estabilidade). Seja um sistema dindmico x = f (x), com condigao inicial
x (ty) = X, cuja trajetoria é x = ¢ (xy, t), com x €Q e t €R. Supbe-se f C'-continua em Q). Seja
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também um ponto de equilibrio x* tal que f (x*)=0. A Regido de Estabilidade R, (x*) é o lugar
geométrico dos pontos X, tais que a trajetdria ¢ (x,, t) converge assintoticamente para x*:

R, (x")= {xoeﬂ ’ tlngoumxo, - x*

= 0} (10.3)

A figura 18 mostra um esquematico que exemplifica o conceito da definicdo 7. Na figura, o
tracado preto denota a Regiao de Estabilidade de um sistema genérico bidimensional, sendo x* o
equilibrio assintético. Os pontos em azul, pertencentes a Regido, séo utilizados como pontos de
partida do sistema, cujas trajetérias a partir de tais pontos sdo denotadas também em azul. Por
outro lado, os pontos em rosa sao exteriores a Regiao, e portanto suas trajetérias devem escapar

a Regiao.

Figura 18 — Esquematico explicativo de Regido de Estabilidade exemplificando sistema bidimensi-
onal.
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CAPITULO 1 1

O método Forca Bruta

Métodos de caracterizacdo de Regides de Estabilidade sédo alvos de pesquisas recentes;
nao ha método unico conhecido que resolva o desafio de estimar ou obter a Regido de Equilibrio
de qualquer sistema dinamico. Larga atencao se da aos métodos baseados na teoria de Lyapunov —
em miudos, a Regiao de Equilibrio é estimada pelo conjunto de pontos para o qual a fungdo energia
V (x) do sistema tem derivada negativa. No entanto, esbarra-se em problemas muito conhecidos
como a estimagao da prépria funcao energia, que muitas vezes nao existe para o sistema em
estudo (HAMIDI; JERBI, 2009).

11.1

Descricao

Um método elementar de estimacédo da Regiao de Estabilidade é aquele conhecido como
Forca Bruta ou Brute Force. Define-se uma grade G,(£2) no dominio £2 e simula-se o sistema
dindmico partindo dos varios pontos definidos pela grade. Averigua-se assim quais pontos de
G,(Q2) a partir dos quais, solto o sistema, ele retorna ao equilibrio x*; trata-se de uma estimativa
da Regido R,, denotada por E (R,). Quanto mais fina a grade, quer dizer, mais pontos iniciais se

utiliza para simular a trajetéria do sistema, mais precisa sera a estimativa.

E claro que esse método possui a capabilidade de obter a regido propriamente dita, ao
passo que muitos métodos obtém apenas uma parte dela ou um trago. No entanto, também é
evidente que ao definir grades muito finas o tempo total de simulagdo atinge valores infactiveis.

Assim trata-se de uma escolha entre precisdo dos resultados (definicdo da Regido) e
recurso computacional (tempo que se demora para tanto). A figura 19 mostra um sistema bidi-
mensional cuja separatrix da Regido de Estabilidade é demonstrada em linha preta. Os pontos
correspondem a grade tomada; aqueles vermelhos foram retirados da estimativa da Regiao,

enquanto os cinza foram incluidos. A linha azul mostra a estimativa da separatrix.
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::L'l

Figura 19 — Esbogo da estimativa da Regiao de Estabilidade de um sistema bidimensional através

11.2

do método Forca Bruta.

Eficientizacao

1.

Para eficientizar o método, alguns passos sdo tomados, esquematizados na figura 20:

Determina-se um tempo maximo de simulagéo, quer dizer, em todas as simulagdes o sistema

sera simulado de 0 a um tempo final qualquer;
Definem-se duas bolas, uma grande €,,,, € outra pequena €,,;,, de equagdes

emin<||x_X*”<6max (11-1)

Numa dada simulacao, se a trajetéria do sistema adentrar a bola pequena €,,;, (curva
amarela na figura 20), entdo assume-se que a condicao inicial daquela trajetéria pertence a
R, e esta simulagdo é cancelada, e a préxima comeca. E importante observar que o raio da
bola pequena deve ser menor do que a menor distancia do equilibrio aos pontos da grade,
quer dizer;
€min < Min |[x*—x 11.2

min < TR 11" — | (11.2)

Naturalmente, como esse valor ndo é tao facilmente acessivel, pode-se adotar metade da

menor distancia entre dois pontos da grade:



11.2. Eficientizagcdo 125

min  ||x,; — X5l (11.3)
Xo1, Xg2 |€EG,(Q
(1. % £

DN | =

€min=

Porque, caso contrario, os pontos da grade mais proximos do equilibrio podem ser erronea-
mente incluidos na estimativa. A bola pequena deve ser pequena para que este equivoco
nao ocorra; ao mesmo tempo, deve ser grande o suficiente para que pontos que de fato per-
tencam a R, sejam incluidos sem que precisem ser simulados por muito tempo, diminuindo

o tempo total de simulacéo.

4. Por outro lado, se numa dada simulagéo a trajetdria do sistema extrapola a bola grande
€ nax (curva azul claro na figura), entao assume-se que a condicao inicial dessa trajetéria
nao pertence a R,; esta simulagao é parada, e a préxima comeca. Nota-se que, por suposto,
€max > €min- Além disso, a bola grande deve ser grande o suficiente para que pontos
pertencentes a Regiao ndo sejam descartados erroneamento (na ocorréncia de overshoot
por exemplo); ao mesmo tempo, deve ser pequena o suficiente para que os pontos que nao
pertencem a ela sejam descartados rapidamente, diminuindo consideravelmente o tempo de

simulagao.

Os pontos que nao atingem nenhuma das bolas (curva verde) podem ser tratados como
possiveis candidatos a 6rbita peridédica. Pode-se trata-los incluindo-os ou excluindo-os da estimativa
ou ainda aumentando o tempo de simulacao destes pontos em especial para poder concluir algo
sobre eles.
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Figura 20 — Esquematico de trajetdria explicativo do método Forga Bruta.
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CAPITULO 1 2

Aplicando o MFB ao sistema em estudo

Tendo desenvolvido o método e explicado, entédo pode-se aplica-lo ao caso em estudo, os

sistemas controlados por AVR e PSS.

12.1

Implementacéao

O espaco de estados desses sistemas tem dimensao seis, e logo é impossivel representar
sua Regido de Estabilidade graficamente. No entanto, pode-se tomar um corte dela e representé-lo

tridimensionalmente, ou ainda bidimensaionalmente.

Além do espaco de estados, ha a possibilidade de se verificar a influéncia dos parametros
dos controladores (ganhos e constantes de tempo) na Regido. Neste caso, 0 espaco de anélise

ganha mais dimensdes, tantas quantas forem os paradmetros que se quer analisar.

Assim, o MFB foi aplicado ao sistema em estudo em duas instancias.

12.1.1 Primeira implementacao do MFB

Na primeira, a ideia foi retratar a Regido de Estabilidade do sistema tridimensionalmente,
no espacgo (x, X,, X3) = (E;,wﬁ). Para tanto, fixaram-se os parametros dos controladores, e
tomou-se o corte (x4, X5, x5) = (0,0, 0). A justificativa para tomar tal corte é que, no equilibrio, ndo
faz sentido dar energia inicial aos controladores porque, por definicdo, eles ndo agem no equilibrio.

Assim, a partir do equilibrio, variaram-se x; = E{;, X, = w e X3 =0 ao redor do equilibrio:

° E(; foi variado ao redor do valor de equilibrio, de —10 a 10;
e « também foi variado ao redor do valor de equilibrio de —5 a 5;

e ¢ foi igualmente variado ao redor do valor de equilibrio, de —1.5 a 2.
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Cada dimenséao conteve trinta pontos linearmente espagados, determinando vinte e sete

mil simulagdes, e definindo assim G,(€2) uma matriz de trés colunas por vinte e sete mil.

O tempo final de simulagdo adotado foi 100 segundos; a bola pequena corresponde a 95%
da metade da menor distancia entre dois pontos da grade. A bola maior foi adotada como mil vezes

a bola menor.

As caracteristicas do sistema (parametros da maquina, ganhos e tempos dos controladores,
condi¢do de equilibrio e limites dos saturadores) foram mantidas as mesmas com relagdo as
simulagdes dinamicas da parte anterior.

12.1.2 Segunda implementacdo do MFB

Na segunda aplicagdo do MFB, mostrou-se como a variagdo dos ganhos K, e Kpgg
influencia a Regido de Estabilidade do sistema controlado por AVR e PSS. Para tanto, tomou-se o
corte (X, X4, X5, Xg) = (E[;, 0,0, 0), e variaram-se aqueles ganhos.

Assim, tragou-se a Regido de Estabilidade do sistema no plano (x,, x3) = (w, 0), em duas
situagdes: na primeira, fixou-se K, e variou-se Kpgg; na segunda, o contrario. A grade utilizada

teve duzentos pontos por cada uma das duas coordenadas.

O programa em MATLAB utilizado para estimar as Regides de Estabilidade e gerar as
figuras de ambas as implementagdes se encontra no apéndice A, secdo A.7, pagina 172.

12.2

Resultados

Na primeira implementac¢do do MFB no sistema, obtém-se os pontos do espago (E[;, w, 5,)
pertencentes a estimativa da Regiao de Estabilidade do sistema, que é um sélido naquele espago.
Em seguida, utiliza-se o comando boundary para aferir quais dos pontos obtidos pertencem a
fronteira do sélido, obtendo-se assim uma estimativa da separatrix da Regiao.

Analogamente, na segunda implementacéo, obtém-se os pontos do plano (w, d,) per-
tencentes a estimativa da Regiao no corte tomado; o comando boundary resulta os pontos que

pertencem a fronteira da estimativa, e que formam portanto uma estimativa da separatrix.

A seguir depictam-se as estimativas das regides de estabilidade resultantes:

Do sistema em malha aberta (figura 21), tridimensional e bidimensionalmente;
e Do sistema controlado apenas por AVR (figura 22), tridimensional e bidimensionalmente;

e Do sistema sem saturadores, tridimensionalmente e bidimensionalmente (figura 23);

Idem para o sistema com saturadores (figura 24);
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e Dos sistemas com saturacdo e sem saturagdo, superpostos para comparacao (figura 25). A
regido do sistema com saturadores esta denotada em preto para melhor denota-la dentro da
regido do sistema sem saturadores; esta foi tracada transparente pelo mesmo motivo.

Para doravante exemplificar o efeito da excursao dos ganhos K, e Kpgg na Regido de
Estabilidade do Sistema, plotam-se as Regides de Estabilidade do sistema variando-se estes
ganhos. Para melhor se representar as Regides, fixou-se E{; no valor de equilibrio e variaram-se w
e 0 ao redor dos seus valores de equilibrio.

e A figura 26 mostra a Regido de Estabilidade do sistema, no plano (w, 6). O ganho Kpgs foi
mantido 20 e 0 ganho K, variou nos valores 5, 10, 20;

e Ja nafigura 27, o ganho K, foi fixado em 5 e o0 ganho Kpg foi variado em 20,50, 100.
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Regido de Estabildade do sistema em malha aberta
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Figura 21 — Representagdes tridimensionais e bidimensionais da estimativa da Regido de Estabili-
dade do sistema em malha aberta.
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Regido de estabilidade do sistema controlado por AVR

mol

Figura 22 — Representacdes tridimensionais da estimativa da Regido de Estabilidade do sistema
livre.



132 Capitulo 12. Aplicando o MFB ao sistema em estudo

Regido de estabilidade do sistema sem saturadores
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Figura 23 — Representagbes tridimensionais e bidimensionais da estimativa da Regido de Estabili-
dade do sistema sem saturadores.
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Regido de estabilidade do sistema saturado
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Figura 24 — Representagbes bidimensionais e tridimensionais da estimativa da Regido de Estabili-
dade do sistema saturado.
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Figura 25 — Representacdes bidimensionais e tridimensionais das duas estimativas das Regides

de Estabilidade dos sistemas livre (regido maior) e saturado (regido menor destacada)
superpostas.
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Estimativa da Regido de Estabilidade do sistema controlado por AVR e PSS excursionando-se K,

Ke=5
Kpss = 20 (fixo) / S
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Figura 26 — Estimativa da Regido de Estabilidade do sistema, no plano (w, 6), variando-se o
ganho K,.

Estimativa da Regido de Estabilidade do sistema controlado por AVR e PSS excursionando-se Kpgg
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Figura 27 — Estimativa da Regido de Estabilidade do sistema, no plano (w, d), variando-se o
ganho Kpgs.
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CAPITULO 1 3

Discussao

13.1

Sobre os tracados da Regiao de Estabilidade

Ficou claro como a introdugdo do AVR ou dos saturadores reduz singificativamente o
tamanho da regiao de estabilidade do sistema. Para fins de comparacgéo, calcularam-se os volumes
das estimativas das Regides:

—_

. Inicialmente, a regido do sistema em malha aberta possui 323.04 unidades de volume;

N

. Ja depois da introdugao do AVR a regido passa a ter 17.97 unidades;

w

. Em seguida, a introducao do PSS aumenta este volume para 169.89 unidades;

N

. Finalmente, a introducao dos saturadores reduz o volume para 17.21 unidades.

As grandes disparidades entre os volumes do sistema em malha aberta e com AVR podem
ser principalmente devido ao alto ganho do controlador, que instabiliza o sistema significativamente.
Ja a disparidade entre o volume dos sistemas controlados por AVR e PSS pode ser explicada pela
pequena amplitude escolhida para os saturadores.

A andlise e comparacao das regides de estabilidade conclui que a maior regido de estabili-
dade foi, naturalmente, a do sistema em malha aberta. A conseguinte introducdo do AVR diminuiu
a regido grandemente; em seguida, a introdugédo do PSS alargou-a, para entao diminuir com a
introducdo dos saturadores.

Apbs ter tracadas as Regides de Estabilidade do sistema nas quatro situagdes (malha
aberta, controlado por AVR, controlado por AVR e PSS sem e com saturadores) dadas pelas figuras
21 a 25, pode-se comparar estas Regides para se concluir sobre o impacto dos controladores na
estabilidade transitéria do sistema.
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O sistema em malha aberta tem a maior Regido de Estabilidade, significando que admite
condigdes iniciais mais afastadas do equilibrio sem instabilizar. Entretanto, o sistema em malha
aberta é lento (tem tempos de acomodacao muito extensos) e apresenta oscilacbes de altas
amplitudes, além de baixa regulagao de tenséo.

Logo apods a introducao do AVR, a Regido é diminuida abruptamente. Isto corrobora com o
fato que o AVR tem por Unico objetivo melhorar a regulagao de tensdes no sistema; no entanto, a

medida que o faz, piora a sua estabilidade transitéria, tornando-o mais susceptivel a perturbagdes.

Quando da introducao do PSS, a Regiao aumenta significativamente. Assim, o PSS cumpre
a fungao de aprimorar a resposta dinamica do sistema a perturbagdes. Além disso, o PSS torna
0 sistema mais rapido (tempos de acomodacao menores) e diminui as amplitudes das suas

oscilagdes.

Finalmente, a introducéo de saturadores diminui significativamente a Regido de Estabili-
dade; isto se deve ao fato que impedem a atuacao dos controladores. Presumivelmente, quando

os controladores sdo incapazes de agir, o sistema fica a deriva da prépria dindmica.

Isto gera um questionamento: por vezes a introducéo de saturadores tem por objetivo
limitar a atuagédo dos controladores, sob a excusa de que a sobre- ou sub-excitacdo do sistema
pode ser danosa a maquina. O fato de a introducdo desses mesmos saturadores ser tao deletéria
a Regiado (a ponto de diminui-la cerca de 9.8 vezes) mostra que o pretexto de sobre/sub-excitagcéo,
mesmo que fundado (de fato, operar a maquina fora das condi¢cdes de operagao pode acarretar
correntes e tensdes prejudicialmente pequenas ou grandes ao equipamento) deve ser analisado

mais profundamente, uma vez que o sistema também pode ser danificado se instabilizado.

Ademais, também ha de se considerar que muitos parametros influenciam na regidao — a
comecar pelos parametros dos controladores, que sao cinco: T;, T,, Kpgg do controlador PSS,
e K,, 1,, do AVR. Além de tudo, naturalmente, quanto mais largos os limites dos saturadores,
mais préximas serao as regides até que, se os limites forem infinitos, os sistemas livre e saturado
equivalem. Assim, é mister que se analise ndo apenas a influéncia dos saturadores, mas também

a influéncia destes parametros dos controladores naquela Regiao.

Apresenta-se assim um problema: dado que os limites de saturacéo limitam demais a
resposta do sistema, diminuindo-lhe significativamente a Regido de Estabilidade, é necessario
tomar valores razoaveis para estes limites. Nesta monografia, os limites tomados foram escolhidos
em funcao da resposta dindmica do sistema, para mostrar o efeito da saturacédo na resposta do
sistema frente perturbagao; no artigo de onde se retiraram os parametros do sistema (DEMELLO;
CONCORDIA, 1969) nao havia especificagdo nenhuma acerca dos limites de corrente ou de tenséo,
de campo ou de armadura da maquina. Um possivel avango seria adotar um outro modelo de
maquina, mais completo, que possua estes limites, de forma que se possa adotar limites mais

verossimeis para os saturadores.
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13.2

Sobre a performance do MFB

O programa A.7 demorou cerca de oitenta horas para gerar os graficos mostrados. Ainda
assim, percebe-se que tais graficos sdo um pouco rudimentares devido a grade muito esparsa.
Para melhor estimar essas regides, é necessario refinar a grade, tendo-se em vista que 0 numero
de simulagbes que 0 método executa equivale ao tamanho da grade elevado ao cubo; isto quer

dizer que mudancgas na grade elevam o tempo de simulagdo em, no minimo, ordem cubica.

Fica claro como o Método Forga Bruta é inadequado para sistemas de grande porte. Os
sistemas aqui apresentados, um de dimensao quatro e outro de dimensao seis, sdo por si s6
simplificag6es de modelos de sistemas de poténcia mais sofisticados — alguns destes consideram

duas ou trés maquinas, acopladas a uma carga local e a um barramento infinito.

Visto que o equipamento utilizado consiste de um computador comercial convencional,
uma solugao seria utilizar solugdes numéricas computacionais, como utilizagdo de computagao

paralela ou ainda de clusters de alto poder computacional.

13.3

Sobre a investigacao em bifurcacoes

Na investigacdo sobre Bifurcacdes, o resultado mais importante é que, no equilibrio
S=1 + j0.5, o sistema controlado por AVR é capaz de bifurcar, 8 medida que o sistema controlado
por AVR e PSS, fixos os tempos (1;, 15, T,,, T,), ndo ha par de ganhos (K,, Kpgs) que o levem a
bifurcagdo. Em outras palavras: para o equilibrio considerado, no sistema controlado por AVR,
para cada valor de T, existe um K,y correspondente que pode levar o sistema a bifurcagdo. Ja no
sistema controlado por AVR e PSS, fixas as constantes de tempo, nenhum par de ganhos pode
bifurcar o sistema. Em ultima instancia, no AVR a possibilidade de bifurcacdo é atrelada apenas ao
ponto de operagao S escolhido, enquanto no sistema controlado por AVR e PSS, para o mesmo
equilibrio S talvez se possa escolher constantes de tempo tais que o sistema nao seja capaz de

bifurcar para ganho algum.

Trata-se de uma constatagao importantissima porque reitera o PSS como um controlador
de suma importancia para a estabilidade do sistema, a medida que evita a possibilidade de
bifurcacdes.

13.4
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Possiveis desenvolvimentos futuros

Com os resultados e métodos apresentados, pode-se também averiguar a ocorréncia de
ciclos-limite em sistemas deste tipo, como reportado em (LI et al., 2002). Como, em geral, sdo
ciclos instaveis, o0 método Forca Bruta também é inviavel porque é virtualmente impossivel acertar

uma grade que contenha uma condigao inicial precisa que cause a um desses ciclos.

Partindo do que foi desenvolvido nesta monografia, pode-se ainda calcular os Tempos
Criticos de Abertura do sistema naquelas quatro situacdes, o que também ilustraria a influéncia
dos controladores e dos saturadores nas margens de estabilidade transitéria do sistema.

Uma sugestado seria procurar, para 0 mesmo sistema, outro equilibrio S para o qual o
sistema controlado por AVR e PSS seja passivel de bifurcagéo. Poderia, ainda, adotar outro modelo
de maquina que possa bifurcar quando controlada por AVR e PSS.

Outra sugestao é averiuguar o comportamento do sistema quando bifurcado através do
célculo do primeiro coeficiente de Lyapunov, de onde se pode caracterizar a resposta dindmica do
sistema na bifurcacdo quando deslocado do equilibrio.
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CAPITULO 14

Conclusao

O sistema OMIB foi estudado e caracterizado. Através dessa andlise, foi possivel deduzir
as equacgodes de fluxo de poténcia, que levam as equagdes de equilibrio do sistema.

Em seguida, estudou-se a Regido de Factibilidade dessas equagdes, ou seja, determinaram-
se as condigdes que limitam a existéncia do equilibrio.

Em posse das equagdes de equilibrio e das equagdes da maquina em malha aberta, foi
possivel deduzir as equagdes algébrico-diferenciais que regem o sistema em quatro situagdes
possiveis:

1. Sistema sem controladores (em malha aberta);
2. Sistema controlado por AVR;
3. Sistema controlado por AVR e PSS:

a) Sem saturadores (sistema “livre”);

b) Com saturadores (sistema saturado).

Desenvolvidas essas equacgdes, os sistemas foram implementados em programas. Validaram-
se os modelos desenvolvidos através de simulagdes de perturbacao do sistema.

Finalmente, através do método de Forga Bruta, averiguou-se o impacto dos controladores
e dossaturadores na Regido de Estabilidade do sistema; concluiu-se que, de fato, a introdugao
do controlador AVR é deletéria as margens de estabilidade transitoria do sistema; além disso, a

introducdo de saturadores diminui enormemente essa Regiéo.

Em seguida, pesquisou-se a ocorréncia de Bifurcagoes de Hopf nos sistemas controlado
por AVR e controlado por AVR e PSS. Concluiu-se que o sistema controlado apenas por AVR, no

equilibrio considerado, € capaz de bifurcagao; determinou-se o Diagrama de Bifurcagao do sistema
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e calcularam-se os autovalores do sistema quando na bifurcagéo. Concluiu-se também que, no

equilibrio considerado, o sistema controlado por AVR e PSS nao é passivel de bifurcagao.

Sugeriram-se alguns estudos de estabilidade, que serdo desenvolvidos em projeto futuro.

Séo eles:
1. Estudo da influéncia dos parametros dos controladores sobre aquela Regiao de Estabilidade,
tragando-a para varios valores de parametros;
2. Pesquisa da ocorréncia de ciclos-limite no sistema e tentativa de caracteriza-los;

3. Admissao de um modelo de maquina mais completo, que possibilite a adocao de valores

factiveis de limites dos saturadores;

4. A procura de outro ponto de equilibrio para o qual o sistema controlado por AVR e PSS seja

passivel de bifurcar;

5. A adocdo de um modelo de maquina que possa bifurcar quando controlada por AVR e PSS.
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APENDICE A

Programas para MATLAB

Neste apéndice, sdo apresentados os cédigos em MATLAB desenvolvidos segundo as

equacdes e teoria desenvolvida na monografia.

A1

Calculo das condicées iniciais do sistema

Listing A.1 — Cédigo para célculo e mostra das condi¢des iniciais do sistema.

Cédigo para calculo das condig¢bes iniciais do sistema OMIB
Autor: Alvaro Augusto Volpato

clear all;
clc;

close all;
format long

%% Definindo os pardmetros da maquina
global xd xg xlinhad xlinhag Tlinhado r re xe H S E Z X alpha phi deltaPm
tempoDeltaPm PmO0 EfdO;

xd = 1.14; & Impedadncia equivalente de regime permanente de eixo direto
xq = 0.66; % Impeddncia equivalente de regime permanente de eixo em quadratura
xlinhad = 0.24; % Impedadncia transitdria de eixo direto

o

xlinhag = xlinhad; % Impeddncia transitdéria de eixo em quadratura
Tlinhado = 12; % Constante de tempo transitdria de eixo direto

r = 0; % Resisténcia interna equivalente da maquina;
re = 0.01; % Resisténcia externa acoplada a maquina;

xe = 0.1; % Impeddncia externa acoplada a maquina;
xt = xe + xlinhaq; % Impeddncia "total";

rt = re + r; % Resisténcia "total"

H = 1.5; % Constante de inércia do rotor

P = 1; % Poténcia ativa inicial

Q = 0.5; % Poténcia reativa inicial

S =P + j*Q; % Poténcia aparente inicial

E = 1.0; % Tensdo do barramento infinito (em PU!);
X = sqrt( (r+re)”2 + (xlinhag + xe)"2 );

phi = atan((xlinhag + xe)/(re + r) );
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Z = sqrt(re”2 + xe”2);
alpha = atan(xe/re);

%% Calculando as condig¢bes iniciais (em PU)

% Resolvendo o sistema das correntes
a = E"2%(xt"2 + rt"2);

b = rt+E"3 + 2xxXt+E*x (Q*rt — P*xt);

c = (Qxrt — Pxxt)”"2 — rt+xP+E"2;

Ir = ( -b + sgrt (b2 - 4xaxc))/(2+*a);
Ii = (Pxxt — Qxrt)/(Exrt) — xt/rtxIr;
I = Ir + j*xIi;

clear x x0 a b c;

% Calculando as tensdbes através de Leis de Kirchoff
V =E + (re + j*xxe)*I;
EL = V + (r + jxxlinhad)*I;

% Obtendo os versors Q e D e o dngulo delta

Q = EL/norm(EL) ;

delta0 = phase (EL);

D = Qxexp (j*pi/2);

% Calculando as tensdes e correntes no eixo do rotor
ELg0 = real (EL) xcos (deltal) + imag(EL) *sin(deltaO);
ELdO = real (EL) x—-sin(deltal) + imag (EL) xcos (delta0) ;

Vg0 = real (V) xcos (deltal) + imag (V) *sin(deltaO);
Vd0 = real(V)x-sin(deltal) + imag (V) *cos(delta0);

Ig0 = real(I)~*cos(deltal) + imag(I)*sin(delta0);
Id0 = real(I)*-sin(delta0) + imag(I) xcos (deltaO) ;

VO = sqrt (Vg0"2 + vd0"2);

Efd0 = ELg0 - IdO*(xd - xlinhad);
Pm0 = ELgO0*xIg0 - Ig0xIdO«* (xlinhad - xlinhaq);

A2

Regiao de Factibilidade

Listing A.2 — Codigo para plotar a Regiao de Factibilidade do sistema em estudo (figura 5).

Coédigo para plotar a Regido de Factibilidade do Sistema OMIB

oo o

o
°
9o
°

Autor: Alvaro Augusto Volpato

close all;
clear all;

clc;
rt = 0.01;
xt = 0.34;
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z = xt/rt;

linspace (-4el, 4el, le4);

<
Il

w
Il

(=4% (1 + 27°2) .xy."2 + (E"2/rt)"2 )/ ( 4«E"2%sqrt(l + z"2)/(rt) );

x0 = E"2/ (4xrtxsqrt (1 + z"2));

y0 = 0;

figure (1)

plot (x,y);

hold on

grid on

grid minor

plot (x0,y0, " ro’);

plot ([x0,-1e3], [y0,y0]);

theta = atan(z);
theta = —-theta;

P = x;

Q =vy;

for i = 1l:1length (x)
P(i) = cos(theta)*x (i) - sin(theta)*y(i);
Q(i) = sin(theta)*x (i) + cos(theta)*y(i);

PO = E*2/ (4xrtx (1 + 272));
00 —zxE"2/ (d*rtx (1 + z°2));

figure (2)

plot (P, Q)

grid on

grid minor

hold on

axis equal

plot (P0,Q0,"ro’);

retal = cos(theta)*-500 - sin(theta) «y0;
reta2 = sin(theta)*-500 + cos (theta) *xy0;

plot ([P0, retall, [Q0, reta2])

A3

Simulacao do sistema em malha aberta

Listing A.3 — Cédigo utilizado para simular o sistema em malha aberta e resultar nos graficos da

figura 6.
%% Cédigo para plotar a Regido de Factibilidade do Sistema OMIB
%% Autor: Alvaro Augusto Volpato
clear all;
clc;
close all;
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format long

$% Definindo os pardmetros da mdaquina
global xd xgq xlinhad xlinhag Tlinhado r re xe H S E Z X alpha phi deltaPm
tempoDeltaPm Pm0 EfdO;

xd = 1.14; % Impedédncia equivalente de regime permanente de eixo direto
xq = 0.66; % Impeddncia equivalente de regime permanente de eixo em quadratura
xlinhad = 0.24; % Impeddncia transitdria de eixo direto

xlinhag = xlinhad; % Impeddncia transitdria de eixo em quadratura

Tlinhado = 12; % Constante de tempo transitdria de eixo direto
r = 0; % Resisténcia interna equivalente da maquina;
re = 0.01; % Resisténcia externa acoplada a mdquina;
xe = 0.1; % Impedidncia externa acoplada a maquina;
xt = xe + xlinhaqg; % Impeddncia "total";

rt = re + r; % Resisténcia "total"

H = 1.5; % Constante de inércia do rotor

P = 1; % Poténcia ativa inicial

Q = 0.5; % Poténcia reativa inicial

S =P + JxQ; ¢ Poténcia aparente inicial

E = 1.0; % Tensdo do barramento infinito (em PU!);

X = sqrt( (r+re)”2 + (xlinhaqg + xe)”"2 );

phi = atan((xlinhag + xe)/(re + r) );

Z = sqrt(re”2 + xe’2);

alpha = atan(xe/re);
% Perturbacgdo:
deltaPm = 0.1;
tempoDeltaPm = 5;

%% Calculando as condig¢bées iniciais (em PU)
% Resolvendo o sistema das correntes

a = E"2%(xt"2 + rt"2);

b = rt*xE"3 + 2xxt*xEx (Qxrt - P*xxt);

c = (Qxrt - Pxxt)”"2 — rtxP+E"2;

Ir = ( -b + sqgrt (b"2 - 4xax*c))/(2xa);

Ii = (Pxxt — Qxrt)/(Exrt) — xt/rtxIr;

I = Ir + j=xIi;

clear x x0 a b c;

% Calculando as tensées através de Leis de Kirchoff

V =E + (re + j*xe)xI;

EL = V + (r + jxxlinhad)*I;

% Obtendo os versors Q e D e o &dngulo delta

Q = EL/norm(EL) ;

deltaO = phase (EL);

D = Qxexp (j*pi/2);

% Calculando as tensdes e correntes no eixo do rotor
ELg0 = real (EL) *cos (delta0) + imag (EL) *sin(delta0);

ELdO = real (EL) *x-sin(deltal) + imag (EL) *cos (delta0);
Vg0 = real(V)xcos(deltal) + imag(V)+*sin(deltaO);
Vd0 = real (V) x-sin(deltal) + imag (V) xcos (delta0);
Ig0 = real(I)~*cos(deltaO) + imag(I)*sin(delta0);
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Id0 = real(I)*-sin(delta0) + imag(I)*xcos (delta0);

VO = sqrt (Vg0"2 + vd0"2);

Efd0 = ELg0 - IdO*(xd - xlinhad);
Pm0 = ELgO*Ig0 - Ig0+IdOx(xlinhad - xlinhaq);

%% Plotando o diagrama fasorial das condig¢des iniciais

figure (1)

hold on;

grid on;

axis equal;

title (' Diagrama fasorial das condig¢des iniciais’);

ylabel (' Im’ ) ;

xlabel ('Re’);

% Elinha em azul

plot_arrow (0,0, real (EL),imag(EL), " headwidth’,0.01, " headheight’,0.01,’color’, " blue’,’
facecolor’,’blue’, " edgecolor’,’blue’);

txt =/’ E''7’;

text (real (EL),imag (EL) ,txt,’color’,’blue’)

% V em vermelho

plot_arrow (0,0, real (V),imag(V), " headwidth’,0.01,"headheight’,0.01,"’color’,’ red’,”’
facecolor’,’red’,’edgecolor’,’red’);

txt = " V’;

text (real (V),imag (V) ,txt,’color’, ' red’)

% I em amarelo

plot_arrow(0,0,real(I),imag(I), headwidth’,0.01,"headheight’,0.01,’color’,'magenta’,’
facecolor’,’magenta’,’edgecolor’, ' magenta’);

txt = I';

text (real (I),imag(I),txt,’color’, ' magenta’)

% E em verde

plot_arrow (0,0, real (E),imag(E), " headwidth’,0.01,"headheight’,0.01,"color’,’green’,’
facecolor’,’green’,’edgecolor’,’green’);

txt =’ E_{inf}’;

text (real (E),imag (E), txt,’color’,’green’)

% O e D em preto

plot_arrow (0,0, real (Q)/5,imag (Q) /5, " headwidth’,0.01, " headheight’,0.01,"color’, "black’
facecolor’,’black’,’edgecolor’,’black’);

txt =" Q';

text (real (Q) /5,imag (Q) /5,txt,’color’, black’)

plot_arrow (0,0, real (D) /5,imag (D) /5, "headwidth’,0.01,"headheight’,0.01, " color’, "black’
facecolor’,’black’,"edgecolor’,"black’);

txt =’ D';

text (real (D) /5, imag (D) /5, txt,’color’,’black’)

%% Descrevendo o sistema com controlador

X
o
1

[ELg0 - 0.43,0.6,deltal0,Efd0]; % Ponto inicial para ciclo limite?
[ELg0,0,deltal0,Efd0];

X
=
|

% Pardmetros do controlador AVR
Ke = 15;

-3

% Tempo total de simulagdo:

tfinal = 300;

tstep = 107 (-2); % Passo de tempo para o solver numérico
tspan = O:tstep:tfinal;

’
’

4
’
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—_

X

0 = [ELg0,0,deltal]; ¢ Ponto de operagdo

$Analisando a estabilidade do sistema através dos autovalores do jacobiano

|
Il

[ ( Efd0 - x1 + (xd - xlinhad)*Id( x1,x3 ) )/Tlinhado ;

X2 1;

o
Il

symfun (F, [x]1 x2 x3]);

L]

= double (subs (F, [x1, x2, x3], x0));

fprintf (' ——> Autovalores do jacobiano do sistema sem controlador no ponto de operacgdo:\
n');

( PmO + deltaPmx (heaviside (t - tempoDeltaPm) - heaviside(t - tempoDeltaPm -
larguraDeltaPm)) - x(1)xIg( x(1),x(3) ) + (xlinhad - xlinhaq)*Ig( x
(1),x(3) )*Id( x(1),x(3)) )/ (2*H);

[¢]
o]
&+
-
[¢]
=]
0]

= odeset (' OutputFcn’, GodeplotterSistemaSemControladorAVR) ;

wSem = X (:

~
N

-

~

EfdSem = EfdO+ones (size(t));

ISemVec = (ELgSem.x*exp(deltaSem) - E)./((r+re) + Jx(xlinhad + xe));

IdSem = imag(ISemVec) ;

Yo
Yo
'
[
o]
&
\))
o]
Q.
(e}
(e}
9}
]
D
[0}
-
e~
iy
I}
Q.
(e}
0

e

Hh
[
2
2]
]
S

grid on

plot (t,ELgSem, ' r’)

title("E''_{q}’);

subplot (2, 4, 2)

grid minor
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plot (t,wSem, ")
title (' \omega’);

subplot (2, 4, 3)

grid on

grid minor

plot (t,deltaSem,’ ")
title (' \delta’);

subplot (2,4, 4)
grid on

grid minor

plot (t,EfdSem, "r’)
title (E_{fd}’);

subplot (2,4, 5)

grid on

grid minor

plot (t,VSem,'r’);

title('V_t');

legend (' Com controlador’,’Sem controlador’);

subplot (2,4, 6)
grid on

grid minor

plot (t, IgSem,'r’");
title('I_qg');

subplot (2,4, 7)
grid on

grid minor

plot (t, Idsem,'r’);
title('I_d’);

subplot (2, 4, 8)
grid on

grid minor

plot (t,ISem,’r’");
title (' |I|");

figure (3)

hold on

grid on

grid minor

axis square

plot3 (Efd0, 0,ELg0, " ro’)
plot3(Efd0,0.6,ELg0 - 0.43,’ro’)

A4

Simulacao do sistema controlado por AVR

Listing A.4 — Codigo para simulacéo do sistema OMIB em malha aberta e com AVR.

Programa simulador para simular o sistema OMIB em malha aberta e controlado por AVR
Autor: Alvaro Augusto Volpato
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clear all;
clc;
close all;

%% Definindo os pardmetros da mdquina
global xd xg xlinhad xlinhag Tlinhado r re xe H S E Z X alpha phi deltaPm
tempoDeltaPm Pm0 Ef£dO;

xd = 1.14; % Impeddncia equivalente de regime permanente de eixo direto
xg = 0.66; % Impeddncia equivalente de regime permanente de eixo em quadratura

xlinhad = 0.24; % Impeddncia transitdria de eixo direto

[°3

x1linhaq = xlinhad; % Impeddncia transitdéria de eixo em quadratura

Tlinhado = 12; % Constante de tempo transitdria de eixo direto
r = 0; % Resisténcia interna equivalente da maquina;
re = 0; % Resisténcia externa acoplada a maquina;

xe = 0.1; % Impedidncia externa acoplada a maquina;

H = 1.5; % Constante de inércia do rotor

P =1;

Q = 0.5;

S =P + JxQ; % Poténcia inicial que a maquina gera
E = 1.0; % Tensdo do barramento infinito (em PU!);

X = sqrt( (r+re)”2 + (xlinhaqg + xe)”"2 );

phi = atan((xlinhag + xe)/(re + r) );

Z = sqrt(re”2 + xe’2);

alpha = atan(xe/re);
% Perturbacgdo:
deltaPm = 0.1;
tempoDeltaPm = 1;

% Calculando as tensbes através de Leis de Kirchoff
V =E + (re + jxxe)=*I;
EL = V + (r + jxxlinhad)*I;

% Obtendo os versors Q e D e o angulo delta

Q = EL/norm(EL) ;

delta0 = phase (EL);

D = Q+exp (j*pi/2);

% Calculando as tensdes e correntes no eixo do rotor
ELg0 = real (EL) xcos (deltal) + imag(EL) *sin(delta0);
ELdO = real (EL) x-sin(deltal) + imag (EL) xcos (delta0) ;

Vg0 = real (V) xcos (deltal) + imag (V) *sin(deltaO);
Vd0 = real(V)x-sin(deltal) + imag (V) *cos(delta0);
Ig0 = real(I)~*cos(deltaO) + imag(I)*sin(delta0);
Id0 = real(I)*-sin(delta0) + imag(I) xcos (deltaOl) ;
V0 = sqrt (Vvg0”~2 + vd0~2);

Efd0 = ELg0 - IdO*(xd - xlinhad);
Pm0 = ELgO*xIg0 - Ig0xIdO=*(xlinhad - xlinhaq);

%% Plotando o diagrama fasorial das condig¢des iniciais

figure;
hold on;
grid on;
axis equal;
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title (' Diagrama fasorial das condig¢des iniciais’);

ylabel (' Im’) ;

xlabel ('Re’);

% Elinha em azul

plot_arrow (0,0, real (EL),imag (EL), ' headwidth’,0.01, " headheight’,0.01,’color’, blue’,’
facecolor’,’blue’, " edgecolor’,’blue’);

txt =" E''’;

text (real (EL) ,imag (EL) , txt,’color’,’blue’)

% V em vermelho

plot_arrow (0,0, real (V),imag(V), " headwidth’,0.01,"headheight’,0.01,"color’,’ red’,”’
facecolor’,’red’,’edgecolor’,’red’);

txt = 1 V’;

text (real (V) ,imag (V) ,txt,’color’, ' red’)

% I em amarelo

plot_arrow (0,0, real(I),imag(I), " headwidth’,0.01,"headheight’,0.01,’color’, 'magenta’,’
facecolor’,’magenta’,’edgecolor’, "magenta’);

txt = ' I';

text (real (I),imag (I),txt,’color’, ’magenta’)

% E em verde

plot_arrow (0,0, real (E),imag(E), " headwidth’,0.01,"headheight’,0.01,"coloxr’,’green’,’
facecolor’,’green’,’edgecolor’,’green’);

txt = 7 E_{inf}’;

text (real (E) ,imag (E), txt,’color’,’green’)

% Q0 e D em preto

plot_arrow (0,0, real (Q)/5,imag (Q) /5, " headwidth’,0.01, " headheight’,0.01,"coloxr’, 'black’,’
facecolor’,’black’,"edgecolor’,"black’);

txt =’ Q';

text (real (Q) /5, imag (Q) /5, txt,'color’,’black’)

plot_arrow(0,0,real (D) /5,imag (D) /5, headwidth’,0.01, " headheight’,0.01,’color’, "black’,’
facecolor’,’black’,"edgecolor’,"black’);

txt = " D’;

text (real (D) /5, imag (D) /5, txt, ' color’,’black’)

%% Descrevendo o sistema com controlador

x0 = [ELg0,0,delta0,EfdO]; % Ponto de operagdo
% Pardmetros do controlador AVR

Ke = 5;

Te = 1;

% Tempo total de simulag¢do:

tfinal = 300;
tstep = 107 (-3); % Passo de tempo para o solver numérico
tspan = O:tstep:tfinal;

Analisando a estabilidade do sistema através dos autovalores do jacobiano

oo | oo

no ponto de operagdo

syms x1 x2 x3 x4 u

F = [ ( x4 - x1 + (xd - xlinhad)*Id( x1,x3 ) )/Tlinhado ;
(u - x1*Ig( x1,x3 ) + (xlinhad - xlinhaqg)*Ig( x1,x3 )=*Id( x1,x3 ) )/ (2xH);
X2;
—( Kex( Vvt ( x1,x3 ) - V0) + (x4 - Efd0) )/Te ];

F = symfun (F, [x1 x2 x3 x41]);

F = jacobian(F, [x1, x2, x3, x4]);

F = double(subs(F, [x1, x2, x3, x4, u], [x0, Pm0]));
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fprintf (' ——> Autovalores do jacobiano do sistema com controlador no ponto de operacgdo:\

n’);

+

( PmO + deltaPmxheaviside(t - tempoDeltaPm) - x(1)*Ig( x(1),x(3) )
xlinhad - xlinhaq)*Ig( x(1),x(3) )*Id( x(1),x(3)) )/ (2xH);

- (( Kex( Vvt( x(1),x(3) ) - V0) + (x(4) - EfdO0) )/Tel;

Yo

$ Resolvendo o sistema diferencial

wCom = x(:

~
N

-

~

EfdCom = x(:,4);

=

L = zeros (size (ELgCom));

oo
ja
¢}
T
o]
s}
o+
o
Q.
0]
¢}
el
[0}
[N
Q
‘0
W
e}

syms x1 x2 x3 x4 u

(u - x1*Ig( x1,x3 ) - (xlinhad - xlinhaqg)*Ig( x1,x3 )=*Id( x1,x3 ) )/ (2xH);

g
Il

jacobian (F, [x1, x2, x3]);

n’);

eig(F)

$Descrevendo as equag¢dbes diferenciais

f =@Q(t,x) [(Efd0 - x(1) + (xd - xlinhad)*Id( x(1),x(3) ) )/Tlinhado ;

xlinhad - xlinhaq)*Ig( x(1),x(3) )*Id( x(1),x(3)) )/ (2xH);
x(2)1;

% Resolvendo o sistema diferencial
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wSem = x(:,2);

deltaSem = x(:,3);

EfdSem = EfdO*ones (size(t));
VSem = Vt ( ELgSem, deltaSem ) ;

%% Plotando os resultados
figure (2)

subplot (3,2, 1)

plot (t, ELgCom, "b”’)

hold on

grid on

grid minor

plot (t,ELgSem, 'r’)

legend (' Com controlador’,’Sem controlador’);
title("E''_{q}’);

subplot (3,2, 2)
plot (t,wCom, 'b’)
hold on

grid on

grid minor

plot (t,wSem,’r")
title ('’ \omega’);

subplot (3, 2, 3)

plot (t,deltaCom, ’"b’)
hold on

grid on

grid minor

plot (t,deltaSem,’ ")
title ('’ \delta’);

subplot (3,2,4)
plot (t,EfdCom, "b’")
hold on

grid on

grid minor

plot (t,EfdSem, ' r’)
title(E_{fd}’);

subplot (3,2, [5 6])

plot (t,VCom, 'b’);

hold on;

grid on

grid minor

plot (t,VSem,’r’");

title('V_t’);

legend (' Com controlador’,’Sem controlador’);

A5

Simulacéao do sistema controlado por AVR e PSS

Listing A.5 — Codigo para simulacao do sistema OMIB controlado por AVR e PSS com e sem
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saturadores.

%% Programa simulador para simular o sistema OMIB cntrolado por AVR+PSS, com e sem
saturadores
$$ Autor: Alvaro Augusto Volpato

clear all;
clc;
close all;

addpath (’ ./funcoes’) ;

%% Definindo os pardmetros da magquina
global xd xgq xlinhad xlinhag Tlinhado r re xe H S E Z X alpha phi deltaPm
tempoDeltaPm Pm0 Efd0 EfdMax EfdMin VPssMax VPssMin Tw KPss T1 T2;

xd = 1.14; & Impeddncia equivalente de regime permanente de eixo direto

xq = 0.66; Impedédncia equivalente de regime permanente de eixo em quadratura

xlinhad = 0.24; % Impeddncia transitdria de eixo direto
xlinhag = xlinhad; % Impeddncia transitdria de eixo em quadratura
Tlinhado = 12; % Constante de tempo transitdria de eixo direto
r = 0; % Resisténcia interna equivalente da mdquina;

re = 0.01; % Resisténcia externa acoplada a maquina;

xe = 0.1; % Impeddncia externa acoplada a maquina;

H = 1.5; % Constante de inércia do rotor

P =1;

Q = 0.5;

xt = xlinhaqg + xe;

rt = r + re;

S =P + JxQ; % Poténcia inicial que a maquina gera

E = 1.0; % Tensdo do barramento infinito (em PU!);

X = sqrt( (r+re)”2 + (xlinhaqg + xe)"2 );
phi = atan((xlinhag + xe)/(re + r) );

Z = sqrt(re”2 + xe"2);

alpha = atan (xe/re);

3

% Pardmetros dos saturadores
EfdMax = 2;
EfdMin = 0.5;

VPssMax = 2;

VPssMin = -0.2;
% Perturbacgdo:
deltaPm = 0.1;

tempoDeltaPm = 1;

% Calculando as tensdes através de Leis de Kirchoff
V =E + (re + j*xe)x*I;

EL = V + (r + j*xlinhad)~*I;

% Obtendo os versors Q e D e o dngulo delta

Q = EL/norm(EL) ;

deltaO = phase (EL);

D = Q+exp (j*pi/2);

% Calculando as tensées e correntes no eixo do rotor
ELg0 = real (EL) xcos (delta0) + imag (EL) *sin(delta0);
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ELJdO = real (EL)x—sin(delta0O) + imag(EL) xcos (deltal);

Vg0 = real(V)xcos (deltal) + imag(V)=*sin(deltaOl);
Vd0 = real (V)*-sin(delta0) + imag (V) xcos (delta0) ;

Ig0 = real(I)x*cos(deltal) + imag(I)*sin(delta0);
Id0 = real(I)*-sin(delta0O) + imag(I)*cos(delta0);

VO = sqrt (Vq0"2 + vd0~2);

Efd0 = ELg0 - IdO*(xd - xlinhad);
Pm0 = ELg0*Ig0 - Ig0xIdOx(xlinhad - xlinhaq);

figure;

hold on;

grid on;

axis equal;

title (' Diagrama fasorial das condig¢gdes iniciais’);

ylabel (' Im’);

xlabel ('Re’);

% Elinha em azul

plot_arrow (0,0, real (EL),imag(EL), ' headwidth’,0.01, " headheight’,0.01,’color’,’blue’,’
facecolor’,’blue’,’edgecolor’,’'blue’);

txt =" E'"';

text (real (EL),imag (EL), txt,’color’,’blue’)

% V em vermelho

plot_arrow (0,0, real (V),imag(V), " headwidth’,0.01,"headheight’,0.01,"color’,’ red’,”’
facecolor’,’red’,’edgecolor’,’ red’);

txt =’ V',

text (real (V),imag (V) ,txt,’color’, ' red’)

% I em amarelo

plot_arrow(0,0,real(I),imag(I), headwidth’,0.01,"headheight’,0.01,’color’,'magenta’,’
facecolor’,’magenta’,’edgecolor’, "magenta’);

txt = I';

text (real (I),imag(I),txt,’color’, ’magenta’)

% E em verde

plot_arrow (0,0, real (E),imag(E), ' headwidth’,0.01,"headheight’,0.01,"coloxr’,’green’,’
facecolor’,’green’,’edgecolor’,’green’);

txt = 7 E_{inf}’;

text (real (E),imag (E), txt,’color’, green’)

% Q0 e D em preto

plot_arrow (0,0, real (Q)/5,imag(Q) /5,  headwidth’,0.01, " headheight’,0.01,’color’, black’,’
facecolor’,’black’,"edgecolor’,"black’);

txt =" Q';

text (real (Q) /5, imag (Q) /5, txt,'color’,’black’)

plot_arrow (0,0, real (D) /5,imag (D) /5, headwidth’,0.01, " headheight’,0.01,’color’, "black’,’
facecolor’,’black’,"edgecolor’,"black’);

txt = '’ D';

text (real (D) /5, imag (D) /5, txt,’'color’,’black’)

%% Descrevendo o sistema com saturador

x0 = [ELg0,0,delta0,0,0,0]; % Ponto de operagdo
% Pardmetros dos controladores

Ke = 5;

Te = 1;
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Tempo total de simulagdo:

o\¢

tstep = 10" (-3); % Passo de tempo para o solver numérico

%% Descrevendo o sistema sem saturador

Yo

¢ Avaliando o jacobiano do sistema sem saturador no ponto de operagdo

syms x1 x2 x3 x4 x5 x6

F = [ ( Efd(x4,x6) - xl1 + (xd - xlinhad)=*Id( x1,x3) )/Tlinhado;

x2;

(TwxKPss* ( Tl*((...

- ( Efd(x4,x6) - x1 + (xd - xlinhad)+*Id(x1l,x3) )*Ig(xl,x3)/Tlinhado...

x4,x5,%x6)))/(2«H)) + (Pm0 - x1xIg(x1l,x3) + (xlinhad - xlinhaq)*Id(x1l,x3)*Iqg(x1,
x3))/(2%H) ) — x4 — (Tw + T2)*x5 )/ (TwxT2);
—(Kex ( Vt( x1,x3 ) — VO0) + (Efd(x4,x6) - Efd0) )/Tel;

o
Il

symfun (F, [x1 x2 x3 x4 x5 x6]);

5|

= double (subs (F, [x1, x2, x3, x4, x5, x6], x0));

fprintf (' \n --> Autovalores do sistema sem saturador no ponto de operagdo: \n’);

dw(x(1),x(3),t);

x(5);

(Tw + T2)*x(5) )/ (TwxT2);
—(Ke*( VE( x(1),x(3) ) - V0) + (Efd(x(4),x(6)) - Efd0) )/Tel;

Yo

o\

Resolvendo o sistema diferencial

[t,x] = ode23(f,tspan,x0,options);

oo

Armazenando os resultados

ELgSem = x(:,1);

Q.
®
=
o
)
%)
o
3

= x(:,3);

VPssSem = x(:,4);

EfdSem = VPssSem + VAvrSem + EfdO*ones (size(t));

IgSem = Ig(ELgSem,deltaSem);
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168| 8% Descrevendo o sistema com saturador

169| % Avaliando o jacobiano do sistema com saturador no ponto de operagdo

170 syms x1 x2 x3 x4 x5 x6

171

172|F = [ ( EfdSat(x4,x6) - x1 + (xd - xlinhad)x*Id( x1,x3) )/Tlinhado;

173 (Pm0 - x1xIg(xl,x3) + (xlinhad - xlinhaqg)*Id(x1l,x3)*Iqg(xl,x3))/(2%H);

174 X2;

175 x5;

176 (TwxKPss* ( Tl*((...

177 - x1lxdIgSat (x1,x2,x3,x4,x5,x6)...

178 - ( EfdSat (x4,x6) - x1 + (xd - xlinhad)=*Id(x1,x3) )=*Ig(xl,x3)/Tlinhado...

179 - (xlinhad - xlinhaqg)*( Ig(xl,x3)x*dIdSat (x1,x2,x3,x4,x5,x6) + Id(xl,x3)*dIgSat (x1,
x2,x3,%x4,x5,x6)))/(2+xH)) + (Pm0 - x1xIg(x1l,x3) + (xlinhad - xlinhaq) *Id(x1l,x3) *
Ig(x1,x3))/(2«H) ) — x4 — (Tw + T2)*x5 )/ (Tw*T2);

180 —(Ke* ( Vt( x1,x3 ) - V0) + (EfdSat (x4,x6) — EfdO0) )/Tel;

181

182|F = symfun (F, [x1 x2 x3 x4 x5 x6]);

183|F = jacobian(F, [x1, x2, x3, x4, x5, x6]);

184|F = double (subs (F, [x1, x2, x3, x4, x5, x6], x0));

185

186| fprintf (' \n —-> Autovalores do sistema com saturador no ponto de operacdo: \n’);
187|disp (eig (F)) ;

188

189 f = @(t,x)[ ( EfdSat(x(4),x(6)) — x(1) + (xd - xlinhad)=*Id( x(1),x(3)) )/Tlinhado;

190 dw (x(1),x(3),t);

191 x(2);

192 x(5);

193 (TwxKPssx ( TlxddwSat (x(1),x(2),x(3),x(4),x(5) ,x(6),t) + dw(x(1l),x(3),t) ) - x
(4) — (Tw + T2)*x(5) )/ (TwxT2);

194 —(Ke*x( V& ( x(1),x(3) ) - V0) + (EfdSat(x(4),x(6)) — Efd0) )/Tel;

195

196| % Resolvendo o sistema diferencial
197|options = odeset (' OutputFcn’, QodeplotterSistemaComSaturador) ;

198| [t,x] = ode23(f,tspan,x0,options);
199

200| & Armazenando os resultados

201

202|ELgSat = x(:,1);

203|wSat = x(:,2);

204|deltasat = x(:,3);

205|VvSat = Vt( ELgSat,deltaSat );

206|VPssSat = sat(x(:,4),VPssMax,VPssMin) ;

207|VAvrSat = x(:,6);

208| EfdSat = sat (VPssSat + VAvrSat + EfdOxones (size(t)),EfdMax,EfdMin) ;
209| IdSat = Id(ELgSat,deltaSat);

210| IgSat = Ig(ELgSat,deltaSat);

211 ISat = (IdSat.”2 + IgSat.”2).70.5;

212
213
214| 8% Plotando os resultados
215| figure (2)

216| clf (figure(2));

217
218|subplot (3,4,1)

219|plot (t,ELgSat,’'b’)
220|hold on

221|plot (t,ELgSem, ' r’")
222|grid on

223|grid minor

224\ title('E' ' _{q}’);
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plot (t,wSat,’b’)

plot (t,wSem, ' r")

grid minor

plot (t,deltasSat,’'b’)

plot (t,deltaSem,’r")

grid minor

plot (t,EfdSat,'b’)

plot (t,EfdSem, ' r’)

grid minor

plot (t,VsSat,’'b’);

plot (t,VSem,’'r");

grid minor

plot (t, VAvrSat,'b’);

plot (t,VAvrSem,'r’);

grid minor

plot (t,VPssSat,'b’);

plot (t,VPssSem,'r’);

grid minor

plot (t, ISat,’b’)

plot (t, ISem,’r’);

grid minor

plot (t, IdSat,’'b’)
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plot (t, IdSem,'r’);
grid on

grid minor
title('I_d");

subplot (3,4, [11 12])

plot (t, IgSat, 'b’)

hold on

plot (t, IgSem,'r’");

grid on

grid minor

title('I_qg’);

legend (’ Sistema com saturador’,’Sistema sem saturador’);

A.6

Estimativa das Regioes de Estabilidade

Listing A.6 — Cédigo do método Forga Bruta para estimacao da Regido de Estabilidade dos siste-
mas AVR e PSS com e sem saturadores.

%% Programa para estimar a regido de estabilidade do sistema AVR + PSS através de brute
force

%% Autor: Alvaro Augusto Volpato

clear all;

clc;

close all;

addpath (' ./funcoes’) ;

global xd xg xlinhad xlinhag Tlinhado r re xe H S E Z X alpha phi deltaPm
tempoDeltaPm PmO0 Efd0 EfdMax EfdMin VPssMax VPssMin Tw KPss T1 T2 bolaPequena
bolaGrande vetorLimite contaSim tfinal vetorDeslocamento Te x0

xd = 1.14; % Impeddncia equivalente de regime permanente de eixo direto

xq = 0.66; % Impeddncia equivalente de regime permanente de eixo em quadratura
x1linhad = 0.24; % Impedédncia transitdéria de eixo direto

xlinhag = xlinhad; % Impeddncia transitdria de eixo em quadratura

Tlinhado = 12; % Constante de tempo transitdria de eixo direto

r = 0; % Resisténcia interna equivalente da maquina;

re = 0.01; % Resisténcia externa acoplada a maquina;

xe = 0.1; % Impedédncia externa acoplada a maquina;

xt = xe + xlinhag;

rt = r + re;

H = 1.5; % Constante de inércia do rotor

P =1;

Q = 0.5;

S =P + j*Q; % Poténcia inicial que a mdquina gera
E = 1.0; % Tensdo do barramento infinito (em PU!);
X = sqgrt( (r+re)”2 + (xlinhag + xe)”2 );

phi = atan((xlinhagq + xe)/(re + r) );

Z = sqgrt(re”2 + xe"2);
alpha = atan (xe/re);
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deltaPm = 0;

Yo

$ Calculando a situag¢do inicial

= E"2% (xt"2 + rt"2);

Q

Q

= (Q*rt — P#*xt)"2 - rt+«P*xE"2;

H

r = ( -b + sqgrt(b"2 - 4xaxc))/(2%a);

H

= Ir + jxIi;

o

$ Calculando as tensées através de Leis de Kirchoff

\

=
=
I

<

+ (r + jxxlinhad) *I;

o
o)
o
ot
0]
3
Q.
[}
e}
0
<
[0}
>}
0
e}
1
0
L)
[0}
o]
[0}
[}
O
3
Q
<
-
o}
Q.
)
I~
[
O

(e
[
=
=
Q
o

= phase (EL) ;

ELg0 = real (EL) xcos (delta0) + imag (EL) *sin(deltaO);

Vd0 = real (V)+*-sin(delta0) + imag (V) xcos (deltal);

H
Q

o
I

real (I) rcos (delta0O) + imag(I)x*sin(delta0);

Pm0 = ELgO*Ig0 - Ig0+IdOx(xlinhad - xlinhaq);

2

$ Pardmetros dos saturadores

¢

EfdMin = Efd0 - 0.2;

VPssMax = 0.2;

| |

o\

Definindo os pardmetros da estimativa de Regido de Atragdo

ELgBaixo = -10;

da condig¢do inicial de ELqO
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[e]
3
0]
Q
o))
@]
9
3
QO
Il

5;

2;

Q.
(0]
it
ot
)
Q
i
=4
m
Il

deltaCima - deltaBaixo) "2 ) /grade;
bolaGrande = 1000xbolaPequena;

$ Pardmetros dos controladores

=
®
I
o
=
~

[

% Tempo total de simulagdo:

10" (=3); % Passo de tempo para o solver numérico

ot
9]
o
]
ie}
Il

% Descrevendo o sistema em malha aberta

( Pm0 + deltaPmxheaviside (t - tempoDeltaPm) - x(1)+*Ig( x(1),x(3) ) +
xlinhad - xlinhaq)*Ig( x(1),x(3) )*Id( x(1),x(3)) )/ (2xH);

o
~.

options = odeset (' OutputFcn’, @odeplotterMAberta);

contaSim = 0;

for j = l:grade

fprintf (‘\n Simulacd&o numero %d (%d,%d,%d)’,contaSim,1i, j, k)

vetorDeslocamento = [deslocamentoInicialELg(i),deslocamentoInicialOmega (j),
deslocamentoInicialDelta(k),0,];

fprintf (/' : ATINGIU o tempo final! \n \n’,contaSim);

else
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3
2
)
@)
S
>
)
3
3
3
Q
[7)
B
[\
N
3
>
[vy]

end

0
=}
||

nd

o

o\

Rearranja o vetor limite para admitir apenas os valores de E’q, omega e

vetorLimite = vetorLimite(1l:3,2:end);

plot3 (vetorLimite (1, :),vetorLimite (2, :),vetorLimite(3,:), " bo’)

grid minor

ylabel (‘w’)

o
v}
0]
0
Q
I
0]
<
0]
js)
Q.
o
o
0
b
0
o+
0]
3
@
Q
o
3
b
5

vetorDeslocamento = zeros (4,1);

h
I

@Q(t,x) [(x(4) - x(1) + (xd — xlinhad)*Id( x(1),x(3) ) )/Tlinhado ;

xlinhad - xlinhaq)*Iq( x(1),x(3) )*Id( x(1),x(3)) )/ (2%H);
x(2);

Hh

o
2§
=

I

= l:grade

for k = l:grade

contaSim = contaSim + 1;

deslocamentoInicialDelta(k),0,];

xInit = x0 + vetorDeslocamento;

[t,x] = ode23(f,tspan,xInit,options);

if (t(end) == tfinal)

fprintf (/

|
o°

interrompida em t f’,t (end));

end
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vetorLimiteAVR = vetorLimite;

figure (1)

grid on

xlabel ('ELQ’)

zlabel ('Delta’)

)

% Rearranjando o vetor inicial para seis dimensédes

dw(x (1) ,x(3),t);

x(5);

(Tw + T2)*x(5) )/ (Tw*T2);
—(Kex ( Vt( x(1),x(3) ) — VO0) + (Efd(x(4),x(6)) - Efd0) )/Tel;

)

% Resolvendo o sistema diferencial

for j

l:grade

Simulagdo numero %d (%d,%d, %d)’,contaSim,1i, j, k)

fprintf (' \n

vetorDeslocamento = [deslocamentoInicialELg(i),deslocamentoInicialOmega (j),
deslocamentoInicialDelta(k),0,0,07];

fprintf (/' : ATINGIU o tempo final! \n’,contaSim);

else

end

end

nd

]

vetorLimite = vetorLimite(1:3,2:end);

plot3(vetorLimite (1, :),vetorLimite (2, :),vetorLimite(3,:), " bo’)
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—_

grid minor

ylabel (‘w’)

\o

¢ Descrevendo o sistema com saturador

Q
o
5
5
)
%)
=
3
|
o

dw (x(1),x%x(3),t);

x(5);
(4) — (Tw + T2)*x(5) )/ (Tw*T2);
—(Kex ( Vt( x(1),x(3) ) - V0) + (EfdSat(x(4),x(6)) — Efd0) )/Tel;

% Resolvendo o sistema diferencial

H
o
L}
I
I

l:grade

for k = l:grade

oo

contaSim = contaSim + 1;
Incrementa a contagem de iteragdes

deslocamentoInicialDelta(k),0,0,0];
xInit = x0 + vetorDeslocamento;

[t,x] = ode23(f,tspan,xInit,options);

if (t(end) == tfinal)

else

end

end

nd

o

$ Rearranja o vetor limite para admitir apenas os valores de E’qg, omega e

vetorLimite = vetorLimite(1l:3,2:end);

plot3(vetorLimite (1, :),vetorLimite (2, :),vetorLimite(3,:)," ro’)

grid minor
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ylabel (" w’)
zlabel ('Delta’)

Aqui séo apresentadas as fungdes I, 1,, cis(x), V,(E.) e sistemainicial utilizadas no
script.

Listing A.7 — Fungao I,

-3

%% Fungdo Id que calcula um Id em fung¢do de Elinhaqg
function Id = Id( EL )
global xd xg xlinhad xlinhag Tlinhado r re xe H S E
I = (EL -E)/( (r + re) + j*( xlinhad + xe )); % I complexo na referéncia de &
ngulo de Einf
EL = c2v(EL) ; % Passando os complexos para vetores
I = c2v(I); % Idem
EL/norm (EL) ; % Vetor Id na referéncia de Einf
[-0(2),0(1)1;
Id = dot (I,D);

9 O
Il

end

Listing A.8 — Fungéo I,

%% Fung¢do Ig que calcula um Ig em fun¢do de Elinhaqg
function Ig = Ig(EL)
global xd xg xlinhad xlinhag Tlinhado r re xe H S E
I = (EL - E)/( (r + re) + j*( xlinhad + xe )); % I complexo na referéncia de &
ngulo de Einf
EL = c2v (EL) HEE
= c2v(I); % Idem
EL/norm (EL) ; % Vetor Id na referéncia de Einf
Ig = dot (I,Q);

Passando os complexos para vetores

O H
|

end

Listing A.9 — Fungéo V;

function Vt = Vt (EL)
$ Fungdo que calcula a tensdo terminal de uma mdquina sincrona em fung¢do da
% sua tensdo interna E’

global xlinhad r re xe E;

Vt = abs( E + (EL - E)x(re + jxxe)/( (re + r) + jx(xlinhad + xe) ));
end

Listing A.10 — Funcgéo sistemainicial

function F = sistema_inicial (x,re,xe,E,P,Q)

F(l) = -P + rex(x(1)"2 + x(2)"2) + E*x(1);

F(2) = -Q + xe*x(x(1)"2 + x(2)"2) - E*x(2);
end

Listing A.11 — Funcéo d I,

function dId = dId( x1,x2,x3,x4,x5,x6)
global xd xlinhad Tlinhado E X phi Efd0 VPssMax VPssMin;
dId = (x2+TlinhadoxExcos (x3 + phi) - (Efd(x4,x6) - x1 + (xd - xlinhad)*Id(x1l,x3
)) *\sin\left (\phi_m\right))/ (X«Tlinhado) ;
end
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Listing A.12 — Fungéo d I,

function dIg = dIqg( x1,x2,x3,x4,x5,x6 )

global xd xlinhad Tlinhado E X phi VPssMax VPssMin
dIg = ((Efd(x4,x6) - x1 + (xd - xlinhad)*Id(x1l,x3))*\cos\left (\phi_m\right) +
x2*Tlinhado*Exsin (x3 + phi))/ (X*Tlinhado) ;
end
A7

Estimativa das Regides de Estabilidade

Listing A.13 — Codigo do método Forga Bruta para estimagdo da Regido de Estabilidade dos
sistemas AVR e PSS com e sem saturadores.

%% Programa para estimar a regido de estabilidade do sistema AVR + PSS através de brute
force

$$ Autor: Alvaro Augusto Volpato

clear all;

clc;

close all;

addpath (’ ./funcoes’) ;

global xd xg xlinhad xlinhag Tlinhado r re xe H S E Z X alpha phi deltaPm
tempoDeltaPm Pm0 Efd0 EfdMax EfdMin VPssMax VPssMin Tw KPss T1 T2 bolaPequena
bolaGrande vetorLimite contaSim tfinal vetorDeslocamento Te x0

xd = 1.14; % Impeddncia equivalente de regime permanente de eixo direto

xq = 0.66; Impedédncia equivalente de regime permanente de eixo em quadratura

xlinhad = 0.24; % Impedéncia transitdria de eixo direto
xlinhag = xlinhad; $% Impeddncia transitdria de eixo em quadratura
Tlinhado = 12; % Constante de tempo transitdria de eixo direto
r = 0; % Resisténcia interna equivalente da mdquina;

re = 0.01; % Resisténcia externa acoplada a maquina;

xe = 0.1; % Impeddncia externa acoplada a maquina;

xt = xe + xlinhagqg;

rt = r + re;

H = 1.5; % Constante de inércia do rotor

P =1;

Q = 0.5;

S =P + JxQ; % Poténcia inicial que a maquina gera

E = 1.0; % Tensdo do barramento infinito (em PU!);

X = sqrt( (r+re)”2 + (xlinhaqg + xe)"2 );

phi = atan((xlinhag + xe)/(re + r) );

Z = sqrt(re”2 + xe"2);
alpha = atan (xe/re);

% Perturbacgdo:
deltaPm = 0;
tempoDeltaPm = 5;

K N ———————
ch

% Calculando a situag¢do inicial
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= E"2x (xt"2 + rt"2);

V)

= (Qxrt — Pxxt)"2 - rtxP*xE"2;

Q

Ir = ( -b + sgrt(b"2 - 4xaxc))/(2xa);

I = Ir + j*Ii;

% Calculando as tensbes através de Leis de Kirchoff

[l

L =V + (r + jxxlinhad)*I;

% Obtendo os versors Q e D e o dngulo delta

delta0 = phase(EL);

=
=
Q
[&

= real (EL) xcos (delta0O) + imag (EL) *sin (deltal);

<

Q.

o
I

real (V) x-sin(delta0) + imag (V) xcos (deltal);

Ig0 = real(I)x*cos(deltal) + imag(I)+*sin(delta0);

g

3

o
Il

ELgO*Ig0 - IgO0+IdOx(xlinhad - xlinhagq);

\o

ol

Pardmetros dos saturadores

= Efd0 - 0.2;

]
Hh
o
=
=
=)

<
vl
[}
9]
=
[
e
Il

0.2;

o

% Definindo os pardmetros da estimativa de Regido de Atragdo

=
=
Q
w
o
-
X
o

= -10;

da condig¢do inicial de ELQqO

[e]
=4
0]
Q
o))
@]
o
32
jJ)
I

_5,.

(o}
0]
st
I
)
(@]
i
3
Q
I

2;
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—_

deltaCima - deltaBaixo) "2 )/grade;
bolaGrande = 1000xbolaPequena;

¢

$ Pardmetros dos controladores

Te = 0.1;

% Tempo total de simulagdo:

tstep = 10" (-3); % Passo de tempo para o solver numérico

)

¢ Descrevendo o sistema em malha aberta

¢

( Pm0 + deltaPmxheaviside (t - tempoDeltaPm) - x(1)xIg( x(1),x(3) ) +
xlinhad - xlinhaq)*Ig( x(1),x(3) )*Id( x(1),x(3)) )/ (2*H);

01;

= odeset (' OutputFcn’, @odeplotterMAberta) ;

Q o)
o o]
=} t
I [
) o)
0 5
I )
3

Il

0;

for j = l:grade

fprintf (' \n Simulagdo numero %d (%d,%d,%d)’,contaSim,1i,j,k)

vetorDeslocamento = [deslocamentoInicialELg(i),deslocamentoInicialOmega (j),
deslocamentoInicialDelta(k),0,];

fprintf (/' : ATINGIU o tempo final! \n \n’,contaSim);

else

end

end

nd

(]
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o

% Rearranja o vetor limite para admitir apenas os valores de E’qg, omega e

vetorLimite = vetorLimite(1l:3,2:end);

,:),vetorLimite (2, :),vetorLimite (3, :), "bo’)

‘g
-
[¢]
o
w
<
)
jid
o)
R
=
P
=]
=
s
)
-

Q
2]
H-
.
3
o
3
[e]
o]

ylabel (" w’)

% Descrevendo o sistema com AVR

vetorDeslocamento = zeros(4,1);

f =0Q(t,x) [(x(4) - x(1) + (xd - xlinhad)*Id( x(1),x(3) ) )/Tlinhado ;

xlinhad - xlinhaqg)*Ig( x(1),x(3) )*Id( x(1),x(3)) )/ (2xH);
x(2);

H

[}

L}

b
|

= l:grade

for k = l:grade

contaSim = contaSim + 1;

deslocamentoInicialDelta(k),0,];

xInit = x0 + vetorDeslocamento;

[t,x] = ode23(f,tspan,xInit,options);

if (t(end) == tfinal)

I
oe

fprintf (' : interrompida em t f’,t (end));

0
=}

vetorLimiteAVR = vetorLimite;

figure (1)

grid on
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—_

xlabel ('ELg’)

zlabel (' Delta’)

oo

2

°

Rearranjando o vetor inicial para seis dimensées

dw (x(1),x%x(3),t);

x(5);

(Tw + T2)xx(5) )/ (TwxT2);
—(Ke*x( Vt( x(1),x(3) ) - VO0) + (Efd(x(4),x(6)) - Efd0) )/Tel;

\o

$ Resolvendo o sistema diferencial

for j l:grade

fprintf (' \n Simulagcdo numero %d (%d,%d,%d)’,contaSim,1i,j,k)

vetorDeslocamento = [deslocamentoInicialELg(i),deslocamentoInicialOmega (]),
deslocamentoInicialDelta(k),0,0,0];

fprintf (/' : ATINGIU o tempo final! \n’,contaSim);

else

end

end

nd

<
[0
o
(o)
R
=
b
3
=
o
)

= vetorLimite(1:3,2:end);

plot3 (vetorLimite (1, :),vetorLimite (2, :),vetorLimite(3,:), " bo’)

grid minor

ylabel ("w’)
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o

% Descrevendo o sistema com saturador

contaSim = 0;

x(5);
(4) = (Tw + T2)*x(5) )/ (Tw+T2);
—(Ke* ( Vt( x(1),x(3) ) - V0) + (EfdSat (x(4),x(6)) — Efd0) )/Tel;

% Resolvendo o sistema diferencial

h
[¢]
2]
H
I

l:grade

for k = l:grade

o

contaSim = contaSim + 1;

Incrementa a contagem de iteragdes

deslocamentoInicialDelta(k),0,0,0];
xInit = x0 + vetorDeslocamento;

[t,x] = ode23(f,tspan,xInit,options);

if (t(end) == tfinal)

else

]

=]

Q.
(]
=]
Q.

(]
=}
o}

% Rearranja o vetor limite para admitir apenas os valores de E’q, omega e

vetorLimite = vetorLimite(1:3,2:end);

plot3 (vetorLimite (1, :),vetorLimite (2, :),vetorLimite(3,:),’ ro’)

grid minor

ylabel ('w’)
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A8

Graficos de margens de estabilidade do sistema controlado por AVR

Listing A.14 — Codigo para resolucao dos sistemas que geram os graficos de margens de estabili-
dade do sistema controlado por AVR.

clear all;
clc;

close all;
format long

addpath (’ ./funcoes’) ;

addpath (’ ./funcoes/jacobiano’) ;

$% Definindo os pardmetros da maquina

global xd xgq xlinhad xlinhag Tlinhado r re xe H S E Z X alpha phi deltaPm

tempoDeltaPm Pm0 EfdO;

xd = 1.14; % Impeddncia equivalente de regime permanente de eixo direto
xq = 0.66; % Impedadncia equivalente de regime permanente de eixo em quadratura

xlinhad = 0.24; % Impeddncia transitdria de eixo direto

-3

xlinhag = xlinhad; % Impeddncia transitdria de eixo em quadratura

Tlinhado = 12; % Constante de tempo transitdria de eixo direto
r = 0; % Resisténcia interna equivalente da maquina;
re = 0.01; % Resisténcia externa acoplada a maquina;
xe = 0.1; % Impeddncia externa acoplada a maquina;
xt = xe + xlinhaqg; % Impeddncia "total";

rt = re + r; % Resisténcia "total"

H = 1.5; % Constante de inércia do rotor

P = 1; % Poténcia ativa inicial

Q = 0.5; % Poténcia reativa inicial

S =P + JjxQ; ¢ Poténcia aparente inicial

E = 1.0; % Tensdo do barramento infinito (em PU!);

X = sqrt( (r+re)”2 + (xlinhaqg + xe)”"2 );

phi = atan((xlinhag + xe)/(re + r) );

Z = sqrt(re”2 + xe’2);

alpha = atan(xe/re);

%% Calculando as condig¢bées iniciais (em PU)

% Resolvendo o sistema das correntes
a = E"2+(xt"2 + rt"2);

b = rt*xE"3 + 2+«xtxEx (Qxrt - Pxxt);

c = (Q*rt — Pxxt)” 2 — rtxP*xE"2;

Ir = ( -b + sqgrt (b"2 - 4xax*c))/(2xa);
Ii = (Pxxt — Qxrt)/(Exrt) - xt/rtxIr;
I = Ir + j=xIi;

clear x x0 a b c;

% Calculando as tensbes através de Leis de Kirchoff
V =E + (re + j*xe)*I;
EL = V + (r + jxxlinhad)*I;

% Obtendo os versors Q e D e o dngulo delta
Q = EL/norm(EL) ;
deltaO = phase (EL);
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D = Qxexp (j*pi/2);

o3

% Calculando as tensbes e correntes no eixo do rotor
ELg0 = real (EL)xcos (deltal) + imag(EL) *sin(delta0);
ELdO = real (EL) x-sin(deltal) + imag (EL) *cos (delta0) ;

Vg0 = real (V) xcos (deltal) + imag (V) *sin(deltaOl);
Vd0 = real (V) x-sin(deltal) + imag (V) ~*cos(deltaO);

Ig0 = real(I)=*cos(deltal) + imag(I)x*sin(delta0);
Id0 = real(I)*-sin(delta0) + imag(I)*cos (delta0);

VO = sqgrt (Vg0~2 + vd0~2);

Efd0 = ELg0 - IdOx (xd - xlinhad);
PmO0 = ELgOxIg0 - Ig0xIdOx(xlinhad - xlinhaq);

%% Descrevendo o sistema com controlador
x0 = [ELg0,0,delta0,E£fd0];

o

% Pardmetros do controlador AVR
KeV = logspace(-2,2,1e3);

eigenVec = zeros (4, length (KeV)) ;

doubleSubs = [J13(x0),J11,J21(x0),J23(x0),V3(x0),V1(x0)];

syms J13 V1 s V3 Tdo Te Ke J21 Jl1 Hs J23 w

N = Tdo* (Te*xs + 1)* (V3% (J1l — s) — J13%V1)*((J11l - s)x(s"2 + J23) + J13%xJ21);
N = collect (N, s);

N = subs (N, [J13,J11,J21,J23,V3,V1],doubleSubs);
N = subs (N, Tdo, Tlinhado) ;

D = (Ke* (V1 (s"2 + J23) + J21%xV3) + Tdox* (Texs + 1)x((J1l1l - s)*(s"2 + J23)
*((J11l — s)*(s™2 + J23) + J13%J21);

D = 2xHs«*D;

D = collect (D, s);

D = subs (D, [J13,J11,J21,J23,V3,V1],doubleSubs) ;

D = subs (D, [Tdo Hs], [Tlinhado H]);

N = subs(N,s,li*w);

D = subs(D,s,lixw);

TeV = logspace(-2,2,9);

wG zeros (length (TeV) , length (KeV) ) ;
MG = wG;
options = optimoptions(’ fsolve’,’Display’,’off’);

options2 = optimoptions ('’ fsolve’,’Display’,’off’);

for k = 1l:1length(TeV)
k
Ns subs (N, Te, TeV (k) ) ;
Ds = subs (D, Te,TeV(k));

chute = [0 10];

for j = l:length (KeV)
Nss = subs (Ns,Ke,KeV(j));

+ J13%xJ21))
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Dss = subs (Ds,Ke,KeV(]));

Nss = vpa(coeffs (Nss,w));
Dss = vpa (coeffs (Dss,w));

Nss = double (Nss) ;

Nss = real(Nss) + imag(Nss);
Dss = double (Dss);
Dss = real (Dss) + imag(Dss);

F = @(x)[x(1)"2x(-Dss(8)*(Dss(5) + x(2)*Nss(5)) + Dss(7)=*(Dss(6)
+ x(1)*(Dss(8)*(Dss(3) + x(2)*Nss(3)) — Dss(7)*(Dss(4)

Dss(8) * (Dss (1) + x(2)#*Nss (1)) + Dss(7)*(Dss(2) + x(2)*Nss(2)));

x(1)"3 + x(1)"2*((Dss(6) + x(2)*Nss(6))*(Dss(3)

(5) + x(2)*Nss(5))*(Dss(4) + x(2)*Nss(4))) + ((Dss(5) +
)% (Dss (2) + x(2)+*Nss(2)) - (Dss(6) + x(2)*Nss(6))*(Dss (1
Nss(1)))1;

chute = [0.8 1.8];

if (3 > 1)
chute = soll;
end

soll = fsolve (F,chute,options);

+ x(2)*Nss (3

)

betaG(k, j) = soll(1l);
MG (k, j) = soll(2);
F = @(x)[x(1)"7+«Dss(8) — x(1)"5x(Dss(6) — Nss(6)x*cos(x(2)))
x(2)) + x(1)"3x(Dss(4) — Nss(4)*cos(x(2))) + x(1)"2%Nss(3)*sin(x(2))
*(Dss (2) — Nss(2)+*cos(x(2))) — Nss(1l)xsin(x(2));
x(1)"6%Dss (7) + x(1)"5%Nss(6)+*sin(x(2)) - x(1)"4x(Dss(5)
(2))) — x(1)"3*Nss (4)*sin(x(2)) + x(1)"2*(Dss(3)
) + x(1)*Nss(2)*sin(x(2)) — (Dss(l) + Nss(l)xcos(x(2)))]1;
chute = [1 0];
if (3 > 1)
chute = sol2;
end
sol2 = fsolve (F,chute,options?);
wF (k, j) = s0l2(1);
MF (k, j) = sol2(2);
end
end

wG = sqrt (betaG);

colors = hsv(length(TeV));
figure (1)
hold on

for k = 1l:1length(TeV)
plot (KeV,wG(k, :),’color’,colors (k, :))
legendInfo{k} = [’"Te = 10"{’ num2str(loglO(Tev(k))) "}'1 ; %
appropriate
end

set (gca, ’'XScale’, ’'log’)
grid on
grid minor

or whatever 1is

+ x(2)*Nss (6)))
+ x(2)*Nss (4)))

)
x(2) *Nss (5)
)+ x(2)*

— xX(1)"4%Nss (5) xsin (

- Nss(5) xcos (x
— Nss (3) *xcos (x(2))
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title (’ \omega_G’)

xlabel ('K_e’);

hold on

for k = l:length(TeV)

oo

legendInfo{k} = [’"Te = 10"{’ num2str(loglO(Tev(k))) "}’'1 ; or whatever is

appropriate

grid on

title('M_G’)

xlabel ('K_e’);

hold on

for k = l:length(TeV)

legendInfo{k} = ['Te = 10"{’ num2str(loglO(TeV(k))) "}’'1 ; % or whatever 1is
appropriate

grid on

title (' \omega_F')

xlabel ('K_e’);

hold on

for k = l:length(TeV)

legendInfo{k} = [’"Te = 10"{’ num2str(loglO0(TeV(k))) ’}’1 ; % or whatever 1is
appropriate

grid on

title('M_F')

xlabel ('K_e’);

hold on

for k = l:length(TeV)
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plot (MG (k, :) ,MF (k, :) ./pi, " color’,colors (k,:))
legendInfo{k} = ['Te = 10"{’ num2str(loglO(TeVv(k))) "}’]1 ; % or whatever 1is
appropriate
end

set (gca, ’'XScale’, ’'log’)
grid on

grid minor

title('M_F')

ylabel (‘M _F (x \pi)’)
xlabel ('M_G’);

legend (legendInfo)

figure (6)
hold on

for k = 1:5
plot3 (MG (k, :),MF (k, :)./pi,KeV,’color’,colors(k,:))
legendInfo{k} = [’Te = 10"{’ num2str (logl0(TeVv(k))) ’'}’1 ; % or whatever 1is
appropriate
end

set (gca, ’'XScale’, ’'log’)
grid on

grid minor
title('M_F')
ylabel (‘M F (x \pi)’)
xlabel (’ G");
zlabel ('K _e’);

legend (legendInfo)

M_
M_

axis square

A.9

Graficos de margens de estabilidade do sistema controlado por AVR e PSS

Listing A.15 — Codigo para resolucao dos sistemas que geram os graficos de margens de estabili-
dade do sistema controlado por AVR.

clear all;
clc;

close all;
format long

addpath (’ ./funcoes’) ;

addpath (’ ./funcoes/jacobiano’) ;

%% Definindo os pardmetros da mdquina

global xd xg xlinhad xlinhag Tlinhado r re xe H S E Z X alpha phi deltaPm
tempoDeltaPm Pm0 EfdO;

xd = 1.14; % Impeddncia equivalente de regime permanente de eixo direto
xg = 0.66; % Impeddncia equivalente de regime permanente de eixo em quadratura
xlinhad = 0.24; % Impeddncia transitdria de eixo direto

[°3

x1linhaq = xlinhad; % Impeddncia transitdéria de eixo em quadratura

Tlinhado = 12; % Constante de tempo transitdria de eixo direto
r = 0; % Resisténcia interna equivalente da maquina;

re = 0.01; % Resisténcia externa acoplada a maquina;
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o

t = xe + xlinhaqg; % Impeddncia "total";

X

jasd

= 1.5; % Constante de inércia do rotor

@)
Il

0.5; % Poténcia reativa inicial

=
Il
=

.0; % Tensdo do barramento infinito (em PU!);

phi = atan((xlinhag + xe)/(re + r) );

alpha = atan (xe/re);

% Perturbagdo:

o
g
el
o
S}
®
—
o
o))
o
=
I

E"2% (xt"2 + rt"2);

[\))
Il

(Qxrt — Pxxt) "2 — rt*xP*E"2;

Q
Il

Ir = ( -b + sqgrt (b2 - 4xaxc))/(2*a);

I = Ir + j*Ii;

clear x x0 a b c;

% Calculando as tensbes através de Leis de Kirchoff

=1

L =V + (r + j*xlinhad)~*I;

)

% Obtendo os versors Q e D e o dngulo delta

delta0 = phase(EL);

59|ELg0 = real (EL) xcos (deltal) + imag(EL) *sin(delta0);

90| BLAO = real(sL)s-sin(deltad) + imag(EL)scos(deltad);
61

©2|Va0 = real(V)rcos(deltad) + imag(Vissin(delta);
63| vVd0 = real (V) x—sin(delta0) + imag (V) xcos (deltal);

ZIEEE

65
66
67
68
69
70
71
72
73
74
75
76

Ig0 = real(I)+*cos(deltal) + imag(I)+*sin(delta0);

g
3
o

= ELgO*Ig0 - Ig0xIdO«*(xlinhad - xlinhaq);

%% Descrevendo o sistema com controlador

0 = [ELg0,0,delta0,Efd0];

b
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doubleSubs = [J13(x0),J11,J21(x0),J23(x0),Vv3(x0),Vv1(x0),1,1,6.12049837248,Tlinhado,2];
% doubleSubs = [J13,J11,J021,J23,V3,V1,Tw,Te,Ke, Tlinhado, T1]
syms J13 V1 s V3 Tdo Te Ke J21 Jll s J23 w Ke Te Tl T2 KPss Tw

N = (V1 (s”2 — J23) + V3xJ21)* (J13xV1xKe + (s — J1l1)* (V3xKe + (s"2xKPss*Twx* (1l + sxT1)
* (1 + s*xTe))/ ((1 + sxT2)x(1 + s+xTw))) );

N = N/ (Tdo* (1 + s*Te)*((s — Jll)*(s”2 — J23) — J13xJ21) - V1xKe=*(s"2 — J23) - J21*((V3*
Ke + (s72%KPss*Twx (1 + s*T1)* (1 + s+T2))/((1 + s*T2)x(1 + s*Tw))) ));

N =N + V1%xJ13 + V3x(s - Jl11);

D = (s — Jll)x(s"2 - J23) - J13xJ21;
D = 2+H*D;

G = N/D;

[N,D] = numden (G);

N = subs (N, [J13,J11,J21,J23,V3,V1l,Tw,Te,Ke,Tdo,Tl],doubleSubs) ;
D = subs (D, [J13,J11,J21,J323,V3,V1l,Tw,Te,Ke, Tdo,T1l],doubleSubs) ;

N = subs(N,s,lixw);
D = subs(D,s,1lixw);
T2V = [1 2 3 4 5 6];

KPssV = logspace(-2,2,1000);

wG = zeros (length(T2V), length (KPssV)) ;

MG = wG;

%options = optimoptions (’fsolve’,’Display’,’off’,’Algorithm’,’levenberg-marquardt’)
options = optimoptions (’fsolve’,’Display’,’final’,’Algorithm’,’levenberg-marquardt’);
options2 = optimoptions ('’ fsolve’,’Display’,’final’);

% Resolvendo para a margem de ganho

for k = l:1length(T2V)

Ns = subs (N, T2,T2V(k));
Ds = subs(D,T2,T2V(k));

for j = l:1length(KPssV)
Nss = subs (Ns,KPss,KPssV(J));
Dss = subs (Ds,KPss,KPssV(j));

Nss = vpa (coeffs (Nss,w));
Dss = vpa(coeffs (Dss,w));

Nss = double (Nss) ;
Nss = real (Nss) + imag(Nss) ;
Dss = double (Dss) ;
Dss = real (Dss) + imag(Dss);

F = @(x)[x(1)"3%(Dss(9)*Dss(8) - Dss(7)+*Dss(10) + x(2)x(Dss(9)*Nss(8) — Nss(7)x*
Dss (10))) +
- x(1)"2+(Dss (9)*Dss (6) — Dss(5)*Dss(10) + x(2)+*(Dss (9)
*Nss (6) — Nss(5)*Dss(10))) +
+ x(1)*(Dss (9) *xDss (4) — Dss(3)*Dss (10) + x(2)*(Dss(9) *

Nss (4) — Nss(3)*Dss (10))) +
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131 — (Dss (9)*Dss(2) - Dss(1l)*Dss (10) + x(2)#*(Dss(9) *Nss (2)
- Nss (1) *Dss (10)));
132 Dss (9)xx(1)"4 - (Dss(7) + x(2)x*Nss(7))*x(1)"3 + (Dss(5) + x(2)*Nss(5))*
x(1)"2 — (Dss(3) + x(2)*Nss(3))*x(1l) + Dss(l) + x(2)=*Nss(1l)];
133 chute = [1 150];
134 if (j3>1)
135 chute = soll;
136 end
137 soll = fsolve (F,chute,options);
138 betaG(k, j) = soll(1l);
139 MG (k, j) = soll(2);
140
141 end
142 end
143
144| $% Resolvendo para a margem de fase
145| for k = 1l:length(T2V)
146 k
147 Ns = subs (N, T2,T2V(k));
148 Ds = subs(D,T2,T2V (k));
149
150 for j = 1l:1length (KPssV)
151 Nss = subs (Ns,KPss,KPssV (j));
152 Dss = subs (Ds,KPss,KPssV (]));
153
154 Nss = vpa(coeffs (Nss,w));
155 Dss = vpa(coeffs(Dss,w));
156
157 Nss = double (Nss) ;
158 Nss = real (Nss) + imag(Nss) ;
159 Dss = double (Dss) ;
160 Dss = real (Dss) + imag(Dss) ;
161
162 F = @(x) [Dss (10)*x(1)"9 + (Nss(8)*cos(x(2)) — Dss(8))*x(1)"7 — Nss(7)*sin(x
(2))*x(2)"6 + (Dss(6) — Nss(6)xcos(x(2)))*x(2)"5 + Nss(5)*sin(x(2))*x(1)
~“4 + (Nss(4)+*cos(x(2)) — Dss(4))*x(1l)"3 — Nss(3)*sin(x(2))*x(1l)"2 + (Dss
(2) — Nss(2)xcos (x(2)))*x(1l) + Nss(1l)xsin(x(2));
163 Dss (9)*x(1)"8 + Nss(8)*sin(x(2))*x(1)"7 + (Nss(7)*cos(x
(2)) — Dss(7))#*x(1)"6 — Nss(6)+*sin(x(2))*x(1)"5 + (
Dss (5) — Nss(5)*xcos(x(2)))*x(1l)"4 + Nss(4)+*sin(x(2)
y*x(1)"3 4+ (Nss(3)*cos(x(2)) — Dss(3))*x(1l)”"2 - Nss
(2)*sin(x(2))*x(2) + Dss(l) - Nss(l)xcos(x(2))];
164
165 chute = [1 0.3xpi];
166
167 sol2 = fsolve (F,chute,options);
168 wE (k,j) = sol2(1l);
169 MF (k, j) = so0l2(2);
170 end
171
172| end
173 =
174| $% Plotando os graficos
175
176|wG = sqgrt (betaG) ;
177|wG = real (wG) ;
178
179 colors = hsv(length(T2V));
180| figure (1)
181|hold on
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for k = 1l:length(T2V)

o

legendInfo{k} = [’T_2 = ' num2str(T2V(k)) ] ; % or whatever is appropriate

grid on

title ('’ \omega_G’)

xlabel ('K _e’);

hold on

for k = 1l:length(T2V)

o

legendInfo{k} = [’T_2 = ' num2str(T2V(k)) ] ; % or whatever is appropriate

grid on

title('M_G')

xlabel ('K_{PSS}');

hold on

for k = 1l:length(T2V)

o

legendInfo{k} = [’T2 = ' num2str (T2V(k)) ] ; % or whatever is appropriate

grid on

title ('’ \omega_F')

xlabel ('K _e’);

hold on

for k = 1l:length(T2V)

o

legendInfo{k} = [’T2 = ' num2str (T2V(k))] ; % or whatever is appropriate

grid on

title('M_F’')

xlabel ('K _e’);
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||

\o

ol

hold on

o
°

for k = 1:1ength(TeV)

Yo

o\

legendInfo{k} = ["Te = 10"{’ num2str(logl0(TeV(k))) ’}’] ; % or whatever 1is
appropriate

<
°

grid on

o

ol

% title(’M_F’)

% xlabel ("M_G’);

% hold on

% for k = 1:5

Yo

o\

legendInfo{k} = ["Te = 10"{’ num2str(logl0(TeV(k))) ’}’] ; % or whatever 1is
appropriate

||

Yo

ol

grid on

% title(’M_F’)

$ xlabel ("M _G’);

)

% legend(legendInfo)
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APENDICE B

Analise local do sistema AVR

B.1

Calculo do jacobiano

O sistema dinamico que rege o sistema controlado por apenas AVR ¢é 5.9 abaixo; ja as
formulas para I4 e I, séo 4.10 e 4.9, respectivamente.

(. Xy — Xy + (x5 —x)1,
xl - T/ d :Fi
do
Pm—x11q+(x;—x;)ldlq
= 2H =k
4
X3 =X =h
K (V,— Vo) +(x4— Eppo)
Xy =— =F
\ T

B.1.1 Primeira coluna

_ 0K 1 +(xd—x;)&__(xd—x;)sin(¢) 1

9% _Td/o Td/o 9% leo X _%
1 (xd—x;)sin((p)
—= +1
T X

PRT-L: T U O (LS WA ) PRy
=—=—q- X =— |+(x)—x —S 4= | =
217 0x, 2H 17 x, d "\ Mgy 0y
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1 (_[xl cos(¢)—E cos(x;+ ¢) Ly cos(¢)]+
1

2H X X
(x;—x])
dX2 % {—sin(¢)[ x,c05(¢)—E cos(x; + ¢)| +cos() | E sin(x3+¢)—xlsin(¢)]})=

/_

1 (E -2 (x/,—x')
:ﬁ{ cos(X3+¢))( X cos(¢) dqu [ESin(X3+2¢)_xlsin(2¢)]}:

= SHx {EX cos(x3 + ¢)—2X x; cos(¢p) +(x), —x;)[E sin(x; +2¢ ) — x, sin(2¢)]} =

1
T 2HX?

{E [X cos(x; + @)+ (x,, —x{;)sin(x3 +2gb)]—x1 [ZX cos(¢)+(x), — x;)sin(Zq))]}
(B.1)

J31=5—=0 (B.2)

[Zx1 —2E cos(x3)] (;)2 + ZE)Z—( cos(x3+a—¢q)

Z\J [xlz—ZExl cos(x;)+ Ez] (;) +2E)Z—( [xl cos(xs+a—¢@)—E cos(a—¢)] + E2

K, Z [xl—ECOS(Xs)](§)+Ecos(x3+a—¢)
T, X

Z\J [xlz—ZEx1 cos(x;)+ E2] (;) +2E)Z—( [x1 cos(xs+a—¢@)—E cos(a—(p)] + E2

(B.3)
B.1.2 Segunda coluna
Ja= 28 2 (B.4
1,2 — axz - .
Ik
)= —2 = (B.5)
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28
J3o=7—=1 (B.6)
ax,
L ®.7
42_ax2_ .
B.1.3 Terceira coluna
OF (x4—x})0ly E(x;—x))
] = = S —:—/COS X2+ ) B.8
137 3% T x X1, (xs+¢ (B.8)
_an_ 1 alq ’ / aId alq _
]2'3_a_)%_ﬁ{_xla_)%+(xd_xq)(lqa_)@)+lda_j% =
1 E sin(x;+ @) , , X, cos(¢)— E cos(x3+ @) ECOS(x3+¢)
=5H —xlT+(xd—xq) X X +
+[Esin(x3+¢)—x1sin(¢)]Esin(xs+¢>) _
X X B
1 Esin(x;+¢) Elx;—x7) . .
il x T xa (aleos@lcos(x +9)—sin(gsin -+ )]
—E[cosz(xg+q))—sin2(x3+¢))])}:
:m{—xlein(xg+¢)+(x(’i—x;)[xlcos(x3+2¢))—Ecos(2x3+2¢)]}:
E / / . / /
= SHxz {xl[(xd—xq)cos(x3+2¢)—Xsm(x3+¢))]—E(xd—xq)cos(2x3+2¢)} (B.9)
K
J33= D xn =0 (B.10)
3
0F K, oV
Jig= g = =
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—xlE%é [sin(xg) ()Z—() —sin(x; +a— qb)]

\J [xlz—ZEx1 cos(x3)+E2](§)2 +2E§ [xl cos( X3 +a—¢)—Ecos(a—¢)]+ E?

(B.11)

B.1.4 Quarta coluna

JF 1
Jia=——=— (B.12)
T dxy T,
JoFE
Jroa=—=—=0 (B.13)
ox,
JFE
= —=0 (B.14)
Jx,
1
]4’4:_?6 (B15)

B.1.5 Autovalores do jacobiano

Tem-se portanto o jacobiano do sistema em um ponto de operagéo qualquer. Para clareza,

evidenciando os termos nulos,

Nz Tha

Ly 0
0 0

Joz Jaa

(B.16)

"y
>
o ~ o o

]4,1

Assim, para calcular os autovalores do sistema,

]1,1_A 0 ]1,3 ]1,4

by —A b3 0
det(J—AI)=0< =0 (B.17)

]4,1 0 ]4,3 ]4,4_A
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Resta agora decompor este determinante. A ideia é utilizar os Teoremas de Jacobi e a
multilinearidade do determinante para obter os coeficientes do polindmio caracteristico nas formas

de determinantes de matrizes independentes de A.

Jii 0 Jis J14 A 0 i Ji4
Joi —A a3 0 0 —A g3 0
_ =0
0 1 -2 0 0o 1 -2 0
Jag 0 Juz Jaa—A 0 0 Jiz Jau—A

Decompondo a segunda linha do primeiro determinante, e aplicando a regra de Laplace na

primeira coluna do segundo,

Jin 0 Jis Ji4 Jii 0 i3 J14
A I3 0
b1 0 Jo3 0 by —A a3 0
+ —Al 1 =2 0 =0
0 1 —A 0 0 0 —A 0
0 Jiz Joa—A
Jop 0 Juz Joa—A Jon 0 Juz Jya—A

Aplicando Laplace na segunda coluna do segundo determinante,

Jip 0 Jis J14
hir N3 Ji4 —A I3 0
Ly 0 Js 0
—Al 0 —A 0 Al 1 =2 0 =0
0 1 —A 0
oy Jaz Jaa—A 0 Jiz Jaa—A
Jan 0 Juz Jya—A
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Aplicando a regra de Laplace na segunda linha do segundo determinante,

Jin 0 Jis Ji4

]2,1 0 ]2,3 0 ]l,l ]1,4 _A’ ]2,3
+},2 _A(]4y4_2.) :0
0 1 -4 0 Jor Jaa—A 1 -2

]4,1 0 ]4,3 ]4,4_)L

Brevemente omitindo o determinante maior,

Jip Jix O
(..)+A? —A? —l(]4,4—7t)(12—]2,3):0
Jag Jaa i1 A
Jin Jia
()+A? —Jo3 —A° (]1,1 + ]4,4) + A41]4,4]2,3 =0
Jay Jaa
Agora desenvolvendo aquele,
Jin 0 Lz Jia
b1 0 Jos 0
+(..)=0
0 1 —A 0
Jin 0 Juz Jya—A
Jin 0 Jis T Jix 00 Jia
by 0 Jos 0 b1 0 0 0
+ +(...)=0
0 1 O 0 0 1 —A 0
Jin 0 Juz Jya—A Jsn 0 0 Jyu—A
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Assim,
]1,1 ]1,3
- ]2,1 ]2,3
]4,1 ]4,3
Arranjando,
N1

At—23

Jaa

Jin 0 Jis s
Fp 0 fo3 0
0O 1 O 0
]4,1 0 ]4,3 ]4,4_A’
hy s Jia
—| a1 |3 0 +(...)
]4,1 ]4,3 ]4,4_A
]1,1 ]1,3 ]1,4 ]1,1 ]1,3 0
= oy b3z O [+| 1 J3 O
]4,1 ]4,3 ]4,4 ]4,1 ]4,3 A’
g g s
]1,1 ]1,3
—| boq s 0 |[+A
]2,1 ]2,3
]4,1 ]4,3 ]4,4
T4
Jin s Jin s
0 |+ + Joados | A2
by bgs Jan Jaa
Jaa
-1 Nia o ha N3
+ A2 — s |+ +
1 Jag Jaa 23
4

—Jos | =23y + Jaa) + A =0

=0
+(..)=0
+(...)=0
by s
Jaals |+ ha N3
Jag Jas

Assim, em forma resumida, Z a,-)U' =0, com os coeficientes a;

=0

4

Jaa

=0

(B.18)
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a, =1
]1,1
a3 -
]4,4
]1,1
az =
]4,1
]1,1
a, =
]2,1
]2,1
ay=|

]4,1

—1

]1,4

]4,4

]1,3

]2,3

L3
]1,3

]4,3

= —(]1,1 + ]4,4)

- ]2,3 = ]1,1]4,4 - ]1,4]4,1 - ]2,3

+ Jaalos | =)o (]1,1 + ]4,4) —Ni3)21

0

Jia |=Jaa(Rsdon = hados)+ Jua(JosJan = T Jas)

]4,4
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APENDICE C

Analise local do sistema AVR+PSS

Aqui apresentar-se-ao os calculos analiticos da analise local (calculo da matriz jacobiano e

do polinémio caracteristico) do sistema controlado por AVR e PSS.

CA1

Calculo do jacobiano

O sistema controlado por AVR e PSS é regido pelo sistema diferencial

A sat sat.
Com fungbes saturadas x,* e E %

4 PSS ’ "PSS

E;;t == S(x4sat+ x6 + EFDO’

xsat:S(x4,Vmax len

[ ES—x 4+ (xg— X))y
x1:
T,
Pm—xllq—i-(xé—x;)ld I
x2:
2H
X3 =X
1
X4 = X5
‘= Ty Kpss (T1xp + X)) — x4 — (T, + T5) X5
° T, T,
. K(Vi—V,o)+(ES2 — Eppo)
x6:_
\ T,

E max E min
)

FD

)
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Com equacodes algébricas

_ x;co8(¢p)— E cos(x3 + )
Q= X

I

E sin(x; + ¢)— x, sin(¢)
Id = X

(B — x, + (g — x| cos(9) + x, T, E sin(xs + )
“ XT;,

x,T) Ecos(x;+¢)— [E;g‘— X +(x,— xé)ld] sin(¢)
- XT),

X
Efs —x; +(xs —x))Iq
o

P,—1{ xk+

q Iy f —(x;—x7) (Iqlﬂ + IdITl)

2= 2H

2
V, = \J [xf—ZExlcos(x3)+E2](§) +2E)Z—([x1 cos(x3+a—¢)—Ecos(a—¢)]+E2

K, 1,71, 1,1, Kpss sao constantes referentes aos controladores; os dois primeiros

referentes ao AVR e os Ultimos ao PSS.

C.1.1 Primeira coluna

J _aPi_ 1 xd—x; 8Id _ xd—x;l 31n(¢)_ 1
MTox Ty, T;, )ox; T, X T
1 |(xg—x))sin
T/ X
oFE 1 ol N Y A o1,
== SRPR ] PRI gy | S
fax Jx, ZH{ (q+x13X1)+(xd xq)(qﬁx1+ 415 x,
1 / / . / / .
= STy {E [X cos(x3 +q/))+(xd—xq)sm(x3 +2gb)]—x1 [2Xcos(¢)+(xd —xq)sm(Zq&)]}

(C.2)
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J31= ax 0 (C.3)
Ji1=0 (C.4)
Kpgs ( X, 83&2)
= T
S5 T, '8 x, * ax,

0X,
Calculando —:
Jx,

Ayt g+ I+ g | =

’ o1,
+
P % ok U ok 4 axy

ox ol
9% Comy= a5t

ol ) o1y o1,
ax, ox

+1111 +(x x)[

Jiat+ (x —X )gidl]+

=1, [1+(x —xq) gil]

+%[x1+(x;—x;)ld]+%[)@1+(x;—x;)l'd]:

T 2l P A P Ul P P P

L0 e ([ (= 0 ]}

Sabe-se que — = J,; assim,

ﬁxl

—_Kbss (T1 { (Tg+ 111q) [1— (=i )sin(o) + Coi(((p) ([ + (2 =2 1]+ [0+ (x5 —x;)l'd]}} —2H]2,1) (C5)

K, 7z [xl—Ecos(xg)](§)+Ecos(x3+a—¢)

fe X Q [xlz—ZExl cos(x3)+E2](§)2+2E§[xl cos(xz+a—¢@)— Ecos( ¢)]+E2
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C.1.2 Segunda coluna

Jio= ok =0
b2 ox, B
oF
22_3_x2_0
OF
13,2—3—362—
Ja= 25—
b2 ox, B

Kpss T, [ Esin(x3+ ¢)

Ecos(x3+¢
:_ZHT2 X1 X +(x;— ’)(Iq X
EKpssT 1 . |
- 2HP)§8751 [xl s1n(x3+¢)+(x;—x;)(lqcos(x3+¢)+Ids1n(x3+¢))]

]6,2 =0

C.1.3 Terceira coluna

OF (x;—x%)o1l; El(x;—x/
]L3: 1: > d —d:—( / d)COS(X3+¢)
0 X5 T,, x XT),

85 1 aIq / / ald aIq
e . RFN 10 e ) e |
Jos 0 x, ZH{ x13x3+(xd xq)(‘Iax3+ 10 x,

(C.10)

(C.11)

(C.12)

(C.13)
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1 Esin(x;+¢) ., . [[x cos(¢p)—E cos(xs+¢p)] E cos(x;+ )
— (—xlT‘o’-l-(xd—xq){[ 1 €0s(¢ N 3 ¢] X3 +

Esin(x; + ¢)— x; sin(¢) 1 E sin(x; +¢)
* [ X ] X

2H

. E(x’ —x’
: {— 1E51n();;3+¢)+ (x;i(z xq)(xl[cos(¢)cos(x3+¢>)—sin(¢)sin(x3+¢)]+
—E[cosz(x3+¢)—sin2(x3+¢)])}:

=5 ; e {—x X sin(x; + @)+ (x) — x, )|, cos (x, + 2 ) — E cos (2x, +29) |} =

= —Z:XZ {xl [(x(’i —x;)cos(x3 +2¢)— X sin(x; + q))]—E (x; — x;)cos(sz +2¢)}

(C.14)
Ik
]3’3: —=0 (C15)
0 X5
J13=0 (C.16)

Kpgg ( 0X, 3){2)
= T
Jss T, '8 x; * 0 X3

0X,
Calculando ——:
0 X4

0%, o1, o1, PN G-) PR ¥ oI, . a1y
T-X_S(—ZH):.XITJ%‘F]1,3Iq+xlaixs+(xd—xq) Iqaij%‘i‘ldaix?)-‘rldi-i-l -— | =

. ' % . T,
= 28 (g S (s S o (xS o (=

Ecos(xs+¢), , ,\. [%Esin(¢+x; sin(¢ -
:(X)(xd—xq)lq—( )E )— 13 )E ))(xd—x )Iq+

+ w [+ () — ) )1 |+ (11,3 Cosx(m + szcOS)EXa : ¢))[xl (= ]+ Aty

Daonde
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Ecos(x3+¢>)(x0’l—x;)l'q—(szsin((j)+x3)—]ly3sin(¢))(x;—x;)lq+
J = Kess 7. b +(] cos(¢)+ x, E cos +¢))[x +(x’—x’)l ]+ (C.17)
53 Té 2,3 2HX 1,3 2 3 1 d q d .
+Esin(x; + ) [+ (x) — x )T ]+ 1 X1
oo OF; _ K, 0V, _
3 0x; T, x5
K, Z
—X1 E——|sin(x3)| = |—sin(x; +a—
BT | sintx) (£ )—sint +a—9)]

xf—2E x, cos(x3) + E2 é 2+2E£ x,cos(xz3+a—¢@)—Ecos(a—¢@)|+ E?2
X X

C.1.4 Quarta coluna

J; oK _
L4 ox, B
Emux
1 aE;?)t 1 ax4sat FD sat
= = X +x6+EFD0 =
T;, 0x, Tj 0x EF%M( 4 )
1 VP?Sax EF%LIX
== l_[ X4 l_[ (x4sat+x6+EFD0)
a0 | v EZ5"
J; oL, 0
2, _—
YT ox,
R
3= 5, 0
4
]4,4:0
X,
Joa= —(TprssTl—z—l)
Tw’Ié a)‘:4

(C.18)

(C.19)

(C.20)

(C.21)

(C.22)
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0X,
Calculando —:
Xy

0%, 1 [ 0] N EY:) AR)
i R . U _ Zd e |
ox, 2H|Mox hat (%) xq)(lqax4+l"ax4

1 [ cos(g , sin cos
= XIL]L4+Iq]L4+(xd—x )(—Iqu))]M+Idﬂ]M)] =

2H | X 1 X
:—21{[;‘;{ [xl cgs(¢)+qu+(x;l—x;)(IdCOS(¢)—IqSin(¢))]

Assim,

]5,4 =

1 { T KpssTh
J14

{0 BT cos{pl 1y 1) lcos(o)- 1) 1} 29

1 aEsat 1 VPglsax EFnBax
Joa == ;f == ]_[ x| | T (o™ + 6+ Erno) (C.24)

¢ R EfE"

C.1.5 Quinta coluna
]1'5 =0 (025)
]2’5 = 0 (026)
J35=0 (C.27)
]4'5 =1 (C28)
T,+ T,
g = — e (C.29)
’ T, T,

Jo5=0 (C.30)
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C.1.6 Sexta coluna

E max
1 aE;;t 1 B sat
=— = X, +xs+E C.31
T a1, L ) ©2
FD

]2,6 =0 (C.32)
]3,6 = 0 (033)
]4,6 - 0 (034)

_ KpssT; 0% _
L, Jxs

5,6

KPSSTI [ alq / / aId aIq
=— X +helgt\x,—x || lqgm—+tla5— || =
2HT, | 0 x Ji6lq ( d q) V% 10x

Kpss Ty [ cos(¢) sin(¢) _ cos(¢)
=— ZI;;STZI -xlflysT+]1'6Iq+(x;—x;)(—lq X +14 X =
Kpss T, ,
:—fwﬁ[xlcos(¢>)+qu+(x(;—x;)(ldcos(¢)—lqsm(¢)))] (C.35)
J ——i—aE;?’t——iﬁx( =+ X+ Erpo) C.36
T T, dxs Te g T e (.39

C.2

Aproximacao do Jacobiano com consideracoes sobre a funcao pulso

As férmulas calculadas do jacobiano acima sao genéricas, e podem ser calculadas sobre
qualquer elemento no espago de estados x. No entanto, ao longo deste trabalho, o jacobiano é
calculado sobre o equilibrio estatico do sistema, o que possibilita simplificar significativamente as
férmulas.
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E inerente notar que a fungéo pulso néo faz sentido quando utilizada no equilibrio, porque
nao é factivel construir saturadores que ja atinjam seus limtes no equilibrio do sistema . Valendo-se
desta consideragao, todas as funcdes Boxcar utilizadas podem ser substituidas pela unidade. Pelo

mesmo principio, a variavel de excitag&o saturada E % pode ser substituida por Ep .

Além disso, por definicao, no equilibrio estatico, x, = Vpg5 € X5 = Vi r S80 nulos, porque

por construgao os controladores nao atuam no equilibrio.

Dessa forma, para o equilibrio estatico, com essas consideracoes praticas, J;, = —— €
Tdo
] 1
64— -
T
C.3

Polindmio caracteristico

Evidenciando os termos nulos e unitarios,

o

[T, 0 Jis Jia Jis |
b1 0 S O 0 O
0 1 0 0 0 0

J= (C.37)
0O 0 0 0 1 0

]5,1 ]5,2 ]5,3 ]5,4 ]5,5 ]5,6
\Jo1 0 Joz Joa O Jes )

Calculando os autovalores, entao

]1,1_A 0 ]1,3 ]1,4 0 ]1,6

b —A Ls O 0 0

0 1 -4 0 0 0
P(A)=det(J—AI)= C.38
W=dety-an=| (C38)

]5,1 ]5,2 ]5,3 ]5,4 JS,S_A ]5,6
]6,1 0 ]6,3 ]6,4 0 ]6,6_)L

Multiplicando a quarta linha por A e somando com a quinta,
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P(A)=

Jii—=A 0 iz T4
by —A g 0
0 1 -2 0
0 0 0 —A
By Jsp Jos Jsa—2A* Jss
Jo 0 Jozs  Joa

J6

Multiplicando a terceira linha por A e somando com a segunda,

S

Multiplicando a segunda coluna por A e somando com a terceira,

1

0

Jsp Jsz+A)sy Jsa—A% Jss

0

]6,3

Joa

0

]5,6
]6,6 —A

Multiplicando a quinta coluna por A e somando com a quarta,

(C.39)

(C.40)

(C.41)
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Jii—A 0 L3 14 0 Ji6
]2,1 0 ]2_3 — A2 0 0 0
0 1 0 0 0 0
PA)=
0 0 0 0 1 0
I Jsp Jszt A5 (]5,4 +AJs5— A2) J55 Js6
Js1 0 Js,3 Jou 0 Jes—A

Aplicando a Regra de Laplace na terceira linha,

Ju—A s Jia 0 Jis
Joq Jr3—A? 0 0 0
PA)=— 0 0 0 1 0
o Jsst ATz (JeatAdss—2) T s
Jo Jos Joa 0 Jos—A

Aplicando a Regra de Laplace na quinta coluna,

Ji—A s Jia Jis
o1 Jo3— A2 0 0
i JsatAdsy (JatAdss—22) Ui
Jo Jos Jou Jos—A

Aplicando a Regra de Laplace na segunda linha,

]1,3 ]1,4 ]1,6

b Jss+ A5, (]5,4 +AJs5— A2) e |+
]6,3 ]6'4 ]6,6_A’
i1 —A Jia Nie

+(]2'3—AZ) J51 (]5,4 +)L]5,5_Az) 56

]6,1 ]6,4 ]6,6_2'

(C.42)

(C.43)

(C.44)

(C.45)
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Divide-se o polinbmio em duas parcelas, respectivamente, P, e P,, calculadas agora

separadamente:

P(A)=—Jo PN+ (s —2*) B,(A)

C.3.1 Primeira parcela

(C.46)

s Ji4 Jis
P (A)= 55+ A]5,2 (]5,4 + A]5,5 - Az) ]5,6 =
Jo3 Jo,4 Jos— A
Ji3 Ji4 6
=| J53 (]5,4 +AJs5— AZ) e |T
Jo,3 Jou Jos— A
0 4 Ji6
+| AJsy (]5,4 +AJs5— Az) e |=
0 Jo,4 Jog— A
i3 Jia L6 s Ji4 0
=| 53 (]5,4 + A]5,5 - Az) Je |+ ]5,3 (]5,4 + A]5,5 - Az) 0 |+
Jo3 Jou Js6 Jo3 Jo4 —A
Jia L6
- 7”5,2 =
Jou Jos— A
i3 Jia Jis
=\ J53 (]5,4 + A]5,5 - Az) Js6 |t
Jo3 Jou Jo6
i3 14 T4 L6
-2 —_ A’]S,Z =
J53 (]5,4 +AJs5— AZ) Joa Jog—A
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Nz s Jig Ji3 0 Ji6
= ]5,3 ]5,4 ]5,6 + ]5,3 1(15,5_3) ]5,6 +
Jo3 Jou ]6,6 Jo,3 0 Jo6

i3 4 Nha T
—A + 5 Al || =
J53 (]5,4+A]5,5—7Lz) Jou Jog
Nis ha g
Lis T
=| Js3 Jsa Jse +7L(]5,5—7L) +
Jo3 s
Jo3 Jou Jog
Jig Jia e
—A +AN3 (]5,5 - A) + 52 —Aha || =
Js3 Jsa Jou Jos
Sig ha g
=| s Ja e |t
Joz Joa Jog
Lis e Sig N Sia T
+A| J55 - —J52 +
Jo3 s I3 Jsa Jos s
. AZ( ha ha || he )+
55 Js2 Jos Jo3
+A%J15
C.3.2 Segunda parcela
Jii—A Jia 6

P(A)= I (]5,4 +AJs5— /12) Js6 =
Jo Jo,4 Jog—A
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Jii—A
= AJ
Js,1
LJ_A
= k@
Jo,1
Jia s
= kJ J54
Joqg Jou
+ A« (]5’5 _A«)
Jia s
= kJ EA
Joqg Jou
+ A« (]5’5 _A«)
Jia s
= kJ EA
Jog Jou
+A(Jss5—2)
ha i
=| 1 Jsa

]6,1 ]6,4

Jia Jig Jii—A 0 Ji6
EA hﬁ + hJ Akﬁ_lz kﬁ =
Jo kﬁ_A Js 0 kﬁ_A
Jia L6
Jii—A 6
Jsa e +A(k5_l) =
Js Js6 A
Joa kﬁ_A
6
J54 Js6
e | — +
Jo,4 kﬁ_k
kﬁ_l
Jii—A L6 _
Js kﬁ_A
Jis
a4 Jse Jin Jia
Js6 —A - +
Jo,4 kﬁ_k Jsqn Jsa
Js6
LJ_A L6 _
Js kﬁ_A
Jis
Jsa T Ny Jia
Js6 —A —AAA-—A +
Jou Jog Iy Jsa
Js6
ha Jig
_A’(]l,l +]6,6)+A’2 =
Joq Jog
L6
Js6 |+
Jo6
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Jse Jsa ha Jia Ly g
+ A« - + ]5'5 +
Jos Jou Jsq T4 Jop Jss
) I i
+ A" Jsa— 55 (]1,1 +]6,6)_ +
Joq  Jog
+23 (]5,5 + i+ ]6,6) +

2

C.3.3 Forma final do polindmio caracteristico

Assim,

P =T PN+ (fo3—22) P(2) =

n=0

Nhs Ny s i
ha ha e N3 ha e
b3 a1 O 0
av=rg| Iy Jsa e |—la| B3 Jsa e |=—
Jss Js1 T4 Jse
Jon  Jea  Jes Jos  Jea Jes
Joz Je1  Jea  Jes

i1 e
+J55
Joq  Jss

J5.6 ]5,4l N1 s

Jos  Joa Js1 Js4
a) =
N4 e N3 ha N6 s
+ha| 52 + +J55
Joa  Jos Jss 54 Jos  Jo3
Jo3 p O b3 1 O J23 b1 0O

=khs| hs "1 e |=| hs hyr e |+| B2he e Jes
Jos  Jo1  Jes Jss  Js1 s Js2ha  Jsa Jea

; ; i ha s
J T 7 i 16 1
u2=*]2,1( ]1'4 ]1'3 ]1'6 ]1'3 )+]z,3 ]5,4*]5,5(]1,1+]6,s)+ = b1 s e |=
55  Js52 66 J63 Jos  Jo1
Jo1  Joa  Jeg
Jsa Jss 0 ha hs e Nha ha e
T V)
== b s + 3| Jin 1 =1 = b1 b3 0 |=| b1 ks Jse
Js5  Js2

Jesg O 1 Jen T3  Jee Jo1  Joa Jsg
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|

Jse s Jin i ha e

+Js55

ag=—Jo1 i3+ b3 (]1,1 +J55+ ]6,6) -
Jos  Jou

|

]5,1 ]5_4 ]6,1 ]6,6

Jin e
ay=y h3—Jsat+Js55 (/1,1 + ]6,6) +

Jo1  Jos
as= —(]1,1 +J55+ ]6,6)

a6:1

C4

Identificando as dependéncias dos controladores

Sabe-se portanto que o Jacobiano do sistema tem a forma

o

(Ji 0 Jia B 0 Jig )
o 0 by 0 0 0
0o 1 0 0 0 O
0o o 0 o0 1 0

]5,1 I5,2 ]5,3 IS,4 I5,5 IS,G

W Jor 0 Jos Joa O Jos )

Os termos destacados mostram as componentes que dependem das constantes dos
controladores. Estas componentes sao reduzidas a seguir:

Js1= —KTLSS (TIKS,I - ]2,1)
Jo1= _.% 6,1

J52= —K%SleKs,z

Js3= KTLZSS (]2,3 =T, Ks,s)
Jo3= _E 6,3

T
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Jya == (1+ TuKoss T Ks )
= 1

6,4 — Te

Ty +T,
T TT,
Kpss T

Joo =——2—L K,

5,6 T2 5,6
o= 1

6,6 — Te

Agora, os K;; denotados em negrito séo fungdes apenas do estado sobre o qual o jacobiano
é calculado. E doravante necessario escrever os coeficientes a; do polindmio caracteristico como
funcdes destes parametros, mais especificamente a,, a,, a; € as porque sao determinantes no
esboco do Diagrama de Bifurcagdes, como deduzido a partir da pagina 107. Além disso, o foco é
isolar os ganhos do AVR K, e do PSS Kpgg, uma vez que estas variaveis serdo variadas enquanto
as outras serao fixadas a partir daquela pagina.

C.4.1 Coeficiente a,

Jia hia e Nz Nia g
av=Tlos| Jsg Jsa Jse |—lon| Jsz Jsa Jse
Joqn Jou Jog Joz Jea Jog

Note-se que todas as linhas de baixo dos determinante sao proporcionais a —Te_l.

Ly s g Lz  ha e
—Teay=l3| J5. Jsa Jse |—J2n I3 s Jse
KK, 1 1 KK, 1 1

Nota-se também que as linhas do meio s&o inversamente proporcionais a 1,, nota-se que

a segunda e terceira colunas séo idénticas nos determinantes, de forma que se possa soma-los:

Jin Ji4 Jie

_ 1+ Ty KpssT; Ks 4
Ty

KKy, 1 1

—TeT2a0=J23| Kpss (]2,1 =T, KS,]) —KpssT1 Ks 5 | T
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Ji3 J14 Ji6
14T, KpssT, K
—h1| Kpss (]2,3 -T, K5,3) —W —KpssT1 Ks 6
w
KeKG,S 1 1
Nales—halis Jia Jis

1
KpssT (o3 Ks1 — Jo1 Ko ) —(T—+KPSST1K5,4) —Kpss T K

Ke (J23Ko1 = Jo1 Kos) 1 1

Diminuindo a terceira coluna da segunda, e multiplicando a equagao por —1,

]1,112,3_]2,1]1,3 ]l,4_]l,6 ]1,6
_ 1
TeToo =| KpssTy (Jo1Ksa—haKs1) g +KpssTy (Ka—Ksg)  KossTiKsg
w

K. (/2,3K6,1 _]2,1K6,3) 0 1

Isolando Kpgs T, da linha do meio e separando o elemento (2,2) da sua coluna:

Jinhoz—Joa s Jia— e Jig
LT =l iKes— Bk 4 (K= Ks) K
KpssT; 21Ks53—J23Ks, Koo T, Ty 54— Ksg 5,6
Ke (123K — o1 Kos) 0 1
Jiiles—hahs Jia—he e VIRV X b /SV/E 0 S
1
= J21Ks 35— J2,3Ks 1 Ksys—Kss Ksg |+ Jo1Ks3—13K5, — K4 |=
T o KpssT T '
K. (]2,3 Ks, _]Z,SKG,I) 0 1 K. (]2,3K5,1 —]2,1Ke,3) 0 1
Jia—ls e Jinbs—lhahs  Jia—Jis
=K. (]2,3 Ke,l - ]2,3K6,1) + +
Ksy—Ksg  Ksg Jo1 Ks3— Jo3Ks  Ksq—Ksg
K, 1
- mﬁ,e (]2,3Ke,1 =2 Ke,s) + KT, T, (]1,1 3= Jop ]1,3) =
J23 J2 0 0
Jia e oz Jan Ji3 Jin s e
=K, + +
Ksy Ksg Kss  Ks, =Kz =K, Ky Ksg
0 0 1 1
K. I ]2,3 ]2,1 1 ]1,1 ]1,3
——— 16 t o
Kpss Ty Ty Kss K, KessThTw | 7, Jys
Assim,
J23 J21 0 0
K.KpssTy | /14 J1e b3 J2n KpssTy | 13 Ny e g
= = PSS sl +
T, K54 Kse || Koz Ko T, —Ks3 —Ks51 K5y Ksp
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. J3 g 1 hy hgs
- J16 +
TeTwT, Kss K1 TuTeTy Fq1 J23
Nota-se que
J23 20 0 0
Nha e N3 Ji1 Na e
= =0 N1a=he Ksa=Ksp
Ksq Ksg —Ks3 —Ks1 Ksu Ksg

0 0 1 1

No primeiro caso, € facil notar que as colunas sao iguais, rendendo o determinante nulo.

Ja no segundo caso, perceba-se que a terceira coluna e a quarta também séo iguais. Resulta que

Ke ]2,3 ]2,1 1 ]1,1 ]1,3
=" 1,1, T LTLT -
e wr2 Ksz  Ks) wiet2| Ly Jog3
1 Sy s ) b3 b
= —Ke /16
T T, T, by b3 Kes Ko

Portanto o polindmio caracteristico admite solu¢édo nula, isto é, o sistema tem autovalor
nulo, se e somente se

Jipn s

by o3
Jaz Jan
Ksz Ko

S

E interessante frisar que a, é nulo para apenas um valor especifico do ganho do AVR,
de forma que apenas um valor deste ganho provoca autovalor nulo no sistema e este valor seja
funcao do estado em que o Jacobiano é calculado. Um corolério interessante é que ha equilibrios
nos quais é impossivel este evento porque o valor de ganho necessario é negativo; trata-se do
caso do equilibrio S=1 + j0.5, utilizado durante todo este trabalho.

C.4.2 Coeficiente a,

b3 by O b3 by O b3 by O

a1=]5,5 ]1,3 ]1,1 ]1,6 - ]1,3 ]1,1 ]1,4 + ]5,2]1,6 ]5,6 ]6,6
]6,3 ]6,1 ]6,6 ]5,3 ]5,1 ]5,4 ]5,2]1,4 ]5,4 ]6,4
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Como J, 4= J14, K54 = K56 € Js6 = J54 dimiue-se a segunda linha da terceira no ultima
determinante:

]2,3 ]2,1 0 ]2,3 ]2,1 0 ]2,3 ]2,1 0
a, = ]5,5 ]1,3 ]1,1 ]1,6 - ]1,3 ]1,1 ]1,4 + ]5,2]1,6 ]5,6 ]6,6 =
]6,3 ]6,1 ]6,6 ]5,3 ]5,1 ]5,4 0 ]5,4 - ]5,6 0

]2,3 ]2,1 0 ]2,3 ]2,1 0
=Jss| ha T Jue |=| ha T ha |~(Jsa—Jss) s es =
]6,3 ]6,1 ]6,6 ]5,3 ]5,1 ]5,4

J23 T2 0
= N3 Jin e _(]5,4_]5,6)]2,3]6,6 =
Jssles—Js3 Jsslei—Jsn Jssles— Jsa

J23 Jo1 o3 Jon
=—Ji6 + (]5,5 Jos— ]5,4) - (]5,4 - ]5,6) Jo3J66 =
Jss5tss—Js3  Js5)e1— J50 N3 Jin
b3 Jan b3 o3 Jon
:]1,6 - ]5,5 + (]5,5 ]6,6 - ]5,4) - (]5,4 - ]5,6) ]2,3 ]6,6 =
I3 Jsn Jo3  Jsn Nz N
)i Kpss J23 Jon Ty +To K, b3 b N
= 1,6 — —e [ ———
T |1 Ksz—hs TiKs1—J2 TwTz Te Kss Kg;
Ty +T 1 Jos 20 1 KpgsT KpssT
oz (1 + Kpss T T K5,4)] - ﬁ ( + Ks4— Lehl Ks,e)
T,T.T,  T,T, Ja g | Te\BT, T, T,

No primeiro determinante, somando as duas linhas,

a=J Kpss | 23 Joq T,+T, K. | 123 Jo1 .
1= = — s
T2 T K53 TiKs, T T, Te Kss Ks
Ty+T 1 b3 Jan 1 KpeT
w 2 —+ (1 + KPSSTWT1K5,4):| — E [ + PSS 11 (K5’4 _ KS'G)] —
TyT.Te TyT, T T Te L ToTy T,
13 J11
T b3 Jon b3 g Jo3| Kss—Ks 6 T, +T bhs  Joa
1 2 w
=Kpss — [ K54 —Ji6 - —K 7 +

€ 1,6
T2 N3 Jin K53 Ks, Te TuTeT, Ksz Ksn
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To+Tw+Te | 23 J21 T3
TeTZTw ]1 3 ]1 1 TeTZTw

No primeiro termo, elimina-se a Gltima parcela porque Ks, = K5 . Agrupando os determi-

nantes restantes,

K5,4 K5,3 KS,l

T T+ Ty Tz oy | T4 Ty+Te| f23 J2n Tos
a; =Kpss — 0 b3 by |—Ke E— E—
T2 TwTeTZ KS 3 K6 1 TeTZTw ]1 3 ]1 1 TeTZTw

he Nz i

Uma observacgao interessante é que, para o equilibrio S=1+ j0.5, o determinante que
multiplica Kpgg € nulo.

C.4.3 Coeficiente a;

Jse J54 Jin s Ny T
az=—lr1 3+ b3 (]1,1 +J55 +]6,6)_ - +J55 =
Jos Jea Js1 Js54 Jou Jes

1
T,+T, 1 1 | KpssT1 K56 (— + Kpss Ty K5,4)
]2,1]1,3 ]2,3 (]1,1 T2Tw Te) TeTz ) w 1

Jin T4 T, +T, Jip s
Kpss Ke 1|~
o (MK —h) e (4 TKessTiKs, ) | Tl | =20 KG) —
=—Jor his+ (1 Tut T, 1) ! [K T, (Ks6—Ksy) 1]+
=2 ist s i T T.) T.T, pss 11| K56 — K54 T,
1 Ji1 T4 T,+T,| Jii Jie
_ - 1 w72 —
T2 KPSS (Tl KS,I —]2,1) (T— + KPSSTI K5'4) TszTe KeKG,l ].
w
=—Jo1 s+ ). (I Tt T, 1) ! [K T, (Ks6— Ks4) 1]+
=—hihzt 3| 1 T, T.) T.T, pss 11| K56 — K54 T,
1 Jin s Ji1 Tyw+Ts
dad—T— Kpss | Ty +hi)ia +T_‘ _TWT T (]1,1—KeK6,1]1,6):
2 KS,I K5,4 w 2iwle

T ]1,1 ]1,4 K _ K ] ] T + T
. L AL B BT (L BEy Ay
L\ K, Ksa Te fe tehle
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T,+T, 1 1 T, +Ty+T
_]2,1]1,3"‘]2,3(]1,1— hd 2——)+ 22T 7w Te

TZTW Te TeTsz — /Ll TWT2
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APENDICE D

Sintonia do sistema controlado por AVR

Logo apés ter o sistema controlado por AVR equacionado, tendo suas EADs deduzidas,
entdo é necessario sintonizar o controlador; em outras palavras, para poder simular o sistema
controlado por AVR, é necessario escolher os valores de K, e T, que atendem a certos requisitos
de estabilidade e de performance.

Assim, o objetivo deste apéndice, bem como do préximo que trata da sintonia do PSS, é
exemplificar as técniacs lineares de sintonia de controladores empregadas, baseadas no principio
de pequenas perturbacoes.

A sintonia do AVR segue trés passos bem-definidos. O primeiro, a obtengao da fungéo de
transferéncia entre a perturbagéo da poténcia mecanica AP,, e a tensdo terminal AV;. Depois, o
tracado das margens de estabilidade relativa - margem de ganho e margem de fase — do sistema,
parametrizadas pelos parametros K, e T, do controlador. Finalmente, o ajuste dos parametros
que resultam numa combinagao aceitavel de margens de estabilidade do sistema.

D.1

Modelo linearizado do sistema

Acoplando o controlador AVR ao modelo linearizado da figura 2, resulta 0 modelo lineari-
zado da figura 28.

A ideia é encontrar uma fungdo de transferéncia que relaciona um desvio da tensao terminal

V, com uma perturbacéo na poténcia mecénca P,,, como na equacao (D.1).

AV,
AP,

G(s) (D.1)

A partir desta fungéo de transferéncia analisam-se os aspectos de estabilidade de G(s)
como lugar de raizes e margens de ganho e fase. Do diagrama linearizado, resulta o sistema (D.2).
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AX:& | A ()

| O AV,
L/
[ WO 1 1 | Ve ] 2Er [ ke M
AR, 28 O s [axg] s B (= T T+sT
] 1
JARCIEAN s-J,
Ax |V1
|
Figura 28 — Diagrama de blocos do sistema OMIB linearizado controlado por AVR.
1 AP,
Axy=—| hasAxs+ hAx; + —=
5= (]2,3 3+ b1 Ax 5H )
A‘/t = ‘/lel + ‘/SAX?) (D2)
1 K
Axl = ]1,3Ax3+—,—eAVt
s—Ji T, 1+sT,
As derivadas parciais de V; avaliadas no equilibrio denominam-se V; e V3, e valem
Z
av, 7 [xl—Ecos(xg)] X + Ecos(xs+a—¢@)
V=L =2 (D.3)
ox X X 7\2 7
[xlz —2E x; cos(x3)+ EZ] (}) +2E§ [xl cos(xs+a—¢)—E cos(a—¢))] +E2
gl si Z :
oV, z X, E | sin(x3) X —sin(xz +a—¢@)
Vp=—| == (D.4)
dxsl,, X [r ZV? _ Z
[xl —2Ex, cos(x3)+E2](§) +2E§ [xl cos(x;3 +a—¢)—Ecos(a—¢)]+E2
Agrupando as equagodes,
AP
AXyg=——r Ax, + —m)
3 82—]2,3 (]2,1 1 2H
{ AV =WAx + VA (D.5)

Axl =

K, K,
Ji3Ax3+ — —— AV,

» T/ 1+sT,

Substituindo a primeira equagéao na terceira,
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]1,3 Ke

AP,
A= (3—11,1)(82—]2,3) (]2'1Ax1 * 2H )+ T, (s—]lyl)(H-sTe)

AV, &

K.
AP, + AV, &

- 2H (s—J11) (52— hos) Ty, (s—Ja)(1+5T,)

¢$Am(1— Sl ) hs

(5= 1) 52~ 2a)

2_
= Ax [(3—]1,1)(52 _]2,3)_]1,3]2,1] = &Apm + M

2H Td’o(1+sT6)AVt

K, (32—]2,3)
Tio (1457 ) [ (5= 10 ) (52 = Jos) = B o]

J13
2H [ (s — ]1,1) (52 —]2,3) —]1,3]2,1]

W AX = AP, + AV,  (D®)

Substituindo este na equagdo de Ax;s,

Axs

1 ( J2,1 Ke (52—]2,3) (3—]1,1)(32—]2,3) )
= AV, + AP,
s2=l3\ T;, (1+57})[(5—11,1)(32—]2,3)—]1,3]2,1] 2H[(S—]1,1)(52—]2,3)—]1,3]2,1]

_ Jo1 K AV 4+ (5_]1,1)
T, (1 + STe)[(s —]1,1) (32—]2,3)—]1,3]2,1] ' ZH[(S —]1,1)(52 —]2,3)—]1,3]2,1]

AP, (D.7)

Substituindo as equagdes (D.6) e (D.7) na equacdo de AV;, entao

haVi+(s— i) N K [Jon Vs + (52— Jos ) V]

AV, =
' 2H[(5_]1,1)(52_]2,3)_]1,3]2,1] Td/g(1+STe)[(S_]1,1)(52_]2,3)_]1,3]2,1]

AV, (D.8)

sy PR A R L s
AP, ZH[(S_]LI)(SZ_]2,3)_]1,3]2,1]{Td/g (1+3T9)[(5_]1,1)(32_]2,3)_]1,3]2,1]_Ke []2,1‘/3"‘(52_]2,3) ‘/1]}

(D.9)

Denotam-se o0 numerador e denominador pelos vetores N e D. Numeram-se-0s come-
¢ando do indice nulo para que os indices dos vetores coincidam com os indices dos expoentes da
variavel de Laplace:

i=5 .
N;s!
av, N

ap, ~GW=g—
ZD,'SI
=0

Sendo o vetor de coeficientes do numerador {N,} , 1€{0,1,...,5}, isto é, o primeiro termo

corresponde ao expoente s° e o dltimo a s°:



222 APENDICE D. Sintonia do sistema controlado por AVR

(—]11]23 + ]13]21)(]11 Vs—Ji3 Vl)
—(= s+ his k) [Va— T (I o= Jis V)] — Jos (s — s W)
J23 Va3 + (]11 + Te]23)(]11 Va— i3 Vl)_ T. V3 (]11]23 +]13]21)
(D.10)

JsTVs— In [ =T (JuVs— T V)]~ (Ju Vs — hs Vi)

V=T, (211 V= s Vi)

%

E a sequéncia de coeficientes do denominador {Di}, i€{0,1,...,7}:

(—]11]23 + ]13]21)[Ke (]21 Vs —Jo3 Vl) +T5, (—]11]23 + ]13]21)]

JosKe (1 Vs = Jos Vi) = Ty (— it Jos + JisJon )| =25 = T (— Jun Jos + s Jon ) |
T Vs + Ty, [2]22,3 + (]1,1 +]2,3Te)(_]11]23 + ]13]21)] + (_2]11]23 +]13]21) K.
—K, (]21 V3—2]5 Vl) +1T;, []22,3Te +2(]11 T, — 1)(—]11]23 +]13]21)]
D=2H (D.11)
K Vi+T, [—2]23 + ]12,1 —2T, (2]11]23 + ]13]21)]
T[T (—2hat J2))—2 /|- KoV
T;,(1-2/uT.)

T;,Te

D.2

Calculando as margens de ganho e fase do sistema

Substituindo s = jw, entdo

Glie)- (N = Npwo? + Ny ) + oo (N — Nyew? + I, )

(D.12)
(= Dsews + Dyt — Dyw? + Dy) + joo (— Dy + Dyt — Dyw? + D )

A margem de ganho do sistema estima em quantas vezes o ganho do sistema deve ser
multiplicado para que o sistema torne-se localmente instavel. E definida como

-1

&[G(wp)]zﬂész)G(wp) (D.13)
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Ou seja, trata-se do inverso do madulo calculado em uma frequéncia cuja fase é 7 radianos.

Ja a Margem de Fase é a medida do angulo do sistema quando seu ganho é unitario, ou seja,

6 (o)

=1= ¢, =4[G(ws)] (D.14)

Sejam portanto a margem de ganho desejada G,, e a margem de faze desejada ¢,,,. As
definicdes das margens de estabilidade implicam que

1
6 joc)=—g-
m (D.15)
G (]Cl)p) = e]‘Pm
Deste sistema, resulta
(w‘éN4—szN2+N0)+ij (w‘éNS—wZGNngNl) 1
(— w8, Do+ & Dy— % Dy + Dy )+ jwog (— % Dy + w0k Dy~ w3 Dy +Dy) G
(D.16)

(04N =} s+ No) + jeop (s~ 3 s+ ) it

(—w§Ds+whDy— wd Dy + Dy )+ jwp (— b Dy + whDs— w3 Dy + D )

Em se tratando de sistema no corpo dos complexos, entdo pode-se dividir as duas equa-
¢des em parte real e imaginaria, originando quatro equagdes reais. Em tempo, nota-se que,
dado o controlador (isto é, fixas as constantes K, e T,), o sistema possui quatro incognitas:
weg, Wp, G, ®,,. As duas primeiras sdo determinadas resolvendo a primeira equagédo do sistema

D.16, e as duas ultimas sao obtidas resolvendo-se a segunda.

D.3

Resolvendo a primeira equacao do sistema (D.16)

Desenvolvendo a primeira equagao do sistema (D.16), denota-se a parte real do numerador

como Ny e a imaginaria como IN;, analogamente para o denominador, para a primeira equagao:

Np+ jowN; 1 . .
————=———G,,| Ng+ jowN; |=Dz + jowD, D.17
Dy + jwD, G m( RTJ I) R ] T ( )

E separando-a em partes reais e imaginarias,
8 Dy— % (Dy+ Gy Ny ) + % (Do + G Ny ) — (Do + G, Ny ) =0

(D.18)
& Dy~ (Ds+ GulNs ) + @ (D + Gy Ny ) — (D1 + G,y Ny ) =0
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Multiplicando a primeira equagao por D, e a segunda por Dy:

—Go (@4 Ny — % Ny + Ny ) == D + w0}, Dy— i Dy + Dy
(=4
—Go (@ Ns— % Ny + Ny ) =~ Dy + & Ds— w3 Dy + Dy

8 DsD; — & Dy (Dy+ G Ny )+ 2 Dy (Do + G Ny ) — Dy (Do + G Ny ) = 0
PN (D.19)
8 Dy Ds— ¥ Ds (Ds + Gy Ns ) + % Ds (Ds + G Ny ) — D (Dy + G Ny ) =0

Diminuindo uma da outra,
D; Ds D; N5 D; Ds D; N3 D, D, D, N

w? + Gy, —w? +G,p, + + Gy, =0
Ds D, Ds N, Ds D, Ds N, Ds Dy Ds Ny

(D.20)
Agora tem-se um novo sistema equivalente a (D.19) adotando (D.20) com alguma das

equacodes de (D.19), digamos, a primeira:

w8 Dg— (D4 + GmN4) + (Dz + GmNz)—(DO + GmNO) =0

2 2bef2 Tl 2ol 2D

A resolucéo do sistema pode ser ainda mais simplificada adotando-se f; = co‘é, reduzindo-

D, D
Ds Dy

D; N
Ds N,

D; Dy
Ds D,

D; Ns
Ds N,

D;  Ds
Ds D,

+Gp, +Gp,

(D.21)

se a ordem das equagoes:

BiDs— B2 (D4+ GmN4)+ﬁG (D2 + G,,ZNZ)—(DOJr GmNO) =0
ﬁé( )—ﬁc( )—i—

A figura 29 mostra os gréaficos da frequéncia de corte w; e da Margem de Ganho parame-

Dy N
Ds N

D; D
Ds Dy

D; Dy
D; D,

D; N
Ds N,

D; Ns
Ds N,

D;  Ds
Ds D,

+ G, + G,y +G,,

(D.22)

trizados por K, e T,, para o sistema em estudo (tabela 1) no equilibrio S=1+ j0.5.
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Figura 29 — Graficos da frequéncia de corte w; e da margem de ganho do sistema controlado por
AVR.



226

APENDICE D. Sintonia do sistema controlado por AVR

D.4

Resolvendo a segunda equacao do sistema

Pela segunda equacao,

(@b Ny = @3 N+ No )+ jeop (@b N5 — 3 N+ Ny —eltn

(- w8 Ds+whDy— B D+ Dy)+ jop (— b Dy + wh Dy — i Dy + D )

Daonde

Ng+ jwpN; =cos(¢,,) Dp—wpsin(¢,,) Dy + j [COPD[ cos(@,,)+ Dy sin(q)m)] =

Np =Dy cos(¢m)—sin(¢m) wpDy
wpN; = cos(qu)a)pDI + sin(¢m)DR
(w‘l‘,N4—a)§,N2 +NO) = COS((pm)(—Q)gDﬁ +wpDy—wh D, +D0)+
—wp sin(¢m)(—w?,D7 + W} Ds — w5 Dy +D1)
s

wp (w“PNS—a)ijg—kNl): wp cos(¢m)(—wgD7+w‘}3D5—w§,D3+D1)+

+sin(¢m)(—a)§)D6 +wiDy—wi D, +D0)
@, D;cos () + w8 Dssin(¢, ) + w5, [—D5 cos(¢m)+N5]—w4PD4 sin(¢,,)+
+w3 [D3 cos(¢m)—N3]+w§,Dzsin(¢m)+ wp [—Dl cos(¢m)+Nl]—Dosin(¢m) =0
whDy sin(q)m)—w?,Dﬁ cos(¢ ) — w5 Ds sin((i)m) +w} [D4 cos(r/)m)—N4]+

+w3 Dy sin(¢)m)+ w5, [—Dz cos(¢m)+N2]—wle sin(¢)m)+ [DO cos((pm)—No] =0

(D.23)

(D.24)

Agora, tem-se um sistema de equacdes nio-lineares nas varidveis wp e ¢,,. No entanto,

0 sistema ainda é sofisticado o suficiente para apresentar problemas numéricos. Para tanto,

combinar-se-ao as duas equacgdes para facilitar a solugao do sistema.

D.4.1 Primeira combinacao

Multiplicando a primeira equacao de (D.24) por 2sin(¢m) e a segunda por 2 cos (q)m)
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w;&sin(2¢m)+a)gD62sin2 (¢m)+w;2sin(¢m)[—D5 cos(q&m)—i-N5]—a)“,*,D42sin2 (pm)+

+w§)ZSin(¢m)[D3 cos(¢m)—N3] +w?2D,sin’ (¢, )+ coPZSin(¢m)[—D1 cos(@,,) +N1]—D0251n2 (pm)=0

o, D, sin(2¢,,)— w8 Dg2 cos? (¢,,)— w Dssin(2¢,,) + w42 cos(¢m)[D4 cos(¢m)—N4]+

+w? Dysin(2¢,,) + w32 cos ((ﬁm)[—Dz cos(¢,) +N2]— wpDysin(2¢,,)+2cos ((bm)[Do cos(¢,,) +N0] =0
(D.25)

Diminuindo uma equacéo da outra e dividindo por 2,

wgD6+a)?)N5 sin((pm)—a)}l) [D4—N4 cos(qu)]—a)?)Ng sin(¢m)+
+w? [Dz—Nz cos((pm)] +wpN sin((pm)—[Do + Ny cos(¢m)] =0

D.4.2 Segunda combinacao

Analogamente, multiplicando a primeira equacéo de (D.24) por 2cos(¢m) € a segunda
por 23in(¢m):

©,D;2c08% (¢, )+ w8 Dgsin(2¢,,) + w%Zcos(¢m)[—D5 cos(¢ ) +N5]— w4 Dysin(2¢,,)+

+0)§’,Zcos(¢m)[D3 cos(¢m)—N3] +wiD,sin(2¢,,)+ coPZCos(q)m)[—Dl cos(¢m)+N1]—D0 sin(2¢,,)=0

w’, D, 2sin® (¢)m)— w8 Dssin(2¢,,,) — w5 D52 sin? ((f)m) +wh2sin(¢,,) [D4 cos(¢m)—N4] +

+w3 Ds2sin® (q)m) + w32 sin(gbm)[—Dg cos(2¢,,) +N2] —wpD;2sin? (¢m) +2sin(¢m)[D0 cos((pm)—No] =0

(D.26)
E somando as duas equacdes, e dividindo por 2,
D,wj,— w5, [DS — Ny cos((pm)] —N,whsin(¢,,)+w?, [D3 -N cos((pm)] +
+wiNsin(¢,)—wp [Dl -N; cos(qu)] —Nysin(¢,,)=0 (D.27)

D.4.3 Novo sistema

Resulta assim um novo sistema, menos sofisticado computacionalmente e equivalente a
(D.24):
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Dywp— w3 [D5—N5 COS(¢m)]_N4“)4P sin(¢n) + w5 [D3_N3 COS(¢’”)]+

+w? Nysin (¢, )—wp [Dl —-N cos(¢m)]—N0 sin(¢,,) =0

@5 + w3 Nssin(¢, ) — w? [D4—N4 cos(qu)]—a)%Ng sin(¢ )+

+w? [Dz—Nz cos(¢m)]+a)pN1 sin(qu)—[DO—NO cos((pm)] =0

A figura 30 mostra os graficos da frequéncia de corte wr e da Margem de Fase parametri-
zados por K, e T,, para o sistema em estudo (tabela 1) no equilibrio S=1+ j0.5.
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Figura 30 — Graficos da frequéncia de corte w e da margem de fase do sistema controlado por
AVR.
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D.5

Escolha dos parametros K, e T,

De posse dos graficos das figuras 29 e 30 controem-se os graficos da figura 31, que
relacionam as margens de ganho e fase com os parametros K, e T,. Estes graficos foram gerados
pelo cédigo no apéndice A, secado A.8, pagina 178. Ignoram-se as curvas tais que a margem de
fase seja positiva e a margem de ganho seja negativa, pois nestas condi¢cdes o sistema seria
instavel em malha fechada.

,03 -
35 N \
30 - L
0.35 \
25 '
Te=102
Te=10"5
20 04k
° Te=10" - 04
¥ s Te=1005 / =
Te =100 / <
10 045 | My =-0.4780741 ‘
K.=10 / Mg =21.23753 \
5 Mg =21.23753 28 e Y O S S s~ )
0 M,: =—0.4780747 :
) 05 |
-0.55 -
102 107 10° 10" 102
Mg
03 102
»»»»»»»»»»»»»»»»»» (- N ~.
-0.35 | |
10'f T
0.4 i | Ke=10
M =21.23753
/
MF(XW) / MG 100'
-0.45 |
........ /,.,,.o
i 107
0.5 : K, =10
: My =—0.4780747
055 ] i ] } } } j 10°2
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
K K
e e

Figura 31 — Gréaficos relacionando as margens de estabilidade do sistema controlado por AVR e
os parametros K, e 1,.

Escolhe-se K, =10 para a curva T, = 10°, tem-se M = 21.237536 e M =—0.478074,
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que sao valores razoaveis para as margens de estabilidade do sistema.
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APENDICE E

Sintonia do sistema controlado por AVR e PSS

Analogamente ao sistema controlado apenas por AVR, determinam-se as constantes do
controlador PSS: Kpgs, Ty, 15, T,, através da andlise de margens de estabilidade.

E.1

Modelo linearizado do sistema e fun¢ao de transferéncia

A figura 32 mostra o esquematico linearizado do sistema controlado por AVR e PSS.

AXg IV3 4 Q AVt
-/
P AX, . AEqp
AP, If O 1 1 IJH O }—I
1
—JL s-Jy,
>4 >
|K STw 1+5Ty | Vess aY Vave Ke
= 1+sTy 1+sh ~ 1+sTe

Figura 32 — Diagrama de blocos do sistema OMIB linearizado controlado por AVR e PSS.

As equacodes de V| e V5 sdo novamente dadas por (D.3) e (D.4). Da figura, pode-se deduzir
que:
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1
Tio

Axl =

AE
s—J FD)

(]LgAxg—i-
A 1(] Axy+ s Axy+ 1AP)
Xy = — X X3+ —
2 S 2,1 1 2,3 3 2H m
1
{ Axy=-Ax, (E.1)
s

A‘/t = ‘/lel + ‘/SAXE;

AE Ke aviritsh St
=—— X
\ Fp 1+s1T, ! Pssl+5T21+sTw 2

A ideia é obter uma funcao de transferéncia

G(s)=

AP,

Substituindo a terceira equagéo do sistema (E.1) na segunda:

1 1
SZAX3 - fzylel + ]2’3AX3 + ﬁAPm = AX3 = (]Z,IAxl + _Apm) (EB)

$2— )3 2H

Substituindo esta na primeira equacao de (E.1):

A ! N (] Axi+ - AP, )+ L AE, |
X = — X+ — —
S T ey ) A
1 1 1
(=4 Axl 1— ]1,3]2'1 = ( ]1’3 _APm + _/AEFD) (=4
(S_]Ll)(sz_jz‘g) S_]l,l 82_]2,3 2H ng

s— )%= Jos)— sl 1 1
( 1) 23)~ hakea — Jis —AP, + —AEpp &
52— Jp s2—Jo32H Tao

= Ax

2
i3 s =3

L —4 Axl = APm +
2H([(s—J11)(s2 = Jo3)— N3 Jon | Ty, [(s= 1) (52— Jos) = J13 i

AEpp (E.4)

Substituindo esta em (E.3):

1 1
AXg=———— Ax,+—AP, |=
s 32—]2,3 (]2'1 ! 2H m)
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1(1+ i i3 )AP N ]2.1(52_]2,3) AE B
m FD | —
2H (s=711)(s2=Tos) = J13Jon T [(s— ) (52— Jos)— Jis o]

1 —
= S AP, + Jo AEp (E5)

2H (S —]1,1)(52 —]2,3)_]1,3]2,1 " Td’o [(S —/1,1)(32 —]2,3)_]1,3]2,1]

Agora, substituem-se a terceira e quarta equacgdes de (E.1) na dltima:

K s?KpssTy(1+5T)
AEFD = TSTe (Vlel + %Ax?,)'i‘ (1 N SB)(l +STw) AxS =
ViK, 1 V;K, N s°Kpss T (1+ST1) Ax, E6)

14T, 14T (1+s5)(1+5T,)

Substituindo (E.4) e (E.5) em (E.6):

N3 ViK, +(s—] ) K, SZKpssTw(l+sTl)
1+sTe P (143 (14573,
AEpp = o AP+
" 2H (5= 1) (2= Fos) = s Jo "

K, ( 2 ) LK, S2Kp55Tw(l+STl)
1451, $°—= Loz |+ Jon 1+sT, (1+ST2)(1+sTw)

+ AE,

Tio (s_fl,l)(sz_fz,s)—]1,3]2,1 p

— s*Kpss T, (14 5T ) (14T, )

} AEpp

(1 +STe)[(3_]1,1)(52_]2,3)_]1,3]2,1]AEFD = % {]1,3‘/1Ke +(3_]1,1) (1 N STZ)(I N sTw)

— $*Kpss T (145T)(1+5T;)

T, (1+s1)(1+57;,)

+ L {VlKe (52—]2,3)+]2,1

VK, +

szKpssTw(1+sﬂ)(1+37;)] }

1
ZH{]mleeJr(s—fl,l) (1+5T2)(1+STW)

o AEpp =
$*Kpss T (14T )(1+5T;)

; K, +
Tdo ¢

(1 + STe)[(5_]1,1)(52_]2,3)_]1,3]2,1]— . {VlKe (52_]2,3)+]2,1 (1 +ST2)(1 N sTw)

/

Td"{fl,sleﬁ(s—Jl,l) SZK”“T“’(I“TI)(””%)]}

VK, +

} m
2H (1+s3)(1+sT,)
_ AP,
$*Kpss T, (14T ) (14T, )

T, (1 +STe)[(3_]1,1)(32_]2,3)_]1,3]2,1]_ ViK, (32—]2,3)—]2,1 VK, +

(1+s3)(1+sT,)
(E.7)

AP, =
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Da quarta equacédo do sistema (E.1):

AV, =VIAx, + VzAx; =

1 V1]1,3+V3(3_]1,1) 1 ‘/1(32_]2,3)+ Vs Jo

= '+ — AEpp =
2H (5_]1,1)(32_/2,3)_]1,3]2,1 Tao (3_]1,1)(32_]2,3)_/1,3]2,1 "

1 1
H [‘/1]1,3 + VS(S_]l,l)]APm + ﬁ [V1 (52_]2,3)+ V3]2,1:|AEFD

(3 _]1,1)(592 —]2,3)—]1,3]2,1

Combinando esta com (E.7):

VK, +

szKpssTw(HsTl)(Hs];)] }

(1+ST2)(1+STW)

[Vl (52_]2,3)+ V3]2,1] {]1,3‘/1Ke +(5—]1,1)

Vst ‘/5(5_]1,1)"'

T, (1 +3Te)[(3_]1,1)(52_]2,3)_]1,3]2,1]_ ViK, (32_]2,3)_]2,1 VK, +

$*Kpss T, (14T ) (14T,
(1+s3)(1+sT,)

2H (S_]Ll)(sz_]2_3)_]1,3]2,1
(E.8)

Novamente separa-se G(s) em numerador N(s) e denominador D(s), cujos coeficientes

s&@o numerados de s° a s7 e s° a s?, respectivamente:

k=7
Z Nksk
k=
G(s)= # (E.9)
Z DkSk
k=0
Substituindo s = jw em (E.9):
Ng Ny
—Np® + Nyo' = Npw? + No+j o [ — Ny + Ny — Nyw? + I, )
G(S)Z =
Dy — Dye® + Dyt — Dy ? + Dy + j o Dyew® — D0 + Dyw* — Dyeo® + D,
Dg S
N+ jwN,
_ VR JWON (E.10)

- Dp+jwD;



E.2. Resolvendo o sistema (E.12) 237

Agora, das definigbes das margens de estabilidade

(E.11)

Da primeira equacgao deste sistema,

DR+GmNR:0
D]+GmNI:0
Da segunda,
Np+ joN; . .
= CO0S + 7 Sin =
SO~ cos{g) + jsin ()

& Ni+ joN; = Dgcos(d,,)—wD, sin(¢m)+j[DR sin(¢,,) + wD; cos(¢m)] =

N, =Dy cos((/)m)—wpDI sin(gbm)
PEN (E.13)
wpN; = Dgsin(¢,,)+ wpD;cos(¢,,)

Assim, de posse das constantes Kpgg, T;, T, T,, do controlador PSS, entdo o sistema
(E.12) é resolvido para obter-se a frequéncia de corte w; e a margem de ganho G,,, enquanto o
segundo sistema (E.13) é resolvido para se obter wp € ¢,,.

No entanto, ha para este sistema um problema: o espaco das constantes tem dimensao
quatro. Isso quer dizer que ndo se podem construir graficos de margem de ganho e de fase versus
parametro, como se fez para o sistema controlado apenas por AVR, porque este sistema tem
apenas dois parametros: K, e T,.

Assim, para reduzir a dimensé&o do problema, deve-se tomar um corte no espago (Kpgs, 11, T, T,,).
O cortetomadosera Iy =1, T,, = 1.

E.2

Resolvendo o sistema (E.12)

Do sistema (E.12) resulta
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Dy¥ —(Dg + G, Ns) 08, +(Dy + G, Ny) 0, — (Ds + G, No) w7, + Dy + G, Ny = 0
(E.14)

Dywy, —(D; + Gy N) 0F; + (D5 + G Ns) w0, — (D3 + Gy Ny) 07, + Dy + G, N = 0

Para simplificar o sistema, multiplica-se a primeira equacao por Dy e a Ultima por Dy e

diminuem-se as duas para se obter:

Dy Dy Dy Dy Dy Dy Dy D,
+Gy, Wy — +G, wi+
Ds Dy Ne N, D, Ds Ny Ns
Dy Dy Dy D, Dy Dy D, D,
+ +G,, w?— +G,, =0 (E.15)
D, Dj Ny N Dy D N N

Adotando esta equagao e uma outra de (E.14), digamos, a primeira, e substituindo 5 = wé

para diminuir a ordem do sistema tem-se:

Dyt —(Ds+ GulNg) B +(Dy+ G Ny ) B2 = (D2 + GuN; ) B + Dy + Gy Ny =0

Dy Dy Dy Dy Dy Dy Dy Dy
+Gn g - +G,, B é +
D; D Ny, N, D, D N, N (E.16)
Dy Dy Dy Dy Dy Dy Dy Dy
+ + Gm /:;G - + Gm =0
D, Ds Ny N Dy D No N

E.3

Resolvendo o sistema (E.13)

Do sistema (E.13) tem-se:

Dysin(¢,,) w9 — Dycos(@,,) w8 — Dy sin (¢, ) w7 + (DG cos((pm)—Nﬁ) w8+ Dssin(¢,,) w3+

(N4 —D, cos(¢m)) w4 —Dysin(¢,,) w3 + (D2 cos(q)m)—Nz) @’ + Dy sin(¢,,) wp +Ny—Dycos(¢p,,) =0
(E-17)

Dycos(¢,,) % + Dysin(¢,,) w8 + (N7 -D, cos(¢m)) ol —Dgsin(¢,,) b + (D5 cos(¢m)—N5) Wi+

Dysin(¢,,) w? +(N3—D3 cos((j)m)) w3 —Dysin(¢,,) w? +(D1 cos((pm)—Nl)a)P + Dysin(¢,,)=0

Agora, combinam-se as equagdes da seguinte forma:

1. Multiplica-se a primeira equacao por cos(qu), a segunda por sin(gbm), € somam-se as

duas;
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2. Multiplica-se a primeira equagao por sin (¢, ), a segunda por cos(¢,, ), e subtraem-se as
duas.

Obtem-se assim um sistema equivalente e menos computacionalmente caro de se resolver:
Dy, + (N7 cos(¢,,)— D7) ol —Ngsin(¢,,) b + (D5 —N; cos((pm)) Wi+

+N, sin(¢,,) w?, +(1\73 cos(q&m)—Dg)w; —Nysin(@,,) w? +(D1 -N cos(¢m)) wp+Nysin(¢,,) =0

Dy’ + Ny sin((pm)a); + (N6 cos((pm)—DG) S —Ns sin(q)m) w3+

+(D4—N4005(¢m)) wh+Nysin(¢,,) w3, +(N2 cos((pm)—Dz)wf, — Ny sin(¢,,) wp + Dy — Nycos(¢,,) =0
(E.18)

E.4

Escolha de KPSS e Té

A figura 33 mostra o grafico de margem de ganho parametrizado por Kpgs € 1, do sistema
em estudo, substituindo-se os valores no sistema (E.16). Estes graficos foram gerados pelo cédigo
no apéndice A, secao A.9, pagina 182.

Omitem-se os graficos da margem de fase e frequéncia de corte w porque, quando da
solucdo do sistema (E.18) que as determina, o sistema teve margens de fase negativas para quase

todos os valores dos parametros.

No grafico da figura 33, escolhe-se a curva T, = 3, com Kpgs = 20, que resulta numa
margem de fase M; =40.5768.
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Figura 33 — Gréficos relacionando a margem de ganho e a frequéncia de corte w; sistema
controlado por AVR e PSS parametrizados pelos parametros Kpgs € 1.
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APENDICE F

Prova do Teorema de Hartman-Grobman

O objetivo ultimo deste apéndice é provar o Teorema de Hartman-Grobman (THG). Este
Teorema é de suma importancia para esta monografia porque endossa, ou melhor, justifica, o

controle de sistemas nédo-lineares através de técnicas lineares.

FA

Justificativa

Sistemas néao lineares exibem comportamentos muito mais ricos e variados que 0s sis-
temas lineares — comportamentos como, por exemplo, caos ou . Por isso, a area de Controle de
Sistemas N&o Lineares ainda carece de alguns resultados importantes que ja foram entendidos e
implementados na teoria de Controle de Sistemas Lineares; com efeito, sistemas lineares observa-
veis e controlaveis frequentemente encontram controladores lineares que garantem estabilidade e
performance. Ja para os sistemas nao lineares em geral, apenas algum dos dois pode ser obtido.
Além disso, os procedimentos para desenvolvimento e sintonia de controladores néo lineares sao
abtrusos e sofisticados, enquanto os controladores lineares possuem técnicas relativamente frugais
e bem conhecidas para sua obtencao. Disto seguem perguntas imediatas, como: é possivel aplicar
controladores lineares em sistemas néo lineares? Como se da o procedimento, uma vez que o
desenvolvimento de um controlador linear pressupde um sistema matricial do tipo x = Ax? Qual
resultado da Teoria de Sistemas Dinamicos pode justificar o uso de controladores lineares para
sistemas nao-lineares e, finalmente, sob quais condi¢des se pode fazé-lo?

Em geral, o procedimento para desenho de controladores lineares segue uma sequéncia
bem definida de técnicas, como a anélise de lugar de raizes, andlise das margens de estabilidade,
dos aspectos de performance como sobressinal e sub-sinal, estimativa do tempo de acomodacgéao e
erro em regime permanente, et cetera. Dado que a Teoria de Sistemas Lineares garante estabilidade
e performance para sistemas deste tipo (desde que observaveis e controlaveis), e dado que

existem procedimentos bem-definidos para desenvolver controladores para sistemas lineares,
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entdo lineariza-se o sistema nao linear — através da ferramenta Jacobiano, que é a expansao do
conceito de derivada para sistemas multifuncées multivariaveis — e obtem-se um sistema linear
associado. Este, por sua vez, é utilizado para desenvolver e sintonizar o controlador, baseado

naquela teoria para sistemas lineares, e com os procedimentos supracitados.

Segundo o THG, também conhecido como “Teorema de Linearizagdo”, o controlador
desenvolvido para o sistema linear correspondente também se aplica ao sistema nao-linear original,
desde que algumas condigdes sejam cumpridas, notadamente, que as perturbagdes sejam as
minimas possiveis. Isto porque o THG afirma que o comportamento de um sistema nao linear
numa vizinhanga de um equilibrio hiperbdlico (cujos todos autovalores sdo complexos nao-reais) €
qualitativamente semelhante a sua linearizagao naquele ponto. Outrossim, um sistema nao-linear
comporta-se similarmente ao sistema linearizado associado quando sob pequenas perturbagdes.
Matematicamente, o Teorema consiste em provar que as trajetoérias do sistema nao-linear e do
sistema linear equivalente sao topologicamente equivalentes, isto é, existe um homeomorfismo

(uma fungao continua invertivel de inversa continua) que relaciona as trajetérias.

No entanto, o THG tem aplicagdo apenas numa vizinhanga pequena do equilibrio hiper-
bolico em questao (principio de pequenas perturbacgdes); isto posto, ndo se conhece teorema
generalizado que preveja o comportamento em grandes perturbacoes. Esta problematica, aplicada
ao contexto de Sistemas Elétricos de Poténcia, da a luz esta monografia, que buscou analisar
aquele comportamento a grandes perturbacdes e desenvolver uma técnica baseada no Método
Forca-Bruta para estimar a Regiao de Estabilidade de um sistema elétrico de poténcia conhecido

como OMIB (Maquina versus Barramento Infinito).

Assim, a prova do Teorema de Hartman-Grobman e seu entendimento é fundamental para
determinar o proposito desta monografia e afirmar a problematica em que se encaixa (a analise do

comportamento de sistemas elétricos de poténcia a grandes perturbagodes).

Em suma, é doravante possivel utilizar técnicas de Controle Linear para controlar sistemas
nao lineares; para tanto, utilizam-se o sistema linearizado correspondente e as técnicas de controle
linear conhecidas, e o resultado que garante isto &€ o Teorema de Hartman-Grobman, segundo
0 qual o controle linear sobre o sistema néo linear é valido desde que este seja perturbado
minimamente ao redor de um equilibrio hiperbdlico. Desta limitagdo emerge a problematica desta
monografia, cujo objetivo foi estudar o comportamento de sistemas elétricos de poténcia a grandes
perturbacoes.

F2

Visao geral do apéndice

Para provar o THG, sdo necessarios trés Lemas:

1. A Desigualdade Generalizada de Grénwall (Lema 2);
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2. A Férmula da Variagao das Constantes (Lema 3);

3. O Teorema do Valor Médio para fun¢des mulivariaveis (Lema 4).

Naturalmente, estes Teoremas dependem de outros Lemas auxiliares, que também sao
provados. Além do THG e dos trés Teoremas menores necessarios para prova-los, também sao
provados dois teoremas importantes na Teoria de Estabilidade de Sistemas Dinamicos. O primeiro
(Teorema 6) afirma que sistemas lineares nao-autbnomos sao globalmente estaveis desde que
a matriz associada tenha apenas autovalores de parte real negativa e desde que a dependéncia
do tempo seja exponencialmente limitada com relagdo a inversa daquela matriz. Em seguida,
no Teorema 7 prova-se que sistemas nao-lineares nao-autbnomos cuja fungao diferencial seja
de classe C! tém resposta assintoticamente estavel e limitada numa vizinhanca de equilibrios
hiperbdlicos tipo zero, ou seja, equilibrios cujos autovalores da matriz jacobiana tém parte real

negativa.

Assim, apresenta-se a visao geral deste apéndice, que consiste nas provas e discussao
dos seguintes Teoremas e Lemas:

1. A Desigualdade Generalizada de Grénwall (Lema 2);
2. A Férmula da Variagao das Constantes (Lema 3);

3. O Teorema do Valor Médio para fun¢des mulivariaveis (Lema 4), cuja prova depende outros
trés:

e Teorema de Weierstrass (Teorema 3);
e Teorema de Rolle (Teorema 4 );
e Teorema do Valor Médio para fun¢des de uma variavel (Teorema 5).
4. Finalmente, o ultimo (Lema 6) estabelece que fungdes do tipo f(¢)= e?!, com A uma matriz

complexa de autovalores com parte real menor que zero, séo limitadas por uma fungéao do

tipo exponencial decrescente. Esta secao também enuncia dois outros lemas:

e O primeiro, segundo o qual fungdes do tipo f(x)=e " P(t),com a>0e P(t)um

polinbmio qualquer, séo limitadas em qualquer semirreta direita (lema 5);

e O segundo (lema 7), consequéncia dos Lemas 5 e 6, afirma que funcdes do tipo
f(x) = e?P(t), com A uma matrix complexa e P(t) um polinémio qualquer, s&o
limitadas e tendem a zero no infinito desde que A tenha autovalores de parte real

negativa (uma versao matricial do lema anterior).

5. O Teorema 6 prova que sistemas lineares ndo-auténomos x = Ax + g(t) séo globalmente
estaveis se A tem apenas autovalores de parte real negativa e se e ™! g(t) for limitada;
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6. O Teorema 7 define que sistemas n&o-lineares do tipo X = f(x, t), com f de classe C!, sdo

estaveis numa vizinhanga de um equilibrio hiperbdlico de tipo zero.

Finalmente, enuncia-se e prova-se o Teorema de Hartman-Grobman (Teorema 8).

F3

A Desigualdade de Gréonwall Generalizada

Lema 2 (Desigualdade de Gronwall Generalizada). Sejam ¢,a, B :[a, b] — R fungées continuas,

com a(t) ndo-decrescente, tais que

¢(t)£a(t)+Jﬁ(s)¢(s)ds, Vtela,b] (F.1)
Entao
B(u)du
¢(t)<a(t)ela , Vt €la,b] (F.2)
Prova: adotando
V(t)=f/5(s)¢(8)ds (F.3)

Entao pela hipotese (F.1)

V(t)=p()p(t)<B(t) a(t)+f/3(8)¢(8)ds =p()a(t)+p (1) V(1)

V() =-BO)V(D)LB () alt) (F.4)

[oon],

Agora multiplica-se a equacao por um fator integrante e
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fro

Nota-se que

V(t)e

Portanto integrar (F.5) resulta

[ fﬂ V(r) < J (T)e[ ufﬁ ] (F7)

a
Utilizando que a(7) é nao-decrescente, entdo a (7)< a(t) V T €a, t], e logo

[Jﬁ(s)ds
e a

Aplicando-se novamente (F.6),

Lo

t [ ﬁ(s)ds}
V(t)Sa(t)J[j(T)e a ar (F.8)

V(t) < a(t) a (F.9)
Multiplicando pelo inverso do fator integrante,
[—J Jé} (s)ds}
V(t) < a(t)| el a — (F.10)
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Mas por hipétese ¢ () < a(t)+ V (t), de onde

fﬂ(u)du
(t)ela

P(t)<a m (F.11)

F.4

A Formula da Variacao das constantes

Lema 3 (Férmula da Variacdo das Constantes). Seja um sistema dindmico do tipo x = A(t) x +
g(x,t), comA: 1 — R™", eg:I— R continua definidas num intervalo I = [t,, ) com a
possibilidade de 5 =+00 . Entdo

x(t)=xge b +Je t g(T,x(T))dT (F.12)

Prova: tomando o sistema x = A(t) x + g (x, t) multiplica-se a equagéo pelo fator inte-

—frA(s)ds
grante e a esquerda. Lancando mao do fato que A e o fator comutam, resulta

t t t

—fA(s)ds —fA(s)ds —JA(s)ds

el xX—Ael x=et b glx,t)=

( t \ t
—fA(s)ds —fA(s)ds

(:)E el x(t)|=elt b gx,t)=

T \ T
: —JA(s)ds : —fA(s)ds
(:)Ji elb b x (1) dT:Je to g(x(7),7)dr <

Io Io
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— A(s)ds . |—=1 A(s)ds
e L x(t)—x():Je fo g(x(s),s)ds <
fA(s)ds —JA(s)ds t —fA(s)ds
Sx(t)=eth Xo+e Lt el gx(7),7)dr <
JA(S)dS ¢t —| | A(s)ds
Sx(t)=eth x0+Je t g(x(7),7)dr (F13)

F5

O Teorema do Valor Médio para fungcoes multivariaveis

Teorema 1 (Teorema da Convergéncia Monétona). Seja {x,} uma sequéncia real limitada e
mondtona. Se a sequéncia for crescente e limitada superiormente, entao seu limite existe e é igual

ao supremo; se for decrescente e limitada inferiormente, o limite existe e é igual ao infimo. —

Prova: suponha a sequéncia crescente e limitada superiormente; logo o supremo x existe
e x,, < x VY n. Suponha um € > 0; para qualquer valor escolhido, existem algum k tal que x; > x—e
porque, de outra forma, o supremo seria x — €. Agora, como a sequéncia é crescente, para todo
m >k, x,, > X, de onde

0<Xx,— X <X,—(x—€)>x—x,=|x—x,|<e€ (F.14)

Logo, para todo € escolhido, existe k tal que m > k implica |x — x,,,| < €, que é a precisa

definicdo de lim x, = x.

n—0oQ
Suponha agora a sequéncia decrescente e limitada inferiormente. O supremo x existe e
X, > x YV n. Para qualquer escolha de € > 0 existe algum k tal que x < X, +€ & x — X < €.

Como x,, < x;. YV m > k, entédo

0<Xx,— X <X,—(x—€)x,—x=|x—x,]|<e€ (F.15)

Que também ¢é a definicdo de lim x, = x.

n—-oo
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Teorema 2 (Teorema de Bolzano-Weierstrass). Toda sequéncia real limitada tem uma subsequén-

cia mondtona convergente. —

Prova: suponha uma sequéncia {x,, } limitada. Sejam os maximos da sequéncia os valores

de n tais que m > n < x,, < x,,, isto é, x,, € maior que todos os valores subsequentes.

Se a sequéncia tiver infinitos maximos n,, k €N, entdo a subsequéncia {xnk} € monoto-
nica decrescente e, como a sequéncia é limitada, logo a subsequéncia converge pelo Teorema da
Convergéncia Monoétona.

Se por outro lado a sequéncia tiver um numero finito de maximos, digamos, n;, k €
{1,2,..., j},tomeum i, > j qualquer; logo, pela definicdo de méaximo, ndo existe nenhum elemento
x, tal que p > i, e x, > x; . Agora tome i, > i: igualmente n&o pode existir termo subsequente
maior que Xx;,. Repetindo este processo indefinidamente se obtem uma sequéncia x;, x;,, ...
nao-decrescente. Como a sequéncia {x,} é limitada, entdo a subsequéncia {x,-p} é limitada e
nao-decrescente. Aplica-se o Teorema da Convergéncia Mon6tona para concluir que é convergente.

Teorema 3 (Teorema de Weierstrass ou Teorema do Valor Extremo). Seja f(x) uma fungdo real
continua num [a, b] fechado limitado. Entdo f admite tanto um méximo quanto um minimo neste

intervalo. -

Prova: suponha que f ndo tem maximo. Entdo existe uma sequéncia {x,} monétona

crescente tal que f (x,)> f(x,,) & n>m.

Como o intervalo [a, b] é limitado, entdo pelo Teorema de Bolzano-Weierstrass a sequéncia
{x,} é limitada e, sendo crescente, seu limite existe — suponha x — tal que f (x) = a, de onde
a>f(x,) Vp.

Sendo [a, b] é fechado, contém x; e como f é continua, f ({x,}) converge para a. Mas
como f nao tem méaximo, dado um real positivo ¥ qualquer sempre existe algum k tal que f (x;)> 7.
Isto implica que @ — o0, porque a é maior que qualquer valor de f ({x,}) e logo a > 7, de forma
que se possa escolher y tdo grande quanto se queira. Disto se depreende que {x,,} ndo tem limite,

contradizendo o Teorema de Bolzano-Weierstrass e incorrendo numa incongruéncia.

Assim, f possui maximo em [a, b]. Suponha agora que f ndo tem minimo, implicando que
existe subsequéncia {yn} mondtona decrescente tal que f (yn) < f(ym) < n > m. Pelos mesmo
motivos, {yn} é limitada com limite, digamos, 3. Sendo f continua, n — 0o :>f({yn}) —>f(/3’);
mas f(ﬂ) < f(yn)Vn; como f ndo tem minimo, isso implica que para todo real negativo f3
pode-se encontrar k tal que f(yk) < B elogo f ——00, e logo {yn} ndo tem limite, o que implica
uma contradigao. [
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Teorema 4 (Teorema de Rolle). Seja f(x), f: Q2 c R— R continua e diferenciavel num[a,b] C Q
e tal que f(a)= f(b). Entéo existe ¢ €[a, b] tal que f'(c)=0. —

Prova: pelo Teorema de Weierstrass, f é limitada em [a, b] apenas por ser continua
no intervalo. Entdo f admite tanto um maximo quanto um minimo no [a, b] (ou seja, como f é
continua no intervalo, apresenta apenas valores finitos dentro deste intervalo); se ambos maximo
e minimo sdo obtidos nos extremos do intervalo, conclui-se que f é uma funcédo constante e
f'(c)=0Vc €]la,b], e o Teorema de Rolle é imediato. Suponha portanto ¢ €(a,b),eque a e b

nao sdo minimos € maximos ao mesmo tempo.

Suponhamos inicialmente ¢ €(a, b) um maximo de f, a e b podem ser minimos. Entao

seja a fungao

g(h)=f(h+2_f(c),g:(a—c,b—c)—>R (F.16)

Como ¢ é um maximo de f no intervalo (a, b), o numerador de g(h) é sempre negativo e
portanto h >0 g(h)<0e h <0<« g(h)> 0. Por hipbtese, sendo f diferenciavel no intervalo
(a, b) entdo também sera g, de onde os limites laterais desta existem e obedecem

gngg(h)so (F17)
%irgg(h)zo (F18)

Mas como g é diferenciavel, entdo em h =0 os limites laterais devem ser iguais entre si e

ao limite; pelas inequagdes F.17 e F.18, s6 existe a possibilidade

f(hﬂ}z_f(c):o (F19)

li =1 =li h)=0&<li
lim g(h)= lim g(h)=lim g(h) lim

Que ¢é a precisa definigdo de f’(c¢)= 0. Agora, suponha ¢ um minimo de f em (a, b),
sendo que a e b podem ser maximos. Novamente, defina g como em F.16. Entéo as inequagdes

de F.17 e F.18 se invertem; pelo mesmo argumento, conclui-se que f'(c¢)=0.

Se, por outro lado, ambos a e b ndo sdo maximos e nem minimos de f em [a, b], entdo
existem pelo menos um méaximo de derivada nula no intervalo (a, b) e pelo menos um minimo de

derivada nula no (a, b).

Teorema 5 (Teorema do Valor Médio para fungdes de uma variavel). Seja f(x), f:QCR—-R
continua e diferenciavel no ). Entao
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f(b)—f(a)

Via,b]cQ,3cela,b]]| f'(c)= - (F.20)
Prova: seja a equagao da reta secante por (a, f(a)) e (b, f(b)):
yo=[T D+ pia (Fa1)

Agora defina r(x) = f(x)— y(x); entdo r(a)=r(b)=0. Também r é diferenciavel, uma
vez que ambas f e y o sdo. Assim, aplica-se o Teorema de Rolle para concluir que existe um
c €la,b]tal que r'(c)=0. Mas

f(b)—f(a)

r'x)=f(0) =y ()=o) - — (F.22)
R _ / _ f(b)—f(d)
..r(c)—0<:>f(c)——b_a (F.23)

Lema 4 (Teorema do Valor Médio para fungdes multivaridveis). Seja uma fungédo f:QCR"” =R
diferenciavel, Q um aberto no R". Sejam dois pontos x,y €2 tais que 0 < ||x — y|| < 0, com 6

arbitrariamente pequeno. Entdo existe um m > 0 tal que || f(x)— f(y)ll < m||x —y||. —

Prova: tome uma fungéo g (t)= f((l— t)x+ ty). Entdo g é a parametrizagdo de uma
linha continuaentre xe y set € [0, 1]; sendo f e (1—t)x+t y diferenciaveis, entdo a composigdo
g também o é (pela Regra da Cadeia). Pelo Teorema do Valor Médio para fungdes de uma variavel,

entdo existe ¢ € [0, 1] tal que

g(1)—g(0)=g'(c) (F.24)

Computando g’(c) explicitamente, e notando que g(0)= f(x), g(1)= f(y), entdo

Fx)—F)=Vf(A=c)x+cy)-(x—y) (F25)

O ponto (-) nesta equacao representa o produto interno. Pela Desigualdade de Cauchy-

Schwartz,

1=l < |V (a=e)x+ey)|lx—yl (F.26)
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O Teorema ainda nao esté provado, porque o fato de f ser diferenciavel ndo significa que
V f seja limitada. Supondo que isto é verdade,

Im>0 ‘ m>|Vf ()| VxeQe fx)-fOl<mllx—yl  ®m  (F27)

Em particular, se f é de classe C', i.e., Vf & continua no £, entdo pelo Teorema de

Weierstrass V f € limitada no (2 e esta Ultima passagem ¢é valida.

F.6

Majorando a norma de matrizes exponenciais

Lema 5 (Limitagao do produto de um polindmio com exponencial decrescente). Seja f = e ** P(x),
f:R—=R, coma>0 e P(x) um polinébmio de qualquer ordem. Entdo f é limitada em qualquer

semirreta direita e, além disso, f(x) tende a zero quando x — 0. —

Prova para x > 0: suponha inicialmente x € ( 0 ,+00). Se P(x) for um polindmio cons-
tante, entdo ambas as propriedades sdo imediatas. Suponha-se entao deg(P(x)) > 1. Fazendo a
expansao de Taylor de e** em x =0:

%) k [ee] k
eax21+z(ax') >Z(ax') Vx>0 (F28)
Ll T R

A desigualdade se verifica porque todas as parcelas do somatério sédo positivas se x > 0.
Supondo x # 0 e dividindo os dois lados por x",

1 ax a n } noo
— e > —+a = 4"y —— (F.29)

Perceba-se que o somatdério define um polinbmio de grau infinito, sem termo independente,

e cujos todos os coeficientes sdo positivos. Invertendo a desigualdade,

1 1
x"e "< — — (F.30)
ar 1 2 (ax)
. Z

n! = (m+n)

Nota-se que muito embora a expressio fora deduzida supondo x # 0, ela ainda vale para
x nulo, daonde pode-se incluir o zero no intervalor de x: x €[ 0 ,+00). Agora, podem-se provar
facilmente tanto a limitagcdo da funcao quanto o limite. Atine-se para o fato que x"e™** é sempre
positivo para x > 0. Atente-se também para o fato que como o polinémio do denominador tem
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coeficientes positivos, 0 denominador é crescente para x > 0 e, logo, tende para o infinito quando x
tende para infinito, de forma que o termo da direita na desigualdade tenda para zero. Pelo Teorema
do Confronto,

1
n_—oax : n _ —ox —
0<x"e <_an T = (ax)” (:xlggox e 0 (F.31)

n! = (m+n)

Além disso,

1 1 1 1 n!

xne—ax < — < — = — F32
an 1 N °z°: (ax)™ ar i+0 an (F.32)
n! =i (m+n) n!

Basta agora utilizar que a funcédo f(x), para a qual se quer provar o lema, consiste de
combinacdes lineares de fungdes do tipo x” e~“*; suponha que o polindmio P(x) tem coeficientes
n

p;, ou seja: P(x)=py+ . ppx*. Assim,
k=1

fx)=e " P(x)=pje™* +Z pke_‘”xk (F.33)
k=1

Daonde, para x > 0, utilizando a desigualdade triangular e (F.32),

£ =poe™ + > pre™ x| < poe ™|+ D |pe| [ x| <
k=1 k=1
- k!
<|po|+ D |p — (F.34)
k=1

Ainda utilizando (F.33), e aplicando o limite dos dois lados,

lim f(x)=e **P(x)=p, lim e_‘”+2pk lim e %" x* (F.35)
k=1

Por (F.31), todos os limites s&o nulos, o que sucede

lim f(x)=0 (F.36)

X—0Q0
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Prova para x numa semirreta direita fechada qualquer: agora, considera-se que x pode
pertencer a qualquer semirreta direita fechada, digamos, [ x, ,+00) com x, € R. Sejam y e g(y)
definidos como

Yy=X—Xg (F.37)
g(y)=e""Q(y) (F.38)

Onde « é exatamente o mesmo argumento da parcela exponencial de f(x), e Q(x) é
um polinémio qualquer. Notadamente, y pertence a semirreta positiva fechada; assim, a g(y)
aplicam-se os resultados anteriores (isto €, é limitada e tem limite nulo no infinito). Sabe-se também
que se Q(x — x,) € um polindbmio de mesmo grau de Q(x) e logo pode-se escolhé-lo tal que
P(x)=Q(x— x,). Além disso, pelo resultado anterior, g(y) € limitada na semirreta positiva e seu

limite no infinito é zero.

f(x)
—_—

gly)= e R (x — X)=e “P(x)e"*" = f(x)=g(y)e*™ (F.39)

Sendo g(y) limitada, entdo f(x) consiste daquela fungdo multiplicada por um escalar, e

logo também é limitada. Pelo mesmo raciocinio,

lim f(x)=e“" lim g(y)=0 [ ] (F.40)
X—00 y—00

Corolario: seja a fungdo s(x)= e **P(|x|), P definido como no lema anterior. Entao s

também ¢é limitada e tende para zero no infinito.

Prova: se x >0, entdo |x|=x < P(|x|)=P(x) & s(x) = f(x) e o corolario é imediato.
Suponha portanto x < 0. Neste caso, P(x) e P(|x|) sdo iguais a menos dos termos de poténcia

impar. Para facilitar a notagéo, designar-se-a P(|x|) por Q(x):

P(x)=> px* & Qx)= D (1) pex* x| =—x (F41)
k=0 k

n
=0

Assim, Q(x) é um polindmio de coeficientes g; = (—1)'p;, ou seja, q; = —p; se i for impar
e q; = p; se par. Logo, a funcédo s(x) obedece as hipéteses do lema e portanto também é uma

funcéo limitada e de limite nulo no infinito.
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Lema 6 (Limites superiores para a norma de matrizes exponenciais). Seja uma matriz A valorada

complexa, cujos todos os autovalores tém parte real negativa. Entdo existem k,a > 0 tais que

|eAt| <ke (F.42)

Para t numa semirreta direita qualquer.

Prova para t > 0: seja J a forma canénicade Jordande Ae J;,i=1,2,..., k oi-ésimo bloco
de Jordan correspondente ao i-ésimo autovalor A;. Cada J; pode ser escrito como J; = A;1 + B;,
onde B; é uma matriz nilpotente de diagonal nula correspondente a cada bloco. Dessa forma,

-1
. IA,"FB,')[ . L tm
e]lt — e( — eMeB’t — em _|Bim (F.43)
mzorn.

Seja um €; positivo arbitrario. Multiplicando e dividindo a parte direita da equagéo por e€i’

n—1

tm
e]il’ — e(k,’"’G,‘)f Z _B.’ne_eit =

m! !

m=0 :
n—1 rm n—1 rm

S felt] <] |1 gmetit| < o] § L gt (Fa4)
< m! ! “= m! !

m= =

Pelo lema 5, a funcao %e*it ||Bl’"” ¢ limitada no intervalo ¢t > 0. Sucede que para cada
termo do somatério existe um f3; positivo tal que

" it am
e |B"| < B &

n—-l1 n—1
R (li)+6i)f . ) (R (Ai)+€i)f
m=0 m=0

m=0

Esta Gltima equagéo prova o lema para um bloco J;: se Re(A;) < 0 entdo pode-se escolher
€; tal que €; +Re(A;) = a; < 0, de onde |e]if| tende a zero no infinito porque é majorada por
uma fung¢éo que tende a zero no infinito. Basta doravante provar que dado este resultado pode-se

prova-lo similarmente para A.

Dado que J é a forma canénica de Jordan de A, entdo existe alguma matriz P invertivel
tal que A= P JP~!. Sejam V; matrizes consistindo de J com todos os blocos de Jordan zerados
exceto o i-ésimo. Entdo J =3\ Vi e
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k
e =peltp7l=p e(;%)t pl_p Vit

p! (F.46)

k
e
=1

1

De acordo com o resultado anterior, existem k; > 0, a; € R tais que

%] < ke (F47)

Daonde

le™|<IPIf |

1

k ( i)t
e
=1

k
k Oli t
.-.\eAf|S|P|(1_[k,-)|P—I|e (Zl: ) ]:ke’“ (F.48)
i=1

Assim, se todos os autovalores de A tém parte real negativa, ist est, Re(A;) < 0, i =
1,2,..., k, entdo para todos eles pode-se escolher €; tal que €; + Re(A;) =a; < 0. Se todos os @;

sao negativos, sua soma é garantidamente negativa.

Prova para t numa semirreta direita qualquer: suponha ¢ > ¢, f, € Re u =1t —t,.
Entdo

|eAt| — |eA(u+t0)| (F.49)

Como para duas matrizes M e N complexas quaisquer [M N | < |M||N/|,

e[ <]e™||e”| (F50)

O resultado é imediato porque, como u pertence a semirreta positiva, entao o resultado

anterior se aplica e existem k, a > 0 tais que |eA“| < ke™®!; conseguintemente,

e[ < (|e| k) e (F51)
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Corolario: se A< C™" tem todos os autovalores no semiplano esquerdo, entao |eAt| e

limitada em qualquer semirreta direita e
lim |e*'|=0 (F.52)
r—00

Prova: pelo Lema 6, existem k, a > 0 tais que

le*| < ke™ (F53)

O corolario é imediato pelo Teorema do Confronto.

Lema 7 (Versdo matricial do lema 5). Seja f(x)=e*P(x), f :R— C"™", com A€ C"*" cujos
autovalores todos tém parte real negativa, e P(x) um polinémio de qualquer ordem de coeficientes
f (x)| tende a

zero quando x — 0Q. —

complexos. Entdo | f (x){ é limitada numa semirreta direita qualquer e, além disso,

Prova: pelo lema 6, existem k, a > 0 tais que ’e“”{ <ke . Assim,

|f(x)|=|e™ P(x)| < ke ™ |P(x) (F.54)

Se P(x) for o polinbmio constante, este lema é imediato por esta Ultima equagéo. Logo,
k

supde-se que P(x) tem grau deg(P(x)) =k > 1 e coeficientes p;, ou seja, P(x)=>_ p;x'. Entéo,
i=0

pela Desigualdade Triangular,

k k
[F) < ke > |pillxl =k > [pi|Ixl'e (F55)
i=0 i=0

Pelo lema 5 e seu corolario, as parcelas do somatério sao limitadas, i.e., para todos os

indices i existe um f3; > tal que | x|’ e™%* < 3;, de onde

k
[f@ <k |pi| B (F.56)
i=0

Prova-se assim que |f(x)| é limitada para x > 0. Agora, ainda por F.55,
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k
0<|fx) e D |mi|Ixl (F57)
i=0

Ora, sendo a fungao da direita um polindmio multiplicado por uma exponencial decrescente,

entdo também pelo lema 5 seu limite no infinito € nulo; logo, pelo Teorema do Confronto,

lim |f(x)|=0 m (F.58)

X—00

F7

Estabilidade de sistemas

Teorema 6 (Estabilidade de sistemas lineares). Seja um sistema linear do tipo y = Ay + h(t), A€
R"™ " com equilibrio y* num tempo t, (isto é, Ay*+ h(t,)=0) e h(t) tal que e ™A' h(t) é limitada
para t > t,. Entdo y* é um equilibrio assintoticamente estavel do sistema e ||y (t)— y*|| € limitada

parat > t,. _

Prova: seja a mudanga de variavel x(t)= y(t)— y*. O sistema é reescrito por

X=Ax+h(t)+Ay*=Ax+g(t) (F.59)

Que, por sua vez, tem equilibrio na origem. Note-se que como e~ h(t) é limitada para
t > t,, entdo também o é g() porque existe um positivo 7 tal que ||e"“’h(t)” <r:

4
—At

—_———
eMg(t)=e (e (1)) + Ay* & |g(1)] <|e][le h(1)|| +||ay*| < (F.60)

< [lsof <e*[r+]ay*

(F.61)

Pelo lema 7 , a primeira parcela do lado direito é limitada, que implica g(t) ser limitada.
Pela Férmula da Variagéo das Constantes (lema 3),

t
x(t)= eA“_[")xO+f e g(1)dr (F.62)

fo
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Onde x(t,) = x, € a condicao inicial da qual o sistema é solto. Majorando esta equacgéao e
utilizando a Desigualdade Triangular,

t
(0]l <[ e |1 +f | =g(v)|d (F63)
)

Por hipétese, o integrando € limitado; logo, existe a > 0 tal que

Lema 6 Lema 7

t
()l < e {11 + |eAt|fadT = e ||/l + || (£ — 1) (F.64)
[

0

Pelo Corolario F.52 do Lema 6, o primeiro termo é limitado e tende a zero para ¢ tendendo
a infinito. O segundo termo comunga destas mesmas propriedades pelo Lema 7. Assim, ||x(¢)|| =
||y(t)— y*|| é limitada e, pelo Teorema do Confronto,

lim |lx(6)| =0 lim ||y(£)—y*||=0 (F:65)

E logo y* é um equilibrio assintoticamente estavel do sistema linear y = Ay +h(t). R
go y y=4ay

Teorema 7 (Estabilidade de sistemas ndo-lineares em equilibrios hiperbdlicos tipo zero). Seja o sis-
tema dindmico ndo-linear x = f (x, t), com f : QxW — Q de classe C', QCR" e[t,,00) CWCR,
com x* um equilibrio hiperbdlico tipo zero (isto é, todos os autovalores da matriz jacobiana de f no
ponto x* tém parte real negativa). Entéo existe uma vizinhanga U (y*)={y €Q | llyo— y*Il <€}
do equilibrio y* na qual ||y(t)— y*|| é sempre limitada para qualquer condig¢do inicial nesta vizi-
nhanca e, além disso, y* € um equilibrio assintdtico estavel do sistema ndo-linear para qualquer
condiczo inicial y, € U (y*). —

Prova: primeiramente, suponha que x* = 0. Seja A a matriz jacobiana de f calculada
em x = 0. Ent&o existe g(x, t) tal que f(x,t)=Ax + g(x, t); reescreve-se o sistema dinamico
nao-linear como

x=Ax+g(x,1). (F.66)

Atente-se para o fato que, sendo f de classe C!, entdo g também pertence & mesma
classe. Pela Férmula da Variagdo das Constantes (Lema 3),
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t
x =eMy, +J e =g (x(s),s)ds (F.67)

)

Onde x, = x(t,) é o ponto inicial de onde o sistema é solto. Suponha 0 < || x,|| < €, com €
arbitrariamente pequeno. A igualdade implica

t
] < [e“)] |l x| +f e ||g (x(s),5)||ds (F.68)
fo

Como todos os autovalores de A tém parte real negativa, entao pelo Lema 6 existem
constantes k, a positivas tais que |eAt| <ke “ VY t>0.Além disso, pelo Teorema do Valor Médio
para fungbes multivariaveis (Lema 4), como g é C! ent&o para qualquer m > 0 arbitrariamente
pequeno, existe 6 > 0 tal que ||g(x(t), t)|| <m||x|| se||x|| < 6. Assim F.68 implica

t
||x||§ke_“t||x0||+fmke_““_s)llx(s)uds (F.69)

[

Multiplicando esta por e?!,

t
e’”IIXIISkllxo||+fe“SIIX(S)lldS (F.70)

4]

Aplicando a Desigualde de Gromwell Generalizada (Lema 2) para

¢ (£)= e ||x]| (F71)
a(t)= k|lx| (F72)

Resulta
x| < kllxpll e~ (@ k)1 (F73)

a—km)t

Basta escolher m tal que a — km < 0 porque entao e_( sera uma exponencial

decrescente limitada:
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x| < k|| e~ (@ km) ko (F74)

Logo ||x]||= ||y — y*|| é limitada. Aplicando o Teorema do Confronto em F.73,

lim ||| =0 m. (F.75)

Frise-se que o numero &, que imprime sobre g(x, t) a condigdo ||g(x(t), t)H <ml|x||,
deve ser maior que o fator €, concernente a distancia da condicéo inicial: ||x,|| < €. Assim
€ < 0, quer dizer, o espaco inicial de estados esta condicionado a uma distancia maxima o
do equilibrio, atestando que os resultados s6 valem nesta vizinhanga. Isto porque para um || x,||
suficientemente grande n&o se pode garantir que haja m positivo que satisfaga ambas as equacoes
||g(x0(t), t)|| <m||x,|| e a—km <0, entdo ndo se pode depreender a equacao (F.69).

Ademais, perceba-se que para sistemas lineares esta restricao nao existe, isto €, dado que
um sistema linear é estavel (isto é, as condicoes de estabilidade sao satisfeitas), entdo qualquer

condigdo inicial o leva ao equilibrio com trajetéria limitada.

F.8

O Teorema de Hartman-Grobman

Esta prova é baseada naquela apresentada em (PERKO, 2008), e contém as explicagdes
dos passos da prova.

Teorema 8 (Teorema de Hartman-Grobman). Seja o sistema dindmico autbnomo n&o-linear
x=f(x), comf:QxW¥—Q declasse C', Q CR" e[t,,00) CW¥ C R, com x* um equilibrio
hiperbdlico e fluxo ¢ (x,, t). Seja também um sistema linear equivalente X = Ax, com A o jacobiano
de f em x*. Entdo o fluxo do sistema nao-linear é localmente homeomorfo ao fluxo do sistema

linear em x*; em outras palavras, existe um homeomorfismo h tal que

h (9 (x0, 1)) = e R (x0)
Para x, numa vizinhanca suficientemente pequena de x*, digamos, x, € U (x*)CQ. —
Prova: tomando a forma candnica de Jordan J de A, entao existem duas matrizes P e Q

tais que

P 0
0 Q

—
I

(F.76)
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E também tais que P contenha todos os autovalores de parte real negativa e Q os de parte
positiva. Em outras palavras, P é o grupo dos blocos de Jordan relativos aos autovalores de parte
real negativa, e Q é o grupo dos blocos referentes aos autovalores de parte real positiva.

Considere agora que A pode ser separada em dois subespacos invariantes: um V¥ estavel
(referente aos autovalores de parte real negativa) e outro V! instavel (refere-se aos autovalores de
parte real positiva). Outrossim,

VvE :span(vl, ey vp) (F77)
Vlzspan(vpﬂ, . vn) (F.78)

Onde os v;, i =1,...,p sé@o os autovetores associados aos autovalores de parte real
negativae v;, i =p+1,...,n séo os autovetores associados aos autovalores de parte real positiva.
Entdo o fluxo ¢ (x,, t) pode ser separado em duas partes, uma estavel x, € Vi e outra instavel
x;, €V

xe (xo» t)
¢ (xo, )= (F79)
Xi (x0, t)

Naturalmente, os subespacgos V; e V; podem ser expressos como parametrizagdes no
tempo:

(VE): Vg (xeo’xio’ t):xe (xeo!xiOr t)_ePter
(F.80)
(V) v (oo Xigy £) = %; (X0, Xior 1) — €9 X9

Sejam agora & e k elementos respectivos de (V) e (V') obtidos ao avaliar o sistema
(F.80)em ¢t =1:

g(xeo’ xiO) = X (er’ Xio» 1)_ epxeo
(F.81)
K (xeo’ xiO) =X; (xe0> Xi0» 1) - eQxio

Nota-se que como [ é de classe C! em 2, entdo também séo & e k. Decorre entéo pelo
Teorema de Weierstrass que existe uma vizinhanga da origem |x,,|* + | X;o|* < 82, § > 0 na qual
ambos os jacobianos de & e k s&o limitados:
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¢

0 X0

oK
0 Xig

<a

(F82)

<p

Seja ¥y =max(a, B). Defina duas fungdes F, e F, com derivadas continuas tais que

2 2
F (Xe0, Xi0) = B (Xe0, Xi0) =0 , s€ |Xq0l* +|xi0/° > 6%>0

2 (F83)
Fi (e Xio) = (50 o) © F (s 10) =K (oo 310) 58 0.< ool + ol <22 < 5

Nota-se que como & e k sdo C!, as duas F, e F, também s&o. Além disso,

1)
|xe0|2+|xio|2312‘:)\/ |er|2+|xiO|2SA<E (F.84)

Pela Desigualdade das Médias,

Xeol +1; / o
—l eO|2| ol < |xeo|2+|xio|231<§-'- | Xeol + X0l <24 <0 (F.85)

Decorre da definicdo de 7 e pelo Teorema do Valor Médio para fun¢des multivariaveis:

BRI 74/ ool + 1xi0l <7 (12e0l + 110l (F:86)

Dadas as caracteristicas dos autovalores de P e Q, entédo ||ep|| <le ||e‘Q|| <1, pelo
Corolério do Lema 6. Defina as transformagdes L, T e H:

epxe (XO’ t)

L= =etx
eQxi (xO) [)

e x,(xy,t)+ F(x,, x;) )

eQxi(xo, t)+F2(xerxi)

G(xe!xi)
H:
\ A(xe’xi)

{ T= (F.87)
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Onde O e A séo fungdes hipotéticas que se quer encontrar. O Teorema esta provado se
HoT = LoH e se O e A forem continuas, porque entdo H serd um homeomorfismo. Para encontrar
estas fungoes, sera utilizado o método de aproximacodes sucessivas. Aplicando Ho T = Lo H as
definicbes em (F.87), garante-se que © e A serdao homeomorfismos se existirem:

eP@ = @(epxe (XO’ t) + Fl (xe’ xi)r eoxi (x0r t) + FZ (xer xi)) (F88)
eQA = A(epxe (XO) t) + Fl (xe’ xi)r eoxi (x0r t) + FZ (xer xi)) (F89)
Assim, tomando as sequéncias recursivas O, e A;
@O(xer xi) =X,

(F.90)
O =€ 70y (epxe + F (%, x;), e9x; + B (x,, xi))

AO(xe’ xi) =X;
(F.91)
At =e N (P x, + F(x,,x;), e%x;+ B (x,, x;)

Basta provar que estas sequéncias sao sequéncias de Cauchy e que os elementos delas

sao fungdes continuas, porque entao

©= lim ©; (F.92)
A= lim A (F.93)

Prova que as funcoes A, e O, sdo continuas

A prova se dé por Principio da Indug&o: por definicdo, A, e ©, sdo C!. Como e e e? sdo
constantes, F, e E, classe C! por construgao, e x, e x; sédo C? por hipétese, entdo A, é C! por

ser a composicédo de ©,, de classe C!, com fun¢des continuas.

Agora, suponha A, e ©, C!;logo, A, e O, também o serdo porque s&o a composi¢ao
da iteragdo passada com x,, x;, F; e F,. Assim, se A} e O, forem C1, também serdo A, e Or,;;
dado que a iteragao inicial € daquela classe, entdo também séo todas as subsequentes.

Prova que A, e O, sao sequéncias de Cauchy

Esta prova também seré feita por Principio da Inducdo. Primeiramente para A, quer-se
provar que a recorréncia A;. é tal que existem constantes € €(0,1), r €(0,1) e M > 0 tais que

Ak (Xer %)= Ay (X, %) < MTF( x|+ x,]) (F94)
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Porque, desta forma, a sequéncia sera uma sequéncia de Cauchy, implicando que o limite
da sequéncia existe e é igual a um A, a fungéo procurada: dado um u suficientemente pequeno,
h& sempre um n tal que |Ag (x,, x;)—Ar_1 (X, X;)| <u V k> n €N, porque

‘Ll -
M (|xe]+1x,1)

Mrk(lxelﬂx,-l)6 <u< k>log,

H =
M (Ix.|+1x,1)

. n= |log, (F.95)

Assumindo que a proposicao (F.94) vale para um Ay, entao

‘Ak+1_Ak| = |e_QAk(ere +F (X, %), €9x; +F2(xe:xi))_e_QAk_1(ere +F (x,,x;), e?x; +F2(xe,xl~))|
< ”e_QHMrkUere +F1(xe’xi)} + |eoxi +F2(xe!xi)06

<[le ) Mr*([le” | 1xel +1E (e 2l + || €| 12l + 1B (e, x1)

e Mk [le” 1+ e 1+ 21 (1ol + 1) (F96)

Adotando { = max( 2y, HeP” , ||eQ||),

Agr —Ael <[l MrEee (1xe+ 1) (F97)
Escolhendo r = ||e‘Q||§€ = ||e‘Q||[maX( 2y, ||eP|| ) ||eQ||)]6 entao
€
A — Al < M (x4 1x,]) (F.98)

Ou seja, se escolher r daquela forma, dado que a propriedade vale para um k entéo ela
valera para k + 1, o que prova a hipétese indutiva da prova por indugdo. Agora, para o caso inicial:
para k=1,

A= Agl=[e=Ag (€, + Fi (e x), €%+ By, 1)) = ]

= ‘Q_Q(eQxi‘i'Fz(xe’xi))_xi‘ = |e_QEl(xe’xi)| <
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<[le 1B Ceerxl < [l (1xel+12:0) = e 7 (xed+120) ™ (1] 1al) <

€ —Q 1-e €
"le |y @ (121 +1x:1) _etfren r (1 +121) (F99)
—-Q 1—e
AdotandoMz”e ”7;(2/1) ,
Ay = Aol < M7 (1,1 +1x:]) (F.100)

Logo, ao escolher

r= el [max(ar. [l )]
(F.101)

oy leClrea
-

A propriedade (F.94) vale para qualquer k natural. Ainda assim, ndo se provou que aquela
equacao necessariamente implica que A seja sequéncia de Cauchy porque r ainda nao foi
escolhido menor que 1. Para tanto, basta escolher um € para o qual r esteja naquele intervalo, isto
é:

=l [max(2r 7] o)) <1 F102

Como todos os fatores séo positivos, aplica-se o logaritmo dos dois lados da inequacgao:

1n(||e_Q||)+eln[max(2)f, ||eP|| ) ||eQ||)]<0

Q
e gL ISR 1) 109
ln[maX(ZT, le?]l, ||eQ||)]

Desta equacgéo pode surgir um problema: existe a possibilidade ¢ = HeQ” & e=1. Para
evitar isto, basta corrigir a adogéo de { para

o=2max(y, "] o) 2max(2r "] [e2]) 104

Porque entdo r = ||e‘Q||[2max( Y, ||eP|| , ||€Q||)]e e
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m(edl) _ n{je?])

r<lesex< <
ln[Zmax(y, lle?|| , ||eQ||)] In2+1In(|le?l])

<1 (F.105)

E a prova estd completa para a sequéncia A. Para a sequéncia O, na iteracao inicial

tem-se

|®1_@0| = ‘e_PGO (epxe +F1(xe’ xi)’ eQxi +F2(xe’ xi))_xe

= ‘e_P (epxe +Fl(xer xi))_xe

= |e_PFl(xerxi)| <

<[le 1A xl < e |7 (1l + 1) = e 7 (el +1xil) ™ (el +1x:1) <

e e |lren

e e (1l + 1) ” (1% + 1) (F106)

Je-r]rien

Logo, basta adotar M = . Ja para a hip6tese indutiva,

)®k+l _Gk) = )e_P@k(ere +Fl(xe,xi)v eoxi +F2(xe!xi))_e_P@k—l (epxe +Fl (xer xi)! eQxi +F2(xe»xi))

<[l (| M7 (Je” xe + B Ceer )|+ | € Qi+ B (e )] )|

<[le || Mr*( [l || Ixel + 1B (e, x|+ [[ @] 1xil + 1B (e, )1 )

e M e[ [le? 1+ | @121+ 2 (1ol + il )] (F107)

Adotando ¢ exatamente como no caso para a sequéncia A,

RN o R (PARE) (F.108)

Basta portanto tomar
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[ r=lerlfemax(r fle]]. eelD]

| o lelren™
.

In[le”]]

<1
In[2max (7, lle?ll , lle?])]

€<

\

Desta forma, {0O,} e {A;} sdo sequéncias de Cauchy e as fungdes

k—oo
A=1lim A
P

Existem, sdo continuas e sdo homeomorfismos.

(F.109)

(F.110)

(F111)



