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Resumo

O objetivo da monografia foi estudar como as técnicas de controle linear utilizadas para determinar

os controladores largamente conhecidos como AVR e PSS impactam a margem de estabilidade

transitória do sistema máquina versus barramento infinito (OMIB, One Machine versus Infinite Bus).

Adota-se o modelo de um eixo para um gerador síncrono de pólos salientes. Em seguida, estudam-

se modelos de AVR e PSS apresentados na norma IEEE Standard 421.5 (2005) e IEEE Standard

1110 (2002), adotando-se o modelo PSS1A (single-input) daquela norma.

As equações diferenciais do sistema são numericamente integradas, e o sistema é então simulado

sob perturbação, e sua resposta dinâmica é analisada.

São averiguadas ocorrências de Bifurcações de Hopf no sistema em função dos parâmetros dos

controladores, através da parametrização dos autovalores e análise do comportamento local do

sistema no equilíbrio. Traçam-se os Diagramas de Bifurcação do sistema.

Baseando-se da teoria de Regiões de Estabilidade em Sistemas Dinâmicos Não Lineares, as

simulações são utilizadas para desenvolver um Método Força Bruta (MFB) para estimar a Região

de Estabilidade do sistema em malha aberta, controlado por AVR, controlado por AVR e PSS com

e sem saturadores de excitação. Traçam-se também Regiões de Estabilidade variando-se alguns

parâmetros (ganhos) dos controladores. As estimativas são comparadas para se concluir acerca

dos impactos dos controladores naquelo tamanho da Região de Estabilidade.

Conclui-se que, enquanto o sistema em malha aberta possui a maior Região, a introdução do

controlador AVR no sistema é extremamente deletéria à Região de Estabilidade do sistema; em

seguida, o PSS expande a Região, e a conseguinte introdução de saturadores diminui significativa-

mente o seu tamanho. Além disso, à medida que se aumentam os ganhos dos controladores, o

tamanho da Região tende a diminuir. Consequentemente, altos ganhos e saturadores têm efeito

detrimental no tamanho da Região de Estabilidade e na margem de estabilidade transitória de

sistemas elétricos de potência.

Palavras-chaves: margem de estabilidade, sistemas elétricos de potência, sistemas dinâmicos.





Abstract

The main goal of this thesis is to study how linear control techniques, used to design the broadly

known AVR and PSS controllers, impact the transient stability margin of the One Machine versus

Infinite Bus System (OMIB).

The one-axis model is adopted for representint the synchronous machine, which consists of a

salient-pole hydrogenerator. Then the AVR and PSS models, defined in IEEE Standards 421.5

(2005) and 1110, are presented. The model used to represent the PSS was PSS1A (single-input),

defined in Standard 421.5.

The DAE equations of the system are numerically integrated and the system is simulated under

perturbation and its dynamical response is analyzed.

Hopf Bifurcation ocurrences are investigated by parametrization of the system eigenvalues as

functions of the controllers gains and time constants. The Bifurcation Diagrams of the system were

also determined and plotted.

Based on Dynamical Nonlinear Systems Stability Region Theory, the simulations are utilized to

build up a Brute-Force Method (BFM) to estimate the Stability Region in four situations: open-loop

system (no controllers), controlled by AVR solely, AVR and PSS controlled and without saturators,

AVR and PSS controlled but with saturators. Also, the Region is also estimated for various values of

controllers parameters (gains). These estimatives are further compared so as to conclude about

the controllers impacts on the size of the Stability Region.

The main conclusion is that while the open-loop system detains the widest Stability Region, that

Region is extremely decreased by inclusion of AVR; the further introduction of the PSS widens back

the Region, and finally the introduction of saturators significantly reduces the size of Stability Region.

Moreover, when the controllers gains are increased, the Region tends to shrink. Consequently, high

gains and saturators have a detrimental effect in the size of the Stability Region and in the margin

of transitory stability of power systems.

Keywords: stability region, electric power systems, dynamical systems.
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Introdução

Geradores síncronos em sistemas elétricos de potência são equipados com controladores

de excitação e reguladores de velocidade. Estes controladores têm por objetivo principal manter a

tensão e a frequência dentro de limites pré-especificados. Além disso, são também projetados para

rapidamente amortecer oscilações eletromecânicas induzidas por perturbações. Os Power System

Stabilizers (PSSs), em particular, fazem parte do sistema de excitação da maioria dos geradores

do sistema elétrico e são projetados especificamente para atuar em condições não estacionárias

com o objetivo de amortecer oscilações eletromecânicas potecialmente danosas à operação do

sistema elétrico.

Usualmente, estes controladores são lineares e são projetados partindo-se do princípio de

que as perturbações são suficientemente pequenas e que o modelo do sistema elétrico, intrinseca-

mente não linear, possa ser representado sem grandes erros por um modelo linearizado. Nestes

projetos, a estabilidade local do ponto de equilíbrio é requerida e as restrições de desempenho

estão associadas aos modos de oscilação e taxas de amortecimento do modelo linearizado. Além

disso, técnicas de controle linear não levam em consideração índice algum de desempenho ou

limite de valores do sistema não-linear em malha fechada. Desta maneira, os projetos tradici-

onais de controladores em sistemas elétricos não levam em consideração o desempenho do

sistema a grandes perturbações; em geral, este desempenho é posteriormente verificado por

meios simulatórios.

Outrossim, parte-se daquele princípio de pequenas perturbações e projetam-se os contro-

ladores para um dado sistema, negligenciando-se suas características não-lineares. A efetividade

dos controladores projetados é averiguada posteriormente, mas ainda assim geralmente não há

preocupação sobre o comportamento do sistema a grandes amplitudes.

Em tempo, a despeito de esta abordagem garantir a estabilidade e o funcionamento de am-

bos o sistema e controlador numa pequena vizinhança do ponto de operação, o impacto do projeto

linear dos controladores no comportamento do sistema a grandes perturbações é desconhecido. A

teoria de Sistemas Dinâmicos endossa essa análise local linearizada, especialmente o Teorema

de Hartmann-Grobman, segundo o qual um sistema dinâmico comporta-se similarmente ao seu

modelo linearizado numa certa vizinhança de um equilíbrio hiperbólico sob alguns requisitos. No

entanto, nada se afirma sobre a vizinhança em si.
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O problema de análise de estabilidade de sistemas elétricos a grandes perturbações é

conhecido por estabilidade transitória, e não está associado ao problema de estabilidade local do

ponto de operação mas ao tamanho da região de estabilidade do ponto de equilíbrio assintotica-

mente estável do sistema em malha fechada.

A questão da região de estabilidade é imperativa devido ao seu impacto nas margens de

estabilidade transitória do sistema elétrico. Métodos de controle linear não podem garantir um

impacto positivo no tamanho da região de estabilidade. Reconheceu-se, por exemplo, que um

alto ganho de realimentação pode desestabilizar sistemas em malha fechada (KHALIL, 2008). Por

conseguinte, valores altos de ganho de realimentação podem diminuir o tamanho da região de

estabilidade a margens intoleráveis, impossibilitando garantir-se a estabilidade do sistema elétrico.

O objetivo principal deste trabalho de pesquisa é investigar o impacto dos controladores

lineares e em particular do PSS no tamanho da região de estabilidade dos sistemas elétricos

e o seu impacto na margem de estabilidade transitória. Pretende-se também investigar como o

projeto do controle linear pode levar em consideração condições de desempenho relacionadas

ao problema de estabilidade transitória. O comportamento da região de estabilidade do sistema

é investigado através da pesquisa de bifurcações do sistema dinâmico, ou seja, averiguação da

ocorrência de bifurcações do sistema em função dos parâmetros dos controladores.

Visão geral da monografia

Os objetivos desta monografia foram:

1. O desenvolvimento de procedimento basado no Método Força-Bruta para estimar a Região

de Estabilidade do sistema, e a comparação das regiões de estabilidade do sistema em

quatro situações, listadas abaixo, para concluir sobre o impacto dos controladores naquela

Região.

a) Em malha aberta;

b) Controlado apenas por AVR;

c) Controlado por AVR e PSS, sem saturadores;

d) Controlado por AVR e PSS, com saturadores.

2. O desenho dos Diagramas de Bifurcação do sistema nas situações (b), (c) e (d) e definir

o comportamento do sistema em bifurcação, para averiguar a existência do fenômeno da

Bifurcação de Hopf nos sistemas em função dos controladores.

Para o primeiro objetivo, foi necessário desenvolver programas de simulação do sistema a

partir de várias condições iniciais o que, por sua vez, necessitou que se caracterizasse o sistema
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em equilíbrio estático. Para o segundo, conhecer o comportamento local do sistema (cálculo dos

autovalores no equilíbrio) e ter o equilíbrio estático bem definido, como também determinar o efeito

dos parâmetros dos controladores nesse comportamento local. Assim, o documento divide-se em

quatro partes.

A primeira compreende a caracterização do sistema, bem como a explicação dos modelos

utilizados. Trata-se de uma parte comum a ambos os objetivos finais, uma vez que é necessário

bem conhecer o sistema para desempenhar ambos. Além disto, a primeira parte também lida com

a análise estática do sistema a partir das equações do fluxo de potência, e determinação das

condições de existência das soluções destas equações.

Ja a Parte II é voltada para a construção dos programas de simulação do sistema. Esta parte

tem como função construir os modelos dinâmicos (dedução das Equações Algébrico-Diferenciais

ou EADs) do sistema a partir do modelo da máquina adotado e dos modelos de controladores AVR

e PSS adotados. Para validar as EADs deduzidas, simula-se o sistema sob perturbação.

A Parte III empresta do equilíbrio calculado na primeira parte, bem como dos sistemas

de EADs deduzidos na segunda parte, para fazer a análise local dos autovalores no equilíbrio.

Seu objetivo é determinar a ocorrência de bifurcação no sistema a partir dos parâmetros dos

controladores. A ideia é determinar se de fato ocorrem bifurcações no sistema, como indicado na

literatura (GAO; K.T.CHAU, 2004; LI et al., 2002) , e em quais situações elas ocorrem. A análise

é feita a partir da parametrização do Jacobiano do sistema no equilíbrio estático em função das

constantes de ganho e tempo dos controladores.

Finalmente, a Parte IV se vale do equilíbrio estático do sistema, calculado na Parte I,

e dos programas de simulação, construídos na Parte II, para traçar estimativas da Região de

Estabilidade do sistema naquelas quatro situações. Ao final, traçaram-se estimativas das Regiões

de Estabilidade para se compará-las e concluir sobre o efeito dos controladores nessa Região.

Naturalmente, estas duas últimas partes empregam extensiva e ostensivamente de conhe-

cimentos de Análise, Sistemas Dinâmicos e Álgebra Linear (LIMA, 1981; LIMA, 2017; LIMA, 2016;

WANG, 1993; BRETAS; ALBERTO, 2000; STROGATZ, 2014; CHIANG; ALBERTO, 2015; CHIANG;

ALBERTO, 2012) para que os resultados obtidos sejam coerentes com a teoria matemática envol-

vida. Também nota-se que por vezes alguns resultados serão apresentados e as contas movidas

aos apêndices – como por exemplo os cálculos dos polinômios característicos do sistema – para

legibilidade do texto.

Também o texto é largamente baseado na literatura sobre sistemas elétricos de potência

como (KUNDUR, 1994; IEEE, 2002; IEEE, 2005). O modelo da máquina utilizado foi retirado de

(ALBERTO; RAMOS; BRETAS, 2000).
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Estudo do sistema OMIB e equilíbrio do fluxo de potência
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CAPÍTULO 1

O sistema OMIB

Neste capítulo define-se o sistema Máquina Única Contra Barramento Infinito (OMIB)

utilizado. São apresentados o modelo da máquina utilizado e os seus parâmetros, que foram

retirados de (DEMELLO; CONCORDIA, 1969). Apresentam-se também as hipóteses simplficadoras

do modelo, que são descritas em detalhes em (ALBERTO; RAMOS; BRETAS, 2000) e enunciadas

aqui.

1.1

Descrição do sistema

O sistema de Máquina Única Contra Barramento Infinito (One-Machine-Infinite-Bus Sys-

tem) consiste de um gerador síncrono acoplado a um barramento infinito (de tensão constante)

através de uma linha de transmissão. Sendo o gerador suposto de pólos lisos, o sistema pode ser

representado como na figura 1. A máquina recebe, da fonte motriz, uma potência mecânica Pm e

do sistema de controle uma tensão de campo EF D equivalente de modelo fasorial1.

Vt

xq'r

 

E'

I

re xe
FDE

Pm

 

E

Figura 1 – Esquemático do sistema OMIB em estudo

1 Trata-se de tensão equivalente porque o sistema diferencial (1.1), que rege a máquina, trata as variáveis de estado
fasorialmente – constituindo portanto simulação fasorial e não simulação de transiente eletromagnético (“EMT”), na
qual a tensão de campo VF D seria de facto a tensão no enrolamento de campo. A partir deste ponto, cometer-se-á
abuso de nomenclatura designando EF D por “tensão no enrolamento de campo” compreendendo-se tratar de
equivalente fasorial.



30 Capítulo 1. O sistema OMIB

Grandeza Sigla Valor (p.u.)

Impedância equivalente de regime permanente de eixo direto xd 1.14

Impedância equivalente de regime permanente de eixo em quadratura xq 0.66

Impedância transitória de eixo direto x ′d 0.24

Impedância transitória de eixo em quadratura x ′q 0.24

Constante de tempo transitória de eixo direto T ′d o 12

Constante de inércia do rotor H 1.5

Resistência equivalente de armadura r 0

Resistência equivalente de linha re 0.01

Impedância equivalente de linha xe 0.1

Tensão de barramento infinito E 1

Tabela 1 – Relação dos parâmetros do sistema OMIB e do gerador síncrono, provindos de (DE-
MELLO; CONCORDIA, 1969).

Os parâmetros da figura 1 são listados abaixo:

• r e xd representam a impedância de eixos direto e em quadratura interna da máquina.

Sendo esta de rotor liso, podemos concluir que as impedâncias dos dois eixos coincidem;

• re e xe representam a impedância da linha de transmissão;

• ~E ′ é a tensão interna da máquina, denotada por ~E ′ = E ′q + j E ′d ;

• ~Vt é a tensão nos terminais da máquina, representada por ~Vt =Vq + j Vd ;

• ~E∞ é a tensão do barramento infinito, constante ao longo do tempo. Para claridade do texto,

será denotada apenas por ~E ;

• ~I é a corrente fornecida pela máquina ao barramento, denotada por ~I = Iq + j Id ;

• Pm é a potência mecânica que o elemento motriz fornece ao gerador. NO artigo [1] de onde

se retiraram os parâmetros do sistema consta que a máquina faz parte de um hidrogerador;

logo, o elemento motriz é uma turbina hidroelétrica;

• EF D é a tensão no circuito de campo do gerador.

A tabela 1 define os parâmetros utilizados da máquina e do sistema. Todos os parâmetros

foram retirados de (DEMELLO; CONCORDIA, 1969).

Dinamicamente, a máquina, em malha aberta, é regida segundo o sistema diferencial (1.1),

retirado de (ALBERTO; RAMOS; BRETAS, 2000), denominado “modelo de um eixo”.
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Id Iq

2H

ẋ3 = x2
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(1.1)

Sendo:

• E ′q = x1;

• ω= x2 a velocidade angular do rotor com relação ao eixo QD;

• δ= x3 o ângulo do rotor com relação do eixo QD;

• EF D = x4 a tensão no enrolamento de campo, que no sistema em malha aberta é constante

e igual ao valor inicial;

• Id e Iq respectivamente as componentes em eixo direto e em quadratura da corrente de

barramento;

• Pm a potência mecânica entregue à máquina.

Naturalmente, o sistema não está completo porque ausentam as equações das compomen-

tes Id e Iq da corrente de barramento. Estas equações provêm do acoplamento ao barramento

infinito, e são deduzidas no capítulo seguinte.

Deve-se sempre ter em mente que o texto utiliza dois sistemas de coordenadas para as

tensões e correntes: um sendo o eixo imaginário-real, no qual a tensão do barramento ~E jaz

sobre o eixo real, e o eixo QD (quadratura-direto) que está em fase com o rotor da máquina, este

proveniente da aplicação da Transformação de Park. Estes sistemas de coordenadas (imaginário-

real e QD) são similares, a menos de uma rotação que equivale à posição angular do rotor da

máquina com relação à tensão do barramento infinito. A razão para a adoção de dois eixos é

que, ao se utilizar a tensão do Barramento Infinito como referência de fase (originando o eixo

imaginário-real), as contas para cálculo do equilíbrio estático são facilitadas. Enquanto isso, o

sistema dinâmico (1.1) que rege a máquina tem como variáveis de estado e variáveis algébricas as

tensões e correntes expressas no eixo QD, de onde depreende-se a razão para se utilizar este nas

simulações dinâmicas.

Note-se também que todas as grandezas são denotadas no sistema por unidades (P.U.).
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1.2

Modelo linearizado

Para ajustar os controladores e exemplificar as técnicas lineares de controle utilizadas

usualmente neste tipo de sistema, necessitar-se-á do seu modelo linearizado; para obtê-lo, calcula-

se o jacobiano do sistema dinâmico (1.1), resultando no sistema linear (1.2) a seguir. Nos apêndices

B e C constam as contas, omitidas pela legibilidade.
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(1.2)

Onde o operador ∆ denota o deslocamento do equilíbrio e Jm ,n denotam as componentes

da matriz jacobiana, denotadas no conjunto de equações (1.3). A figura 2 denota o diagrama de

blocos do sistema linearizado correspondente a este sistema linearizado.

EFD

Pm

x3

x2

x1

s - J 11

1
T'do

1

s

13

1

s
1

J 

23
J 

2H
1

21
J 

+ 

+ 

+ 

+ 

+ 

Figura 2 – Esquemático de blocos linearizado do sistema OMIB em malha aberta
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J1,1 =−
1

T ′d o

� �

xd − x ′d
�

sin
�

φ
�

X
+1

�

J2,1 =
1

2H X 2

¦

E
�

X cos(x3+φ) + (x ′d − x ′q )sin
�

x3+2φ
�

�

− x1

�

2X cos(φ) + (x ′d − x ′q )sin
�

2φ
�

�©

J1,3 =
E
�

xd − x ′d
�

X T ′d o

cos(x3+φ)

J2,3 =
E

2H X 2

¦

x1

��

x ′d − x ′q
�

cos
�

x3+2φ
�

−X sin(x3+φ)
�

−E
�

x ′d − x ′q
�

cos
�

2x3+2φ
�

©

~X = X e jφ = (r + re )+ j
�

x ′q + xe

�

(1.3)

A este sistema linearizado serão acoplados os controladores AVR e PSS, para que seus

parâmetros sejam sintonizados. Nos apêndices D e E consta o método de sintonia, realizado a

partir das margens de estabilidade (margens de ganho e de fase) dos sistemas em malha fechada.

1.3

Hipóteses simplificadoras

O modelo do sistema conta com algumas hipóteses simplificadoras que merecem destaque

e têm implicações diretas no seu comportamento. São duas as hipóteses: a máquina tem rotor

de pólos lisos cujo o modelo é o chamado modelo de um eixo, descrito no sistema (4.2), e a

simplificação através do barramento infinito.

1.3.1 Máquina com rotor de pólos lisos e modelo de um eixo

O modelo usado para o gerador é o modelo de um eixo; o gerador tem rotor de polos

salientes. Estas características resultam nas seguintes principais suposições:

• A componente de eixo direto da tensão interna da máquina E ′d é desprezível em qualquer

instante de tempo;

• O regime subtransitório da máquina pode ser desprezado por sua brevidade;

• As impedâncias equivalentes transitórias de eixo direto e em quadratura x ′d e x ′q , são

próximas, consideradas iguais.

Nota-se que esta suposição permite que o sistema seja desenhado como na figura 1. Caso

a máquina tenha pólos salientes ou deseja-se adotar um modelo mais complexo, como por exemplo

o de dois eixos desenvolvido na mesma bibliografia que o de um eixo, então o sistema não pode

ser descrito como na figura porque a máquina não pode mais ser representada por um modelo de

circuito elétrico.
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1.3.2 Barramento infinito

Na figura, a barra ~E é denominada “barramento infinito”. Fisicamente, a máquina está

conectada a um sistema elétrico geralmente muito maior que ela e sobre o qual sua influência

é negligível. A tensão ~E é constante em fase e módulo independente da carga que a máquina

imprima sobre ela.

Em última instância, re , xe e ~E representam o circuito equivalente de Thèvenin daquele

sistema muito maior ao qual a máquina conecta-se.

É importante lembrar que a suposição da insignificância de uma máquina perante o sistema

todo é questão de pesquisas recentes. Por exemplo, (THORP; WANG, 2010) afirmam que a falha

de uma única máquina em situações de alta demanda de potência pode levar a um colapso em

cadeia do sistema elétrico como um todo: se uma máquina falha, alguma outra precisa compensar

a componente defeituosa, o que por sua vez sobre carrega esta outra, e assim o sistema todo

quebra – significando que a premissa do barramento infinito não é absoluta, dado que o mau

funcionamento de uma máquina pode dirimir o sistema.
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CAPÍTULO 2

Calculando o ponto inicial de operação

Inicialmente, a máquina se encontra num estado de operação, fornecendo ao sistema uma

potência elétrica aparente ~S = P + jQ . Nesse momento, uma potência mecânica Pm é fornecida

à máquina. As grandezas elétricas do sistema da figura 1 são calculadas para este ponto de

operação.

Dado que os controladores utilizados são construídos sobre modelos lineares como o da

figura 2, necessitam-se calcular as variáveis de estado do sistema em equilíbrio, para então se

calcular a matriz jacobiana do sistema neste equilíbrio. Além disso, o estudo de bifurcações da

parte III se vale dessa matriz jacobiana, calculada no equilíbrio, para investigar a ocorrência de

bifurcações do sistema.

Tendo isto em vista, este capítulo desenvolve as equações de equilíbrio do sistema.

Também é definida a Região de Factibilidade, que determina as condições de existência de solução

dessas equações de equilíbrio.

2.1

Equações das componentes da corrente de barramento

Fornecendo uma potência aparente ~S conhecida inicialmente, então a máquina deve suprir

duas demandas: um gasto de potência nas impedâncias da linha, mais a potência transmitida ao

barramento. As condições iniciais do sistema são então calculadas segundo a equação

~S =

Gastos nas impedâncias
︷ ︸︸ ︷

�

(r + re )+ j
�

x ′d + xe

�

�

×
�

�~I
�

�

2
+

Barramento infinito
︷ ︸︸ ︷

E × ~I ∗

∴ P + jQ =
�

(r + re )
�

�~I
�

�

2
+E Ir

�

+ j
�

(x ′d + xe )
�

�~I
�

�

2−E Ii

�

(2.1)
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Fazendo
�

�~I
�

�

2
= I 2

r + I 2
i . Denotando x ′d + xe = xt e r + re = rt

(

P = rt (I 2
r + I 2

i ) +E Ir

Q = xt (I 2
r + I 2

i )−E Ii

(2.2)

Multiplicando a equação de cima por xt , e a de baixo por rt ,

(

P xt = rt xt (I 2
r + I 2

i ) +E xt Ir

Q rt = rt xt (I 2
r + I 2

i )−E rt Ii

(2.3)

Diminuindo uma da outra,

0= (Q rt −P xt ) +E (xt Ir + rt Ii ) (2.4)

∴ Ii =
P xt −Q rt

E rt
−

xt

rt
Ir (2.5)

Substituindo na primeira equação do sistema 2.2,

P = rt

�

I 2
r +

�

P xt −Q rt

E rt
−

xt

rt
Ir

�2
�

+E Ir

⇒ P = rt

�

I 2
r +

�

Q rt −P xt

E rt

�2

+
�

xt

rt
Ir

�2

+2
Q rt −P xt

E rt

xt

rt
Ir

�

+E Ir (2.6)

Multiplicando por rt E 2 para eliminar os denominadores,

0=−rt P E 2+
�

(rt E )2I 2
r + (Q rt −P xt )

2+ (E xt Ir )
2+2 xt E (Q rt −P xt )Ir

�

+ rt E 3 Ir

0= I 2
r

�

E 2(x 2
t + r 2

t )
�

+ Ir

�

rt E 3+2 xt E (Q rt −P xt )
�

+
�

(Q rt −P xt )
2− rt P E 2

�

(2.7)

2.2

Cálculo das tensões e ângulo do eixo do rotor

Tem-se portanto o sistema para Ir e Ii :
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









0= I 2
r

�

E 2(x 2
t + r 2

t )
�

+ Ir

�

rt E 3+2 xt E (Q rt −P xt )
�

+
�

(Q rt −P xt )
2− rt P E 2

�

Ii =
P xt −Q rt

E rt
−

xt

rt
Ir

(2.8)

Onde Ir e Ii são as componentes da corrente de barramento no eixo complexo. Resolvem-

se as duas equações para Ir e Ii ; em seguida, calculam-se ~E ′ e ~Vt :

(

~Vt = E + (re + j xe ) ~I

~E ′ = ~Vt + (r + j x ′q ) ~I
(2.9)

Falta agora transformar estas grandezas para o eixo QD. Para descobrir a posição deste

eixo em relação ao imaginário, utiliza-se do fato que, em se tratando de um modelo de um eixo,

então ~E ′ está em fase com o eixo Q, de forma que

~Q =
~E ′

| ~E ′|
= e jδ⇔ tan (δ) =

Im
�

~E ′
�

Re
�

~E ′
�

(2.10)

Girando ~Q de noventa graus, obtém-se o versor do eixo direto ~D , quer dizer:

~Q =
�

cos (δ) , sin (δ)
�

⇒ ~D =
�

− sin (δ) , cos (δ)
�

(2.11)

De onde as grandezas no eixo QD são


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

E ′q = ~E ′ · ~Q = Re
�

~E ′
�

cos (δ)+ Im
�

~E ′
�

sin (δ)

E ′d = ~E ′ · ~D =−Re
�

~E ′
�

sin (δ) + Im
�

~E ′
�

cos (δ)

Vq = ~Vt · ~Q = Re
�

~V
�

cos (δ)+ Im
�

~V
�

sin (δ)

Vd = ~Vt · ~D =−Re
�

~V
�

sin (δ)+ Im
�

~V
�

cos (δ)

Iq = ~I · ~Q = Re
�

~I
�

cos (δ)+ Im
�

~I
�

sin (δ)

Id = ~I · ~D =−Re
�

~I
�

cos (δ)+ Im
�

~I
�

sin (δ)

(2.12)

Vale lembrar que o texto utiliza dois sistemas de coordenadas: o eixo imaginário-real, no

qual a tensão de barramento infinito é igual a 1 p .u . em fase zero, e o eixo quadratura-direto, no

qual a tensão ~E ′ é um real. Isso se deve ao fato que, nas equações diferenciais do gerador, as

grandezas devem ser utilizadas na sua forma QD, muito embora a tensão de barramento infinito

seja referência de fase no eixo imaginário-real.
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2.3

Potência mecânica e tensão de campo no equilíbrio

No equilíbrio, aplicando ẋ = 0 no sistema diferencial da máquina ( sistema 1.1 ):







































0 =
E ∗F D −E

′∗
q +

�

xd − x ′d
�

I ∗d
T ′d o

0 =
P ∗m −E

′∗
q I ∗q −

�

x ′d − x ′q
�

I ∗d I ∗q
2H

0 = x ∗2

(2.13)

Onde o superescrito estrela (*) significa uma grandeza quando no equilíbrio da máquina.

Assim, nesse equilíbrio, fazendo ẋ = 0, resulta que























P ∗m = E
′∗

q I ∗q +
�

x ′d − x ′q
�

I ∗d I ∗q

E ∗F D = E
′∗

q −
�

xd − x ′d
�

I ∗d

ω∗ = 0

(2.14)

2.4

Algoritmo e aplicação no sistema em estudo

Desenvolve-se assim o algoritmo para cálculo das condições iniciais:

1. Resolver o sistema (2.8), calculando a corrente de barramento no eixo imaginário-real;

2. De posse da corrente, calcular as tensões interna e terminal através de (2.9);

3. Calcular a corrente e tensões no eixo QD do rotor da máquina, através das equações (2.12);

4. Calcular a tensão de campo e potência mecânica no equilíbrio através do sistema (2.14)

Aplicando este algoritmo ao sistema em estudo, com condição inicial ~S = P + jQ = 1+ j 0.5,

resulta a tabela 2.4 onde se encontram as variáveis do sistema no estado de equilíbrio.

Estas condições iniciais são apresentadas no diagrama da figura 3. O código em MATLAB

desenvolvido para cálculo das condições iniciais se encontra no apêndice A, seção A.1, página

149.

Na figura, são:
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Grandeza Sigla Valor (p.u.)

Tensão interna induzida ~E ′ 1.064+ j 0.3350

Componente em quadratura de ~E ′ E ′q 1.115

Tensão de campo EF D 1.519

Tensão terminal ~Vt 1.026+ j 0.09741

Componente em quadratura de ~Vt Vq 1.008

Componente em direto de ~Vt Vd −0.2152

Corrente de barramento ~I 0.9899− j 0.1583

Componente em quadratura de ~I Iq 0.8967

Componente em direto de ~I Id −0.4483

Ângulo do rotor δ 0.3051 rad

Potência mecânica inicial Pm 1.000

Tabela 2 – Tabela relacionando as variáveis do sistema em estudo no equilíbrio ~S = 1+ j 0.5.

• A corrente de barramento ~I em rosa;

• A tensão de barramento infinito em verde ~E∞;

• A tensão terminal ~V em vermelho;

• A tensão induzida ~E ′ em azul.

De imediato nota-se que todas as tensões estão avançadas à corrente de barramento, de

onde conclui-se que a máquina está sobre-excitada – ist est, opera a fator de potência indutivo. De

fato, além de a linha de transmissão ser altamente indutiva, a máquina entrega ao sistema uma

potência reativa positiva.

Depois, nota-se que a máquina trabalha como gerador, uma vez que o módulo da tensão

induzida é maior que o módulo da terminal, que por sua vez é maior que o módulo da tensão do

barramento infinito.
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Figura 3 – Diagrama das condições iniciais do sistema em estudo, explicitadas na tabela 2.4.
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CAPÍTULO 3

A Região de Factibilidade

Nota-se que o sistema (2.8) é quadrático. Logo, nem sempre tem solução, significando

necessária uma análise para determinar os valores de P , Q , rt e xt possíveis que permitem

solução das equações de fluxo de potência. Mostrar-se-á que os valores daquelas grandezas

não podem ser arbitrários. Em última instância, define-se a Região de Factibilidade, o lugar

geométrico dos pontos (P,Q ) que tornam a equação factível, e encontra-se a forma dessa região

em função dos valores de rt e xt .

3.1

Definição

Analisando o discriminante ∆ da equação (2.7) obtém-se

∆=
�

rt E 3+2xt E
�

Q rt −P xt

��2
−4

�

E 2
�

x 2
t + r 2

t

��

h
�

Q rt −P xt

�2
− rt P E 2

i

(3.1)

Agora, dividindo a equação por E 2r 4
t e fazendo z =

xt

rt
:

∆

E 2r 4
t

=

�

E 2

rt
+2z

�

Q −P z
�

�2

−4(1+ z 2)

�

(Q −P z )2−P
E 2

rt

�

=

=
E 4

r 2
t

+4
z E 2

rt

�

Q −P z
�

+���
��

��
4z 2

�

Q −P z
�2
−4

�

(Q −P z )2−P
E 2

rt

�

−���
��

��
4z 2

�

Q −P z
�2
+4P z 2 E 2

rt
=

=
E 4

r 2
t

+4
E 2

rt
z
�

Q −P z
�

−4

�

(Q −P z )2−P
E 2

rt

�

+4P z 2 E 2

rt
=

=
E 4

r 2
t

+4
E 2

rt
zQ −

�
�
�
��

4
E 2

rt
z 2P −4

�

(Q −P z )2−P
E 2

rt

�

+
�
�
�
��

4P z 2 E 2

rt
=
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=
E 4

r 2
t

+4
E 2

rt
zQ −4

�

(Q −P z )2−P
E 2

rt

�

=

=
E 4

r 2
t

+4
E 2

rt
zQ −4

�

Q 2−2zQ P +P 2z 2−P
E 2

rt

�

=

=−4P 2z 2+ z 4Q

�

E 2

rt
+2P

�

+
E 4

r 2
t

−4Q 2+
4E 2

rt
P (3.2)

Que é uma forma de enxergar a Região de Factibilidade, como uma parábola em z . Isto

quer dizer que dadas as condições iniciais desejadas ~S = P + jQ , então encontra-se a região dos

z possíveis. Desta forma é possível encontrar valores de rt e de xt que factibilizam o fluxo de

potência do sistema.

No entanto, há também outra forma de enxergar a região: como uma cônica no eixo de

Argand-Gauss
�

P, Q
�

, parametrizada por z :

∆

E 2r 4
t

=−4P 2z 2+ z 4Q

�

E 2

rt
+2P

�

+
E 4

r 2
t

−4Q 2+
4E 2

rt
P =

=−4z 2P 2+8z PQ −4Q 2+P
4E 2

rt
+Q

4z E 2

rt
+

�

E 2

rt

�2

(3.3)

É importante notar que, como rt = r + re , sendo que r corresponde à resistência equi-

valente de armadura da máquina, então rt > 0 sempre, de forma que a possibilidade rt = 0 não

precise ser considerada 1 . Logo, z existe sempre. Quer-se que, para Ir ter solução, ∆≥ 0. Assim,

define-se a Região de Factibilidade

Definição 1. A Região de Factibilidade. Sejam as equações de equilíbrio do fluxo de potência

I 2
r

�

E 2(x 2
t + r 2

t )
�

+ Ir

�

rt E 3+2 xt E (Q rt −P xt )
�

+
�

(Q rt −P xt )
2− rt P E 2

�

= 0

Ii =
P xt −Q rt

E rt
−

xt

rt
Ir

Com discriminante

∆=
�

rt E 3+2 xt E (Q rt −P xt )
�2−4

�

E 2(x 2
t + r 2

t )
� �

(Q rt −P xt )
2− rt P E 2

�

1 O que é aparentemente oximórico dado que o modelo adotado na tabela 1 possui resistência de armadura nula. De
fato, trata-se de uma incongruência, mas que foi mantida pelo bem da integridade da fonte – um artigo largamente
conhecido e utilizado, inclusive atualmente.
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Então a Região de Equilíbrio é a região do Plano de Argand-Gauss (P,Q ) para os quais

as equações tem solução, que ocorre se e somente se o discriminante for não-negativo. Trata-se

portanto do conjunto dos pontos (P,Q ) para os quais as equações de fluxo de potência têm

equilíbrio garantido, isto é, o lugar geométrico dos (P, Q ) que satisfazem

−4z 2P 2+8z PQ −4Q 2+P
4E 2

rt
+Q

4z E 2

rt
+

�

E 2

rt

�2

≥ 0 (3.4)

3.2

Identificação da Região de Factibilidade

Note-se que a equação de ∆ é na verdade uma equação de segundo grau com termo

retangular; logo, trata-se de uma cônica, quádrica ou seus equivalentes degenerados. A fim de

identificar precisamente de qual caso se trata, a seguir aplicam-se os procedimentos de Álgebra

Linear para definir afinal qual região é essa, lançando-se mão de uma rotação de eixos. A equação

é da forma

(RF ) : a P 2+ b PQ + c Q 2+d P + e Q + f ≥ 0

Denotando ~S =
�

P Q
�

,

(RF ) : S AS T +BS + f ≥ 0

Sendo as matrizes A e B :

A =







a
b

2
b

2
c






=







−4z 2 8z

2
8z

2
−4






= 4

�

−z 2 z

z −1

�

B =
�

d e
�

=
�

4E 2

rt

4z E 2

rt

�

=
4E 2

rt

�

1 z
�

Calculando os autovalores de
A

4
,

P (λ) = 0⇒

�

�

�

�

�

−z 2−λ z

z −1−λ

�

�

�

�

�

=
�

λ+ z 2
��

λ+1
�

− z 2 =
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=λ2+λ
�

1+ z 2
�

−����z 2+ z 2 =

=λ
�

λ−
�

−
�

1+ z 2
��	

= 0

∴







λ1 = 0

λ2 =−4
�

1+ z 2
�

A diagonalização de A resulta D 2:

D =

�

λ1 0

0 λ2

�

=





0 0

0 −4
�

1+ z 2
�





Encontrando os autovetores: para λ1 = 0:

A

�

x

y

�

=λ

�

x

y

�

⇒

�

−z 2 z

z −1

��

x

y

�

= 0

�

x

y

�

Assim,







−z 2 x + z y = 0

z x − y = 0

Resulta o autovetor v1 = (1, z )T , que normalizado resulta u1:

u1 =









1
p

1+ z 2

z
p

1+ z 2









(3.5)

Já para λ2 =−4
�

1+ z 2
�

:

A

�

x

y

�

=λ

�

x

y

�

⇒

�

−z 2 z

z −1

��

x

y

�

=−(1+ z 2)

�

x

y

�

Assim, obtem-se o sistema

2 Note-se que a matriz diagonal D tem determinante nulo, uma vez que A tem um autovetor nulo. Segue disso que a
equação tem a forma de uma parábola ou seus casos degenerados: uma reta ou um par de retas paralelas.
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





−z 2 x + z y =−(1+ z 2)x

z x − y =−(1+ z 2)y
⇔







x + z y = 0

z x + z 2 y = 0

Resulta o autovetor v2 = (−z , 1)T , que normalizado resulta u2:

u2 =









−
z

p
1+ z 2

1
p

1+ z 2









(3.6)

Assim, sucede uma nova base

K =
��

u1

� �

u2

��

=
1

p
1+ z 2

�

1 −z

z 1

�

Determina-se assim que a equação da região equivale a uma transformação para as

coordenadas X = (x , y ) tais que

(RF ) : X D X T +B K X T + f ≥ 0 (3.7)

∴
�

x y
�





0 0

0 −4
�

1+ z 2
�





�

x

y

�

+
�

1 z
� 4E 2

rt

r

1+ z 2

�

1 −z

z 1

��

x

y

�

+
E 4

r 2
t

≥ 0

Expandindo as matrizes,

�

x y
�





0

−4
�

1+ z 2
�

y



+
4E 2

rt

r

1+ z 2

�

1+ z 2 0
�





x

y



+

�

E 2

rt

�2

≥ 0⇔

⇔−4
�

1+ z 2
�

y 2−
4E 2

r

1+ z 2

rt
x +

�

E

rt

�2

≥ 0 (3.8)

Tem-se portanto a equação final da Região de Factibilidade, parametrizada pela razão de

impedâncias z :

(RF ) : −4
�

1+ z 2
�

y 2−
4E 2

r

1+ z 2

rt
x +

�

E

rt

�2

≥ 0 (3.9)
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Que sugere a equação de uma parábola com eixo horizontal e concavidade para a esquerda

– uma vez que o termo que multiplica y 2 é sempre negativo, qualquer que seja z (lembrando que

z é a razão de dois números reais, dos quais o denominador é positivo portanto z existe e é

inerentemente real).

A seguir, primeiramente estuda-se a transformação linear (P,Q )→ (x , y ), que corresponde

a uma rotação de eixos. Em seguida, identifica-se a região dada pela equação (3.9) e seu gráfico é

traçado.

3.3

Estudo do ângulo de rotação dos eixos

A transformação linear realizada, que leva a equação (3.4) à equação (3.9), corresponde a

uma rotação de eixos no sentido anti-horário e na magnitude do ângulo θ . A figura 4 depicta o

ângulo θ em função da razão z . Este ângulo corresponde à rotação da nova base K com relação

ao eixo PQ , ou seja, o argumento do vetor u1, de onde

cos(θ ) =
1

p
1+ z 2

sin(θ ) =
z

p
1+ z 2















⇔ tan(θ ) = z ⇔ θ = atan (z ) (3.10)

Lembra-se que os eixos (P,Q ) e (x , y ) relacionam-se através das equações

�

x

y

�

=

R (θ )
︷ ︸︸ ︷

�

cos(θ ) −sin(θ )

sin(θ ) cos(θ )

��

P

Q

�

⇔ (3.11)

⇔

�

P

Q

�

=

�

cos(θ ) sin(θ )

−sin(θ ) cos(θ )

�

︸ ︷︷ ︸

R (−θ ) = R−1(θ )

�

x

y

�

Onde R (θ ) é a matriz rotação de magnitude θ . Um fato a se denotar é que z quase

sempre será um positivo maior que um, implicando na terceira condição de θ (z ). Isso porque

as resistências de linha e armadura são pequenas se comparadas às impedâncias de eixo e de

linha, de forma que o módulo de z seja alto; além disso, tais impedâncias serão quase sempre

indutivas, e z será quase sempre positivo. Em outras palavras, como a linha de transmissão tem

característica primordialmente indutiva, e sendo z a razão da parte indutiva da sua impedância

pela parte resistiva, segue que esta quantidade é grande. Tem-se portanto que z será, na maioria

dos casos, um positivo de alto valor.
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Figura 4 – Gráfico do ângulo de rotação θ em função do parâmetro z .

Assim, a rotação quase sempre será de um ângulo muito próximo de um quarto de volta.

Conclui-se que, no eixo PQ , a região será uma parábola com eixo aproximadamente vertical, uma

vez que em x y ela tem concavidade para a esquerda e, após rotacionada de aproximadamente

metade de π, terá concavidade para cima.

É importante notar que fazendo a Série de Laurent da função arctan(.) em x =∞ então

θ = arctan(z ) =
π

2
+
∞
∑

n=1

(−1)n

n !x n
≈
π

2
−

1

x
(3.12)

Que é uma aproximação muito útil em cálculos exaustivos de fluxos de potência.

3.4

Redução à forma canônica: cálculo do vértice e do foco

Analisando a equação da Região (3.9), reduz-se à forma canônica da parábola. Sabe-se

que

a y 2+ b x + c y +d = a
�

y 2+
b

a
x +

c

a
y +

d

a

�

= a
�

�

y +
c

2a

�2

−
� c

2a

�2

+
b

a
x +

d

a

�

=
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= a
�

y +
c

2a

�2

−
c 2

4a
+ b x +d = a

�

y +
c

2a

�2

+ b

�

x +
d

b
−

c 2

4a b

�

Assim,

(RF ) :
�

y +
c

2a

�2

+
b

a

�

x +
d

b
−

c 2

4a b

�

≥ 0 (3.13)

Relembra-se a forma canônica da parábola:

�

y − y0

�2
−2p (x − x0)≡

�

y +
c

2a

�2

+
b

a

�

x +
d

b
−

c 2

4a b

�

⇔

⇔



























































y0 =−
c

2a
= 0

x0 =−
d

b
+

c 2

4a b
=

�

E 2

rt

�2
rt

4E 2

r

1+ z 2

=
E 2

4rt

r

1+ z 2

p =−
b

2a
=−

4E 2
r

1+ z 2

8rt

�

1+ z 2
� =−

E 2

2rt

r

1+ z 2

(3.14)

∴
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





















P0 = x0 cos(θ )− y0 sin(θ ) =
1

r

1+ z 2

E 2

4rt

r

1+ z 2

=
E 2

4rt

�

1+ z 2
�

Q0 = x0 sin(θ ) + y0 cos(θ ) =−
z

r

1+ z 2

E 2

4rt

r

1+ z 2

=−
z E 2

4rt

�

1+ z 2
�

(3.15)

Onde
�

x0, y0

�

é o vértice da parábola e p o seu parâmetro, isto é, a distância do foco

ao vértice, que corresponde à distância do vértice à geratriz. Notadamente, a parábola tem

concavidade para a esquerda sempre porque p < 0. Note-se também que a equação inclui a

igualdade, significando que a região compreende o interior da parábola e a própria.

Quando a parábola for rotacionada de −θ , para ir do eixo XY ao PQ, então também

rotacionado será o vértice da parábola, que no PQ tem a forma
�

P0,Q0

�

:

Como θ ≈ π
2 , a parábola no eixo PQ terá eixo quase vertical, significando que o vértice

(P0,Q0) será muito próximo do ponto de menor potência reativa que a máquina pode entregar ao

sistema.

Calcula-se também o foco da parábola:
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





















yF = y0

xF = x0+p =
E 2

4rt

r

1+ z 2

−
E 2

2rt

r

1+ z 2

=−
E 2

4rt

r

1+ z 2

(3.16)

∴
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
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







PF = xF cos(θ )− yF sin(θ ) =−
E 2

4rt

�

1+ z 2
�

QF = xF sin(θ ) + yF cos(θ ) =
z E 2

4rt

�

1+ z 2
�

(3.17)

Observa-se que o foco e o vértice da parábola são opostos.

3.5

Ponto de mínima potência reativa

Dado que o ângulo de rotação θ é próximo de π
2 , decorre que a parábola que representa a

Região de Factibilidade é quase vertical, mas não completamente. Isso significa que o vértice da

parábola apenas aproxima o ponto mais baixo possível; trata-se de um ponto de interesse porque

representa a menor potência reativa possível em regime permanente. Em que pese tratar-se do

ponto mais baixo da parábola, representa na verdade o maior valor de potência reativa que a

máquina pode receber do barramento infinito em regime permanente.

Derivando a equação da parábola (a igualdade da inequação 3.4) com relação a P :

−8z 2P +8z
�

Q +P
dQ

d P

�

−8Q
dQ

d P
+

4E 2

rt
+

dQ

d P

4z E 2

rt
= 0 (3.18)

Aplicando
dQ

d P
= 0 e chamando de

�

Pmi n ,Qmi n

�

o ponto de mínima potência reativa:

−2z 2Pmi n +2zQmi n +
E 2

rt
= 0⇔ Pmi n =

Qmi n

z
+

E 2

2z 2rt
(3.19)

Agora utilizando esta na equação da parábola:

−4z 2

�

Q

z
+

E 2

2z 2rt

�2

+8zQ

�

Q

z
+

E 2

2z 2rt

�

−4Q 2+

�

Q

z
+

E 2

2z 2rt

�

4E 2

rt
+Q

4z E 2

rt
+

�

E 2

rt

�2

= 0⇔
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2z 2rt
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+
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+

E 2

2z 2rt

�

4E 2

rt
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4Q rt
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+Q
4z rt
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+1= 0⇔

4Q rt

E 2

�
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E 2

z 2+1

z
+

z 2+1

z 2
= 0 (3.20)

∴























Qmi n =−
E 2

4rt z
=−

E 2

4xt

Pmi n =
E 2

2z 2

�

1

2xt
−

1

rt

�

(3.21)

3.6

Algoritmo e aplicação ao sistema em estudo

Desenvolve-se assim o algoritmo com o fim de traçar a Região de Factibilidade do sistema:

1. Calcula-se z =
xt

rt

2. Calcula-se θ (z ) = atan (z ):

3. Traçar a Região de Factibilidade no eixo XY, segundo a equação

(RF ) : −4
�

1+ z 2
�

y 2−
4E 2

r

1+ z 2

rt
x +

�

E

rt

�2

≥ 0

4. Rotacionar o eixo XY de −θ , obtendo a região no eixo PQ;

5. Calcular P0 e Q0.

Aplicando este algoritmo para o sistema em estudo (tabela 1), no equilíbrio ~S = 1+ j 0.5,

provém a tabela 3, que relaciona os parâmetros da Região de Factibilidade para este sistema em

estudo. A figura 5 mostra a Região, bem como os pontos e parâmetros da tabela.
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Equação da Região de Factibilidade

−y 2−2.939905160189274x +2.160760587726880≥ 0

Grandeza Sigla Valor

Razão de impedâncias z 34

Ângulo de rotação θ 0.490640642678354π

Vértice da parábola (P0,Q0)
�

0.02160760588,−0.73465859983
�

Ponto de mínima potência reativa (Pmi n ,Qmi n ) (−0.04261652757,−0.73529411764)

Parâmetro da parábola p −1.469952580094637

Foco da parábola (PF ,QF )
�

−0.02160760588, 0.73465859983
�

Tabela 3 – Tabela relacionando os parâmetros da Região de Factibilidade do sistema em estudo
aplicando-se o algoritmo desenvolvido.

Como discutido, o ângulo de rotação θ é próximo de π
2 , imprimindo sobre a parábola uma

quase verticalidade; para constatá-la, traçou-se o eixo da parábola em laranja, sobre o qual jaz

o foco da parábola (em amarelo). É interessante notar que como o vértice e o foco são pontos

opostos, o eixo cruza a origem. Além disso, o vértice (ponto vermelho) é muito próximo do ponto

de menor potência reativa (ponto roxo).

Também nota-se que, sendo praticamente vertical, a parábola é quase simétrica no eixo

das ordenadas, significando que o mesmo modelo de máquina pode ser utilizado como motor

síncrono (potência P negativa, isto é, a máquina recebe potência do barramento) ou como gerador

(P positivo). Ademais, a máquina também pode trabalhar recebendo potência reativa do barramento

(Q negativo) até o limite Qmi n .
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Figura 5 – Região de Factibilidade do sistema OMIB em estudo (tabela 1), hachurada, cujos
parâmetros são dados na tabela 3. Em vermelho, o vértice da parábola; em laranja, o
seu eixo; em verde, o ponto ~S = 1+ j 0.5; em roxo, o ponto de mínima potência reativa;
em amarelo, o foco da parábola.
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Comportamento dinâmico do sistema OMIB
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CAPÍTULO 4

EADs do sistema sem controladores

4.1

Descrição da metodologia de simulação do sistema

A primeira parte desta monografia concentrou-se em caracterizar o sistema no seu equi-

líbrio, lançando mão de análises conhecidas tais como análise de circuito, balanço do fluxo de

potência e caracterização da Região de Factibilidade do sistema. O objetivo foi descrever o

sistema e desenvolver as equações do seu equilíbrio. É natural, portanto, que siga disso uma

análise do sistema em regime transítório, quer dizer, estudar o comportamento do sistema frente a

perturbação.

É doravante mister para o objetivo final do trabalho desenvolver programas de simulação do

sistema, porque o traçado das estimativas da Região de Estabilidade do sistema será feito através

do método Força-Bruta – que exige a simulação repetida do sistema – necessitando portanto

programas simulatórios eficientes.

Nesta parte, estudar-se-á o comportamento do sistema OMIB em condição transitória,

complementando a parte anterior na qual estudou-se o comportamento de equilíbrio do sistema.

O objetivo primário é, a partir do sistema de equações diferenciais em malha aberta, deduzir as

equações diferenciais (EADs) do sistema quando controlado apenas por controlador do tipo AVR

(Automatic Voltage Regulator ), e também do sistema controlado por AVR e PSS (Power System

Stabilizer ), o qual pode ser equipado com saturadores (“sistema saturado”) ou não (“sistema livre”).

Depois constroem-se os programas de simulação do sistema a partir das EADs desenvolvidas.

Também são deduzidas, a partir das equações do circuito da figura 1, as equações da

tensão terminal da máquina e das correntes de barramento em função das variáveis de estado.

Outrossim, o sistema será caracterizado através de equações algébrico-diferenciais (EADs), da

forma do sistema (4.1):
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










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

ẋ = f
�

x , y , t
�

y = g (x , t )

I = SV

(4.1)

A primeira equação do sistema resume-se nas equações diferenciais da máquina (1.1).

A segunda depicta as equações algébricas do sistema, que relacionam as variáveis de estado –

como por exemplo a tensão terminal Vt de equação (5.7). A terceira, por sua vez, trata da equação

de interface entre a máquina e a rede externa.

Dado que o sistema diferencial da máquina já foi obtido, esta parte se concentra em deduzir

as duas últimas equações, que consistem basicamente na obtenção das correntes de barramento

e da tensão terminal da máquina como funções das variáveis de estado, e acoplar estas equações

algébricas no sistema diferencial representado pela primeira equação.

Atenção especial deve ser dada ao fato que uma extensa manipulação algébrica é feita em

virtude de as variáveis de estado serem dadas no eixo QD da máquina, enquanto as equações

são obtidas (em primeiro momento) no eixo real-imaginário. Em outras palavras, obter as tensões

e correntes do sistema em função das variáveis de estado perpassa uma rotação de ângulo, o

ângulo do rotor com relação ao eixo real-imaginário, resultando em contas e expressões extensas.

Primeiramente, o sistema será caracterizado em malha aberta, sem controladores, e

deduzir-se-ão as correntes de barramento como função das variáveis de estado. Em seguida,

de posse da equação que caracteriza o AVR, este será introduzido e as equações do sistema

controlado serão apresentadas. O sistema controlado por AVR será simulado sob perturbação.

Então será introduzido o controlador PSS, as equações do sistema AVR+PSS serão deduzidas e

simuladas. Finalmente, serão introduzidos saturadores; adaptar-se-ão as equações do sistema

livre para obtê-las referentes ao sistema saturado.

O modelo de perturbação adotado será um degrau na potência mecânica, de amplitude

∆P = 0.1.

Em seguida, de posse dos sistemas algébrico-diferenciais, na próxima parte serão ana-

lisados aspectos de estabilidade do sistema, como região de estabilidade e o surgimento de

bifurcações e de ciclos-limite (órbitas periódicas), e a modificação da região de estabilidade do

sistema em função do uso de saturadores.

4.2

Equações diferenciais da máquina em malha aberta

A máquina em malha aberta é regida segundo o sistema diferencial:
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ẋ1 =
x4− x1+ (xd − x ′d )Id

T ′d o

ẋ2 =
Pm − x1Iq + (x ′d − x ′q ) Id Iq

2H

ẋ3 = x2

ẋ4 = 0

(4.2)

Sendo:

• E ′q = x1 a componente de quadratura da tensão interna induzida ~E ′;

• ω= x2 a velocidade angular do rotor com relação ao eixo QD;

• δ= x3 o ângulo do rotor com relação do eixo QD;

• EF D = x4 a tensão no enrolamento de campo, que no sistema em malha aberta é constante

e igual ao valor inicial;

• Pm a potência mecânica admitida do elemento motriz, variante no tempo e não controlável.

A despeito de quarta equação do sistema diferencial ser redundante – uma vez que se

poderia adicionar uma quarta constante EF D – adicionou-se-a para reiterar que, quando sem

controladores, a tensão de campo EF D da máquina é constante e igual ao valor em equilíbrio

calculado através das equações de fluxo de potência ao passo que, no sistema AVR, a tensão de

campo é uma variável de estado e no sistema AVR+PSS trata-se de uma função de variáveis de

estado.

4.3

Equações algébricas das componentes da corrente de barramento

Iq e Id são as componentes no eixo QD da corrente de barramento, calculadas através

das componentes no eixo complexo Ir e Ii

~I = Ir + j Ii =
~E ′− ~E

(r + re ) + j (x ′q + xe )
=
~E ′− ~E

rt + j xt
(4.3)

Mas de posse da igualdade ~E ′ = E ′q e jδ = x1e j x3 obtem-se:
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~I =
x1

�

cos(x3) + j sin(x3)
�

− ~E

rt + j xt
=

=

¦

x1

�

cos(x3) + j sin(x3)
�

−E
©

�

rt − j xt

�

r 2
t + x 2

t

=

=

¦�

x1 cos(x3)−E
�

+ j
�

x1 sin(x3)
�©

�

rt − j xt

�

r 2
t + x 2

t

=

=

�

x1 cos(x3)−E
�

rt + x1 sin(x3)xt

r 2
t + x 2

t

+ j
x1 sin(x3)rt −

�

x1 cos(x3)−E
�

xt

r 2
t + x 2

t

(4.4)

De onde

Ir =

�

x1 cos(x3)−E
�

rt + x1 sin(x3)xt

r 2
t + x 2

t

Ii =
x1 sin(x3)rt −

�

x1 cos(x3)−E
�

xt

r 2
t + x 2

t

Fazendo as projeções em termos do eixo QD:

Iq = ~I · ~Q

Id = ~I · ~D

E sabendo-se que ~Q = cos(δ) + j sin(δ) e ~D =−sin(δ) + j cos(δ):

�

Iq

Id

�

=R (δ)

�

Ir

Ii

�

⇔







Iq = Ir cos(δ) + Ii sin(δ)

Id =−Ir sin(δ) + Ii cos(δ)

O sistema se traduz numa mudança de base na forma de translação. Assim,

Iq =
x1rt −E

�

rt cos(x3)− xt sin(x3)
�

r 2
t + x 2

t

Id =
E
�

rt sin(x3) + xt cos(x3)
�

− x1 xt

r 2
t + x 2

t
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Denotando a impedância total como

~X = X φ⇔











X =
Æ

r 2
t + x 2

t

tan(φ) =
xt

rt

(4.5)

Escrevem-se assim Iq e Id em função de x1 e x3, para utilizar estas equações no sistema

diferencial 4.2:

Iq =
x1 cos(φ)−E

�

cos(φ)cos(x3)− sin(φ)sin(x3)
�

X
=

=
x1 cos(φ)−E cos(x3+φ)

X
(4.6)

Id =
E
�

cos(φ)sin(x3) + sin(φ)cos(x3)
�

− x1 sin(φ)

X
=

=
E sin(x3+φ)− x1 sin(φ)

X
(4.7)

4.4

Sistema algébrico-diferencial e simulação

Obtém-se assim as equações que definem o sistema em malha aberta. Denotou-se as

funções algébricas em negrito.















































ẋ1 =
x4− x1+ (xd − x ′d )Id

T ′d o

ẋ2 =
Pm − x1Iq+ (x ′d − x ′q ) IdIq

2H

ẋ3 = x2

ẋ4 = 0

(4.8)

Iq =
x1 cos(φ)−E cos(x3+φ)

X
(4.9)

Id =
E sin(x3+φ)− x1 sin(φ)

X
(4.10)
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A simulação dinâmica do sistema em malha aberta ante perturbação resulta os gráficos da

figura 6. O programa de simulação encontra-se no apêndice A, seção A.3, página 151.

Sob análise desta figura, conclui-se que o sistema em malha aberta possui três problemas.

O primeiro, que refere-se à baixa regulação das tensões do sistema, quer dizer, ao fato de o erro

de regime permanente das tensões ser muito grande; o segundo, que o tempo de acomodação é

muito alto, cerca de cinco minutos, infactível para a maioria dos sistemas elétricos de potência;

finalmente o terceiro, que as amplitudes das oscilações são demasiado grandes.

O primeiro problema será endereçado com a introdução do AVR, um controlador desenhado

especificamente para melhorar a regulação de tensão do sistema. Os dois últimos problemas serão

sanados com a subsequente introdução do PSS, cujo objetivo é responder dinamicamente às

variações da frequência angular ω.
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Figura 6 – Gráficos gerados na simulação dinâmica do sistema em malha aberta ante perturbação.
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CAPÍTULO 5

EADs do sistema controlado por AVR

A introdução do AVR procura aumentar a regulação das tensões no sistema, que é

esquematizado no diagrama de blocos da figura 7.

Frise-se que o objetivo do AVR é apenas melhorar aquela regulação de tensões do sistema;

os outros dois problemas (altas amplitudes de oscilações e alto tempo de acomodação) não são

endereçados por este controlador. Em verdade, não apenas o AVR não endereça estes problemas

como também pode amplificá-los; como desenvolvido na Parte IV desta monografia, o sistema

controlado por AVR tende a instabilizar com ganhos Ke suficientemente altos.

Pm

OMIB

EFD

E'q

Vt

Vt0

Pm0

Pm

Ke

sTe+1

EFD0

Figura 7 – Diagrama esquemático de blocos do sistema controlado por AVR.

5.1
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Controle automático de tensão (AVR)

Um AVR (Automatic Voltage Regulator ) é um dispositivo que ajusta a tensão no enrola-

mento de campo da máquina com o objetivo de regular a tensão terminal | ~Vt |, denotada apenas

por Vt . Sua lei de controle é dada por

∆EF D

∆Vt
=−

Ke

s Te +1
(5.1)

Onde o operador ∆ denota a diferença entre o valor atual de uma grandeza e o valor da

mesma grandeza no ponto de operação. Transformando a equação (5.1) para o domínio do tempo,

tem-se a lei de controle do AVR em forma diferencial:

˙EF D =−
Ke (Vt −Vt 0) + (EF D −EF D 0)

Te
(5.2)

Para se poder implementar a lei de controle é necessário obter a relação da tensão terminal

com as variáveis de estado. Como ~Vt é função do divisor de tensões entre ~E ′ e ~E , obtém-se

aquela tensão como função destas duas e das impedâncias:

~Vt = ~E + ( ~E ′q − ~E )×
re + j xe

(r + re ) + j (x ′d + xe )
(5.3)

Denotando

~Z = re + j xe = Z α (5.4)

~X =

rt
︷ ︸︸ ︷

(r + re )+ j

xt
︷ ︸︸ ︷

(x ′q + xe ) = X φ (5.5)

Então

Vt =
�

� ~V
�

�=

=

�

�

�

�

E +
¦

x1

�

cos(x3) + j sin(x3)
�

−E
© re + j xe

(r + re ) + j (x ′d + xe )

�

�

�

�

=

=
�

�E +
�

[x1 cos(x3)−E ] + j x1 sin(x3)
	 �

KR + j KI

��

�= (5.6)

=
�

�

�

�

(x1 cos(x3)−E )KR − x1KI sin(x3) +E
�

+ j
�

(x1 cos(x3)−E )KI + x1KR sin(x3)
�

�

�

�=

=

s

�

(x1 cos(x3)−E )KR − x1KI sin(x3) +E
�2
+
�

(x1 cos(x3)−E )KI + x1KR sin(x3)
�2
=
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=
r

�

(x1 cos(x3)−E )2+ (x1 sin(x3))
2
�

�

K 2
I +K 2

R

�

+2E
�

(x1 cos(x3)−E )KR − x1KI sin(x3)
�

+E 2 =

=

√

√

√

�

x 2
1 −2E x1 cos(x3) +E 2

�

�

Z

X

�2

+2E
�

(x1 cos(x3)−E )KR − x1KI sin(x3)
�

+E 2 =

=

√

√

√

�

x 2
1 −2E x1 cos(x3) +E 2

�

�

Z

X

�2

+2E
Z

X

�

x1 cos(x3+α−φ)−E cos(α−φ)
�

+E 2 (5.7)

Por outro lado, a mesma equação pode ser deduzida a partir das equações da máquina.

Sabendo que

~Vt = ~E ′+
�

r + j x ′q
�

~I = x1e j x3 +
�

r + j x ′q
�

�

Iq + j Id

�

(5.8)

Substituindo as equações de Iq (4.9) e Id (4.10) e tomando o módulo deve-se chegar na

mesma expressão de (5.7).

5.2

Sistema diferencial e simulação

Assim, adiciona-se o controle AVR ao reescrever a quarta equação do sistema 4.2 como

ẋ4 =−
Ke (Vt −Vt 0) + (x4−EF D 0)

Te

O sistema controlado por apenas um controlador AVR será descrito então por



















































ẋ1 =
x4− x1+ (xd − x ′d )Id

T ′d o

ẋ2 =
Pm − x1Iq + (x ′d − x ′q ) IdIq

2H

ẋ3 = x2

ẋ4 =−
Ke (Vt−Vt 0) + (x4−EF D 0)

Te

(5.9)

Vt =

√

√
�

x 2
1 −2E x1 cos(x3) +E 2

�

�

Z

X

�2

+2E
Z

X

�

x1 cos(x3+α−φ)−E cos(α−φ)
�

+E 2 (5.10)

Iq =
x1 cos(φ)−E cos(x3+φ)

X
(5.11)
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Id =
E sin(x3+φ)− x1 sin(φ)

X
(5.12)

Simulando estas EADs sob perturbação obtém-se a figura 8. O programa de simulação em

MATLAB se encontra no apêndice A, seção A.4, página 155. Os valores escolhidos de Ke e Te

são fruto de sintonia do controlador AVR, que consta no apêndice D. As escolhas em específico

constam na seção D.5, na página 230.

De fato, o sistema AVR tem uma melhor regulação de tensão do que o sistema em malha

aberta, dado que os erros de regime permanente das tensõe E ′q e Vt são menores. Além disso, o

sistema controlado é levemente mais lento (isto é, tem tempos de acomodação levemente maiores)

e as amplitudes das oscilações são um pouco maiores.

Após uma análise minunciosa do comportamento do sistema, conclui-se que a primeira

reação da máquina à perturbação é a queda da tensão interna E ′q , levando a uma conseguinte

queda de Vt . No sistema em malha aberta, o barramento infinito é responsável por corrigir as

oscilações; já no sistema controlado, além da função regulatória do barramento infinito, assim que

a tensão Vt sofre queda, o controlador age aumentando EF D , regulando Vt .



5.2. Sistema diferencial e simulação 67

C
o

m
 c

o
n

tro
la

d
o

r

1
.1

8
2

1
.1

8

1
.1

7
8

1
.1

7
6

1
.1

7
4

1
.1

7
2

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

E
'

0
.0

4

0
.0

20

-0
.0

2

-0
.0

4

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

E
F

D

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

0
.3

6

0
.3

4

0
.3

2

0
.3

0
.2

8

1
.8

1
.7

9
5

1
.7

9

1
.7

8
5

1
.7

8

1
.7

7
5

1
.7

7

1
.0

4
4

1
.0

4
2

1
.0

4

1
.0

3
8

1
.0

3
6

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

C
o

m
p

o
rta

m
e

n
to

 tra
n

sitó
rio

 d
o

s siste
m

a
s c

o
n

tro
la

d
o

 p
o

r A
V

R
 e

 e
m

 m
a

lh
a

 a
b

e
rta

S
e

m
 c

o
n

tro
la

d
o

r

C
o

m
 c

o
n

tro
la

d
o

r
S

e
m

 c
o

n
tro

la
d

o
r

V
t

Figura 8 – Gráficos do comportamento dinâmico do sistema controlado por AVR e do sistema em
malha aberta após perturbação.
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CAPÍTULO 6

EADs do sistema controlado por AVR e PSS

O problema da baixa regulação de tensão no sistema foi endereçado pelo AVR; no entanto,

este controlador não diminui os tempos de acomodação, tanto menos diminui as amplitudes das

oscilações do sistema. Para remeter-se a estes problemas insere-se no sistema o controlador do

tipo Power System Stabilizer, que ajusta a tensão de campo EF D segundo a performance dinâmica

do sistema através das variações da frequência angular do rotor, potência elétrica gerada, tensão

interna e afins. A figura 9 mostra o diagrama de blocos do sistema controlado por AVR e PSS sem

saturadores.

Dentre todos os modelos de PSS disponíveis, nesta monografia adotou-se o PSS1A,

descrito no IEEE Standard 421.5 de 2005, segundo o qual adiciona-se uma componente VP SS na

tensão de excitação EF D :

VP SS

∆ω
=
�

1

s TT +1

�

×KP SS

�

s Tw

s Tw +1

�

×
�

s T1+1

s T2+1

�

(6.1)

Onde

• O tempo TT modela a constante de tempo de um transdutor. Supôs-se que o transdutor é

perfeito e que, portanto, TT = 0 s ;

• A constante KP SS é o ganho do controlador PSS;

• O segundo fator Tw corresponde ao washout ;

• O terceiro fator é um compensador de avanço-atraso, para ajustar a resposta em frequência

e margens de estabilidade do controlador;

A tensão de campo deixa de ser uma variável de estado e passa a adicionar uma equação

algébrica: EF D =VP SS +VAV R +EF D 0.
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Pm0

Pm

Pm

OMIB

EFD

E'q

Vt

Vt0

EFD0

Ke

sTe+1

sT + 11

sT + 12

sT w
sT + 1w

KPSS

VPSS

VAVR

Lead-Lag Washout

Figura 9 – Diagrama esquemático de blocos do sistema controlado por AVR e PSS sem saturado-
res.

6.1

Dedução das EADs do sistema

Passando a lei de controle do PSS (6.1) para o domínio do tempo:

Tw KP SS

�

T1

d 2w

d t 2
+

d w

d t

�

=VP SS + (Tw +T2)
d VP SS

d t
+Tw T2

d 2VP SS

d t 2
(6.2)

Observe-se que os termos ω̇ e ω̈ podem ser retirados da equação de swing, que corres-

ponde à segunda equação do sistema de equações diferenciais da máquina (sistema (4.2)), como

será feito abaixo. Já para o AVR, da equação (5.2):

d VAV R

d t
=−

Ke (Vt −Vt 0) + (EF D −EF D 0)
Te

(6.3)

Inserem-se novas variáveis de estado para os controladores:
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













x4 =VP SS

x5 = ˙VP SS

x6 =VAV R

(6.4)

As equações de ẋ4 e de ẋ6 já são conhecidas, a saber,















ẋ4 = x5

ẋ6 =−
Ke (Vt −Vt 0) + (x4+ x6)

Te

(6.5)

Já a equação de ẋ5 será obtida através de (6.2):

Tw KP SS (T1 ẍ2+ ẋ2)− x4− (Tw +T2) x5 = Tw T2 ẋ5 (6.6)

∴ ẋ5 =
Tw KP SS (T1 ẍ2+ ẋ2)− x4− (Tw +T2)x5

Tw T2
(6.7)

Precisa-se saber a expressão de ẍ2 (uma vez que já se possui a equação de ẋ2 pois é uma

das equações do espaço de estado). Sabemos que, pela segunda equação do sistema diferencial

(sistema 4.2),

ẋ2 =
Pm − x1Iq − (x ′d − x ′q )Id Iq

2H

∴ ẍ2 =
Ṗm −

�

x1 İq + ẋ1Iq

�

− (x ′d − x ′q )
�

Iq İd + Id İq

�

2H
=

=
Ṗm −

�

x1 İq +

�

(x4+ x6+EF D 0)− x1+ (xd − x ′d )Id

T ′d o

�

Iq

�

− (x ′d − x ′q )
�

Iq İd + Id İq

�

2H
(6.8)

Observe-se que, como Pm é um degrau no tempo da forma Pm (t ) = Pm0+∆Pm u (t − tP ),

onde Pm0 é o valor no ponto de operação inicial da potência mecânica, ∆Pm é a amplitude do

degrau na potência mecânica e tp é o instante de tempo em que esse degrau ocorre, então Ṗm

tem a forma de um impulso:

Ṗm =∆Pm δ(t − tP )
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Agora deduzam-se as expressões das derivadas das correntes. Das equações (4.9) e

(4.10):

Iq =
x1 cos(φ)−E cos(x3+φ)

X

Id =
E sin(x3+φ)− x1 sin(φ)

X

Onde ~X = (r + re ) + j (x ′q + xe ) = X e jφ. Relembrando que x2 = ẋ3, resulta

İq =
ẋ1 cos(φ) + x2E sin(x3+φ)

X
(6.9)

İd =
x2E cos(x3+φ)− ẋ1 sin(φ)

X
(6.10)

Mas a expressão de ẋ1 é conhecida, de onde

İq =

�

(x4+ x6+EF D 0)− x1+ (xd − x ′d )Id

�

cos(φ) + x2T ′d o E sin(x3+φ)

T ′d o X
(6.11)

İd =
x2T ′d o E cos(x3+φ)−

�

(x4+ x6+EF D 0)− x1+ (xd − x ′d )Id

�

sin(φ)

T ′d o X
(6.12)

6.2

EADs do sistema controlado por AVR e PSS sem saturadores

Finalmente, o sistema em malha fechada com o controlador AVR+PSS é regido pelas

equações algébrico-diferenciais abaixo:
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










































































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ẋ1 =
EFD− x1+ (xd − x ′d )Id

T ′d o

ẋ2 =
Pm − x1Iq− (x ′d − x ′q ) Id Iq

2H

ẋ3 = x2

ẋ4 = x5

ẋ5 =
Tw KP SS (T1ẍ2+ ẋ2)− x4− (Tw +T2)x5

Tw T2

ẋ6 =−
Ke (Vt−Vt 0) + (EFD−EF D 0)

Te

Iq =
x1 cos(φ)−E cos(x3+φ)

X

EFD = x4+ x6+EF D 0

Id =
E sin(x3+φ)− x1 sin(φ)

X

İq =

�

EFD− x1+ (xd − x ′d )Id

�

cos(φ) + x2T ′d o E sin(x3+φ)

X T ′d o

İd =
x2T ′d o E cos(x3+φ)−

�

EFD− x1+ (xd − x ′d )Id

�

sin(φ)

X T ′d o

ẍ2 =
Ṗm −

�

x1İq+

�

EFD− x1+ (xd − x ′d )Id

T ′d o

�

Iq

�

− (x ′d − x ′q )
�

Iqİd+ Idİq

�

2H

Vt =

√

√
�

x 2
1 −2E x1 cos(x3) +E 2

�

�

Z

X

�2

+2E
Z

X

�

x1 cos(x3+α−φ)−E cos(α−φ)
�

+E 2

Com as impedâncias ~Z e ~X sendo

~Z = re + j xe = Z e jα (6.13)

~X = (r + re ) + j (x ′q + xe ) = X e jφ (6.14)
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E Ke , Te , Tw , T1, T2, KP SS sendo constantes referentes aos controladores. A simulação deste

sistema se dará junto com a do próximo, no qual se introduzirão saturadores.

6.3

EADs do sistema controlado por AVR e PSS com saturadores

Para prevenir sobre-excitação do sistema, bem como prevenir oscilações de tensão de

grande amplitude, introduzem-se saturadores em lugares específicos dos controladores. Neste

trabalho, os saturadores serão introduzidos em dois pontos do sistema: primeiramente, na tensão

de campo EF D e, depois, na saída do PSS VP SS , gerando a figura 10 a partir de 9:

Pm0

Pm

Pm

OMIB

EFD

E'q

Vt

Vt0

EFD0

Ke

sTe+1

sT + 11

sT + 12

sT w
sT + 1w

KPSS

VPSS

VAVR

Lead-Lag Washout

Figura 10 – Diagrama esquemático de blocos do sistema controlado por AVR e PSS com satura-
dores.

6.3.1 A função saturação S (x )

A função saturação será implementada como segue:

S (x , xma x , xmi n ) =R (x − xmi n )−R (x − xma x ) + xmi n (6.15)
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Onde:

• x é a variável a ser ceifada;

• xma x é o máximo valor que x pode assumir;

• xmi n é o máximo valor que x pode assumir;

• R (x ) é a função rampa, descrita como

R (x ) = x u (x ) (6.16)

Onde u (x ) é a função degrau de Heaviside. Para que R (x ) seja contínua, então define-se

R (0) = 0.

É importante salientar que há várias formas de se implementar a função saturação; por

exemplo, se poderia adotar

S (x ) =











xma x , s e x ≥ xma x

x , s e xmi n ≤ x ≤ xma x

xmi n , s e x ≤ xmi n

(6.17)

R (x ) =

¨

x , s e x ≥ 0

0, s e x < 0
(6.18)

Decidiu-se adotar R (x ), escrita em termos de u (x ) como em (6.16) e S (x ) como em

(6.15) porque a resolução de equações diferenciais do MATLAB (quer dizer, o comando solver )

funciona através de variáveis simbólicas, e a função condicional “if” não pode ser implementada

para este tipo de variáveis – rendendo a definição mais usual imprópria. Logo, a função S (x ) deve

ser definida segundo rotinas com as quais a plataforma numérica consiga trabalhar, como por

exemplo a função rampa.

6.3.2 Derivação da função S (x )

No capítulo sobre Estudos em Estabilidade, será deduzida a matriz jacobiana do sistema.

Para tanto, será preciso deduzir a derivada da função saturação, o que será feito nesta seção.

Primeiramente,

R (x ) =

∫ x

−∞
u (t )d t ⇔

d R (x )
d x

= u (x ) (6.19)
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Pela Regra da Cadeia,

d

d x
S (x ) =

d R (x − xmi n )
d (x − xmi n )

d (x − xmi n )
d x

−
d R (x − xma x )
d (x − xma x )

d (x − xma x )
d x

=

= u (x − xmi n )−u (x − xma x ) (6.20)

Que é a função chamada Boxcar, função pulso, ou função retangular, de amplitude unitária,

largura xma x − xmi n e cuja subida ocorre em xmi n :

d

d x
S (x ) =

xma x
∏

xmi n

(x ) (6.21)

As funções S (x ) e S ′(x ) estão traçadas na figura 11.
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0

1

Figura 11 – Traçados da função S (x ) e sua derivada função pulso.
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6.3.3 Sistema de equações e simulação

Finalmente, obtém-se um novo sistema de equações que incorpora a função saturação.
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
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



















ẋ1 =
E sat

F D − x1+ (xd − x ′d )Id

T ′d o

ẋ2 =
Pm − x1Iq− (x ′d − x ′q ) Id Iq

2H

ẋ3 = x2

ẋ4 = x5

ẋ5 =
Tw KP SS (T1ẍ2+ ẋ2)− x4− (Tw +T2)x5

Tw T2

ẋ6 =−
Ke (Vt−Vt 0) +

�

E sat
F D −EF D 0

�

Te

(6.22)

Denotam-se as funções saturadas x sat
4 e E sat

F D :

x sat
4 = S

�

x4, V ma x
P SS , V mi n

P SS

�

(6.23)

E sat
F D = S

�

x sat
4 + x6+EF D 0, E ma x

F D , E mi n
F D

�

(6.24)

Têm-se as equações algébricas herdadas do sistema sem saturação, mas substituindo as

variáveis antes não saturadas para suas versões com saturação:

Iq =
x1 cos(φ)−E cos(x3+φ)

X
(6.25)

Id =
E sin(x3+φ)− x1 sin(φ)

X
(6.26)

İq =

�

EFD− x1+ (xd − x ′d )Id

�

cos(φ) + x2T ′d o E sin(x3+φ)

X T ′d o

(6.27)

İd =
x2T ′d o E cos(x3+φ)−

�

EFD− x1+ (xd − x ′d )Id

�

sin(φ)

X T ′d o

(6.28)

ẍ2 =
Ṗm −

�

x1İq+

�

EFD− x1+ (xd − x ′d )Id

T ′d o

�

Iq

�

− (x ′d − x ′q )
�

Iqİd+ Idİq

�

2H
(6.29)
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Vt =

√

√
�

x 2
1 −2E x1 cos(x3) +E 2

�

�

Z

X

�2

+2E
Z

X

�

x1 cos(x3+α−φ)−E cos(α−φ)
�

+E 2 (6.30)

Ke , Te , Tw , T1, T2, KP SS são constantes referentes aos controladores. As escolhas destes

parâmetros provém da sintonia do controlador, presente no apêndice E, seção E.4, página 239.

Estas equações, simuladas sob perturbação juntamente com as equações do sistema não-saturado,

resultam os gráficos da figura 12. Os limites de saturação de EF D e VP SS foram escolhidos de

forma que:

• A tensão de campo não sofresse saturações;

• A tensão VP SS sofresse leves saturações.

O programa de simulação em MATLAB encontra-se no apêndice A, seção A.5, página 159.

De uma análise da figura 12, conclui-se que a introdução do PSS de fato melhorou o

comportamento dinâmico do sistema como propunha. O sistema controlado por AVR e PSS tem

menor tempo de acomodação (menos de um minuto) do que aquele controlado apenas por AVR

(cerca de cinco minutos). Além disso, as osilações foram diminuídas; por exemplo, enquanto no

sistema controlado por apenas AVR as oscilações na frequência angular ω chegaram a quase 8%

(vide figura 8), no sistema controlado por AVR e PSS estas mesmas oscilações chegaram a menos

de 6%.

Ainda na figura 12, também pode-se notar o efeito da saturação na resposta do sistema.

Entre aproximadamente o sexto e o décimo segundos, e o décimo quarto e o décimo sexto, a

tensão VP SS atinge a saturação. As amplitudes de oscilação das tensões são muito reduzidas –

por exemplo, sem saturação a tensão interna E ′q oscila em 4%, enquanto que com saturação essa

oscilação não passa de 3%.
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Figura 12 – Gráficos do comportamento dinâmico do sistema controlado por AVR e PSS, sem
saturadores (curva vermelha) e com saturadores (cor azul).
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CAPÍTULO 7

Ocorrência de bifurcações no sistema

Nesta parte, serão estudados os aspectos de estabilidade dos sistemas descritos na parte

anterior. A análise de estabilidade será feita através da análise local dos sistemas, por meio da

determinação dos autovalores no equilíbrio.

O objetivo é a determinação da ocorrência de Bifurcações de Hopf nos sistemas. Trata-se

de um ponto no qual uma combinação específica dos parâmetros do sistema – das constantes do

controlador – provocam uma mudança no ponto de equilíbrio, à medida que coalesce com uma

solução periódica (órbita). Foi constatado, por exemplo, em (GAO; K.T.CHAU, 2004) e (LI et al.,

2002) que motores síncronos de íma permanente podem apresentar uma bifurcação de Hopf em

função dos parâmetros dos controladores. Ambos os sistemas (aquele controlado apenas por AVR e

aquele por PSS+AVR) serão analisados, com o objetivo final de determinar a combinação específica

dos parâmetros que suscita a bifurcação e, se possível, traçar a órbita periódica resultante.

Primeiramente, para os dois sistemas, serão determinados os polinômios característicos

como combinações dos elementos do jacobiano. A dedução destes elementos em função dos

estados no equilíbrio, bem como do polinômio característico, é extensa e está nos apêndices.

De posse da forma analítica deste polinômio, são determinadas as condições de ocorrência

da bifurcação, ou seja, a lei que relaciona os parâmetros do sistema para que o evento ocorra. Em

seguida, os autovalores dos sistemas na bifurcação são determinados.

7.1

A Bifurcação de Hopf

Segundo (STROGATZ, 2014; WANG, 1993), uma bifurcação de Hopf é definida como

segue:

Definição 2 (Bifurcação de Hopf). Suponha um sistema dinâmico não-linear, ao qual se associa um

equilíbrio estável x ∗ qualquer e um ciclo periódico instável; à medida que se alteram os parâmetros
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µ do sistema, o ciclo limite paulatinamente se aproxima do equilíbrio. Uma bifurcação de Hopf

ocorre quando a combinação de parâmetros provoca a coalescência do ciclo limite com o equilíbrio,

e este torna-se instável. Em outras palavras, existe um ponto crítico µ=µB para o qual o ponto de

equilíbrio do sistema dinâmico perde estabilidade, à medida que um par conjugado de autovalores

do sistema nesse ponto de equilíbrio cruza o eixo imaginário.

A figura 13 mostra como a Bifurcação de Hopf ocorre. Inicialmente, tem-se um sistema de

equilíbrio localmente estável x ∗, envolto por um ciclo limite instável, em vermelho. O ciclo limite é

instável porque, se levemente perturbado em direção a x ∗, então a trajetória do sistema converge

para o equilíbrio (curva verde); caso o ciclo seja perturbado na direção contrária a x ∗, então a

trajetória diverge (curva azul), como explicado em 13.(a). Já em 13.(b) mostra-se que, à medida

que o vetor de parâmetros µ se aproxima de µB , o ciclo limite diminui, engulfando o equilíbrio; até

que, em µ=µB , o equilíbrio e o ciclo limite instável coalescem; a situação final, ilustrada em 13.(c),

mostra o equilíbrio instável resultante.

É preciso notar que há duas condições necessárias e suficientes para a ocorrência desta

bifurcação: a primeira, que um par de autovalores do sistema no equilíbrio torne-se imaginário puro;

a segunda, chamada Condição de Transversalidade, que a derivada da parte real dos autovalores

R e (λ) com relação aos parâmetros µ em questão não deve ser nula na bifurcação:

∂ R e
�

λ
�

x ∗,µ
�

�

∂ µ

�

�

�

�

�

�

µB

6= 0 (7.1)

Onde x ∗ é o equilíbrio considerado, µ é um parâmetro qualquer e µB é o valor do parâmetro

µ que leva à bifurcação. Esta condição garante que aquele par de autovalores de fato transite

entre os semiplanos, ao invés de, por exemplo, assumir valores imaginários rapidamente ("bater e

voltar"), ou ainda manter-se imaginários ao longo de um intervalo.

No caso da máquina síncrona controlada por AVR ou AVR+PSS, a bifurcação pode

eclodir suscitada pelos parâmetros de ganho e de tempo dos controladores, quando um par

conjugado de autovalores cruza o eixo imaginário, indo do semiplano esquerdo para o direito. O

objetivo é encontrar a curva conhecida como Diagrama de Bifurcação, que expressa a relação

entre os parâmetros do sistema (o par (Ke , Te ), no caso do sistema controlado por AVR, e o

quíntuplo (Ke , Te , KP SS , T1, T2, Tw ) no caso do sistema controlado por AVR e PSS) que provoca

a bifurcação.

A princípio, não basta impor, no polinômio característico, que λ seja imaginário puro

pois não há garantia, por exemplo, que qualquer solução do polinômio seja imaginária, ou ainda

que o polinômio tenha quatro soluções reais diferentes com uma sendo zero. Para assegurar

a bifurcação de Hopf, deve-se garantir que λ transite entre os semiplanos, logo a necessidade

da Condição de Transversalidade. Como os coeficientes daquele polinômio são todos suaves e
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Figura 13 – Esquemático de explicação da Bifurcação de Hopf.

contínuos (quando existem) com relação ao conjunto de estados iniciais (pelas fórmulas dos Ji j ), e

as raízes de um polinômio qualquer (e.g., os autovalores do sistema) são contínuas com relação

aos coeficientes desse polinômio (TYRTYSHNIKOV, 1997), então os autovalores são contínuos

com relação ao conjunto de estados inicial. Portanto, é razoável ao menos considerar pelo menos

como candidatos o conjunto dos pontos para os quais a solução do polinômio seja imaginária,

mesmo que a bifurcação não seja garantida.

Para ilustrar que, de fato, ocorre uma bifurcação no sistema, traçou-se na figura 14 o lugar

de raízes em função do ganho do controlador, Ke , para cinco valores diferentes do tempo Te do
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controlador. A figura mostra um autovalor do sistema, no ponto de equilíbrio ~S = P + jQ = 1+ j 0.5;

para todos os cinco valores de tempo, o autovalor transita do semiplano esquerdo para o direito,

mantendo-se no semiplano direito para ganhos maiores – como esperado, uma vez que já se

espera instabilidade para valores altos de ganho. Sabendo que os coeficientes do polinômio

característico do sistema considerado são reais, então com certeza o autovalor ilustrado na figura é

acompanhado de seu par conjugado. Assim, de fato, há vários pares (Ke , Te ) que levam o sistema

à bifurcação. Considerando que os coeficientes daquele polinômio são contínuos no espaço de

estados iniciais x0, logo também é o conjunto de soluções do polinômio. Isso garante que qualquer

valor de tempo entre 10−2 e 100 possua um Ke correspondente que, no ponto inicial específico,

leve o sistema a uma bifurcação. Logo, prova-se que para este sistema, no ponto de equilíbrio

considerado, há infinitos pares de parâmetros do controlador que levam o sistema a uma bifurcação.

Ademais, nota-se, ao analisar a parte real dos autovalores versus o ganho Ke , que a

inclinação dos gráficos em momento algum é horizontal, o que sugere conformidade com a

Condição de Transversalidade.

As duas subseções a seguir têm por objetivo:

1. Encontrar a condição de existência da bifurcação;

2. Determinar os parâmetros do controlador que levam à bifurcação;

3. Encontrar os autovalores do sistema no equilíbrio bifurcado;

4. Checar a concordância com a Condição de Transversalidade.
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Figura 14 – Lugar de raízes do sistema controlado apenas por AVR, em função dos parâmetros
do controlador AVR.
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CAPÍTULO 8

Sistema controlado por AVR

A figura 14 mostra que para o sistema controlado por AVR há ocorrência de bifurcação

para algumas combinações particulares de Ke e Te . O objetivo deste capítulo é mostrar que a

bifurcação é possível, e de quais parâmetros essa existência depende. Em seguida, objetiva-se

calcular a relação entre aqueles parâmetros que levam o sistema à bifurcação. Tendo este sistema

quatro dimensões, analogamente seu jacobiano terá dimensão quatro. No apêndice B as contas de

dedução do Jacobiano, bem como do polinômio característico, estão deduzidas. Enfim, o polinômio

deste sistema é dado por

P (λ) =
4
∑

i=0

aiλ
i =

λ4 −λ3

�

�

�

�

�

�

�

J1,1 −1

J4,4 1

�

�

�

�

�

�

�

+λ2







�

�

�

�

�

�

�

J1,1 J1,4

J4,1 J4,4

�

�

�

�

�

�

�

− J2,3






+λ







�

�

�

�

�

�

�

J1,1 J1,3

J2,1 J2,3

�

�

�

�

�

�

�

+ J4,4 J2,3






+

�

�

�

�

�

�

�

�

�

�

�

�

J2,1 J2,3 0

J1,1 J1,3 J1,4

J4,1 J4,3 J4,4

�

�

�

�

�

�

�

�

�

�

�

�

= 0 (8.1)

8.1

Existência de bifurcação

No polinômio característico 8.1, fazendo λ= jβ , com β real, tem-se

�

jβ
�4−

�

J1,1+ J4,4

� �

jβ
�3
+
�

J1,1 J4,4− J1,4 J4,1− J2,3

� �

jβ
�2
+
�

J2,3

�

J1,1+ J4,4

�

− J1,3 J2,1

�

�

jβ
�

+

+ J4,4

�

J1,3 J2,1− J1,1 J2,3

�

+ J1,4

�

J2,3 J4,1− J2,1 J4,3

�

= 0
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





β 4−
�

J1,1 J4,4− J1,4 J4,1− J2,3

�

β 2+ J4,4

�

J1,3 J2,1− J1,1 J2,3

�

+ J1,4

�

J2,3 J4,1− J2,1 J4,3

�

= 0

�

J1,1+ J4,4

�

β 3+
�

J2,3

�

J1,1+ J4,4

�

− J1,3 J2,1

�

β = 0

(8.2)

A equação de baixo sugere β = 0, que não é um resultado desejado porque implicaria

λ= 0 e, portanto, não garantiria um par de autovalores imaginários conjugados. Assim, supondo

β 6= 0,







β 4−
�

J1,1 J4,4− J1,4 J4,1− J2,3

�

β 2+ J4,4

�

J1,3 J2,1− J1,1 J2,3

�

+ J1,4

�

J2,3 J4,1− J2,1 J4,3

�

= 0

�

J1,1+ J4,4

�

β 2+
�

J2,3

�

J1,1+ J4,4

�

− J1,3 J2,1

�

= 0

(8.3)

Desta última equação,

β 2 =−

�

J2,3

�

J1,1+ J4,4

�

− J1,3 J2,1

�

J1,1+ J4,4
=

J1,3 J2,1

J1,1+ J4,4
− J2,3

∴ β =
√

√ J1,3 J2,1

J1,1+ J4,4
− J2,3 (8.4)

O que resulta uma condição de existência: sabendo que J1,1+ J4,4 < 0,

β ∈R+⇔
J1,3 J2,1

J1,1+ J4,4
− J2,3 > 0⇔ J1,3 J2,1 < J2,3

�

J1,1+ J4,4

�

(8.5)

Perceba-se que a condição de existência não depende do controlador, uma vez que as

componentes do jacobiano envolvidas não são funções dos seus parâmetros. Assim, conclui-se

que:

1. Se a inequação (8.5) for satisfeita, então a existência da bifurcação é garantida, i.e., existe

algum par (Ke , Te ) que leva o sistema à bifurcação;

2. A existência da Bifurcação de Hopf está ligada ao equilíbrio escolhido, e não ao controlador;

em outras palavras, os parâmetros do controlador não determinam se a Bifurcação será

possível, mas sim o ponto de equilíbrio, uma vez que a inequação (8.5) independe de Ke e

de Te . Isso quer dizer que há condições iniciais possíveis, mas que não admitem bifurcação;

3. Supondo que a bifurcação seja possível, ist est, o ponto inicial seja tal que a condição para a

existência (8.5) seja satisfeita, então existe pelo menos um par (Ke , Te ) que leva o sistema

a essa bifurcação – uma vez que sua existência não depende do controlador.
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Resta então analisar se, satisfeita a condição de existência da bifurcação, o par (Ke , Te )

é único ou não para um dado ponto inicial; em caso positivo, determinar o par e, de outra forma,

determinar uma relação entre os parâmetros.

8.2

Parâmetros na bifurcação

Substituindo (8.4) na primeira equação do sistema (8.3),

�

J1,3 J2,1

J1,1+ J4,4
− J2,3

�2

−
�

J1,1 J4,4− J1,4 J4,1− J2,3

�

�

J1,3 J2,1

J1,1+ J4,4
− J2,3

�

+

J4,4

�

J1,3 J2,1− J1,1 J2,3

�

+ J1,4

�

J2,3 J4,1− J2,1 J4,3

�

= 0⇔

⇔
�

J1,3 J2,1

J1,1+ J4,4
− J2,3

��

J1,3 J2,1

J1,1+ J4,4
−��J2,3+ J1,4 J4,1− J1,1 J4,4+��J2,3

�

+

J4,4

�

J1,3 J2,1− J1,1 J2,3

�

+ J1,4

�

J2,3 J4,1− J2,1 J4,3

�

= 0⇔

⇔
�

J1,3 J2,1− J2,3

�

J1,1+ J4,4

�

� �

J1,3 J2,1+
�

J1,4 J4,1− J1,1 J4,4

� �

J1,1+ J4,4

�

�

+

�

J4,4

�

J1,3 J2,1− J1,1 J2,3

�

+ J1,4

�

J2,3 J4,1− J2,1 J4,3

�� �

J1,1+ J4,4

�2
= 0

Esta equação estabelece uma relação entre o espaço de estados em equilíbrio e o par

(Ke , Te ). A princípio, olhando para as formas dos componentes J(x ,y ), faz pensar ser uma equação

transcendente. Assim, deve-se lançar mão de solvers numéricos para resolvê-la. No entanto, isto

apresenta uma complicação: o chute inicial, necessário ao método numérico. A figura 14 sugere

que, para um tempo Te fixo, a solução em Ke é única, uma vez que a curva é assintótica dos dois

lados. Assim, uma forma de evitar que o chute inicial tenha muita influência na solução é, para um

dado conjunto de estados de equilíbrio x∗, fixar Te e resolver a equação para Ke . Uma outra forma

é obter uma relação direta Ke = f (x, Te ), que será feito a seguir.

De fato, em uma primeira vista, (8.2) parece ser uma equação de solução complexa ou

demorada devido aos grandes coeficientes, especialmente os da quarta coluna. Não se trata do

caso, porém; como os coeficientes mais sofisticados são função dos estados iniciais, em termos

de Ke e Te tratam-se de funções simples. Em realidade, considerando os estados x1 a x4 fixos,

então as únicas funções do controlador são os componentes J1,4, J3,4 e J3,4. Assim, para melhor

representar a finalidade da equação – dado um estado inicial x∗, encontrar o par (Ke , Te ) que

instabiliza o sistema e provoca bifurcação – representar-se-ão os coeficientes da quarta coluna do

jacobiano como:
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





























J4,1 =−K4,1

Ke

Te

J4,3 =−K4,3

Ke

Te

J4,4 =−
1

Te

Assim, ressaltando estes termos em (8.2),

�

J1,3 J2,1− J2,3

�

J1,1+ J4,4

�

� �

J1,3 J2,1+
�

J1,4J4,1− J1,1J4,4

� �

J1,1+ J4,4

�

�

+
�

J4,4

�

J1,3 J2,1− J1,1 J2,3

�

+ J1,4

�

J2,3J4,1− J2,1J4,3

�

�

�

J1,1+ J4,4

�2
= 0 (8.6)

Aplicando as igualdades, e denominando KeB o ganho do controlador que provoca a

bifurcação,

�

J1,3 J2,1− J2,3

�

J1,1−
1

Te

���

J1,3 J2,1−
�

J1,4K4,1

KeB

Te
− J1,1

1

Te

��

J1,1−
1

Te

��

+
�

−
1

Te

�

J1,3 J2,1− J1,1 J2,3

�

− J1,4

KeB

Te

�

J2,3K4,1− J2,1K4,3

�

��

J1,1−
1

Te

�2

= 0
×T 3

e⇐⇒

⇔
�

J1,3 J2,1Te− J2,3

�

J1,1Te−1
�

� �

J1,3 J2,1T2
e −

�

J1,4K4,1KeB− J1,1

� �

J1,1Te−1
�

�

+
�

�

J1,1 J2,3− J1,3 J2,1

�

+ J1,4KeB

�

J2,1K4,3− J2,3K4,1

�

�

�

J1,1Te−1
�2
= 0⇔

⇔
�

J1,3 J2,1Te− J2,3

�

J1,1Te−1
�

� �

J1,3 J2,1T2
e + J1,1

�

J1,1Te−1
�

�

+
�

J1,1 J2,3− J1,3 J2,1

�

�

J1,1Te−1
�2
+

+KeB

¦

− J1,4K4,1

�

J1,1Te−1
�

�

J1,3 J2,1Te− J2,3

�

J1,1Te−1
�

�

+ J1,4

�

J2,1K4,3− J2,3K4,1

� �

J1,1Te−1
�2
©

= 0

∴ KeB =−

�

J1,3 J2,1Te− J2,3

�

J1,1Te−1
�

� �

J1,3 J2,1T2
e + J1,1

�

J1,1Te−1
�

�

+
�

J1,1 J2,3− J1,3 J2,1

�

�

J1,1Te−1
�2

J1,4

�

J2,1K4,3− J2,3K4,1

� �

J1,1Te−1
�2− J1,4K4,1

�

J1,1Te−1
�

�

J1,3 J2,1Te− J2,3

�

J1,1Te−1
�

� =

=−
�

1

J1,1Te−1

�

�

J1,3 J2,1Te− J2,3

�

J1,1Te−1
�

� �

J1,3 J2,1T2
e − J1,1

�

J1,1Te−1
�

�

+
�

J1,1 J2,3− J1,3 J2,1

�

�

J1,1Te−1
�2

J1,4

�

J2,1K4,3− J2,3K4,1

� �

J1,1Te−1
�

− J1,4K4,1

�

J1,3 J2,1Te− J2,3

�

J1,1Te−1
�

�

∴KeB =

�

J1,3

J1,4

�

J1,1Te−1
�

� �

J1,3 J2,1− J1,1 J2,3

�

T3
e + J2,3T2

e + J1,1Te−1
�

J1,1K4,3− J1,3K4,1

�

Te−K4,3

(8.7)
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Que é uma relação deveras simples, e está graficada na figura 15. Todos os Jm ,n bem como

os Km ,n são funções do equilíbrio considerado, constantes com relação ao controlador. Assim,

definindo-se um vetor de valores para Te obtém-se os valores correspondentes de Ke . Outrossim,

de posse das variáveis de estado no equilíbrio calculam-se os Jm ,n e os Km ,n ; esta expressão

determina que a cada valor de Te corresponde um valor de Ke é que leva o sistema à bifurcação.
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Ganho de bifurcação K    versus tempo do controlador TeB e 
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Figura 15 – Diagrama de bifurcação do sistema controlado por AVR no ponto de equilíbrio ~S =
P + jQ = 1+ j 0.5.

8.3

Discussão da figura 15

A figura 15 mostra que para pontos (Ke , Te ) acima da curva o equilíbrio é instável, e que

para pontos abaixo dela é estável, ou seja:

0<Ke < Ke B ⇔ Equilíbrio estável

Ke = Ke B ⇔ Bifurcação

Ke > Ke B ⇔ Equilíbrio instável

Lembre-se que o ganho é inerentemente positivo, uma vez que qualquer valor não-positivo

instabiliza o sistema.
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8.3.1 Intervalo em que Ke B não é bijetora

Ainda assim, não justificou-se por que o par ganho-tempo é único, e não se trata do caso

no qual um valor de ganho corresponde a três valores de tempo, como a equação (8.7) sugere –

uma vez que essa equação define um polinômio de terceiro grau em Te . Uma análise da figura

14 sugere que, para qualquer um dos cinco valores de tempo considerados, apenas um valor de

ganho corresponde à bifurcação, uma vez que o comportamento é assintótico no eixo real.

No entanto, de uma análise da figura 15 infere-se que existe um intervalo de Ke , digamos,

IKe
=
�

I −Ke
, I +Ke

�

(denotado na figura por traços), para o qual cada valor de Ke possui dois corres-

pondentes em Te , quer dizer, para qualquer valor de ganho neste intervalo há exatamente dois

valores de tempo Te possíveis que bifurcam o sistema.

Calculando o extremo superior de IKe
: do lado esquerdo da curva, para um Te suficiente-

mente pequeno,

I +Ke
= lim

Te→0+
Ke = lim

Te→0+

�

J1,3

J1,4

�

J1,1Te−1
�

� �

J1,3 J2,1− J1,1 J2,3

�

T3
e + J2,3T2

e + J1,1Te−1
�

J1,1K4,3− J1,3K4,1

�

Te−K4,3

= T ′d o

J1,3

K4,3
(8.8)

Para o estado inicial considerado, a expressão vale I +Ke
= 15.648269934421407. Já para

calcular o extremo inferior do intervalo IK e , trata-se do valor para o qual a curva tem derivada nula:

∂ KeB

∂ Te
= 0⇔

�

�

J1,1K4,3− J1,3K4,1

�

Te−K4,3

��

J1,1Te−1
��

3
�

J1,3 J2,1− J1,1 J2,3

�

T2
e +2J2,3Te+ J1,1

�

=

=
�

�

J1,3 J2,1− J1,1 J2,3

�

T3
e + J2,3T2

e + J1,1Te−1
� �

�

J1,1K4,3− J1,3K4,1

� �

J1,1Te−1
�

+ J1,1

�

J1,1K4,3− J1,3K4,1

�

Te− J1,1K4,3

�

⇔

= J1,1

�

3J1,1 J2,3−3J1,13 J2,1

��

J1,1K4,3− J1,3K4,1

�

T e 4+

+
��

3J1,1 J2,3−3J1,3 J2,1

��

2J1,1K4,3− J1,3K4,1

�

+2J1,1 J2,3

�

J1,1K4,3− J1,3 ∗K4,1

�

−2J1,11

�

J1,1K4,3− J1,3K4,1

��

J2,3− J1,1 J2,3+ J1,3 J2,1

��

T e 3+

+
��

2J1,1K4,3− J1,3K4,1

��

J2,3− J1,1 J2,3+ J1,3 J2,1

�

− J 2
1,1

�

J1,1K4,3− J1,3K4,1

�

−K4,3

�

3J1,1 J2,3−3J1,3 J2,1

�

−2J2,3

�

2J1,1K4,3− J1,3K4,1

��

T e 2+

+
�

2J1,1

�

J1,1K4,3− J1,3K4,1

�

+2J2,3K4,3

�

T e+

− J1,1K4,3+ J1,3K4,1 = 0

Para o equilíbrio ~S = 1+ j 0.5, a solução é Te = 0.297935089029690⇔ I −Ke
= 14.202015827943844.

Assim, a função Ke B não é bijetora para Te ∈ ( 0 , 0.297935089029690 ).

8.3.2 Autovalores na bifurcação

Assim, denotando o polinômio como P (λ) =λ4+a3λ
3+a2λ

2+a1λ+a0, com
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a3 =−
�

J1,1+ J4,4

�

a2 =
�

J1,1 J4,4− J1,4 J4,1− J2,3

�

a1 =
�

J2,3

�

J1,1+ J4,4

�

− J1,3 J2,1

�

a0 = J4,4

�

J1,3 J2,1− J1,1 J2,3

�

+ J1,4

�

J2,3 J4,1− J2,1 J4,3

�

(8.9)

Então dividindo P (λ) por
�

λ2+β 2
�

,

P (λ)≡
�

λ2+β 2
�

�

λ2+a3λ+a2−β 2
�

+
�

a1−a3β
2
�

λ+a0−β 2
�

a2−β 2
�

(8.10)

Mas, de 8.4, se (Ke , Te ) estão ajustados para a bifurcação, isto é, Ke = Ke B (Te ), então

a1−a3β
2 = a0−β 2

�

a2−β 2
�

= 0 (8.11)

Assim,

P (λ)≡
�

λ2+β 2
�

�

λ2+a3λ+a2−
a1

a3

�

(8.12)

Daonde, na bifurcação, os autovalores do sistema são:

λ=



























−
a3

2
± j

√

√

a2−
a1

a3
−
�a3

2

�2

± jβ =± j

√

√

−
a1

a3

(8.13)

Perceba-se que o radicando é sempre positivo – condição de existência de β e, logo, para

a bifurcação – e logo os autovalores são sempre complexos; logo, a estabilidade destes autovalores

fica a cabo de a3. Sabendo que este coeficiente é sempre positivo, então estes autovalores têm

sempre parte real negativa. Vale lembrar que estes autovalores só são válidos para o ponto exato

da bifurcação, isto é, quando Ke = Ke B .

8.4

Checagem da condição de transversalidade

Têm-se assim os parâmetros que levam o sistema à bifurcação (equação 8.7) e os autova-

lores do sistema na bifurcação (8.13). Falta checar se a condição de transversalidade confere, quer
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dizer: sendo µ o vetor de parâmetros do sistema de tamanho p , se µB é tal que ∃λ
�

µB

�

∈C−R,

então também é necessário que o gradiente da parte real dos autovalores na bifurcação seja nulo,

ou seja,

∂ R e
�

λ
�

µ
��

∂ µ

�

�

�

�

�

µ=µB

6= 0 (8.14)

Para uma Bifurcação de Hopf em µ = µB . Assim, calcular-se-á agora a forma desta

derivada parcial. Sabemos que, para os autovalores,

P (λ) =
4
∑

i=0

aiλ
i = 0

E que tanto os ai como λ são funções do equilíbrio e dos parâmetros do controlador.

Segue que, derivando implicitamente a igualdade com relação a um parâmetro µ, que pode ser

tanto Ke quanto Te ,

∂

∂ µ

�

4
∑

i=0

aiλ
i

�

= 0⇔

⇔
4
∑

i=1

�

i aiλ
(i−1) ∂ λ

∂ µ
+λi ∂ ai

∂ µ

�

+
∂ a0

∂ µ
= 0⇔

⇔
∂ λ

∂ µ

�

4
∑

i=1

i aiλ
(i−1)

�

+
4
∑

i=0

λi ∂ ai

∂ µ
= 0

∴
∂ λ

∂ µ
=−

4
∑

i=0

λi ∂ ai

∂ µ

4
∑

i=1

i aiλ
(i−1)

(8.15)

Note-se que o denominador desta, que equivale à derivada do polinômio P (x ) aplicada em

x =λ, não é zero se λ não tiver multiplicidade maior que um. Com efeito, a raiz de um polinômio

qualquer é também raiz da sua derivada se, e somente se, tal raiz tiver multiplicidade superior

a um. Como neste caso a análise é feita sobre a bifurcação, e provado está que nela todos os

autovalores são distintos, segue que o polinômio não tem raízes duplas e, portanto, sua derivada

não comunga de nenhuma de suas raízes.

Agora, sabendo que λ= f
�

µ
�

:Rp →C, então
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∂ λ

∂ µ
=
∂ R e (λ)
∂ µ

+ j
∂ I m (λ)
∂ µ

∴
∂ R e (λ)
∂ µ

=
1

2

�

∂ λ

∂ µ
+
�

∂ λ

∂ µ

�

�

As duas provas abaixo são feitas por reductio ad absurdum, ou seja, aplicando

∂ R e
�

λ
�

µ
��

∂ µ

�

�

�

�

�

µ=µB

= 0

E provando que esta condição não acontece.

8.4.1 Prova 1

Assumindo (8.14) então

∂ R e (λ)
∂ µ

=
1

2

�

∂ λ

∂ µ
+
�

∂ λ

∂ µ

�

�

= 0

⇔
∂ λ

∂ µ
+
�

∂ λ

∂ µ

�

= 0

∴
∂ λ

∂ µ
∈Cp −Rp

Aplica-se então
∂ λ

∂ µ
= jγ, γ ∈Rn :

−

4
∑

i=0

λi ∂ ai

∂ µ

4
∑

i=1

i aiλ
(i−1)

= jγ⇔

⇔−
4
∑

i=0

λi ∂ ai

∂ µ
= jγ

4
∑

i=1

i aiλ
(i−1)
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∴



































∂ a4

∂ µ
≡ 0

∂ a0

∂ µ
≡ 0

∂ ak

∂ µ
≡− j (k +1)γak , k ∈ {1, 2, 3}

Enquanto a primeira equação é verdadeira, não o são as outras quatro. Primeiramente

porque a segunda é imediatamente falsa, já que a0 é funçao de ambos Ke e Te ; depois, porque as

três últimas assertivas requerem que os ak sejam funções complexas do vetor de parâmetros µ –

uma vez que, por hipótese, γ ∈Rp – quando, sendo os ak valorados reais, isso não é possível. O

caso γ= 0 também é contraditório, porque neste caso os ai devem ser idependentes de µ, que

não é o caso.

8.4.2 Prova 2

Deduzindo a forma do conjugado da derivada parcial de Re (λ) com relação a µ, e sabendo

que todos os ai são funções reais, i.e.,

ai = f
�

µ
�

| f :Rp →R⇔
∂ ai

∂ µ
= g

�

µ
�

| g :Rp →Rp

∴















ai = ai

�

∂ ai

∂ µ

�

=
∂ ai

∂ µ

Então

∂ λ

∂ µ
=−











4
∑

i=0

λi ∂ ai

∂ µ

4
∑

i=1

i aiλ
(i−1)











=−

4
∑

i=0

�

λi
�∂ ai

∂ µ

4
∑

i=1

i ai

�

λ(i−1)
�

Daonde

∂ R e (λ)
∂ µ

=−
1

2











4
∑

i=0

λi ∂ ai

∂ µ

4
∑

i=1

i aiλ
(i−1)

+

4
∑

i=0

�

λi
�∂ ai

∂ µ

4
∑

i=1

i ai

�

λ(i−1)
�










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Fazendo a prova por redução a absurdo, aplicando a negação da transversalidade:

∂ R e (λ)
∂ µ

= 0⇔

�

4
∑

i=0

λi ∂ ai

∂ µ

��

4
∑

i=1

i ai

�

λ(i−1)
�

�

=−

�

4
∑

i=0

�

λi
�∂ ai

∂ µ

��

4
∑

i=1

i aiλ
(i−1)

�

⇔

⇔

�

4
∑

i=0

λi ∂ ai

∂ µ

��

4
∑

i=1

i ai

�

λ(i−1)
�

�

=−

��

4
∑

i=0

λi
∂ ai

∂ µ

��

4
∑

i=1

i ai

�

λ(i−1)
�

��

Decorre disto que a expressão à esquerda é imaginária pura; outrossim, sua parte real é

nula:

∴

�

4
∑

i=0

λi ∂ ai

∂ µ

��

4
∑

i=1

i ai

�

λ(i−1)
�

�

∈C−R⇔Re

��

4
∑

i=0

λi ∂ ai

∂ µ

��

4
∑

i=1

i ai

�

λ(i−1)
�

��

= 0⇔

⇔Re

�

4
∑

i=0

λi ∂ ai

∂ µ

�

Re

�

4
∑

i=1

i ai

�

λ(i−1)
�

�

− Im

�

4
∑

i=0

λi ∂ ai

∂ µ

�

Im

�

4
∑

i=1

i ai

�

λ(i−1)
�

�

= 0

Sendo as operações Re(.) e Im(.) distributivas, e utilizando novamente a valoração real

dos ai e suas derivadas com relação a µ,

�

4
∑

i=0

Re
�

λi
� ∂ ai

∂ µ

��

4
∑

i=1

i ai Re
�

λ(i−1)
�

�

+

�

4
∑

i=0

Im
�

λi
� ∂ ai

∂ µ

��

4
∑

i=1

i ai Im
�

λ(i−1)
�

�

= 0

Que aparentemente é uma equação transcendente. Para reduzi-la, adota-se µ ≡ Ke ,

calculando-se as derivadas em Ke = Ke B . Pode-se fazê-lo porque a condição de transversalidade é

aplicada na bifurcação (i.e., µ=µB ), condição que será utilizada agora para simplificar a expressão:

�

∑

i∈{0,2}

Re
�

λi
� ∂ ai

∂ µ

��

4
∑

i=1

i ai Re
�

λ(i−1)
�

�

+

�

∑

i∈{0,2}

Im
�

λi
� ∂ ai

∂ µ

��

4
∑

i=1

i ai Im
�

λ(i−1)
�

�

= 0

Na bifurcação, Ke = Ke B ⇒λ= jβ 1. Assim, λi é real para i par, zerando o primeiro fator

da segunda parcela. Além disso, o segundo somatório é reduzido:

�

∑

i∈{0,2}

Re
�

λi
� ∂ ai

∂ Ke

�

�

�

�

Ke B

��

∑

i∈{1,3}

i ai Re
�

λ(i−1)
�

�

= 0⇔

⇔
�

∂ a0

∂ Ke
−β 2 ∂ a2

∂ Ke

�

�

�

�

�

Ke B

�

−3a3β
2+a1

�

= 0

1 Note-se que o outro par de autovalores não é considerado porque a Condição de Transversalidade se aplica
apenas ao par de autovalores que de fato transita entre os semiplanos, que neste caso é o par λ=± jβ .
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Substituindo β 2 =−
a1

a3
,

�

∂ a0

∂ Ke
+

a1

a3

∂ a2

∂ Ke

�

�

�

�

�

Ke B

�

3a3

a1

a3
+a1

�

= 0⇔

⇔ 4a1

�

∂ a0

∂ Ke
+

a1

a3

∂ a2

∂ Ke

�

�

�

�

�

Ke B

= 0

Sabe-se que a1 6= 0 e a3 6= 0; finalmente,

∂ R e
�

λ
�

µ
�

�

∂ µ

�

�

�

�

�

�

µB

= 0⇔
�

a3

∂ a0

∂ Ke
+a1

∂ a2

∂ Ke

�

�

�

�

�

Ke B

= 0

O que é um absurdo, pelas fórmulas dos ai . Logo, a condição de transversalidade está

satisfeita sempre que a condição econtrada ocorrer, ou seja, Ke = Ke B

�

Te

�

é de fato uma ocorrência

da Bifurcação de Hopf.
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CAPÍTULO 9

Sistema controlado por AVR e PSS

O polinômio característico deste sistema é dado por 9.1. As formas dos componentes do
jacobiano, bem como as contas do cálculo do polinômio, encontram-se no apêndice C.

P (x ) =
6
∑

n=0

anλ
n























































































































































































































































a0 =−

�

�

�

�

�

�

�

�

�

�

�

�

J1,3 J1,1 J1,4 J1,6

J2,3 J2,1 0 0

J5,3 J5,1 J5,4 J5,6

J6,3 J6,1 J6,4 J6,6

�

�

�

�

�

�

�

�

�

�

�

�

a1 = J5,5

�

�

�

�

�

�

�

�

�

J2,3 J2,1 0

J1,3 J1,1 J1,6

J6,3 J6,1 J6,6

�

�

�

�

�

�

�

�

�

−

�

�

�

�

�

�

�

�

�

J2,3 J2,1 0

J1,3 J1,1 J1,4

J5,3 J5,1 J5,4

�

�

�

�

�

�

�

�

�

+

�

�

�

�

�

�

�

�

�

J2,3 J2,1 0

J5,2 J1,6 J5,6 J6,6

J5,2 J1,4 J5,4 J6,4

�

�

�

�

�

�

�

�

�

a2 =−J2,1

�

�

�

�

�

J1,4 J1,3

J5,5 J5,2

�

�

�

�

�

+ J2,3

�

�

�

�

�

�

�

�

�

J5,4 J5,5 0

J1,1 1 −1

J6,6 0 1

�

�

�

�

�

�

�

�

�

−

�

�

�

�

�

�

�

�

�

J1,1 J1,3 J1,6

J2,1 J2,3 0

J6,1 J6,3 J6,6

�

�

�

�

�

�

�

�

�

−

�

�

�

�

�

�

�

�

�

J1,1 J1,4 J1,6

J5,1 J5,4 J5,6

J6,1 J6,4 J6,6

�

�

�

�

�

�

�

�

�

a3 =−J2,1 J1,3 + J2,3

�

J1,1 + J5,5 + J6,6

�

−





�

�

�

�

�

�

J5,6 J5,4

J6,6 J6,4

�

�

�

�

�

�

−

�

�

�

�

�

�

J1,1 J1,4

J5,1 J5,4

�

�

�

�

�

�

+ J5,5

�

�

�

�

�

�

J1,1 J1,6

J6,1 J6,6

�

�

�

�

�

�





a4 =







J2,3 − J5,4 + J5,5

�

J1,1 + J6,6

�

+

�

�

�

�

�

�

J1,1 J1,6

J6,1 J6,6

�

�

�

�

�

�







a5 =−
�

J1,1 + J5,5 + J6,6

�

a6 = 1
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9.1

Parâmetros na bifurcação

Tem-se portanto o polinômio mônico característico P (x ), cujas raízes são os autovalores do

sistema. Na bifurcação, estes autovalores serão imaginários puros; aplicando então λ= jα,α ∈R+,

então

−α6+ j a5α
5+a4α

4− j a3α
3−a2α

2+ j a1α+a0 = 0⇔

⇔







−α6+a4α
4−a2α

2+a0 = 0

a5α
5−a3α

3+a1α= 0

Eliminando a solução nula desta última equação (porque α= 0⇔λ= 0 6∈C−R, quando

se quer o λ ∈C−R):







α6−a4α
4+a2α

2−a0 = 0

a5α
4−a3α

2+a1 = 0

(9.1)

Denotar-se-ão Q (x ) e R (x ) tais que







Q (x ) = x 3−a4 x 2+a2 x −a0

R (x ) = a5 x 2−a3 x +a1

(9.2)

Nota-se que:

• A solução procurada deve ser solução de ambos Q (x 2) e R (x 2); logo, o Diagrama de

Bifurcação pode ser obtido substituindo as raízes de Q (x 2) em R (x 2). A recíproca, no

entanto, não é verdadeira porque há duas raízes de R (x 2) não contempladas por Q (x 2);

• O sistema possui pelo menos um par de autovalores imaginários se Q (x ) tiver pelo menos

uma solução positiva. Assim, se faz necessário analisar a posição das raízes de Q (x );

• A solução trivial ocorre se e somente se a0 = 0.

Supondo a5 = 0, então
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α=±
√

√a1

a3
(9.3)

Suponho a5 6= 0 então, para esta última equação,

α=±

√

√

√

√

a3±
r

a 2
3 −4a1a5

2a5
(9.4)

Em primeiro lugar, é imperativo notar que, enquanto em 9.3 há duas soluções possíveis,

em 9.4 há quatro. Isso significa que a5 = 0 implica em apenas um par de autovalores ser capaz de

bifurcar; quando a5 6= 0, dois pares são capazes de bifurcação.

Estas fórmulas não garantem que α ∈R+. Nota-se portanto que a existência de α, e logo

a existência da bifurcação, está atrelada à região a1a3 > 0 na primeira equação e às regiões

∆= a 3−4a1a5 ≥ 0, a3±
p
∆> 0 na seguda, significando que estas inequações representem na

verdade o Diagrama de Bifurcação.

Embora relativamente simples, a fórmula revela alguns aspectos sobre a bifurcação nos sis-

temas controlados por AVR e PSS, especialmente referindo-se ao determinante. Há a possibilidade

de haver duas raízes possíveis, uma raiz possível ou nenhuma. Seja µB um elemento bifurcante no

espaço dos parâmetros, e os polinômios Q (x ) = a5 x 2+a3 x +a1 e R (x ) = x 3−a4 x 2+a2 x −a0:

1. Se houver duas soluções possíveis para o memso µB , isso quer dizer que dois pares de

autovalores bifurcam ao mesmo tempo. Neste caso, o polinômio Q (x ) tem duas soluções

positivas;

2. Se houver apenas uma solução possível para o mesmo µb , é porque Q (x ) admite duas

soluções de sinais opostos ou apenas uma solução positiva;

3. Se não houver solução possível, é porque Q (x ) não admite solução positiva;

4. Dado que os parâmetros do sistema sem saturação são diferentes daqueles para o sistema

com saturação, então é possível que para um µB seja possível a bifurcação em um deles,

mas não no outro.

µB é obtido substituindo as soluções de Q (x ) em R (x ). No entanto, primeiramente é

preciso analisar a posição das soluções de Q (x ), que será feito na seção seguinte.

9.2
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Análise da posição das soluções de Q (x )

Como Q (x ) é quadrático e R (x ) é cúbico, então a análise das soluções do sistema 9.2

começará por aquele por duas razões: primeiramente pela dificuldade de se analisar a posição das

raízes de um polinômio cúbico; segundo, porque há duas raízes de R (x 2) não previstas por Q (x 2),

então substituir as raízes daquele neste representa sobretrabalho.

Primeiramente, supondo a5 = 0, então, por 9.3, haverá solução se a1a3 > 0.

Já para a5 6= 0, é preciso analisar a posição das soluções de um polinômio de segundo

grau. Lembra-se que o objetivo é encontrar a bifurcação, e para tanto Q (x ) deve ter pelo menos

uma raiz positiva. De posse do lema a seguir, pode-se analisar melhor este caso:

Lema 1 (Posição das soluções da equação quadrática). Seja P (x ) = a x 2 + b x + c | a , b , c ∈
R, a 6= 0 uma equação quadrática genérica valorada real, com duas raízes x1, x2 ∈R hipotéticas.

Então há cinco possibilidades para as raízes:

1. As duas raízes existem, são diferentes e são positivas:







x1, x2 > 0

∆> 0

⇔











−
b

a
= x1+ x2 > 0

c

a
= x1 x2 > 0

×a 2

⇐⇒























−b a > 0

c a > 0

b 2−4a c > 0

2. As duas raízes existem, são diferentes e são negativas







x1, x2 < 0

∆> 0

⇔











−
b

a
= x1+ x2 < 0

c

a
= x1 x2 > 0

×a 2

⇐⇒























−b a < 0

c a > 0

b 2−4a c > 0

3. As duas raízes existem e alternam sinais:

x1 < 0< x2⇔
c

a
< 0

×a 2

⇐⇒ c a < 0

4. Existe apenas uma raiz dupla, digamos, x1: ∆= 0, x1 ≶ 0⇔−
b

2a
≶ 0

×2a 2

⇐⇒−b a ≶ 0

5. As raízes não existem: ∆< 0.

—

Utilizando este lema, então para Q (x ):
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1. Há duas raízes positivas, e logo dois α possíveis para dois pares de autovalores bifurcantes

se






















a 2
3 −4a1a5 > 0

−a3a5 > 0

a1a5 > 0

2. Há uma raiz positiva e outra negativa, ou seja, apenas um par de autovalores bifurca, se

x1 < 0< x2⇔ a1a5 < 0

3. Há apenas uma raiz dupla positiva, ou seja, dois pares de autovalores bifurcantes que

convergem para o mesmo valor, se







a 2
3 −4a1a5 = 0

−a3a5 > 0

4. Não há raizes positivas, ou seja, não há α imaginário se a 2
3 −4a1a5 < 0 ou se























a 2
3 −4a1a5 > 0

−a3a5 < 0

a1a5 > 0

Pode-se, no entanto, simplificar a discussão ao analisar a5. Sabe-se que

a5 =−
�

J1,1+ J5,5+ J6,6

�

=

=
T2+Tw

T2Tw
+

1

Te

E ma x
F D
∏

E mi n
F D

�

x sat
4 + x6+EF D 0

�

+
1

T ′d o

��

xd − x ′d
�

sin
�

φ
�

X
+1

�

A primeira parcela é positiva dada a natureza das constantes de tempo Tw e T2.

A terceira parcela é também sempre positiva; isso porque T ′d o é inerentemente positivo,

xd − x ′d é naturalmente positivo porque as impedâncias permanentes são naturalmente maiores

que seus pares transitórios, X é positivo por definição, e sin
�

φ
�

é muito próximo da unidade

porque φ é a fase de uma impedância marjoritariamente indutiva.

Já a segunda parcela também será, via de regra, positiva. No equilíbrio estático, a tensão

de saída do excitador é, por definição, igual à tensão EF D 0 (ou a E ma x
F D , mas não faz sentido
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construir um saturador cujo limite é menor que o valor da variável no equilíbrio). Se preferir, no

equilíbrio estático, os controladores não atuam; logo, neste equilíbrio, VP SS =VAV R = 0. Como Te é,

por definição, positivo, então a primeira parcela também é positiva, de onde a5 > 0.

Sob esta análise, então a possibilidade a5 = 0 é descartada, tal qual a solução 9.3;

simplificam-se também as condições sob a suposição a5 6= 0: dividindo as inequações apropriadas

por a5, então

1. Há duas raízes positivas, e logo dois α possíveis para dois pares de autovalores bifurcantes

se























a 2
3 −4a1a5 > 0

a3 < 0

a1 > 0

⇔











a3 <−2
r

a1a5

a1 > 0

2. Há uma raiz positiva e outra negativa, ou seja, apenas um par de autovalores bifurca, e outro

é real, se

x1 < 0< x2⇔ a1 < 0

3. Há apenas uma raiz dupla positiva, ou seja, dois pares de autovalores bifurcantes que

convergem para o mesmo valor, se







a 2
3 −4a1a5 = 0

a3 < 0

⇔ a3 =−2
r

a1a5

4. Não há raizes positivas, ou seja, não há α imaginário se

a 2
3 −4a1a5 < 0⇔ a3 ∈

�

−2
r

a1a5 , 2
r

a1a5

�

ou se























a 2
3 −4a1a5 > 0

a3 > 0

a1 > 0

⇔











a3 > 2
r

a1a5

a1 > 0
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9.3

Substituindo as soluções de Q (x 2) em R (x 2)

Sabemos portanto que a solução de Q (x 2) é

α=

√

√

√

√

a3±
r

a 2
3 −4a1a5

2a5

Substituindo esta solução em R (x 2), tem-se a relação entre os ai , e portanto entre os

parâmetros dos controladores, para ocorrer bifurcação:





a3±
r

a 2
3 −4a1a5

2a5





3

+a4





a3±
r

a 2
3 −4a1a5

2a5





2

−a2





a3±
r

a 2
3 −4a1a5

2a5



+a0 = 0

Multiplicando por 8a 3
5 para eliminar os denominadores,

�

a3±
r

a 2
3 −4a1a5

�3

+2a5a4

�

a3±
r

a 2
3 −4a1a5

�2

−4a 2
5 a2

�

a3±
r

a 2
3 −4a1a5

�

+8a 3
5 a0 = 0⇔

⇔
�

a3±
r

a 2
3 −4a1a5

�

�

�

a3±
r

a 2
3 −4a1a5

�2

+2a5a4

�

a3±
r

a 2
3 −4a1a5

�

−4a 2
5 a2

�

+8a 3
5 a0 = 0⇔

⇔
�

a3±
r

a 2
3 −4a1a5

�

�

�

a3+a5a4±
r

a 2
3 −4a1a5

�2

−a 2
5

�

a 2
4 +4a2

�

�

+8a 3
5 a0 = 0

9.4

Análise paramétrica do Diagrama de Bifurcação

Através da seção passada, se pode concluir acerca de quatro dos seis autovalores do

sistema. Este fato surge do grau dos polinômios R (x 2) e Q (x 2), uma vez que eles não comungam

de um par de raízes.

Para poder representar melhor o Diagrama de Bifurcação e analisá-lo eficientemente, os

parâmetros Ke e KP SS dos controladores serão variados; os outros serão fixados.

Vamos supor que o sistema tem autovalores λi , i ∈ {1, 2, . . . , 6}. Destes seis, se pode

concluir sobre os primeiros quatro a partir dos resultados a seguir:
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• Se a1 < 0, então Q (x ) admite uma solução positiva e outra negativa. Há apenas um par de

autovalores bifurcantes, digamos, λ1 e λ2:

λ(1,2) =± j

√

√

√

√

a3+
r

a 2
3 −4a1a5

2a5

Já os outros dois autovalores serão reais:

λ(3,4) =±

√

√

√

√

r

a 2
3 −4a1a5−a3

2a5

E o diagrama de bifurcação é dado por

�

a3+
r

a 2
3 −4a1a5

�

�

�

a3+a5a4+
r

a 2
3 −4a1a5

�2

−a 2
5

�

a 2
4 +4a2

�

�

+8a 3
5 a0 = 0

Note-se que a3 pode asssumir qualquer valor.

• Se a1 = 0, então Q (x 2) assume solução trivial mas R (x 2) não; logo, o zero não é solução

do sistema (9.2), a menos que a0 = 0.

– Se a3 < 0, um par de autovalores é bifurcante, dado por

λ(1,2) =± j

√

√ |a3|
a5

Os outros dois autovalores são complexos não reais. O diagrama de bifurcação é dado

por

8a 3
5 a0 = 0

– Se a3 = 0, então Q (x 2) só admite solução nula, o que impossível a menos que a0 = 0.

∗ Se a0 for de fato nulo, então o sistema admite um par de soluções triviais, e apenas

duas. Se a2 também for nulo, então o sistema admite quatro. Se a4 também for

nulo, então o sistema admite cinco. Se a5, então todas as soluções serão triviais.

– Se a3 > 0, então um par de autovalores é real, dado por

λ=±
√

√a3

a5

Os outros dois autovalores são complexos não-reais.

• Se a1 > 0:
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– Se a3 <−2
r

a1a5, então há dois pares de autovalores bifurcantes:

λ(1,2,3,4) =± j

√

√

√

√

a3±
r

a 2
3 −4a1a5

2a5

E o diagrama de bifurcação é dado por

�

a3±
r

a 2
3 −4a1a5

�

�

�

a3+a5a4±
r

a 2
3 −4a1a5

�2

−a 2
5

�

a 2
4 +4a2

�

�

+8a 3
5 a0 = 0

– Se a3 =−2
r

a1a5, então há dois pares de autovalores bifurcantes idênticos iguais a

λ(1,3) =λ(2,4) =± j

√

√a3

a5

E o diagrama de bifurcação é dado por

a3

h
�

a3+a5a4

�2
−a 2

5

�

a 2
4 +4a2

�
i

+8a 3
5 a0 = 0

– Se |a3|< 2
r

a1a5 então todos os quatro autovalores são complexos, não há nenhum

real ou imaginário puro;

– Se a3 = 2
r

a1a5 então não há bifurcação; há dois pares de autovalores reais idênticos

e iguais a

λ=±
√

√a3

a5

– Se a3 > 2
r

a1a5 os dois pares de autovalores são complexos não-reais.

• É importante notar que a solução trivial ocorre se e somente se a0 = 0. Neste caso, então

com certeza haverá pelo menos mais um autovalor real, uma vez que os complexos ocorrem

aos pares.

Assim sendo, conclui-se que o sistema admite bifurcação apenas se, para algum par

(Ke, KPSS):

• a1 < 0; ou

• a1 = 0 e a3 < 0; ou

• a1 > 0 e a3 ≤ 2
r

a1a5;
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Como discutido no apêndice C, os coeficientes a0, a1, a3e a5 são funções dos controladores

e do estado considerado:

a0 =
1

TeTwT2





�

�

�

�

�

�

J1,1 J1,3

J2,1 J2,3

�

�

�

�

�

�

−Ke J1,6

�

�

�

�

�

�

J2,3 J2,1

K6,3 K6,1

�

�

�

�

�

�



= AKe+B (9.5)

a1 =KPSS
T1

T2

�

�

�

�

�

�

�

�

�

K5,4 K5,3 K5,1

0 J2,3 J2,1

J1,6 J1,3 J1,1

�

�

�

�

�

�

�

�

�

−Ke
T2+Tw

TwTeT2
J1,6

�

�

�

�

�

�

J2,3 J2,1

K6,3 K6,1

�

�

�

�

�

�

+
T2+Tw+Te

TeT2Tw

�

�

�

�

�

�

J2,3 J2,1

J1,3 J1,1

�

�

�

�

�

�

−
J2,3

TeT2Tw
(9.6)

=C Ke+D KPSS+E (9.7)

a3 =−KPSS





T1

T2





�

�

�

�

�

�

J1,1 J1,4

K5,1 K5,4

�

�

�

�

�

�

+
K5,6−K5,4

Te



+
J2,1 J1,4

T2



+Ke
Tw+T2

T2TwTe
K6,1 J1,6+

− J2,1 J1,3+ J2,3

�

J1,1−
Tw+T2

T2Tw
−

1

Te

�

+
1

TeT2Tw
− J1,1

T2+Tw+Te

TwT2
= F Ke+G KPSS+H (9.8)

Sendo assim, e lembrando que Ke, KPSS > 0, tem-se que o sistema admite bifurcação se:

• a1 < 0⇔C E < 0∨D E < 0;

• Ou a1 = 0∧a3 < 0⇔

⇔ C Ke+D KPSS+E = 0∧ F Ke+G KPSS+H < 0⇔

⇔
�

F −
G C

D

�

Ke+H −
G E

D
< 0⇔

�

F −
G C

D

��

H −
G E

D

�

< 0
×D 2

⇐⇒

�

�

�

�

�

�

C D

F G

�

�

�

�

�

�

�

�

�

�

�

�

D E

G H

�

�

�

�

�

�

> 0 (9.9)

• Ou se existir algum par (Ke, KPSS) : a1 > 0∧a3 ≤−2
r

a1a5⇔

⇔ a1 > 0∧a3 < 0∧ |a3| ≥ 2
r

a1a5⇔

⇔ C Ke+D KPSS+E > 0∧ F Ke+G KPSS+H < 0∧
�

F Ke+G KPSS+H
�2
≥ 4a5

�

C Ke+D KPSS+E
�

⇔

⇔



























C Ke+D KPSS+E > 0

F Ke+G KPSS+H < 0

F 2Ke
2+G 2KPSS

2+2F G KeKPSS+
�

2F H −4a5C
�

Ke+
�

2G H −4a5D
�

KPSS+H 2−4a5E ≥ 0

(9.10)

9.5
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Averiguação da existência de Bifurcação no sistema controlado por AVR e PSS

Como discutido na seção anterior, o Diagrama de Bifurcação será representado bidimen-

sionalmente para melhor se poder visualizá-lo. Os ganhos Ke e Te serão variados e os outros

parâmetros serão mantidos constantes:

















T1

T2

Tw

Te

















=

















2

3

1

1

















Substituindo nas fórmulas os valores dos componentes Jm ,n e Km ,n do jacobiano no

equilíbrio ~S = 1+ j 0.5, e também os valores de T1, T2, Tw.Te nas expressões (9.5) a (9.8) então











































a0 =Ke 0.008969302610266+0.099845713151587

a1 =Ke 0.035877210441062+0.849764645906651

a3 =KPSS 0.009195121241277+Ke 0.032506650440767+3.592841222631569

a5 = 2.637064246614808

(9.11)

Valendo-se do fato que Ke, KPSS ≥ 0 então todos os coeficientes são sempre positivos,

eliminando grande parte da análise paramétrica do Diagrama de Bifurcação. Restam apenas três

possibilidades:

1. Se a3 < 2
r

a1a5 então todos os quatro autovalores são complexos, não há nenhum real ou

imaginário puro;

2. Se a3 = 2
r

a1a5 então não há bifurcação; há dois pares de autovalores reais idênticos e

iguais a

λ=±
√

√a3

a5

3. Se a3 > 2
r

a1a5 os dois pares de autovalores são complexos não-reais.

Valendo-se do sistema (9.11) conclui-se que a1, a3 > 0 para quaisquer valores de Ke e

KP SS possíveixs.
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Pelas conclusões da seção passada isto implica portanto que este sistema, no equilíbrio
~S = 1+ j 0.5 considerado, e com as escolhas de T1, T2, Tw.Te fixas, não é capaz de bifurcação

para nenhum par (Ke, KPSS).
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A Região de Estabilidade
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CAPÍTULO 10

Motivação, definição e caracterização

10.1

Motivação

Nesta parte o objetivo é comparar as Regiões de Atração do sistema em quatro condições:

malha aberta, controlado por AVR apenas, e controlado por AVR e PSS, com e sem saturações.

Para estimar essas regiões, utilizar-se-á de método numérico denominado “Força Bruta”, que

se baseia na simulação do sistema para uma grade de valores iniciais. Para tanto, é necessário

caracterizar o equilíbrio do sistema, para então poder simular o sistema a partir de condições

iniciais diversas. Ora, trata-se exatamente do que fora feito nas primeiras partes.

A análise seguiu da seguinte forma:

1. Caracterização da máquina elétrica e do barramento infinito, constituindo o sistema OMIB;

2. Cálculo do equilíbrio do sistema, seguido de desenvolvimento do algoritmo para cálculo

desse equilíbrio baseado na potência aparente fornecida pela máquina inicialmente;

3. Definição da Região de Factibilidade do sistema e desenvolvimento de algoritmo para

caracterizar essa região;

4. Dedução dos modelos dos controladores AVR e PSS, além da função saturação S (x );

5. Dedução dos modelos algébrico-diferenciais do sistema em malha aberta e fechada, a partir

do modelo da máquina:

a) Sistema em malha aberta;

b) Controlado por AVR;

c) Controlado por AVR e PSS, sem saturações (sistema “livre”);

d) Controlado por AVR e PSS com saturações (sistema saturado);
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6. Validação dos modelos deduzidos a partir de simulações numéricas do sistema sob pertur-

bação do tipo degrau na potência mecânica.

Os passos culminam com a estimativa da Região de Estabilidade do sistema. O objetivo

principal é estudar como a introdução de saturadores altera aquela Região.

Para estimá-la, foi utilizado o método Brute Force, ou Força Bruta, que consiste em simular

o sistema a partir de várias condições iniciais e averiguar, individualmente, quais trajetórias são

assintoticamente estáveis ao equilíbrio.

10.2

Definição

Antes de se analisar o comportamento dinâmico frente a uma perturbação do equilíbrio, é

imperativo que se entendam as possíveis classificações dos pontos de equilíbrio. Há basicamente

dois critérios de classificação: o primeiro, que diz respeito ao comportamento da trajetória do

sistema quando da perturbação do equilíbro; e o segundo, que diz respeito à análise local do

sistema no equilíbrio através dos autovalores do seu jacobiano calculado nesse equilíbrio.

Define-se primeiramente o conceito de equilíbrio. A ideia de “equilíbrio” é um ponto no qual

o sistema permanece se não perturbado. Matematicamente,

Definição 3 (Pontos de equilíbrio). Seja um sistema dinâmico ẋ = f (x ) , f : Ω× I → Rn não

autônomo, com condição inicial x (t0) = x0, cuja trajetória é x = φ (x0, t ). Supõem-se f e φ

C 1-contínuas em Ω. Um ponto x ∗ é chamado de equilíbrio do sistema se f (x ∗) = 0. Pode-se

também definir o conjunto dos pontos de equilíbrio, dado por

E =
�

x ∈ Ω
�

� f (x ) = 0
	

(10.1)

Esta definição, no entanto, advém do valor da derivada do sistema exatamente nos pontos

de equilíbrio, ou seja, não depreende nenhuma característica do sistema quando perturbado desse

equilíbrio. Além disso, frise-se que em muitos sistemas os equilíbrios podem não ser isolados, isto

é, o conjunto E pode representar uma linha ou até mesmo um plano .

A criação de uma classificação dos equilíbrios em função do comportamento dinâmico do

sistema na sua vizinhança toma por base o comportamento de sistemas lineares. Exemplifica-se

assim o caso de sistemas lineares bidimensionais.

10.3
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Comportamento de sistemas lineares bidimensionais

Imagine um sistema do tipo ẋ = Ax , A ∈ R2×2. Sendo assim, pode-se tomar a forma

canônica de Jordan J = PAP −1 de A, tal que o sistema ż = J z tenha comportamento similar,

mas as suas duas variáveis tenham acoplamento mínimo. Este sistema, por sua vez, tem dois

autovalores que podem ser reais ou complexos.

A classificação do equilíbrio z = 0 tem por base dois critérios: primeiro, o fato de os

autovalores serem complexos, imaginários, ou reais, e o segundo, a parte real dos autovalores ser

menor, igual ou maior que zero.

Definição 4 (Pontos de equilíbrio em sistemas lineares bidimensionais). Seja um sistema dinâmico

ẋ = Ax , A ∈R2×2, com um ponto de equilíbrio x ∗. Então x ∗ é classificado como segue:

• x ∗ é um nó estável se todos os autovalores de A forem reais negativos;

• Por outro lado, se todos os autovalores forem reais positivos, então x ∗ é um nó instável;

• Se os autovalores de A forem complexos de parte real negativa, então x ∗ é um foco estável;

• Já se os autovalores de A forem complexos de parte real positiva, então x ∗ é um foco

instável;

• Finalmente, se todos os autovalores do sistema forem imaginários puros, então o equilíbrio

é chamado centro.

O comportamento do sistema linear é esquematizado nas figuras 16 e 17, que ilustram

os planos de fase do sistema em oito situações possíveis. A primeira ilustra o comportamento

do sistema quando seus autovalores são reais, e a segunda ilustra o comportamento do sistema

quando seus autovalores são complexos.

Se os autovalores forem reais negativos, então o sistema decai exponencialmente ao

equilíbrio, que é global e assintoticamente estável. Se forem ambos positivos, o sistema explode

exponencialmente, e o equilíbrio é instável.

Por outro lado, se os autovalores forem complexos não-reais, o sistema apresenta compor-

tamento oscilatório. Se os autovalores tiverem parte real negativa, o equilíbrio é estável; se tiverem

parte real positiva, o equilíbrio é instável.

Finalmente, se os autovalores forem imaginários puros, o equilíbrio não é estável, e o

sistema apresenta infinitas óribtas periódicas (mas nenhum ciclo-limite).

A ideia da próxima seção é: dado que o Teorema de Hartman-Grobman garante que,

para equilíbrios hiperbólicos, o sistema não linear comporta-se similarmente à linearização, então

pode-se classificar o equilíbrio do sistema não-linear baseando-se no comportamento do sistema

linearizado.
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Figura 16 – Gráficos qualitativos do comportamento de sistema bidimensional com autovalores
reais ao redor do equilíbrio

Figura 17 – Gráficos qualitativos do comportamento de sistema bidimensional com autovalores
complexos ao redor do equilíbrio
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10.4

Expansão da classificação de equilíbrio para sistemas não-lineares

Dado que o Teorema de Hartman-Grobman garante que o sistema não linear se comporta

similarmente ã sua linearização numa vizinhança de um equilíbrio hiperbólico, analogamente ao

caso dos sistemas lineares bidimensionais, classificam-se os equilíbrios de sistemas não lineares

a partir dos autovalores do sistema linearizado calculado no ponto de equilíbrio.

Definição 5 (Classificaçãoe de pontos de equilíbrio de sistemas não lineares). Seja um sistema

dinâmico ẋ = f (x ), f C 1-contínua em Ω. Seja também um ponto de equilíbrio x ∗ tal que f (x ∗) = 0.

Denotando o jacobiano de f com relação a x no equilíbrio x ∗ por J f (x ∗), então x ∗ é classificado

como segue:

• O equilíbrio x ∗ é um equilíbrio hiperbólico se todos os autovalores de J f (x ∗) têm parte

real não-nula, e pode ser subclassificado em:

– Se os autovalores forem complexos não-reais, então x ∗ é um:

∗ Foco estável se todos os autovalores têm parte real negativa;

∗ Foco instável se todos os autovalores têm parte real positiva;

∗ Equilíbrio hiperbólico tipo k se exatamente k autovalores têm parte real positiva;

– Se os autovalores forem reais, então x ∗ é um:

∗ Nó estável se todos os autovalores são negativos;

∗ Nó instável se todos os autovalores são positivos;

∗ Cela se alguns autovalores são positivos e outros negativos;

• Do contrário, x ∗ é chamado centro se todos os autovalores têm parte real nula;

• Os casos em que alguns autovalores têm parte real nula e outros não são chamados

“casos elípticos”. Há classificações para estes casos, mas não serão postas aqui dado

que os sistemas dinâmicos lineares bidimensionais, que serviram de inspiração para esta

classificação, não contemplam estes casos.

E seja as definição de equilíbrio atrativo em (LUO, 2014; CHIANG; ALBERTO, 2015):

Definição 6 (Equilíbrio atrativo). Seja um sistema dinâmico ẋ = f (x ), com condição inicial

x (t0) = x0, cuja trajetória é x =φ (x0, t ), com x ∈Ω e t ∈R. Supõe-se f C 1-contínua em Ω. Seja

também um ponto de equilíbrio x ∗ tal que f (x ∗) = 0. Denotando o jacobiano de f com relação

a x no equilíbrio x ∗ por J f (x ∗), então x ∗ é um equilíbrio atrativo se existe uma vizinhança de
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x ∗, suponha U (x ∗), tal que o sistema converge para x ∗ à medida que t →∞ se x0 ∈U (x ∗).

Matematicamente, x ∗ é atrativo se

∃ η> 0
�

� ‖x ∗− x0‖<η⇒ lim
t→∞





φ (t0, x0, t )− x ∗




= 0 (10.2)

A ideia de caracterizar a estabilidade do equilíbrio é definir padrões de análise para

determinar se o sistema tenderá ao equilíbrio se perturbado levemente. Sendo assim, classifica-se

o equilíbrio de duas formas.

A primeira forma de caracterizar o equilíbrio x ∗ é através dos autovalores de f em x ∗,

quer dizer, através da solução det
�

J f (x ∗)−λI
�

= 0. Esta forma foi inspirada no comportamento

de sistemas lineares bidimensionais.

Já segunda consiste na análise através do comportamento da trajetória x =φ (x0, t ), com

x0 uma condição inicial próxima ao equilíbrio x ∗, ou seja, x0 ∈U (x ∗) com U (x ∗) uma vizinhança

do equilíbrio. Trata-se de um equilíbrio atrativo estável se U (x ∗) existe, ou seja, se o sistema for

solto suficientemente próximo do equilíbrio, retornará ao mesmo equilíbrio em tempo infinito.

O Teorema de Hartman-Grobman garante que, se o campo vetorial do sistema dinâmico f

for C 1, e x ∗ for um equilíbrio hiperbólico, então será atrativo se for um foco ou nó estável, e não

será atrativo se for um foco ou nó instável; se x ∗ não for hiperbólico, então não se pode garantir

que o sistema comporta-se similarmente à sua linearização. Assim, para esta classe de sistemas,

a atratividade do ponto de equilíbrio hiperbólico e a característica dos autovalores nesse equilíbrio

são intercambiáveis.

No entanto, a análise local dos autovalores do sistema no equilíbrio deixa passar uma

questão importante que a análise de trajetória menciona. Se todos os autovalores do sistema

dinâmico no equilíbrio têm parte real negativa, então existe uma vizinhança U (x ∗)⊃ {x ∗} dentro

da qual o equilíbrio é atrativo (novamente pelo Teorema de Hartman-Grobman), mas nada pode ser

dito sobre a vizinhança em si – exceto por sua existência. A questão é determinar essa vizinhança;

em geral, nos sistemas dinâmicos não-lineares, ao se soltar o sistema de uma condição inicial

suficientemente longe do equilíbrio, a trajetória φ (x0, t ) pode divergir do equilíbrio considerado.

Na prática, na maioria dos sistemas dinâmicos, ao se soltar o sistema de um ponto inicial

suficientemente longe do equilíbrio, então esse sistema não é capaz de voltar ao mesmo equilíbrio.

Assim, trata-se de determinar quais as condições x0 a partir das quais se pode abandonar o

sistema sem que ele divirja do equilíbrio x ∗ – ou seja, sem que o sistema encontre outro ponto de

equilíbrio e sem que as variáveis de estado admitam valores muito grandes (“explodam”).

À região U (x ∗) se denomina Região de Estabilidade ou Atração, ou seja, o conjunto das

condições iniciais x0 que levam o sistema ao equilíbrio x ∗.

Definição 7 (Região de Estabilidade). Seja um sistema dinâmico ẋ = f (x ), com condição inicial

x (t0) = x0, cuja trajetória é x =φ (x0, t ), com x ∈Ω e t ∈R. Supõe-se f C 1-contínua em Ω. Seja



10.4. Expansão da classificação de equilíbrio para sistemas não-lineares 121

também um ponto de equilíbrio x ∗ tal que f (x ∗) = 0. A Região de Estabilidade Re (x ∗) é o lugar

geométrico dos pontos x0 tais que a trajetória φ (x0, t ) converge assintoticamente para x ∗:

Re (x
∗) =

n

x0 ∈Ω
�

�

� lim
t→∞








φ (x0, t )− x ∗







 = 0
o

(10.3)

A figura 18 mostra um esquemático que exemplifica o conceito da definição 7. Na figura, o

traçado preto denota a Região de Estabilidade de um sistema genérico bidimensional, sendo x ∗ o

equilíbrio assintótico. Os pontos em azul, pertencentes ã Região, são utilizados como pontos de

partida do sistema, cujas trajetórias a partir de tais pontos são denotadas também em azul. Por

outro lado, os pontos em rosa são exteriores à Região, e portanto suas trajetórias devem escapar

à Região.

Figura 18 – Esquemático explicativo de Região de Estabilidade exemplificando sistema bidimensi-
onal.
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CAPÍTULO 11

O método Força Bruta

Métodos de caracterização de Regiões de Estabilidade são alvos de pesquisas recentes;

não há método único conhecido que resolva o desafio de estimar ou obter a Região de Equilíbrio

de qualquer sistema dinâmico. Larga atenção se dá aos métodos baseados na teoria de Lyapunov –

em miúdos, a Região de Equilíbrio é estimada pelo conjunto de pontos para o qual a função energia

V (x ) do sistema tem derivada negativa. No entanto, esbarra-se em problemas muito conhecidos

como a estimação da própria função energia, que muitas vezes não existe para o sistema em

estudo (HAMIDI; JERBI, 2009).

11.1

Descrição

Um método elementar de estimação da Região de Estabilidade é aquele conhecido como

Força Bruta ou Brute Force. Define-se uma grade Gr (Ω) no domínio Ω e simula-se o sistema

dinâmico partindo dos vários pontos definidos pela grade. Averigua-se assim quais pontos de

Gr(Ω) a partir dos quais, solto o sistema, ele retorna ao equilíbrio x ∗; trata-se de uma estimativa

da Região Re , denotada por E (Re ). Quanto mais fina a grade, quer dizer, mais pontos iniciais se

utiliza para simular a trajetória do sistema, mais precisa será a estimativa.

É claro que esse método possui a capabilidade de obter a região propriamente dita, ao

passo que muitos métodos obtém apenas uma parte dela ou um traço. No entanto, também é

evidente que ao definir grades muito finas o tempo total de simulação atinge valores infactíveis.

Assim trata-se de uma escolha entre precisão dos resultados (definição da Região) e

recurso computacional (tempo que se demora para tanto). A figura 19 mostra um sistema bidi-

mensional cuja separatrix da Região de Estabilidade é demonstrada em linha preta. Os pontos

correspondem à grade tomada; aqueles vermelhos foram retirados da estimativa da Região,

enquanto os cinza foram incluídos. A linha azul mostra a estimativa da separatrix.
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Figura 19 – Esboço da estimativa da Região de Estabilidade de um sistema bidimensional através
do método Força Bruta.

11.2

Eficientização

Para eficientizar o método, alguns passos são tomados, esquematizados na figura 20:

1. Determina-se um tempo máximo de simulação, quer dizer, em todas as simulações o sistema

será simulado de 0 a um tempo final qualquer;

2. Definem-se duas bolas, uma grande εma x e outra pequena εmi n , de equações

εmi n < ‖x − x ∗‖<εma x (11.1)

3. Numa dada simulação, se a trajetória do sistema adentrar a bola pequena εmi n (curva

amarela na figura 20), então assume-se que a condição inicial daquela trajetória pertence à

Re e esta simulação é cancelada, e a próxima começa. É importante observar que o raio da

bola pequena deve ser menor do que a menor distância do equilíbrio aos pontos da grade,

quer dizer;

εmi n < min
xg ∈Gr(Ω)

‖x ∗− xg ‖ (11.2)

Naturalmente, como esse valor não é tão facilmente acessível, pode-se adotar metade da

menor distância entre dois pontos da grade:
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εmi n =
1

2
min

(xg 1, xg 2)∈Gr (Ω)
‖xg 1− xg 2‖ (11.3)

Porque, caso contrário, os pontos da grade mais próximos do equilíbrio podem ser erronea-

mente incluídos na estimativa. A bola pequena deve ser pequena para que este equívoco

não ocorra; ao mesmo tempo, deve ser grande o suficiente para que pontos que de fato per-

tencam à Re sejam incluídos sem que precisem ser simulados por muito tempo, diminuindo

o tempo total de simulação.

4. Por outro lado, se numa dada simulação a trajetória do sistema extrapola a bola grande

εma x (curva azul claro na figura), então assume-se que a condição inicial dessa trajetória

não pertence à Re ; esta simulação é parada, e a próxima começa. Nota-se que, por suposto,

εma x > εmi n . Além disso, a bola grande deve ser grande o suficiente para que pontos

pertencentes à Região não sejam descartados erroneamento (na ocorrência de overshoot

por exemplo); ao mesmo tempo, deve ser pequena o suficiente para que os pontos que não

pertencem a ela sejam descartados rapidamente, diminuindo consideravelmente o tempo de

simulação.

Os pontos que não atingem nenhuma das bolas (curva verde) podem ser tratados como

possíveis candidatos a órbita periódica. Pode-se tratá-los incluindo-os ou excluindo-os da estimativa

ou ainda aumentando o tempo de simulação destes pontos em especial para poder concluir algo

sobre eles.
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Figura 20 – Esquemático de trajetória explicativo do método Força Bruta.
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CAPÍTULO 12

Aplicando o MFB ao sistema em estudo

Tendo desenvolvido o método e explicado, então pode-se aplicá-lo ao caso em estudo, os

sistemas controlados por AVR e PSS.

12.1

Implementação

O espaço de estados desses sistemas tem dimensão seis, e logo é impossível representar

sua Região de Estabilidade graficamente. No entanto, pode-se tomar um corte dela e representá-lo

tridimensionalmente, ou ainda bidimensaionalmente.

Além do espaço de estados, há a possibilidade de se verificar a influência dos parâmetros

dos controladores (ganhos e constantes de tempo) na Região. Neste caso, o espaço de análise

ganha mais dimensões, tantas quantas forem os parâmetros que se quer analisar.

Assim, o MFB foi aplicado ao sistema em estudo em duas instâncias.

12.1.1 Primeira implementação do MFB

Na primeira, a ideia foi retratar a Região de Estabilidade do sistema tridimensionalmente,

no espaço (x1, x2, x3) =
�

E ′q ,ω,δ
�

. Para tanto, fixaram-se os parâmetros dos controladores, e

tomou-se o corte (x4, x5, x6) = (0, 0, 0). A justificativa para tomar tal corte é que, no equilíbrio, não

faz sentido dar energia inicial aos controladores porque, por definição, eles não agem no equilíbrio.

Assim, a partir do equilíbrio, variaram-se x1 ≡ E ′q , x2 ≡ω e x3 ≡δ ao redor do equilíbrio:

• E ′q foi variado ao redor do valor de equilíbrio, de −10 a 10;

• ω também foi variado ao redor do valor de equilíbrio de −5 a 5;

• δ foi igualmente variado ao redor do valor de equilíbrio, de −1.5 a 2.
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Cada dimensão conteve trinta pontos linearmente espaçados, determinando vinte e sete

mil simulações, e definindo assim Gr (Ω) uma matriz de três colunas por vinte e sete mil.

O tempo final de simulação adotado foi 100 segundos; a bola pequena corresponde a 95%

da metade da menor distância entre dois pontos da grade. A bola maior foi adotada como mil vezes

a bola menor.

As características do sistema (parâmetros da máquina, ganhos e tempos dos controladores,

condição de equilíbrio e limites dos saturadores) foram mantidas as mesmas com relação às

simulações dinâmicas da parte anterior.

12.1.2 Segunda implementação do MFB

Na segunda aplicação do MFB, mostrou-se como a variação dos ganhos Ke e KP SS

influencia a Região de Estabilidade do sistema controlado por AVR e PSS. Para tanto, tomou-se o

corte (x1, x4, x5, x6) =
�

E ′q , 0, 0, 0
�

, e variaram-se aqueles ganhos.

Assim, traçou-se a Região de Estabilidade do sistema no plano (x2, x3) = (ω,δ), em duas

situações: na primeira, fixou-se Ke e variou-se KP SS ; na segunda, o contrário. A grade utilizada

teve duzentos pontos por cada uma das duas coordenadas.

O programa em MATLAB utilizado para estimar as Regiões de Estabilidade e gerar as

figuras de ambas as implementações se encontra no apêndice A, seção A.7, página 172.

12.2

Resultados

Na primeira implementação do MFB no sistema, obtém-se os pontos do espaço
�

E ′q ,ω,δ,
�

pertencentes à estimativa da Região de Estabilidade do sistema, que é um sólido naquele espaço.

Em seguida, utiliza-se o comando boundary para aferir quais dos pontos obtidos pertencem à

fronteira do sólido, obtendo-se assim uma estimativa da separatrix da Região.

Analogamente, na segunda implementação, obtém-se os pontos do plano (ω,δ, ) per-

tencentes à estimativa da Região no corte tomado; o comando boundary resulta os pontos que

pertencem à fronteira da estimativa, e que formam portanto uma estimativa da separatrix.

A seguir depictam-se as estimativas das regiões de estabilidade resultantes:

• Do sistema em malha aberta (figura 21), tridimensional e bidimensionalmente;

• Do sistema controlado apenas por AVR (figura 22), tridimensional e bidimensionalmente;

• Do sistema sem saturadores, tridimensionalmente e bidimensionalmente (figura 23);

• Idem para o sistema com saturadores (figura 24);
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• Dos sistemas com saturação e sem saturação, superpostos para comparação (figura 25). A

região do sistema com saturadores está denotada em preto para melhor denotá-la dentro da

região do sistema sem saturadores; esta foi traçada transparente pelo mesmo motivo.

Para doravante exemplificar o efeito da excursão dos ganhos Ke e KP SS na Região de

Estabilidade do Sistema, plotam-se as Regiões de Estabilidade do sistema variando-se estes

ganhos. Para melhor se representar as Regiões, fixou-se E ′q no valor de equilíbrio e variaram-se ω

e δ ao redor dos seus valores de equilíbrio.

• A figura 26 mostra a Região de Estabilidade do sistema, no plano (ω,δ). O ganho KP SS foi

mantido 20 e o ganho Ke variou nos valores 5, 10, 20;

• Já na figura 27, o ganho Ke foi fixado em 5 e o ganho KP SS foi variado em 20, 50, 100.
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Região de Estabildade do sistema em malha aberta

Figura 21 – Representações tridimensionais e bidimensionais da estimativa da Região de Estabili-
dade do sistema em malha aberta.
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Região de estabilidade do sistema controlado por AVR

Figura 22 – Representações tridimensionais da estimativa da Região de Estabilidade do sistema
livre.
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Região de estabilidade do sistema sem saturadores

Figura 23 – Representações tridimensionais e bidimensionais da estimativa da Região de Estabili-
dade do sistema sem saturadores.
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Região de estabilidade do sistema saturado 

Figura 24 – Representações bidimensionais e tridimensionais da estimativa da Região de Estabili-
dade do sistema saturado.
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Figura 25 – Representações bidimensionais e tridimensionais das duas estimativas das Regiões
de Estabilidade dos sistemas livre (região maior) e saturado (região menor destacada)
superpostas.
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Figura 26 – Estimativa da Região de Estabilidade do sistema, no plano (ω,δ), variando-se o
ganho Ke .
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Figura 27 – Estimativa da Região de Estabilidade do sistema, no plano (ω,δ), variando-se o
ganho KP SS .
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CAPÍTULO 13

Discussão

13.1

Sobre os traçados da Região de Estabilidade

Ficou claro como a introdução do AVR ou dos saturadores reduz singificativamente o

tamanho da região de estabilidade do sistema. Para fins de comparação, calcularam-se os volumes

das estimativas das Regiões:

1. Inicialmente, a região do sistema em malha aberta possui 323.04 unidades de volume;

2. Já depois da introdução do AVR a região passa a ter 17.97 unidades;

3. Em seguida, a introdução do PSS aumenta este volume para 169.89 unidades;

4. Finalmente, a introdução dos saturadores reduz o volume para 17.21 unidades.

As grandes disparidades entre os volumes do sistema em malha aberta e com AVR podem

ser principalmente devido ao alto ganho do controlador, que instabiliza o sistema significativamente.

Já a disparidade entre o volume dos sistemas controlados por AVR e PSS pode ser explicada pela

pequena amplitude escolhida para os saturadores.

A análise e comparação das regiões de estabilidade conclui que a maior região de estabili-

dade foi, naturalmente, a do sistema em malha aberta. A conseguinte introdução do AVR diminuiu

a região grandemente; em seguida, a introdução do PSS alargou-a, para então diminuir com a

introdução dos saturadores.

Após ter traçadas as Regiões de Estabilidade do sistema nas quatro situações (malha

aberta, controlado por AVR, controlado por AVR e PSS sem e com saturadores) dadas pelas figuras

21 a 25, pode-se comparar estas Regiões para se concluir sobre o impacto dos controladores na

estabilidade transitória do sistema.
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O sistema em malha aberta tem a maior Região de Estabilidade, significando que admite

condições iniciais mais afastadas do equilíbrio sem instabilizar. Entretanto, o sistema em malha

aberta é lento (tem tempos de acomodação muito extensos) e apresenta oscilações de altas

amplitudes, além de baixa regulação de tensão.

Logo após a introdução do AVR, a Região é diminuída abruptamente. Isto corrobora com o

fato que o AVR tem por único objetivo melhorar a regulação de tensões no sistema; no entanto, à

medida que o faz, piora a sua estabilidade transitória, tornando-o mais susceptível a perturbações.

Quando da introdução do PSS, a Região aumenta significativamente. Assim, o PSS cumpre

a função de aprimorar a resposta dinâmica do sistema a perturbações. Além disso, o PSS torna

o sistema mais rápido (tempos de acomodação menores) e diminui as amplitudes das suas

oscilações.

Finalmente, a introdução de saturadores diminui significativamente a Região de Estabili-

dade; isto se deve ao fato que impedem a atuação dos controladores. Presumivelmente, quando

os controladores são incapazes de agir, o sistema fica à deriva da própria dinâmica.

Isto gera um questionamento: por vezes a introdução de saturadores tem por objetivo

limitar a atuação dos controladores, sob a excusa de que a sobre- ou sub-excitação do sistema

pode ser danosa à máquina. O fato de a introdução desses mesmos saturadores ser tão deletéria

à Região (a ponto de diminuí-la cerca de 9.8 vezes) mostra que o pretexto de sobre/sub-excitação,

mesmo que fundado (de fato, operar a máquina fora das condições de operação pode acarretar

correntes e tensões prejudicialmente pequenas ou grandes ao equipamento) deve ser analisado

mais profundamente, uma vez que o sistema também pode ser danificado se instabilizado.

Ademais, também há de se considerar que muitos parâmetros influenciam na região – a

começar pelos parâmetros dos controladores, que são cinco: T1, T2, KP SS do controlador PSS,

e Ke , Te , do AVR. Além de tudo, naturalmente, quanto mais largos os limites dos saturadores,

mais próximas serão as regiões até que, se os limites forem infinitos, os sistemas livre e saturado

equivalem. Assim, é mister que se analise não apenas a influência dos saturadores, mas também

a influência destes parâmetros dos controladores naquela Região.

Apresenta-se assim um problema: dado que os limites de saturação limitam demais a

resposta do sistema, diminuindo-lhe significativamente a Região de Estabilidade, é necessário

tomar valores razoáveis para estes limites. Nesta monografia, os limites tomados foram escolhidos

em função da resposta dinâmica do sistema, para mostrar o efeito da saturação na resposta do

sistema frente perturbação; no artigo de onde se retiraram os parâmetros do sistema (DEMELLO;

CONCORDIA, 1969) não havia especificação nenhuma acerca dos limites de corrente ou de tensão,

de campo ou de armadura da máquina. Um possível avanço seria adotar um outro modelo de

máquina, mais completo, que possua estes limites, de forma que se possa adotar limites mais

verossímeis para os saturadores.
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13.2

Sobre a performance do MFB

O programa A.7 demorou cerca de oitenta horas para gerar os gráficos mostrados. Ainda

assim, percebe-se que tais gráficos são um pouco rudimentares devido à grade muito esparsa.

Para melhor estimar essas regiões, é necessário refinar a grade, tendo-se em vista que o número

de simulações que o método executa equivale ao tamanho da grade elevado ao cubo; isto quer

dizer que mudanças na grade elevam o tempo de simulação em, no mínimo, ordem cúbica.

Fica claro como o Método Força Bruta é inadequado para sistemas de grande porte. Os

sistemas aqui apresentados, um de dimensão quatro e outro de dimensão seis, são por si só

simplificações de modelos de sistemas de potência mais sofisticados – alguns destes consideram

duas ou três máquinas, acopladas a uma carga local e a um barramento infinito.

Visto que o equipamento utilizado consiste de um computador comercial convencional,

uma solução seria utilizar soluções numéricas computacionais, como utilização de computação

paralela ou ainda de clusters de alto poder computacional.

13.3

Sobre a investigação em bifurcações

Na investigação sobre Bifurcações, o resultado mais importante é que, no equilíbrio
~S = 1+ j 0.5, o sistema controlado por AVR é capaz de bifurcar, à medida que o sistema controlado

por AVR e PSS, fixos os tempos (T1, T2, Tw , Te ), não há par de ganhos (Ke , KP SS ) que o levem à

bifurcação. Em outras palavras: para o equilíbrio considerado, no sistema controlado por AVR,

para cada valor de Te existe um Ke B correspondente que pode levar o sistema à bifurcação. Já no

sistema controlado por AVR e PSS, fixas as constantes de tempo, nenhum par de ganhos pode

bifurcar o sistema. Em última instância, no AVR a possibilidade de bifurcação é atrelada apenas ao

ponto de operação ~S escolhido, enquanto no sistema controlado por AVR e PSS, para o mesmo

equilíbrio ~S talvez se possa escolher constantes de tempo tais que o sistema não seja capaz de

bifurcar para ganho algum.

Trata-se de uma constatação importantíssima porque reitera o PSS como um controlador

de suma importância para a estabilidade do sistema, à medida que evita a possibilidade de

bifurcações.

13.4
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Possíveis desenvolvimentos futuros

Com os resultados e métodos apresentados, pode-se também averiguar a ocorrência de

ciclos-limite em sistemas deste tipo, como reportado em (LI et al., 2002). Como, em geral, são

ciclos instáveis, o método Força Bruta também é inviável porque é virtualmente impossível acertar

uma grade que contenha uma condição inicial precisa que cause a um desses ciclos.

Partindo do que foi desenvolvido nesta monografia, pode-se ainda calcular os Tempos

Críticos de Abertura do sistema naquelas quatro situações, o que também ilustraria a influência

dos controladores e dos saturadores nas margens de estabilidade transitória do sistema.

Uma sugestão seria procurar, para o mesmo sistema, outro equilíbrio ~S para o qual o

sistema controlado por AVR e PSS seja passível de bifurcação. Poderia, ainda, adotar outro modelo

de máquina que possa bifurcar quando controlada por AVR e PSS.

Outra sugestão é averiuguar o comportamento do sistema quando bifurcado através do

cálculo do primeiro coeficiente de Lyapunov, de onde se pode caracterizar a resposta dinâmica do

sistema na bifurcação quando deslocado do equilíbrio.
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CAPÍTULO 14

Conclusão

O sistema OMIB foi estudado e caracterizado. Através dessa análise, foi possível deduzir

as equações de fluxo de potência, que levam às equações de equilíbrio do sistema.

Em seguida, estudou-se a Região de Factibilidade dessas equações, ou seja, determinaram-

se as condições que limitam a existência do equilíbrio.

Em posse das equações de equilíbrio e das equações da máquina em malha aberta, foi

possível deduzir as equações algébrico-diferenciais que regem o sistema em quatro situações

possíveis:

1. Sistema sem controladores (em malha aberta);

2. Sistema controlado por AVR;

3. Sistema controlado por AVR e PSS:

a) Sem saturadores (sistema “livre”);

b) Com saturadores (sistema saturado).

Desenvolvidas essas equações, os sistemas foram implementados em programas. Validaram-

se os modelos desenvolvidos através de simulações de perturbação do sistema.

Finalmente, através do método de Força Bruta, averiguou-se o impacto dos controladores

e dossaturadores na Região de Estabilidade do sistema; concluiu-se que, de fato, a introdução

do controlador AVR é deletéria às margens de estabilidade transitória do sistema; além disso, a

introdução de saturadores diminui enormemente essa Região.

Em seguida, pesquisou-se a ocorrência de Bifurcações de Hopf nos sistemas controlado

por AVR e controlado por AVR e PSS. Concluiu-se que o sistema controlado apenas por AVR, no

equilíbrio considerado, é capaz de bifurcação; determinou-se o Diagrama de Bifurcação do sistema
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e calcularam-se os autovalores do sistema quando na bifurcação. Concluiu-se também que, no

equilíbrio considerado, o sistema controlado por AVR e PSS não é passível de bifurcação.

Sugeriram-se alguns estudos de estabilidade, que serão desenvolvidos em projeto futuro.

São eles:

1. Estudo da influência dos parâmetros dos controladores sobre aquela Região de Estabilidade,

traçando-a para vários valores de parâmetros;

2. Pesquisa da ocorrência de ciclos-limite no sistema e tentativa de caracterizá-los;

3. Admissão de um modelo de máquina mais completo, que possibilite a adoção de valores

factíveis de limites dos saturadores;

4. A procura de outro ponto de equilíbrio para o qual o sistema controlado por AVR e PSS seja

passível de bifurcar;

5. A adoção de um modelo de máquina que possa bifurcar quando controlada por AVR e PSS.
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APÊNDICE A

Programas para MATLAB

Neste apêndice, são apresentados os códigos em MATLAB desenvolvidos segundo as

equações e teoria desenvolvida na monografia.

A.1

Cálculo das condições iniciais do sistema

Listing A.1 – Código para cálculo e mostra das condições iniciais do sistema.
1 %% Código para cálculo das condições iniciais do sistema OMIB

2 %% Autor: Álvaro Augusto Volpato

3

4 clear all;
5 clc;
6 close all;
7 format long

8

9 %% Definindo os parâmetros da máquina

10 global xd xq xlinhad xlinhaq Tlinhado r re xe H S E Z X alpha phi deltaPm

tempoDeltaPm Pm0 Efd0;

11

12 xd = 1.14; % Impedância equivalente de regime permanente de eixo direto

13 xq = 0.66; % Impedância equivalente de regime permanente de eixo em quadratura

14 xlinhad = 0.24; % Impedância transitória de eixo direto

15 xlinhaq = xlinhad; % Impedância transitória de eixo em quadratura

16 Tlinhado = 12; % Constante de tempo transitória de eixo direto

17 r = 0; % Resistência interna equivalente da máquina;

18 re = 0.01; % Resistência externa acoplada à máquina;

19 xe = 0.1; % Impedância externa acoplada à máquina;

20 xt = xe + xlinhaq; % Impedância "total";

21 rt = re + r; % Resistência "total"

22 H = 1.5; % Constante de inércia do rotor

23 P = 1; % Potência ativa inicial

24 Q = 0.5; % Potência reativa inicial

25 S = P + j*Q; % Potência aparente inicial

26 E = 1.0; % Tensão do barramento infinito (em PU!);

27 X = sqrt( (r+re)^2 + (xlinhaq + xe)^2 );

28 phi = atan((xlinhaq + xe)/(re + r) );



150 APÊNDICE A. Programas para MATLAB

29 Z = sqrt(re^2 + xe^2);

30 alpha = atan(xe/re);
31

32 %% Calculando as condições iniciais (em PU)

33

34 % Resolvendo o sistema das correntes

35 a = E^2*(xt^2 + rt^2);

36 b = rt*E^3 + 2*xt*E*(Q*rt - P*xt);

37 c = (Q*rt - P*xt)^2 - rt*P*E^2;

38

39 Ir = ( -b + sqrt(b^2 - 4*a*c))/(2*a);

40 Ii = (P*xt - Q*rt)/(E*rt) - xt/rt*Ir;

41 I = Ir + j*Ii;

42

43 clear x x0 a b c;

44

45 % Calculando as tensões através de Leis de Kirchoff

46 V = E + (re + j*xe)*I;

47 EL = V + (r + j*xlinhad)*I;

48

49 % Obtendo os versors Q e D e o ângulo delta

50 Q = EL/norm(EL);
51 delta0 = phase(EL);
52 D = Q*exp(j*pi/2);
53

54 % Calculando as tensões e correntes no eixo do rotor

55 ELq0 = real(EL)*cos(delta0) + imag(EL)*sin(delta0);
56 ELd0 = real(EL)*-sin(delta0) + imag(EL)*cos(delta0);
57

58 Vq0 = real(V)*cos(delta0) + imag(V)*sin(delta0);
59 Vd0 = real(V)*-sin(delta0) + imag(V)*cos(delta0);
60

61 Iq0 = real(I)*cos(delta0) + imag(I)*sin(delta0);
62 Id0 = real(I)*-sin(delta0) + imag(I)*cos(delta0);
63

64 V0 = sqrt(Vq0^2 + Vd0^2);

65

66 Efd0 = ELq0 - Id0*(xd - xlinhad);

67 Pm0 = ELq0*Iq0 - Iq0*Id0*(xlinhad - xlinhaq);

A.2

Região de Factibilidade

Listing A.2 – Código para plotar a Região de Factibilidade do sistema em estudo (figura 5).
1 %% Código para plotar a Região de Factibilidade do Sistema OMIB

2 %% Autor: Álvaro Augusto Volpato

3

4 close all;
5 clear all;
6 clc;
7

8 rt = 0.01;

9 xt = 0.34;

10

11 E = 1;
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12 z = xt/rt;

13

14 y = linspace(-4e1,4e1,1e4);
15

16 x = (-4*(1 + z^2).*y.^2 + (E^2/rt)^2 )/( 4*E^2*sqrt(1 + z^2)/(rt) );

17

18 x0 = E^2/(4*rt*sqrt(1 + z^2));

19

20 y0 = 0;

21

22 figure(1)
23 plot(x,y);
24 hold on

25 grid on

26 grid minor

27 plot(x0,y0,’ro’);
28 plot([x0,-1e3],[y0,y0]);
29

30 theta = atan(z);
31 theta = -theta;

32

33 P = x;

34 Q = y;

35

36 for i = 1:length(x)
37 P(i) = cos(theta)*x(i) - sin(theta)*y(i);
38 Q(i) = sin(theta)*x(i) + cos(theta)*y(i);
39 end
40

41 P0 = E^2/(4*rt*(1 + z^2));

42 Q0 = -z*E^2/(4*rt*(1 + z^2));

43

44 figure(2)
45 plot(P,Q)
46 grid on

47 grid minor

48 hold on

49 axis equal

50 plot(P0,Q0,’ro’);
51

52 reta1 = cos(theta)*-500 - sin(theta)*y0;
53 reta2 = sin(theta)*-500 + cos(theta)*y0;
54

55 plot([P0,reta1],[Q0,reta2])

A.3

Simulação do sistema em malha aberta

Listing A.3 – Código utilizado para simular o sistema em malha aberta e resultar nos gráficos da

figura 6.
1 %% Código para plotar a Região de Factibilidade do Sistema OMIB

2 %% Autor: Álvaro Augusto Volpato

3 clear all;
4 clc;
5 close all;
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6 format long

7

8 %% Definindo os parâmetros da máquina

9 global xd xq xlinhad xlinhaq Tlinhado r re xe H S E Z X alpha phi deltaPm

tempoDeltaPm Pm0 Efd0;

10

11 xd = 1.14; % Impedância equivalente de regime permanente de eixo direto

12 xq = 0.66; % Impedância equivalente de regime permanente de eixo em quadratura

13 xlinhad = 0.24; % Impedância transitória de eixo direto

14 xlinhaq = xlinhad; % Impedância transitória de eixo em quadratura

15 Tlinhado = 12; % Constante de tempo transitória de eixo direto

16 r = 0; % Resistência interna equivalente da máquina;

17 re = 0.01; % Resistência externa acoplada à máquina;

18 xe = 0.1; % Impedância externa acoplada à máquina;

19 xt = xe + xlinhaq; % Impedância "total";

20 rt = re + r; % Resistência "total"

21 H = 1.5; % Constante de inércia do rotor

22 P = 1; % Potência ativa inicial

23 Q = 0.5; % Potência reativa inicial

24 S = P + j*Q; % Potência aparente inicial

25 E = 1.0; % Tensão do barramento infinito (em PU!);

26 X = sqrt( (r+re)^2 + (xlinhaq + xe)^2 );

27 phi = atan((xlinhaq + xe)/(re + r) );

28 Z = sqrt(re^2 + xe^2);

29 alpha = atan(xe/re);
30

31 % Perturbação:

32 deltaPm = 0.1;

33 tempoDeltaPm = 5;

34

35 %% Calculando as condições iniciais (em PU)

36

37 % Resolvendo o sistema das correntes

38 a = E^2*(xt^2 + rt^2);

39 b = rt*E^3 + 2*xt*E*(Q*rt - P*xt);

40 c = (Q*rt - P*xt)^2 - rt*P*E^2;

41

42 Ir = ( -b + sqrt(b^2 - 4*a*c))/(2*a);

43 Ii = (P*xt - Q*rt)/(E*rt) - xt/rt*Ir;

44 I = Ir + j*Ii;

45

46 clear x x0 a b c;

47

48 % Calculando as tensões através de Leis de Kirchoff

49 V = E + (re + j*xe)*I;

50 EL = V + (r + j*xlinhad)*I;

51

52 % Obtendo os versors Q e D e o ângulo delta

53 Q = EL/norm(EL);
54 delta0 = phase(EL);
55 D = Q*exp(j*pi/2);
56

57 % Calculando as tensões e correntes no eixo do rotor

58 ELq0 = real(EL)*cos(delta0) + imag(EL)*sin(delta0);
59 ELd0 = real(EL)*-sin(delta0) + imag(EL)*cos(delta0);
60

61 Vq0 = real(V)*cos(delta0) + imag(V)*sin(delta0);
62 Vd0 = real(V)*-sin(delta0) + imag(V)*cos(delta0);
63

64 Iq0 = real(I)*cos(delta0) + imag(I)*sin(delta0);
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65 Id0 = real(I)*-sin(delta0) + imag(I)*cos(delta0);
66

67 V0 = sqrt(Vq0^2 + Vd0^2);

68

69 Efd0 = ELq0 - Id0*(xd - xlinhad);

70 Pm0 = ELq0*Iq0 - Iq0*Id0*(xlinhad - xlinhaq);

71

72 %% Plotando o diagrama fasorial das condições iniciais

73

74 figure(1)
75 hold on;

76 grid on;

77 axis equal;

78 title(’Diagrama fasorial das condições iniciais’);

79 ylabel(’Im’);
80 xlabel(’Re’);
81

82 % Elinha em azul

83 plot_arrow(0,0,real(EL),imag(EL),’headwidth’,0.01,’headheight’,0.01,’color’,’blue’,’
facecolor’,’blue’,’edgecolor’,’blue’);

84 txt = ’ E’’’;

85 text(real(EL),imag(EL),txt,’color’,’blue’)
86 % V em vermelho

87 plot_arrow(0,0,real(V),imag(V),’headwidth’,0.01,’headheight’,0.01,’color’,’red’,’
facecolor’,’red’,’edgecolor’,’red’);

88 txt = ’ V’;

89 text(real(V),imag(V),txt,’color’,’red’)
90 % I em amarelo

91 plot_arrow(0,0,real(I),imag(I),’headwidth’,0.01,’headheight’,0.01,’color’,’magenta’,’
facecolor’,’magenta’,’edgecolor’,’magenta’);

92 txt = ’ I’;

93 text(real(I),imag(I),txt,’color’,’magenta’)
94 % E em verde

95 plot_arrow(0,0,real(E),imag(E),’headwidth’,0.01,’headheight’,0.01,’color’,’green’,’
facecolor’,’green’,’edgecolor’,’green’);

96 txt = ’ E_{inf}’;

97 text(real(E),imag(E),txt,’color’,’green’)
98 % Q e D em preto

99 plot_arrow(0,0,real(Q)/5,imag(Q)/5,’headwidth’,0.01,’headheight’,0.01,’color’,’black’,’
facecolor’,’black’,’edgecolor’,’black’);

100 txt = ’ Q’;

101 text(real(Q)/5,imag(Q)/5,txt,’color’,’black’)
102 plot_arrow(0,0,real(D)/5,imag(D)/5,’headwidth’,0.01,’headheight’,0.01,’color’,’black’,’

facecolor’,’black’,’edgecolor’,’black’);

103 txt = ’ D’;

104 text(real(D)/5,imag(D)/5,txt,’color’,’black’)
105

106 %% Descrevendo o sistema com controlador

107

108 x0 = [ELq0 - 0.43,0.6,delta0,Efd0]; % Ponto inicial para ciclo limite?

109 xE = [ELq0,0,delta0,Efd0];

110

111 % Parâmetros do controlador AVR

112 Ke = 15;

113 Te = 1;

114

115 % Tempo total de simulação:

116 tfinal = 300;

117 tstep = 10^(-2); % Passo de tempo para o solver numérico

118 tspan = 0:tstep:tfinal;
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119

120 syms x1 x2 x3 x4 u

121 x0 = [ELq0,0,delta0]; % Ponto de operação

122

123 %Analisando a estabilidade do sistema através dos autovalores do jacobiano

124 % no ponto de operação

125

126 syms x1 x2 x3 x4 u

127 F = [ ( Efd0 - x1 + (xd - xlinhad)*Id( x1,x3 ) )/Tlinhado ;

128 ( u - x1*Iq( x1,x3 ) + (xlinhad - xlinhaq)*Iq( x1,x3 )*Id( x1,x3 ) )/(2*H);

129 x2 ];

130

131 F = symfun(F,[x1 x2 x3]);

132 F = jacobian(F, [x1, x2, x3]);

133 F = double(subs(F, [x1, x2, x3], x0));

134

135 fprintf(’--> Autovalores do jacobiano do sistema sem controlador no ponto de operação:\

n’);

136 disp(eig(F))
137

138 %Descrevendo as equações diferenciais

139

140 f = @(t,x) [(Efd0 - x(1) + (xd - xlinhad)*Id( x(1),x(3) ) )/Tlinhado ;

141 ( Pm0 + deltaPm*(heaviside(t - tempoDeltaPm) - heaviside(t - tempoDeltaPm -

larguraDeltaPm)) - x(1)*Iq( x(1),x(3) ) + (xlinhad - xlinhaq)*Iq( x

(1),x(3) )*Id( x(1),x(3)) )/(2*H);

142 x(2)];

143

144 % Resolvendo o sistema diferencial

145 options = odeset(’OutputFcn’,@odeplotterSistemaSemControladorAVR);

146 [t,x] = ode23(f,tspan,x0,options);
147

148 % Armazenando os resultados

149

150 ELqSem = x(:,1);

151 wSem = x(:,2);

152 deltaSem = x(:,3);

153 EfdSem = Efd0*ones(size(t));
154 VSem = Vt( ELqSem, deltaSem );

155 ISemVec = (ELqSem.*exp(deltaSem) - E)./((r+re) + j*(xlinhad + xe));

156 IqSem = real(ISemVec);
157 IdSem = imag(ISemVec);
158 ISem = abs(ISemVec);
159

160

161 %% Plotando os resultados

162

163 figure(2)
164 clf(figure(2));
165

166 subplot(2,4,1)
167 grid on

168 grid minor

169 plot(t,ELqSem,’r’)
170 legend(’Com controlador’,’Sem controlador’);

171 title(’E’’_{q}’);
172

173 subplot(2,4,2)
174 grid on

175 grid minor
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176 plot(t,wSem,’r’)
177 title(’\omega’);
178

179 subplot(2,4,3)
180 grid on

181 grid minor

182 plot(t,deltaSem,’r’)
183 title(’\delta’);
184

185 subplot(2,4,4)
186 grid on

187 grid minor

188 plot(t,EfdSem,’r’)
189 title(’E_{fd}’);
190

191 subplot(2,4,5)
192 grid on

193 grid minor

194 plot(t,VSem,’r’);
195 title(’V_t’);
196 legend(’Com controlador’,’Sem controlador’);

197

198 subplot(2,4,6)
199 grid on

200 grid minor

201 plot(t,IqSem,’r’);
202 title(’I_q’);
203

204 subplot(2,4,7)
205 grid on

206 grid minor

207 plot(t,IdSem,’r’);
208 title(’I_d’);
209

210 subplot(2,4,8)
211 grid on

212 grid minor

213 plot(t,ISem,’r’);
214 title(’|I|’);
215

216 figure(3)
217 hold on

218 grid on

219 grid minor

220 axis square

221 plot3(Efd0,0,ELq0,’ro’)
222 plot3(Efd0,0.6,ELq0 - 0.43,’ro’)

A.4

Simulação do sistema controlado por AVR

Listing A.4 – Código para simulação do sistema OMIB em malha aberta e com AVR.
1 %% Programa simulador para simular o sistema OMIB em malha aberta e controlado por AVR

2 %% Autor: Álvaro Augusto Volpato

3
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4 clear all;
5 clc;
6 close all;
7

8 %% Definindo os parâmetros da máquina

9 global xd xq xlinhad xlinhaq Tlinhado r re xe H S E Z X alpha phi deltaPm

tempoDeltaPm Pm0 Efd0;

10

11 xd = 1.14; % Impedância equivalente de regime permanente de eixo direto

12 xq = 0.66; % Impedância equivalente de regime permanente de eixo em quadratura

13 xlinhad = 0.24; % Impedância transitória de eixo direto

14 xlinhaq = xlinhad; % Impedância transitória de eixo em quadratura

15 Tlinhado = 12; % Constante de tempo transitória de eixo direto

16 r = 0; % Resistência interna equivalente da máquina;

17 re = 0; % Resistência externa acoplada à máquina;

18 xe = 0.1; % Impedância externa acoplada à máquina;

19 H = 1.5; % Constante de inércia do rotor

20 P = 1;

21 Q = 0.5;

22 S = P + j*Q; % Potência inicial que a máquina gera

23 E = 1.0; % Tensão do barramento infinito (em PU!);

24 X = sqrt( (r+re)^2 + (xlinhaq + xe)^2 );

25 phi = atan((xlinhaq + xe)/(re + r) );

26 Z = sqrt(re^2 + xe^2);

27 alpha = atan(xe/re);
28

29 % Perturbação:

30 deltaPm = 0.1;

31 tempoDeltaPm = 1;

32

33 % Calculando as tensões através de Leis de Kirchoff

34 V = E + (re + j*xe)*I;

35 EL = V + (r + j*xlinhad)*I;

36

37 % Obtendo os versors Q e D e o ângulo delta

38 Q = EL/norm(EL);
39 delta0 = phase(EL);
40 D = Q*exp(j*pi/2);
41

42 % Calculando as tensões e correntes no eixo do rotor

43 ELq0 = real(EL)*cos(delta0) + imag(EL)*sin(delta0);
44 ELd0 = real(EL)*-sin(delta0) + imag(EL)*cos(delta0);
45

46 Vq0 = real(V)*cos(delta0) + imag(V)*sin(delta0);
47 Vd0 = real(V)*-sin(delta0) + imag(V)*cos(delta0);
48

49 Iq0 = real(I)*cos(delta0) + imag(I)*sin(delta0);
50 Id0 = real(I)*-sin(delta0) + imag(I)*cos(delta0);
51

52 V0 = sqrt(Vq0^2 + Vd0^2);

53

54 Efd0 = ELq0 - Id0*(xd - xlinhad);

55 Pm0 = ELq0*Iq0 - Iq0*Id0*(xlinhad - xlinhaq);

56

57 %% Plotando o diagrama fasorial das condições iniciais

58

59 figure;
60 hold on;

61 grid on;

62 axis equal;



A.4. Simulação do sistema controlado por AVR 157

63 title(’Diagrama fasorial das condições iniciais’);

64 ylabel(’Im’);
65 xlabel(’Re’);
66

67 % Elinha em azul

68 plot_arrow(0,0,real(EL),imag(EL),’headwidth’,0.01,’headheight’,0.01,’color’,’blue’,’
facecolor’,’blue’,’edgecolor’,’blue’);

69 txt = ’ E’’’;

70 text(real(EL),imag(EL),txt,’color’,’blue’)
71 % V em vermelho

72 plot_arrow(0,0,real(V),imag(V),’headwidth’,0.01,’headheight’,0.01,’color’,’red’,’
facecolor’,’red’,’edgecolor’,’red’);

73 txt = ’ V’;

74 text(real(V),imag(V),txt,’color’,’red’)
75 % I em amarelo

76 plot_arrow(0,0,real(I),imag(I),’headwidth’,0.01,’headheight’,0.01,’color’,’magenta’,’
facecolor’,’magenta’,’edgecolor’,’magenta’);

77 txt = ’ I’;

78 text(real(I),imag(I),txt,’color’,’magenta’)
79 % E em verde

80 plot_arrow(0,0,real(E),imag(E),’headwidth’,0.01,’headheight’,0.01,’color’,’green’,’
facecolor’,’green’,’edgecolor’,’green’);

81 txt = ’ E_{inf}’;

82 text(real(E),imag(E),txt,’color’,’green’)
83 % Q e D em preto

84 plot_arrow(0,0,real(Q)/5,imag(Q)/5,’headwidth’,0.01,’headheight’,0.01,’color’,’black’,’
facecolor’,’black’,’edgecolor’,’black’);

85 txt = ’ Q’;

86 text(real(Q)/5,imag(Q)/5,txt,’color’,’black’)
87 plot_arrow(0,0,real(D)/5,imag(D)/5,’headwidth’,0.01,’headheight’,0.01,’color’,’black’,’

facecolor’,’black’,’edgecolor’,’black’);

88 txt = ’ D’;

89 text(real(D)/5,imag(D)/5,txt,’color’,’black’)
90

91 %% Descrevendo o sistema com controlador

92

93 x0 = [ELq0,0,delta0,Efd0]; % Ponto de operação

94

95 % Parâmetros do controlador AVR

96 Ke = 5;

97 Te = 1;

98

99 % Tempo total de simulação:

100 tfinal = 300;

101 tstep = 10^(-3); % Passo de tempo para o solver numérico

102 tspan = 0:tstep:tfinal;

103

104 %Analisando a estabilidade do sistema através dos autovalores do jacobiano

105 % no ponto de operação

106

107 syms x1 x2 x3 x4 u

108 F = [ ( x4 - x1 + (xd - xlinhad)*Id( x1,x3 ) )/Tlinhado ;

109 ( u - x1*Iq( x1,x3 ) + (xlinhad - xlinhaq)*Iq( x1,x3 )*Id( x1,x3 ) )/(2*H);

110 x2;

111 -( Ke*( Vt( x1,x3 ) - V0) + (x4 - Efd0) )/Te ];

112

113 F = symfun(F,[x1 x2 x3 x4]);

114 F = jacobian(F, [x1, x2, x3, x4]);

115 F = double(subs(F, [x1, x2, x3, x4, u], [x0, Pm0]));

116
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117 fprintf(’--> Autovalores do jacobiano do sistema com controlador no ponto de operação:\

n’);

118 eig(F)
119

120 %Descrevendo as equações diferenciais

121

122 f = @(t,x) [(x(4) - x(1) + (xd - xlinhad)*Id( x(1),x(3) ) )/Tlinhado ;

123 ( Pm0 + deltaPm*heaviside(t - tempoDeltaPm) - x(1)*Iq( x(1),x(3) ) + (

xlinhad - xlinhaq)*Iq( x(1),x(3) )*Id( x(1),x(3)) )/(2*H);

124 x(2);

125 - ( Ke*( Vt( x(1),x(3) ) - V0) + (x(4) - Efd0) )/Te];

126

127 % Resolvendo o sistema diferencial

128 [t,x] = ode23(f,tspan,x0);
129

130 % Armazenando os resultados

131

132 ELqCom = x(:,1);

133 wCom = x(:,2);

134 deltaCom = x(:,3);

135 EfdCom = x(:,4);

136

137 EL = zeros(size(ELqCom));
138 I = zeros(size(EL));
139

140 VCom = Vt( ELqCom, deltaCom );

141

142 %% Descrevendo o sistema sem controlador

143

144 x0 = [ELq0,0,delta0]; % Ponto de operação

145

146 %Analisando a estabilidade do sistema através dos autovalores do jacobiano

147 % no ponto de operação

148

149 syms x1 x2 x3 x4 u

150 F = [ ( Efd0 - x1 + (xd - xlinhad)*Id( x1,x3 ) )/Tlinhado ;

151 ( u - x1*Iq( x1,x3 ) - (xlinhad - xlinhaq)*Iq( x1,x3 )*Id( x1,x3 ) )/(2*H);

152 x2 ];

153

154 F = symfun(F,[x1 x2 x3]);

155 F = jacobian(F, [x1, x2, x3]);

156 F = double(subs(F, [x1, x2, x3], x0));

157

158 fprintf(’--> Autovalores do jacobiano do sistema sem controlador no ponto de operação:\

n’);

159 eig(F)
160

161 %Descrevendo as equações diferenciais

162

163 f = @(t,x) [(Efd0 - x(1) + (xd - xlinhad)*Id( x(1),x(3) ) )/Tlinhado ;

164 ( Pm0 + deltaPm*heaviside(t - tempoDeltaPm) - x(1)*Iq( x(1),x(3) ) - (

xlinhad - xlinhaq)*Iq( x(1),x(3) )*Id( x(1),x(3)) )/(2*H);

165 x(2)];

166

167 % Resolvendo o sistema diferencial

168 [t,x] = ode23(f,tspan,x0);
169

170 % Armazenando os resultados

171

172 ELqSem = x(:,1);
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173 wSem = x(:,2);

174 deltaSem = x(:,3);

175 EfdSem = Efd0*ones(size(t));
176 VSem = Vt( ELqSem, deltaSem );

177

178 %% Plotando os resultados

179 figure(2)
180

181 subplot(3,2,1)
182 plot(t,ELqCom,’b’)
183 hold on

184 grid on

185 grid minor

186 plot(t,ELqSem,’r’)
187 legend(’Com controlador’,’Sem controlador’);

188 title(’E’’_{q}’);
189

190 subplot(3,2,2)
191 plot(t,wCom,’b’)
192 hold on

193 grid on

194 grid minor

195 plot(t,wSem,’r’)
196 title(’\omega’);
197

198 subplot(3,2,3)
199 plot(t,deltaCom,’b’)
200 hold on

201 grid on

202 grid minor

203 plot(t,deltaSem,’r’)
204 title(’\delta’);
205

206 subplot(3,2,4)
207 plot(t,EfdCom,’b’)
208 hold on

209 grid on

210 grid minor

211 plot(t,EfdSem,’r’)
212 title(’E_{fd}’);
213

214 subplot(3,2,[5 6])

215 plot(t,VCom,’b’);
216 hold on;

217 grid on

218 grid minor

219 plot(t,VSem,’r’);
220 title(’V_t’);
221 legend(’Com controlador’,’Sem controlador’);

A.5

Simulação do sistema controlado por AVR e PSS

Listing A.5 – Código para simulação do sistema OMIB controlado por AVR e PSS com e sem
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saturadores.

1 %% Programa simulador para simular o sistema OMIB cntrolado por AVR+PSS, com e sem

saturadores

2 %% Autor: Álvaro Augusto Volpato

3

4 clear all;
5 clc;
6 close all;
7

8

9 addpath(’./funcoes’);

10

11 %% Definindo os parâmetros da máquina

12 global xd xq xlinhad xlinhaq Tlinhado r re xe H S E Z X alpha phi deltaPm

tempoDeltaPm Pm0 Efd0 EfdMax EfdMin VPssMax VPssMin Tw KPss T1 T2;

13

14 xd = 1.14; % Impedância equivalente de regime permanente de eixo direto

15 xq = 0.66; % Impedância equivalente de regime permanente de eixo em quadratura

16 xlinhad = 0.24; % Impedância transitória de eixo direto

17 xlinhaq = xlinhad; % Impedância transitória de eixo em quadratura

18 Tlinhado = 12; % Constante de tempo transitória de eixo direto

19 r = 0; % Resistência interna equivalente da máquina;

20 re = 0.01; % Resistência externa acoplada à máquina;

21 xe = 0.1; % Impedância externa acoplada à máquina;

22 H = 1.5; % Constante de inércia do rotor

23 P = 1;

24 Q = 0.5;

25 xt = xlinhaq + xe;

26 rt = r + re;

27 S = P + j*Q; % Potência inicial que a máquina gera

28 E = 1.0; % Tensão do barramento infinito (em PU!);

29 X = sqrt( (r+re)^2 + (xlinhaq + xe)^2 );

30 phi = atan((xlinhaq + xe)/(re + r) );

31 Z = sqrt(re^2 + xe^2);

32 alpha = atan(xe/re);
33

34 % Parâmetros dos saturadores

35 EfdMax = 2;

36 EfdMin = 0.5;

37

38 VPssMax = 2;

39 VPssMin = -0.2;

40

41

42 % Perturbação:

43 deltaPm = 0.1;

44 tempoDeltaPm = 1;

45

46 % Calculando as tensões através de Leis de Kirchoff

47 V = E + (re + j*xe)*I;

48 EL = V + (r + j*xlinhad)*I;

49

50 % Obtendo os versors Q e D e o ângulo delta

51 Q = EL/norm(EL);
52 delta0 = phase(EL);
53 D = Q*exp(j*pi/2);
54

55 % Calculando as tensões e correntes no eixo do rotor

56 ELq0 = real(EL)*cos(delta0) + imag(EL)*sin(delta0);
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57 ELd0 = real(EL)*-sin(delta0) + imag(EL)*cos(delta0);
58

59 Vq0 = real(V)*cos(delta0) + imag(V)*sin(delta0);
60 Vd0 = real(V)*-sin(delta0) + imag(V)*cos(delta0);
61

62 Iq0 = real(I)*cos(delta0) + imag(I)*sin(delta0);
63 Id0 = real(I)*-sin(delta0) + imag(I)*cos(delta0);
64

65 V0 = sqrt(Vq0^2 + Vd0^2);

66

67 Efd0 = ELq0 - Id0*(xd - xlinhad);

68 Pm0 = ELq0*Iq0 - Iq0*Id0*(xlinhad - xlinhaq);

69

70 figure;
71 hold on;

72 grid on;

73 axis equal;

74 title(’Diagrama fasorial das condições iniciais’);

75 ylabel(’Im’);
76 xlabel(’Re’);
77

78 % Elinha em azul

79 plot_arrow(0,0,real(EL),imag(EL),’headwidth’,0.01,’headheight’,0.01,’color’,’blue’,’
facecolor’,’blue’,’edgecolor’,’blue’);

80 txt = ’ E’’’;

81 text(real(EL),imag(EL),txt,’color’,’blue’)
82 % V em vermelho

83 plot_arrow(0,0,real(V),imag(V),’headwidth’,0.01,’headheight’,0.01,’color’,’red’,’
facecolor’,’red’,’edgecolor’,’red’);

84 txt = ’ V’;

85 text(real(V),imag(V),txt,’color’,’red’)
86 % I em amarelo

87 plot_arrow(0,0,real(I),imag(I),’headwidth’,0.01,’headheight’,0.01,’color’,’magenta’,’
facecolor’,’magenta’,’edgecolor’,’magenta’);

88 txt = ’ I’;

89 text(real(I),imag(I),txt,’color’,’magenta’)
90 % E em verde

91 plot_arrow(0,0,real(E),imag(E),’headwidth’,0.01,’headheight’,0.01,’color’,’green’,’
facecolor’,’green’,’edgecolor’,’green’);

92 txt = ’ E_{inf}’;

93 text(real(E),imag(E),txt,’color’,’green’)
94 % Q e D em preto

95 plot_arrow(0,0,real(Q)/5,imag(Q)/5,’headwidth’,0.01,’headheight’,0.01,’color’,’black’,’
facecolor’,’black’,’edgecolor’,’black’);

96 txt = ’ Q’;

97 text(real(Q)/5,imag(Q)/5,txt,’color’,’black’)
98 plot_arrow(0,0,real(D)/5,imag(D)/5,’headwidth’,0.01,’headheight’,0.01,’color’,’black’,’

facecolor’,’black’,’edgecolor’,’black’);

99 txt = ’ D’;

100 text(real(D)/5,imag(D)/5,txt,’color’,’black’)
101

102 %% Descrevendo o sistema com saturador

103

104

105 x0 = [ELq0,0,delta0,0,0,0]; % Ponto de operação

106

107 % Parâmetros dos controladores

108 Ke = 5;

109 Te = 1;

110 KPss = 20;
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111 T1 = 2;

112 T2 = 3;

113 Tw = 1;

114

115 % Tempo total de simulação:

116 tfinal = 60;

117 tstep = 10^(-3); % Passo de tempo para o solver numérico

118 tspan = 0:tstep:tfinal;

119

120

121 %% Descrevendo o sistema sem saturador

122

123 % Avaliando o jacobiano do sistema sem saturador no ponto de operação

124

125 syms x1 x2 x3 x4 x5 x6

126

127 F = [ ( Efd(x4,x6) - x1 + (xd - xlinhad)*Id( x1,x3) )/Tlinhado;

128 (Pm0 - x1*Iq(x1,x3) + (xlinhad - xlinhaq)*Id(x1,x3)*Iq(x1,x3))/(2*H);

129 x2;

130 x5;

131 (Tw*KPss*( T1*((...

132 - x1*dIq(x1,x2,x3,x4,x5,x6)...

133 - ( Efd(x4,x6) - x1 + (xd - xlinhad)*Id(x1,x3) )*Iq(x1,x3)/Tlinhado...

134 - (xlinhad - xlinhaq)*( Iq(x1,x3)*dId(x1,x2,x3,x4,x5,x6) + Id(x1,x3)*dIq(x1,x2,x3,

x4,x5,x6)))/(2*H)) + (Pm0 - x1*Iq(x1,x3) + (xlinhad - xlinhaq)*Id(x1,x3)*Iq(x1,

x3))/(2*H) ) - x4 - (Tw + T2)*x5 )/(Tw*T2);

135 -(Ke*( Vt( x1,x3 ) - V0) + (Efd(x4,x6) - Efd0) )/Te];

136

137 F = symfun(F,[x1 x2 x3 x4 x5 x6]);

138 F = jacobian(F, [x1, x2, x3, x4, x5, x6]);

139 F = double(subs(F, [x1, x2, x3, x4, x5, x6], x0));

140

141 fprintf(’\n --> Autovalores do sistema sem saturador no ponto de operação: \n’);

142 disp(eig(F));
143

144 f = @(t,x)[ ( (x(4) + x(6) + Efd0) - x(1) + (xd - xlinhad)*Id( x(1),x(3)) )/Tlinhado;

145 dw(x(1),x(3),t);

146 x(2);

147 x(5);

148 (Tw*KPss*( T1*ddw(x(1),x(2),x(3),x(4),x(5),x(6),t) + dw(x(1),x(3),t) ) - x(4) -

(Tw + T2)*x(5) )/(Tw*T2);

149 -(Ke*( Vt( x(1),x(3) ) - V0) + (Efd(x(4),x(6)) - Efd0) )/Te];

150

151 % Resolvendo o sistema diferencial

152 options = odeset(’OutputFcn’,@odeplotterSistemaSemSaturador);

153 [t,x] = ode23(f,tspan,x0,options);
154

155 % Armazenando os resultados

156

157 ELqSem = x(:,1);

158 wSem = x(:,2);

159 deltaSem = x(:,3);

160 VSem = Vt( ELqSem,deltaSem );

161 VPssSem = x(:,4);

162 VAvrSem = x(:,6);

163 EfdSem = VPssSem + VAvrSem + Efd0*ones(size(t));
164 IdSem = Id(ELqSem,deltaSem);

165 IqSem = Iq(ELqSem,deltaSem);

166 ISem = (IdSem.^2 + IqSem.^2).^0.5;

167
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168 %% Descrevendo o sistema com saturador

169 % Avaliando o jacobiano do sistema com saturador no ponto de operação

170 syms x1 x2 x3 x4 x5 x6

171

172 F = [ ( EfdSat(x4,x6) - x1 + (xd - xlinhad)*Id( x1,x3) )/Tlinhado;

173 (Pm0 - x1*Iq(x1,x3) + (xlinhad - xlinhaq)*Id(x1,x3)*Iq(x1,x3))/(2*H);

174 x2;

175 x5;

176 (Tw*KPss*( T1*((...

177 - x1*dIqSat(x1,x2,x3,x4,x5,x6)...

178 - ( EfdSat(x4,x6) - x1 + (xd - xlinhad)*Id(x1,x3) )*Iq(x1,x3)/Tlinhado...

179 - (xlinhad - xlinhaq)*( Iq(x1,x3)*dIdSat(x1,x2,x3,x4,x5,x6) + Id(x1,x3)*dIqSat(x1,

x2,x3,x4,x5,x6)))/(2*H)) + (Pm0 - x1*Iq(x1,x3) + (xlinhad - xlinhaq)*Id(x1,x3)*
Iq(x1,x3))/(2*H) ) - x4 - (Tw + T2)*x5 )/(Tw*T2);

180 -(Ke*( Vt( x1,x3 ) - V0) + (EfdSat(x4,x6) - Efd0) )/Te];

181

182 F = symfun(F,[x1 x2 x3 x4 x5 x6]);

183 F = jacobian(F, [x1, x2, x3, x4, x5, x6]);

184 F = double(subs(F, [x1, x2, x3, x4, x5, x6], x0));

185

186 fprintf(’\n --> Autovalores do sistema com saturador no ponto de operação: \n’);

187 disp(eig(F));
188

189 f = @(t,x)[ ( EfdSat(x(4),x(6)) - x(1) + (xd - xlinhad)*Id( x(1),x(3)) )/Tlinhado;

190 dw(x(1),x(3),t);

191 x(2);

192 x(5);

193 (Tw*KPss*( T1*ddwSat(x(1),x(2),x(3),x(4),x(5) ,x(6),t) + dw(x(1),x(3),t) ) - x

(4) - (Tw + T2)*x(5) )/(Tw*T2);

194 -(Ke*( Vt( x(1),x(3) ) - V0) + (EfdSat(x(4),x(6)) - Efd0) )/Te];

195

196 % Resolvendo o sistema diferencial

197 options = odeset(’OutputFcn’,@odeplotterSistemaComSaturador);

198 [t,x] = ode23(f,tspan,x0,options);
199

200 % Armazenando os resultados

201

202 ELqSat = x(:,1);

203 wSat = x(:,2);

204 deltaSat = x(:,3);

205 VSat = Vt( ELqSat,deltaSat );

206 VPssSat = sat(x(:,4),VPssMax,VPssMin);

207 VAvrSat = x(:,6);

208 EfdSat = sat(VPssSat + VAvrSat + Efd0*ones(size(t)),EfdMax,EfdMin);
209 IdSat = Id(ELqSat,deltaSat);

210 IqSat = Iq(ELqSat,deltaSat);

211 ISat = (IdSat.^2 + IqSat.^2).^0.5;

212

213

214 %% Plotando os resultados

215 figure(2)
216 clf(figure(2));
217

218 subplot(3,4,1)
219 plot(t,ELqSat,’b’)
220 hold on

221 plot(t,ELqSem,’r’)
222 grid on

223 grid minor

224 title(’E’’_{q}’);
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225

226 subplot(3,4,2)
227 plot(t,wSat,’b’)
228 hold on

229 plot(t,wSem,’r’)
230 grid on

231 grid minor

232 title(’\omega’);
233

234 subplot(3,4,3)
235 plot(t,deltaSat,’b’)
236 hold on

237 plot(t,deltaSem,’r’)
238 grid on

239 grid minor

240 title(’\delta’);
241

242 subplot(3,4,4)
243 plot(t,EfdSat,’b’)
244 hold on

245 plot(t,EfdSem,’r’)
246 grid on

247 grid minor

248 title(’E_{FD}’);
249

250 wdsubplot(3,4,5)

251 plot(t,VSat,’b’);
252 hold on

253 plot(t,VSem,’r’);
254 grid on

255 grid minor

256 title(’V_t’);
257

258 subplot(3,4,6)
259 plot(t,VAvrSat,’b’);
260 hold on

261 plot(t,VAvrSem,’r’);
262 grid on

263 grid minor

264 title(’V_{AVR}’);
265

266 subplot(3,4,7)
267 plot(t,VPssSat,’b’);
268 hold on

269 plot(t,VPssSem,’r’);
270 grid on

271 grid minor

272 title(’V_{PSS}’)
273

274 subplot(3,4,8)
275 plot(t,ISat,’b’)
276 hold on

277 plot(t,ISem,’r’);
278 grid on

279 grid minor

280 title(’|I|’);
281

282 subplot(3,4,[9 10])

283 plot(t,IdSat,’b’)
284 hold on
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285 plot(t,IdSem,’r’);
286 grid on

287 grid minor

288 title(’I_d’);
289

290 subplot(3,4,[11 12])

291 plot(t,IqSat,’b’)
292 hold on

293 plot(t,IqSem,’r’);
294 grid on

295 grid minor

296 title(’I_q’);
297 legend(’Sistema com saturador’,’Sistema sem saturador’);

A.6

Estimativa das Regiões de Estabilidade

Listing A.6 – Código do método Força Bruta para estimação da Região de Estabilidade dos siste-

mas AVR e PSS com e sem saturadores.
1 %% Programa para estimar a região de estabilidade do sistema AVR + PSS através de brute

force

2 %% Autor: Álvaro Augusto Volpato

3 clear all;
4 clc;
5 close all;
6

7 addpath(’./funcoes’);

8

9 %% ----------------------------------------------

10 % Definindo os parâmetros da máquina

11 % -----------------------------------------------

12 global xd xq xlinhad xlinhaq Tlinhado r re xe H S E Z X alpha phi deltaPm

tempoDeltaPm Pm0 Efd0 EfdMax EfdMin VPssMax VPssMin Tw KPss T1 T2 bolaPequena

bolaGrande vetorLimite contaSim tfinal vetorDeslocamento Te x0

13

14 xd = 1.14; % Impedância equivalente de regime permanente de eixo direto

15 xq = 0.66; % Impedância equivalente de regime permanente de eixo em quadratura

16 xlinhad = 0.24; % Impedância transitória de eixo direto

17 xlinhaq = xlinhad; % Impedância transitória de eixo em quadratura

18 Tlinhado = 12; % Constante de tempo transitória de eixo direto

19 r = 0; % Resistência interna equivalente da máquina;

20 re = 0.01; % Resistência externa acoplada à máquina;

21 xe = 0.1; % Impedância externa acoplada à máquina;

22 xt = xe + xlinhaq;

23 rt = r + re;

24 H = 1.5; % Constante de inércia do rotor

25 P = 1;

26 Q = 0.5;

27 S = P + j*Q; % Potência inicial que a máquina gera

28 E = 1.0; % Tensão do barramento infinito (em PU!);

29 X = sqrt( (r+re)^2 + (xlinhaq + xe)^2 );

30 phi = atan((xlinhaq + xe)/(re + r) );

31 Z = sqrt(re^2 + xe^2);

32 alpha = atan(xe/re);
33
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34 % Perturbação:

35 deltaPm = 0;

36 tempoDeltaPm = 5;

37

38 %% ------------------------------------------

39 % Calculando a situação inicial

40 % -------------------------------------------

41

42 % Resolvendo o sistema das correntes

43 a = E^2*(xt^2 + rt^2);

44 b = rt*E^3 + 2*xt*E*(Q*rt - P*xt);

45 c = (Q*rt - P*xt)^2 - rt*P*E^2;

46

47 Ir = ( -b + sqrt(b^2 - 4*a*c))/(2*a);

48 Ii = (P*xt - Q*rt)/(E*rt) - xt/rt*Ir;

49 I = Ir + j*Ii;

50

51 % Calculando as tensões através de Leis de Kirchoff

52 V = E + (re + j*xe)*I;

53 EL = V + (r + j*xlinhad)*I;

54

55 % Obtendo os versors Q e D e o ângulo delta

56 Q = EL/norm(EL);
57 delta0 = phase(EL);
58 D = Q*exp(j*pi/2);
59

60 % Calculando as tensões e correntes no eixo do rotor

61 ELq0 = real(EL)*cos(delta0) + imag(EL)*sin(delta0);
62 ELd0 = real(EL)*-sin(delta0) + imag(EL)*cos(delta0);
63

64 Vq0 = real(V)*cos(delta0) + imag(V)*sin(delta0);
65 Vd0 = real(V)*-sin(delta0) + imag(V)*cos(delta0);
66

67 Iq0 = real(I)*cos(delta0) + imag(I)*sin(delta0);
68 Id0 = real(I)*-sin(delta0) + imag(I)*cos(delta0);
69

70 V0 = sqrt(Vq0^2 + Vd0^2);

71

72 Efd0 = ELq0 - Id0*(xd - xlinhad);

73 Pm0 = ELq0*Iq0 - Iq0*Id0*(xlinhad - xlinhaq);

74

75 % Parâmetros dos saturadores

76 EfdMax = Efd0 + 0.2;

77 EfdMin = Efd0 - 0.2;

78

79 VPssMax = 0.2;

80 VPssMin = -0.2;

81

82 %% ---------------------------------------------

83 % Definindo os parâmetros da estimativa de Região de Atração

84 % ---------------------------------------------

85

86 grade = 30; % Número de pontos em cada dimensão do gráfico da região

87

88 ELqCima = 10;

89 ELqBaixo = -10;

90 deslocamentoInicialELq = linspace(ELqBaixo, ELqCima , grade); % Vetor de deslocamento

da condição inicial de ELq0

91

92 omegaBaixo = -5;
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93 omegaCima = 5;

94 deslocamentoInicialOmega = linspace(omegaBaixo,omegaCima,grade);
95

96 deltaBaixo = -1.5;

97 deltaCima = 2;

98 deslocamentoInicialDelta = linspace(deltaBaixo , deltaCima , grade);

99

100 vetorLimite = zeros(6,1);
101

102 bolaPequena = 0.95*sqrt( (ELqCima - ELqBaixo)^2 + (omegaCima - omegaBaixo)^2 + (

deltaCima - deltaBaixo)^2 )/grade;

103 bolaGrande = 1000*bolaPequena;

104

105 % Parâmetros dos controladores

106 Ke = 10;

107 Te = 0.1;

108 KPss = 20;

109 T1 = 2;

110 T2 = 3;

111 Tw = 1;

112

113 % Tempo total de simulação:

114 tfinal = 100;

115 tstep = 10^(-3); % Passo de tempo para o solver numérico

116 tspan = 0:tstep:tfinal;

117

118 x0 = [ELq0,0,delta0,Efd0]; % Ponto de operação inicial

119

120 %% ---------------------------------------------

121 % Descrevendo o sistema em malha aberta

122 % ----------------------------------------------

123

124 vetorLimite = zeros(6,1);
125

126 f = @(t,x) [(Efd0 - x(1) + (xd - xlinhad)*Id( x(1),x(3) ) )/Tlinhado ;

127 ( Pm0 + deltaPm*heaviside(t - tempoDeltaPm) - x(1)*Iq( x(1),x(3) ) + (

xlinhad - xlinhaq)*Iq( x(1),x(3) )*Id( x(1),x(3)) )/(2*H);

128 x(2)

129 0];

130

131 options = odeset(’OutputFcn’,@odeplotterMAberta);

132

133 contaSim = 0;

134 for i = 1:grade

135 for j = 1:grade

136 for k = 1:grade

137

138 contaSim = contaSim + 1;

139 fprintf(’\n Simulação número %d (%d,%d,%d)’,contaSim,i,j,k)

140

141 vetorDeslocamento = [deslocamentoInicialELq(i),deslocamentoInicialOmega(j),

deslocamentoInicialDelta(k),0,];

142 xInit = x0 + vetorDeslocamento;

143

144 [t,x] = ode23(f,tspan,xInit,options);
145

146 if (t(end) == tfinal)

147 fprintf(’: ATINGIU o tempo final! \n \n’,contaSim);

148

149 else
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150 fprintf(’: interrompida em t = %f’,t(end));
151 end
152

153 end
154 end
155 end
156

157 % Rearranja o vetor limite para admitir apenas os valores de E’q, omega e

158 % delta

159 vetorLimite = vetorLimite(1:3,2:end);
160 vetorLimiteMAberta = vetorLimite;

161

162 figure(1)
163 plot3(vetorLimite(1,:),vetorLimite(2,:),vetorLimite(3,:),’bo’)
164 grid on

165 grid minor

166 xlabel(’ELq’)
167 ylabel(’w’)
168 zlabel(’Delta’)
169

170 %% -------------------------------------------

171 % Descrevendo o sistema com AVR

172 % --------------------------------------------

173

174 vetorLimite = zeros(4,1);
175 vetorDeslocamento = zeros(4,1);
176

177 f = @(t,x) [(x(4) - x(1) + (xd - xlinhad)*Id( x(1),x(3) ) )/Tlinhado ;

178 ( Pm0 + deltaPm*heaviside(t - tempoDeltaPm) - x(1)*Iq( x(1),x(3) ) + (

xlinhad - xlinhaq)*Iq( x(1),x(3) )*Id( x(1),x(3)) )/(2*H);

179 x(2);

180 - ( Ke*( Vt( x(1),x(3) ) - V0) + (x(4) - Efd0) )/Te];

181

182 options = odeset(’OutputFcn’,@odeplotterMAberta);

183

184 contaSim = 0;

185 for i = 1:grade

186 for j = 1:grade

187 for k = 1:grade

188

189 contaSim = contaSim + 1;

190 fprintf(’\n Simulação número %d (%d,%d,%d)’,contaSim,i,j,k)

191

192 vetorDeslocamento = [deslocamentoInicialELq(i),deslocamentoInicialOmega(j),

deslocamentoInicialDelta(k),0,];

193 xInit = x0 + vetorDeslocamento;

194

195 [t,x] = ode23(f,tspan,xInit,options);
196

197 if (t(end) == tfinal)

198 fprintf(’: ATINGIU o tempo final! \n \n’,contaSim);

199

200 else
201 fprintf(’: interrompida em t = %f’,t(end));
202 end
203

204 end
205 end
206 end
207
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208 vetorLimite = vetorLimite(1:3,2:end);
209 vetorLimiteAVR = vetorLimite;

210 save(’vetorLimiteAVR27k.txt’,’vetorLimiteAVR’,’-ascii’);
211 figure(1)
212 plot3(vetorLimite(1,:),vetorLimite(2,:),vetorLimite(3,:),’ro’)
213 grid on

214 grid minor

215 xlabel(’ELq’)
216 ylabel(’w’)
217 zlabel(’Delta’)
218

219 %% -------------------------------------

220 % Descrevendo o sistema sem saturador

221 % -------------------------------------

222

223 % Rearranjando o vetor inicial para seis dimensões

224 x0 = [ELq0,0,delta0,0,0,0]; % Ponto de operação inicial

225

226 f = @(t,x)[ ( (x(4) + x(6) + Efd0) - x(1) + (xd - xlinhad)*Id( x(1),x(3)) )/Tlinhado;

227 dw(x(1),x(3),t);

228 x(2);

229 x(5);

230 (Tw*KPss*( T1*ddw(x(1),x(2),x(3),x(4),x(5),x(6),t) + dw(x(1),x(3),t) ) - x(4) -

(Tw + T2)*x(5) )/(Tw*T2);

231 -(Ke*( Vt( x(1),x(3) ) - V0) + (Efd(x(4),x(6)) - Efd0) )/Te];

232

233 % Resolvendo o sistema diferencial

234 options = odeset(’OutputFcn’,@odeplotterSistemaSemSaturadorSemGrafico);

235

236 contaSim = 0;

237

238 for i = 1:grade

239 for j = 1:grade

240 for k = 1:grade

241

242 contaSim = contaSim + 1;

243 fprintf(’\n Simulação número %d (%d,%d,%d)’,contaSim,i,j,k)

244

245 vetorDeslocamento = [deslocamentoInicialELq(i),deslocamentoInicialOmega(j),

deslocamentoInicialDelta(k),0,0,0];

246 xInit = x0 + vetorDeslocamento;

247

248 [t,x] = ode23(f,tspan,xInit,options);
249

250 if (t(end) == tfinal)

251 fprintf(’: ATINGIU o tempo final! \n’,contaSim);

252

253 else
254 fprintf(’: t = %f’,t(end));
255 end
256

257 end
258 end
259 end
260

261 vetorLimite = vetorLimite(1:3,2:end);
262 vetorLimiteSemSaturacao = vetorLimite;

263

264 figure(2)
265 plot3(vetorLimite(1,:),vetorLimite(2,:),vetorLimite(3,:),’bo’)
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266 grid on

267 grid minor

268 xlabel(’ELq’)
269 ylabel(’w’)
270 zlabel(’Delta’)
271

272 %% -----------------------------------

273 % Descrevendo o sistema com saturador

274 % -----------------------------------

275

276 vetorLimite = zeros(6,1);
277 contaSim = 0;

278 clear x;

279

280 f = @(t,x)[ ( EfdSat(x(4),x(6)) - x(1) + (xd - xlinhad)*Id( x(1),x(3)) )/Tlinhado;

281 dw(x(1),x(3),t);

282 x(2);

283 x(5);

284 (Tw*KPss*( T1*ddwSat(x(1),x(2),x(3),x(4),x(5) ,x(6),t) + dw(x(1),x(3),t) ) - x

(4) - (Tw + T2)*x(5) )/(Tw*T2);

285 -(Ke*( Vt( x(1),x(3) ) - V0) + (EfdSat(x(4),x(6)) - Efd0) )/Te];

286

287 % Resolvendo o sistema diferencial

288 options = odeset(’OutputFcn’,@odeplotterSistemaComSaturadorSemGrafico);

289

290

291 for i = 1:grade

292 for j = 1:grade

293 for k = 1:grade

294

295 contaSim = contaSim + 1; %

Incrementa a contagem de iterações

296 fprintf(’\n Simulação número %d (%d,%d,%d)’,contaSim,i,j,k)

297

298 vetorDeslocamento = [deslocamentoInicialELq(i),deslocamentoInicialOmega(j),

deslocamentoInicialDelta(k),0,0,0];

299 xInit = x0 + vetorDeslocamento;

300

301 [t,x] = ode23(f,tspan,xInit,options);
302

303 if (t(end) == tfinal)

304 fprintf(’: ATINGIU o tempo final! \n \n’,contaSim);

305 else
306 fprintf(’: interrompida em t = %f’,t(end));
307 end
308

309 end
310 end
311 end
312

313 % Rearranja o vetor limite para admitir apenas os valores de E’q, omega e

314 % delta

315 vetorLimite = vetorLimite(1:3,2:end);
316 vetorLimiteComSaturacao = vetorLimite;

317

318 figure(2)
319 plot3(vetorLimite(1,:),vetorLimite(2,:),vetorLimite(3,:),’ro’)
320 grid on

321 grid minor

322 xlabel(’ELq’)
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323 ylabel(’w’)
324 zlabel(’Delta’)

Aqui são apresentadas as funções Id , Iq , c i s (x ), Vt (EL ) e sistemainicial utilizadas no

script.

Listing A.7 – Função Id

1 %% Função Id que calcula um Id em função de Elinhaq

2 function Id = Id( EL )

3 global xd xq xlinhad xlinhaq Tlinhado r re xe H S E

4 I = (EL - E)/( (r + re) + j*( xlinhad + xe )); % I complexo na referência de â

ngulo de Einf

5 EL = c2v(EL) ; % Passando os complexos para vetores

6 I = c2v(I); % Idem

7 Q = EL/norm(EL); % Vetor Id na referência de Einf

8 D = [-Q(2),Q(1)];

9 Id = dot(I,D);
10 end

Listing A.8 – Função Iq

1 %% Função Iq que calcula um Iq em função de Elinhaq

2 function Iq = Iq(EL)

3 global xd xq xlinhad xlinhaq Tlinhado r re xe H S E

4 I = (EL - E)/( (r + re) + j*( xlinhad + xe )); % I complexo na referência de â

ngulo de Einf

5 EL = c2v(EL) ; % Passando os complexos para vetores

6 I = c2v(I); % Idem

7 Q = EL/norm(EL); % Vetor Id na referência de Einf

8 Iq = dot(I,Q);
9 end

Listing A.9 – Função Vt

1 function Vt = Vt(EL)

2 % Função que calcula a tensão terminal de uma máquina síncrona em função da

3 % sua tensão interna E’

4 global xlinhad r re xe E;

5 Vt = abs( E + (EL - E)*(re + j*xe)/( (re + r) + j*(xlinhad + xe) ));

6 end

Listing A.10 – Função sistemainicial
1 function F = sistema_inicial(x,re,xe,E,P,Q)

2 F(1) = -P + re*(x(1)^2 + x(2)^2) + E*x(1);

3 F(2) = -Q + xe*(x(1)^2 + x(2)^2) - E*x(2);

4 end

Listing A.11 – Função d Id

1 function dId = dId( x1,x2,x3,x4,x5,x6)

2 global xd xlinhad Tlinhado E X phi Efd0 VPssMax VPssMin;

3 dId = (x2*Tlinhado*E*cos(x3 + phi) - (Efd(x4,x6) - x1 + (xd - xlinhad)*Id(x1,x3

))*\sin\left(\phi_m\right))/(X*Tlinhado);
4 end
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Listing A.12 – Função d Iq

1 function dIq = dIq( x1,x2,x3,x4,x5,x6 )

2 global xd xlinhad Tlinhado E X phi VPssMax VPssMin

3 dIq = ((Efd(x4,x6) - x1 + (xd - xlinhad)*Id(x1,x3))*\cos\left(\phi_m\right) +

x2*Tlinhado*E*sin(x3 + phi))/(X*Tlinhado);

4 end

A.7

Estimativa das Regiões de Estabilidade

Listing A.13 – Código do método Força Bruta para estimação da Região de Estabilidade dos

sistemas AVR e PSS com e sem saturadores.
1 %% Programa para estimar a região de estabilidade do sistema AVR + PSS através de brute

force

2 %% Autor: Álvaro Augusto Volpato

3 clear all;
4 clc;
5 close all;
6

7 addpath(’./funcoes’);

8

9 %% ----------------------------------------------

10 % Definindo os parâmetros da máquina

11 % -----------------------------------------------

12 global xd xq xlinhad xlinhaq Tlinhado r re xe H S E Z X alpha phi deltaPm

tempoDeltaPm Pm0 Efd0 EfdMax EfdMin VPssMax VPssMin Tw KPss T1 T2 bolaPequena

bolaGrande vetorLimite contaSim tfinal vetorDeslocamento Te x0

13

14 xd = 1.14; % Impedância equivalente de regime permanente de eixo direto

15 xq = 0.66; % Impedância equivalente de regime permanente de eixo em quadratura

16 xlinhad = 0.24; % Impedância transitória de eixo direto

17 xlinhaq = xlinhad; % Impedância transitória de eixo em quadratura

18 Tlinhado = 12; % Constante de tempo transitória de eixo direto

19 r = 0; % Resistência interna equivalente da máquina;

20 re = 0.01; % Resistência externa acoplada à máquina;

21 xe = 0.1; % Impedância externa acoplada à máquina;

22 xt = xe + xlinhaq;

23 rt = r + re;

24 H = 1.5; % Constante de inércia do rotor

25 P = 1;

26 Q = 0.5;

27 S = P + j*Q; % Potência inicial que a máquina gera

28 E = 1.0; % Tensão do barramento infinito (em PU!);

29 X = sqrt( (r+re)^2 + (xlinhaq + xe)^2 );

30 phi = atan((xlinhaq + xe)/(re + r) );

31 Z = sqrt(re^2 + xe^2);

32 alpha = atan(xe/re);
33

34 % Perturbação:

35 deltaPm = 0;

36 tempoDeltaPm = 5;

37

38 %% ------------------------------------------

39 % Calculando a situação inicial
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40 % -------------------------------------------

41

42 % Resolvendo o sistema das correntes

43 a = E^2*(xt^2 + rt^2);

44 b = rt*E^3 + 2*xt*E*(Q*rt - P*xt);

45 c = (Q*rt - P*xt)^2 - rt*P*E^2;

46

47 Ir = ( -b + sqrt(b^2 - 4*a*c))/(2*a);

48 Ii = (P*xt - Q*rt)/(E*rt) - xt/rt*Ir;

49 I = Ir + j*Ii;

50

51 % Calculando as tensões através de Leis de Kirchoff

52 V = E + (re + j*xe)*I;

53 EL = V + (r + j*xlinhad)*I;

54

55 % Obtendo os versors Q e D e o ângulo delta

56 Q = EL/norm(EL);
57 delta0 = phase(EL);
58 D = Q*exp(j*pi/2);
59

60 % Calculando as tensões e correntes no eixo do rotor

61 ELq0 = real(EL)*cos(delta0) + imag(EL)*sin(delta0);
62 ELd0 = real(EL)*-sin(delta0) + imag(EL)*cos(delta0);
63

64 Vq0 = real(V)*cos(delta0) + imag(V)*sin(delta0);
65 Vd0 = real(V)*-sin(delta0) + imag(V)*cos(delta0);
66

67 Iq0 = real(I)*cos(delta0) + imag(I)*sin(delta0);
68 Id0 = real(I)*-sin(delta0) + imag(I)*cos(delta0);
69

70 V0 = sqrt(Vq0^2 + Vd0^2);

71

72 Efd0 = ELq0 - Id0*(xd - xlinhad);

73 Pm0 = ELq0*Iq0 - Iq0*Id0*(xlinhad - xlinhaq);

74

75 % Parâmetros dos saturadores

76 EfdMax = Efd0 + 0.2;

77 EfdMin = Efd0 - 0.2;

78

79 VPssMax = 0.2;

80 VPssMin = -0.2;

81

82 %% ---------------------------------------------

83 % Definindo os parâmetros da estimativa de Região de Atração

84 % ---------------------------------------------

85

86 grade = 30; % Número de pontos em cada dimensão do gráfico da região

87

88 ELqCima = 10;

89 ELqBaixo = -10;

90 deslocamentoInicialELq = linspace(ELqBaixo, ELqCima , grade); % Vetor de deslocamento

da condição inicial de ELq0

91

92 omegaBaixo = -5;

93 omegaCima = 5;

94 deslocamentoInicialOmega = linspace(omegaBaixo,omegaCima,grade);
95

96 deltaBaixo = -1.5;

97 deltaCima = 2;

98 deslocamentoInicialDelta = linspace(deltaBaixo , deltaCima , grade);
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99

100 vetorLimite = zeros(6,1);
101

102 bolaPequena = 0.95*sqrt( (ELqCima - ELqBaixo)^2 + (omegaCima - omegaBaixo)^2 + (

deltaCima - deltaBaixo)^2 )/grade;

103 bolaGrande = 1000*bolaPequena;

104

105 % Parâmetros dos controladores

106 Ke = 10;

107 Te = 0.1;

108 KPss = 20;

109 T1 = 2;

110 T2 = 3;

111 Tw = 1;

112

113 % Tempo total de simulação:

114 tfinal = 100;

115 tstep = 10^(-3); % Passo de tempo para o solver numérico

116 tspan = 0:tstep:tfinal;

117

118 x0 = [ELq0,0,delta0,Efd0]; % Ponto de operação inicial

119

120 %% ---------------------------------------------

121 % Descrevendo o sistema em malha aberta

122 % ----------------------------------------------

123

124 vetorLimite = zeros(6,1);
125

126 f = @(t,x) [(Efd0 - x(1) + (xd - xlinhad)*Id( x(1),x(3) ) )/Tlinhado ;

127 ( Pm0 + deltaPm*heaviside(t - tempoDeltaPm) - x(1)*Iq( x(1),x(3) ) + (

xlinhad - xlinhaq)*Iq( x(1),x(3) )*Id( x(1),x(3)) )/(2*H);

128 x(2)

129 0];

130

131 options = odeset(’OutputFcn’,@odeplotterMAberta);

132

133 contaSim = 0;

134 for i = 1:grade

135 for j = 1:grade

136 for k = 1:grade

137

138 contaSim = contaSim + 1;

139 fprintf(’\n Simulação número %d (%d,%d,%d)’,contaSim,i,j,k)

140

141 vetorDeslocamento = [deslocamentoInicialELq(i),deslocamentoInicialOmega(j),

deslocamentoInicialDelta(k),0,];

142 xInit = x0 + vetorDeslocamento;

143

144 [t,x] = ode23(f,tspan,xInit,options);
145

146 if (t(end) == tfinal)

147 fprintf(’: ATINGIU o tempo final! \n \n’,contaSim);

148

149 else
150 fprintf(’: interrompida em t = %f’,t(end));
151 end
152

153 end
154 end
155 end
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156

157 % Rearranja o vetor limite para admitir apenas os valores de E’q, omega e

158 % delta

159 vetorLimite = vetorLimite(1:3,2:end);
160 vetorLimiteMAberta = vetorLimite;

161

162 figure(1)
163 plot3(vetorLimite(1,:),vetorLimite(2,:),vetorLimite(3,:),’bo’)
164 grid on

165 grid minor

166 xlabel(’ELq’)
167 ylabel(’w’)
168 zlabel(’Delta’)
169

170 %% -------------------------------------------

171 % Descrevendo o sistema com AVR

172 % --------------------------------------------

173

174 vetorLimite = zeros(4,1);
175 vetorDeslocamento = zeros(4,1);
176

177 f = @(t,x) [(x(4) - x(1) + (xd - xlinhad)*Id( x(1),x(3) ) )/Tlinhado ;

178 ( Pm0 + deltaPm*heaviside(t - tempoDeltaPm) - x(1)*Iq( x(1),x(3) ) + (

xlinhad - xlinhaq)*Iq( x(1),x(3) )*Id( x(1),x(3)) )/(2*H);

179 x(2);

180 - ( Ke*( Vt( x(1),x(3) ) - V0) + (x(4) - Efd0) )/Te];

181

182 options = odeset(’OutputFcn’,@odeplotterMAberta);

183

184 contaSim = 0;

185 for i = 1:grade

186 for j = 1:grade

187 for k = 1:grade

188

189 contaSim = contaSim + 1;

190 fprintf(’\n Simulação número %d (%d,%d,%d)’,contaSim,i,j,k)

191

192 vetorDeslocamento = [deslocamentoInicialELq(i),deslocamentoInicialOmega(j),

deslocamentoInicialDelta(k),0,];

193 xInit = x0 + vetorDeslocamento;

194

195 [t,x] = ode23(f,tspan,xInit,options);
196

197 if (t(end) == tfinal)

198 fprintf(’: ATINGIU o tempo final! \n \n’,contaSim);

199

200 else
201 fprintf(’: interrompida em t = %f’,t(end));
202 end
203

204 end
205 end
206 end
207

208 vetorLimite = vetorLimite(1:3,2:end);
209 vetorLimiteAVR = vetorLimite;

210 save(’vetorLimiteAVR27k.txt’,’vetorLimiteAVR’,’-ascii’);
211 figure(1)
212 plot3(vetorLimite(1,:),vetorLimite(2,:),vetorLimite(3,:),’ro’)
213 grid on
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214 grid minor

215 xlabel(’ELq’)
216 ylabel(’w’)
217 zlabel(’Delta’)
218

219 %% -------------------------------------

220 % Descrevendo o sistema sem saturador

221 % -------------------------------------

222

223 % Rearranjando o vetor inicial para seis dimensões

224 x0 = [ELq0,0,delta0,0,0,0]; % Ponto de operação inicial

225

226 f = @(t,x)[ ( (x(4) + x(6) + Efd0) - x(1) + (xd - xlinhad)*Id( x(1),x(3)) )/Tlinhado;

227 dw(x(1),x(3),t);

228 x(2);

229 x(5);

230 (Tw*KPss*( T1*ddw(x(1),x(2),x(3),x(4),x(5),x(6),t) + dw(x(1),x(3),t) ) - x(4) -

(Tw + T2)*x(5) )/(Tw*T2);

231 -(Ke*( Vt( x(1),x(3) ) - V0) + (Efd(x(4),x(6)) - Efd0) )/Te];

232

233 % Resolvendo o sistema diferencial

234 options = odeset(’OutputFcn’,@odeplotterSistemaSemSaturadorSemGrafico);

235

236 contaSim = 0;

237

238 for i = 1:grade

239 for j = 1:grade

240 for k = 1:grade

241

242 contaSim = contaSim + 1;

243 fprintf(’\n Simulação número %d (%d,%d,%d)’,contaSim,i,j,k)

244

245 vetorDeslocamento = [deslocamentoInicialELq(i),deslocamentoInicialOmega(j),

deslocamentoInicialDelta(k),0,0,0];

246 xInit = x0 + vetorDeslocamento;

247

248 [t,x] = ode23(f,tspan,xInit,options);
249

250 if (t(end) == tfinal)

251 fprintf(’: ATINGIU o tempo final! \n’,contaSim);

252

253 else
254 fprintf(’: t = %f’,t(end));
255 end
256

257 end
258 end
259 end
260

261 vetorLimite = vetorLimite(1:3,2:end);
262 vetorLimiteSemSaturacao = vetorLimite;

263

264 figure(2)
265 plot3(vetorLimite(1,:),vetorLimite(2,:),vetorLimite(3,:),’bo’)
266 grid on

267 grid minor

268 xlabel(’ELq’)
269 ylabel(’w’)
270 zlabel(’Delta’)
271
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272 %% -----------------------------------

273 % Descrevendo o sistema com saturador

274 % -----------------------------------

275

276 vetorLimite = zeros(6,1);
277 contaSim = 0;

278 clear x;

279

280 f = @(t,x)[ ( EfdSat(x(4),x(6)) - x(1) + (xd - xlinhad)*Id( x(1),x(3)) )/Tlinhado;

281 dw(x(1),x(3),t);

282 x(2);

283 x(5);

284 (Tw*KPss*( T1*ddwSat(x(1),x(2),x(3),x(4),x(5) ,x(6),t) + dw(x(1),x(3),t) ) - x

(4) - (Tw + T2)*x(5) )/(Tw*T2);

285 -(Ke*( Vt( x(1),x(3) ) - V0) + (EfdSat(x(4),x(6)) - Efd0) )/Te];

286

287 % Resolvendo o sistema diferencial

288 options = odeset(’OutputFcn’,@odeplotterSistemaComSaturadorSemGrafico);

289

290

291 for i = 1:grade

292 for j = 1:grade

293 for k = 1:grade

294

295 contaSim = contaSim + 1; %

Incrementa a contagem de iterações

296 fprintf(’\n Simulação número %d (%d,%d,%d)’,contaSim,i,j,k)

297

298 vetorDeslocamento = [deslocamentoInicialELq(i),deslocamentoInicialOmega(j),

deslocamentoInicialDelta(k),0,0,0];

299 xInit = x0 + vetorDeslocamento;

300

301 [t,x] = ode23(f,tspan,xInit,options);
302

303 if (t(end) == tfinal)

304 fprintf(’: ATINGIU o tempo final! \n \n’,contaSim);

305 else
306 fprintf(’: interrompida em t = %f’,t(end));
307 end
308

309 end
310 end
311 end
312

313 % Rearranja o vetor limite para admitir apenas os valores de E’q, omega e

314 % delta

315 vetorLimite = vetorLimite(1:3,2:end);
316 vetorLimiteComSaturacao = vetorLimite;

317

318 figure(2)
319 plot3(vetorLimite(1,:),vetorLimite(2,:),vetorLimite(3,:),’ro’)
320 grid on

321 grid minor

322 xlabel(’ELq’)
323 ylabel(’w’)
324 zlabel(’Delta’)
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A.8

Gráficos de margens de estabilidade do sistema controlado por AVR

Listing A.14 – Código para resolução dos sistemas que geram os gráficos de margens de estabili-

dade do sistema controlado por AVR.
1 clear all;
2 clc;
3 close all;
4 format long

5

6 addpath(’./funcoes’);

7 addpath(’./funcoes/jacobiano’);

8 %% Definindo os parâmetros da máquina

9 global xd xq xlinhad xlinhaq Tlinhado r re xe H S E Z X alpha phi deltaPm

tempoDeltaPm Pm0 Efd0;

10

11 xd = 1.14; % Impedância equivalente de regime permanente de eixo direto

12 xq = 0.66; % Impedância equivalente de regime permanente de eixo em quadratura

13 xlinhad = 0.24; % Impedância transitória de eixo direto

14 xlinhaq = xlinhad; % Impedância transitória de eixo em quadratura

15 Tlinhado = 12; % Constante de tempo transitória de eixo direto

16 r = 0; % Resistência interna equivalente da máquina;

17 re = 0.01; % Resistência externa acoplada à máquina;

18 xe = 0.1; % Impedância externa acoplada à máquina;

19 xt = xe + xlinhaq; % Impedância "total";

20 rt = re + r; % Resistência "total"

21 H = 1.5; % Constante de inércia do rotor

22 P = 1; % Potência ativa inicial

23 Q = 0.5; % Potência reativa inicial

24 S = P + j*Q; % Potência aparente inicial

25 E = 1.0; % Tensão do barramento infinito (em PU!);

26 X = sqrt( (r+re)^2 + (xlinhaq + xe)^2 );

27 phi = atan((xlinhaq + xe)/(re + r) );

28 Z = sqrt(re^2 + xe^2);

29 alpha = atan(xe/re);
30

31

32 %% Calculando as condições iniciais (em PU)

33

34 % Resolvendo o sistema das correntes

35 a = E^2*(xt^2 + rt^2);

36 b = rt*E^3 + 2*xt*E*(Q*rt - P*xt);

37 c = (Q*rt - P*xt)^2 - rt*P*E^2;

38

39 Ir = ( -b + sqrt(b^2 - 4*a*c))/(2*a);

40 Ii = (P*xt - Q*rt)/(E*rt) - xt/rt*Ir;

41 I = Ir + j*Ii;

42

43 clear x x0 a b c;

44

45 % Calculando as tensões através de Leis de Kirchoff

46 V = E + (re + j*xe)*I;

47 EL = V + (r + j*xlinhad)*I;

48

49 % Obtendo os versors Q e D e o ângulo delta

50 Q = EL/norm(EL);
51 delta0 = phase(EL);
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52 D = Q*exp(j*pi/2);
53

54 % Calculando as tensões e correntes no eixo do rotor

55 ELq0 = real(EL)*cos(delta0) + imag(EL)*sin(delta0);
56 ELd0 = real(EL)*-sin(delta0) + imag(EL)*cos(delta0);
57

58 Vq0 = real(V)*cos(delta0) + imag(V)*sin(delta0);
59 Vd0 = real(V)*-sin(delta0) + imag(V)*cos(delta0);
60

61 Iq0 = real(I)*cos(delta0) + imag(I)*sin(delta0);
62 Id0 = real(I)*-sin(delta0) + imag(I)*cos(delta0);
63

64 V0 = sqrt(Vq0^2 + Vd0^2);

65

66 Efd0 = ELq0 - Id0*(xd - xlinhad);

67 Pm0 = ELq0*Iq0 - Iq0*Id0*(xlinhad - xlinhaq);

68

69 %% Descrevendo o sistema com controlador

70

71 x0 = [ELq0,0,delta0,Efd0];

72

73 % Parâmetros do controlador AVR

74 KeV = logspace(-2,2,1e3);
75 eigenVec = zeros(4,length(KeV));
76

77 doubleSubs = [J13(x0),J11,J21(x0),J23(x0),V3(x0),V1(x0)];

78 syms J13 V1 s V3 Tdo Te Ke J21 J11 Hs J23 w

79

80 N = Tdo*(Te*s + 1)*(V3*(J11 - s) - J13*V1)*((J11 - s)*(s^2 + J23) + J13*J21);

81 N = collect(N,s);

82

83 N = subs(N,[J13,J11,J21,J23,V3,V1],doubleSubs);

84 N = subs(N,Tdo,Tlinhado);

85

86 D = (Ke*(V1*(s^2 + J23) + J21*V3) + Tdo*(Te*s + 1)*((J11 - s)*(s^2 + J23) + J13*J21))

*((J11 - s)*(s^2 + J23) + J13*J21);

87 D = 2*Hs*D;

88 D = collect(D,s);

89 D = subs(D,[J13,J11,J21,J23,V3,V1],doubleSubs);

90 D = subs(D,[Tdo Hs],[Tlinhado H]);

91

92 N = subs(N,s,1i*w);

93 D = subs(D,s,1i*w);

94

95 TeV = logspace(-2,2,9);
96

97 wG = zeros(length(TeV),length(KeV));
98 MG = wG;

99 options = optimoptions(’fsolve’,’Display’,’off’);

100 options2 = optimoptions(’fsolve’,’Display’,’off’);

101

102 for k = 1:length(TeV)
103 k

104 Ns = subs(N,Te,TeV(k));

105 Ds = subs(D,Te,TeV(k));

106

107 chute = [0 10];

108

109 for j = 1:length(KeV)
110 Nss = subs(Ns,Ke,KeV(j));
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111 Dss = subs(Ds,Ke,KeV(j));

112

113 Nss = vpa(coeffs(Nss,w));

114 Dss = vpa(coeffs(Dss,w));

115

116 Nss = double(Nss);
117 Nss = real(Nss) + imag(Nss);
118 Dss = double(Dss);
119 Dss = real(Dss) + imag(Dss);
120 F = @(x)[x(1)^2*(-Dss(8)*(Dss(5) + x(2)*Nss(5)) + Dss(7)*(Dss(6) + x(2)*Nss(6)))

+ x(1)*(Dss(8)*(Dss(3) + x(2)*Nss(3)) - Dss(7)*(Dss(4) + x(2)*Nss(4))) + (-

Dss(8)*(Dss(1) + x(2)*Nss(1)) + Dss(7)*(Dss(2) + x(2)*Nss(2)));

121 x(1)^3 + x(1)^2*((Dss(6) + x(2)*Nss(6))*(Dss(3) + x(2)*Nss(3)) - (Dss

(5) + x(2)*Nss(5))*(Dss(4) + x(2)*Nss(4))) + ((Dss(5) + x(2)*Nss(5)

)*(Dss(2) + x(2)*Nss(2)) - (Dss(6) + x(2)*Nss(6))*(Dss(1) + x(2)*
Nss(1)))];

122

123 chute = [0.8 1.8];

124 if (j > 1)

125 chute = sol1;

126 end
127

128 sol1 = fsolve(F,chute,options);

129 betaG(k,j) = sol1(1);

130 MG(k,j) = sol1(2);

131

132 F = @(x)[x(1)^7*Dss(8) - x(1)^5*(Dss(6) - Nss(6)*cos(x(2))) - x(1)^4*Nss(5)*sin(
x(2)) + x(1)^3*(Dss(4) - Nss(4)*cos(x(2))) + x(1)^2*Nss(3)*sin(x(2)) - x(1)

*(Dss(2) - Nss(2)*cos(x(2))) - Nss(1)*sin(x(2));
133 x(1)^6*Dss(7) + x(1)^5*Nss(6)*sin(x(2)) - x(1)^4*(Dss(5) - Nss(5)*cos(x

(2))) - x(1)^3*Nss(4)*sin(x(2)) + x(1)^2*(Dss(3) - Nss(3)*cos(x(2))
) + x(1)*Nss(2)*sin(x(2)) - (Dss(1) + Nss(1)*cos(x(2)))];

134

135 chute = [1 0];

136 if (j > 1)

137 chute = sol2;

138 end
139

140 sol2 = fsolve(F,chute,options2);

141 wF(k,j) = sol2(1);

142 MF(k,j) = sol2(2);

143

144 end
145 end
146

147 wG = sqrt(betaG);
148

149 colors = hsv(length(TeV));
150 figure(1)
151 hold on

152

153 for k = 1:length(TeV)
154 plot(KeV,wG(k,:),’color’,colors(k,:))
155 legendInfo{k} = [’Te = 10^{’ num2str(log10(TeV(k))) ’}’] ; % or whatever is

appropriate

156 end
157

158 set(gca, ’XScale’, ’log’)

159 grid on

160 grid minor
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161 title(’\omega_G’)
162 ylabel(’\omega_G’)
163 xlabel(’K_e’);
164 legend(legendInfo)
165

166 figure(2)
167 hold on

168

169 for k = 1:length(TeV)
170 plot(KeV,MG(k,:)./pi,’color’,colors(k,:))
171 legendInfo{k} = [’Te = 10^{’ num2str(log10(TeV(k))) ’}’] ; % or whatever is

appropriate

172 end
173

174 set(gca, ’XScale’, ’log’)

175 grid on

176 grid minor

177 title(’M_G’)
178 ylabel(’M_G’)
179 xlabel(’K_e’);
180 legend(legendInfo)
181

182 figure(3)
183 hold on

184

185 for k = 1:length(TeV)
186 plot(KeV,wF(k,:),’color’,colors(k,:))
187 legendInfo{k} = [’Te = 10^{’ num2str(log10(TeV(k))) ’}’] ; % or whatever is

appropriate

188 end
189

190 set(gca, ’XScale’, ’log’)

191 grid on

192 grid minor

193 title(’\omega_F’)
194 ylabel(’\omega_F’)
195 xlabel(’K_e’);
196 legend(legendInfo)
197

198 figure(4)
199 hold on

200

201 for k = 1:length(TeV)
202 plot(KeV,MF(k,:)./pi,’color’,colors(k,:))
203 legendInfo{k} = [’Te = 10^{’ num2str(log10(TeV(k))) ’}’] ; % or whatever is

appropriate

204 end
205

206 set(gca, ’XScale’, ’log’)

207 grid on

208 grid minor

209 title(’M_F’)
210 ylabel(’M_F (x \pi)’)

211 xlabel(’K_e’);
212 legend(legendInfo)
213

214 figure(5)
215 hold on

216

217 for k = 1:length(TeV)
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218 plot(MG(k,:),MF(k,:)./pi,’color’,colors(k,:))
219 legendInfo{k} = [’Te = 10^{’ num2str(log10(TeV(k))) ’}’] ; % or whatever is

appropriate

220 end
221

222 set(gca, ’XScale’, ’log’)

223 grid on

224 grid minor

225 title(’M_F’)
226 ylabel(’M_F (x \pi)’)

227 xlabel(’M_G’);
228 legend(legendInfo)
229

230 figure(6)
231 hold on

232

233 for k = 1:5

234 plot3(MG(k,:),MF(k,:)./pi,KeV,’color’,colors(k,:))
235 legendInfo{k} = [’Te = 10^{’ num2str(log10(TeV(k))) ’}’] ; % or whatever is

appropriate

236 end
237

238 set(gca, ’XScale’, ’log’)

239 grid on

240 grid minor

241 title(’M_F’)
242 ylabel(’M_F (x \pi)’)

243 xlabel(’M_G’);
244 zlabel(’K_e’);
245 legend(legendInfo)
246 axis square

A.9

Gráficos de margens de estabilidade do sistema controlado por AVR e PSS

Listing A.15 – Código para resolução dos sistemas que geram os gráficos de margens de estabili-

dade do sistema controlado por AVR.
1 clear all;
2 clc;
3 close all;
4 format long

5

6 addpath(’./funcoes’);

7 addpath(’./funcoes/jacobiano’);

8 %% Definindo os parâmetros da máquina

9 global xd xq xlinhad xlinhaq Tlinhado r re xe H S E Z X alpha phi deltaPm

tempoDeltaPm Pm0 Efd0;

10

11 xd = 1.14; % Impedância equivalente de regime permanente de eixo direto

12 xq = 0.66; % Impedância equivalente de regime permanente de eixo em quadratura

13 xlinhad = 0.24; % Impedância transitória de eixo direto

14 xlinhaq = xlinhad; % Impedância transitória de eixo em quadratura

15 Tlinhado = 12; % Constante de tempo transitória de eixo direto

16 r = 0; % Resistência interna equivalente da máquina;

17 re = 0.01; % Resistência externa acoplada à máquina;
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18 xe = 0.1; % Impedância externa acoplada à máquina;

19 xt = xe + xlinhaq; % Impedância "total";

20 rt = re + r; % Resistência "total"

21 H = 1.5; % Constante de inércia do rotor

22 P = 1; % Potência ativa inicial

23 Q = 0.5; % Potência reativa inicial

24 S = P + j*Q; % Potência aparente inicial

25 E = 1.0; % Tensão do barramento infinito (em PU!);

26 X = sqrt( (r+re)^2 + (xlinhaq + xe)^2 );

27 phi = atan((xlinhaq + xe)/(re + r) );

28 Z = sqrt(re^2 + xe^2);

29 alpha = atan(xe/re);
30

31 % Perturbação:

32 deltaPm = 0.1;

33 tempoDeltaPm = 5;

34 larguraDeltaPm = 100;

35

36 %% Calculando as condições iniciais (em PU)

37

38 % Resolvendo o sistema das correntes

39 a = E^2*(xt^2 + rt^2);

40 b = rt*E^3 + 2*xt*E*(Q*rt - P*xt);

41 c = (Q*rt - P*xt)^2 - rt*P*E^2;

42

43 Ir = ( -b + sqrt(b^2 - 4*a*c))/(2*a);

44 Ii = (P*xt - Q*rt)/(E*rt) - xt/rt*Ir;

45 I = Ir + j*Ii;

46

47 clear x x0 a b c;

48

49 % Calculando as tensões através de Leis de Kirchoff

50 V = E + (re + j*xe)*I;

51 EL = V + (r + j*xlinhad)*I;

52

53 % Obtendo os versors Q e D e o ângulo delta

54 Q = EL/norm(EL);
55 delta0 = phase(EL);
56 D = Q*exp(j*pi/2);
57

58 % Calculando as tensões e correntes no eixo do rotor

59 ELq0 = real(EL)*cos(delta0) + imag(EL)*sin(delta0);
60 ELd0 = real(EL)*-sin(delta0) + imag(EL)*cos(delta0);
61

62 Vq0 = real(V)*cos(delta0) + imag(V)*sin(delta0);
63 Vd0 = real(V)*-sin(delta0) + imag(V)*cos(delta0);
64

65 Iq0 = real(I)*cos(delta0) + imag(I)*sin(delta0);
66 Id0 = real(I)*-sin(delta0) + imag(I)*cos(delta0);
67

68 V0 = sqrt(Vq0^2 + Vd0^2);

69

70 Efd0 = ELq0 - Id0*(xd - xlinhad);

71 Pm0 = ELq0*Iq0 - Iq0*Id0*(xlinhad - xlinhaq);

72

73 %% Descrevendo o sistema com controlador

74

75 x0 = [ELq0,0,delta0,Efd0];

76
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77 doubleSubs = [J13(x0),J11,J21(x0),J23(x0),V3(x0),V1(x0),1,1,6.12049837248,Tlinhado,2];

% doubleSubs = [J13,J11,J21,J23,V3,V1,Tw,Te,Ke,Tlinhado,T1]

78 syms J13 V1 s V3 Tdo Te Ke J21 J11 s J23 w Ke Te T1 T2 KPss Tw

79

80 N = (V1*(s^2 - J23) + V3*J21)*(J13*V1*Ke + (s - J11)*(V3*Ke + (s^2*KPss*Tw*(1 + s*T1)

*(1 + s*Te))/((1 + s*T2)*(1 + s*Tw))) );

81

82 N = N/(Tdo*(1 + s*Te)*((s - J11)*(s^2 - J23) - J13*J21) - V1*Ke*(s^2 - J23) - J21*((V3*
Ke + (s^2*KPss*Tw*(1 + s*T1)*(1 + s*T2))/((1 + s*T2)*(1 + s*Tw))) ));

83

84 N = N + V1*J13 + V3*(s - J11);

85

86 D = (s - J11)*(s^2 - J23) - J13*J21;

87 D = 2*H*D;

88

89 G = N/D;

90

91 [N,D] = numden(G);

92

93 %

94 N = subs(N,[J13,J11,J21,J23,V3,V1,Tw,Te,Ke,Tdo,T1],doubleSubs);

95 D = subs(D,[J13,J11,J21,J23,V3,V1,Tw,Te,Ke,Tdo,T1],doubleSubs);

96

97 N = subs(N,s,1i*w);

98 D = subs(D,s,1i*w);

99

100 T2V = [1 2 3 4 5 6];

101 KPssV = logspace(-2,2,1000);
102

103 wG = zeros(length(T2V),length(KPssV));
104 MG = wG;

105 %options = optimoptions(’fsolve’,’Display’,’off’,’Algorithm’,’levenberg-marquardt’);

106 options = optimoptions(’fsolve’,’Display’,’final’,’Algorithm’,’levenberg-marquardt’);

107 options2 = optimoptions(’fsolve’,’Display’,’final’);

108

109 % Resolvendo para a margem de ganho

110 %------------------------------------------------------------------------

111 for k = 1:length(T2V)
112 k

113 Ns = subs(N,T2,T2V(k));

114 Ds = subs(D,T2,T2V(k));

115

116 for j = 1:length(KPssV)
117 Nss = subs(Ns,KPss,KPssV(j));

118 Dss = subs(Ds,KPss,KPssV(j));

119

120 Nss = vpa(coeffs(Nss,w));

121 Dss = vpa(coeffs(Dss,w));

122

123 Nss = double(Nss);
124 Nss = real(Nss) + imag(Nss);
125 Dss = double(Dss);
126 Dss = real(Dss) + imag(Dss);
127

128 F = @(x)[x(1)^3*(Dss(9)*Dss(8) - Dss(7)*Dss(10) + x(2)*(Dss(9)*Nss(8) - Nss(7)*
Dss(10))) + ...

129 - x(1)^2*(Dss(9)*Dss(6) - Dss(5)*Dss(10) + x(2)*(Dss(9)

*Nss(6) - Nss(5)*Dss(10))) + ...

130 + x(1)*(Dss(9)*Dss(4) - Dss(3)*Dss(10) + x(2)*(Dss(9)*
Nss(4) - Nss(3)*Dss(10))) + ...
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131 - (Dss(9)*Dss(2) - Dss(1)*Dss(10) + x(2)*(Dss(9)*Nss(2)

- Nss(1)*Dss(10)));

132 Dss(9)*x(1)^4 - (Dss(7) + x(2)*Nss(7))*x(1)^3 + (Dss(5) + x(2)*Nss(5))*
x(1)^2 - (Dss(3) + x(2)*Nss(3))*x(1) + Dss(1) + x(2)*Nss(1)];

133 chute = [1 150];

134 if (j>1)

135 chute = sol1;

136 end
137 sol1 = fsolve(F,chute,options);

138 betaG(k,j) = sol1(1);

139 MG(k,j) = sol1(2);

140

141 end
142 end
143

144 %% Resolvendo para a margem de fase

145 for k = 1:length(T2V)
146 k

147 Ns = subs(N,T2,T2V(k));

148 Ds = subs(D,T2,T2V(k));

149

150 for j = 1:length(KPssV)
151 Nss = subs(Ns,KPss,KPssV(j));

152 Dss = subs(Ds,KPss,KPssV(j));

153

154 Nss = vpa(coeffs(Nss,w));

155 Dss = vpa(coeffs(Dss,w));

156

157 Nss = double(Nss);
158 Nss = real(Nss) + imag(Nss);
159 Dss = double(Dss);
160 Dss = real(Dss) + imag(Dss);
161

162 F = @(x)[Dss(10)*x(1)^9 + (Nss(8)*cos(x(2)) - Dss(8))*x(1)^7 - Nss(7)*sin(x
(2))*x(2)^6 + (Dss(6) - Nss(6)*cos(x(2)))*x(2)^5 + Nss(5)*sin(x(2))*x(1)
^4 + (Nss(4)*cos(x(2)) - Dss(4))*x(1)^3 - Nss(3)*sin(x(2))*x(1)^2 + (Dss

(2) - Nss(2)*cos(x(2)))*x(1) + Nss(1)*sin(x(2));
163 Dss(9)*x(1)^8 + Nss(8)*sin(x(2))*x(1)^7 + (Nss(7)*cos(x

(2)) - Dss(7))*x(1)^6 - Nss(6)*sin(x(2))*x(1)^5 + (

Dss(5) - Nss(5)*cos(x(2)))*x(1)^4 + Nss(4)*sin(x(2)
)*x(1)^3 + (Nss(3)*cos(x(2)) - Dss(3))*x(1)^2 - Nss

(2)*sin(x(2))*x(2) + Dss(1) - Nss(1)*cos(x(2))];
164

165 chute = [1 0.3*pi];
166

167 sol2 = fsolve(F,chute,options);

168 wF(k,j) = sol2(1);

169 MF(k,j) = sol2(2);

170 end
171

172 end
173 %------------------------------------------------------------------------

174 %% Plotando os graficos

175

176 wG = sqrt(betaG);
177 wG = real(wG);
178

179 colors = hsv(length(T2V));
180 figure(1)
181 hold on
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182

183 for k = 1:length(T2V)
184 plot(KPssV,wG(k,:),’color’,colors(k,:))
185 legendInfo{k} = [’T_2 = ’ num2str(T2V(k)) ] ; % or whatever is appropriate

186 end
187

188 set(gca, ’XScale’, ’log’)

189 grid on

190 grid minor

191 title(’\omega_G’)
192 ylabel(’\omega_G’)
193 xlabel(’K_e’);
194 legend(legendInfo)
195

196 figure(2)
197 hold on

198

199 for k = 1:length(T2V)
200 plot(KPssV,abs(MG(k,:)),’color’,colors(k,:))
201 legendInfo{k} = [’T_2 = ’ num2str(T2V(k)) ] ; % or whatever is appropriate

202 end
203

204 set(gca, ’XScale’, ’log’)

205 grid on

206 grid minor

207 title(’M_G’)
208 ylabel(’M_G’)
209 xlabel(’K_{PSS}’);
210 legend(legendInfo)
211

212 figure(3)
213 hold on

214

215 for k = 1:length(T2V)
216 plot(KPssV,wF(k,:),’color’,colors(k,:))
217 legendInfo{k} = [’T2 = ’ num2str(T2V(k)) ] ; % or whatever is appropriate

218 end
219

220 set(gca, ’XScale’, ’log’)

221 grid on

222 grid minor

223 title(’\omega_F’)
224 ylabel(’\omega_F’)
225 xlabel(’K_e’);
226 legend(legendInfo)
227

228 figure(4)
229 hold on

230

231 for k = 1:length(T2V)
232 plot(KPssV,MF(k,:)./pi,’color’,colors(k,:))
233 legendInfo{k} = [’T2 = ’ num2str(T2V(k))] ; % or whatever is appropriate

234 end
235

236 set(gca, ’XScale’, ’log’)

237 grid on

238 grid minor

239 title(’M_F’)
240 ylabel(’M_F (x \pi)’)

241 xlabel(’K_e’);
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242 legend(legendInfo)
243 %

244 % figure(5)

245 % hold on

246 %

247 % for k = 1:length(TeV)

248 % plot(MG(k,:),MF(k,:)./pi,’color’,colors(k,:))

249 % legendInfo{k} = [’Te = 10^{’ num2str(log10(TeV(k))) ’}’] ; % or whatever is

appropriate

250 % end

251 %

252 % set(gca, ’XScale’, ’log’)

253 % grid on

254 % grid minor

255 % title(’M_F’)

256 % ylabel(’M_F (x \pi)’)

257 % xlabel(’M_G’);

258 % legend(legendInfo)

259 %

260 % figure(6)

261 % hold on

262 %

263 % for k = 1:5

264 % plot3(MG(k,:),MF(k,:)./pi,KeV,’color’,colors(k,:))

265 % legendInfo{k} = [’Te = 10^{’ num2str(log10(TeV(k))) ’}’] ; % or whatever is

appropriate

266 % end

267 %

268 % set(gca, ’XScale’, ’log’)

269 % grid on

270 % grid minor

271 % title(’M_F’)

272 % ylabel(’M_F (x \pi)’)

273 % xlabel(’M_G’);

274 % zlabel(’K_e’);

275 % legend(legendInfo)

276 % axis square
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APÊNDICE B

Análise local do sistema AVR

B.1

Cálculo do jacobiano

O sistema dinâmico que rege o sistema controlado por apenas AVR é 5.9 abaixo; já as

fórmulas para Id e Iq são 4.10 e 4.9, respectivamente.



















































ẋ1 =
x4− x1+ (xd − x ′d )Id

T ′d o

= F1

ẋ2 =
Pm − x1Iq + (x ′d − x ′q ) Id Iq

2H
= F2

ẋ3 = x2 = F3

ẋ4 =−
Ke (Vt −Vt 0) + (x4−EF D 0)

Te
= F4

B.1.1 Primeira coluna

J1,1 =
∂ F1

∂ x1
=−

1

T ′d o

+

�

xd − x ′d
T ′d o

�

∂ Id

∂ x1
=−

�

xd − x ′d
T ′d o

�

sin(φ)
X

−
1

T ′d o

=−
1

T ′d o

��

xd − x ′d
�

sin
�

φ
�

X
+1

�

J2,1 =
∂ F2

∂ x1
=

1

2H

�

−
�

Iq+ x1

∂ Iq

∂ x1

�

+ (x ′d − x ′q )

�

Iq
∂ Id

∂ x1
+ Id

∂ Iq

∂ x1

��

=
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=
1

2H

�

−
�

x1 cos(φ)−E cos(x3+φ)
X

+ x1

cos(φ)
X

�

+

+
(x ′d − x ′q )

X 2

¦

−sin(φ)
�

x1c o s (φ)−E cos(x3+φ)
�

+ cos(φ)
�

E sin(x3+φ)− x1 sin(φ)
�©

�

=

=
1

2H

�

E cos(x3+φ)−2x1 cos(φ)
X

+
(x ′d − x ′q )

X 2

�

E sin
�

x3+2φ
�

− x1 sin
�

2φ
�

�

�

=

=
1

2H X 2

¦

E X cos(x3+φ)−2X x1 cos(φ) + (x ′d − x ′q )
�

E sin
�

x3+2φ
�

− x1 sin
�

2φ
�

�©

=

=
1

2H X 2

¦

E
�

X cos(x3+φ) + (x
′
d − x ′q )sin

�

x3+2φ
�

�

− x1

�

2X cos(φ) + (x ′d − x ′q )sin
�

2φ
�

�©

(B.1)

J3,1 =
∂ F3

∂ x1
= 0 (B.2)

J4,1 =
∂ F4

∂ x1
=−

Ke

Te

∂ Vt

∂ x1
=

=−
Ke

Te

�

2x1−2E cos(x3)
�

�

Z

X

�2

+2E
Z

X
cos(x3+α−φ)

2

√

√

�

x 2
1 −2E x1 cos(x3) +E 2

�

�

Z

X

�2

+2E
Z

X

�

x1 cos(x3+α−φ)−E cos(α−φ)
�

+E 2

=

=−
Ke

Te

Z

X

�

x1−E cos(x3)
�

�

Z

X

�

+E cos(x3+α−φ)

2

√

√

�

x 2
1 −2E x1 cos(x3) +E 2

�

�

Z

X

�2

+2E
Z

X

�

x1 cos(x3+α−φ)−E cos(α−φ)
�

+E 2

(B.3)

B.1.2 Segunda coluna

J1,2 =
∂ F1

∂ x2
= 0 (B.4)

J2,2 =
∂ F2

∂ x2
= 0 (B.5)
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J3,2 =
∂ F3

∂ x2
= 1 (B.6)

J4,2 =
∂ F4

∂ x2
= 0 (B.7)

B.1.3 Terceira coluna

J1,3 =
∂ F1

∂ x3
=
(xd − x ′d )

T ′d o

∂ Id

x3
=

E (xd − x ′d )
X T ′d o

cos(x3+φ) (B.8)

J2,3 =
∂ F2

∂ x3
=

1

2H

�

−x1

∂ Iq

∂ x3
+ (x ′d − x ′q )

�

Iq
∂ Id

∂ x3
+ Id

∂ Iq

∂ x3

��

=

=
1

2H

�

−x1

E sin(x3+φ)
X

+ (x ′d − x ′q )

¨

�

x1 cos(φ)−E cos(x3+φ)
X

� E cos
�

x3+φ
�

X
+

+
�

E sin(x3+φ)− x1 sin(φ)
X

� E sin
�

x3+φ
�

X

«�

=

=
1

2H

�

−x1

E sin(x3+φ)
X

+
E (x ′d − x ′q )

X 2

�

x1

�

cos(φ)cos
�

x3+φ
�

− sin(φ)sin
�

x3+φ
�

�

+

−E
�

cos2
�

x3+φ
�

− sin2
�

x3+φ
�

�

�ª

=

=
E

2H X 2

¦

−x1X sin(x3+φ) +
�

x ′d − x ′q
��

x1 cos
�

x3+2φ
�

−E cos
�

2x3+2φ
�

�©

=

=
E

2H X 2

¦

x1

��

x ′d − x ′q
�

cos
�

x3+2φ
�

−X sin(x3+φ)
�

−E
�

x ′d − x ′q
�

cos
�

2x3+2φ
�

©

(B.9)

J3,3 =
∂ F3

∂ x3
= 0 (B.10)

J4,3 =
∂ F4

∂ x3
=−

Ke

Te

∂ Vt

∂ x3
=
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=
−x1E

Ke

Te

Z

X

�

sin(x3)
�

Z

X

�

− sin(x3+α−φ)
�

√

√�

x 2
1 −2E x1 cos(x3) +E 2

�

�

Z

X

�2

+2E
Z

X

�

x1 cos(x3+α−φ)−E cos(α−φ)
�

+E 2

(B.11)

B.1.4 Quarta coluna

J1,4 =
∂ F1

∂ x4
=

1

T ′d o

(B.12)

J2,4 =
∂ F2

∂ x4
= 0 (B.13)

J3,4 =
∂ F3

∂ x4
= 0 (B.14)

J4,4 =−
1

Te
(B.15)

B.1.5 Autovalores do jacobiano

Tem-se portanto o jacobiano do sistema em um ponto de operação qualquer. Para clareza,

evidenciando os termos nulos,

J =











J1,1 0 J1,3 J1,4

J2,1 0 J2,3 0

0 1 0 0

J4,1 0 J4,3 J4,4











(B.16)

Assim, para calcular os autovalores do sistema,

det (J −λI ) = 0⇔

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

J1,1−λ 0 J1,3 J1,4

J2,1 −λ J2,3 0

0 1 −λ 0

J4,1 0 J4,3 J4,4−λ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

= 0 (B.17)
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Resta agora decompor este determinante. A ideia é utilizar os Teoremas de Jacobi e a

multilinearidade do determinante para obter os coeficientes do polinômio característico nas formas

de determinantes de matrizes independentes de λ.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

J1,1 0 J1,3 J1,4

J2,1 −λ J2,3 0

0 1 −λ 0

J4,1 0 J4,3 J4,4−λ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

−

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

λ 0 J1,3 J1,4

0 −λ J2,3 0

0 1 −λ 0

0 0 J4,3 J4,4−λ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

= 0

Decompondo a segunda linha do primeiro determinante, e aplicando a regra de Laplace na

primeira coluna do segundo,

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

J1,1 0 J1,3 J1,4

J2,1 0 J2,3 0

0 1 −λ 0

J4,1 0 J4,3 J4,4−λ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

+

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

J1,1 0 J1,3 J1,4

J2,1 −λ J2,3 0

0 0 −λ 0

J4,1 0 J4,3 J4,4−λ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

−λ

�

�

�

�

�

�

�

�

�

�

�

−λ J2,3 0

1 −λ 0

0 J4,3 J4,4−λ

�

�

�

�

�

�

�

�

�

�

�

= 0

Aplicando Laplace na segunda coluna do segundo determinante,

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

J1,1 0 J1,3 J1,4

J2,1 0 J2,3 0

0 1 −λ 0

J4,1 0 J4,3 J4,4−λ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

−λ

�

�

�

�

�

�

�

�

�

�

�

J1,1 J1,3 J1,4

0 −λ 0

J4,1 J4,3 J4,4−λ

�

�

�

�

�

�

�

�

�

�

�

−λ

�

�

�

�

�

�

�

�

�

�

�

−λ J2,3 0

1 −λ 0

0 J4,3 J4,4−λ

�

�

�

�

�

�

�

�

�

�

�

= 0
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Aplicando a regra de Laplace na segunda linha do segundo determinante,

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

J1,1 0 J1,3 J1,4

J2,1 0 J2,3 0

0 1 −λ 0

J4,1 0 J4,3 J4,4−λ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

+λ2

�

�

�

�

�

�

�

J1,1 J1,4

J4,1 J4,4−λ

�

�

�

�

�

�

�

−λ
�

J4,4−λ
�

�

�

�

�

�

�

�

−λ J2,3

1 −λ

�

�

�

�

�

�

�

= 0

Brevemente omitindo o determinante maior,

(...) +λ2

�

�

�

�

�

�

�

J1,1 J1,4

J4,1 J4,4

�

�

�

�

�

�

�

−λ2

�

�

�

�

�

�

�

J1,1 0

J4,1 λ

�

�

�

�

�

�

�

−λ
�

J4,4−λ
� �

λ2− J2,3

�

= 0

(...) +λ2







�

�

�

�

�

�

�

J1,1 J1,4

J4,1 J4,4

�

�

�

�

�

�

�

− J2,3






−λ3

�

J1,1+ J4,4

�

+λ4λJ4,4 J2,3 = 0

Agora desenvolvendo aquele,

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

J1,1 0 J1,3 J1,4

J2,1 0 J2,3 0

0 1 −λ 0

J4,1 0 J4,3 J4,4−λ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

+ (...) = 0

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

J1,1 0 J1,3 J1,4

J2,1 0 J2,3 0

0 1 0 0

J4,1 0 J4,3 J4,4−λ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

+

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

J1,1 0 0 J1,4

J2,1 0 0 0

0 1 −λ 0

J4,1 0 0 J4,4−λ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

+ (...) = 0
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�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

J1,1 0 J1,3 J1,4

J2,1 0 J2,3 0

0 1 0 0

J4,1 0 J4,3 J4,4−λ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
�
�
�
�
�
�
�
��>

0

−λ

�

�

�

�

�

�

�

�

�

�

�

J1,1 0 J1,4

J2,1 0 0

J4,1 0 J4,4−λ

�

�

�

�

�

�

�

�

�

�

�

+ (...) = 0

−

�

�

�

�

�

�

�

�

�

�

�

J1,1 J1,3 J1,4

J2,1 J2,3 0

J4,1 J4,3 J4,4−λ

�

�

�

�

�

�

�

�

�

�

�

+ (...) = 0

−

�

�

�

�

�

�

�

�

�

�

�

J1,1 J1,3 J1,4

J2,1 J2,3 0

J4,1 J4,3 J4,4

�

�

�

�

�

�

�

�

�

�

�

+

�

�

�

�

�

�

�

�

�

�

�

J1,1 J1,3 0

J2,1 J2,3 0

J4,1 J4,3 λ

�

�

�

�

�

�

�

�

�

�

�

+ (...) = 0

−

�

�

�

�

�

�

�

�

�

�

�

J1,1 J1,3 J1,4

J2,1 J2,3 0

J4,1 J4,3 J4,4

�

�

�

�

�

�

�

�

�

�

�

+λ

�

�

�

�

�

�

�

J1,1 J1,3

J2,1 J2,3

�

�

�

�

�

�

�

+ (...) = 0

Assim,

−

�

�

�

�

�

�

�

�

�

�

�

J1,1 J1,3 J1,4

J2,1 J2,3 0

J4,1 J4,3 J4,4

�

�

�

�

�

�

�

�

�

�

�

+λ







�

�

�

�

�

�

�

J1,1 J1,3

J2,1 J2,3

�

�

�

�

�

�

�

+ J4,4 J2,3






λ2







�

�

�

�

�

�

�

J1,1 J1,4

J4,1 J4,4

�

�

�

�

�

�

�

− J2,3






−λ3

�

J1,1+ J4,4

�

+λ4 = 0

Arranjando,

λ4 −λ3

�

�

�

�

�

�

�

J1,1 −1

J4,4 1

�

�

�

�

�

�

�

+λ2







�

�

�

�

�

�

�

J1,1 J1,4

J4,1 J4,4

�

�

�

�

�

�

�

− J2,3






+λ







�

�

�

�

�

�

�

J1,1 J1,3

J2,1 J2,3

�

�

�

�

�

�

�

+ J4,4 J2,3






+

�

�

�

�

�

�

�

�

�

�

�

�

J2,1 J2,3 0

J1,1 J1,3 J1,4

J4,1 J4,3 J4,4

�

�

�

�

�

�

�

�

�

�

�

�

= 0 (B.18)

Assim, em forma resumida,
4
∑

i=0
aiλ

i = 0, com os coeficientes ai
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





































































































































































a4 = 1

a3 =

�

�

�

�

�

�

�

J1,1 −1

J4,4 1

�

�

�

�

�

�

�

=−
�

J1,1+ J4,4

�

a2 =







�

�

�

�

�

�

�

J1,1 J1,4

J4,1 J4,4

�

�

�

�

�

�

�

− J2,3






= J1,1 J4,4− J1,4 J4,1− J2,3

a1 =







�

�

�

�

�

�

�

J1,1 J1,3

J2,1 J2,3

�

�

�

�

�

�

�

+ J4,4 J2,3






= J2,3

�

J1,1+ J4,4

�

− J1,3 J2,1

a0 =

�

�

�

�

�

�

�

�

�

�

�

J2,1 J2,3 0

J1,1 J1,3 J1,4

J4,1 J4,3 J4,4

�

�

�

�

�

�

�

�

�

�

�

= J4,4

�

J1,3 J2,1− J1,1 J2,3

�

+ J1,4

�

J2,3 J4,1− J2,1 J4,3

�
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APÊNDICE C

Análise local do sistema AVR+PSS

Aqui apresentar-se-ão os cálculos analíticos da análise local (cálculo da matriz jacobiano e

do polinômio característico) do sistema controlado por AVR e PSS.

C.1

Cálculo do jacobiano

O sistema controlado por AVR e PSS é regido pelo sistema diferencial



























































































ẋ1 =
E sat

F D − x1+ (xd − x ′d )Id

T ′d o

= F1

ẋ2 =
Pm − x1Iq+ (x ′d − x ′q ) Id Iq

2H
= F2

ẋ3 = x2 = F3

ẋ4 = x5 = F4

ẋ5 =
Tw KP SS (T1 -x2+ ẋ2)− x4− (Tw +T2) x5

Tw T2
= F5

ẋ6 =−
Ke (Vt−Vt 0) +

�

E sat
F D −EF D 0

�

Te
= F6

Com funções saturadas x sat
4 e E sat

F D :

x sat
4 = S

�

x4, V ma x
P SS , V mi n

P SS

�

E sat
F D = S

�

x sat
4 + x6+EF D 0, E ma x

F D , E mi n
F D

�
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Com equações algébricas

Iq =
x1 cos(φ)−E cos(x3+φ)

X

Id =
E sin(x3+φ)− x1 sin(φ)

X

_Iq =

�

E sat
FD − x1+ (xd − x ′d )Id

�

cos(φ) + x2T ′d o E sin(x3+φ)

X T ′d o

_Id =
x2T ′d o E cos(x3+φ)−

�

E sat
FD − x1+ (xd − x ′d )Id

�

sin(φ)

X T ′d o

-x2 =

Ṗm −















x1
_Iq+

ẋ1
︷ ︸︸ ︷

�

E sat
FD − x1+ (xd − x ′d )Id

T ′d o

�

Iq















− (x ′d − x ′q )
�

Iq
_Id+ Id

_Iq

�

2H

Vt =

√

√
�

x 2
1 −2E x1 cos(x3) +E 2

�

�

Z

X

�2

+2E
Z

X

�

x1 cos(x3+α−φ)−E cos(α−φ)
�

+E 2

Ke , Te , Tw , T1, T2, KP SS são constantes referentes aos controladores; os dois primeiros

referentes ao AVR e os últimos ao PSS.

C.1.1 Primeira coluna

J1,1 =
∂ F1

∂ x1
=−

1

T ′d o

+

�

xd − x ′d
T ′d o

�

∂ Id

∂ x1
=−

�

xd − x ′d
T ′d o

�

sin(φ)
X

−
1

T ′d o

=−
1

T ′d o

��

xd − x ′d
�

sin
�

φ
�

X
+1

�

(C.1)

J2,1 =
∂ F2

∂ x1
=

1

2H

�

−
�

Iq+ x1

∂ Iq

∂ x1

�

+ (x ′d − x ′q )

�

Iq
∂ Id

∂ x1
+ Id

∂ Iq

∂ x1

��

=

=
1

2H X 2

¦

E
�

X cos(x3+φ) + (x
′
d − x ′q )sin

�

x3+2φ
�

�

− x1

�

2X cos(φ) + (x ′d − x ′q )sin
�

2φ
�

�©

(C.2)
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J3,1 =
∂ F3

∂ x1
= 0 (C.3)

J4,1 = 0 (C.4)

J5,1 =
KP SS

T2

�

T1

∂ ẍ2

∂ x1
+
∂ ẋ2

∂ x1

�

Calculando
∂ ẍ2

∂ x1
:

∂ ẍ2

∂ x1
(−2H ) = İq+ x1

∂ İq

∂ x1
+ ẋ1

∂ Iq

∂ x1
+ J1,1Iq+

�

x ′d − x ′q
�

�

∂ Iq

∂ x1
İd+

∂ İd

∂ x1
Iq+

∂ Id

∂ x1
İq+

∂ İq

∂ x1
Id

�

=

= İq

�

1+
�

x ′d − x ′q
� ∂ Id

∂ x1

�

+ Iq

�

J1,1+
�

x ′d − x ′q
� ∂ İd

∂ x1

�

+

+
∂ İq

∂ x1

�

x1+
�

x ′d − x ′q
�

Id

�

+
∂ Iq

∂ x1

�

ẋ1+
�

x ′d − x ′q
�

İd

�

=

= İq



1−

�

x ′d − x ′q
�

sin
�

φ
�

X



+ Iq



J1,1−

�

x ′d − x ′q
�

sin
�

φ
�

X
J1,1



+

+ J1,1

cos
�

φ
�

X

�

x1+
�

x ′d − x ′q
�

Id

�

+
cos

�

φ
�

X

�

ẋ1+
�

x ′d − x ′q
�

İd

�

=

=
�

İq+ J1,1Iq

�



1−

�

x ′d − x ′q
�

sin
�

φ
�

X



+
cos

�

φ
�

X

¦

J1,1

�

x1+
�

x ′d − x ′q
�

Id

�

+
�

ẋ1+
�

x ′d − x ′q
�

İd

�©

Sabe-se que
∂ ẋ2

∂ x1
≡ J2,1; assim,

J5,1 =
KP SS

T2

�

T1
∂ ẍ2

∂ x1
+
∂ ẋ2

∂ x1

�

=

=−
KP SS

2H T2



T1







�

İq + J1,1Iq

�



1−

�

x ′d − x ′q
�

sin
�

φ
�

X



+
cos

�

φ
�

X

¦

J1,1

�

x1 +
�

x ′d − x ′q
�

Id

�

+
�

ẋ1 +
�

x ′d − x ′q
�

İd

�©







−2H J2,1



 (C.5)

J6,1 =
∂ F6

∂ x1
=−

Ke

Te

∂ Vt

∂ x1
=

=−
Ke

Te

Z

X

�

x1−E cos(x3)
�

�

Z

X

�

+E cos(x3+α−φ)
√

√�

x 2
1 −2E x1 cos(x3) +E 2

�

�

Z

X

�2

+2E
Z

X

�

x1 cos(x3+α−φ)−E cos
�

α−φ
�

�

+E 2

(C.6)
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C.1.2 Segunda coluna

J1,2 =
∂ F1

∂ x2
= 0 (C.7)

J2,2 =
∂ F2

∂ x2
= 0 (C.8)

J3,2 =
∂ F3

∂ x2
= 1 (C.9)

J4,2 =
∂ F4

∂ x2
= 0 (C.10)

J5,2 =
∂ F5

∂ x2
=

KP SS T1

T2

∂ ẍ2

∂ x2
=

=−
KP SS T1

2H T2

�

x1

∂ İq

∂ x2
+
�

x ′d − x ′q
�

�

Iq
∂ İd

∂ x2
+ Id

∂ İq

∂ x2

��

=

=−
KP SS T1

2H T2

�

x1

E sin
�

x3+φ
�

X
+
�

x ′d − x ′q
�

�

Iq

E cos
�

x3+φ
�

X
+ Id

E sin
�

x3+φ
�

X

��

=

=−
E KP SS T1

2H X T2

�

x1 sin
�

x3+φ
�

+
�

x ′d − x ′q
��

Iq cos
�

x3+φ
�

+ Id sin
�

x3+φ
�

��

(C.11)

J6,2 = 0 (C.12)

C.1.3 Terceira coluna

J1,3 =
∂ F1

∂ x3
=
(xd − x ′d )

T ′d o

∂ Id

x3
=

E
�

xd − x ′d
�

X T ′d o

cos(x3+φ) (C.13)

J2,3 =
∂ F2

∂ x3
=

1

2H

�

−x1

∂ Iq

∂ x3
+ (x ′d − x ′q )

�

Iq
∂ Id

∂ x3
+ Id

∂ Iq

∂ x3

��

=
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=
1

2H

�

−x1

E sin(x3+φ)
X

+ (x ′d − x ′q )

¨

�

x1 cos(φ)−E cos(x3+φ)
X

� E cos
�

x3+φ
�

X
+

+
�

E sin(x3+φ)− x1 sin(φ)
X

� E sin
�

x3+φ
�

X

«�

=

=
1

2H

�

−x1

E sin(x3+φ)
X

+
E (x ′d − x ′q )

X 2

�

x1

�

cos(φ)cos
�

x3+φ
�

− sin(φ)sin
�

x3+φ
�

�

+

−E
�

cos2
�

x3+φ
�

− sin2
�

x3+φ
�

�

�ª

=

=
E

2H X 2

¦

−x1X sin(x3+φ) +
�

x ′d − x ′q
��

x1 cos
�

x3+2φ
�

−E cos
�

2x3+2φ
�

�©

=

=
E

2H X 2

¦

x1

��

x ′d − x ′q
�

cos
�

x3+2φ
�

−X sin(x3+φ)
�

−E
�

x ′d − x ′q
�

cos
�

2x3+2φ
�

©

(C.14)

J3,3 =
∂ F3

∂ x3
= 0 (C.15)

J4,3 = 0 (C.16)

J5,3 =
KP SS

T2

�

T1

∂ ẍ2

∂ x3
+
∂ ẋ2

∂ x3

�

Calculando
∂ ẍ2

∂ x3
:

∂ ẍ2

∂ x3
(−2H ) = x1

∂ İq

∂ x3
+ J1,3Iq+ ẋ1

∂ Iq

∂ x3
+
�

x ′d − x ′q
�

�

Iq
∂ İd

∂ x3
+ İd

∂ Iq

∂ x3
+ Id

∂ İq

∂ x3
+ İq

∂ Id

∂ x3

�

=

=
∂ Id

∂ x3

�

x ′d − x ′q
�

İq+
∂ İd

∂ x3

�

x ′d − x ′q
�

Iq+
∂ Iq

∂ x3

�

ẋ1+
�

x ′d − x ′q
�

İd

�

+
∂ İq

∂ x3

�

x1+
�

x ′d − x ′q
�

Id

�

+ J1,3Iq =

=
E cos

�

x3+φ
�

X

�

x ′d − x ′q
�

İq−

�

x2E sin
�

φ+ x3

�

X
− J1,3

sin
�

φ
�

X

�

�

x ′d − x ′q
�

Iq+

+
E sin

�

x3+φ
�

X

�

ẋ1+
�

x ′d − x ′q
�

İd

�

+

�

J1,3

cos
�

φ
�

X
+

x2E cos
�

x3+φ
�

X

�

�

x1+
�

x ′d − x ′q
�

Id

�

+ J1,3Iq

Daonde
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J5,3 =
KP SS

T2

















J2,3−
T1

2H X

















E cos
�

x3+φ
�

�

x ′d − x ′q
�

İq−
�

x2E sin
�

φ+ x3

�

− J1,3 sin
�

φ
�

��

x ′d − x ′q
�

Iq+

+
�

J1,3 cos
�

φ
�

+ x2E cos
�

x3+φ
�

� �

x1+
�

x ′d − x ′q
�

Id

�

+

+E sin
�

x3+φ
�

�

ẋ1+
�

x ′d − x ′q
�

İd

�

+ J1,3X Iq

































(C.17)

J6,3 =
∂ F6

∂ x3
=−

Ke

Te

∂ Vt

∂ x3
=

=
−x1E

Ke

Te

Z

X

�

sin(x3)
�

Z

X

�

− sin(x3+α−φ)
�

√

√�

x 2
1 −2E x1 cos(x3) +E 2

�

�

Z

X

�2

+2E
Z

X

�

x1 cos(x3+α−φ)−E cos(α−φ)
�

+E 2

C.1.4 Quarta coluna

J1,4 =
∂ F1

∂ x4
=

=
1

T ′d o

∂ E sat
F D

∂ x4
=

1

T ′d o

∂ x sat
4

∂ x4

E ma x
F D
∏

E mi n
F D

�

x sat
4 + x6+EF D 0

�

=

=
1

T ′d o





V ma x
P SS
∏

V mi n
P SS

x4









E ma x
F D
∏

E mi n
F D

�

x sat
4 + x6+EF D 0

�



 (C.18)

J2,4 =
∂ F2

∂ x4
= 0 (C.19)

J3,4 =
∂ F3

∂ x4
= 0 (C.20)

J4,4 = 0 (C.21)

J5,4 =
1

Tw T2

�

Tw KP SS T1

∂ ẍ2

∂ x4
−1

�

(C.22)
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Calculando
∂ ẍ2

∂ x4
:

∂ ẍ2

∂ x4
=−

1

2H

�

x1

∂ İq

∂ x4
+ Iq J1,4+

�

x ′d − x ′q
�

�

Iq
∂ İd

∂ x4
+ Id

∂ İq

∂ x4

��

=

=−
1

2H

�

x1

cos
�

φ
�

X
J1,4+ Iq J1,4+

�

x ′d − x ′q
�

�

− Iq

sin
�

φ
�

X
J1,4+ Id

cos
�

φ
�

X
J1,4

��

=

=−
J1,4

2H X

�

x1 cos
�

φ
�

+X Iq+
�

x ′d − x ′q
��

Id cos
�

φ
�

− Iq sin
�

φ
�

��

Assim,

J5,4 =−
1

Tw T2

§

J1,4

Tw KP SS T1

2H X

�

x1 cos
�

φ
�

+X Iq+
�

x ′d − x ′q
��

Id cos
�

φ
�

− Iq sin
�

φ
�

��

+1
ª

(C.23)

J6,4 =−
1

Te

∂ E sat
F D

∂ x4
=−

1

Te





V ma x
P SS
∏

V mi n
P SS

x4









E ma x
F D
∏

E mi n
F D

�

x sat
4 + x6+EF D 0

�



 (C.24)

C.1.5 Quinta coluna

J1,5 = 0 (C.25)

J2,5 = 0 (C.26)

J3,5 = 0 (C.27)

J4,5 = 1 (C.28)

J5,5 =−
Tw +T2

Tw T2
(C.29)

J6,5 = 0 (C.30)
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C.1.6 Sexta coluna

J1,6 =
1

T ′d o

∂ E sat
F D

∂ x6
=

1

T ′d o

E ma x
F D
∏

E mi n
F D

�

x sat
4 + x6+EF D 0

�

(C.31)

J2,6 = 0 (C.32)

J3,6 = 0 (C.33)

J4,6 = 0 (C.34)

J5,6 =
KP SS T1

T2

∂ ẍ2

∂ x6
=

=−
KP SS T1

2H T2

�

x1

∂ İq

∂ x6
+ J1,6Iq+

�

x ′d − x ′q
�

�

Iq
∂ İd

∂ x6
+ Id

∂ İq

∂ x6

��

=

=−
KP SS T1

2H T2

�

x1 J1,6

cos
�

φ
�

X
+ J1,6Iq+

�

x ′d − x ′q
�

�

− Iq

sin
�

φ
�

X
+ Id

cos
�

φ
�

X

��

=

=−J1,6

KP SS T1

2H X T2

�

x1 cos
�

φ
�

+X Iq+
�

x ′d − x ′q
��

Id cos
�

φ
�

− Iq sin
�

φ
�

��

(C.35)

J6,6 =−
1

Te

∂ E sat
F D

∂ x6
=−

1

Te

E ma x
F D
∏

E mi n
F D

�

x sat
4 + x6+EF D 0

�

(C.36)

C.2

Aproximação do Jacobiano com considerações sobre a função pulso

As fórmulas calculadas do jacobiano acima são genéricas, e podem ser calculadas sobre

qualquer elemento no espaço de estados x. No entanto, ao longo deste trabalho, o jacobiano é

calculado sobre o equilíbrio estático do sistema, o que possibilita simplificar significativamente as

fórmulas.
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É inerente notar que a função pulso não faz sentido quando utilizada no equilíbrio, porque

não é factível construir saturadores que já atinjam seus limtes no equilíbrio do sistema . Valendo-se

desta consideração, todas as funções Boxcar utilizadas podem ser substituídas pela unidade. Pelo

mesmo princípio, a variável de excitação saturada E sat
F D pode ser substituída por EF D 0.

Além disso, por definição, no equilíbrio estático, x4 ≡VP SS e x6 ≡VAV R são nulos, porque

por construção os controladores não atuam no equilíbrio.

Dessa forma, para o equilíbrio estático, com essas considerações práticas, J1,4 =
1

T ′d o

e

J6,4 =−
1

Te
.

C.3

Polinômio característico

Evidenciando os termos nulos e unitários,

J =





























J1,1 0 J1,3 J1,4 0 J1,6

J2,1 0 J2,3 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

J5,1 J5,2 J5,3 J5,4 J5,5 J5,6

J6,1 0 J6,3 J6,4 0 J6,6





























(C.37)

Calculando os autovalores, então

P (λ) = det (J −λI ) =

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

J1,1−λ 0 J1,3 J1,4 0 J1,6

J2,1 −λ J2,3 0 0 0

0 1 −λ 0 0 0

0 0 0 −λ 1 0

J5,1 J5,2 J5,3 J5,4 J5,5−λ J5,6

J6,1 0 J6,3 J6,4 0 J6,6−λ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(C.38)

Multiplicando a quarta linha por λ e somando com a quinta,
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P (λ) =

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

J1,1−λ 0 J1,3 J1,4 0 J1,6

J2,1 −λ J2,3 0 0 0

0 1 −λ 0 0 0

0 0 0 −λ 1 0

J5,1 J5,2 J5,3 J5,4−λ2 J5,5 J5,6

J6,1 0 J6,3 J6,4 0 J6,6−λ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(C.39)

Multiplicando a terceira linha por λ e somando com a segunda,

P (λ) =

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

J1,1−λ 0 J1,3 J1,4 0 J1,6

J2,1 0 J2,3−λ2 0 0 0

0 1 −λ 0 0 0

0 0 0 −λ 1 0

J5,1 J5,2 J5,3 J5,4−λ2 J5,5 J5,6

J6,1 0 J6,3 J6,4 0 J6,6−λ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(C.40)

Multiplicando a segunda coluna por λ e somando com a terceira,

P (λ) =

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

J1,1−λ 0 J1,3 J1,4 0 J1,6

J2,1 0 J2,3−λ2 0 0 0

0 1 0 0 0 0

0 0 0 −λ 1 0

J5,1 J5,2 J5,3+λJ5,2 J5,4−λ2 J5,5 J5,6

J6,1 0 J6,3 J6,4 0 J6,6−λ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(C.41)

Multiplicando a quinta coluna por λ e somando com a quarta,
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P (λ) =

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

J1,1−λ 0 J1,3 J1,4 0 J1,6

J2,1 0 J2,3−λ2 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

J5,1 J5,2 J5,3+λJ5,2

�

J5,4+λJ5,5−λ2
�

J5,5 J5,6

J6,1 0 J6,3 J6,4 0 J6,6−λ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(C.42)

Aplicando a Regra de Laplace na terceira linha,

P (λ) =−

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

J1,1−λ J1,3 J1,4 0 J1,6

J2,1 J2,3−λ2 0 0 0

0 0 0 1 0

J5,1 J5,3+λJ5,2

�

J5,4+λJ5,5−λ2
�

J5,5 J5,6

J6,1 J6,3 J6,4 0 J6,6−λ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(C.43)

Aplicando a Regra de Laplace na quinta coluna,

P (λ) =

�

�

�

�

�

�

�

�

�

�

�

�

J1,1−λ J1,3 J1,4 J1,6

J2,1 J2,3−λ2 0 0

J5,1 J5,3+λJ5,2

�

J5,4+λJ5,5−λ2
�

J5,6

J6,1 J6,3 J6,4 J6,6−λ

�

�

�

�

�

�

�

�

�

�

�

�

(C.44)

Aplicando a Regra de Laplace na segunda linha,

P (λ) =

−J2,1

�

�

�

�

�

�

�

�

�

J1,3 J1,4 J1,6

J5,3+λJ5,2

�

J5,4+λJ5,5−λ2
�

J5,6

J6,3 J6,4 J6,6−λ

�

�

�

�

�

�

�

�

�

+

+
�

J2,3−λ2
�

�

�

�

�

�

�

�

�

�

J1,1−λ J1,4 J1,6

J5,1

�

J5,4+λJ5,5−λ2
�

J5,6

J6,1 J6,4 J6,6−λ

�

�

�

�

�

�

�

�

�

(C.45)
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Divide-se o polinômio em duas parcelas, respectivamente, P1 e P2, calculadas agora

separadamente:

P (λ) =−J2,1P1 (λ)+
�

J2,3−λ2
�

P2 (λ) (C.46)

C.3.1 Primeira parcela

P1 (λ) =

�

�

�

�

�

�

�

�

�

J1,3 J1,4 J1,6

J5,3+λJ5,2

�

J5,4+λJ5,5−λ2
�

J5,6

J6,3 J6,4 J6,6−λ

�

�

�

�

�

�

�

�

�

=

=

�

�

�

�

�

�

�

�

�

J1,3 J1,4 J1,6

J5,3

�

J5,4+λJ5,5−λ2
�

J5,6

J6,3 J6,4 J6,6−λ

�

�

�

�

�

�

�

�

�

+

+

�

�

�

�

�

�

�

�

�

0 J1,4 J1,6

λJ5,2

�

J5,4+λJ5,5−λ2
�

J5,6

0 J6,4 J6,6−λ

�

�

�

�

�

�

�

�

�

=

=

�

�

�

�

�

�

�

�

�

J1,3 J1,4 J1,6

J5,3

�

J5,4+λJ5,5−λ2
�

J5,6

J6,3 J6,4 J6,6

�

�

�

�

�

�

�

�

�

+

�

�

�

�

�

�

�

�

�

J1,3 J1,4 0

J5,3

�

J5,4+λJ5,5−λ2
�

0

J6,3 J6,4 −λ

�

�

�

�

�

�

�

�

�

+

−λJ5,2

�

�

�

�

�

J1,4 J1,6

J6,4 J6,6−λ

�

�

�

�

�

=

=

�

�

�

�

�

�

�

�

�

J1,3 J1,4 J1,6

J5,3

�

J5,4+λJ5,5−λ2
�

J5,6

J6,3 J6,4 J6,6

�

�

�

�

�

�

�

�

�

+

−λ

�

�

�

�

�

�

J1,3 J1,4

J5,3

�

J5,4+λJ5,5−λ2
�

�

�

�

�

�

�

−λJ5,2

�

�

�

�

�

J1,4 J1,6

J6,4 J6,6−λ

�

�

�

�

�

=
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=

�

�

�

�

�

�

�

�

�

J1,3 J1,4 J1,6

J5,3 J5,4 J5,6

J6,3 J6,4 J6,6

�

�

�

�

�

�

�

�

�

+

�

�

�

�

�

�

�

�

�

J1,3 0 J1,6

J5,3 λ
�

J5,5−λ
�

J5,6

J6,3 0 J6,6

�

�

�

�

�

�

�

�

�

+

−λ





�

�

�

�

�

�

J1,3 J1,4

J5,3

�

J5,4+λJ5,5−λ2
�

�

�

�

�

�

�

+ J5,2

 �

�

�

�

�

J1,4 J1,6

J6,4 J6,6

�

�

�

�

�

−λJ1,4

!



=

=

�

�

�

�

�

�

�

�

�

J1,3 J1,4 J1,6

J5,3 J5,4 J5,6

J6,3 J6,4 J6,6

�

�

�

�

�

�

�

�

�

+λ
�

J5,5−λ
�

�

�

�

�

�

J1,3 J1,6

J6,3 J6,6

�

�

�

�

�

+

−λ





�

�

�

�

�

J1,3 J1,4

J5,3 J5,4

�

�

�

�

�

+λJ1,3

�

J5,5−λ
�

+ J5,2

 �

�

�

�

�

J1,4 J1,6

J6,4 J6,6

�

�

�

�

�

−λJ1,4

!



=

=

�

�

�

�

�

�

�

�

�

J1,3 J1,4 J1,6

J5,3 J5,4 J5,6

J6,3 J6,4 J6,6

�

�

�

�

�

�

�

�

�

+

+λ

 

J5,5

�

�

�

�

�

J1,3 J1,6

J6,3 J6,6

�

�

�

�

�

−

�

�

�

�

�

J1,3 J1,4

J5,3 J5,4

�

�

�

�

�

− J5,2

�

�

�

�

�

J1,4 J1,6

J6,4 J6,6

�

�

�

�

�

!

+

+λ2

�

�

�

�

�

�

J1,4 J1,3

J5,5 J5,2

�

�

�

�

�

+

�

�

�

�

�

J1,6 J1,3

J6,6 J6,3

�

�

�

�

�

�

+

+λ3 J1,3

C.3.2 Segunda parcela

P2 (λ) =

�

�

�

�

�

�

�

�

�

J1,1−λ J1,4 J1,6

J5,1

�

J5,4+λJ5,5−λ2
�

J5,6

J6,1 J6,4 J6,6−λ

�

�

�

�

�

�

�

�

�

=
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=

�

�

�

�

�

�

�

�

�

J1,1−λ J1,4 J1,6

J5,1 J5,4 J5,6

J6,1 J6,4 J6,6−λ

�

�

�

�

�

�

�

�

�

+

�

�

�

�

�

�

�

�

�

J1,1−λ 0 J1,6

J5,1 λJ5,5−λ2 J5,6

J6,1 0 J6,6−λ

�

�

�

�

�

�

�

�

�

=

=

�

�

�

�

�

�

�

�

�

J1,1−λ J1,4 J1,6

J5,1 J5,4 J5,6

J6,1 J6,4 J6,6−λ

�

�

�

�

�

�

�

�

�

+λ
�

J5,5−λ
�

�

�

�

�

�

J1,1−λ J1,6

J6,1 J6,6−λ

�

�

�

�

�

=

=

�

�

�

�

�

�

�

�

�

J1,1 J1,4 J1,6

J5,1 J5,4 J5,6

J6,1 J6,4 J6,6−λ

�

�

�

�

�

�

�

�

�

−λ

�

�

�

�

�

J5,4 J5,6

J6,4 J6,6−λ

�

�

�

�

�

+

+λ
�

J5,5−λ
�

�

�

�

�

�

J1,1−λ J1,6

J6,1 J6,6−λ

�

�

�

�

�

=

=

�

�

�

�

�

�

�

�

�

J1,1 J1,4 J1,6

J5,1 J5,4 J5,6

J6,1 J6,4 J6,6

�

�

�

�

�

�

�

�

�

−λ

�

�

�

�

�

J5,4 J5,6

J6,4 J6,6−λ

�

�

�

�

�

−λ

�

�

�

�

�

J1,1 J1,4

J5,1 J5,4

�

�

�

�

�

+

+λ
�

J5,5−λ
�

�

�

�

�

�

J1,1−λ J1,6

J6,1 J6,6−λ

�

�

�

�

�

=

=

�

�

�

�

�

�

�

�

�

J1,1 J1,4 J1,6

J5,1 J5,4 J5,6

J6,1 J6,4 J6,6

�

�

�

�

�

�

�

�

�

−λ

 �

�

�

�

�

J5,4 J5,6

J6,4 J6,6

�

�

�

�

�

−λJ5,4

!

−λ

�

�

�

�

�

J1,1 J1,4

J5,1 J5,4

�

�

�

�

�

+

+λ
�

J5,5−λ
�





�

�

�

�

�

J1,1 J1,6

J6,1 J6,6

�

�

�

�

�

−λ
�

J1,1+ J6,6

�

+λ2



=

=

�

�

�

�

�

�

�

�

�

J1,1 J1,4 J1,6

J5,1 J5,4 J5,6

J6,1 J6,4 J6,6

�

�

�

�

�

�

�

�

�

+
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+λ

 �

�

�

�

�

J5,6 J5,4

J6,6 J6,4

�

�

�

�

�

−

�

�

�

�

�

J1,1 J1,4

J5,1 J5,4

�

�

�

�

�

+ J5,5

�

�

�

�

�

J1,1 J1,6

J6,1 J6,6

�

�

�

�

�

!

+

+λ2



J5,4− J5,5

�

J1,1+ J6,6

�

−

�

�

�

�

�

J1,1 J1,6

J6,1 J6,6

�

�

�

�

�



+

+λ3
�

J5,5+ J1,1+ J6,6

�

+

−λ4

C.3.3 Forma final do polinômio característico

Assim,

P (λ) =−J2,1P1 (λ)+
�

J2,3 −λ2
�

P2 (λ) =

=
6
∑

n=0

a0 = J2,3

�

�

�

�

�

�

�

�

�

J1,1 J1,4 J1,6

J5,1 J5,4 J5,6

J6,1 J6,4 J6,6

�

�

�

�

�

�

�

�

�

− J2,1

�

�

�

�

�

�

�

�

�

J1,3 J1,4 J1,6

J5,3 J5,4 J5,6

J6,3 J6,4 J6,6

�

�

�

�

�

�

�

�

�

=−

�

�

�

�

�

�

�

�

�

�

�

�

J1,3 J1,1 J1,4 J1,6

J2,3 J2,1 0 0

J5,3 J5,1 J5,4 J5,6

J6,3 J6,1 J6,4 J6,6

�

�

�

�

�

�

�

�

�

�

�

�

a1 =



















J2,3





�

�

�

�

�

�

J5,6 J5,4

J6,6 J6,4

�

�

�

�

�

�

−

�

�

�

�

�

�

J1,1 J1,4

J5,1 J5,4

�

�

�

�

�

�

+ J5,5

�

�

�

�

�

�

J1,1 J1,6

J6,1 J6,6

�

�

�

�

�

�





+J2,1



J5,2

�

�

�

�

�

�

J1,4 J1,6

J6,4 J6,6

�

�

�

�

�

�

+

�

�

�

�

�

�

J1,3 J1,4

J5,3 J5,4

�

�

�

�

�

�

+ J5,5

�

�

�

�

�

�

J1,6 J1,3

J6,6 J6,3

�

�

�

�

�

�























= J5,5

�

�

�

�

�

�

�

�

�

J2,3 J2,1 0

J1,3 J1,1 J1,6

J6,3 J6,1 J6,6

�

�

�

�

�

�

�

�

�

−

�

�

�

�

�

�

�

�

�

J2,3 J2,1 0

J1,3 J1,1 J1,4

J5,3 J5,1 J5,4

�

�

�

�

�

�

�

�

�

+

�

�

�

�

�

�

�

�

�

J2,3 J2,1 0

J5,2 J1,6 J5,6 J6,6

J5,2 J1,4 J5,4 J6,4

�

�

�

�

�

�

�

�

�

a2 =−J2,1

�

�

�

�

�

�

J1,4 J1,3

J5,5 J5,2

�

�

�

�

�

+

�

�

�

�

�

J1,6 J1,3

J6,6 J6,3

�

�

�

�

�

�

+ J2,3



J5,4 − J5,5

�

J1,1 + J6,6

�

+

�

�

�

�

�

�

J1,6 J1,1

J6,6 J6,1

�

�

�

�

�

�



−

�

�

�

�

�

�

�

�

�

J1,1 J1,4 J1,6

J5,1 J5,4 J5,6

J6,1 J6,4 J6,6

�

�

�

�

�

�

�

�

�

=

=−J2,1

�

�

�

�

�

J1,4 J1,3

J5,5 J5,2

�

�

�

�

�

+ J2,3

�

�

�

�

�

�

�

�

�

J5,4 J5,5 0

J1,1 1 −1

J6,6 0 1

�

�

�

�

�

�

�

�

�

−

�

�

�

�

�

�

�

�

�

J1,1 J1,3 J1,6

J2,1 J2,3 0

J6,1 J6,3 J6,6

�

�

�

�

�

�

�

�

�

−

�

�

�

�

�

�

�

�

�

J1,1 J1,4 J1,6

J5,1 J5,4 J5,6

J6,1 J6,4 J6,6

�

�

�

�

�

�

�

�

�
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a3 =−J2,1 J1,3 + J2,3

�

J1,1 + J5,5 + J6,6

�

−





�

�

�

�

�

�

J5,6 J5,4

J6,6 J6,4

�

�

�

�

�

�

−

�

�

�

�

�

�

J1,1 J1,4

J5,1 J5,4

�

�

�

�

�

�

+ J5,5

�

�

�

�

�

�

J1,1 J1,6

J6,1 J6,6

�

�

�

�

�

�





a4 =







J2,3 − J5,4 + J5,5

�

J1,1 + J6,6

�

+

�

�

�

�

�

�

J1,1 J1,6

J6,1 J6,6

�

�

�

�

�

�







a5 =−
�

J1,1 + J5,5 + J6,6

�

a6 = 1

C.4

Identificando as dependências dos controladores

Sabe-se portanto que o Jacobiano do sistema tem a forma

J =





























J1,1 0 J1,3 J1,4 0 J1,6

J2,1 0 J2,3 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

J5,1 J5,2 J5,3 J5,4 J5,5 J5,6

J6,1 0 J6,3 J6,4 0 J6,6





























Os termos destacados mostram as componentes que dependem das constantes dos

controladores. Estas componentes são reduzidas a seguir:

J5,1 =−
KPSS

T2

�

T1K5,1− J2,1

�

J6,1 =−
Ke

Te
K6,1

J5,2 =−
KPSST1

T2
K5,2

J5,3 =
KPSS

T2

�

J2,3−T1K5,3

�

J6,3 =−
Ke

Te
K6,3
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J5,4 =−
1

T2Tw

�

1+TwKPSST1K5,4

�

J6,4 =−
1

Te

J5,5 =−
Tw+T2

T2Tw

J5,6 =−
KPSST1

T2
K5,6

J6,6 =−
1

Te

Agora, os Ki,j denotados em negrito são funções apenas do estado sobre o qual o jacobiano

é calculado. É doravante necessário escrever os coeficientes ai do polinômio característico como

funções destes parâmetros, mais especificamente a0, a1, a3 e a5 porque são determinantes no

esboço do Diagrama de Bifurcações, como deduzido a partir da página 107. Além disso, o foco é

isolar os ganhos do AVR Ke e do PSS KP SS , uma vez que estas variáveis serão variadas enquanto

as outras serão fixadas a partir daquela página.

C.4.1 Coeficiente a0

a0 = J2,3

�

�

�

�

�

�

�

�

�

J1,1 J1,4 J1,6

J5,1 J5,4 J5,6

J6,1 J6,4 J6,6

�

�

�

�

�

�

�

�

�

− J2,1

�

�

�

�

�

�

�

�

�

J1,3 J1,4 J1,6

J5,3 J5,4 J5,6

J6,3 J6,4 J6,6

�

�

�

�

�

�

�

�

�

Note-se que todas as linhas de baixo dos determinante são proporcionais a −T −1
e .

−Tea0 = J2,3

�

�

�

�

�

�

�

�

�

J1,1 J1,4 J1,6

J5,1 J5,4 J5,6

KeK6,1 1 1

�

�

�

�

�

�

�

�

�

− J2,1

�

�

�

�

�

�

�

�

�

J1,3 J1,4 J1,6

J5,3 J5,4 J5,6

KeK6,3 1 1

�

�

�

�

�

�

�

�

�

Nota-se também que as linhas do meio são inversamente proporcionais a T2, nota-se que

a segunda e terceira colunas são idênticas nos determinantes, de forma que se possa somá-los:

−TeT2a0 = J2,3

�

�

�

�

�

�

�

�

�

J1,1 J1,4 J1,6

KPSS

�

J2,1−T1K5,1

�

−
1+TwKPSST1K5,4

Tw
−KPSST1K5,6

KeK6,1 1 1

�

�

�

�

�

�

�

�

�

+
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− J2,1

�

�

�

�

�

�

�

�

�

J1,3 J1,4 J1,6

KPSS

�

J2,3−T1K5,3

�

−
1+TwKPSST1K5,4

Tw
−KPSST1K5,6

Ke K6,3 1 1

�

�

�

�

�

�

�

�

�

=

=

�

�

�

�

�

�

�

�

�

J1,1 J2,3− J2,1 J1,3 J1,4 J1,6

KPSST1

�

J2,3K5,1− J2,1K5,3

�

−
�

1

Tw
+KPSST1K5,4

�

−KPSST1K5,6

Ke

�

J2,3K6,1− J2,1K6,3

�

1 1

�

�

�

�

�

�

�

�

�

Diminuindo a terceira coluna da segunda, e multiplicando a equação por −1,

TeT2a0 =

�

�

�

�

�

�

�

�

�

J1,1 J2,3− J2,1 J1,3 J1,4− J1,6 J1,6

KPSST1

�

J2,1K5,3− J2,3K5,1

� 1

Tw
+KPSST1

�

K5,4−K5,6

�

KPSST1K5,6

Ke

�

J2,3K6,1− J2,1K6,3

�

0 1

�

�

�

�

�

�

�

�

�

Isolando KPSST1 da linha do meio e separando o elemento (2, 2) da sua coluna:

TeT2

KPSST1
a0 =

�

�

�

�

�

�

�

�

�

J1,1 J2,3− J2,1 J1,3 J1,4− J1,6 J1,6

J2,1K5,3− J2,3K5,1

1

KPSST1Tw
+
�

K5,4−K5,6

�

K5,6

Ke

�

J2,3K6,1− J2,1K6,3

�

0 1

�

�

�

�

�

�

�

�

�

=

=

�

�

�

�

�

�

�

�

�

J1,1 J2,3− J2,1 J1,3 J1,4− J1,6 J1,6

J2,1K5,3− J2,3K5,1 K5,4−K5,6 K5,6

Ke

�

J2,3K6,1− J2,3K6,1

�

0 1

�

�

�

�

�

�

�

�

�

+

�

�

�

�

�

�

�

�

�

J1,1 J2,3− J2,1 J1,3 0 J1,6

J2,1K5,3− J2,3K5,1

1

KPSST1Tw
K5,6

Ke

�

J2,3K6,1− J2,1K6,3

�

0 1

�

�

�

�

�

�

�

�

�

=

=Ke

�

J2,3K6,1− J2,3K6,1

�

�

�

�

�

�

J1,4− J1,6 J1,6

K5,4−K5,6 K5,6

�

�

�

�

�

+

�

�

�

�

�

J1,1 J2,3− J2,1 J1,3 J1,4− J1,6

J2,1K5,3− J2,3K5,1 K5,4−K5,6

�

�

�

�

�

+

−
Ke

KPSST1Tw
J1,6

�

J2,3K6,1− J2,1K6,3

�

+
1

KPSST1Tw

�

J1,1 J2,3− J2,1 J1,3

�

=

=Ke

�

�

�

�

�

J1,4 J1,6

K5,4 K5,6

�

�

�

�

�

�

�

�

�

�

J2,3 J2,1

K6,3 K6,1

�

�

�

�

�

+

�

�

�

�

�

�

�

�

�

�

�

J2,3 J2,1 0 0

J1,3 J1,1 J1,4 J1,6

−K5,3 −K5,1 K5,4 K5,6

0 0 1 1

�

�

�

�

�

�

�

�

�

�

�

+

−
Ke

KPSST1Tw
J1,6

�

�

�

�

�

J2,3 J2,1

K6,3 K6,1

�

�

�

�

�

+
1

KPSST1Tw

�

�

�

�

�

J1,1 J1,3

J2,1 J2,3

�

�

�

�

�

Assim,

a0 =
KeKPSST1

TeT2

�

�

�

�

�

�

J1,4 J1,6

K5,4 K5,6

�

�

�

�

�

�

�

�

�

�

�

�

J2,3 J2,1

K6,3 K6,1

�

�

�

�

�

�

+
KPSST1

TeT2

�

�

�

�

�

�

�

�

�

�

�

�

J2,3 J2,1 0 0

J1,3 J1,1 J1,4 J1,6

−K5,3 −K5,1 K5,4 K5,6

0 0 1 1

�

�

�

�

�

�

�

�

�

�

�

�

+
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−
Ke

TeTwT2
J1,6

�

�

�

�

�

�

J2,3 J2,1

K6,3 K6,1

�

�

�

�

�

�

+
1

TwTeT2

�

�

�

�

�

�

J1,1 J1,3

J2,1 J2,3

�

�

�

�

�

�

Nota-se que

�

�

�

�

�

�

J1,4 J1,6

K5,4 K5,6

�

�

�

�

�

�

=

�

�

�

�

�

�

�

�

�

�

�

�

J2,3 J2,1 0 0

J1,3 J1,1 J1,4 J1,6

−K5,3 −K5,1 K5,4 K5,6

0 0 1 1

�

�

�

�

�

�

�

�

�

�

�

�

= 0 ∵ J1,4 ≡ J1,6, K5,4 ≡ K5,6

No primeiro caso, é fácil notar que as colunas são iguais, rendendo o determinante nulo.

Já no segundo caso, perceba-se que a terceira coluna e a quarta também são iguais. Resulta que

a0 =−
Ke

TeTwT2
J1,6

�

�

�

�

�

�

J2,3 J2,1

K6,3 K6,1

�

�

�

�

�

�

+
1

TwTeT2

�

�

�

�

�

�

J1,1 J1,3

J2,1 J2,3

�

�

�

�

�

�

=

=
1

TeTwT2





�

�

�

�

�

�

J1,1 J1,3

J2,1 J2,3

�

�

�

�

�

�

−Ke J1,6

�

�

�

�

�

�

J2,3 J2,1

K6,3 K6,1

�

�

�

�

�

�





Portanto o polinômio característico admite solução nula, isto é, o sistema tem autovalor

nulo, se e somente se

Ke =

�

�

�

�

�

J1,1 J1,3

J2,1 J2,3

�

�

�

�

�

J1,6

�

�

�

�

�

J2,3 J2,1

K6,3 K6,1

�

�

�

�

�

É interessante frisar que a0 é nulo para apenas um valor específico do ganho do AVR,

de forma que apenas um valor deste ganho provoca autovalor nulo no sistema e este valor seja

função do estado em que o Jacobiano é calculado. Um corolário interessante é que há equilíbrios

nos quais é impossível este evento porque o valor de ganho necessário é negativo; trata-se do

caso do equilíbrio ~S = 1+ j 0.5, utilizado durante todo este trabalho.

C.4.2 Coeficiente a1

a1 = J5,5

�

�

�

�

�

�

�

�

�

J2,3 J2,1 0

J1,3 J1,1 J1,6

J6,3 J6,1 J6,6

�

�

�

�

�

�

�

�

�

−

�

�

�

�

�

�

�

�

�

J2,3 J2,1 0

J1,3 J1,1 J1,4

J5,3 J5,1 J5,4

�

�

�

�

�

�

�

�

�

+

�

�

�

�

�

�

�

�

�

J2,3 J2,1 0

J5,2 J1,6 J5,6 J6,6

J5,2 J1,4 J5,4 J6,4

�

�

�

�

�

�

�

�

�
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Como J1,4 = J1,6, K5,4 = K5,6 e J6,6 = J6,4 dimiue-se a segunda linha da terceira no última

determinante:

a1 = J5,5

�

�

�

�

�

�

�

�

�

J2,3 J2,1 0

J1,3 J1,1 J1,6

J6,3 J6,1 J6,6

�

�

�

�

�

�

�

�

�

−

�

�

�

�

�

�

�

�

�

J2,3 J2,1 0

J1,3 J1,1 J1,4

J5,3 J5,1 J5,4

�

�

�

�

�

�

�

�

�

+

�

�

�

�

�

�

�

�

�

J2,3 J2,1 0

J5,2 J1,6 J5,6 J6,6
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�
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=
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�
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�

�
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−

�
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�

�
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�

�

�

�

�

�

−
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�
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=

�
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�
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�

�
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�

−
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�
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�
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�

�

�

�

�

�

+
�
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�

�

�

�

�

�

�

J2,3 J2,1

J1,3 J1,1

�

�

�

�

�

�

−
�

J5,4− J5,6

�

J2,3 J6,6 =

=J1,6





�

�

�

�

�

�

J2,3 J2,1

J5,3 J5,1

�

�

�

�

�

�
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�

�

�

�

�

�

J2,3 J2,1
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�
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

+
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�

�

�

�

�

�

−
�

J5,4− J5,6

�

J2,3 J6,6 =

=J1,6



−
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�

�

�

�

�

�

J2,3 J2,1
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�

�

�
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�

�
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�
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T2Tw
+
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K5,4−

KPSST1

T2
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�

No primeiro determinante, somando as duas linhas,
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
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�

�

�
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�
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�

�
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�

−
J2,3

Te

�

1

T2Tw
+
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�
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�
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=
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T1
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
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�

�

�

�

�

�
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�

�

�

�

�

�
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�

�

�
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�

�

�
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�
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−
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�
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�
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
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+
T2+Tw+Te

TeT2Tw

�

�

�

�

�

�

J2,3 J2,1

J1,3 J1,1

�

�

�

�

�

�

−
J2,3

TeT2Tw

No primeiro termo, elimina-se a última parcela porque K5,4 = K5,6. Agrupando os determi-

nantes restantes,

a1 =KPSS
T1

T2

�

�

�

�

�

�

�

�

�

K5,4 K5,3 K5,1

0 J2,3 J2,1

J1,6 J1,3 J1,1

�

�

�

�

�

�

�

�

�

−Ke
T2+Tw

TwTeT2
J1,6

�

�

�

�

�

�

J2,3 J2,1

K6,3 K6,1

�

�

�

�

�

�

+
T2+Tw+Te

TeT2Tw

�

�

�

�

�

�

J2,3 J2,1

J1,3 J1,1

�

�

�

�

�

�

−
J2,3

TeT2Tw

Uma observação interessante é que, para o equilíbrio ~S = 1+ j 0.5, o determinante que

multiplica KPSS é nulo.

C.4.3 Coeficiente a3

a3 =−J2,1 J1,3+ J2,3

�

J1,1+ J5,5+ J6,6

�

−





�

�

�

�

�

�

J5,6 J5,4

J6,6 J6,4
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�

�
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�
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−

�
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�

�
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�

�
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�

�
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�
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�

�

�

�
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�

�

�

�

�

�



=
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−

1
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�

−
1
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�

�

�

�

�

�

KPSST1K5,6

�

1
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�

1 1

�

�

�

�

�

�

+

+

�

�

�

�

�

�

�

J1,1 J1,4

−
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�
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�

−
1
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1+TwKPSST1K5,4

�

�

�

�

�

�

�

�

+
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�
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�

�

�

�
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1
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�

�

�

�

�

�

�

=
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�
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−

1
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�

−
1
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�
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�
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−
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−
1
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�

�

�

�

�

�
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J1,1 J1,4
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�
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�

�

1
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�
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T2TwTe

�

�
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�
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�
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=
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�
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−

1
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−
1
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�
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�
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−
1
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�
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
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
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�

�

�

�
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�

�

�

�

�

�
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
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

−
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�
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�

=
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


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



�

�

�

�

�

�
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�

�

�

�

�

�
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

+
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

+Ke
Tw+T2

T2TwTe
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− J2,1 J1,3+ J2,3

�

J1,1−
Tw+T2

T2Tw
−

1

Te

�

+
1

TeT2Tw
− J1,1

T2+Tw+Te

TwT2
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APÊNDICE D

Sintonia do sistema controlado por AVR

Logo após ter o sistema controlado por AVR equacionado, tendo suas EADs deduzidas,

então é necessário sintonizar o controlador; em outras palavras, para poder simular o sistema

controlado por AVR, é necessário escolher os valores de Ke e Te que atendem a certos requisitos

de estabilidade e de performance.

Assim, o objetivo deste apêndice, bem como do próximo que trata da sintonia do PSS, é

exemplificar as técniacs lineares de sintonia de controladores empregadas, baseadas no princípio

de pequenas perturbações.

A sintonia do AVR segue três passos bem-definidos. O primeiro, a obtenção da função de

transferência entre a perturbação da potência mecânica ∆Pm e a tensão terminal ∆Vt . Depois, o

traçado das margens de estabilidade relativa - margem de ganho e margem de fase – do sistema,

parametrizadas pelos parâmetros Ke e Te do controlador. Finalmente, o ajuste dos parâmetros

que resultam numa combinação aceitável de margens de estabilidade do sistema.

D.1

Modelo linearizado do sistema

Acoplando o controlador AVR ao modelo linearizado da figura 2, resulta o modelo lineari-

zado da figura 28.

A ideia é encontrar uma função de transferência que relaciona um desvio da tensão terminal

Vt com uma perturbação na potência mecânca Pm , como na equação (D.1).

∆Vt

∆Pm
=G (s ) (D.1)

A partir desta função de transferência analisam-se os aspectos de estabilidade de G (s )

como lugar de raízes e margens de ganho e fase. Do diagrama linearizado, resulta o sistema (D.2).
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Figura 28 – Diagrama de blocos do sistema OMIB linearizado controlado por AVR.
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

∆x3 =
1

s 2

�

J2,3∆x3+ J2,1∆x1+
∆Pm

2H

�

∆Vt =V1∆x1+V3∆x3

∆x1 =
1

s − J1,1

�

J1,3∆x3+
1

T ′d o

Ke

1+ s Te
∆Vt

�

(D.2)

Às derivadas parciais de Vt avaliadas no equilíbrio denominam-se V1 e V3, e valem

V1 =
∂ Vt

∂ x1

�

�

�

�

x0

=
Z

X

�

x1−E cos(x3)
�

�

Z

X

�

+E cos(x3+α−φ)
√

√�

x 2
1 −2E x1 cos(x3) +E 2

�

�

Z

X

�2

+2E
Z

X

�

x1 cos(x3+α−φ)−E cos
�

α−φ
�

�

+E 2

(D.3)

V3 =
∂ Vt

∂ x3

�

�

�

�

x0

=
Z

X

x1E
�

sin(x3)
�

Z

X

�

− sin(x3+α−φ)
�

√

√�

x 2
1 −2E x1 cos(x3) +E 2

�

�

Z

X

�2

+2E
Z

X

�

x1 cos(x3+α−φ)−E cos(α−φ)
�

+E 2

(D.4)

Agrupando as equações,


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

































∆x3 =
1

s 2− J2,3

�

J2,1∆x1+
∆Pm

2H

�

∆Vt =V1∆x1+V3∆x3

∆x1 =
1

s − J1,1

�

J1,3∆x3+
Ke

T ′d o

Ke

1+ s Te
∆Vt

�

(D.5)

Substituindo a primeira equação na terceira,
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∆x1 =
J1,3

�

s − J1,1

��

s 2− J2,3

�

�

J2,1∆x1+
∆Pm

2H

�

+
Ke

T ′d o

�

s − J1,1

��

1+ s Te

�∆Vt ⇔

⇔∆x1

 

1−
J1,3 J2,1

�

s − J1,1

��

s 2− J2,3

�

!

=
J1,3

2H
�

s − J1,1

��

s 2− J2,3

�∆Pm +
Ke

T ′d o

�

s − J1,1

��

1+ s Te

�∆Vt ⇔

⇔∆x1

��

s − J1,1

��

s 2− J2,3

�

− J1,3 J2,1

�

=
J1,3

2H
∆Pm +

Ke

�

s 2− J2,3

�

T ′d o

�

1+ s Te

�∆Vt

∴∆x1 =
J1,3

2H
��

s − J1,1

��

s 2− J2,3

�

− J1,3 J2,1

�∆Pm +
Ke

�

s 2− J2,3

�

T ′d o

�

1+ s Te

���

s − J1,1

��

s 2− J2,3

�

− J1,3 J2,1

�∆Vt (D.6)

Substituindo este na equação de ∆x3,

∆x3 =
1

s 2− J2,3

 

J2,1Ke

�

s 2− J2,3

�

T ′d o

�

1+ s Te

���

s − J1,1

��

s 2− J2,3

�

− J1,3 J2,1

�∆Vt +

�

s − J1,1

��

s 2− J2,3

�

2H
��

s − J1,1

��

s 2− J2,3

�

− J1,3 J2,1

�∆Pm

!

=

=
J2,1Ke

T ′d o

�

1+ s Te

���

s − J1,1

��

s 2− J2,3

�

− J1,3 J2,1

�∆Vt +

�

s − J1,1

�

2H
��

s − J1,1

��

s 2− J2,3

�

− J1,3 J2,1

�∆Pm (D.7)

Substituindo as equações (D.6) e (D.7) na equação de ∆Vt , então

∆Vt =
J1,3V1+

�

s − J1,1

�

V3

2H
��

s − J1,1

��

s 2− J2,3

�

− J1,3 J2,1

�∆Pm +
Ke

�

J2,1V3+
�

s 2− J2,3

�

V1

�

T ′d o

�

1+ s Te

���

s − J1,1

��

s 2− J2,3

�

− J1,3 J2,1

�∆Vt (D.8)

∴
∆Vt

∆Pm
=

�

J1,3V1+
�

s − J1,1

�

V3

�

T ′d o

�

1+ s Te

���

s − J1,1
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s 2− J2,3

�

− J1,3 J2,1

�
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s − J1,1
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�

− J1,3 J2,1

�¦

T ′d o

�
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���
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�

− J1,3 J2,1

�

−Ke

�

J2,1V3+
�

s 2− J2,3

�

V1

�© (D.9)

Denotam-se o numerador e denominador pelos vetores N e D . Numeram-se-os come-

çando do índice nulo para que os índices dos vetores coincidam com os índices dos expoentes da

variável de Laplace:

∆Vt

∆Pm
=G (s ) =

i=5
∑

i=0
Ni s i

i=7
∑

i=0
Di s i

Sendo o vetor de coeficientes do numerador
¦

Ni

©

, i ∈ {0, 1, . . . , 5}, isto é, o primeiro termo

corresponde ao expoente s 0 e o último a s 5:
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N = T ′d o
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�
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(D.10)

E a sequência de coeficientes do denominador
¦

Di

©

, i ∈ {0, 1, . . . , 7}::
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(D.11)

D.2

Calculando as margens de ganho e fase do sistema

Substituindo s = jω, então

G ( jω) =

�

N4ω
4−N2ω

2+N0

�

+ jω
�

N5ω
4−N3ω

2+N1

�

�

−D6ω6+D4ω4−D2ω2+D0

�

+ jω
�

−D7ω6+D5ω4−D3ω2+D1

� (D.12)

A margem de ganho do sistema estima em quantas vezes o ganho do sistema deve ser

multiplicado para que o sistema torne-se localmente instável. É definida como

Ý
�

G
�

ωP

��

=π⇒Gm =
�

�

�G (ωP )
�

�

�

−1

(D.13)
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Ou seja, trata-se do inverso do módulo calculado em uma frequência cuja fase é π radianos.

Já a Margem de Fase é a medida do ângulo do sistema quando seu ganho é unitário, ou seja,

�

�

�G (ωG )
�

�

�= 1⇒φm =Ý
�

G
�

ωG

��

(D.14)

Sejam portanto a margem de ganho desejada Gm e a margem de faze desejada φm . As

definições das margens de estabilidade implicam que











G
�

jωG

�

=−
1

Gm

G
�

jωP

�

= e jφm

(D.15)

Deste sistema, resulta


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




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ω4
G N4−ω2

G N2+N0

�

+ jωG

�

ω4
G N5−ω2

G N3+N1

�

�

−ω6
G D6+ω4

G D4−ω2
G D2+D0

�

+ jωG

�

−ω6
G D7+ω4

G D5−ω2
G D3+D1

� =−
1

Gm

�

ω4
P N4−ω2

P N2+N0

�

+ jωP

�

ω4
P N5−ω2

P N3+N1

�

�

−ω6
P D6+ω4

P D4−ω2
P D2+D0

�

+ jωP

�

−ω6
P D7+ω4

P D5−ω2
P D3+D1

� = e jφm

(D.16)

Em se tratando de sistema no corpo dos complexos, então pode-se dividir as duas equa-

ções em parte real e imaginária, originando quatro equações reais. Em tempo, nota-se que,

dado o controlador (isto é, fixas as constantes Ke e Te ), o sistema possui quatro incógnitas:

ωG ,ωP ,Gm ,φm . As duas primeiras são determinadas resolvendo a primeira equação do sistema

D.16, e as duas últimas são obtidas resolvendo-se a segunda.

D.3

Resolvendo a primeira equação do sistema (D.16)

Desenvolvendo a primeira equação do sistema (D.16), denota-se a parte real do numerador

como NR e a imaginária como NI , analogamente para o denominador, para a primeira equação:

NR + jωNI

DR + jωDI
=−

1

Gm
⇔−Gm

�

NR + jωNI

�

=DR + jωDI (D.17)

E separando-a em partes reais e imaginárias,











ω6
G D6−ω4

G

�

D4+Gm N4

�

+ω2
G

�

D2+Gm N2

�

−
�

D0+Gm N0

�

= 0

ω6
G D7−ω4

G

�

D5+Gm N5

�

+ω2
G

�

D3+Gm N3

�

−
�

D1+Gm N1

�

= 0

(D.18)
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Multiplicando a primeira equação por D7 e a segunda por D6:











−Gm

�

ω4
G N4−ω2

G N2+N0

�

=−ω6
G D6+ω4
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G D2+D0

−Gm

�

ω4
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G N3+N1

�

=−ω6
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⇔

⇔










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G D7

�
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G D7

�
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−D7

�
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�
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(D.19)

Diminuindo uma da outra,
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
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�

�

= 0

(D.20)

Agora tem-se um novo sistema equivalente a (D.19) adotando (D.20) com alguma das

equações de (D.19), digamos, a primeira:
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�
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(D.21)

A resolução do sistema pode ser ainda mais simplificada adotando-se βG =ω2
G , reduzindo-

se a ordem das equações:
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�

�
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�

�
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�
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(D.22)

A figura 29 mostra os gráficos da frequência de corte ωG e da Margem de Ganho parame-

trizados por Ke e Te , para o sistema em estudo (tabela 1) no equilíbrio ~S = 1+ j 0.5.
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Figura 29 – Gráficos da frequência de corteωG e da margem de ganho do sistema controlado por
AVR.
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D.4

Resolvendo a segunda equação do sistema

Pela segunda equação,

�

ω4
P N4−ω2

P N2+N0

�

+ jωP

�

ω4
P N5−ω2

P N3+N1

�

�

−ω6
P D6+ω4
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P D2+D0
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+ jωP

�

−ω6
P D7+ω4

P D5−ω2
P D3+D1

� = e jφm (D.23)

Daonde

NR + jωP NI = cos
�

φm
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DR −ωP sin
�
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⇔
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�
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�
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�

φm

�

�

−ω6
P D7+ω4

P D5−ω2
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�
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(D.24)

Agora, tem-se um sistema de equações não-lineares nas variáveis ωP e φm . No entanto,

o sistema ainda é sofisticado o suficiente para apresentar problemas numéricos. Para tanto,

combinar-se-ão as duas equações para facilitar a solução do sistema.

D.4.1 Primeira combinação

Multiplicando a primeira equação de (D.24) por 2 sin
�

φm

�

e a segunda por 2 cos
�

φm

�

.
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(D.25)

Diminuindo uma equação da outra e dividindo por 2,
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�

φm

�

+

+ω2
P

�

D2−N2 cos
�

φm

�

�

+ωP N1 sin
�

φm

�

−
�

D0+N0 cos
�

φm

�

�

= 0

D.4.2 Segunda combinação

Analogamente, multiplicando a primeira equação de (D.24) por 2cos
�

φm

�

e a segunda

por 2 sin
�

φm

�

:
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(D.26)

E somando as duas equações, e dividindo por 2,

D7ω
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�
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�
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�

= 0 (D.27)

D.4.3 Novo sistema

Resulta assim um novo sistema, menos sofisticado computacionalmente e equivalente a

(D.24):
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A figura 30 mostra os gráficos da frequência de corte ωF e da Margem de Fase parametri-

zados por Ke e Te , para o sistema em estudo (tabela 1) no equilíbrio ~S = 1+ j 0.5.
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Margem de fase

Figura 30 – Gráficos da frequência de corte ωF e da margem de fase do sistema controlado por
AVR.
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D.5

Escolha dos parâmetros Ke e Te

De posse dos gráficos das figuras 29 e 30 controem-se os gráficos da figura 31, que

relacionam as margens de ganho e fase com os parâmetros Ke e Te . Estes gráficos foram gerados

pelo código no apêndice A, seção A.8, página 178. Ignoram-se as curvas tais que a margem de

fase seja positiva e a margem de ganho seja negativa, pois nestas condições o sistema seria

instável em malha fechada.
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Figura 31 – Gráficos relacionando as margens de estabilidade do sistema controlado por AVR e
os parâmetros Ke e Te .

Escolhe-se Ke = 10 para a curva Te = 100, tem-se MG = 21.237536 e MF =−0.478074π,
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que são valores razoáveis para as margens de estabilidade do sistema.
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APÊNDICE E

Sintonia do sistema controlado por AVR e PSS

Analogamente ao sistema controlado apenas por AVR, determinam-se as constantes do

controlador PSS: KP SS , T1, T2, Tw através da análise de margens de estabilidade.

E.1

Modelo linearizado do sistema e função de transferência

A figura 32 mostra o esquemático linearizado do sistema controlado por AVR e PSS.

EFD

VPSS VAVR
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x1

s - J 11

1
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V3

1 + sTe

eK

Vt

V1

1 + sT2

1 + sT1KPSS

1 + sTw

sTw

+
 

+
 

Figura 32 – Diagrama de blocos do sistema OMIB linearizado controlado por AVR e PSS.

As equações de V1 e V3 são novamente dadas por (D.3) e (D.4). Da figura, pode-se deduzir

que:
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�

J1,3∆x3+
1

T ′d o

∆EF D

�

∆x2 =
1

s

�

J2,1∆x1+ J2,3∆x3+
1

2H
∆Pm

�

∆x3 =
1

s
∆x2

∆Vt =V1∆x1+V3∆x3

∆EF D =
Ke

1+ s Te
∆Vt +KP SS

1+ s T1

1+ s T2

s Tw

1+ s Tw
∆x2

(E.1)

A ideia é obter uma função de transferência

G (s ) =
∆Vt

∆Pm
(E.2)

Substituindo a terceira equação do sistema (E.1) na segunda:

s 2∆x3 = J2,1∆x1+ J2,3∆x3+
1

2H
∆Pm ⇔∆x3 =

1

s 2− J2,3

�

J2,1∆x1+
1

2H
∆Pm

�

(E.3)

Substituindo esta na primeira equação de (E.1):

∆x1 =
1

s − J1,1

�

J1,3

s 2− J2,3

�

J2,1∆x1+
1

2H
∆Pm

�

+
1

T ′d o

∆EF D

�

⇔

⇔ ∆x1

�

1−
J1,3 J2,1

�

s − J1,1

� �

s 2− J2,3

�

�

=
1

s − J1,1

�

J1,3

s 2− J2,3

1

2H
∆Pm +

1

T ′d o

∆EF D

�

⇔

⇔ ∆x1

�

s − J1,1

� �

s 2− J2,3

�

− J1,3 J2,1

s 2− J2,3
=

J1,3

s 2− J2,3

1

2H
∆Pm +

1

T ′d o

∆EF D ⇔

⇔ ∆x1 =
J1,3

2H
��

s − J1,1

� �

s 2− J2,3

�

− J1,3 J2,1

�∆Pm +
s 2− J2,3

T ′d o

�

�

s − J1,1

� �

s 2− J2,3

�

− J1,3 J2,1

�∆EF D (E.4)

Substituindo esta em (E.3):

∆x3 =
1

s 2− J2,3

�

J2,1∆x1+
1

2H
∆Pm

�

=
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=
1

s 2− J2,3





1

2H

�

1+
J2,1 J1,3

�

s − J1,1

� �

s 2− J2,3

�

− J1,3 J2,1

�

∆Pm +
J2,1

�

s 2− J2,3

�

T ′d o

��

s − J1,1

� �

s 2− J2,3

�

− J1,3 J2,1

�∆EF D



=

=
1

2H

s − J1,1
�

s − J1,1

� �

s 2− J2,3

�

− J1,3 J2,1

∆Pm +
J2,1

T ′d o

�

�

s − J1,1

� �

s 2− J2,3

�

− J1,3 J2,1

�∆EF D (E.5)

Agora, substituem-se a terceira e quarta equações de (E.1) na última:

∆EF D =
Ke

1+ s Te

�

V1∆x1+V3∆x3

�

+
s 2KP SS Tw

�

1+ s T1

�

�

1+ s T2

��

1+ s Tw

�∆x3 =

=
V1Ke

1+ s Te
∆x1+





V3Ke

1+ s Te
+

s 2KP SS Tw

�

1+ s T1

�

�

1+ s T2

��

1+ s Tw

�



∆x3 (E.6)

Substituindo (E.4) e (E.5) em (E.6):

∆EF D =
1

2H

J1,3V1Ke

1+ s Te
+
�

s − J1,1

�





V3Ke

1+ s Te
+

s 2KP SS Tw

�

1+ s T1

�

�

1+ s T2

��

1+ s Tw

�





�

s − J1,1

� �

s 2− J2,3

�

− J1,3 J2,1

∆Pm+

+
1

T ′d o

V1Ke

1+ s Te

�

s 2− J2,3

�

+ J2,1





V3Ke

1+ s Te
+

s 2KP SS Tw

�

1+ s T1

�

�

1+ s T2

��

1+ s Tw

�





�

s − J1,1

� �

s 2− J2,3

�

− J1,3 J2,1

∆EF D

�

1+ s Te

��

�

s − J1,1

� �

s 2− J2,3

�

− J1,3 J2,1

�

∆EF D =
1

2H







J1,3V1Ke +
�

s − J1,1

�



V3Ke +
s 2KP SS Tw

�

1+ s T1

��

1+ s Te

�

�

1+ s T2

��

1+ s Tw

�











∆Pm+

+
1

T ′d o







V1Ke

�

s 2− J2,3

�

+ J2,1



V3Ke +
s 2KP SS Tw

�

1+ s T1

��

1+ s Te

�

�

1+ s T2

��

1+ s Tw

�











∆EF D

∴ ∆EF D =

1

2H







J1,3V1Ke +
�

s − J1,1

�



V3Ke +
s 2KP SS Tw

�

1+ s T1

��

1+ s Te

�

�

1+ s T2

��

1+ s Tw

�











�

1+ s Te

��

�

s − J1,1

� �

s 2− J2,3

�

− J1,3 J2,1

�

−
1

T ′d o







V1Ke

�

s 2− J2,3

�

+ J2,1



V3Ke +
s 2KP SS Tw

�

1+ s T1

��

1+ s Te

�

�

1+ s T2

��

1+ s Tw

�











∆Pm =

=

T ′d o

2H







J1,3V1Ke +
�

s − J1,1

�



V3Ke +
s 2KP SS Tw

�

1+ s T1

��

1+ s Te

�

�

1+ s T2

��

1+ s Tw

�











T ′d o

�

1+ s Te

��

�

s − J1,1

� �

s 2− J2,3

�

− J1,3 J2,1

�

−V1Ke

�

s 2− J2,3

�

− J2,1



V3Ke +
s 2KP SS Tw

�

1+ s T1

��

1+ s Te

�

�

1+ s T2

��

1+ s Tw

�





∆Pm

(E.7)
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Da quarta equação do sistema (E.1):

∆Vt =V1∆x1+V3∆x3 =

=
1

2H

V1 J1,3+V3

�

s − J1,1

�

�

s − J1,1

� �

s 2− J2,3

�

− J1,3 J2,1

∆Pm +
1

T ′d o

V1

�

s 2− J2,3

�

+V3 J2,1
�

s − J1,1

� �

s 2− J2,3

�

− J1,3 J2,1

∆EF D =

=

1

2H

�

V1 J1,3+V3

�

s − J1,1

�

�

∆Pm +
1

T ′d o

�

V1

�

s 2− J2,3

�

+V3 J2,1

�

∆EF D

�

s − J1,1

� �

s 2− J2,3

�

− J1,3 J2,1

Combinando esta com (E.7):

∴ G (s ) =
∆Vt

∆Pm
=

=
1

2H

V1 J1,3+V3

�

s − J1,1

�

+

�

V1

�

s 2− J2,3

�

+V3 J2,1

�







J1,3V1Ke +
�

s − J1,1

�



V3Ke +
s 2KP SS Tw

�

1+ s T1

��

1+ s Te

�

�

1+ s T2

��

1+ s Tw

�











T ′d o

�

1+ s Te

��

�

s − J1,1

� �

s 2− J2,3

�

− J1,3 J2,1

�

−V1Ke

�

s 2− J2,3

�

− J2,1



V3Ke +
s 2KP SS Tw

�

1+ s T1

��

1+ s Te

�

�

1+ s T2

��

1+ s Tw

�





�

s − J1,1

� �

s 2− J2,3

�

− J1,3 J2,1

(E.8)

Novamente separa-se G (s ) em numerador N (s ) e denominador D (s ), cujos coeficientes

são numerados de s 0 a s 7 e s 0 a s 9, respectivamente:

G (s ) =

k=7
∑

k=0
Nk s k

k=9
∑

k=0
Dk s k

(E.9)

Substituindo s = jω em (E.9):

G (s ) =

NR
︷ ︸︸ ︷

−N6ω
6+N4ω

4−N2ω
2+N0+ jω

NI
︷ ︸︸ ︷

�

−N7ω
6+N5ω

4−N3ω
2+N1

�

D8ω
8−D6ω

6+D4ω
4−D2ω

2+D0
︸ ︷︷ ︸

DR

+ jω
�

D9ω
8−D7ω

6+D5ω
4−D3ω

2+D1

�

︸ ︷︷ ︸

DI

=

=
NR + jωNI

DR + jωDI
(E.10)
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Agora, das definições das margens de estabilidade











G
�

jωG

�

=−
1

Gm

G
�

jωP

�

= e jφm

(E.11)

Da primeira equação deste sistema,

−Gm

�

NR + jωG NI

�

=DR + jωG DI ⇔

(

DR +Gm NR = 0

DI +Gm NI = 0
(E.12)

Da segunda,

NR + jωNI

DR + jωDI
= cos

�

φm

�

+ j sin
�

φm

�

⇔

⇔ NR + jωNI =DR cos
�

φm

�

−ωDI sin
�

φm

�

+ j
�

DR sin
�

φm

�

+ωDI cos
�

φm

�

�

⇔

⇔







NR =DR cos
�

φm

�

−ωP DI sin
�

φm

�

ωP NI =DR sin
�

φm

�

+ωP DI cos
�

φm

�

(E.13)

Assim, de posse das constantes KP SS , T1, T2, Tw do controlador PSS, então o sistema

(E.12) é resolvido para obter-se a frequência de corte ωG e a margem de ganho Gm , enquanto o

segundo sistema (E.13) é resolvido para se obter ωP e φm .

No entanto, há para este sistema um problema: o espaço das constantes tem dimensão

quatro. Isso quer dizer que não se podem construir gráficos de margem de ganho e de fase versus

parâmetro, como se fez para o sistema controlado apenas por AVR, porque este sistema tem

apenas dois parâmetros: Ke e Te .

Assim, para reduzir a dimensão do problema, deve-se tomar um corte no espaço (KP SS , T1, T2, Tw ).

O corte tomado será T1 = 1, Tw = 1.

E.2

Resolvendo o sistema (E.12)

Do sistema (E.12) resulta
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





D8ω
8
G − (D6+Gm N6)ω6

G + (D4+Gm N4)ω4
G − (D2+Gm N2)ω2

G +D0+Gm N0 = 0

D9ω
8
G − (D7+Gm N7)ω6

G + (D5+Gm N5)ω4
G − (D3+Gm N3)ω2

G +D1+Gm N1 = 0

(E.14)

Para simplificar o sistema, multiplica-se a primeira equação por D9 e a última por D8 e

diminuem-se as duas para se obter:





�

�

�

�

�

�

D8 D9

D6 D7

�

�

�

�

�

�

+Gm

�

�

�

�

�

�

D8 D9

N6 N7

�

�

�

�

�

�



ω6
G −





�

�

�

�

�

�

D8 D9

D4 D5

�

�

�

�

�

�

+Gm

�

�

�

�

�

�

D8 D9

N4 N5

�

�

�

�

�

�



ω4
G+

+





�

�

�

�

�

�

D8 D9

D2 D3

�

�

�

�

�

�

+Gm

�

�

�

�

�

�

D8 D9

N2 N3

�

�

�

�

�

�



ω2
G −





�

�

�

�

�

�

D8 D9

D0 D1

�

�

�

�

�

�

+Gm

�

�

�

�

�

�

D8 D9

N0 N1

�

�

�

�

�

�



= 0 (E.15)

Adotando esta equação e uma outra de (E.14), digamos, a primeira, e substituindo βG =ω2
G

para diminuir a ordem do sistema tem-se:























































D8β
4
G −

�

D6+Gm N6

�

β 3
G +

�

D4+Gm N4

�

β 2
G −

�

D2+Gm N2

�

βG +D0+Gm N0 = 0





�

�

�

�

�

�

D8 D9

D6 D7

�

�

�

�

�

�

+Gm

�

�

�

�

�

�

D8 D9

N6 N7

�

�

�

�

�

�



β 3
G −





�

�

�

�

�

�

D8 D9

D4 D5

�

�

�

�

�

�

+Gm

�

�

�

�

�

�

D8 D9

N4 N5

�

�

�

�

�

�



β 2
G+

+





�

�

�

�

�

�

D8 D9

D2 D3

�

�

�

�

�

�

+Gm

�

�

�

�

�

�

D8 D9

N2 N3

�

�

�

�

�

�



βG −





�

�

�

�

�

�

D8 D9

D0 D1

�

�

�

�

�

�

+Gm

�

�

�

�

�

�

D8 D9

N0 N1

�

�

�

�

�

�



= 0

(E.16)

E.3

Resolvendo o sistema (E.13)

Do sistema (E.13) tem-se:















































D9 sin
�

φm

�

ω9
P −D8 cos

�

φm

�

ω8
P −D7 sin

�

φm

�

ω7
P +

�

D6 cos
�

φm

�

−N6

�

ω6
P +D5 sin

�

φm

�

ω5
P+

�

N4−D4 cos
�

φm

�

�

ω4
P −D3 sin

�

φm

�

ω3
P +

�

D2 cos
�

φm

�

−N2

�

ω2
P +D1 sin

�

φm

�

ωP +N0−D0 cos
�

φm

�

= 0

D9 cos
�

φm

�

ω9
P +D8 sin

�

φm

�

ω8
P +

�

N7−D7 cos
�

φm

�

�

ω7
P −D6 sin

�

φm

�

ω6
P +

�

D5 cos
�

φm

�

−N5

�

ω5
P+

D4 sin
�

φm

�

ω4
P +

�

N3−D3 cos
�

φm

�

�

ω3
P −D2 sin

�

φm

�

ω2
P +

�

D1 cos
�

φm

�

−N1

�

ωP +D0 sin
�

φm

�

= 0

(E.17)

Agora, combinam-se as equações da seguinte forma:

1. Multiplica-se a primeira equação por cos
�

φm

�

, a segunda por sin
�

φm

�

, e somam-se as

duas;
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2. Multiplica-se a primeira equação por sin
�

φm

�

, a segunda por cos
�

φm

�

, e subtraem-se as

duas.

Obtem-se assim um sistema equivalente e menos computacionalmente caro de se resolver:















































D9ω
9
P +

�

N7 cos
�

φm

�

−D7

�

ω7
P −N6 sin

�

φm

�

ω6
P +

�

D5−N5 cos
�

φm

�

�

ω5
P+

+N4 sin
�

φm

�

ω4
P +

�

N3 cos
�

φm

�

−D3

�

ω3
P −N2 sin

�

φm

�

ω2
P +

�

D1−N1 cos
�

φm

�

�

ωP +N0 sin
�

φm

�

= 0

D8ω
8
P +N7 sin

�

φm

�

ω7
P +

�

N6 cos
�

φm

�

−D6

�

ω6
P −N5 sin

�

φm

�

ω5
P+

+
�

D4−N4 cos
�

φm

�

�

ω4
P +N3 sin

�

φm

�

ω3
P +

�

N2 cos
�

φm

�

−D2

�

ω2
P −N1 sin

�

φm

�

ωP +D0−N0 cos
�

φm

�

= 0

(E.18)

E.4

Escolha de KP SS e T2

A figura 33 mostra o gráfico de margem de ganho parametrizado por KP SS e T2 do sistema

em estudo, substituindo-se os valores no sistema (E.16). Estes gráficos foram gerados pelo código

no apêndice A, seção A.9, página 182.

Omitem-se os gráficos da margem de fase e frequência de corte ωF porque, quando da

solução do sistema (E.18) que as determina, o sistema teve margens de fase negativas para quase

todos os valores dos parâmetros.

No gráfico da figura 33, escolhe-se a curva Te = 3, com KP SS = 20, que resulta numa

margem de fase MG = 40.5768.
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Figura 33 – Gráficos relacionando a margem de ganho e a frequência de corte ωG sistema
controlado por AVR e PSS parametrizados pelos parâmetros KP SS e T2.
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APÊNDICE F

Prova do Teorema de Hartman-Grobman

O objetivo último deste apêndice é provar o Teorema de Hartman-Grobman (THG). Este

Teorema é de suma importância para esta monografia porque endossa, ou melhor, justifica, o

controle de sistemas não-lineares através de técnicas lineares.

F.1

Justificativa

Sistemas não lineares exibem comportamentos muito mais ricos e variados que os sis-

temas lineares – comportamentos como, por exemplo, caos ou . Por isso, a área de Controle de

Sistemas Não Lineares ainda carece de alguns resultados importantes que já foram entendidos e

implementados na teoria de Controle de Sistemas Lineares; com efeito, sistemas lineares observá-

veis e controláveis frequentemente encontram controladores lineares que garantem estabilidade e

performance. Já para os sistemas não lineares em geral, apenas algum dos dois pode ser obtido.

Além disso, os procedimentos para desenvolvimento e sintonia de controladores não lineares são

abtrusos e sofisticados, enquanto os controladores lineares possuem técnicas relativamente frugais

e bem conhecidas para sua obtenção. Disto seguem perguntas imediatas, como: é possível aplicar

controladores lineares em sistemas não lineares? Como se dá o procedimento, uma vez que o

desenvolvimento de um controlador linear pressupõe um sistema matricial do tipo ẋ = Ax ? Qual

resultado da Teoria de Sistemas Dinâmicos pode justificar o uso de controladores lineares para

sistemas não-lineares e, finalmente, sob quais condições se pode fazê-lo?

Em geral, o procedimento para desenho de controladores lineares segue uma sequência

bem definida de técnicas, como a análise de lugar de raízes, análise das margens de estabilidade,

dos aspectos de performance como sobressinal e sub-sinal, estimativa do tempo de acomodação e

erro em regime permanente, et cetera. Dado que a Teoria de Sistemas Lineares garante estabilidade

e performance para sistemas deste tipo (desde que observáveis e controláveis), e dado que

existem procedimentos bem-definidos para desenvolver controladores para sistemas lineares,
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então lineariza-se o sistema não linear – através da ferramenta Jacobiano, que é a expansão do

conceito de derivada para sistemas multifunções multivariáveis – e obtem-se um sistema linear

associado. Este, por sua vez, é utilizado para desenvolver e sintonizar o controlador, baseado

naquela teoria para sistemas lineares, e com os procedimentos supracitados.

Segundo o THG, também conhecido como “Teorema de Linearização”, o controlador

desenvolvido para o sistema linear correspondente também se aplica ao sistema não-linear original,

desde que algumas condições sejam cumpridas, notadamente, que as perturbações sejam as

mínimas possíveis. Isto porque o THG afirma que o comportamento de um sistema não linear

numa vizinhança de um equilíbrio hiperbólico (cujos todos autovalores são complexos não-reais) é

qualitativamente semelhante à sua linearização naquele ponto. Outrossim, um sistema não-linear

comporta-se similarmente ao sistema linearizado associado quando sob pequenas perturbações.

Matematicamente, o Teorema consiste em provar que as trajetórias do sistema não-linear e do

sistema linear equivalente são topologicamente equivalentes, isto é, existe um homeomorfismo

(uma função contínua invertível de inversa contínua) que relaciona as trajetórias.

No entanto, o THG tem aplicação apenas numa vizinhança pequena do equilíbrio hiper-

bólico em questão (princípio de pequenas perturbações); isto posto, não se conhece teorema

generalizado que preveja o comportamento em grandes perturbações. Esta problemática, aplicada

ao contexto de Sistemas Elétricos de Potência, dá à luz esta monografia, que buscou analisar

aquele comportamento a grandes perturbações e desenvolver uma técnica baseada no Método

Força-Bruta para estimar a Região de Estabilidade de um sistema elétrico de potência conhecido

como OMIB (Máquina versus Barramento Infinito).

Assim, a prova do Teorema de Hartman-Grobman e seu entendimento é fundamental para

determinar o propósito desta monografia e afirmar a problemática em que se encaixa (a análise do

comportamento de sistemas elétricos de potência a grandes perturbações).

Em suma, é doravante possível utilizar técnicas de Controle Linear para controlar sistemas

não lineares; para tanto, utilizam-se o sistema linearizado correspondente e as técnicas de controle

linear conhecidas, e o resultado que garante isto é o Teorema de Hartman-Grobman, segundo

o qual o controle linear sobre o sistema não linear é válido desde que este seja perturbado

minimamente ao redor de um equilíbrio hiperbólico. Desta limitação emerge a problemática desta

monografia, cujo objetivo foi estudar o comportamento de sistemas elétricos de potência a grandes

perturbações.

F.2

Visão geral do apêndice

Para provar o THG, são necessários três Lemas:

1. A Desigualdade Generalizada de Grönwall (Lema 2);
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2. A Fórmula da Variação das Constantes (Lema 3);

3. O Teorema do Valor Médio para funções mulivariáveis (Lema 4).

Naturalmente, estes Teoremas dependem de outros Lemas auxiliares, que também são

provados. Além do THG e dos três Teoremas menores necessários para prová-los, também são

provados dois teoremas importantes na Teoria de Estabilidade de Sistemas Dinâmicos. O primeiro

(Teorema 6) afirma que sistemas lineares não-autônomos são globalmente estáveis desde que

a matriz associada tenha apenas autovalores de parte real negativa e desde que a dependência

do tempo seja exponencialmente limitada com relação à inversa daquela matriz. Em seguida,

no Teorema 7 prova-se que sistemas não-lineares não-autônomos cuja função diferencial seja

de classe C 1 têm resposta assintoticamente estável e limitada numa vizinhança de equilíbrios

hiperbólicos tipo zero, ou seja, equilíbrios cujos autovalores da matriz jacobiana têm parte real

negativa.

Assim, apresenta-se a visão geral deste apêndice, que consiste nas provas e discussão

dos seguintes Teoremas e Lemas:

1. A Desigualdade Generalizada de Grönwall (Lema 2);

2. A Fórmula da Variação das Constantes (Lema 3);

3. O Teorema do Valor Médio para funções mulivariáveis (Lema 4), cuja prova depende outros

três:

• Teorema de Weierstrass (Teorema 3);

• Teorema de Rolle (Teorema 4 );

• Teorema do Valor Médio para funções de uma variável (Teorema 5).

4. Finalmente, o último (Lema 6) estabelece que funções do tipo f (t ) = e At , com A uma matriz

complexa de autovalores com parte real menor que zero, são limitadas por uma função do

tipo exponencial decrescente. Esta seção também enuncia dois outros lemas:

• O primeiro, segundo o qual funções do tipo f (x ) = e −αt P (t ), com α > 0 e P (t ) um

polinômio qualquer, são limitadas em qualquer semirreta direita (lema 5);

• O segundo (lema 7), consequência dos Lemas 5 e 6, afirma que funções do tipo

f (x ) = e At P (t ), com A uma matrix complexa e P (t ) um polinômio qualquer, são

limitadas e tendem a zero no infinito desde que A tenha autovalores de parte real

negativa (uma versão matricial do lema anterior).

5. O Teorema 6 prova que sistemas lineares não-autônomos ẋ = Ax + g (t ) são globalmente

estáveis se A tem apenas autovalores de parte real negativa e se e −At g (t ) for limitada;
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6. O Teorema 7 define que sistemas não-lineares do tipo ẋ = f (x , t ), com f de classe C 1, são

estáveis numa vizinhança de um equilíbrio hiperbólico de tipo zero.

Finalmente, enuncia-se e prova-se o Teorema de Hartman-Grobman (Teorema 8).

F.3

A Desigualdade de Grönwall Generalizada

Lema 2 (Desigualdade de Grönwall Generalizada). Sejam φ,α,β : [a , b ]→R funções contínuas,

com α (t ) não-decrescente, tais que

φ (t )≤α (t )+

t
∫

a

β (s )φ (s )d s , ∀t ∈ [a , b ] (F.1)

Então

φ (t )≤α (t )e





t
∫

a

β (u )d u





, ∀t ∈ [a , b ] (F.2)

—

Prova: adotando

V (t ) =

t
∫

a

β (s )φ (s )d s (F.3)

Então pela hipótese (F.1)

V̇ (t ) =β (t )φ (t )≤β (t )



α (t )+

t
∫

a

β (s )φ (s )d s



=β (t )α (t ) +β (t )V (t )

∴ V̇ (t )−β (t )V (t )≤β (t )α (t ) (F.4)

Agora multiplica-se a equação por um fator integrante e

�

−
t
∫

a
β (s )d s

�

:
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V̇ (t )e



−

t
∫

a

β (s )d s





−V (t )β (t )e



−

t
∫

a

β (s )d s





≤β (t )α (t )e



−

t
∫

a

β (s )d s





(F.5)

Nota-se que

∂ e



−

t
∫

a

β (s )d s





∂t
=−β (t )e



−

t
∫

a

β (s )d s





(F.6)

Portanto integrar (F.5) resulta

e



−

t
∫

a

β (s )d s





V (t ) ≤

t
∫

a

α (τ)β (τ)e



−

τ
∫

a

β (s )d s





dτ (F.7)

Utilizando que α (τ) é não-decrescente, então α (τ)≤α (t ) ∀ τ ∈ [a , t ], e logo

e



−

t
∫

a

β (s )d s





V (t ) ≤ α (t )

t
∫

a

β (τ)e



−

τ
∫

a

β (s )d s





dτ (F.8)

Aplicando-se novamente (F.6),

e



−

t
∫

a

β (s )d s





V (t ) ≤ α (t )

















1− e



−

t
∫

a

β (s )d s





















(F.9)

Multiplicando pelo inverso do fator integrante,

V (t ) ≤ α (t )

















e



−

t
∫

a

β (s )d s





−1

















(F.10)
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Mas por hipótese φ (t )≤α (t ) +V (t ), de onde

φ (t )≤α (t )e





t
∫

a

β (u )d u





�. (F.11)

F.4

A Fórmula da Variação das constantes

Lema 3 (Fórmula da Variação das Constantes). Seja um sistema dinâmico do tipo ẋ = A (t ) x +

g (x , t ), com A : I → Rn×n , e g : I → R contínua definidas num intervalo I =
�

t0,β
�

com a

possibilidade de β =+∞ . Então

x (t ) = x0e





t
∫

t0

A (s )d s





+

t
∫

t0

e

−





τ
∫

t

A (s )d s





g
�

τ, x (τ)
�

dτ (F.12)

—

Prova: tomando o sistema ẋ = A (t ) x + g (x , t ) multiplica-se a equação pelo fator inte-

grante e
−

t
∫

t0

A(s )d s

à esquerda. Lançando mão do fato que A e o fator comutam, resulta

e



−

t
∫

t0

A (s )d s





ẋ −Ae



−

t
∫

t0

A (s )d s





x = e



−

t
∫

t0

A (s )d s





g (x , t )⇔

⇔
∂

∂t

















e



−

t
∫

t0

A (s )d s





x (t )

















= e



−

t
∫

t0

A (s )d s





g (x , t )⇔

⇔

t
∫

t0

∂

∂t

















e



−

τ
∫

t0

A (s )d s





x (τ)

















dτ=

t
∫

t0

e



−

τ
∫

t0

A (s )d s





g (x (τ) ,τ)dτ⇔
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⇔e

−





t
∫

t0

A (s )d s





x (t )− x0 =

t
∫

t0

e



−

τ
∫

t0

A (s )d s





g (x (s ) , s )d s ⇔

⇔x (t ) = e





t
∫

t0

A (s )d s





x0+ e

−





t0
∫

t

A (s )d s



 t
∫

t0

e



−

τ
∫

t0

A (s )d s





g (x (τ) ,τ)dτ⇔

⇔x (t ) = e





t
∫

t0

A (s )d s





x0+

t
∫

t0

e

−





τ
∫

t

A (s )d s





g (x (τ) ,τ)dτ (F.13)

F.5

O Teorema do Valor Médio para funções multivariáveis

Teorema 1 (Teorema da Convergência Monótona). Seja {xn} uma sequência real limitada e

monótona. Se a sequência for crescente e limitada superiormente, então seu limite existe e é igual

ao supremo; se for decrescente e limitada inferiormente, o limite existe e é igual ao ínfimo. —

Prova: suponha a sequência crescente e limitada superiormente; logo o supremo x existe

e xn < x ∀ n . Suponha um ε> 0; para qualquer valor escolhido, existem algum k tal que xk > x−ε
porque, de outra forma, o supremo seria x −ε. Agora, como a sequência é crescente, para todo

m > k , xm > xk , de onde

0< xm − xk < xm − (x −ε)⇔ x − xm = |x − xm |<ε (F.14)

Logo, para todo ε escolhido, existe k tal que m > k implica |x − xm |<ε, que é a precisa

definição de lim
n→∞

xn = x .

Suponha agora a sequência decrescente e limitada inferiormente. O supremo x existe e

xn > x ∀ n . Para qualquer escolha de ε > 0 existe algum k tal que x < xk + ε⇔ x − xk < ε.

Como xm < xk ∀m > k , então

0< xm − xk < xm − (x −ε)⇔ xm − x = |x − xm |<ε (F.15)

Que também é a definição de lim
n→∞

xn = x .



248 APÊNDICE F. Prova do Teorema de Hartman-Grobman

�

Teorema 2 (Teorema de Bolzano-Weierstrass). Toda sequência real limitada tem uma subsequên-

cia monótona convergente. —

Prova: suponha uma sequência {xn} limitada. Sejam os máximos da sequência os valores

de n tais que m > n⇔ xm < xn , isto é, xn é maior que todos os valores subsequentes.

Se a sequência tiver infinitos máximos nk , k ∈N, então a subsequência
�

xnk

	

é monotô-

nica decrescente e, como a sequência é limitada, logo a subsequência converge pelo Teorema da

Convergência Monótona.

Se por outro lado a sequência tiver um número finito de máximos, digamos, nk , k ∈
�

1, 2, . . . , j
	

, tome um i1 > j qualquer; logo, pela definição de máximo, não existe nenhum elemento

xp tal que p > i1 e xp > xi1
. Agora tome i2 > i1: igualmente não pode existir termo subsequente

maior que xi2
. Repetindo este processo indefinidamente se obtem uma sequência xi1

, xi2
, . . .

não-decrescente. Como a sequência {xn} é limitada, então a subsequência
�

xip

	

é limitada e

não-decrescente. Aplica-se o Teorema da Convergência Monótona para concluir que é convergente.

�

Teorema 3 (Teorema de Weierstrass ou Teorema do Valor Extremo). Seja f (x ) uma função real

contínua num [a , b ] fechado limitado. Então f admite tanto um máximo quanto um mínimo neste

intervalo. —

Prova: suponha que f não tem máximo. Então existe uma sequência {xn} monótona

crescente tal que f (xn )> f (xm )⇔ n >m .

Como o intervalo [a , b ] é limitado, então pelo Teorema de Bolzano-Weierstrass a sequência

{xn} é limitada e, sendo crescente, seu limite existe – suponha x – tal que f (x ) = α, de onde

α> f
�

xp

�

∀ p .

Sendo [a , b ] é fechado, contém x ; e como f é contínua, f ({xn}) converge para α. Mas

como f não tem máximo, dado um real positivo γ qualquer sempre existe algum k tal que f (xk )>γ.

Isto implica que α→∞, porque α é maior que qualquer valor de f ({xn}) e logo α> γ, de forma

que se possa escolher γ tão grande quanto se queira. Disto se depreende que {xn} não tem limite,

contradizendo o Teorema de Bolzano-Weierstrass e incorrendo numa incongruência.

Assim, f possui máximo em [a , b ]. Suponha agora que f não tem mínimo, implicando que

existe subsequência
�

yn

	

monótona decrescente tal que f
�

yn

�

< f
�

ym

�

⇔ n >m . Pelos mesmo

motivos,
�

yn

	

é limitada com limite, digamos, β . Sendo f contínua, n→∞⇒ f
��

yn

	�

→ f
�

β
�

;

mas f
�

β
�

< f
�

yn

�

∀n ; como f não tem mínimo, isso implica que para todo real negativo β

pode-se encontrar k tal que f
�

yk

�

<β e logo β →−∞, e logo
�

yn

	

não tem limite, o que implica

uma contradição. �
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Teorema 4 (Teorema de Rolle). Seja f (x ), f :Ω⊂R→R contínua e diferenciável num [a , b ]⊂Ω
e tal que f (a ) = f (b ). Então existe c ∈ [a , b ] tal que f ′(c ) = 0. —

Prova: pelo Teorema de Weierstrass, f é limitada em [a , b ] apenas por ser contínua

no intervalo. Então f admite tanto um máximo quanto um mínimo no [a , b ] (ou seja, como f é

contínua no intervalo, apresenta apenas valores finitos dentro deste intervalo); se ambos máximo

e mínimo são obtidos nos extremos do intervalo, conclui-se que f é uma função constante e

f ′(c ) = 0 ∀c ∈ [a , b ], e o Teorema de Rolle é imediato. Suponha portanto c ∈ (a , b ), e que a e b

não são mínimos e máximos ao mesmo tempo.

Suponhamos inicialmente c ∈ (a , b ) um máximo de f , a e b podem ser mínimos. Então

seja a função

g (h ) =
f (h + c )− f (c )

h
, g : (a − c , b − c )→R (F.16)

Como c é um máximo de f no intervalo (a , b ), o numerador de g (h ) é sempre negativo e

portanto h > 0⇔ g (h )< 0 e h < 0⇔ g (h )> 0. Por hipótese, sendo f diferenciável no intervalo

(a , b ) então também será g , de onde os limites laterais desta existem e obedecem

lim
h→0+

g (h )≤ 0 (F.17)

lim
h→0−

g (h )≥ 0 (F.18)

Mas como g é diferenciável, então em h = 0 os limites laterais devem ser iguais entre si e

ao limite; pelas inequações F.17 e F.18, só existe a possibilidade

lim
h→0+

g (h ) = lim
h→0−

g (h ) = lim
h→0

g (h ) = 0⇔ lim
h→0

f (h + c )− f (c )
h

= 0 (F.19)

Que é a precisa definição de f ′(c ) = 0. Agora, suponha c um mínimo de f em (a , b ),

sendo que a e b podem ser máximos. Novamente, defina g como em F.16. Então as inequações

de F.17 e F.18 se invertem; pelo mesmo argumento, conclui-se que f ′(c ) = 0.

Se, por outro lado, ambos a e b não são máximos e nem mínimos de f em [a , b ], então

existem pelo menos um máximo de derivada nula no intervalo (a , b ) e pelo menos um mínimo de

derivada nula no (a , b ).

Teorema 5 (Teorema do Valor Médio para funções de uma variável). Seja f (x ), f :Ω⊂R→R
contínua e diferenciável no Ω. Então
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∀ [a , b ]⊂Ω, ∃ c ∈ [a , b ] | f ′(c ) =
f (b )− f (a )

b −a
(F.20)

—

Prova: seja a equação da reta secante por (a , f (a )) e (b , f (b )):

y (x ) =
�

f (b )− f (a )
b −a

�

(x −a ) + f (a ) (F.21)

Agora defina r (x ) = f (x )− y (x ); então r (a ) = r (b ) = 0. Também r é diferenciável, uma

vez que ambas f e y o são. Assim, aplica-se o Teorema de Rolle para concluir que existe um

c ∈ [a , b ] tal que r ′(c ) = 0. Mas

r ′(x ) = f ′(x )− y ′(x ) = f ′(x )−
f (b )− f (a )

b −a
(F.22)

∴ r ′(c ) = 0⇔ f ′(c ) =
f (b )− f (a )

b −a
(F.23)

Lema 4 (Teorema do Valor Médio para funções multivariáveis). Seja uma função f :Ω⊂Rn →R
diferenciável, Ω um aberto no Rn . Sejam dois pontos x , y ∈Ω tais que 0< ‖x − y ‖< δ, com δ

arbitrariamente pequeno. Então existe um m > 0 tal que ‖ f (x )− f (y )‖ ≤m‖x − y ‖. —

Prova: tome uma função g (t ) = f
�

(1− t ) x + t y
�

. Então g é a parametrização de uma

linha contínua entre x e y se t ∈
�

0, 1
�

; sendo f e (1− t ) x+t y diferenciáveis, então a composição

g também o é (pela Regra da Cadeia). Pelo Teorema do Valor Médio para funções de uma variável,

então existe c ∈
�

0, 1
�

tal que

g (1)− g (0) = g ′(c ) (F.24)

Computando g ′(c ) explicitamente, e notando que g (0) = f (x ), g (1) = f (y ), então

f (x )− f (y ) =∇ f
�

(1− c ) x + c y
�

· (x − y ) (F.25)

O ponto (·) nesta equação representa o produto interno. Pela Desigualdade de Cauchy-

Schwartz,

‖ f (x )− f (y )‖ ≤
�

�

�∇ f
�

(1− c ) x + c y
�

�

�

�‖x − y ‖ (F.26)
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O Teorema ainda não está provado, porque o fato de f ser diferenciável não significa que

∇ f seja limitada. Supondo que isto é verdade,

∃m > 0
�

�

� m >
�

�∇ f (x )
�

� ∀x ∈Ω⇔‖ f (x )− f (y )‖ ≤m‖x − y ‖ �. (F.27)

Em particular, se f é de classe C 1, i.e., ∇ f é contínua no Ω, então pelo Teorema de

Weierstrass ∇ f é limitada no Ω e esta última passagem é válida.

F.6

Majorando a norma de matrizes exponenciais

Lema 5 (Limitação do produto de um polinômio com exponencial decrescente). Seja f = e −αx P (x ),

f :R→R, com α> 0 e P (x ) um polinômio de qualquer ordem. Então f é limitada em qualquer

semirreta direita e, além disso, f (x ) tende a zero quando x →∞. —

Prova para x≥ 0: suponha inicialmente x ∈ ( 0 ,+∞). Se P (x ) for um polinômio cons-

tante, então ambas as propriedades são imediatas. Suponha-se então deg
�

P (x )
�

≥ 1. Fazendo a

expansão de Taylor de e αx em x = 0:

e αx = 1+
∞
∑

k=1

(αx )k

k !
>
∞
∑

k=n

(αx )k

k !
∀ x > 0 (F.28)

A desigualdade se verifica porque todas as parcelas do somatório são positivas se x > 0.

Supondo x 6= 0 e dividindo os dois lados por x n ,

1

x n
e αx >

αn

n !
+αn

∞
∑

k=n+1

(αx )(k−n )

k !
=
αn

n !
+αn

∞
∑

m=1

(αx )m

(m +n )!
(F.29)

Perceba-se que o somatório define um polinômio de grau infinito, sem termo independente,

e cujos todos os coeficientes são positivos. Invertendo a desigualdade,

x n e −αx <
1

αn

1

1

n !
+
∞
∑

m=1

(αx )m

(m +n )!

(F.30)

Nota-se que muito embora a expressão fora deduzida supondo x 6= 0, ela ainda vale para

x nulo, daonde pode-se incluir o zero no intervalor de x : x ∈ [ 0 ,+∞). Agora, podem-se provar

facilmente tanto a limitação da função quanto o limite. Atine-se para o fato que x n e −αx é sempre

positivo para x > 0. Atente-se também para o fato que como o polinômio do denominador tem
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coeficientes positivos, o denominador é crescente para x > 0 e, logo, tende para o infinito quando x

tende para infinito, de forma que o termo da direita na desigualdade tenda para zero. Pelo Teorema

do Confronto,

0< x n e −αx <
1

αn

1

1

n !
+
∞
∑

m=1

(αx )m

(m +n )!

⇔ lim
x→∞

x n e −αx = 0 (F.31)

Além disso,

x n e −αx <
1

αn

1

1

n !
+
∞
∑

m=1

(αx )m

(m +n )!

<
1

αn

1
1

n !
+0
=

n !

αn
(F.32)

Basta agora utilizar que a função f (x ), para a qual se quer provar o lema, consiste de

combinações lineares de funções do tipo x n e −αx ; suponha que o polinômio P (x ) tem coeficientes

pi , ou seja: P (x ) = p0+
n
∑

k=1
pk x k . Assim,

f (x ) = e −αx P (x ) = p0e −αx +
n
∑

k=1

pk e −αx x k (F.33)

Daonde, para x > 0, utilizando a desigualdade triangular e (F.32),

| f (x )|=

�

�

�

�

�

p0e −αx +
n
∑

k=1

pk e −αx x k

�

�

�

�

�

≤
�

�p0e −αx
�

�+
n
∑

k=1

�

�pk

�

�

�

�e −αx x k
�

�<

<
�

�p0

�

�+
n
∑

k=1

�

�pk

�

�

k !

αn
(F.34)

Ainda utilizando (F.33), e aplicando o limite dos dois lados,

lim
x→∞

f (x ) = e −αx P (x ) = p0 lim
x→∞

e −αx +
n
∑

k=1

pk lim
x→∞

e −αx x k (F.35)

Por (F.31), todos os limites são nulos, o que sucede

lim
x→∞

f (x ) = 0 (F.36)
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Prova para x numa semirreta direita fechada qualquer: agora, considera-se que x pode

pertencer a qualquer semirreta direita fechada, digamos, [ x0 ,+∞) com x0 ∈R. Sejam y e g (y )

definidos como

y = x − x0 (F.37)

g (y ) = e −αy Q (y ) (F.38)

Onde α é exatamente o mesmo argumento da parcela exponencial de f (x ), e Q (x ) é

um polinômio qualquer. Notadamente, y pertence à semirreta positiva fechada; assim, a g (y )

aplicam-se os resultados anteriores (isto é, é limitada e tem limite nulo no infinito). Sabe-se também

que se Q (x − x0) é um polinômio de mesmo grau de Q (x ) e logo pode-se escolhê-lo tal que

P (x )≡Q (x − x0). Além disso, pelo resultado anterior, g (y ) é limitada na semirreta positiva e seu

limite no infinito é zero.

g (y ) = e −α(x−x0)Q (x − x0) =

f (x )
︷ ︸︸ ︷

e −αx P (x )e αx0 ⇔ f (x ) = g (y )e αx0 (F.39)

Sendo g (y ) limitada, então f (x ) consiste daquela função multiplicada por um escalar, e

logo também é limitada. Pelo mesmo raciocínio,

lim
x→∞

f (x ) = e αx0 lim
y→∞

g (y ) = 0 � (F.40)

Corolário: seja a função s (x ) = e −αx P (|x |), P definido como no lema anterior. Então s

também é limitada e tende para zero no infinito.

Prova: se x ≥ 0, então |x |= x ⇔ P (|x |)≡ P (x )⇔ s (x )≡ f (x ) e o corolário é imediato.

Suponha portanto x < 0. Neste caso, P (x ) e P (|x |) são iguais a menos dos termos de potência

ímpar. Para facilitar a notação, designar-se-á P (|x |) por Q (x ):

P (x ) =
n
∑

k=0

pk x k ⇔Q (x ) =
n
∑

k=0

(−1)k pk x k ∵ |x |=−x (F.41)

Assim, Q (x ) é um polinômio de coeficientes qi = (−1)i pi , ou seja, qi =−pi se i for ímpar

e qi = pi se par. Logo, a função s (x ) obedece às hipóteses do lema e portanto também é uma

função limitada e de limite nulo no infinito.
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Lema 6 (Limites superiores para a norma de matrizes exponenciais). Seja uma matriz A valorada

complexa, cujos todos os autovalores têm parte real negativa. Então existem k ,α> 0 tais que

�

�e At
�

�≤ k e −αt (F.42)

Para t numa semirreta direita qualquer.

—

Prova para t≥ 0: seja J a forma canônica de Jordan de A e Ji , i = 1, 2, ..., k o i-ésimo bloco

de Jordan correspondente ao i-ésimo autovalor λi . Cada Ji pode ser escrito como Ji =λi I +Bi ,

onde Bi é uma matriz nilpotente de diagonal nula correspondente a cada bloco. Dessa forma,

e Ji t = e

�

Iλi+Bi

�

t
= e λt e Bi t = e λt

n−1
∑

m=0

t m

m !
B m

i (F.43)

Seja um εi positivo arbitrário. Multiplicando e dividindo a parte direita da equação por e εi t

e Ji t = e (λi+εi )t
n−1
∑

m=0

t m

m !
B m

i e −εi t ⇒

⇒
�

�e Ji t
�

�≤
�

�e (λi+εi )t
�

�

�

�

�

�

�

n−1
∑

m=0

t m

m !
B m

i e εi t

�

�

�

�

�

≤
�

�e (λi+εi )t
�

�

n−1
∑

m=0

t m

m !
e −εi t

�

�B m
i

�

� (F.44)

Pelo lema 5, a função t m

m ! e −εi t




B m
i





 é limitada no intervalo t ≥ 0. Sucede que para cada

termo do somatório existe um βi positivo tal que

t m

m !
e −εi t

�

�B m
i

�

�<βi ⇔

⇔
�

�e Ji t
�

�≤
�

�e (λi+εi )t
�

�

n−1
∑

m=0

βi =

�

�

�

�

�

e

�

Re(λi )+εi

�

t

�

�

�

�

�

�

�e j Im(λi )t
�

�

n−1
∑

m=0

βi =

�

�

�

�

�

e

�

Re(λi )+εi

�

t

�

�

�

�

�

n−1
∑

m=0

βi (F.45)

Esta última equação prova o lema para um bloco Ji : se Re (λi )< 0 então pode-se escolher

εi tal que εi +Re (λi ) = αi < 0, de onde
�

�e Ji t
�

� tende a zero no infinito porque é majorada por

uma função que tende a zero no infinito. Basta doravante provar que dado este resultado pode-se

prová-lo similarmente para A.

Dado que J é a forma canônica de Jordan de A, então existe alguma matriz P invertível

tal que A = P J P −1. Sejam Vi matrizes consistindo de J com todos os blocos de Jordan zerados

exceto o i-ésimo. Então J =
∑k

i=1 Vi e
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e At = P e J t P −1 = P



e

�

k
∑

i=1
Vi

�

t



P −1 = P

�

k
∏

i=1

e Vi t

�

P −1 (F.46)

De acordo com o resultado anterior, existem ki > 0,αi ∈R tais que

�

�e Vi t
�

�≤ ki e αi t (F.47)

Daonde

�

�e At
�

�≤ |P |

�

k
∏

i=1

�

�

�

�

�

e

�

Vi

�

t

�

�

�

�

�

�

�

�P −1
�

�≤ |P |















�

k
∏

i=1

ki

�

e

��

k
∑

i=1

αi

�

t

�














�

�P −1
�

�

∴
�

�e At
�

�≤ |P |

�

k
∏

i=1

ki

�

�

�P −1
�

�e

��

k
∑

i=1

αi

�

t

�

= k e αt (F.48)

Assim, se todos os autovalores de A têm parte real negativa, ist est, Re (λi ) < 0, i =

1, 2, ..., k , então para todos eles pode-se escolher εi tal que εi +Re (λi ) =αi < 0. Se todos os αi

são negativos, sua soma é garantidamente negativa.

Prova para t numa semirreta direita qualquer: suponha t ≥ t0, t0 ∈ R e u = t − t0.

Então

�

�e At
�

�=
�

�e A(u+t0)
�

� (F.49)

Como para duas matrizes M e N complexas quaisquer |M N | ≤ |M ||N |,

�

�e At
�

�≤
�

�e Au
�

�

�

�e At0
�

� (F.50)

O resultado é imediato porque, como u pertence à semirreta positiva, então o resultado

anterior se aplica e existem k ,α> 0 tais que
�

�e Au
�

�< k e −αt ; conseguintemente,

�

�e At
�

�≤
��

�e At0
�

�k
�

e −αt (F.51)
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�

Corolário: se A ∈Cn×n tem todos os autovalores no semiplano esquerdo, então
�

�e At
�

� é

limitada em qualquer semirreta direita e

lim
t→∞

�

�e At
�

�= 0 (F.52)

Prova: pelo Lema 6, existem k ,α> 0 tais que

�

�e At
�

�≤ k e −αt (F.53)

O corolário é imediato pelo Teorema do Confronto.

Lema 7 (Versão matricial do lema 5 ). Seja f (x ) = e Ax P (x ), f :R→Cn×n , com A ∈Cn×n cujos

autovalores todos têm parte real negativa, e P (x ) um polinômio de qualquer ordem de coeficientes

complexos. Então
�

� f (x )
�

� é limitada numa semirreta direita qualquer e, além disso,
�

� f (x )
�

� tende a

zero quando x →∞. —

Prova: pelo lema 6, existem k ,α> 0 tais que
�

�e At
�

�< k e −αt . Assim,

�

� f (x )
�

�=
�

�e Ax P (x )
�

�≤ k e −αt |P (x )| (F.54)

Se P (x ) for o polinômio constante, este lema é imediato por esta última equação. Logo,

supõe-se que P (x ) tem grau deg(P (x )) = k ≥ 1 e coeficientes pi , ou seja, P (x ) =
k
∑

i=0
pi x i . Então,

pela Desigualdade Triangular,

�

� f (x )
�

�≤ k e −αx
k
∑

i=0

�

�pi

�

� |x |i = k
k
∑

i=0

�

�pi

�

� |x |i e −αx (F.55)

Pelo lema 5 e seu corolário, as parcelas do somatório são limitadas, i.e., para todos os

índices i existe um βi > tal que |x |i e −αx ≤βi , de onde

�

� f (x )
�

�≤ k
k
∑

i=0

�

�pi

�

�βi (F.56)

Prova-se assim que
�

� f (x )
�

� é limitada para x ≥ 0. Agora, ainda por F.55,
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0<
�

� f (x )
�

�≤ e −αx
k
∑

i=0

�

�pi

�

� |x |i (F.57)

Ora, sendo a função da direita um polinômio multiplicado por uma exponencial decrescente,

então também pelo lema 5 seu limite no infinito é nulo; logo, pelo Teorema do Confronto,

lim
x→∞

�

� f (x )
�

�= 0 � (F.58)

F.7

Estabilidade de sistemas

Teorema 6 (Estabilidade de sistemas lineares). Seja um sistema linear do tipo ẏ = Ay +h (t ), A ∈
Rn×n com equilíbrio y ∗ num tempo t0 (isto é, Ay ∗+h (t0) = 0) e h (t ) tal que e −At h (t ) é limitada

para t ≥ t0. Então y ∗ é um equilíbrio assintoticamente estável do sistema e ‖y (t )− y ∗‖ é limitada

para t ≥ t0. —

Prova: seja a mudança de variável x (t ) = y (t )− y ∗. O sistema é reescrito por

ẋ = Ax +h (t ) +Ay ∗ = Ax + g (t ) (F.59)

Que, por sua vez, tem equilíbrio na origem. Note-se que como e −At h (t ) é limitada para

t ≥ t0, então também o é g (t ) porque existe um positivo γ tal que




e −At h (t )




≤ γ:

e −At g (t ) = e At
�

e −At h (t )
�

+Ay ∗⇔




g (t )




≤
�

�e At
�

�

≤γ
︷ ︸︸ ︷





e −At h (t )




+




Ay ∗




⇔ (F.60)

⇔




g (t )




≤
�

�e At
�

�γ+




Ay ∗




 (F.61)

Pelo lema 7 , a primeira parcela do lado direito é limitada, que implica g (t ) ser limitada.

Pela Fórmula da Variação das Constantes (lema 3),

x (t ) = e A(t−t0)x0+

t
∫

t0

e A(t−τ)g (τ)dτ (F.62)
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Onde x (t0) = x0 é a condição inicial da qual o sistema é solto. Majorando esta equação e

utilizando a Desigualdade Triangular,

‖x (t )‖ ≤
�

�e A(t−t0)
�

�‖x0‖+

t
∫

t0

�

�e A(t−τ)g (τ)
�

�dτ (F.63)

Por hipótese, o integrando é limitado; logo, existe α> 0 tal que

‖x (t )‖ ≤
�

�e A(t−t0)
�

�‖x0‖+
�

�e At
�

�

t
∫

t0

αdτ=

Lema 6
︷ ︸︸ ︷

�

�e A(t−t0)
�

�‖x0‖+

Lema 7
︷ ︸︸ ︷

�

�e At
�

�α (t − t0) (F.64)

Pelo Corolário F.52 do Lema 6, o primeiro termo é limitado e tende a zero para t tendendo

a infinito. O segundo termo comunga destas mesmas propriedades pelo Lema 7. Assim, ‖x (t )‖=




y (t )− y ∗




 é limitada e, pelo Teorema do Confronto,

lim
t→∞

‖x (t )‖= 0⇔ lim
t→∞





y (t )− y ∗




= 0 (F.65)

E logo y ∗ é um equilíbrio assintoticamente estável do sistema linear ẏ = Ay +h (t ). �

Teorema 7 (Estabilidade de sistemas não-lineares em equilíbrios hiperbólicos tipo zero). Seja o sis-

tema dinâmico não-linear ẋ = f (x , t ), com f :Ω×Ψ→Ω de classe C 1, Ω⊆Rn e [t0,∞)⊆Ψ ⊆R,

com x ∗ um equilíbrio hiperbólico tipo zero (isto é, todos os autovalores da matriz jacobiana de f no

ponto x ∗ têm parte real negativa). Então existe uma vizinhança U
�

y ∗
�

=
�

y0 ∈Ω
�

� ‖y0− y ∗‖ ≤ ε
	

do equilíbrio y ∗ na qual ‖y (t )− y ∗‖ é sempre limitada para qualquer condição inicial nesta vizi-

nhança e, além disso, y ∗ é um equilíbrio assintótico estável do sistema não-linear para qualquer

condição inicial y0 ∈U
�

y ∗
�

. —

Prova: primeiramente, suponha que x ∗ = 0. Seja A a matriz jacobiana de f calculada

em x = 0. Então existe g (x , t ) tal que f (x , t )≡ Ax + g (x , t ); reescreve-se o sistema dinâmico

não-linear como

ẋ = Ax + g (x , t ). (F.66)

Atente-se para o fato que, sendo f de classe C 1, então g também pertence à mesma

classe. Pela Fórmula da Variação das Constantes (Lema 3),
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x = e A(t−t0)x0+

t
∫

t0

e A(t−s )g (x (s ) , s )d s (F.67)

Onde x0 = x (t0) é o ponto inicial de onde o sistema é solto. Suponha 0< ‖x0‖<ε, com ε

arbitrariamente pequeno. A igualdade implica

‖x‖ ≤
�

�e A(t−t0)
�

�‖x0‖+

t
∫

t0

�

�e A(t−s )
�

�





g (x (s ) , s )




d s (F.68)

Como todos os autovalores de A têm parte real negativa, então pelo Lema 6 existem

constantes k ,α positivas tais que
�

�e At
�

�≤ k e −αt ∀ t ≥ 0. Além disso, pelo Teorema do Valor Médio

para funções multivariáveis (Lema 4), como g é C 1 então para qualquer m > 0 arbitrariamente

pequeno, existe δ > 0 tal que




g (x (t ) , t )




<m ‖x‖ se ‖x‖<δ. Assim F.68 implica

‖x‖ ≤ k e −αt ‖x0‖+

t
∫

t0

mk e −α(t−s ) ‖x (s )‖d s (F.69)

Multiplicando esta por e αt ,

e αt ‖x‖ ≤ k ‖x0‖+

t
∫

t0

e αs ‖x (s )‖d s (F.70)

Aplicando a Desigualde de Gromwell Generalizada (Lema 2) para

φ (t ) = e αt ‖x‖ (F.71)

α (t ) = k ‖x0‖ (F.72)

Resulta

‖x‖ ≤ k ‖x0‖e− (α−k m ) t (F.73)

Basta escolher m tal que α−k m < 0 porque então e− (α−k m ) t será uma exponencial

decrescente limitada:
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‖x‖ ≤ k ‖x0‖e− (α−k m ) t0 (F.74)

Logo ‖x‖=




y − y ∗




 é limitada. Aplicando o Teorema do Confronto em F.73,

lim
t→∞

‖x‖= 0 �. (F.75)

Frise-se que o número δ, que imprime sobre g (x , t ) a condição




g (x (t ) , t )




 <m ‖x‖,
deve ser maior que o fator ε, concernente à distância da condição inicial: ‖x0‖ ≤ ε. Assim

ε ≤ δ, quer dizer, o espaço inicial de estados está condicionado a uma distância máxima δ

do equilíbrio, atestando que os resultados só valem nesta vizinhança. Isto porque para um ‖x0‖
suficientemente grande não se pode garantir que haja m positivo que satisfaça ambas as equações




g (x0 (t ) , t )




≤m ‖x0‖ e α−k m < 0, então não se pode depreender a equação (F.69).

Ademais, perceba-se que para sistemas lineares esta restrição não existe, isto é, dado que

um sistema linear é estável (isto é, as condições de estabilidade são satisfeitas), então qualquer

condição inicial o leva ao equilíbrio com trajetória limitada.

F.8

O Teorema de Hartman-Grobman

Esta prova é baseada naquela apresentada em (PERKO, 2008), e contém as explicações

dos passos da prova.

Teorema 8 (Teorema de Hartman-Grobman). Seja o sistema dinâmico autônomo não-linear

ẋ = f (x ), com f : Ω×Ψ → Ω de classe C 1, Ω ⊆ Rn e [t0,∞) ⊆ Ψ ⊆ R, com x ∗ um equilíbrio

hiperbólico e fluxoφ (x0, t ). Seja também um sistema linear equivalente ẋ = Ax , com A o jacobiano

de f em x ∗. Então o fluxo do sistema não-linear é localmente homeomorfo ao fluxo do sistema

linear em x ∗; em outras palavras, existe um homeomorfismo h tal que

h
�

φ (x0, t )
�

= e At h (x0)

Para x0 numa vizinhança suficientemente pequena de x ∗, digamos, x0 ∈U (x ∗)⊂Ω. —

Prova: tomando a forma canônica de Jordan J de A, então existem duas matrizes P e Q

tais que

J =

 

P 0

0 Q

!

(F.76)
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E também tais que P contenha todos os autovalores de parte real negativa e Q os de parte

positiva. Em outras palavras, P é o grupo dos blocos de Jordan relativos aos autovalores de parte

real negativa, e Q é o grupo dos blocos referentes aos autovalores de parte real positiva.

Considere agora que A pode ser separada em dois subespaços invariantes: um V E estável

(referente aos autovalores de parte real negativa) e outro V I instável (refere-se aos autovalores de

parte real positiva). Outrossim,

V E = span
�

v1, . . . , vp

�

(F.77)

V I = span
�

vp+1, . . . , vn

�

(F.78)

Onde os vi , i = 1, . . . , p são os autovetores associados aos autovalores de parte real

negativa e vi , i = p +1, . . . , n são os autovetores associados aos autovalores de parte real positiva.

Então o fluxo φ (x0, t ) pode ser separado em duas partes, uma estável xe ∈ VE e outra instável

xi ∈VI :

φ (x0, t ) =

 

xe (x0, t )

xi (x0, t )

!

(F.79)

Naturalmente, os subespaços VE e VI podem ser expressos como parametrizações no

tempo:

( �

V E
�

: vE (xe 0, xi 0, t ) = xe (xe 0, xi 0, t )− e P t xe 0

�

V I
�

: vI (xe 0, xi 0, t ) = xi (xe 0, xi 0, t )− e Q t xi 0

(F.80)

Sejam agora ξ e κ elementos respectivos de
�

V E
�

e
�

V I
�

obtidos ao avaliar o sistema

(F.80) em t = 1:

(

ξ (xe 0, xi 0) = xe (xe 0, xi 0, 1)− e P xe 0

κ (xe 0, xi 0) = xi (xe 0, xi 0, 1)− e Q xi 0

(F.81)

Nota-se que como f é de classe C 1 em Ω, então também são ξ e κ. Decorre então pelo

Teorema de Weierstrass que existe uma vizinhança da origem |xe 0|2+ |xi 0|2 ≤δ2, δ > 0 na qual

ambos os jacobianos de ξ e κ são limitados:
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

















�

�

�

�

∂ ξ

∂ xe 0

�

�

�

�

≤α

�

�

�

�

∂ κ

∂ xi 0

�

�

�

�

≤β
(F.82)

Seja γ=max(α,β ). Defina duas funções F1 e F2 com derivadas contínuas tais que











F1 (xe 0, xi 0) = F2 (xe 0, xi 0) = 0 , se |xe 0|2+ |xi 0|2 ≥δ2 > 0

F1 (xe 0, xi 0) = ξ (xe 0, xi 0) e F2 (xe 0, xi 0) = κ (xe 0, xi 0) , se 0< |xe 0|2+ |xi 0|2 ≤λ2 <

�

δ

2

�2 (F.83)

Nota-se que como ξ e κ são C 1, as duas F1 e F2 também são. Além disso,

|xe 0|2+ |xi 0|2 ≤λ2⇔
r

|xe 0|2+ |xi 0|2 ≤λ<
δ

2
(F.84)

Pela Desigualdade das Médias,

|xe 0|+ |xi 0|
2

<
r

|xe 0|2+ |xi 0|2 ≤λ<
δ

2
∴ |xe 0|+ |xi 0| ≤ 2λ<δ (F.85)

Decorre da definição de γ e pelo Teorema do Valor Médio para funções multivariáveis:

|F1| , |F1| ≤ γ
r

|xe 0|2+ |xi 0|2 ≤ γ
�

|xe 0|+ |xi 0|
�

(F.86)

Dadas as características dos autovalores de P e Q , então




e P




 < 1 e




e −Q




 < 1, pelo

Corolário do Lema 6. Defina as transformações L, T e H:























































L =

 

e P xe (x0, t )

e Q xi (x0, t )

!

= e A x

T =

 

e P xe (x0, t )+ F1 (xe , xi )

e Q xi (x0, t )+ F2 (xe , xi )

!

H =

 

Θ (xe , xi )

Λ (xe , xi )

!

(F.87)
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Onde Θ e Λ são funções hipotéticas que se quer encontrar. O Teorema está provado se

H ◦T = L◦H e seΘ e Λ forem contínuas, porque então H será um homeomorfismo. Para encontrar

estas funções, será utilizado o método de aproximações sucessivas. Aplicando H ◦T = L ◦H às

definições em (F.87), garante-se que Θ e Λ serão homeomorfismos se existirem:

e PΘ =Θ
�

e P xe (x0, t )+ F1 (xe , xi ) , e Q xi (x0, t )+ F2 (xe , xi )
�

(F.88)

e QΛ=Λ
�

e P xe (x0, t )+ F1 (xe , xi ) , e Q xi (x0, t )+ F2 (xe , xi )
�

(F.89)

Assim, tomando as sequências recursivas Θk e Λk







Θ0 (xe , xi ) = xe

Θk+1 = e −PΘk

�

e P xe + F1 (xe , xi ) , e Q xi + F2 (xe , xi )
�

(F.90)







Λ0 (xe , xi ) = xi

Λk+1 = e −QΛk

�

e P xe + F1 (xe , xi ) , e Q xi + F2 (xe , xi )
�

(F.91)

Basta provar que estas sequências são sequências de Cauchy e que os elementos delas

são funções contínuas, porque então

Θ = lim
k→∞

Θk (F.92)

Λ= lim
k→∞

Λk (F.93)

Prova que as funções Λk e Θk são contínuas

A prova se dá por Princípio da Indução: por definição, Λ0 e Θ0 são C 1. Como e P e e Q são

constantes, F1 e F2 classe C 1 por construção, e xe e xi são C 2 por hipótese, então Λ1 é C 1 por

ser a composição de Θ0, de classe C 1, com funções contínuas.

Agora, suponha Λk e Θk C 1; logo, Λk+1 e Θk+1 também o serão porque são a composição

da iteração passada com xe , xi , F1 e F2. Assim, se Λk e Θk forem C 1, também serão Λk+1 e Θk+1;

dado que a iteração inicial é daquela classe, então também são todas as subsequentes.

Prova que Λk e Θk são sequências de Cauchy

Esta prova também será feita por Princípio da Indução. Primeiramente para Λ, quer-se

provar que a recorrência Λk é tal que existem constantes ε ∈ (0, 1), r ∈ (0, 1) e M > 0 tais que

|Λk (xe , xi )−Λk−1 (xe , xi )| ≤M r k
�

|xe |+ |xi |
�ε

(F.94)
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Porque, desta forma, a sequência será uma sequência de Cauchy, implicando que o limite

da sequência existe e é igual a um Λ, a função procurada: dado um µ suficientemente pequeno,

há sempre um n tal que |Λk (xe , xi )−Λk−1 (xe , xi )|<µ ∀ k > n ∈N, porque

M r k
�

|xe |+ |xi |
�ε
<µ⇔ k > logr





µ

M
�

|xe |+ |xi |
�ε





∴ n =









logr





µ

M
�

|xe |+ |xi |
�ε













(F.95)

Assumindo que a proposição (F.94) vale para um Λk , então

�

�

�Λk+1−Λk

�

�

�=
�

�

�e −QΛk

�

e P xe + F1 (xe , xi ) , e Q xi + F2 (xe , xi )
�

− e −QΛk−1

�

e P xe + F1 (xe , xi ) , e Q xi + F2 (xe , xi )
�

�

�

�

≤




e −Q




M r k
�
�

�e P xe + F1 (xe , xi )
�

�+
�

�e Q xi + F2 (xe , xi )
�

�

�ε

≤




e −Q




M r k
�




e P




 |xe |+ |F1 (xe , xi )|+




e Q




 |xi |+ |F2 (xe , xi )|
�ε

(F.86)
≤





e −Q




M r k
�




e P




 |xe |+




e Q




 |xi |+2γ
�

|xe |+ |xi |
��ε

(F.96)

Adotando ζ=max
�

2γ ,




e P




 ,




e Q






�

,

|Λk+1−Λk | ≤




e −Q




M r kζε
�

|xe |+ |xi |
�ε

(F.97)

Escolhendo r =




e −Q




ζε =




e −Q






�

max
�

2γ ,




e P




 ,




e Q






�

�ε
então

|Λk+1−Λk | ≤M r k+1
�

|xe |+ |xi |
�ε

(F.98)

Ou seja, se escolher r daquela forma, dado que a propriedade vale para um k então ela

valerá para k +1, o que prova a hipótese indutiva da prova por indução. Agora, para o caso inicial:

para k = 1,

|Λ1−Λ0|=
�

�

�e −QΛ0

�

e P xe + F1 (xe , xi ) , e Q xi + F2 (xe , xi )
�

− xi

�

�

�

=
�

�

�e −Q
�

e Q xi + F2 (xe , xi )
�

− xi

�

�

�=
�

�e −Q F2 (xe , xi )
�

�≤
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≤




e −Q




 |F2 (xe , xi )|
(F.86)
≤





e −Q




γ
�

|xe |+ |xi |
�

=




e −Q




γ
�

|xe |+ |xi |
�1−ε �

|xe |+ |xi |
�ε
≤

(F.85)
≤





e −Q




γ (2λ)1−ε
�

|xe |+ |xi |
�ε
=





e −Q




γ (2λ)1−ε

r
r
�

|xe |+ |xi |
�ε

(F.99)

Adotando M =





e −Q




γ (2λ)1−ε

r
,

|Λ1−Λ0| ≤M r
�

|xe |+ |xi |
�ε

(F.100)

Logo, ao escolher















r =




e −Q






�

max
�

2γ ,




e P




 ,




e Q






�

�ε

M =





e −Q




γ (2λ)1−ε

r

(F.101)

A propriedade (F.94) vale para qualquer k natural. Ainda assim, não se provou que aquela

equação necessariamente implica que Λk seja sequência de Cauchy porque r ainda não foi

escolhido menor que 1. Para tanto, basta escolher um ε para o qual r esteja naquele intervalo, isto

é:

r =




e −Q






�

max
�

2γ ,




e P




 ,




e Q






�

�ε
< 1 (F.102)

Como todos os fatores são positivos, aplica-se o logaritmo dos dois lados da inequação:

ln
�



e −Q






�

+ε ln
�

max
�

2γ ,




e P




 ,




e Q






�

�

< 0

∴ ε<
ln
�



e Q






�

ln
�

max
�

2γ , ‖e P ‖ , ‖e Q‖
�

� = logζ
�



e Q






�

(F.103)

Desta equação pode surgir um problema: existe a possibilidade ζ=




e Q




⇔ ε= 1. Para

evitar isto, basta corrigir a adoção de ζ para

ζ′ = 2 max
�

γ ,




e P




 ,




e Q






�

≥max
�

2γ ,




e P




 ,




e Q






�

(F.104)

Porque então r =




e −Q






�

2 max
�

γ ,




e P




 ,




e Q






�

�ε
e
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r < 1⇔ ε<
ln
�



e Q






�

ln
�

2 max
�

γ , ‖e P ‖ , ‖e Q‖
�

� ≤
ln
�



e Q






�

ln 2+ ln (‖e Q‖)
< 1 (F.105)

E a prova está completa para a sequência Λ. Para a sequência Θk , na iteração inicial

tem-se

|Θ1−Θ0|=
�

�

�e −PΘ0

�

e P xe + F1 (xe , xi ) , e Q xi + F2 (xe , xi )
�

− xe

�

�

�

=
�

�

�e −P
�

e P xe + F1 (xe , xi )
�

− xe

�

�

�=
�

�e −P F1 (xe , xi )
�

�≤

≤




e −P




 |F1 (xe , xi )|
(F.86)
≤





e −P




γ
�

|xe |+ |xi |
�

=




e −P




γ
�

|xe |+ |xi |
�1−ε �

|xe |+ |xi |
�ε
≤

(F.85)
≤





e −P




γ (2λ)1−ε
�

|xe |+ |xi |
�ε
=





e −P




γ (2λ)1−ε

r
︸ ︷︷ ︸

M

r
�

|xe |+ |xi |
�ε

(F.106)

Logo, basta adotar M =





e −P




γ (2λ)1−ε

r
. Já para a hipótese indutiva,

�

�

�Θk+1−Θk

�

�

�=
�

�

�e −PΘk

�

e P xe + F1 (xe , xi ) , e Q xi + F2 (xe , xi )
�

− e −PΘk−1

�

e P xe + F1 (xe , xi ) , e Q xi + F2 (xe , xi )
�

�

�

�

≤




e −P




M r k
�
�

�e P xe + F1 (xe , xi )
�

�+
�

�e Q xi + F2 (xe , xi )
�

�

�ε

≤




e −P




M r k
�




e P




 |xe |+ |F1 (xe , xi )|+




e Q




 |xi |+ |F2 (xe , xi )|
�ε

(F.86)
≤





e −P




M r k
�




e P




 |xe |+




e Q




 |xi |+2γ
�

|xe |+ |xi |
��ε

(F.107)

Adotando ζ exatamente como no caso para a sequência Λ,

�

�

�Θk+1−Θk

�

�

�≤




e −P




M r kζε
�

|xe |+ |xi |
�ε

(F.108)

Basta portanto tomar
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





































r =




e −P






�

2 max
�

γ ,




e P




 ,




e Q






�

�ε

M =





e −P




γ (2λ)1−ε

r

ε<
ln
�



e P






�

ln
�

2 max
�

γ , ‖e P ‖ , ‖e Q‖
�

� < 1

(F.109)

Desta forma, {Θk} e {Λk} são sequências de Cauchy e as funções

Θ = lim
k→∞

Θk (F.110)

Λ= lim
k→∞

Λk (F.111)

Existem, são contínuas e são homeomorfismos. �


