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“Uma operagdo de investimento é aquela
que, por meio da andlise, promete
Seguranga para o principal e um retorno
adequado. As operagdes que ndo vio ao
encontro destas exigéncias séo
especulativas.”

(Benjamin Graham)



RESUMO

Historicamente os agentes participantes do mercado financeiro global buscam pelo
aperfeicoamento continuo de modelos e metodologias para anilise e selegio de ativos
financeiros. Neste intuito, este trabalho apresenta de forma analitica a estrutura de dois
modelos que tratam deste tema: 0 modelo de Markowity que estabelece a base da
moderna “teoria de carteiras” [MARKOWITZ, 1952], e do modelo de Black-Litterman
[BLACK-LITTERMAN, 1992] que surge como alternativa ao tradicional método da
média-varidncia. Desta forma, os modelos foram aplicados em ativos negociados no
mercado financeiro nacional (BM&FBovespa), sendo duas carteiras de renda variavel
compostas separadamente de acées do setor de servigos financeiros e de cotas de
fundos de investimentos imobilidrios. Apds as aplicagBes, confrontou-se os resultados da
distribuicdo de pesos dos portfélios sugeridos pelos modelos e também se analisou a
performance destes portfélios utilizando o fndice de Sharpe e de retorno acumulado no
perfodo de testes. Como resultado final, percebe-se que o modelo de Black-Litterman
baseado nas opinides dos analistas e investidores do mercado financeiro obteve
desempenho superior, principalmente nos ativos referente ao setor de servigos

financeiras, em relacdo ao modelo de Markowitz,

Palavras-chave: Ativos Financeiros, Black-Litterman, Carteiras. Markowitz, Média-

Variédncia. Otimizagio. Portfélios.



ABSTRACT

Historically the participants of the global financial market participants seek the
continuous improvement of models and methodologies for the analysis and selection of
financial assets. This paper presents analytically the structure of two models that
address this issue: the Markowitz model laying the foundation of modern "portfolio
theory" [Markowitz, 1952], and the Black-Litterman model [BLACK-Litterman 1992]
which is an alternative to the traditional method of mean-variance. The models were
applied in assets traded in the domestic financial market (BM&FBovespa), two equity
portfolios composed separately from the financial services sector stocks and real estate
investment fund quotas. After the applications, confronted the results of the weight
distribution of portfolios suggested by models and also analyzed the performance of
these portfolios using the Sharpe ratio and cumulative return in the test period. As a
final result, we can see that the model of Black-Litterman based on the opinions of
analysts and investors in the financial markets achieved superior performance,

especially in assets related to the financial services industry, for the Markowitz model.

Keywords: Financial Assets. Black-Litterman., Portfolio. Markowitz. Mean-Variance.

Optimization.
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INTRODUGAO

A teoria moderna de analise e selecio de carteiras de investimentos financeiros
desenvolvida por Harry Markowitz [MARKOWITZ, 1952], convencicna os dois objetivos
fundamentais de qualquer tipo de investimento: a maximizagio do retorno esperado
para um dado nivel de risco ou a minimizag3o do risco para um dado nivel de retorno
esperado. Neste sentido, a criagio de uma carteira ou portfélio se dard através do
processo de otimizagdo dos ativos selecionados, formando a fronteira eficiente de
caracteristica hiperbélica, demonstrando as melhores combinagdes possiveis de
carteiras,

No entanto, estudos anteriores sugerem que o processo de otimizacdo gera um
problema em especial, pois, demonstra ser parcial em relagdo aos ativos que apresentam
covaridncias extremas. Ou seja, o otimizador tende a selecionar os ativos com
caracteristicas mais atraentes, por exemplo, alta rentabilidade e baixo risco, e vender a
descoberto ou desfavorecer aqueles com caracteristicas opostas. O fator determinante
para este tipo de problema esta na sensibilidade dos resultados aos erros de estimacio
dos inputs do modelo, que se trata, do pardmetro das covariancias e principalmente aos
valores dos retornos esperados dos ativos. Ainda que algumas premissas do modelo
possam ser questionadas, tais como a simetria de informag¢io entre investidores e a
constincia das correlacées ao longo do horizonte de investimentos, o erro de estimacdo
implicito € um tipo de problema que leva a frequente obtengio de solucdes de canto, isto
é, resultados que apresentam um baixo grau de diversifica¢do, contrariando justamente
0 conceito que o modelo ajudou a definir. Para tentar controlar a sensibilidade das
carteiras resultantes, os investidores ou gestores adicionam restricdes ao modelo com o
intuito de demonstrar portfélios coerentes com as suas visoes. Entretanto, a utilizacdo
em excesso de restri¢Ses artificiais levam as carteiras otimizadas a simplesmente refletir
as expectativas pré-determinadas, diluindo as vantagens do processo de otimizagio, que
em algumas vezes nio s3o economicamente intuitivas.

Dito isto, 0 modelo proposto por Black-Litterman [BLACK-LITTERMAN, 1992]
tem como objetivo sanar tais problemas, utilizando uma abordagem Bayesiana para
combinar fontes de informagio. Neste intuito, os retornos de equilibrio oriundos do

CAPM ou da Capitalizagdo de Mercado dos ativos, seri o centro de gravidade, e 0 modelo
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pressupde que existam duas fontes de informagio sobre os retornos futuros: as
expectativas ou opinides dos investidores, analistas ou gestores, e o equilibrio do
mercado. Desta maneira, o conhecimento do investidor é combinado com os dados
observados para fornecer a distribui¢io dos retornos esperados.

Nesta monografia, tem-se a intengdio de apresentar a metodologia do modelo de
Black-Litterman, demonstrando sua aplicabilidade com dados observados no mercado
de capitais brasileiro e no ensejo, contrapor os resultados de B-L com os resultados do
modelo de Markowitz.

No Capitulo 1, faremos uma revisdo bibliografica da moderna teoria de carteiras,
comegando pela alocagdo 6tima conforme a aproximacio base de Média-Varidncia,
modelo de Markowitz e precificacio do CAPM. O Capitulo 2 abordara os fundamentos
tedricos do modelo de Black-Litterman, bem como sua estrutura metodolégica. Nos
Capitulos 3 e 4 realizaremos as aplicacdes, dividindo basicamente em duas partes: a
primeira refere-se ao modelo de Markowitz e a segunda ao modelo de Black-Litterman;
em seguida compararemos os dois resultados demonstrando qual obteve melhor
desempenho, encerrando com as consideracdes acerca das ferramentas utilizadas, seus
pontos positivos e negativos. Por fim no Capitulo 5, efetuaremos a conclusio geral desta
monografia. No Apéndice, poderdo ser encontradas algumas demonstracbes mais
extensas com a finalidade de facilitar o entendimentoe do leitor com relagio aos cilculos

efetuados no desenvolvimento deste estudo.



14

1. Revisdo Bibliogrifica

1.1. Teoria da Média-Variincia

O binémio Risco-Retorno é, com certo grau de certeza, o tema que causa mais
debates entre os agentes econdmicos, sejam académicos ou profissionais, no mundo dos
investimentos. Desde a técnica de alocacfio de ativos, bem como a arte do valuation,
perguntas do tipo: Como o risco é medido? Como é recompensado (seu retorno)? E
quanto (nivel) de risco pode-se assumir? Sdo fundamentais em qualquer tipo de decisdo
econdmico-financeira. Para tornar estas importantes incégnitas mensuraveis, é
necessario de alguma forma quantificar o que seria risco e retorno de determinado
ativo. A abordagem mais comum, e que adotaremos nesta monografia, incide em duas

dimensdes:

(i) O retorno de um determinado ativo, que compreende a recompensa, é
considerado como uma variavel aleatéria;
(ii) Associar a medida de risco ao desvio-padrio dessa varidvel aleatéria, e a

rentabilidade ao seu valor esperado.

A partir destas consideragdes, apresentaremos a metodologia de calculo destas
variaveis baseado nos Capitulos 1, 2 e 3 do livro “Andlise de Risco e Retorno em
Investimentos Financeiros” [ASSUNCAO-COSTA, 2005], que se fazem necessarios na
moderna teoria por Média-Varidncia para a selegfio 6tima de ativos e composicdo de um

portfélio,

1.1.1. Risco e Retorno

Definimos que a taxa de retorno R;2 de um ativo i, que é uma variavel aleatéria, é

denotada por:

' E o termo em inglés para "Avaliacio de Empresas” ou "Valoragio de Empresas”. Esta 4rea de finangas
estuda o processo de se avaliar o valor de determinado ativo, seja financeiro ou real.

¢ Para valores pequenos de S$;(1) — S;(0), a taxa de retorno pode ser aproximadamente calculada como
R; = In[S;(1)/S;(0}].
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_ 5 =50
TS0
(L.1)

Em que, $;(0) e S;(1) é o valor de um ativo i no instante 0 e 1. O retorno esperado

de R; sera escrito por r;, sendo:

E[R;] = r;

(1.2)

E o risco do ativo R; sera representado pelo desvio-padrio o, ou seja:

0; = VE[(R; — 1)?]

(1.3)

A covariancia cov(R;, Rj), 1 # j entre os ativos R;e R; é denotada por:

COV(RI', R]) = E[(RL - T'i)(R}' - 7})]

(1.4)

Estimando as variaveis definidas nas equagoes (1.2), (1.3) e (1.4) com base em

alguma série histérica de valores dos ativos, por exemplo, R, e R,, tem se que:

T
1
ﬁ=?ZRi(t) ,Sendoi=1¢e2
t=1

(1.5)

T
1
&, = T——TZ(Ri(t) —7)? ,sendoi=1e?2
t=1

(1.6)
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T
1
V(R Ry) = 2= > [(Ry (D) —~ )Ry (8) — 7))
=1

(1.7)
1.1.2. O Modelo de Média-Variincia

Nesta secido definiremos as medidas de Risco-Retorno para n ativos financeiros,
sem restricGes as posicdes a descoberto, ou seja, admitiremos posices vendidas em que,
0 agente econdmico toma um ativo S;(0) emprestado no mercado e o vende
instantaneamente, transformando em recursos financeiros para investimento em outro
ativo financeiro qualquer.

No mercade ha n ativos com valores 5$1(0), ..., $,(0), ainda, suponha que o
investidor tenha um valor V(0) disponivel para investimento. Considere que Hy, .., H,
representam as quantidades de cada um dos ativos i que pode se ter no portfélio. Entio

podemos denotar por w; 0 peso ou proporgao total investido no ativo i.

n
H;S;(0)
w; = ‘1]('0) ,onde Zwi=1

(1.8)
Agora consideremos P como a taxa de retorno de um portfélio ao final de um
periodo, e R, como o retorno de um ativo i. A taxa de retorno deste portfélio ao final de

um perfodo pode ser escrita como:

G)1R1 + o4 (Uan = CU'R =P
(1.9)

Em que os vetores (nx 1):
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No ensejo, definimos o vetor (n x 1):

T E[R1]
o]
T E[Rn]

E também o vetor auxiliar (n x 1):

-

A matriz de Covariancia é dada por:

Z=cov(R)=E [(Ri —-m)(R; — 7}')’] E# ]

(1.10)
A média do retorno do portfélio P é dada por:
u=E[P] = E[w'R] = &'E[R] = w'r = w7y + -+ wyr;,
(1.11)
E a variancia de P, por:
0? = w'in
(1.12)
Em suma, temos que:
P=wR
U=w'r
6% = o0'tn

1=we
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A partir de (1.12), é possivel verificar que, quanto menor a correlagdo entre os
retornos dos ativos que compdem a carteira, menor ser4 o risco do investimento. Este
fendmeno é conhecido como processo de diversificagdo. No caso de um conjunto de n

ativos cujos retornos Rj, ..., R, sejam descorrelacionados, todos com valor esperador; e
A a . 1 - a1
variancia o3, ao se aplicar 0 mesmo montante de recursos (E) nos ativos considerados,

temos:

Desta forma, verifica-se que, 3 medida que n se eleva a varidncia diminui. Vale
lembrar que o risco de um portfélio de ativos tem dois componentes. O primeiro tem
origem sistémica, surgindo a partir de acontecimentos que impactam todos ativos do
mercado, por exemplo, eventos econémicos e politicos. O segundo estd associado a
caracteristicas intrinsecas aoc ativo referenciado, ou seja, n3o sistémico. Entdo, o
processo de diversificacio age na parte que se refere ao risco nio sistémico também
chamado de diversificavel, pois, estruturacdes de carteiras com baixo grau de correlaciio

reduzem este tipo de risco. A figura 1.1, demonstra este feito.
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Figura 1.1 - A redugdo do risco pela diversificagio de n ativos.

ARV SARTNRRAAS FRASRUS PN ERRIANEI AHELN ANy
F

I Risco Nio Sistematico —

APAEM U annEn ey L L T

Risco Total

Risco Sistematico

¥

Fonte: SHARPE (1995).

1.1.3. Combinagbes de Carteiras

Ao se ampliar as possiveis combinagdes dos pesos de dois ativos em uma carteira,
podem ser obtidos os resultados relativos a cada composigio, ou seja, o risco da carteira
em relacdo ao retorno da mesma. Nesta segio, definiremos as equacdes para medir esta
relacdo, tanto para carteiras construidas somente com ativos de risco quanto para

carteiras que contém ativos livre de risco.

1) 2 Ativos de Risco:

Suponha que no mercado existam dois ativos de risco R,e R,, com retornos
esperados ry e ry, varidncias 62 e o2 e coeficiente de correlagdo p;,. Seja montada uma

carteira com retorno P composta por tais ativos nas proporgdes (w,) e (1 — w,). Entdo:

P = (0 R) + (1 —w1)R,]
(1.13)

#= (wn) + (1 — w)r]
(1.14)
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gl = [w, 1-—w] Gf plzalaz][ Y ]

P120102 o7 1-w
= wfof + 2w,(1 — 1)py,016, + (1 — w;) %02
(1.15)

Desta forma, obtemos as seguintes situacées:

a) Correlagdo Positiva Perfeita (p;, = 1):

No caso dos retornos dos ativos R, e R, tenham comportamento idéntico, P12 SETa
igual a +1 e a formagdo desta carteira nio implicard em reducio do risco, ou seja, risco e
retorno serdo sempre linearmente proporcionais. Efetuando algumas manipulacfes
algébricas em (1.15) e (1.14), temos que:

02 = (w10, + (1~ w,)0y)’ > 0 = w10y + (1 = wy)0z] = oy + wy(0; — 53)]

Considerando ¢, # 0,, escrevemos:

g — 0'2
Cl)l =
01— 03
(1.16)
n—-n a1 — a1
i= (o) + (=)
Ul — Oy g — CTZ
(1.17)

b) Correlacdo Negativa Perfeita (p,, = —1):

Por outro lado, se os retornos dos ativos possuirem comportamento
perfeitamente oposto, p,, serd igual a -1. Neste caso, ha uma diminui¢io do risco com a
montagem desta carteira, existindo uma combinagio entre os ativos que leva a um risco

da carteira igual a zero.
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Tomando (1.15) novamente, temos:

o= (w107 — (1 - w1)0'2)2 S0= |w101 -1~ W) = |—a; + w4 (o + 9]

Em que:

o
—0, + w0y +0;) sew, > ——
o= oy + ap
= o,
g, — (o7 + G sew, £ ——
2 1( 1 2) 1 oy + o,
(1.18)
O risco zero (nulo) é dado como:
Oz
Wy =
gy -+ (1p)
A partir de (1.14), existem 2 possibilidades:
H
feg 0y — O ™ —T g, + oy
w, < 2 =>w1=2 = =(2 1)J+(21 12)
0'1+sz 0'1+0'2 0'1+0'2 01 +0’2
(it}
G (e D) + o H—"r 0o + apTs
— Sw P =—— =( )a (———-—)
oy + 0'21 g+ gy g, + oy oy + oy
(1.19)

) Correlagdo (—1 < py, < +1) ou (Ipg,]| < 1):

As situagbes descritas até o momento baseiam-se em valores extremos para a
correlagdo, sendo bastante dificil verifica-los na realidade. A partir dos retornos dos
ativos considerados, e com a correlagdo deles variando entre -1 e +1, combinando-se

diferentes pesos na carteira, a relacio risco-retorno é representada por uma hipérbole.



22

Na figura 1.2 percebermos que 4 medida que py, tende a -1 observa-se a
diversificacio do risco, e considerando P12 =0, o ponto W da figura representa a
Carteira de Minima Variincia. Além disso, o segmento WB representa a Fronteira
Eficiente, ou seja, nesta curva estio representadas as carteiras com maior retorno

possivel entre todas as carteiras com um determinado nivel de risco especificado.

Figura 1.2 - Conjunto de combinagées de portfolios para p diferentes.

R

A

7]

F LY ——

Fonte: SHARPE (1995),

2) 1 Ativo de Risco e 1 Ativo livre de Risco

Avaliando agora uma carteira composta por 2 ativos, sendo 1 de risco e outro
livre de risco. Substituindo R; por re = risk free em (1.13), logo o, = 0, o retorno da

carteira e o retorno esperado sio dados como:

P= (wlrf) + [(1 = O)l)Rz]
(1.20)

U= (wﬂ’f) +{(1 - w)r,]
{1.21)
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A variincia desta nova carteira é:
02 = (1— w;)a?
(1.22)

Assim:

(1)1=1_—'

(1.23)

1.2. 0 Modelo de Markowitz

O classico artigo “Portfolio Selection’”, [MARKOWITZ, 1952] propés pela primeira
vez a abordagem classica de Média-Varidncia, posteriormente publicada em livros do
mesmo autor em 1959 e 1987. Esta técnica assume que investidores racionais escolhem
entre ativos de risco baseados genuinamente no valor esperado e na variancia das taxas
de retorno no espago de tempo considerado, sendo essas as duas \nicas varidveis de
decisdo para a selecio dos ativos.

0 modelo desenvolve-se como uma ferramenta quantitativa que permite ao
investidor alocar os seus recursos entre diferentes ativos financeiros, compondo sua
carteira de forma a obter uma solugio de compromisso otima entre retorno e risco.

Markowitz identificou a necessidade de se considerar as caracteristicas
individuais dos ativos no momento de construir um portfdlio. Ou seja, os investidores e
gestores devem levar em considera¢do os movimentos representados pela covariincia
dos ativos. Caso o considerem, o autor afirma que eles poderdo construir portfélios que
resultam em maior expectativa de retorno para um mesmo nivel de risco ou um menor
risco para um portfélio com o mesmo retorno esperado, em relacdo a portfélios que
ignoram a covariancia dos retornos dos ativos.

Tendo como base essas duas afirmacdes, Markowitz desenvolveu a que é hoje
conhecida como “Teoria Moderna de Carteiras”, estabelecendo, entre outros resultados,

a fronteira eficiente para as carteiras de investimento.
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Desta forma, este modelo é a base para diversos estudos sobre teorias de
portfélio. E é desta mesma base que o modelo de Black-Litterman foi desenvolvido e,

diante disso, é de suma importincia compreender a proposta de Markowitz.

1.2,1. Carteira com Ativos de Risco

De acordo com o modelo, 0s inputs necessarios para criar um portfélio étimo sio:
0 retorno esperado de cada ativo, a variincia de cada ativo e covariancias entre estes
ativos, Entéo, consideremos novamente a carteira com retorno P composta por n ativos,
agora somente de risco, com retornos Ry, ..., R,, retornos esperados ry, ..., I, € matriz de
covariancia Z. Investindo-se uma propor¢io wj ho ativo R; e usando novamente as

equacdes de (1.9) a (1.12), desejamos resolver o seguinte problema de otimizacio.

Para um dado valor de rentabilidade p:

min w'Zw
o
sujeito a
wr=p ; we=1 : weR"

(1.24)

Primeiramente definem-se as variaveis:

a=e¥rle Yy =7t 1r Y=gty 8 = ay —y?
(1.25) (1.26) (1.27) (1.28)

A solugio do problema de otimizacio é dada por:

w'=hu+g
(1.29)
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Sendo:
=E -1 __E -1 =Z -1 _f -1
h 62 r JE e g 62 e 62 T
(1.30) (1.31)

Em que " é um vetor (n x 1) e representa a proporgio 6tima de ativos inseridos

na carteira construida pelo modelo de Markowitz.

1.2,2, Carteira de Minima Variancia Global e Fronteira Eficiente

O ponto W destacado na figura 1.3, representa uma carteira de ativos que
proporciona o menor risco possivel, e é conhecida por Carteira de Minima Varidncia
Global. Quanto majs uma carteira se distancia deste ponto, maior é o risco e
consequentemente maior o retorno. Sendo que por envolver o risco minimo, é
preferencial a todas as demais carteiras que oferecem um retorno esperade menor. De
outra forma, diz-se que a carteira W domina todas as demais carteiras que se encontram

abaixo dela.

Figura 1.3 - Fronteira Eficiente e Carteira de Minima Variincia Global.

Fonte: MARKOWITZ (1952).

Considere que wg € a composicdo da Carteira de Minima Variancia Global, pg seu

retorno e 6 a sua varincia. Entio:
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1 -1
wg = EZ e

(1.32)

Y

Hy = E
(1.33)

1

J_gz = E
(1.34)

Vale observar que a andlise acima considera que todos os ativos da carteira

possuem risco.

1.2.3. Carteira com Ativos de Risco e 1 Ativo Livre de Risco

Anos depois do trabalho de Markowitz, Tobin [TOBIN, 1958 e 1965] estendeu a
teoria desenvolvida ao incluir a possibilidade de aplicacdo em um ativo livre de risco,
denotado por ry. Tal ativo, por defini¢do, tem um retorno esperado que serd sempre
igual ao retorno efetivo, ou seja, ndo ha variancia no retorno.

Neste momento, desejamos resolver o seguinte problema de otimizacéo:

min »'Ew
sujeito a
wr+(l-w'eyry=p
w € R"
(1.35)

A solugdo do problema é dada por:

_ (u— rf)
- 7€) L Y(r — 1re)

2_1(?" . Tf&)

(1.36)
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Em que ® em (1.35) representa a composicdo de ativos de risco, enquanto
(1~ w'e) representa a propor¢ido a ser investida no ativo livre de risco. Ao inserir o
ativo livre de risco ha carteira com ativos de risco, a fronteira eficiente, passa ser uma
reta, ao invés de uma hipérbole. Denotaremos por wy a composicio da carteira Tangente
que correspondem a uma posicio em 100% em ativos de risco, sendo Jt seu retorno e

o Seu nivel de risco.

wy = ! 27— e)=—1—-2"1(r—re)
T es-1r = 7€) f Y—ra !
(1.37)
r'E(r — ve) y-—rp

. Y —rra _gb—rfa:_er

(1.38)
r—1e)E Y (r —rre
a%:w%EwT=( re) (2 re)
(¥ - )

(1.39)

Na figura 1.4 é possivel representar através do ponto T, a composigido da carteira
que tangencia a fronteira composta com ativos de risco. Na mesma figura, a reta que

também tangencia a hipérbole, é dada pela equacdo a seguir:

(1 O') + o N g (
H o fi UT#T ¥ o Hy ~T7)

(1.40)
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Figura 1.4 - Fronteira Eficiente Geral.
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Fonte: COSTA (2005)

1.2.4. Problemas e desvantagens encontrados no modelo Markowitz

Embora o modelo de Markowitz possa ser muito empregado no ambiente
académico, ndo se pode dizer 0 mesmo quanto a sua implementagdo pratica ou
profissional. Esta afirmacio é justificada devido ao surgimento de alguns problemas e
desvantagens que ocorrem durante o processo de execu¢ao do modelo.

Michaud [MICHAUD, 1989] em seu artigo “ The Markowitz optimization Enigma:
Is ‘Optimized’ Optimal?, ponderou as desvantagens do modelo, e dentre estas,

destacam-se:

@) 0 modelo maximiza os erros de estimagio dos parimetros de entrada, ja
que as médias amostrais sdo obtidas a partir de dados histéricos e se substitui o valor
esperado pela média amostral. Michaud afirmou que este procedimento nio é
recomendavel e que contribui em grande parte para a maximizagao de erros;

(ii)  Outro ponto importante apontado por Michaud se refere 2 instabilidade do
modelo de M-V. Ou seja, pequenas alteracies nos dados de entrada podem alterar
substancialmente a composi¢io do portfélio étimo, como por exemplo, uma modificagio
no retorno esperado de um ativo pode gerar um portfélio totalmente diferente. E de
acordo com o autor, esta desvantagem pode estar relacionada com o caso de a matriz de

covariancia ser estimada erroneamente;
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(ii) O modelo ndo leva em conta a questdo da capitalizagio do mercado. Isto
significa que se os ativos com baixa capitalizagdo tém alto retorno esperado e esta
negativamente correlacionado com outros ativos da carteira, o modelo pode sugerir um
alte peso neles. Isto é normalmente um problema, especialmente quando inserimos uma
restrigdo as posi¢cdes vendidas. O modelo entdo costuma sugerir alta concentragio em
ativos com baixa capitalizacio;

(iv)  Por ultimo, o principal problema encontrado ao se utilizar a modelagem de
Markowitz, encontra-se no fato de que o otimizador quase sempre recomenda carteiras
com posi¢ées vendidas (com altos pesos), para o caso em que nio sio impostas
restrigdes deste tipo. E € justamente por este motivo que a restricdo de posigio vendida
é imposta ao modelo, porém, apés a otimizagiio o modelo gera solugdes com peso zero
em muitos ativos, concentrando grandes posi¢Ges em outros, contrariando precisamente

o objetivo principal da modelagem, que é a diversificaciio de ativos em uma carteira.

Em suma, Michaud alega que, muitas vezes o modelo leva a portfélios 4timos
irrelevantes e alguns estudos mostram que, mesmo utilizando-se pesos iguais nos ativos,

o resultado pode ser superior a otimizacio de portfélio de Markowitz.

1.3. Modelo de Precificagdo ~ Capital Asset Pricing Model (CAPM)

Um dos feitos mais relevantes do desenvolvimento recente da teoria moderna de
finangas e risco, é o conhecido modelo de precificacio de ativos, denominado por
“Capital Asset Pricing Model’ (CAPM)3. E um modelo derivado da teoria do portfélio e
busca, mais efetivamente, uma resposta de como devem ser relacionados e mensurados
0s componentes basicos da arte de avalia¢do de ativos, risco e retorno. Desta maneira, é
uma ferramenta essencial para o aprecamento de ativos pelo mercado em equilibrio e
dentro de um contexto de otimizagio por média-variincia.

Como todo modelo financeiro, sdo definidas algumas hipéteses para seu

desenvolvimento, dentre as mais importantes, temos que:

3 O desenvolvimento da teoria a ser exposta nesta se¢do é atribuido a diversos autores. No entanto, é
necessario citar os primeiros e relevantes trabalhos publicados por: SHARPE (1964); MARKOWITZ
(1959); LINTER (1965); e MOSSIN (1966).
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(i)  Assume-se grande eficiéncia informativa do mercado, atingindo
igualmente todos os investidores:

(i)  Osativos assumem o comportamento de uma distribui¢io normal;

(iif) Os investidores, de maneira geral, sdo avessos ao risco. As decisdes de
investimentos sdo tomadas com base na otimizacdo por média-variincia;

(iv)  Nao hé impostos, taxas ou qualquer outro tipo de custo de transacio; e

(v)  Existe uma taxa de juros de mercado definida como livre de risco.

No equilibrio, a carteira de mercado, aqui definido como wy, deverd coincidir
com a carteira tangente comum aos investidores que otimizam seus recursos por média-
variancia. Entdo, escrevemos as definigdes das equagdes (1.37), (1.38) e (1.39) como
Wy, KM € 6% respectivamente. Como se pressupbem que todos os investidores no
universo CAPM possuam as mesmas informagdes e detenham a mesma carteira, esta tem
que incluir todos os ativos negociados, proporcionalmente aos seus valores de mercado.

Utilizando a figura 1.5 como referéncia, percebe-se que todas as carteiras
otimizadas estdo em linha reta, que se origina do ativo livre de risco. Esta é a chamada
linha ou reta do mercado de capitais ~ CML “Capital Market Line’ e descreve a relagdo
entre risco e retorno para carteiras que contém somente o risco sistematico.

Observe que a medida que o risco aumenta a rentabilidade também aumenta de

forma linear tendo em vista que a equagio da reta é dada por:

(ttpr — 77) .

}'.l:T'f‘l“ Py

(1.41)

Onde a interseccéo da reta é a taxa livre de risco e sua inclinagdo por unidade de

Fl . =rf) . o A= . a~
risco, seu coeficiente angular b = (—“':—f) indica o prémio pelo risco de mercado. Entio a
M

taxa de retorno requerida de uma carteira é, portanto, igual a remuneracao sem risco,

mais um prémio de risco ponderado pelo desvio-padrio desta carteira.
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Figura 1.5 - Reta do Mercado de Capitais e prémio de risco.

v

Fonte: ASSAF (2012)

Em um mundo em que os investidores detdm apenas dois atives ~ uma
combinagéo de ativos livres de risco e a carteira de mercado - o risco de qualquer ativo
individual serd medido relativamente i carteira de mercado. O modelo CAPM exprime o

risco sistematico de um ativo pelo seu coeficiente Beta, denotado por B, conforme:

_ cov(Py, P)
= 0524

B

(1.42)

O Beta da carteira de mercado é igual a 1, e ativos que sdio mais arriscados que a
média terdo Betas maiores do que 1, e ativos mais seguros do que a média terio Betas
menores do que 1. Sendo que o ativo livre de risco tem um Beta igual a 0 (zero). Na
avaliacdo do risco de uma carteira, o Beta é entendido como a média ponderada de cada
ativo contido na carteira.

A relacdo entre Betas e retornos esperados é demonstrada na figura 1.6. Se o
CAPM for verdadeiro, todos os ativos devem se posicionar sobre a reta SML “Security
Market Line' ou Reta de Titulos do Mercado, que fornece o retorno esperado para

qualquer Beta dado.
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Figura 1.6 - Reta de Titulos do Mercado.
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Fonte: COSTA (2005)

Portanto os valores de f ao longo das carteiras eficientes sdo:

(1.43)

Em resumo, para qualquer carteira w com retorno P, retorno esperado U e

varidncia 6* tem-se que a equacio do CAPM é:

=1+ (Uy —17)p
(1.44)



33

2. 0 Modelo de Black-Litterman

2.1. 0 Modelo

O modelo original de Black-Litterman (B-L) foi publicado pela primeira vez por
Fischer Black e Robert Litterman em 1990 no artigo “Asset Allocation: Combining
Investor Views With Market Equilibrium” [BLACK-LITTERMAN, 1990] pelo
departamento de Pesquisas e Mercados de Renda Fixa do banco de investimento norte-
americano Goldman, Sachs & Company. Posteriormente, em outro artigo, denominado
“Global Portfolio Optimization” de 1992 [BLACK-LITTERMAN, 1992] os inventores
publicam um novo texto, descrevendo uma metodologia mais completa do modelo.
Durante estes 26 anos, desde a divulgacio dos trabalhos originais, muitos outros autores
tém publicado pesquisas com o objetivo de melhorar a técnica de alocacdo de ativos em
portfdlios e também solucionar os problemas encontrados na utilizagdo do modelo de
Markowitz, ou de Média-Variincia tradicional. Neste contexto, surge o modelo de B-L
como alternativa para sanar tais problemas.

Para este novo modelo, Fisher e Robert propuseram uma forma de estimar os
retornos esperados dos ativos para conseguir um portfélic mais bem comportado,
estabelecendo, no entanto, que a carteira de ativos se situasse na fronteira-eficiente. Se
esta condi¢fo nao fosse atendida, seria possivel obter um portfélio melhor através da
abordagem de média-variincia. Este novo enfoque de estimar os retornos esperados,
que realmente produz a diferenca entre os modelos de B-L, M-V e Markowitz, ou seja, o
primeiro parte de uma carteira de mercado em equilibrio de longo prazo* (CAPM ou
Capitalizagdo de Mercado), o segundo gera pesos em uma carteira a partir de um
processo de otimiza¢do, enquanto o terceiro, devido complexa relagio de retornos
esperados e pesos da carteira resultante, geram em grande parte das vezes, carteiras
cuja composigio nio parece fazer sentido.

0 modelo de B-L inicia-se de um ponto neutro e intuitivo, em que a carteira de
mercado em equilibrio pode ser representada pelo comportamento de um investidor

que retne o mercado com um todo. Desta forma, retornos neutros significam retornos

* Sobre o conceito de equilfbrio de longo prazo, ver: LITTERMAN, R. Modern Investment Management - A
Equilibrium Approach. John Wiley and Sons, Inc. 2003.
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esperados que levam a demanda de todos os titulos do mercado, no caso em que todos
os investidores apresentassem a mesma opinifio. Black e Litterman fazem a proposi¢do
de que, na auséncia de informagées adicionais, o portfélio de equilibrio ndo pode ser
superado, ou seja, mantenha-o na avaliacio. Porém, da mesma forma que se pode ter
acesso a um equilibrio de longo prazo, é apropriado que este equilibrio esteja sujeito a
se deteriorar a todo instante, no sentido das hipéteses de eficiéncia de mercado.

Caso os investidores e gestores concordem com todas as expectativas de retorno
dos ativos deste portfélio, ele j4 estara otimizado. No entanto, estes agentes podem ter
suas préprias visdes de curto prazo, portanto, podem desejar se afastar do equilibrio de
mercado. Esta é outra importante caracteristica que o modelo B-L agrega: fornece uma
maneira clara para que os investidores e gestores expressem suas visdes de curto prazo
e, mais importante, uma estrutura para combinar de forma consistente a informacio de
equilibrio de longo prazo a priori com a visio de curto prazo, gerando um conjunto de
retornos esperados a posteriori, a partir do qual os pesos dos ativos sdo fornecidos.
Ainda, os investidores poderio aplicar um nivel de confianga sobre suas visdes, que sera
ponderado pelos retornos esperados do portfélio de equilibrio.

De acordo com Lee [LEE, 2000], 0 modelo de Black-Litterman também atenua em
grande parte o problema de erro de estimativa na maximizacgdo, por espalhar os erros
em todo o vetor de retornos esperados.

Na tabela 2.1 a seguir, classificamos brevemente a respeito dos modelos
utilizados por diversos outros autores, resumindo os documentos mais importantes que
contribufram para a evolugio teérica e pratica da modelagem de B-L. A tabela esta
divida em 3 partes, sendo classificada pela tipologia de implementagio. Ou seja, o tipo
Candnico refere-se ao modelo original dos autores com a utilizacdo da teoria bayesiana e
do pardmetro 1. O tipo Hibrido trata-se de modelos desenvolvidos sem a abordagem
bayesiana, mas, com o emprego do parimetro t. E por Gltimo, o tipo Alternativo, que nio

leva em consideragio o pardmetro T ou abordagem bayesiana,
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Tabela 2.1 - Classificacio de modelos e autores.

Abordagem

Tipo de Modelo  Autores (Ano de Pubiicacio) L Parimetro T Observacio
Bayesiana
Candnico Black-Litterman (1991, 1992) Sim Sim Fornecem a de§cru;ao do modelo, mas ndo demonstram
todas as equacdes e férmulas,
Canénico  Bevan-Winkelmann (1998) Sim Sim
Candnico  He-Litterman (1999) Sim Sim Melhor contetido referencial da matemitica envolvida no
modelo,
Canénico  Drobetz (2001) Sim Sim Primeiro trabalho reproduzido na forma canénica do
maodelo.
Canbnico  Litterman (2003) Sim Sim
Canénice  Blamont-Firoozy (2003) Sim Sim Discutem a respeito do parimetro T.
Canbnico  Beach-Orlov (2006) Sim Sim Aplicagfo do modelo GARCH.
Candnico  Cheung (2009} Sim Sim Aplicagio do modelo de fatores.
Hibrido Satchell-Scowcroft (2000) Nio Sim Definem tigual a 1 (um).
Hibrido Qian-Gorman (2001) Nio Sim Adicionam a matriz de covaridncia de opinides/visées
sobre os retornos.
Hibrido Herold (2003) Niio Sim Aborda a gestio Ativa de um earteira no modelo de B-L,
contra um benckmark,
Hibrido Idzorek (2005) Nio Sim Nova denominagio para w
Hibrido Braga-Natale (2007) Nio Sim
Hibride Martellini-Ziemann (2007) Nio Sim Aplicagio das ferramentas de risco, VAR e CVAR.
Hibrido Bertsimas (2013) Nio Sim Replicagdo da otimizacio l-!‘etf'ErSE: e abordagem bayesiana
com outros modelos de otimiza¢éo
Hibrido Michaud (2013) Nio Sim Ignora mode!os. econométnc?s e abordagem bayesiana
no processo de implementagao
Alternativo  Fusai-Meucci {2003) Nio Néo
Alternativo  Meucci (2005) Nio Nio
Alternativo  Krishnan-Mains (2005) Nio Nio
Alternativo  Giacometti {2006) Nio Nzo Utiliza a distribuigio T-Student
Alternative  Giacometti (2007) Nio Nio Utiliza VAR e CVAR. E outros tipos de distribui¢ses

Fonte: WALTERS (2013). Disponivel em http://www.blacklitterman,org/methods.html
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2.2. Estrutura

0 modelo de B-L emprega duas principais fontes para prover os resultados

esperados:

(i) Refere-se aos retornos esperados oriundos do equilibrio de mercado, que
podem ser obtidos pelo método de otimizacio reversa, ou seja, diz respeito sobre o que
o mercado sugere a respeito dos excessos de retornos esperados;

(if)  Relacionada a visdo (opinido) que os investidores tém a respeito de um

conjunto de ativos.

Considerando a maximizagio da fun¢io de utilidade quadratica U descrita por
Idzorek [IDZOREK, 2000], temos:

I A
U=w'l szw

2.1

Sendo,

U: funcio de utilidade do investidor;

w: pesos da capitalizacido do mercado (nx 1);

II: excesso de retorno implicito do equilibrio de mercado (n x ;
A: coeficiente de aversio ao risco do mercado; e

L: matriz de covariancia dos retornos estimados (n x n).

A solugfo da maximizagéo de U pode ser demonstrada, tendo em vista, que se
trata de uma fungio céncava, ou seja, possui um maximo local tinico. Com a maximizacio

da fung¢do, sem a inserc¢io de restrigdes, é possivel encontrar a forma de solucgio fechada.

{ ] lw'Zm}
maxiw I —
w

(2.2)
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Desta maneira, tomando a primeira derivada de (2.1) em relagio ao vetor de

pesos (w) e igualando a zero, temos:

dU_
dw

II—AZw =0
(2.3)

Resolvendo para I, temos:

IM=A%w
(2.4)

Multiplicando ambos os lados pelo vetor o’ em (2.4), encontramos o coeficiente

de aversédo ao risco ().

(I = A{wNZw
_ (ohI
T (w)Iw

(2.5)

Ou, de outra maneira, o coeficiente de aversio ao risco de uma carteira pode ser

obtido conforme [GRINOLD-KAHN, 2000]:

_ E(T) —‘Tf

A 2

(2.6)

Em que,

E(r): retorno esperado do mercado (benchmark);

2

o“: variincia dos retornos do mercado (benchmark);

rg: taxa livre de risco.
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A partir de (2.4) é possivel obter o vetor de pesos 6timo w.

w = (%)~
(2.7)

O resultado de (2.4) é a solugdo fechada para o problema de otimizagdo reversa,
gerando retornos esperados implicitos no equilibrio de mercado, que servirdo de ponto
de partida neutro para agrupar as visdes do investidor a respeito dos retornos futuros.
Drobetz [DROBETZ, 2001] descreve:

Intuitivamente este procedimento estd proximamente ligado ae CAPM. Este
modelo prediz que pregos vio se ajustar até que, em equilibrio de mercado, os
retornos esperados serio tais que a demanda por estes ativos seja exatamente
a oferta disponivel.

De acordo com He e Litterman [HE-LITTERMAN, 1999], a modelagem pelo CAPM
originara os retornos da carteira de equilibrio. Desta forma, ostenta-se que os retornos
dos ativos sdo distribuidos segundo uma distribui¢do normal, com média p e varidncia

conhecida %, onde r é um vetor que representa o retorno dos ativos,

r~N(uX)
(2.8)

Porém, u também é uma variavel aleatéria, e, segundo a informagdo que temos a

priori, é centrada em I1.

u=1II+ e
(2.9)

De (2.9) temos que £® é um vetor de erro com distribuicdo normal de média 0

(zero) e variancia Zy. Ficando por hipétese:

£® ~ N(0,Z)
(2.10)
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Conforme observado por Walters [WALTERS, 2014], uma concepgio errdnea
comum ao modelo de B-L ¢ tomar (2.8) como modelo de referéncia, considerando que 1
ndo é aleatéria.

Para definir Xy, os autores assumem a hipétese simplificadora de que a estrutura
da matriz de covaridncia de p é proporcional i covariancia dos retornos X. Para tanto,
criaram um pariametro t, como constante de proporcionalidade, que significa a incerteza
na estimativa dos retornos esperados da carteira de equilibrio, ou seja, quanto maior for
o valor deste parAmetro, menor seri a confianca nas estimativas. Com esta hipétese,

tem-se que:

211 =1L
(2.11)

Portanto a distribuigdo de p é:

4~ N1, L)
(2.12)

Com isto, obtemos todos os pardmetros para estimar a média da distribuicio de

retornos, chamada no modelo em questio de distribuigio a priory.

2.3. O Pardmetro 1: A medida de incerteza das estimativas

Tau (1) é provavelmente o pardmetro que causa mais discussio entre os
pesquisadores que implementam a teoria do modelo de Black-Litterman. A maioria dos
autores, utilizam valores diferentes, e alguns deles, simplesmente o ignoram, como é o
caso de Fusai e Meucci [FUSAI-MEUCCI, 2003], Krishnan e Mains [KRISHNAN-MAINS,
2005] e Giacometti [GIACOMETT!, 2007].

Este parAmetro escalar pode ser interpretado como o grau de incerteza dos
investidores sobre a legitimidade do CAPM. Igualmente, pode ser visto como um
pardmetro que representa a incerteza sobre a precisdo com que se estima o vetor II.

Desta maneira, um pequeno valor de T corresponde a um elevado nivel de confianga nas
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estimativas de retornos da carteira de equilibrio devido ao redimensionamento para
baixo da matriz de covaridncia dos retornos histéricos.

Vemos em (2.12) que tX é a varidncia da média estimada, ou o erro padrio da
distribuicdo a priori. De um ponto de vista intuitivo, T é normalmente muito inferiora 1,
uma vez que reflete o fato de que a incerteza na média da distribui¢do é muito menor do
que a varidncia nos retornos. Isso indica que o gestor de portfélioc é razoavelmente
confiante nas estimativas do CAPM.

Como dito anteriormente, os autores divergem em relagdo ao valor do pardmetro
T. Por exemplo, Idzorek [IDZOREK, 2004] sugere algo entre 0,01 e 0,05, He e Litterman
[HE-LITTERMAN, 1999] utilizam um valor constante de 0,025, e outros sugerem usar
algum tipo de estimador baseado nas amostras que servem para a construgio da matriz

de covariancia, como por exemplo, o estimador de maxima verossimilhanga:

|~

(2.13)

Onde,

N: é o nimero de amostras.

Um ponto interessante sobre a selegio de T, é que, na auséncia de pontos de vista,
. . . ap x. 1 .
0 investidor somente investira a fragio To. Iha carteira de mercado e o restante de seus

recursos serdo investidos no ativo livre de risco, por causa da incerteza na sua

estimativa,
2.4. As matrizez P e Q: especificagbes das opinides (visbes de curto prazo)

A vantagem do modelo Black-Litterman é combinar diferentes fontes para
estimag¢do dos resultados esperados e com isso superar as limita¢ées do modelo de
otimizagdo tradicional da média-varidncia. Uma destas fontes refere-se is opinides
especificas dos investidores e gestores sobre os retornos do mercado, que podem

divergir dos retornos de equilibrio da carteira de longo prazo. Diante disto, o modelo
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admite que tais divergéncias sejam inseridas nas estimativas de modo que a combinagio
destas perspectivas seja definida como uma distribuicdo condicional.

Para estas opiniGes, aqui definidas como visdes de curto prazo, supde-se que a
matriz construida seja do tipo diagonal, isto é, 0 modelo impde uma restrigo, para que
cada opiniio nio esteja correlacionada com as outras opinides. Esta restrigio no
problema ajuda a methorar a estabilidade dos resultados e simplifica o problema.
Walters [WALTERS, 2009] diz que estimar as covariincias entre as opinifes seria ainda
mais complicado e sujeito a erros do que estimar apenas as varincias das opinides.
Outra caracteristica importante destas opinides refere-se ao modo de expressio, que
podem ser do tipo relativo {(comparaco entre ativos) ou absoluto (estimar um valor
fechado para um ativo qualquer), sendo que para opinides relativas a soma dos pesos
serd 0 (zero) e para opini6es absolutas a soma dos pesos serd 1 (um).

Seja k o niimero total de visGes sobre os n ativos, a representacgdo é demonstrada
da seguinte maneira: P, uma matriz (k x n) cujas colunas contém os pesos que montam
cada uma das visGes. Q um vetor de tamanho (k x 1) representando os retornos

esperados em cada visio.

Assim a visdo do investidor pode ser escrita, como:

Pu=Q+¢e®
(2.14)

Em que,
€®): é uma variavel aleatéria com distribuigdo normal com média zero e matriz de

covariancia das vises  (k x k).

Desta forma:

Pu~N(Q,Q)
(2.15)
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2.5. A matriz Q: covaridncia das opiniGes

Na literatura escassa a respeito do modelo de B-L, nao ha um método unico ou
universal para a determinagdo da matriz de covarincia das opinides, {. A variancia das
visGes est4 inversamente relacionada ao grau de confianga dos investidores nas k visges.
Caso o investidor determine baixo nivel de confianga em suas opinides, a composigéo de
ok da carteira final devera decair mais para o portfélio de equilibrio. Ao contrario, se o
investidor atribui alto grau de confian¢a nas mesmas opinides, a composi¢do da carteira
final se afastara mais da carteira de equilibrio do mercado. Entretanto, o modelo basico
de Black-Litterman nio fornece uma maneira intuitiva de quantificar essa relagdo,
cabendo ao investidor definir o método de calculo da matriz ) de opinides.

Alguns métodos ao longo destes anos foram propostos pelos autores, como:

(i) Proporcional & variancia da distribuigdo a prior,

(i)  Utilizando um intervalo de confianga;

(iii)  Utilizando a variancia dos residuos em um modelo de fator;

(iv)  Utilizando o método de Idzorek [IDZOREK, 2000] para especificar a

confianga ao longo da dimenséo dos pesos.

Para a presente monografia, vamos adotar o método em que a varidncia das
opinides seré proporcional 3 variancia dos retornos dos ativos, da mesma maneira como
ocorre para a da distribuigdo a priori. He e Litterman [HE-LITTERMAN, 1999] e Meucci
[MEUCCI, 2006] utilizam este método, embora, tenham utilizado de forma diferente,

definiram a variancia das opinides da seguinte maneira:
a)U = P(‘EE)P’ ,Vl —_—j

wij =0 ,Vl. #j
(2.16)

Ou,

Q = diag(P(1Z)P")
(217)
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Por este método, as varidncias das opinides, ou incertezas, sio essencialmente
iguais aos pesos das visdes dos investidores e dos pesos de equilibrio de mercado. Ao
incluir T na expressio, a estimativa 2 Posteriori dos retornos torna-se independente de

T.
2.6. Teoria Bayesiana aplicada ao modelo de Black-Litterman

Neste item apresentaremos alguns conceitos introdutérios de estatistica
bayesiana e demonstramos seu uso feito por Black e Litterman.

A estatistica bayesiana é uma abordagem natural para interpretar o modelo de B-
L, pois fornece uma teoria para combinar informacées de diferentes fontes e modelar a
Incerteza inerente a essa informacio. Esta abordagem combina informacio prévia com a
amostra de dados, que através do uso repetido do Teorema de Bayes, a informacio
prévia é atualizada, com o intuito de mesclar as informagées do mercado, com as
informagées do investidor.

Dentro deste enfoque, é necessério definir o que seri considerado informacio
prévia e o que seri considerado informacio amostral, Geralmente, as opinides dos
investidores sio empregadas como informacaes prévias e as informacées do mercado
(retorno de equilibrio) sdo utilizadas como informagdo amostral para atualizar a
informacao prévia gerando o retorno esperado 2 posteriori,

Sob a ética da teoria Bayesiana, o modelo é construido, a partir do Teorema de

Bayes:

P(B|A)P(4)

P(A|B) = P(B)

(2.18)

Sendo,
P(A): distribuigio a prior; que corresponde as hipéteses construfdas sobre a

distribui¢do da média de retornos. Portanto, tem-se que:

P(A) ~ N(I1, 7X)
(2.19)
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E,
P(B|A): a visdo do investidor, dada a informagio obtida no equilibrio de longo

prazo CAPM:

P(B|A)~N(Q,Q)
(2.20)

E,

P(B): é a distribui¢cdo marginal da visdo do investidor.

Assim, a fun¢do densidade de probabilidade do retorno esperado, dado o retorno
de equilibrio, P(A|B), é definida pelo produto da fun¢io condicional do retorno de
equilibrio, P(B[A), e do retorno esperado, P(A), que especifica a opinido subjetiva do
gestor/investidor, em unidades marginais de probabilidades, P(B), dos retornos de
equilibrio.

Portanto, a Teoria de Bayes prevé um mecanismo formal para especificar as
opinides subjetivas com os dados de mercado. Com novos dados incorporados, a
densidade posteriori é a distribuigdo mais consistente possivel com as duas fontes de
informacao.

Aplicando o Teorema de Bayes, chega-se a distribuicio posteriory:
P(A|B) ~ N{[(zZ)~' + P'Q7'P]7M[(zZ) ' + P'Q~*Q], [(zZ)~* + P'Q~1P]~1}
(2.21)
2.7. Equagio completa do modelo de Black-Litterman
Combinando o equilibrio de mercado com as opinides dos investidores de acordo
com a abordagem bayesiana, é possivel gerar a distribuicdo posteriori dos retornos

esperados, E[R] definida por média ji:

f=E[R] ={[(zZ)™* + PP [(zZ) ' + P'Q71Q]}
(2.22)
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E variancia posteriori ¢~

¢~ ={{zD)"* + PP}
(2.23)

Devido os retornos serem aleatérios e independentes no modelo, sua distribuigio
néo é mais simplesmente r ~ N(y, ). Combinando (2.19), (2.20) e (2.21), temos que a

nova distribuicdo do modelo é dada por:

E[R]~N(#£) comE=3%+ ¢?
(2.24)

Onde,

E[R]: € o vetor coluna (n x 1) da distribuicio posteriors:

T: € um valor escalar;

Z: é uma matriz (n x n) de covariincia dos excessos de retorno i

Q: € o vetor coluna (n x 1) das visdes sobre os excessos de retornos para alguns
ou todos os ativos;

P: é a matriz (k x n) de ligacio que representa quais os ativos em que o investidor
possul visdes;

{): é a matriz diagonal (n x n) da incerteza inerente a visdo do investidor; e

I1: € o vetor coluna (n x 1) dos excessos de retornos implicitos.

Com base em (2.22), é possivel perceber que a equacio de B-L refere-se a uma
média ponderada complexa do vetor de retorno implicito de mercado (IT) e do vetor de
opinides (Q), ou seja, as visdes de curto prazo, em que seus pesos relativos wp e wq sdo
fungdes do valor escalar (1) e das incertezas sobre as opinides ({1). Conforme

demonstrado em:

wg = [(ZE)7T + P tP] 1 (r2) !
(2.25)
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wq = [(rE)™ + P'Q1P]"1P'Q-1p
(2.26)

Podemos dizer que os pesos relativos sio determinados pelo grau de dispersio
percebido nos retornos esperados de equilibrio e na confianga das expectativas,
respectivamente,

Como os retornos dos ativos estdo correlacionados, opinides sobre alguns ativos
implicardo mudancas nos retornos esperados de todos os ativos. Na verdade, P’Q-1 &
uma matriz (n x k) que propaga as k opinides em n componentes, P’Q-1Q. Se esse ajuste
ndo for feito no vetor dos retornos esperados, as diferencas entre os retornos esperados
de equilibrio e as opinides do investidor poderiam ser interpretadas como
oportunidades de arbitragem pelo otimizador conduzindo a portfélios concentrados em
poucos ativos, ou seja, ocorreriam as “solucdes de canto”. Em termos intuitivos, Fabozzi
[FABOZZI, 2007] afirma que, qualquer erro de estimagio é dispersa entre todos os
ativos, fazendo o retorno de Black-Litterman menos sensivel a erros de opinides
individuais.

Os retornos esperados, E[R], nio devem ser tratados como projecdes ou
expectativas de curto prazo, mas como pontos de referéncia. As situa¢des em que as
expectativas estio em desacordo com estes prémios de risco sio consideradas
oportunidades de investimento, Também é importante notar que a aproximacio dos
retornos esperados de B-L nio depende diretamente dos retornos histéricos.

Com base na teoria financeira moderna, um investidor neutro em relacdo ao
mercado, ou seja, que nio tem expectativas diferentes do consenso de mercado, deve
manter a carteira de mercado. O modelo de B-L é coerente com esta proposigio, porque
quando o investidor ndo manifestar qualquer expectativa, ou a confianca nas opini6es é
zero (a matriz P é composta somente por zeros), 0s retornos esperados posteriori serio
E[R] = I1. Da mesma forma, quando a incerteza na expectativa é muito grande, E[R] é
dominado por II e no limite tende a este, em ambos os casos um investidor racional
acaba possuindo a carteira de mercado e o ativo livre de risco. Na auséncia de restri¢oes,
o Black-Litterman recomenda um desvio da ponderagio da capitalizacio de mercado de
um ativo somente se houver uma opinifo sobre ele.

Dito isto, a equagdo (2.22) também pode ser descrita da seguinte forma:
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i = E[R] = 1 + 1ZP'(Q + tPEP")-1(QPI)
(2.27)

Fica claro que o investidor se desvia do equilibrio com um vetor proporcional a
TZP'(Q + TPIP)"I(QPI). A partir desta definicdo, podemos observar que quando o
investidor estd 100% confiante em todas as k opinides (o que equivale a colocar todos

os elementos de £ iguais 4 zero), os retornos de Black-Litterman serdo iguais a:

fi = E[R] = 1 + £ZP’ (tPZP")~1(QPII)
(2.28)

Lee [LEE, 2000] assegura que, embora o Black-Litterman original pressupde que
o CAPM ¢ vélido ou que pode ser aplicado na pratica, esta hipétese ndo afeta os
conceitos e a derivagdo acima. Uma alternativa é substituir o vetor de retornos de
equilibrio do CAPM pelo vetor de retornos esperados que fazem o investidor neutro com
relagdo a qualquer aposta tatica ou de curto prazo. Cu seja, ao invés de assumir que o
retorno do CAPM se aplica, o investidor pode usar o vetor de retornos que o faria manter
a sua carteira de referéncia estratégica ou de longo prazo, como discutido acima.

Apés a defini¢io de todas as varidveis envolvidas no modelo, é possivel obter a
nova distribuicdo de retornos combinada (a posteriorl) através da implementagio da
equacdo de B-L. A figura 2.1 resume em forma de fluxograma, a metodologia do modelo
de Black-Litterman que foi exposta até o0 momento.

Para resolver o problema de otimizagio de média-varidncia é necessario
conhecer a média e covaridncia da distribuicio dos retornos esperados. A média da
distribuicdo dos retornos é igual & média posteriori dos retornos esperados, E[R],
enquanto que a covariancia da distribuigio preditiva inclui um termo que reflete o erro
de estimacio. A média e a covariincia sio, respectivamente, fef = % + ¢-1.

Desta forma, a solugdo para o problema de otimizacdo de uma carteira sem

restri¢bes é dado pelo vetor de pesos 6timos w*.

w' =) i
(2.29)
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Figura 2.1 - Fluxo da Modelagem de Black-Litterman.

s f‘s?:ff;mm Batriz de Covariincia P“;ﬁ:ﬂm Opntdes Mistes Confianga nas Visbes
== £33 ) [GH] ()
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Fonte: IDZOREK (2004). Elaborado pelo autor.

2.8, Vantagens do modelo de Black-Litterman.

Resumidamente, podemos descrever algumas vantagens do modelo de B-L.

() Flexibilidade. O modelo permite que sejam incluidas no portfélio
expectativas sobre o mercado e que se possa atualizi-las constantemente.
Diferentemente do modelo padrie de M-V, o modelo de B-L nio exige que os retornos
esperados de cada ativo sejam estimados. S6 é necessario que o investidor estime o
retorno esperado para os ativos sobre os quais ele tem uma opinido valiosa. Isto é mais
consistente com a pratica, pois é muito dificil para o administrador ter conhecimento
detalhado ou uma expectativa significativa de cada um dos ativos em carteira. Além
disso, existem muitos graus de liberdade na aplicagio do modelo, que geralmente sio
usados interativamente até que o investidor sinta que ele conseguiu obter o equilibrio
da carteira. Esta flexibilidade é que torna o modelo tio atraente para diferentes
investidores com diferentes situa¢ées [LEE, 2000];

(ii)  Ainda comentando em relagdo 3 flexibilidade, outra vantagem é que o
investidor pode tomar risco nos ativos que ele realmente tem uma opinido formada, com
maior magnitude e que tenha mais confianca [BEVAN-WINKELMANN, 1998]. Na
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verdade, o modelo permite aos investidores separar as projecdes (“para onde vai o
mercado?") do grau de crenca ou confianca nelas ("Como eu confio muito que a minha
projecdo esta correta?”) [SCHERER, 2007]. Em outras palavras, o modelo permite
diferenciar entre a "forca" de uma opiniso (a magnitude da opinido) e a "confianga” em
uma opinido (o grau de certeza com que é expressa);

(iif) A metodologia produz carteiras mais equilibradas e estiveis no tempo ao
utilizar os retornos de equilibrio como um centro de gravidade. A solugdo é "ancorada”
na reconhecida carteira de Capitalizagio de Mercado;

(iv) Mitiga o problema de maximizar os erros de estimacgdo espalhando os
erros ao longo do vetor de retornos esperados [IDZOREK, 2004). Esta abordagem
bayesiana para selecéio de carteiras leva em conta diretamente a incerteza na estimagio
[RACHEV, 2008];

(v)  Permite expressar opinies ou expectativas de mercado de forma relativa,

ou seja, classificar o desempenho esperado de um ativo em relacdo a outro.
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3. Aplicagtes dos Modelos

3.1. Informagdes preliminares e base de dados

Neste capitulo aplicaremos de forma empirica, a teoria desenvolvida na presente
monografia, e para isto, foram selecionados titulos de investimentos financeiros
disponiveis no mercado nacional, de maneira deliberada de acordo com a subjetividade
do autor.

Para representar o segmento de renda variavel, escolhemos ativos do mercado de
Agdes e também ativos do mercado de Fundos de Investimentos Imobilidrios, ambos
negociados e disponiveis para consulta na Bolsa de Valores brasileira (BM&FBovespaS)
ou vendors especializados em mercados financeiros.

Em modelagem financeira, é comum a utilizagdo de pardmetros basicos como:
taxa livre de risco e benchmarks do mercado. Desta maneira, a série histérica que
representara a taxa livre de risco sera o CDI — Certificado de Depdésito Interbancario,
que é a taxa pela qual os bancos emprestam e tomam emprestados recursos entre si,
porém, para este caso consideraremos uma taxa pés-fixada - com dados disponibilizados
na pagina eletrénica da CETIPS. No caso dos benchmarks, as séries utilizadas serio:
indice Bovespa (IBOV), indice Financeiro (IFNC) e indice de Fundos de Investimentos
Imobiliarios (IFIX), todos com informagdes disponiveis na BMF&Bovespa.

Em relagido a periodicidade da base de dados, tanto para o segmento de renda
variavel, taxa livre de risco e benchmarks, foi considerado o intervalo didrio - em dias
uteis -~ de 02/01/2014 a 30/12/2015, totalizando 494 observacdes de precgos e 493

observagtes de log-retornos.

5 A Bolsa de Valores de Sdo Paulo - Bovespa era a bolsa oficial do Brasil, até iniciar um processo de fuséo
com a BM&F que culminou na criagdo de uma nova institui¢do, denominada BM&FBovespa no dia 8 de
maio de 2008. Disponfvel em http://www.bmfbovespa,com,br

6 Central de Custédia e de Liquidagio Financeira de Titulos, atualmente CETIP S.A. - Mercados

Organizados, https: //www.cetip.com.br/.
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3.2. Portf6lio de Renda Varidvel

3.2.1. Carteira de Agdes - Servigos Financeiros, Seguros e Bancarios

Comegamos esta se¢do, com uma breve definigdo do que é uma Agdo. Trata-se da
menor parcela do capital social das companhias ou sociedades por agdes. E, portanto,
um tftulo patrimonial e, como tal, concede aos seus titulares, os acionistas, todos os
direitos e deveres de um sécio, no limite das agdes possuidas. Uma acdo é um valor
mobilidrio, expressamente previsto em lei, no entanto, apesar de todas as companhias
ou sociedades por agdes terem o seu capital dividido em a¢des, somente as acdes
emitidas por companhias registradas na CVM, chamadas companhias abertas, podem ser
negociadas publicamente no mercado de valores mobiliarios. Assim sendo, para esta
aplicagiio os ativos elegidos fazem parte do setor de servigos Financeiros, Seguros e

Bancério. E sdo destacados na tabela a seguir.

Tabela 3.1 - Carteira de Agdes.

Codigo' Tipo? Empresa

BBAS3 ON Banco do Brasil
BBDC4 PN Banco Bradesco
BBSE3 ON BB Seguridade Participagdes

CIEL3 ON Cielo

CTIP3 ON Cetip

ITUB4 PN Ttatt Unibanco Holding
PSSA3 ON Porto Seguro
SANBI1 UNIT Banco Santander Brasil
SULALII UNIT Sul América

! Cédigo de AgHo negociada na Bolsa de Valores (BMé&Fbovespa).
2 ON (Ordindria); PN (Preferencial); UNIT (Composic3o de ON ¢ PN).

Fonte: BMF&Bovespa. Elaboragio do Autor.,

3.2.2. Carteira de Fundos de Investimentos Imobilidrios (FII)

O fundo de investimento imobilidrio é uma comunhio de recursos destinados a
aplicagdo em empreendimentos imobilidrios, tais como a construgio e a aquisicdo de
imoveis para posterior comercializagio ou a aquisi¢io de imédveis prontos para auferir

renda de locagéo. Além disso, é também permitido aos FII a aquisi¢ao de titulos e valores
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mobiliarios relacionados a empreendimentos imobilidrios, como letras de crédito
imobiliario, certificados de recebiveis imobilidrios, certificados de potencial adicional de
construgdo, entre outros. Por ser constituido sob a forma de condominio fechado, o
cotista do FII nio pode solicitar o resgate de suas cotas, o que s6 pode ocorrer em caso
de liquidagdo do fundo deliberada pela assembleia geral de cotistas ou no término do
prazo de duragédo dos fundos que funcionam com prazo determinado. Como as cotas dos
FII ndo sdo resgataveis, a (nica forma de se desfazer do investimento é vender as cotas
para outro investidor, de forma semelhante ac que ocorre quando investimos em agées
de companhias abertas. Em virtude disso, quase todos esses fundos tém as cotas
registradas para negociacdo em mercado de bolsa de valores ou de balcio organizado,
com as operacdes realizadas pelos investidores através de uma corretora ou

distribuidora de valores mobiliarios. Nesta aplicacéo os titulos selecionados sdo:

Tabela 3.2 - Carteira de Fundos de Investimentos Imobiliarios (FII).

Cédigo’ Tipo Fundo
BRCRI1 FII BC FUND
BBPO11 FII BB PRGIL
KNRI11 FII KINFA
HGREI 1 FII HG REAL
KNCRI1 FII KINEA RI
HGBS11 FII CSHG SHOP
SAAGI1 FII SANTANDER AG
TBOF 11 FII TB OFFICE
JSREI1 FII JS REAL
HGLG11 FII CSHG LOG

' Cidigo do FIT negociada na Bolsa de Valores (BM&Fhavespa).

Fonte: BMF&Bovespa. Elabora¢éao do Autor.

3.3. Aplicagdo empfrica do modelo de Markowitz

Considerando as informacdes e dados preliminares nas se¢des 3.1 e 3.2, temos:

() Para a Carteira de A¢des.

Inicialmente retomam-se as equagdes (1.5), (1.6) e (1.7), e aplicando-as na série

histérica de cada ativo, construimos a tabela de vetores (n x 1) de Risco-Retorno.



Tabela 3.3 ~ Vetores de Risco-Retorno da Carteira de Acdes - historico.

Retomo (1) Risco (o)
BBAS3 -0,09888214%  3,08658427%
BBDC4 -0,08245475%  2,42679164%
BBSE3 0,00319307%  2,06911504%
CIEL3 0,00325671%  1,93379861%
CTIP3 0,09316185%  1,42339755%
ITUB4 -0,03649357%  2,14936515%
PSSA3 -0,00357669%  1,98797729%
SANBI1 0,03272740%  2,32471296%
SULAL1 0,05075868%  2,05930090%

Fonte: BMF&Bovespa. Elaboragio do Autor.

No proximo passo, definem-se as “Gregas” do modelo.

Tabela 3.4 - Varidveis do modelo de Markowitz - “Gregas”.

o= R

7989,92232954
0,01311304
5,88244043

70,16908102

Fonte: Elaboraco do Autor,

Em seguida, conforme (1.30) e (1.31) tém-se os vetores (nx1).

Tabela 3.5 - Vetores para solucio do modelo de Markowitz.

h g
BBAS3 -137,78008636  -0,06129377
BBDC4 -301,57322840  0,18529429
BBSE3 -65,03710770  0,02239996
CIEL3 -147,25253734  0,29019942
CTIP3 569,02138147  0,09345740
ITUB4 10,00314021 0,08081145
PSSA3 -146,42735063  0,29721723
SANBI 1 119,22138407  0,05768544
SULAI1 99,82440469  0,03422859

Fonte: Elaboracio do Autor.
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E como consequéncia, obtemos a solugio do problema de Média-Variincia dado
por (1.29), ou seja, apresenta-se o vetor (n x 1) de pesos 6timos para um dado nivel de
K. Em que p nesta aplicagdo trata-se do retorno médio dirio do CDI no perfodo

analisado, sendo 0,05055611% a.d. ou 13,58362978% a.a. na base de 252 dias titeis.

Tabela 3.6 - Pesos étimos (otimizagio por Média-Variincia) da Carteira de Acées.

w* 1] g o]
BBAS3 -13,10%
BBDC4 3,28%
BBSE3 -1,05%
CIEL3 21,58%
CTIP3 38,11% 0,05055611% 0,00013122 1,14549740%
ITUB4 8,59%
PSSA3 22,32%
SANBI11 11,80%
SULAI1I R.47%
160,00%

Fonte: Elaboragéo do Autor.

Aplicando (1.32), (1.33) e (1.34) tem-se o ponto de Minima-Varidncia. Desta
forma, carteiras com p > g sdo chamadas de carteiras eficientes, ou seja, elas possuem
maior retorno possivel entre todas as carteiras com um determinado nivel de risco

especificado.

Tabela 3.7 - Pesos 6timos (Minima-Varidncia Global) da Carteira de A¢des.

g [ 0% Og
BBAS3 -16,27%
BBDC4 -3,67%
BBSE3 ~2,55%
CIEL3 18,18%
CTIP3 51,24% 0,07362325% 0,00012516 1,11873885%
ITUB4 8,82%
PSSA3 18,94%
SANBI11 14,55%
SULAI1I 10,77%
100,00%

Fonte: Elaboracgido do Autor.
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Tomando novamente (1.37), (1.38) e (1.39) encontra-se o ponto Tangente que

corresponde a uma posic¢io de 100% nos ativos de risco desta Carteira de Aces.

Tabela 3.8 - Pesos 6timos (Tangente) da Carteira de Agdes.
o7 Br o'p o1

BBAS3 -81,93%
BBDC4 -147,37%
BBSE3 -33,54%
CIEL3 -51,99%

CTIP3 322,38%  0,55012769% 0,00271058  5,20631840%
ITUB4 13,58%
PSSA3 -50,83%
SANBI1 71,36%
SULAI1 58,34%
100,00%

Fonte: Elaboragio do Autor.,

Graficamente representamos os pontos calculados acima, no plano cartesiano de

Risco-Retorno:

Figura 3.1 - Reta Tangente

e Fronteira Eficiente da Carteira de Agses.

0,75%

0.55%

0,35%

0.35%%

ot 8,0506% 4

-0,05% Med. Vae
E1455% o
0,0506% p
B.15%%
0.00% 1,00%

/.

Tangente
5.2083% ¢
89,5501 p

Min. Var,
> 51187% 0
8,0736% »

2.00% 3,06% 4,00% 3,000 8.00% 7.00% 8.00"
(]

+ Fromleirs Eficiente

=——Retn Tangeate

Fonte: Elaboracao do Autor.
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Novamente aplicaremos os mesmos cilculos do item (i) desta segdo. Entdo,

plotaremos na sequéncia, os resultados obtidas nas tabelas a seguir.

Tabela 3.9 - Vetores de Risco-Retorno historico da Carteira de FII - histérico.

Retorno (1) Risco (o)

BRCR11 -0,07310614%  1,01297314%
BBPO11 -0,01609743%  0,72544291%
KNRI11 -0,02638223%  1,12765455%
HGRE!1 -0,04900635%  1,06859842%
KNCRI11 0,00634074%  1,15881128%
HGBS11 -0,02732179%  1,13114164%
SAAGII -0,00856382%  0,83048693%
TBOF11 -0,03472760%  1,29023572%
JSRE1I -0,46021786%  10,17236299%
HGLGI1 -0,02703506%  1,27512657%

Fonte: BMF&Bovespa. Elaboragdo do Autor.

Tabela 3.10 - Vetores para solugio do modelo de Markowitz.

h £

BRCRI11 -775,62531674  -0,037505844
BBPO11 515,05890130 0,327433164
KNRIII -26,85945460 0076227115
HGREI11 -371,11432763  -0,02957101
KNCRI11 376,42293873 0,221325426
HGBS11 ~73,65564597 0,036933502
SAAGI] 46908599876 0,296861787
TBOF11 -8,91316055 0,056000869
JSREI11 -67,35852182  -0,019846971
HGLG11 -37,04141147 0,07214196

Fonte: Elaboracio do Autor.
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»

Tabela 3.11 - Varidveis do modelo de Markowitz - “Gregas”.

o 42139,91798987
¥ 0,00906065

1) -9,09796853

& 299,04190348

Fonte: Elaboracgio do Autor.

Da mesma forma, temos a solugdo dos problemas de otimizagio, em que se

considera nesta aplicacdo o mesmo valor de y dado no item (i) desta se¢io.

Tabela 3.12 - Pesos 6timos (otimizagio por Média-Varidncia) da Carteira de FII.

w* K g* ]

BRCRI11 -42,96%
BBPO11 58,78%
KNRII1 6,26%
HGREI11] -21,72%
0,

I;gggll 11 433;? 0,05055611% 0.00009708 0,98528241%
-0,03%
SAAGIL 53,40%
TBOF11 5,15%
JSRE1I -5,39%
HGLGI1 5,34%
100,00%

Fonte: Elaborac¢io do Autor.

Tabela 3.13 - Pesos 6timos (Minima-Varidncia Global) da Carteira de FII.

g 19 a% Gy
BRCRI11 13,00%
BBPO11 21,62%
KNRIII 8,20%
HGRELI 5,06%
0,
g;ggl'll 154’2081; -0,02158991% 0,00002373  0,48713929%
, (1]
SAAGI1 19,56%
TBOF11 5,79%
JSREI1 -0,53%
HGLGI1 8,01%
100,00%

Fonte: Elaboragiio do Autor.



Tabela 3.14 - Pesos 6timos (Tangente) da carteira de FII.

Or Bt G’y or
BRCRI1 31,10%
BBPO!1 9,60%
KNRII1 8,83%
HGREI11 13,72%

0,

I:gg;{ ]1 11 .f,ggof -0,04493160% 0,00003141 0,56042914%

3 (1]
SAAGI] 8,61%
TBOF11 6,00%
ISREI1 1,04%
HGLGI11 £,88%

100,00%

Fonte: Elaboracdoe do Autor.,

investidor racional ird preferir portfélios que no minimo “paguem” a renda fixa.

Figura 3.2 - Reta Tangente e Fronteira Eficiente da Carteira de FIL.
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0,6449% p
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—Rete Tangente

1,50%
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= Fromeirn Eficienfe

2.00% 2,50%

Fonte: Elaboragio do Autor,
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Igualmente, plota-se o grafico dos pontos calculados no plano cartesiano de
Risco-Retorno. Porém, é importante apontar duas caracteristicas evidenciadas na figura
a seguir. Para esta carteira de FII, as carteiras de Minima-Variincia e Tangente tém

retorno negativo, o que, na pratica desestimula sua viabilidade financeira, pois, o
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3.4. Aplicagdo empfrica do modelo de Black-Litterman

Nesta secdo dispdem-se dos calculos necessarios para aplicagdo da modelagem de

B-L, em que serdo utilizados dados das carteiras j4 mencionadas. Entso:

(D) Para a Carteira de Agdes.

Comegamos com a demonstragdo do vetor de pesos (n x 1) com base na
Capitalizacdo de Mercado para cada ativo, ou seja, trata-se do valor de mercado atual de

cada empresa na data de analise (30/12/2015).

Tabela 3.15 - Pesos da Capitalizaciio de Mercado da Carteira de Acgdes,

Cédigo Quantidade de Valor de de Pesos de
AcGes Emitidas’ Mercado emR$?  Mercado wyy,
BBAS3 2.865.417.020 42.236.246.875 10,71%
BBDC4 2.776.800.721  53.536.717.901 13,57%
BBSE3 2.000.000.000 48.660.000.000 12,33%
CIEL3 2.264.012.551 76.048.181.588 19,27%
CTIP3 262,978.823 9.861.705.863 2,50%
ITUB4 3.036.875.751 79.960.938.524 20,27%
PSSA3 323.293.030 9.307.606.334 2,36%
SANBI1 3.781.541.209 60.655.920.984 15,37%
SULAI11 767.284.079 14.279.156.701 3,62%
Total 18.078.203.183 394.546.474.769 160,00%

* Posigio divilgada até maio/16.
* Qdte. de Agbes emitidas x Cotagdo base 30/12/2015
Fonte: Rl das empresas. BM&FBovespa. Elaboracio do Autor.

Na sequéncia calcula-se o coeficiente de aversdo ao risco da carteira, utilizando
como benchmarks os indices IBOV (Ibovespa) e IENC (Setorial Financeiro) e como taxa
livre de risco o CDI, todos em taxas dirias do periodo histérico selecionado, conforme

tabela a seguir.
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Tabela 3.16 ~ Risco-Retorno dos benchmarks e da taxa livre de risco.

IFNC IBOV CDI
Retomo () 0,01106025%  -0,03033189%  0,05055611%
Risco (") 1,75260547%  1,52401892%  0,00000000%

Fonte: BMF&Bovespa. Cetip. Elaboraciio do Autor.

Tabela 3.17 - Coeficientes de aversio ao risco.

_ Elrl—rf

A 52

IBOV! 3,48259832 IFNC! 1,28582903

' Em médulo
Fonte: Elaboragio do Autor.

Com os pesos do portfélio de Capitalizacio de Mercado, os coeficientes de
aversao ao risco e a matriz de covaridncia da Carteira de A¢des, encontramos os vetores
de retorno de mercado, conforme (2.4), obtendo a distribuicio a priori ou seja, os
vetores (n x 1) dos Retornos Implicitos de Equilibrio de Mercado, concluindo assim a

primeira metade da modelagem de Black-Litterman,

Tabela 3.18 - Vetores de Retorno Implicito do Equilibrio de Mercado.

1= A0 Histérico
BOV IFNC Portflio

BBAS3 0,15081129%  0,05568186%  -0,09888214%
BBDC4 0,11942461%  0,04409341%  -0,08245475%
BBSE3 0,08780949%  0,03242062%  0,00319307%
CIEL3 0,07156669%  0,02642353%  0,00325671%
CTIP3 0,04669978%  0,01724228%  0,09316185%
ITUB4 0,10907210%  0,04027110%  -0,03649357%
PSSA3 0,04997949%  0,01845320%  -0,00397669%
SANBI 1 0,09041184%  0,03338145%  0,03272740%
SULAIL 0,05179702%  0,01912426%  0,05075868%
Média 0,08639693%  0,03189%08%  -0,00430105%
Desvio 0,03348548%  0,01236336%  0,05783600%
Miéiximo 0,15081129%  0,05568186%  0,09316185%
Minimo 0,04669978%  0,01724228%  -0,09888214%

Fonte: Elaboracdo do Autor.
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A partir deste momento inserimos as informagdes que fazem com que o modelo
de B-L se diferencie em relacio ao tradicional de M-V. Portanto o embasamento dos
novos pesos da carteira ndo é realizado em cima de dados histéricos e sim no
posicionamento do mercado. Para a Carteira de A¢des, construimos a tabela abaixo com
base nas opinides dos analistas, gestores e investidores sobre o preco projetado da

Carteira de Ac¢des para o final de 2016.

Tabela 3.19 - Proje¢6es de analistas de mercado para a Carteira de Agdes.

Toians Portba 016y /bom o e

BBAS3 RS 14,74 R$ 27,00 83,18% 0,24047597%
BBDC4 R$ 19,28 R$ 30,00 55,60% 0,17560205%
BBSE3 RS 2433 RS 34,00 39,75% 0,13288598%
CIEL3 RS 33,59 RS 39,85 18,64% 0,06783808%
CTIP3 RS 37,50 RS 42,00 12,00% 0,04498181%
ITUB4 R$ 26,33 R$ 38,00 44,32% 0,14569221%
PSSA3 R$ 28,79 R$ 30,36 5.45% 0,02107279%
SANBI11 RS 16,04 R3 12,35 -23,00% - -0,10368809%
SULAIlL R$ 18,61 R$ 20,00 7.47% 0,02858869%
Média 27,04420298%  0,08371661%

Desvio 29,95798735%  0,09609683%

! Informagéies obtidas no endereo eletrénico de RE de cada empresa. Prego-Alvo para 30/12/16
Fonte: RI das empresas. Bloomberg. Elaboragio do Autor.

Feito isto, define-se a matriz das visdes e/ou opinides P, que pode ser do tipo
absoluta ou relativa. Para esta aplicacdo demonstraremos os resultados simulando trés
séries de visdes para a Carteira de A¢des: 1° com 9 vises absolutas; 22 com 3 visdes

absolutas; e 32 com 2 visdes relativas. Entio:
. Simula¢do com 9 visdes:

Para a primeira série utilizamos o método absoluto, ou seja, atribuimos valor 1
para cada ativo separado por 9 visBes na matriz P, o que significa que, estamos
“acreditando” ou “apostando” nas opinides dos analistas demonstradas na tabela 3.19,

formando um vetor (n x 1) Q com base na coluna de retorno médio esperado diario.

Adotando a regra de (2.13) temos que para o pardmetro Tau () é de %! e desta forma é
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possivel construir a matriz de covarincia () destas visdes. Conforme (2.17) seguiremos
o meétodo em que a varidncia das opiniGes serd proporcional A variincia dos retornos
dos ativos, e por este método as variincias das opinides, ou incertezas, sio
essencialmente iguais aos pesos das visdes dos investidores e dos pesos de equilibrio de

mercado. Entio, temos as tabelas:

Tabela 3.20 - Matriz P para 9 visoes.

P
BBAS3 BBDC4 BBSE3 CIFL3 CTIP3 ITUB4 PSSA3 SANBII SULAlI

Visdo | l 0 0 0 0 0 ] 0 0
Visdo 2 0 1 0 0 0 0 0 0 0
Viséo 3 0 0 1 0 0 0 0 0 0
Visdo 4 0 0 0 1 0 0 0 0 0
Visdo 5 0 0 0 0 1 0 0 0 0
Vis@o 6 0 0 0 0 0 1 0 0 0
Visdo 7 0 0 0 0 0 0 1 0 0
Visdo 8 0 0 0 0 0 0 0 i 0
Visdo 9 0 0 ¢ 0 0 0 0 0 1

Fonte: Elaboracg3o do Autor.

Tabela 3.21 - Vetor Q para 9 visdes.

Q
Visdo 1 0,24047597%
Visfio 2 0,17360205%
Visdio 3 0,13288598%
Visio 4 0,06783808%
Viso 5 0,04498181%
Visdo 6 0,14569221%
Visdio 7 0,02107279%
Visdo 8 -0,10368809%
Visdo 9 0,02858869%

Fonte: Elaboragéo do Autor.



Tabela 3.22 - Matriz diagonal Q para 9 visdes.

O

0,00010586 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0.0

00  0,00006544 0,0 0,0 0,0 0.0 0,0 0,0 0,0

0,0 0,0 0,00004757 0,0 0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,00004155 0,0 0,0 0.0 0,0 0,0

0,0 0,0 0,0 0,0 000002251 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0000005133 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,00004391 0,0 0,0

0,0 0.0 0,0 0,0 0,0 0,0 0.0 000006005 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 00  0,00004712

Agora, ajustando o equilibrio de mercado com as opinides dos analistas de acordo

com (2.22), (2.23) e (2.24), é possivel gerar a distribuicio a posteriori dos retornos

Fonte: Elaboracio do Autor.

esperados E[R], bem como a matriz de covariincia desta distribui¢io a posteriori.
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Tabela 3.23 - Vetores de retornos esperados da distribuigio a posteriori para 9 visdes.

E[R]
IBOV IFNC

BBAS3 0,18241503%  0,16418275%
BBDC4 0,14087360%  0,12618859%
BBSE3 0,10371785%  0,09379900%

CIEL3 0,07251195%  0,06235061%

CTIP3 0,05266810%  0,04895862%

ITUR4 0,12643111%  0,11262919%

PSSA3 0,04193637%  0,03823325%

SANBI1 0,01645868%  0,00367025%
SULAII 0,03942440%  0,03509177%

Fonte: Elaboracéo do Autor.
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Tabela 3.24 - Matriz de covaridncia da distribuigdo a posterioripara 9 visdes.

@
BBAS3 BBDC4 BBSE3 CIEL3 CTIP3 ITUB4 PSSA3 SANBI11 SULA11
BBAS3  0,00003644 0,00000956 0,00000512 0,00000200 0,00000288 0,00000928 0,00000256 0,00000489 0,00000194
BBDC4  0,00000956 0,00002195 0,00000248 0,00000192 0,00000182 0,00000990 0,00000198 0,00000388 0,00000151
BBSE3  0,00000512 0,00000248 0,00001845 0,00000361 0,00000276 0,00000311 0,00000238 0,00000233 0,00000130
CIEL3  0,00000290 0,00000192 0,00000361 0,00001838 0,00000144 0,00000125 -0,00000014 0,00000156 0,00000152
CTIP3  0,00000288 0,00000182 0,00000276 0,00000144 0,00000955 0,00000198 0,00000060 0,00000012 §,00000086
ITUB4  0,00000928 0,00000990 0,60000311 0,00000125 0,00000198 0,00001645 0,00000200 0,00000356 0,00000122
PSSA3  0,00000256 0,00000198 000000238 -0,00000014 0,00000060 0,00000200 0,00001958 0,00000018 0,00000421
SANBLI1  0,00000489 0,00000388 0,00000233 0,00000156 0,00000012 0,00000356 0,00000018 0,00002639 0,00000122
SULA1l  0,00000194 0,00000151 0,00000130 0,00000152 0,00000086 0,00000122 0,00000421 0,00000122 0,00002128

Fonte: Elaboracio do Autor.

Tabela 3.25 - Nova matriz de covariincia da distribuicio a posteriori para 9 visbes,

=54+ ¢!
BBAS3 BBDC4 BESE3 CIEL3 CTIP3 ITUB4 PSSA3  SANBIl  SULAIL
BBAS3  0,00098914 0,00053852 0,00036388 0,00024509 0,00021476 0,00049735 0,00022536 0,00033916 0,00020904
BEDC4  0,00053852 0,00061088 0,00025569 0,00018162 0,00015865 0,00043373 0,00017612 000026852 0,00016296
BBSE3  0,00036388 000025569 0,00044658 0,00019437 000015455 0,00024735 000015483 000018522 0,00013386
CIEL3  0,00024509 0,00018162 0,00019437 0,00039234 0,00010152 0,00015669 0,00006650 0,00013296 0,00010666
CTIP3  0,00021476 0,00015865 0,00015455 0,00010152 0,00021215 000015054 000007462 0,00008055 0,00007922
TTUB4  0,00049735 0,00043373 06,00024735 0,00015669 0,00015054 000047842 000016433 0,00024394 0,00014554
PSSA3  0,00022536 0,00017612 0,00015483 0,00006650 0,00007462 0,00016433 000041478 0,00008981 0,00018474
SANBI1  0,00033916 0,00026892 0,00018522 0,00013296 0,00008055 0,00024364 0,00008981 0,00056682 0,00011326
SULAIL  0,00020904 0,00016296 0,00613386 0,00010666 0,00007922 0,00014554 000018474 0,00011326 0,00044535

Fonte: Elabora¢io do Autor.

Por fim, utilizando (2.29) apresentamos o vetor (m x 1) de pesos 6timos gerados

pelo modelo de Black-Litterman:



65

Tabela 3.26 - Pesos 6timos de Black-Litterman da Carteira de Ac¢des para 9 visdes.

o* = 03 'E[R]

IBOV IFNC

BBAS3 26,77% 69,15%
BBDC4 29,12% 75,07%
BBSE3 30,32% 79,07%
CIEL3 15,27% 30,15%
CTIP3 -6,58% -8,74%
ITUB4 30,88% 72,86%
PSSA3 -11,50% -28,17%
SANBI1 -44,85% -129,04%
SULA11 -331% -7,38%

Fonte: Elaboracio do Autor.

Seguindoe o mesmo roteiro de aplicacio, demonstramos apenas os resultados em

forma de tabelas para a segunda e terceira simulacio.
. Simulagdo com 3 visbes:
Aqui também se utiliza 0 método de opinides absolutas, entio temos que:

Tabela 3.27 ~ Matriz P para 3 visfes.

P
BBAS3 BBDC4 BBSE3 CIEL3 CTIP3 ITUB4 PSSA3 SANBII SULAI11

Visdo | 0 0 0 0 0 1 0 0 0
Visdio 2 0 1 0
Visdo 3 0 0 0 0 0 0 0 1 0

[}
[}
[=-1
=]
(=}
=]

Fonte: Elaboragio do Autor,

Tabela 3.28 - Vetor Q para 3 visdes.

Q
Visdio 1 0,17560205%
Visio 2 0,14569221%
Visdo 3 -0,10368809%

Fonte: Elaboragio do Autor.



Tabela 3.29 ~ Matriz diagonal {) para 3 vises.

0
0,00005133 0,0 0,0
0,0 0,00006544 0,0
0,0 0,0 0,00006005

Fonte: Elaboragio do Autor.
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Tabela 3.30 - Vetores de retornos esperados da distribuigio # posterioripara 3 visées.

Tabela 3.31 - Matriz de covariéncia da distribuigdo a posterioripara 3 visdes.

ER]

BBAS3
BBDCA4
BBSE3
CIEL3
CTIP3
ITUB4
PSSA3
SANBI1
SULAIL

IBOV

0,15086645%
0,12858721%
0,08419380%
0,06662293%
0,05111528%
0,12300867%
0,05451443%
0,01089407%
0,04916093%

IFNC

0,11082540%
0,10538164%
0,05642583%
6,04027580%
0,03756966%
0,10085718%
0,04054075%
-0,00663630%
0,03340388%

Fonte: Elaboragio do Autor.

(D—l

BBAS3 BBDC4 BBSE3

CIEL3

CTIP3

TTUB4

SULAL]

BBAS3
BBDC4
BBSE3
CIEL3
CTIP3

PSSA3
SANBI1
SULAL11

0,00006386 0,00001865 0,00001893 0,00001273 0,00001127 0,00001826 0,00001123 0,00000962 0,00001020
0,00001365 0,00002529 0,00000839 0,00000645 0,00000561 0,00001320 0,00000630 0,00000560 0,00000572
0,00001893 0,00000839 0,00003709 0,00001410 0,00001079 0,00000925 0,00001024 0,00000587 0,00000832
0,06001273 0,00000645 0,00001410 0,00003671 0,00000703 0,00000532 0,00000289 0,00000446 0,00000733
0,00001127 0,00000561 0,000061079 0,00000703 0,00001888 0,00000586 0,00000423 0,0000016% 0,00000499
0,00001826 0,00001320 0,60000925 0,00000532 0,00000586 0,00001975 0,00000632 0,00000525 0,00000516
0,00001123 0,00000630 6,00001024 0,00000289 0,00000423 0,00000632 0,00003951 0,00000192 0,00001596
0,00000962 0,00000560 0,00000587 0,00000446 0,00000168 0,00000525 0,00000192 0,00002740 0,00000359
0,00001020 0,00000572 0,00000832 0,00000733 0,00000499 0,00000516 0,00001596 0,00000359 0,00004319

Fonte: Elaboracgio do Autor.
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Tabela 3.32 - Nova matriz de covariancia da distribui¢io 2 posterioripara 3 visées.

I =1+’
BBAS3 BBDC4 BBSE3  CIEL3  CTIP3  ITUB4 _ PSSA3  SANBII _ SULAIL

BBAS3
BBDC4
BBSE3
CIEL3
CTIP3
ITUB4
PSSA3
SANBI11
SULALI

0,00101656 0,00054762 0,00037769 0,00025492 0,00022316 0,00050633 0,00023402 0,00034389 0,00021731
0,00054762 0,00061422 0,00026160 0,00018614 0,00016244 0,00043704 0,00018044 0,00027064 0,00016717
0,00037769 0,00026160 0,00046521 0,00020486 0,00016258 0,00025349 0,00016269 0,00018875 0,00014088
0,00025492 0,00018614 0,00020486 0,00041067 0,00010711 0,00016076 0,00006953 0,00013586 0,00011247
0,00022316 0,00016244 0,00016258 0,00010711 0,00022149 0,00015442 0,00007824 0,00008211 0,00008336
0,00050633 0,00043704 0,00025349 0,00016076 0,00015442 0,00048173 0,00016866 0,00024563 0,00014948
0,00023402 0,00018044 0,00016269 0,00006953 0,00007824 0.,00016866 0,00043471 0,00009155 0,00019649
0,00034389 0,00027064 0,00018875 0,00013586 0,00008211 0,00024563 0,00009155 0,00056783 0,00011564
0,00021731 0,00016717 0,00014088 0,00011247 0,00008336 0,00614948 0,00019649 0,00011564 0,00046727

Fonte: Elaboragio do Autor.

Tabela 3.33 - Pesos 6timos de Black-Litterman da Carteira de Agdes para 3 visbes.

o* = ALY 'E[R]

IBOV IFNC
BBAS3 9,63% 5,63%
BBDC4 21,88% 65,10%
BBSE3 11,10% 11,10%
CIEL3 17.35% 17,35%
CTIP3 2,25% 2,25%
ITUB4 50,55% 138,11%
PSSA3 2,12% 2,12%
SANBI1 ~41,79% -114,86%
SULAI11 3,26% 3,26%

Fonte: Elaboragdo do Autor.

- Simulagdo com 2 visdes:
Neste item se utiliza do método de opiniGes relativas, entdo temos que:

Tabela 3.34 - Matriz P para 2 visdes.
P
BBAS3 BBDC4 BBSE3 CIEL3 CTIP3 [TUB4 PSSA3 SANBII SULAIL

Visdo 1 0 1 0 0 0 -1
Visiio 2 0 0 1 0 it 0

Fonte: Elaboraciio do Autor.



Tabela 3.35 - Vetor Q para 2 visjes.

Q

Visdo 1
Visdo 2

0,02990984%
0,i11181319%

Fonte: Elaboragio do Autor.

Tabela 3.36 — Matriz diagonal Q para 2 visées.

Q

0,00002258

0,0

0,00005760

Fonte: Elaboragio do Autor.

Tabela 3.37 ~ Vetores de retornos esperados da distribui¢do a posterioripara 2 visées.

ER]

BBAS3
BBDC4
BBSE3
CIEL3
CTIP3

PSSA3
SANBI11
SULAILIL

1IBOV

0,16251935%
0,13310338%
0,10795227%
0,08161904%
0,05266168%
0,11307354%
0,03319959%
0,09827703%
0,04920012%

IFNC

0,07118880%
0,06227449%
0,05906558%
0,03973160%
0,02513177%
0,04554245%

-0,00373281%
0,04379705%
0,01569905%

Fonte: Elaboracio do Autor.



Tabela 3.38 - Matriz de covariancia da distribui¢io a posteriori para 2 visdes.

o
BBAS3 BBDC4 BBSE3 CIEL3 CTIP3 ITUB4 PSSA3}  SANBII  SULAIlL

BBAS3
BBDC4
BBSE3
CIEL3

0.00010341 0,00005576 0,00003574 0,00002482 0,00002231 0,00005346 0,00002817 0,00003550 0,00002352
0,00005576 0,06005730 0,00002536 0,00001780 0,00001638 0,00004811 0,00002090 0,00002753 0,00001758
0,00003574 0,06002536 0,00003240 0,00001746 0,00001455 0,00002482 0,00002408 0,00001750 0,00001610
0,00002432 0,00001780 0,00001746 0,00003973 0,00001003 0,00001644 0,00001056 0,00001319 0,00001221
CTIP3  0,00002231 0,00001638 0,00001455 0,00001003 0,00002184 0,00001591 0,00001022 0,00000810 06,00000907
ITUB4  0,00005346 0,00004811 0,00002482 0,00601644 0,00001591 0,00005022 0,00002028 0,06002615 0,00001663
PSSA3  0,00002817 0,00002050 0,00002408 0,00001056 0,00001022 0,00002028 0,00003756 0,0000£231 0,060001876
SANBI1 0,00003550 0,00002753 0,00001750 0,00001319 0,00000810 0,00002615 0,00001231 0,00005895 0,00001281
SULAIT  0,00002352 0,00001758 0,00001610 0,00001221 0,00000907 0,00001663 0,00001876 0,00001281 0,00004679

Fonte: Elahoragio do Autor.

Tabela 3.39 - Nova matriz de covariéncia da distribuicio a posteriori para 2 visoes.

T =Z+@!
BBAS3  BBDC4  BBSE3  CIFL3 CTIP3 ITUB4  PSSA3  SANBI1 SULALI

BBAS3  0,00105611 0,00058472 0,00039450 0,00026701 0,00023420 0,00054153 0,00025096 0,60036977 0,00023063

BBDC4  0,00058472 0,00064623 0,00027857 0,00019750 0,00017321 000047195 0,00019504 0,00029257 0,00017902
BBSE3  0,00039450 0,00027857 0,00046752 0,00020823 0,00016634 0,00026906 0,00017654 0,00020039 0,00014866
CIEL3  0,00026701 0,00019756 0,00020823 0,00041369 0,000110t1 0,00017188 0,00007720 0,00014459 0,00011735
CTIP3  0,00023420 0,00017321 0,00016634 0,00011011 0,00022445 0,00016447 0,00008424 0,00008853 0,00008744
ITUB4  0,00054153 0,00047195 0,00026906 0,00017188 0,00016447 0,00051220 0,00018262 0,00026654 0,00016095
PS3A3  0,00025096 0,00019504 0,00017654 0,00007720 0,00008424 0,00018262 0,00043277 0,00010154 0,00019929
SANBI1 0,00036977 0,00029257 0,00020039 0,00014459 0,00008853 0,00026654 0,00010194 0,00059938 0,00012485
SULAIL 0,00023063 0,00017902 0,00014866 0,00011735 0,00008744 0,00016095 0,00019929 0,00012485 0,00047087

Fonte: Elaboragio do Autor.

Tabela 3.40 - Pesos 6timos de Black-Litterman da Carteira de Acdes para 2 visoes.

o* = (A y'ER]

IBOV IFNC

BBAS3 9.63% 0,63%
BBDC4 26,13% 60,66%
BBSE3 31,54% 81,75%
CIEL3 17.35% 17,35%

CTIP3 2,25% 2,25%
ITUB4 4.32% -30,21%
PSSA3 -18,32% -68,52%
SANBI1 13,84% 13,84%

SULA11 3,26% 3,26%

Fonte: Elaboracio do Autor.
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(ii)  Paraa Carteira de Fundos de Investimentos Imobili4rios.
Outra vez, aplicaremos a modelagem de B-L a esta carteira apresentando apenas
as tabelas e resultados finais, porém, simulando duas séries de visdes e/ou opinides para

a Carteira de FII: 12 com 10 visdes absolutas e 22 com 5 vis6es absolutas.

Entdo, comegamos exibindo a primeira parte do modelo:

Tabela 3.41 - Pesos da Capitalizacio de Mercado da Carteira de FILI.

Codigo Quantidade de Valor de de Pesos de
Cotas Emitidas' Mercado emR$2  Mercado Wy
BRCRI11 19.224.537 1.796.532.983 18,00%
BBPOI!1 15.919.650 1.543.891.536 15,47%
KNRI11 13.797.0060 1.494.904,950 14,98%
HGREI1 738.310 840.196.780 8,42%
KNCRI11 14.438.503 1.571.631.052 15,75%
HGBS11 537.492 749.263.848 7,51%
SAAGIL 5.631.512 4283.183.730 4,84%
TBOF11 10.050.000 575.865.000 5,77%
ISRE1] 6.452.470 583.948.535 5,85%
HGLGI 340,100 338.708.991 3,39%
Total 87.129.614 0.978.127.404 100%

! Posigiio mais recente divulpada pela findo
*Qdte. de Cotas emitidas x Cotaghio base 30/12/2015
Fonte: RI dos fundos. BM&FBovespa. Elaboragido do Autor.

Para o calculo do coeficiente de aversio ao risco da carteira, utilizamos como
benchmark o indice IFIX (Fundos de Investimentos Imobilidrios) e como taxa livre de
risco o CDI, ambos em taxas didrias do periodo histérico selecionado, conforme tabela a

seguir.

Tabela 3.42 - Risco-Retorno do benchmark e da taxa livre de risco.

IFIX CDI

Retorno (') 0,00476295%  0,05055611%
Risco (c") 0,40023149%  0,00000000%

Fonte: BMF&Bovespa. Cetip. Elaboracio do Autor.
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Tabela 3.43 - Coeficiente de aversio ao risco.

E —
i= [r] - rf
a
IFIX 28,58762920
! Em Médulo

Fonte: Elaborag¢io do Autor.

Tabela 3.44 - Projecdes de analistas de mercado para a Carteira de FII.

Precoem Rendimento Total Retorno Médio

30/12/15 2016 Esperado didrio
BRCR11 20,66% 0,07454707%
BBPO11 20,61% 0,07437592%
KNRI11 22,61% 0,08093572%
HGRE11 8,68% 0,033041%6%
KNCR11 29,45% 0,10247034%
HGBS11 16,34% 0,06005980%
SAAGIL] 28,78% 0,10043150%
TBOF11 35,04% 0,11927569%
JSREL1] 28.93% 0,10088739%

HGLGI 1 21,14% 0,07613031%
Média 0,08289171%

Desvio 0,02470015%

! Potencial de Valorizagio das cotas + Yield (Rendimento)

Fonte: RI das empresas. Elaborac¢io do Autor.

Agora, partindo para a segunda parte do modelo temos:

= Simulacio com 10 visées:

Neste caso, trabalharemos novamente com visées do tipo absolutas. Tendo como

resultados:



Tabela 3.45 - Matriz P para 10 vis&es.

P

BRCRi1 BBPO1I KNRIII HGREI1 KNCR11 HGBSI1 SAAGIT TBOFI1 JSREI] HGLGI

Visao 1 1 0 0 0 0 0 0 0 0 0
Visdo 2 0 1 0 g 0 0 0 0 0 0
Visio3 0 0 1 0 0 0 0 0 0 0
Visio4 0 0 0 1 0 0 0 0 0 0
Visio5 0 0 0 0 1 0 0 0 0 0
Visio6 0 0 0 0 0 1 0 0 0 ]
Visie7 0 0 0 0 0 0 1 0 0 0
Visio®8 0 0 0 0 0 0 0 1 0 0
Visie9 @ 0 0 0 0 0 0 0 1 0
Vsao 10 0 0 0 0 0 0 0 0 0 1
Fonte: Elaboragio do Autor,
Tabela 3.46 - Vetor Q para 10 visGes.
Q
Visdio 1 0,07454707%
Visdo 2 0,07437592%
Visdo 3 0,08093572%
Visdo 4 0,03304196%
Visio 5 0,10247034%
Visdo 6 0.06005980%
Visdo 7 0,10043150%
Visdo 8 0,11927569%
Visdo 9 0,10088739%
Visdo 10 0,07613031%
Fonte: Elaboragio do Autor.
Tabela 3.47 - Matriz diagonal ( para 10 visdes.
Q
0,00001026 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
0,0 000000526 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
0,0 00 000001272 0,0 0,0 0,0 0,0 0,0 0.0 0,0
0,0 0,0 0,0 000001142 0,0 0,0 0,0 0,0 0,0 0,0
0,0 0.0 0,0 0,0 0,00001343 0,0 0,0 0,0 0.0 0,0
0,0 0,0 0,0 0,0 00 000001279 0,0 0,0 0,0 0,0
0,0 0,0 0,0 0,0 0,0 0,0  0,00000690 0,0 0,0 0,0
0,0 0,0 0,0 0,0 0,0 6,0 0,0 000001665 0,0 0,0
0.0 0,0 0.0 0,0 0,0 0,0 0,0 00 000103477 00
0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 00  0,00001626

Fonte: Elaboragio do Autor.
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Tabela 3.48 - Vetor de retorno esperado da distribuiciio a posteriori para 10 visGes.

E[R]

IFIX
BRCRI1 0,08055493%,
BBPOI11 0,07119520%
KNRIl1 0,08773012%
HGREI1! 0,06199375%
KNCRI11 0,09267752%
HGBS1! 0,07040817%
SAAGIIL 0,07568891%
TBOF11 0,09334875%
JSREL1 1,02552545%
HGLGI11 0,06168643%

Fonte: Elaboragio do Autor.

Tabela 3.49 - Matriz de covariancia da distribuicio a posterioripara 10 vises.

73

CI?-I

BRCRI|

BBPO11

KNRI11

HGREL1

KNCRII  HGBSI11

SAAGI1

TBOF11 JSREI HGLGI1

BRCRI1
BBPO11
KNRI11
HGREi1
KNCRI1
HGBS11
SAAGIL
TBOFI[ |
JSREI1

HGLG11

0,00000501
0,00000036
0,00000017
0,00000018
0,00000007
0,00000006
0,00000020
0,00060039
0,00000047
0,00000006

0,00000036
0,00000240
0,00000025
0,00000046
0,00000003
0,006000037
0,00000048
0,00000024
0,00000168
0,00000022

0,00000017
0,00000025
0,00000619
0,00000042
(G,00000034
0,00000033
0,00000014
0,00000030
0,00000018
©,00000024

0,00000018
0,00000046
0,00000042
0,00000537
0,00000017
0,00000063
0,00000020

0,00000007 0,006000006
0,060000003 0,00000037
0,00000034 0,00060033
0,00000017 0,00000063
0,00000665 0,00000036
0,00000036 0,00000611
0,00000002 0,00000031

0,00000055 -0,00000007 0,06000024

0,00000103
£,00000035

0,00000206 0,00000055
0,00000004 0,00000029

0,00000020
0,60000048
0,00000014
0,00000020
0,00000002
0,00000031
000000326
0,00000016
0,00000299
0,00000012

0,0000003% 0,00000047 0,00000006
0,00000024 0,00000168 0,00000022
0,00000030 0,00000018 0,00000024
0,60000055 0,00000103 0,00000035
-0,00000067 0,00000206 0,00000004
0,00000024 0,00000055 0,00000029
0,00000016 0,00000299 0,00000012
0,00000809 0,00000033 0,00000046
0,00000033 0,00051151 -0,00000070
0,00000046 -0,00000070 0,00000799

Fonte: Elaboragio do Autor.

Tabela 3.50 - Nova matriz de covariincia da distribuicgo a posterioripara 10 visdes.

I=E+@)

BRCR11

BBPO!1

KNRIIL

HGRE! 1

KNCRI11 HGBS11

SAAGII

TBOFI1I JSREI HGLG11

BRCRI11
BBPOI |
KNRil1
HGRELL
KNCRI1
HGBS1!
SAAGI]
TBOF11
JSRELL
HGLGII

0,00010762
0,00001796
0,00001148
0,00001395
0,00000450
0,00000892
0,00001260
0.00002021
0,00004594
0,00000686

0,00001 796
£,00005503
0,00001548
0,00002446
0,00000473
0,00002124
0,00002260
0,00001646
0,000096158
0,00001367

0,00001 148
0,00001548
6,00013335
0,00002371
0,65001601
0,00002040
0,00001081
0,00001825
0,00003707
0,00001488

0,00001395
0,00002446
0,0000237]
0,0001 1956
0,00001070
0,00003280
0,00001562
0,00002925
0,00007721
0,00002057

0,00000450 0,00000892
0,00000473 0,00002124
0,00001601 0,00002040
0,00001070 0,00003280
0,00014093 0,00001725
0,00001725 0,00013406
0,00000371 0,00001860
0,00000084 0,00001774
0,00009363 0,00006264
0,00000418 0,00001786

0,00001260
0,00002260
0,00001081
0,00001562
0.00000371
0,00001860
0,00007223
0,00001231
0,00014186
0,00000937

0,00002021 0,00004594 0,00000686
0,00001646 0,00009615 0,00001367
0,00001825 0,00003707 0,00001488
0,00002925 0,00007721 0,00002057
0,00000084 0,00009363 0,00000418
0,00001774 0,00006264 0,00001786
0,00001231 0,00014186 0,00000937
0,00017456 000004141 0,00002383
0,00004141 0,01085920 -0,00000370
0,00002383 -0,00000370 0,00017059

Fonte: Elabora¢io do Autor.



Tabela 3.51 - Pesos 6timos de Black-Litterman da Carteira de FII para 10 visdes.

@* = (A7) 'E[R]
IFIX
BRCRI1 15,35%
BBPO11 17,18%
KNRII1 12,64%
HGREI11 -0,13%
KNCRI11 17.51%
HGBS11 4,66%
SAAG1L 16,87%
TBOF11 10,79%
JSREI1 2,61%
HGLGI1 6,28%

Fonte: Elaboragio do Autor.

. Simulagdo com 5 visdes:

Novamente com visdes absolutas temos:

Tabela 3.52 - Matriz P para 5 vises.

P

BRCR1! BBPO11 KNRI11 HGREIl KNCR11 HGBSI! SAAGI1 TBOF1! JSRE!l HGLGII

Visdo 1 1 0 0 0 0 0 0 0 0 0
Visio 2 0 1 0 0 0 0 0 0 0 0
Visdio 3 0 0 1 0 0 0 0 0 0 0
Visdo 4 0 0 0 1 0 0 0 0 0 0
Vis#io 5 0 0 0 0 1 0 0 0 0 0

Fonte: Elaboraciio do Autor.

Tabela 3.53 - Vetor Q para 5 visdes.

Q
Visdo 1 0,07454707%
Visdo 2 0,07437592%
Visdo 3 0,08093572%
Visdo 4 0,03304196%
Visdo 5 0,10247034%

Fonte: Elaboracio do Autor.



Tabela 3.54 — Matriz diagonal Q) para 5 visées.
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0
0,00001026 0,0 0,0 0,0 0,0
0,0 0,00000526 0,0 0,0 0,0
0,0 0,0 0,00001272 0,0 0,0
0,0 0,0 0,0 0,00001142 0,0
0,0 0,0 0,0 0,0 0,00001343

Fonte: Elaboragiio do Autor.

Tabela 3.55 - Vetor de retorno esperados da distribuigio a posterioripara 5 visées.

E[R]
IFIX

BRCR11 0,07901917%
BBPO11 0,07068692%
KNRII1 0,08625187%
HGRE! 1 0,06099537%
KNCRI1 0,09672791%
HGBS11 0,07579790%
SAAGI! 0,06266642%
TBOF11 0,06695677%
JSREl! 1,89916376%
HGLGI11 0,04189208%

Fonte: Elaboragio do Autor.

Tabela 3.56 - Matriz de covariincia da distribui¢io a posterioripara 5 visGes.

!
BRCRII BBPO11 KNRI11 HGRE11 KNCRIL HGBS11 SAAGL1 TBOF11 JSREI1 HGLGL1

BRCRL1  0,00000504 0,00000041 0,00000020 0,00000024 0,00000007 0,00000018 0,00000041 0,00000079 0,00000131 0,00000017
BBPO11  0,00000041 0,00000252 0,00000031 0,00000057 0,00000007 0,00000084 0,00000100 0,00000058 0,00000423 0,00000054
KNRIH  0,00000020 0,00000031 0,00000623 0,00000050 0,00000036 0,00000070 0,00000031 0,00000065 0,00000066 0,00000055
HGREL1l  0,00000024 0,00000057 0,00000050 0,00000551 0,00000021 0,00600131 0,00000048 0,00000119 0,00000253 0,00000082
KNCRIT  0,00000007 0,00000007 0,00000036 0,00000021 0,00000668 0,0000007¢ 0,00000009 -0,00000009 0,00000420 0,00000011
HGBS11  0,00000018 0,00000084 0,00000070 0,00000131 0,00000070 0,00001188 0,00000120 0,00000102 0,00000307 0,00000120
SAAGI1  0,00000041 0,000001060 0,00000031 0,00000048 0,00000009 0,00000120 0,60000633 ©,00000066 0,00001144 ©0,00000052
TBOF11  0,00000079 0,00000058 0,00000065 000000119 -0,00000009 0,00000102 0,00000066 ©,00001592 0,00000179 ©,00000185
JSREI1  0,00000131 0,00000423 0,00000066 0,00000253 0,00000420 0,00000307 0,00001144 0,00000179 0,00102184 -0,00000212
HGLG11  0,00000017 0,00000054 0,00000055 0,00000082 0,00000011 0,00000120 ©0,00000052 0,00000185 -0,00000212 0,00001590

Fonte: Elaboracio do Autor.
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Tabela 3.57 - Nova matriz de covariancia da distribuicio a posterioripara 5 visées.

I .

BRCR11 BBPO!] KNRI11 HGREI KNCRI1 HGBSI1 SAAGII TBOF(1 JSREI | HGLG11

BRCRI1  6,00010765 0,00001801 0,00001151 0,00001401  0,00000450 0,00000904 0,00001281 0,00002061 0,00004678 0,00000697
BBPO11  (,00001801 0,00005514 0,00001554 0,00002456 0,00000477 0,00002170 0,00002312 0,00001679 0,00009870 0,00001398
KNRIL1 000061151 0,00001554 0,00013339 0,0000237¢ 0,00001604 0,60002077 0,00001098 0,00001860 0,00003755 0,00001520
HGREI1  0,00001401 0,00002456 0,00002379 6,00011970 0,00001074 0,00003348 0,00001591 0,00002980 0,00007872 0,00002104
KNCRI1 0,00000450 0,00000477 0,00001604 0,00001074 000014096 0,00001759 0,00000378 0,00000082 0,00009577 0,00000424
HGBS!1  6,00000904 0,00002170 0,00002077 0,00003348 0,00001759 0,00013983 6,00001949 0,00001852 0,00006516 0,00001876
SAAGI1  0,00001281 0,00002312 0,00001098 0,00001561 0,00000378 0,00001945 0,00007530 0,00001282 0,00015030 0,00000977
TBOFI1  0,00002061 0,00001679 0,00001860 0,00002989 0,00000082 0,00001852 0,00001282 0,00018230 0,00004287 0,00002522
JSRELL  0,00004678 0,00009870 0,00003755 0,00007872 0,00009577 0,00006516 0,00015030 0,00004287 001136954 -0,00000512
HGLGI1  0,00000697 0,00001398 0,00001520 0,00002104 0,00000424 0,00001876 0,00000977 0,00002522 -0,00000512 0,00017849

Fonte: Elaboracio do Autor,

Tabela 3.58 - Pesos 6timos de Black-Litterman da Carteira de FII para 5 visGes.

o* = ALY 'BR]

IFIX

BRCRI11 15,92%
BBPO!1 17,93%
KNRII1 13,09%
HGREI1 0,34%
KNCRI11 16,67%
HGBS11 6,83%
SAAGII 4,40%
TBOF11 5,25%
JSRE!T1 5,32%
HGLGI 1 3,09%

Fonte: Elaboragio do Autor,
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4. Comparagio de Resultados e Anslise de Desempenho

Iniciamos este capitulo confrontando os resultados obtidos pela modelagem
desenvolvida no capitulo anterior, e em seguida, aplicaremos os pesos w dos portfélios
sugeridos em uma nova base de informagdes fora da amostra original - que data de
04/01/2016 a 26/04/2016, totalizando 77 observagées de pregos - com o objetivo de

verificar a performance dos portfélios recomendados via uma analise de backtest.
(i) Para a Carteira de Acdes.

Na tabela a seguir exibimos os resultados da distribuicdo de pesos w dos ativos
para cada portfélio sugerido, sendo que este processo de diversificacdo é mais bem
compreendido através das composicées disponiveis na figura 4.1, Nesta mesma figura,
percebe-se que para os portfélios de Markowitz o modelo concentrou o0 maior
percentual no ativo CTIP3, que ndo por acaso obteve a melhor relagdo Risco-Retorno da
base histérica (r = 0,09% a.d.; c = 1,42% a.d.), por outro lado, abriu posicdes vendidas
justamente em ativos que obtiveram uma relagcdo Risco-Retorno desfavoravel, como em
BBAS3, BBDC4 e BBSE3, evidenciando um dos problemas classicos da modelagem por
M-V, que a técnica de otimizagiio tende a selecionar ativos com caracteristicas mais

atraentes e desprezar 0Ss menos atraentes.

Tabela 4.1 - Resumo dos portfélios recomendados para a Carteira de Acdes.

® ® ) [ o o w
Ativos Capiializagio Retorno de Mark(g iz Martkowitz Markowit?  Blck-Litterman com 9 Blaclk-Litterman com 3 Black-Litterman com 2
de Mercado  equilibrio 1 (tangente)  (min var.) visdes absoltas visbes absolulas visies relativas
BOV IFNC IBOV IENC IBOV IFNC
BBAS3 10,71% 10,71% -13,10% -81,93% ~16,27% 26,77% 69,15% 9.63% %,63% 9.63% 9.63%
BBDC4 13.57% 13,57% 3,28% -M737% -3,67% 29,12% 75,07% 21,88% 65,10% 26,13% 60,66%
BBSE3 12,33% 12,33% -1,05% -33,54% -2,55% 30,32% 79,07% 11,10% E1L,H0% 31,54% 81,75%
CIEL3 19,27% 19,27% 21,58% -51,99% 18,18% 15,27% 30,15% 17,35% 17,35% 17,35% 17,35%
CTiP3 2.50% 2,50% 38.11% 322,38% SE24% -6,58% -8,74% 2,25% 2,25% 225% 2,25%
[TUR4 20,27% 20,27% 8,59% 13.58% 8,82% 30,88% 72,86% 50,55% 138,11% 4.32% -30,21%
PSSA3 2,36% 2,36% 22,32% -50,83% 18,94% =11,50%  -28,17% 2,12% 2,12% -18,32%  -68,52%
SANBII 15,37% 15,37% 11,80% 71,36% 14,55% -44,85%  -129,04%  -41,79%  -114,86% 13,84% 13,84%
SULALL 3,62% 3,62% B.47% 58,34% 10,77 -3,31% -7,38% 3,26% 3,26% 1.26% 3,26%
Somaw 100,00%  100,00%  100,00% 100,00%  100,00% 66,10% 152,97% 76,35% 134,05% 90,00% 90,00%
Sadodewemr?  0,00% 0,00% 0.00% 0,00% 0,00% 33,90% ~52,97% 23,65% -34,05% 10,00% 10,00%

consideranda p como a eana de rf didria média dp petlodo analisads

? sc 0 satda em z[ far positivo, entende~sc por investimente, sc rf for negativo, ealende-se por cmpréstimo. Porém, o modelp de B-L nio mpdem condighes para manier o alivo san Tiscd da carleira.

Fonte: Elaboracdo do Autor.



Figura 4.1 - Composicdo de w por portfélio recomendado.

BEAS3 BEDZ4 EBSES TIELS PssA TANBIY EULALL

2500% 4
it

ER00% ‘{
00

oI ITUBS
= . . 14
Poviag — ——— [ ]

BCap. Merc. e Ret. Imp. Equil,

AT, .
mmﬁj
ek
oaz-—_._-._--—
.mm'
WMarkowity

B0
mw:‘ .
°'m;--_— —_— emn R
-20000%

B Murkowitz (tg)
GMW.I
s .
20,004

[ e B BN o

2.5 —— —
e, | N

MM akowiiz (Min Vary

2008
sl N N | iz
s | | R

- T—
2600% .
PT

56,005
WB-L (ibov) Svabs

R0

i I x|
oo -

| | _
-1aaPs

ia | &
~150,0%

#B-L (ifnc) Gv abs
160.80% -
3000% |
000 | E— Bl oes = ——— - [— —

-

WB.L (ibov) 3vabs

20050%
10,0 J

= I

~100,6¢% -

Piiziviad

@B-L (ifrc) 3v abs
4300
10005,
pugre— | - ;. ___ [
2000 | [

00t

WB-L (ibav) 2vrel
10005

i) wm
RO | — . - . ——
s | =

AR

MEL (ifnc) 2v rel

Fonte: Elaboragio do Autor.
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Ja na modelagem de B-L a distribuicdo de pesos que parte do portfélio de
Capitalizagdo de Mercado é influenciada pelas opinides dos analistas e/ou investidores.

Para o caso de 9 visdes absolutas, tanto utilizando o coeficiente A do IBOV como
do IFNC, temos que o modelo pondera os seguindo fielmente as perspectivas de
retorno das projecdes, como exemplo podemos citar as posicdes vendidas em SANB11
que tem uma projecdo negativa de precos, PSSA3 e SULA11 que tem projecdo
relativamente baixa em relacio aos outros ativos, fazendo com que tais posigdes
vendidas fagam caixa para alocagiio nos ativos com proje¢des superiores e favoraveis. E
importante observar que, esta dependéncia nas opinides pode ser um ponto negativo
para o modelo, tendo em vista que, caso as opinides estejam equivocadas, podera levar o
portfolio a resultados financeiros abaixo ou extremamente ao contrario do esperado.
Por este motivo, 0 modelo nio exige que sejam atribuidas opinides a todos os ativos, que
€ o caso das simulagdes a seguir.

Neste portfélio reduzimos o niimero de visdes absolutas de 9 para 3, impusemos
pesos 1 para BBDC4, ITUB4 e SANB11, Como resultado, compreendemos que nestes trés
ativos houve significativa mudanca em o em relacdo ao portfélio inicial de Capitalizagiio
de Mercado. Em BBDC4 por exemplo, o peso original era de aproximadamente 13,57% e
foi para 21,88% (IBOV) e 65,10% (IFNC), em ITUB4 temos que o peso original era de
20,27% e foi para 50,55% (IBOV) e 138,11% (IFNQC), e por tltimo em SANB11 o peso
original era de positivo em 15,37%, naturalmente pois se trata de pesos por valor de
mercado, e foi para uma posigio vendida em 41,79% (IBOV) e 114,86% (IFNC)
respectivamente. Outro ponto a se destacar refere-se ao fato de a distribuigio
praticamente ndo ser alterada em relagio ao portfélio de Capitalizacdo de Mercado, nos
ativos que ndo foram atribuidas visdes e/ou opiniges.

Na diltima sugestao de portfélio, as opinides foram inseridas nio mais de maneira
absoluta, mas sim de maneira relativa, ou seja, ao invés de sustentar uma visio
diretamente no ativo, faremos uma visdo indireta entre um ou mais ativos. Nesta
aplicacdo foram dadas 2 visbes relativas entre BBDC4 e ITUB4 em que Bradesco
superaria o retorno de Itati em aproximadamente 0,03% a.d, e entre BBSE3 e PSSA3 em
que BB Seguridade superaria o retorno de Porto Seguro em aproximadamente 0,11%
a.d. Como resultados, novamente o modelo seguiu as opinides e distribuiu pesos
positives e alavancados para BBDC4 ¢ BBSE3, e de maneira contraria, atribuiu peso

baixo ou até mesmo negativo, com posi¢oes vendidas nos ativos ITUB4 - que para os



80

outros portfolios estava sendo considerado com uma excelente projecio de alta - e
PSSA3.

Agora, apds a demonstragio dos portfélios sugeridos por ambas as modelagens,
aplicaremos tais diversificagdes em uma nova amostra de dados histéricos para validar
os modelos aplicados e verificar seu desempenho em uma anilise de backtest.
Entretanto, é importante salientar que, modelos de selecio e otimizagio de carteiras de
investimentos ndo tém como caracteristica principal, prever flutuacio e volatilidade de

pregos dos ativos. Aplicando as informagdes de Risco-Retorno temos as tabelas a segulir.

Tabela 4.2 - Risco-Retorno das ag¢ées com dados da nova amostra histérica.

Retomo (£) Risco (o)
BBAS3 0,55731428%  4,87509116%
BBDC4 0,40560315%  3,38562985%
BBSE3 0,41896567%  3,52235575%
CIEL3 0,02227802%  3,60541850%
CTIP3 0.21765756%  1,61874718%
ITUB4 0,33798684%  2,91225062%
PSSA3 -0,03681748%  3,48048133%
SANBI11 0,22635509% 2,53119757%
SULAI1 -0,20691503%  2,58677158%

Fonte: Elaboracio do Autor.

Tabela 4.3 - Risco-Retorno dos portfélios com dados da nova amostra histérica.

Retomo (P) Risco (o)

Capitalizagio de Mercado 0,27104371% 2,62280527%

Retorno de Equilibrio IT 027104371%  2,62280527%

Markowitz 0,05368894%  1,76170614%

Markowitz (tangentc) -0,39932083% 8,49262775%

Markowitz (rin. var.,) 0,03277174%  1,62766849%

. . IBOV  0,39731027% 3,12032571%
Black-Li 9 vis3 ; :

terman com9 vides absolas 1o 0,08862769% 7 69163131%

. ) [BOV  0,26643750%  2,59882084%
Black-Literman 5 : :

k com 3 visGes absolutas e 57224058% 5,34319183%

. . BOV  0,34650783%  2,66220692%
Black-Litterman com 2 visBes relatt : g

semancom2 visBes RS 1L e 0.59869685%  3.89401836%

Média  0,30900518% 3,85798254%

Méximo 0,98862769%  8,49262775%

Minimo  -0,39932083%  1,62766849%

Fonte: Elaboragio do Autor,
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Graficamente plotamos os dados da tabela 4.3 na figura a seguir no plano

cartesiano de Risco-Retorno.

Figura 4.2 - Plano Risco-Retorno simulado dos portfélios sugeridos.
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Fonte: Elaboragio do Autor.

Como critério para avaliar o desempenho destas carteiras, escolhemos o Indice

de Sharpe de acordo com:

(4.1

A tabela a seguir exibe o ranking dos portfélios sugeridos por este método de
avaliacdo. Entdo, é possivel perceber que os modelos de B-L obtiveram uma posicdo
superior no ranking comparade com os modelos de Markowitz, sendo que, somente 0s
portfélios de B-L 2v. rel. IFNC e B-L 9v. abs. IFNC apresentaram um desempenho

superior ao ISteov, € em relagdo ao ISiknc, nenhum portfélio conseguiu ser superior.
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Tabela 4.4 -~ Ranking de fndice de Sharpe para os portfélios sugeridos.

IStpov BSirne Sporr. 18, > 18poy 1S, > ISy
Black-Litterman com 2 visbes relativas IFNC 0,13999835 SIM NAO
Black- Littertnan com 9 visties absohitas IFNC 0,12157199 SIM NAO
Black-Litterman com 9 visBes absohitas IBOV 011017105  NAQ NAO
Black-Litternuan com 2 vises relativas IBOV 0,11004671  NAOD NAO
Black-Litterman com 3 visSes absolutas IFNC 0,09707846 NAO NAO
Capializacio de Mercado 0,11865791 0,14222701 0,08292761 NAO NAO
Retomo de Equilibrio T1 0,0829276]  NAO NAO
Black-Litterman com 3 vises absohitas IBOV 0,08192053 NAO NAO
Markowitz 0,00008413  NAO NAO
Markowitz (min. var.} -0,01275996  NAQ NAO
Markowitz (tangents) -0,05332408  NAO NAO

Fonte: Elaboracio do Autor.

Nesta etapa, comparamos os retornos acumulados dos portfélios recomendados
no perfodo da nova amostra. Primeiramente confrontamos os resultados da modelagem
de B-L com os benchmarks e com a taxa livre de risco, o CDI], conforme a figura 4.3. Na

sequéncia analisamos o desempenho comparativo do modelo de B-L versus o de

Markowitz, demonstrado na figura 4.4.

Figura 4.3 - Simulagdo de retorno acumulado (B-L vs Benchmarks) -~ nova amostra.
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Fonte: Elaboracio do Autor.
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Figura 4.4 - Simula¢io de retorno acumulado (B-L vs Markowitz) — nova amostra.
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Fonte: Elaboragio do Autor.

Era esperado que os portfélios criados pela modelagem de B-L obtivessem um
desempenho superior aos do modelo de Markowitz, pois as tabelas 4.2 e 4.3 ja
demonstravam tal expectativa, considerando que as opinides dos analistas
recomendavam estimativas favoraveis para os ativos que, precisamente no periodo da
nova base amostral apresentaram uma performance positiva como pode ser observado

na figura 4.5 abaixo.

Figura 4.5 - Retorno acumulado da Carteira de Ag¢des na nova amostra histérica.

W = 1 - - <X - - - - - i~ ¥ N &> - &
N ; b : 2 B : E : > % > > 5 K 5
o ; < [’ 5 3 =
& oF -,‘7'?9’ F ¥ .:‘;!" o & o & qf W \\,&’ o 5,‘,6“
------- BBAS]  wwusBEDCH “BBSE) e CIEL} TIP3 v ITUBA - P§SA) 4~ SANBM 4+ SULAN

Fonte: Elaboracio do Autor.
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Em ultima andlise para a Carteira de Ages, apresentamos na tabela a seguir os
resultados de desempenho em relagdo aos benchmarks e da taxa livre de risco. Nesta
situagdo, é possivel perceber que os portfélios de B-L em sua maioria, na linha de
retorno acumulado superaram os modelados por Markowitz, bem como o IBOV
(23,83%), 0 IFNC (33,92%) e o CDI (4,16%), conforme evidenciado nas figuras 4.3 e 4.4,
No quesito de desempenho diério, temos que os portfélios em geral mantiveram um
equilibrio de resultados acima dos benchmarks e da taxa CDI, porém, comparando-se o
modelo de B-L com o de Markowitz, a modelagem de Black-Litterman novamente exibe

um resultado superior.

Tabela 4.5 - Estatfistica de retorno dos portfdlios sugeridos.

Cap. de
Merc. on B-L (9v abs) B-L (9vabs) B-L (3vabs) B-L (3v abg) B-L 2vrel B-L(2vreD Maskowitz

vetor IT IBOV IFNC IBOV IENC IBOV IFNC

Markowitz Markowitz
(Tangente) (Min. Var,}

Dias de amostra
76

Retomo Acurmulado 19,70% 30,33% 69,64% 19.35% 38,88% 26,65% 48,70% 2,94%;, -44,15% 1,49%
Retomo Médio Diirio 0,27% 0,40% 0,99% 0,27% 0,57% 0,35% 0,60% 0,05% -0,40% 0,03%
% de Dias Acina do IBOV 46,05% 52,63% 50,00% 50,00% 44,74% 53,95% 52,63% 44.74% 48,68% 4137%
% de Dias Abaixo do IBOV 53,95% 47,37% 50,00% 50,00% 55,26% 46,05% 47,37% 55,26% 51,32% 52,63%
% de Dias Acima do [FNC 39.47% 47,37% 48,68% 36,84% 44,74% 48,68% 56,58% 43.42% 50,00% 43,42%
% de Dias Abaixo do IFNC 60,53% 52,63% 51.32% 63,16% 55,26% 51,32% 43.42% 56,58% 30,00% 56,58%
% de Dias Acitna do CDI 51,32% 51,32% 50,005 50,00% 48,68% 53,95% 59,21% 41.37% 48,68% 50,00%
% de Dias Abaixo do CDI 48,68% 48,68% 50,00% 50,00% 51,32% 46,05% 40,79% 52,63% 51,32% 50,00%

% de Dias Retorno POSITIVO 52,63% 51,32% 50,00% 50,00% 48,68% 53.95% 59,21% 47,37% 48,68% 50,00%
% de Dias Retormo NEGATIVO  47,37% 48,68% 50,00% 50,00% 51,32% 46,05% 40,79% 52,63% 51,32% 50,00%

(ii) Para a Carteira de Fundos de Investimentos Imobiliarios.

As andlises para a Carteira de FII seguiram as mesmas diretrizes adotadas nas
andlises do item (i) desta secéo.

Entdo, para os modelos de Markowitz percebe-se novamente que o métode
seguiu a tendéncia de selecionar e aperfeicoar ativos com uma relacdo Risco-Retorno
mais favorével, isto pode ser visto nos ativos BBPO11, KNCR11 e SAAG11 que juntos
somam mais de 150% da distribuicio dos pesos. Em contrapartida, o modelo abriu
posi¢des vendidas nos ativos que mantém a relacio Risco-Retorno desfavoravel, como é
o caso dos ativos BRCR11 e HGRE11. Desta forma temos igualmente a Carteira de Agées,

uma Carteira de FIl também com baixo nivel de diversificacio.
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Tabela 4.6 - Resumo dos portfélios recomendados para a Carteira de FII,

® ®
i o Capitalizaggdo o Retomo de ., o Markowiz' o Markowitz!  Black-Litterman  Black-Litterman
Ativos de Mercado equilibrio T1 2 Rz (tangenie) {min, var.) com 10 visSes com 5 visbes
absoltas absolutas
IFIX IFIX
BRCRI11 18,00% 18,00% -42,96% 31,10% 13,00% 15,35% 15,92%
BBPO!11 15,47% 15,47% 58,78% 9,60% 21,62% 17,18% 17,93%
KNRI1 14,98% 14,98% 6,26% 8,83% 8.20% 12,64% 13,09%
HGRE11 8,42% 8,42% -21,72% 13,72% 5,06% -0,13% 0,34%
KNCR11 15,75% 15,75% 41,16% 5,22% 14,01% 17,51% 16,67%
HGBS11 7.51% 7.51% -0,03% 7,00% 5,28% 4,66% 6,83%
SAAGI1L 4,84% 4,84% 53,40% 8,61% 19,56% 16,87% 4,40%
TBOF11 5,77% 577% 5,15% 6,00% 5,79% 10,79% 5,25%
JSREI! 5,85% 5,85% -5,39% 1,04% -0,53% 2,61% 5,32%
HGLGI11 3,39% 3,39% 5,34% 8,88% 8,01% 6,28% 3,09%
Soma w 100,00% 100,00% 100,00% 100,00% 100,00% 103,75% 88,82%
saldo em ri? 0,00% 0,00% 0,00% 0,00% 0,00% -3,75% 11,18%
! considerando p como a rf difria média do periudo analisado
?sc 0 saldo em of for posiliv tende-se por mvestimenida, sc of for negativo, cntende-sc poOr empréstimo
Fonte: Elaboragio do Autor,
Figura 4.6 -~ Composigdo de w por portfélio sugerido.
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Na modelagem de B-L verifica-se que os resultados ficam levemente aproximados
aos valores do portfélio da Capitalizacdo de Mercado — que é uma das bases do modelo -
mesmo considerando que as projegdes dos analistas estio relativamente otimistas.
Entdo, percebe-se que o modelo se comporta de forma cautelosa, influenciado pelo alto
valor do coeficiente de avers3o ao risco com base no benchmark IFIX.

Igualmente, apdés a demonstragdo dos portfélios recomendados por ambas as
modelagens, aplicaremos tais diversifica¢es em uma nova amostra de dados histéricos
(que data de 04/01/2016 a 26/04/2016). Desta forma, utilizamos as informacdes de
Risco-Retorno desta nova amostra para cada ativo e aplicamos aos portfélios sugeridos,

conforme tabelas a seguir.

Tabela 4.7 - Risco-Retorno dos FII com dados da nova amostra historica.

Retorno (1) Risco (o)
BRCRI11 0,17964352% 1,67970788%
BBPO11 0,i2866070%  0,80520726%
KNRI11 0,14445352% 1,42090167%
HGREI1 0,04659292% 1,67301035%
KNCRI11 0,08338107%  0,71237357%
HGEBS11 0,15938780% 1,55197494%
SAAGIL 0,15325491% 0,99184729%
TBOF11 0,09900121% 1,62183862%
JSRE11 0,00554817% 1,16222514%
HGLG11 0,04036767% 1,37792817%

Fonte: Elaboracgio do Autor,

Tabela 4.8 - Risco-Retorno dos portfélios com dados da nova amostra histérica.

Portfdlios Retomo {P) Risco (6)
Capitalizagio de Mercado 0,11774828%  0,68945776%
Retorno de Equilibrio T1 0,11774828%  0,68945776%
Markowitz 0,12044891%  0,96438029%
Markowitz (tangente) 0,12565720%  0,82819452%
Markowitz {min, var.) 0,12438405%  0,61711023%
Black-Litterman com 10 visdes absoheas  IFIX  0,12911319%  0,63693329%
Black-Litterman com 5 visbes absoltas  IFIX  0,10898748%  0,58090641%
Media  0,12058391%  0,71520575%
Miximo 0,12911319%  0,96438029%
Minimo  0,10898748%  0,58090641%

Fonte: Elaboragio do Autor.
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Novamente dispomos dos dados da 4.8, na figura do plano cartesiano de Risco-

Retorno.

Figura 4.7 - Plano Risco-Retorno simulado dos portfélios sugeridos.
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Fonte: Elaboracio do Autor.

Aqui, também utilizamos como critério de avaliacdo de desempenho o Indice de

Sharpe conforme (4.1), em que os resultados podem ser conferidos na tabela a seguir.

Tabela 4.9 - Ranking de Indice de Sharpe para os portfélios sugeridos.

ISiprx Bporr. IS, > I8pyx
Black-Litterman com 10 vises absolatas IFIX 0,11865053 SIM
Markowitz (min. var.) 0,11479849 SiM
Black-Litterman com 5 visdes absohias IFIX 0,09544869 SIM
Capitalizagiio de Mercado 0,08646964 0,09312762 SIM
Retorno de Equilibrio TT 0,09312762 SiM
Markowitz (tangente) 008707673  SIM
Markowitz 0,06937946 NAO

Fonte: Elaboragio de Autor.

Com base na tabela acima, vemos que os portfélios de B-L e Markowitz

(Tangente) foram destaque no ranking, principalmente o portfélio de B-L 10v. abs. que

lidera o grupo. Em suma, todos os portfélios superaram o ISirx com excegiio do de

Markowitz.
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Agora, comparamos os retornos acumulados dos portfélios sugeridos no periodo

da nova amostra. Do mesmo modo, confrontamos os resultados da modelagem de B-L

com 0s benchmarks e com a taxa livre de risco, o CDI, conforme a figura 4.8. Na

sequéncia analisamos o desempenho comparativo do modelo de B-L versus o de

Markowitz, demonstrado na figura 4.9.

Figura 4.8 - Simulagdo de retorno acumulado (B-L vs Benchmarks) - nova amostra.
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Figura 4.9 - Simulagio de retorno acumulado (B-L vs Markowitz) - nova amostra.
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Figura 4.10 - Retorno acumulado da Carteira de FII na nova amostra historica.
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Diante dos graficos apresentados, podemos verificar que na figura 4.8 os modelos
de B-L nio conseguem superar seu benchmark principal - o IFIX - da mesma maneira, se
quer chega préximo ao IBOV. A partir da segunda quinzena de Mar/16 os portfélios de
B-L comecam a obter um resultado acumulado positivo em relagdo ao CD], esta mudanca
coincide com as curvas demonstradas na figura 4.10 que evidencia esta inversdo de
tendéncia, e pode ser explicada devido 2 nova sinalizagio do COPOM - Comité de Politica
Monetéria do Banco Central do Brasil - dada ao mercado, referente a trajetéria futura da
taxa Selic. Neste periodo o mercado comegou a precificar uma possivel queda na Selic
(atualmente em 14,25% a.a.) para o ano de 2016, e tradicionalmente de maneira
generalizada, hd uma relagéo inversa entre Fll e taxa de juros (Selic e CDI), ou seja, uma
diminui¢io nas taxas de juros faz com que os FII fiquem mais atrativos e
consequentemente o prego das cotas sobem no curto prazo - o inverso é verdadeiro.

Comparando a modelagem de B-L versus o de Markowitz, vemos através da
figura 4.9 que, com excegio do portfélio de Markowitz o restante mantém resultados
acumulados negativos e sé iniciam uma inversio de tendéncia a partir do perfodo de
sinalizacio dado pelo COPOM, de acordo com o explicado no parégrafo anterior, sendo
gue todos os portfélios sugeridos se mantém relativamente proximos até o final do

periodo analisado.
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Por ultimo, apresentamos na tabela a seguir os resultados de desempenho em
relagdo aos benchmarks e da taxa livre de risco. No contexto de retorno acumulado,
apesar das proximidades de resultados dos portfélios sugeridos, verifica-se que o
modelo de B-L 10v. abs. foi levemente superior em relagio aos outros portfélios.

Nas linhas de desempenho didrio, temos que os portfélios em geral também

mantiveram certo equilibrio de resultados acima dos benchmarks e da taxa CDL

Tabela 4.10 - Estatistica de retorno dos portfélios sugeridos.

Cap. de 3 !
Mere. o B-L (10v abs) B-L (5v abs) Markowitz ?Ar::,ko:ftg (ﬁﬁc%\:ﬁ
vetor I1 IFIX IFIX £e :
Dias de arnostra
76

Retorno Acumulado 9,16% 10,13% 8,49% 9,20% 9,73% 9,75%
Retorno Médio Didrio 0,12% 0,13% 0,11% 0,12% 0,13% 0,12%

% de Dias Acima do IFIX 55,26% 55,26% 51,32% 56,58% 56,58% 55,26%
% de Dias Abamo do IFIX 44.74% 44.74% 48,68% 43,42% 43.42% 44.74%
% de Dias Acima do CDI 52,63% 50,00% 51,32% 48.68% 53,95% 55,26%
% de Dias Abaixo do CDI 47,37% 50,00% 48,68% 51,32% 46,05% 44, 74%
% de Dias Retomo POSITIVO 53,95% 56,58% 52,63% 50,00% 57,89% 57,80%
% de Dias Retorno NEGATIVO 46,05% 43,42% 47.37% 50,00% 42.11% 42.11%

Fonte: Elaboracio do Autor.
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5. Conclusdes Finais

0 modelo de Black-Litterman aparece no mundo das finangas na década de 90 -
mais especificamente na 4rea de gestdo de portfélios - como alternativa ao tradicional
modelo de Média-Variincia desenvolvido anteriormente por Harry Markowitz. Tendo
como propésito, corrigir as “falhas” e “problemas” oriundos das decisdes de
investimentos financeiros. Tal modelo traz oportunidades tteis e adequadas para os
agentes do mercado financeiro, proporcionando flexibilidade no grau em que permite a
inser¢dio de opinides subjetivas dentro de um modelo com uma estrutura estatistica
robusta, combinando informagées quantitativas de maneira sélida e condizente com as
suas expectativas. Desta maneira, a proposta dos autores é particularmente atrativa,
pois, sabemos que o mercado financeiro é repleto de opinides, visdes ou especulagdes
subjetivas, seja para ativos de renda fixa, renda varivel ou para as perspectivas
econdmicas e politicas.

Nas aplicagdes realizadas nesta monografia, no capitulo 3, o modelo B-L atingiu
um dos seus objetivos, demonstrando que a distribuicio de pesos foi destacada de
acordo com as opinides ou visdes atribuidas por cada tipo de simulacdo (absoluta ou
relativa), portanto, o modelo impds risco exclusivamente em ativos que tiveram uma
visdo definida e manteve os demais ativos em posi¢des neutra, préximo da carteira de
equiltbrio e/ou Capitalizacio de Mercado. Contrariando o modelo de M-V que, tanto a
Carteira de A¢bes como a de FII, obtiveram distribuigbes tendenciosas e com baixo nivel
de diversificacio.

No capitulo 4, comparando os dois modelos, constata-se que o de B-L apresentou
resultados superiores em relagiio ao de Markowitz, principalmente para as simulagdes
efetuadas na Carteira de A¢bes, quando se avaliou o desempenho de retorno acumulado
e também via o0 método de classificagio de carteiras, o indice de Sharpe.

Para finalizar, como sugestio para pesquisas de temas relacionados a esta
monografia, indicamos: 1) aplicacio a uma carteira de titulos publicos ou privados de
renda fixa; 2) teste do modelo para outros métodos de inser¢do de visdes, como os
modelos de séries temporais ou de previsio ARMA, ARIMA e GARCH; 3) verificar a

validade do modelo para periodos mais longos, por exemplo, de 2 a 3 anos.
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APENDICE A - Demonstragdes Mateméticas

Neste apéndice, apresentamos os resultados analiticos cujas demonstragbes sao
mais elaboradas, e faz sentido deduzi-las neste espago. Estas expressdes utilizam
diversos conceitos expostos nas se¢des de onde foram retiradas, e, portanto, servem
para auxiliar a compreensdo da teoria e ilustrar os métodos numeéricos utilizados nas

aplicag@es.
Al. - Uma breve introdugéo a Teoria de Bayes

Esta secfio fornece uma visdo geral de parte relevante da teoria de Bayes, a fim de
criar um vocabulirio comum que pode ser usado na andlise do modelo de Black-

Litterman a partir de uma abordagem Bayesiana.

P(BlA)P(A

peaim = PELPD
(A1.1)

Sendo,
P(A): distribuicdo a priori.
P(B): distribui¢io marginal da visdo do investidor.
P(A|B): distribuicdo a posteriori.
P(B|A): distribuigdo de amostragem.

Quando aplicamos esta férmula e solucionamos para obter a distribuicdo a2
posteriori, a distribuicdo P(B) ird desaparecer nas constantes de integragdo de modo
que a partir deste ponto em diante iremos despreza-la.

Um problema geral no uso da teoria de Bayes é identificar uma distribuicao a
priori intuitiva e tratdvel. Um dos pressupostos fundamentais do modelo de Black-
Litterman (e também de otimizacio por Média-Varidncia) é que os retornos de ativos
sio normalmente distribuidos. Por esse motivo, vamos nos limitar ao caso de
distribuicdes condicionais e & priori distribufdas normalmente. Uma vez que oS
parimetros de entrada sio distribuidos normalmente, entdo a distribuicdo a posteriori

também ira seguir uma distribui¢do normal.
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Outro pressuposto essencial do modelo de B-L, é que a variancia das distribuicoes
a priori e condicional sobre a média sdo conhecidas, mas a média ndo é conhecida. Este
processo é conhecido na literatura Bayesiana como média desconhecida e varidncia
conhecida.

Definindo as distribui¢des, temos que:

S
P(A) ~ N(x>)

(A1.2)

Em que,

§: é a variincia da amostra da distribuicdo sobre a média, com n amostras.

P(B|A) ~ N(1, )
(A1.3)

Sendo,
Q: é a incerteza de estimativa na média p estimativa da média, ndo é a varidncia

de distribuigido sobre a média.
P(A|B) ~ N{[Q '+ nS x)[Q" + nS~1]7L,[Q7Y + nS~1] 71}
(A1.4)

E, a variincia em (A1.4) é a variincia da média estimada sobre a média atual. Em
estatistica Bayesiana o inverso da varidncia é conhecido como a precisdo. Desta forma,
podemos descrever a distribui¢io a posteriori como a média ponderada das

distribuicdes a priorie condicional, onde o fator de ponderacdo € a respectiva precisao.
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A2. - Deducdo da Equagio Completa de Black-Litterman

Este apéndice apresenta uma dedugio alternativa da equagio completa de Black-
Litterman para o retorno a posteriori esperado. Partindo de (2.22) que vai decorrer em

(2.28).
A = E[R] = {[(zZ)™* + P'Q~*P|"1[(+Z)~ 11 + P'Q"1Q]}
(A2.1)

Separando em duas partes o segundo termo:
i=FE[R] = {[[('.':2)‘1 + P'Q71P] (¢2) 1] + [[(zZ) "1 + P’Q-ip]-l(P'n-1Q)]}
Substituindo o termo de precisfio no primeiro termo com a forma alternativa:

fi = B[R] = {[[r= ~ wzP'[PrzP’ + 0] PE] (D)7 + [0 + P~ (P'01Q)])
i =E[R] = [n ~[zzP’[PsP + n]‘lpn]] +[[(z=)™ + P'Q~tP] 1 (P'a-1Q)]
ji = E[R] = [n — [zZP'[PrzP’ + .Q]“lpn]] + [EDEE)ED) ™ + PO P (P'Q~1Q)]
i = E[R] = [n — [z=P'[PrzP’ + n]"Pn]] + [(ED)[L, + P'O~1PrZ]~1(P'0-1Q)]
i=E[R] = [n — [cZP'[Pr3P’ + n]‘lpn]] + [2[1, + PO 1PLE] (P 1) "10)]
ji=E[R] = [n — [zzP'[PrzP’ + n]‘lpn]] + [72[Q(P") 1 + Pr3]1Q]]
fi = E[R] = [n ~ [¢=P'[PrzP’ + n]‘lpn]] + [TZP'(P)TQ(P) ! + PrE]—1Q]]

fi=E[R] = [1- [r=P'[PrsP’ + 0]7*PT]| + [c2P’[2 + PrZP]~1Q]]

Assim, apresenta-se a forma alternativa da equacio de Black-Litterman para o

retorno a posteriori:
fi = E[R] = [IT + zZP'(xPEP")~1)(QPIT)

(A2.2)
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A3. - Etapas resumidas para aplicagio do modelo de Black-Litterman

Este apéndice resume as etapas necessarias para implementar o modelo de

Black-Litterman.

Temos os seguintes parametros:

wmks = Pesos de equilibrio para cada ativo. Derivado do Capitalizacdo de Mercado
ou do CAPM;

I = Matriz de covaridncias entre os ativos. Pode ser calculado a partir de dados
histéricos;

rf = Taxa livre de risco;

A= O coeficiente de aversdo ao risco de mercado (benchmark);

T = A medida da incerteza da variancia de equilibrio;

Primeiro usamos otimizagfio reversa para calcular o vetor de excesso de retorno

implicito do equilibrio de mercado (n x 1), usando (2.4).

II=AZw

Em seguida, formulamos os pontos de vista dos investidores, analistas e gestores,
especificando P, Q, e Q. Dadas as k visdes e n ativos, entdo P é uma matriz (k x n) onde
cada linha pode somar 0 (visdo relativa) ou 1 (visdo absoluta). Q é um vetor (k x 1) dos
visGes e {) € uma matriz diagonal (n x n) da covariincia das visSes.

Para o préximo passo, assumindo que estamos certos em todos os pontos de
vista, nos aplicamos a “equacdo mestre” de Black-Litterman para calcular a estimativa

dos retornos a posterioriusando (2.22).

f=E[R] ={[(zD)™ + P'Q7'PIM[(zZ)"' 1 + P'21Q]}

E varidncia a posterioriusando (2.23).

¢~ ={lD) + PP
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Computamos a nova variancia a posterioriusando (2.24).
E[R]~ N(,£) comE=3+ ¢!

E agora podemos calcular os pesos para a carteira 6tima eficiente sem restrigdes
a partir de (2.29).

o' = (A5



