
UNIVERSIDADE DE SÃO PAULO
ESCOLA DE ENGENHARIA DE SÃO CARLOS

João Victor Montanha Costa de Oliveira

Utilização da temperatura local para otimização
autônoma de anúncios de marketing digital

São Carlos

2020

João Victor Montanha Costa de Oliveira

Utilização da temperatura local para otimização
autônoma de anúncios de marketing digital

Monografia apresentada ao Curso de Enge-
nharia Elétrica com Ênfase em Eletrônica,
da Escola de Engenharia de São Carlos da
Universidade de São Paulo, como parte dos
requisitos para obtenção do título de Enge-
nheiro Eletricista.

Orientador: Prof. Dr. Evandro Luis Linhari
Rodrigues

São Carlos
2020

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

Oliveira, João Victor Montanha Costa de

 O48u Utilização da temperatura local para otimização
autônoma de anúncios de marketing digital / João Victor
Montanha Costa de Oliveira; orientador Evandro Luis
Linhari Rodrigues. São Carlos, 2020.

Monografia (Graduação em Engenharia Elétrica com

ênfase em Eletrônica) -- Escola de Engenharia de São
Carlos da Universidade de São Paulo, 2020.

1. Marketing Digital. 2. Google Ads. 3. Dados de

temperatura. 4. Google Ads Script. 5. Automação. 6.
Geolocalização. I. Título.

Eduardo Graziosi Silva - CRB - 8/8907

Powered by TCPDF (www.tcpdf.org)

 1 / 1

AGRADECIMENTOS

Agradeço primeiramente aos meus pais e à minha irmã que estiveram presentes
durante toda minha trajetória escolar, não medindo esforços para me apoiar sempre que
precisei. Jamais teria tido a oportunidade de escrever uma monografia de conclusão de
curso sem o incentivo e suporte deles.

Também gostaria de agradecer ao professor Floriano Castilho, responsável direto
pela minha paixão pelas ciências exatas e pela engenharia devido às suas incríveis aulas
que tive o prazer de participar entre os anos de 2006 e 2010, me ensinando a raciocinar de
uma forma totalmente diferente, influenciando muito meu aprendizado até hoje.

Dentro da universidade, agradeço a todos meus amigos que estiveram presentes e
fizeram deste período uma experiência única e excelente. Agradeço também ao Warthog
Robotics, grupo de extensão ao qual fiz parte durante a maior parte da minha graduação e
que me deu a oportunidade de aprender engenharia na prática e conhecer pessoas incríveis.
Estendo também os agradecimentos aos professores que fizeram a diferença nas aulas,
em especial ao Prof. Dr. Evandro Rodrigues, que além de aceitar ser o orientador deste
trabalho, sempre incentivou em suas aulas a busca pelas novas tecnologias e a pensar como
engenheiro na resolução de problemas.

Por fim, agradeço à Raccoon Marketing Digital, empresa a qual estagiei e hoje
sou funcionário, por todo o conhecimento adquirido na área de marketing digital, per-
mitindo que eu participasse de toda a idealização e realização da ferramenta descrita
nesta monografia. Agradeço em especial à Alicia Dias, que esteve presente durante todo o
desenvolvimento, me auxiliando sempre que necessário.

RESUMO

OLIVEIRA, J. Utilização da temperatura local para otimização autônoma de
anúncios de marketing digital. 2020. 86p. Monografia (Trabalho de Conclusão de
Curso) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos,
2020.

Esta monografia tem como objetivo desenvolver uma ferramenta capaz de utilizar infor-
mações de temperatura de cada cidade para influenciar a performance de anúncios de
marketing digital em uma localização através da modificação de ajustes de lance de local
no Google Ads. Como diferencial em relação a outras ferramentas disponíveis, esta foi
criada prezando pela fácil personalização sem necessidade de conhecimentos prévios de
programação, além de utilizar o histórico de resultados das campanhas e cidades dos
últimos sete dias como um modificador de lance. O script desenvolvido utiliza ferramentas
gratuitas do Google, como o Google Planilhas e as APIs de desenvolvedores, obtendo os
dados de temperatura diretamente do Centro de Previsão de Tempo e Estudos Climáticos
(CPTEC) pertencente ao INPE (Instituto Nacional de Pesquisas Espaciais). Toda estrutura
do código e da planilha de controle são explicadas neste documento, incluindo todas as
possíveis customizações e próximos passos que podem ser efetuados com este trabalho.

Palavras-chave: Marketing digital. Google Ads. Google Ads Script. Dados de temperatura.
Automação. Geolocalização.

ABSTRACT

OLIVEIRA, J. Usage of local temperature to autonomous optimization of
digital marketing ads. 2020. 86p. Monografia (Trabalho de Conclusão de
Curso) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos,
2020.

This monograph aims to develop a tool capable of using temperature information from
each city to influence the performance of digital marketing ads in a location by modifying
location bid adjustments in Google Ads. As a differential in relation to other available
tools, this was created aiming at an easy customization without the need for previous
programming knowledge, using campaigns and locations previous results from the last
seven days as a bid modifier. The developed script uses free Google tools, such as Google
Spreadsheets and its developers APIs, obtaining temperature data directly from brazilian
Weather Forecast and Climate Studies Center (CPTEC) from INPE (National Institute
for Space Research). The entire structure of the code and the control spreadsheet are
explained in this document, including all possible customization and next steps that can
be performed with this work.

Keywords: Digital Marketing. Google Ads. Google Ads Script. Temperature data. Au-
tomation. Geolocation.

LISTA DE FIGURAS

Figura 1 – Interesse de pesquisa relativo ao ponto mais alto durante o período de
2 de jun. de 2019 a 24 de mai. de 2020 20

Figura 2 – Estrutura de contas no Google Ads . 25
Figura 3 – Árvore de elementos do XML do CPTEC/INPE para a capital Rio Branco 33
Figura 4 – Esquema de troca de informações do código em funcionamento 40
Figura 5 – Execução do script na plataforma do Google Ads para dados de tempe-

ratura . 51
Figura 6 – Árvore de elementos do XML do CPTEC/INPE para Aracaju, Cuiabá

e Porto Alegre . 53
Figura 7 – Execução do script para campanhas da categoria “Frio” 54
Figura 8 – Execução do script para campanhas da categoria “Calor” 55
Figura 9 – Alterações aplicadas em uma campanha da categoria “Calor” 57
Figura 10 – Execução do script na plataforma do Google Ads com simulação de

histórico . 60
Figura 11 – Alterações do script utilizando o histórico de resultados 61

LISTA DE TABELAS

Tabela 1 – Códigos CPTEC/INPE para cada capital brasileira 34
Tabela 2 – Exemplos de ajustes de lance de acordo com os valores na planilha . . 36
Tabela 3 – Exemplo de planilha de controle . 37
Tabela 4 – Exemplo de planilha de campanhas . 37
Tabela 5 – Exemplo de planilha de locais . 38
Tabela 6 – Exemplo de planilha de condições . 39
Tabela 7 – Exemplo de planilha de condições modificadas 39
Tabela 8 – Exemplo de planilha de histórico . 40
Tabela 9 – Campanhas criadas para o teste . 49
Tabela 10 – Condições de temperatura criadas para o teste 50
Tabela 11 – Condições de lances modificados criadas para o teste 50
Tabela 12 – Planilha de controle elaborada para o primeiro teste 51
Tabela 13 – Resultado obtido pela aba Histórico (dia 11 de junho de 2020) 52
Tabela 14 – Condição climática de cada cidade para o dia 11/06/2020 56
Tabela 15 – Dados utilizados para simulação de histórico 58
Tabela 16 – Resultado obtido pela aba Histórico (dia 12 de junho de 2020) 59

LISTA DE ABREVIATURAS E SIGLAS

CPTEC Centro de Previsão de Tempo e Estudos Climáticos

HTML5 Hypertext Markup Language, versão 5

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

INPE Instituto Nacional de Pesquisas Espaciais

ROAS Retorno Sobre o Investimento Publicitário

URL Uniform Resource Locator

XML Extensible Markup Language

SUMÁRIO

1 INTRODUÇÃO . 19
1.1 Motivação . 20
1.2 Objetivo . 20
1.3 Justificativa . 21
1.4 Organização do trabalho . 21

2 FUNDAMENTAÇÃO TEÓRICA . 23
2.1 Marketing digital . 23
2.1.1 Métricas relevantes . 23
2.1.2 Google Ads . 24
2.1.2.1 Estrutura da plataforma . 24
2.1.2.2 Ajustes de lance . 26
2.1.2.3 Funcionamento dos leilões . 27
2.2 Google Developers . 27
2.2.1 Google Apps Script . 28
2.2.1.1 Serviço para Google Planilhas . 28
2.2.1.2 Serviço para acesso a URLs . 28
2.2.1.3 Serviço para acesso e manipulação de XML 29
2.2.1.4 Serviços utilitários . 29
2.2.2 Google Ads Script . 29
2.2.2.1 Relatórios do Google Ads . 30
2.2.2.2 Critérios de direcionamento de anúncios 30
2.3 Previsão do tempo em XML - CPTEC/INPE 30
2.3.1 Busca de localidade . 31
2.3.2 Requisição da previsão do tempo . 31

3 DESENVOLVIMENTO . 35
3.1 Planilha de controle . 35
3.1.1 Controle . 35
3.1.2 Campanhas . 36
3.1.3 Locais . 37
3.1.4 Condições . 38
3.1.5 Lances modificados . 39
3.1.6 Histórico . 39
3.2 Código do script . 40
3.2.1 Variáveis e parâmetros globais . 41

3.2.2 Leitura e organização dos dados . 43
3.2.2.1 Criação do mapa de regras . 43
3.2.2.2 Leitura da previsão do tempo do CPTEC/INPE 44
3.2.3 Definição de ajustes de lance baseada em temperatura 45
3.2.4 Definição de ajustes de lance baseado em histórico de performance 46
3.2.5 Registro no histórico de temperatura . 47

4 RESULTADOS . 49
4.1 Dados de temperatura com histórico nulo 49
4.1.1 Utilização da planilha de controle para determinar as regras 49
4.1.2 Verificação da leitura de temperatura . 51
4.1.3 Verificação das alterações realizadas . 52
4.2 Dados de temperatura com histórico simulado 53
4.2.1 Dados utilizados para simulação . 56
4.2.2 Verificação das alterações desejadas . 56

5 CONCLUSÃO . 63

REFERÊNCIAS . 65

APÊNDICES 67

APÊNDICE A – CÓDIGO FONTE 69

19

1 INTRODUÇÃO

Orientar os anúncios para aparecerem para as pessoas corretas e no momento
correto é um dos principais objetivos em uma estratégia de marketing de performance, a
qual se baseia em dados para maximizar o retorno em métricas relevantes em relação ao
investimento realizado. Justamente por isso, este trabalho foi desenvolvido com o intuito
em identificar os locais em que a sensação de temperatura do dia propicia um melhor
cenário para conversão, ou seja, uma ação desejada (como uma venda, por exemplo) seja
executada a partir de uma ação publicitária ou anúncio.

No setor de climatização e ventilação, por exemplo, há um aumento da necessidade
da aquisição de ventiladores e aparelhos de ar-condicionado em locais com alta temperatura,
como evidenciado pela notícia do Estadão (2019), em que houve crescimento de 70% de
vendas de ventiladores durante o verão. Em contrapartida, aquecedores e aparelhos de
ar-condicionado que possuem a função de aquecer tendem a serem mais requisitados em
tempos frios. Direcionar esses produtos para os locais mais adequados é, então, fundamental
para uma empresa que os tenha em seu catálogo.

Outro exemplo está nas baterias automotivas, que tendem a apresentar mais defeitos
em temperaturas extremas, principalmente durante o frio, em que problemas com a bateria
são evidenciados devido a incapacidade de produzir carga suficiente para o motor de
partida nesta condição (Chikara et al., 2020).

Pode-se utilizar estrategicamente a informação de temperatura em muitos outros
setores, como o alimentício, o da moda e o de lazer, que são influenciados direta e
indiretamente por ela. Coleções de outlet, por exemplo, que contam com roupas de
estações anteriores, podem ter sua divulgação impulsionada com melhor retorno em locais
em que a temperatura está fora do padrão da estação atual.

Somando-se a todos estes pontos levantados a vasta diversidade climática do Brasil
devido a sua extensão territorial, torna-se evidente os benefícios em utilizar a temperatura
a favor do marketing digital para um negócio, principalmente se a cobertura do serviço
oferecido for nacional. Ao mesmo tempo, seria ineficiente analisar a temperatura de cada
cidade e ajustar manualmente as campanhas de anúncios, o que motiva a criação de um
script capaz de realizar estas ações de maneira automatizada.

Buscando explorar oportunidades nesta área em crescente desenvolvimento, surgiu,
em conjunto com a Raccoon Marketing Digital1, a ideia de elaborar uma solução de
engenharia para otimizar os resultados em marketing digital através do uso de informações
de temperatura de cada cidade, que será endereçada neste trabalho.

1 Agência de Marketing Digital de São Carlos, SP <https://raccoon.ag/>.

20

1.1 Motivação

A ascensão ano a ano do setor de marketing digital, que vem ocupando o espaço do
marketing tradicional com potencial de ser um dos setores mais expressivos do futuro (PAK
et al., 2018), teve sua importância ampliada com a chegada do Covid-19, o novo corona
vírus, e sua mudança no cotidiano das pessoas e das empresas em todo o mundo. Em um
período em que o isolamento social é essencial e até mesmo imposto para a população,
a internet passou a ser a sustentação de diversos negócios, forçando que empresas e
estabelecimentos utilizem o meio digital (SEMRUSH, 2020).

O gráfico apresentado pela Figura 1 ilustra o crescimento do interesse pela pesquisa
do termo “comprar online” no território brasileiro em comparação com o termo “covid-19”
no Google, evidenciando ainda mais a importância das vendas onlines neste período
delicado e, consequentemente, o aumento da necessidade de se utilizar estratégias de
marketing digital para se obter sucesso neste meio.

Figura 1: Interesse de pesquisa relativo ao ponto mais alto durante o período de 2 de jun.
de 2019 a 24 de mai. de 2020

0

25

50

75

100

2019-07-01 2019-09-01 2019-11-01 2020-01-01 2020-03-01 2020-05-01

comprar online: (Brasil) covid-19: (Brasil)

Fonte: Elaborada pelo autor a partir de dados do Google Trends.

1.2 Objetivo

O objetivo deste trabalho consiste em disponibilizar uma solução capaz de auxiliar
de maneira automatizada o gerenciamento de investimento de mídias pagas de maneira
estratégica para que possa ser utilizada por todos os anunciantes, principalmente os de
pequeno e médio porte que possuem maiores restrições orçamentárias e necessitam de
maior precisão no direcionamento de seus anúncios.

21

1.3 Justificativa

Para atingir o objetivo desta monografia, deve-se elaborar um script capaz de definir
automaticamente e em menos de trinta minutos, ajustes de lance em campanhas do Google
Ads2 para todas as cidades brasileiras desejadas, baseando-se em dados de temperatura.
A solução deve ser facilmente personalizada para cada modelo de negócio, não exigindo
conhecimentos prévios de programação por parte de seu utilizador. Além disso, deve levar
em consideração o histórico recente de resultados naquele local, adicionando-se assim uma
inteligência extra aos ajustes, que pode ser fundamental para melhores resultados.

Existem na literatura outras soluções que utilizam a temperatura como entrada
para determinar-se ajustes de lances em Google Ads, como a apresentada pelo Google
(2019). No entanto, essas soluções falham em dois aspectos importantes para o objetivo
deste trabalho:

Fácil personalização

A configuração das condições desejadas exige elevado trabalho manual e desencoraja
a utilização de várias campanhas e cidades, uma vez que é necessário adicionar cada local
e cada campanha em uma linha, definindo sua regra.

Outra questão está na utilização do OpenWeatherMap3, que pode apresentar
problemas de desambiguação devido a existência de cidades homônimas, porém de estados
diferentes, informação que não consta no serviço.

Uso do histórico de resultados

As alterações realizadas são baseadas puramente na temperatura, não levando em
consideração os resultados recentes do local. Desta forma, é necessária intervenção manual
para modificar os parâmetros das regras caso alguma cidade esteja se sobressaindo em
relação ao objetivo da campanha, ferindo assim a ideia de ser um solução automática.

1.4 Organização do trabalho

Esta monografia inicia-se no Capítulo 2 com explicações e fundamentações acerca
da área de marketing digital e do Google Ads, além de introduzir informações relevantes
sobre os recursos utilizados no código elaborado. Na sequência, o Capítulo 3 apresenta o
desenvolvimento do trabalho, informando todo o processo de elaboração e funcionamento
do script desenvolvido, com os resultados obtidos pelos testes executados sendo apreciados
pelo Capítulo 4. Por fim, a monografia é concluída no Capítulo 5, dissertando também
sobre seus possíveis próximos passos.

2 Plataforma de marketing digital do Google <https://ads.google.com/>.
3 Serviço de processamento de dados de temperatura <https://openweathermap.org/>.

https://ads.google.com/
https://openweathermap.org/

23

2 FUNDAMENTAÇÃO TEÓRICA

Neste capítulo serão apresentados os conceitos e ferramentas utilizados para o
desenvolvimento do trabalho.

2.1 Marketing digital

Com o marketing deixando de ser veiculado apenas em seus meios tradicionais
para atingir os canais digitais como mídias sociais, blogs e páginas da web, que antes
eram vistos apenas como uma forma de entretenimento e de conexão entre pessoas, surgiu
o conceito de marketing digital, referindo-se assim à utilização de tecnologias digitais
para promoção de produtos e serviços, o que tem crescido rapidamente nos últimos anos
(BENGEL; SHAWKI; AGGARWAL, 2015).

2.1.1 Métricas relevantes

Devido à possibilidade de se obter dados fieis e em larga escala através de tags,
que podem ser definidas como um pedaço de código que é adicionado em uma página web
com o objetivo de fornecer informações sobre sua utilização por cada usuário (BENGEL;
SHAWKI; AGGARWAL, 2015), é possível lidar com o marketing digital de forma analítica,
utilizando as informações e métricas relevantes para encontrar um ponto de máximo
retorno em relação a um investimento realizado, o chamado “marketing de performance”.
Deseja-se obter então mais resultados com o menor investimento possível.

Neste trabalho, duas métricas são utilizadas para medir, de forma simplificada, a
performance de uma campanha.

Conversões

Uma conversão pode ser interpretada como uma meta atingida. Para um comércio
eletrônico, por exemplo, uma conversão pode ser um cliente efetuar uma transação, porém
há diversas outras metas que podem ser consideradas conversões em outros contextos,
como o cadastro em um site, o download de um aplicativo ou até mesmo acessar uma
página específica.

Como as conversões idealmente estão relacionadas ao objetivo de negócio, torna-se
relevante atribuir qual a contribuição de uma ação de marketing digital para cada conversão.
Devido a isso, surgiu o conceito de modelos de atribuição.

Diferentes modelos de atribuição estão disponíveis nas diversas plataformas de
marketing digital, sendo os mais conhecidos o modelo “último clique”, que atribui a
conversão em sua totalidade ao último canal pelo qual o usuário passou antes da conversão,

24

e o modelo “baseado em dados”, que utiliza informações passadas para definir a contribuição
de cada um dos canais que o usuário interagiu antes da conversão (GOOGLE, 2020).
Enquanto no primeiro modelo citado as conversões são tratadas como números inteiros, no
segundo é comum ocorrer o fracionamento de uma conversão em ações ou canais distintos.

Associada à métrica de conversão, está a métrica de valor de conversão. Desta
forma, é possível diferenciar conversões mais relevantes para um negócio. No caso do
comércio eletrônico, é comum que o valor de conversão seja equivalente à receita da
transação.

Retorno Sobre o Investimento Publicitário

ROAS, ou Retorno Sobre o Investimento Publicitário, é uma métrica importante
para o comércio, relacionando a receita total de uma campanha ou ação de marketing com
seu investimento.

No Google Ads, plataforma utilizada neste trabalho, o ROAS deve ser calculado
pela divisão do valor de conversão com o custo, ambos referentes a uma mesma dimensão
em análise, que pode ser, dentre várias possibilidades, uma campanha, uma segmentação
de público específica ou até mesmo um local, como é realizado pelo script apresentado
nesta monografia.

O script em questão permite que outras métricas sejam utilizadas no lugar das pre-
viamente configuradas, exigindo no entanto adaptações do código para seu funcionamento
correto. Para modelos de negócios em que não seja adequado analisar ROAS, pode-se, por
exemplo, substituí-lo pelo Custo por Aquisição, ou CPA, que relaciona o investimento com
a quantidade de conversões obtidas.

2.1.2 Google Ads

Google Ads é a solução de publicidade online do Google. Trata-se de uma plataforma
na qual os anunciantes podem configurar e gerenciar anúncios pagos para atingir seus
objetivos de negócio nas mais diversas redes do Google, como a Rede de Pesquisa (a busca
do Google) e a Rede de Display (grupo com mais de dois milhões de websites, vídeos e
aplicativos). De acordo com o critério do anunciante, define-se o perfil do público desejado
para suas campanhas publicitárias, em quais momentos seus anúncios irá atingi-lo e as
metas de negócio desejadas. (GOOGLE, 2020).

2.1.2.1 Estrutura da plataforma

Dentro do Google Ads, cada conta de anúncio possui campanhas que, por sua
vez, possuem grupos de anúncios, os quais, como o nome sugere, possuem anúncios.
Além disso, é possível possuir um agrupamento de contas de anúncios em uma MCC,
sigla para Minha Central de Contas. A Figura 2 ilustra esta hierarquia com algumas

25

particularidades de cada elemento.

Figura 2: Estrutura de contas no Google Ads

Fonte: Google (2020).

Cada campanha é determinada por um nome, que deve ser único dentro da conta
de anúncios, e um conjunto de configurações, com algumas delas sendo:

a) orçamento: define o investimento médio diário ou mensal;

b) tipo de campanha: determina como e onde os anúncios serão vistos. Alguns
exemplos são:

– Rede de Pesquisa (anúncios de texto);
– Rede de Display (anúncios gráficos e de texto pela Web);
– Shopping (anúncios de produtos);
– Vídeo (anúncios em YouTube e sites parceiros);
– App (anúncios voltados para a promoção de aplicativos);
– Discovery (anúncios em produtos do Google, como o YouTube, o Gmail e o
Discover).

c) conversões: determina qual ação de conversão será contabilizada por essa
campanha;

d) estratégia de lances: define qual a estratégia será utilizada nos leilões de
anúncios, podendo ser lances manuais ou lances automáticos;

e) locais: define em quais locais os anúncios serão veiculados, podendo ser limitados
a países, estados, cidades ou até mesmo dentro de raios delimitadores.

26

Para o funcionamento do script descrito nesta monografia, é necessário que a
campanha utilize a estratégia de lance manual e possua segmentadas as cidades as quais
deseja-se monitorar a temperatura. Devido a isso, campanhas do tipo “App” ou “Discovery”
não são contempladas por esta solução, uma vez que utilizam exclusivamente as estratégias
de lances automáticos.

Dentro de cada campanha, devem ser configurados grupos de anúncios, os quais
delimitam um conjunto de anúncios e suas regras específicas, variando para cada tipo de
campanha. Por exemplo, em uma campanha de pesquisa, cada grupo de anúncio possui um
conjunto de palavras-chave responsável por acionar seus anúncios - caso alguém pesquise
no Google por um termo coberto pelas regras de palavra-chave, os anúncios daquele grupo
podem entrar no leilão e aparecer para este usuário.

Da mesma forma que os grupos de anúncios, os anúncios também variam de acordo
com tipo de campanha. Enquanto os anúncios de texto contém apenas elementos textuais,
anúncios da Rede de Display podem possuir imagens, vídeos e até mesmo elementos em
HTML5 (Hypertext Markup Language, versão 5). Como as configurações dos anúncios
e de seus grupos não são afetadas pelo script, as explicações destes elementos não serão
aprofundadas.

2.1.2.2 Ajustes de lance

O fato de um anúncio ser impresso ou não e sua posição na página são definidos
através dos leilões de anúncio, explicados na subseção 2.1.2.3. O valor de cada lance em
uma campanha que utiliza a estratégia de lances manuais é definida por um fator principal
de cada grupo de anúncio (por exemplo, em anúncios de texto, seriam as palavras-chave; já
em um anúncio de Shopping, seriam os produtos) acrescentado de seus ajustes adicionais.

Os ajustes de lances podem ser definidos em diversas elementos da campanha ou
do grupo de anúncio, sempre indicados em percentuais de aumento ou redução em relação
ao lance principal, sendo multiplicados para definir o lance final. Por exemplo, um lance
de R$1, 00 que possui um ajuste de +10% e outro de −20% resultaria em um lance final
de R$0, 88, devido ao ajuste final ser 1, 1 ∗ 0, 8 = 0, 88. Este lance representa qual o valor
máximo desejado a se pagar por uma ação, como clique ou visualização (GOOGLE, 2020).

Alguns exemplos de ajustes de lance são:

a) dispositivo: ajustes em relação ao tipo de dispositivo utilizado pelo usuário
(desktop, mobile, tablet ou televisão);

b) local: ajustes em relação ao local geográfico do usuário;

c) agendamento: ajustes em relação ao horário e dia da semana;

d) lista de público: ajustes em relação às listas de público-alvo definidas para a
campanha ou grupo de anúncio;

27

e) informação demográfica: ajustes em relação às informações demográficas do
usuários, como gênero, idade e renda.

2.1.2.3 Funcionamento dos leilões

Denomina-se como leilão o processo do Google para decidir se um anúncio será
exibido, quais anúncios aparecerão e a ordem de exibição, se aplicada. Este processo
é acionado dependendo do tipo da campanha - em anúncios de pesquisa, por exemplo,
ocorrerá quando uma pesquisa no Google possui correspondência com as palavras-chave
escolhidas na campanha. Participam do leilão apenas anúncios qualificados para exibição,
isto é, aprovados pelas políticas do Google e que possuem configurações de segmentação que
abrangem a situação daquele leilão (por exemplo, um anúncio segmentado para aparecer
apenas em São Paulo não participará de leilões no Rio de Janeiro).

O resultado do leilão, incluindo as posições em que os anúncios irão aparecer, são
definidas por uma série de fatores:

a) valor do lance, ou seja, o valor máximo desejado a se pagar pela exibição ou
interação com o anúncio, a depender do tipo de campanha;

b) qualidade do anúncio e da página de destino, analisando a relevância e
utilidade do mesmo para a pessoa que o verá;

c) classificação mínima do anúncio, definida pelo Google Ads para garantir
publicidade de alta qualidade;

d) concorrência do leilão;

e) contexto, levando em consideração vários fatores como pesquisas realizadas,
localização geográfica, dispositivo utilizado, entre outros;

f) estimativa do impacto de extensões e formatos de anúncio.

Nesta monografia, deseja-se influenciar o fator “valor do lance”, alterando-se o
limite do lance com base nos dados de temperatura de cada local.

2.2 Google Developers

O Google Developers1 é um site do Google que expõe uma variedade de ferramentas
de desenvolvimento de software, Interfaces de Programação de Aplicações (APIs) e recursos
técnicos, contendo documentações e grupos de discussões acerca desse assunto. Algumas
dessas ferramentas são usadas nesta monografia e estão explicadas nas subseções a seguir.

1 Todos os produtos disponíveis no Google Developers podem ser encontrados em <https:
//developers.google.com/products>.

https://developers.google.com/products
https://developers.google.com/products

28

2.2.1 Google Apps Script

Com o Google Apps Script, é possível desenvolver complementos para os principais
produtos do Google, como o Google Planilhas, Google Documentos, Gmail, Google Agenda
e Hangouts, por exemplo. A seguir serão apresentados os pontos relevantes da documentação
disponível em Google (2020) para esta monografia.

2.2.1.1 Serviço para Google Planilhas

Para manipulação de planilhas, serão utilizadas algumas classes do Spreadsheet
Service, que permite a criação, acesso e modificação de arquivos do Google Planilhas.

Classe Spreadsheet App

Utilizada para acessar e criar planilhas. É utilizado neste trabalho apenas o método
openById, o qual abre uma planilha a partir de seu código de identificação, retornando um
objeto SpreadSheet;

Classe Spreadsheet

Responsável por acessar e modificar planilhas, sendo utilizado o método getShe-
etByName, o qual retorna um objeto Sheet contendo uma aba de uma planilha a partir de
seu nome.

Classe Sheet

Responsável por acessar e modificar uma aba de uma planilha, sendo importantes
os métodos getDataRange, o qual retorna um objeto Range que corresponde à uma seleção
na qual os dados estão apresentados; e getRange, que também retorna um objeto Range,
porém a partir de suas coordenadas.

Classe Range

Utilizada para acessar e modificar uma seleção de uma planilha. Nesta monografia,
são utilizados os métodos getValues, para retornar uma matriz de duas dimensões contendo
os valores da seleção em questão; getLastRow, para retornar um inteiro referente à posição
da última linha de uma seleção; setValue, para escrever um valor em uma seleção de uma
dimensão; e setValues, para escrever valores em uma seleção retangular.

2.2.1.2 Serviço para acesso a URLs

Através do URL Fetch Service, é possível que scripts façam requisições HTTP e
HTTPS utilizando a infraestrutura de rede do Google.

Classe UrlFetchApp

É utilizado o método fetch desta classe para realizar uma requisição de busca,
retornando um objeto HTTPResponse.

29

Classe HTTPResponse

Permite acesso a informações específicas de uma resposta HTTP. Nesta monografia
é utilizado o método getContentText, responsável por retornar em uma string o conteúdo
da resposta.

2.2.1.3 Serviço para acesso e manipulação de XML

Por meio do XML Service, pode-se analisar, criar e navegar em documentos XML
utilizando um script.

Classe XMLService

Responsável por garantir as funcionalidades do serviço homônimo, tem o mé-
todo parse utilizado nesta monografia, que cria um objeto Document que representa um
documento XML.

Classe Document

Representa um documento XML, sendo utilizado neste trabalho o método getRoo-
tElement, o qual retorna um objeto Element contendo o nó principal do XML. Caso não
possua, retorna vazio.

Classe Element

Representa um elemento nó de um XML. São utilizados os métodos getChildren e
getValue desta classe. O primeiro, obtém todos os elementos-filhos imediatos ao nó em
questão que possuem o mesmo nome informado como parâmetro, sendo retornados em um
vetor de elementos. Já o segundo retorna uma string contendo o valor em texto de todos
os elementos que são direta ou indiretamente filhos do nó em questão.

2.2.1.4 Serviços utilitários

Os scripts do Google podem utilizar da classe Utilities para facilitar tarefas variadas.
Nesta monografia, é utilizado o método formatString para elaboração de strings utilizando
as notações “%-” para substituição de termos.

2.2.2 Google Ads Script

Com a API do Google Ads Script, é possível automatizar processos do Google
Ads, permitindo também a interação com dados externos, usando JavaScript de forma
simplificada em um ambiente de desenvolvimento integrado no próprio navegador. Este
trabalho foi desenvolvido utilizando-se a API Adwords v201809.

O objeto raiz da API é o AdsApp, do qual desprendem-se os outros objetos citados
nesta subseção.

30

2.2.2.1 Relatórios do Google Ads

A partir do método report do objeto AdsApp é possível buscar um relatório do
Google Ads a partir de uma query, retornando assim um Report.

Report

Representa um relatório do Google Ads. Neste trabalho, utiliza-se o método rows
para se obter um iterador para as linhas do relatório, chamado de ReportRowIterator.

ReportRowIterator

Trata-se de um iterador para linhas de relatórios do Google Ads. Seus dois únicos
métodos, hasNext e next são utilizados, sendo o primeiro para determinar se há ainda
linhas para serem percorridas e o segundo para avançar para a próxima linha.

2.2.2.2 Critérios de direcionamento de anúncios

Utilizando o método targeting do objeto AdsApp é possível acessar os critérios de
direcionamento das campanhas. Para este trabalho, deseja-se acessar os critérios de direci-
onamento de locais, o que pode ser feito especializando este seletor para locais utilizando
o método targetedLocations, que retorna um seletor do tipo TargetedLocationSelector.

TargetedLocationSelector

Representa todos os locais alvo selecionados, de forma a permitir filtros e ordenações.
Para esta monografia, deseja-se buscar os locais que possuem código de identificação igual
aos de uma lista, o que deve ser feito através do método withIds, que restringe o seletor
para utilizando as IDs de campanha e de local do Google Ads.

Por fim, com o método get é possível obter um iterador do tipo TargetedLocationI-
terator para os locais desejados.

TargetedLocationIterator

Semelhante ao ReportRowIterator, são utilizados nesta monografia os métodos
hasNext e Next, que auxiliam a navegar pelos locais-alvo das campanhas do Google Ads
selecionados, que são representados como objetos TargetedLocation.

TargetedLocation

Representa um local alvo do Google Ads. Nesta monografia, é utilizado o método
setBidModifier, responsável por alterar o valor de ajuste de lance para o local em questão.

2.3 Previsão do tempo em XML - CPTEC/INPE

Para o desenvolvimento deste trabalho, foi utilizado o serviço de previsão do tempo
via XML do Centro de Previsão de Tempo e Estudos Climáticos (CPTEC) do Instituto
Nacional de Pesquisas Espaciais (INPE) com caráter de prova de conceito para anúncios

31

fictícios. No caso de uma aplicação comercial, deve-se utilizar uma fonte de dados adequada
para essa finalidade.

Nesta seção será explicado como se obter de cada cidade desejada a temperatura
máxima prevista para aquele dia, com base nas informações fornecidas em CPTEC/INPE
(2014).

2.3.1 Busca de localidade

Para se obter a temperatura, necessita-se antes conhecer o código do município
dentro da base do CPTEC/INPE. Isso pode ser feito através de uma requisição na URL base
<http://servicos.cptec.inpe.br/XML/listaCidades> com o parâmetro city correspondendo
ao nome da localidade desejada sem acentos. Desta forma, a requisição para “São Carlos”
seria realizada através da URL <http://servicos.cptec.inpe.br/XML/listaCidades?city=
saocarlos>. É possível substituir o espaço por “%20” também.

Como resposta, será recebido um arquivo XML cujo nó “cidades” terá os seguintes
elementos:

a) nome, contendo o nome do município;

b) uf, Unidade de Federação, útil para desambiguação de municípios homônimos;

c) id, código do município dentro do CPTEC/INPE, representado por um número
inteiro positivo.

O elemento “id” é o desejado. A Tabela 1 contém os códigos referente às capitais
de cada capital brasileira, obtidos seguindo esse procedimento.

2.3.2 Requisição da previsão do tempo

É possível fazer uma requisição dos dados de previsão de tempo para quatro ou
sete dias utilizando o serviço de previsão do CPTEC/INPE. Como para este trabalho
necessita-se apenas da previsão para o dia atual, será utilizada a requisição para quatro
dias apenas.

Para efetuar a busca pela temperatura, é necessário utilizar a URL de requisição
<http://servicos.cptec.inpe.br/XML/cidade/codigo_da_localidade/previsao.xml>, onde
“codigo_da_localidade” deve ser substituído pelo código do município obtido na subse-
ção 2.3.1. Por exemplo, para a cidade de Rio Branco, no Acre, a requisição deve ser feita
por meio da URL <http://servicos.cptec.inpe.br/XML/cidade/240/previsao.xml>.

Como resposta, é obtido um arquivo XML com os seguintes elementos:

a) nome, com o nome do município selecionado;

b) uf, com a sigla da Unidade da Federação a qual o município pertence;

http://servicos.cptec.inpe.br/XML/listaCidades
http://servicos.cptec.inpe.br/XML/listaCidades?city=sao carlos
http://servicos.cptec.inpe.br/XML/listaCidades?city=sao carlos
http://servicos.cptec.inpe.br/XML/cidade/codigo_da_localidade/previsao.xml
http://servicos.cptec.inpe.br/XML/cidade/240/previsao.xml

32

c) atualizacao, com a data da última atualização dos dados de previsão;

d) previsao, elementos que possuem a informação de previsão.

Cada elemento “previsao” contém informações referentes a um dos dias, ordenados
da data mais próxima até a mais distante. Dependendo da hora do dia, a primeira data
passa a ser referente ao dia seguinte - por conta disso, as buscas realizadas nos testes desta
monografia ocorrem sempre por volta das oito horas da manhã, horário em que a previsão
do mesmo dia ainda está disponível. Cada umas previsões possuem os seguintes elementos:

a) dia, contendo a data referente à previsão;

b) tempo, contendo uma sigla referente à condição do tempo para a localidade;

c) maxima, representando a temperatura máxima prevista para aquela data, em
um valor inteiro;

d) minima, representando a temperatura mínima prevista para aquela data, em
um valor inteiro;

e) iuv, representando o valor máximo diário de radiação ultravioleta, em um valor
real (ponto flutuante).

A Figura 3 ilustra a árvore de elementos encontrada no XML do CPTEC/INPE
para a cidade de Rio Branco, no Acre.

33

Figura 3: Árvore de elementos do XML do CPTEC/INPE para a capital Rio Branco

Fonte: Elaborada pelo autor a partir do XML com informações da previsão do tempo para
municípios do CPTEC/INPE.

34

Tabela 1: Códigos CPTEC/INPE para
cada capital brasileira

Capital Código CPTEC/INPE

Aracaju 220

Belém 221

Belo Horizonte 222

Boa Vista 223

Brasília 224

Campo Grande 225

Cuiabá 226

Curitiba 227

Florianópolis 228

Fortaleza 229

Goiânia 230

João Pessoa 231

Macapá 232

Maceió 233

Manaus 234

Natal 235

Palmas 236

Porto Alegre 237

Porto Velho 238

Recife 239

Rio Branco 240

Rio de Janeiro 241

Salvador 242

São Luís 243

São Paulo 244

Teresina 245

Vitória 246

Fonte: Elaborada pelo autor com informações
do XML do CPTEC/INPE.

35

3 DESENVOLVIMENTO

Para atingir o objetivo proposto nesta monografia, foi desenvolvido um script capaz
de alterar ajustes de lance de local no Google Ads com base em dados de temperatura e
nas configurações desejadas pelo utilizador, as quais devem ser inseridas em uma planilha
de controle.

Este capítulo apresenta como foram confeccionados a planilha de controle e o código
desenvolvido, explicando cada um de seus elementos e seu funcionamento.

3.1 Planilha de controle

A planilha de controle é o local destinado à personalização do script para atender
os objetivos de marketing digital do usuário. Ela deve ser criada através do Planilhas
Google1 de forma que o endereço de e-mail utilizado na execução do script na plataforma
do Google Ads possua acesso de edição à planilha em questão.

Esta planilha permite ao usuário definir quais as cidades e campanhas de publicidade
do Google Ads devem ser analisadas e alteradas pelo código, além de definir quais alterações
e suas condições para serem realizadas.

Para melhor organização das informações, são necessárias seis abas, que estão
listadas e explicadas nas subseções a seguir. É necessário atenção apenas com os nomes das
abas e na ordem das colunas de cada uma delas, uma vez que são informações utilizadas
no código apresentado na seção 3.2.

3.1.1 Controle

Esta aba é a responsável por definir em cada uma de suas linhas as regras que
serão analisadas pelo código. Cada regra é composta por três elementos principais: o quê
será afetado; suas condições; e suas alterações caso as condições sejam satisfeitas.

Para definir o que será afetado pela regra, são utilizadas as colunas categoria
da campanha e regiões. A primeira é responsável por indicar quais as campanhas de
publicidade do Google Ads serão analisadas e possivelmente modificadas nesta regra,
enquanto a última elenca quais cidades serão consideradas nesta regra.

Na definição das condições, também são consideradas duas colunas: condição
climática, a qual define os limites de temperatura para a regra em questão; e condição
de ajuste modificado, que define condições extras relacionadas ao desempenho histórico
das campanhas para um ajuste modificado.
1 Editor de planilhas do Google <https://www.google.com/intl/pt-BR/sheets/about/>.

https://www.google.com/intl/pt-BR/sheets/about/

36

Por fim, as alterações são definidas pelas últimas duas colunas, ajuste padrão e
ajuste modificado, que devem ser preenchidas com valores entre 0.1 e 9.0 (utilizando o
ponto como separador decimal), funcionando da seguinte forma:

a) caso o valor seja 1, o ajuste correspondente no Google Ads será nulo (0%);

b) caso o valor seja inferior a 1, o ajuste correspondente será negativo de módulo
1 − valor;

c) caso o valor seja superior a 1, o ajuste correspondente será positivo de módulo
valor − 1.

A Tabela 2 traz exemplos de ajustes realizados no Google Ads através dos valores
definidos na planilha.

Tabela 2: Exemplos de ajustes de lance de acordo com os valores na
planilha

Valor de ajuste na planilha Ajuste correspondente no Google Ads

0.3 -70%

1.0 0%

2.0 +100%

Fonte: Elaborada pelo autor.

Caso uma cidade pertencente à região analisada esteja dentro da condição climática
da regra, serão realizadas alterações ao ajuste de lance local destas cidades para as
campanhas que compõem a categoria analisada da seguinte forma:

a) caso o resultado da campanha não satisfaça a condição de ajuste modificado,
será aplicado o ajuste padrão;

b) caso a campanha satisfaça a condição de ajuste modificado, será aplicado o
ajuste modificado.

A Tabela 3 traz como exemplo algumas linhas de uma planilha de controle preen-
chida para uma única região influenciando duas categorias de campanhas distintas.

3.1.2 Campanhas

Esta aba é responsável por definir as campanhas que compõem cada categoria de
campanha utilizada na aba Controle (subseção 3.1.1). Apenas duas colunas são necessárias:
nome da campanha, que deve conter o nome exato das campanhas como definido na
plataforma do Google Ads; e categoria da campanha, a ser preenchida pelo usuário. A
Tabela 4 traz como exemplo algumas linhas de uma planilha de campanhas preenchida.

37

Tabela 3: Exemplo de planilha de controle

Categoria Regiões Condição Condição Ajuste Ajuste
da campanha climática de ajuste mod. padrão modificado

Ar-Condicionado Subtropical Subtrop. Frio ROAS > 20 0.8 1

Ar-Condicionado Subtropical Subtrop. Normal ROAS > 20 1.1 1.2

Ar-Condicionado Subtropical Subtrop. Quente ROAS > 20 1.5 1.7

Baterias Subtropical Subtrop. Frio ROAS > 20 1.5 1.7

Baterias Subtropical Subtrop. Normal ROAS > 20 1.1 1.2

Baterias Subtropical Subtrop. Quente ROAS > 20 0.8 1

Fonte: Elaborada pelo autor.

Campanhas que compartilham o mesmo texto na coluna categoria da campanha
são consideradas como da mesma categoria e, portanto, compartilham os mesmos valores
de ajuste de lance padrão e modificado, além de serem avaliadas da mesma forma em
termos de temperatura (a condição de ajuste modificado sempre considera as campanhas
separadamente).

Apesar de ser possível adicionar uma campanha a mais de uma categoria, é
aconselhado que cada campanha pertença a apenas uma única categoria, uma vez que os
ajustes não são incrementais, apenas substituem o valor anterior.

Tabela 4: Exemplo de planilha de campanhas

Nome da campanha Categoria da campanha

_GDN_ArInverter Ar-Condicionado

_GDN_ArSplit Ar-Condicionado

_S_ArCondicionado Ar-Condicionado

_GDN_Baterias Baterias

_GS_Baterias Baterias

Fonte: Elaborada pelo autor.

3.1.3 Locais

Nesta aba devem estar listadas todas as cidades brasileiras que serão analisadas
pelo script, relacionando-as às regiões correspondentes.

Para as informações de cada cidade, são necessários: o nome, sem qualquer acentua-
ção; seu código do Google Ads, obtido na própria plataforma; e seu código do CPTEC/INPE,
obtido conforme descrito na subseção 2.3.1.

38

Na última coluna, deve-se adicionar a qual região esta cidade pertence. As divisões
por região podem ser definidas pelo usuário como ele preferir, porém é aconselhado utilizar
o critério de clima para segmentação, uma vez que todas as cidades de uma região terão as
mesmas faixas de temperatura máxima para definir se a previsão naquele dia está favorável
ou não para os anúncios.

A Tabela 5 traz como exemplo algumas linhas de uma planilha de locais preenchida.
Assim como na subseção 3.1.2, é possível que uma cidade esteja em mais de uma região,
porém não aconselhável.

Tabela 5: Exemplo de planilha de locais

Cidade Código Ads Código CPTEC/INPE Regiões

Brasilia 1001541 224 Tropical

Criciuma 1001704 1671 Subtropical

Guarulhos 1001736 2247 Tropical de altitude

Maceio 1001506 233 Tropical

Salvador 1001533 242 Tropical litorâneo

Fonte: Elaborada pelo autor.

3.1.4 Condições

Nesta aba, são listadas todas as condições climáticas que serão utilizadas pelas
regras na aba de controle descrita em subseção 3.1.1. Cada uma deve possuir um nome,
o tipo da condição (‘Entre’, ‘Acima’ ou ‘Abaixo’) e os valores em graus Celsius. Caso a
condição seja ‘Acima’ ou ‘Abaixo’, apenas a primeira coluna de valor deve ser preenchida.
Caso seja ‘Entre’, são necessários os dois valores, com o menor deles na primeira coluna.
Todas as condições incluem também seus valores limitadores, isto é, ‘Acima’ é o mesmo
que ‘maior ou igual’.

As condições devem ser pensadas de acordo com as regiões e objetivos das campa-
nhas, uma vez que a sensação de calor ou frio pode variar de acordo com a temperatura
usual do local. Como a análise é feita de acordo com a temperatura máxima prevista
para aquele dia, é importante que os limites sejam definidos considerando também a
temperatura máxima usual.

A Tabela 6 ilustra um exemplo de uma tabela de condições preenchida. Apesar
do nome das condições conter nomes de regiões, é possível utilizar uma mesma condição
para diferentes regiões, se desejado. Devido aos valores de temperatura fornecidos pelo
CPTEC/INPE serem sempre inteiros, é aconselhável que as entradas da planilha também
sejam.

39

Tabela 6: Exemplo de planilha de condições

Condição Tipo Valor 1 (°C) Valor 2 (°C)

Tropical quente Acima 30

Tropical normal Entre 26 29

Tropical frio Abaixo 25

Subtropical quente Acima 27

Subtropical normal Entre 22 26

Subtropical frio Abaixo 21

Fonte: Elaborada pelo autor.

3.1.5 Lances modificados

Semelhante à aba de condições descrita na subseção 3.1.4, nesta devem estar
listadas as condições de lances modificados, ou seja, condições relacionadas aos resultados
da campanha em si no Google Ads. Esta versão do script tem suporte para análise de dados
de retorno sobre investimento publicitário (ROAS) e de quantia de conversões, sempre
para os sete dias anteriores. Com alterações no código é possível utilizar outras diversas
métricas da plataforma e até mesmo modificar o período de análise, sendo necessário
apenas atenção ao limite de tempo de execução de scripts no Google Ads (trinta minutos).

Cada condição deve possuir um nome, métrica a ser analisada (‘ROAS’ ou ‘Con-
versão’, neste caso), tipo da condição (‘Entre’, ‘Acima’ ou ‘Abaixo’) e seus valores em
números inteiros. A Tabela 7 ilustra o preenchimento desta aba com exemplos.

Tabela 7: Exemplo de planilha de condições modifica-
das

Condição Métrica Tipo Valor 1 Valor 2

ROAS > 20 ROAS Acima 20

ROAS bom ROAS Entre 10 20

Converteu Conversão Acima 1

Fonte: Elaborada pelo autor.

3.1.6 Histórico

Esta aba, diferente das demais, não deve ser preenchida pelo usuário. Trata-se
de um histórico de temperatura que pode ser utilizado para análises de desempenho do
script e até mesmo para refinar os limites de temperatura das condições de cada região.
Apenas três colunas são utilizadas: data, nome da cidade e temperatura máxima do dia. A
Tabela 8 exemplifica um exemplo de registro do histórico.

40

Tabela 8: Exemplo de planilha de histórico

Data Cidade Temperatura Máxima

2020-3-7 Macae 28

2020-3-7 Niteroi 26

2020-3-7 Nova Friburgo 24

2020-3-7 Nova Iguacu 26

Fonte: Elaborada pelo autor. Dados de temperatura
obtidos pelo CPTEC/INPE através da execução
do código deste trabalho na primeira semana de
março de 2020.

3.2 Código do script

Para cumprir com o objetivo da monografia, desenvolveu-se um script capaz de
receber informações de uma fonte de dados de temperatura, no caso o CPTEC/INPE, e do
próprio Google Ads; e interpretar estes dados seguindo as regras definidas pela planilha de
controle desenvolvida na seção 3.1. Como resultado, o código retorna alterações em ajustes
de lance nas campanhas desejadas do Google Ads e também registra as temperaturas lidas
na aba “Histórico” da planilha de controle. A Figura 4 ilustra a troca de informações que
ocorre durante seu funcionamento.

Figura 4: Esquema de troca de informações do código em funcionamento

Dados de
Temperatura Script

Planilha de
controle

Google Ads
Temperatura

Regras Histórico de
temperatura

Ajustes de
lance

Histórico de
performance

Fonte: Elaborada pelo autor.

Nesta seção será explicada cada etapa do código desenvolvido, explicitando também
possíveis personalizações do mesmo para outras implementações. O código-fonte encontra-se
no Apêndice A.

41

3.2.1 Variáveis e parâmetros globais

Para tornar o código de fácil leitura e personalização, foram criadas variáveis globais
que definem informações importantes para seu funcionamento. A única exceção está no
objeto global “WEATHER_CACHE”, que inicia-se vazio e armazena os valores de tempe-
ratura coletados pela função getWeather (subseção 3.2.2.2) para cada cidade já analisada,
poupando assim requisições repetidas desnecessárias aos dados do CPTEC/INPE.

A única lista global é a “ACC_ID”, responsável por armazenar o número de
identificação das contas do Google Ads a serem alteradas pelo script. Devido a isso, o
código deve ser executado sempre em uma MCC (Minha Central de Contas). É necessário
que o usuário tenha permissão de edição de lances (acesso padrão) na conta utilizada para
hospedar o código.

As demais variáveis são referentes à planilha de controle elaborada na seção 3.1 e
estão explicadas a seguir:

a) “SPREADSHEET_ID” recebe uma string com o código da planilha do Google
Planilhas a ser utilizada, com as seguintes variáveis relacionadas a ela:

– “CTRL_CAMPAIGN_CATEGORY_COLUMN” recebe o índice da coluna
na qual as categorias das campanhas estão listadas;

– “CTRL_REGION_NAME_COLUMN” recebe o índice da coluna na qual
as regiões estão listadas;

– “CTRL_CONDITION_COLUMN” recebe o índice da coluna na qual as
condições climáticas estão listadas;

– “CTRL_BID_CONDITION_COLUMN” recebe o índice da coluna na qual
as condições de lances modificados estão listadas;

– “CTRL_REGULAR_BID_COLUMN” recebe o índice da coluna na qual
estão listados os lances a serem aplicados caso apenas as condições climáticas
sejam satisfeitas;

– “CTRL_MODIFIED_BID_COLUMN” recebe o índice da coluna na qual
estão listados os lances a serem aplicados caso as condições climáticas e as
condições de ajustes modificados sejam satisfeitas simultaneamente.

b) “CONTROL_SHEET” recebe uma string com o nome da aba de controle;

c) “WEATHER_CONDITIONS_SHEET” recebe uma string com o nome da aba
de condições climáticas, com as seguintes variáveis relacionadas a ela:

– “WEA_CONDITION_NAME_COLUMN” recebe o índice da coluna na
qual o nome das condições climáticas estão listados;

– “WEA_CONDITION_COLUMN” recebe o índice da coluna na qual o tipo
de condição está descrito;

42

– “WEA_TEMP1_COLUMN” recebe o índice da coluna na qual as primeiras
temperaturas de cada condição estão listadas;

– “WEA_TEMP2_COLUMN” recebe o índice da coluna na qual as tempera-
turas secundárias de cada condição, se existentes, estão listadas.

d) “BIDS_CONDITIONS_SHEET” recebe uma string com o nome da aba de
condições para lances modificados, com as seguintes variáveis relacionadas a
ela:

– “BID_CONDITION_NAME_COLUMN” recebe o índice da coluna na qual
o nome das condições de lance modificados estão listados;

– “BID_TYPE_COLUMN” recebe o índice da coluna na qual a métrica a ser
analisada por cada condição é listada;

– “BID_CONDITION_COLUMN” recebe o índice da coluna na qual o tipo
de condição está descrito;

– “BID_VALUE1_COLUMN” recebe o índice da coluna na qual os primeiros
valores de cada condição estão listadas;

– “BID_VALUE2_COLUMN” recebe o índice da coluna na qual os valores
secundários de cada condição, se existentes, estão listados.

e) “LOCATION_SHEET” recebe uma string com o nome da aba contendo as
informações de locais a serem utilizados, com as seguintes variáveis relacionadas
a ela:

– “CITY_NAME_COLUMN” recebe o índice da coluna na qual as cidades
estão listadas;

– “ADS_CODE_COLUMN” recebe o índice da coluna na qual os códigos de
identificação do Google Ads para cada cidade estão listados;

– “CPTEC_CODE_COLUMN” recebe o índice da coluna na qual os códigos
de identificação do CPTEC/INPE para cada cidade estão listados;

– “REGION_NAME_COLUMN” recebe o índice da coluna na qual são deter-
minadas as regiões de cada cidade.

f) “CAMPAIGN_SHEET” recebe uma string com o nome da aba contendo as
informações das campanhas de anúncio a serem utilizadas, com as seguintes
variáveis relacionadas a ela:

– “CAMPAIGN_NAME_COLUMN” recebe o índice da coluna na qual os
nomes das campanhas estão localizados;

– “CAMPAIGN_CATEGORY_COLUMN” recebe o índice da coluna na qual
as categorias das campanhas estão localizadas.

g) “HISTORY_SHEET” recebe uma string com o nome da aba no qual o histórico
de temperatura obtido pelos dados do CPTEC/INPE será armazenado.

43

Desta forma, é possível alterar a ordem das colunas e o nome das abas da planilha
de controle sem grandes problemas, bastando modificar as variáveis correspondentes no
script.

3.2.2 Leitura e organização dos dados

A primeira etapa do script realiza a leitura dos dados inseridos pelo usuário na
planilha de controle elaborada na seção 3.1, organizando-os para serem utilizados nas
etapas posteriores.

3.2.2.1 Criação do mapa de regras

Para elaborar o mapa de regras que será utilizado na determinação dos ajustes
de lance, foi criada a função getRulesMap. Cada regra elaborada possui as seguintes
informações:

a) “campaignCategory”, contendo o nome da categoria da campanha a qual essa
regra pertence;

b) “campaigns”, contendo uma lista com todas as campanhas associadas à regra;

c) “region”, contendo o nome da região a qual essa regra pertence;

d) “cities”, contendo uma lista com todas as cidades pertencentes à região de
análise que estão dentro da condição climática associada à regra;

e) “climate”, contendo a condição climática a qual essa regra pertence;

f) “climateConditions”, contendo as informações da condição climática associada
à regra;

g) “convertionType”, contendo o nome da condição de ajuste modificado que deve
ser analisado;

h) “convertionCondition”, contendo as informações da condição de ajuste modifi-
cado associada à regra;

i) “standardBid”, contendo o ajuste de lance padrão da regra;

j) “modifiedBid”, contendo o ajuste de lance modificado da regra.

Para que todos esses dados sejam obtidos, são utilizadas as funções auxiliares a
seguir.

Abertura e leitura de planilha

A função auxiliar openAndReadSheet é responsável por abrir e ler uma aba de
uma planilha do Google Planilhas. Para isso, são utilizados os métodos openById e
getSheetByName apresentados na subseção 2.2.1.1, determinando assim qual aba deve ser

44

lida, e os métodos getDataRange e getValues para se obter uma matriz contendo todos os
dados daquela aba, que são retornados pela função.

Mapeamento de campanhas e regiões

Para realizar o mapeamento de campanhas e regiões climáticas, são utilizadas as
funções getCampaignMap e getRegionMap, respectivamente. Ambas funções são semelhantes
e servem para organizar os dados de categorias de campanhas e de regiões em objetos nos
quais as chaves são os nomes de cada item (categoria ou região) e seus valores são uma
lista de objetos contendo as informações detalhadas de cada elemento pertencente a essa
categoria ou região.

Obtenção das condições

As funções getClimateConditions e getModifiedConditions são semelhantes entre si
e servem para organizar as condições de temperatura e de ajustes modificados baseados
no histórico de resultados, respectivamente, obtidas pela leitura da planilha de controle.
Ambas retornam um objeto contendo essas informações.

Obtenção das temperaturas de cada cidade

Para realizar a obtenção das temperaturas lidas do CPTEC/INPE é utilizada
a função getCitiesRegionTemperature, a qual recebe uma lista de objetos contendo as
informações das cidades que deseja-se obter as temperaturas máximas previstas para aquele
dia. Estas informações são organizadas para chamar a função getWeather (subseção 3.2.2.2)
para cada uma das cidades desejadas.

Ao final, é retornada uma cópia da lista de objetos recebida inicialmente, porém
contendo os dados de temperatura máxima.

Análise da condição de temperatura

A análise para determinar se uma cidade encontra-se ou não em uma determinada
condição de temperatura é realizada pela função checkCityWeather. A partir da lista de
objetos obtidas pela função getCitiesRegionTemperature e das informações de condição
climática, é retornada uma lista de cidades que satisfazem a condição climática analisada
em questão.

3.2.2.2 Leitura da previsão do tempo do CPTEC/INPE

Para realizar a leitura dos dados fornecidos pelo XML do CPTEC/INPE apresentado
na seção 2.3, foi criada a função getWeather, que recebe como argumento o nome da cidade
e o código CPTEC/INPE referente a ela.

Inicialmente, é verificado se a cidade está no objeto global “WEATHER_CACHE”,
responsável por armazenar os dados de cidades já lidas pelo script, conforme consta
na subseção 3.2.1. Em caso verdadeiro, o valor é consultado diretamente deste objeto e

45

retornado, evitando requisições repetidas ao CPTEC/INPE.

Se a cidade ainda não tiver sido lida pelo código, é iniciada a preparação para
obter-se a temperatura através do XML do CPTEC/INPE. Para isso, é preparada uma
string contendo a URL do XML correspondente à cidade através da substituição do termo
“%s” na URL <http://servicos.cptec.inpe.br/XML/cidade/%s/previsao.xml> pelo código
CPTEC/INPE, conforme as instruções presentes na subseção 2.3.2.

Para ser possível navegar pelo XML do CPTEC/INPE utilizando os métodos da
classe XmlService descritos em subseção 2.2.1.3, necessita-se que ele possua um elemento
raiz, o que não é obtido diretamente pelo XML do CPTEC. Devido a isso, a função lê
inicialmente o XML em tempo utilizando o método fetch da classe UrlFetchApp e, após
isso, é adicionado manualmente a indicação do elemento raiz. Por fim, utilizando o método
parse é possível criar um novo XML que pode ser percorrido como desejado.

Na sequência, obtém-se o primeiro elemento “maxima” do primeiro elemento
“previsao”, que por sua vez está contido no primeiro elemento “cidade” do elemento raiz
gerado. Este é o valor de temperatura máxima previsto para aquele dia. É importante
ressaltar que este script foi desenvolvido para analisar os dados do XML às oito horas da
manhã de cada dia, horário em que as informações ainda estão disponíveis para aquela
data. É possível que em horários posteriores apenas a previsão do dia seguinte esteja
disponível.

A temperatura máxima é então retornada pela função e também armazenada no
objeto “WEATHER_CACHE” para a cidade correspondente.

3.2.3 Definição de ajustes de lance baseada em temperatura

Com as regras e os dados de temperatura obtidos corretamente, inicia-se o procedi-
mento para determinar e alterar o ajuste de lance de cada cidade para cada campanha. A
principal função desta etapa é a setStandardBids, a qual deve receber as regras mapeadas
pela subseção 3.2.2.1. Esta função realiza a leitura de cada regra uma a uma e prepara a
modificação dos ajustes de lance relacionado a ela, utilizando as funções auxiliares descritas
a seguir.

Obtenção da lista de códigos do Google Ads das cidades alvo

É necessário obter uma lista contendo todos os códigos do Google Ads referentes às
cidades que terão seus ajustes de lance alterados. Para isso, foi criada a função getAdsCode
que recebe a lista de cidades vinda do mapeamento de regras e extrai apenas a informação
do código do Google Ads de cada uma delas, retornando-as em uma lista.

Geração da lista de códigos de campanha do Google Ads

Para se fazer as alterações nas campanhas corretas, é necessário traduzir o nome
delas para seus códigos de identificação, conhecidos como CampaignId. Para isso, deve-se

http://servicos.cptec.inpe.br/XML/cidade/%s/previsao.xml

46

gerar um relatório do Google Ads a partir dos métodos descritos em subseção 2.2.2.1
selecionando CampaignId de do relatório de performance à nível de campanha “CAM-
PAIGN_PERFORMANCE_REPORT” no qual o nome da campanha corresponde a algum
da lista passada como parâmetro na chamada da função getCampaignID, responsável for
realizar esta interação.

Ao final, a função trata a informação obtida disponibilizando-a em uma lista de
códigos de identificação de campanha que é retornada por ela.

Associação das listas de códigos

A função getTargetedLocationIds tem como objetivo associar os códigos de identifi-
cação de cada campanha para cada código de localização do Google Ads em uma lista de
listas, cada uma contendo apenas dois elementos (ID de campanha e ID de local). Esta
estrutura é utilizada para facilitar a alteração de ajuste de local realizada na sequência.

Alteração do ajuste de lance

Após chamar as funções listadas anteriormente, a função setStandardBids inicia a
preparação para atualizar os ajustes de lance criando um iterador para locais que estão
dentro da lista produzida pela função getTargetedLocationIds utilizando os métodos do
AdsApp para targeting, conforme explicado na subseção 2.2.2.2.

Percorrendo-se o iterador, é elaborada uma lista contendo todos os locais que
deseja-se alterar o lance, chamando assim a função setBid, que irá percorrer toda a lista
aplicando o valor de lance desejado através do método setBidModifier. Desta forma, o lance
baseado na temperatura é inserido para cada local e campanha correspondente, restando
agora analisar o ajuste de lance modificado.

3.2.4 Definição de ajustes de lance baseado em histórico de performance

Determinado o ajuste com base na temperatura, é iniciado o processo de verificação
dos ajustes modificados. Diferente do anterior, só são alterados os locais e campanhas que
atendem os requisitos impostos pelo ajuste modificado. Este tipo de ajuste foi idealizado
como um bônus para situações em que a performance possui bom histórico, porém o
usuário pode configurar as regras como achar melhor.

A função principal deste passo é a setModifiedBids, que recebe também as regras
mapeadas. Inicialmente, ela chama a função getCodeMap com o objetivo de mapear
todos os códigos de identificação da planilha novamente, porém utilizando o nome da
cidade como chave ao invés do nome da região, como feito no mapeamento realizado pela
subseção 3.2.2.1.

Feito isso, entra-se em uma sequência de repetições para cada uma das regras a
serem analisadas, lendo inicialmente suas informações para então avaliar se foram satisfeitas
ou não.

47

Avaliação das regras

Para avaliar as regras, primeiro deve-se extrair um relatório do Google Ads conforme
apresentado em subseção 2.2.2.1 contendo as informações desejadas. Como as regras criadas
são referentes à quantidade de conversão e ao ROAS, precisa-se obter as métricas conversão,
valor de conversão e custo e utilizar as relações descritas em subseção 2.1.1. Desta forma,
o relatório gerado deve possuir as seguintes características:

a) selecionar o código da campanha (CampaignId), conversões (Conversions),
valor de conversão (ConversionValue), custo (Cost) e código da cidade (City-
CriteriaId);

b) retirado do “GEO_PERFORMANCE_REPORT”, o relatório de performance
por local;

c) no qual o código da campanha e o código da cidade pertencem à regra em
análise;

d) com duração referente aos últimos sete dias.

Com estes dados obtidos, necessita-se corrigir o valor de conversão devido ao seu
formato incluir vírgulas como separadores de milhar. Para isso, utiliza-se o método replace
para substituir globalmente as vírgulas por vazio. Para calcular o ROAS, apenas converte-se
as strings de valor de conversão e custo para ponto flutuante e, então, dividi-se o primeiro
pelo segundo.

Após isto, é chamada a função checkModifiedCondition que irá encaminhar correta-
mente a condição para análise da função checkValue com os parâmetros adaptados para
a métrica escolhida na confecção da planilha de controle. Esta última função analisa se
o valor lido no relatório está dentro dos limites definidos e retorna verdadeiro se estiver.
Neste caso, o par campanha/local em questão é adicionado em uma lista destinada a
receber o ajuste modificado relacionado à regra.

Por fim, segue-se a lógica de alteração do ajuste de lance descrita na subseção 3.2.3,
de forma a sobrescrevê-lo.

3.2.5 Registro no histórico de temperatura

Para manter um registro das temperaturas lidas, o que possibilita realizar análises
comparativas de performance, é necessário abrir novamente a planilha em questão e acessar
a aba Histórico através do SpreadsheetApp, seguindo o que foi explicado em subseção 2.2.1.1.

Primeiramente, armazena-se na variável nextRow qual a posição atual da última
linha com dado acrescida de um, indicando-se assim qual a linha que deve começar a receber
os dados, e, na sequência, é montada uma matriz vetor contendo, em cada linha, uma
cidade e sua respectiva temperatura lidas diretamente da variável WEATHER_CACHE.

48

Cria-se então um objeto Date que é desmembrado para se obter a data atual no
formato ‘YYYY-MM-DD’, em que Y representa o ano, M o mês e D o dia. Este valor
é inserido na primeira coluna a partir da linha indicada por nextRow, repetindo-se em
quantia igual a de linhas presente em vetor.

Por fim, escreve-se nas duas seguintes colunas, também a partir da linha indicada
em nextRow, toda a informação coletada por vetor, encerrando assim o registro do histórico
e a execução do script.

49

4 RESULTADOS

Com a planilha de controle e o código elaborado, foram realizados testes finais
para avaliar o funcionamento do projeto. Para isso, foram criadas três campanhas fictícias
em uma conta teste do Google Ads, listadas na Tabela 9, sendo todas de lance manual e
contendo como segmentação de local as capitais brasileiras.

Tabela 9: Campanhas criadas para o teste

Nome da campanha Tipo da campanha

_S_ArCondicionado_BidbyWeather Campanha de pesquisa

_S_OutletVerao_BidbyWeather Campanha de pesquisa

_DN_ColecaoInverno_BidbyWeather Campanha da Rede de Display

Fonte: Elaborada pelo autor.

Por não se tratarem de campanhas com investimento real, não há histórico de
resultados a ser utilizado. Devido a isso, os testes foram divididos em duas etapas: a
primeira considerando apenas os dados de temperatura com histórico nulo e a segunda
considerando um histórico fictício lido de uma planilha.

4.1 Dados de temperatura com histórico nulo

Neste primeiro teste, a temperatura é lida diretamente dos dados do CPTEC/INPE
para ser utilizada na definição do ajuste de temperatura, enquanto os dados de histórico
são lidos do Google Ads, sendo assim todos nulos. Devido a isso, as condições de ajuste
modificado foram criadas contemplando valores nulos em determinadas situações a fim de
verificar o funcionamento correto do código, no entanto o relatório utilizado para receber os
dados de histórico da campanha por local apenas apresenta os locais que tiveram alguma
impressão no período.

4.1.1 Utilização da planilha de controle para determinar as regras

Utilizando a planilha criada durante a seção 3.1, as campanhas foram divididas
em duas categorias distintas, denominadas “Calor” e “Frio” e as capitais em duas regiões,
“Teste A” e “Teste B”, da seguinte forma:

a) categoria Calor para as campanhas _S_ArCondicionado_BidbyWeather e
_S_OutletVerao_BidbyWeather;

b) categoria Frio para a campanha _DN_ColecaoInverno_BidbyWeather;

50

c) região Teste A para as capitais Aracaju, Belém, Belo Horizonte, Boa Vista,
Brasília, Goiânia, João Pessoa, Macapá, Maceió, Manaus, Rio Branco, Rio de
Janeiro, Salvador, São Luís e São Paulo;

d) região Teste B para as capitais Campo Grande, Cuiabá, Curitiba, Florianó-
polis, Fortaleza, Natal, Palmas, Porto Alegre, Porto Velho, Recife, Teresina e
Vitória.

Foram criadas três condições climáticas, “Quente”, “Normal” e “Frio”, conforme
indicado pela Tabela 10, e quatro condições de lances modificados, “ROAS > 10”, “ROAS
< 5”, “Converteu” e “Não converteu”, como mostrado pela Tabela 11.

Tabela 10: Condições de temperatura criadas para
o teste

Condição Tipo Valor 1 (°C) Valor 2 (°C)

Quente Acima 29

Normal Entre 26 28

Frio Abaixo 25

Fonte: Elaborada pelo autor.

Tabela 11: Condições de lances modificados criadas para
o teste

Condição Métrica Tipo Valor 1 Valor 2

ROAS > 10 ROAS Acima 10

ROAS < 5 ROAS Abaixo 5

Converteu Conversão Acima 1

Não converteu Conversão Abaixo 0

Fonte: Elaborada pelo autor.

Com essas informações inseridas nas planilhas, elaborou-se a tabela principal
de controle com ajustes diferentes para uma fácil identificação das regras acionadas. A
Tabela 12 traz todas as regras elaboradas.

Com a planilha devidamente preenchida, alteraram-se os códigos da conta do
Google Ads e da planilha de controle para seus valores corretos e executou-se o script. O
tempo de execução foi de 1 minuto e 29 segundos, com 81 alterações, como evidenciado
pela Figura 5.

51

Tabela 12: Planilha de controle elaborada para o primeiro teste

Categoria Regiões Condição Condição Ajuste Ajuste
da campanha climática de ajuste mod. padrão modificado

Calor Teste A Quente Converteu 1.7 3.4

Calor Teste A Normal Não Converteu 1.2 2.4

Calor Teste A Frio ROAS > 10 0.8 1.4

Calor Teste B Quente ROAS < 5 1.8 3.6

Calor Teste B Normal Converteu 1.3 2.6

Calor Teste B Frio Não Converteu 0.7 0.9

Frio Teste A Quente ROAS > 10 0.5 0.7

Frio Teste A Normal ROAS < 5 1.0 2.0

Frio Teste A Frio Converteu 1.6 3.2

Frio Teste B Quente Não Converteu 0.6 0.9

Frio Teste B Normal Converteu 1.1 2.2

Frio Teste B Frio ROAS < 5 1.5 3.0

Fonte: Elaborada pelo autor.

Figura 5: Execução do script na plataforma do Google Ads para dados de temperatura

Fonte: Elaborada pelo autor a partir da plataforma do Google Ads.

4.1.2 Verificação da leitura de temperatura

Através dos dados preenchidos na aba Histórico pelo script, foi possível confirmar
se o valor lido pelo código estava de acordo com o obtido pelo XML do CPTEC/INPE. Na
Tabela 13 encontram-se todas as leituras realizadas no dia 10 de junho de 2020 referente
ao dia seguinte, devido ao XML já ter removido a previsão para o mesmo dia no horário

52

em questão, enquanto a Figura 6 apresenta a leitura do XML para três dos municípios
como forma de conferência dos resultados.

Tabela 13: Resultado obtido pela aba Histórico (dia 11 de junho de 2020)

Cidade Temperatura (°C) Cidade Temperatura (°C)

Aracaju 30 Manaus 33

Belem 33 Natal 29

Belo Horizonte 27 Palmas 34

Boa Vista 31 Porto Alegre 22

Brasilia 28 Porto Velho 33

Campo Grande 31 Recife 29

Cuiaba 35 Rio Branco 32

Curitiba 26 Rio de Janeiro 32

Florianopolis 23 Salvador 28

Fortaleza 30 Sao Luis 30

Goiania 32 Sao Paulo 28

Joao Pessoa 29 Teresina 33

Macapa 32 Vitoria 32

Maceio 29

Fonte: Elaborada pelo autor a partir das informações da previsão do tempo
para municípios do CPTEC/INPE.

4.1.3 Verificação das alterações realizadas

Como não há dados referentes a nenhum dos locais para nenhuma das campanhas,
o relatório de histórico gerado pelo código não apresentará nenhuma informação para
eles, não permitindo assim que haja ajustes modificados. Desta forma, é possível predizer
as alterações utilizando apenas as condições climáticas e os ajustes escolhidos para cada
combinação de categoria de campanha e região com elas.

Dividindo-se cada cidade em sua correspondente condição climática (“Quente”,
“Normal” ou “Frio”), obtém-se a Tabela 14, na qual a separação entre regiões está apresen-
tada em parenteses.

Assim, é possível determinar previamente quais serão os 81 ajustes de lances
aplicados para cada campanha:

a) para as cidades na condição Frio, o ajuste deve ser +50% nas campanhas
“Frio” e -30% nas campanhas “Calor”;

53

Figura 6: Árvore de elementos do XML do CPTEC/INPE para Aracaju, Cuiabá e Porto
Alegre

Fonte: Elaborada pelo autor a partir do XML com informações da previsão do tempo para
municípios do CPTEC/INPE.

b) para Curitiba, o ajuste deve ser +10% nas campanhas “Frio” e +30% nas
campanhas “Calor”;

c) para as demais cidades na condição Normal, o ajuste deve ser 0% nas
campanhas “Frio” e +20% nas campanhas “Calor”;

d) para as cidades da região Teste B na condição Quente, o ajuste deve
ser -40% nas campanhas “Frio” e +80% nas campanhas “Calor”;

e) para as demais cidades na condição Quente, o ajuste deve ser -50% nas
campanhas “Frio” e +70% nas campanhas “Calor”.

Como evidenciado no histórico de execução do script apresentado nas Figura 7
e Figura 8, as alterações foram realizadas conforme desejado. Na Figura 9, é possível
constatar que de fato as alterações foram registradas na interface de ajuste de local do
Google Ads.

4.2 Dados de temperatura com histórico simulado

Para testar os ajustes modificados, foi utilizada uma aba auxiliar na planilha de
controle. Nela, foram inseridos valores aleatórios de custo, valor de conversão e conversão
para cada local em questão. Para este teste, foi utilizada apenas a categoria de campanha
“Frio”.

54

Figura 7: Execução do script para campanhas da categoria “Frio”

Fonte: Elaborada pelo autor a partir da plataforma do Google Ads.

55

Figura 8: Execução do script para campanhas da categoria “Calor”

Fonte: Elaborada pelo autor a partir da plataforma do Google Ads.

56

Tabela 14: Condição climática de cada cidade para o dia
11/06/2020

Frio Normal Quente

Porto Alegre (B) Curitiba (B) Joao Pessoa (A)
Florianopolis (B) Belo Horizonte (A) Maceio (A)

Brasilia (A) Natal (B)
Salvador (A) Recife (B)
Sao Paulo (A) Aracaju (A)

Fortaleza (B)
Sao Luis (A)
Boa Vista (A)

Campo Grande (B)
Goiania (A)
Macapa (A)

Rio Branco (A)
Rio de Janeiro (A)

Vitoria (B)
Belem (A)
Manaus (A)

Porto Velho (B)
Teresina (B)
Palmas (B)
Cuiaba (B)

Fonte: Elaborada pelo autor a partir das informações da previsão
do tempo para municípios do CPTEC/INPE.

4.2.1 Dados utilizados para simulação

Para simulação, foram escolhidos aleatoriamente os valores presentes na Tabela 15.
Os valores não são coerentes entre si - há valor de conversão em cidades sem conversão -
no entanto tomou-se essa liberdade para evidenciar o funcionamento do código para ambas
condições.

4.2.2 Verificação das alterações desejadas

Com o código adaptado para receber o histórico via planilha, o script foi novamente
executado, agora para as informações referentes ao dia 12 de junho. Com isso, os dados de
temperatura foram alterados, conforme indicado na Tabela 16. O tempo de execução do
script para apenas a categoria de campanha em questão foi de 29 segundos.

Nenhuma cidade neste dia esteve na condição “Frio”, restringindo as condições de
ajuste modificado para as seguintes, conforme apresentado anteriormente pela Tabela 12:

a) caso a cidade esteja na condição Quente e na região Teste A, ela receberá
o ajuste modificado apenas se seu ROAS for superior a 10;

57

Figura 9: Alterações aplicadas em uma campanha da categoria “Calor”

Fonte: Elaborada pelo autor a partir da plataforma do Google Ads.

b) caso a cidade esteja na condição Normal e na região Teste A, ela receberá
o ajuste modificado apenas se seu ROAS for inferior a 5;

c) caso a cidade esteja na condição Quente e na região Teste B, ela receberá
o ajuste modificado apenas se não tiver conversões registradas;

d) caso a cidade esteja na condição Normal e na região Teste B, ela receberá
o ajuste modificado apenas se tiver conversões registradas.

Ao todo, ocorreram apenas 15 das possíveis 54 modificações (27 modificações via
temperatura mais 27 via histórico) durante esta execução, como evidenciado pela Figura 10,
o que indica que algumas cidades não tiveram seus valores alterados por não terem mudado
o ajuste em relação ao anterior.

A Figura 11 traz alguns exemplos de alterações, mostrando inclusive a cidade de
Porto Alegre sendo modificada duas vezes - primeiro devido à temperatura, e depois nova-
mente devido ao seu histórico, aplicando assim o ajuste modificado de +120%. Identifica-se

58

Tabela 15: Dados utilizados para simulação de histórico

Cidade Custo Valor de Conversão Conversões

Aracaju 77,87 1.342,01 0

Belem 85,24 1.453,78 0

Belo Horizonte 19,52 220,80 5

Boa Vista 49,09 906,63 2

Brasilia 79,59 1.520,99 0

Campo Grande 94,32 1.056,68 4

Cuiaba 93,47 120,88 3

Curitiba 42,54 349,53 4

Florianopolis 38,89 421,12 0

Fortaleza 21,34 157,28 0

Goiania 29,18 559,00 0

Joao Pessoa 13,64 93,78 2

Macapa 91,73 1.786,18 4

Maceio 51,48 457,70 4

Manaus 15,32 146,00 3

Natal 33,12 25,10 2

Palmas 43,52 832,76 1

Porto Alegre 54,75 514,03 4

Porto Velho 74,09 1.181,69 5

Recife 81,72 478,88 0

Rio Branco 79,20 29,71 0

Rio de Janeiro 48,06 250,75 1

Salvador 30,58 308,95 0

Sao Luis 3,39 42,06 0

Sao Paulo 32,84 126,44 2

Teresina 11,07 88,10 0

Vitoria 83,93 1.549,47 2

Fonte: Elaborada pelo autor.

também oito cidades recebendo ajuste de -30% devido à regra “ROAS > 10”, a cidade de
São Paulo recebendo +100% devido a possuir um ROAS menor que 5 e Teresina e Recife
recebendo -10% devido a não possuírem conversões.

Em relação ao tempo de execução do código, a execução em um teste realizado em

59

Tabela 16: Resultado obtido pela aba Histórico (dia 12 de junho de 2020)

Cidade Temperatura (°C) Cidade Temperatura (°C)

Aracaju 30 Manaus 32

Belem 32 Natal 31

Belo Horizonte 29 Palmas 35

Boa Vista 31 Porto Alegre 27

Brasilia 27 Porto Velho 31

Campo Grande 30 Recife 30

Cuiaba 35 Rio Branco 31

Curitiba 27 Rio de Janeiro 32

Florianopolis 25 Salvador 28

Fortaleza 28 Sao Luis 31

Goiania 31 Sao Paulo 28

Joao Pessoa 30 Teresina 33

Macapa 31 Vitoria 32

Maceio 30

Fonte: Elaborada pelo autor a partir das informações da previsão do tempo
para municípios do CPTEC/INPE.

uma conta de anúncios com informações lidas diretamente do Google Ads, utilizando 72
regras para 28 campanhas e 127 cidades, demorou apenas 12 minutos, ou seja, menos da
metade do tempo limite.

60

Figura 10: Execução do script na plataforma do Google Ads com simulação de histórico

Fonte: Elaborada pelo autor a partir da plataforma do Google Ads.

61

Figura 11: Alterações do script utilizando o histórico de resultados

Fonte: Elaborada pelo autor a partir da plataforma do Google Ads.

63

5 CONCLUSÃO

Este trabalho iniciou-se com o propósito de cumprir o objetivo de utilizar a
temperatura para influenciar o marketing digital, porém com fácil personalização e uso de
outras informações para complementá-lo, o que foi concluído com sucesso como evidenciado
pelos resultados apresentados.

Enquanto outras versões exigem que cada combinação de local e campanha possua
uma regra manualmente configurada em uma planilha, a desenvolvida neste trabalho foi
capaz de realizar 81 modificações utilizando apenas 12 regras, podendo realizar muito mais
dependendo da complexidade desejada. Os agrupamentos que permitem essa simplificação
foram criados para serem ao mesmo tempo intuitivos e relevantes para quem estiver
configurando, sem necessitar de qualquer conhecimento de programação.

Ao mesmo tempo, foi acoplado ao código a possibilidade de utilizar o histórico
de resultados de cada local para cada campanha, permitindo assim utilizar os dados
de temperatura sem perder as otimizações baseadas em performance, que também são
importantes.

O código produzido também permite sua expansão para outras funcionalidades que
serão implementadas em passos futuros - tanto pode-se expandir a atuação utilizando a
informação do tempo de cada local, quanto pode-se expandir para outras informações relaci-
onadas à localização. Além disso, existe a oportunidade de incrementar seu funcionamento
utilizando a lógica difusa, também conhecida como lógica fuzzy.

Para a análise do tempo, pode-se utilizar as outras informações disponíveis no
XML do CPTEC/INPE, como a previsão de chuva e de incidência de radiação ultravioleta,
dependendo da importância destas informações para o negócio. Ainda com temperatura, é
praticável adicionar funções extras como ativar e pausar anúncios e até mesmo realizar o
controle de orçamento a nível de campanha.

Já em relação a novos dados de localização, é possível acoplar qualquer tipo de
dado relacionado às cidades desde que haja uma fonte de dados que possa ser acessada.
Por exemplo, possuir uma fonte que indique a porcentagem de isolamento social em um
momento de pandemia pode ser útil para guiar as campanhas de marketing digital de
acordo com o objetivo: caso a campanha tenha interesse em visitas a uma loja física, seria
interessante aumentar o lance em cidades com baixa taxa, enquanto que lojas eletrônicas
tendem a ter melhor performance em locais com maior taxa de isolamento social, situação
em que as compras são feitas prioritariamente pela internet.

No campo social, pode-se utilizar esta ferramenta para impulsionar anúncios de
conscientização da população para o combate à pandemia em locais com baixa adesão

64

ao isolamento social. Outra aplicação possível está na gestão inteligente de anúncios
para coleta de sangue próximos a hemocentros com deficiência em determinados tipos
sanguíneos.

Ao contrário de otimizações baseadas exclusivamente em resultados, o uso de
informações de geolocalização permite adicionar inteligência ao marketing digital com
ajustes de forma preditiva, o que pode ser vantajoso contra a concorrência e permite
aproveitar desde o início do dia as oportunidades relacionadas a esta informação.

65

REFERÊNCIAS

AJUDA do Google Ads. Google, 2020. Apresenta a documentação referente ao
Google Ads, explicando definições e funcionamentos da plataforma. Disponível em:
<https://support.google.com/google-ads/>. Acesso em: 03 jun. 2020.

BENGEL, A.; SHAWKI, A.; AGGARWAL, D. Simplifying web analytics for digital
marketing. In: IEEE. 2015 IEEE International Conference on Big Data (Big
Data). [S.l.], 2015. p. 1917–1918.

Chikara, A. et al. Study and implementation of charging battery of the car using
pumping system and indicating the battery percentage present in fuel car. In: 2020
6th International Conference on Advanced Computing and Communication
Systems (ICACCS). [S.l.: s.n.], 2020. p. 711–714.

COMO marketing digital pode ajudar a sua empresa nos tempos de coronavírus? Blog SEM-
rush, 2020. Disponível em: <https://pt.semrush.com/blog/marketing-digital-coronavirus/
>. Acesso em: 02 jun. 2020.

GOOGLE Apps Script. Google Developers, 2020. Apresenta documentação de
APIs e ferramentas de desenvolvimento para os aplicativos do Google, que podem
ser utilizados no desenvolvimento de scripts em suas plataformas. Disponível em:
<https://developers.google.com/apps-script>. Acesso em: 27 mai. 2020.

PAK, B. K. et al. Development of autonomous intelligent system for google ads.
In: IEEE. 2018 Thirteenth International Conference on Digital Information
Management (ICDIM). [S.l.], 2018. p. 102–107.

PREVISAO de Tempo em XML - CPTEC/INPE. Centro de Previsão de Tempo e
Estudos Climáticos do Instituto Nacional de Pesquisas Espaciais, 2014. Apresenta
documentação para utilização da previsão de tempo em XML do CPTEC. Disponível em:
<http://servicos.cptec.inpe.br/XML/>. Acesso em: 06 jun. 2020.

VERAO faz crescer mais de 70% as vendas de ventilador e provoca faltas pontuais. O
Estado de São Paulo, 2019. Disponível em: <https://economia.estadao.com.br/noticias/
geral,verao-intenso-impulsiona-vendas-de-ventilador-e-ar-condicionado,70002683261>.
Acesso em: 02 jun. 2020.

WEATHER-BASED Campaign Management. Google Developers, 2019. Apresenta
um gerenciamento de campanhas baseado em temperatura, utilizando dados do
OpenWeatherMap. Disponível em: <https://developers.google.com/google-ads/scripts/
docs/solutions/weather-based-campaign-management>. Acesso em: 02 jun. 2020.

https://support.google.com/google-ads/
https://pt.semrush.com/blog/marketing-digital-coronavirus/
https://pt.semrush.com/blog/marketing-digital-coronavirus/
https://developers.google.com/apps-script
http://servicos.cptec.inpe.br/XML/
https://economia.estadao.com.br/noticias/geral,verao-intenso-impulsiona-vendas-de-ventilador-e-ar-condicionado,70002683261
https://economia.estadao.com.br/noticias/geral,verao-intenso-impulsiona-vendas-de-ventilador-e-ar-condicionado,70002683261
https://developers.google.com/google-ads/scripts/docs/solutions/weather-based-campaign-management
https://developers.google.com/google-ads/scripts/docs/solutions/weather-based-campaign-management

Apêndices

69

APÊNDICE A – CÓDIGO FONTE

/*
Copyright (c) 2020 RACCOON MARKETING DIGITAL

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files
(the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

*/

/**
* Este código tem como finalidade realizar alterações em ajustes
* de lance de local no Google Ads através da leitura da temperatura
* máxima prevista para o dia, utilizando também os resultados ante-
* riores como entrada.
**/

function main() {
MccApp.accounts().withIds(ACC_ID).executeInParallel(’process’)

}

function process(){
var rulesMap = getRulesMap();

70

setStandardBids(rulesMap);
setModifiedBids(rulesMap);
setHistory();

}

/**
* Definições globais. Referir-se ao Capítulo 3 da monografia para
* informações detalhadas de cada uma delas.
**/

//The script is expected to work with following API version
API_VERSION = {
apiVersion: ’v201809’
}

ACC_ID = ["826-177-5681"];
SPREADSHEET_ID = "1MpF33hgF5qh484UOKVcz06IdjyabrK5w-JuStMnjhzM";
CONTROL_SHEET = "Controle";
WEATHER_CONDITIONS_SHEET = "Condições";
BIDS_CONDITIONS_SHEET = "Lances modificados";
LOCATION_SHEET = "Locais";
CAMPAIGN_SHEET = "Campanhas";
HISTORY_SHEET = "Histórico";

WEATHER_CACHE = {};

// CAMPAIGN_SHEET
CAMPAIGN_NAME_COLUMN = 0;
CAMPAIGN_CATEGORY_COLUMN = 1;

// LOCATION_SHEET
CITY_NAME_COLUMN = 0;
ADS_CODE_COLUMN = 1;
CPTEC_CODE_COLUMN = 2;
REGION_NAME_COLUMN = 3;

// WEATHER_CONDITIONS_SHEET
WEA_CONDITION_NAME_COLUMN = 0;
WEA_CONDITION_COLUMN = 1;
WEA_TEMP1_COLUMN = 2;

71

WEA_TEMP2_COLUMN = 3;

// BIDS_CONDITIONS_SHEET
BID_CONDITION_NAME_COLUMN = 0;
BID_TYPE_COLUMN = 1;
BID_CONDITION_COLUMN = 2;
BID_VALUE1_COLUMN = 3;
BID_VALUE2_COLUMN = 4;

// CONTROL_SHEET
CTRL_CAMPAIGN_CATEGORY_COLUMN = 0;
CTRL_REGION_NAME_COLUMN = 1;
CTRL_CONDITION_COLUMN = 2;
CTRL_BID_CONDITION_COLUMN = 3;
CTRL_REGULAR_BID_COLUMN = 4;
CTRL_MODIFIED_BID_COLUMN = 5;

/**
* Mapeia todas as regras escritas na planilha de controle.
*
* Retorna as informações detalhadas de cada regra.
**/

function getRulesMap(){
var rulesMap = {};

var controlSheetData = openAndReadSheet(CONTROL_SHEET);
var weatherConditionsSheetData =

openAndReadSheet(WEATHER_CONDITIONS_SHEET);
var locationSheetData = openAndReadSheet(LOCATION_SHEET);
var campaingSheetData = openAndReadSheet(CAMPAIGN_SHEET);
var bidsSheetData = openAndReadSheet(BIDS_CONDITIONS_SHEET);

var campaignMap = getCampaignMap(campaingSheetData);
var regionMap = getRegionMap(locationSheetData)
var climateConditionsMap =

getClimateConditions(weatherConditionsSheetData);
var convertionMap = getModifiedConditions(bidsSheetData);

72

for(var i = 1; i < controlSheetData.length; i++){
var campaignCategory =

controlSheetData[i][CTRL_CAMPAIGN_CATEGORY_COLUMN];
var region = controlSheetData[i][CTRL_REGION_NAME_COLUMN];
var climate = controlSheetData[i][CTRL_CONDITION_COLUMN];
var convertionCondition =

controlSheetData[i][CTRL_BID_CONDITION_COLUMN];

var campaigns = campaignMap[campaignCategory];
var climateConditions = climateConditionsMap[climate];

var cities = getCitiesRegionTemperature(regionMap[region]);
var checkedCities = checkCityWeather(cities, climateConditions);

rulesMap[i] = {
’campaignCategory’: campaignCategory,
’campaigns’: campaigns,
’region’: region,
’cities’: checkedCities,
’climate’: climate,
’climateConditions’: climateConditions,
’convertionType’: convertionCondition,
’convertionCondition’: convertionMap[convertionCondition],
’standardBid’: controlSheetData[i][CTRL_REGULAR_BID_COLUMN],
’modifiedBid’: controlSheetData[i][CTRL_MODIFIED_BID_COLUMN]

}
}
return rulesMap;

}

/**
* Abre uma planilha e lê todos os dados de uma aba.
*
* Parâmetros: sheetname -> nome da aba a ser lida.
*
* Retorna todos os dados presentes na aba.
**/

function openAndReadSheet(sheetName){
var sheet = SpreadsheetApp

73

.openById(SPREADSHEET_ID)
.getSheetByName(sheetName);

var data = sheet.getDataRange().getValues();
return data

}

/**
* Mapeia todas as campanhas a serem modificadas pelo script.
*
* Parâmetros: data -> dados de uma seleção da aba de campanhas.
*
* Retorna as informações de cada campanha.
**/

function getCampaignMap(data){
var campaignMap = {};

for(var i = 1; i < data.length; i++){
var campaignName = data[i][CAMPAIGN_NAME_COLUMN];
var campaignCategory = data[i][CAMPAIGN_CATEGORY_COLUMN];

if(!campaignMap[campaignCategory]){
campaignMap[campaignCategory] = [];

}
if(campaignMap[campaignCategory]){

campaignMap[campaignCategory].push(campaignName);
}

}
return campaignMap;

}

/**
* Mapeia todas as regiões (agrupamentos de cidades).
*
* Parâmetros: data -> dados de uma seleção da aba de região.
*
* Retorna as informações de cada região.
**/

function getRegionMap(data){
var regionsMap = {};

74

for(var i = 1; i < data.length; i++){
var RegionName = data[i][REGION_NAME_COLUMN];

var region = {
’city’: data[i][CITY_NAME_COLUMN],
’cptecCode’: data[i][CPTEC_CODE_COLUMN],
’adsCode’: data[i][ADS_CODE_COLUMN],

}

if(!regionsMap[RegionName]){
regionsMap[RegionName] = [];

}
if(regionsMap[RegionName]){

regionsMap[RegionName].push(region);
}

}
return regionsMap;

}

/**
* Mapeia todas as condições de temperatura.
*
* Parâmetros: data -> dados de uma seleção da aba de condições.
*
* Retorna as informações de cada condição de temperatura.
**/

function getClimateConditions(data){
var weatherConditionsMap = {};

for(var i = 1; i < data.length; i++){
var weatherConditionName = data[i][WEA_CONDITION_NAME_COLUMN];

weatherConditionsMap[weatherConditionName] = {
’condition’: data[i][WEA_CONDITION_COLUMN],
’t1’: data[i][WEA_TEMP1_COLUMN],
’t2’: data[i][WEA_TEMP2_COLUMN]

}
}

75

return weatherConditionsMap;
}

/**
* Mapeia todas as condições de ajuste modificado.
*
* Parâmetros: data -> dados de uma seleção da aba de condições.
*
* Retorna as informações de cada condição de ajuste modificado.
**/

function getModifiedConditions(data){
var modifiedMap = {};

for(var i = 1; i < data.length; i++){
var modifiedName = data[i][BID_CONDITION_NAME_COLUMN];

modifiedMap[modifiedName] = {
’type’: data[i][BID_TYPE_COLUMN],
’condition’: data[i][BID_CONDITION_COLUMN],
’value1’: data[i][BID_VALUE1_COLUMN],
’value2’: data[i][BID_VALUE2_COLUMN]

}
}
return modifiedMap;

}

/**
* Acrescenta a temperatura máxima do dia a um objeto de informação
* de cidades.
*
* Parâmetros: cities -> lista de objetos com informações de cada
* cidade.
*
* Retorna uma cópia do parâmetro de entrada, com acréscimo da infor-
* mação de temperatura.
**/

function getCitiesRegionTemperature(cities){
for(var i = 0; i < cities.length; i++){

var city = cities[i][’city’];

76

var cptecCode = cities[i][’cptecCode’];
var maxTemp = getWeather(city, cptecCode);
cities[i][’maxTemp’] = maxTemp;

}
return cities

}

/**
* Checa se a temperatura das cidades estão dentro dos limites da
* regra analisada.
*
* Parâmetros: cities -> lista de objetos com info. de cidades.
* climateConditions -> informações da condição de tem-
* peratura.
*
* Retorna uma lista de cidades que satisfazem as condições.
**/

function checkCityWeather(cities, climateConditions){
var cityList = [];

for(var i = 0; i < cities.length; i++){
if(climateConditions[’condition’] == ’Acima’){

if(cities[i][’maxTemp’] >= climateConditions[’t1’]){
cityList.push(cities[i]);

}
}

else if(climateConditions[’condition’] == ’Abaixo’){
if(cities[i][’maxTemp’] <= climateConditions[’t1’]){

cityList.push(cities[i]);
}

}

else if(climateConditions[’condition’] == ’Entre’){
if(cities[i][’maxTemp’] <= climateConditions[’t2’] &&

cities[i][’maxTemp’] >= climateConditions[’t1’]){
cityList.push(cities[i]);

}
}

77

}
return cityList;

}

/**
* Obtém a temperatura máxima de uma cidade.
* - Caso a cidade não esteja em WEATHER_CACHE, a leitura é feita
* pelo XML do CPTEC/INPE e, depois armazenada em WEATHER_CACHE.
* - Caso a cidade já esteja em WEATHER_CACHE, a leitura da tempe-
* ratura é feita através do WEATHER_CACHE.
*
* Parâmetros: city -> nome da cidade;
* cptecCode -> códico CPTEC/INPE da cidade.
*
* Retorna a temperatura máxima para aquela cidade.
**/

function getWeather(city, cptecCode){
if(!(city in WEATHER_CACHE)){

var cptecUrl = Utilities.formatString(
"http://servicos.cptec.inpe.br/XML/cidade/%s/previsao.xml",
cptecCode);

var response = UrlFetchApp
.fetch(cptecUrl, {"muteHttpExceptions":true})

.getContentText();
var newCont = response.replace(

"<?xml version=’1.0’ encoding=’ISO-8859-1’?>",
"<?xml version=’1.0’ encoding=’ISO-8859-1’?><root>");
newCont += "</root>";

var xml = XmlService.parse(newCont);
var maxTemp = xml

.getRootElement()

.getChildren("cidade")[0]

.getChildren("previsao")[0]
.getChildren("maxima")[0]
.getValue();

WEATHER_CACHE[city] = maxTemp;
}
else{

maxTemp = WEATHER_CACHE[city];

78

}
return maxTemp;

}

/**
* Define os lances baseados em dados de temperatura.
*
* Parâmetros: rulesMap -> regras mapeadas.
**/

function setStandardBids(rulesMap){
for(var rule in rulesMap){

var targetList = [];

// Leitura da regra atual para análise
var campaigns = rulesMap[rule][’campaigns’];
var cities = rulesMap[rule][’cities’];
var bid = parseFloat(rulesMap[rule][’standardBid’]);
var campaignCategory = rulesMap[rule][’campaignCategory’];
var region = rulesMap[rule][’region’];
var climate = rulesMap[rule][’climate’];
var convertionCondition = rulesMap[rule][’convertionCondition’];

var locationIds = getAdsCode(cities);
var campaignsIds = getCampaignID(campaigns);
var targetedLocationIds = getTargetedLocationIds(campaignsIds,

locationIds);
if(bid && cities){

var adsIterator = AdsApp.targeting()
.targetedLocations()
.withIds(targetedLocationIds)
.get();

while(adsIterator.hasNext()){
var target = adsIterator.next();
targetList.push(target);

}
setBid(targetList, bid);

}
}

79

}

/**
* Obtém uma lista das IDs de uma lista de objetos de cidades.
*
* Parâmetros: cities -> lista de objetos com dados de cidades.
*
* Retorna uma lista de códigos do Google Ads de local.
**/

function getAdsCode(cities){
var adsCodeList = [];
for(var i = 0; i < cities.length; i++){

adsCodeList.push(cities[i][’adsCode’]);
}
return adsCodeList;

}

/**
* Obtém lista de IDs de uma lista de campanhas.
*
* Parâmetros: campaigns -> lista de nomes de campanhas.
*
* Retorna uma lista de IDs de campanhas.
**/

function getCampaignID(campaigns){
var campaignsId = [];
var report = AdsApp.report(

’SELECT CampaignId ’ +
’FROM CAMPAIGN_PERFORMANCE_REPORT ’ +
’WHERE ’ +
’CampaignName IN ’ + ’[’ + campaigns + ’]’; API_VERSION);

var rows = report.rows();

while (rows.hasNext()) {
var row = rows.next();
var campaignId = row[’CampaignId’];
campaignsId.push(campaignId);

}

80

return campaignsId;
}

/**
* Associa todas as localizações para cada uma das campanhas.
*
* Parâmetros: campaignsIds -> lista de IDs de campanhas;
* locationIds -> lista de IDs de local.
*
* Retorna uma lista de listas com essas IDs pareadas.
**/

function getTargetedLocationIds(campaignsIds, locationIds){
var targetedLocationIds = []
for(var i = 0; i < campaignsIds.length; i++){

for(var j = 0; j < locationIds.length; j++){
targetedLocationIds.push([campaignsIds[i], locationIds[j]]);

}
}
return targetedLocationIds;

}

/**
* Altera o lance em uma lista de pares locais/campanha.
*
* Parâmetros: targetList -> lista com IDs pareadas;
* bid -> ajuste a ser aplicado.
**/

function setBid(targetList, bid){
for(var i = 0; i < targetList.length; i++){

targetList[i].setBidModifier(bid);
}

}

/**
* Define os lances baseados em dados de histórico.
*
* Parâmetros: rulesMap -> regras mapeadas.
**/

function setModifiedBids(rulesMap){

81

var cityCodes = getCodeMap();
for(var rule in rulesMap){

var targetList = [];

// Leitura da regra atual
var convertionCondition = rulesMap[rule][’convertionCondition’];
var campaigns = rulesMap[rule][’campaigns’];
var cities = rulesMap[rule][’cities’];
var bid = parseFloat(rulesMap[rule][’modifiedBid’]);
var campaignCategory = rulesMap[rule][’campaignCategory’];
var region = rulesMap[rule][’region’];
var climate = rulesMap[rule][’climate’];

if (cities.length > 0){
var checkedCities = runReport(campaigns, cities,

convertionCondition, cityCodes);

if(bid && cities){
for (var campaign in checkedCities){

var adsIterator = AdsApp.targeting()
.targetedLocations()
.withIds(checkedCities[campaign])
.get();

while(adsIterator.hasNext()){
var target = adsIterator.next();
targetList.push(target);

}
setBid(targetList, bid);

}
}

}
}

}

/**
* Mapeia todos os códigos do Google Ads da planilha para facilitar
* a pesquisa através do nome da cidade.
*

82

* Retorna todos os códigos mapeados com a chave sendo o nome da
* cidade.
**/

function getCodeMap(){
var codeMap = {};
var data = openAndReadSheet(LOCATION_SHEET);
for(var i = 1; i < data.length; i++){

var city = data[i][CITY_NAME_COLUMN];
var adsCode = data[i][ADS_CODE_COLUMN];
var code = {

’adsCode’: adsCode
}

if(!codeMap[city]){
codeMap[city] = code;

}
}
return codeMap;

}

/**
* Checa quais cidades devem receber os ajustes modificados.
* Parâmetros: campaigns -> lista de nomes de campanhas;
* cities -> lista de nomes de cidades;
* convertionCondition -> informações da condição de
* ajustes modificados;
* cityCodes -> lista de códigos do Google Ads.
* Retorna uma lista de pares cidade/local para receberem ajustes mo-
* dificados
**/

function runReport(campaigns, cities, convertionCondition, cityCodes){
var setToBid = {};
var adsCodeList = getAdsCode(cities);
var campaignsIds = getCampaignID(campaigns);

if(adsCodeList && campaignsIds){
// Monta o relatório desejado

var report = AdsApp.report(
’SELECT CampaignId, Conversions, ConversionValue, ’+

83

’Cost, CityCriteriaId ’ +
’FROM GEO_PERFORMANCE_REPORT ’ +
’WHERE ’ +
’CampaignId IN ’ + ’[’ + campaignsIds + ’] ’ +
’AND CityCriteriaId IN ’ + ’[’ + adsCodeList + ’] ’ +
’DURING LAST_7_DAYS’; API_VERSION);

var rows = report.rows();

while (rows.hasNext()) {
var row = rows.next();

// Lê informações de uma linha do relatório
var campaignId = row[’CampaignId’];
var conversions = row[’Conversions’];
var conversionValue = row[’ConversionValue’].replace(/,/g , ’’);
var cost = row[’Cost’];
var cityCriteriaId = row[’CityCriteriaId’];

var roas = 0;
if(parseFloat(cost) == 0){

if(parseFloat(conversionValue) > 0){
roas = 99999;

}
}
else {

roas = parseFloat(conversionValue) / parseFloat(cost);
}

if(checkModifiedCondition(convertionCondition,
conversions, roas)){

if(!setToBid[campaignId]){
setToBid[campaignId] = [];

}

if(setToBid[campaignId]){
setToBid[campaignId]
.push([parseInt(campaignId),

cityCodes[cityCriteriaId][’adsCode’]]);
}

84

}
}

}
return setToBid;

}

/**
* Checa se uma determinada condição de ajuste modificado está
* sendo cumprida.
*
* Parâmetros: convertionCondition -> informações da condição;
* conversions -> quantia de conversões;
* roas -> valor calculado do ROAS.
*
* Retorna verdadeiro ou falso.
**/

function checkModifiedCondition(convertionCondition,
conversions, roas){

if(convertionCondition[’type’] == ’Conversão’){
return checkValue(convertionCondition, conversions);

}
else{

return checkValue(convertionCondition, roas);
}

}

/**
* Checa se um valor está dentro dos limites de uma condição.
*
* Parâmetros: convertionCondition -> informações da condição;
* value -> valor a ser comparado.
**/

function checkValue(convertionCondition, value){
if(convertionCondition[’condition’] == ’Acima’){

if(value >= convertionCondition[’value1’]){
return true;

}
}

85

else if (convertionCondition[’condition’] == ’Abaixo’){
if(value <= convertionCondition[’value1’]){

return true;
}

}
else if(convertionCondition[’condition’] == ’Entre’){

if(value >= convertionCondition[’value1’]
&& value <= convertionCondition[’value2’]){

return true;
}

}
return false;

}

/**
* Registra o histórico de temperatura na planilha de controle.
**/

function setHistory() {
var spreadsheet = SpreadsheetApp.openById(SPREADSHEET_ID)
var sheet = spreadsheet.getSheetByName(HISTORY_SHEET)
var nextRow = sheet.getDataRange().getLastRow() + 1

var vetor = []

for (var key in WEATHER_CACHE) {
vetor.push([key, WEATHER_CACHE[key]])

}

var range = sheet.getRange(’A’ + nextRow + ’:A’ +
(nextRow + vetor.length - 1))

writeDate(range)
sheet.getRange(nextRow, 2, vetor.length, 2).setValues(vetor)

}

/**
* Escreve a data em uma seleção da planilha.
**/

function writeDate(range) {
var today = new Date()

86

var day = today.getDate()
var month = today.getMonth() + 1
var year = today.getFullYear()
var date = year + ’-’ + month + ’-’ + day
range.setValue(date)

}

	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Lista de figuras
	Lista de tabelas
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Motivação
	Objetivo
	Justificativa
	Organização do trabalho

	Fundamentação teórica
	Marketing digital
	Métricas relevantes
	Google Ads
	Estrutura da plataforma
	Ajustes de lance
	Funcionamento dos leilões

	Google Developers
	Google Apps Script
	Serviço para Google Planilhas
	Serviço para acesso a URLs
	Serviço para acesso e manipulação de XML
	Serviços utilitários

	Google Ads Script
	Relatórios do Google Ads
	Critérios de direcionamento de anúncios

	Previsão do tempo em XML - CPTEC/INPE
	Busca de localidade
	Requisição da previsão do tempo

	Desenvolvimento
	Planilha de controle
	Controle
	Campanhas
	Locais
	Condições
	Lances modificados
	Histórico

	Código do script
	Variáveis e parâmetros globais
	Leitura e organização dos dados
	Criação do mapa de regras
	Leitura da previsão do tempo do CPTEC/INPE

	Definição de ajustes de lance baseada em temperatura
	Definição de ajustes de lance baseado em histórico de performance
	Registro no histórico de temperatura

	Resultados
	Dados de temperatura com histórico nulo
	Utilização da planilha de controle para determinar as regras
	Verificação da leitura de temperatura
	Verificação das alterações realizadas

	Dados de temperatura com histórico simulado
	Dados utilizados para simulação
	Verificação das alterações desejadas

	Conclusão
	Referências
	Apêndices
	código fonte

