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RESUMO

Este trabalho visa iniciar o desenvolvimento de uma rede neural artificial (RNA) para
parametrizar um forno de tratamento térmico de solubilizagdo em liga AICuSiSn.
Desenvolver uma RNA que apresente resultados préximos aos dados experimentais
indica a possibilidade concreta de padronizar e prever o comportamento do forno.
Para isso, buscou-se obter dados reais de producdo provenientes do estudo de
parametrizacdo do forno. O relatério apresenta ser possivel o desenvolvimento de
uma rede neural satisfatoria, necessitando apenas de refinamento através da

introdug@o de novos dados experimentais.

Palavras-chave: RNA. Solubilizagdo. Alinhamento de Sn. Dureza de liga.

NeuroSolutions. Multilayer Perceptron.
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1. Bronzinas

11. Introdugao

Bronzinas sdo pegas cuja fungdo é suportar o carregamento de um eixo, como
por exemplo, o de um motor a explosdao, aumentando sua eficiéncia, além de
aumentar a vida dos componentes. Como o carregamento pode ser radial ou axial,
torna-se necessario o uso de mancais com flanges ou arruelas de encosto. Na
eventualidade do rompimento do filme de dleo entre o virabrequim e a bronzina,

essa Ultima farsa a lubrificagdo de emergéncia até a recuperagao do filme de 6leo.'

Para melhor explicar esse conceito, tem-se a definicao de mancal. O mancal é
um elemento de maquina utilizado entre duas pegas rigidas. A sua fungdo
especial é separar as pegas evitando o contato entre elas. Um mancal geralmente
possui um fluido lubrificante que é inserido entre as pegas rigidas. No caso em que
haja movimento relativo entre ambas, a finalidade do mancal &, também, de
substituir o atrito seco pelo atrito viscoso no fluido lubrificante, diminuindo a

temperatura de funcionamento, o desgaste e o atrito da superficie das pecas rigidas.
23

As bronzinas podem ser divididas pelo critério estrutural como segue:
e Monometalicas — feitas de um Unico material;

e Bimetalicas — composta de duas camadas de materiais, geralmente uma

tira de ago recoberta com uma tira de aluminio;

e Trimetdlicas — compostas de trés materiais, sendo semelhante as

bimetalicas, diferindo de uma camada adicional eletrodepositada.

Neste relatério sera estudado somente o tratamento térmico para bronzinas
bimetalicas, de ago e aluminio, ndo sendo abordadas aqui, entre outras, as
bronzinas de ago e bronze. Na Figura 1, observa-se a montagem de uma bronzina
em uma biela. Na Figura 2, pode-se observar esquematicamente as diferentes

camadas presentes em uma bronzina bimetalica.
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Figura 1: Localizagdao da bronzina em uma biela.

Material base
(superficie de rolamento)

Camada Intermediaria

Figura 2: Esquema de uma bronzina bimetilica.

O desempenho destas pegas depende das propriedades e da espessura da

liga de aluminio, chamada também de camada de rolamento. Depende também da



resisténcia e estabilidade dimensional do ago, responsavel pela parte estrutural da

peca.

1.2 Propriedades necessarias as bronzinas bimetalicas

* Resisténcia a fadiga: capacidade resistir a camadas ciclicas que o

mancal absorve do motor;

e Conformabilidade: permitr que o mancal se acomode no eixo
compensando algum desalinhamento ou forma irregular de algumas

partes desse conjunto;

o Compatibilidade: resistir & adesdo com o material do eixo, sob condigbes

de contato direto, interfacial;

» Resisténcia ao desgaste: manter estabilidade dimensional da superficie

de contato do mancal por todo o tempo de vida do motor;

* Resisténcia a cavitagdo, erosao: resistir a implosdo de bolhas de vapor

resultado da queda de pressao do 6leo da superficie do mancal.

A escolha da liga para uma bronzina seja ela central ou de biela, depende das
condi¢bes do filme de 6leo. Caso este possua grande espessura, deve-se atentar a
resisténcia a fadiga da liga utilizada na bronzina. Caso contrério, isto €, quando se
observa uma camada de 6leo com pequena ou inexistente espessura, deve-se
buscar observar a compatibilidade ou a habilidade de a bronzina resistir a um
ocasional contato com o eixo. A cavitagdo do filme de 6leo, que pode ter inicio em
fungdo do movimento rapido do eixo através da folga da bronzina, requer que a liga
da bronzina seja resistente a erosdo causada pelo choque de bolhas de vapor na

superficie da liga de aluminio. °

A resisténcia a fadiga e a resisténcia a erosdo por cavitagdo, estdo ambas
relacionadas a resisténcia da liga. Quanto maior for sua dureza, maior sera a
resisténcia a fadiga e a erosdo. ®* Uma baixa conformabilidade, por outro lado, esta
inversamente correlacionada com a dureza da liga. Geralmente, quanto mais mole

for esta liga, melhores propriedades de superficie ela tera.



1.3. Fabricagao de bronzinas bimetalicas

O desenvolvimento de ligas de aluminio data de 1930, quando a alta
condutividade térmica, resisténcia a corrosdo e resisténcia a fadiga do aluminio
foram reconhecidas. Composi¢cdes de 2 a 15% de cobre e a estrutura das ligas
contendo compostos intermetalicos duros numa matriz de aluminio fizeram sucesso.
Assim sendo, essa familia de liga passou a ser adotada para certas aplicagdes. Por
ter uma dureza mais elevada devido ao cobre, apresentou, por exemplo, uma melhor

conformabilidade. ©

Muitos materiais utilizados na produgido de bronzinas contém duas ou mais
fases, sendo uma mais mole e ductil e outra consideravelmente mais dura. Sabe-se
que as duas trabalham bem, pois a fase mais ductil possui uma camada de
deslizamento enquanto a fase mais dura, junto a um material de suporte, sustenta a
carga normal. Logicamente, a continuidade e distribuicdo das fases do material das

bronzinas € importante.

As ligas Al-Sn ofereceram a alternativa de uma liga mais ductil e composicdes
de aproximadamente 7% de estanho, 1% de cobre e 1 a 2% de silicio ou magnésio.
Quando o cobre é retido em solugdo sodlida, produz um moderado acréscimo na
resisténcia e na dureza da matriz de aluminio, aumentando assim, a resisténcia ao

engripamento e ao desgaste. ’

Trabalhos revelam que a resisténcia ao engripamento de bronzinas aumenta
com o teor de Sn em niveis de 20% ou mais. O potencial dessa liga ndo pode ser
totalmente aproveitado devido ao método de fundigdo, onde o resfriamento da liga
se da entre cilindros, processo esse conhecido como roll caster. Nesse, a presencga
de Sn acima de 7% resulta na formagdo de filmes deste elemento nos contornos de
gréo da liga, o que compromete suas propriedades. Finalmente, foi descoberto que
esses filmes poderiam ser fragmentados e separados ao longo dos contornos de
grdo se as ligas fossem trabalhadas a frio e recristalizadas durante o

processamento.

A liga de bronzina a base de aluminio é muito conhecida no meio automotivo.
O estudo para o aumento das propriedades (dureza, resisténcia a fadiga, resisténcia
ao engripamento) das ligas utilizadas para fabricagdo de bronzinas bimetalicas, vem

crescendo e ganhando mercado. O revestimento de ligas de aluminio sobre o ago



para aplicagdes de bronzina é conseguido através da co-laminagao das tiras. O ago
no conjunto é responsavel pela rigidez da pega e como suporte a liga de aluminio. A

Figura 3 exemplifica o processo.

Tira de

A?O Aluminio

Figura 3: Exemplo de co-laminagio do aluminio ao ago.

A unido de fases solidas & possivel entre metais idénticos ou similares,

quando séo aplicadas condigdes de temperatura e pressao adequadas.

As superficies da liga e do ago devem ser cuidadosamente preparadas
atraves de lixamento, escovamento e posterior ativagdo da superficie por tratamento
térmico antes da etapa de co-laminagao. Como as ligas de aluminio possuem Sn em
sua composi¢cao, uma camada intermetdlica chamada interlayer deve ser
incorporada entre a liga e o ago para que uma forca maxima de ligagdo seja
alcangada. Essa camada intermetalica pode ser de niquel ou cobalto
eletronicamente depositado sobre a tira de ago, ou uma camada de aluminio puro
co-laminada. Entretanto, nesse relatério, serd abordada somente a co-laminagio
com camada eletrodepositada de niquel, onde, no processo, a temperatura da tira
de ago funde o estanho presente na liga formando os “alinhamentos de Sn” na
interface ago-liga. Dependendo da quantidade e tamanho desses alinhamentos,

pode ser caracterizado como defeito, e sera explicado posteriormente.



1.4. Influéncia dos elementos de liga em bronzinas bimetalicas

A adigao de elementos de liga no aluminio, dependendo do que é acrescentado
tem a capacidade de alterar algumas de suas propriedades, como dureza,
ductilidade, resisténcia a abrasdo. Nos proximos trés topicos serdo estudados os
elementos de liga que influenciam nas propriedades mecéanicas desejaveis em

bronzinas bimetalicas.

1.4.1. Efeito do Estanho

O Sn, um dos elementos de maior influéncia nas ligas de AICuSiSn, é
responsavel pela caracteristica de embutibilidade e conformabilidade das bronzinas.
Essas ligas, com adigdo de outros metais como cobre, niquel e silicio, sdo
requeridas para resistir a altas rotagdes, cargas e temperaturas. As adi¢cbes destes
trés componentes aumentam a capacidade de carga e a resisténcia a abrasdo. A
fase de estanho aumenta a resisténcia ao engripamento. ® A composicao quimica da

liga estudada esta especificada na Tabela 1.

%Sn | %Si | %Cu | %Fe | %Mn | %Mg | %Ti | %Pb | %A
9.00-12,00( 35-4,5 | 1,7-2,3 (0,30 méx.|0,10 méx. (0,05 max.|0,10 méx.| 0,1 max. | rest.

Tabela 1: Composicado quimica da liga de Al-Sn estudada no relatério.

Entende-se por engripamento o desgaste do componente, no caso do mancal
de deslizamento, em geral catastréfico, com transferéncia de material entre os pares
atritantes e nitido aumento de rugosidade, sem haver fusdo dos metais em contato.

A Figura 4 mostra um exemplo de engripamento na bronzina.



Figura 4: Exemplo de engripamento em uma bronzina bimetalica.

O diagrama de equilibrio Al-Sn apresenta uma temperatura eutética de
228,3°C. Entretanto, a solubilidade do estanho no aluminio & muito baixa &, logo, na
co-laminagdo a quente, o elemento presente na liga funde e forma a camada

interfacial entre o ago e o aluminio.

1.4.2. Efeito do Silicio

O silicio & utilizado em ligas AlCuSiSn disperso na forma de particulas duras.
Esse elemento é responsavel pela resisténcia ao desgaste em bronzinas bimetalicas
recobertas com uma camada de liga de aluminio. A resisténcia ao engripamento e
ao desgaste aumentam devido a agao de polimento da superficie do eixo e auséncia

de adesao devido a presencga de particulas de silicio em liga Al-Sn.

1.4.3. Efeito do Cobre

O cobre, juntamente com o Al, compde uma familia de ligas de grande
importancia. O teor de cobre pode variar de 2 a 10% em tais ligas, tanto fundidas
quanto trabalhadas, endurecem por precipitacdo durante o envelhecimento. O
endurecimento maximo & obtido em ligas contendo de 4 a 6% de cobre, dependendo

de outros constituintes presentes. O sistema binario Al-Cu, tem sido exclusivamente
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estudado, porém as ligas de maior interesse comercial apresentam também outros
elementos em suas constituigées. °

Estudos mencionam que ligas de aluminio contendo cobre, tanto fundidas
quanto trabalhadas, respondem ao tratamento térmico de solubilizagdo e posterior
envelhecimento com acréscimo na resisténcia e dureza de liga e diminuigdo do
alongamento. '° A razdo para o interesse em ligas que apresentam precipitados é

justamente o grande incremento em propriedades mecanicas que podem obter apos
esse tipo de processamento.

Sendo assim, extrapolando a Figura 5 podemos levantar a seqiiéncia de
precipitagdo em ligas Al-Cu.™

., Porcentagem atémica de Cu

700 T

T

°°°I' o T @} Liguide
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-
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300 |- .
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L 'l S WG VS—— —

1 2 3 4 -]

Porcentagem em peso de Cu

Figura 5: Seqiiéncia de precipitagédo de ligas Al-Cu.

Ainda existem alguns debates a respeito da sequiéncia de envelhecimento para
ligas Al-Cu, porém a mais aceita atualmente é:

a supersaturado — zonas G.P. — 0” — 6’ — 0 (CuAl,)

Definem-se Zonas G.P. como regibes ricas em soluto na pré-precipitagio, néo
tendo estrutura caracteristica. Pode, assim, ser descrita como um dominio distorcido

rico em soluto, sem contornos definidos, e coerentes ao reticulado da matriz. !
Para a liga estudada nesse trabalho, o teor de cobre varia de 1,7 a 2,3%. Logo
percebe-se, pelo diagrama binario de fases, que se deve trabalhar com

temperaturas acima de aproximadamente 420°C, para que possa atingir a regido
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supersaturada, ou seja, a fase a. A essa temperatura, todo o Cu solubilizara na
matriz de aluminio, obtendo assim, uma estrutura monofasica supersaturada, ou
seja, o elemento de liga ficara distribuido na matriz de aluminio sob a forma atémica.
Para manter o Cu supersaturado, & preciso resfriar rapidamente a tira apés
aquecimento. Assim, a microestrutura € congelada e o cobre ndo volta a formar os
intermetalicos.

Apoés solubilizar, o material passa pelo tratamento térmico de precipitacao,
onde € aquecido a uma temperatura intermediaria. Durante o aquecimento da liga,
os elementos que estavam diluidos na matriz de aluminio voltam a se combinar. Isso
acontece, pois através do aquecimento, é introduzida energia ao material,
possibilitando a difusdo dos atomos de Cu na matriz metalica. Assim, esses
materiais se encontram e se combinam formando compostos intermetalicos. Com
esse tratamento, realizado em estufas de convecgdo de ar quente, & possivel
homogeneizar os compostos intermetalicos melhorando as propriedades mecanicas
da liga.

A sequéncia do tratamento térmico de solubilizagdo e a metalurgia do

processo de precipitagao é dada pela Figura 6.

C P ™ TEMPERATURA DO
so0 | B AVA V2N TRATAMENTO DE
SRV ER SOLUBILIZAGAO
700 - r{") \
| - RESFRIAMENTO
800 | Cul LENTG
50LU SOLIDA DE oy
ALUMINIO E COBRE RESFRIAMENTO
£ RAR:DO .
500 _
50L SOUDA DE -
400 ALUMINID E COBRE AR
COM PARTICULAS DE
300 = L\/:E
I Ul 'W\
r
200 \ 598
100 g i 2 1 4 5 6 7 / ENVELHECIMENTO

Al Cudl
SUPER 1 PRECIPITACO
% Cu . SATURADO

Figura 6: Esquema do tratamento térmico de solubilizagio e precipitagio em ligas de Al-Cu.
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1.5. Endurecimento por Deformacgao

Apds o tratamento térmico de solubilizagéo e precipitagéo, a tira passa por um
laminador, onde sofre uma pequena deformagédo de 5%. Durante o processo de
usinagem, quando a estrutura do material é deformada, o encruamento superficial
gera um aumento consideravel na dureza da liga. Essa redugéo encrua a liga de

aluminio e ajusta, por fim, sua dureza.
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2. Redes Neurais Artificiais

21. Introducgédo

As redes neurais artificiais, ou RNA, consistem em um método de solucionar
problemas de inteligéncia artificial, construindo um sistema com circuitos que
simulem o cérebro humano, inclusive seu comportamento, ou seja, aprendendo,
errando e fazendo descobertas. E um modelo inspirado na estrutura neural de
organismos inteligentes e que adquirem conhecimento através da experiéncia, ou

seja, de testes realizados.

A rede neural artificial € um sistema de neurdnios ligados por conexdes
sinapticas e dividido em neurdnios de entrada, que recebem estimulos do meio
externo, neurbnios internos ou intermediarios, que efetuam todo processo de
classificagdo e ponderagdo dos estimulos, e neurdnios de saida, que se comunicam
com o exterior.

Existem varias formas de montar essas redes, mas a mais utilizada é a
Multilayer Perceptron, que foi concebida para resolver problemas mais complexos,
0s quais nao poderiam ser solucionados pelo modelo de neurdnio basico. Um dnico
perceptron (classificagdo de um neurdnio artificial capaz de definir pesos as
variaveis de entrada) ou uma combinagdo das saidas de alguns, poderia realizar
uma operagao, porém, seria incapaz de aprendé-la. Para isto sdo necessarias mais
conexdes, as quais sé existem em uma rede de perceptrons dispostos em camadas,
como mostra a Figura 7. Dessa forma, os neurbnios internos sdo de suma
importancia na rede neural, pois se provou ser impossivel resolver problemas
linearmente ndo separaveis, jA que, quanto mais camadas a rede possuir, mais
refinado sera o resultado de saida da rede.

Assim, pode-se dizer que uma RNA é composta por varias unidades de
processamento, os perceptrons, geralmente conectadas por canais de comunicagéo

associados a determinado peso. As unidades fazem operagdes apenas sobre seus



14

dados locais, que sdo entradas recebidas pelas suas conexdes. A inteligéncia da

RNA vem das interagdes entre as unidades de processamento da rede.

camadas intermediirias

Figura 7: Organizagao em camadas.

A rede neural passa por um processo de treinamento a partir dos casos reais
conhecidos, adquirindo, a partir dai, a sistematica necessaria para executar
adequadamente o processo desejado dos dados fornecidos. Entdo, a rede neural é
capaz de extrair regras basicas a partir de dados reais, diferindo da computagao
programada, onde €& necessario um conjunto de regras rigidas pré-fixadas e

algoritmos.

Usualmente os perceptrons sido dispostos em camadas, classificadas em trés

grupos:
e Camada de Entrada: onde os padrées sdo apresentados a rede;

e Camadas Intermediarias ou Ocultas: onde é feita a maior parte do
processamento, através das conexdes ponderadas; podem ser

consideradas como extratoras de caracteristicas;

o Camada de Saida: onde o resuitado final € concluido e apresentado.
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De acordo com a arquitetura da rede neural, existe classificagdes conforme
implementag&o, topologia, caracteristicas de seus nés, regras de treinamento, e

tipos de modelos.

2.2. Coleta de dados e separagdo em conjuntos

Os dois primeiros passos do processo para o desenvolvimento de redes
neurais artificiais sdo suma importancia para diminuir a probabilidade de erro do
sistema: a coleta de dados relativos ao problema; e a sua separagdo em um
conjunto de treinamento, um conjunto de validagdo, e um conjunto de testes. Esta
tarefa requer uma analise cuidadosa sobre o problema para minimizar ambigtidades
e erros nos dados. Além disso, os dados coletados devem ser significativos e cobrir
amplamente o dominio do problema; englobando operagdes normais ou rotineiras,

excegoes e condigdes nos limites do dominio do problema.

Normalmente, os dados coletados sdo separados em trés categorias: dados de
treinamento, dados de validagdo e dados de teste. Os primeiros sdo utilizados para
o treinamento da rede, os seguintes, para verificar a eficiéncia da rede quanto a sua
capacidade de generalizagdo durante o treinamento e podendo ser empregado
como critério de parada. J4 os ultimos, s3o utilizados para verificar seu desempenho

sob condigbes reais de utilizagéo.

Os dados, assim, s@o colocados em ordem aleatéria para prevengdo de
tendéncias associadas a sua ordem de apresentacdo. E recomendavel, se
necessario, pré-processar estes dados através de normalizagdes, escalonamentos e

conversodes de formato tornando-os mais apropriados & sua utilizagao na rede.

2.3. Configuracgao de rede

O terceiro passo consiste em definir a configuragdo da rede a ser utilizada, e

pode ser dividido em trés etapas:



16

e Selegéo do paradigma neural apropriado a aplicagéo.

e Determinagao da topologia da rede a ser utilizada: nimero de camadas,

de unidades em cada camada, etc.

e Determinagdo de pardmetros do algoritmo de treinamento e fungbes de
ativagdo. Este passo tem um grande impacto no desempenho do

sistema resultante.

2.4, Treinamento

O quarto passo & o treinamento da rede, onde serdo ajustados os pesos das
conexoes.

Quanto ao tempo de treinamento, varios fatores podem influencia-lo, porém
sempre sera necessario utilizar algum critério de parada. Normalmente, o critério
utilizado € um namero maximo de ciclos, mas devem ser considerados a taxa de
erro medio por ciclo e a capacidade de generalizagio da rede. Pode ocorrer que em
um determinado instante do treinamento a rede comece a degenerar, causando o
problema de over-training, ou seja a rede se especializa em um conjunto de dados

de treinamento e perde a capacidade de generalizagio.

O treinamento deve ser interrompido quando a rede apresentar uma boa
capacidade de generalizagdo e quando a taxa de erro for suficientemente pequena,
ou seja, menor que um erro admissivel. Assim, é necessario encontrar um ponto

6timo de parada com erro minimo e capacidade de generalizagdo maxima.

2.5. Teste

O quinto passo é o teste da rede. Durante esta fase o conjunto de teste é
utilizado para determinar o desempenho da RNA com dados que nio foram
previamente utilizados. Seu comportamento, medido nesta fase, é uma boa

indicagdo de seu desempenho real.
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3. Estudo do Forno

3.1. Objetivo

O objetivo do estudo do forno para realizar o tratamento térmico de
solubilizagdo foi habilita-lo a fim de desafogar, ou até mesmo em caso de
manutengao ou eventuais paradas, substituir temporariamente o forno principal que
realiza o tratamento. Os dois fornos funcionam de maneiras diferentes, portanto, no

era possivel garantir que a adaptagdo do novo forno seria eficiente.

O forno principal para o tratamento é continuo, com aproximadamente 13
metros, onde é possivel tratar duas tiras ao mesmo tempo, com velocidades
diferentes. Além disso, o forno aquece as tiras por convecgdo de ar quente forgada
por dois ventiladores instalados sobre o forno. O ar é aquecido pelas seis zonas de
aquecimento presentes. Ao mesmo tempo, o forno ndo apresenta nenhuma
limitagdo quando as dimensdes das tiras, como a largura, podendo-se tratar todas
as tiras de ligas de aluminio produzidas, enquanto que o forno secundario tem
limitag&o dimensional na largura, sendo possivel tratar somente tiras com 230 mm
de largura. Essa limitagdo o restringe a tratar materiais conseqiientemente mais
espessos.

Assim, com o intenso aumento na produgéo de tiras de aluminio para produgio
de bronzinas e a intencdo de compensar eventuais paradas de manutengdio ou
mesmo paradas causadas por falhas de operadores ou do forno, foi solicitada a

adaptacéo do forno secundario para tratar algumas dessas tiras quando solicitado.

O forno secundario funciona de maneira diferente do forno principal. Neste
ultimo, as tiras s&o puxadas sobre roletes internos enquanto, no forno secundario,
somente uma tira passa dentro de um tubo, sob toda a extensdo do forno. Além
disso, o aquecimento ocorre de outra maneira, onde sete zonas de aquecimento por
resisténcias, localizadas nas paredes interas do forno secundario, aquecem por
irradiag&o as paredes do tubo. O ar presente dentro do tubo & aquecido e transmite
o calor a tira por convecgdo. Nesse caso a taxa de transferéncia de calor é muito

baixa, pois o Unico movimento relativo é o da tira atravessando o ar aquecido.
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O forno tem essa disposi¢ao, por nao ter sido projetado para realizar o
tratamento térmico de solubilizagdo em tiras de aluminio. No passado, operava
irradiando calor para a sinterizacdo de p6 de bronze depositado sobre as tiras de
aco. O tubo ficava incandescente, pois se trabalhava com temperaturas maiores que
as utilizadas para o tratamento estudado. Na Figura 8 é possivel visualizar o forno
secundario. A Figura 9Figura 9 apresenta o perfii do forno secundario (corte

transversal) e a Figura 10 apresenta o perfil do forno principal (corte longitudinal).

Figura 8: Foto representativa do forno secundario.
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Figura 9: Perfil do forno secundario (corte transversal).
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Figura 10: Perfil do forno principal (corte longitudinal).
3.2. Materiais e Métodos

3.2.1. Perfis Térmicos

Para primeira avaliagdo do forno, foi necessario estudar se este atingia as
temperaturas de set-poin, definidas para cada uma das sete zonas de aquecimento
presentes no interior do forno. No tratamento térmico dessas tiras de aluminio,
define-se para as trés primeiras zonas de aquecimento a temperatura de 450°C e
para as demais, a 420°C. Logo, o perfil térmico do forno deveria apresentar
temperaturas proximas as definidas. Entretanto, nao foi o que ocorreu, uma vez que
Oos pirdbmetros apresentaram temperaturas variadas, tornando-se necessaria a

manutengao eletrica do forno antes dos testes com termopar viajante.

A obtengéo do perfil térmico do forno secundario foi feita utilizando um
DatalLogger de modelo Squirrel 1200, que registrava a temperatura a cada trés
segundo, e de um termopar viajante, isto &, um termopar de, aproximadamente, 30
metros. Este foi preso a uma tira lider e passado de 1 em 1 metro, permanecendo
parado por 10 minutos a cada metro, dando tempo para a temperatura se estabilizar.
Assim, foi possivel obter as temperaturas sobre a tira, pois o termopar foi preso em

sua superficie. O esquema do termopar preso é apresentado na Figura 11.
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Figura 11: Foto representativa do termopar viajante preso 2 tira lider.

O mesmo foi feito para simular o perfil térmico de tiras. Logo, da mesma
maneira o termopar foi passado em trés diferentes velocidades: 0,5 m/min, 1,0
m/min e 2,0 m/min. Com isso, foi possivel obter a temperatura da tira em toda a
extensdo do forno podendo assim, avaliar tais perfis. O resultado mostrado pelo

Datalogger é apresentado na Figura 12.
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Figura 12: Grafico demonstrativo dos perfis térmicos do forno e das tiras nas respectivas velocidades.

Analisando o gréafico da Figura 12, pode-se concluir que o perfil de temperatura

apresentado pelo forno € satisfatorio, pois apresenta, em sua maioria, temperaturas
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acima de 400°C. Os perfis térmicos da tira a 0,5 m/min e a 1,0 m/min também estao
satisfatorio ja que apresentam um patamar térmico minimo de 3 minutos, necessario
para a completa solubilizagdo do Cu na matriz de Al. Entretanto, o perfil a 2,0 m/min
ndo se mostrou satisfatério ndo apresentando o patamar térmico descrito acima,
incapacitando a solubilizagdo completa do Cu. Percebe-se também, que ao final do
tratamento, ha uma queda brusca da temperatura devido ao resfriamento rapido

necessario para manter o Cu supersaturado na matriz de Al.

3.2.2. Amostragem

Com os perfis térmicos garantidos, definiram-se nove grupos de amostras para
avaliagdo, sendo trés tipos de tira, consideradas finas, médias e grossas. Sua
escolha foi proposital, a fim de englobar a maioria das tiras de Al produzidas. Para
cada tipo de tira, foram realizados trés ensaios, cada um com velocidade diferente.
Passaram-se amostras na velocidade definida em ficha técnica, a qual sera
chamada de V,, aumentada em 15%, ou seja, 1,15*V, e aumentada em 30%, isto &,
1,3*Vo. A velocidade de ficha técnica € a mesma utilizada para o forno principal, pois
as ordens de produgdo séo calculadas com referéncia nele, e segue a fungio V=
1,688 - 0,759*exp(esp tira apbds co-laminagdo). A Tabela 2 apresenta quais amostras
foram utilizadas e suas respectivas velocidades e a Figura 13 mostra o grafico
representando a posigdo das amostras na populagdo de tiras produzidas,

juntamente com as curvas de velocidade.

S:Ei?:;: Velocidade | Velocidade | Velocidade
(mm)  |*30% (mimin}|+15% (m/min)| +0% (mm)
181 1.6 14 12
330 1.0 09 08
245 0,7 06 05

Tabela 2: Grupo de amostras testadas com suas respectivas velocidades.
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Figura 13: Grafico demonstrativo das amostras, em diferentes velocidades.

Antes do tratamento térmico de solubilizagdo, analisaram-se as duas variaveis
decisivas para a liberagdo do material produzido. Sdo elas: dureza de liga e
alinhamento de Sn na interface ago-liga. A dureza da liga foi medida em HR 15T
(dureza Rockwell superficial). Para efeito de liberagdo da qualidade, apds
tratamento, a dureza deveria estar entre 65 a 73 HR 15T, garantindo a solubilizagao

do Cu na matriz de Al.

O alinhamento de Sn na interface se da no processo de co-laminagéo a quente
do ago e aluminio. Assim, o tratamento térmico tem, como um dos objetivos, diminuir
o tamanho dos alinhamentos, pois a tira atinge temperaturas acima do ponto de
fusdo do Sn, que € de 232°C. Com o Sn fundido, ocorre a recristalizagdo da matriz
de Al nessas regibes, reduzindo, com isso, os alinhamentos de Sn de forma efetiva.
Os filmes interfaciais foram medidos em corpos de prova embutidos em baquelite,

utilizando microscépio dptico com diferentes aumentos.

Para a liberagdo dos materiais, a somatéria dos alinhamentos de Sn nao
poderiam passar de 15% do tamanho total do corpo de prova. Além disso, cada

alinhamento deve estas entre 0,1 mm e 0,5 mm de comprimento. Caso a amostra
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apresentasse valores maiores de 0,5 mm, ja estaria rejeitada independente dos
demais. Isso por que o alinhamento interfacial torna-se um defeito, podendo causar
o desplacamento da liga de Al do ago quando a bronzina estiver em operagao,

ocasionando danos sérios ao motor.

A Figura 14 mostra duas metalografias, ambas com alinhamento de Sn
interfacial, entretanto, a primeira o apresenta antes do tratamento e a segunda, a tira

acabada onde nota-se a recristalizagdo da matriz de Al.

AlinhamentodeSn - Antes AlinhamentodeSn - Depois

Figura 14: Metalografia de corpos de prova embutidos em baquelite apresentam alinhamento de Sn.

As mesmas andlises de dureza e alinhamento de Sn foram feitas nas amostras
acabadas, ou seja, apds tratamento térmico de solubilizacio, precipitagdo, e
redugdo de 5% no laminador. Na Tabela 3 é visivel a redugéo dos alinhamentos de
Sn em todas as amostras e, na Figura 15, vé-se a disposigao dos valores de dureza

para todos os corpos de prova com suas respectivas velocidades.
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Espessura |Velocidade Alinhamento | Alinhamento
(mm) | (m/min)y | €SN | desSn(%)
Antes Depois
1,3*V, 26,5 7
1,81 1,15%V, 26,5 3,5
1,00*V, 26,5 3
1,3*V, 20 6
3,3 1,15*V, 20 10,5
1,00%V, 20 1
1,3*v, 12
448 1,15*V, 12
1,00*V, 12

Tabela 3: Alinhamento de Sn nas amostras antes e depois do tratamento térmico.
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Figura 15: Grafico dos valores de dureza de liga encontrados para todas as espessuras e velocidades.

Avaliando o gréafico da Figura 15, juntamente com a Tabela 3, pode-se concluir
que a melhor relagdo entre as duas varidveis de saida é apresentada para a
velocidade de ficha técnica (Vo).

3.2.3. Testes com produgio

Com a velocidade da linha definida, foi testada a eficiéncia do forno utilizando

tiras reais de produgéo. Para isso, foram utilizadas sete ordens de produgao, ou OP,
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de acordo com a necessidade da fabrica, uma vez que as ordens estavam em atraso
devido a sobrecarga no formo principal. As OP’s, por sua vez, foram passadas na
linha com velocidade apresentada em ficha técnica, retirando-se amostras de inicio e
fim de cada rolo em dois momentos distintos: antes do tratamento térmico de
solubilizag&o e acabadas. A Tabela 4 mostra as ordens de produgéo, a quantidade

de rolos a cada ordem e a velocidade definida em ficha técnica.

Espessura
Ordem Espessura .
de Quant. . Velocidade
de de saida .
~ | Entrada |De Rolos {m/min)
Produgao {mm)
{(mm)
1 2,8 2 2,65 0,3
2 1,58 1 1,88 1,2
3 1,77 1 1,68 1,3
4 1,72 4 1,63 L3
5 1,98 2 1,88 1,2
6 2,25 1 2,13 1,1
7 1,77 6 1,88 1,3

Tabela 4: Ordens de produg@o e suas caracteristicas.

Da mesma forma que no tépico anterior, foram medidas a dureza de liga e o
alinhamento de Sn interfacial. Entretanto, as trés primeiras ordens foram passadas
com uma velocidade 30% menor do que a especificada em ficha técnica. Isso se deu
em fungdo de um erro durante a produgdo, onde a velocidade foi alterada

erroneamente.

A Figura 16 mostra a variagdo nos valores de dureza antes e depois do
tratamento. Pode-se concluir de sua andlise, que o tratamento foi efetivo, pois houve
um aumento significativo nos valores medidos nas amostras acabadas. A Figura 17
mostra, os valores de alinhamento de Sn interfacial, para efeito de liberagéo, das
amostras antes e depois de acabadas. Percebe-se que ocorreu “quebra” efetiva dos
alinhamentos, entretanto, para a OP 1 ndo ¢€ o que se nota. Isso aconteceu devido a
um problema proveniente da co-laminagdo a quente, formando alinhamentos
interfaciais de Sn com comprimento acima do que o tratamento é capaz de

‘quebrar”. A Gnica varidvel de processo alterada foi a velocidade, fazendo com que a
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tira ficasse mais tempo dentro do forno, o que deveria causar uma maior “quebra”
dos alinhamentos, porém nao foi o que ocorreu.

—+— Anles do Fomo
—a— Depois do Forno — Minimo de Dureza

Dureza de Liga - HR 15T

Dureza (HR 15T)
£ & &8 8 8 & @&
2\

| \/\ ~

48

op1 oP2Z  OP3 op4 oP5 ope or7

Figura 16: Variagdo na dureza antes do forno e acabada.

Efeito do tratamento na quebra de alinhamento de Sn.

m Antes

[ B Depois

Porcentagem de Sn (%)

Figura 17: Efeito do tratamento térmico na "quebra"” dos alinhamentos de Sn.
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Além deste fato, ndo era possivel garantir a capacidade do forno em “quebrar”
todos os tamanhos dos alinhamentos de Sn, logo, foi medido, além dos
alinhamentos para efeito de liberagdo, toda sua populagdo, independente do
comprimento. Comparando a distribuigdo normal da populagédo de alinhamento de
Sn antes e depois do tratamento, foi possivel avaliar se o forno realmente os
‘quebrava”.

A seguir, a Figura 18 mostra as curvas de distribuigdo normal para a OP 1; a
Figura 19 para a OP 2; a Figura 20 para a OP 3; a Figura 21 para OP 4; a Figura 22
para a OP 5; a Figura 23 para a OP 6; e a Figura 24 paraa OP 7.
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Figura 24: Curvas de distribuigdo normal para OP 7.

Analisando as curvas normais para todas as OP’s é possivel confirmar que
houve “quebra” efetiva dos alinhamentos de Sn interfaciais. O fato fica claro tanto
para alinhamentos considerados grandes, acima de 0,1 mm, quanto para
alinhamentos menores, que variam até 0,1 mm. Entretanto, é perceptivel para todas
as amostras da OP 1 que nao houve “quebra” efetiva. Avaliando os resultados,
percebe-se que os maiores alinhamento ficaram menores e os inicialmente menores
ficaram maiores, pois a média das curvas normais esta deslocada para frente, ou

seja, houve aumento no tamanho médio dos filmes interfaciais.

Para todas as outras amostras, a analise das curvas normais mostra que,
independente do tamanho, os alinhamentos de Sn sofreram reducdo. Algumas
também apresentaram 0% de alinhamentos acima de 0,1 mm. Vale lembrar, que
para efeito de liberagdo da qualidade, todas OP's foram aprovadas pois, nao
apresentaram somatdria maior do que 15% de alinhamentos acima de 0,1 mm na

interface ago-Al.
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Com base nesses dados de produgdo foi possivel afirmar que o forno
secundario opera com eficiéncia e é capaz de realizar o tratamento térmico de
solubilizagdo nessas ligas de AICuSiSn. Assim, pode-se utilizar o forno, quando

houver necessidade, para o tratamento de tiras bimetdlicas de aluminio.
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4. Estudo dos modelos neurais

4.1. Objetivo

Na atualidade, vem se tornando cada vez mais interessante e viavel a
aplicacéo de redes neurais em inimeros processos. Independente da area de
atuac@o de uma empresa é possivel detectar as varidveis de entrada e de saida de

um procedimento e assim, desenvolver uma rede neural que possa parametriza-lo.

Deste modo, a utilizagéo de redes neurais para parametrizar o forno secundario
também & possivel. O relatério tem como fundamento iniciar o desenvolvimento de
uma rede neural artificial, a partir dos dados obtidos, visando 2 parametrizacdo do
processo de tratamento térmico de solubilizacdo em tiras bimetalicas ago-Al. A rede
neural sera capaz de prever situagdes de producio, a partir de dados tanto de
entrada quanto de saida, atingindo um bom nivel de confiabilidade e calculando de

maneira segura os resultados requeridos.

4.2, Materiais e métodos

Para o desenvolvimento da rede neural utilizou-se o programa NeuroSolutions
vo.0. Este € um ambiente de simulacdo orientado para estudos de sistemas
distribuidos complexos, dificeis de serem estudados apenas na teoria. Suas
ferramentas de visualizagdo permitem que o usuario verifique o comportamento da
rede sem que seja necessario esperar até o fim de seu treinamento, além de permitir

que parametros sejam alterados durante sua execucio.

Dentro do programa existe um aplicativo chamado NeuroSolutions for Excel,
que sera aqui utilizado como principal ferramenta para obtencdo dos resultados.
Assim, foram disponibilizados em uma planilha os valores reportados em produgéo.
A Figura 25 apresenta as nominagdes e abreviagbes das variaveis de entrada e de
saida.
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EspE Espessura de entrada (mm)
Vel Velocidade de entrada (m/min)
Sn Teor de Sn (%)
Si Teor de St (%)
Cu Teor de Cu (%) Variaveis de
Z1 Temperatura Zona 1 {°C) " Entrada
22 Temperatura Zona 2 {°C)
23 Temperatura Zona 3 {°C)
24 Temperatura Zona 4 (°C)
Z5 Temperatura Zona 5 (°C)
6 Temperatura Zona 6 (°C)
27 Temperatura Zona 7 {°C)
Liga € | Dureza da liga de entrada (HR 15T7)
AlSn E Alinhamento de Sn Entrada (%)
Esp S Espessura de saida (mm) oL
Liga s Dureza da liga de saida (HR 15T) Variaveis
AlSn'S Alinhamento de Sn Saida({%) de Saida

Figura 25: Definigdo das variaveis de entrada e saida do programa.

Com os valores obtidos, seria improvavel a criagdo de uma rede neural
confiavel. Em fungdo disso, as variaveis foram triplicadas e colocadas de forma
aleatéria a fim de evitar tendéncias associadas a ordem de apresentagio dos dados.

A Figura 26 mostra parte da planilha com os dados dispostos aleatoriamente.
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EspE Vel Sn  Si Cu Z1 72 Z3 Z4 75 Z6 Z7 ALSnE LigaE Esp S AlISn 5 Liga S
28 064 9,15 4,14 2,03 450 449 450 420 419 420 420 18,44 b5 2,66 10,35 67

177 125 9,01 4,23 2,05 450 450 450 420 420 420 420 9,91 58 1,67 0 68
225 107 929 442 2,19 449 451 447 420 420 421 419 13,14 b2 213 0,67 69
177 125 92 426 2,11 A50 450 450 420 420 420 420 14,63 63 1,67 0 70
0225 107 9,63 4,41 2,19 450 447 446 419 420 420 420 16,82 b7 213 1,583 70
1,72 128 9,61 3,83 1,92 450 449 451 420 418 420 420 19,98 66 1,63 0 70
177 125 10,11 4,19 1,91 450 450 450 420 420 420 420 9,93 64 1,67 0 72
225 1,07 9,53 4,41 2,19 450 447 446 419 420 420 420 13,9 55 2,13 0 72
225 107 923 442 2,19 449 451 447 420 420 421 419 11,94 53 213 0 72

28 064 927 421 2,06 450 447 446 420 418 421 420 12,84 57T 265 945 68
177 125 10,11 4,18 1,91 450 450 450 420 420 420 420 14 81 66 1.67 0 70

28 064 9,15 4,14 2,03 450 449 450 420 419 420 420 14,26 57 265 10,3 68
1,77 0,88 9,35 42 2,04 450 448 450 420 419 420 421 19,23 58 1,67 4,16 74
177 125 92 43 1,99 450 450 450 420 420 420 420 6.56 64 1,67 0 71
198 117 9,02 4,13 1,92 450 450 450 420 417 419 420 17.93 5 187 10,2 68
28 064 927 421 2,08 450 447 446 420 418 421 420 12,84 57 265 945 68
177 125 9,01 4,23 2,05 450 450 450 420 420 420 420 8,33 b8 1,67 0 68
225 107 929 442 219 449 451 447 420 420 421 419 13,14 52 213 0,67 69
177 1256 10,11 4,19 1,91 450 450 450 420 420 420 420 14.81 66 1,67 0 70

177 126 92 4,26 2,11 450 450 450 420 420 420 420 14,63 5% 1,67 0 70
28 064 9,15 414 203 450 449 450 420 419 420 420 14,26 57 265 10,3 68
177 125 92 43 1,99 450 450 450 420 420 420 420 7,66 59 1,67 0 70

1,77 0,88 935 42 2,04 450 448 450 420 419 420 421 19,17 52 167 2,14 74
1,98 0,82 9,17 4,26 1,92 450 449 452 420 421 420 420 30,09 58 1,87 344 69

226 107 9,28 4,42 219 449 451 447 420 420 421 419 11,94 63 213 0 72
225 1,07 9,73 4,43 211 450 450 452 421 420 421 420 1,16 65 213 0 69
1,72 128 91 4,18 1,95 450 449 451 420 418 420 420 22 65 1,63 0 69
225 107 923 442 219 449 451 447 420 420 421 419 11,94 63 213 0 72

226 107 9,71 43 211 449 450 452 420 421 421 420 1763 66 213 1,53 69
177 088 935 42 2,04 450 448 450 420 419 420 421 1917 52 167 2,14 74
225 107 9,71 43 211 449 450 452 420 421 421 420 7,53 65 213 6,44 70
188 117 902 4,13 1,92 450 450 450 420 417 419 420 17.93 54 1,87 10,2 63

177 1256 10,11 4,19 1,91 450 450 450 420 420 420 420 14 81 66 1,67 0 70
172 128 9,1 4,18 1,95 450 449 451 420 418 420 420 22 b5 1,63 0 69
28 064 927 421 2,06 450 447 446 420 418 421 420 19.64 b5 265 15,59 66
172 128 9,61 3,89 1,92 450 449 451 420 418 420 420 19,98 56 1,63 0 70
1,72 128 9,61 3,89 1,92 450 449 451 420 418 420 420 20,55 62 1,63 0 70

28 064 9156 4,14 2,03 450 449 450 420 419 420 420 18,44 b5 265 10,35 67

Figura 26: Parte da planilha utilizada na criagdo da rede neural.

As variaveis de saida importantes para o processo sédo duas, como apresenta a
Figura 25. Definiu-se, a partir dai, que deveriam ser criados trés modelos de rede:
um utilizando somente o alinhamento de Sn como saida (AISn S), outro utilizando
somente as medidas de dureza (Liga S) e, por ultimo, uma rede relacionando os dois

valores, buscando entender qual influéncia que uma variavel de saida tem sobre a
outra.
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4.2.1. Alinhamento de Sn como variavel de saida

Dentro do menu do NeuroSolutions for Excel, define-se as colunas de dados de
entrada e saida, iniciando a fase de coleta de dados e separagdo de conjuntos,
como mostra a Figura 27. Percebe-se, na Figura 26, que a variavel espessura de
saida (Esp S) € uma entrada do programa, entretanto, ndo sera utilizada na
concepgao dessa rede, pois o alinhamento de Sn nao sofre influéncia no passe de

redugdo, uma vez que o encruamento dado a tira é insuficiente e ndo homogéneo.

Oa ) o9 » Alinhamento de Sni {Compatibility Mode] - |
b/ Home Insert Page Layout Formulas Data Review Yiew
) :‘:?‘ Cahbri 'Iu AT AT || | DEween Tent General
opy
Pajte J Eormat Painter B Z U-@B 1O A IR Mg &Center v ! 152 - %
Clipboard | Font 3 Alignment M| Hun
o1 - be| si
D E f G H ! ] K L M N 0

3 :

P4 4,14 2,03 ASQ 449 450 420 419 420 420 18,44 10.35

3 4,23 2,05 450 450 450 420 420 420 420 9,91 o

4 442 2,19 449 451 447 420 420 421 419 13,14) 0.67

5 4,26 2,11 450 450 450 420 420 420 420 14,63 0

6 4,41 2,1% 450 447 46 419 420 420 420 16,82 153

7 3,89 1,92 450 449 451 420 418 420 420 19,98 0

8 4,19 191 450 450 450 420 420 420 420 9,93 o

9 4,41 2,19 450 447 446 419 420 420 420 139 0
1o 4,42 2,19 449 451 447 420 420 421 419 11,94 [
11 4,21 2,06 450 447 446 420 418 421 420 12,84 9,45
12 4,19 1,91 450 450 450 A20 420 420 420 14,81 [
13 414 2,03 450 449 450 420 419 420 420 14,26 103
14 4,2 2,04 450 448 450 420 419 420 421 19,23 416
15 43 199 450 450 450 420 420 420 420 6,56 0
16 4,13 192 450 450 450 420 417 419 420 17,93 10.2
17 4,21 2,06 450 447 446 420 418 421 410 12,84 9,45
1g 4,23 2,05 450 450 450 420 420 420 420 833 [
19 4,82 2,18 449 451 847 420 420 421 419 13,14 0,67
20 4,19 191 450 450 450 420 420 420 420 14,81 [
21 4,26 2,11 450 450 450 420 420 420 420 14,63 0
22 4,14 2,03 450 449 450 420 419 420 420 14,26 10,3
23 43 1,99 450 450 450 420 420 420 420 7,66 [4]
24 4,2 2,04 450 448 450 420 419 420 421 19,17 2,14
25 4,26 1,92 450 449 452 420 421 420 420 30,09 344
26 4,42 2,19 449 451 447 420 420 421 419 11,94 0
27 443 2,11 450 450 452 421 420 421 420 1,18] [4
28 4,18 1,95 450 449 451 420 418 420 420 22 0
29 4,42 2,19 449 451 447 420 420 421 419 11,94 4
30 43 2,11 449 450 452 420 421 421 420 17,53 153
31 4,2 2,04 450 448 450 420 419 420 421 19,17 2,14
32 43 2,11 449 450 452 420 421 421 420 7,53 644
W4 M| Test2 Output(2)  Test 1) | Plan1 Randomized Randomized ./ Sheet
Ready

Dadosde Entrada Dadosde Saida

Figura 27: Coleta e separagio de dados de entrada e saida.
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ApOs selecionar as colunas de entrada e de saida, devem-se determinar as
linhas de treinamento, validacdo e teste. Nesta etapa, cada conjunto recebe uma cor
padronizada, sendo preto, vermelho e azul respectivamente. A Figura 28 exemplifica

o citado anteriormente.

Em seguida inicia-se a etapa de construgdo da rede em que o programa
apresenta onze modelos neurais, ou légicas matematicas, que podem ser usados.
Os modelos sd@o apresentados na Figura 29. Esse relatério tem como um dos
objetivos encontrar qual modelo mais se aproxima da realidade, isto é, qual oferece
a melhor confiabilidade de calculo (fator r — coeficiente de correlagdo linear). Para
isso, todas as ldgicas foram testadas e os resultados de confiabilidade s3o

apresentados na Figura 30.

MM ESpE Yel Sn  Si  Ca 21 Z2 Z3 7% 25 Z6 Z7T ALSnE AISHS

22 172 128 9Bl 383 192 450 443 451 420 418 420 420 1998 a

225 107 873 443 2N 450 450 452 42 420 42 420 631 L4 Dadosd
44 T 125 328 444 207 450 450 450 420 420 420 420 1928 P adosde
1 138 082 317 426 192 450 443 452 420 421 420 420 2434 R4Y Treino

L] 177 1,25 328 4,44 27 450 450 450 420 420 420 20 1928 [ 4

47 198 1w 802 413 132 450 450 450 420 H“r 413 420 17393 ne
48 138 ur o 302 413 192 450 450 450 420 an b2 420 I8,15 1474
49 8 054 927 421 208 430 447 448 420 413 21 20 195 JEsY

0 w2 128 91 A8 135 450 449 451 420 418 420 420 3158 '

5 I¥ONSS 927 421 U6 450 447 445 420 418 421 420 WEL /8 sS

52 LS M 423 ZUS 45U 450 45U 4200 420 420 420 3391 a

3 (N B 1Y 82 26 ZI 450 4% 450 420 420 420 420 2128 &

5 2¢h M3/ 9A3 481 203 N0 447 348 41 4z00 420 s 1582 LET

55 %137 953 441 i 4ED 447 445 419 420 420 420 15,82 LET

% W2 2E $EL 383 182 450 449 450 420 418 420 420 2055 a

st WF RS MB 40 13 450 450 450 42D 4200 420 420 689 a

58 0 225 10T A8 481 203 450 447 445 19 420 420 40 139 a

53 17125 32 A3 199 450 450 450 4200 a200 €20 420 (333 a

€ 132 07 402 4l 152 50 480 450 4200 a7 413 420 38,15 EXrd

61 W7 Weh uZE 44 217 A0 4SD 0 459 Az0 aZ0 4z0 420 1428 &

€2 W2 W% 820 4Z6 ZI AR 450 453 420 40 4200 420 1463 a

€3 2:8% W an 43 ZI 449 4n) A%z 42 421 421 420 153 & 44 Dadosde
64 Wi 82 43199 810 450 450 420 420 420 420 156 « ‘ . ..
3 WY Rs 52 43 1YY AW 4% 450 420 4200 420 420 188 o Validagdo
€6 2% L0V 373 443zl 450 450 452 421 420 421 420 6,91 A5

67 W88 032 917 426 192 450 443 42 420 470 420 420 24,34 [ 4

(1 L7035 a0 423 Z05 450 450 450 420 420 420 420 331 &

£9 172 138 S 4N 195 450 443 451 420 418 420 420 22 6

70 & 0BY 227 4 106 45D 447 448 420 48 41 420 1264 S 45

L1l 225 Q7 971 43 20 443 450 4520 420 421 421 420 153 &44

1?2 1.7 125 am 42 AL 450 450 450 420 20 420 420 833 [

3 UGN TRt S X T I T N U1/ I P S50 A0 M1 420 42 112 116

H V728 82 43 189 450 450 4%) 4200 aZ0 sEe. 420 §55 a

[ 229 D7 BF3 0 443 2N 45D 450 492 421 20 421 420 118 a

W (PR WA TR SO | N ¥ & R Y| Y 1.1 €20 #2022 17.53 LaT

n 138 032 S17 0 436 132 450 AR 452 420 42 120 420 2434 &858

8 172 2w 1 418 135 450 4§49 4B 4200 415 820 420 3158 e

19 7% 100 413 191 450 450 450 420 420 AZ0 420 393 ¢

80 oo ; L6 W 450 45D 450 4200 420 420 b20 2126 f

# W7 128 801 423 205 450 450 450 420 420 €20 420 833 a

82 28 054 915 44 203 450 443 450 420 413 420 420 1844

43225 107 973 443 211 450 450 452 421 420 421 420 118 F 4 Dadosde
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Figura 28: Classificagao por cores dos grupos selecionados.
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Figura 29: Modelos neurais fornecidos pelo programa.

Alinhamento de Sn
(%)
Multilayer Perceptron {MLP) 0,994448653
Generalized feedforward 0,96852928
Modular Neural Network 0,974950853
Jordan and Elman networks 0,743193293
Principal component analysis networks (PCAs) 0,972951835
Radial basis function (RBF) 0,978484757
Self-arganizing feature maps {SOFMs) 0,965366323
Time lagged recurrent networks (TLRNs) 0,97151888
recurrent networks 0,448697514
CANFIS (Co-Active Neuro-Fuzzy Inference System) -
Support Vector Machine (SVM) 0,843410734

Figura 30: indice de confiabilidade (fator r) paratodos os modelos neurais (Alinhamento de Sn).
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Avaliando a Figura 30, percebe-se que o melhor modelo a ser usado é o

Muttilayer Perceptron (MLP), o que normalmente ocorre para a maioria dos casos
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pois esse modelo foi concebido para resolver problemas mais complexos, os quais

hao poderiam ser resolvidos por modelos mais basicos.

Para essa rede, utilizou-se somente uma camada oculta, ou camada
intermediaria, entretanto, trabalhou-se com 10.000 iteragdes para teste, ou epoch,
como define o programa. Assim, foi possivel encontrar um erro de aproximagao
muito menor do que usando o padrdo de 1.000 iteragdes. O modelo da rede neural
esta exemplificado na Figura 31. Apds definir as camadas intermediarias e 0 nimero
de iteracbes, deve-se construir a rede, apresentada pelo programa NeuroSolutions
ha forma mostrada pela Figura 32.

AN
SRR '*?“"f"*- ;

Figura 32: Rede construida (MLP).

Concluida a fase de coleta de dados, separagéo em conjuntos e a configuragao
da rede, o préximo passo é treina-la, a partir dos dados escolhidos, de forma que
néo haja excesso de treinamento, pois pode haver divergéncia no resultado. Com o
término dessa etapa, analisa-se a aderéncia da curva de treinamento com a de
validag&o, mostrando a efetividade da rede treinada. Na Figura 33 observa-se a boa

proximidade entre elas.
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MSE versus Epoch
~—Training MSE Cross Validation MSE
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Figura 33: Curvas de treino e validagao.

O passo seguinte consiste em testar a rede. Dessa forma, comparam-se as
curvas de saida, tanto da experimental (AISn S) quanto a gerada pela rede (AISn S
Output). Nesta etapa é apresentado o indice de confiabilidade da rede (fator r), que,
no caso, foi de 99,445 %. A Figura 34 apresenta o grafico demonstrativo e a boa
aderéncia da curva experimental para a calculada.

Desired Output and Actual Network Output
12

i0

Output
T

AlSn 5

esssreaes AISN S Ouzpue

o gy T r . Y T »
1 2 3 4 s 5 7 8 9 10 11 1z 132 14 15 16 17
Exemplar

Perfarmance AlSn §

MSE " 0,133629087
NMSE Y 0.011135607
MAE T 0,157309445
Min Abs Error | 0,000502271
Max Abs Error | 1,312584799
r T 0,934448653

Figura 34: Grafico demonstrativo da curva experimental e calculada pela rede neural (alinhamento de Sn).
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Percebe-se pela Figura 34 que existem poucas divergéncias entre os valores
experimentais e calculados. O grafico da Figura 35 apresenta a relagdo dos pontos
experimentais com os calculados pela rede e, é possivel observar que existem dois
pontos criticos, circulados em vermelho, apresentando erros maiores de calculo.
Esses valores pertencem a OP 3, que como mencionado anteriormente apresentou
uma velocidade diferente da ficha técnica e a rede neural ndo é capaz de entender e
corrigir essa divergéncia. O mesmo nao foi observado para a OP 5, tem a mesma

espessura que a OP 3, e foi tratada com a velocidade correta.

Alinhamento de Sn (%)

* AlSnSOutput  ——linear {AlSn S Outpust)
12
10 | ,_/}
-
//
8 //
P /
z
e
| 6| =
= -~
a -
P ~
5 |
§ 4
6 | |
= |
> | ’ @
2 |
| -~ =3
e
0 3
9 2 4 6 8 10 12

Valores de Producido

Figura 35: Alinhamento de Sn calculado pelarede X valores de produgo.

O programa também € capaz de mostrar a sensibilidade que cada variavel de
entrada tem sobre a variavel de saida, ou seja, mostra qual o parametro que tem
maior influéncia no resultado final. Da mesma maneira, apresenta separadamente,
de forma grafica, o efeito de cada variavel de entrada em relagido a de saida. A
Figura 36 apresenta o grafico da sensibilidade relativa de todas as variaveis em
relagdo ao alinhamento de Sn de saida. A Figura 37; Figura 38; Figura 39; Figura 40;
Figura 41; Figura 42; Figura 43; Figura 44; Figura 45; Figura 46; Figura 47; Figura 48
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e Figura 49 apresentam separadamente a efeito de cada variavel sobre o filme de

Sn interfacial de saida.

WEspE mVel mSn mSi

05 7 .
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| Sn Si Cu Z3 Z4 Z5

Sensitivity About the Mean
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Z1 Z2 Z6 27 ALSnE

Input Name

Figura 36: Sensibilidade das variaveis de entrada em relagio ao AlSn S.
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Figura 37: Efeito da espessura de entrada sobre o alinhamento de Sn de saida.
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Figura 38: Efeito da velocidade de entrada sobre o alinhamento de Sn de saida
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Figura 39: Efeito do teor de Sn da liga sobre o alinhamento de Sn de saida
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Figura 40: Efeito do teor de Si da liga sobre o alinhamento de Sn de saida.
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Figura 41: Efeito do teor de Cu da liga sobre o alinhamento de Sn de saida.
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Figura 42: Efeito da temperatura da Zona 1 sobre o alinhamento de Sn de saida.
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Figura 43: Efeito da temperatura da Zona 2 sobre o alinhamento de Sn de saida.
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Figura 44:: Efeito da temperatura da Zona 3 sobre o alinhamento de Sn de saida.
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Figura 45: Efeito da temperatura da Zona 4 sobre o alinhamento de Sn de saida.
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Figura 46: Efeito da temperatura da Zona 5 sobre o alinhamento de Sn de saida.
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Figura 47: Efeito da temperatura da Zona 6 sobre o alinhamento de Sn de saida.
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Figura 48: Efeito da temperatura da Zona 6 sobre o alinhamento de Sn de saida.
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Figura 49: Efeito do alinhamento de Sn de entrada sobre o alinhamento de Sn de saida.
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4.2.2. Dureza de liga como variavel de saida

Para a dureza de liga foi feito 0 mesmo estudo que com os alinhamentos de Sn
de saida. Portanto, a mesma divisdo de blocos e conjuntos foi realizada com a
planilha, incluindo a espessura de saida (Esp S). Isso por que, como foi dito
anteriormente, pequenos passes de redugdo causam o encruamento dos materiais,
aumentando significativamente a dureza da liga. A Figura 50 mostra, juntamente, as
colunas de variaveis de saida e de entrada, além das linhas de treino, validacdo e

teste.
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Figura 50: Planilha representativa da separagao de variaveis.
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Em seguida, construiram-se as redes dentre as onze I6gicas oferecidas pelo
programa. Os indices de confiabilidade de cada uma estio apresentados na Figura
91. Novamente, a melhor aproximagdo dos resultados foi mostrada gquando se
utilizou o modelo Multilayer Perceptron (MLP), com 99,996% de confiabilidade.

Dureza de Liga
(HR15T)
Multilayer Perceptron {MLP) 0,999965757
Generalized feedforward 0,938904249
Modular Neural Network 0,925654704
Jordan and Elman networks 0,827623825
Principal component analysis networks (PCAs) 0,854843404
Radial basis function (RBF) 0,893315949
Self-organizing feature maps (SOFMs) 0,908103553
Time lagged recurrent networks (TLRNs) 0,332540526
recurrent networks 0,62428494
CANFIS (Co-Active Neuro-Fuzzy Inference System) -
Support Vector Machine (SVM} 0,905150266

Figura 51: indice de confiabilidade (fator r) para todos os modelos neurais (dureza de liga).

Apods a construgio da rede, essa foi treinada, com 25.000 iteracdes, a partir
dos dados escolhidos, de forma que ndo haja excesso de treinamento. Apébs o

treino, analisaram-se as curvas de treino e validacio e o resultado é apresentado na
Figura 52.
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Figura 52: Curvas de treino e validagéo.
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Analisando as curvas de treino e validagdo, percebe-se que houve boa

aderéncia entre elas e o resultado apresentado foi satisfatorio. O passo seguinte é o

teste da rede. Dessa forma, compram-se as curvas de saida, tanto da experimental

(Liga S) quanto da gerada pela rede (Liga S Output). Nesta etapa é que se

apresenta o indice de confiabilidade da rede, mostrado na Figura 51, além das

curvas de saida tanto experimental quanto calculada, apresentadas na Figura 53.
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Performance tigus
MSE ¥ 0,000327036
NMSE Y 7,46551E-05
MAE ' 0,009137299
Min Abs Eror | 5,9539€-05
Max Abs Error  © 0,043975941
r Y 0,999965757

Figura 53: Grafico demonstrativo das curvas experimental e calculada pela rede neural (Dureza de liga).

Percebe-se, pela Figura 53, que as diferengas entre os valores calculados pela

rede e os valores experimentais sdo despreziveis. Esse fato é confirmado pela

Figura 54, mostrando que praticamente n&o ha erro nos valores calculados, uma vez

que fornecem resultados semelhantes aos experimentais.
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Dureza de liga (HR15T)
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Figura 54: Dureza de liga calculada pela rede vs. Valores experimentais.

Apos essas andlises, o programa fornece o grafico de sensibilidade das
variaveis de entrada sobre a varidavel de saida, possibilitando assim, entender como
a rede neural interpreta a influéncia de cada uma delas em relagdo & saida. A Figura
55 apresenta esse grafico.

A Figura 56; Figura 57; Figura 58; Figura 59; Figura 60; Figura 61; Figura 62;
Figura 63; Figura 64; Figura 65; Figura 66; Figura 67, Figura 68 e Figura 69
apresentam separadamente a influéncia de cada variavel sobre a dureza de liga de
saida.
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Figura 55: Sensibilidade de cada variavel de entrada em relagéo a saida (Liga S).
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Figura 56: Efeito da espessura de entrada sobre a dureza de liga de saida.
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Figura 57: Efeito da velocidade de entrada sobre a dureza de liga de saida.
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Figura 59: Efeito do teor de Si sobre a dureza de liga de saida.
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Figura 60: Efeito do teor de Cu sobre a dureza de liga de saida.
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Figura 61: Efeito da temperatura de Zona 1 sobra a dureza de liga de saida.
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Figura 62: Efeito da temperatura de Zona 2 sobra a dureza de liga de saida.
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Figura 63: Efeito da temperatura de Zona 3 sobra a dureza de liga de saida.
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Figura 64: Efeito da temperatura de Zona 4 sobra a dureza de liga de saida.
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Figura 65: Efeito da temperatura de Zona 5 sobra a dureza de liga de saida.
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Figura 66: Efeito da temperatura de Zona 6 sobra a dureza de liga de saida.
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Figura 67: Efeito da temperatura de Zona 7 sobra a dureza de liga de saida.
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Figura 69: Efeito da espessura de saida sobre dureza de liga de saida.
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4.2.3. Alinhamento de Sn e dureza de liga como variaveis de saida

Até agora se estudou as variaveis de saida de forma separada. Nesse tépico, a

rede criada envolve ambas as variaveis de saidas, inclusive a variavel de entrada

espessura de saida (Esp S), que nao foi utilizada no desenvolvimento da rede para

alinhamento de Sn interfacial de saida. Assim, a nova rede criada apresentara

outros indices de confiabilidade para cada varidvel de saida e com o objetivo de

entender qual a influéncia na rede quando se agrupa as duas variaveis de saida.

Da mesma forma que foi feito anteriormente, deve-se separar os conjuntos de

variaveis de entrada, saida, assim como os dados de treinamento, validacio e teste.

A Figura 70 mostra a planilha eletrénica que estabelece a rede.
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61

Em seguida, construiram-se as redes dentre as onze logicas oferecidas pelo
programa. Os indices de confiabilidade de cada uma estio apresentados na Figura
71. Dentre todos os indices de confiabilidade, o que apresentou melhor aproximagao
foi, igualmente, o modelo Multilayer Perceptron (MLP), oferecendo indices de
98,70% para o alinhamento de Sn de saida (AlSn S) e 99,11% para dureza de liga
de saida (Liga S).

Ambos
Alinhamento de Sn | Dureza de Liga
(%) (HR15T)
MuRtilayer Parceptron (MLP) 0,987027793 0,991104483
Generalized feedforward 0,978494036 0,942623349
Modular Neural Network 0,974953242 0,953215435
Jordan and Elman networks 0,953495249 0,891027776
Principal component analysis networks (PCAs) 0,896758682 0,916154652
Radial basis function (RBF) 0,962119095 0,888005863
Self-organizing feature maps (SOFMs) 0,962173736 0,939034068
Time lagged recurrent networks (TLRNs) 0,752923703 0,293199784
recurrent networks 0,82092507 0,358266357
CANFIS {Co-Active Neuro-Fuzzy Inference System) - -
Support Vector Machine (SVM) 0,832228112 0,95041857

Figura 71: indices de confiabilidade (fator r) para ambas as variaveis de saida.

Assim, a rede construida foi treinada com 10.000 iteragdes, visando ndo haver
divergéncia no calculo dos resultados. Apds isso, analisaram-se as curvas de treino
e validagdo, buscando sempre a maior aderéncia entre elas. As curvas estio
apresentadas na Figura 72 e percebe-se que ndo houve aderéncia perfeita entre

elas, mas sim proximidade.
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MSE versus Epoch
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Figura 72: Curvas de treino e validagio para ambas variaveis de saida.

A partir dai, a rede criada foi testada e avaliaram-se assim, quais sao os
indices de confiabilidade para cada variavel. Entretanto, esse resultado nao é
mostrado de forma grafica, mas sim na forma de uma tabela. O resultado esta

apresentado na Figura 73.

Output / Desired Alsn S Liga 8
AlSn S 0 0
liga s 0 17
Perfarmance AlSn S liga s
MSE " 0,317598761 0,083637496
NMSE Y 0,026466206 0,019092604
MAE " 0,338986525 0,186040152
Min Abs Error 0,012422479 0,023638269
Max Abs Error 1,765915415 0,845295964
r " 0,987027793 0,991104483
Percent Correct #N/D 100

Figura 73: indices de confiabilidade para ambas as variaveis de saida.

Percebe-se, pela Figura 73, que o fator r diminui para ambas as variaveis de
saida. O fato se reflete na Figura 74 e na Figura 75, onde sé&o visiveis os erros,
circulados em vermelho, no calculo de algumas variaveis. Aparentemente, esses

erros ocorrem de forma separada, sem haver relagdo entre as variaveis de saida,
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isto é, os erros que aparecem no calculo do alinhamento de Sn ndo séo observados

no calculo de dureza, e vice-versa.

Durezada Liga (HR 15T}

# LigaSOutput —— Linear (Liga S Output)

75
74
73 4
72 .
71
70

69

Valores calculados RNA
\

68

67

66 67

68

69 70 n 72 74

Valores de Produgio

75

Figura 74: Valores calculados pelarede vs. Dados experimentais (Dureza de liga - Ambas as variaveis)

Alinhamentode Sn (%)

® AlISnS Output  ——Linear {AISn S Output)

12

10 —_—

Valores calculados RNA

T ]
@ 2 a 6 8

Valores de Produg'a'o_

Figura 75: Valores calculados pelarede vs, Dados experimentais (Alinhamento de Sn - Ambas as
variaveis)
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Da mesma forma como nos itens anteriores, o programa fornece o grafico de
sensibilidade de cada varidvel de entrada sobre as varidveis de saida,

separadamente. A Figura 76 mostra o grafico de sensibilidade.

Sensitivity Aboutthe Mean

RAISNS mbUgas

35
a8
25 | (] l| -
Fa —
2 2 |
-~ } #
s |
c L5 1 | .
3 | | ~
' B
1+ '
| : |
: | !
iy BaB . e
Z1  Z2 23 14 25 26

EspE Vel Sn Si Cu 27 ALSnE tigaE EspS

input Name

Figura 76: Sensibilidade das variaveis de entrada sobre ambas as variaveis de saida.

A Figura 56; Figura 57; Figura 58; Figura 59; Figura 60; Figura 61; Figura 62;
Figura 63; Figura 64; Figura 65; Figura 66; Figura 67; Figura 68 e Figura 69
apresentam separadamente a influéncia de cada variavel sobre a dureza de liga de

saida e sobre o alinhamento de Sn de saida
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Figura 78: Efeito da velocidade de entrada sobre ambas as variaveis de saida.
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Figura 80: Efeito do teor de Si sobre ambas as variaveis de saida.
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Figura 81: Efeito do teor de Cu sobre ambas as variaveis de saida.
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Figura 86: Efeito da temperatura da Zona 5 sobre ambas as variaveis de saida.
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Figura 87: Efeito da temperatura da Zona 6 sobre ambas as variaveis de saida.
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Figura 88: Efeito da temperatura da Zona 7 sobre ambas as variaveis de saida.
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Figura 89: Efeito do alinhamento de Sn de entrada sobre ambas as variaveis de saida.
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Figura 90: Efeito da dureza de liga de entrada sobre ambas as variaveis de saida.

Network Output(s) for Varied input Esp §
80
|
70 | S
60 |
50 -

40

Outputfs)

—— AlSnsS
30

-liga s
20

10

0 - T T T T T T U v U T

1,588 1,653 1,719 1,785 1,850 1,516 1,981 2,047 2,112 2,178 2,243 2,309

Varied Input Esp §

Figura 91: Efeito da espessura de saida sobre ambas as variaveis de saida.

69



70

5. Analise e discussao dos resultados

Com as analises e os graficos resultantes das diferentes redes neurais
apresentadas nesse relatério, deve-se analisar e discutir seus resultados a fim de
entender o comportamento de cada RNA em fungdo de suas variaveis de saida.
Vale lembrar que as redes neurais ndo entendem os conceitos metallrgicos que dao
fundamento ao processo. Assim, devem-se justificar os graficos que apresentam a

influéncia de cada variavel de entrada sobre a variavel de saida.

5.1. Alinhamento de Sn

O modelo de rede neural conhecido como Multilayer Perceptron (MLP)
apresentou melhor coeficiente de correlagéo linear (fator r) comparando-o com os
outros modelos fornecidos pelo programa. Com uma confiabilidade aceitavel, foi
possivel estudar a sensibilidade que cada variavel de entrada tem sobre a variavel
de saida (AlSn 8). Observando a Figura 36, nota-se que a variavel mais importante,
apresentada pela RNA, é a velocidade de entrada da tira (Vel), seguida das
temperaturas da zona de aquecimento 6 (Z6), 5 (Z5) e do alinhamento de Sn de
entrada (AlSn E).

A velocidade & o fator de maior importancia, pois a “quebra” dos alinhamentos
de Sn depende exclusivamente da recristalizagio da matriz de aluminio nas regides
onde ha alinhamento interfacial. A fecristalizagdo, por sua vez, depende tanto da
temperatura quanto do tempo em que a liga € tratada. Assim, a velocidade é a
variavel mais sensivel nesse processo. Caso seja alta, ndo havera tempo para
recristalizacéo da liga de aluminio e ndo havera “quebra” efetiva dos alinhamentos
de Sn interfaciais.

Entretanto, a Figura 38 mostra uma relacéo diferente entre essas variaveis. O
alinhamento de Sn de saida tende a diminuir com o aumento da velocidade,
variando de 0,8 a 1,0 m/min, aproximadamente. Esse resultado deixa claro que a
rede n&o entende o conceito metallirgico que fundamenta a relacdo, dando um

parecer matematico para o processo. Isso ocorre, pois a rede tem poucos dados
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para se formar, sendo necessaria a continua atualizagido dos dados a fim de corrigir

esse erro.

A influéncia das temperaturas das zonas de aquecimento 5 e 6 s3do
fundamentais, pois séo as regides onde a tira atinge o maior valor térmico durante o
tratamento. Temperaturas maiores tendem a aumentar a velocidade de
recristalizagdo da matriz, aumentando a “quebra” dos alinhamentos de Sn. No
entanto, a Figura 46 e a Figura 47 mostram que, para uma variagdo minima no
aumento da temperatura, os alinhamentos de Sh sofrem redugéo significativa. Como
o controle térmico das zonhas de aquecimento nfo possui essa precisdo, a variagio,

no caso, & desprezivel.

O efeito do alinhamento de Sn de entrada mostra uma tendéncia oposta a
teoria, como pode-se observar na Figura 49. Ao contrario do que a curva apresenta,
quanto maior o percentual de alinhamentos de Sn de entrada, maior serda o
percentual de alinhamentos de Sn de saida, ou finais. Novamente, a rede ndo
entende o conceito metallrgico, explicando a influéncia dessa variavel de entrada

somente por modelos matematicos aplicados aos dados fornecidos ao programa.

Também na Figura 36, o teor de Cu em liga apresenta maior influéncia do que
o teor de Sn. Nota-se aqui uma incoeréncia da rede, pois o Cu ndo tem influéncia
sobre os alinhamentos de Sn, enquanto o teor de Sn tem, sendo ele o causador dos
filmes interfaciais. Em compensagao, a rede comprova que o teor de Si ndo altera o

resultado final, como mostra a Figura 40.

As outras variaveis de entrada, apesar de apresentar baixa influéncia no
processo, também afetam o resultado final. A velocidade de entrada da tira, como
mostra a Figura 37, afeta no aumento dos alinhamentos a partir de,
aproximadamente, 2,37 mm. O grafico apresentado € incoerente, pois espessuras
menores também afetam o resultado. Da mesma forma, os graficos de influéncia das
temperaturas das outras zonas de aquecimento mostram que, para as zonas 5 e 6,
um aumento decimal afeta o percentual de alinhamentos. Novamente, no processo
ndo existe um controle tao refinado para avaliar a influéncia apresentada, logo,

torna-se desprezivel.
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5.2. Dureza de liga

O estudo do melhor modelo de rede para a dureza da liga como variavel de
saida mostrou que o Multilayer Perceptron (MLP) apresenta o melhor coeficiente de
correlagéo linear entre os onze oferecidos, podendo-se conseguir um valor do fator r
de 0,99996. A Figura 54 apresenta boa relagdo entre os valores calculados pela
RNA e os valores experimentais. Isso reflete diretamente no grafico de influéncia das
variaveis, apresentado na Figura 55, mostrando que velocidade, espessura de
entrada, dureza da liga de entrada e espessura de saida tém grande efeito sobra a
dureza de saida.

Analisando-se a curva apresentada na Figura 56, nota-se que, quanto maior a
espessura de entrada, menor sera a dureza final da liga. O fato tem fundamento,
pois a transferéncia de calor no material se da por condugéo. Assim, quanto maior a
espessura da tira, maior sera o tempo necessario para aquecer o material e,

consequentemente, solubilizar o Cu na matriz de Al.

De mesma forma, a influéncia da velocidade sobre a variavel de saida
apresenta-se de maneira coerente. A Figura 57 mostra que, quanto maior a
velocidade, menor sera a dureza final da liga, confirmando que, se a velocidade for

maior, ndo havera tempo para solubilizar o Cu em solugéo sélida supersaturada.

O teor de Sn, apresentado na Figura 58, ndo fornece resultado coerente, pois o
Sn ndo tem influéncia sobre a dureza da liga de saida. A fase de Sn tem efeito
somente na conformabilidade da tira e na resisténcia ao engripamento da bronzina
em aplicagdo. Contudo, o os teores de Si e Cu, observados respectivamente na
Figura 59 e Figura 60, apresentam fundamento. O Si é usado em ligas Al-Sn em
forma de particulas dispersas duras, aumentando a resisténcia ao desgaste da liga.
O acréscimo no teor de Si e consequente aumento na quantidade de particulas
dispersas causam o aumento de dureza final da liga. O teor de Cu mostra-se muito
influente na dureza final da liga. A razio disso se da em func¢do do tratamento
térmico ser de solubilizagdo do Cu na matriz metalica, visando o aumento na dureza

final. Assim, a dureza de saida tem relagéo direta com o teor de Cu presente na liga.
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Considerando as curvas de influéncia das temperaturas das zonas de
aquecimento sobre a dureza final da liga, percebe-se que ha incoeréncia entre as
zonas 6 e 7 com as demais, mostrando que a RNA néo foi capaz de entender o fato
da solubilizagdo se dar logo no inicio do processo de tratamento térmico. Assim,
desde a primeira zona de aquecimento (Z1) o Cu entra em solugdo sdlida na matriz
de aluminio, ou seja, até a ultima zona de aquecimento (Z7) a solubilizagdo esta

ocorrendo aumentando, conseqlientemente, a dureza final da liga.

A liga, ao iniciar o tratamento térmico, tem uma dureza definida diferente para
cada ordem de producédo e até mesmo para cada rolo. Assim, a dureza final de liga
esta inteiramente relacionada com a dureza de entrada. Como dito anteriormente, a
solubilizagdo ocorre desde a primeira zona de aquecimento, sendo que a dureza
final tende a aumentar a partir da dureza inicial. A Figura 68 mostra de forma clara o

que foi explicado.

Todas as tiras sofrem um passe de reducdo de 5%, encruando o material e
causando um aumento significativo na dureza da liga de saida. A Figura 69 mostra
que, quanto maior a espessura de saida da tira, conseqiientemente menor serd a
dureza. Entretanto, essa relagdo ndo esta ligada ao encruamento do material e sim a
espessura de entrada, pois quanto maior, maior sera a espessura de saida. Como
foi discutido para a espessura de entrada, quanto mais espessa ela for, maior sera o

tempo que devera ser dado a tira para que o calor seja transferido pelo material.

5.3. Ambas as variaveis de saida

Ao criar a rede para as duas variaveis de saida citadas anteriormente, notou-se
que, novamente, a Multilayer Perceptron (MLP) apresenta melhor coeficiente de
correlagdo linear para ambas. Assim, estudou-se a relacdo entre os valores
calculados pela RNA e os valores experimentais, como mostram a Figura 74 e a
Figura 75, para dureza de liga de saida e alinhamento de Sn de saida

respectivamente.

Percebe-se que, comparando as curvas de cada varidvel nesse caso e para

cada variavel de saida separadamente, houve aumento no erro de célculo da RNA
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em relagio aos valores experimentais. Logo, ao juntar as varidaveis em uma Unica
rede neural, nota-se a influéncia negativa que existe, diminuindo assim o fator r de

cada saida.

Analisado o grafico de sensibilidade das varidveis de entrada, mostrado na
Figura 76, nota-se que para a dureza, as variaveis tém maior influéncia do que sobre
o alinhamento de Sn. A razéo disso € que o forno secundério foi parametrizado para
realizar o tratamento térmico de solubilizagio, sendo a “quebra” dos alinhamentos

de Sn interfaciais uma consequéncia positiva do processo.

Alem disso, o grafico com ambas as variaveis de saida mostra uma relagio de
influéncia mais real do que quando se trabalha com as variaveis separadamente.
Assim, apesar do indice de confiabilidade de cada variavel ser inferior, a RNA
mostrou uma melhor avaliacdo quanto ao efeito das varidveis de entrada sobre
ambas as variaveis de saida. Entretanto, ainda existem falhas nessas avalia¢des,
pois o teor de Sn apresenta maior influéncia sobre a dureza do que o proprio
alinhamento interfacial.

A Figura 77 mostra, para a dureza, que, conforme a espessura de entrada
aumenta, menor sera a dureza final de liga, seguindo o que foi apresentado quando
se trabalhou com a variavel separadamente. Para o alinhamento de Sn de saida,
segue-se a mesma logica, pois apesar da minima influéncia, o aumento de

espessura aumenta o percentual de alinhamentos interfaciais.

Como a espessura de entrada e a velocidade estdo fortemente ligadas no
processo, esta segue a mesma tendéncia que apresentou quando trabalhou-se com
as duas variaveis de saida separadamente. Para a dureza de saida, o aumento da
velocidade reflete em uma leve queda na dureza final, enquanto que, para o
alinhamento de Sn de saida, este fator leva a diminuicio no percentual de
alinhamentos, mostrando, novamente, a incoeréncia tedrica quanto a cinética na

“‘quebra” dos filmes de Sn.

A maior concentracédo de Sn na liga, como mostra a Figura 79, novamente gera
um leve aumento na dureza de liga e diminuicdo do percentual de filmes de Sn
interfaciais. Este fato mostra que ndo houve mudanca no entendimento da RNA

quando estas deixaram de ser tratadas separadamente e passaram a ser analisadas
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em conjunto. O modelamento ainda entende 0 Sn como uma variavel que amplia a

dureza final da liga, o que metalurgicamente néo oferece explicacao.

Tratando-se agora do teor de Si em liga, o modelo mostrou, de acordo com a
Figura 80, que o aumento da sua concentracgéo influencia diretamente e de maneira
positiva na dureza final e no alinhamento de Sn de saida. As curvas mostram de
forma coerente que o Si tende a aumentar a dureza da liga e diminuir a taxa de
filmes de Sn interfaciais. Juntamente, o teor de Cu , como mostra a Figura 81, segue
0 que foi analisado com as variaveis separadamente, causando aumento na dureza

de saida devido a solubilizagéo e diminuindo o percentual de alinhamentos de Sn.

As temperaturas das zonas de aquecimento mostraram, novamente, que ndo
possuem influéncia significativa sobre as variaveis de saida, pois a variagdo de
temperatura € minima, ndo podendo ser controlada em processo. Assim, as

pequenas variagdes nos valores de dureza podem ser desconsideradas.

A Figura 89 mostra que o alinhamento de Sn de entrada ndo tem efeito sobre a
variavel dureza de saida. Contudo, percebe-se que quanto maior o percentual de
alinhamentos de Sn de entrada, menor a taxa deles de saida. O entendimento da
rede neural ndo é correto, pois os alinhamentos de Sn de entrada s3o diretamente

proporcionais aos de saida.

Avaliando a Figura 90, nota-se outra falha da RNA, pois a dureza de saida ndo
é afetada pelo aumento da dureza de entrada. Outro fato é que com o aumento da
dureza de entrada, o alinhamento interfacial de Sn mostra uma pequena elevacio,

entretanto, ja foi citado anteriormente que essas variaveis ndo tém relagio.

Por fim, a Figura 91 deixa claro que, com o aumento da espessura de saida
(ESP 8), a dureza final de liga (Liga S) apresenta valores cada vez menores. Esse
fato novamente esta relacionado com a espessura inicial da tira (Esp E), pois a

reducéo € a mesma para todas as espessuras.
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6. Conclusoes

Na atualidade, as redes neurais artificiais, os RNA’s, estdo sendo utilizadas em
grande escala no ramo metallrgico e vem se mostrando uma ferramenta poderosa
no desenvolvimento de projetos que operam com inteligéncias artificiais. Grandes
empresas estdo parametrizando seus processos com o auxilio destas redes, pois,
com isso, diminuem perdas de produgdo e podem prever o comportamento do

processo, controlando-o por completo.

Apesar de existirem uma série de programas capazes de desenvolver redes
neurais, utilizou-se o programa Neurosolutions, pois apresenta aplicativos prontos
que facilitam seu desenvolvimento. Dessa forma, foi possivel conhecer e manusear

0 programa mostrando suas qualidades e importancias profissionais.

Apesar das redes terem sido treinadas com sucesso, isto €, mostrando boa
aderéncia entre as curvas de treinamento e de validagdo, alguns resultados obtidos
divergiram dos tedricos, mostrando o problema de se utilizar uma rede neural
artificial que ndo compreende perfeitamente os conceitos metallrgicos. Isso se deve
ao fato de terem sido utilizados um pequeno niimero de amostras. Para a montagem
de uma boa rede neural, com utilizagdo em tempo de execugdo, necessita-se de
mais de 1000 de amostras. No caso estudado, aplicou-se para a construcio da rede

neural 33 amostras, triplicadas e dispostas de maneira aleatéria.

Nota-se, contudo, que quando se trabalha com o alinhamento de Sn de saida
(AISn S) e com a dureza de saida (Liga S), as variaveis de entrada particulares de
cada caso afetam negativamente o resultado final. A influéncia negativa entre essas
variaveis pode ser diminuida ampliando-se o nimero de dados de entrada e saida

do forno secundario, aplicados a rede.

Com os resultados apresentados no relatério fica claro que é possivel
desenvolver de uma rede neural que consiga, de maneira préxima a real,
parametrizar o processo de tratamento térmico de solubilizagdo no forno secundario.
Entretanto, somente com mais dados a rede podera apresentar resultados coerentes
com os fundamentos metalurgicos que explicam a influéncia das variaveis de

entrada sobre as variaveis de saida.
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Somente assim sera possivel integrar a rede neural em um ambiente
operacional, na qual se monitoram os dados de saida, gerando dados em tempo de
execugdo. A Figura 92 apresenta claramente que os valores calculados pela rede
apresentam diferengcas dos resuftados experimentais. Nota-se que o maior erro

apresentado € de 8,33% na amostra da OP 3 que néo foi tratada com a velocidade

especificada em ficha técnica.

EspE Vel Sn S Cu 21 22 23 Z4 25 Z6 27 AIShE Ligak Esps 08 R b L 170 (%) Erro (%)
| g Experimenta Experimenta Calculade Calculado SEIETEIET-FE
2,8 0,64 9,15 4,14 2,03 450 449 450 420 419 420 420 14,26 57 2,65 10,3 68 10,28 67,95 0,22 0,07
2,25 1,07 9,71 4,3 2,11 449 450 452 420 421 421 420 17,53 66 2,13 1,53 69 1,49 69,05 2,45 0,07
1,72 1,28 9,1 4,18 1,95 450 449 451 420 418 420 420 31,58 50 1,63 [/ 68 0,09 67,97 0,09 0,05
1,77 1,25 10,11 4,19 1,91 450 450 450 420 420 420 420 9,93 64 1,67 0 72 -0,17 71,93 017 o0
1,77 0,88 9,35 4,2 2,04 450 448 450 420 419 420 421 19,17 52 1,67 2,14 74 2,33 73,97 8,33 0,04
2,25 1,07 9,73 4,43 2,11 450 450 452 421 420 421 420 6,91 62 2,13 1,49 69 1,55 69,03 3,92 0,04

Figura 92: Diferenca entre valores de saida experimentais e calculados pela RNA.

Por fim, existem outras ferramentas de analise estatistica que podem ajudar no
refinamento da rede neural, como a utilizagdo do método Taguchi, ou Projeto
Robusto. Este método consiste em uma ferramenta muito eficiente na otimizacio de
produtos ou de processos. Esta visa determinar as variaveis, ou fatores, que mais
influenciam na variabilidade do processo, ou seja, apresenta a melhor relacio entre
as variaveis de entrada. O controle desses fatores garante a qualidade do processo,

além de aprimorar seu desempenho.
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