Alessandro Mendonca Maciel

Desenvolvimento de uma ferramenta
computacional para modelagem e conversao de
dados de fluxo de poténcia em sistemas

elétricos para um padrao XML

Sao Carlos

Junho de 2010

Alessandro Mendonca Maciel

Desenvolvimento de uma ferramenta
computacional para modelagem e conversao de
dados de fluxo de poténcia em sistemas

elétricos para um padrao XML

Trabalho de conclusao de curso apresentado
ao Departamento de Engenharia FElétrica
da Escola de Engenharia de Sao Carlos
da Universidade de Sao Paulo como parte
dos requisitos para a conclusao do curso de
Engenharia Elétrica com énfase em Sistemas
de Energia e Automagao.

Orientador: Luis Fernando Costa Alberto

Sao Carlos

Junho de 2010

AUTORIZO A REPRODUCAD E DIVULGAGCAO TOTAL OU PARCIAL DESTE
TRABALHO, POR QUALOQUER MEIO COMNVENCIOMAL OU ELETRONICO,
FARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalografica preparada pela Secdo de Tratamento
da Informacdo do Servico de Biblioteca — EESC/USP

in
||‘|

=a20n {u]
f152d nvolvimento de um erramenta computacional para
modelagem & conversao de dados de fluxo de poténecia em
sigstemss elétricos psra um padrioc XML Alesszandro
Mendonga Maciel ; orientador Luis Fernando Costa Alberto
== 580 Cerlos, 2010

a Elétr

l. Conversdo de dados. 2. Linguagem ¥ML, 3., AMNAREDE.
4, Fluxn de poténeia. I. Titulo.

iii

A minha familia e amigos.

iv

Resumo

A linguagem XML (Ezxtensible Markup Language) consiste em uma linguagem de
marcacao que permite a leitura de dados estruturados, possibilitando declaragoes precisas
do contetdo desses dados, que podem ser tabelas, figuras ou, no contexto deste trabalho,
parametros que descrevem um sistema elétrico.

O objetivo principal desse trabalho é criar uma integracao entre a linguagem XML e
a linguagem do software de simulacao de fluxo de poténcia ANAREDE, que é largamente
utilizado no Brasil por concessionarias de energia elétrica, empresas de consultoria em
engenharia elétrica e equipes de pesquisa, facilitando a leitura e escrita de dados para este
software.

Para atingir tal objetivo, foi desenvolvida uma aplicagao na linguagem de programacao
C-++, que suporta uma programacao orientada a objetos, caracteristica que foi largamente
utilizada durante a implementacao do cédigo fonte da aplicacao.

Esta aplicacao consiste em um conversor de dados, que “traduz” a linguagem padrao do
arquivo de entrada de dados do software ANAREDE em um padrao XML que descreve
um sistema elétrico, assim como também faz o caminho inverso, ou seja, “traduz” um
c6digo que representa um sistema elétrico no padrao XML para o padrao de entrada de

dados do ANAREDE.

O uso de uma linguagem de programagao orientada a objetos permite que o cédigo
fonte desenvolvido possa ser facilmente expandido. TLogo, o conversor de dados pode

futuramente ser ampliado de forma a permitir que a conversao seja feita entre outras
linguagens diferentes do padrao XML ou do padrao de entrada de dados do ANAREDE.

Abstract

The XML language (Eztensible Markup Language) consists in a markup language that
allows the reading of strutured data, allowing precise declarations of its content, which
could be tables, figures or, in this project ‘s context, parameters that describe an electric
system.

The main goal of this project is to create an integration between the XML language
and the language of the load flow simulation software ANAREDE, that is largely used
in Brazil by electric energy companies, electrical engeneering consulting companies and
research groups, favoring the reading and writing data for this software.

To reach that goal, an application was developed in the C++ programming language,
which supports an object-oriented programming, feature that was largely explored in the
implementation of the application “s source code.

This application consists of a data converter, that “translates” the standard language
of the ANAREDE’s file data entry into a XML pattern which describes an electric system,
as well as it does the opposite way, in other words, “translates” a code that represents an
electric system in the XML pattern into ANAREDE’s data entry pattern.

The use of an object-oriented programming language, allows the developed source can
be easily expanded. Hence, the data converter can be expanded in the future to convert
data between other languages in addition to the XML pattern or the ANAREDE’s data
entry pattern.

Sumdrio

Lista de Figuras

Lista de Tabelas

1 Introducgao

1.1 Organizagao do documento L

Conceitos de programacao

2.1 Encapsulacao e classes

2.2 Alocacdo dindmica
2.2.1 Arrays alocados dinamicamente

2.2.2 Listas encadeadas

Modelagem da estrutura de dados

3.1 O sistema elétrico em uma estrutura dedados

O padrao de entrada de dados do ANAREDE
4.1 Barras no padrao ANAREDE,

4.2 Linhas no padrao ANAREDE

A linguagem XML

5.1 Leitura de documentos XML o 0oL
5.2 O XML Parser e
5.3 Dados do sistema elétricoem XML o000

531 Atagbuses

vi

viii

13

13

14

16

Sumdrio vii
532 Ataglines. 19

533 Atagtopology 20

6 Documentacao das classes 24
6.1 Aclasse barra 24
6.1.1 Funcoes membro da classe barrao 25

6.2 Aclassedados lin 27
6.2.1 Funcoes membro da classe dados_lin 27

6.3 A classe ramos e 29
6.3.1 Funcoes membro da classe ramos o000 30

6.4 Aclassesistema 31
6.4.1 Funcoes membro da classe sistema 31

7 Conclusao 34
Apéndice A - Apresentacao de resultados 35

Referéncias

38

1.1

2.1

3.1

3.2

3.3

3.4

3.5

3.6

4.1

4.2

5.1

0.2

2.3

5.4

2.9

5.6

5.7

2.8

2.9

5.10

5.11

6.1

viii

Lista de Figuras

Esquema geral da aplicagao desenvolvida. 2
Exemplo genérico do arranjo de memoéria de uma lista. 7
Sistema simples de trés barras. oL 8
N6 da lista encadeada de ramos. 9
Estrutura de dados apds os dados de uma linha serem adicionados. 10
Estrutura de dados apos os dados de duas linhas serem adicionados. 10
Estrutura de dados apoés os dados de trés linhas serem adicionados. 11
Estrutura de dados cléssica.o oL 12
Barras no padrao de entrada de dados do ANAREDE. 14
Linhas no padrao de entrada de dados do ANAREDE. 15
Exemplo simples de XML. 16
Exemplo de XML com child tags. 0. 17
Exemplo de XML com child tags mais estruturado. 17
Exemplo de XML utilizando atributo. 17
Exemplo de sistema elétrico escrito em XML. 19
Exemplo da tag buses. oL 20
Exemplo da tag bus. 20
Exemplo de uma tag lines. Lo Lo 22
Exemplo de uma tag line. oL 22
Exemplo de uma tag topology.o 23
Exemplo de uma tag branch.o 00000 23
Fluxograma bésico da aplicacao. 33

Lista de Figuras ix
A.1 Sistema no padrao de entrada de dados do ANAREDE. 35
A.2 Conversao para XML - Parte 1. 36
A.3 Conversao para XML - Parte 2. 37

4.1

4.2

0.1

5.2

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Lista de Tabelas

Padrao ANAREDE para dados de barra. 14
Padrao ANAREDE para dados de linha. 15
Descricao das child tags contidas em bus. 21
Descricao das child tags contidas em line. 21
Descricao das variaveis da classe barra. 25
Descri¢ao das funcoes set contidas na classe barra. 26
Descrigao das funcoes get contidas na classe barra. 26
Descrigao das variaveis da classe dados_lin. 28
Descri¢ao das fungoes set contidas na classe dados lin. 28
Descrigao das funcgoes get contidas na classe dados_lin. 28
Descrigao das variaveis da classe ramos.o 30
Descrigao das funcoes get contidas na classe ramos. 30

1 Introducao

Programas de simulagao tem se tornado cada vez mais importantes em estudos de
sistemas elétricos. Um desses simuladores que se destaca pela grande importancia é o
software de anéalise de redes ANAREDE, especializado em simulagoes de fluxo de carga e

fluxo de poténcia.

O ANAREDE foi desenvolvido de forma a permitir simulagoes de grandes sistemas de
transmissao de energia elétrica. No Brasil, grande parte do sistema interligado nacional
estd documentado na forma de arquivos de entrada do ANAREDE, o que torna este

software ainda mais essencial em estudos de sistemas elétricos de poténcia.

No entanto, um problema enfrentado pelos usuarios desse software é seu padrao de
entrada de dados. As caracteristicas dos sistemas elétricos sdo armazenadas em arquivos
de texto pouco amigaveis e muito susceptiveis a erros de sintaxe, uma vez que os dados
sao armazenados de forma que um simples espaco a mais entre os dados pode acarretar
em falha do ANAREDE.

Para facilitar o desenvolvimento e a modificacao desse padrao de entrada, desenvolveu-
se nesse trabalho uma ferramenta computacional que “traduz”’ o cédigo do ANAREDE
para um padrao XML, assim como também realiza o caminho inverso, ou seja, “traduz”
o padrao XML para o cédigo do arquivo de entrada de dados do ANAREDE. Todavia,
esse trabalho se preocupa apenas em manipular os dados de linhas e barras do sistema,
que correspondem aos dados de maior quantidade na maioria dos sistemas elétricos, ou
seja, na maioria dos casos o nimero de barras e linhas é significativamente maior que o

ntimero de geradores, por exemplo.

Para realizar essa conversao, foi implementada uma estrutura de dados chamada
EPSD (Electric Power System Data), previamente desenvolvida no LACOSEP (Laborato-
rio de Analise Computacional de Sistemas Elétricos de Poténcia) na Escola de Engenharia
de Sao Carlos, onde os dados do sistema elétrico sao gravados e lidos de forma segura e

pratica. Assim sendo, a figura 1.1 mostra um esquema geral da aplicagao desenvolvida.

1.1 Organizacdo do documento 2

Padrdo
X
| ———
Padrdo Padrio
AMNAREDE EPSD XML
_
Padrdo
Y

Figura 1.1: Esquema geral da aplicacao desenvolvida.

Como sugere a figura 1.1, a estrutura de dados é parte essencial do desenvolvimento do
software, assim como também percebe-se que a aplicagao pode ser futuramente ampliada.
No entanto, este trabalho tratou apenas da conversao de dados entre o padrao XML e o
padrao de entrada de dados do ANAREDE.

1.1 Organizagao do documento

Nos proximos capitulos e secoes serao abordados contetidos que foram considerados

essenciais para o entendimento do projeto como um todo.

No capitulo 2 serao discutidos alguns conceitos de programacao que foram largamente
utilizados e que sao essenciais para o entendimento da estrutura de dados usada no de-

senvolvimento da aplicacao.

No capitulo 3 sera mostrada a modelagem dos dados do sistema elétrico na estrutura de
dados, sendo mostrado passo-a-passo a inser¢ao dos dados na mesma e quais as vantagens

dessa modelagem.

No capitulo 4 sera apresentado o padrao do arquivo de entrada de dados do ANA-

REDE, assim como uma breve discussao sobre as desvantagens do codigo.

O capitulo 5 contém uma breve introducao a linguagem XML, que basicamente mos-

1.1 Organizacdo do documento 3

tra como ler documentos XML e informa como os dados de um sistema elétrico foram

organizados em um padrao XML.

A documentacao das classes contidas no codigo fonte da aplicacao esta apresentada no
capitulo 6 e, por fim, o capitulo 7 apresenta as conclusoes finais sobre o desenvolvimento

do trabalho.

2 C(Conceitos de programacao

A linguagem C-+ é um aprimoramento de sua linguagem antecessora, a linguagem C
ANSI. O objetivo desse aprimoramento foi permitir que programadores possam gerenciar
e compreender programas maiores e mais complexos. Dentre muitas das vantagens do uso
da linguagem C++ podem ser citadas flexibilidade, legibilidade, facilidade de manutencao
e suporte & programacao orientada a objetos. A principal vantagem dessa linguagem
que levou a mesma a ser escolhida para a realizacdo desse trabalho foi a possibilidade
da programacao orientada a objetos. Essa abordagem de organizacao ¢ essencialmente
diferente do desenvolvimento tradicional de software, onde estruturas de dados e rotinas

sdo desenvolvidas apenas de forma fracamente acopladas [8].

O objetivo deste capitulo nao é descrever os detalhes de programacao da linguagem,
mas sim apresentar alguns conceitos de programagao que sao suportados pela linguagem

C++ e que foram essenciais para o desenvolvimento do trabalho.

2.1 Encapsulacao e classes

Uma classe em C++ é uma estrutura de dados onde ficam alocadas as variaveis de
determinada aplicacdo e também as funcoes (chamadas de fungdes membro) que mani-
pulam essas varidveis. Essas funcoes executam as tarefas inerentes a classe e somente
elas tem acesso as variaveis da classe!. Isso faz com que os aspectos externos de uma
classe, os quais sao acessiveis as outras classes, sejam separados dos detalhes internos de

implementacao, formando um conceito chamado encapsulacao ou esconder informacao.

O uso de encapsulacao permite que a implementacao de um objeto possa ser modifi-

cada sem afetar as aplicacoes que usam esse objeto [8].

Logo, o uso de classes faz com que o cédigo do programa possa ser mais facilmente

'Em C++ existe o conceito de amizade entre classes. Classes amigas permitem o acesso livre das
variaveis entre si. Esse conceito ainda é muito discutido entre programadores e é considerado por muitos
inadequado por “ferir” os conceitos de abstracdo e encapsulacao de dados.

2.2 Alocacao dindmica 5

modificado se comparado a codigos de linguagens que nao suportam orientacao a obje-
tos. Razoes para modificacoes poderiam ser correcao de erros, melhoria de desempenho,
mudanca da plataforma de execucao, entre outras. Além disso, evita erros que poderiam
ser facilmente cometidos em outras linguagens nao-orientadas a objetos. Por exemplo, no
contexto desse projeto, existe uma classe de objetos que manipula as variaveis de barra
e uma que manipula as variaveis de linha. Nao seria possivel o programador modificar
um dado de barra através de uma funcao da classe que manipula as variaveis de linha,

evitando um erro que poderia ser de dificil deteccao.

Erros como esse podem ser comuns em programas com codigos grandes e com muitas

variaveis, mas sao praticamente impossiveis de serem cometidos usando classes.

Portanto, o uso de classes nesse projeto foi de fundamental importancia, visto que
a expansao das funcoes do mesmo se torna muito mais facil dessa forma, permitindo
que futuramente a conversao de dados seja expandida para outros softwares além do

ANAREDE, aproveitando as fungoes que ja foram desenvolvidas.

Exemplos praticos e dicas de implementagao sao largamente expostas por Deitel[4] e

foram bastante utilizadas no decorrer do trabalho.

2.2 Alocacao dinamica

A alocacao dinamica, que é pratica muito comum na programacao, permite que as
variaveis sejam alocadas na memoria quando o software estd sendo executado e liberar
essa memoria quando as varidveis nao forem mais usadas, ao invés de ter essa memoria

pré-definida na compilagao do codigo.

Essa pratica nao é exclusiva das linguagens orientadas a objetos, mas ¢ essencial em
todas as aplicagoes em que o numero de dados que serao processados pelo programa nao

é conhecido.

2.2.1 Arrays alocados dinamicamente
Um array de dados consiste em uma estrutura de dados simples, que contém varios
elementos que podem ser acessados por meio de um indice.

Logo, a seguinte declaracao cria estaticamente um array de nimeros inteiros de dez

elementos:

2.2 Alocacao dindmica 6

int vetor[10];

Quando for acessado o elemento vetor|0], sera retornado o primeiro elemento do array,
vetor[l] o segundo elemento e assim por diante até o vetor[9], que constitui o ultimo

elemento.

O problema dessa declaracao é que o niimero de dados que serao utilizados foi limitado
em dez. Além disso, se apenas dois elementos forem requeridos, ocorre um desperdicio de

memoéria, uma vez que foi reservada memoria para dez elementos.

No caso da aplicacao desenvolvida nesse trabalho, essa declaracao é inviavel, ja que
podem existir desde sistemas elétricos com poucas unidades de barras até sistemas com
milhares de barras. Além disso, o compilador possui uma memoria reservada limitada

para variaveis estaticas, tornando necessaria a alocagao dinamica [4].

Logo, os dados de barra sao alocados em um array criado dinamicamente, ou seja,
quando o software esta sendo executado e ja é conhecido o ntimero de barras do sistema,
entao a mémoria é alocada de acordo com esse niimero e o array é criado. Um exemplo

de declaracao de um array alocado dinamicamente estd apresentado a seguir:
barra *array = new barra [numero de barras|;

No exemplo citado, ocorre a criacao de um array de objetos da classe barra, onde o

ntumero de barras é definido em tempo de execucao.

Aplicagoes de arrays alocados dinamicamente e véarios exemplos de implementacao

podem ser encontrados em |[3].

2.2.2 Listas encadeadas

Assim como um array alocado dinamicamente, a lista encadeada é uma estrutura
de dados flexivel na qual a memoria total alocada é sempre proporcional ao nimero de
elementos da mesma. No entanto, no caso de listas encadeadas, elementos (chamados
comumente de noés) podem ser removidos ou adicionados a lista em qualquer ponto, o
que nao é possivel com os arrays que uma vez criados terao sempre o mesmo niimero de

elementos|5|.

Uma lista encadeada, porém, nao possui um espaco contiguo na memoria e portanto
nao pode ser acessada através de indices como os arrays. Logo, cada elemento de uma

lista encadeada possui necessariamente um ponteiro? que aponta para o préoximo elemento

2Um ponteiro é uma variavel que contém um endereco de memoria.

2.2 Alocacao dindmica 7

da lista, formando uma estrutura onde os dados sao encadeados®. Para percorrer uma
lista, ¢ necessario conhecer o endereco de memoria do primeiro elemento da lista, ou seja,
ter um ponteiro que aponta para o primeiro elemento da lista. A figura 2.1 mostra um

exemplo genérico do arranjo de memoria de uma lista.

Prim

\ Infol | — Info2 | — Info3| +—»

Figura 2.1: Exemplo genérico do arranjo de memoria de uma lista.

No contexto do trabalho, a flexibilidade das listas encadeadas foi utilizada para criar
uma lista de dados das linhas e listas de conexoes entre as linhas e barras & medida em
que os dados sao lidos do arquivo. A maneira como essas listas foram organizadas sera

melhor discutida no capitulo 3.

3No fim de uma lista encadeada, o elemento aponta para NULL, que representa um endereco nulo em
C++.

3 Modelagem da estrutura de dados

Para que os dados do sistema elétrico sejam convertidos, seja para o padrao XML
ou seja para o padrao ANAREDE, é necessario que antes eles sejam alocados numa
estrutura de dados (EPSD), onde serdo organizados de maneira a ficarem de alguma

forma conectados, permitindo assim o acesso aos elementos de forma segura.

Como informado no capitulo 2, os dados de barra sao alocados em um array criado
dinamicamente, enquanto os dados de linha e ramos (conexoes entre as linhas e barras) do
sistema sao alocados em listas encadeadas. Este capitulo visa definir como essas estruturas

estao acopladas entre si.

3.1 O sistema elétrico em uma estrutura de dados

Para ilustrar como os dados do sistema sao alocados na estrutura de dados criada pelo
programa, sera considerado o sistema da figura 3.1, que é um sistema bastante simples de

apenas trés barras e trés linhas.

Linhal

Barra 1 Barra2

Linha 2 Linha 3

Barra 3

Figura 3.1: Sistema simples de trés barras.

Conclui-se da figura do sistema, que o mesmo possuird um array de barras com trés
elementos e uma lista encadeada de dados de linhas também com trés elementos. As
estruturas mais complexas, no entanto, sao as listas encadeadas que mostram as conexoes

do sistema. Cada elemento dessas listas possui trés ponteiros: um para a barra de destino,

3.1 O sistema elétrico em uma estrutura de dados 9

um para os dados da linha que interliga as barras e um para o proximo elemento da lista.
Além disso, o nimero de listas de ramos é proporcional ao nimero de barras, ou seja,
cada elemento do array de barras possui um ponteiro para o primeiro elemento de uma
lista encadeada de ramos, que permite saber quais sao as barras vizinhas e quais sao as
linhas que fazem as ligagoes. A figura 3.2 mostra um exemplo genérico de um elemento

da lista encadeada de ramos.

IDados da linha que faz a ligagdo I

A

’I Proximo elemento da lista I

Prdxima barra

Figura 3.2: N6 da lista encadeada de ramos.

Inicialmente, o array de barras é criado e os elementos do mesmo sao preenchidos com
os dados das barras do sistema. Uma vez que um array depois de criado nao permite que
elementos adicionais sejam inseridos, antes que possam ser criadas as listas de dados de
linha e ramos, o array de barras deve estar necessariamente criado e preenchido com os
dados das barras do sistema. Dessa forma, & medida que sao lidos os dados de linha, sao
inseridos nos da lista de dados de linha e das listas de ramos. Para mostrar melhor essa
relacao, a figura 3.3 mostra como fica a estrutura de dados apos a criagao do array de
barras e um elemento dos dados de linhas adicionado, considerando o sistema apresentado

na figura 3.1.

Como sugere a figura 3.3, um n6 da lista encadeada de dados de linha foi criado
acrescentando os dados da linha “1”. A linha “1”, por sua vez, interliga as barras “1” e
“27 (ver figura 3.1). Sao criadas entao outras duas listas encadeadas, uma para a barra

)
“1” e uma para a barra “2”. O n6 criado que esta sendo apontado pela barra “1” indica
que uma das barras vizinhas é a barra “2” e que elas sao ligadas por meio da linha “1”.
Analogamente, o n6 que esta sendo apontado pela barra “2” indica que uma das barras

vizinhas é a barra “1” e que elas sao ligadas por meio da linha “1”.

Quando os dados da linha “2” sao adicionados, um novo n6 da lista de dados de linha

é criado, assim como as listas que fazem o mapeamento do sistema. A figura 3.4 mostra

3.1 O sistema elétrico em uma estrutura de dados 10

DADOS LIMHA 1 MULL

BARRA 1

BARRA 2

BARRA 3

Figura 3.3: Estrutura de dados ap6s os dados de uma linha serem adicionados.

como fica a estrutura de dados quando os dados da linha “2” sao adicionados & mesma.

DADOS LIMHA 1

Y

DADOS LINHA 2 NULL

-

BARRA 1

BARRA 2 —
BARRA 3
—1 > NULL

Figura 3.4: Estrutura de dados apos os dados de duas linhas serem adicionados.

Verifica-se de acordo com a figura 3.4 que além do novo n6 da lista de dados de linhas,
outros dois noés sao criados. Um deles ¢ acrescentado a lista encadeada da barra “17 e
indica que a mesma esta ligada & barra “3” por meio da linha “2”. Reciprocamente, um

s 2

no6 é criado na barra “3” e indica que a mesma estd ligada a barra “1” através da linha “2”.

Por fim, a dltima linha é adicionada a estrutura de dados e o quadro geral da estrutura

é apresentado na figura 3.5.

Com a insercao do n6 com os dados da linha “3”, novamente outros dois nds sao
criados. Um deles é acrescentado a lista encadeada da barra “2”, indicando que a mesma,
estd conectada a barra “3” por meio da linha “3”. Da mesma forma, outro no é acrescentado

a lista encadeada da barra “3” e mostra que a mesma esta conectada a barra “2” por meio

3.1 O sistema elétrico em uma estrutura de dados 11

DADOS LINHA 1 » DADOS LINHA 2 »| DADOS LINHA 3 NULL
Fy Y F Y t
BARRA 1 [NULL
C o ot |
BARRA 2 % — o |_, NULL
.‘_r'
— » -.:I_ WULL

Figura 3.5: Estrutura de dados ap6s os dados de trés linhas serem adicionados.

da linha “3”.

Além das vantagens em relagdo & memoria, onde nao ocorre redundancia de dados,

esta estrutura apresenta algumas outras vantagens.

Uma delas é a velocidade de acesso aos dados. Se o usuario deseja fazer uma busca
para verificar quais linhas e quais barras estao ligadas & uma determinada barra, basta
fazer uma busca no vetor de barras e entao percorrer a lista encadeada associada a esta
barra para ter essas informacoes. Caso essa estrutura nao fosse criada mas fosse desejado
obter essas informacoes, sucessivas buscas na lista encadeada de dados de linha e no vetor

de barras seriam necessarias, ocasionando queda de desempenho do software.

Caso fosse desejado que esta otimizagao da busca fosse obtida sem esta estrutura, seria
necesséario criar outra estrutura com dados redundantes. A figura 3.6 mostra como seria
uma estrutura classica de programacao para o exemplo da figura 3.1 com os dados da linha
“1” adicionados. Verifica-se que os dados necessitariam de uma duplicacao, provocando

um uso de memoria muito maior do que na estrutura utilizada.

3.1 O sistema elétrico em uma estrutura de dados

12

DADOS LINHA 1

BARRA 1

DADDS LIMHA 1

BARRA 2

BARFA 3

Figura 3.6: Estrutura de dados classica.

Logo, a estrutura de dados EPSD utilizada neste trabalho para modelar os dados

otimiza a alocagao de memoria, assim como as fungoes de busca e acesso aos dados.

13

4 O padrao de entrada de dados do
ANAREDE

O software de andlise de redes ANAREDE |[1], desenvolvido pelo CEPEL |2] é um
simulador de sistemas elétricos largamente utilizado no Brasil, mas seu arquivo de entrada

de dados possui algumas grandes desvantagens.

A principal desvantagem dos arquivos de entrada de dados do ANAREDE esta no
posicionamento dos dados em colunas, sistema que é “heranca” da linguagem de progra-
macao FORTRAN. Esse posicionamento permite com que um simples espaco entre os
dados faca com que o ANAREDE cometa erros na leitura, além de dificultar a leitura dos

dados do documento pelo usuério do software.

Outra desvantagem que também é “heranca” do FORTRAN ¢ o ponto decimal impli-
cito. Em alguns dados, existe um ponto decimal na coluna que nao é representado pelo
usuario. Dessa forma, um dado como, por exemplo, “95.63” é escrito apenas na forma

“9563”, o que facilita ainda mais os erros de leitura pelo usuério.

Com o objetivo de apresentar o padrao de entrada de dados do ANAREDE, este capi-
tulo traz uma amostra do que pode ser escrito utilizando este padrao. No entanto, assim
como a ferramenta computacional desenvolvida nesse projeto, a amostra sera limitada aos

padroes de escrita de barras e linhas de sistemas elétricos.

4.1 Barras no padrao ANAREDE

Em um arquivo de entrada de dados do ANAREDE, a diretiva “DBAR” marca o
inicio dos dados de barra e os nimeros “99999” marcam o fim. Logo, cada linha que
estiver entre essas marcagoes é definida com dados de uma barra. O que identifica qual
dado esté escrito é o posicionamento em relagao as colunas. A tabela 4.1 mostra uma
relacao com os dados e entre quais colunas da linha os mesmos devem estar posicionados

para serem corretamente lidos.

4.2 Linhas no padrao ANAREDE 14

Colunas Dado

1as Numero de identificagdo da barra
8 Tipo de barra

11 422 Nome da barra

25 a4 28 Tensao na barra

29 & 32 Angulo na barra em radianos

33 a 37 Geragao de energia ativa na barra
38 a 42 Geragao de energia reativa na barra
99 a 63 Carga ativa na barra em MW

64 a 68 Carga reativa na barra em MVAr
69 a4 73 Capacitancia shunt em MVAr

Tabela 4.1: Padrao ANAREDE para dados de barra.

Para ilustrar como esses dados sao apresentados no arquivo de entrada do ANAREDE,
a figura 4.1 mostra um exemplo de como seria a entrada de dados para as barras do sistema
da figura 3.1.

DBAR

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
(23456789012345678901234567890123456789012345678901234 5678901234 5678901234567 890
(NumiOETGb(nome 3G1C VIC AY(Pgd(agd(an)C amy(ec_ I (P1D(Q1) (shyare(vf)

1 Barra 1 1000 0.2500. 0.-99999999, 202 0. 0.

2 1 Barra 2 1000 0.1500. 0.-99999999, 203 0. 0.

3 1 Barra 3 1000 0.29530. 0.-999999949, 204 0. 0.
99999

Figura 4.1: Barras no padrao de entrada de dados do ANAREDE.

4.2 Linhas no padrao ANAREDE

Em se tratando de linhas no arquivo de entrada do ANAREDE, o que delimita o
inicio e o fim da escrita dos dados sao a diretiva “DLIN” e os ntimeros “99999”. Assim
como no padrao de escrita de barras, o que determina a informacao apresentada sao os
posicionamentos entre as colunas da linha no arquivo. A tabela 4.2 mostra uma relacao
com os dados e entre quais colunas da linha os mesmos devem estar posicionados para

serem corretamente lidos.

Considerando novamente o sistema da figura 3.1, a figura 4.2 mostra um exemplo de

como as linhas sao inseridas em arquivo de entrada do ANAREDE.

4.2 Linhas no padrao ANAREDE

Colunas Dado

145 Barra de origem da linha
11415 Barra de destino da linha

21 &4 26 Resisténcia da linha

27 a 32 Reatancia da linha

33 438 Susceptancia shunt da linha
39 443 Tap

54 & 58 Defasagem

59 a 63 Carga ativa na barra em MW
64 a 68 Carga reativa na barra em MVAr
69 473 Capacitancia shunt em MVAr

Tabela 4.2: Padrao ANAREDE para dados de linha.

DLIN
(o | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
(2345678901234567809012345678901234567809012345678901234567809012345678901234567890
(De Jd o d{Pa INCEP (R% J({ X%)(Mvar)(Tap) (Tmn) (Tmx){(Phs)(Bc) (Cn)(Ce)Ns

1 2 3.60 0.939 000

2 3 3.80 0.939 000
1 3.60 0.939 000

3
99999

Figura 4.2: Linhas no padrao de entrada de dados do ANAREDE.

16

5 A linguagem XML

A linguagem de marcagao XML define uma sintaxe genérica usada para marcar dados
com simples, legiveis tags (etiquetas). Ela prové um formato padrao para documentos de
computadores. Este formato é flexivel o bastante para ser personalizado em dominios tao
diversos quanto paginas de internet, troca de dados eletronicos, genealogia, serializacao

de objetos, sistemas de correio de voz, e mais |6].

O objetivo deste capitulo é oferecer uma introducao a linguagem XML, explicando
de forma sucinta a leitura das tags, estruturas presentes em arquivos XML que permitem
que os dados sejam escritos de forma estruturada. Também serd mostrado como os dados
do sistema elétrico serao disponibilizados para leitura, além de uma breve discussao sobre
0os XML parsers, que sao analisadores de grande importancia para a implementacao do

XML em ferramentas computacionais.

5.1 Leitura de documentos XML

Um documento XML contém texto, nunca dados binarios. Ele pode ser aberto por
qualquer programa que tenha a habilidade de ler um arquivo de texto [6]. O exemplo
mostrado na figura 5.1 ilustra um documento escrito na linguagem XML na forma mais

simples possivel.

<pessoa>Joao da Silva </pessoa>

Figura 5.1: Exemplo simples de XML.

O documento mostrado no exemplo da figura 5.1 faz uma breve descricao de uma
pessoa, através da tag pessoa. Dessa forma os itens <pessoa> e < /pessoa> sao chamados
de start-tag e end-tag, marcam respectivamente o inicio e o fim da tag no documento e

tudo o que estiver entre elas representam o contetido da tag.

5.1 Leitura de documentos XML 17

E claro que este exemplo é muito simples; em uma aplicacdo mais real seria necessario
um nivel de detalhamento maior para descrever uma pessoa. Por isso, uma tag pode
conter subniveis, ou tags filhas (child tags). O exemplo mostrado na figura 5.2 estende o

exemplo da figura 5.1 com um nivel maior de detalhamento.

<pessoaz
<nome> Joao </fnome>
<spbrenome= da Silva </sobrenome>
<profissac> Engenheiro </profissao=
</pessoaz

Figura 5.2: Exemplo de XML com child tags.

O exemplo da figura 5.2 mostra com clareza que uma tag pode conter outras tags.
Isso possibilita um nivel muito grande de detalhamento, uma vez que as child tags podem
também conter outras tags, que por sua vez podem conter outras. Para ilustrar essa

possibilidade a figura 5.3 mostra um documento um pouco mais elaborado.

<pessoar
<nomes
<primeira_nome:> Joao </primeira_nome>
<sobrenome: da Silva </sobrenome:
<fnome:>
<profissao>
<formacao=Engenharia Mecanica</formacao>
<cargo> Engenheiro Junior </cargo=
<fprofissao>
<fpessoa>

Figura 5.3: Exemplo de XML com child tags mais estruturado.

Por fim, uma tag pode conter atributos. Um atributo é uma informacgao do elemento
que aparece sempre na start-tag e cada elemento pode conter varios atributos. Para
ilustrar o uso de atributos, a figura 5.4 mostra o exemplo da figura 5.3 com o atributo

"idade"adicionado a pessoa.

<pessoa idade= "28">
<nome:
<primeira_nome:> Joao </primeira_nome>
<sobrenome: da Silva </sobrenome:
<fnome:>
<profissao>
<formacao=Engenharia Mecanica</formacao>
<cargo>Engenheiro Junior </cargo>
<fprofissao>
</pessoa=

Figura 5.4: Exemplo de XML utilizando atributo.

Além do contetdo das tags, um documento XML pode conter comentarios, que podem

ser utilizados para explicar os dados contidos no documento ou fornecer outras informacoes

5.2 O XML Parser 18

importantes sobre o mesmo. Um comentario sempre aparece entre “<!-" e “ —>" como

serd ilustrado na segao 5.3.

5.2 0O XML Parser

Parte do sucesso da linguagem XML se deve ao grande numero de XML parsers.
Os parsers sao analisadores disponiveis para uso em varias linguagens de programacao e
tornam muito mais facil a implementacao do XML em ferramentas computacionais, pois
sao capazes de ler documentos XML, validar a sintaxe, ler o conteiido das tags, escrever

documentos XML sem erros de sintaxe, entre outras funcoes.

Em outras palavras, os parsers garantem a confiabilidade na troca de informacoes

com documentos XML.

Para a elaboracao do projeto, algumas opcoes de parsers foram analisadas a fim de
se encontrar a melhor opgao para a implementacao na linguagem de programacao C++.

Foram testadas as opcoes:

e Xerces C++ [10];
e RapidXML [7];

o TinyXML++;

Apos alguns testes com esses parsers, a op¢ao escolhida foi o TinyXML++. A princi-
pal vantagem dele em relacao aos outros foi a facilidade na implementacao e configuracao
do mesmo, que também se mostrou bastante rapido e estavel. O endereco eletronico do
parser TinyXML++ [9] contém muito exemplos de implementagio e uma documentagao

completa que foi de grande valia para o sucesso do trabalho.

5.3 Dados do sistema elétrico em XML

Para alocar os dados do sistema elétrico em um documento XML, foram consideradas
as variaveis de barra e linha, assim como os ramos, que descrevem, para cada barra, quais

sao suas barras vizinhas e quais linhas estao conectadas.

O padrao XML para o sistema elétrico esta apresentado na figura 5.5.

5.8 Dados do sistema elétrico em XML 19

- «systemz

«l--

o

b

Z]==

ko

=l

<l-= ==

sloo mr

zl-=B C t St

<l-- size rerc de barras -->
+ <buses size="30"=>

<l== nhas do sistema --2»

<l-- ZE e 1h -—x
+ <ines size="41">

<!-- Conexfes I I do sistema --2>
+ <branches=
</system>

R T
WOWOW W W W

Figura 5.5: Exemplo de sistema elétrico escrito em XML.

Como sugere a figura 5.5, o sistema elétrico é descrito por uma tag principal chamada
system. Essa tag por sua vez possui trés child tags, buses, lines e topology, que descrevem
as barras, linhas e a topologia do sistema, respectivamente. O sinal de “+7 a esquerda
das child tags indicam que as mesmas possuem outras child tags, que serao descritas nas

secoes seguintes.

5.3.1 A tag buses

Para representar o conjunto de barras do sistema elétrico, a tag buses possui vérias
child tags chamadas bus. Em cada tag bus, encontra-se o conjunto de dados de uma
barra. O atributo size encontrado em buses indica o ntimero de barras do sistema. A

figura 5.6 mostra um exemplo da tag buses.

O sinal de “+7 & esquerda das tags bus indicam que as mesmas possuem outras child
tags, que descrevem as variaveis elétricas que sao associadas as barras do sistema. A figura

5.7 mostra o detalhe de uma das tags bus.

Como mostrado na figura 5.7, varias varidveis sao associadas para a descricao de uma
barra por meio de diversas tags e um atributo “id”, que representa um identificador da

linha.

A tabela 5.1 mostra uma breve descricao do contetido dessas tags.

5.3.2 A tag lines

A tag lines é semelhante & tag buses, porém contém os dados das linhas que interligam

as barras do sistema. A figura 5.8 mostra um exemplo da tag lines. Verifica-se que ela

5.8 Dados do sistema elétrico em XML 20

- <buses size="30":
+ <bus id="0">
<bus id="1">
<bus id="2">
<bus id="3">
<bus id="4">
<bus id="5">
<bus id="6">
<bus id="7">
<bus id="8">
<bus id="9">
<bus id="10"=>
<bus id="11">
<bus id="12">
<bus id="13"=>
<bus id="14"=>
<bus id="15">
<bus id="16">
<bus id="12"=>
<bus id="18">
<bus id="19">
<bus id="20"=>
<bus id="21">
<bus id="22">
<bus id="23">
<bus id="24"=>
<bus id="25">
<bus id="26"=>
<bus id="22"=>
<bus id="28">
<bus id="29"=>
</buses=

L S S S S S T S T T s e T T s s i i S N S S S

Figura 5.6: Exemplo da tag buses.

- <bus 1d="0">
<number=1</number=
<type=2</types
<name>BARRA1 SLACK </name>
<voltage=1.053</voltage >
<angle=0.0</angle>
<real_generation=0.0</real_generation>
<reactive_generation=>0.0</reactive_generation=
<real_load=>0.0=/real_load=
<reactive_load=>0.0</reactive_load=
<shunt=0.0</shunt>
<real_injection=0.0</real_injection=
<reactive_injection>0.0</reactive_injection=

</busz

Figura 5.7: Exemplo da tag bus.
possui um atributo “size”, que representa o nimero de linhas do sistema, e varias child
tags chamadas line, cada uma com um conjunto de dados de uma linha.

Cada tag line possui um conjunto de dados que descrevem uma linha atraves de outras
child tags e um atributo chamado “id”, que constitui um identificador ficticio da linha.

Um exemplo de uma tag line esta exposto na figura 5.9.
A tabela 5.2 mostra uma breve descri¢gao das child tags contidas em line.
5.3.3 A tag topology

O elemento topology do documento descreve os ramos do sistema, ou seja, identifica

para cada barra quantas linhas saem dela, quais sao essas linhas e para onde elas vao

5.8 Dados do sistema elétrico em XML 21
Child tag Descrigao
number Nuamero real da barra
type Tipo de barra
name Nome da barra
voltage Tensao na barra
angle Angulo na barra em radianos

real generation

Geragao de energia ativa na barra

reactive _generation

Geragao de energia reativa na barra

real load

Carga ativa na barra em MW

reactive_load

Carga reativa na barra em MVAr

shunt

Capacitancia shunt MVAr

real injection

Injecao de energia ativa na barra

reactive _injection

Injecao de energia reativa na barra

Tabela 5.1: Descricao das child tags contidas em bus.

Child tag Descrigao

from Barra de origem da linha

to Barra de destino da linha
resistance Resisténcia da linha em p.u.
reactance Reatéancia da linha em p.u.
shunt Susceptancia da linha em MVAr
tap Tap da linha

Tabela 5.2: Descricao das child tags contidas em line.

(barras vizinhas). De certa forma, esta informagdo é redundante, pois as informagoes
contidas nessa tag sao retiradas da tag line e sao utilizadas apenas para facilitar o acesso

aos dados em algumas aplicagoes. A figura 5.10 mostra o aspecto geral da tag topology.

Assim como nas tags buses e lines, topology possui vérias child tags, que neste caso
sao chamadas branch. Cada uma delas expoe as informagoes de ramos para uma barra e
possuem os atributos “from” e “size”, que representam a identificacao da barra e o nimero
de linhas que saem dela, respectivamente. A figura 5.11 apresenta um exemplo de uma

tag branch com suas child tags.

Através da figura 5.11, nota-se a presenca das child tags data. Dentro delas, estao
as informacoes “to” e “id _data”, que representam a identificacao da barra de destino e o
indice do vetor de barras correspondente. No exemplo da figura 5.11, portanto, a barra
identificada por “0” possui duas linhas ligadas & ela e ambas vao para a barra identificada

por LL177

5.8 Dados do sistema elétrico em XML

22

- <lines size="41"=
+ <line id="0"=

Zline id="1"=
<line id="2"=
<line id="3"=
<line id="4"=

<line id="5"=
<line id="6"=
<ling id="#"=

<line id="8"=

<line id="9"=
<line 1d="10"=
<line id="11"=
Zline id="12"=
Zline id="13">
Zline id="14"=
Zline id="15"=
<line id="16"=
<line id="17"=
<line id="18"=

<line id="19"=
<line id="20"=
<line id="21"=
<line id="22"=
<line id="23"=

<line 1d="24"=
<line 1d="25"=
Zline id="26"=
Zline id="27"=
Zline id="28"=
<line id="29"=
<line id="30"=
<line id="31"=
<line id="32"=
<line id="33"=
<line id="34"=

<line id="35">
<line id="36"=
Zline id="37"=

G T S T S R T R T TR R G T S R TR T R I T S T R

<line 1d="38"=

<line 1d="39"=

<line id="40"=
=flinesz

Figura 5.8: Exemplo de uma tag lines.

- <ine id="0"=
<from=1</from=
<to=2</to>
zresistance=0.019199999 </resistance>
zreactance=0.0575</reactance=
=shunt=0.013200001 </shunt=
<tap=0.0</tap=

<fline=

Figura 5.9: Exemplo de uma tag line.

5.8 Dados do sistema elétrico em XML

- <topology=
+ <branch from="0" size="2">
+ <branch from="1" size="4">
+ <branch from="2" size="2">
+ <branch from="3" size="4">
+ <branch from="4" size="2">
+ <branch from="5" size="7">
+ <branch from="6" size="2">
+ <branch from="7" size="2">
+ <branch from="8" size="3">
+ <branch from="9" size="6">
+ <branch from="10" size="1">
+ <branch from="11" size="5">
+ <branch from="12" size="1">
+ <branch from="13" size="2">
+ <branch from="14" size="4">
+ <branch from="15" size="2">
+ <branch from="16" size="2">
+ <branch from="17" size="2">
+ <branch from="18" size="2">
+ <branch from="19" size="2">
+ <branch from="20" size="2">
+ <branch from="21" size="3">
+ <branch from="22" size="2">
+ <branch from="23" size="3">
+ <branch from="24" size="3">
+ <branch from="25" size="1">
+ <branch from="26" size="4">
+ <branch from="27" size="3">
+ <branch from="28" size="2">
+ <branch from="29" size="2">
=/topology =

Figura 5.10: Exemplo de uma tag topology.

- <branch from="0" size="2"=
- zdataz
<to=1</to>
<id_data=0</id_dataz=
z/data=
- zdata=
<toz=l</to=
<id_data=0<=/id_dataz=
</data=
=/branchz=

Figura 5.11: Exemplo de uma tag branch.

24

6 Documentacao das classes

Enquanto o uso de classes pode facilitar o entendimento e a modificacao do codigo
em um projeto envolvendo programacao, nao documenta-las corretamente pode causar

problemas para os futuros usuarios das mesmas.

Logo, esse capitulo visa descrever as variaveis e as funcoes-membro que estao alocadas

em cada classe.

Como as variaveis da classe s6 podem ser acessadas pelas funcoes-membro, foram
definidas como padrao de programacao para todas as classes as funcoes “set” e “get”, que

permitem modificar ou obter, respectivamente, uma determinada variavel da classe.

6.1 A classe barra

A classe barra é a mais simples de todas as classes desenvolvidas, pois nao possui
funcoes-membro que executam tarefas, mas apenas funcoes que modificam ou retornam

o valor das variaveis da classe.

As variaveis presentes na classe barra estao apresentadas na tabela 6.1.

6.1 A classe barra

25

Varidvel Tipo Descrigao

id inteiro Identificador da barra.

tipoBarra inteiro Tipo de barra

nome string Nome da barra

tensao double Tensao na barra em p.u.

teta double Angulo na barra em radianos

gerAtiva double Geragao de energia ativa na barra
gerReativa double Geragao de energia reativa na barra
carAtiva double Carga ativa na barra em MW
carReativa double Carga reativa na barra em MVAr

shunt double Capacitancia shunt MVAr

injecaoAtiva double Injecao de energia ativa na barra
injecaoReativa double Injecao de energia reativa na barra
geracao double Valor da geracao com tensao controlada
*inicio_ptr ramos® Ponteiro que aponta para o primeiro elemento da lista de ramos
gqtdeLinhas inteiro Quantidade de linhas ligadas & barra
ref inteiro Indica se a barra é a referéncia

a - N . - ~
O tipo ramos se refere & classe ramos, que serd descrita em outra secao.

Tabela 6.1: Descricao das varidveis da classe barra.

Essas variaveis, contudo, s6 sao acessiveis pelas fungoes da classe, que sao apresentadas

apresentadas nas segoes seguintes.

6.1.1 Funcoes membro da classe barra

Por se tratar de uma classe que nao executa tarefas, as funcoes da classe barra sao

essencialmente funcoes que atribuem ou retornam valor das variaveis.

Como padrao definido, essa classe apresenta suas funcoes “set” e “get”. As tabelas 6.2

e 6.3 listam essas funcgoes e suas respectivas descricoes.

6.1 A classe barra

26

Protétipo

Descricao

void ® set_nome(string)

Atribui um nome & barra

void set _id(int)

Atribui um valor de identificacdo & barra

void set_tensao(double)

Atribui um valor para a tensdo na barra

void set_tipobarra(int)

Atribui um tipo a barra

void set_teta(double)

Atribui um valor ao angulo da barra

void set _gerAtiva(double)

Atribui um valor & geragio ativa na barra

void set_gerReativa(double)

Atribui um valor & geragio reativa na barra

void set_geracao(double)

Atribui um valor & geragdo com tensao controlada

void set _carAtiva(double)

Atribui um valor & carga ativa na barra

void set__carReativa(double)

Atribui um valor & carga reativa na barra

void set _shunt(double)

Atribui um valor & capacitancia shunt na barra

void set_injecaoAtiva(double)

Atribui um valor & injecdo de energia ativa na
barra

void set_injecaoReativa(double)

Atribui um valor & injecdo de energia reativa na
barra

void set _ramo(ramos*)

Atribui um endereco ao ponteiro inicio ptr

b ~ . . ~ s
Uma fung¢do do tipo void ndo retorna nenhuma variavel.

Tabela 6.2: Descricao das fungoes set contidas na classe barra.

Prototipo

Descricao

string get nome()

Funcao que retorna o nome da barra

int get id()

Funcao que retona o id de cada barra

double get_ tensao()

Funcao que retorna a tensao da barra

int get tipobarra()

Funcao que retorna o tipo da barra

double get_teta()

Funcao que retorna o angulo da barra

double get_gerAtiva()

Funcao que retorna geragao ativa da barra

double get gerReativa()

Funcao que retorna a geragao reativa da barra

double get_ geracao()

lada

Funcao que retorna a geracao com tensao contro-

double get_carAtiva()

Funcao que retorna a carga ativa da barra

double get carReativa()

Funcao que retorna a carga reativa da barra

double get _shunt()

Funcgao que retorna a carga shunt da barra

double get_injecaoAtiva()

barra

Funcao que retorna a injecao de energia ativa da

double get_injecaoReativa()

da barra

Funcao que retorna a injecao de energia reativa

int get qtdeLinhas()

estao ligadas & barra

Funcao que retorna a quantidade de linhas que

ramos *get ramo()

cio_ptr

Funcao que retorna o endereco apontado por ini-

Tabela 6.3: Descricao das fungoes get contidas na classe barra.

A funcoes set sao muito tteis quando ha necessidade de atribuir valor & alguma

variavel, mas quando se deseja atribuir valor & todas as varidveis de uma vez, chamar

todas as fungoes set de uma vez deixaria o cédigo muito poluido. Por isso, foi desenvolvida

6.2 A classe dados_lin 27

a funcao set barra, que pode atribuir valores a todas as variaveis (exceto a gtdeLinhas e

a inicio_ptr) de uma vez. A func¢do set barra tem o seguinte prototipo:

void set barra(string n_nome, int n_id, double n_ tensao, double n_teta,
double n_gerAtiva, double n_gerReativa, double n_carAtiva, double n_carReativa,
double n_injecaoAtiva, double n_injecaoReativa, double n_shunt,

double n_geracao, int n_tipoBarra, int n_ ref);

Além de set_ barra, foi desenvolvida uma funcao para incrementar a variavel gtdeLi-
nhas. Isso porque, esta varidvel é incrementada enquanto se cria a lista encadeada de
ramos. Para cada n6 adicionado a lista de ramos da barra, a variavel ¢tdeLinhas é incre-
mentada, sinalizando que mais uma linha esta conectada a barra. A funcao que faz esse

incremento tem o seguinte prototipo:
void incrementa_linha();

Por fim, ha uma funcao para imprimir na tela os valores armazenados nas variaveis.
Esta funcao é atil quando o programador quer conferir de forma rapida se os dados estao
sendo passados para as variaveis de forma correta. O prototipo dessa funcao é definido

por:

void mostra_barra();

6.2 A classe dados lin

A classe dados_lin possui todas as varidveis necessérias para armazenar os dados de
linha e criar uma lista encadeada com esses dados. Essa classe possui além das funcoes

set e get, funcoes que podem criar ou destruir nés da lista encadeada de dados.

As variaveis presentes na classe estao apresentadas na tabela 6.4.

Da mesma forma da classe barra, funcoes-membro foram definidas para manipular

essas varidveis.

6.2.1 Funcoes membro da classe dados_lin

Da mesma forma que a classe barra, a classe dados_lin tem suas funcoes “set” e “get”,

as quais estao listadas nas tabelas 6.5 e 6.6.

6.2 A classe dados_lin 28

Varidvel Tipo Descrigao

id inteiro Identificador ficticio da linha

resistencia double Resisténcia da linha

reatancia double Reatancia da linha

tap double Tap da linha

defasagem double Defasagem da linha em radianos

shunt double Susceptéincia shunt da linha em MVAr

idBarraOrigem | inteiro Identificacdo da barra de origem da linha

idBarraDestino | inteiro Identificacao da barra de destino da linha

*prox dados Varidvel que armazena o endereco do préoximo né da lista encadeada

Tabela 6.4: Descricao das variaveis da classe dados_ lin.

Prototipo Descrigao

void set _idlinha(int) Atribui um valor de identificagdo a linha

void set _resistencia(double) Atribui um valor para a resisténcia da linha

void set reatancia(double) Atribui um valor para a reatancia da linha

void set _tap(double) Atribui um valor para o tap da linha

void set _ defasagem(double) Atribui um valor a defasagem da linha

void set _shunt(double) Atribui um valor & susceptancia shunt da linha

void set origem(int) Atribui um valor & identificagdo da barra de ori-
gem

void set _destino(int) Atribui um valor a identificacdo da barra de des-
tino

void set prox(dados*) Atribui um endereco ao ponteiro prox

Tabela 6.5: Descricao das fungoes set contidas na classe dados_lin.

Protoétipo Descrigao

int get idlinha() Funcao que retorna a identificagdo da linha

double get_ resistencia() Fungao que retorna a resisténcia da linha

double get_reatanciaf() Funcao que retorna a reatancia da linha

double get_tap() Funcéo que retorna o tap da linha

double get_ defasagem() Funcao que retorna o valor da defasagem da linha

double get_shunt() Funcdo que retorna a susceptancia shunt da linha

int get origem() Funcdo que retorna a identificacdo da barra de
origem

int get destino() Funcdo que retorna a identificacdo da barra de
destino

dados* get prox() Funcdo que retorna o endereco do proximo ele-
mento da lista encadeada

Tabela 6.6: Descricao das fungoes get contidas na classe dados lin.

Analogamente a classe barra, a classe dados lin também possui uma funcao que
permite com que todos os dados sejam incluidos de uma s6 vez (com exce¢ao do ponteiro

prozx). Essa fun¢ao chama-se set dados e possui o seguinte prototipo:

void set dados(Id in_id, double in_ resistencia, double in _reatancia,

6.3 A classe ramos 29

double in_tap, double in _defasagem, double in _shunt,

Id in_idorigem, Id in _iddestino);

No entanto, cada vez que um novo né precisar ser inserido na lista, memoria deve ser
alocada para este no e ele deve ser corretamente posicionado na lista encadeada. Para
desempenhar essa funcao, foi desenvolvida uma funcgao insere, que posiciona um novo
elemento no fim da lista encadeada de dados toda vez que ela for chamada. Essa funcao
recebe como parametros, além dos dados de linha, um ponteiro para o primeiro elemento

da lista encadeada, como sugere seu prototipo:

void insere(dados *raiz, Id in_id, double in_resistencia, double in _reatancia,
double in_tap, double in _defasagem, double in_shunt, Id in_idorigem,

Id in_iddestino);

Como uma lista encadeada possui varios elementos, é interessante que se tenha um
funcao que busque um elemento especifico nesta lista. Por isso, foi criada uma funcao de
busca chamada busca, que recebe como parametros o ponteiro para o primeiro elemento
da lista e a identificacao da linha que se deseja buscar, retornando o endereco de memoria

do elemento com tal identificacao. O prototipo da mesma é como segue:
dados *busca(dados *raiz, int id _target);

Outra funcao que pode ser interessante para o programador ¢ a funcao que imprime na
tela os dados dos nos da lista. Para realizar essa tarefa, a fungao mostra_ lista recebe como

parametro o ponteiro para o primeiro elemento da lista e apresenta o seguinte prototipo:
void mostra_lista(dados *raiz);

Por fim, assim como alocar os dados dinamicamente faz parte da boa pratica de
programacao, liberar a memoria quando os dados nao precisam mais ser utilizados também
faz. Foi criada entao a fungao clear list, que recebe como parametro um ponteiro para o
primeiro no6 e percorre a lista deletando cada um dos nos. A funcao apresenta o seguinte

prototipo:

void clear list(dados *raiz)

6.3 A classe ramos

Como descrito no capitulo 3, as variaveis da classe ramos sao essencialmente ponteiros,

0S quais estao na tabela 6.7.

6.3 A classe ramos 30

Varidvel Tipo Descrigao

*dados_linha dados Ponteiro para os dados de linha

*prox _barra barra, Ponteiro para a préxima barra da linha

*prox ramos Ponteiro para o préoximo elemento da lista enca-
deada

Tabela 6.7: Descricao das variaveis da classe ramos.

6.3.1 Funcoes membro da classe ramos

A classe ramos é um pouco diferente das classes ja descritas, pois as funcoes set nao
fazem muito sentido, uma vez que os ponteiros recebem os enderecos enquanto os nés sao
criados e esses enderecos nao mudam, por mais que mudem os conteidos dos mesmos. As
funcoes get, no entanto, sao interessantes quando se deseja saber as informacoes sobre os

ramos de uma barra e estao apresentadas na tabela 6.8.

Prototipo Descricao

barra* get prox_barra() Funcao que retorna um ponteiro para a proxima
barra da linha

dados* get dados_linha() Funcéo que retorna um ponteiro para o no6 da lista
de dados

ramos* get prox() Func¢édo que retorna um ponteiro para o préximo

elemento da lista de ramo

Tabela 6.8: Descricao das funcoes get contidas na classe ramos.

Para criar os no6s da lista, foi desenvolvida a funcao cria_ no. Essa funcao recebe como
parametros um ponteiro com o endereco do n6 da lista de dados correspondente a linha
que faz a ligacao entre as barras, um ponteiro com o endereco do primeiro elemento do
vetor de barras e o nimero de barras do sistema. Assim, a funcao aquisita quais sao as
barras de origem e destino da linha, e cria os nos tanto na barra de origem como na barra

de destino, como descrito no capitulo 3. A funcao cria_ no possui o seguinte prototipo:
void cria_no(dados™ linha, barra™ vetor, int qtdeBarras);

Assim como a classe dados, a classe ramos também possui uma fungao para imprimir
a lista na tela, porém a mesma s6 disponibiliza para leitura as identificagoes das barras e
linhas, o que é suficiente para saber se os ramos estao sendo alocados de maneira correta.
Recebe como parametro um ponteiro com o endereco para o primeiro né da lista e o

prototipo da mesma é definido por:
void mostra_lista(ramos™ raiz);

Para liberar a memoria alocada pela lista, a funcao clear list da classe ramos recebe

6.4 A classe sistema 31

como parametro um ponteiro com o endereco do primeiro elemento da lista e tem prototipo

definido por:

void clear list(ramos *raiz);

6.4 A classe sistema

A classe sistema é diferente das outras classes ja apresentadas. Ela possui a im-
plementacao da montagem da estrutura de dados e do conversor de dados, ou seja, ela
utiliza as outras classes ja descritas para montar fungoes que permitam o funcionamento

da ferramenta computacional.

Suas varidveis sao basicamente ponteiros dos tipos, barra, dados e ramos, que sao

declarados para que as classes possam ser corretamente usadas na implementacao.

Portanto, a classe sistema nao possui funcoes set e get, apenas funcoes que realizam

tarefas utilizando as classes ja descritas.

6.4.1 Funcoes membro da classe sistema

As funcoes dessa classe podem ser divididas em dois tipos: escrita e leitura. Basica-
mente, as funcoes de leitura leem os dados de um arquivo e armazenam na estrutura de

dados, enquanto as de escrita escrevem os dados da estrutura em um arquivo.

Portanto, é impossivel usar uma funcao de escrita sem que se tenha uma estrutura de
dados montada. A tentativa de uso dessas funcoes sem que a estrutura esteja corretamente
montada provavelmente resultara em erro de execucao ou produzird uma saida que nao é

desejada.

A funcoes de leitura, podem realizar dois tipos de leitura: ler de arquivos de texto

(com extensao .tzt) ou ler de documentos XML (com extensao .zml).

Para ler os dados de arquivos de texto, duas func¢oes devem ser utilizadas. A primeira
delas é a vetorbarrastzt, que abre o arquivo padrao ANAREDE e cria o vetor de objetos
da classe barra com todos os dados de barra presentes no arquivo. A funcao recebe como

parametro uma variavel com o nome do arquivo e tem o seguinte prototipo:
void vetorbarrastxt(char *filename);

A segunda delas é a listadadostzt, que cria a lista de dados de linha e também as listas

6.4 A classe sistema 32

de ramos a partir do arquivo padrdo ANAREDE. E importante salientar que, quando
lendo arquivos do tipo texto, esta fun¢ao jamais pode ser chamada antes da funcao vetor-
barrastxzt, pois para a criacao da lista de ramos o vetor de barras deve estar necessariamente
criado. Essa funcao também recebe como parametro uma varidvel com o nome do arquivo

e tem o prototipo definido por:
void listadadostxt(char *filename);

Para ler documentos XML, apenas uma funcao precisa ser chamada. Essa fungao
nao recebe nenhum parametro, pois ela mesma requisita o nome do arquivo durante a
execucao. Ela 1é o arquivo XML com ajuda do parser e monta a estrutura de dados. Seu

prototipo é definido por :
void read _xml();

As funcoes de escrita podem escrever tanto em documentos XML como em arquivos
de texto uma vez que a estrutura de dados ja esteja montada. As funcgoes de escrita,
write_xml e write_ trt, ndo recebem nenhum parametro e possuem respectivamente os

seguinte prototipos:
void write xml();
void write xml();

Por fim, a funcao clear system libera a memoria alocada pela estrutura. Ela pri-
meiramente faz uma varredura no vetor de barras e elimina as listas de ramos apontadas
pelos elementos do vetor, depois limpa a lista de dados de linha e, finalmente, libera a

memoria alocada para o vetor de barras. O seguinte prototipo define a funcao:
void clear system();

Para proporcionar uma visao geral da aplicagao desenvolvida e da maneira como as
funcoes das classes interagem entre si, a figura 6.1 apresenta o fluxograma béasico da apli-
cacao. E importante notar que praticamente todas as agoes apresentadas no fluxograma

podem ser feitas através das funcoes ja descritas neste capitulo.

6.4 A classe sistema

33

INICIO

L

S Conversao

XML == tai?

CONTA O
NUMERO DE
BARRAS

Conversao
ft-=XML?

!

CRIA VETOR DE
BARRAS
A 4
CRIANO DA CRIA NOS DAS
LISTA LISTAS
ENCADEADA DE ENCADEADAS
DADOS DAS DE RAMOS
LINHAS

Fin DOS
DADOS DE
LINHAZ

.

CRIA ARQUINVO
DE SAIDA DE
ACORDO COM O
TIPO DE
CONVERSAD

I

LIMPA A
MEMORIA

Figura 6.1: Fluxograma bésico da aplicacao.

34

7 Conclusao

O conversor de dados foi implementado como planejado, testado e verificado que é
capaz de gerar os documentos nos padroes esperados, nas duas vias de conversao. A
ferramenta foi capaz de formar uma estrutura de dados de maneira a permitir um acesso

confiavel aos dados, viabilizando o projeto.

Com o conversor funcionando, os usuarios do programa ANAREDE podem ter uma
opcao a mais na montagem de sistemas para simulacao ou na modificacao de dados que
j& se apresentem no padrao ANAREDE. O padrao XML facilita a leitura e escrita dos
dados, diminuido a possibilidade de erros e tornando mais rapido e confidvel o processo

de montagem de sistemas para simulacao.

Contudo, talvez mais importantes que a propria aplicacao implementada, as classes
foram disponibilizadas de forma a permitir uma mais facil expansao do codigo até aqui
desenvolvido. O uso de uma linguagem de programacao orientada a objetos fez toda
a diferenca no sentido de permitir uma futura ampliacao das capacidades do conversor.
Ampliar nao somente o suporte a outros padroes, mas também o suporte a outros dados

do ANAREDE, como geradores, cargas, transformadores e outros.

Uma boa documentacao das classes foi disponibilizada aos futuros usuérios das mes-

mas, facilitando o uso e modificacao e, consequentemente, essa possivel ampliacao.

35

APENDICE A - Apresentacdo de resultados

Para demonstrar o funcionamento da ferramenta computacional desenvolvida, sera
apresentada a conversao de um arquivo de texto no formato padrao de entrada do software
ANAREDE que descreve o sistema de trés barras apresentado na figura 3.1 para o padrao
XML apresentado. A figura A.1 mostra o arquivo de texto, enquanto as figuras A.2 e A.3

mostram a conversao efetuada.

DEAR

0 | 1 | 2 | 3 | 4 | 5 | & | 7 |
(2345678901234567890123456789012345678901234 5678901234 5678901234 5678901234 567890
(Num£0ETGb(nome 3GTC v)(AY(Pg)(Qg)(Qﬂ)(Qm)(sc JCP1IC Q1) sh)are(vh)

1 Barra 1 1000 0.317.2383.2-999. 11000
2 1 Barra 2 1000 O. 0. D 450 45 11000
31 Barra 3 1000 0.3600. 0.-99999999, 0. 0. 21000
99999
DLIN
0 | 1 | 2 | 3 | 4 | 5 | 5 | 7

|
(2345678901234567890123456789012345678901234567890123456789012345678901234567890
(De)d o d(Pa INceP (R% J)(3)(Mvar)(Tap)(Tmn) {Tmx) (Phs)(Bc J{Cn){Ce)Ns
1 21 3.60 0.939 000

2 31 3.60 0.939 000
3 11 3.60 0.939 000
999499

Figura A.1: Sistema no padrao de entrada de dados do ANAREDE.

Apéndice A — Apresentacao de resultados

36

<7xml

wersion="1.0"encoding="UTF-8"-standalone="no

E =system=

=
=]

=0

<bu
<

re

Il

<

o

=

Descricao-do-zistema-eletrico-—:
2eR-3ze="3"=

bus-id="1"=

=number=1<=/number=

“type=1=/type=
<name=---Barra-1</name:>
=voltage=1=/voltage=

=angle=0</angle=

<real_generation=317 2<ireal_generation=
<reactive_generation=383.2</reactive_generati
=real_lead=0=/real_load>
<reactive_lead=0</reactive_load=
=zhunt=0=/zhunt=
<real_injection=0</real_injection=
<reactive_injection=0=/reactive_injection=
lbus=

bus-id="2"=

<number=2</number=

“types1=itype=
<name:=---Barra-2</name=
<voltage=1<fvoliage=

=angle=0=/angle=
=real_generation=0<=/real_generation=
<reactive_generation=0</reactive_generation=
<real_|load=450=/real_load=
<reactive_load=45</reactive_locad>
=shunt=0=/shunt=
<real_injecticn=0</real_injection=
<reactive_injection=0=/reactive_injection=
fbus=

bus-id="3"=

=number=3=/number=

“type=1=/type=
<name=---Barra-3=/name:>
=voltage=1=/voltage=

=angle=0</angle=
<real_generation=3800=/real_generation=
<reactive_generation=0<ireactive_generation=
=real_lead=0=/real_load>
<reactive_lead=0</reactive_load=
=zhunt=0=/zhunt=

<redl injection=0</real injiection=

{ | <reactive_injection=0</reactive_injection=

Ibuss=

</buses=

Figura A.2: Conversao para XML - Parte 1.

Apéndice A — Apresentacao de resultados

48 [i <lines-size="3"=
459 [<ling-id="0"»
S0 <from=1=<ifrom=
51 <to=2<fto=
52 <resistance=0=</rezistance
53 <reactance=3.6</reactanc
o4 zghunt=0=/ghunt>
55 <tap=0.938</tap=
56 =fline=
57T & <ling-id="1"»
o6 =from=2=i/from=
50 <to=3<to=
60 <resistance=0=</rezistance
61 <reactance=3.6</reactanc
62 zghunt=0=/ghunt>
63 <tap=0.938</tap=
64 - =fline=
65 [<ling-id="2"»
66 <from=3=ifrom=
67 <to=1<ftoe=
63 <resistance=0=</rezistance
69 <reactance=3.6</reactanc
T0 zghunt=0=/ghunt>
i <tap=0.938</tap=
P =fline=
T3 [i<lines>
74 [:-=branches=
75 3 <branch- from="1"-gize="2"=
76 = <data=
77 {ato=3aitos
T3 i <id_data=3=/id_data=
o <fdata=
a0 = <data=
81 {atp=Zaitos
a2 i <id_data=2=/id_data=
83 <fdata=
24 =/branch=
a3 [<branch- from="2"gize="2">
a6 [=data=
a7 { | «to=3<fto=
88 { § =id_data=3</id_data=
a8 <fdata>
g0 = =data=
a1 | i =to=1<fto=
gz {{«id_data=1«/id_data=
93 <fdatax
94 =/branch=
95 = <branch- from="3"zize="2"=
96 [«<data=
97 o stos1<itos
o5 i i=id_data=1</id_data=
9% - <fdata=
100 = «<data=
101 HafpsZaitos
102 i <id_data=2=/id_data=
103 <fdata=
104 =/branch=
105 | i <i/branches=
106 - <izystem=
107

Figura A.3: Conversao para XML - Parte 2.

38

Referéncias

1 ANAREDE (Pagina principal). Disponivel em: <http://www.anarede.cepel.br/>.
Acesso em: 24/04,/2010.

2 CEPEL (Pagina principal). Disponivel em: <http://www.cepel.br/>. Acesso em:
24,/04,/2010.

3 CESTA, A. A. - C++ como uma linguagem de programacao orientada a objetos. Cam-
pinas: UNICAMP. (1996).

4 DEITEL, H. M.; DEITEL, P. J. - C++ How to program. Prentice Hall. (2005).
5 DROZDEK, A. - Estrutura de dados e algoritmos em C-++. Thomson Pioneira. (2002).
6 HAROLD, E. R.; MEANS, W. S. - XML in a Nutshell. O’Reilly Media. (2002).

7 RapidXML (Pagina principal). Disponivel em: <http://rapidxml.sourceforge.net/>.
Acesso em: 24/04,/2010.

8 RICARTE,L L. M. Programac¢ao orientada a Objetos com C++. Campinas: UNI-
CAMP. (1995).

9 TINYXML (Pégina principal). Disponivel em: <http://www.grinninglizard.com/tinyxml/>.
Acesso em: 24/04,/2010.

10 Xerces C++ (Pagina principal). Disponivel em: <http://xerces.apache.org/xerces-
¢/>. Acesso em: 24/04,/2010.

