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Resumo 
PEREIRA, L.F. C.E.R.B.E.R.U.S.: Robô Bombeiro. 2016. Trabalho de Conclusão de Curso 

– Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos. 2016. 

Todos os anos, bilhões são perdidos em bens materiais devido ao estrago causado 

por incêndios. Por mais ágil que seja a equipe de bombeiros, não há como evitar o tempo 

gasto com transporte desde a estação do Corpo de Bombeiros até o local do incidente. 

Sistemas de combate alternativos como os chamados chuveiros automáticos (sprinklers) 

nem sempre são adequados, uma vez que ocasionam perdas materiais quando os objetos 

atingidos são sensíveis à água. Em um data center de uma empresa, por exemplo, toda 

estrutura de redes e tecnologia da informação (computadores, servidores, firewalls etc.) 

pode ser sacrificada na ocasião de um pequeno incêndio no local. O projeto apresentado 

aqui ilustra um robô bombeiro, capaz de responder de forma imediata a um sinal de alarme 

de incêndio, navegar pelo ambiente e atingir a zona onde o fogo está localizado. Achada a 

fonte de radiação, o mesmo é programado para operar um motor que pressiona o gatilho do 

extintor de incêndio acoplado ao seu chassi na tentativa de suprimir o fogo, até que o agente 

extintor seja totalmente expelido. Após executada esta função, seu papel secundário é agir 

como um alarme audiovisual por meio do acionamento de uma sirene piezoelétrica e de uma 

luz estroboscópica embarcadas, a fim de auxiliar os bombeiros na localização da zona de 

incêndio. Em razão de algumas restrições aplicáveis ao robô, como incapacidade de abrir 

portas e descer ou subir escadas, sua aplicação é mais eficiente em ambientes abertos, 

escritórios, armazéns, supermercados e algumas residências. 

Palavras-chave: fogo, incêndio, robô, bombeiro, sistema embarcado. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Abstract 
PEREIRA, L.F. C.E.R.B.E.R.U.S.: Firefighting Robot. 2016. Graduation Thesis – 

Engineering School of São Carlos, University of São Paulo, São Carlos. 2016. 

Every year, billions worth of material assets are lost due to the damage caused by 

fires. No matter how agile the firefighting team is, it is inevitable that a certain amount of time 

will be spent on transportation from the fire station to the place of the incident. Alternative 

fire-extinguishing systems such as sprinklers may not always be adequate since they cause 

material loss when the objects hit are sensitive to water. In a company’s data center, for 

instance, all the network and information technology infrastructure (computers, servers, 

firewalls etc.) may be sacrificed in the occurrence of a small fire. The project presented here 

illustrates a firefighting robot, capable of responding immediately to a fire signal, navigating 

through the environment and reaching the zone where the fire is located. Upon finding the 

source of radiation, the robot is programmed to operate a motor that squeezes the lever of 

the fire extinguisher attached to its chassis in the attempt to suppress the fire until the 

extinguishing agent is completely expelled. After execution of this function, its secondary 

duty is to act as an audio-visual alarm device by activating an embedded piezo buzzer and 

strobe light in order to assist the firefighters in locating the fire zone. In reason of restrictions 

applicable to the robot such as inability to open doors and travel along stairways, its use is 

more efficient inside open areas, offices, warehouses, grocery stores and some residences. 

Keywords: fire, robot, firefighting, embedded system. 
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1. Introdução 
Bombeiros podem ser considerados verdadeiros heróis da era moderna, arriscando 

suas vidas para proteger pessoas e seus pertences. No entanto, fatos simples podem tornar 

difícil o trabalho desses profissionais. Um pequeno incêndio dobra em tamanho no intervalo 

de 1 a 2 minutos, enquanto bombeiros podem demorar até 9 minutos para chegar ao local 

do incidente, mesmo em áreas urbanas. Após a chegada, eles ainda necessitam, muitas 

vezes em ambiente nebuloso, buscar informações que os levem até o foco do incêndio. 

Sendo assim, o fogo que era pequeno quando inicialmente detectado pode estar 

proporcionalmente 30 vezes maior no momento em que é encontrado pela equipe de 

bombeiros, ocasionando danos irreversíveis. Por consequência, esses desastres acabam 

causando bilhões de dólares em perdas e milhares de mortes a cada ano apenas nos 

Estados Unidos (HOWARD et al., 2015). 

No Brasil, a ausência de um instituto nacional que direcione seus estudos para a 

área em questão, torna a obtenção de dados oficiais sobre incêndios extremamente difíceis. 

De acordo com informações publicadas pelo Instituto Sprinkler Brasil (ISB) em seu site 

oficial, resultantes de um cruzamento de dados do Sistema Único de Saúde (SUS) com os 

de uma pesquisa realizada pela Geneva Association, o Brasil se posiciona como terceiro 

país com maior número de mortes por incêndio no mundo. Ainda segundo o ISB, foram 

contabilizadas 1349 ocorrências de incêndio no ano de 2015, em edifícios como depósitos, 

hospitais, hotéis, escolas, prédios públicos etc. (ISB, 2015). 

 Atualmente, o sistema alternativo de combate mais comumente empregado é o de 

chuveiros automáticos (sprinklers), que são ativados automaticamente a partir do momento 

em que a temperatura no ambiente ultrapassa certo limiar, liberando água para contenção 

do fogo até a chegada dos bombeiros. Geralmente instalado no teto, tal dispositivo possui a 

vantagem de não requerer intervenção humana para seu acionamento. Entretanto, duas 

grandes desvantagens em relação a esse método se destacam: o alto custo de instalação 

das tubulações para cobrir inteiramente o local e a deterioração de dispositivos eletrônicos e 

documentos atingidos pela água. Além disso, o acúmulo de água pode levar ao crescimento 

de fungos em locais indevidos. 

Com o intuito de abordar a questão, foi proposto a um grupo de cinco estudantes de 

engenharia nas áreas de elétrica, mecânica e computação que desenvolvessem um projeto 

multidisciplinar, apresentando uma solução para o problema apontado no início desta seção. 

O trabalho foi realizado durante três trimestres letivos dentro do programa da disciplina de 

Senior Design, na Seattle Pacific University nos Estados Unidos. 
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 Inicialmente, foram discutidas entre os integrantes do grupo possíveis soluções e 

cenários com o objetivo de se criar um conjunto de opções a partir do qual a mais viável 

fosse escolhida. Ao final, chegou-se a conclusão de que seriam elas: 

1. Sistema de extinção manual, em que extintores seriam espalhados por vários pontos 

do local e, na ocasião de incêndio, as próprias pessoas presentes seriam encarregadas de 

agir em resposta ao alarme de incêndio, utilizando os extintores para combater as chamas. 

O método seria barato, mas extremamente perigoso visto que colocaria a vida de muitos em 

risco, além do fato de que o fogo poderia facilmente crescer e atingir determinado ponto em 

que extintores de incêndio comerciais não seriam capazes de contê-lo. 

2. Sistema de supressão fixo, composto por robôs diretamente fixados em trilhos que 

percorreriam todo o ambiente. Neste método, os robôs funcionariam como trens, capazes de 

navegar à procura do fogo. O uso deste implicaria em resposta rápida e baixo risco de 

estragos, mas também em altos custos de instalação e restrições como a área de 

abrangência (o robô só conseguiria se movimentar por onde houvesse trilhos instalados).    

3. Sistema de extinção aéreo, composto basicamente por veículos aéreos semelhantes a 

drones munidos de reservatório de substância extintora de fogo. Ao disparo do sinal de 

alarme de incêndio, os mesmos entrariam em cena sobrevoando o local até localizar o 

incêndio, acionando o extintor embarcado. A velocidade de ataque seria excelente, porém 

os requisitos técnicos para construir uma máquina voadora veloz, resistente ao fluxo 

termodinâmico e capaz de carregar uma carga enorme sem que ocorram colisões, seriam 

bastante complexos. 

4. Sistema terrestre de combate a incêndios, representado por um robô a ser estacionado 

em local adequado, à espera de sua ativação ao indício de um incêndio. Este possuiria a 

habilidade de transitar pelo local de forma rápida, verificando através de sensores a 

presença de algum sinal que indique a localização exata do fogo. Ao encontrá-lo, o mesmo 

acionaria seu sistema de extinção, contendo total ou parcialmente o avanço das chamas. 

Tal sistema poderia ser construído facilmente com motores e materiais disponíveis no 

mercado a um custo mais baixo do que os dois mencionados logo acima, sendo, além disso, 

mais seguro do que o descrito na primeira opção. 

 Para se determinar qual desses seria mais conveniente, foram estabelecidos alguns 

critérios considerados importantes como velocidade, confiabilidade, simplicidade, custo e 

segurança e notas foram atribuídas a cada sistema. A tabela seguinte ilustra a pontuação 

atribuída às possíveis soluções: 
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Tabela 1.1 - Pontuação atribuída às soluções de combate a incêndios. 

Critério Pontuação 
máxima 

Sistema 
Manual 

Sistema 
Fixo 

Sistema 
Aéreo 

Sistema 
Terrestre 

Velocidade 40 25 35 34 32 

Confiabilidade 20 12 13 5 13 

Simplicidade 30 27 25 5 22 

Custo 30 30 10 15 25 

Segurança 40 5 35 25 30 

Total 160 99 118 84 122 
 

 Com base nos dados mostrados na tabela, o sistema tido como mais viável foi o 

sistema terrestre. Foi estabelecido que a solução para o problema se desse por meio de um 

robô capaz de responder de forma imediata e autônoma a um alarme de incêndio e de 

suprimir por completo ou parcialmente o fogo sem nenhuma forma de intervenção humana. 

A partir daí, iniciaram-se as atividades que deram origem ao projeto CERBERUS Robô 

Bombeiro, descrito nesta monografia. 
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2. Teoria 
Robô, de acordo com a definição do dicionário online Michaelis, é um aparelho 

automático, com aspecto de boneco, capaz de executar diferentes tarefas, inclusive 

algumas geralmente feitas pelo homem (MICHAELIS, 2009). No contexto desta monografia, 

o robô é projetado justamente para realizar uma tarefa que geralmente é atribuída ao 

homem (bombeiro): extinguir um incêndio. Para que isso seja possível, deve haver um 

conjunto de sistemas elétricos, eletrônicos e mecânicos que permitam que o dispositivo se 

movimente e execute determinadas funções específicas da aplicação para o qual foi 

desenhado.  

Nesta seção, serão esclarecidos os aspectos teóricos em diversas áreas que estão 

direta ou indiretamente relacionadas ao projeto. Primeiramente, serão abordados as 

características do fogo, tipos de agentes extintores e alarmes de incêndio. Em seguida, os 

sistemas citados acima, integrantes do robô bombeiro, serão detalhados do ponto de vista 

conceitual, bem como seus respectivos componentes.  

2.1 Características do Fogo 
Fogo pode ser descrito de várias maneiras, entre elas através do chamado 

“Tetraedro do Fogo”, uma representação geométrica do que é necessário para que ele 

exista: combustível, elemento que pode estar em estado sólido, líquido ou gasoso e cuja 

queima alimenta a combustão; comburente, representado pelo oxigênio presente no ar; 

calor, energia requerida para que o processo se inicie e se mantenha e reação em cadeia, 

que torna o ciclo autossustentável. Quando o fogo foge ao controle do homem e se alastra, 

tem-se um incêndio (DIETRICH, 2015). 

Para um ser humano, os efeitos da exposição às chamas dependem basicamente da 

temperatura, como esquematizado na Tabela 2.1 (NIST, 2013): 

Tabela 2.1 - Relação entre temperatura e consequências causadas pelo fogo. 

Temperatura (°C) Efeito 

37 Temperatura normal do corpo humano 

44 Princípio de dor na pele 

48 Queimadura de primeiro grau 

55 Queimadura de segundo grau 

62 Efeito de dormência na pele queimada 

72 Pele é destruída instantaneamente 
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Além dos danos causados à pele, qualquer pessoa que aspire a fumaça tóxica que 

permeia um ambiente de incêndio pode sofrer de um processo inflamatório das vias aéreas 

e lesão nos pulmões. A Sociedade Brasileira de Pneumologia estima que, durante um 

incêndio, 77% das vítimas vão a óbito por inalação de fumaça e não por queimaduras 

(SAÚTIL). 

2.1.1 Métodos de Extinção 
Há essencialmente quatro maneiras de se extinguir o fogo: através da retirada do 

material combustível, resfriamento, abafamento ou utilizando-se substâncias químicas. O 

primeiro refere-se ao simples ato de retirar o material combustível ainda não atingido da 

área de propagação do fogo. O segundo consiste em diminuir a temperatura do material em 

combustão, reduzindo a liberação de substâncias tóxicas. O terceiro método envolve a 

diminuição drástica da quantidade de comburente (oxigênio) presente nas proximidades do 

corpo combustível, freando a reação. Pode ser implementado com o auxílio de cobertores, 

tampas ou dióxido de carbono. O último dá-se pela adição de agentes extintores que, 

quando em contato com o fogo, têm suas moléculas desassociadas, formando uma mistura 

não inflamável (BOMBEIROS). 

Os extintores de incêndio comerciais produzidos em larga escala e amplamente 

utilizados são caracterizados pela classe ou classes de incêndio a que são destinados. 

Estas se dividem em quatro, de acordo com o combustível que deu origem ao fogo. Classe 

A diz respeito aos combustíveis que queimam em superfície e profundidade, deixando 

resíduos. Os exemplos usuais são madeira, papel e tecido. Classe B envolve líquidos e 

gases inflamáveis como álcool, óleo e GLP, que queimam em superfície apenas, sem formar 

resíduos. Classe C engloba equipamentos elétricos energizados e classe D, metais 

pirofóricos tais como magnésio, alumínio em pó e sódio (DIETRICH, 2015). 

2.1.2 Sistemas de Detecção e Alarme de Incêndio 
Em um sistema convencional de alarme de incêndio, a detecção do fogo se dá por 

meio da instalação de sensores em locais estratégicos do local a ser protegido. Também 

chamados de detectores, estes são encarregados de monitorar a variação da temperatura 

no ambiente ou, em alguns casos, a emissão de radiação infravermelha e ultravioleta. As 

informações coletadas são então direcionadas a uma central de processamento, onde os 

dados são verificados e, caso haja necessidade, são acionados alarmes sonoros e visuais 

para sinalizar aos ocupantes que a área deve ser evacuada. 

Além do convencional, em que os detectores são agrupados em zonas, existem 

também os sistemas de alarme analógico e endereçável. Este caracteriza-se por apresentar 

detectores endereçáveis individualmente, indicando o local exato do foco de incêndio. 
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Aquele é utilizado normalmente em grandes instalações, possuindo uma central de detecção 

analógica que permite a configuração da sensibilidade dos detectores e informa sobre o 

acúmulo de poeira nos mesmos. São providos também de saídas de comunicação RS485 e 

protocolos abertos, podendo ser integrados com softwares gráficos (GLOBAL SYSTEM). 

2.2  Sistema Motor 
Constituído predominantemente pelos motores, o sistema motor é responsável por 

conferir mobilidade ao robô, permitindo seu deslocamento no espaço físico. Em robótica, na 

grande maioria dos casos, são empregados dois tipos de motores para essa finalidade: os 

de corrente contínua com escovas (brushed) e os sem escovas (brushless). Estes são de 

maneira geral mais caros e de controle mais complexo que aqueles, produzindo em 

contrapartida menos ruído. São também mais eficientes e duráveis e consomem menos 

energia, o que justifica o maior preço. A preferência por um ou outro depende de alguns 

pontos específicos como a verba disponível para o projeto, restrições de tensão e corrente, 

torque requerido e o tipo de controle a ser implementado.  

Os motores, no entanto, devem ser regidos por controladores que limitem a tensão 

durante a partida e que controlem de forma precisa a velocidade, a posição e o torque. Além 

disso, atuam na proteção contra aquecimento excessivo e redução da corrente inicial (stall 

current). Podem ser projetados sob demanda ou adquiridos comercialmente, na forma de 

um produto completo provido de circuito eletrônico de controle, dissipador de calor e 

conectores de entrada e saída, com as opções de controle por modulação de largura de 

pulso (PWM) e via serial. 

Figura 2.1: Controlador de motor. 

2.3 Sensores 
Os sensores integrados ao robô compõem uma de suas mais importantes estruturas, 

cuja finalidade é tornar possível o reconhecimento do ambiente à sua volta e, a partir daí, a 

tomada de decisões como desviar de um obstáculo, seguir em uma determinada direção ou 

acionar algum mecanismo específico. Existem diversas categorias de sensores comerciais 

que têm como objetivo apurar a distância em relação a objetos, detectar a presença de certo 
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tipo de radiação ou distinguir entre diferentes cores, cada uma associada a uma ação. 

Usualmente, o que se tem é uma combinação desses dispositivos, que são 

estrategicamente posicionados de forma a garantir ao robô um controle absoluto sobre o 

meio em que ele se encontra. 

2.3.1 Sensor Infravermelho 
Fundamentalmente, um sensor infravermelho, conforme ilustrado na Figura 2.2, tem 

a função de medir a distância entre ele e um determinado objeto refletor. É geralmente 

equipado de detector sensível à posição (PSD), diodo emissor de luz infravermelha (IRED) e 

um circuito de processamento de sinais, que possibilita, através da reflexão da luz e do 

método de triangulação, a mensuração da distância, que é traduzida em um valor analógico 

de tensão. Este pode ser medido no terminal de saída e convertido novamente, por meio de 

uma fórmula matemática, a um valor que representa a distância calculada. O alcance típico 

deste tipo de sensor é aproximadamente entre 10 cm e 1 metro. 

 
Figura 2.2: Sensor de distância infravermelho. 

 

2.3.2 Sensor Ultrassônico 
Assim como o sensor infravermelho, o sensor ultrassônico (Figura 2.3) serve como 

aparato eletrônico de medida de distância. O mecanismo utilizado, embora muito similar ao 

do primeiro, difere em relação ao tipo de radiação utilizada; neste caso, são emitidas ondas 

de som de 40 kHz que se propagam e refletem no objeto cuja separação em relação ao 

sensor deseja-se estimar. A onda refletida é então captada pelo seu microfone ultrassônico 

após um intervalo de tempo. No momento da emissão, a saída é colocada em nível digital 

alto e quando a onda refletida é detectada ocorre transição para nível baixo. Assim, forma-

se um pulso cuja duração é armazenada em uma variável. Partindo-se desse valor, que 

indica o tempo necessário para o som se propagar até o objeto e voltar, pode-se calcular a 

distância com base na velocidade de propagação do som no ar. Esses sensores são 

capazes de detectar distâncias ligeiramente superiores a 3 metros.   
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Figura 2.3: Sensor de distância ultrassônico. 

 

2.3.3 Sensor de Chama 
Um sensor de chama, conforme ilustrado na Figura 2.4, é constituído por detectores 

de radiação infravermelha na faixa de comprimento de onda entre 760 e 1100 nanômetros, 

denominada infravermelho próximo. Matrizes de sensores que monitoram radiação nessa 

região do espectro são possivelmente a melhor tecnologia disponível para detecção de fogo. 

O ângulo de alcance é de aproximadamente 60 graus e a sensitividade pode ser ajustada 

por meio de um potenciômetro. O sinal de saída é digital, sendo nível alto associado à 

presença de fogo e nível baixo, à sua ausência. 

 
Figura 2.4: Sensor de detecção de chama. 

 

 

2.3.4 Câmera 
Em determinadas aplicações, é estritamente necessário que um robô reconheça 

objetos, cores ou elementos que o orientarão em suas escolhas de ação e, para suprir essa 

necessidade, câmeras são anexadas a ele, como aquela mostrada na Figura 2.5. Dentre 

elas, destacam-se as câmeras convencionais e aquelas que apenas reconhecem e 

diferenciam entre diferentes cores. Módulos podem ser acrescentados a elas e lentes 

podem ser substituídas com a finalidade de isolar tipos de radiação indesejadas, agindo 

como filtros. Para o intercâmbio de dados entra ela e o microcontrolador, são usualmente 
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empregados protocolos de comunicação como SPI (Serial Peripheral Interface) e I2C (Inter-

Integrated Circuit). 

 

Figura 2.5: Ilustração de câmera robótica. 
 

2.4 Sistema de Extinção 
Formado por componentes mecânicos e elétricos, o sistema de extinção tem a 

função única de suprimir chamas. É composto por um extintor de incêndio fixado no centro 

do chassi, sensores de chama e dois motores de corrente contínua com escovas. Um 

destes é atrelado a um cabo de aço cuja distensão comprime o gatilho do extintor. O outro 

motor destina-se a, com o auxílio de uma haste metálica, ajustar a posição da mangueira do 

extintor, direcionando o jato. 

2.5 Sistema de Processamento 
O sistema de processamento do robô se assemelha ao cérebro humano, sendo o 

local onde todas as informações provenientes dos outros sistemas são armazenadas e 

confrontadas. É representado por um microcontrolador dotado de um conjunto de portas de 

entrada e saída digitais e analógicas, um microprocessador e memórias voláteis e não 

voláteis. Nele são processados os sinais advindos dos sensores e, a partir de um programa 

escrito em sua memória ROM, as decisões de ação são tomadas. Isso envolve a 

programação de portas de saída, sinalizando o ligamento ou desligamento de certo sistema 

ou mecanismo. Interligado ao sistema de processamento, há uma placa de circuito 

impresso, que serve como ponte entre o microcontrolador e os sistemas de extinção, de 

distribuição de energia, motor e os sensores. 

2.6 Sistema de Distribuição de Energia 
Composto por uma bateria polímero de lítio (Li-Po) e blocos de metal com entrada 

única e múltiplas saídas, o sistema de distribuição de energia tem como objetivo principal 

alimentar todos os sistemas elétricos e eletrônicos presentes no robô. O fato de uma única 

fonte (a bateria) prover energia para diferentes sistemas, – sensores, controlador de motores 

e microcontrolador – justifica a utilização de um bloco de distribuição que divida uma única 
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entrada entre vários canais. Este sistema também inclui uma chave de fácil acesso para 

interromper a ligação entre a bateria e os elementos por ela alimentados.  

2.7 Sistemas mecânicos 
Somam-se aos sistemas mecânicos citados anteriormente as peças de alumínio que 

dão estrutura ao chassi, cortadas sob medida a partir de chapas de alumínio retangulares 

por meio de jato de água sob pressão, as rodas laterais e traseiras e as placas de 

desativação. Posicionadas perifericamente, estas têm o objetivo de parar o robô em caso de 

emergência. Podem ser pressionadas manualmente ou, de preferência, com os pés, através 

de chute, fechando uma chave fim de curso que envia um sinal de nível alto ao 

microprocessador indicando que os motores sejam desativados. 
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3. Modelagem do Projeto 
Depois de apresentadas algumas características gerais de cada sistema e aspectos 

teóricos a eles relacionados, são descritas primeiramente neste tópico as diretrizes que 

orientaram o desenvolvimento do projeto e a definição dos requisitos técnicos, riscos e 

planos de mitigação, bem como os métodos e materiais utilizados e as razões pelas quais 

foram escolhidos. Em um segundo momento, são abordados a elaboração da placa de 

circuito impresso integrada ao microcontrolador, a documentação referente ao software base 

e os testes que serviram de referência para a análise dos resultados obtidos e do 

cumprimento dos requisitos.  

3.1 Contexto e Diretrizes Gerais 
O processo de modelagem e concepção do robô bombeiro iniciou-se com as 

atividades previstas no programa da disciplina Senior Design da Seattle Pacific University no 

trimestre de outono de 2014. No primeiro mês, houve reuniões frequentes entre os membros 

do grupo para discussão de ideias e atribuição de tarefas, que envolviam basicamente a 

pesquisa sobre um assunto específico ligado ao projeto. Em seguida, uma visita foi feita à 

estação mais próxima do Corpo de Bombeiros a fim de se obter informações privilegiadas 

sobre incêndios assim como conselhos e sugestões dos profissionais ali presentes. 

Com todos esses dados colhidos após os estudos feitos pelo grupo e a conversa 

com os bombeiros, foi possível identificar os requisitos técnicos do dispositivo e visualizar os 

sistemas que o formariam. Nos meses posteriores, foram escritos os documentos técnicos e 

uma lista de materiais foi compilada. Em janeiro de 2015, teve início a montagem do robô, 

seguida de testes preliminares e correção de erros, modificações e programação para 

execução de funções simples. Depois de completamente construído o robô, foram 

identificados e parcialmente corrigidos problemas elétricos, permitindo a realização de testes 

mais complexos e refinamento do software. Por fim, o cumprimento dos requisitos foi 

analisado e validado e uma demonstração final foi feita. 

3.2 Características Gerais 
CERBERUS é um robô bombeiro com as características enumeradas abaixo. O 

prédio Otto Miller Hall (OMH) da Seattle Pacific University é tomado como referência para as 

especificações dadas, incluindo a área de andar/sala. 

i) O dispositivo age como um alarme audiovisual após a tentativa de extinguir o fogo. 

ii) O dispositivo não exige intervenção humana frequente para funcionar. 

iii) O dispositivo possui duas chaves de desativação separadas, uma delas que notifica o 

microprocessador e a outra que desconecta a alimentação dos motores.  
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iv) O dispositivo deve poder ser guardado por um ano sem perda de funcionalidade. 

v) O dispositivo funciona em apenas um andar de um prédio. 

vi) O dispositivo lança mão de objetos pré-colocados que auxiliam na sua navegação. 

vii) O dispositivo permanece próximo ao fogo após a liberação do agente extintor. 

3.3 Definição de Requisitos 
A seguir são apresentados os requisitos técnico-funcionais, definidos na etapa inicial 

do projeto, anteriormente à construção do primeiro protótipo. 

3.3.1 Confiabilidade (R) 
Dado que o fogo se expande exponencialmente quando foge ao controle humano, é 

crítico que o dispositivo seja confiável em todos os aspectos, sendo especialmente 

configurado para detectar e eliminar potenciais incêndios. A norma NFPA 1720 foi usada 

como padrão para o tempo de resposta desde a chamada até a chegada dos bombeiros, 

especificamente em áreas urbanas e suburbanas, de forma a assegurar que o robô esteja 

operando quando da chegada da equipe de incêndio. Os requisitos de confiabilidade são os 

seguintes: 

R001: O dispositivo deve percorrer o prédio a uma taxa de 10000 pés quadrados 

(aproximadamente 929,03 metros quadrados) em 10 minutos. O dispositivo deveria realizar 

a busca em um andar de 50000 pés quadrados (4645,15 metros quadrados) em 10 minutos. 

Este requisito será validado percorrendo-se um andar aleatório do prédio em busca do fogo, 

tomando-se a média de cinco tentativas, em pelos menos duas zonas de incêndio 

diferentes. A área do andar será medida levando-se em consideração a área que o 

dispositivo pode acessar sem abrir nenhuma porta ou transpor qualquer rampa com grau de 

inclinação maior que 15 graus. 

R002: O dispositivo deve identificar a presença de um incêndio que se encontre na mesma 

sala, com menos de 1500 pés quadrados (139,35 metros quadrados) de área, dentro de 30 

segundos. O dispositivo deveria identificar a presença de um incêndio que se encontre na 

mesma sala, com menos de 1500 pés quadrados (139,35 metros quadrados) de área, 

dentro de 15 segundos. Este requisito será validado posicionando-se o robô na entrada de 

uma sala, colocando-se uma fonte de radiação infravermelha de teste em um local aleatório 

dentro da mesma sala e tomando-se a média de tempo percorrido até que o fogo seja 

encontrado, ao longo de cinco tentativas, em pelo menos três salas diferentes. Isso 

assegura que o dispositivo tenha tempo suficiente para navegar em salas dentro do tempo 

alocado de acordo com R001. 
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R003: O dispositivo deve identificar a presença de um incêndio que esteja em sua linha de 

visão dentro de 10 segundos. O dispositivo deveria identificar a presença de um incêndio 

que esteja em sua linha de visão dentro de 2 segundos. Este requisito deverá ser validado 

colocando-se uma fonte de radiação infravermelha de teste a uma distância aleatória do 

robô que seja maior que 2 pés (60,96 cm), mas menor que 30 pés (9,14 metros), a uma 

altura a partir do chão menor que 6 pés (1,83 metros) e medindo-se o tempo que o 

dispositivo leva para reconhecer a fonte de radiação infravermelha. Incêndios podem ocorrer 

em locais fora dessa região de detecção, sendo provável, porém, que o robô não seria 

capaz de contê-los. 

R004: O dispositivo deve ter uma chave de desligamento que seja facilmente acessível. Este 

requisito é validade colocando-se o robô a um ângulo aleatório do indivíduo de teste e 

tomando-se o tempo necessário para que ele acesse a chave e desligue o dispositivo. O 

tempo deve ser inferior a 5 segundos. 

R005: O dispositivo deve ser capaz de funcionar por 10 minutos após a ativação, sem 

intervenção humana. O dispositivo deveria ser capaz de funcionar por 15 minutos após a 

ativação, sem intervenção humana. Este requisito será validado por pelo menos cinco testes 

dentro de um prédio da Seattle Pacific University, com o tempo sendo transcorrido desde o 

momento em que o robô é ativado até quando o mesmo para de se mover completamente, 

ou pelo menos 10/15 minutos. 

R006: O dispositivo deve receber um sinal do sistema centralizado de alarme de incêndio. 

Este sinal deverá ter a forma de uma sequência digital padrão TTL (0 – 5 V). 

R007: O dispositivo deve estar pronto para operar durante seis meses, sem nenhuma 

intervenção humana. O dispositivo deveria estar pronto para operar durante 12 meses, sem 

nenhuma intervenção humana. 

3.3.2 Custo (C) 
Os requisitos de custo são os seguintes: 

C001: O preço de mercadoria vendida (custo de produção, incluindo materiais, mão de obra, 

empacotamento e entrega ao vendedor) para o robô bombeiro como produto final, 

excluindo-se modificações no painel de controle de incêndio e sistemas de comunicação, 

não deve exceder $1500.  O preço de mercadoria vendida atribuído ao produto final não 

deveria exceder $1200 a fim de torná-lo apelativo como um produto comercial.  Este 

requisito deve ser validado considerando-se o preço total na lista de materiais, levando-se 

em conta preços para produção de 1000 unidades e estimando-se a taxa de salário vigente 

para o centro de manufatura bem como os custos de empacotamento e entrega. 
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3.3.3 Interface de Usuário e Operação (U) 
Os requisitos de interface são os seguintes: 

U001: O produto final não requererá nenhum aparato externo para programação após a 

configuração inicial. 

U002: Qualquer chave de desativação deve estar claramente visível a 25 pés de distância 

(7,62 metros) caso o campo de visão esteja desobstruído. 

U003: O dispositivo deve ser facilmente detectado visualmente a 150 pés de distância (45,72 

metros, aproximadamente o comprimento de um andar do OMH) sem grandes obstruções. 

O dispositivo deveria ser facilmente detectado visualmente a 300 pés de distância (91,44 

metros) sem grandes obstruções. 

U004: O dispositivo deve ser facilmente detectado visualmente a 50 pés de distância (15,24 

metros) através de fumaça moderada. O dispositivo deveria ser facilmente detectado 

visualmente a 100 pés de distância (30,48 metros) através de fumaça moderada. Este 

requisito garante que os bombeiros terão tempo para reagir à presença do dispositivo. 

U005: O dispositivo deve ser facilmente detectado auditivamente a 150 pés de distância 

(45,72 metros) se nenhum outro som acima de 50 dB estiver presente. O dispositivo deveria 

ser facilmente detectado auditivamente a 300 pés de distância (91,44 metros) se nenhum 

outro som acima de 50 dB estiver presente.  

3.3.4 Requisitos Mecânicos (M) 
Os requisitos mecânicos são os seguintes: 

M001: O dispositivo deve ter as dimensões máximas de 24” x 24” x 36” (60,96 cm x 60,96 

cm x 91,44 cm). O dispositivo deveria ter as dimensões máximas de 18” x 18” x 28” (45,72 

cm x 45,72 cm x 71,12 cm). Isso permite que ele seja instalado facilmente dentro de prédios 

sem que haja necessidade de se alterar sua estrutura.  

M002: O robô deve ser capaz de suportar qualquer extintor de pó químico seco ABC com 

peso total menor que 10 libras (4,54 kg), raio de menos de 4.5” (11,43 cm) e altura menor 

que 20” (50,8 cm) porém maior que 8” (20,32 cm). O robô deveria ser capaz de suportar 

qualquer extintor de incêndio com peso total menor que 15 libras (6,80 kg), raio de menos de 

6” (15,24 cm) e altura menor que 24” (60,96 cm) porém maior que 6” (15,24 cm). 

3.3.5 Requisitos Elétricos (E) 
Os requisitos elétricos são os seguintes: 

E001: O dispositivo terá uma bateria interna para uso fora do local onde ele é estacionado. 
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E002: O dispositivo deveria ter um conector localizado na sua parte inferior que serviria 

como interface entre a bateria e o carregador, permitindo a recarga da bateria enquanto ele 

estiver estacionado. 

3.3.6 Requisitos de Programação (P) 
Os requisitos de programação são os seguintes: 

P001: A programação do robô será feita utilizando-se as práticas mais adequadas e uma 

linguagem de programação amplamente reconhecida. 

3.4 Riscos e Plano de Mitigação  
Praticamente, qualquer dispositivo eletromecânico pode causar riscos - em maior ou 

menor escala - à integridade física de quem o opera. No contexto de um projeto, além do 

mencionado, a palavra risco adquire outros sentidos como possibilidade de falha de 

operação ou mesmo de que os custos ultrapassem os valores pré-fixados. Sendo assim, é 

crucial que durante o desenvolvimento do projeto esses riscos sejam avaliados e de alguma 

forma medidos e que haja planos para sua eliminação ou pelo menos atenuação. As tabelas 

seguintes exibem os riscos considerados relevantes e alternativas para mitigá-los. 

Tabela 3.1 - Análise de riscos. 

Risco Probabilidade Severidade 
Código de 

Análise de Risco 
(CAR) 

Atingir/impedir 
civis em fuga 4 4 16 

Eletrocutar civis 1 4 4 
Superaquecimento 

da bateria 1 5 5 

Falha de energia 1 3 3 
Falha de ativação 1 3 3 
Adentrar a área de 

fogo 3 2 6 

Perder-se durante 
navegação 3 2 6 

Falha nos 
sensores 3 2 6 

Extinção 
inadequada 3 1 3 

Falha em cumprir 
prazos 2 2 4 

Custo do projeto 
exceder o 
orçamento 

3 1 3 

Produto sem apelo 
comercial 2 2 4 

Obstrução por 
obstáculos 2 1 2 
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*Na escala de probabilidade, o valor 1 refere-se a um risco de 1:20000; o valor 2, 1:2000; o valor 3, 

1:200; o valor 4, 1:20 e o valor 5, 1:2. Na escala de severidade, 1 corresponde a um atraso de menos 

de 10 segundos; 2, a um atraso de menos de 1 minuto; 3, a robô inoperante; 4, a humanos feridos e 

5, a humanos mortos ou fogo criado/ampliado. 

 

Tabela 3.2 - Plano de mitigação de riscos. 

Risco Mitigação Probabilidade 
Pós-Mitigação 

Severidade 
Pós-Mitigação 

CAR Pós-
Mitigação 

Atingir/impedir 
civis em fuga 

Instalação de 
luzes/sirenes 2 3 6 

Eletrocutar civis - 1 4 4 
Superaquecimento 

da bateria - 1 5 5 

Falha de energia - 1 3 3 
Falha de ativação - 1 3 3 

Adentrar a área de 
fogo 

Teste 
intensivo, 
ajustes 

1 2 2 

Perder-se durante 
navegação 

Teste 
intensivo, 
ajustes 

1 2 2 

Falha nos 
sensores Redundância 1 2 2 

Extinção 
inadequada - 3 1 3 

Falha em cumprir 
prazos - 2 2 4 

Custo do projeto 
exceder o 
orçamento 

- 3 1 3 

Produto sem apelo 
comercial - 2 2 4 

Obstrução por 
obstáculos - 2 1 2 

 

3.5 Materiais e Métodos 
Antes que uma lista completa de materiais pudesse ser compilada, deveriam ser 

definidos o microcontrolador a ser utilizado, as funções atribuídas à placa de circuito 

impresso a ele conectada, o método de navegação a ser empregado, o formato do chassi e 

o tipo de sistema de direção, a maneira de detectar o fogo e a distribuição dos sensores ao 

longo do corpo do robô. Dos acima citados, apenas o tipo de navegação foi definido e 

permaneceu inalterado. Os demais sofreram modificações ao longo do processo de 

desenvolvimento e as escolhas serão examinadas ao longo desta seção. Uma lista completa 

dos materiais adquiridos para a construção do robô é apresentada no Apêndice B. 
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O principal método utilizado pelo grupo durante a etapa de desenvolvimento foi o de 

intensa discussão e planejamento de um protótipo sobre o qual poderiam ser feitos testes 

que levariam ao refinamento do mesmo e orientariam modificações e correções do projeto 

inicial. Assim, inúmeras versões de protótipo tomaram forma ao longo de várias iterações. A 

fim de se ter uma noção concreta da aparência real do robô, foram criados modelos com o 

programa CAD SolidWorks desenvolvido pela Dassault Systèmes SolidWorks Corporation 

até se obter uma versão final e definitiva a ser construída. 

A primeira versão foi elaborada exclusivamente por um membro do grupo de forma 

prévia, na tentativa de estabelecer um ponto de partida para a primeira reunião sobre o 

projeto. O modelo apresenta uma base motora omnidirecional com três pares de rodas, 

separados por 120 graus, conforme mostra a Figura 3.1. O chassi, cujo formato é 

hexagonal, é formado por duas placas paralelas, com três sensores infravermelhos 

montados sobre a placa superior e três pares de sensores ultrassônicos espalhados pelas 

laterais, posicionados entre as duas placas. Como não houve uma pesquisa extensa 

previamente à sua concepção e uma participação de todos os membros do grupo, esta 

versão foi rapidamente descartada, dando lugar a outros designs mais aprimorados. 

 

Figura 3.1: Robô CERBERUS (versão 1). 
 

 

Na versão 2, conforme ilustra Figura 3.2, houve alteração no formato da placa 

superior de hexagonal para eneagonal, com o objetivo de aumentar a distância de 

separação entre os sensores ultrassônicos, diminuindo a interferência entre seus cones de 

detecção. As caixas brancas representam o espaço reservado para componentes 

eletrônicos como microcontrolador e controlador de motores. A estrutura é composta 

inteiramente de alumínio, para resistir ao derretimento pelo calor excessivo próximo às 

chamas. Em relação às rodas, vários materiais resistentes ao fogo foram investigados e 
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chegou-se à conclusão de que seus coeficientes de atrito e custos inviabilizariam seu uso, 

sendo preferidas rodas de borracha. Caso estas sofressem de desintegração quando 

próximas ao incêndio, ou estaria-se diante de um cenário em que o robô encontra-se bem 

perto do local do fogo, permitindo a execução de sua função e, portanto, não significando 

um grande impasse, ou de um cenário em que o fogo atingiu uma dimensão tão grande que 

não poderia mais ser extinto pelo dispositivo.  

 

Figura 3.2: Robô CERBERUS (versão 2). 
 

Em sua terceira versão, ilustrada na Figura 3.3, a mudança mais dramática foi a 

substituição do sistema motor omnidirecional de três eixos pelo coaxial com duas rodas. A 

alteração foi motivada principalmente pela redução de custos e complexidade. Aquele 

proposto inicialmente demandaria maiores esforços computacionais, aumentando o grau de 

dificuldade na produção do software, enquanto este, mais simples, é de fácil controle, 

diminuindo o tempo gasto na confecção do código de programa. Neste modelo, foram 

integrados alguns componentes secundários como a luz estroboscópica e a sirene 

piezoelétrica, além de itens importantes como a bateria, alocada no centro da placa inferior, 

e a câmera frontal.  

 
Figura 3.3: Robô CERBERUS (versão 3). 
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O sistema de navegação escolhido foi o de orientação por faixas-guias coloridas 

fixadas ao chão, sendo cada cor associada a uma zona de incêndio. Para isso, seria ideal 

que a câmera fosse simples, sendo capaz apenas de distinguir e identificar cores, e barata. 

Preenchendo ambos os requisitos, a Pixy CMUcam5, em conjunto com um sistema de 

ajuste de posição, foi selecionada. Dentre as opções rejeitadas e os motivos pelos quais 

foram deixadas de lado, destacam-se: etiquetas RFID fixadas nas paredes, por limitação do 

alcance de comunicação a poucos centímetros; fios subterrâneos guias, pela inconveniência 

causada pela instalação dos mesmos, requerendo remodelação do piso no local de uso do 

robô; teleoperação (controle remoto), por não conferir autonomia, necessitando intervenção 

humana por um operador; mapas programados em memória ROM, por configurar um 

método extremamente complicado.  

Adicionalmente, foram feitas escolhas preliminares em relação a componentes 

eletrônicos e motores a serem utilizados, permitindo uma análise do consumo de bateria e 

tempo de autonomia. Foi decidido a favor de motores CC com escovas, uma vez que 

requerem um sistema de controle mais simplificado e possuem custo mais compatível com o 

orçamento da equipe, sendo possível adquirir motores bem mais robustos em termos de 

torque e velocidade máximos. Nesta versão, foram incluídas também a chave de 

desligamento, duas rodas livres traseiras para aumento da estabilidade e as placas de 

desativação, que ao serem chutadas, paralisam o robô imediatamente. A ideia desse 

sistema surgiu depois da constatação pelos bombeiros de que seria custoso para eles, 

vestindo roupas pesadas e pouco flexíveis, terem que se abaixar para desligar o robô 

através da chave de desligamento localizada na placa superior. A disposição dos sensores 

for rearranjada de forma a garantir não só redundância como também cobertura em todos os 

quatro lados, simétricos rotacionalmente. Cinco sensores de chama, cujos cones de 

detecção estão representados em rosa na Figura 3.4, foram adicionados como forma 

primária de reconhecimento do fogo. Na placa inferior do chassi, nota-se a organização de 

componentes eletrônicos e da bateria, com alguns espaços ainda vazios. 
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Figura 3.4: Robô CERBERUS (versão 3) com cones de detecção. 
 

Na versão 4, ilustrada na Figura 3.5, o sistema de extinção de fogo foi aprimorado, 

com a inserção de moldes - duas peças em U conectadas por parafuso e rosca - feitos em 

impressora 3D para colocação do sensor de chamas próximo à extremidade da mangueira 

do extintor de incêndio e de uma barra de metal interligando a mesma ao motor de atuação. 

Foi fabricado o suporte para o extintor de incêndio, composto por duas barras laterais de 

alumínio presas a duas peças canal L através das quais passam abraçadeiras de cano do 

tipo cinta perfurada. No que tange à ativação do extintor, uma extensão foi adicionada ao 

seu gatilho com o intuito de reduzir o torque necessário para pressioná-lo. Um cabo de aço 

galvanizado conecta a extensão no gatilho ao motor atuador localizado na placa superior do 

chassi. Outras transformações notáveis foram o aumento no tamanho das rodas, de quatro 

para seis polegadas, inclusão de suporte para a câmera de navegação para que ela não 

obstruísse o campo de visão de um dos sensores infravermelho, anexação da primeira 

versão da placa de circuito impresso, posicionada no quadrante traseiro-esquerdo sobre a 

placa inferior do chassi e do painel de controle de incêndio. Este tem como papel simular a 

comunicação do robô com o sistema de alarme central do prédio, já que seria difícil uma 

intervenção para adaptação do mesmo às necessidades de teste do projeto CERBERUS. É 

composto simplesmente por quatro botões, cada um representando uma zona de incêndio 

fictícia. 
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Figura 3.5: Robô CERBERUS (versão 4). 

 

Comparada à versão anterior, a quinta versão apresenta poucas diferenças conforme 

ilustra a Figura 3.6. A maior delas é na disposição dos sensores ultrassônicos, que passou 

de vertical para horizontal. Inicialmente, foi feita uma interpretação, a partir da leitura da 

documentação técnica, de que os cones de detecção desses sensores tinham formato 

circular. Mais tarde, foi verificado que os cones, na realidade, tinham formato elíptico. Por 

isso, foi necessária a mudança a fim de evitar interferências entre os sinais de sensores 

adjacentes. Secundariamente, outra modificação foi a incorporação de furos na placa 

superior para passagem dos fios que conectam os dispositivos no topo desta ao 

microcontrolador e à placa de circuito impresso que se encontram entre as placas do chassi. 

 
Figura 3.6: Robô CERBERUS (versão 5). 
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Na versão 6, conforme ilustra a Figura 3.7, foram redesenhados alguns componentes 

do sistema de extinção, a plataforma de apoio da câmera de navegação e a placa de circuito 

impresso, que aumentou significativamente de tamanho, obrigando uma reorganização dos 

elementos internos que culminou na realocação da mesma, movendo-se do quadrante 

traseiro-esquerdo para o dianteiro-esquerdo. Originalmente, seriam utilizados cinco 

sensores de chama para detecção do fogo. No entanto, percebeu-se que seu alcance e 

sensitividade seriam fatores limitantes, o que suscitou a busca por um sensor alternativo. 

Durante uma pesquisa online, foi encontrado um kit de conversão para a câmera Pixy 

CMUcam5, já utilizada para navegação, permitindo a troca de sua lente original por outra 

com filtro infravermelho, tornando-a capaz de identificar chamas. Uma segunda Pixy 

CMUcam5 portanto foi adquirida, tomando o lugar do sensor de chamas na extremidade da 

mangueira do extintor. Com isso, a comunicação com o microcontrolador, que antes era feita 

por protocolo SPI através de sua porta ICSP, passou a ser realizada por meio do protocolo 

I2C, ambas as câmeras compartilhando o mesmo barramento. 

 

Figura 3.7: Robô CERBERUS (versão 6). 
 

Na sétima e última versão, conforme ilustra a Figura 3.8, o sistema de extinção 

sofreu algumas alterações para maior eficiência e robustez: as peças canal L foram trocadas 

por canal U, sendo rebitadas às barras metálicas laterais, que inicialmente foram mantidas 

presas às peças por meio de cola epóxi (JB Weld). Além disso, os moldes foram 

refabricados e uma espécie de armação foi colocada na mangueira conferindo maior poder 

de sustentação e rigidez, tornando o mecanismo de atuação dos motores mais robusto.  
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Figura 3.8: Robô CERBERUS (versão 7). 

 

   A figura 3.9 ilustra a versão final de protótipo, destacando-se os componentes 

eletrônicos dos principais sistemas do robô CERBERUS. 

 

 

Figura 3.9: Principais componentes do robô CERBERUS. 
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3.6 Software 
O robô bombeiro autônomo CERBERUS consiste em um projeto altamente 

eletromecânico, porém todas as partes mecânicas e elétricas devem ser controladas via 

software. Sendo assim, é fundamental a presença de uma unidade de processamento, 

representada por um microcontrolador, que possa controlar basicamente todas as funções e 

sistemas do robô, como o motor, os sensores e o sistema de extinção de fogo. O programa 

não só o auxilia a encontrar sua rota através de fitas coloridas no chão, mas também 

processa todas as informações sobre o ambiente que respaldarão as tomadas de decisão, 

determinando onde está o fogo e acionando o sistema de extinção no momento certo. 

O planejamento e a implementação do código de programação tiveram como base o 

documento de arquitetura de software, preparado durante a fase inicial do projeto, logo após 

a escrita dos documentos de especificações técnicas. Em linhas gerais, este documento 

previa a divisão do software em diversos procedimentos específicos, elaborados 

separadamente e posteriormente integrados em um único arquivo principal. A única 

ferramenta aplicada para o desenvolvimento e gravação do código foi a plataforma de 

desenvolvimento integrado Arduino IDE. 

3.6.1 Visão Geral da Estrutura do Software 
Com o propósito de poupar energia a ter uma resposta rápida, o sistema funciona a 

partir de interrupções. Um laço de repetição é executado deixando o programa em modo 

ocioso até que um botão é pressionado no painel de controle de incêndio. Como 

mencionado anteriormente, serão disponibilizados quatro botões no painel, cada um 

simulando uma área (ou zona) do prédio. Assim que o botão é acionado, um sinal é enviado 

ao microcontrolador que prontamente inicia o procedimento de seguir uma das linhas 

coloridas no chão, de acordo com a zona. Em uma futura aplicação no mundo real, o sinal 

deverá ser recebido através de comunicação sem fio entre o robô e o sistema central de 

alarme de incêndio. Ao chegar ao final da linha, é executado o algoritmo de busca pelo fogo, 

que ao ser encontrado, faz com que o programa inicie a rotina de extinção de incêndio.  

3.6.2 Principais Rotinas do Programa 
A rotina principal do software é aguardar por um sinal de interrupção, que quando 

recebido, desencadeia a execução das demais rotinas descritas a seguir: 

3.6.2.1	lineFollowing	(int	color)	

• Propósito: seguir a linha de determinada cor, que guiará o robô até a área desejada. 

• Entradas: Pixy CMUcam5 (câmera), sensores ultrassônicos e infravermelhos 

• Saída: controlador de motores. 
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• Algoritmo: o algoritmo recebe dados dos sensores de distância e os processa a fim 

de controlar os motores, direcionando o robô até o seu destino, acompanhando a 

linha correta e desviando de possíveis obstáculos. 

• Restrições: devido à quantidade significativa de sensores sendo utilizados, o fluxo de 

informações que chegam ao processador pode ser grande, aumentando o tempo de 

processamento. A câmera pode demorar para processar a imagem da linha, fazendo 

com que fique difícil para o robô manter a trajetória ao fazer curvas. 

3.6.2.2	fireSearch	(	)	

• Propósito: encontrar o local do fogo e guiar o robô até ele. 

• Entradas: Pixy CMUcam5 (câmera), sensores ultrassônicos e infravermelhos. 

• Saídas: controlador de motores e sistema de ajuste de posição da câmera. 

• Algoritmo: inicialmente, o algoritmo recebe dados da câmera com filtro infravermelho 

e os processa. O sistema de ajuste de posição a coloca em posição reta 

verticalmente (inclinação igual a 0 graus) e a gira 180 graus lateralmente, varrendo 

toda a área. Se há reconhecimento de fogo no local, o robô entra na sala e inicia a 

navegação dentro dela, utilizando o algoritmo de desvio de obstáculos e os dados da 

câmera para aproximação. 

• Restrições: a luz ambiente pode interferir na identificação do fogo através da câmera. 

3.6.2.3	fireExtinguisher	(	)	

• Propósito: ativar o sistema de extinção de fogo. 

• Entrada: câmera de detecção de fogo. 

• Saída: controlador de motores. 

• Algoritmo: através dos dados recebidos da câmera com filtro infravermelho, tem-se 

dimensão da distância em relação ao fogo. Quando é determinado pelo processador 

que a distância é adequada, um sinal de PWM é enviado ao controlador de motores, 

acionando os motores atuadores, um deles responsável por ajustar a mangueira e o 

outro por pressionar o gatilho no extintor de incêndio. 

• Restrições: dificuldade de programação do procedimento de ajuste da posição da 

mangueira a partir dos dados do encoder do motor atuador. 

3.6.3 Drivers de dispositivo 
O objetivo desta seção é descrever a interface entre o principal sistema de 

computação do robô e os componentes do hardware como sensores, câmera, luz, sirene e 

controladores de motores. O propósito principal da utilização de drivers é permitir à unidade 

de processamento (microcontrolador) comunicar-se com os dispositivos periféricos através 

de rotinas de software. 
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3.6.3.1	Luz	e	Sirene	

1. Visão geral 

A luz e a sirene requerem um fio único para comunicação com o 

microcontrolador. Para ligá-las ou desligá-las, ambas estão conectadas a um 

circuito de chaveamento controlado pelo microcontrolador.  

2. Interface de hardware 

a. Pino A12: saída digital  

3. Rotinas do driver 

a. Buzzer_Lights_On 

i. Protótipo: digitalWrite(buzzerLightsPort, HIGH); 

ii. Descrição: ativa a luz e a sirene 

b. Buzzer_Lights_Off 

i. Protótipo: digitalWrite(buzzerLightsPort, LOW); 

ii. Descrição: desativa a luz e a sirene 

3.6.3.2	Controladores	de	motores	

1. Visão geral 

Os controladores de motores requerem um sinal de largura de pulso modulada e 

de referência provenientes do microcontrolador. 

2. Interface de hardware 

a. Pinos 10 a 13: saída de PWM 

b. GND: referência de tensão (terra) 

3. Rotinas do driver 

A biblioteca “Servo.h” é utilizada para programação dos controladores de 

motores. 

a. Motor_Define 

i. Protótipo: servo.attach(pin, min, max); 

ii. Descrição: atrela a variável Servo a um pino do microcontrolador. – 

min: é a largura de pulso, em microssegundos, correspondente ao 

ângulo mínimo no motor; 

- max: é a largura de pulso, em microssegundos, correspondente ao 

ângulo máximo no motor; 

b. Motor_Write 

i. Protótipo: servo.write(angle); 

ii. Descrição: controla o eixo do motor de acordo com o valor de “angle”. 

Em um servo-motor, seleciona o ângulo do eixo em graus. Em um 

motor de rotação contínua, seleciona a velocidade do motor, sendo 0 
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associado a velocidade máxima em uma direção, 180, a velocidade 

máxima na direção contrário e 90, a ausência de movimento. 

4. Estruturas de dados e variáveis 

a. Servo 

i. leftMotor 

ii. rightMotor 

iii. panTilt 

iv. extinguisherMotor 

3.6.3.3	Pixy	CMUcam5	

1. Visão Geral 

A Pixy CMUcam5 é uma câmera que pode se comunicar com o microcontrolador 

através dos protocolos SPI e I2C ou de um sinal analógico. 

2. Interface de hardware 

a. SDA: sinal digital de dados, transmitido de forma serial 

b. SCL: clock serial 

c. 5V: tensão de alimentação do circuito 

d. GND: referência de tensão (terra) 

3. Rotinas do driver 

A câmera Pixy CMUcam5 é controlada por intermédio da biblioteca “Pixy.h”. 

a. Pixy_getBlocks 

i. Protótipo: pixy.getBlocks(); 

ii. Descrição: retorna o número de objetos detectados pela câmera 

b. Pixy_Signature 

i. Protótipo: pixy.blocks[i].signature; 

ii. Descrição: número de assinatura do objeto detectado (1-7) 

c. Pixy_X 

i. Protótipo: pixy.blocks[i].x; 

ii. Descrição: posição horizontal do centro do objeto detectado (0 a 319) 

d. Pixy_Y 

i. Protótipo: pixy.blocks[i].y; 

ii. Descrição: posição vertical do centro do objeto detectado (0 a 199) 

e. Pixy_Width 

i. Protótipo: pixy.blocks[i].width; 

ii. Descrição: largura do objeto detectado (1 a 320) 

f. Pixy_Height 

i. Protótipo: pixy.blocks[i].height; 
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ii. Descrição: altura do objeto detectado (1 a 200) 

4. Estruturas de dados e variáveis 

a. Pixy 

i. pixy 

3.6.3.4	Sensores	ultrassônicos	

1. Visão geral 

Emitem uma onda de ultrassom quando ativados através de seu pino trigger e 

recebem a onde refletida, transmitindo um sinal ao microcontrolador por meio de 

seu pino denominado echo. 

2. Interface de hardware 

a. Pinos 22-37: entrada/saída digital (pinos pares correspondem aos triggers e 

pinos ímpares, aos echoes) 

3. Rotinas do driver 

Para controlar os sensores ultrassônicos, é utilizada a biblioteca “NewPing.h”. 

a. Constructor 

i. Protótipo: NewPing sonar(trigger_pin, echo_pin, max_cm_distance); 

ii. Descrição: inicializa a biblioteca NewPing, associando a variável 

“trigger_pin” ao pino trigger do sensor, a variável “echo_pin” ao pino 

echo do sensor e definindo opcionalmente a distância máxima em 

centímetros através da variável max_cm_distance (o valor padrão, 

caso ela não seja definida, é de 500 cm) 

b. Get_Distance 

i. Protótipo: sonar.ping_cm(); 

ii. Descrição: retorna a distância, em centímetros, do sensor em relação 

ao objeto identificado. Se não houver detecção da onda refletida, a 

função retorna o valor 0.  

4. Estruturas de dados e variáveis 

a. NewPing: 

i. US1-US8 

3.6.3.5	Sensores	infravermelhos	

1. Visão geral 

O sensor de distância infravermelho emite um feixe de luz infravermelha e recebe 

a onda refletida, transmitindo ao microcontrolador um sinal analógico que é 

proporcional à distância entre o sensor e o objeto refletor. 
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O sensor infravermelho de chama é sensibilizado por radiação cujo comprimento 

de onda encontra-se na faixa de 760 a 1100 nanômetros e envia um sinal 

analógico ao microcontrolador que corresponde à intensidade da chama. 

2. Interface de hardware 

a. Pinos A0-A4: entradas analógicas (sensores de chama) 

b. Pinos A5-A8: entradas analógicas (sensores de distância) 

3. Rotinas do driver 

a. Read_Distance 

i. Protótipo: readDistance(IRdistanceSensor); 

ii. Descrição: lê os valores de saída dos sensores infravermelhos e os 

converte no valor da distância correspondente em centímetros.  

b. Read_Flame 

i. Protótipo: readFlame(IRflameSensor); 

ii. Descrição: lê os valores de saída dos sensores de chama e os 

converte em um valor relativo à intensidade do fogo. 

4. Estruturas de dados e variáveis 

a. Int 

i. flame1-flame5 

ii. IRdist1-IRdist4 

3.6.3.6	Chaves	fim	de	curso	

1. Visão geral 

Quando pressionadas, as chaves de fim de curso enviam um sinal de 5 volts ao 

microcontrolador, ativando uma interrupção responsável por desativar o sistema 

motor do robô.  

2. Interface de hardware 

a. Pino 2: porta de interrupção 

3. Rotinas do driver 

a. Interruption 

i. Protótipo: attachInterrupt(interrupt, ISR, mode); 

ii. Descrição: aguarda até que um sinal seja recebido em um pino 

específico. Quando isso acontece, executa uma rotina e retorna à 

função principal. 

- interrupt: o número da interrupção (variável int) 

- ISR: rotina a ser chamada quando a interrupção ocorre. Esta função 

não deve aceitar parâmetros nem retornar nenhum valor 
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- mode: define o momento em que a interrupção deve ser engatilhada. 

Pode assumir os valores LOW (interrupção em nível baixo), CHANGE 

(interrupção em transição de estado), RISING (interrupção em borda 

de subida) e FALLING (interrupção em borda de descida). 

4. Estruturas de dados e variáveis 

a. int: 

i. kickPlates 

 

3.6.4 Controlador PID 
A primeira rotina descrita, caracterizada por controlar os motores de forma a fazer 

com que o robô siga a trajetória descrita pelas faixas coloridas no solo, envolve a utilização 

de um método de controle. Neste projeto, foi lançado mão do algoritmo de um controlador 

proporcional integral derivativo (PID) otimizado, para Arduino, proposto por Brett Beauregard 

em seu blog (BEAUREGARD, 2011). Parte-se da seguinte equação básica de controle PID: 

																																														"#í%# = 	'() * + ', ) * %* + '-
%
%* ) * 																																							(1) 

onde o erro ) = 123*2	%)	#456*) − 83*9#%# 

Para o cálculo da fórmula no microcontrolador, são feitas algumas aproximações. O 

diferencial de tempo “dt” é substituído pelo intervalo de tempo decorrido entre duas 

chamadas consecutivas da função Compute (valor atribuído à variável timeChange). 

Assume-se que esse tempo seja infinitamente pequeno devido à velocidade extremamente 

alta do processador e no contexto em que Compute esteja dentro de um laço de repetição. 

Sendo assim, a integral do erro transforma-se na soma acumulada do resultado da 

multiplicação do erro atual por timeChange, e a derivada, na divisão entre a diferença dos 

erros calculados nas duas últimas chamadas da função Compute e timeChange. Tem-se 

então o equivalente da equação matemática (1) em formato de código de programação: 

Tabela 3.3: Código de programa referente ao controlador PID básico. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

/*working variables*/ 
unsigned long lastTime; 
double Input, Output, Setpoint; 
double errSum, lastErr; 
double kp, ki, kd; 
void Compute() 
{ 
   /*How long since we last calculated*/ 
   unsigned long now = millis(); 
   double timeChange = (double)(now - lastTime); 
   
   /*Compute all the working error variables*/ 
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13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

   double error = Setpoint - Input; 
   errSum += (error * timeChange); 
   double dErr = (error - lastErr) / timeChange; 
   
   /*Compute PID Output*/ 
   Output = kp * error + ki * errSum + kd * dErr; 
   
   /*Remember some variables for next time*/ 
   lastErr = error; 
   lastTime = now; 
} 
   
void SetTunings(double Kp, double Ki, double Kd) 
{ 
   kp = Kp; 
   ki = Ki; 
   kd = Kd; 
} 

 

A partir daí, são recomendadas uma série de modificações para aperfeiçoamento da 

função Compute, corrigindo imperfeições ou falhas advindas do modelo anterior. Entre elas, 

destacam-se o cálculo das variáveis - chamada da função Compute - em intervalos de 

amostra fixos e eliminação do salto derivativo (derivative kick), que ocorre quando a 

derivada do erro (e) é infinita. O código final após as alterações é mostrado abaixo. 

Tabela 3.4: Código de programa referente ao controlador PID após as modificações. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

/*working variables*/ 
unsigned long lastTime; 
double Input, Output, Setpoint; 
double ITerm, lastInput; 
double kp, ki, kd; 
int SampleTime = 1000; //1 sec 
double outMin, outMax; 
   
void Compute() 
{ 
   unsigned long now = millis(); 
   int timeChange = (now - lastTime); 
   if(timeChange>=SampleTime) 
   { 
      /*Compute all the working error variables*/ 
      double error = Setpoint - Input; 
      ITerm+= (ki * error); 
      if(ITerm > outMax) ITerm= outMax; 
      else if(ITerm < outMin) ITerm= outMin; 
      double dInput = (Input - lastInput); 
  
      /*Compute PID Output*/ 
      Output = kp * error + ITerm- kd * dInput; 
      if(Output > outMax) Output = outMax; 
      else if(Output < outMin) Output = outMin; 
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26 
27 
28 
29 
30 
3155 

  
      /*Remember some variables for next time*/ 
      lastInput = Input; 
      lastTime = now; 
   } 
} 

  

O algoritmo acima é adaptado para controlar os motores do robô fazendo com que o 

mesmo siga a linha colorida no chão. Para isso é necessário manter o objeto (linha) 

detectado pela câmera sempre na posição central. Como mencionado anteriormente, o 

método pixy.blocks[i].x representa a posição horizontal do objeto, com os limites inferior e 

superior iguais a 0 e 319, respectivamente. Configura-se então o ponto de ajuste como 160, 

exatamente na metade da faixa estabelecida pelos valores acima. A entrada refere-se à 

posição instantânea do objeto e é dada por pixy.blocks[i].x, enquanto o valor de saída 

(Output) calculado pela função Compute() é adicionado ao valor do parâmetro de entrada da 

função de configuração do motor da roda direita e subtraído do valor do parâmetro de 

entrada da função de configuração do motor da roda esquerda. Com isso, os erros ora 

positivos (quando a linha se encontra à esquerda do centro) ora negativos (linha à direita do 

centro), imprimem uma velocidade maior ora na roda direita ora na roda esquerda, 

permitindo ao robô acompanhar a rota descrita pela faixa colorida no solo. A implementação 

completa do controlador PID no código final do robô, com os valores escolhidos para as 

constantes KP, KI e KD, é exibida no código presente no Apêndice A. 

 

3.7 Hardware 

Esta subseção trata primordialmente do microcontrolador, da placa de circuito 

impresso e do conjunto de fios que promovem a comunicação entre eles.  

Em um primeiro momento, durante os testes inicias das primeiras versões de 

protótipo, foi empregado o microcontrolador Arduino Mega 2560 (Figura 3.9) devido à 

disponibilidade de uma grande quantidade de pinos de entrada e saída neste modelo, 

compatível com o número elevado de sensores de distância presentes no robô, doze no 

total. 
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Figura 3.10: Microcontrolador do robô CERBERUS 
 

Os sensores ultrassônicos tiveram seus pinos de echo e trigger diretamente ligados 

aos pinos de entrada e saída de propósito geral (GPIOs) do microcontrolador, assim como 

as chaves de fim de curso. Os nove sensores infravermelhos (quatro de distância e cinco de 

chama), por sua vez, tiveram seus pinos de saída conectados às entradas analógicas de A0 

a A8. A câmera de navegação foi diretamente ligada ao conector ICSP do Arduino, 

estabelecendo-se uma conexão com base no protocolo SPI. 

Para a alimentação de todos os componentes do robô, foi projetada uma placa de 

circuito impresso que funcionasse, de maneira geral, como um centro de distribuição de 

energia. A placa tinha como entrada os 14,8 volts da bateria, que eram regulados para 5 e 

12 volts, com o objetivo de fornecer a tensão de entrada para os sensores, sirene, luz e 

controladores de motores, além de possuir circuitos de chave eletrônica com transistor BJT 

para acionamento da luz e da sirene através de portas de saída digital e um relê de controle 

que atua como uma chave geral, desligando a alimentação de todos os sensores quando 

necessário. 

 

Figura 3.11: Circuito de alimentação do robô CERBERUS 
 

A Figura 3.11 a seguir mostra o formato da placa de circuito impresso, desenhado 

para preencher exatamente a área de um dos quadrantes da placa inferior da estrutura do 

robô, e a disposição dos componentes sobre ela. 
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Figura 3.12: Formato da placa de circuito impresso do robô CERBERUS 
 

Os conectores possuem espaçamento padrão entre os pinos de 2,54 milímetros. Os 

que se referem aos motores (“MOTOR 1”, “MOTOR 2”, ...) representam os sinais de largura 

de pulso modulada ligados às entradas de PWM nos controladores de motores, ao passo 

que o de nome “PWM” é conectado às saídas de PWM no microcontrolador. São 

empregados dois controladores de motores, ambos de canal duplo, um para controle dos 

dois motores das rodas e o outro, dos dois motores do sistema de extinção de fogo. O 

primeiro suporta corrente contínua de até 12 A e correntes de pico de até 25 A por poucos 

segundos; o segundo, corrente contínua de até 5 A, com picos de até 10 A. 

Em um segundo momento, em razão da inscrição do projeto CERBERUS na edição 

de 2015 da competição de sistemas embarcados Intel-Cornell Cup, houve a substituição do 

microcontrolador Arduino pelo Intel Edison, atendendo a um dos requisitos para participação 

no evento. Para facilitar o acesso aos pinos de entrada e saída, foi utilizado o Arduino 

Breakout Kit, exibido na Figura 3.12. 
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Figura 3.13: Arduino Breakout Kit para o Intel Edison. 
 

Com uma CPU Intel Atom de dois núcleos a 500 MHz e um microcontrolador Quark 

de 32 bits a 100 MHz, a migração para a plataforma Intel Edison significou um aumento 

excepcional de poder de processamento frente ao Arduino Mega 2560, que funciona com 

relógio de 16 MHz. O número de portas de entrada e saída acessíveis no kit, contudo, 

diminuiu drasticamente em relação ao Arduino Mega, o que resultou na reavaliação do 

sistema eletrônico a fim de diminuir o número de pinos utilizados pelos sensores. 

Devido à mudança de microcontrolador, à adição de componentes e para se adequar 

aos problemas encontrados durante os testes com a placa citada anteriormente, foi 

projetada uma nova versão da placa de circuito impresso (Figura 3.13), 60% maior e mais 

sofisticada. Ao contrário da primeira versão, que funcionava apenas como distribuidora de 

energia, esta foi desenhada para se encaixar diretamente sobre o kit do microcontrolador, 

intermediando as ligações entre ele e os periféricos. Consequentemente, o número de fios 

foi reduzido significativamente, pois passaram a se concentrar exclusivamente entre o 

conjunto placa-microcontrolador e os periféricos, ocasionando uma melhora na organização 

do sistema de fiação interno. 
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Figura 3.14: Nova versão da placa de circuito impresso usada no robô CERBERUS 
 

Ao longo do período de testes do protótipo com a primeira versão da placa de circuito 

impresso, foi verificado que o consumo de corrente da câmera com o sistema de inclinação 

vertical e lateral era superior ao máximo suportado pelo Arduino, não sendo possível a 

alimentação via porta ICSP. Aliado a isso, foi adicionada uma segunda câmera para 

detecção de fogo, inviabilizando a comunicação através do protocolo SPI. Optou-se pelo 

protocolo I2C, que permite a comunicação, utilizando apenas dois fios, entre o 

microcontrolador e vários dispositivos escravos, compartilhando o mesmo barramento. Cada 

escravo possui um endereço único pelo qual é identificado durante a troca de dados com o 

mestre. As duas câmeras foram conectadas à placa por meio de um receptáculo IDC e cabo 

flat, sendo alimentadas através de sua porta mini-USB (Figura 3.14). Na imagem da placa 

acima, os dois retângulos vermelhos idênticos representam os conectores USB, logo acima 

do receptáculo IDC. Dois reguladores de tensão de 5 V com capacidade máxima de 2 A de 

corrente foram empregados para o circuito de alimentação das câmeras. 



 39 

 

Figura 3.15: Componentes da câmera usada no robô CERBERUS 
 

Para resolver o impasse do número elevado de pinos do microcontrolador sendo 

usados, foram agregados três multiplexadores, sendo um multiplexador para o sinal de 

trigger dos sensores ultrassônicos, um demultiplexador para o sinal de echo e um 

multiplexador para os sensores analógicos infravermelhos. Isso acabou por solucionar outro 

problema encontrado na primeira versão: a inconsistência dos dados obtidos a partir dos 

sensores ultrassônicos por consequência de interferência entre os sinais de sensores 

adjacentes. Com os multiplexadores, apenas um ultrassônico é acionado por vez. 

Nesta nova versão da placa de circuito impresso, não há um relê para corte da 

alimentação dos sensores, visto que o consumo de corrente é extremamente baixo, não 

havendo necessidade de racionamento de energia. As chaves eletrônicas de acionamento 

da luz e da sirene foram removidas, dando lugar a um interruptor para 

ligamento/desligamento de ambas simultaneamente. Essa mudança foi feita para facilitar os 

testes e demonstrações, não havendo necessidade de modificação e reprogramação do 

código para acioná-las toda vez que solicitado. Adicionalmente, foi previsto o uso de um 

conector para o painel de controle de incêndio, em que cada botão corresponde a um valor 

de sinal analógico na faixa de 0 a 5 volts. O circuito das chaves de fim de curso foi corrigido 

em relação à primeira versão, que previa incorretamente o uso de conectores de três pinos, 

quando apenas dois são suficientes. Alguns componentes da placa acabaram não sendo 

aproveitados, como é o caso dos sensores de efeito Hall que seriam colocados nas rodas 

para aferição de velocidade e posição. No centro da placa, nota-se a presença de duas 

barras de pino paralelas, usadas para o encaixe da mesma sobre o kit do microcontrolador. 

O conector utilizado, do tipo barra de pino empilhável, é mostrado na Figura 3.15. 
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Figura 3.16: Conector para o painel de controle do robô CERBERUS 
 

A montagem do esquemático, as simulações, o design e o layout de ambas as 

placas de circuito impresso foram feitos no software Proteus 8.0 Professional da Labcenter 

Electronics. A primeira versão possuía apenas uma camada de cobre, enquanto a segunda, 

pelo fato de ser bem mais densa, foi impressa em duas camadas. A fabricação foi 

encomendada junto à empresa Advanced Circuits, com as especificações padrão: material 

FR-4, espessura da camada de cobre de 1 onça (35 micrômetros) e largura de traço mínimo 

de 5 mils (5 milésimos de polegada). Todos os componentes são do tipo PTH (pin through 

hole) e foram soldados manualmente. 

 

 
Figura 3.17: Esquemático dos circuitos usados no robô CERBERUS 
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4. Resultados 
Na etapa inicial do projeto, conforme demonstrado na seção 3.3, foram definidos os 

requisitos funcionais do robô, que refletem não só os limiares mínimos de operação como 

também as metas a serem possivelmente alcançadas no futuro, após sucessivas iterações e 

aperfeiçoamentos. Por se tratar de um dispositivo complexo, composto por sistemas 

mecânicos e eletroeletrônicos elaborados, foi planejado um conjunto de testes que 

pudessem verificar o funcionamento e desempenho de subsistemas e funções 

separadamente. Por fim, foi realizada uma demonstração completa, envolvendo navegação, 

busca pelo fogo, desvio de obstáculos e acionamento do extintor de incêndio. Nas 

subseções seguintes, são explicados os procedimentos de teste e apresentados os 

resultados e estatísticas pertinentes. Ao final, é feita uma descrição do que foi observado 

durante a demonstração completa. 

4.1 Resultados de Testes 
A seguir são apresentados os resultados de teste realizados para investigação de 

algumas funcionalidades relevantes para que o robô execute sua função essencial de 

buscar, identificar e apagar incêndios com segurança. 

4.1.1 Taxa de Busca 
A tabela a seguir mostra os resultados de cinco repetições do teste de busca pelo 

fogo em um andar de prédio. 

Tabela 5.1 - Resultados do teste de busca pelo fogo 

Tentativa Configuração do espaço Tempo decorrido (s) 
1 Corredor 1 62 
2 Sala Pequena 1 56 
3 Sala Grande 1 59 
4 Sala Grande 2 38 
5 Corredor 2 33 
 Média 50 
 Desvio Padrão 13 

 

Considerando que durante uma busca completa pode ser necessário que o robô 

trafegue por um ou dois corredores e em média por três ou quatro salas no máximo, visto 

que será guiado diretamente para a zona onde o fogo se encontra, em média, o tempo 

necessário não deve ultrapassar 6 minutos, menos que o limite inferior de 10 minutos 

estabelecido nos requisitos. 
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4.1.2 Reconhecimento de Fogo 
Os resultados a seguir dizem respeito ao tempo transcorrido até que a fonte de 

radiação infravermelha, presente em um espaço como um corredor ou uma sala, seja 

identificada pelo robô e o mesmo acione o sistema de extinção. Inicialmente, o dispositivo é 

posicionado na entrada da sala ou início do corredor. Liga-se o robô e dispara-se o 

cronômetro. 

 

Tabela 4.2 - Resultados do teste de reconhecimento de fogo. 

Tentativa Configuração do espaço Tempo decorrido (s) 
1 Corredor 28,2 
2 Sala Grande 1 19,4 
3 Sala Pequena 1 9,4 
4 Sala Pequena 2 8,5 
5 Sala Grande 2 19,6 
 Média 17,02 
 Desvio Padrão 8,185 

 

   A média de 17,02 segundos é menor que o limite inferior estabelecido no requisito 

(30 segundos) e ligeiramente acima do limite superior de 15 segundos definido no requisito 

R002. 

4.1.3 Rapidez de Detecção de Fogo 
Os resultados mostrados abaixo se referem à rapidez de detecção de fogo quando 

ele se encontra na linha de visão do robô. 

Tabela 4.3 - Resultado do teste de rapidez de detecção de fogo. 

x (pés) y (pés) Tempo (s) 
7 3 0,12 

17 4 0,16 
12 2 0,15 
4 3 0,06 

30 0 0,41 
3 1 0,10 
5 0 0,12 

27 1 0,28 
2 0 0,07 

30 6 0,32 

 
Média 0,18 

 
Desvio Padrão 0,12 
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O valor de x representa a distância horizontal da fonte em relação ao robô enquanto 

y representa a altura dela em relação ao solo. Para este teste, foi utilizada uma lâmpada 

incandescente de 184 W. A média das tomadas de tempo mostra que o robô consegue 

rapidamente, em bem menos tempo do que havia sido previsto, identificar uma chama que 

se encontre em sua linha de visão. 

4.1.4 Acessibilidade da Chave de Desligamento 
Para que o robô seja seguro de uma maneira geral, ele deve apresentar uma chave 

de desligamento que permita às pessoas desativá-lo quando preciso. Para aferir a facilidade 

com que pode ser acessada, posiciona-se o robô a um ângulo aleatório do sujeito de teste e 

mede-se o tempo necessário para que ele desligue o dispositivo. 

Tabela 4.4 - Resultado do teste de acessibilidade da chave de desligamento. 

Ângulo (graus) 
Tempo (s) 

34 1,024 
17 0,952 

160 1,144 
295 1,400 
333 1,377 
39 1,136 

360 1,424 
309 1,644 
224 1,976 
104 1,344 
359 1,633 
32 1,344 

133 1,208 
261 1,312 
196 1,809 
95 1,344 

151 1,352 
65 1,771 

358 1,472 
125 1,632 

Média 1,415 
Desvio Padrão 0,2656 

 

Em média, após várias repetições do teste, o tempo decorrido desde a identificação 

da presença do robô até o reconhecimento e acionamento da chave de desligamento mostra 

que a mesma é de fato facilmente acessível. 
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4.1.5 Duração da Bateria 
A fim de verificar a autonomia da bateria, foi feito um teste em que o robô, 

incialmente com sua bateria completamente carregada, segue uma trajetória circular, 

delineada por uma faixa colorida no solo, com sua luz e sirene acionadas, até que um dos 

eventos a seguir aconteça: a luz pare de piscar, o barulho da sirene cesse ou ele não seja 

capaz de continuar o trajeto. Com isso, tem-se uma noção da duração da bateria com o robô 

operando com consumo próximo do máximo. Nesse cenário, estão em funcionamento os 

sistemas que mais consomem energia como a câmera, a luz, a sirene e principalmente 

ambos os motores das rodas, na máxima velocidade possível levando-se em conta as 

restrições do controlador PID. O teste foi realizado cinco vezes, sendo que em todas elas, 

depois de transcorridos 20 minutos, o robô ainda era capaz de percorrer o caminho com a 

luz piscando e a sirene ativada. O tempo é considerado satisfatório, uma vez que a equipe 

de bombeiros, na grande maioria dos casos, já estará presente no local de incêndio após 

esses 20 minutos.  

4.2 Demonstração Final 
De forma a avaliar o desempenho do robô de maneira mais abrangente, foi montada 

uma demonstração envolvendo o disparo do dispositivo, navegação desde um ponto 

distante até uma sala, desvio de obstáculos, reconhecimento de radiação infravermelha e 

ativação do sistema de extinção. 

A princípio, o robô foi posicionado em um ponto aleatório de um dos corredores do 

primeiro andar do prédio Otto Miller Hall da Seattle Pacific University. Por meio de uma fita 

vermelha fixada ao solo, foi traçado um caminho até dentro de uma sala que se encontra 

aproximadamente 25 metros distante do ponto inicial. Dentro da sala, foram colocados 

alguns obstáculos no chão como caixas, mesas e cadeiras e uma lâmpada incandescente 

de 184 W para simulação da radiação infravermelha emitida pelo fogo. 

O robô foi ligado e o cronômetro acionado. O caminho descrito pela fita foi seguido 

até um ponto dentro da sala. A partir do momento em que a câmera não identificava mais a 

fita de cor vermelha, iniciou-se a execução dos algoritmos de busca pelo fogo e desvio de 

obstáculos. O robô moveu-se em direção a alguns obstáculos, desviou-se deles e, após 

alguns segundos, identificou a fonte de radiação e navegou em direção a ela. O tempo total 

decorrido desde o acionamento do robô até o reconhecimento da fonte de radiação e 

acionamento do sistema de extinção foi de aproximadamente 1 minuto. Apesar de limitações 

como a ausência de comunicação entre o robô e o sistema central de combate a incêndio do 

prédio e a impossibilidade de execução de testes com fogo, a demonstração foi suficiente 

para revelar a eficácia do sistema de navegação por faixas no solo, direcionando o robô até 
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a zona de incêndio fictícia e sua capacidade de desviar de obstáculos, detectar fontes de 

radiação infravermelha e acionar um sistema de extinção embarcado no momento correto. 

Foram encontrados problemas e dificuldades tanto com os sistemas mecânicos, 

quanto com os sistemas eletrônicos e a programação do código base. O ambiente de 

desenvolvimento e a linguagem utilizada foram propícios para a implementação das funções 

separadamente, mas inconvenientes quando foi necessária a integração das mesmas em 

um único programa denso, capaz de controlar todas as funcionalidades do robô. O software 

poderia ter sido otimizado caso fosse utilizado um sistema operacional de tempo real e as 

rotinas substituídas por tarefas de sistema. Essas tarefas teriam prioridades diferentes e o 

sistema operacional seria responsável pelo chaveamento entre elas de forma organizada, 

levando a uma maior fluidez durante a execução. O algoritmo de desvio de obstáculos foi 

projetado inicialmente para ser implementado utilizando-se lógica fuzzy. Após fracassadas 

tentativas de fazê-lo funcionar, foi utilizado um algoritmo mais simples, que apenas manipula 

aritmeticamente os valores de distância provenientes dos sensores ultrassônicos. Este 

revelou-se extremamente ineficiente, principalmente diante de obstáculos como pés de 

mesas e cadeiras. Em relação à placa de circuito impresso, não houve isolação entre os 

canais de terra dos motores e dos sensores. Por consequência, o ruído proveniente dos 

motores acabou interferindo nos sinais recebidos pela câmera e pelos sensores de 

distância, causando inconsistência dos dados recebidos pelo microcontrolador e dificultando 

os testes. Tanto a câmera de navegação quanto a de detecção de fogo mostraram-se 

extremamente sensíveis à luminosidade do local. Sendo assim, em diversas oportunidades 

o robô subitamente parava sobre a linha, pois a mudança de luminosidade prejudicava seu 

reconhecimento. Além disso, a luz do sol que entra pelas janelas das salas muitas vezes fez 

com que o robô movesse em direção a elas de maneira equivocada, acionando o sistema de 

extinção. Uma correção poderia ser feita utilizando-se câmeras melhores ou estudando-se 

uma forma mais eficaz de distinção entre fogo e a luz solar, ambos emissores de radiação 

infravermelha. No que se refere aos sistemas mecânicos, o maior impasse encontrado foi 

com o mecanismo de ajuste da mangueira. Ficaram evidentes algumas falhas de projeto 

que fizeram com que o ajuste de ângulo não funcionasse como esperado. 
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Figura 4.1: Foto do primeiro protótipo construído 
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Figura 4.2: Foto da versão final de protótipo com extintor acoplado 
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5. Conclusão 
O projeto do robô CERBERUS surgiu como uma proposta de alternativa para um 

problema grave e constantemente atacado por fabricantes de produtos e engenheiros de 

diversas áreas: a destruição causada por incêndios. Os estragos e perdas de vidas e bens 

materiais que sucedem esses desastres motivam a busca por um método de combate não 

só mais eficiente como também menos invasivo. Quando o tempo de resposta da equipe de 

bombeiros não é satisfatório e os sistemas de chuveiros automáticos tornam-se 

inconvenientes, abre-se espaço para uma terceira solução, descrita nesta monografia.  

Os desafios, em contrapartida, são enormes em todas as áreas de engenharia 

envolvidas em um projeto multidisciplinar de tamanha complexidade como este. Para os 

engenheiros mecânicos e de materiais, encontrar materiais altamente resistentes ao fogo, 

com propriedades eletromagnéticas convenientes e ao mesmo tempo adequados para servir 

de estrutura e suporte aos componentes eletrônicos; para os engenheiros eletricistas, 

gerenciar o consumo de energia de forma a maximizar o tempo de duração da bateria e a 

durabilidade do robô, que em determinados casos pode permanecer intocado por longos 

períodos; para os engenheiros de computação, desenvolver um código de programação 

coeso, modular e confiável, potencializando sua performance e reduzindo ao máximo o risco 

de acidentes e o tempo total necessário para se chegar precisamente ao local de incêndio. 

Com este trabalho, verificou-se que a viabilidade de um robô bombeiro autônomo 

capaz de responder de forma imediata a um sinal de alarme de incêndio, navegar em busca 

do fogo e suprimir completamente as chamas antes que estas atinjam proporções maiores, 

é real e considerável. Os resultados das simulações mostraram que o tempo decorrido 

desde o acionamento do robô até que ele efetivamente encontrasse o local do incidente foi 

satisfatório em diferentes cenários. Os tempos médios de busca e reconhecimento do fogo 

atestam a rapidez do dispositivo em percorrer o ambiente e detectar a presença do incêndio. 

Além disso, os testes de autonomia de bateria mostraram que o robô pode funcionar por 

mais de 20 minutos desde que bateria esteja completamente carregada quando o mesmo 

entra em ação, confirmando a capacidade do dispositivo de exercer sua função enquanto a 

equipe de bombeiros não chega ao local. 

Apesar das dificuldades, tanto em se encontrar métodos de navegação que não 

exijam nenhuma modificação na estrutura do ambiente de aplicação do dispositivo quanto 

de se estabelecer uma comunicação confiável entre ele e o sistema central de incêndio, há 

maneiras eficazes de contorná-las, possibilitando a execução de testes que podem dar 

indícios de que esta solução pode vir a tornar-se até mesmo um produto comercializável. 
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Apêndice A – Código-fonte do robô CERBERUS 

 
#include <Sabertooth.h> 
#include <Wire.h> 
#include <PixyI2C.h> 
#include <Servo.h> 
#include "text_reader.c" 
 
#define X_CENTER    160L 
#define Y_CENTER    100L 
#define RCS_MIN_POS     0L 
#define RCS_MAX_POS     1000L 
#define RCS_MIN_POS_TILT     200L 
#define RCS_MAX_POS_TILT     700L 
#define RCS_CENTER_POS ((RCS_MAX_POS-RCS_MIN_POS)/2) 
#define maxSpeed 50 
#define minSpeed 20 
#define leftMotor 2 
#define rightMotor 1 
 
#define s0 13 
#define s1 12 
#define s2 8 
 
//--------------------------------------- 
// Servo Loop Class 
// A Proportional/Derivative feedback 
// loop for pan/tilt servo tracking of 
// blocks. 
// (Based on Pixy CMUcam5 example code) 
//--------------------------------------- 
class ServoLoop 
{ 
  public: 
    ServoLoop(int32_t proportionalGain, int32_t derivativeGain); 
 
    void update(int32_t error); 
 
    int32_t m_pos; 
    int32_t m_prevError; 
    int32_t m_proportionalGain; 
    int32_t m_derivativeGain; 
}; 
 
// ServoLoop Constructor 
ServoLoop::ServoLoop(int32_t proportionalGain, int32_t derivativeGain) 
{ 
  m_pos = RCS_CENTER_POS; 
  m_proportionalGain = proportionalGain; 
  m_derivativeGain = derivativeGain; 
  m_prevError = 0x80000000L; 
} 
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// ServoLoop Update 
// Calculates new output based on the measured 
// error and the current state. 
void ServoLoop::update(int32_t error) 
{ 
  long int velocity; 
  char buf[32]; 
  if (m_prevError != 0x80000000) 
  { 
    velocity = (error * m_proportionalGain + (error - m_prevError) * m_derivativeGain) >> 10; 
 
    m_pos += velocity; 
    if (m_pos > RCS_MAX_POS) 
    { 
      m_pos = RCS_MAX_POS; 
    } 
    else if (m_pos < RCS_MIN_POS) 
    { 
      m_pos = RCS_MIN_POS; 
    } 
  } 
  m_prevError = error; 
} 
// End Servo Loop Class 
//--------------------------------------- 
 
// Multiplexers select pins value; 
int r0 = 0; 
int r1 = 0; 
int r2 = 0; 
 
// Ultrasonic pins 
const int outPin = 4; // Using FAST_IO 
const int inPin = A2; // Using FAST_IO 
 
//Web Controller 
const char * delimiter = "\n"; 
 
char * str; 
char * pch; 
 
String function = 0; 
bool ledStatus = false; 
bool stringIsOk = false; 
double ITerm, lastInput; 
String remoteIp; 
int new_function = 0; 
 
 
// Pixy I2C address 
PixyI2C pixy(0x57); // You can set the I2C address through PixyI2C object 
PixyI2C pixyIR(0x56); // You can set the I2C address through PixyI2C object 
 
// Pixy Servos PID tune 
ServoLoop panLoop(200, 200);  // Servo loop for pan 
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ServoLoop tiltLoop(150, 200); // Servo loop for tilt 
 
// Declare ExtinguisherMotor 
Servo extinguisherMotor; 
Servo tiltMotor; 
 
// Motor Controller address 
Sabertooth ST(128); 
 
// PID algorithm constants 
float Kp = 0.35; // 0.35 @ 50 -- 0.2 @ 80 
float Ki = 0.05; // 0.05 @ 50 -- 0.5 @ 80 
float Kd = 1.30; // 1.30 @ 50 -- 1.00 @ 80 
double outMin; 
double outMax; 
double Input, Output, Setpoint; 
 
const int sampleRate = 1; // Variable that determines how fast our PID loop runs 
 
// Communication setup 
const long serialPing = 500; //This determines how often we ping our loop 
// Serial pingback interval in milliseconds 
 
unsigned long now = 0; //This variable is used to keep track of time 
// placehodler for current timestamp 
 
unsigned long lastMessage = 0; //This keeps track of when our loop last spoke to serial 
// last message timestamp. 
 
// VARIABLES - INPUT 
int sonarLeftVAL = 0; 
int sonarRightVAL = 0; 
int sonarFrontLeftVAL = 0; 
int sonarFrontRightVAL = 0; 
int sonarBackVAL = 0; 
 
// VARIABLES - OUTPUT 
int motorSPD_L = 0; 
int motorSPD_R = 0; 
 
// VARIABLES - SYSTEM 
int newMotorSPD_L = 0; 
int newMotorSPD_R = 0; 
int maxPing = 100; // Limit sensors to reading 100cm 
int basicVelocity = 0;  // How much the CI feels like it should be moving forward 
int urgTurn_L = 0;   // urge to turn to the Lefteft 
int urgTurn_R = 0;   // urge to turn to the Right 
int urgMotor_L = 0;   // urge to move Left motor forward 
int urgMotor_R = 0;   // urge to move Right motor forward 
int urgFatigue = 0; // Determines motor acceleration rate 
 
void setup() 
{ 
  // Initialize Serial output 
  Serial.begin(9600); 
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  // Initialize the motors 
  SabertoothTXPinSerial.begin(9600); 
  ST.setBaudRate(38400); 
  SabertoothTXPinSerial.end(); 
  SabertoothTXPinSerial.begin(38400); 
 
  // initialize the Ultrasonic Sensor and Mutiplexers for input. 
  pinMode(outPin, OUTPUT_FAST); 
  pinMode(inPin, INPUT_FAST); 
  pinMode(s0, OUTPUT);    // s0 
  pinMode(s1, OUTPUT);    // s1 
  pinMode(s2, OUTPUT);    // s2 
 
  // Set the PWM ports outputs 
  setPwmSwizzler(3, 9, 10, 11); 
//  tiltMotor.attach(3, 900, 1920); 
  extinguisherMotor.attach(3, 900, 1920); 
  extinguisherMotor.write(90); 
 
  // Set the setpoint for the PID 
  Setpoint = X_CENTER; 
 
  // Initialize pixy 
  pixy.init(); 
  pixyIR.init(); 
 
  // Kick Plates Interruption 
  attachInterrupt(2, kickPlate, CHANGE); 
 
  // Starting 
  lastMessage = millis(); 
  delay(2000); 
  //  Serial.println("Starting..."); 
} 
 
uint32_t lastBlockTimeIR = 0; 
uint32_t lastBlockTime = 0; 
volatile int color = 1; 
volatile int go = LOW; 
 
void loop() 
{ 
  if (go == HIGH) { 
    ST.motor(leftMotor, 0); 
    ST.motor(rightMotor, 0); 
    delay(3000); //Waits 5 secs until the robot starts running again 
    go = LOW; 
  } else { 
      webController(); 
      Serial.println(new_function); 
    if (new_function == 1) { 
      lineFollowing(); 
    } else if (new_function == 2) { 
      ReadSensors(); 
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      AvoidWalls(); 
      SetMotors(); 
    } else if (new_function == 3) { 
      fireTracking(); 
    } else if (new_function == 4) { 
      extinguisherSystem(); 
      new_function = 0; 
    } 
  } 
} 
 
void lineFollowing() { 
  int j = 0; 
  Setpoint = 160; 
  static int i = 0; 
  uint16_t blocks; 
 
  blocks = pixy.getBlocks(); 
  if (blocks) { 
    for (j = 0; j < blocks; j++) 
    { 
      if (pixy.blocks[j].signature == color) { 
        Input = pixy.blocks[j].x; 
        Compute3(); 
        motors(Output); 
        now = millis(); 
        lastBlockTime = millis(); 
      } 
      else if (millis() - lastBlockTime > 100) 
      { 
        ST.motor(leftMotor, 0); 
        ST.motor(rightMotor, 0); 
      } 
    } 
  } 
  else if (millis() - lastBlockTime > 100) 
  { 
    ST.motor(leftMotor, 0); 
    ST.motor(rightMotor, 0); 
  } 
} 
 
void motors(double Output) { 
  double leftSpeed = constrain((maxSpeed - Output), minSpeed, maxSpeed); 
  double rightSpeed = constrain((maxSpeed + Output), minSpeed, maxSpeed); 
  Serial.print(leftSpeed); 
  Serial.print("\t"); 
  Serial.print(rightSpeed); 
  Serial.print("\n"); 
 
  ST.motor(leftMotor, leftSpeed); 
  ST.motor(rightMotor, rightSpeed); 
} 
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unsigned long lastTime; 
double errSum, lastErr; 
 
int SampleTime = 1; //1 sec 
bool inAuto = false; 
 
void Compute3() 
{ 
  unsigned long now = millis(); 
  int timeChange = (now - lastTime); 
  if (timeChange >= SampleTime) 
  { 
    /*Compute all the working error variables*/ 
    double error = Setpoint - Input; 
    ITerm = ITerm + (Ki * error); 
 
    if (ITerm > outMax) ITerm = outMax; 
    else if (ITerm < outMin) ITerm = outMin; 
    double dInput = (Input - lastInput); 
 
    /*Compute PID Output*/ 
    Output = Kp * error + ITerm - Kd * dInput; 
 
    /*Remember some variables for next time*/ 
    lastInput = Input; 
    lastTime = now; 
  } 
} 
 
void kickPlate() 
{ 
  static unsigned long last_interrupt_time = 0; 
  unsigned long interrupt_time = millis(); 
  // If interrupts come faster than 200ms, assume it's a bounce and ignore 
  if (interrupt_time - last_interrupt_time > 200) 
  { 
    go = HIGH; 
  } 
  last_interrupt_time = interrupt_time; 
} 
 
void webController() { 
 
  str = readFile(); 
  pch = strtok (str, delimiter); 
  if (pch != NULL) { 
    ledStatus =  (String(pch) == "true"); 
    pch = strtok (NULL, delimiter); 
    function = String (pch); 
    pch = strtok (NULL, delimiter); 
    remoteIp = String (pch); 
    pch = strtok (NULL, delimiter); 
    stringIsOk  = String (pch) == "OK"; 
 
    //read the rest of the string, you can omit this 
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    while ((pch != NULL)) 
    { 
      pch = strtok (NULL, delimiter); 
    } 
  } 
 
  if (stringIsOk) { 
 
    char buf[function.length()]; 
    function.toCharArray(buf, function.length() + 1); 
    new_function = atof(buf); 
 
    //    Serial.println(function); 
 
    while (ledStatus == LOW) { 
      Serial.println("PARADO"); 
      ST.motor(leftMotor, 0); 
      ST.motor(rightMotor, 0); 
      str = readFile(); 
      pch = strtok (str, delimiter); 
      if (pch != NULL) { 
        ledStatus =  (String(pch) == "true"); 
        pch = strtok (NULL, delimiter); 
        function = String (pch); 
        pch = strtok (NULL, delimiter); 
        remoteIp = String (pch); 
        pch = strtok (NULL, delimiter); 
        stringIsOk  = String (pch) == "OK"; 
 
        //read the rest of the string, you can omit this 
        while ((pch != NULL)) 
        { 
          pch = strtok (NULL, delimiter); 
        } 
      } 
    } 
  } 
} 
 
// ------------- READ SENSOR VALUES AND STORE ------------- 
void ReadSensors() { 
 
  // ----- SONAR ----- 
  delay(5); // delay to avoid echos between sensors 
  sonarLeftVAL = readUltrasonic(1);  // Get distance in cm from sonar device 
  delay(5); // delay to avoid echos between sensors 
  sonarFrontRightVAL = readUltrasonic(3); 
  delay(5); // delay to avoid echos between sensors 
  sonarRightVAL = readUltrasonic(2); 
  delay(5); // delay to avoid echos between sensors 
  sonarFrontLeftVAL = readUltrasonic(0); 
} 
 
 
// ------------- PROCESS AND INTERPRET SENSOR DATA ------------- 
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void AvoidWalls() { 
 
  // GET/SET URGE VALUES 
  basicVelocity = 25; // Set above 0 to make it continuously move forward 
  urgMotor_L = 0; 
  urgMotor_R = 0; 
  urgFatigue = 0; 
 
  // AVOID WALLS AT SIDE 
  urgTurn_L += maxPing * maxPing - ((maxPing - sonarRightVAL) * (maxPing - 
sonarRightVAL)); //inverse proportional to square of rightval 
  urgTurn_R += maxPing * maxPing - ((maxPing - sonarLeftVAL) * (maxPing - 
sonarLeftVAL)); 
  urgMotor_L -= 0.1 * (maxPing * maxPing - ((maxPing - sonarRightVAL) * (maxPing - 
sonarRightVAL))); 
  urgMotor_R -= 0.1 * (maxPing * maxPing - ((maxPing - sonarLeftVAL) * (maxPing - 
sonarLeftVAL))); 
 
  // AVOID OBJECTS IN FRONT 
  urgMotor_L += maxPing * maxPing - 0.5 * ((maxPing - sonarFrontLeftVAL) * (maxPing - 
sonarFrontLeftVAL)) - ((maxPing - sonarFrontRightVAL) * (maxPing - sonarFrontRightVAL)); 
  urgMotor_R += maxPing * maxPing - 0.5 * ((maxPing - sonarFrontRightVAL) * (maxPing - 
sonarFrontRightVAL)) - ((maxPing - sonarFrontLeftVAL) * (maxPing - sonarFrontLeftVAL)); 
 
  // SCALE URGES TO PWM output values (255) 
  urgTurn_L = basicVelocity - map(urgTurn_L, 0, 1.8 * maxPing * maxPing, -basicVelocity, 
basicVelocity); // Scale to within PWM output limits 
  urgTurn_R = basicVelocity - map(urgTurn_R, 0, 1.8 * maxPing * maxPing, -basicVelocity, 
basicVelocity); 
  urgMotor_L = map(urgMotor_L, 0, 1.8 * maxPing * maxPing, -basicVelocity, basicVelocity); 
// Scale to within PWM output limits 
  urgMotor_R = map(urgMotor_R, 0, 1.8 * maxPing * maxPing, -basicVelocity, basicVelocity); 
 
  // SET MOTOR SPEED 
  newMotorSPD_L = basicVelocity + (urgMotor_L * 2) + (urgTurn_R / 2) - (urgTurn_L / 1) + 9; 
  newMotorSPD_R = basicVelocity + (urgMotor_R * 2) + (urgTurn_L / 2) - (urgTurn_R / 1) + 
9; 
 
  // Clip to 255/-255 (negative value means reverse direction) 
  if (newMotorSPD_L > basicVelocity) newMotorSPD_L = basicVelocity; 
  if (newMotorSPD_L < -basicVelocity) newMotorSPD_L = -basicVelocity; 
  if (newMotorSPD_R > basicVelocity) newMotorSPD_R = basicVelocity; 
  if (newMotorSPD_R < -basicVelocity) newMotorSPD_R = -basicVelocity; 
  if ((newMotorSPD_R <= 0) && (newMotorSPD_R > -10)) newMotorSPD_R = -10; 
  if ((newMotorSPD_R > 0) && (newMotorSPD_R <= 10)) newMotorSPD_R = 10; 
  if ((newMotorSPD_L <= 0) && (newMotorSPD_L > -10)) newMotorSPD_L = -10; 
  if ((newMotorSPD_L > 0) && (newMotorSPD_L <= 10)) newMotorSPD_L = 10; 
 
} 
 
 
// ------------- SET MOTOR DIRECTION AND PWM OUTPUTS ------------- 
void SetMotors() { // Convert calculated speed changes to actuator control data 
  int lrgSpdDelta = 0; //Used to store largest change in speed 
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  if (urgFatigue > 0) { // If using acceleration 
    // CALCULATE SPEED CHANGES 
    int dltaSpd_L = newMotorSPD_L - motorSPD_L; 
    int dltaSpd_R = newMotorSPD_R - motorSPD_R; 
    // Find largest speed difference 
    if (abs(dltaSpd_L) >= abs(dltaSpd_L)) { 
      lrgSpdDelta = abs(dltaSpd_L); 
    } else { 
      lrgSpdDelta = abs(dltaSpd_R); 
    } 
 
    // ACCELERATE MOTORS 
    for (int i = 0; i < lrgSpdDelta; i++) { 
      if (newMotorSPD_L < motorSPD_L) motorSPD_L--; 
      if (newMotorSPD_L > motorSPD_L) motorSPD_L++; 
      if (newMotorSPD_R < motorSPD_R) motorSPD_R--; 
      if (newMotorSPD_R > motorSPD_R) motorSPD_R++; 
      ST.motor(leftMotor, motorSPD_L); 
      ST.motor(rightMotor, motorSPD_R); 
      delay(urgFatigue);// Determines Acceleration 
    } 
  } else { 
    motorSPD_L = newMotorSPD_L; 
    motorSPD_R = newMotorSPD_R; 
    ST.motor(leftMotor, motorSPD_L); 
    ST.motor(rightMotor, motorSPD_R); 
  } 
 
}// END SetMotors 
 
 
float readUltrasonic(int count) 
{ 
  r0 = bitRead(count, 0); 
  r1 = bitRead(count, 1); 
  r2 = bitRead(count, 2); 
 
  digitalWrite(s0, r0); 
  digitalWrite(s1, r1); 
  digitalWrite(s2, r2); 
 
  float duration, cm; 
 
  fastDigitalWrite(outPin, LOW); 
  waitMicros(2); 
  fastDigitalWrite(outPin, HIGH); 
  waitMicros(10); 
  fastDigitalWrite(outPin, LOW); 
 
  duration = pulseIn(inPin, HIGH); // calls fastGpioPciDigitalRead 
 
 
  // convert the time into a distance 
  cm = microsecondsToCentimeters(duration); 
  (cm > 101) ? (cm = maxPing) : (cm = cm); 
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  delay(50); 
 
  return cm; 
} 
 
void waitMicros(int val) 
{ 
  unsigned long a = micros(); 
  unsigned long b = micros(); 
  while ((b - a) < val) 
  { 
    b = micros(); 
    if (a > b) 
    { 
      break; 
    } 
  } 
} 
 
float microsecondsToCentimeters(float microseconds) 
{ 
  // The speed of sound is 340 m/s or 29 microseconds per centimeter. 
  // The ping travels out and back, so to find the distance of the 
  // object we take half of the distance travelled. 
  return microseconds / 29 / 2; 
} 
 
// ------------- SEND DEBUG INFO ON SERIAL PORT ------------- 
void SerialDebug() { 
 
  Serial.print("Sonar LEFT = "); 
  Serial.println(sonarLeftVAL); 
  Serial.print("Sonar FRONT LEFT = "); 
  Serial.println(sonarFrontLeftVAL); 
  Serial.print("Sonar FRONT RIGHT = "); 
  Serial.println(sonarFrontRightVAL); 
  Serial.print("Sonar RIGHT = "); 
  Serial.println(sonarRightVAL); 
 
  Serial.println("LEFT\t\tRIGHT"); 
  Serial.print(motorSPD_L); 
  Serial.print("\t\t"); 
  Serial.println(motorSPD_R); 
} 
 
void fireTracking() 
{ 
  uint16_t blocksIR; 
  blocksIR = pixyIR.getBlocks(); 
 
  // If we have blocksIR in sight, track and follow them 
  if (blocksIR) 
  { 
    int trackedBlock = TrackBlock(blocksIR); 
    FollowBlock(trackedBlock); 
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    lastBlockTimeIR = millis(); 
  } 
  else if (millis() - lastBlockTimeIR > 100) 
  { 
    ST.motor(leftMotor, 0); 
    ST.motor(rightMotor, 0); 
    ScanForBlocks(); 
  } 
} 
 
int oldX, oldY, oldSignature; 
 
//--------------------------------------- 
// Track blocksIR via the Pixy pan/tilt mech 
// (based in part on Pixy CMUcam5 pantilt example) 
//--------------------------------------- 
int TrackBlock(int blockCount) 
{ 
  int trackedBlock = 0; 
  long maxSize = 0; 
 
  // Serial.print("blocksIR ="); 
  // Serial.println(blockCount); 
 
  for (int i = 0; i < blockCount; i++) 
  { 
    if ((oldSignature == 0) || (pixyIR.blocks[i].signature == oldSignature)) 
    { 
      long newSize = pixyIR.blocks[i].height * pixyIR.blocks[i].width; 
      if (newSize > maxSize) 
      { 
        trackedBlock = i; 
        maxSize = newSize; 
      } 
    } 
  } 
 
  int32_t panError = X_CENTER - pixyIR.blocks[trackedBlock].x; 
  int32_t tiltError = pixyIR.blocks[trackedBlock].y - Y_CENTER; 
 
  panLoop.update(panError); 
  tiltLoop.update(tiltError); 
 
  pixyIR.setServos(panLoop.m_pos, tiltLoop.m_pos); 
 
  oldX = pixyIR.blocks[trackedBlock].x; 
  oldY = pixyIR.blocks[trackedBlock].y; 
  oldSignature = pixyIR.blocks[trackedBlock].signature; 
  return trackedBlock; 
} 
 
//--------------------------------------- 
// Follow blocksIR via the Zumo robot drive 
// 
// This code makes the robot base turn 
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// and move to follow the pan/tilt tracking 
// of the head. 
//--------------------------------------- 
int32_t size = 70; 
void FollowBlock(int trackedBlock) 
{ 
  int32_t followError = RCS_CENTER_POS - panLoop.m_pos;  // How far off-center are we 
looking now? 
 
  // Size is the area of the object. 
  // We keep a running average of the last 8. 
  size += pixyIR.blocks[trackedBlock].width * pixyIR.blocks[trackedBlock].height; 
  size -= size >> 3; 
 
  // Forward speed decreases as we approach the object (size is larger) 
  int forwardSpeed = constrain (30 - (size / 100), -30, 30); 
 
  // Steering differential is proportional to the error times the forward speed 
  int32_t differential = (followError + (followError * forwardSpeed)) / 900; //AJUSTAR!!!!!! NAO 
SEI COMO!!!??? 
 
  // Adjust the left and right speeds by the steering differential. 
  int leftSpeed = constrain(forwardSpeed + differential, -30, 30); 
  int rightSpeed = constrain(forwardSpeed - differential, -30, 30); 
 
  // And set the motor speeds 
  ST.motor(leftMotor, leftSpeed); 
  ST.motor(rightMotor, rightSpeed); 
} 
 
//--------------------------------------- 
// Random search for blocksIR 
// 
// This code pans back and forth at random 
// until a block is detected 
//--------------------------------------- 
int scanIncrement = (RCS_MAX_POS - RCS_MIN_POS) / 150; 
uint32_t lastMove = 0; 
 
void ScanForBlocks() 
{ 
  if (millis() - lastMove > 20) 
  { 
    lastMove = millis(); 
    panLoop.m_pos += scanIncrement; 
    if ((panLoop.m_pos >= RCS_MAX_POS) || (panLoop.m_pos <= RCS_MIN_POS)) 
    { 
      tiltLoop.m_pos = random(RCS_MAX_POS_TILT * 0.6, RCS_MAX_POS_TILT); 
      scanIncrement = -scanIncrement; 
      if (scanIncrement < 0) 
      { 
        ST.motor(leftMotor, map(-250, -400, 400, -70, 70)); 
        ST.motor(rightMotor, map(250, -400, 400, -70, 70)); 
      } 
      else 
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      { 
        ST.motor(leftMotor, map(+180, -400, 400, -70, 70)); 
        ST.motor(rightMotor, map(-180, -400, 400, -70, 70)); 
      } 
      delay(random(250, 500)); 
    } 
 
    pixyIR.setServos(panLoop.m_pos, tiltLoop.m_pos); 
  } 
} 
 
void extinguisherSystem() { 
  extinguisherMotor.write(180); 
  delay(100); 
  extinguisherMotor.write(90); 
  delay(1000); 
  extinguisherMotor.write(0); 
  delay(100); 
  extinguisherMotor.write(90); 
  delay(100); 
  delay(5000); 
} 
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Apêndice B – Lista de materiais utilizados 

 

 


