UNIVERSIDADE DE SAO PAULO
ESCOLA DE ENGENHARIA DE SAO CARLOS

Murilo Henrique Pasini Trevisan

Depuracgao de sistemas embarcados em tempo real com uma abordagem nao

intrusiva

Sao0 Carlos
2025

Murilo Henrique Pasini Trevisan

Depuragao de sistemas embarcados em tempo real com uma abordagem nao

intrusiva

Monografia apresentada ao Curso de
Engenharia elétrica - énfase em
eletrénica, da Escola de Engenharia de
Sdo Carlos da Universidade de Sé&o
Paulo, como parte dos requisitos para
obtencdo do titulo de Engenheiro

Eletricista.

Orientador(a): Prof. Dr. Pedro de Oliveira

Conceigao Junior

Sao Carlos
2025

AUTORIZO A REPRODUCAD TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalografica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados insendos pelo{a) autor{a).

TH14d

Trevisan, Murileo Henrigue PFasini

Depuracdo de sistemas embarcados em tempo real
com uma abordagem ndo intrusiva / Murilo Henrigue
Pasini Trevisan; orientador Pedro de Oliveira ConceicSo
Junior. S3oc Carlos, 2025,

Monografia (Graduagdo em Engenharia Elétrica com

énfase em Eletrénica) —- Escala de Engenharia de S3o
Carlos da Universidade de S53g Paulo, 2025,

1. Sistemas embarcados. 2. Depuracdo, 3. Tempo
real. 4. N3o intrusiva. 5. Ferramentas. I. Titulo.

Eduardo Graziosi Silva - CRB - 8/8907

FOLHA DE APROVAGAO

Nome: Murilo Henrique Pasini Trevisan

Titulo: “Depuragao de sistemas embarcados em tempo real com
uma abordagem nao intrusiva”

Trabalho de Conclusio de Curso defendido e aprovado

em L%/ 44 /1 RIS,

comNOTA 1O (DEE), pela Comissdo
Julgadora:

Prof. Dr. Pedro de Oliveira Conceicao Junior - Orientador
SEL/EESC/USP

Prof. Dr. Maximiliam Luppe - SEL/EESC/USP

Dr. Leonardo Mariano Gomes - EESC/SEL

Coordenador da CoC-Engenharia Elétrica - EESC/USP:
Professor Associado José Carlos de Melo Vieira Junior

Dedico este trabalho a minha familia, cujo apoio incondicional foi fundamental
durante os desafios académicos. Ao meu orientador, Prof. Dr. Pedro de Oliveira
Conceigédo Junior, pela orientagéo técnica e paciéncia durante o desenvolvimento
deste projeto. E a todos os engenheiros que diariamente enfrentam os desafios

silenciosos da depuracéao de sistemas embarcados.

AGRADECIMENTOS

Agradeco primeiramente a minha familia e todo o seu suporte no meu
desenvolvimento que culmina ao ponto que estou na elaboragao deste trabalho.

A minha irma, que me auxiliou com idéias e suporte para elaboracado do texto deste
projeto.

Ao meu orientador, Prof Pedro de Oliveira Conceigcao Junior, que me auxiliou no
desenvolvimento deste trabalho e me orientou sobre as melhores praticas para a
entrega do projeto de conclusao de curso.

A todos que me acompanharam no meu processo de desenvolvimento e me

auxiliaram a alcangar meus objetivos.

"O perfil psicoldégico [de um programador] é
principalmente a capacidade de alternar
entre niveis de abstracdo, do baixo nivel ao
alto nivel. Para ver algo no pequeno e para
ver algo no grande.”

Donald E. Knuth

RESUMO

Trevisan, M. P. Depuracao de sistemas embarcados em tempo real com uma
abordagem nao intrusiva. 2025. Monografia (Trabalho de Conclusédo de Curso) —
Escola de Engenharia de Séao Carlos, Universidade de Sdo Paulo, Sao Carlos, 2025.

Este trabalho aborda os desafios e as solugdes relacionadas a depuragdo de
sistemas embarcados em tempo real, com foco em técnicas nao intrusivas. O
objetivo principal é apresentar métodos que permitam a analise e correg¢ao de falhas
sem interferir na operagdo normal do sistema, garantindo a previsibilidade e a
confiabilidade exigidas por aplicagdes criticas. S&o explorados o0s conceitos
fundamentais de sistemas embarcados e tempo real, os principais problemas
enfrentados durante a depuracédo, bem como ferramentas modernas que viabilizam
a observacdo do comportamento do sistema sem afetar sua execugado. Ao final é
realizado um estudo comparativo de 4 métodos de depuracédo, levantando métricas
de tempo de execugdo da tarefa e tempo entre execugdes das tarefas, assim como
o consumo de memoria. Este estudo contribui para o entendimento de praticas mais

seguras e eficientes na engenharia de sistemas embarcados.

Palavras-chave: Sistemas embarcados. Depuracdao. Tempo real.. Nao intrusiva.

Ferramentas.

ABSTRACT

Trevisan, M. P. Debugging embedded systems in real time with a non-intrusive
approach. 2025. Monografia (Trabalho de Conclusdo de Curso) — Escola de
Engenharia de Sao Carlos, Universidade de S&do Paulo, Sdo Carlos, 2025.

This work addresses the challenges and solutions related to debugging real-time
embedded systems, focusing on non-intrusive techniques. The main goal is to
present methods that enable the analysis and correction of failures without interfering
with the system's normal operation, ensuring the predictability and reliability required
by critical applications. Fundamental concepts of embedded and real-time systems
are explored, as well as the main problems encountered during debugging and
modern tools that allow observation of system behavior without affecting its
execution. At the end, a comparative study of 4 debugging methods is carried out,
collecting metrics of task execution time and time between task executions, as well
as memory consumption. This study contributes to the understanding of safer and

more efficient practices in embedded systems engineering.

Keywords: Embedded systems. Real-time. Debugging. Non-intrusive. Tools.

LISTA DE FIGURAS

Figura 1 - Arquitetura de um sistema embarcado moderno............cccccvvvvvvveeinennennn. 19
Figura 2 - AUTOMOLIVO. ... 23
FIQura 3 = AGrONAULICA. e e e ee e 23
Figura 4 - Médico-hospitalar...............uuiiiiiiii e 24
Figura 5 — INAUSHA 4.0... ..o —————— 25
FigUra 6 — CONSUIMO.coiiii ittt e ettt e e e e e e e e e e ennneeeeaeeann 25
Figura 7 — Diagrama de conexdes da bancadadetestesc.cooiiiiiiiiinen. 38

Figura 8 — Arquitetura de tarefas do software ... 41

SUMARIO

1 INTRODUCAO
1.1 Justificativa
1.2 Objetivos
1.2.1 Objetivo Geral
1.2.2 Objetivos Especificos
1.3 Estrutura do Trabalho
2 FUNDAMENTOS DE SISTEMAS EMBARCADOS
2.1 Conceito de Sistemas Embarcados
2.2 Estrutura Geral de um Sistema Embarcado
2.3 Classifica¢des dos Sistemas Embarcados
2.4 Caracteristicas Principais
2.5 Sistemas Embarcados em Tempo Real
2.6 Exemplos de Aplicacdes Reais
2.7 Tecnologias e Tendéncias Atuais
2.8 Consideragdes Finais
3 OS DESAFIOS NA DEPURAGAO DE SISTEMAS EMBARCADOS EM TEMPO REAL
3.1 Introdugao
3.2 Restrigcdes de Tempo Real
3.3 Visibilidade Limitada
3.4 Interferéncia da Depuracdo no Comportamento
3.5 Escassez de Recursos Computacionais
3.6 Concorréncia e Sincronizagao
3.7 Falhas Intermitentes e Dificeis de Reproduzir
3.8 Acesso Fisico Restrito
3.9 Testes com Ambiente Realista
3.10 Consideracgdes Finais
4 METODOS DE DEPURACAO NAO INTRUSIVOS
4.1 Introducgdo

4.2 Conceito de Depuragdo Nao Intrusiva

13
15
15
15
16
16
18
18
18
20
21
21
24
27
28
28
28
29
29
30
30
31
31
32
32
32
34
34
34

4.3 Rastreio por Hardware (Hardware Tracing)

4.4 Espionagem de Barramentos

4.5 Monitoramento por Registradores de Eventos

4.6 Espelhamento de Varidveis (Shadowing)

4.7 Depuragdo por Instrumentag¢do de Hardware Externo
4.8 Analise Fora de Linha (Post-Mortem)

4.9 SolugGes Comerciais e Open Source

4.10 Consideragdes Finais

34
35
36
36
36
36
37
38

5 AVALIAGAO EXPERIMENTAL DE METODOS DE DEPURAGAO EM SISTEMAS EMBARCADOS DE TEMPO

REAL
5.1 Metodologia experimental

5.1.1 Objetivo principal
5.1.2 Hipétese de pesquisa
5.1.3 Variaveis independentes
5.1.4 Variaveis dependentes
5.1.5 Procedimento experimental
5.1.6 Procedimento de teste
5.1.7 Coleta de dados

6 Resultados

6.1 Resultados do Método 1: Logger Uart blogqueante na tarefa de controle

6.2 Resultados do Método 2: Logger Uart bloqueante em tarefa de menor prioridade:

6.3 Resultados do Método 2: Logger Uart DMA na tarefa de controle
6.4 Resultados do Método 2: Logger Uart DMA em tarefa de menor prioridade
6.5 Andlise comparativa e validacdo da hipdtese

7 CONCLUSAO

39
39
40
40
40
41
41
42
42
42
42
43
43
44
44
45

13

1 INTRODUGAO

A industria eletrbnica tem apresentado um crescimento significativo nas
ultimas décadas, impulsionado principalmente pela integracdo de sistemas
computacionais em uma vasta gama de produtos de uso cotidiano.

Dispositivos como automoveis, eletrodomésticos, equipamentos meédicos,
sistemas de automacao residencial e industrial, entre outros, vém incorporando
solugcdes baseadas em eletrdnica digital, o que resulta em produtos mais eficientes,
acessiveis e com maior valor agregado (BARROS; CAVALCANTE, 2010).

Sistemas de computacdo, antes restritos a ambientes corporativos ou
domésticos em forma de desktops e servidores, tornaram-se onipresentes,
embutidos de maneira discreta em equipamentos que muitas vezes nao aparentam
conter qualquer tipo de inteligéncia computacional.

Essa tendéncia se reflete nos dados de produgado: enquanto milhdes de
processadores sao fabricados anualmente para computadores pessoais, bilhdes de
microcontroladores e processadores dedicados s&o empregados em sistemas
embarcados voltados a aplicagdes especificas. Essa disparidade demonstra a
escala e a importancia crescente dos sistemas embarcados no cenario tecnoldgico
atual (BARROS; CAVALCANTE, 2010).

O avango desses sistemas, no entanto, trouxe consigo novos desafios no
processo de desenvolvimento, especialmente pela necessidade de integragdo de
componentes heterogéneos — como circuitos analdgicos, sensores, atuadores e
unidades de processamento digital — e pela crescente demanda por confiabilidade,
baixo consumo energético e operagdo em tempo real.

Além disso, os requisitos de custo e tempo de mercado impdem restricdes
rigidas, tornando o projeto de sistemas embarcados uma tarefa complexa e
estratégica (BARROS; CAVALCANTE, 2010).

De acordo com De Micheli (1996) existem trés classes de sistemas digitais:
emulacéao e sistemas de prototipagéo, sistemas de computacdo de proposito geral e
sistemas embarcados (embedded systems).

Os sistemas de emulagcdo e prototipacdo baseiam-se em tecnologias de

hardware reprogramaveis, no qual o hardware pode ser reconfigurado pela utilizagéo

14

de ferramentas de sintese. Tais sistemas requerem usuarios especialistas e séo
utilizados para a validacao de sistemas digitais.

Um sistema embarcado (embedded system) € um sistema computacional
projetado para realizar uma fungdo especifica dentro de um sistema maior. Tais
sistemas estdo presentes em praticamente todos os dispositivos eletrénicos
modernos.

Podem ser encontrados em produtos de consumo (como telefones celulares,
cameras digitais e videogames portateis), em eletrodomésticos (como fornos de
micro-ondas, maquinas de lavar e sistemas de climatizagdo), em equipamentos de
escritério (como impressoras e copiadoras), e em veiculos automotivos (controlando
freios ABS, injecdo eletrdnica, suspensdo ativa, entre outros) (BARROS;
CAVALCANTE, 2010).

Estudos apontam que, ja na década de 1990, o numero de sistemas
embarcados em uma unica residéncia norte-americana ultrapassava o numero de
computadores pessoais, com expectativa de crescimento exponencial nos anos
seguintes. Em setores como o automotivo, por exemplo, o custo médio da eletronica
embarcada por veiculo aumentou significativamente ao longo dos anos, refletindo a
complexidade e o papel essencial desses sistemas nas funcionalidades modernas
(BARROS; CAVALCANTE, 2010).

Os sistemas embarcados possuem caracteristicas que os distinguem de
outras categorias de sistemas computacionais. Em geral, apresentam (BARROS;
CAVALCANTE, 2010):

1. Funcionalidade dedicada: s&o projetados para executar uma tarefa

especifica de forma repetitiva e previsivel;

2. Altas restricoes de projeto: precisam atender simultaneamente a critérios
rigorosos de custo, tamanho fisico, consumo energético, desempenho e

confiabilidade;

3. Operagao em tempo real: muitas aplicagbes exigem resposta imediata a
eventos do ambiente, como é o caso de sistemas de controle automotivo,

médicos ou industriais.

15

Dessa forma, o desenvolvimento de sistemas embarcados exige metodologias
e ferramentas especificas, que levem em conta tanto os requisitos funcionais quanto
as restrigbes nao funcionais impostas pela aplicagdo. Neste contexto, aspectos
como a depuracdo e validagao do software embarcado, especialmente em sistemas
que operam sob restrigdes de tempo real, tornam-se temas centrais para garantir o

correto funcionamento e a confiabilidade do produto final.

1.1 Justificativa

Com o crescimento da complexidade dos sistemas embarcados, a etapa de
depuracdo tem se tornado cada vez mais critica no ciclo de desenvolvimento. Nos
sistemas tradicionais, ferramentas de depuragdo como breakpoints, watchpoints e
analise de logs sdo amplamente utilizadas.

No entanto, em sistemas embarcados com restricdes de tempo real, o uso
dessas ferramentas pode introduzir perturbacbes que afetam diretamente o
comportamento temporal e funcional do sistema. Isso compromete a confiabilidade
do processo de verificagdo e pode mascarar erros, dificultando sua identificacao e
corregao.

Nesse cenario, torna-se essencial a adogao de técnicas de depuragcdo nao
intrusiva, que possibilitem a observagdo do comportamento do sistema sem interferir
em sua execucdo. Estas técnicas vém ganhando relevancia tanto na academia
quanto na industria, uma vez que permitem diagndsticos mais precisos e seguros
em ambientes criticos.

A escolha deste tema se justifica, portanto, pela sua atualidade, relevancia

pratica e pelo impacto direto na qualidade e seguranca dos produtos desenvolvidos.

16

1.2 Objetivos
1.2.1 Objetivo Geral

O objetivo geral desse trabalho é apresentar e discutir métodos de depuragao
nao intrusivas aplicadas a sistemas embarcados em tempo real, destacando sua
importancia, aplicagdes, vantagens e limitagées. Essa demonstragéo € feita a partir
da teoria da literatura sobre o tema e da demonstragao pratica desses métodos em
um projeto de software de tempo real.

1.2.2 Objetivos Especificos

Para alcangar o objetivo geral desse trabalho, tem-se como objetivos

especificos os seguintes topicos:

e Conceituar sistemas embarcados e suas particularidades quanto ao projeto e

a execugao em tempo real;

e Apontar os principais desafios enfrentados no processo de depuragdo de

sistemas embarcados;

e Explorar técnicas de depuragdo nao intrusiva;

e Identificar as ferramentas e metodologias mais utilizadas na industria e na

pesquisa académica.

e Realizar uma analise comparativa de diferentes métodos para demonstracao

dos conceitos apresentados.

17

1.3 Estrutura do Trabalho

Este trabalho esta organizado da seguinte forma:

e Capitulo 1 - Introdugao: apresenta o contexto geral da pesquisa,

justificativa, objetivos e organizagao do trabalho.

e Capitulo 2 — Fundamentos de Sistemas Embarcados: discute os conceitos
fundamentais sobre sistemas embarcados, arquitetura, classificacoes e

caracteristicas principais.

e Capitulo 3 — Desafios na Depuracgao de Sistemas em Tempo Real: aborda
as limitacbes e complexidades da depuracdo em sistemas com restricoes

temporais.

e Capitulo 4 — Abordagens de Depuragao Nao Intrusiva: explora os métodos

nao intrusivos disponiveis, tecnologias utilizadas e aplicagées praticas.

e Capitulo 5 — Avaliagcao experimental de métodos de depuragao em
sistemas embarcados de tempo real: compara quantitativamente alguns
dos meétodos apresentados, demonstrando vantagens e desvantagens de

cada aplicagao e benchmark de solugdes.

e Capitulo 6 — Resultados: Realiza a analise dos resultados obtidos na se¢ao
anterior e discute o trade-off entre os diferentes métodos a partir dos dados

coletados.

e Capitulo 7 — Conclusao: sintetiza os principais pontos discutidos, apresenta

consideragdes finais e possiveis direcdes para trabalhos futuros.

18

2 FUNDAMENTOS DE SISTEMAS EMBARCADOS

2.1 Conceito de Sistemas Embarcados

Sistemas embarcados sdo sistemas computacionais projetados para
desempenhar fungdes especificas, geralmente como parte integrante de dispositivos
maiores. Eles combinam hardware e software dedicados para atender a requisitos
particulares de desempenho, consumo de energia, tamanho e confiabilidade (SILVA
JUNIOR, 2018).

Diferentemente dos computadores de uso geral, que suportam multiplas
aplicagdes e possuem recursos amplamente configuraveis, os sistemas embarcados
sdo altamente especializados. Essa especializagdo permite que eles operem de
forma mais eficiente, com menos recursos e menor custo. Um exemplo simples é o
microcontrolador presente em um controle remoto, cujo unico propdsito € interpretar
os comandos do usudrio e acionar um transmissor de infravermelho (SILVA JUNIOR,
2018).

A definicao mais técnica apresentada por Toniolo (2018), € que um sistema
embarcado € um sistema de computador que faz parte de um produto, sendo
projetado para realizar um ou poucos trabalhos especificos, muitas vezes em tempo

real.

2.2 Estrutura Geral de um Sistema Embarcado

A estrutura de um sistema embarcado pode variar conforme a complexidade

do projeto, mas em geral é composta por:

e Processador (CPU, microcontrolador ou DSP): responsavel pela execugéo

do programa e controle do sistema;

e Meméria: armazenamento do firmware (ROM, Flash) e da execug¢ao (RAM);

o Dispositivos de Entrada/Saida: conectados a sensores, atuadores e outros

periféricos;

19

e Barramentos de comunicagao: como 12C, SPI, CAN, UART, que permitem a

troca de dados entre componentes;

e Sistema de alimentagao: que pode ser desde uma bateria simples até fontes

reguladas com protecao térmica;

e Camadas de software: incluindo o firmware, drivers, bibliotecas de tempo

real (RTOS) e rotinas de inicializagao (bootloaders).

A figura abaixo representa a arquitetura genérica de um sistema embarcado

moderno:

Figura 1 — Arquitetura de um sistema embarcado moderno

=
/- Sistema Embarcado \

] (1]
n =:) 5 : n

Memoria rocessador

. Sensores L ta Acionadores >
/Entrada || : I ™ ; = Saidas

11 00 |}
c c
= e
= Timers, ADC, e

DAC, etc. Interfaces (Portas)

Ambiente Externo

Fonte: Reis (2015).

2.3 Classificagoes dos Sistemas Embarcados

Os sistemas embarcados podem ser classificados de varias maneiras
(VARGAS, 2007):

20

Por complexidade:

Sistemas pequenos: como alarmes e crondmetros, geralmente com 8 bits,

pouca RAM e sem sistema operacional,

Sistemas médios: como roteadores Wi-Fi, usando microcontroladores de 16

ou 32 bits e podendo rodar um sistema operacional leve;

Sistemas complexos: como drones, smart TVs ou sistemas automotivos,
com processadores avangados e sistemas operacionais embarcados
completos (como Linux embarcado, Android ou QNX).

Por criticidade temporal:

Tempo real rigido (Hard Real-Time): atrasos na execugdo sao inaceitaveis.

Exemplo: controle de sistemas aeronauticos;

Tempo real brando (Soft Real-Time): atrasos impactam o desempenho, mas

nao comprometem a funcionalidade. Exemplo: reprodutores de video;

Sem tempo real: ndo ha requisitos temporais estritos. Exemplo: sistemas de

atualizacao de firmware.

Por atualizabilidade:

Fixos: o firmware é carregado uma Unica vez e raramente é alterado;

Atualizaveis: permitem reprogramagao via USB, OTA (Over-the-Air), JTAG,

etc;

21

2.4 Caracteristicas Principais

Entre as principais caracteristicas que definem os sistemas embarcados,

destacam-se (BARR; MASSA, 2006):

Funcionalidade dedicada: sédo projetados para uma funcgéo especifica;

Confiabilidade elevada: devem operar continuamente e sem falhas por

longos periodos;

Baixo consumo de energia: especialmente critico em dispositivos moveis ou

autbnomos;

Redugao de custo e tamanho: para permitir integracdo em produtos de

massa;

Desempenho em tempo real: capacidade de reagir a estimulos ambientais

dentro de prazos predefinidos;

Alta integracdo de componentes: muitos sistemas utilizam SoCs
(System-on-Chip), que integram CPU, memoria e periféricos em um unico

chip;

Interfaces especializadas: como PWM para motores, ADC para sensores

analdgicos, ou interfaces automotivas como LIN e CAN.

2.5 Sistemas Embarcados em Tempo Real

De acordo com Ganssle (2008), sistemas embarcados de tempo real

(real-time embedded systems) sao aqueles que devem produzir respostas dentro de

limites temporais rigidos. A capacidade de reagir em tempo habil € tdo importante

quanto a correcao logica do resultado.

22

Esses sistemas exigem um controle rigoroso do tempo de execugado de
tarefas, da prioridade entre processos e do uso de interrupgdes. Costumam
empregar um RTOS (Real-Time Operating System), alguns exemplos sao
FreeRTOS, Zephyr, ChibiOS, RTEMS, entre outros.

e Exemplo: Controle de Airbag

Em caso de colisdo, o sistema embarcado do airbag deve processar o
impacto, acionar o inflador e liberar o airbag em menos de 50 milissegundos. Um
atraso pode tornar o sistema inutil e causar risco de vida. Esse é um exemplo
classico de sistema de tempo real rigido.

Abaixo uma representacdo de um sistema baseado em tempo real com

sistema operacional RTLinux e uma arquitetura de software hierarquica:

Figura 2 — Arquitetura de software hierdrquica de tempo real

Femore ; . —
nser | Bemom Rﬂ;’;";
interface manitoring s
Inyer | “'.]k] | ek
o S Metwork o ™
Service — y
agent | Service agent task
layer
I |
e . e I. - 2z = l = 1
| Realtime task Non-realtime tagk
o Rt | rr | R l task J task J
Exemtion task tak || task — L,
Layer | : +
T o Linmx kemmel
P — 'l‘ e _‘_
RIL!m.u Eernel |
Hardware | Hardware ‘
layer

Fonte: HONG (2005).

23

2.6 Exemplos de Aplicagoes Reais

A aplicagao de sistemas embarcados abrange praticamente todos os setores

da economia e da vida cotidiana. Alguns exemplos praticos:

e Automotivo: unidades de controle eletronico (ECU), sistemas de
infoentretenimento, sensores de estacionamento, controle de inje¢ao
eletrbnica, frenagem auténoma, conforme Figura 2.

Figura 2 — Arquitetura de rede veicular baseada em zonas.

ECU ECU
ECLS ECU
Infotainment - Domain - Powertrain
Controller
Domain Domain
ECU Controller Controller | ECU
—
| ECU ECU ecu |YH ecu |
Domain Domain
Controller Controller
ECU ECL] ECU ECU

iS5

Fonte: Adaptado de KIM et al., 2023.

e Aeronautica: sistemas de navegacéao, controle de estabilidade, comunicagao

via satélite, sistemas redundantes de voo, conforme Figura 3.

24

Figura 3 — Arquitetura de integragdo aeronautica

‘ GPS (supplomentary use) ' Inmarsal artificl sateline
2 e -
- Vs "-. ¥ ' e . ‘u‘

\ ’.-‘_. Tk
.y P » To the public
¥ , Aoronautical Niework
i --_{ i ground slation
N—— To the data link
A ‘ “""Qm__ natwork

N [Raronsvtcal pibic

Commumicalion
Aadio naw ;|a| 1) \
4 Agronautical i
|;-;m.~. = L8
-
&i ﬁ'_

Network

VOR DN /
Aur traffic condrod
(micro line) COMENMANECAtion T"'"“J:' Bl

L]
U
s . .ﬂ,
P - e ———] -
Po——]
Akport conlie
Alrport control cenlers Tacmingl control contes Contred arma control cente: Terminal conbral cenler Samias

Fonte: Liasch (2025).
e Médico-hospitalar: monitores cardiacos, oximetros, bombas de insulina,

equipamentos de imagem, conforme Figura 4.

Figura 4 — Sistema médico-hospitalar

/.:f'"’

sl

BP ROLIFE

Fonte: Prolife (2025).

25

e Industria 4.0: sensores loT, atuadores inteligentes, robds industriais, CLPs
com Ethernet industrial, conforme Figura 5.

Figura 5 — Industria 4.0

lloT connectivity

Mana,

ament
S

Supervision
HMI SCADA

%4 Condition monitoring "
4 Diagnostics

Fonte: Castro, Pacheco, Pinheiro (2023).

e Consumo: geladeiras inteligentes, smart TVs, dispositivos vestiveis
(wearables), dispositivos Alexa/Google Home, conforme Figura 6.

26

Figura 6 — Itens de consumo

Fonte: Unipar (2025).
2.7 Tecnologias e Tendéncias Atuais

Com a evolugdo da tecnologia, algumas tendéncias vém moldando o futuro
dos sistemas embarcados HEATH (2002):

¢ Internet das Coisas (loT): sistemas embarcados conectados em rede, com

capacidade de comunicacao, coleta e processamento de dados remotos;

o Inteligéncia Artificial embarcada (Edge Al): uso de algoritmos de

aprendizado de maquina localmente em dispositivos com baixa poténcia;

e Ciberseguranga embarcada: aumento da preocupagdo com a protecao

contra ataques em sistemas criticos;

e Virtualizagdao e containers: uso de ferramentas como Docker e VxWorks

para isolamento de fungdes em sistemas criticos;

o Plataformas abertas: uso crescente de sistemas baseados em Linux

embarcado, como Yocto e Buildroot.

27

2.8 Consideracgoes Finais

Os sistemas embarcados sao parte essencial da infraestrutura tecnoldgica
moderna. Sua evolugdo continua & impulsionada por avangos em microeletrénica,
redes sem fio, software embarcado e tecnologias de integragcdo. O entendimento de
seus fundamentos é indispensavel para enfrentar os desafios de desenvolvimento,
especialmente quando se trata de sistemas criticos com requisitos de tempo real.

Com a expansdao do numero de dispositivos inteligentes conectados e
autbnomos, espera-se que a demanda por solugdes embarcadas eficientes e

seguras continue crescendo de forma acelerada nos proximos anos.

28

3 OS DESAFIOS NA DEPURAGAO DE SISTEMAS EMBARCADOS EM TEMPO
REAL

3.1 Introdugao

Depurar sistemas embarcados sempre foi uma tarefa desafiadora, e essa
complexidade se intensifica quando o sistema possui requisitos de tempo real. A
necessidade de garantir respostas dentro de prazos rigidos, aliada a escassez de
recursos computacionais e a interagcdo com o mundo fisico, cria um cenario em que
os métodos tradicionais de depuracdo nem sempre sao aplicaveis ou seguros
(Ganssle, 2008; Barr; Massa, 2006).

Neste capitulo, serdo discutidos os principais desafios enfrentados durante o
processo de depuracao de sistemas embarcados em tempo real, ilustrando as
limitacbes das abordagens convencionais e a necessidade de técnicas

especializadas que minimizem interferéncias no funcionamento do sistema.
3.2 Restrigoes de Tempo Real
Sistemas embarcados de tempo real sdo altamente sensiveis a atrasos. A
simples inser¢cdo de um ponto de parada (breakpoint), ou a utilizacdo de ferramentas
de instrumentagdo em tempo de execucgao, pode causar perda de deadlines, falhas
no comportamento esperado ou até travamentos (Marwedel, 2010).
Esse cenario é especialmente critico em aplicagbes como:
e Sistemas automotivos (ex: freio ABS);
e Dispositivos médicos (ex: marca-passos);
e Aeronaves (ex: controle de voo automatico).
Essas aplicagbes exigem que qualquer observagdo ou modificagdo de

variaveis ocorra de forma nao intrusiva, sem afetar o tempo de resposta do sistema
(Yiu, 2015).

29

3.3 Visibilidade Limitada

Diferente de sistemas desktop, que oferecem interfaces graficas e

monitoramento por software, muitos sistemas embarcados operam com:

e Auséncia de display ou interface gréfica;

e Acesso restrito a memoria ou registros internos;

e Comunicacéo limitada (ex: UART, SPI);

o Falta de sistema operacional completo (bare-metal).

A consequéncia é a baixa visibilidade do estado interno do sistema,

dificultando a compreensdo do que esta acontecendo durante a execucédo (Wolf,

2001).

3.4 Interferéncia da Depuragao no Comportamento

Grande parte das ferramentas de depuracdo tradicionais, como printf ou

breakpoints em IDEs (ex: Keil, IAR, MPLAB X), altera o comportamento do sistema.

Isso ocorre por diversos motivos:

e O tempo gasto para imprimir dados pode atrasar a execugao;

e A parada do sistema interrompe a comunicagdo com sensores;

e A adicdo de codigo de depuracéo altera o consumo de memoria e CPU.

Esse fendmeno é conhecido como efeito Heisenbug, quando o erro

desaparece ao tentar observa-lo (Barr e Massa, 2006).

30

Em sistemas criticos, essa intrusdo pode mascarar ou provocar falhas
perigosas (Ganssle, 2008).

3.5 Escassez de Recursos Computacionais

Sistemas embarcados sdo frequentemente otimizados para operar com o

minimo possivel de recursos, como:

e Pouca memodria RAM (as vezes menos de 32 KB);

e Armazenamento limitado;

e CPU com clock baixo;

e Auséncia de unidades de ponto flutuante ou MMU.

Essas limitagdes tornam inviavel o uso de ferramentas complexas de logging

ou analise em tempo real (Wolf, 2001; Yiu, 2015).

3.6 Concorréncia e Sincronizagao

Muitos sistemas embarcados de tempo real utilizam multitarefa por meio de

RTOS ou interrupgoes. Isso introduz desafios como:

e Corridas criticas entre tarefas;

o Dificuldade de reproduzir bugs nao deterministicos;

e Interrupgdes assincronas que afetam a ordem de eventos;

e Deadlocks e starvation.

A depuracao precisa lidar com o comportamento concorrente do sistema

sem interromper sua ordem natural de execugéo (Labrosse, 2002; Tanenbaum e

31

Bos, 2015). Além disso, como alerta Koopman (2021), bugs de concorréncia em
sistemas criticos sdo frequentemente irreproduziveis em testes, exigindo técnicas

como mutexes ou desabilitagdo de interrupgdes para mitigagao.
3.7 Falhas Intermitentes e Dificeis de Reproduzir
Outro problema comum é que muitos erros s6 ocorrem em condi¢gdes muito
especificas (ex: falhas de comunicagdo sob carga pesada, leituras erradas sob
determinada temperatura). Esses erros intermitentes:
e S3o dificeis de capturar com técnicas tradicionais;
e Podem nao ocorrer durante os testes controlados;

e Requerem longos periodos de monitoramento.

Nesses casos, a depuragao precisa incluir mecanismos de rastreamento

continuo ou analise posterior do comportamento do sistema.

3.8 Acesso Fisico Restrito

Em muitas situagdes, o sistema esta fisicamente inacessivel apds ser
instalado (ex: sensores industriais em locais perigosos, sondas espaciais, implantes
medicos). Isso dificulta o uso de ferramentas que dependem de acesso fisico direto,
como JTAG, SWD ou portas seriais.

Essa limitacao exige solugbes de monitoramento remoto ou depuragéo via

telemetria, que ndo dependam de conexao direta com o dispositivo.

3.9 Testes com Ambiente Realista

A simulagdo ou emulacdo de ambientes de tempo real nem sempre é fiel.

Por exemplo:

e Sensores reais tém ruido, laténcia e falhas que simuladores nao reproduzem;

32

e Cargas variaveis na alimentagcado podem afetar o comportamento;

e Eventos assincronos (como falhas de comunicagao) sao dificeis de prever.
A depuragao precisa considerar o contexto real em que o sistema esta
inserido, o que torna necessario usar técnicas de depuragao in situ (Marwedel, 2010;
Ganssle, 2008).

3.10 Consideragodes Finais

A depuracédo de sistemas embarcados em tempo real exige um equilibrio
delicado entre observagao e interferéncia. Métodos tradicionais, como breakpoints
ou prints, sdo muitas vezes inadequados ou perigosos nesses contextos. Por isso, 0
desenvolvimento de métodos nao intrusivos de depuracéo torna-se essencial para
garantir seguranga, confiabilidade e cumprimento dos requisitos temporais (Ganssle,
2008; Barr e Massa, 2006).

33

4 METODOS DE DEPURAGAO NAO INTRUSIVOS

4.1 Introducgao

Como discutido anteriormente, a depuracdo de sistemas embarcados em
tempo real impbde desafios significativos relacionados a restricbes temporais,
visibilidade limitada e interferéncia no comportamento do sistema. Diante disso,
surgem técnicas de depuragdo néo intrusiva, que permitem monitorar e analisar o
sistema sem comprometer sua funcionalidade ou desempenho (GANSSLE, 2008).

Este capitulo apresenta os principais métodos nao intrusivos aplicaveis a
depuracao de sistemas embarcados em tempo real, com énfase em rastreamento,
monitoramento passivo, analise fora de linha e uso de ferramentas especializadas
(BARR; MASSA, 2006).

4.2 Conceito de Depuragao Nao Intrusiva

A depuracdo nao intrusiva € caracterizada pela observacdo do
comportamento do sistema sem alteragao de sua légica, tempo de resposta ou
consumo de recursos significativos. Em vez de interferir diretamente na execucgao do
software, essas técnicas geralmente envolvem a coleta de dados por hardware
dedicado, espionagem de barramentos (bus sniffing), uso de registradores de
eventos e monitoramento externo por meio de portas de debug como JTAG ou SWD
(MARWEDEL, 2010). Koopman (2021) refor¢a que a depuragao eficaz em sistemas
embarcados priorize a observagdo sem intrusdo, citando rastreamento por hardware
ou logs em tempo real como métodos essenciais para diagndstico em ambientes

criticos.
4.3 Rastreio por Hardware (Hardware Tracing)
Esse método utiliza recursos embutidos nos microcontroladores para rastrear

a execugao de instrucdes, interrupcdes ou acessos a memoria. Entre os principais

recursos estdo o ETM (Embedded Trace Macrocell), o ITM (Instrumentation Trace

34

Macrocell) e o SWO (Single Wire Output), todos presentes na arquitetura ARM
Cortex-M (YIU, 2015).

Esses mecanismos permitem rastrear o sistema em tempo real com impacto
minimo, pois ndo requerem modificacdo no cdédigo fonte nem causam atrasos
significativos (SEGGER, 2024).

Um exemplo desse rastreio pode ser observado no sistema de tracing de
alguns sistemas operacionais de tempo real como o QNX, abaixo uma figura do

System Profiler de um sistema de tempo real de um VANT:

Figura 6 — Distribuicdo de consumo de processamento do projeto

e e e T T e T e e T Tmmr s o T M — e ———

@ Auionics - VEE0TAARbarrotnvenfiead & Aonics - VGE0NAL RS137 2 Awiomics - MiLLspmiumintsmuptDrivanRead
Soqonics - MiLLermium BS232 B Aianics - Senstomvianiapar & Avionics - YEEDOAA
Awsorrics - TOM2_S0IrmsmuptDnvenead & Mudonics - WLIMansger @ Awinmics - WesghedMasnTime

& Aponics - TOMI_50_R5232 & Awionics - Ml Lennaum @ Awioeics - Klend

& Awonics - TOM?_50 ® fwinnios - Fusionhanager (@ Mionics - GFSManager

& Amonics - CPShanager Cr Mianics - Signalbianager @ Aionics - Chesrvarbanager

O Anfomics - Xand UOPIP

'Tm_",_.
|
= 3w w F

H 4 & & @k 5 55

Fonte: AMIANTI (2008).

Amianti (2008) demonstra o uso de ferramentas ndo intrusivas em sistemas
de tempo real, permitindo identificacdo de gargalos de desempenho, validando a
eficacia do método para aplicacdes criticas como VANTs. Essa abordagem € a base
para ferramentas modernas como SEGGER System View ou Percepio TraceAlyzer,
extendendo essas ferramentas para microcontroladores ARM Cortex-M.

4.4 Espionagem de Barramentos

Sniffers de barramento observam sinais elétricos de comunicacdo (como SPI,

I?’C, UART ou CAN) sem interagir diretamente com os dispositivos conectados.

35

Ferramentas como Saleae Logic Analyzer e Bus Pirate permitem capturar pacotes
de dados, diagnosticar falhas e medir o desempenho da comunicagao sem intrusao
(SALEAE, 2024).

4.5 Monitoramento por Registradores de Eventos

Muitos microcontroladores modernos incluem buffers circulares ou
registradores que armazenam eventos do sistema, como chamadas de fungdes ou
interrupcoes. Esses dados podem ser acessados por interfaces de depuragao sem
interromper a execucdo do firmware, auxiliando na identificacdo de falhas
esporadicas (YIU, 2015).

Esse tipo de recurso também é explorado por ferramentas como o
FreeRTOS+Trace.

4.6 Espelhamento de Variaveis (Shadowing)

O shadowing consiste em replicar variaveis criticas em regides de memoaria
acessiveis externamente. Esse método pode utilizar mecanismos como DMA ou
canais de depuragdo como SWO, para evitar a degradacdo do desempenho
(MARWEDEL, 2010; YIU, 2015).

Solugdes comerciais, como o Tracealyzer (PERCEPIO, 2024) citado na segao
4.9 implementam shadowing de variaveis criticas via DMA, reduzindo a carga de

CPU durante o monitoramento.

4.7 Depuragao por Instrumentagcao de Hardware Externo

Instrumentos externos, como osciloscopios, analisadores logicos e cameras
de alta velocidade, também sdao empregados para observar sinais fisicos emitidos
pelo sistema. Essa abordagem € comum quando o sistema n&o permite inser¢ao de

codigo adicional ou esta em ambiente critico (GANSSLE, 2008).

36

4.8 Analise Fora de Linha (Post-Mortem)

Em sistemas criticos ou inacessiveis, a coleta de dados é feita apés uma

falha, por meio de armazenamento em memoria ndo volatil. A analise offline permite
reconstruir o estado do sistema antes da falha (BARR; MASSA, 2006), sendo uma

pratica comum em aplicagdes aeroespaciais ou industriais (MARWEDEL, 2010).

4.9 Solugoes Comerciais e Open Source

Ferramentas especializadas ajudam na implementacdo de depuragao nao

intrusiva:

SystemView, da SEGGER, oferece rastreamento de tarefas com base em
ITM/SWO (SEGGER, 2024);

Tracealyzer, da Percepio, fornece visualizagdo grafica detalhada do
comportamento do sistema com suporte a FreeRTOS e outros RTOS
(PERCEPIO, 2024). Assim como o System Profiler utilizado em Amianti
(2008), ferramentas como o Tracealyzer mantém o principio de rastreamento
passivo, com atualizacdes para visualizacbes modernas e suporte a demais
RTOS.

FreeRTOS+Trace é uma solucéo integrada ao kernel do FreeRTOS, voltada

para analise visual e rastreamento;

Black Magic Probe e OpenOCD s&o alternativas open source para debug via
JTAG/SWD (BLACK MAGIC PROBE, 2024; OPENOCD, 2024).

A seguir uma tabela comparativa

37

demonstrando vantagens, limitagcdes e

aplicagao tipica de cada uma das ferramentas citadas:

e Aplicagao
Ferramenta Vantagens Limitacbes p' . ¢
tipica
-Visualizagao grafica de tasks,) . .
” fi RTOS -Custo comercial (=$2k/licenga) Sistemas
semaforos e filas em
Tracealyzer -Requer hardware especifico médicos,
-Suporte a FreeRTOS, Zephyr, ThreadX) .
) para tracing completo automotivos
-Baixo overhead (<1% CPU)
-Gratuita para uso nao comercial -Limitagdo a microcontroladores
SystemView -Integracdo nativa com ITM/SWO (ARM ARM Drones, loT
Cortex) -Configuragcdo complexa para industrial

-Timeline interativa de eventos

sistemas multicore

FreeRTOS+Trace-|ntegrad0 ao kernel do FreeRTOS

-Sem visualizag3o gréfica nativa)
Prototipagem
-Depende de ferramentas

OpenOCD

-Logs de contexto minimo (sem o rapida
L o externas para analise
modificacdo de codigo)
-Open source .
-Sem recursos avancgados de Sistemas

-Suporte a multiplas arquiteturas (ARM,

tracing académicos/low
RISC-V) . .
o -Curva de aprendizado ingreme -cost
-Depuracgao via JTAG/SWD
-Baixo custo (hardware
Black Magic -Depuracao sem driver adicional aberto)-Funcionalidades basicas Projetos
Probe -Compativel com GDB (sem tracing) makers/educaci
-Baixo custo (hardware aberto) -Limitado a microcontroladores onais

especificos

4.10 Consideragoes Finais

preciso de sistemas embarcados em tempo real.

A depuragdo nao intrusiva € essencial para garantir o diagnostico seguro e

Combinando técnicas de

rastreamento por hardware, espionagem de barramentos, monitoramento de

variaveis e analise pos-falha, é possivel obter visibilidade detalhada do sistema sem

afetar sua operacdo. O uso dessas abordagens deve ser considerado desde o inicio

do projeto, integrando os recursos necessarios ao hardware e firmware.

38

5 AVALIACAO EXPERIMENTAL DE METODOS DE DEPURAGAO EM SISTEMAS
EMBARCADOS DE TEMPO REAL

Para avaliar alguns dos diferentes métodos de depuragado apresentados
nesse projeto, foi elaborado um software embarcado, em um sistema de tempo real,
visando avaliar os resultados e comparar os impactos na execucao das tarefas e
complexidade da solucdo. Para este experimento foram usadas somente solugcdes

que nao dependem de componentes externos ou softwares licenciados.

5.1 Metodologia experimental

Este capitulo apresenta uma avaliagdo experimental comparativa de
diferentes métodos de depuracdo em sistemas embarcados de tempo real. A
metodologia adotada tem como objetivo comparar quantitativamente o desempenho
e a interferéncia causada por distintas técnicas de depuragdo, com base em
métricas objetivas mensuraveis em um sistema de teste controlado.

Segue um diagrama da estrutura do ensaio executado:

Figura 7 — Diagrama de conexdes da bancada de testes

Sensor de
temperatura

MicroControlador
FreeRTOS

Depurador e
programador

Fonte: Elaborado pelo autor.

39

5.1.1 Objetivo principal

Comparar quantitativamente diferentes métodos de depuragdo em um sistema
embarcado de tempo real, avaliando seu impacto no comportamento temporal do
sistema e na capacidade de detec¢ao de anomalias.

Os desafios na depuragao de sistemas embarcados de tempo real, discutidos
no capitulo 3 nas sec¢des 3.2 e 3.4 motivaram a sele¢cdo das métricas de avaliagao.

O objetivo € metrificar precisamente o impacto desses desafios quando

diferentes técnicas de depuragéo sao aplicadas.

5.1.2 Hipoétese de pesquisa

Métodos de depuragdo nao intrusivos causam menor interferéncia no
comportamento temporal do sistema quando comparados a métodos tradicionais
intrusivos, permitindo uma analise mais precisa e confiavel do funcionamento do

sistema sem comprometer seus requisitos temporais criticos.

5.1.3 Variaveis independentes

As variaveis independentes deste projeto correspondem aos diferentes
meétodos de depuracéo avaliados e apresentados no capitulo 4 deste projeto, sendo:

1. Logger Uart bloqueante na tarefa de controle:

Implementacgao direta de instru¢des de log na tarefa critica do sistema.

2. Logger Uart bloqueante em tarefa de menor prioridade:

Utilizacdo de uma tarefa de baixa prioridade para obtencao das tarefas
criticas.

3. Logger Uart DMA na tarefa de controle:

Acesso direto as variaveis do sistema através da interface de depuracao
serial sem interromper execugao.

4. Logger Uart DMA em tarefa de menor prioridade:

Implementacdo de um buffer circular esvaziado por DMA para minimizar

interferéncia.

Portanto, sera avaliado um método intrusivo, sendo o método 1, a ser
avaliado como grupo controle para as demais métricas. As demais métricas sao

baseadas nas técnicas apresentadas nas sec¢des 3 e 4 deste projeto.

40

5.1.4 Variaveis dependentes

As variaveis dependentes se referem as métricas quantitativas que serao
utilizadas para avaliar o desempenho e impacto de cada método

1. tempo de resposta da tarefa critica:

Medido em ticks do sistema operacional e com o auxilio de um timer ajustado
para medigdes de microssegundos. Esta métrica avalia o impacto direto dos
métodos de depuragédo no tempo de execucdo da tarefa critica, que deve
permanecer dentro de limites estritos para garantir o comportamento em tempo real
do sistema.

2. Consumo de CPU:

Calculado como o tempo que a tarefa demora para ser executada, esta

métrica também é obtida com os ticks do sistema operacional e a partir do timer
configurado para microssegundos.

3. Uso de memodria:

Quantificado em kilobytes de RAM e Flash necessarios para implementagao
de cada método. Esta métrica é obtida através da analise do mapa de memdria

gerado pelo linker, comparando o consumo de cada método para o projeto final.

5.1.5 Procedimento experimental

O experimento sera conduzido em um sistema de teste baseado em um
microcontrolador STM32F401RE (ARM Cortex-M4, 8MHz) executando o sistema
operacional de tempo real FreeRTOS v10.3.1. A aplicagao consiste em um sistema
de controle de temperatura com uma tarefa critica de periodo fixo (5ms) e uma
tarefa secundaria para obtencao de dados.

A tarefa secundaria foi definida como menor prioridade no sistema, e com
periodo fixo de 200ms.

Além disso, os diferentes métodos podem ser selecionados a partir de
diretivas de compilador, permitindo que o software seja avaliado quanto ao consumo
de memodria RAM e ROM, compilando somente as sec¢des selecionadas pelas
diretivas iniciais do sistema.

A tarefa secundaria ndo esta presente em todas as versodes testadas, como

detalhado em cada um dos métodos ensaiados.

41

O envio de dados entre a tarefa de maior prioridade e a de menor prioridade é
feita a partir de fila propria do sistema operacional, garantindo que a transi¢ao de

informacgao entre tarefas nao gere impactos no funcionamento do sistema.

Segue um diagrama detalhando a arquitetura do procedimento experimental:

Figura 8 — Arquitetura de tarefas do software

Tarefa critica (5ms)

ool she thanbins UEH PID HSaida de comandos
Sensores

T

Tarefa depuragdo (200ms)

Obtencdo de dados Envio de dados na
da fila UART

T

Fonte: Elaborado pelo autor.

5.1.6 Procedimento de teste

Para cada método de depuracao, seréo realizadas 30 medi¢des consecutivas

sob condi¢bes controladas idénticas, garantindo a reprodutibilidade dos resultados.

5.1.7 Coleta de dados

A coleta de dados sera realizada através de um timer configurado para
medicdo precisa do tempo de execucido da ordem de 10 us além do contador de
ticks do sistema operacional, os dados de consumo de memoria serdo obtidos a

partir do linker gerado.

6 Resultados
A partir dos ensaios propostos na secao anterior, foram realizadas 4

sequéncias de ensaios, coletando os dados e os organizando para demonstragao.

42

Os dados obtidos em conjunto com os dados da propria tarefa de controle
permitem avaliar o impacto da introdugdo do software de registro de dados de

controle no sistema.

6.1 Resultados do Método 1: Logger Uart bloqueante na tarefa de controle
A tabela abaixo mostra os valores médios dos resultados obtidos nos ensaios

do primeiro método:

RTOS (ms) Timer (us) Uso de memoria (KB)
Tempo entreConsumo de Tempo entre Consumo de CPU Memodria Memoria
execucgodes CPU execucoes RAM Flash

13120 810 13000+ 0 8761+ 3 21,32 51,89

Observa-se que neste caso a tarefa de controle ndo esta conseguindo ser
executada na frequéncia desejada, esse comportamento & esperado devido ao
tempo de execucgao da propria task, que excede o tempo definido entre execugoes,
dessa forma o escalonador do sistema operacional ndo pode chamar uma proxima
execucgao da tarefa, pois depende da finalizagao da primeira execucgao.

Neste caso, apesar do uso de um sistema operacional de tempo real, o
método de depuragao selecionado impede que ele opere em condigbes de tempo

real, afetando drasticamente o resultado esperado pela tarefa.

6.2 Resultados do Método 2: Logger Uart bloqueante em tarefa de menor
prioridade:
A tabela abaixo mostra os valores médios dos resultados obtidos nos ensaios

do primeiro método:

RTOS (ms) Timer (us) Uso de memoria (KB)

Tempo entreConsumo de Tempo entre Consumo de CPU Memodria Memoria
execugoes CPU execugdes RAM Flash

5+0 0,0+0,0 4992 +4 80+0 21,33 52,61

43

Observa-se que neste caso o tempo de execucio da tarefa foi mantido dentro
do projetado para o sistema operacional, garantindo a operagao de tempo real.

Esse método de depuragdo, ao utilizar uma tarefa de menor prioridade,
permite que o sistema possa ser observado sem impactar a tarefa critica do sistema
de mais alta prioridade.

O impacto desse método estda na necessidade da criacdo de uma tarefa
especifica para debug, aumentando a complexidade do software e exigindo que a
depuracéo seja implementada ainda em fase de projeto, ndo como alternativa a uma
deteccado de falha, além disso onera o sistema com maior consumo de RAM e
FLASH.

Como apresentado no capitulo 3, sistemas embarcados possuem uma
caracteristica comum relacionada a escassez de recursos, e em alguns casos o
aumento e consumo de RAM e FLASH, ou necessidade de novas tasks pode

inviabilizar o método de depuracao.

6.3 Resultados do Método 3: Logger Uart DMA na tarefa de controle
A tabela abaixo mostra os valores médios dos resultados obtidos nos ensaios

do primeiro método:

RTOS (ms) Timer (us) Uso de memoria (KB)
Tempo entreConsumo de Tempo entre Consumo de CPU Memodria Memoria
execucgdes CPU execucdes RAM Flash

50 0,0+£0,0 4999 + 2 368 + 3 21,58 52,67

Observa-se que neste caso, apesar de ser executado na propria tarefa de
controle, o sistema operacional mantém o determinismo de tempo, devido ao uso do
coprocessador para envio de dados de depuracdo em paralelo a execucao da tarefa.

Apesar disso, nota-se que o consumo de CPU da tarefa é afetado, portanto
em sistemas que possuem restricdo de tempo de execugdo de tarefas, esse método
pode interferir no comportamento do sistema, podendo interferir na analise do

sistema.

44

6.4 Resultados do Método 4: Logger Uart DMA em tarefa de menor prioridade
A tabela abaixo mostra os valores médios dos resultados obtidos nos ensaios

do primeiro método:

RTOS (ms) Timer (us) Uso de memoria (KB)
Tempo entreConsumo de Tempo entre Consumo de CPU Memodria Memoria
execugoes CPU execugoes RAM Flash

50 0,0+£0,0 4986 + 5 800 21,59 53,89

Observa-se que neste caso, tanto o tempo entre execugbes das tarefas,
quanto o tempo de execucao da tarefa ndo sao afetados, permitindo que a tarefa
critica possua determinismo sem sobrecarga de processamento com a depuragao.

Apesar disso, assim como citado na se¢ao 6.2, ha a necessidade da criagao
de uma segunda tarefa, focada em depuragao, que gera aumento de complexidade,
memodria e alternancia do escalonador. Em sistemas que operam com maior

sobrecarga esses fatores podem ser limitantes para a operagéo desse método.

6.5 Analise comparativa e validagao da hipétese

A partir dos resultados, podemos observar que os métodos com menor
intrusdo ao sistema, apresentados como proposta no capitulo 4 demonstram ter
menor impacto nas métricas de desempenho do sistema operacional.

Porém, a adicdo de cddigos de depuragdo podem gerar outros impactos,
como a necessidade de desenvolvimento adicional para a obtencdo de dados,
consumo de memoéria ROM no software desenvolvido, maior consumo de memdria
RAM para a execugédo das tarefas e maior tempo de execucgdo da tarefa que se
deseja monitorar, portanto sendo necessaria a analise para cada contexto
especifico, considerando fatores comuns em contexto de aplicagcdes de software
embarcado, como as apresentadas na se¢ao 3 deste projeto, como a restricado de

memoaria, criticidade de tempo de execucgao da tarefa e tempo de resposta.

45

A tabela abaixo compara as métricas levantadas para os diferentes métodos:

RTOS (ms) Timer (us) Uso de memoria
(KB)
MétodoTempo entreConsumo Tempo entre Consumo de CPU Memodria Memoria
execugdes de CPU execucgoes RAM Flash
1 13120 80 13000+ 0 8761+ 3 21,32 51,89
2 50 0,0+£0,0 4992 £ 4 800 21,33 52,61
3 50 0,0+£0,0 4999 £ 2 368 + 3 21,58 52,67
4 50 0,0+£0,0 4986 £ 5 800 21,59 53,89

Nota-se que todos os métodos de depuracido de menor intrusdo testados
possuem pouco impacto no determinismo da tarefa critica do sistema. Reforgcando a
hipétese da menor interferéncia na aplicagdo desses métodos, porém também
possuem aumento no consumo de memoéria RAM e FLASH, assim como tempo de
execucao da tarefa no caso 3, essas métricas podem ser determinantes na selecao
do método que melhor performa para cada especificidade de projeto.

Comparando-se os métodos 1 com os restantes, observa-se que o sistema
perde o determinismo de tempo, neste caso, apesar do uso de um sistema de tempo
real, o resultado ndo garante o determinismo.

Para os métodos 2, 3 e 4, que possuem menor intrusdo no sistema,
observa-se que todos mantiveram o determinismo de tempo real, garantindo a
execugao das tarefas a cada 5 ms, reforcando a necessidade de aplicar métodos de
depuracdo de menor intrusao.

A comparagédo entre os métodos 2 e 3 ou 3 e 4 demonstram que o método 3
possui maior interferéncia no sistema, gerando um aumento no tempo de execugao

da tarefa critica do sistema, essa métrica pode ser critica em sistemas que exigem

46

resposta rapida na execucio de tarefas, ainda assim, neste exemplo, o tempo de
execugcao da tarefa foi inferior ao tick do escalonador do sistema operacional,
portanto ndo impede a transigao de prioridades.

Apesar da aparente desvantagem do meétodo 3, referente ao tempo de
execucao da tarefa critica, € importante ressaltar que esse método n&do exige a
adicdo de uma nova tarefa no escalonador do sistema operacional, garantindo que
esse sistema tenha um numero menor de transi¢ao entre tarefas, reduzindo o risco
de falhas de concorréncia e sincronizagcédo, como detalhadas no capitulo 3.

Para todos os casos analisados, os dados obtidos permitem a avaliagdo do
sistema a partir dos logs obtidos, como uma analise post-mortem (ou fora de linha),
como apresentadas no capitulo 3, sendo necessario avaliar os requisitos de cada
projeto para a definicdo do método que melhor se adequa para obtengdo desses
dados. Além disso, o método 1 recomenda-se somente para projetos que nao sao
criticos de tempo real, como detalhado no capitulo 2.

O resultado obtido reforca a hipotese de que métodos nao intrusivos possuem
vantagens na depuragio de sistemas embarcados de tempo real, principalmente no
determinismo das tarefas, porém deve-se atentar para os impactos resultantes
destes métodos. Os demais métodos apresentados na secado 4 deste trabalho
possuem cada um as suas vantagens e desvantagens, como custo, disponibilidade,
e outros impactos que decorrem das implementacbes necessarias para as suas
aplicagdes, assim como demonstrados neste trabalho, abrindo espago para que
futuros projetos realizem comparativos com demais ferramentas ou no
desenvolvimento de ferramentas que reduzam os impactos observados neste

ensaio.

47

7 CONCLUSAO

A depuragao de sistemas embarcados em tempo real representa uma
atividade essencial, porém desafiadora, na engenharia de sistemas criticos. Esses
sistemas operam sob restricdes severas de tempo, consumo de energia, memodria e
processamento, exigindo precisdo absoluta em suas respostas e previsibilidade em
sua execucgao.

Diante dessas exigéncias, 0 uso de métodos tradicionais de depuragao, como
instrugbes de printf(), breakpoints e depuradores em tempo real, mostra-se
frequentemente inadequado, pois introduz interferéncias no sistema que podem
alterar seu comportamento, comprometendo a validade das analises.

Neste trabalho, foram apresentados conceitos fundamentais sobre sistemas
embarcados e sistemas de tempo real, com destaque para suas principais
caracteristicas: reatividade, determinismo, confiabilidade e desempenho.

Com base nesse panorama, discutiram-se os principais desafios enfrentados
na depuragao desses sistemas, como a intrusividade dos métodos convencionais, a
dificuldade de reprodutibilidade dos erros, as limitagdes de recursos nos dispositivos
embarcados e a escassez de ferramentas compativeis com aplicagdes criticas.

Em resposta a esses desafios, o trabalho realizou a comparagado entre
diferentes métodos, definidos como intrusivos a métodos nao intrusivos, permitindo
uma analise pratica do trade-off entre as diferentes aplicagdes.

A analise comparativa entre métodos intrusivos e nao intrusivos demonstra
que, embora os métodos tradicionais ainda tenham valor em cenarios de
desenvolvimento iniciais ou prototipagem, sua aplicabilidade em ambientes criticos e
sistemas de producéao € limitada. A adocado de técnicas nao intrusivas €, portanto,
um passo essencial para garantir a confiabilidade, segurangca e qualidade dos
produtos embarcados.

Por fim, ressalta-se que a evolugdo das ferramentas de desenvolvimento
embarcado, aliada ao avangco dos microcontroladores modernos com recursos
integrados de rastreamento e depuragao, vem tornando essas abordagens cada vez
mais acessiveis.

Ainda assim, ha espago para pesquisa e inovagao, especialmente no

desenvolvimento de solugdes de baixo custo, abertas e compativeis com

48

ecossistemas amplamente utilizados como o ARM Cortex-M e plataformas como
Arduino e STM32, mitigando os efeitos de complexidade de desenvolvimento de
solugbes mais robustas de depuragcdo e permitindo menor impacto na integragao

desses sistemas em projetos complexos.

49

REFERENCIAS

BARROS, E.; CAVALCANTE, S. Introducéo aos sistemas embarcados.
Universidade Federal de Pernambuco, 2010. Centro de estudos em informatica.
Disponivel em:
http://www.maxpezzin.com.br/aulas/6_EAC_Sistemas_Embarcados/apoio_SE_teoria

s_conceitos.pdf. Acesso em: 3 maio 2025.

BARR, M.; MASSA, A. Programming Embedded Systems: with C and GNU
Development Tools. 2. ed. Sebastopol: O’Reilly Media, 2006. Disponivel em:
https://www.oreilly.com/library/view/programming-embedded-systems/0596009836/.

Acesso em: 3 maio 2025.

BLACK MAGIC PROBE. Black Magic Probe Documentation. GitHub, 2024.

Disponivel em: https://github.com/blacksphere/blackmagic. Acesso em: 3 maio 2025.

CASTRO, F. M.; PACHECO, M. A. F.; PINHEIRO, E. C. N. M. Industria 4.0 e internet
industrial das coisas — (IIOT): sistema |loT para monitoramento e controle de

sensores e atuadores mapeados. Ciéncias Exatas e da Terra, v. 27, n. 122, 2023.

CRISTIANO MARCAL TONIOLO. Sistemas embarcados. 2018. Disponivel em:
http://cm-kis-content.s3.amazonaws.com/201801/INTERATIVAS 2 0/SISTEMAS E
MBARCADOS/U1/LIVRO UNICO.pdf. Acesso em: 3 maio 2025.

DEMICHELI, G. Hardware/software co-design: application domains and design
technologies. In: DEMICHELI, G.; SAMI, M. (Ed.). Hardware/software co-design.
Dordrecht: Kluwer Academic Publishers, 1996. p. 1-28.

GANSSLE, J. The Art of Designing Embedded Systems. 2. ed. Burlington: Newnes,
2008.

HEATH, S. Embedded Systems Design. 2. ed. Burlington: Newnes, 2002. Disponivel

em:

50

https://www.sciencedirect.com/book/9780750655460/embedded-systems-design.

Acesso em: 3 maio 2025.

LIASCH, J. Os sistemas de comunica¢cdo de uma aeronave moderna. 2025.
Disponivel em:

http://culturaaeronautica.blogspot.com/2014/06/o0s-sistemas-de-comunicacao-de-um

a.html. Acesso em: 5 maio 2025.

LABROSSE, J. J. MicroC/OS-Il: The Real-Time Kernel. CMP Books, 2002.

MARWEDEL, P. Embedded System Design: Embedded Systems Foundations of
Cyber-Physical Systems. 2. ed. Heidelberg: Springer, 2010.

OPENOCD. Open On-Chip Debugger. 2024. Disponivel em: http://openocd.org/.
Acesso em: 3 maio 2025.

KIM, J. et al. Performance Evaluation of Zone-Based In-Vehicle Network
Architecture for Autonomous Vehicles. Sensors, [S. L], v. 23, n. 2, p. 669, 2023. DOI:
[10.3390/s23020669](https://doi.org/10.3390/s23020669). Acesso em: 09 jul. 2025.

PERCEPIO AB. Tracealyzer for FreeRTOS, Zephyr and other RTOS. Vasteras,
Suécia, 2024. Disponivel em: https://percepio.com/tracealyzer/. Acesso em: 1 maio
2025.

PROLIFE. Quais sdo os parametros basicos de um monitor multiparametro? 2025.
Disponivel em:

https://prolife.com.br/quais-sao-os-parametros-basicos-de-um-monitor-multiparametr

ol. Acesso em: 3 maio 2025.

REIS, F. Introducao aos sistemas embarcados. 2015. Disponivel em:

https://www.bosontreinamentos.com.br/eletronica/eletronica-geral/introducao-aos-sist

emas-embarcados/. Acesso em: 6 maio 2025.

51

SALEAE. Saleae Logic Analyzers. 2024. Disponivel em: https://www.saleae.com/.

Acesso em: 3 maio 2025.

SEGGER MICROCONTROLLER GMBH. SystemView — Real-time recording and
visualization. Monheim am Rhein, 2024. Disponivel em:

https://www.segger.com/products/development-tools/systemview/. Acesso em: 3
maio 2025.

SILVA JUNIOR, E. A internet das coisas e a plataforma Arduino como computacgéo
embarcada em mapas tateis: uma avaliagado dessa tecnologia assistiva para o
ensino das pessoas ouvintes com deficiéncia visual. 2018. Disponivel em:
https://www.professores.uff.br/screspo/wp-content/uploads/sites/127/2023/09/Elias-Di
sserta%C3%A7%C3%A30-de-Mestrado.pdf. Acesso em: 13 maio 2025.

TANENBAUM, A. S.; BOS, H. Modern Operating Systems. 4. ed. Boston: Pearson,
2015.

UNIPAR. Internet das coisas. 2025. Disponivel em:

https://moodle.ead.unipar.br/materiais/webflow/topicos-especiais-em-sistemas-de-inf

ormacao/unidade-ii.html. Acesso em: 23 maio 2025.

VARGAS, R. F. Sistemas embarcados: acoplamento do soft-core plasma ao
barramento opb de um PowerPC 405. 2007. 49 f. Trabalho de Conclusao de Curso
(Bacharelado em Engenharia Elétrica) — Universidade Federal de Santa Catarina,

Florianopolis.

WOLF, W. Computers as Components: Principles of Embedded Computing System

Design. San Francisco: Morgan Kaufmann, 2001.

YIU, J. The Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors. 3. ed.
Oxford: Newnes, 2015.

52

KOOPMAN, Philip. Better Embedded System Software. Versédo 1.1. [S. |.]: Amazon
KDP, 2021. eBook. ISBN-13: 979-8596008050. Disponivel em:
<https://lwww.amazon.com/Better-Embedded-System-Software-Koopman-ebook/dp/B
09NQZJQ6S>. Acesso em: 08 jul. 2025.

AMIANTI, Giovani. Arquitetura de software aviénico de um VANT com requisitos de
homologacéao. 2008. Dissertagéo (Mestrado em Engenharia de Controle e
Automacao Mecanica) - Escola Politécnica, Universidade de Sao Paulo, Sdo Paulo,
2008. doi:10.11606/D.3.2017.tde-30052008-125557. Acesso em: 2025-10-24.

Hong W. E.; et Al. RTLinux based Hard Real-Time Software Architecture for
Unmanned Autonomous Helicopters. In: International Conference on Embedded and

Real-Time Computing Systems and Applications, n.11, 2005.

BORGES, Rodrigo Weissmann. Aplicabilidade de sistemas operacionais de tempo
real (RTOS) para sistemas embarcados de baixo custo e pequeno porte. 2011.
Dissertacao (Mestrado em Processamento de Sinais e Instrumentacao) - Escola de
Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2011.
doi:10.11606/D.18.2011.tde-09082011-081631. Acesso em: 2025-10-24.

ANEXOS

Anexo I: Software desenvolvido para a realizagao dos ensaios

/* USER CODE BEGIN Header */

/* USER CODE END Header */

/* Includes

53

____*/

#include "main.h"
#include "cmsis os.h"
#include "adc.h"
#include "dma.h"
#include "tim.h"
#include "usart.h"

#include "gpio.h"

/* Private includes

/* USER CODE BEGIN Includes */
#include "stdio.h"

#include "string.h"

#include "stm32f4xx hal uart.h"
/* USER CODE END Includes */

/* Private typedef

/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define

/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro

/* USER CODE BEGIN PM */
#define DELTADEBUG
#define BLOCKINGDEBUG
#define DMADEBRUG

/* USER CODE END PM */

/* Private wvariables

/* USER CODE BEGIN PV */
osThreadId t controlTaskHandle, buttonTaskHandle,
UARTTaskHandle;
osMessageQueueld t debugQueue;
typedef struct {
uint32 t adc data;
uint32 t pwm value;
float pid value;
float error;
#ifdef DELTADEBUG
uint3Z2 t delta ms;
uint32 t execution ms;
uint32 t delta us;
uint32 t execution us;
fendif
} DebugData;

typedef struct {
float Kp;
float Ki;

float Kd;

float setpoint;
float integral;
float prev error;

}PID Controller;

PID Controller pid = {

.Kp = 0.51%,
.Ki = 0.1%,
.Kd = 0.05%,

.setpoint = 22.0f, // Setpoint para ADC de 12 bits

(0-4095)
.integral = 0.0f,
.prev_error = 0.0f
}i

osMessageQueueld t debugQueue;

volatile uint64 t microSecondCounter =0;
#ifdef DMADEBUG

#define UART TX BUFFER SIZE 256

uint8 t uartTxBuffer [UART TX BUFFER SIZE];
volatile uint8 t uartTxBusy = 0;

#endif

/* USER CODE END PV */

/* Private function prototypes

void SystemClock Config(void);

void MX FREERTOS Init (void);

/* USER CODE BEGIN PFP */

void control task(void *argument);

55

56

#ifndef BLOCKINGDEBUG

void UART task(void *argument);
#endif

float calculate pid(uint32 t adc value);

uint32 t GetMicroseconds (void);

#i

fdef DMADEBUG

void UART Send DMA (UART HandleTypeDef huart, uint8 t *data,

uintl6 t len);
#endif

/*

/*

/*

USER CODE END PEP */

Private user code

USER CODE BEGIN 0 */

USER CODE END 0 */

*

* @brief The application entry point.

* @retval int

*/

int main (void)

{

/* USER CODE BEGIN 1 */

/* USER CODE END 1 */

/* MCU Configuration------------=—=———————————————— */

/* Reset of all peripherals, Initializes the Flash interface

and the Systick. */

HAL Init();

/* USER CODE BEGIN Init */

/* USER CODE END Init */

/* Configure the system clock */
SystemClock Config();

/* USER CODE BEGIN SysInit */

/* USER CODE END SysInit */

/* Initialize all configured peripherals */
MX_GPIO Tnit();

MX_DMA_Init();

MX_USART2 UART Init();

MX TIM2 Tnit();

MX ADC1 Init();

MX TIM4 Init();

/* USER CODE BEGIN 2 */

HAL TIM Base Start IT(&htimé);

//Queue de mensagens entre tasks
const osMessageQueueAttr t debugQueue attributes = ({
.name = "debugQueue",
.attr bits = 0,
.cb mem = NULL,
.cb size = 0,
.mg mem = NULL,

.mg size = 0

debugQueue = osMessageQueueNew (10, sizeof (Debugbata),

&debugQueue attributes);

//Task de controle de temperatura
const osThreadAttr t controlTask attributes = {
.name = "controlTask",
.stack size = 512 * 4, // 512 words = 2048
bytes
.priority = (osPriority t) osPriorityHigh,
i
controlTaskHandle = osThreadNew (control task, NULL,

&controlTask attributes);

#ifndef BLOCKINGDEBUG
//Task de depuracdo de dados
const osThreadAttr t UARTTask attributes = {

.name = "UARTTask",
.stack size = 256 * 4,
.priority = (osPriority t) osPriorityNormal,

ti

UARTTaskHandle = osThreadNew (UART task, NULL,
&UARTTask attributes);
#endif

/* USER CODE END 2 */

/* Init scheduler */

osKernelInitialize () :; /* Call init function for freertos

objects (in freertos.c) */

MX FREERTOS Init();

/* Start scheduler */

osKernelStart () ;

58

59

/* We should never get here as control is now taken by the
scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */

}
/* USER CODE END 3 */

/*x
* @brief System Clock Configuration
* @retval None
*/

void SystemClock Config(void)

{

{0};
{0}

RCC OscInitTypeDef RCC OscInitStruct

RCC ClkInitTypeDef RCC ClkInitStruct

/** Configure the main internal regulator output voltage
*/
__HAL RCC_PWR CLK ENABLE () ;

__HAL PWR_VOLTAGESCALING CONFIG(PWR REGULATOR VOLTAGE SCALE2);

/** Initializes the RCC Oscillators according to the
specified parameters

* in the RCC OscInitTypeDef structure.

*/

RCC OscInitStruct.OscillatorType = RCC _OSCILLATORTYPE HSE;

RCC OscInitStruct.HSEState = RCC_HSE BYPASS;

RCC OscInitStruct.PLL.PLLState = RCC_PLL ONj;

RCC OscInitStruct.PLL.PLLSource = RCC PLLSOURCE HSE;
RCC OscInitStruct.PLL.PLLM = 4;

84;

RCC_PLLP DIV2;

RCC OscInitStruct.PLL.PLLN
RCC OscInitStruct.PLL.PLLP

RCC OscInitStruct.PLL.PLLQO = 7;
if (HAL RCC OscConfig(&RCC OscInitStruct) != HAL OK)
{

Error Handler ();

/** Initializes the CPU, AHB and APB buses clocks
*/
RCC ClkInitStruct.ClockType =

RCC_CLOCKTYPE HCLK|RCC CLOCKTYPE SYSCLK

|RCC_CLOCKTYPE PCLKI1|RCC CLOCKTYPE PCLKZ;

RCC ClkInitStruct.SYSCLKSource = RCC SYSCLKSOURCE PLLCLK;
RCC ClkInitStruct.AHBCLKDivider = RCC SYSCLK DIVI1;

RCC ClkInitStruct.APBICLKDivider RCC _HCLK DIVZ2;

RCC ClkInitStruct.APB2CLKDivider = RCC HCLK DIV1;

60

if (HAL RCC ClockConfig (&RCC_ClkInitStruct, FLASH LATENCY 2)

!= HAL OK)

{

Error Handler ();

/* USER CODE BEGIN 4 */

DebugData debug msg;

void control task(void *argument)

{

(void) argument;

// Variaveis locais

uint32 t adc value = 0;
float adc mv = 0.0f;

float temperature c = 0.0f;
uint32 t pwm value = 0;
float pid output = 0.0f;
static DebugData debug data;

pid.setpoint = 25.0f;

// inicializacdo de hardware
HAL TIM PWM Start (&htim2, TIM CHANNEL 1);
HAL ADC Start (&hadcl);

#ifdef DELTADEBUG
// Variaveis para medicdo de tempo usando ticks do RTOS
static uint32 t last start tick = 0;
static uint32 t last start us = 0;
uint32 t start tick, end tick, delta tick, execution tick
= 0;
uint32 t start us, end us, delta us, execution us = 0;

uint32 t delta ms, execution ms = 0;

last start tick = osKernelGetTickCount () ;
last start us = GetMicroseconds();

#endif

for (;;) |

#ifdef DELTADEBUG
// Marcar o INICIO da execucdo
start tick = osKernelGetTickCount () ;

start us = GetMicroseconds();

61

// Calcular o delta desde o Gltimo INICIO

delta tick = start tick - last start tick;

delta ms = delta tick; // Cada tick = Ims

delta us

#endif

Simulacao

start us - last start us;

// 1. Leitura do ADC

//for (volatile uintl6 t i = 0; i < 1000; i++); //

de carga de processamento

HAL ADC Start (&hadcl);

62

if (HAL ADC PollForConversion(&hadcl, 10) == HAL OK) {

adc_value = HAL ADC GetValue (&hadcl);

}
HAL ADC Stop(&hadcl);

//VDDA = 3.3V
adc mv = (adc value * 3300.0f) / 4095.0f;
//Temperatura = ((V_sense-V_25) / Avg slope) + 25

//V 25 = 760mV
//Avg slope = 2.5mvV/°C

temperature ¢ = ((adc mv - 760.0f) / 2.5f) + 25.0f;

// 2. Calculo do PID

pid output = calculate pid(temperature c);

// 3. Ajuste do PWM

pwm _value = (uint32 t) (pid output * 10);

if (pwm value > 1000) pwm value = 1000; // Limitar

valor maximo

_ HAL TIM SET COMPARE (&htim2, TIM CHANNEL 1,

pwm_value) ;

#ifdef BLOCKINGDEBUG
char buffer[256];
int len = snprintf (buffer, sizeof (buffer),
"Temp:%1uC|PWM:%$1u|PID:%.2f |Error:%.2£fC|"
"RTOS:Delta=%lums Exec:%lums|
Timer:Delta=%luus Exec=%luus\r\n",
debug data.adc data,
debug data.pwm value,
debug data.pid value,
debug data.error,
debug data.delta ms,
debug data.execution ms,
debug data.delta us,
debug data.execution us);
#ifdef DMADEBUG
UART Send DMA (huart2, (uint8 t*)buffer, len);
felse
HAL UART Transmit (&huart2, (uint8 t*)buffer, len,
HAL MAX DELAY);
#endif
#endif

#ifdef DELTADEBUG
// Marcar o FIM da execucdo
end tick = osKernelGetTickCount () ;

end us = GetMicroseconds();

execution tick = end tick - start tick;

execution ms = execution tick; // Cada tick = 1lms

execution us end us - start us;

#endif

// 4. Preparar dados de depuracao

debug data.adc data = temperature c;

debug data.pwm value pwm value;
debug data.pid value = pid output;

debug data.error = pid.setpoint - temperature c;

#ifdef DELTADEBUG
debug data.delta ms = delta ms;

debug data.execution ms = execution ms;

debug data.delta us = delta us;
debug data.execution us = execution us;

#endif

#ifndef BLOCKINGDEBUG
// 5. Enviar dados para a task UART
if (osMessageQueuePut (debugQueue, &debug data, O,
!'= 0sOK) {
//Timeout

#endif

#ifdef DELTADEBUG
last start tick = start tick;
last start us = start us;
#endif
osDelay (5) ;

// Funcdo de célculo PID
float calculate pid(uint32 t temperature) {
float error = pid.setpoint - temperature;

float p term = pid.Kp * error;

64

0)

65

// Termo integral limitado
if (pid.integral > 100.0f || pid.integral < -100.0f) {
pid.integral =100.0f;
}else(
pid.integral += error;

}
//for (volatile uintlé6 t i = 0; i < 500; i++); //

Simulacdo de atraso

float 1 term = pid.Ki * pid.integral;

// Termo derivativo
float d term = pid.Kd * (error - pid.prev_error);

//for (volatile uintlé t i = 0; i < 300; i++); //

Simulacédo de atraso
pid.prev_error = error;

// Saida do PID com limites

float output = p term + i term + d term;
if (output > 100.0f) output = 100.0f;

if (output < 0.0f) output = 0.0f;

return output;
}
#ifndef BLOCKINGDEBUG
void UART task(void *argument)
{

(void) argument;

DebugData debug data;
char buffer[256];

for(;;)

66

if (osMessageQueueGet (debugQueue, &debug data, NULL,
osWaitForever) == 0sOK) {
#ifdef DELTADEBUG
int len = snprintf (buffer, sizeof (buffer),
"Temp:%1uC|PWM:%1u|PID:%.2f |Error:%.2£C|"
"RTOS:Delta=%lums Exec:%lums|
Timer:Delta=%luus Exec=%luus\r\n",
debug data.adc data,
debug data.pwm value,
debug data.pid value,
debug data.error,
debug data.delta ms,
debug data.execution ms,
debug data.delta us,
debug data.execution us);
#else
int len = snprintf (buffer, sizeof (buffer),
"Temp:%1uC|PWM:%1u|PID:%.2f |Error:%.2fC|"
"\r\n",
debug data.adc data,
debug data.pwm value,
debug data.pid value,
debug data.error);

#endif

#ifdef DMADEBUG

UART Send DMA (huart2, (uint8 t*)buffer, len);
felse

HAL UART Transmit (&huart2, (uint8 t*)buffer,
len, HAL MAX DELAY);
#endif

}else{

sprintf (buffer, "Queue free\r\n");

HAL UART Transmit (&huart2, (uint8 t*)buffer,

strlen (buffer), 100);

}

}

osDelay (200) ;

#endif

#ifdef DELTADEBUG

uint32 t GetMicroseconds (void) {

}

return microSecondCounter;

#endif

#ifdef DMADEBUG

volatile uint32 t debug DMA Busy = 0;

void UART Send DMA (UART HandleTypeDef huart, uint8 t *data,

uintlée t len)

{

// Copiar os dados para o buffer de TX
if (len > UART TX BUFFER SIZE) {

len = UART TX BUFFER SIZE;
}

memcpy (uartTxBuffer, data, len);

// Iniciar transferéncia por DMA

if (HAL UART Transmit DMA (&huart, uartTxBuffer, len) ==

HAL BUSY) {

debug DMA Busy++;
}

67

68

#endif

/* USER CODE END 4 */

/**
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM3 interrupt took
place, inside
* HAL TIM IRQHandler (). It makes a direct call to
HAL IncTick() to increment
* a global variable "uwTick" used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL TIM PeriodElapsedCallback(TIM HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */

/* USER CODE END Callback 0 */
if (htim->Instance == TIM3) {
HAL IncTick();

}
/* USER CODE BEGIN Callback 1 */

/* USER CODE END Callback 1 */

/**

* @brief This function is executed in case of error
occurrence.

* @retval None

*/

void Error Handler (void)

69

/* USER CODE BEGIN Error Handler Debug */
/* User can add his own implementation to report the HAL
error return state */
__disable irqg();
while (1)
{
}
/* USER CODE END Error Handler Debug */

#ifdef USE FULL ASSERT
/**
* @brief Reports the name of the source file and the source

line number

* where the assert param error has occurred.

* @param file: pointer to the source file name
* @param line: assert param error line source number
* @retval None
*/
void assert failed(uint8 t *file, uint32 t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file
name and line number,
ex: printf ("Wrong parameters value: file %$s on line
$d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL ASSERT */

