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RESUMO

CAVALLINI, P. Estudo Comparativo de Métodos Baseados em Modelo e em
Dados para Redução de Ruído em Imagens Mamográficas Digitais. 2025. 57
p. Monografia (Trabalho de Conclusão de Curso) - Escola de Engenharia de São Carlos,
Universidade de São Paulo, São Carlos, 2025.

Este trabalho apresenta um estudo comparativo de métodos baseados em modelo (model-
based) e métodos baseados em dados (data-based) para redução de ruído em imagens de
mamografia digital de campo total (FFDM). A motivação central da pesquisa reside no
dilema fundamental em imagens médicas adquiridas por raios-X: a qualidade da imagem
é intrinsecamente vinculada à dose de radiação, tornando crítico o desenvolvimento de
técnicas de filtragem de ruído que permitam otimizar protocolos de baixa dose sem com-
prometer a detectabilidade de estruturas anatômicas, como microcalcificações. O trabalho
implementou e avaliou sistematicamente métodos analíticos — filtro Gaussiano e BM3D

— bem como métodos de aprendizado profundo supervisionados e auto-supervisionados —
Noise2Clean, Noise2Void e Noise2Sim — utilizando duas bases de dados: imagens sintéticas
geradas pelos ensaios clínicos virtuais (VICTRE) e imagens clínicas reais de mamografia.
Os resultados demonstraram que o BM3D alcançou o melhor desempenho geral (MNSE:
2,419%), apresentando excelente balanço entre supressão de ruído e preservação de estru-
turas (RN : 0,881%; B2: 1,539%). Entre os métodos de aprendizado profundo, o Noise2Sim
destacou-se por apresentar o menor viés quadrático entre os métodos data-based (B2:
2,357%), preservando melhor as estruturas de alta frequência críticas para o diagnóstico,
apesar de maior ruído residual. O Noise2Void alcançou redução eficiente de ruído (RN :
0,613%) mas apresentou borramento excessivo (B2: 5,369%), limitação reconhecida do
método. Uma observação crítica foi que métricas tradicionais como PSNR e SSIM priorizam
redução de ruído sem adequadamente ponderar o borramento, tornando a decomposição do
MNSE (Mean Normalized Squared Error) em componentes de ruído residual (RN ) e viés
quadrático (B2) mais informativa para avaliação em contextos médicos. Conclui-se que,
embora métodos model-based como BM3D permaneçam como referência quando os parâ-
metros de aquisição são bem caracterizados, os métodos data-based auto-supervisionados,
particularmente o Noise2Sim, demonstram potencial significativo para aplicações clínicas
em cenários com múltiplos equipamentos e protocolos heterogêneos, abrindo caminho para
otimização de dose mantendo qualidade diagnóstica em mamografia digital.

Palavras-chave: Mamografia Digital; Redução de Ruído; Métodos Baseados em Modelo;
Aprendizado Profundo; Auto-Supervisionado; Qualidade de Imagem; Avaliação de Imagem
Médica.



 



ABSTRACT

CAVALLINI, P. Comparative Study of Model-Based and Data-Based Methods
for Noise Reduction in Digital Mammographic Images. 2025. 57 p. Monograph
(Course Conclusion Paper) - Escola de Engenharia de São Carlos, Universidade de São
Paulo, São Carlos, 2025.

This work presents a comparative study of model-based and data-based methods for noise
reduction in full-field digital mammography (FFDM) images. The central motivation of
the research lies in the fundamental dilemma in medical imaging acquired by X-rays:
image quality is intrinsically linked to radiation dose, making it critical to develop filtering
techniques that allow optimization of low-dose protocols without compromising the de-
tectability of anatomical structures, such as microcalcifications. The work systematically
implemented and evaluated analytical methods — Gaussian filter and BM3D — as well as
supervised and self-supervised deep learning methods — Noise2Clean, Noise2Void, and
Noise2Sim — using two databases: synthetic images generated by virtual clinical trials
(VICTRE) and real clinical mammography images. Results demonstrated that BM3D
achieved the best overall performance (MNSE: 2.419%), presenting excellent balance
between noise suppression and structure preservation (RN : 0.881%; B2: 1.539%). Among
deep learning methods, Noise2Sim stood out by presenting the lowest squared bias among
data-based methods (B2: 2.357%), better preserving high-frequency structures critical
for diagnosis, despite higher residual noise. Noise2Void achieved e!cient noise reduction
(RN : 0.613%) but exhibited excessive blurring (B2: 5.369%), a recognized limitation of
the method. A critical observation was that traditional metrics such as PSNR and SSIM
prioritize noise reduction without adequately weighting blurring, making the decomposition
of MNSE (Mean Normalized Squared Error) into residual noise (RN ) and squared bias (B2)
components more informative for evaluation in medical contexts. It is concluded that while
model-based methods like BM3D remain as reference when acquisition parameters are well
characterized, data-based self-supervised methods, particularly Noise2Sim, demonstrate
significant potential for clinical applications in scenarios with multiple heterogeneous equip-
ment and protocols, opening avenues for dose optimization while maintaining diagnostic
quality in digital mammography.

Keywords: Digital Mammography; Noise Reduction; Model-Based Methods; Deep Learn-
ing; Self-Supervised Learning; Image Quality; Medical Image Assessment.
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1 INTRODUÇÃO

O câncer de mama representa uma das principais causas de mortalidade entre
mulheres em todo o mundo (WHO, 2025), constituindo-se como um desafio significativo
para a saúde pública global. A detecção precoce deste tipo de câncer é fundamental
para aumentar as chances de sucesso do tratamento, identificando a doença ainda em
estágios iniciais e localizados. Além disso, a participação em programas de rastreamento
mamográfico tem demonstrado reduzir significativamente a mortalidade relacionada ao
câncer de mama, com taxas de sobrevivência em pacientes participantes variando entre
80% e 86%, comparadas a 53-74% em pacientes não participantes (Tabár et al., 2021).

Neste contexto, a mamografia digital de campo total (FFDM - Full-Field Digital
Mammography) desempenha um papel fundamental como um dos métodos mais comuns
para o rastreamento e diagnóstico precoce do câncer de mama (Michell; Batohi, 2018).
A qualidade das imagens mamográficas é essencial para a identificação de lesões sutis,
especialmente microcalcificações, que podem indicar a presença de neoplasias em estágios
iniciais (Borges et al., 2018a). Contudo, a qualidade da imagem em mamografia está
intrinsecamente relacionada à dose de radiação ionizante administrada à paciente durante
o exame (Ya"e, 2000).

A aquisição de imagens médicas por raios-X, incluindo a mamografia, envolve
um compromisso fundamental entre a qualidade da imagem obtida e a dose de radiação
aplicada ao paciente. A natureza quântica dos raios-X resulta em um tipo específico de
ruído conhecido como ruído quântico, que é inerente aos sistemas de imagem baseados em
integradores de energia. Este ruído surge devido às flutuações estatísticas na quantidade
de fótons detectados e segue uma distribuição de Poisson, onde a variância do ruído é
dependente do sinal (Bushberg et al., 2012).

A relação entre dose de radiação e ruído na imagem é inversamente proporcional à
raiz quadrada do número de fótons detectados. Consequentemente, para obter imagens
com menor nível de ruído e maior relação sinal-ruído (SNR - Signal-to-Noise Ratio), é
necessário aumentar a dose de radiação (Bushberg et al., 2012). Por outro lado, a redução
da dose resulta em maior magnitude de ruído, o que pode comprometer a visualização
de estruturas anatômicas e lesões, potencialmente afetando negativamente o desempenho
diagnóstico (Borges et al., 2018a).

Nesse cenário, métodos de filtragem de ruído assumem papel central ao buscar
melhorar a qualidade das imagens sem necessidade de aumento da dose de radiação.
Técnicas de denoising adequadamente projetadas podem atenuar o ruído quântico e
eletrônico preservando, tanto quanto possível, bordas e detalhes anatômicos relevantes,



16

contribuindo para manter a performance diagnóstica mesmo em condições de exposição
reduzida (Borges et al., 2018b). Essa estratégia é particularmente atraente em contextos de
otimização de protocolos de baixa dose, nos quais se pretende minimizar o risco radiogênico
sem comprometer a capacidade de detecção de câncer. Entretanto, uma preocupação latente
no contexto de restauração de imagens por meio de técnicas de filtragem de ruído é a
preservação das estruturas originais e da nitidez da imagem, que podem ter impactos
substanciais na detecção de microcalcificações e lesões mamárias (Soares, 2025).

Na literatura de processamento de imagens, o conceito de restauração é abrangente,
referindo-se ao processo de recuperar uma imagem original a partir de uma versão degra-
dada, o que pode incluir a reversão de borramento (deblurring), distorções geométricas e
outros artefatos. A filtragem de ruído (denoising), por sua vez, é um subconjunto específico
da restauração, focado exclusivamente na mitigação de flutuações estocásticas do sinal.
Para fins de delimitação deste trabalho, adota-se o termo ’restauração’ em seu sentido
estrito de filtragem de ruído; portanto, todas as referências à restauração de imagens ao
longo do texto dizem respeito especificamente às técnicas e processos aplicados para a
supressão de ruído nas imagens mamográficas.

Historicamente, a atenuação de ruído em imagens médicas baseou-se em filtros
analíticos, ou métodos baseados em modelo (MB - Model-Based), que incorporam modelos
explícitos do sinal e do ruído. Dentre as abordagens clássicas destacam-se filtros lineares
de suavização, como o filtro Gaussiano, filtros adaptativos no sentido de mínima variância,
como o filtro de Wiener, e métodos multiescala baseados em transformada wavelet, que
exploram a esparsidade do sinal em domínios transformados para separar componentes de
ruído e de estrutura (Gonzalez; Woods, 2018). Mais recentemente, algoritmos não locais de
última geração, como o BM3D (Block-Matching and 3D Filtering), têm sido amplamente
empregados como referência em denoising, utilizando busca de blocos similares e filtragem
colaborativa no domínio de transformadas 3D para alcançar elevado grau de supressão de
ruído com preservação de detalhes finos (Dabov et al., 2007).

Os filtros analíticos baseados em modelos apresentam, em geral, resultados robustos
e previsíveis, especialmente quando os parâmetros que caracterizam o sistema de aquisição
e o ruído são bem conhecidos. Entretanto, essa dependência de conhecimento prévio
detalhado do domínio limita sua aplicabilidade em cenários mais heterogêneos. Em prática
clínica, aspectos como modelo e fabricante do equipamento, protocolo de exposição, faixa de
espessuras mamárias e variações institucionais tornam complexa a tarefa de parametrizar
manualmente um método analítico de forma ideal para diferentes máquinas e tipos de
exame. Consequentemente, embora extremamente úteis em ambientes bem controlados,
esses métodos podem carecer da flexibilidade necessária quando se busca uma solução mais
generalista, que mantenha desempenho consistente em múltiplos cenários de aquisição
(Xia et al., 2023).
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Em paralelo a essas abordagens, o avanço da capacidade computacional e a cres-
cente disponibilidade de grandes volumes de dados clínicos e sintéticos impulsionaram o
desenvolvimento de métodos baseados em dados (DB - Data-Based) para restauração de
imagens médicas. Esses métodos utilizam os próprios dados para aprender representações
internas do sinal e do ruído, reduzindo a necessidade de modelagem analítica explícita e pos-
sibilitando que a estrutura estatística seja capturada pela própria técnica de aprendizado
(Xia et al., 2023). Nesse contexto, redes neurais profundas (deep learning), especialmente
arquiteturas convolucionais, têm demonstrado grande capacidade de aprender relações
complexas entre imagens ruidosas e suas representações limpas, generalizando esse apren-
dizado para novas amostras que não foram vistas durante o treinamento (Lee et al., 2017;
Sarvamangala; Kulkarni, 2021).

A abordagem clássica de deep learning para restauração de imagens é o aprendi-
zado supervisionado, em que a rede é treinada com pares de imagens limpas e ruidosas
correspondentes. Nesses métodos, o modelo aprende um mapeamento direto do espaço de
imagens degradadas para o espaço de imagens de referência, minimizando uma função de
perda definida entre a saída predita e um ground-truth assumidamente livre de ruído. No
entanto, em domínios como mamografia digital, a obtenção de imagens verdadeiramente
limpas é inviável ou até mesmo impossível, pois o próprio processo de aquisição sempre
envolve degradações pelo ruído quântico e eletrônico (Bushberg et al., 2012).

Uma solução amplamente adotada para contornar essa limitação é o uso de imagens
sintéticas geradas por ensaios clínicos virtuais (VCT – Virtual Clinical Trials). Por meio
de phantoms antropomórficos digitais e simulações virtuais, é possível produzir pares
de imagens limpas e com ruído controlado, ajustando parâmetros de dose, espectro de
raios X e características do detector de forma precisa. Esses dados sintéticos fornecem um
ground-truth idealizado para treinar redes supervisionadas em condições bem definidas,
incluindo cenários que seriam impraticáveis em estudos clínicos reais, como variações
sistemáticas de dose e densidade mamária (Sharma et al., 2019; Borges et al., 2019).

Apesar das vantagens, o uso de imagens sintéticas introduz outro desafio: discre-
pâncias entre os domínios sintético e clínico podem prejudicar a generalização dos modelos
treinados. Diferenças sutis – ou mesmo substanciais – na textura do tecido, distribuição
de ruído, presença de artefatos e variações anatômicas não capturadas pelos phantoms
podem levar a queda de desempenho quando o modelo é aplicado em dados reais. Nesse
cenário, surgem os métodos data-based auto-supervisionados, que dispensam a necessidade
de pares limpo-ruidoso e aprendem diretamente a partir das próprias imagens clínicas
ruidosas, explorando hipóteses sobre independência do ruído e redundância estrutural para
guiar o processo de aprendizado (Lehtinen et al., 2018; Krull; Buchholz; Jug, 2019; Niu et
al., 2022; Sander; Pock; Cremers, 2021).

Inicialmente, o Noise2Noise introduziu a possibilidade de treinar redes neurais para
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restauração utilizando apenas pares de realizações da imagem com ruídos independentes
(Lehtinen et al., 2018). Posteriormente, avançaram-se abordagens ainda mais flexíveis,
como o Noise2Void (Krull; Buchholz; Jug, 2019), que utiliza redes com regiões cegas
(blind-spot) para predizer o valor de um pixel a partir dos pixels vizinhos na própria
imagem ruidosa, e o Noise2Sim (Niu et al., 2022), que explora a similaridade local entre
regiões da imagem para construir pares de treinamento a partir de uma única imagem
ruidosa. Essas técnicas ampliam a aplicabilidade do deep learning em contextos clínicos
reais, nos quais a obtenção de imagens de referência é inviável, favorecendo a generalização
e a robustez dos modelos para diferentes equipamentos, doses e características dos exames.

1.1 Objetivo

Diante desse panorama, o presente trabalho tem como objetivo realizar um estudo
comparativo, no contexto específico da mamografia digital de campo total (FFDM), sobre
os métodos de filtragem de ruído, considerando o equilíbrio entre desempenho, robustez
e aplicabilidade clínica: métodos model-based analíticos (como filtros clássicos e BM3D)
e métodos data-based baseados em aprendizado profundo, incluindo tanto estratégias
supervisionadas (treinadas com dados sintéticos de VCT) quanto auto-supervisionadas
(treinadas diretamente em imagens clínicas ruidosas). Ao comparar sistematicamente essas
abordagens em termos de métricas de qualidade de imagem e potencial impacto diagnóstico,
busca-se fornecer evidências que auxiliem na escolha de estratégias de processamento mais
adequadas para otimização de dose e melhoria da qualidade de imagens de mamografia
digital.
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2 REVISÃO BIBLIOGRÁFICA

A restauração de imagens médicas é uma etapa técnica fundamental para potencia-
lizar o valor diagnóstico dos exames, promovendo a correção de artefatos, degradação de
sinal e ruído oriundos do próprio processo de aquisição (Maia et al., 2019). O objetivo
do processamento de restauração é recuperar a imagem o mais próximo possível da repre-
sentação anatômica verdadeira, o que se mostra particularmente relevante no contexto
da mamografia digital, devido ao impacto direto da qualidade de imagem na acurácia
da detecção e caracterização de lesões (Bushberg et al., 2012). Técnicas de restauração
são historicamente aplicadas como pré-processamento ou pós-processamento para corrigir
pixels defeituosos, compensar perdas ou distorções, aumentar o contraste e, principalmente,
suprimir ruído sem comprometer a preservação de detalhes de interesse clínico (Maia et
al., 2019).

A restauração de imagens mamográficas degradadas — especialmente aquelas
obtidas sob protocolos de baixa dose para redução do risco radiogênico — tem relação
direta e mensurável com o desempenho diagnóstico, impactando tanto a percepção visual
do radiologista quanto a acurácia de tarefas específicas de detecção. Borges et al. (2018a)
conduziram um estudo perceptivo que avaliou a influência da restauração de imagens
de tomossíntese mamária adquiridas em baixas doses, demonstrando que a aplicação de
técnicas avançadas de restauração possibilitou a recuperação do contraste e de caracte-
rísticas anatômicas relevantes sem introdução de artefatos significativos, resultando em
melhora substancial da performance dos observadores humanos. De forma complementar,
Borges et al. (2018b) apresentaram evidências quantitativas de que métodos de restauração,
ao suprimir o ruído de forma controlada, restauram a visibilidade de lesões e detalhes
finos, e contribuem para elevar a qualidade subjetiva e objetiva das imagens, reforçando
o potencial dessas técnicas como ferramentas de suporte ao diagnóstico em ambientes
clínicos sistematicamente expostos à necessidade de otimização da dose.

As abordagens para restauração podem ser agrupadas em duas grandes vertentes:
métodos baseados em modelos (model-based - MB) e métodos baseados em dados (data-
based - DB).

2.1 Métodos Baseados em Modelo

Os métodos MB partem da premissa de modelar matematicamente a relação
entre o sinal ideal e a imagem degradada, incorporando hipóteses sobre o sistema de
aquisição, propriedades físicas, estatísticas do ruído e características anatômicas. Entre
estes, destacam-se os seguintes filtros:
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• Filtros Lineares: O filtro Gaussiano, que realiza uma média ponderada dos pixels
vizinhos utilizando uma função gaussiana como kernel de convolução, é um dos
métodos mais simples e computacionalmente eficientes. Embora efetivo na redução
de ruído, este filtro tende a suavizar também as bordas e estruturas finas da imagem,
resultando em perda de nitidez. O filtro de média opera de forma similar, mas
utilizando pesos uniformes (Gonzalez; Woods, 2018).

• Filtro de Wiener: Diferentemente dos filtros lineares convencionais, o filtro de Wiener
adapta-se à variância local da imagem, realizando maior suavização em regiões
homogêneas (baixa variância) e preservando melhor as regiões de alta variância,
correspondentes a bordas e estruturas. Este filtro é particularmente efetivo quando
o ruído pode ser modelado como ruído aditivo branco gaussiano (AWGN - Additive
White Gaussian Noise) e minimiza o erro quadrático médio (MSE - Mean Squared
Error) entre a imagem estimada e a imagem verdadeira (Gonzalez; Woods, 2018).

• Filtro de Mediana: Pertencente à classe de filtros não-lineares baseados em ordem
estatística, o filtro de mediana substitui cada pixel pelo valor mediano de sua
vizinhança. É especialmente eficaz na remoção de ruído impulsivo (salt-and-pepper
noise), preservando razoavelmente as bordas da imagem (Gonzalez; Woods, 2018).

• Transformada Wavelet: Métodos baseados em transformada wavelet exploram a
representação multiescala dos sinais, decompondo a imagem em diferentes níveis
de resolução e orientação. A atenuação de ruído é realizada através de técnicas de
limiarização dos coeficientes wavelet, permitindo separar componentes de sinal de
componentes de ruído. A transformada wavelet discreta (DWT - Discrete Wavelet
Transform) tem sido amplamente utilizada em processamento de imagens médicas
devido à sua capacidade de representação esparsa e preservação de bordas (Gonzalez;
Woods, 2018).

• Block-Matching and 3D Filtering (BM3D): O algoritmo BM3D (Dabov et al., 2007)
representa um dos métodos estado-da-arte em atenuação de ruído analítico (Goyal
et al., 2020). Este método combina busca por blocos similares com filtragem colabo-
rativa no domínio transformado em dois estágios principais (conforme Figura 1): (1)
matching e filtragem básica — identifica blocos similares através de busca não-local,
agrupa-os em estruturas 3D e aplica transformadas decorrelacionantes (wavelet ou
DCT) seguidas de encolhimento colaborativo; (2) filtragem refinada e agregação

— refina a estimativa inicial através de filtragem de Wiener e combina os blocos
processados via média ponderada. O BM3D explora efetivamente a redundância
não-local presente em imagens, alcançando excelente balanço entre supressão de
ruído e preservação de estruturas finas, sendo frequentemente utilizado como método
de referência para comparação de novos algoritmos de denoising.
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Figura 1 – Fluxograma do algoritmo BM3D proposto por Dabov et al. (2007).

Além dos filtros clássicos e do BM3D em sua versão tradicional, destaca-se na lite-
ratura o pipeline proposto por Borges et al. (2017),representado na Figura 2, desenvolvido
especificamente para otimizar o denoising em imagens de mamografia digital e tomos-
síntese considerando a natureza mista (Gaussiano-Poisson) do ruído nessas modalidades.
Esse pipeline promove inicialmente a remoção dos parâmetros de calibração aplicados
pelo detector, incluindo ganho espacial e o"set, a partir da análise de imagens uniformes
adquiridas com o mesmo equipamento clínico. Em seguida, utiliza uma transformação
de estabilização de variância (Variance Stabilizing Transformation - VST), baseada na
transformação de Anscombe generalizada, para converter o ruído sinal-dependente em
um ruído aproximadamente Gaussiano de variância constante. Após essa normalização,
métodos de denoising projetados para ruído Gaussiano independente, como o BM3D,
podem ser aplicados com maior eficácia. Por fim, uma etapa reversa de transformação
e restauração dos parâmetros de calibração recupera a imagem ao seu domínio original.
Borges et al. (2017) demonstraram que o pipeline aprimora substancialmente a eficiência
do denoising, com melhorias de até 20% na N-RMSE espacial e 15% em termos de SNR
de frequência, sem perda significativa de nitidez segundo a MTF, tornando-se assim uma
solução robusta e adaptável para processamento de imagens em diferentes cenários clínicos
de mamografia digital.

Figura 2 – Fluxo de processamento do pipeline de denoising de Borges et al. (2017) aplicado
às imagens de mamografia digital.

2.2 Métodos Baseados em Dados

Com o avanço da capacidade computacional e o crescimento dos volumes de dados
disponíveis, métodos baseados em dados (data-based - DB) emergiram como alternativa para
superar as limitações dos MB. Ao invés de depender de modelagem explícita dos processos
físicos, os DB utilizam estatísticas extraídas do próprio conjunto de imagens para aprender
representações internas do sinal e do ruído, tornando possível adaptar automaticamente o
processamento sem intervenção manual sobre a parametrização (Lehtinen et al., 2018).
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O surgimento das redes neurais convolucionais (CNNs) marcou um ponto de inflexão
significativo na história da análise de imagens, particularmente após o sucesso apresentado
no desafio ImageNet Large Scale Visual Recognition Competition (ILSVRC) em 2012, que
catalisou o interesse acadêmico e industrial no aprendizado profundo (Lee et al., 2017).
Desde sua introdução nos primeiros anos 2000, as CNNs foram progressivamente adaptadas
para aplicações médicas, inicialmente focando em tarefas de segmentação e classificação.
Sarvamangala e Kulkarni (2021) destacam que o ponto de virada crítico ocorreu quando
o GoogleNet alcançou 89% de acurácia na detecção de câncer em imagens patológicas,
superando o desempenho de patologistas humanos.

As aplicações iniciais de CNNs em imagens médicas abrangeram diagnóstico de
retinopatia diabética, classificação de lesões de pele, análise de radiografias de tórax,
e detecção de tuberculose (Huang et al., 2020). Lee et al. (2017) documentam que as
primeiras aplicações bem-sucedidas de deep learning em radiologia incluíram segmentação
de pulmões, detecção de tumores cerebrais e segmentação de estruturas biológicas. A
crescente disponibilidade de dados, aumento da capacidade computacional através de
processadores GPU e desenvolvimento de algoritmos mais sofisticados de treinamento
criaram o ambiente propício para a revolução digital na medicina (Lee et al., 2017).

A aplicação de redes neurais profundas especificamente para tarefas de remoção de
ruído em imagens médicas emergiu como resposta aos desafios de aquisição de imagens
com doses reduzidas de radiação. Uma das primeiras propostas influentes foi o RED-CNN
(Residual Encoder-Decoder CNN), desenvolvido por Chen et al. (2017) para denoising de
tomografia computadorizada de baixa dose (LDCT). O RED-CNN combinou conceitos de
autoencoders, redes de deconvolução e conexões de atalho (skip connections), demonstrando
capacidade de suprimir efetivamente ruído mantendo preservação de detalhes anatômicos.
O trabalho de Chen et al. (2017) alcançou melhoria significativa em relações sinal-ruído
(SNR) e demonstrou melhor preservação de detalhes comparado aos métodos clássicos
como ASD-POCS.

Contemporaneamente, Zhang et al. (2016) apresentaram o DnCNN (Deep Denoi-
sing CNN), um modelo revolucionário que explorou aprendizado residual para Gaussian
denoising. O DnCNN foi notável por sua capacidade de lidar com denoising gaussiano
cego (blind Gaussian denoising) em níveis de ruído desconhecidos, utilizando uma única
rede treinada. O modelo prediz o componente residual (diferença entre imagem ruidosa e
limpa) em vez de predizer diretamente a imagem limpa, um paradigma que mostrou-se
particularmente efetivo.

Reconhecendo as dificuldades práticas em obter grandes quantidades de pares de
imagens limpas e ruidosas em domínios médicos, a utilização de dados sintéticos gerados
computacionalmente emergiu como solução viável. Os ensaios clínicos virtuais (VCT -
Virtual Clinical Trials) representam uma metodologia robusta para geração de dados
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sintéticos realísticos. Badano et al. (2018) introduziram o VICTRE (Virtual Imaging
Clinical Trial for Regulatory Evaluation), uma plataforma de código aberto que simula
sistemas de mamografia digital (DM) e tomossíntese digital da mama (DBT) utilizando
transporte de raios-X por Monte Carlo.

Outra solução que surge, a fim de utilizar dados reais no treinamento de modelos
de Deep Learning e reconhecendo que métodos supervisionados tradicionais enfrentam
limitações práticas significativas em domínios de imagem médica, foram desenvolvidas
abordagens que permitem treinamento sem necessidade de pares limpas-ruidosas.

Lehtinen et al. (2018) propuseram Noise2Noise (N2N), um paradigma fundamentado
em raciocínio estatístico básico. A ideia central é que, se duas realizações independentes
de ruído n1 e n2 de uma mesma cena limpa estão disponíveis, de modo que x1 = s + n1 e
x2 = s + n2, uma rede neural pode ser treinada para mapear x1 ↑ x2. Sob a hipótese de
ruído com média zero e independente do sinal, Lehtinen et al. (2018) demonstraram que
treinar com pares ruidosos é estatisticamente equivalente a treinar com dados limpos, a
menos de uma constante aditiva relacionada à variância do ruído.

Lehtinen et al. (2018) validaram Noise2Noise em múltiplos domínios: remoção
de ruído fotográfico, denoising de imagens sintéticas de Monte Carlo, e reconstrução de
varreduras de MRI subamostradas. Em aplicações fotográficas, o modelo Noise2Noise
alcançou desempenho comparável ou superior ao treinamento supervisionado com dados
limpos. Particularmente, para imagens sintéticas de Monte Carlo, o método provou ser
vantajoso pois elimina a necessidade de renderizações de alta exposição (clean data) que
são 2000 vezes mais lentas que renderizações de baixa exposição. Contudo, a principal
limitação do Noise2Noise em domínios como mamografia digital é que requer múltiplas
realizações independentes da mesma cena, o que não é viável em protocolos clínicos onde
tipicamente apenas uma única aquisição por projeção é realizada.

Krull, Buchholz e Jug (2019) propuseram Noise2Void (N2V), representando um
avanço significativo ao possibilitar treinamento a partir de imagens ruidosas individuais,
sem necessidade de múltiplas realizações ou imagens limpas. A estratégia fundamental é
a construção de uma "blind-spot network", onde a rede é impedida de ter acesso direto
ao pixel que está sendo predito. Durante treinamento, pixels específicos da imagem são
mascarados (tipicamente através de amostragem uniforme de pixels - UPS), e a rede é
treinada para predizer o valor desses pixels mascarados utilizando apenas informações
de sua vizinhança local (janela de contexto). A Figura 3 demonstra esse processo de
mascaramento do pixel para realizar o treinamento.

A fundamentação teórica de Noise2Void baseia-se em duas suposições estatísticas:
(1) o sinal é não pixel-wise independente (possui correlação espacial), e (2) o ruído
é condicionalmente pixel-wise independente dado o sinal. Sob estas hipóteses, a rede
aprende a predição que corresponde à estimativa de mínimo erro quadrático médio do
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Figura 3 – Esquema de mascaramento do pixel durante treinamento do Noise2Void. (a)
uma imagem ruidosa; (b) patch extraído da imagem, mostrando o mascaramento do
pixel central, selecionando um pixel aleatório da vizinhança (quadrado azul). (c) target
correspondente do patch de (b). Imagem retirada de Krull, Buchholz e Jug (2019).

sinal verdadeiro.

Krull, Buchholz e Jug (2019) demonstraram experimentalmente que Noise2Void
alcança desempenho comparável a métodos supervisionados em domínios como microsco-
pia de fluorescência, imagens naturais (BSD68) e dados de microscopia de transmissão
de elétrons (cryo-TEM). Contudo, o Noise2Void apresenta limitações reconhecidas: (1)
tendência ao borramento excessivo, afetando preservação de detalhes finos; (2) surgimento
de artefatos em padrão de tabuleiro (checkerboard artifacts) devido à estratégia de masca-
ramento de pixels; (3) dependência exclusiva de vizinhança local imediata, que pode ser
insuficiente para recuperar estruturas de maior escala.

Sander, Pock e Cremers (2021) propuseram Noise2Grad (N2G), um método que
baseia sua estratégia de treinamento na observação de que o gradiente de uma imagem
ruidosa é dominado por componentes de ruído. O algoritmo opera em duas etapas: (1)
um módulo atua removendo aproximadamente o ruído; (2) um módulo de aproximação
de ruído extrai componentes de ruído através de síntese de novos pares ruidosos-limpos.
Esses pares sintetizados retroalimentam o módulo de remoção de ruído para guiar melhor
remoção.

O core da estratégia de Noise2Grad é usar pares de imagens não-emparelhadas
(ruidosa e limpa) para treinar uma rede de extração de ruído, restrito pela informação de
gradiente da imagem.

Sander, Pock e Cremers (2021) reportaram que Noise2Grad alcança desempenho
próximo aos métodos supervisionados e auto-supervisionados (Noise2Noise) em datasets
como BSD300 para ruído gaussiano, speckle e Poisson. Contudo, a aplicabilidade de
Noise2Grad em mamografia é limitada pela sua dependência de imagens limpas, mesmo
que não pareadas.

Niu et al. (2022) propuseram Noise2Sim (N2Sim), representando uma abordagem
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de denoising auto-supervisionado baseada em similaridade. Diferentemente do Noise2Void
que explora apenas vizinhanças locais imediatas, o Noise2Sim explora de forma não-local
a redundância estrutural em imagens através da busca de patches similares.

O algoritmo do Noise2Sim procede em três etapas: (1) para cada patch de referência,
identifica os k patches mais similares na imagem através de busca não-local; (2) constrói
pares de treinamento de forma aleatória e independente pixel a pixel a partir dos k + 1
patches similares; (3) treina a rede de denoising para mapear os inputs construídos para
os targets correspondentes. Esse processo é representado na Figura 4.

Figura 4 – Processo de construção dos k patches mais similares (Step-1) e construção dos
pares de treinamento (Step-2). Imagem retirada de Niu et al. (2022).

Teoricamente, Niu et al. (2022) demonstraram que, sob duas condições brandas
– Zero Conditional Noise mean (ZCN) e Zero Conditional Discrepancy mean (ZCD) –
o aprendizado com Noise2Sim é assintoticamente equivalente (no limite do número de
amostras de treinamento) ao aprendizado supervisionado com alvos limpos verdadeiros.
Diferentemente do Noise2Void que assume independência estrita de ruído entre pixels
vizinhos, Noise2Sim é teoricamente capaz de suprimir tanto ruídos independentes quanto
ruídos correlacionados.

Niu et al. (2022) validaram extensivamente Noise2Sim em imagens de tomografia
computadorizada de baixa dose (LDCT) e tomografia computadorizada de contagem de
fótons (PCCT), demonstrando desempenho comparável ou superior a métodos supervisio-
nados em métricas PSNR, SSIM e avaliação estatística. As análises visuais e quantitativas
confirmaram superior preservação de estruturas anatômicas comparado a BM3D e outros
métodos auto-supervisionados. Crucialmente, Noise2Sim opera de forma não-linear através
de redes neurais profundas e colaborativa, onde todos os conjuntos de patches similares
em todas as imagens de treinamento contribuem coletivamente para o aprendizado, uma
vantagem significativa sobre métodos lineares como Non-Local Means (NLM).

A escolha entre abordagens supervisionadas e auto-supervisionadas em mamografia
digital envolve considerações importantes. Métodos supervisionados (Noise2Clean baseado
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em dados VICTRE) oferecem a vantagem de um ground truth gerado computacionalmente,
permitindo otimização direta para mapeamento noisy-to-clean. Contudo, enfrentam o
desafio de generalização potencial quando há discrepâncias entre características de ruído
sintético e ruído real em imagens clínicas.

Métodos auto-supervisionados como Noise2Void e Noise2Sim não requerem dados
limpos, permitindo treinamento diretamente em imagens clínicas ruidosas. Essa exposição
a ruído real potencialmente melhora robustez, mas introduz desafios em que a rede
deve aprender a restauração sem supervisão explícita. Noise2Void, embora revolucionário,
apresenta as limitações reconhecidas de possível borramento excessivo e dependência
de independência pixel-wise de ruído, violada em imagens com ruído correlacionado.
Noise2Sim, por sua vez, explora redundância não-local de forma mais abrangente e tem
fundamentação teórica para lidar com ruído correlacionado, potencialmente oferecendo
vantagens em contextos de mamografia onde textura e estrutura são críticas.

2.3 Métricas de Avaliação da Qualidade de Imagem

A avaliação da qualidade de imagens médicas, especialmente na mamografia digital,
é crucial para monitorar a influência dos algoritmos de restauração, protocolos de aquisição
e níveis de dose sobre o desempenho diagnóstico. Dentre as metodologias de Image Quality
Assessment (IQA), destacam-se as métricas objetivas, classificadas em full-reference (FR-
IQA), quando existe uma imagem de referência ideal, e no-reference (NR-IQA), que não
dependem de uma imagem original não degradada.

As métricas full-reference são amplamente utilizadas em ensaios clínicos virtuais
ou quando o sinal original ideal está disponível. Exemplos incluem:

• PSNR (Peak Signal-to-Noise Ratio) – mede a razão entre a potência máxima do sinal
e a potência do ruído (descrito pela MSE), sendo uma das métricas mais tradicionais
em processamento de imagens. (Wang; Bovik, 2009)

• SSIM (Structural Similarity Index Measure) – avalia a similaridade estrutural entre
duas imagens considerando aspectos de luminância, contraste e estrutura. Diferen-
temente do PSNR, o SSIM incorpora características da percepção visual humana,
demonstrando maior correlação com a qualidade percebida de imagens. (Wang et al.,
2004)

• QILV (Quality Index based on Local Variance) – compara a distribuição de variância
local entre a imagem restaurada e a referência, sendo sensível a mudanças nas
estruturas locais. O QILV é particularmente útil para avaliar distorções estruturais
diferentes do simples borramento uniforme. (Aja-Fernandez; Vegas-Sanchez-Ferrero;
Alberola-Lopez, 2006)
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• HaarPSI (Haar Wavelet-based Perceptual Similarity Index) – utiliza decomposição
wavelet de Haar para avaliar a similaridade perceptual entre imagens, incorporando
características da percepção visual humana em múltiplas escalas e orientações
(Reisenhofer et al., 2018).

• MNSE (Mean Normalized Squared Error) – permite a decomposição entre Residual
Noise (RN ) e Bias (B2), oferecendo uma análise mais completa do trade-o! entre
remoção de ruído e preservação de sinal (Borges et al., 2018b). Esta decomposição
permite avaliar separadamente o ruído residual (efetividade da filtragem) e o viés
quadrático (borramento ou artefatos introduzidos). O MNSE é especialmente rele-
vante para aplicações em imagens médicas, onde ambos os componentes impactam a
qualidade diagnóstica (Vimieiro, 2023).

Por outro lado, em cenários clínicos reais, onde o sinal de referência raramente
está disponível, utilizam-se métricas no-reference, que avaliam a qualidade exclusivamente
com base na imagem avaliada. Dentre essas métricas, destaca-se a NAQI (Normalized
Anisotropic Quality Index), que se baseia na entropia Rényi anisotrópica da distribuição
espaço-frequência para quantificar a organização estrutural e a anisotropia da imagem
(Oliveira et al., 2016). Valores mais altos indicam melhor preservação da organização
anatômica e qualidade superior; permite rápida avaliação em imagens clínicas sem ground-
truth.

Limitações importantes emergem na comparação e interpretação dessas métricas,
especialmente quando utilizadas fora do domínio de imagens naturais. O trabalho de Soares
(2025) destaca que muitos índices tradicionais de distorção apresentam baixa correlação
com tarefas diagnósticas clínicas, principalmente devido à divergência entre o compromisso
percepção-distorção e a variação estatística do conteúdo anatômico. Métricas como SSIM
e PSNR, por exemplo, podem não refletir adequadamente o impacto diagnóstico de ruído
ou borramento em imagens médicas, pois foram desenvolvidas e validadas para imagens
naturais.

Assim, recomenda-se cautela na interpretação dos resultados das métricas objetivas.
Ideais para monitoramento prático e otimização de algoritmos, essas métricas devem
ser complementadas por validações baseadas em tarefa ou estudos com observadores
humanos/computacionais, principalmente em contextos de avaliação clínica da mamografia
digital.
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3 MATERIAIS & MÉTODOS

Neste trabalho, foi realizada uma comparação entre métodos model-based e data-
based para supressão de ruído em imagens de mamografia digital, investigando as vantagens
e limitações de cada abordagem. A implementação dos métodos de restauração está
disponível em https://github.com/Pedroc890/denoising_methods_FFDM.

Para os métodos model-based, buscou-se implementar o filtro Gaussiano e o BM3D
(Block-Matching and 3D Filtering) implementado com uma transformação de estabilização
da variância (VST - Variance-Stabilizing Transformation), explorando, respectivamente,
um modelo de baixa complexidade em comparação com estado-da-arte no campo de
denoising (Goyal et al., 2020).

Se por um lado, os métodos model-based necessitam ajuste de parâmetros que se
relacionam com um conhecimento a priori das características do domínio trabalhado,
as abordagens data-based buscam aprender, a partir de um grande volume de dados, as
características desse domínio para realizar a tarefa almejada. Dessa forma, explorando
os diferentes tipos de conjuntos de dados disponíveis na área de imagens médicas, foi
implementado um modelo de deep learning supervisionado (Noise2Clean) e dois modelos
auto-supervisionados (Noise2Void e Noise2Sim).

3.1 Base de Dados

Neste trabalho foram utilizadas duas bases principais de imagens de mamografia
digital de campo total (FFDM): (i) um conjunto sintético gerado por ensaios clínicos
virtuais (VCT), empregado como referência controlada para avaliação e treinamento de
métodos supervisionados, e (ii) um conjunto de imagens clínicas de FFDM, utilizado para
treinamento dos métodos auto-supervisionados e para avaliação em condições reais de
aquisição.

Para a base de dados de imagens sintéticas, imagens VCT de FFDM foram geradas
através do software de ensaios clínicos virtuais VICTRE (Virtual Clinical Trial for Regula-
tory Evaluation) (Sharma et al., 2019) – utilizadas como Ground Truth – e posteriormente
inserido ruído quântico e eletrônico para simular a aquisição da imagem utilizando 100%
da dose padrão de mamografia. A inserção de ruído foi realizada utilizando parâmetros do
equipamento Selenia Dimensions Mammography System (Hologic Inc., EUA) e seguindo
o modelo de ruído definido em Borges et al. (2019). As imagens das Figuras 5a e 5b
são exemplos de VCTs geradas por meio do VICTRE, simulando diferentes estruturas
associadas ao exame de FFDM.

Já para a base de dados de imagens clínicas, foram utilizadas imagens reais de FFDM
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Figura 5 – Exemplos de imagens VCT raw geradas pelo VICTRE.

(a) VCT com um padrão de
menor mama

(b) VCT com um padrão de
maior mama

do Hospital de Câncer de Barretos (Brasil), contendo tanto as projeções de craniocaudal
(CC) e médio lateral oblíqua (MLO) das mamas esquerda e direita, salvas no formato
raw (ou também DICOM "for processing"). Todos os dados clínicos foram devidamente
anonimizados para preservar os registros médicos dos pacientes. As imagens da Figura
6 são exemplos de imagens clínicas utilizadas no trabalho, com realizações de ambas as
mamas em projeções CC e MLO.

Figura 6 – Exemplos de imagens clínicas raw nas projeções CC e MLO.

(a) Esquerda CC (b) Esquerda MLO (c) Direita CC (d) Direita MLO

É importante ressaltar que as bases de dados utilizadas neste estudo, tanto o
conjunto de imagens sintéticas (VCT) quanto as imagens clínicas reais, são compostas por
exames considerados normais ou regiões de interesse livres de lesões patológicas específicas,
como nódulos e microcalcificações. Consequentemente, o escopo deste trabalho delimita-se
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à análise técnica da eficiência dos algoritmos na filtragem de ruído e na preservação da
integridade do sinal. Não obstante, ainda que a validação de diagnóstico não seja o objeto
direto de estudo, as análises quantitativas e qualitativas aqui conduzidas consideram o
impacto potencial dos métodos na preservação de estruturas finas, fator determinante para
a detectabilidade clínica dessas lesões em um contexto de diagnóstico real.

3.2 Métodos Baseados em Modelo

Inicialmente, foi implementado o filtro Gaussiano com kernel de tamanho 5 → 5
pixels, ponderando entre a capacidade de filtragem de ruído e a perda de nitidez. A fim de
demonstrar também o comportamento das métricas utilizadas em relação ao ruído residual
e borramento, experimentou-se kernels de tamanhos 3 → 3 e 11 → 11.

Para a implementação do método BM3D neste trabalho, foi adotado o pipeline
proposto por Borges et al. (2017), conforme a Figura 2, desenvolvido especificamente para
imagens de mamografia digital (FFDM) e tomossíntese (DBT). Inicialmente, as imagens
foram processadas para remoção dos parâmetros de calibração do detector, como o!set
e ganho espacial, de forma a aproximar o sinal bruto do modelo físico dos processos de
aquisição. Em sequência, empregou-se uma transformação de estabilização da variância
(VST - Variance-Stabilizing Transformation), baseada na transformação de Anscombe
generalizada, permitindo converter o ruído Poisson-Gaussiano dependente do sinal para
um ruído aproximadamente Gaussiano de variância constante. Após esta normalização
estatística, o algoritmo BM3D foi executado conforme as diretrizes do pipeline, fazendo uso
de patch-based estimation, análise de auto-similaridade não-local e filtragem colaborativa
no domínio das transformadas, garantindo a preservação de detalhes anatômicos e eficiente
supressão do ruído. Finalizada esta etapa, aplicou-se a transformação inversa da VST e
a reinserção dos parâmetros de calibração originais, obtendo-se as imagens restauradas
compatíveis com o padrão clínico. Os valores de ganho do detector, o!set do pixel e
ruído eletrônico utilizados nesta implementação foram extraídos e ajustados conforme
especificações do sistema Selenia Dimensions Mammography System (Hologic Inc., EUA),
garantindo maior realismo e aderência ao cenário clínico estudado.

Com esses dois métodos, foi possível explorar neste trabalho os impactos de aplicar
um modelo com pouquíssimos parâmetros e necessidade de pouco conhecimento prévio a
respeito do domínio de atuação (filtro Gaussiano) em comparação com um modelo onde é
necessário o conhecimento de diversos parâmetros a respeito do processo de aquisição de
imagem, analisando as vantagens e desvantagens dos dois métodos.

3.3 Métodos Baseados em Dados

Para comparação dos diferentes métodos data-based no contexto de restauração de
imagens FFDM, foram implementadas abordagens supervisionadas e auto-supervisionadas
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de aprendizado profundo, investigando as diferenças de treinamentos com imagens sintéticas
e clínicas.

Na abordagem supervisionada (Noise2Clean), onde é oferecido à rede um par de
imagens com uma realização limpa (sem ruído) e uma realização ruidosa da mesma cena,
foram utilizadas 120 imagens sintéticas VCT com inserção de ruído por meio de simulação,
a fim de obter a imagem ruidosa (input) e sua correspondente imagem limpa (ground
truth). O ruído inserido simula a realização de um exame de mamografia digital com 100%
da dose típica. O dataset de 120 imagens foi dividido em 108 imagens para treinamento e
12 imagens para validação durante o treinamento (proporção de 90%/10%).

Com os 120 pares de imagens sintéticas (limpas e ruidosas), divididas em trei-
namento e validação, foi extraído patches de 60 → 60 sem sobreposição (considerando
o tamanho da imagem de 3300 → 1800). Utilizando o método de Otsu (Otsu, 1979),
selecionou-se apenas patches da região da mama, tanto para o treinamento quanto para
validação.

Já na abordagem auto-supervisionada, foram utilizadas 250 imagens clínicas de
FFDM para treinamento dos modelos, uma vez que esses métodos não necessitam de ground
truth para ser usado como target do aprendizado. Os métodos escolhidos para avaliar essa
abordagem foram o Noise2Void (Krull; Buchholz; Jug, 2019) e o Noise2Sim (Niu et al.,
2022), por necessitarem apenas uma realização da imagem com ruído. Abordagens como
Noise2Noise (Lehtinen et al., 2018), onde é necessário duas realizações da mesma imagem
com ruídos independentes, se tornam difíceis de serem aplicadas com imagens clínicas
pela forma com que os exames são conduzidos, justificando a escolha dos dois métodos
mencionados. O dataset de imagens clínicas foi dividido em 225 imagens para treinamento
dos modelos e 25 imagens para validação durante o treinamento (proporção de 90%/10%).

Da seleção de 250 imagens clínicas, divididas em treinamento e validação, foi
extraído patches de 64 → 64 (considerando agora imagens de 3328 → 2560 e 4096 → 3328)
apenas da região da mama, semelhante o processo utilizado para imagens sintéticas.

3.3.1 Arquitetura e Hiperparâmetros

Para todos os três métodos data-based implementados, foi escolhida a rede U-Net
(Ronneberger; Fischer; Brox, 2015) como arquitetura base, composta por 3 blocos de
encoder e 3 blocos de decoder. Cada encoder e decoder possuí duas camadas convolucionais,
função de ativação ReLU e Batch Normalization antes de cada função de ativação, com
o decoder possuindo também uma camada de convolução transposta adicional. Essa
arquitetura foi escolhida por ser comumente utilizada por modelos de restauração de
imagens baseado em dados, tal qual as implementações de Niu et al. (2022) e Krull,
Buchholz e Jug (2019).
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A função de perda foi padronizada como MSE (Mean Squared Error) para todos os
treinamentos, utilizando a técnica de early stopping após 5 épocas sem melhoria na perda
de validação, a fim de prevenir o overfitting da rede.

Learning rate dos modelos foi fixado em 1 → 10→4, utilizando o otimizador Adam
com os outros hiperparâmetros padrão.

3.3.2 Parâmetros Específicos dos Métodos Auto-Supervisionados

Replicando as configurações com melhor desempenho do Noise2Void, foi utilizada
uma Janela de Contexto de 5 → 5 pixels. Esta janela define a vizinhança de um pixel
mascarado que será utilizada pela rede para predizer seu valor. O Método de Mascaramento
adotado foi a Amostragem Uniforme de Pixel (UPS - Uniform Pixel Selection), e a Taxa
de Amostragem foi fixada em 0,198%. Considerando o tamanho dos patches de entrada de
64→64 pixels utilizados no treinamento, essa taxa de amostragem resulta no mascaramento
de 8 pixels por input em cada iteração. É importante ressaltar que a função de perda
MSE é aplicada apenas aos pixels que foram "cegados", garantindo que a rede aprenda
a restaurar o valor do pixel central apenas a partir de seus vizinhos ruidosos. (Krull;
Buchholz; Jug, 2019)

No caso do Noise2Sim, prezando também pela implementação dos parâmetros que
apresentaram melhores resultados em Niu et al. (2022), o tamanho da janela utilizada
para geração dos vizinhos semelhantes foi de 3 → 3 pixels, enquanto a quantidade de
pixels similares (k) foi fixada como k = 8. Dado o conjunto de k + 1 imagens similares, o
método para obtenção dos dados de treinamento foi selecionar um par de forma aleatória
e construído independente pixel a pixel, tal qual o método 4 da Seção S1.3.3 de Niu et al.
(2022).

3.4 Avaliação dos Métodos

Para avaliação dos resultados obtidos com os modelos model-based e data-based já
treinados, foram usadas novas imagens clínicas e sintéticas, isto é, que não fizeram parte
do conjunto de treinamento dos métodos data-based, obtidas tal qual a Seção 3.3.

Tanto para os métodos model-based quanto data-based, os processos de denoising
foram aplicados para 10 imagens VCT e 10 imagens clínicas. No caso dos métodos data-
based, a inferência se deu por meio da extração de patches das imagens VCT e clínicas
com tamanhos de 180 → 180 e 192 → 192, respectivamente, apresentando sobreposição em
todas as direções. Após a inferência dos modelos supervisionado e auto-supervisionado, o
patch central de 60 → 60 e 64 → 64, respectivamente, foi utilizado para reconstrução da
imagem final restaurada, a fim de evitar efeitos de borda pela rede convolucional.

Para a avaliação quantitativa dos métodos, foram utilizadas cinco métricas full-



34

reference, isto é, que carecem de referência (ground-truth) para serem aplicadas, e uma
métrica no-reference, que é aplicada diretamente na imagem a ser avaliada. As métricas
full-reference, aplicadas às imagens VCT, foram PSNR (Peak Signal-to-Noise Ratio), SSIM
(Structural Similarity Index Measure), QILV (Quality Index based on Local Variance),
HaarPSI (Haar Wavelet-based Perceptual Similarity Index) e MNSE (Mean Normalized
Squared Error) com suas decomposições em Residual Noise (RN ) e Bias (B2). Já métrica
no-reference escolhida foi a NAQI (Normalized Anisotropic Quality Index), aplicada a
imagem clínica.

Todas as métricas foram calculadas dentro da região de interesse da mama para
garantir uma avaliação consistente entre os diferentes métodos.
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4 RESULTADOS & DISCUSSÕES

Especificamente para os métodos data-based, o treinamento de todos os modelos
atingiu um ponto ótimo (early stopping) antes do máximo de épocas definidas, convergindo
para minimização da função de perda. O melhor modelo para Noise2Clean e Noise2Sim foi
na 12ª época (com MSE de validação igual a 3.65 → 10→6 e 0.29 → 10→6, respectivamente),
enquanto para Noise2Void foi na 19ª época (com MSE de validação igual a 1.49 → 10→6).
Essa minimização pode ser percebida nos gráficos da perda de treinamento e validação das
Figuras 7a, 7b e 7c, para os métodos Noise2Clean, Noise2Void e Noise2Sim, respectivamente.
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Figura 7 – Comparação das curvas de perda de treinamento e validação para os três
métodos de denoising ao longo das épocas.

O resultado qualitativo das inferências dos modelos estão apresentados na Figura 9.
A Figura 8 apresenta a região de interesse (ROI) do qual os patches de comparação foram
retirados. É possível perceber visualmente a diferença entre os métodos de restauração,
tendo o filtro Gaussiano e Noise2Void com respostas similares em termos de filtragem de
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ruído e borramento; Noise2Clean com uma certa perda de contraste da imagem; Noise2Sim
com um maior ruído residual mas menor borramento que os três últimos; e por fim BM3D
se destacando em melhor supressão de ruído e menor borramento.

Figura 8 – Imagem VCT raw com o ROI utilizado na Figura 9.

A Tabela 1 apresenta as métricas de desempenho PSNR, SSIM, QILV e Ha-
arPSI para os métodos implementados baseados em aprendizado profundo (Noise2Clean,
Noise2Void e Noise2Sim), além dos métodos analíticos (filtro Gaussiano 5 → 5 e BM3D).
As Figuras 10 e 11 demonstram os mesmo resultados em formato de gráfico, para melhor
visualização. Todos os métodos de filtragem demonstraram melhoria substancial em relação
às imagens ruidosas originais. O BM3D e o filtro Gaussiano 5 → 5 alcançaram os maiores
valores de PSNR (45,34 e 45,33, respectivamente) e SSIM (0,934 e 0,923, respectivamente),
seguidos pelos métodos baseados em aprendizado profundo. Entre os métodos de deep
learning, o Noise2Void apresentou desempenho superior (PSNR: 43,32; SSIM: 0,862),
seguido pelo Noise2Sim (PSNR: 42,27; SSIM: 0,854) e Noise2Clean (PSNR: 42,12; SSIM:
0,842).

A métrica QILV, que avalia a qualidade da imagem baseada na variância local,
mostrou resultados expressivos de todos os métodos na tarefa de denoising. O QILV
compara a distribuição de variância local entre a imagem restaurada e a referência, sendo
particularmente sensível a mudanças na estrutura local da imagem. Todos os métodos
apresentaram valores de QILV superiores a 0,989, indicando alta similaridade estrutural
local com a imagem de referência. O Noise2Clean obteve o melhor desempenho entre
os métodos de deep learning (0,996), aproximando-se dos valores dos métodos analíticos
BM3D (0,990) e filtro Gaussiano (0,989).
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(a) Limpa (b) Ruidosa (c) Gaussiano (5 → 5)

(d) Noise2Clean (e) Noise2Void (f) Noise2Sim

(g) BM3D

Figura 9 – Comparação visual dos resultados de denoising de diferentes métodos em
relação à imagem ruidosa e ao ground truth (imagem limpa sintética).

A métrica HaarPSI, que avalia a similaridade perceptual baseada em decomposição
wavelet de Haar, apresentou menor variação relativa entre os métodos comparada à SSIM.
Enquanto a SSIM variou de 0,842 a 0,934, a HaarPSI apresentou valores entre 0,851 e
0,884. Esta menor variação sugere que, apesar das diferenças na similaridade estrutural
capturadas pela SSIM, a qualidade perceptual das imagens restauradas pelos diferentes
métodos permaneceu relativamente próxima. Especificamente, a diferença entre o melhor
método (filtro Gaussiano: 0,884) e o Noise2Sim (0,851) foi de apenas 3,7%, comparada a
uma diferença de 9,8% observada na SSIM.
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Tabela 1 – Métricas de Desempenho de Métodos de Remoção de Ruído

Método PSNR SSIM QILV HaarPSI
Noisy 38.87 [38.71 39.02] 0.763 [0.740 0.787] 0.802 [0.776 0.828] 0.816 [0.805 0.827]

N2Clean 42.12 [41.76; 42.49] 0.842 [0.818; 0.865] 0.996 [0.995; 0.998] 0.862 [0.851; 0.874]

N2Void 43.32 [42.75; 43.88] 0.862 [0.840; 0.885] 0.994 [0.993; 0.996] 0.860 [0.847; 0.874]

N2Sim 42.27 [42.01; 42.52] 0.854 [0.831; 0.878] 0.992 [0.987; 0.998] 0.851 [0.842; 0.860]

Filtro 5 → 5 45.33 [44.99; 45.67] 0.923 [0.913; 0.932] 0.989 [0.987; 0.992] 0.884 [0.876; 0.892]

BM3D 45.34 [44.97; 45.70] 0.934 [0.929; 0.940] 0.990 [0.989; 0.991] 0.883 [0.875; 0.891]

Noisy N2Clean N2Void N2Sim Filtro 5x5 BM3D
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Figura 10 – Comparação das Métricas de Qualidade de Imagem (SSIM, QILV e HaarPSI).

Noisy N2Clean N2Void N2Sim Filtro 5x5 BM3D
37
38
39
40
41
42
43
44
45
46
47

38.87

42.12
43.32

42.27

45.33 45.34

PS
N

R
(d

B
)

PSNR

Figura 11 – Comparação da métrica PSNR para os Métodos de Remoção de Ruído.
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Embora os métodos baseados em deep learning tenham apresentado diferenças
significativas, principalmente de PSNR e SSIM, em relação os modelos analíticos, é impor-
tante ressaltar algumas limitações das métricas tradicionais para avaliação de qualidade
em imagens médicas. A Figura 12 mostra uma comparação da filtragem de ruído realizada
com diferentes tamanhos do filtro Gaussiano. Quanto maior o filtro, mais componentes
de alta frequência da imagem são removidos, deixando a mesma com a aparência mais
borrada. Esse efeito pode ser indesejado em se tratando da utilização desses exames para
detecção de microcalcificações e realizações de diagnósticos médicos (Soares, 2025).

(a) Gaussiano 3 → 3 (b) Gaussiano 5 → 5 (c) Gaussiano 11 → 11

Figura 12 – Comparação do denoising do filtro Gaussiano para diferentes tamanhos de
kernel

Entretanto, analisando as mesmas métricas aplicadas na Tabela 1 para os diferentes
filtros Gaussianos, é possível perceber na Tabela 2 que o filtro Gaussiano 11 → 11, que
causa borramento excessivo e elimina grande parte das componentes de alta frequência
da imagem, ainda mantém valores elevados de PSNR (44,13), SSIM (0,897) e HaarPSI
(0,854). Esta observação confirma que tais métricas priorizam principalmente a redução de
ruído, atribuindo peso insuficiente ao borramento introduzido no processo de filtragem.

A métrica QILV mostrou maior sensibilidade ao borramento, com redução de 0,997
(filtro 3 → 3) para 0,966 (filtro 11 → 11). No entanto, mesmo com esta variação, os valores
permanecem elevados, não refletindo adequadamente a degradação perceptual e funcional
causada pelo borramento excessivo.

Nas Figuras 13 e 14 estão também esses resultados dos Filtros Gaussianos em
formato de gráfico.

Tendo isso em vista, a decomposição do MNSE (Mean Normalized Squared Error)
oferece uma perspectiva mais abrangente para o contexto de imagens médicas, permitindo
ponderar separadamente o ruído residual (RN ) e o borramento do sinal (B2). Esta
característica é particularmente importante para mamografia, onde tanto o ruído quanto o
borramento podem impactar negativamente a detectabilidade de estruturas sutis.

A Tabela 3 apresenta a decomposição do MNSE em suas componentes de ruído
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Tabela 2 – Métricas de Desempenho de Filtros Gaussianos com Kernels de Diferentes
Tamanhos.

Método PSNR SSIM QILV HaarPSI
Filtro 3 → 3 44.94 [44.70; 45.18] 0.918 [0.907; 0.929] 0.997 [0.997; 0.998] 0.871 [0.863; 0.880]

Filtro 5 → 5 45.33 [44.99; 45.67] 0.923 [0.913; 0.932] 0.989 [0.987; 0.992] 0.884 [0.876; 0.892]

Filtro 11 → 11 44.13 [43.65; 44.60] 0.897 [0.885; 0.908] 0.966 [0.960; 0.971] 0.854 [0.842; 0.867]
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Figura 13 – Comparação das Métricas de Qualidade de Imagem (SSIM, QILV e HaarPSI)
para diferentes tamanhos de Kernel do Filtro Gaussiano.
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Figura 14 – Comparação da métrica PSNR para diferentes tamanhos de Kernel do Filtro
Gaussiano.

residual (RN ) e bias quadrático (B2) para todos os métodos avaliados. Além da tabela,
a Figura 15 apresenta os mesmos dados em formato de gráfico para melhor visualização.
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Esta análise permite compreender o compromisso entre remoção de ruído e preservação de
sinal nos diferentes métodos.

Tabela 3 – MNSE, RN e B2 dos Métodos de Remoção de Ruído.

Método MNSE (%) RN (%) B2 (%)
Noisy 10.47 [10.45; 10.48] 10.19 [10.17; 10.20] 0.278 [0.272; 0.284]

N2Clean 8.059 [8.045; 8.072] 1.800 [1.797; 1.803] 6.258 [6.167; 6.35]

N2Void 5.983 [5.975; 5.99] 0.613 [0.612; 0.614] 5.369 [5.258; 5.481]

N2Sim 5.452 [5.442; 5.463] 3.096 [3.091; 3.100] 2.357 [2.331; 2.382]

Filtro 3 → 3 3.530 [3.525; 3.535] 1.525 [1.523; 1.527] 2.005 [1.946; 2.063]

Filtro 5 → 5 4.039 [4.034; 4.044] 0.823 [0.822; 0.824] 3.216 [3.116; 3.316]

Filtro 11 → 11 6.537 [6.532; 6.541] 0.237 [0.237; 0.238] 6.299 [6.100; 6.498]

BM3D 2.419 [2.415; 2.424] 0.881 [0.879; 0.882] 1.539 [1.531; 1.546]
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Figura 15 – Comparação da métrica MNSE e suas decomposições RN e B2 para os métodos
de remoção de ruído. Valores em percentual (%).

Foram também adicionados a essa visão (Figura 3) os resultados do filtro Gaussiano
3→3 e 11→11, a fim de evidenciar o comportamento das métricas a respeito do borramento,
elaborado anteriormente. É possível perceber que, de fato, o filtro Gaussiano 11 → 11
apresenta o maior B2 e um dos maiores MNSE totais, indicando um borramento excessivo
no processo de denoising. Entretanto, principalmente para métricas como PSNR e SSIM,
figura entre os melhores resultados, superando métodos com MNSE total e B2 menores.

O Noise2Void apresentou o menor ruído residual entre os métodos de deep learning
(RN : 0,613%), aproximando-se do desempenho dos métodos analíticos. Contudo, este
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resultado foi acompanhado de um B2 elevado (5,369%), indicando maior suavização
do sinal. Este comportamento sugere que a rede aprendeu a remover ruído de forma
agressiva, mas ao custo de maior borramento das estruturas finas da imagem. Esta
tendência ao borramento excessivo é uma limitação conhecida do Noise2Void, relacionada
ao seu mecanismo de blind-spot training. Krull, Buchholz e Jug (2019) observaram que
o Noise2Void pode gerar artefatos de tabuleiro (checkerboard artifacts) e borramento
devido à estratégia de mascaramento de pixels e à dependência exclusiva de informações
de vizinhança local. Estudos subsequentes propuseram modificações arquiteturais, como o
N2V2, especificamente para mitigar esses artefatos e reduzir o borramento (Höck et al.,
2022).

O Noise2Clean apresentou desempenho intermediário em termos de filtragem de
ruído (RN : 1,8%), porém com B2 de 6,258% — o maior entre todos os métodos avaliados.
Este resultado pode estar relacionado à limitação na quantidade e diversidade de imagens
VCT utilizadas no treinamento, impedindo que a rede generalizasse adequadamente para
as variações anatômicas presentes nas imagens de teste. Huang et al. (2023) reforçam que
métodos de self-supervised learning, ao aprenderem diretamente de dados clínicos diversos,
tendem a apresentar melhor generalização em comparação com métodos supervisionados
treinados em conjuntos de dados limitados ou exclusivamente sintéticos.

O Noise2Sim, embora tenha apresentado maior ruído residual (RN : 3,096%),
obteve o menor B2 entre os métodos de deep learning (2,357%). Esta característica é
particularmente relevante para imagens médicas, onde a preservação de estruturas de alta
frequência, como microcalcificações, é crítica para o diagnóstico. O menor borramento
observado no Noise2Sim pode ser vantajoso em tarefas clínicas que dependem da nitidez
de detalhes finos (Soares, 2025).

Os métodos analíticos — BM3D e filtro Gaussiano 5 → 5 — demonstraram de-
sempenho superior na métrica MNSE global. O BM3D apresentou o melhor equilíbrio
geral (MNSE: 2,419%; RN : 0,881%; B2: 1,539%), confirmando sua posição como método
estado-da-arte em filtragem de ruído. O filtro Gaussiano 5 → 5 obteve desempenho compa-
rável em termos de MNSE (4,039%), porém com maior B2 (3,216%), evidenciando maior
borramento em relação ao BM3D.

Sumarizando, todos os métodos baseados em deep learning avaliados neste trabalho
melhoraram significativamente a qualidade da imagem em comparação com as imagens
ruidosas originais, como evidenciado pela redução substancial do MNSE de 10,47% (ima-
gem ruidosa) para 5,452%–8,059% (métodos de deep learning). Esta melhoria, embora
ainda inferior ao BM3D (MNSE: 2,419%) e filtro Gaussiano 5 → 5 (MNSE: 4,039%),
demonstra o potencial desses métodos data-based, especialmente considerando que se trata
de implementações iniciais com espaço considerável para otimização.

A análise através do MNSE e suas decomposições revela trade-o!s distintos entre
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os métodos: o Noise2Void prioriza a remoção de ruído; o Noise2Sim preserva melhor
as estruturas de alta frequência; o Noise2Clean apresenta limitações relacionadas à ge-
neralização; o filtro Gaussiano revela a necessidade de ponderação entre restauração e
borramento, através da escolha do tamanho do kernel; e o BM3D revela excelente perfor-
mance quando conhecidos os parâmetros do problema de restauração. Do ponto de vista
dos métodos data-based, os resultados preliminares indicam aplicação promissora desses
métodos auto-supervisionados para mamografia digital, especialmente considerando que
foram treinados exclusivamente com imagens clínicas ruidosas, sem necessidade de ground
truth limpo e informações de contexto do domínio. Já em uma aplicação onde se sabe com
precisão as características do processo de aquisição das imagens e estrutura fundamental
de sua degradação, os métodos model-based oferecem uma solução robusta e confiável,
principalmente em implementações mais sofisticadas como BM3D.

Na Figura 17, é apresentado também o resultado dos modelos aplicados a imagens
clínicas de FFDM, onde os patches foram retirados da região de interesse indicada na Figura
16. Percebe-se visualmente um comportamento muito parecido com o que foi demonstrado
com imagens sintéticas, onde Noise2Void e o filtro Gaussiano apresentam boa supressão
de ruído mas com um maior borramento; Noise2Clean também demonstrando filtragem
do ruído se comparado com a imagem original, porém com limitações na reconstrução
das estruturas; Noise2Sim priorizando uma imagem com menor borramento e estruturas
mais nítidas em detrimento do ruído residual; e por fim o método BM3D apresentando o
melhor balanço entre denoising e borramento.

Figura 16 – Imagem Clínica raw com o ROI utilizado na Figura 17.

Na Tabela 4, estão os resultados compilados da métrica no-reference NAQI, que foi
medida nas imagens clínicas após o processo de denoising. A Figura 18 também apresenta
os mesmos dados em formato de gráfico. Verifica-se que todos os métodos melhoraram a
métrica, destacando os métodos Noise2Void, filtro Gaussiano e BM3D como os melhores
(sem diferenças significativas entre eles). Entretanto, conforme demonstrado por Soares
(2025), métricas no-reference como NAQI apresentam limitações importantes na represen-
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(a) ROI Original (b) Gaussiano (5 → 5) (c) BM3D

(d) Noise2Clean (e) Noise2Void (f) Noise2Sim

Figura 17 – Comparação visual dos resultados de denoising de diferentes métodos para
ROI de imagem clínica.

tação da qualidade da imagem, principalmente com relação ao grau de detectabilidade de
microcalcificações.

Tabela 4 – NAQI dos Métodos de Remoção de Ruído.

Método NAQI
Noisy 0.096 [0.077; 0.114]

N2Clean 0.210 [0.172; 0.247]

N2Void 0.306 [0.277; 0.334]

N2Sim 0.178 [0.152; 0.204]

Filtro 5 → 5 0.276 [0.242; 0.310]

BM3D 0.283 [0.254; 0.313]

É importante ressaltar que o domínio analisado neste trabalho — mamografia
digital de campo total (FFDM) — difere dos domínios explorados nos trabalhos originais
de Noise2Sim e, principalmente, Noise2Void. O método Noise2Void foi originalmente
proposto e validado em imagens de microscopia de fluorescência e imagens naturais,
enquanto o Noise2Sim foi aplicado principalmente em tomografia computadorizada. A
aplicação desses métodos em mamografia digital representa uma extensão para um domínio
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Figura 18 – Comparação da métrica NAQI para os métodos de remoção de ruído. Valores
mais altos indicam melhor qualidade percebida.

com características distintas de ruído e estrutura de sinal, o que pode ter um efeito na
performance dos métodos.

A seguir, é apresentado o resultado obtido para outras regiões de interesse (ROI)
das imagens VCT e clínicas, agora de uma região de transição (parte mais próxima a
borda da mama). Essa região pode ser identificada nas Figuras 19 e 20 para as imagens
VCT e clínica, respectivamente. Os patches resultantes do processo de restauração de cada
uma dessas regiões estão disponíveis nas Figuras 21 (VCT) e 22 (clínica).

Figura 19 – Imagem VCT raw com o ROI de transição utilizado na Figura 21.
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Figura 20 – Imagem Clínica raw com o ROI de transição utilizado na Figura 22.

É possível perceber que, para as regiões de transição da imagem sintética, não
houve grandes diferenças na restauração pelos diferentes métodos, por se tratar de uma
região onde a VCT não exibe estruturas tão bem definidas como no interior da mama
simulada. Porém, para as regiões de transição da imagem clínica, os métodos apresentaram
claras diferenças entre si, em termos de nitidez e preservação de estruturas. O Noise2Clean
e, principalmente, o Noise2Void, não representaram bem a composição da imagem original
após a restauração, muito provavelmente pela similaridade do nível de cinza dos pixels
nessa região. Já o filtro Gaussiano, BM3D e Noise2Sim, mantiveram o comportamento
observado nos outros resultados, demonstrando a robustez desses métodos.

Os resultados para as regiões de transição deixam ainda mais evidente a necessidade
de avaliações baseadas em tarefas e testes clínicos, uma vez que imagens sintéticas podem
não representar de forma fidedigna todos os cenários, mascarando o resultado de algumas
métricas utilizadas para validação dos métodos de restauração.

Sob uma perspectiva teórica, a aplicação direta de filtros lineares invariantes no
espaço, como o filtro Gaussiano, desconsidera a natureza heterocedástica do ruído em
imagens de raios-X, cuja variância é dependente da intensidade do sinal (distribuição
Poisson-Gaussiana). Diferentemente do algoritmo BM3D, que normaliza essa dependência
através da Transformada de Estabilização de Variância (VST) garantindo uma tratativa
uniforme, o filtro Gaussiano aplica um núcleo de suavização fixo, resultando inevitavelmente
em uma filtragem desigual: o ruído é suprimido de forma inconsistente entre regiões de alta
e baixa densidade. Contudo, essa disparidade teórica e local é mascarada nas métricas de
avaliação global (como o PSNR médio). Observa-se um efeito de compensação estatística,
onde o desempenho insuficiente em determinadas regiões da imagem é contrabalançado
pelo desempenho em outras no cálculo da média, fazendo com que a diferença numérica
entre os métodos pareça menos significativa do que a análise da estabilidade do ruído
sugere. Isso pode ser percebido nas figuras 23a e 23b, que ilustra a distribuição do valor
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(a) Limpa (b) Ruidosa (c) Gaussiano (5 → 5)

(d) Noise2Clean (e) Noise2Void (f) Noise2Sim

(g) BM3D

Figura 21 – Comparação visual dos resultados de denoising do ROI de transição para
diferentes métodos em relação à imagem ruidosa e ao ground truth (imagem limpa sintética).

da métrica SSIM ao longo da região da mama para os métodos BM3D e Filtro Gaussiano
5 → 5, respectivamente.
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(a) ROI Original (b) Gaussiano (5 → 5) (c) BM3D

(d) Noise2Clean (e) Noise2Void (f) Noise2Sim

Figura 22 – Comparação visual dos resultados de denoising de diferentes métodos para
ROI de transição de imagem clínica.

Figura 23 – Distribuição da métrica SSIM pela região da mama para os métodos BM3D
com VST e Filtro Gaussiano 5 → 5.

(a) BM3D com VST (b) Filtro Gaussiano 5x5
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5 LIMITAÇÕES DO TRABALHO

Apesar dos resultados promissores obtidos na comparação entre métodos baseados
em modelo e baseados em dados, este trabalho apresenta limitações que devem ser
consideradas na interpretação dos resultados e que motivam as propostas de trabalhos
futuros.

Uma limitação primordial refere-se à quantidade restrita de imagens utilizadas
para o treinamento dos modelos de aprendizado profundo. A base de dados, composta por
um número limitado de imagens clínicas e sintéticas (VCT), pode restringir a capacidade
de generalização dos modelos, como observado nas dificuldades do método supervisionado
Noise2Clean em lidar com variações de aquisição não vistas durante o treinamento. A
diversidade em termos de densidade mamária, fabricantes de equipamentos e protocolos de
aquisição também foi limitada, o que é um fator crítico para a robustez clínica de métodos
data-based.

Do ponto de vista arquitetural, o estudo limitou-se à utilização de uma rede U-Net
padrão com 3 blocos para todos os métodos de deep learning. Embora suficiente para
uma comparação baseline, essa arquitetura pode não ser capaz de capturar complexidades
mais finas e estruturas de alta frequência tão eficientemente quanto arquiteturas mais
modernas ou profundas. Além disso, foram observados artefatos específicos, como o efeito
de checkerboard no método Noise2Void, que degradaram o desempenho em métricas de
viés quadrático e impactaram a qualidade visual final.

Outra limitação importante é a ausência de estudos clínicos com radiologistas e
validações baseadas em tarefas (task-based assessment). O trabalho baseou-se majorita-
riamente em métricas de qualidade de imagem técnicas (como PSNR, SSIM e MNSE).
Embora informativas, essas métricas não garantem necessariamente que a detectabilidade
de lesões sutis, como microcalcificações e nódulos, foi preservada ou aprimorada. A falta de
uma validação clínica impede a confirmação definitiva de que os métodos implementados
mantêm a eficácia diagnóstica em cenários de redução de dose.
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6 TRABALHOS FUTUROS

Os resultados preliminares deste trabalho indicam diversas oportunidades para
investigações futuras, principalmente para os métodos data-based, permitindo consoli-
dar e ampliar a compreensão sobre a aplicação de métodos de aprendizado profundo
auto-supervisionado e supervisionado para denoising em mamografia digital (FFDM). A
limitação de generalização observada no Noise2Clean sugere que aumentar o conjunto
de imagens VCT para treinamento e expandir o conjunto de imagens clínicas poderia
melhorar significativamente a capacidade de generalização dos modelos supervisionados
e auto-supervisionados, respectivamente, permitindo maior diversidade em termos de
densidade mamária, equipamentos e protocolos de aquisição.

Além da U-Net de 3 blocos utilizada neste trabalho pelos métodos de deep learning,
seria recomendável avaliar arquiteturas mais avançadas, como U-Net com mecanismos
de attention, redes com conexões densas (DenseNet) (Huang et al., 2018) e arquiteturas
híbridas que combinam CNNs com Transformers, uma vez que essas abordagens poderiam
melhor capturar estruturas de alta frequência importantes para mamografia. A investigação
do método N2V2 (Höck et al., 2022) seria particularmente relevante para mitigar os
artefatos de checkerboard observados no Noise2Void, potencialmente reduzindo o viés
quadrático elevado reportado neste trabalho.

Para avaliar mais rigorosamente a qualidade das imagens restauradas em tarefas
específicas de detecção de microcalcificações, recomenda-se implementar avaliação baseada
em observer models, particularmente o Channelized Hotelling Observer (CHO), também
implementado no pacote de VCT do VICTRE. Esta abordagem permitiria quantificar a
detectabilidade de estruturas finas através do índice de detectabilidade (d’) e métricas
de SNR task-specific, fornecendo uma medida objetiva mais diretamente relacionada ao
desempenho diagnóstico em comparação com métricas tradicionais. Adicionalmente, seria
prudente implementar funções de perda alternativas para os modelos data-based, particu-
larmente combinações de MSE com perceptual loss ou loss functions baseadas na métrica
MNSE, similares à abordagem de Vimieiro (2023), que poderiam melhorar o balanceamento
entre supressão de ruído e preservação de estruturas. Otimização dos hiperparâmetros dos
métodos auto-supervisionados — taxa de mascaramento para Noise2Void, tamanho da
janela de similaridade para Noise2Sim — poderia otimizar o desempenho neste domínio
específico.

Paralelamente às otimizações técnicas, é possível também implementar um estudo
piloto com radiologistas para avaliar a qualidade visual das imagens restauradas e a
confiança diagnóstica em tarefas de detecção de microcalcificações. Seria também relevante
conduzir análise espectral preliminar, para verificar se os métodos preservam características
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espectrais importantes e não introduzem correlação artificial de ruído nas imagens restau-
radas, permitindo compreender melhor as diferenças observadas nas métricas PSNR/SSIM
versus HaarPSI/MNSE. Os estudos futuros deveriam focar em validar rigorosamente os
resultados promissores observados, particularmente nos métodos data-based a vantagem
do Noise2Sim em manter menor borramento enquanto filtra ruído de forma significativa.
A validação mediante observer models e estudos clínicos seria essencial para confirmar
se essa característica realmente se traduziria em melhor performance diagnóstica, vali-
dando portanto o potencial clínico desses métodos para redução de dose de radiação em
mamografia digital mantendo qualidade diagnóstica.
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7 CONCLUSÃO

A proposta deste trabalho foi investigar e comparar o desempenho de métodos
model-based e data-based para remoção de ruído em mamografia digital de campo total
(FFDM), considerando tanto imagens sintéticas geradas por ensaios clínicos virtuais (VCT)
quanto imagens clínicas reais. Foram avaliados métodos analíticos clássicos (filtro Gaussiano
e BM3D) e métodos baseados em aprendizado profundo, em abordagens supervisionada
(Noise2Clean) e auto-supervisionadas (Noise2Void e Noise2Sim). A análise foi conduzida
por meio de um conjunto abrangente de métricas de qualidade full-reference e no-reference,
associado a uma discussão crítica sobre suas limitações no contexto da imagem médica.

Os resultados demonstraram que o BM3D apresentou o melhor desempenho geral,
alcançando um excelente balanço entre remoção de ruído (MNSE: 2,419%, RN : 0,881%)
e preservação de detalhes finos (B2: 1,539%), consolidando sua posição como método
estado-da-arte em denoising analítico. Dentre os métodos baseados em dados (data-
based), o Noise2Sim apresentou resultados particularmente promissores no contexto de
mamografia digital, obtendo o menor viés quadrático entre os métodos de deep learning
(B2: 2,357%), o que o torna especialmente relevante para aplicações clínicas onde a nitidez
de microcalcificações é crítica. O Noise2Void, embora tenha alcançado a menor quantidade
de ruído residual entre os métodos de aprendizado profundo (RN : 0,613%), apresentou
borramento acentuado (B2: 5,369%), evidenciando as limitações reconhecidas de artefatos
de tabuleiro decorrentes de seu mecanismo de blind-spot training. O Noise2Clean, apesar
de ter demonstrado potencial, sofreu limitações relacionadas à quantidade e diversidade
do conjunto de imagens VCT de treinamento, resultando no maior viés quadrático (B2:
6,258%) entre todos os métodos avaliados.

Uma observação crítica emergiu durante a análise: as métricas tradicionais de
qualidade de imagem, como PSNR e SSIM, apresentam limitações significativas para
avaliação de denoising em contextos médicos, uma vez que priorizam a redução de ruído sem
ponderar adequadamente os efeitos prejudiciais do borramento excessivo. A decomposição
do MNSE em componentes de ruído residual (RN ) e viés quadrático (B2) mostrou-se
muito mais informativa para mamografia, permitindo uma avaliação mais rigorosa do
compromisso entre filtragem de ruído e preservação de estruturas de alta frequência.

Embora os métodos data-based tenham apresentado desempenho quantitativo
inferior aos métodos analíticos em métricas globais, destacam-se como alternativas viáveis
e promissoras, particularmente os métodos auto-supervisionados, que não requerem ground
truth ou conhecimento prévio detalhado do domínio. A capacidade de treinar redes neurais
profundas diretamente em imagens clínicas ruidosas, sem necessidade de pares limpas-
ruidosas ou simulações sintéticas, representa uma vantagem significativa para aplicações
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em cenários clínicos reais com múltiplos equipamentos, protocolos de aquisição distintos e
variações anatômicas heterogêneas.

As investigações futuras devem focar em (1) expansão e diversificação dos conjuntos
de dados (imagens VCT e clínicas), permitindo que os modelos aprendam com maior
variedade de cenários clínicos; (2) exploração de arquiteturas mais avançadas, como U-Net
com mecanismos de attention e redes híbridas que combinam CNNs com Transformers,
que possam capturar estruturas de alta frequência de forma mais eficaz; (3) implemen-
tação do Noise2Void versão 2 (N2V2) para mitigar artefatos de checkerboard e reduzir o
borramento observado na versão original; (4) otimização de funções de perda alternativas,
particularmente combinações que priorizam a métrica MNSE ou incorporem perceptual loss,
melhorando o balanço entre remoção de ruído e preservação de estruturas; (5) avaliação
através de observer models para quantificar a detectabilidade de microcalcificações de
forma mais diretamente relacionada ao desempenho diagnóstico; e (6) validação clínica
com radiologistas, através de estudos piloto de qualidade visual e confiança diagnóstica
em tarefas de detecção.

Conclui-se que, embora métodos model-based como o BM3D permaneçam como refe-
rência em denoising quando os parâmetros do sistema de aquisição são bem caracterizados,
os métodos data-based auto-supervisionados, especialmente o Noise2Sim, demonstram po-
tencial significativo para aplicações clínicas em mamografia digital. Esses métodos oferecem
flexibilidade e robustez para generalizar a múltiplos cenários de aquisição, posicionando-se
como ferramentas promissoras para otimização de dose de radiação mantendo a qualidade
diagnóstica. Recomenda-se que futuras investigações validem rigorosamente esses resulta-
dos preliminares através de métricas task-specific e estudos com observadores, confirmando
se as características de menor borramento do Noise2Sim realmente se traduzem em superior
performance diagnóstica, consolidando assim seu potencial clínico para mamografia de
baixa dose.
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