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RESUMO

7z

O ajuste de historico na engenharia de reservatérios € uma das etapas mais
importantes do fluxo de trabalho de geo-modelagem durante a fase de producédo de
qualquer campo petrolifero. Esta técnica permite ter um bom conhecimento sobre
como o campo esta produzindo e também ter um modelo de previsdo. O maior desafio
€ ser capaz de gerar modelos com o nivel de complexidade do reservatério que
representem a realidade da melhor maneira possivel. O objetivo deste trabalho é obter
uma correspondéncia sobre as propriedades vetoriais de produ¢cdo em um estudo de
caso real de um reservatorio turbiditico. Para tanto, foi utilizado um método baseado
em conjuntos para assimilar os dados dinamicos, o método Ensemble Smoother with
Multiple Data Assimilation, a fim de encontrar a melhor combinacdo de parametros
incertos utilizados como entrada para o simulador do reservatorio. O modelo geolégico
usado € de um conjunto de dados reais e 0s canais de areia elementares séo gerados
com ULIKE™: um processo de modelagem baseado em regras que seguem 0s
principio da caminhada aleatdria. Os processos de assimilacdo de dados produziram
conjuntos de modelos historicos que honraram tanto os dados dinamicos quanto o
modelo geoldgico. Além disso, também foi utilizado um software de correspondéncia
de historico baseado em desenhos experimentais e modelos proxy usando
superficies/polindémios interpolados e krigagem para inspecionar os impactos dos
parametros incertos, principalmente os multiplicadores do indice de produtividade. Os
resultados mostram que o uso da interpolacdo para estimar a resposta do reservatério
€ mais rapido e exige um custo computacional mais baixo, mas requer a confirmacéao

com a resposta humérica de um simulador de reservatorio.

Palavras-chave: Ajuste de historico, Assimilacdo de Dados, ES-MDA, Parametros de

incerteza, Resposta Real.



ABSTRACT

History matching in reservoir engineering is one of the most important steps of the geo-
modelling workflow during the production phase of any oil field. This technique allows
to have a good knowledge about how the field is producing and also have a forecast
model. The biggest challenge is to be able to generate models with the reservoir’s level
of complexity that represents reality in the best way possible. The objective of this work
is to get a match on production vector properties in a real case study of a turbiditic
reservoir. For that matter, it was used an ensemble-based method to assimilate the
dynamic data, the Ensemble Smoother with Multiple Data Assimilation method, in
order to find the best combination of uncertain parameters used as input to the
reservoir simulator. The geological model used is from a real dataset and the
elementary sand channels are generated with ULIKE™: a rule-based modeling
process based on the random-walk principle. The data assimilation processes
produced ensembles of history matched models that honor both dynamic data and the
geological model. Furthermore, it was also used an history matching software based
on experimental designs and proxy-models using interpolated surfaces/polynomials
and kriging to inspect the impacts from the uncertain parameters, mainly the
productivity index multipliers. Results show that using interpolation to estimate the
reservoir response is a quicker and demands a lower computational cost but requires

the confirmation with the numerical response from a reservoir simulator.

Keywords: History Matching, Data Assimilation, ES-MDA, Uncertain Parameters,

Real Response
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1 INTRODUCTION

Along with the large variety of studies that are made to fully understand the area in
which a production activity will take place, reservoir studies and, more specific, fluid
flow simulations play one of the most important roles in this whole hydrocarbon
recovery process. To build a reservoir simulation model, it is necessary to have data
about rock and fluid properties (petrophysical attributes), in order to characterize the
fluid flow and the entire physical process behind it. Besides, it is also of utmost
importance to bear in mind that the data available for characterization is not exact and

entirely correct, and therefore is uncertain.

The reservoir simulation problem is one type of numeric simulation method used in
Reservoir Engineering to estimate characteristics and predict behavior of an oil
reservoir, following the techniques based on material balance, decline curves and
Buckley-Leverett theory of displacement of non-miscible fluid. Indirect methods of
evaluation are mainly used to acquire information about the subsurface formations’
physical properties, with reservoir models being built inside an uncertainty parameters
domain, meaning that any prediction made from these models are also considered

uncertain.

Even though it may not be the best option for the problem in first sight, it is important
to remember that obtaining information directly from the reservoir is an utterly difficult
and costly operation, which is why it is needed to relay on dynamic information
available from historical field production. Therefore, that is the reason history matching
processes are being largely utilized in the industry in the last decades: improve the
reliability of reservoir predictions using the models generated by available
petrophysical data and statistical methods trying to incorporate field observation data
in reservoir simulations models, allowing a better description of the uncertainty both in

simulation predictions and reservoir parameters.
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1.1 Objective

The main objective of this work is to obtain a model that can predict the future behavior
of the reservoir in order to optimize the production process and oil recovery. For this,
given the observation data from some of the production vector properties (i.e., bottom
hole pressure, water cut and oil production rate) and the simulation results from the
model previous created with the uncertain parameters as inputs, a history matching
process is proposed using the ensemble smoother with multiple data assimilation (ES-
MDA) to find the best combination of these uncertain parameters defined beforehand

that gives the best match from the observed data.

This workflow was applied on a real scale turbiditic reservoir with elementary sand
channels modeled using a state-of-the art rule-base modelling tool: ULIKE™ The area
of study will be designed as the Alpha Field. The analysis and history matching will
focus on two of the three panels of the field: the Central panel and the Eastern panel.
Moreover, for the Central compartment of the reservoir, it was realized a comparison
with EST, an internal TotalEnergies software for assisted history matching that uses
kriged responses, with the aim to see some parameters impacts and to check for a
possible non-linearity from one of the uncertain parameters with kriged responses
surfaces, also trying to find better new ranges for the initial ensembles used for ES-
MDA runs.

All the research work done and reported in this work was developed during a 6-month
internship inside TotalEnergies’ S.A R&D department team on the Centre Scientifique
et Technique Jean-Féger (CSTJF). The ES-MDA algorithm was developed by the IT
department of TotalEnergies and all the reservoir simulations were run inside the
supercomputer PANGEA 11l using INTERSECT™ fluid flow simulator.
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1.2 Motivation

Data assimilation problems estimate parameters given both vectors of observation and
simulated data and try to minimize the difference between both. Thus, for reservoir
history matching with uncertain parameters, it is also considered a data assimilation
process: one with a high number of variables, few data considered exact and certain,
and the multiphase fluid flow of porous media, which is a highly non-linear
phenomenon that demands a high computational cost in order to obtain good results

for the history matching steps.

Making a series of history-matched models is one method currently being used in the
industry to measure the uncertainty in the reservoir model parameters. Decisions
based on a single reservoir model may be misleading due to a model variability error.
However, the generation of several history-matched models by itself does not provide

accurate u ncertainty assessment.

The energy industry has since welcomed ensemble-based approaches of history
matching that evolved in this situation. They can produce numerous history-matched
models and give an indication of how uncertain the results of the reservoir simulation
are. Examples of this kind of history matching techniques include the Ensemble
Kalman filter (EnKF: EVENSEN, 1994) and the Ensemble Smother with Multiple Data
Assimilation (ES-MDA: EMERICK; REYNOLDS, 2013). Despite being reliable
methods, both still rely on linear Gaussian assumptions, hypotheses which may
generate unrealistic outcomes and produce erroneous results in certain reservoir

models with complex non-linear and non-Gaussian geological environments.

1.3 Work organization

This work is divided into six chapters, including the Introduction (Chapter 1) and

Conclusions (Chapter 6). Bellow, the chapters are briefly described.

e Chapter 2 provides an overview of the theoretical background that has been

used to build this final graduation work. It discusses the ideas of reservoir
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simulation and history matching with uncertainty quantification utilizing data
assimilation techniques and proxy models;

Chapter 3 provides details on the approach used to create this work and the
methodology used;

Chapter 4 includes a 2G&R (i.e., Geological, Geophysical and Reservoir
characterization) synthesis of the study case area and the description of the
complete procedure;

Chapter 5 shows the results obtained from the real case study reservoir,
evaluating the ensemble-based data assimilation method used in this work for
the history matching. Moreover, it also contains results from another history
matching approach using mainly interpolation, making a comparison with the
before used method.
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2 BIBLIOGRAPHIC REVIEW

2.1 Reservoir Fluid Flow Simulation

Numerical tools are used in different scientific areas in order to replicate, in the best
and most accurate way possible, the real case scenarios of physical phenomena.
These tools demand a good understanding and description of the physical system
under investigation. For that, it is applied mathematical models with complex
equations, based on theories and laws that describes the problem which is being
investigated. For that matter, numerical simulations are used to solve these models,
as they are considered complex problems with a considerate number of unknows and
equations. Solving these equations would be unfeasible to do without the aid of a
computer. Within the reservoir engineering area, the scope of interest is the petroleum
reservoir system, consisting of multiple geologic formations, with heterogeneities and
with the possibility of containing hydrocarbons that are economically viable to be

extracted.

The reservoir model is a mathematical representation of a specific volume of rock
incorporating all the characteristics necessary to analyze the dynamic behavior of
fluids moving through the porous medium. This description is usually developed using
a complex workflow which involves a great number of data sources that span a large
variety of spatial and temporal scales, going from geological history of the basin on the
surroundings with seismic and well logs to rock samples extracted from exploration
and production wells (PYRCZ; DEUTSCH, 2014) .

Even though simplifying hypothesis can be assumed, such as homogeneous and
isotropic porous media with linear/radial one-dimensional flow displacement to
describe the reservoir behavior, problems related with the energy industry are often
linked to complex models with nonlinear partial differential equations relating pressure
and saturation changes throughout time and space, in addition to complex
multidimensional, multiphase and multicomponent flow models (ROSA; CARVALHO;
XAVIER, 2006).
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Given the high complexity of the subsurface geology, it is impossible to successfully
run a reservoir simulation in which the model does not contains uncertainty. In fact, the
fluid flow inside the pore system occurs in such a detailed level that is unconscionable
to model it in perfection, resulting in an immense increase in computational cost to run
the simulations and a higher degree of uncertainty related to these simulations’
outputs. Moreover, the scarcity of high-cost direct measurements and the big extension
of the reservoir also contributes to these uncertainties in the models, and the reservoir
behavior may not be precisely simulated as expected. In summary, the uncertainty
reflects our lack of understanding about the subsurface geology. For that, the reservoir
model has to be created including all available data possible in order to reproduce

properly the fluid flow of the system.

Before starting the production of any oil field, it is necessary to know the quality of the
reservoir in which the production wells are being drilled into. In that case, in addition to
the seismic data obtained during exploration phases and also some core information
retrieved from appraisal wells, reservoir models are built into state-of-the-art software’s
that tries to simulate all the conditions in which the actual reservoir is at the very
beginning of production, with pressure data, initial saturation of fluids, WOC (water-oil
contact) and GOC (gas-oil contact). With that information, the software proceeds to the
fluid simulation part, where numerical methods are applied in order to solve the highly
nonlinear set of differential equations that describe the fluid flow in porous media. The
basics of reservoir fluid flow are very well described in the literature, such as in Gupta
et al. (1991), Heimsund (2005) and Gerritsen & Durlofsky (2005).

2.1.1 Concepts used in reservoir fluid flow simulations

Mass transfer is the main processes that occur in fluid flow. Up to three immiscible
phases (water, oil, and gas) can flow at the same time, with mass transfer between
them. The flow process is influenced by gravity, capillary, and viscous forces. All of
these forces must be accounted for in the model equations, as well as an arbitrary
reservoir description in terms of geological heterogeneity and geometry (PEACEMAN,
1977). For each phase, the differential equations are constructed by combining Darcy's
law with a simple differential material balance, resulting in the hydraulic diffusivity

equation.
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By being able to solve this equation, it is possible to identify all changes in pressure in
the porous media versus space and time. The first derivation for the hydraulic diffusivity
equation is considering a single-phase flow during a certain period of a porous medium
which is a box on a tri-dimensional space (x, y and z-axis). In this case, Eq. (2.1) is
derived on the form as a diffusivity equation which governs the three-dimensional linear
flow though the porous medium fully saturated with only one fluid (ROSA; CARVALHO;
XAVIER, 2006):

d ( k,0 0 k,o d [ k,o0 d
_( _x_p) + — _y_p + _( ——p) = ¢Ctp —p, (21)
dx\" u dx/ 0y\' uady dz\'" u oz dt

where p is the fluid’s density, k, is the permeability of the porous medium in the flow
direction (X, y or z-direction), u is the fluid viscosity, p is the pressure, t is the time, ¢
is the rock porosity, c;, is the total compressibility — corresponding to the sum of the

fluid compressibility ¢ and effective compressibility of the formation c;.

To solve the mathematical model, values of independent parameters must be obtained
that concurrently check the governing equations and boundary conditions (i.e., external
and wells conditions). Because it is implicitly dependent on density, permeability,
viscosity, and compressibility, Eq. (2.1) is a nonlinear differential equation. It is
impossible to solve this type of equation analytically (PEACEMAN, 1977).
Furthermore, depending on the study's aims, the addition of mathematical statements
makes the solution of the mathematical model more complex. Multiphase and
multicomponent systems, as well as more particular and complex processes like steam
injection, polymer injection, and thermal EOR, are examples (ROSA; CARVALHO;
XAVIER, 2006).

It is important to solve differential equations subject to the right boundary conditions in
order to utilize them to forecast the behavior of a reservoir. The standard methods of
mathematical physics can only find solutions for the simplest scenarios with
homogenous reservoirs and very regular boundaries (such as a circular barrier around
a single well). Numerical methods performed on high-performance computers, on the
other hand, are exceedingly broad in their applicability and have proven to be effective
in obtaining answers to extremely complex reservoir problems (PEACEMAN, 1977).

To solve reservoir simulation models, most commercial simulators use finite difference
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approaches. The nonlinear partial differential equation is replaced by the finite-
difference equivalent, which is derived from a Taylor series expansion of the function
at a given location (ROSA; CARVALHO; XAVIER, 2006). Time is discretized into many
time steps and the spatial domain is divided into a finite number of cells, commonly
known as grid blocks. As a result, the numerical solution calculates solutions for each

discrete spatial element within each discrete time interval.

2.2 History Matching

When working with reservoir simulations, it is necessary to infer the behavior of a real
reservoir from the performance of a model — which may be physical and/or
mathematical - of that reservoir. In this case, a mathematical model of a physical
system is a set of partial differential equations, together with a set of boundary
conditions that we believe sufficiently represents the significant physical processes

occurring in that system.

History matching is considered an inverse problem, because from a set of observed
data, one predicts the factors that caused these observations. In other words, from the
resulted effects of a given analysis, we use history matching to calculate the causes
and what main parameters are associated with these direct observations. A classic
example of this application is for weather predictions and atmospheric modeling
(CHEN et al., 2021; CHO et al., 2020).

Over the last decades, due to the need of inferring the behavior of a real reservoir
through numerical model results and make forecasts from historical data, history
matching began to be used in petroleum literature. To build a reservoir simulation
model, not only it is required to have data about rock and fluid properties (i.e.,
petrophysical attributes), in order to characterize the fluid flow and the entire physical
process behind it, but also it is of utmost importance always bear in mind that the data

available for characterization is inaccurate and have uncertainty.

With the reservoir simulation, it is possible to estimate characteristics and predict
behavior of an oil reservoir, following the techniques based on material balance,
decline curves and Buckley-Leverett theory of displacement of non-miscible fluid (E
BUCKLEY; LEVERETT; AIME, 1942). That said, as much as numerical methods and
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approximations generate satisfactory results, the lack of knowledge about the geology
that composes the reservoir is the main source of uncertainty in this activity. Thus,
reservoir models are built inside an uncertainty parameters domain, meaning that any
prediction made from these models are also considered uncertain. Even though it may
not be the best option for the problem in first sight, it is important to remember that
obtaining information directly from the reservoir is an utterly difficult and costly
operation.

Knowing the limitations that reservoir models can give and the uncertainties it
generates after the incorporation of production data and with prior geostatistical
knowledge, it was necessary to come up with a solution that could manage the
uncertainty quantification of future reservoir performance. Uncertainty quantification in
reservoir performance predictions and descriptions are made mainly to measure
results and manage risks (i.e., decision-making), after the generation of multiple history

matched models and their assessment of uncertainty (EMERICK, 2012).

Generally speaking, the history matching problem can be thought as an optimization
problem, in which the main objective is to find the best production vector of a certain

reservoir model with a certain number m of model variables such that:
m = F1(d,ps + €). (2.2)

In Eq. (2.2), d,;s is the vector of observed data, with € being the uncertainty of the
measurements, and F(+) is the forward model that maps the data into the model
domain and therefore can be used to predict the reservoir behavior (i.e., the reservoir
fluid flow simulator) (OLIVER; CHEN, 2010). The parameters chosen beforehand are
determined by the model complexity (e.g., grid size, fluid composition, flow physics),
always demanding a deep knowledge of the study area and the reservoir processes.
Even though the main idea of a history matching process is to obtain less mismatches
from the model response given a certain set of parameters vectors, in other words, a
direct goal, there are innumerous algorithms that tackle this problem and try to assess
uncertainty. These algorithms are mainly separated into two main categories: manual

history matching or assisted history matching.
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2.2.1 History matching algorithms

Manual history matching was the first method applied in reservoir engineering with
good engineering judgment and workflows that has been developed with years of
experience in order to analyze the quality of the reservoir model and its
parametrization. The work presented in Williams et al. (1998) is a well-structured
approach to history matching. The strategy starts with an effort to match pressures at
the large (field) scale by modifying a few important parameters, including the
permeability multipliers, aquifer transmissibility, rock compressibility, and the ratio of
vertical to horizontal permeability. The properties of individual flow units or layers are
altered once the pressure has been properly matched at the field level, and then the
properties of wells, or cells nearby wells, are adjusted. Once the pressure has been
matched, Williams et al. (1998) suggest making modifications in other variables in
order to match water arrival times and water cut, for example, relative permeability

curves and vertical transmissibility values.

Despite the convenience of this method, the experience of the engineer and the
budget's size have a significant role in how well this form of history matching turns out.
Since reservoirs are typically quite diverse, a typical reservoir simulation model has
hundreds of thousands of grid blocks to estimate reservoir parameters in high
resolution. Computers are used to automatically alter the parameters because manual
history matching is frequently unreliable over prolonged periods of time and is always
associated with significant uncertainty (RWECHUNGURA; DADASHPOUR; KLEPPE,
2011). Therefore, it is more challenging to create a complex geological model which

better depicts the reality, thus, limiting the prediction power of this method.

The assisted history matching methods come to bypass these problems. Those
methods also relate in finding the best match of a reservoir model, but now,
automatized algorithms are developed with the purpose to minimize the objective
function, which calculates basically the quadratic deviation between the simulated data
and the observation one. A possible way of solving these types of problems is to use
iteratives algorithms that will calculate the unknown parameters by successive
approximations, trying to find the locals minima of the complex objective function, or
even a global minimum (RWECHUNGURA; DADASHPOUR; KLEPPE, 2011).
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An efficient class of optimization methods which have been used for a very long time
are gradient-based history matching algorithms. In general, they are based on the
calculation of the gradient of the objective function in respect of the model parameters,
solving the adjoint state (COURANT; HILBERT, 2007). The history matching problem
using adjoint approach is handled as an optimal control problem using the unknown
model parameters as the control variables, with the objective function being minimized
while being constrained to have the state variables follow the specified reservoir model
(KALETA et al., 2010). The gradients methods have been used extensionally in
reservoir history matching, with examples of applications in Anterion et al. (1989),
Bissel et al. (1992) and Volkov et al.(2018).

The minimization procedure is typically conducted using first-order gradient-based
minimization techniques, like the Gauss-Newton and Levenberg-Marquardt
algorithms, which avoid the explicit computation of the Hessian (second derivative)
(KALETA et al., 2010). However, when using automatic history matching with gradients
methods, it is necessary to calculate the derivatives while doing the reservoir fluid flow
simulation. These processes are usually difficult to be made inside complex simulators,
being necessary to come up with other implementations of the adjoint methods for
derivative calculation. An example of an implementation for this is shown at Rodrigues
(2005), which can be applied even outside the framework of standard optimization
algorithms, for instance, with history matching integrating 4D seismic data attributes,
such as: fluid contacts evolution with time; compartmentalization pressure estimates
and fault seal; oil bypass locations, all in order to obtain better results and description
of the reservoir (EMERICK; MORAES; RODRIGUES, 2007).

Nevertheless, the fact that such methods typically converge to a local minimum in the
objective function rather than the global minimum presents a possible issue. Inverse
problems are known to be often ill-posed. In other words, these kinds of problems
either have no solution in the desired class, or have many (two or more) solutions, or
the procedure to obtain them is unstable, meaning that arbitrarily small errors in the
measurement data may lead to indefinitely large errors in the solution (KABANIKHIN
et al., 2008). It is well recognized that because of how ill-posed the reservoir history
matching inverse problem is, there may be numerous local solutions, but only those
that create an adequate fit to the data are interesting (GOMEZ; GOSSELIN; BARKER,

2001).The Jacobian matrices of the system are typically available in reservoir models



25

since they are used in the Newton-Raphson iteration during the forward simulation.
Still, applying the adjoint equations involves a significant amount of programming and
necessitates having access to the numerical simulation code (KALETA et al.,
2010).This suggests that there is a need for gradient-based, adjoint-free optimization
techniques or another approach on this history matching problem.

Alternatively, there are methods that do not require the calculation of derivatives.
Algorithms that search for the global optimum without using derivatives are classified
as stochastic methods of assisted history matching. Some of the main algorithms are:
Evolutionary Strategy, Genetic Algorithm, Simulated Annealing and Particle Swarm
Optimization (RWECHUNGURA; DADASHPOUR; KLEPPE, 2011). The main
drawback is that they are expensive and require a significant number of function
evaluations. Furthermore, when a reservoir numerical simulator is used in such

function assessments, this method could become unfeasible.

In addition to all the methods previously cited, data assimilation processes have also
been largely used in the last couple of decades (CARRASSI et al., 2018b; NAVDAL,;
MANNSETH; VEFRING, 2002; VAN LEEUWEN; EVENSEN, 1996). The main goal is
also to merge the information from observations into a numerical model while
introducing uncertainty quantification, by using multiple samples drawn from
conditional distributions from parameters available from the observation data. These
methods relay on the use of different types of data combining readily with any type of

numerical reservoir simulator.

This work focuses on the ensemble methods, where they differ from common assisted
history matching algorithms by mainly providing multiple simultaneously history
matched models and calibration of both state (pressure, saturations) and model
(porosity, log-permeability) variables (OLIVER; CHEN, 2010).

2.2.2 Formulation of history matching problem for petroleum reservoirs

It is possible to use the Bayesian formulation inside the history matching problem,

mainly when the model parameters are poorly known and conditioned to data
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considerate to be inaccurate. With Bayes’ theorem, one is allowed to write the
conditional probability distribution function (pdf), f(m|d,,s), of a N, -dimensional

vector of parameters, m, given a N;-dimensional vector of observations, d,,s, as

F(opsIMIF () ___f (dgpslm)f(m)
dops) =% = = GL(m|d .
f(mldons) = =~ Toftapsimsamam — CL(mdons)f (m) (2.3)

In Eq. (2.3), f(m) is the prior pdf of the vector containing the parameters’ models and
f(d,ps) is the pdf of the vector of observation data. f(d,,s|m) is the conditional pdf of
d,ps given m. The pdf can also be written as a likelihood function, which is denoted by
L(m|d,,s), and G is a normalizing constant. If the prior’s pdf and measurement errors
can be assumed to be Gaussian distributed (EMERICK, 2012), the conditional pdf of

model parameters given observation data can also be written as:

1 T
f(mldobs) = Gexp {_ E (m - mpr) C1\711 (m - mpr)}

X exp {_%(g(m) - dobs)TCD_l(g(m) - dobs)}

(2.4)
= Gexp {— % (m— mpr)TCl;ll(m —my,)
- % (g(m) - dobs)TCD_l(g(m) - dobs)} = Gexp{—O(m)},
where
0(m) = 0, (m) + 04(m), (2.5)
being
1
Om(m) = E (m - mpr)Tcl;Il(m - mpr)' (2.6)
and
1
Od(m) = E (g(m) - dobs)TCD_l(g(m) - dobs)- (2.7)

In the equations above, Cy is the N,, X N,, prior covariance matrix of model
parameters; Cj is the N; X N, covariance matrix of measurement errors and g(m) is

the vector of predicted data using the created model for a certain vector m. In history
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matching, g(m) are the results obtained with the reservoir flow simulation run. In Eq.
(2.4), 0(m) is what is known as the objective function, in which the main objective
inside a history matching problem is to find a minimum of this objective function in order
to maximize the posterior pdf, f(m|d,,s). It is important to notice that the objective
function is made of two parts: the data mismatch part, 0,(m) (Eq. 2.6)), and the model
mismatch part, 0,,(m) (Eq. (2.7)). Finally, it is common to assume m,, as a mean

value of the vector of model parameters.

Hence, the history matching problem for reservoirs become an optimization problem,
in which the objective is to maximize the posterior probability distribution function of
the defined parameters conditioned to field measurements (i.e., observed data). The
problem of characterizing the uncertainty in the reservoir model parameters is reduced
to the problem of sampling the probability density function from the vector of model
parameters (EMERICK, 2012). Those are the main objectives of the statistical and
numerical methods applied to solve the optimization method of these history matching
problems for oil reservoirs (EVENSEN, 2018; TIERNEY, 1994).

2.2.3 History matching using proxy models — Response-Surface Methodology
(RSM), Design of Experiment (DOE) and Artificial Neural Networks (ANN)

Even though with the advance of simulation resources and computational power, it is
still desirable, and sometimes necessary, to have a method that solves inverse
problems in a quick and efficient way, reproducing as best as possible the uncertainty
of the problem, considering all data available and its quality. The use of computationally
efficient proxy-models is therefore receiving a lot of attention as researchers continue
to search for ways to minimize the computational burden associated with numerical

fluid flow simulations.

Proxy-models are referred to as a mathematical or statistical defined function which
replicated a certain model output for different input parameters. In several scientific
fields, proxy models are used to approximate mathematical modeling. In the scope of
history matching, common use cases include: sensitivity analysis of uncertain
variables; probabilistic forecasting and risk analysis; field development planning and

production optimization and history matching (ZUBAREV, 2009). Proxy-models and
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strategies for design of experiments are frequently utilized in sensitivity analysis. The
conventional one-parameter-at-a-time method for linear sensitivity assessments as
well as sophisticated experimental designs that can resolve correlation and higher
order effects are examples of application situations.

Yeten et al. (2005) examined sensitivity analysis and probabilistic forecasting as they
investigated various experimental designs and proxy-models and their capacity to
assess uncertainty in field performance. They claim positive outcomes when using
space-filling designs and proxy-models based on polynomial, kriging, and splines. The
same kinds of proxy-models produced worse outcomes for conventional designs that
sample at the edges of the uncertainty area (e.g., Placket-Burman, central composite
and D-optimal designs).

History matching is frequently a challenging process that calls for numerous
simulations to investigate the problem space and come up with workable answers.
Proxy-models are appealing instruments to utilize as an effective replacement for
complete reservoir simulation in the event that they can accurately represent important
simulation output parameters. Nevertheless, the high quality of these models is directly
related to the input dataset. Highly non-linear output is dealt with in reservoir
simulation. Therefore, it may not be possible to design a suitable proxy-model using
an input dataset with experiments spread equally across the uncertainty domain
(ZUBAREYV, 2009).

Eide et al. (1994) introduced the idea of response surfaces and experimental design
for automatic reservoir history matching. The main idea was to estimate response
surfaces based on a set of reservoir simulations with different combination of reservoir
parameters and estimate a simplified relation between reservoir simulator input and
output (response). The authors managed to apply the workflow in a synthetic example
with four input variables and five response variables. The quality of the response
surfaces depends on the experimental design and on the model used for it.
Additionally, Eide et al. (1994) concluded that a Bayesian strategy that uses prior
knowledge of the distribution and the response surface can be used to focus the search
on the most likely area of the input variables after matching and to add uncertainty to

prediction estimations.
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Amudo et al. (2009) described their practical experience in constructing experimental
designs and using response surface models techniques in reservoir simulation studies.
Their concepts and results were obtained after studying fifteen reservoirs situated in
four different fields and at distinct stages of maturation. The authors conclude that is
necessary an iterative and on-going process throughout the experimental design
workflow in order to analyze the impacts of different choices of uncertain parameters
and how they behave in the interpolation process during the response surface
modeling. Besides, even with the best parameter conditioning, the combination of
extremes can occasionally lead to non-physical experiments, which can require a lot

of computer work and delay any further study.

There have been studies that integrated the Response-Surface Methodology for
history matching and probabilistic forecasting of reservoirs. Slotte et al. (2008)
discussed the theory for assisted history matching and uncertainty evaluation using a
Bayesian framework, conditioning the posterior pdf on the a priori geological
information through ensembles of reservoir models sampled by a Markov Chain Monte
Carlo (MCMC) technique. Slotte et al. (2008) built proxy functions for the flow
simulator's output for each measurement that enters a global goal function. The proxy
functions are built using multidimensional kriging and polynomials. To raise the caliber
of the proxy functions, an iterative loop was undertaken in which ensembles of

reservoir models are sampled from the posterior pdf.

Wantawin et al. (2017) used a design of experiment (DOE) to investigate the
relationship between those uncertain parameters and the variations known as
response parameters. The authors developed a workflow combining history matching
solutions with pdf forecasts into an integrated proxy-based approach that searches for
both processes, evaluating them simultaneously. The combined workflow is an
iterative approach, as the original proxy-model is continuously updated into higher
degree of polynomial. Compared to the frequently utilized quadratic form, using higher-
degree polynomial equations seems to offer the advantage of providing a broader set

of HM solutions inside the uncertain parameter space (WANTAWIN et al., 2017).

Artificial neural networks (ANN) are another proxy model. The ability of ANNs to
approach any continuous function with the appropriate precision is what enables them

to be applied in a very efficient manner for various models in a variety of industries,
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such as the aerospace for autonomous control and the defense for facial recognition.
In fact, ANNs have taken the place of the reservoir simulator in several history
matching and optimization studies to speed up the operations, e.g., Costa et al.(2010),
Foroud et al. (2014), and Guerillot et al. (2017; 2016).

Bruyelle et al. (2019) use an artificial neural network-based proxy model and assessed
and contrasted with proxy models typically used for history matching, such as
polynomials or kriging techniques. The suggested method offers precise prediction
outcomes that speed up and enhance the history matching process. An ANN was
defined for each observed data that provides the mean and standard deviation of the
data for a group of geological realizations. To construct an approximate definition of
the goal function, all ANN are concatenated. To minimize the approximation of the
objective function, a global optimizer is employed. The methodology was applied in a
synthetic case study — the Brugge field — where the findings demonstrate that ANN has
significantly superior prediction power than kriging or quadratic polynomial proxies
(BRUYELLE; GUERILLOT, 2019).

In a recent literature review about the use of proxy modelling in numerical reservoir
simulation, Jaber et al. (2019) mention that it is better to understand the main aim of
the proxy modeling (e.g., prediction, optimization, uncertainty) in order to choose the
right approach for each of these categories. Successful use of proxies is documented
in the review for a variety of reservoir simulation modeling applications, including
assisted history matching, reservoir performance prediction, uncertainty analysis, and
optimization. Traditionally, these applications have relied on reservoir simulation
modeling, which is expensive in terms of the data resources used and the time
required. While proxy modeling can give a quick assessment of the response with
sufficient accuracy and simplify a complex procedure with respect to unclear
parameters in the interested region. High nonlinearity, however, makes it more difficult
to create a reliable proxy model (JABER; AL-JAWAD; ALHURAISHAWY, 2019).
Building the proxy model involves many steps, one of which is evaluating the proxy
model's quality. Therefore, it is important to verify the resulting solution obtained from
the proxy model checking with the reservoir simulator. If the results from the simulator
are away from the results obtained by the proxies, the input data must be amended by
new data and the process becomes an iterative one, where finding the best proxy

model is the main objective.
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2.3 Ensembled-based methods for data assimilation

The estimation of the status of a system, such as the atmosphere, the ocean, or any
part of the Earth system or its entirety, at any arbitrary past, present, or future time is
the problem that is supposed to be solved using data assimilation methods. There are
two complementing sources of information: the observations and predicted data
through numerical simulations, but they both have errors. By identifying connections
between the model and the observations and utilizing the knowledge contained in
each, data assimilation provides the conceptual and methodological tools to address
the issue, as it is conveniently formalized as a discrete-model/discrete-observation
estimation problem (CARRASSI et al., 2018a).

In the scope of geoscience, innumerous research about data assimilation have
contributed for the development of this area, being possible to combine data with
geological models in a more precise and efficient way. One category of the different
techniques inside data assimilation is statistical schemes, based on the theory of
estimation and error covariances calculations of observations and model predictions

in order to find the best linear combination between these two (JUNG et al., 2018).

The ensemble-based methods follow a Monte Carlo implementation of a data
assimilation scheme following the original Kalman Filter (KF) (KALMAN, 1960)
equations and updates steps, having all the correlations between model forecast and
observation data estimated from the ensemble of models and their respective data
mismatch. They are used as an alternative to the approximate error covariance
evolution equations used on data assimilation for non-linear models, such as the
extended Kalman Filter (EKF), to compute forecast errors estimates with a significantly
lower computational cost. In other words, ensembles methods rely on the stochastic
integration of an ensemble of model states followed by observational updates using

the forecast error covariance implicitly by the ensemble spread (BRASSEUR, 2011).

For history matching, the first application of an ensemble method was presented by
Lorentzen et al. (2001), where Ensemble Kalman Filter (EnKF) was applied in a two-
phase flow in a wellbore during drilling operations, to improve predictions of pressure
behavior. In terms of petroleum reservoirs application, Neevdal et al. (2002) also used

EnKF to update the permeability fields for near-well reservoir models. Nowadays,
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many ensemble methods are applied even more in a more geological complex

environment with multiple different goals, such as:

e maximize the net present value of a hydraulically fractured horizontal well inside
a shale gas reservoir using an ensemble-based optimization method (XUE et
al., 2021);

e quantify uncertainty and calibrate a reservoir model using dimension reduction
techniques to enhance computation time (TADJER; BRATVOLD; HANEA,
2021);

e combine the workflow with a feature-oriented parametrization of geophysical
data with ensemble-based history matching in order to characterize a fractured
carbonate reservoir (ZHANG et al., 2022).

2.3.1 Kalman Filter (KF) — the solution for the linear and Gaussian case in

sequential data assimilation problems

In reservoir engineering it is common to work with data available sequentially in time
(e.g., production, pressure and time-lapse seismic data). The model forecast should
be combined with the observation data in the process of updating the dynamic system
by incorporating these data sequentially in time. This process is called sequential data
assimilation (SDA) and falls into the scope of reservoir history matching problems,
being described with a Bayesian framework and conveniently changing the parameter
estimation problems to a parameter-state estimation one, the latter being discretized
in time (EVENSEN, 2009, cap. 4).

Introduced by Kalman (1960), the KF is a powerful recursive filter that accurately
determines the state of a linear dynamical system from a collection of measurements.
The filter is based on a model equation, in which the system's present state is
connected to an uncertainty (expressed by a covariance matrix), and an observation
equation, which connects a linear combination of the states to measurements. There

is uncertainty surrounding the measurements as well.

The equations used in the KF can be obtained in several ways. One of them mentioned

in Stengel (1994) is by solving a weighted least square problem imposing additional
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constraints that the measurement noise should be independent in time (i.e., there
should be no correlation between the model noise and the measurement noise) and
the weighting depends both on the uncertainty in the state variables and the
measurements. Another derivation, which is most used, is done using Bayesian
methodology, as shown in Cohn (1997). For that, the main requirements that needs to
be done is that both the model and measurement noise are Gaussian and that the prior
state are Gaussian distributed and unbiased. In that way, it is possible to update the
prior conditional probability distribution of the system, based on forecasts and historical
data. In that case, the pdf of the state vector y™ would follow Eq. (2.4) formulation,
noticing the equivalence between simultaneous and sequential data assimilation and
under the KF hypothesis of Gaussian prior and linear relationship between state and

predicted data.
The pdf of the state vector in a certain time t,, is, thus, given as (EVENSEN, 2009, cap.

4):

1 -1
fy™) = exp {— (E e =ym)(G) e -y
, (2.8)
+ E (Hnyn'a - gbs)T(Cg)_l(Hnyn'a - gbs)>}'

where, for each t,: C,f is the error covariance matrix of the model state; d,;, is the
observation data vector; H is the sensitivity matrix, which describes the linear relation

between state vector and predicted data, i.e.,
d™ = H,y"™/, (2.9)
and Cp, is the covariance matrix of the measurement errors.

Furthermore, the state vector and its covariance matrix are updated sequentially in

time using:
yna = yn,f + K (dhys — nyn'f)’ (2.10)

and
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cre = (INy - Kan) cr (2.11)
where
-1
K, = C)HL (H,C} HT + ) . (2.12)

Egs. (2.10-(2.12) are known as the KF analysis equations. In them, K,, is known as

the Kalman gain matrix. Iy, is the N, X N,, identity matrix, where N, denotes the

dimension of the state vector y™.The superscripts a and f denote analysis and

forecast, respectively.
2.3.2 The Ensemble Kalman Filter (EnKF)

Every time new data is available, the mean and covariance in the KF are changed. The
state's size may be too big, even for linear situations, for Eq. (2.11) to update the state's
covariance matrix computationally. Furthermore, the KF equations are no longer
relevant if the problem at hands is nonlinear because the posterior pdf is no longer
Gaussian. The Kalman filter was extended to work with non-linear models through the
EKF. The EKF uses linearizations of the model and observation equations around the
estimated mean of the state. These linearizations, however, may result in
unconstrained instabilities in the covariance updates for highly nonlinear systems
(EVENSEN, 2009, cap. 4). Additionally, updating the entire states covariance matrix is
still required by the EKF, which is computationally unfeasible for high-dimensional
problems (AANONSEN et al., 2009).

In this context, Evensen (1994) first introduced the ensemble Kalman filter (EnKF) as
an alternative for the EKF in high-dimensional nonlinear dynamical systems. The EnKF
is a Monte Carlo approach in which the mean and covariance are successively updated
over time and are represented by an ensemble of states. It was further implemented
by Houtekamer et al. (1998) and Burgers et al. (1998), where it led to the current
implementation of the EnKF by introducing the idea of updating each ensemble
member with independently perturbed observations. Therefore, the uncertainty is

propagated and represented using these ensembles of states.
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There is a tendency to lessen the dependence on Gaussian assumptions because the
initial ensemble in the EnKF represents a sampling from the prior distribution, because
it is not a straightforward resampling of a Gaussian posterior distribution. Only the
linear updates are added to the prior non-Gaussian ensemble. As a result, the updated
ensemble will inherit many of the forecast ensemble's non-Gaussian properties.
(EVENSEN, 2009, cap. 4). Nonetheless, because the analysis stage still relies on the
distributions' first and second order moments, the performance of EnKF may suffer if
the distributions deviate too much from Gaussian (AANONSEN et al., 2009).
Unfortunately, EnKF's main approximation is also the ensemble representation.
Limiting the ensemble's size is required to gain computational efficiency. Small
ensembles, however, induce sampling errors that produce spurious correlations.
Additionally, the space in which the solutions can be expressed is constrained by the
ensemble's size. As a result, after data assimilation, it is noticeable an excessive drop
in posterior covariances (EMERICK, 2012).

The history matching problem using the EnKF modifies the classical and traditional
problem from parameter estimation to a parameter-state estimation one. In that case,
on the EnKF, both the reservoir model parameters to be estimated and primary
dynamic variables of the reservoir simulator, such as gridblock pressure, and phase
saturation. The problem is being viewed as a parameter-state estimation in order to
avoid starting the reservoir simulations from scratch after each data assimilation step
(EMERICK, 2012).

The EnKF equations are typically introduced by defining the augmented state vector,

y™, in which the predicted data vector, d", is also included, i.e.,

m;

n
i = vy

d

: (2.13)

where the subscript j refers to the jth ensemble member. mj* and p}' are, respectively,

the vector of model parameters and states of the dynamical system. For reservoir
applications, m includes all model parameters required in the history matching,
generally gridblock porosities, permeabilities, end points of relative permeability, etc.;

p includes the primary variables of the reservoir simulator, typically reservoir gridblock
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pressure, fluid saturations, and bubble point pressure in a standard black-oil reservoir
(EMERICK, 2012). This “trick” of augmenting the state vector allows the derivation of
the EnKF equations following the same ideas to the standard KF equations without
removing the effect of the nonlinearity, if, and only if, at every data assimilation time-
step, the predicted data vector is a linear function of the combined (un-augmented)
state vector (LI; REYNOLDS, 2009).

The EnKF analysis equation can be written as
yre =yt G (Cn 4+ cp) (dn —d),, forj=1,2,+,N,, (2.14)

in which N, is the number of state vectors in the ensemble, in other words, the
ensemble size; dy. ; is a sample from the Gaussian distribution N (dg,s, Cp), normally
called as a perturbed (or randomized) observed data vector. The tilde (~) introduced
in the matrices notations is to emphasize that these matrices are estimated from an
ensemble. Thus, C~,’fbf and égg are the cross-covariance matrix between the
augmented state vector parameters and observation data and auto-covariance matrix

of predicted data, respectively, calculated by the following approximations:

5 f _nf S anf\T
Cy, T—y) (@} —ai'), (2.15)
and
~ T
Cop =7, _1Z(dnf a7 (d - d), (2.16)
where
Ne
nf_ LN nr
Yj N, i (2.17)
j=1

and
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The error in the estimate of the covariance decreases in a proportional rate of 1 /\/Ve :
meaning that a large ensemble may be necessary for an accurate estimate, and, if the
ensemble size chosen is small, the error in the estimate may be large (AANONSEN et
al., 2009). Also, in order to keep a reasonable computational cost for each data
assimilation step, small ensembles are necessary, which introduce more sampling
errors and limit the degrees of freedom to assimilate data and, thus, the ensemble
variance obtained after each data assimilation can be underestimated, being this an
important limitation of the EnKF (AANONSEN et al., 2009).

To compensate for the underestimation of posterior variances in the EnKF, there have
been literature about covariance inflation, method in which inflation factor are used to
increase the covariance in the forecast ensemble without changing the mean. Some
applications can be seen in Anderson (2016), Liang et al. (2012), Emerick (2019) and
Silva et al. (2021), the last two being more focused on the application of covariance

inflation in petroleum history matching.
2.3.3 Ensemble Smoothers

Unlike EnKF, in which data is sequentially assimilated in time, the ensemble smoother
(ES) was proposed by van Leeuwen and Evensen (1996) and is a method that
computes a global update by simultaneously assimilating all data available and
realizing only one global change at the end of the operations. van Leeuwen and
Evensen (1996) evaluated ES and EnKF with Lorenz equations and concluded that
EnKF performed better than ES because the EnKF's recursive updates keep the

ensemble of states on track and closer to the actual solution.

Recently, Skjervheim et al. (2011) evaluated ES with EnKF and found that both
approaches produced similar outcomes for the reservoir history-matching issues they
were focusing on. The fundamental benefit of ES is that it prevents the reservoir
simulator from having to restart, as is required by the EnKF sequential data assimilation

method. When used to solve reservoir history-matching problems, this makes ES
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significantly faster and simpler to use than EnKF. ES is a desirable alternative for data
assimilation workflows that combine diverse aspects of the reservoir modeling process,
such as seismic, structural, and geological modeling with flow simulation. The
reduction of simulation restarts is another benefit of ES; see, e.g., Liu and Grana (2020)

and Zachariassen et al. (2011).

When implementing ES, we only need to consider the parameter-estimation issue if
we overlook model uncertainty, which is a typical assumption in reservoir history-
matching situations. In this instance, using ES eliminates the parameter-state
consistency problem that was seen while using EnKF to assimilate sequential data
(EVENSEN, 2009, cap. 6). ES formulation is similar to EnKF, writing the analyzed
vector of model parameters, m, as:

- - -1
m¢ =m/ + ¢, (Chy + Co)  (ducy —df). (2.19)

Even though the great reduction of computational cost of the ES is its main benefits,
the single global data assimilation done by only one Gauss-Newton correction may not
be able to provide feasible data matches results to reservoir history-matching
problems. In such case, using the EnKF’s sequential application of corrections
between data assimilation or, in other words, the accumulation of several Gauss-
Newton corrections, would give a better result for the reservoir history-matching
problem, as production data is conditioned to each and several assimilation time-steps
and the ensemble is conditioned to the production history (EMERICK, 2012).

2.3.4 Ensemble Smoother with Multiple Data Assimilation (ES-MDA)

To overcome the possible mismatch between observed and predicted data and the
only global update of the parameters using ES, iterative ensemble smoothers (iES)
have been developed. The IES can be used for reservoir models with a moderately
large number of wells, a variety of data types and a relatively long production history.
Chen and Oliver (2014) used this method in a North Sea field, the Norne field, and with
the Levenberg-Marquardt iterative ensemble smoother were able to achieve improved
data after three iterations of a model with an approximate total number of parameters
of 150.000. Ma and Bi (2019) derived a novel and adaptive iES method, based on the
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Levenberg-Marquardt algorithm for nonlinear least squares optimization, and
demonstrated that it is possible to use the ensemble smoother as an approximate
linear least squares solver and thus avoid expensive adjoint calculations. This
transforms the history-matching problem in a nonlinear least squares problem and
helps to mitigate the consequences of three of the main assumptions required by the
EnKF and ES (MA; BI, 2019): a strictly linear relationship between the model and the
parameters, Gaussian prior distribution for the model parameters and Gaussian

measurement noise.

To further improve the results and to optimize the data assimilation process in the
highly nonlinear problem that is the reservoir modeling and simulation for petroleum
engineering, Emerick and Reynolds (2012) first proved that there is an equivalence
between single and multiple data assimilation (MDA) for the linear-Gaussian case
when the same data is assimilated multiple times with the covariance matrix of the
measurement errors multiplied by the number of data assimilations, presenting
evidence that multiple data assimilations can improve EnKF estimates for the nonlinear
case. Linking with the need to develop efficient iES and already with the knowledge of
this method’s benefits, Emerick and Reynolds (2013) proposed the Ensemble
Smoother with Multiple Data Assimilation method (ES-MDA), which is the use of MDA
in conjunction with ES to assimilate the data. ES-MDA can be interpreted as an
iterative form of ES, where the number of iterations (e.g., assimilations made) must be

selected a priori.

In order to use ES-MDA, it is necessary that the multiplication factors used to inflate
the covariance matrix of the measurement errors for a correct a posteriori parameter’s
distribution, satisfy the following expression (EMERICK; REYNOLDS, 2013):

Ng
D=t
o= (2.20)

where N, is the number of data assimilation defined and «, is the inflation coefficient.
Therefore, for every ES-MDA problem, it is needed to choose the number of
assimilations that will be done and the inflations coefficients before each assimilation

step. The parameters updates steps follow the EnKF equations, taking into
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consideration the inflation coefficients. The full ES-MDA algorithm construction can be

visually interpreted in Figure 1, with more details in Section 3.1.
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Figure 1 - ES-MDA process

From Eq. (2.20), it is noticeable that a simple choice for a is a, = N, for all £.
Nevertheless, it makes intuitive sense that selecting alpha in descending order can
enhance the method's effectiveness (EMERICK; REYNOLDS, 2013). therefore, on
initial steps data is assimilated with a high a value, which corresponds to reducing the

amplitude of the initial updates, and then we gradually decrease «a.

The need to define the number of iterations and the inflation factors before the
assimilation process is one of the main drawbacks of the ES-MDA, in fact, being
necessary to restart the entire process if the results quality is not desirable after the
end of the algorithm (RANAZZI; SAMPAIO, 2019b). Nonetheless, Emerick (2012)
shows us that changing the inflation coefficients in a decreasing order resulted in only
small improvements compared to using them constant and equal to the number of data

assimilations.
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Maucec, et al. (2016) used an ensemble-based computer Assisted History Matching
(AHM) workflow integrating probabilistic Bayesian interference using ES-MDA of a
real-life carbonate olil field, with a sector model of, roughly, 17 million active grid cells
with no application with simulation grid upscaling. The authors managed to obtain
matches on field-level reservoir pressures spanning a long production history, also

reporting a detailed uncertainty matrix with different ensembles of sensitivity scenarios.

Emerick (2016) provided an assessment of the effectiveness of the ES-MDA used in
the same field scenario as Emerick and Reynolds (2013) to absorb production and
seismic data. According to this author, localization techniques are crucial for dealing
with spurious correlations and variability loss. Additionally, an adaptive approach was
created, where the iterations and inflation coefficients are chosen in accordance with
how the data mismatch is progressing. Localization and inflation techniques for
ensemble methods can be found in the literature (e.g., Bjarkason et al.(2021), Soares
et al. (2018), Ranazzi et al. (2022; 2019a) and Emerick (2019)).

Rosa et al. (2022) also employed the ES-MDA technique to assimilate 4D seismic data
and production forecast in a deep-water oil field, located in offshore Southwest Brazil,
in order to compare the impact of using grids with different resolutions, exploring
options to incorporate 4D seismic maps in data assimilation and production forecast.
The authors proposed the use of two types of grids: a coarser grid and a refined grid.
Results shows that both grids can be used depending on the project’s objectives. Since
it can accurately reflect forecasting with considerably less expensive models, the
coarser grid is a useful choice for short-term investigations. Due to its safer risk
analyses and improved representation of model uncertainty, the refined grid may be

appropriate for long-term decisions.

The development of the ensemble-based history matching (EnHM) software in the
TotalEnergies’ geoscience platform known as Sismage-CIG is described in Abadpour
et al. (2018). The ES-MDA approach forms the basis of the software. A mature large
carbonate oil field, a deep-offshore turbidite field, and a carbonate gas field were the
three complex genuine fields that were used to demonstrate the performance of the

methods.
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3 METHODOLOGY

The methodology presented in this work aims to apply ES-MDA (EMERICK;
REYNOLDS, 2013) to a typical history matching problem of a reservoir model using
real data.

3.1 History matching using ES-MDA

Following the definition of the uncertain parameters (Section 4.3) and their input on the
model of the Alpha-system, it is necessary to sample them given the type of pdf
predefined as one of the inputs. Every set of the different combinations of parameters
are called ensembles, and they are essential on the history matching process with
ensembled-method data assimilation. Each member j of the ensemble with size N,

which contains the uncertain parameters of the model are defined as:

=1 ) (3.1)

where m" is the vector containing all N,, uncertain parameters that will be updated,
such as permeability and productivity multipliers indexes data. The superscript u

stands for uncertain.

After the sampling of the parameters for the N, ensembles, it is also generated N,
models which are taken to the forward operator, from time zero to the end of the

historical period, in order to compute the vector of predicted data:
of _ £-1, .
d] —F(m] 1u); for_] - 112:.":Ne! (3_2)

where F(-) is the forward operator (i.e., the non-linear model used to obtain the
forecast observations); df’f is the forecast (f) model response with size Ny, the total
1,u

number of measurements in the historical period, resulted from the combination mf‘

of uncertain parameters.
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For this work, the INTERSECT™ Reservoir Simulator was employed to compute the
non-linear forward problem, hence simulating the dynamic behavior of the reservoir
response to the different combination of uncertainty parameters previously defined.
INTERSECT™ is a high-resolution reservoir simulator that, when coupled with a high-
performance computer, enables this work to fully parallelize the execution of dynamic

simulations for every ensemble member.

ES-MDA requires the N; measurements to be perturbed, i.e., apply Gaussian noise in
order to be treated as random variables. The mean and standard deviation values are
calculated from previous research of the study area during screening methods and

single parameter research:

1/ .
dgbsj,uc = dObS + V ai’CD szl fOT'_] =12, '"'Ne' (33)
where dﬁbsj,uc is the perturbed vector of observations; z; is sampled with

Za~ N(O, INd); Cp is the N; X N, covariance matrix of observed data measurement

errors:
g 0 0
0 o} :
e (3.4)
0 0 ox,

After that, the simulations results are compared with the observation data. As every
process is based on statistical analysis and from observed data, there will certainly be
uncertainty on the model, giving mismatches from the simulation results and the
observation data. Hence, these discrepancies will be numerically used inside the data
assimilation based on correlation computation, and, for each iteration £, the previous
sampled parameters will be updated to a new set of uncertain parameters, in order to

reduce the variance of the discrepancy, following:

tu _ _ t-1u |, F-Lf[Al-1f L tf
m;" =m; + Cop " (Cop™ + asCp) (dobsj,uc—dj ),

(3.5)
forj=1,2,--+,N,,

where, le,;l’f represents the cross-covariance matrix between the prior vector of

4

model parameters, mf‘l'”, and the vector of predicted data, dj’f; C‘,ﬁ;l’f is the N; X Ny
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auto-covariance matrix of predicted data. As before, the tilde (~) notation indicates that

these covariances matrices are estimated around the ensemble mean:

Ne
~ 1 _
Cop = 77 > (mf ™ =t (@ — @), 3.6)
e =
Ne
~ 1 - _
Cop = mZ(df’f —atn) (dff - ary, (3.7)
e j=1

whereby, m?~! and d‘~! represent the average vector of the prior model parameters
and the average vector of predicted data, respectively:

Ne Ne
1 - 1
=f-1 _ § -1, -1 _ E -1
m‘t = N, . miT; d =" = N, ¢ di~. (3.8)
j=1 j=1

As mentioned, the ES-MDA processes will go on until the pre-defined number of
assimilations (N,) is reached. It is important to mention that the assimilation process is
made after the end of the forward operator and that the observation data are randomly
sampled according to the data error covariance. Furthermore, for the update part, ES-
MDA uses an inflation factor a, for each assimilation step, and their choice must
respect the condition stated in Eq. (2.20) for a correct a posteriori parameter’s
distribution.

In this work, for all study cases using ES-MDA process, the inflation factor used were
constant and equals to the number of iterations, i.e., a, = N,. Figure 2 illustrates the

workflow containing the steps of applying ES-MDA.
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Figure 2 — ES-MDA workflow

Source: Adapted from Ranazzi & Sampaio (2018)

3.2 Objective function

The Objective Function (OF) for each data assimilation at iteration £ used in this work
is through the quadratic deviation between simulated model forecast and the
observation data, normalized by the inverse of the covariance matrix of observed data
measurement errors, C,, and with the total number of observations N,;, as shown in Eq.
(3.9).

T
Ne tof _ ¢ =2 (40f _ ¢
OFt = e (4] dost'?VCD (4 dobs;)_ (3.9)

D
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4 STUDY CASE

The study area of the work focuses on the analysis of the Central and Eastern panel
of the Alpha-Field. Thus, this section is divided between the initial model used for the
reservoir system, containing explanation about the link between the geology and how
to transfer the heterogeneities of the model to the fluid flow simulator in terms of

numeric parameters.

4.1 2G&R synthesis of the case study

The field under study is located in an offshore basin, with the reservoir about 1000
meters from the seafloor surface. The reservoir is of very good quality and consists of
turbiditic sediments composed of a loosely consolidated sand with a very good

permeability of up to 10 darcys (D). The oil is also of superior quality.

The depositional environment is turbiditic, corresponding to the upper part of a turbiditic
lobe. The channels are erosive-constructive. They form amalgamated channel
complexes alternating between channel and levee facies. A fluid barrier is formed
when the system comes into contact with diapirs to the east. As a result, the field is a

reservoir bounded by the complex's erosive margins, the clay roof, and the diapirs.

The studied field is called Alpha Field, a multi-story erosive constructive channel
complex. The reservoir is placed at the level of a turtle-back salt anticlinal created after
turbidite reservoir deposition. This structure causes a large number of Keystone faults,
which are normal faults that run perpendicular to the system's elongation. The studied
area is divided according to the direction of the channels from East to West into 3
zones - Alpha-East, Alpha-Central and Alpha-West (Figure 3). Within the system,
structural and stratigraphic heterogeneities will exist. There is little transmissibility
between regions because the degree of depletion varies by region. The synthesis will

also give us an indication of the uncertain parameters determined later.
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ALPHA-

Figure 3 - Top view of the erosive channel complex containing an explanatory diagram of the studied
field with the highlighted wells for future analysis

4.2 Initial model

The optimization of parameters is a critical step in the reservoirs and management’s
future. During the history matching step, dynamic parameters are updated. The fluid
flow simulator used in this work = INTERSECT™ - allows us to change them based
on the regions using three software’s keywords that correspond to three degrees of
heterogeneity (SCHLUMBERGER, 2014). These functions are:

e MULTNUM: defines regions for applying inter-region transmissibility multipliers,
instead of applying them to flux regions defined by FLUXNUM,;

e FLUXNUM: identifies extent of each flux region, using with the flux boundary
option to define regions that can be run as separate models with boundary
fluxes defined in a previous full field run;

e OPERNUM: defines regions for performing arithmetic operations on property
array.

The flow units in our Alpha-system that are cut by the faults within the center block are
represented by MULTNUM. The faults run perpendicular to the system’s orientation.
In our model, FLUXNUM represents the three vertical levels (Alpha-Lower, Alpha-
Middle, Alpha-Upper). Clay barriers can be found throughout the complex and are
designated as maximum flooding surfaces (MFS), which translate geologically as clays
in the vast majority of situations. The last function to represent our turbiditic system
geology’s is OPERNUM , which represents the elementary channels. In the model, the

sedimentary features used were sand channels, proximal levee and distal levee.
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According to regional seismics, fluid circulation will be mostly within these formations
due to their high permeability.

For the modelling of the elementary channels, ULIKE™ was used. This process is a
rule-based modelling tool that simulates the sediment transports by water flow
following the random path that a particle would take along any designated fairway,
which occurs in most of clastic systems. To build sedimentary systems with a specific
domain flow, this approach employs the Random Walk principle, which is a form of
stochastic process in which each move step is preset by a particular probability. Then,
according to the user’s defined geometrical parameters and limitations, the random
walk of a particle path is dressed in sedimentary features such as channels, levees,
lobes, and so on. To keep the grid consistent, the process is applied to each layer
defined on the model. ULIKE™ has the advantage of respecting seismic and well
constraints at the level of turbiditic reservoirs (MASSONNAT, 2019). This method is
comparable to object-based modeling; however, it yields better results than purely

Boolean object-based modeling.

Table 1 summarizes the values given to the regions according to their families. These
values are used to identify the different areas of the reservoir, and to easily manage
transmissibility between these regions, as multipliers will be applied during the fluid
flow simulations and will also be considered as uncertain parameters during the data
assimilation process. A reduction in transmissibility may be the effect of faults or
system edges for MULTNUMS (Figure 4), MFS or clay barriers for FLUXNUM (Figure
5) and channel skins for OPERNUMS (Figure 6). In the figures below, the reservoir

complex is shown in a 3-dimensional space, with each heterogeneity displayed.



Figure 4 - MULTNUM regions and their specific numeric inside the reservoir model

PROD6

Figure 5 - FLUXNUM regions and their specific number inside the reservoir model
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s 4 (Sand channels)

1| (Proximal levee)
2 (Distal levee)

Figure 6 - OPERNUM regions and their specific number and sedimentary representation inside the
reservoir model

Table 1 - Figure association with regions by location

MULTNUM FLUXNUM OPERNUM
Regions Flow units and fault Alpha-lower, Alpha- Elementary channels
blocks middle, Alpha-upper
Alpha-Central 2,38 and 39 21, 22 and 23 1,2and 4
Alpha-Eastern 4 and 26 66, 67 and 68

4.3 Influencing parameters on the history matching process of the Alpha
field

After the definition of the heterogeneity zones mentioned in Section 4.2, the uncertain
parameters, such as transmissibility multipliers, elementary channels’ characteristics
(i.e., porosity and permeability) and wells’ productivity indexes multipliers need to be
chosen in order to assess their impact on the fluid flow. The choice of the parameters
is directly related to the studied region and will be further detailed in Sections 5.1.1,

5.1.2 and 5.2 , with their respective definitions in Tables 2, 3 and 4.

This is considered to be one of the most challenging processes on reservoir simulation,
as the number of parameters that can be considered and have directly and indirectly
response on the flow simulator results is very large, sometimes can pass the 100,000

parameters depending on the cell grid size and the heterogeneity of the reservoir. For
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the Alpha-system, previous studies have already been carried out on the last couple
of years in order to have a better geological understanding of the area and how to
improve more and more this in a numerical representation. This work uses mostly
multipliers uncertain parameters on flux/fault regions (MULTNUM) and on the vertical
layers (FLUXNUM), as well as the elementary channel properties generated by
ULIKE™ — permeabilities, porosity, net-to-gross ratio, and transmissibility multiplier
applied in the boundaries of sand channel and proximal levee (OPERNUM)

The importance of turbiditic elementary channels in matching water arrivals cannot be
overstated. Indeed, the fluids will primarily rush into these places with extremely high
permeability; but digitation will occur, leaving other areas un-swept. The ‘skin’ of the

channel refers to how the channels communicate with the background.

The seismic structure of the specific field reveals the presence of faults, which might
be fluid conductive or fluid impermeable. The first key element in this field is the
transmissibility between faults. It has a significant impact on the field’s exploitation.
The transmissibility of faults has a big impact on pressure studies (BHP: Bottom Hole
Pressure), but it also has a big impact on production mechanisms, especially if the fault

restricts access to an aquifer or a connection with an injector.

The analysis of the BHP is one of the most important of the reservoir. It shows two
types of information: the flowing pressure and the average reservoir pressure. The first
is the pressure when the well is active and producing. The pressure’s profile of a
reservoir is a declining curve with a minimum pressure value in the well. The flowing
pressure depends on the conditions of the well’s condition (i.e., the skin and the
permeability on the well’s vicinity). In the model, the skin of the well and its vicinity’s
condition are approximated with a productivity index (Pl), as this property is linked with
the pressure variation during the flowing part of the production. Therefore, this

Productivity Index can be adjusted using a Pl multiplier parameter.

Besides, the average reservoir pressure is the one obtained away from the well. When
production ceases, the pressure at the well will revert to the reservoir's average
pressure after a sufficient period of time; this is known as a static pressure, which can
be calculated by extrapolating the build-up of pressure to a long period of time to

achieve the constant pressure. This average reservoir pressure is linked to the
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connected investigated volume; the lower the volume connected, the faster the
pressure will drop. Nonetheless, aquifer and water injection lead to a pressure
contribution. Therefore, the aquifer volume can also be considered as an uncertain

parameter on the model and the connectivity to the injector.

To keep the parameters consistent, the variation of the parameters is based on the
2G&R synthesis, general reservoir geology understanding, and common sense. The
single-parameter research previous made by studies on the Alpha-system in

examining the reservoir’s behavior also aid on that perspective.
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5 RESULTS

The following sections contains the analysis of the two sections chosen of the Alpha
field to be matched: Alpha-East and Alpha-Central.

5.1 Alpha-East: PROD10 - INJ12

The study of the Alpha-East compartment of the reservoir is divided into two ES-MDA

analysis:

1. The first ES-MDA: data assimilation from a set of runs in the reservoir fluid flow

simulator with fewer uncertain parameters in order to check the behavior and
stability of the method and if there are any corrections, adjustments and
conclusion that could be proposed to obtain a better match of the production
vector observation data;

2. The second ES-MDA: data assimilation from the same reservoir compartment

with more uncertain parameters defined mainly to obtain a better match on the
flowing part of the fluid flow process and the reservoir pressure after the long

shut-in of the producer well.

5.1.1 First ES-MDA run on Alpha-East

ES-MDA is used to update the uncertain parameters in order to find a model that
behaved similarly to the real reservoir. It is possible to present a few indicators that led
to the correct behavior of the interest response. There are three vertical FLUXNUM
compartments in the East Block, which is itself a MULTNUM region, which correspond
to three erosive channel steps. There are two wells within this compartment which will
be analyzed, including one producer (PROD10) and one water injector (INJ12) (Figure
3). The pressure study suggests that this block has strong communication. Water
injection is the production mechanism, but it is insufficient to maintain reservoir

pressure. Additional pressure support is provided by an aquifer.
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The uncertain parameters definition for this panel and their respective definition are
shown in Table 2. For this analysis, the number of ensembles used was N, = 25 and
with 3 iterations (N, = 3) and the observations to match were: PROD10 water cut and
bottom-hole pressure; INJ12 bottom-hole pressure.

Table 2 — Parameter’s designation and their explanations on the analysis of Alpha-East

Parameters Explanations
m_4 26 Transmissibility multiplier between distal levee and channel fairways
multregt_transm Transmissibility multiplier between channel and proximal levee

Elementary channel permeability in i-direction (assumed isotropy and

op4_perm_| permeability in k-direction is 10% of i-direction)
op4_poro Elementary channel porosity
op4_ntg_ratio Elementary channel net-to-gross ratio

One of the simplest ways to verify the efficiency of an ES-MDA process is to analyze
the simulator response before and after the adjustments. In this context, the producer
PROD10 and injector INJ12 are the selected wells in order to assess the efficiency of
the method over each iteration. On Figures 7, 8, 9 and 10, the red lines represent the
initial ensemble spread, the green lines represent the last iterations of the assimilation
process, and the black squares are the available observation data. It is possible to
observe that the response of the model after the adjustments are able to better

represent the observation data available compared with the initial ensembles.

= |Nitial ensemble
== Final iteration’s ensemble
m Historical data

00T whbbgh it wohp [T

Figure 7 — Well bottom hole pressure for the producer PROD10. Box 1 shows the shut-in pressure and
Box 2, the flowing pressure. The red lines indicate the initial ensemble. The green lines indicate the
final ensemble. The black squares are the historical data.
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Figure 8 — Local analysis at shut-in pressure of producer PROD10. The red lines indicate the initial
ensemble. The green lines indicate the final ensemble. The black squares are the historical data.
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Figure 9 - Water cut for the producer PROD10. The red lines indicate the initial ensemble. Box 1
shows the interval with higher simulated water cut values. The green lines indicate the final ensemble.
The black squares are the historical data.
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Figure 10 - Well bottom hole pressure for the injector INJ12. The red lines indicate the initial
ensemble. The green lines indicate the final ensemble. The black squares are the historical data.

These figures show the response adjustments of the models that minimize the variance
from of the ensembles from each iteration. Furthermore, in Figure 8, the simulated
response matches well the static pressure behavior, staying few barsas above the

observation data.

On the static process of the simulation, the well is shut and the pressure slowly builds-
up in order to maintain the equilibrium of the reservoir. The AP between the initial
pressure (i.e., before production) and the lower long term shut-in pressure is related to
the change of the component (e.g., water, gas, oil) volume (AV) in the reservoir from
the cumulative produced volume of components and the cumulative injected volume
of water. Secondly, the initial component connected volume in place impacts also this
pressure difference. Finally, this AP is also dependent of the total compressibility of the
system (i.e., resulting from the compressibility of the components — weighted by the
fluid saturation — and the one of the rock). Then, bigger is the initial connected volume,
less is the AP. Since the aquifer volume is often uncertain, it is considered as a key
parameter to match this AP difference. The inclusion of the aquifer volume and the

analysis of ES-MDA results will be made on Section 5.1.2.

Still on Figure 7, Box 2, gives us the flowing pressure. This simulation steps gives us
more local comprehension of the system compared with the static pressure. In the
vicinity of the well PROD10, the effect of the skin and permeability in the field are

affecting the flowing pressure. That said, from ES-MDA’s final iteration curves, it is
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necessary to adjust the well productivity index multipliers in order to obtain better
matches on the flowing part. The productivity index of a well is defined as being the
ratio of the flow rate by the pressure differential and is also very affected by the skin.
In other sections (5.1.2 and 5.2), the Pls multipliers will be considered in some of the

simulations and their strong non-linear response will also be discussed.

From PROD10 water cut profile, Figure 9 shows that the initial ensemble manages to
represent the early water breakthrough given the transmissibility parameters of the
elementary channels predefined in the uncertain parameter list. However, the last data
assimilation results give very tight ensembles, with a relatively late water breakthrough
and an excess of water production which is represented in the interval in Box 1 of

Figure 9. The final average value of the water cut was matched — roughly 0.6.

In addition to the volume of the eastern aquifer, this mismatch of the water cut from the
previous mentioned period of days can also be linked with the injector productivity
index values (Figure 10). From INJ12 bottom hole pressure graphic, we can observe

good match on the static parts but an underestimation on the flowing pressure.

Figures 11 and 12 show the evolution of the objective function for each property of the
production vector we want match. As expected from ES-MDA, the initial twenty-five
simulations have very sparse values OF values, as the uncertain parameters are fist
randomly sampled given the pdf and the ranges. With the first data assimilation
iteration, the OF is reduced for all production vector properties, minimizing the best
way possible given the observation data. Figure 12 shows an unstable evolution of OF
over the iterations, but on the last ones it is possible to see a certain stabilization on
the interval ES-MDA found for all the production vector properties. Finally, in Figure 13
is the evolution of the average value of the OF, showing the same behavior as

described earlier.
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Evolution of objective function - Pressure
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Figure 11 - Evolution of the pressure’s portion of the ES-MDA OF
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Figure 12 - Evolution of the water cut’s portion of the ES-MDA OF
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Evolution of Mean Objective Function
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Figure 13 - Mean OF value evolution of first ES-MDA run of Alpha-East

The uncertain parameters values over the iterations are shown in Figures 14 and 15.
The first figure shows the mean value calculated based on the numbers of ensembles
and the error bar based on the standard deviation calculated from each iteration, giving
a good estimation of the variance of each iteration of ES-MDA. The second figure
depicts the spread of all the uncertain parameters with the related ensemble size Ne

and the OF value for each ensemble.
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Figure 15 - Uncertain parameters scatter over the iterations of first ES-MDA on Alpha-East

Figure 14 shows that the errors are reduced for most of the parameters over the
iterations, being the biggest variance related to the initial ensemble, as it is generated
randomly from the a priori distributions. In Figure 15, it is possible to identify that, from
an initial large spread of the five uncertain parameters values associated with a certain
OF, ES-MDA reduces all spreads’ ranges into the best interval of parameters for all
properties to minimize the OF. For all uncertain parameters, it is shown this behavior,

as the uncertain parameters begin to agglomerate in regions where the OF have
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smaller values. From iteration O to iteration 1, all parameters but the elementary
channel’s porosity (op4_poro) reached the regions where they remain gathered until
the end of all ES-MDA procedure.

As the problem of reservoir fluid flow simulation is highly non-linear, it may exist the
possibility of the OF to not have a global minimum, but several local minima. In this
case, ES-MDA can converge to a certain range of uncertain parameters but give bad
matches of the production vector properties. This happens because we are using a
data assimilation method that depends on the number of ensembles employed; the
smaller it is, the bigger are the uncertainties from each iteration, and higher is the
probability of not obtaining a good match. For that reason, it is reasonable to pick a
large number of ensembles for the next ES-MDA processes to be able to get more

accuracy on the covariances calculated and better match results.

5.1.2 Second ES-MDA run on Alpha-East

In order to reduce the average simulated reservoir pressure after the long shut-in
period of well PROD10, the aquifer volume was put into the new uncertain parameter
list to see the behavior on the BHP in that simulation part. The aquifer is analytical and
follows the Fetkovitch model. On the previous ES-MDA, the initial volume of the aquifer
was 3.0 x 108 m3. It is also worth mentioning that the multiplier transmissibility between
MULTNUM regions 26 and 4 is an important parameter in order to obtain a correct

average pressure of the reservoir.

For this new ES-MDA run, the Pls multipliers were considered as new uncertain
parameters for both analyzed wells in Alpha-East. The two wells have a total of three
completions, each one with its respective productivity index. The Pl multiplier will try to
simulate the skin factor in the vicinity in the wells. Furthermore, for the PROD10, after
its closure in day 1190 (approximately), a second Pl multiplier for each completion of

the well will be applied, totalizing 9 Pls multipliers as new uncertain parameters.

Lastly, to better represent the geology complexity of the reality, transmissibility
multipliers for the three fluid regions (66-68) will also be included in this run. The new
uncertain parameter list and their explanation in Table 3. For this analysis, the number

of ensembles used was N, = 100 and with 5 iterations (N, = 5) and, in addition to
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the previous production vectors properties used to get a match, the oil production rate

of PROD10 was also considered in this run.

Table 3 - Uncertain parameter list for second ES-MDA run on Alpha-East

Parameters Explanations
m_4 26 Transmissibility multiplier between distal levee and channel fairways
multregt_transm Transmissibility multiplier between channel and proximal levee
op4_perm_i Elementary channel permeability in i-direction (assumed isotropy and
- - permeability in k-direction is 10% of i-direction)
op4_poro Elementary channel porosity
op4_ntg_ratio Elementary channel net-to-gross ratio
f 66 67 Transmissibility multiplier between flux region 66 and 67
f 67 _68 Transmissibility multiplier between flux region 67 and 68
aq2_vol Analytical aquifer initial volume
wi2 pi 1 PI multiplier of INJ12 first completion
wi2_pi_2 PI multiplier of INJ12 second completion
w12 pi 3 PI multiplier of INJ12 third completion
w10 pi_ 1 a PI multiplier of PROD10 first completion at start of production
w10 pi 2 a PI multiplier of PROD10 second completion at start of production
w10 pi_3 a PI multiplier of PROD10 third completion at start of production
w10 pi_ 1 b PI multiplier of PROD10 first completion at day 1092
w10 pi_ 2 b PI multiplier of PROD10 second completion at day 1092
w10 pi_ 3 b PI multiplier of PROD10 third completion at day 1092

The results obtained are shown in on Figures 16, 17, 18 and 19 shown below. In these

figures, the initial ensemble spread is represented in grey scale, and the last ensemble

is on red. The black curve is the best ES-MDA run given the global OF. The observation

data is in blue, and its uncertain region is also represented given the observation data

variance.
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Figure 16 - Well bottom hole pressure simulation results from second ES-MDA run for the PROD10.
The grey scale represents the initial ensemble spread. The red one represents the last ensemble.
Historical data and their uncertain region (noise in measurements) are in blue.
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Figure 17 - Well bottom hole pressure simulation results from second ES-MDA run for the INJ12. The
grey scale represents the initial ensemble spread. The red one represents the last ensemble.
Historical data and their uncertain region (noise in measurements) are in blue.
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Figure 18 - Oil production rate simulation results from second ES-MDA for the PROD10. The grey
scale represents the initial ensemble spread. The red one represents the last ensemble. Historical
data and their uncertain region (noise in measurements) are in blue.
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Figure 19 - Water cut simulation results from second ES-MDA run for the PROD10. The grey scale
represents the initial ensemble spread. The red one represents the last ensemble. Historical data and
their uncertain region (noise in measurements) are in blue.

Analyzing the BHP of PROD10 in Figure 16, it is possible to observe that a bigger AP
from the initial pressure and the final average reservoir pressure was obtained in
comparison with Figure 8. Moreover, from the evolution of the mean uncertain
parameters used in this ES-MDA run (Figure 21), the initial aquifer volume converged

to a smaller value than the one used on the first run, confirming the hypothesis listed
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on the previous section about using a smaller aquifer volume in order to obtain a better

match on the average reservoir pressure after the long pressure build-up.

Furthermore, it was obtained a good match on the flowing pressure of PROD10 in
comparison to Box 2 of Figure 7. The inclusion of the 9 parameters related to the wells’
productivity indexes and the flux regions multipliers are the main responsible for this
match, as these Pls multipliers are the parameters directly related to this flowing step,
affecting the flowing pressure and simulating the skin factor effects in the wells vicinity.
PROD10’s water breakthrough is still a little late compared with the observations, as
shown in Figure 19, but after the well closure on day 1092, compared to Figure 9, the
water cut is better match, this time obtaining values in the lower bound of the

observation error interval.

From Figure 17 and the previous result obtained from the first ES-MDA run, the final
ensemble spread is very similar with the one observed in Figure 10, with good matches
on the static pressure and, in the flowing pressure, converging to smaller values
compared to the observation data. Due to the high complexity of the reservoir’s
geology, it is possible to have elementary channels with different properties then the
ones defined from ULIKE™ inside the uncertain parameter list, which are permeability,

porosity, and net-to-gross ratio.

Figure 20 shows the evolution of the mean OF over the five data assimilation iterations.
The value of the OF is bigger in this second run because the oil production rate of
PROD10 was included as one term of the OF calculation. The picture shows an initial
high OF value with a big uncertainty, but decreasing from iteration to iteration, with its
variance following the same pattern. The evolution of the OF and the uncertain
parameters spread over the iterations is shown in Figure 22, where is possible to
visualize the convergence of the method over the iterations to a certain region of

parameters values where the OF has low values.
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Figure 20 - ES-MDA’s second run mean OF statistics
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Figure 21 - Uncertain parameter evolution of second ES-MDA run on Alpha-East
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Figure 22 - Uncertain parameters scatter over the iterations of second ES-MDA run on Alpha-East
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The scatter plots in Figure 22 show the quick convergence of ES-MDA for some
uncertain parameters of choice, such as: w10 _pi_2_a, wl0_pi_2 b and wl0_pi_3 b.
For these parameters, mainly for iteration 2 and iteration 3, the scatter data tends to
follow a vertical line with a very small variance (Figure 21). In other words, similar
values of these uncertain parameters generate different OF values for different
ensembles. This can happen as ES-MDA works with a large number of parameters
combinations; hence, the same value of an uncertain parameter can generate an OF
with small or big values, depending on the combination with another parameter that
also contributed to this specific result. The uncertain parameters’ scatter evolution over
the iterations tend not to follow any specific or defined path in order to try to find the
best combination for the defined OF. From an a priori scatter (iteration O of Figure 22)
and following ES-MDA'’s update equations, their values are updated minimizing the OF

and the ensemble variance (spread).

5.2 Alpha-Central: PROD6 — INJ8

An injector well (INJ8) and a producer well (PROD6) make up the Central block.
Multiple faults have a significant impact on this section, reducing transmissibility within
the core region but not blocking the flow. The aquifer and the elementary channels

generated by ULIKE™ are used in the production mechanism.

The uncertain parameters considered in this section and their respective definition is
shown in Table 4. For this analysis, the number of ensembles used was N, = 100 and
with 5 iterations (N, = 5) and the observations to match were the same as the second
ES-MDA run.
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Table 4 - Uncertain parameter list for ES-MDA run on Alpha-Central

Parameters

Explanations

multregt_transm

op4_perm_i

op4_poro
op4_ntg_ratio
m_2 38
m_38 39
f 21 22

f 22 23
p6_1
p6_2
p6_3
p8_1
p8_2
p8_3

Transmissibility multiplier between channel and proximal levee

Elementary channel permeability in i-direction (assumed isotropy and
permeability in k-direction is 10% of i-direction)

Elementary channel porosity
Elementary channel net-to-gross ratio

Transmissibility multipliers between faulted areas

Flux multiplier on vertical connection between Maximum Flooding Surfaces

PI multiplier of PRODS first completion
PI multiplier of PROD6 second completion
P1 multiplier of PROD6 second completion

P1 multiplier of INJ8 first completion

P1 multiplier of INJ8 second completion

P1 multiplier of INJ8 third completion

The results obtained are on Figures 23, 24, 25 and 26 shown below. In them, the initial

ensemble spread is represented in grey scale, and the last ensemble is on red. The

black curve is the best ES-MDA run given the global OF. The observation data is in

blue, and its uncertain region is also represented given the observation data variance.
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Figure 23 - Well bottom hole pressure simulation results from ES-MDA run for the PRODG6. The grey
scale represents the initial ensemble spread. The red one represents the last ensemble. Historical
data and their uncertain region (noise in measurements) are in blue.
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Figure 24 - Well bottom hole pressure simulation results from ES-MDA run for the INJ8. The grey
scale represents the initial ensemble spread. The red one represents the last ensemble. Historical
data and their uncertain region (noise in measurements) are in blue.
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Figure 25 - Oil production rate simulation results from ES-MDA run for the PRODG6. The grey scale
represents the initial ensemble spread. The red one represents the last ensemble. Historical data and
their uncertain region (noise in measurements) are in blue.
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Figure 26 - Water cut simulation results from ES-MDA run for the PROD6. The grey scale represents
the initial ensemble spread. The red one represents the last ensemble. Historical data and their
uncertain region (noise in measurements) are in blue.

The BHP of PRODG6 (Figure 23) shows that the simulated values are very close to the
observation, mainly for the flowing part. Regarding the static pressure (all three build-
ups), there is gap between simulated and observed data, which could indicate a lack
of connected volume between the injector INJ8 who helps to maintain the pressure for
the producer. About INJ8 BHP, we see in Figure 24 that ES-MDA manages to get a
good match on both fluid and static pressure. For instance, as observed mainly in the
three falloffs between days 1000 and 2000, the short-term pressure drop is well
matched, meaning that the behavior in the well’s vicinity is correctly guessed with the
parameters of choice: in this case, the productivity index multiplier on the three
completion layers. In the final days of the simulation, mainly for INJ8, there is relatively
large mismatch on the pressure drop. This could also be an indicative that there is still
some volume connectivity missing inside the model which could be improved in further

analysis.

Figures 25 and 26 show, respectively, the oil production rate and the water
breakthrough of PRODG6. Both properties are well matched during the whole simulated
timesteps. Nonetheless, in Figure 26 we observe two more families of simulated
ensembles (red curves) in the final ES-MDA iteration. This means that, if continued,
the assimilation processes could be able to find not only a more significant

representation of the water cut then it already is, but also for the others three production
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vector properties analyzed. The water cut of a production well is not only function of
the injection rate of the injector well helping to maintain a good pressure value for the
oil recovery from the producer, but also on the faults’ transmissibility, which are all
considered inside our uncertain parameter lists and the geological model applied for
this ES-MDA run.

Figure 27 shows the evolution of the mean OF over the five data assimilation iterations.
As previously mentioned, in the final iterations, ES-MDA generated some new families
of ensembles that do not follow the same mean behavior, hence the value increase of
OF from iteration 3 to 4. These new ensemble families generated from iteration 4 to 5
are not so dispersed around the mean, meaning that the variance estimated from the
ensembles are reduced, as shown in the reduction of the error bar from the picture.
Nevertheless, for the history matching results and analysis of the uncertain
parameters, the data assimilation process should stop at iteration 2, as it reached a

possible minimum of the OF.

The evolution of both, mean uncertain parameters’ values and OF in respect with the
uncertain parameters spread over the iterations are shown in Figures 28 and 29,

respectively.

Evolution of Mean Objective Function
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Mean Objective Function

10 1

Iterations

Figure 27- ES-MDA run mean OF statistics on Alpha-Central
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Figure 29 shows the same process of uncertain parameters’ scatter and evolution of
the iterations of Figures 15 and 22. However, in Figure 29 it is noticeable a slower
convergence of certain uncertain parameters values over the iteration, as shown in the
parameters: op4_perm_i, op4_ntg_ratio, op4_poro, m_38_39 and p_8_2. In contrast,
other parameters such as multregt_transm and f_21 22 converge early in iteration 1
and do not undergo further significate updates over the next iterations. This can be an
example of spurious correlation which can interfere with the data assimilation problem.
Besides, as shown in Figures 23, 24 and 26, the last iteration did not generated one
family of red curves with a relatively small ensemble variance, but at least two or three.
This directly impacts the process of finding a global minimum and the best combination

of uncertain parameters for the problem.

5.2.1 Analysis of Alpha-Central using EST’s manual history matching with

interpolated responses

As detailed in Section 2.3.3, ES-MDA is a multiple data assimilation method used in
inverse problems where the mismatches between simulated and observation data are
reduced along the data assimilation, hence giving the best combination of a number of
uncertain parameters defined for the forecast of the model response. One advantage
of ES-MDA is that there is no limitation in the number of uncertain parameters defined
to be used on the model to obtain the simulated data, as long as it is provided for each
member of the uncertain parameter list the statistics necessary in order to build a

probability distribution function for the initial random sampling to initiate the process.

In this section of the work, the software EST — an internal software from TotalEnergies
used for history matching — was used to also try to obtain a good match on the Alpha-
Central. The motivation of this comparison was the difficulty in finding a good range for
the PRODG6 and INJ8 productivity index for the initial ensemble of ES-MDA, which often
generated spurious correlation values and parameters collapses in earlier iterations,
not obtaining a good first spread over the observation data and, thus, failing to get a
match. The goal of EST is to find a good response of the simulation data that fits the
chosen parameters as well as the desired model responses. This model could be a

kriging surface or a polynomial regression.
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The kriged responses inside EST are created using second-degree polynomials.
Therefore, a minimum, maximum, median value and, thus, a distribution of logarithmic
or linear parameters must be established for each parameter. The median is required
to calculate the second-degree coefficients for polynomial regression. After that, the
regression should be as near to the experimental response points as possible. It will
be required to determine a combination of factors in order to discover the maximum

likeness to the experimental points.

As opposed to ES-MDA, which is a method without limitation on the numbers of
uncertain parameters, the maximum handled by EST are 11. Therefore, some
parameters were removed (op4_ntg_ratio, f 22 23, f 21 22) from the list in Table 4
to make this comparison and, in the INTERSECT™ input file, their values were
replaced with the best ones found from the previous ES-MDA. In Figure 30, the
simulations from which EST finds the polynomial regression parameters are
represented in blue, with a total of 151 curves. From that, it is necessary to manually
find the best combination of parameters that approximated most the observation data.

That kriged response is shown in the red line.

Figure 30 - From top to bottom — left to right: PROD6 bottom-hole pressure; INJ8 bottom-hole
pressure; PRODSG oil production rate; PROD6 water cut. The blue curves are the 151 reservoir
simulations. The red line is the best kriged response found.
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With the combination of the parameters that generated the best kriged response, it is
also necessary to confirm with the fluid flow simulator the real effect of those set of
parameters, as there is a high uncertainty related to these interpolation processes and
also the high non-linearity of the physics related to the problem. Figure 31 depicts the
response from the combination of the uncertain parameters get from EST. We observe
that in a general way, the simulation results follow the same trend of the observation
data points, and the match is obtained for some production properties, like the PROD6
bottom hole pressure and oil production rate. However, is it on the INJ8 bottom hole
pressure where we can see the biggest discrepancies from EST kriged response and
the real simulated one, especially on the flowing pressure (days 1100 to 1600,

approximately).

To improve the real response from EST kriged curves or even find a better combination
of uncertain parameters, the process just described above for this workflow could be
done iteratively. In other words, with the real response given by the fluid flow simulator,
new ranges of uncertain parameters could be defined and retuned to EST to make a

new analysis to obtain better matches.

PROD6 BHP . I-‘y"-"m ’!ﬂ"hﬂ'
= Historical data =‘ i,

. '~ ‘
i . a r f-. k\‘r\' “. ". \\ \, M'\“\-i
e T T
. ’ INJ8 BHP
m  Historical data

=== PRODS6 Oil production rate

= Historical data = PRODG6 Water-cut

= Historical data

Figure 31 - From top to bottom — left to right: PROD6 bottom-hole pressure; INJ8 bottom-hole
pressure; PRODSG oil production rate; PROD6 water cut. The continuous lines indicate the simulated
production vector property. The black squares are the historical data.
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6 CONCLUSION

This final graduation work presented a history matching workflow application for a real
scale reservoir model with complex geological models, using data assimilation
methods, more specifically an ensemble-based method. Even while ensemble-based
methods have been effectively used in many applications over the past decades,
inverse problems with significant nonlinearity, such as reservoir history matching,
continue to pose difficulties. The Gaussian assumption that underlies this class of
approaches are primarily to blame for these issues.

This work analyzed the real scale reservoir, denominated Alpha Field, into
compartments due to the faults located in the area, which divided the turbiditic reservoir
into different areas and regions. As mentioned, reservoir modeling is considered to be
a complicated and time-consuming activity during the research and development
process. This fact is mainly due to the geological complexity of petroleum reservoirs
and the necessity of modeling the best was possible the geological features that may
impact the fluid flow simulator results and, thus, the exploration activity. That said, it
was proved the efficiency of the rule-based modeling tool ULIKE™, used to
characterize the elementary sand channels and its respective fairways where the fluid
flow is taken place and respecting all wells constraints of the field. These results affect
directly in the history matching process of the analyzed area, as all the properties
observed and the results obtained from the reservoir simulator is linked with the
geology and how it is represented in the model, for instance, the connectivity between

wells and how this impacts the bottom hole pressure.

Using data assimilation based on ensemble-based methodology to perform the history
matching of the study area, the ES-MDA algorithm proved to be functional for the study
case, being capable of yielding ensembles of models that honor the geological model
and observation data, generating sets of history-matched models of good quality, both
gualitatively and quantitatively. From the results of the analysis of both reservoir

compartments, the following conclusions are deduced:

e In order to be able to check all the uncertain parameters responses for every
ensemble member, it was necessary a high number of simultaneous reservoir

fluid flow simulations, obtaining, thus, an ensemble of the forward operator used
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to the data assimilation problem. In average, for each reservoir compartment
analysis using 5 assimilations iterations and an ensemble size of 100, it was
necessary a minimum of 600 reservoir simulations to obtain a good
representativity from the model responses and then, observe the quality of the
assimilations;

For all ES-MDA procedures made during this work, it was noted how much the
initial ensembles models, resulted from the reservoir responses with the
uncertain parameters sampled from the a priori distributions, affects the
assimilation and history matching results. Many initial ensembles that did not
have a big spread and did not cover the observation data failed to converge to
a good history-matched ensemble of models, despite the use of inflation
coefficients factors chosen in the beginning of the process. Therefore, the a
priori distributions and the randomly sampled uncertain parameters contribute
to achieving good results, whereby their ranges, mean/standard deviation
values should be carefully chosen and analyzed previously during screening
studies and sensitivity analysis;

From the results shown in Figures 16 — 19 and Figures 23 - 26, it was shown
the quick convergence of the method. This is mainly due to the use of inflation
coefficient factors and how ES-MDA was formulated, minimizing the ensemble
variance in each assimilation iteration. Hence, the choice of these factors and
the assimilations numbers also have a direct impact on the results. For both
reservoir compartments analyzed, five data assimilations iterations were
enough for providing good data matches;

The ensemble size also impacted on the history matching results. Small
ensembles size failed to result in good history-matched models and also did not
manage to give good uncertainty representations, regardless of the method’s
convergence. In this work, for the dataset analyzed, an average ensemble size
of 100 was the best value in which was possible to better analyze the results,
even if the ES-MDA processes were not completed, due to computational
issues or any other reason. Small ensembles size, however, can give a good
first representation of the uncertain parameters choice and how will them
behave with the reservoir simulator responses;

From the total of uncertain parameters used, the ones that impacted the most

during the reservoir fluid flow simulator were the wells productivity index
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multipliers. The productivity index of the well is one parameter that represents
the behavior of the fluid flow near the well, and the multiplier on them tries to
simulate the skin factor. Therefore, it can be concluded that these parameters
directly affected the dynamic pressure values, but also it was confirmed a
possible non-linearity regarding these parameters, in which very small changes
generated ensembles with completely different responses. These responses
affected some simulations where the reservoir simulator did not completely
finish the run, and, in order to continue the data assimilation method, those
failed simulations had to be re-run.

The ES-MDA approach’s overall performance is encouraging, and it offers great
perspectives for the use of this data assimilation method in a real scale reservoir with
a considerate geological complexity. The easy implementation of this type of ensemble
smoother is desirable, being able not only to be used for reservoir engineering
applications, but also for other data assimilation processes. The major difficulties and
deficiencies encountered are in relation to spurious correlations and large loss of
variability of the model ensemble, which can result in a poor estimate of reservoir
uncertainties causing a poor prediction of field life, even with a good historical fit. This
fact can be mitigated by applying adaptive methodologies, where the damping of each
iteration as well as the number of iterations are set automatically and using covariance

localization methods to reduce the loss of variance due to possible sampling errors.

In addition to the data assimilation process using ES-MDA, it was used the internal
software for history matching from TotalEnergies, EST, to analyze one of the
compartments of the reservoir. Experimental designs models that use interpolations
and proxy models in order to give an approximate response to inverse problems can
drastically reduce the computational cost necessary to run some forward operator,
such as the reservoir simulator. However, as these responses are considerate to be
an estimate of the real problem, it is always necessary to analyze the results obtained
and check if they are feasible, respecting the physics of the problem involved and if
the uncertainty is still well represented. With the results obtained from the work using

this method, some conclusion can be made:

¢ The dynamism of the software, giving instantaneous interpolated responses

Is its main attraction. Even with its limitations, mainly with the maximum
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numbers of uncertain parameters that can be considered, it is possible to
have innumerous combinations, having the opportunity to find the best
combination possible that best approximates the responses to the
observation data. However, because it is a manual process of choosing the
parameters values and visualizing the response in the interpolated model,
this process can become extremely time-consuming, with the possibility in
not finding a good match with the uncertain parameters and its ranges
previously defined, being necessary to redo the process, either with other
parameters or different ranges;

e Even though the kriging responses are instantaneous, it is only possible to
analyze the response changing one parameter at a time. That said, and
knowing that with petroleum reservoirs, many parameters are related with
each other (e.g., permeability/porosity) this can become an issue if the
production property vector in which we want to obtain a match is large and
there is a significant number of uncertainty parameters that is known to be
correlated or to have a possible correlation with each other;

e From the analysis of real response given by the reservoir simulator, it was
observed some discrepancies between the kriged response given by the
best combination found of the uncertain parameters. These differences are
greater on the dynamic pressures values from the injector’s bottom hole
pressure. This could indicate a possible high non-linear effect of the
productivity index’s multipliers, as the kriged responses work with
interpolations of second degree, which might not be able to correctly

describe this production property.

With EST, the possibility of quickly screening the impact of some selected parameters
as most influent that are used to calibrate the model with kriging responses can also
give interactive insights about how the model is impacted with this specific parameter
variation. EST history matching process was used considering the uncertain parameter
as known. Due to the absence of the real reservoir response during the manual history
matching process, EST multi solutions process could have been used. For that matter,
this methodology is iterative after having checked with the real reservoir response,
repeating the process until certain stop criteria arrive. The criteria are based on the

cost function computation. Nevertheless, EST with screening options could have also
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been used during initial phases of reservoir history matching, in which the objective is
not to get an history-matched model, but to determine the most influent parameters
from a large number of uncertain parameters (roughly 100) choices and ranges from
their impacts on the production property vector. Those most influent parameters could
serve as inspiration and, possibly, inputs of the a priori distribution used afterwards in
history matching of petroleum reservoirs using data assimilation methods, such as ES-
MDA.
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Abstract

History matching in reservoir engineering is one of the most important steps of the geo-modelling workflow during the
production phase of any oil field. This technique allows to have a good knowledge about how the field is producing and also
have a forecast model. The biggest challenge is to be able to generate models with the reservoir’s level of complexity that
represents reality in the best way possible. The objective of this work is to get a match on production vector properties in a
real case study of a turbiditic reservoir. For that matter, it was used an ensemble-based method to assimilate the dynamic
data, the Ensemble Smoother with Multiple Data Assimilation method, in order to find the best combination of uncertain
parameters used as input to the reservoir simulator. The geological model used is from a real dataset and the elementary sand
channels are generated with ULIKE™: a rule-based modeling process based on the random-walk principle. The data
assimilation processes produced ensembles of history matched models that honor both dynamic data and the geological
model. Furthermore, it was also used an history matching software based on experimental designs and proxy-models using
interpolated surfaces/polynomials and kriging to inspect the impacts from the uncertain parameters, mainly the productivity
index multipliers. Results show that using interpolation to estimate the reservoir response is a quicker and demands a lower
computational cost but requires the confirmation with the numerical response from a reservoir simulator.

1. Introduction

Along with the large variety of studies that are made to fully understand the area in which a production activity will take
place, reservoir studies and, more specific, fluid flow simulations play one of the most important roles in this whole
hydrocarbon recovery process. To build a reservoir simulation model, it is necessary to have data about rock and fluid
properties (petrophysical attributes), in order to characterize the fluid flow and the entire physical process behind it. Besides,
it is also of utmost importance always bear in mind that the data available for characterization is not exact and entirely
correct, as it is consisted of inaccuracy, inconsistency and uncertainty. As indirect methods of evaluation, such as seismic and
well logs, are mainly used to acquire information about the subsurface formations’ physical properties, reservoir models are
built inside an uncertainty parameters domain, meaning that any prediction made from these models are also considered
uncertain. That is the reason why history matching processes are being largely utilized in the industry in the last decades:
improve the reliability of reservoir predictions using the models generated by available petrophysical data and statistical
methods trying to incorporate field observation data in reservoir simulations models, allowing a better description of the
uncertainty both in simulation predictions and reservoir parameters.

The main objective of this work is to obtain a model that can predict the future behavior of the reservoir in order to
optimize the production process and oil recovery. For this, given the observation data from some of the production vector
properties (i.e., bottom hole pressure, water cut and oil production rate) and the simulation results from the model previous
created with the uncertain parameters (i.e., porosity, permeability, net-to-gross ratio, transmissibility multipliers between
faulted regions and well productivity index’s multipliers) as inputs, a history matching process will be made using mainly the
ensemble smoother with multiple data assimilation (ES-MDA: EMERICK; REYNOLDS, 2013) to find the best combination
of these uncertain parameters defined beforehand that gives the best match from the observed data.

1.1. Bibliographic Review

The petroleum industry has adopted ensemble-based data assimilation techniques since they produce several history-
matched models and can also quantify the level of uncertainty in reservoir simulation results (AANONSEN et al., 2009;
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EVENSEN, 2009). This group of data assimilation techniques includes ES-MDA, proposed by Emerick and Reynolds
(2013). This method has been demonstrated to outperform existing ensemble-based approaches in both synthetic and real-
world scenarios, with improved data matching and reduced computational costs (EMERICK, 2016).

The same data set is iteratively assimilated with an inflated measurement error covariance matrix in ES-MDA. For linear
systems with Gaussian prior and Gaussian noise in the measurements, Emerick & Reynolds (2013) demonstrated that the
inflation factors a’s must satisfy the following requirement to achieve the following equivalence between single and multiple
data assimilations:

Ng
1 €
= %

where N, is the number of data assimilation defined and «, is the inflation coefficient. Therefore, for every ES-MDA
problem, it is needed to choose the number of assimilations that will be done and the inflations coefficients before each
assimilation step.

From Eg. (1), it is noticeable that a simple choice for a is a, = N, for all £. Nevertheless, it makes intuitive sense that
selecting alpha in descending order can enhance the method's effectiveness (EMERICK; REYNOLDS, 2013). In this
instance, on initial steps, data is assimilated with a high a value, which corresponds to reducing the amplitude of the initial
updates, and then gradually decrease a as the iterations pass by. Nonetheless, Emerick (2012) shows that changing the
inflation coefficients in a decreasing order result in only small improvements compared to using them constant and equal to
the number of data assimilations.

Rosa et al. (2022) also employed the ES-MDA technique to assimilate 4D seismic data and production forecast in a deep-
water oil field, located in offshore Southwest Brazil, in order to compare the impact of using grids with different resolutions,
exploring options to incorporate 4D seismic maps in data assimilation and production forecast. The authors proposed the use
of two types of grids: a coarser grid or a refined grid. Results shows that both grids can be used depending on the project’s
objectives. Since it can accurately reflect the immediate future with considerably less expensive models, the coarser grid is a
useful choice for short-term investigations. Due to its safer risk analyses and improved representation of model uncertainty,
the refined grid may be appropriate for long-term decisions.

The development of the ensemble-based history matching (EnHM) software in the TotalEnergies’ geoscience platform
known as Sismage-CIG is described in Abadpour et al. (2018). The ES-MDA approach with distance-based localization
forms the basis of the software. A mature large carbonate oil field, a deep-offshore turbidite field, and a carbonate gas field
were the three complex genuine fields that were used to demonstrate the performance of the methods.

2. Methodology

The methodology presented in this work aims to apply ES-MDA (EMERICK; REYNOLDS, 2013) to a typical history
matching problem of a reservoir model using real data.

2.1. History matching using ES-MDA

Following the definition of the uncertain parameters and their input on the model, it is necessary to sample them given the
type of pdf predefined as one of the inputs. Every set of the different combinations of parameters are called ensembles, and
they are essential on the history matching process with ensembled-method data assimilation. Each member j of the ensemble
with size N, are containing the uncertain parameters of the model are defined as:

my
u ",lz 2

my

where m* is the vector containing all N,,, uncertain parameters that will be updated, such as permeability and productivity
multipliers indexes data. The superscript u stands for uncertain.

After the sampling of the parameters for the N, ensembles, it is also generated N, models which are taken to the forward
operator, from time zero to the end of the historical period, in order to compute the vector of predicted data:

’. -4 7 3
df =F(m{™""), forj=12- N, ©

where F(+) is the forward operator (i.e., the non-linear model used to obtain the forecast observations); df’f is the forecast
(f) model response with size N, the total number of measurements in the historical period, resulted from the combination
=12 of uncertain parameters.

m]

For this work, the INTERSECT™ Reservoir Simulator was employed to compute the non-linear forward problem, hence
simulating the dynamic behavior of the reservoir response to the different combination of uncertainty parameters previously
defined. INTERSECT™ s a high-resolution reservoir simulator that, when coupled with a high-performance computer,
enables this work to fully parallelize the execution of dynamic simulations for every ensemble member.
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ES-MDA requires the N; measurements to be perturbed, i.e., apply Gaussian noise in order to be treated as random
variables. The mean and standard deviation values are calculated from previous research of the study area during screening
methods and single parameter research:

A" = F(mf™™), forj=1,2,,N,, “)

I3

where d is the perturbed vector of observations; z4 is sampled with z,~ (0, INd); Cp isthe N; x N, covariance

Oij,uC
matrix of observed data measurement errors:
2
o? 0 - 0
0 o2 : (%)
Cp = 2 .
o - 0 01\2/,1

After that, the simulations results are compared with the observation data. As every process is based on statistical analysis
and from observed data, there will certainly be uncertainty on the model, giving mismatches from the simulation results and
the expectation (observations) data. Hence, these discrepancies will be numerically used inside the data assimilation based on
correlation computation, and, for each iteration ¢, the previous sampled parameters will be updated to a new set of uncertain
parameters, in order to reduce the variance of the discrepancy, following:

tu o1, A0-1,f [ At—1,f 17 4.f
mj U _ mj u + CMD (CDD + a{;CD) (dobsj,uc - d] ), (6)

forj=1,2,--,N,,

where, C,f;,l'f represents the cross-covariance matrix between the prior vector of model parameters, mf_l'”, and the

vector of predicted data, df'f ; Cﬁ;l'f is the N; X N, auto-covariance matrix of predicted data. As before, the tilde (~) notation
indicates that these covariances matrices are estimated around the ensemble mean:

Ne
~ 1 -
CI\{:I_Dl'f = mz(mf_l'u - TTlI)_l) (df’f - df'f)T, (7)
e j=1
Ne
~ 1 - -
e j=1

As mentioned, the ES-MDA processes will go on until the pre-defined number of assimilations (N,) is reached. It is
important to mention that the assimilation process is made after the end of the forward operator and that the observation data
are randomly sampled according to the data error covariance. Furthermore, for the update part, ES-MDA uses an inflation
factor a, for each assimilation step, and their choice must respect the condition stated in Eq. (1) for a correct a posteriori
parameter’s distribution. In this work, for all study cases using ES-MDA process, the inflation factor used were constant and
equals to the number of iterations, i.e., ap = N,.

Figure 1 illustrates the workflow containing the steps of applying ES-MDA.

Initial ensemble: £ = 0; m0 uncertain — yypriori
Define: N, with a; = N,

Prediction step: df’forem“

\{_

' I

d} ; —
obs,-,uncertam -

I
I
I
I
I
| Adding noise to measurements:
I
I
I
I

Update step: mf‘ uncertain

| Final ensemble: mPosteriori — ;¢ |

Figure 1 - Workflow for history matching with ES-MDA on Alpha-Field
Source: Adapted from Ranazzi & Sampaio (2018)
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2.2. Objective function

The Objective Function (OF) for each data assimilation at iteration £ used in this work is through the quadratic deviation
between simulated model forecast and the observation data, normalized by the inverse of the covariance matrix of observed
data measurement errors, Cp, and with the total number of observations N, as shown in Eq. (9)

2?31 (dj - dgbs/') Co” (df - dﬁij)T ©

Ff =
0 N

3. Case Study

The study area of the work focuses on the analysis of a real case field with a reservoir consisting of turbiditic sediments
composed of a loosely consolidated sand.

3.1. Synthesis of the case study and initial model

The studied field is called Alpha-Field, a multi-story erosive constructive channel complex. The reservoir is placed at the
level of a turtle-back salt anticlinal created after turbidite reservoir deposition. This structure causes a large number of
Keystone faults, which are normal faults that run perpendicular to the system's elongation. The studied area is divided
according to the direction of the channels from East to West into 3 zones - Alpha-East, Alpha-Central and Alpha-West. This
work focus on two areas (Figure 2):

e Alpha-Central, which contains 2 wells: one producer (PROD6) and one injector (INJ8);
e Alpha-East, which also contains 2 wells: one producer (PROD10) and one injector (INJ12).

Within the system, structural and stratigraphic heterogeneities will exist. There is little transmissibility between regions
because the degree of depletion varies by region. For the modelling of the elementary channels, ULIKE™ — a rule-based
modeling process based on the random-walk principle — was used (MASSONNAT, 2019).

The uncertain parameters need to be chosen in order to assess their impact on the fluid flow and in the data assimilations
processes. For the Alpha-system, lots of studies have already been carried out on the last couple of years in order to have a
better geological understanding of the area and how to improve more and more this in a numerical representation. Hence, the
uncertainty parameters considered for each section of the Alpha-field for this work is:

e Alpha-Central:
o Transmissibility multipliers between: faulted areas; distal levee and channel fairways; channel and
proximal levee;
o Elementary channel’s porosity, permeability and net-to-gross ratio;
o  Flux multiplier on vertical connections between Maximum Flooding Surfaces;
o Wells productivity index multipliers

e Alpha-East
o Transmissibility multipliers between: distal levee and channel fairways; channel and proximal levee;
Elementary channel’s porosity, permeability and net-to-gross ratio;
Flux multiplier on vertical connections
Wells productivity index multipliers
Analytical aquifer’s initial volume

O O O O

-CENT! ALPHA -

Figure 2 - Top view of the erosive channel complex containing an explanatory diagram of the studied field with the highlighted wells
for future analysis
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4. Results
4.1. Alpha-East: PROD10 — INJ12

ES-MDA is used to update the uncertain parameters in order to find a model that behaved similarly to the real reservoir. It
is possible to present a few indicators that led to the correct behavior of the interest response. For this analysis, the number of
ensembles used was N, = 100 and with 5 iterations (N, = 5). The production vectors properties to be matched are:

e  Producer well (PROD10)
o Bottom Hole Pressure (BHP)
o Oil Production Rate
o Water cut
e Injector well (INJ12)
o Bottom Hole Pressure (BHP)

The results obtained are shown in Appendix 1. These figures show the response adjustments of the models that minimize
the variance from of the ensembles from each iteration.

Analyzing the BHP of PROD10 and INJ12, it is possible to observe that a match was obtained for both flowing and static
pressure, mainly after the long pressure build-up with PROD10’s shut down (roughly day 1700). Also, the final ensemble
spread (red curves) of PROD10 oil production rate is inside the uncertain region of the historical data. The water
breakthrough is a little late compared with the observations, but after the well closure on day 1092, the water cut is better
matched, obtaining values in the lower bound of the observation error interval. Due to the high complexity of the reservoir’s
geology, it is possible to have elementary channels with different properties then the ones defined from ULIKE™ inside the
uncertain parameter list, which are permeability, porosity, and net-to-gross ratio.

Figure 3 shows the evolution of the mean OF over the five data assimilation iterations. It depicts an initial high OF value
with a big uncertainty, but decreasing from iteration to iteration, with its variance following the same pattern.

Evolution of Mean Objective Function

=§— Mean OF calculated with 100 ensembles with error

Mean Objective Function

0 1 2 3 4 5
Iterations

Figure 3 - OF statistics of ES-MDA run on Alpha-East

4.2. Alpha-Central: PROD6 — INJ8

Multiple faults have a significant impact on this section, reducing transmissibility within the core region but not blocking
the flow. The aquifer and the elementary channels generated by ULIKE™ are used in the production mechanism. For this
analysis, the number of ensembles used was N, = 100 and with 5 iterations (N, = 5). The production vectors properties to
be matched are:

e  Producer well (PROD6)
o Bottom Hole Pressure (BHP)
o Oil Production Rate
o  Water cut
o Injector well (INJ8)
o Bottom Hole Pressure (BHP)

Appendix 2 shows the results obtained from the history matching and data assimilation process on the Alpha-Central
section.

The BHP of PROD6 shows that the simulated values are very close to the observation, mainly for the flowing part.
Regarding the static pressure (all three build-ups), there is gap between simulated and observed data, which could indicate a
lack of connected volume between the injector INJ8 who helps to maintain the pressure for the producer. About INJ8 BHP,
ES-MDA manages to get a good match on both fluid and static pressure. For instance, as observed mainly in the three fall-
offs between days 1000 and 2000, the short-term pressure drop is well matched, meaning that the behavior in the well’s
vicinity is correctly guessed with the parameters of choice: in this case, the productivity index multiplier on the three
completion layers. In the final days of the simulation, mainly for INJ8, there is relatively large mismatch on the pressure
drop. This could also be an indicative that there is still some volume connectivity missing inside the model which could be
improved in further analysis
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Both oil production rate and water cut are well matched during the whole simulated timesteps. Nonetheless, we observe
two more families of simulated ensembles (red curves) in the final ES-MDA iteration. This means that, if continued, the
assimilation processes could be able to find not only a more significant representation of the water cut then it already is, but
also for the others three production vector properties analyzed. The water cut of a production well is not only function of the
injection rate of the injector well helping to maintain a good pressure value for the oil recovery from the producer, but also on
the faults’ transmissibility, which are all considered inside our uncertain parameter lists and the geological model applied for
this ES-MDA run.

Figure 4 shows the evolution of the mean OF over the five data assimilation iterations. As previously mentioned, in the
final iterations, ES-MDA generated some new families of ensembles that do not follow the same mean behavior, hence the
value increase of OF from iteration 3 to 4. These new ensemble families generated from iteration 4 to 5 are not so dispersed
around the mean, meaning that the variance estimated from the ensembles are reduced, as shown in the reduction of the error
bar from the picture. Nevertheless, for the history matching results and analysis of the uncertain parameters, the data
assimilation process should stop at iteration 3, as it reached a possible minimum of the OF.

Evolution of Mean Objective Function

09 =§= Mean OF calculated with 100 ensembles with error

Mean Objective Function

0 1 2 3 4 5
Iterations

Figure 4 - OF statistics of ES-MDA run on Alpha-Central
4.2.1. Analysis of Alpha-Central using EST’s manual history matching with interpolated responses

In this section of the thesis, the software EST — an internal software from TotalEnergies used for history matching — was
used to also try to obtain a good match on the Alpha-Central. The motivation of this comparison was the difficulty in finding
a good range for the PROD6 and INJ8 productivity index for the initial ensemble of ES-MDA, which often generated
spurious correlation values and parameters collapses in earlier iterations, not obtaining a good first spread over the
observation data and, thus, failing to get a match. The goal of EST is to find a good response of the simulation data that fits
the chosen parameters as well as the desired model responses. This model could be a kriging surface or a polynomial
regression. As opposed to ES-MDA, which is a method without limitation on the numbers of uncertain parameters, the
maximum handled by EST are 11.

In Appendix 3 the simulations from which EST finds the polynomial regression parameters are represented in blue, with a
total of 151 curves. From that, it is necessary to manually find the best combination of parameters that approximated most the
observation data. That kriged response is shown in the red line.

With the combination of the parameters that generated the best kriged response, it is also necessary to confirm with the
fluid flow simulator the real effect of those set of parameters, as there is a high uncertainty related to these interpolation
processes and also the high non-linearity of the physics related to the problem. Appendix 4 depicts the response from the
combination of the uncertain parameters get from EST. We observe that in a general way, the simulation results follow the
same trend of the observation data points, and the match is obtained for some production properties, like the PROD6 bottom
hole pressure and oil production rate. However, is it on the INJ8 bottom hole pressure where we can see the biggest
discrepancies from EST kriged response and the real simulated one, especially on the flowing pressure (days 1100 to 1600,
approximately).

5. Conclusions

This final graduation work presented a history matching workflow application for a real scale reservoir model with
complex geological models, using data assimilation methods, more specifically an ensemble-based method. Even while
ensemble-based methods have been effectively used in many applications over the past decades, inverse problems with
significant nonlinearity, such as reservoir history matching, continue to pose difficulties. The Gaussian assumption that
underlies this class of approaches are primarily to blame for these issues.

This work analyzed the real scale reservoir, denominated Alpha Field, into compartments due to the faults located in the
area, which divided the turbiditic reservoir into different areas and regions. As mentioned, reservoir modeling is considered
to be a complicated and time-consuming activity during the research and development process. This fact is mainly due to the
geological complexity of petroleum reservoirs and the necessity of modeling the best was possible the geological features
that may impact the fluid flow simulator results and, thus, the exploration activity. That said, it was proved the efficiency of
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the rule-based modeling tool ULIKE™, used to characterize the elementary sand channels and its respective fairways where
the fluid flow is taken place and respecting all wells constraints of the field. These results affect directly in the history
matching process of the analyzed area, as all the properties observed and the results obtained from the reservoir simulator is
linked with the geology and how it is represented in the model, for instance, the connectivity between wells and how this
impacts the bottom hole pressure.

Using data assimilation based on ensemble-based methodology to perform the history matching of the study area, the ES-
MDA algorithm proved to be functional for the study case, being capable of yielding ensembles of models that honor the
geological model and observation data, generating sets of history-matched models of good quality, both qualitatively and
quantitatively. From the results of the analysis of both reservoir compartments, the following conclusions are deduced:

e In order to be able to check all the uncertain parameters responses for every ensemble member, it was necessary
a high number of simultaneous reservoir fluid flow simulator, obtaining, thus, an ensemble of the forward
operator used to the data assimilation problem. In average, for each reservoir compartment analysis using 5
assimilations iterations and an ensemble size of 100, it was necessary a minimum of 600 reservoir simulations to
obtain a good representativity from the model responses and then, observe the quality of the assimilations;

e For all ES-MDA procedures made during this work, it was noted how much the initial ensembles models,
resulted from the reservoir responses with the uncertain parameters sampled from the a priori distributions,
affects the assimilation and history matching results. Many initial ensembles that did not have a big spread and
did not cover the observation data failed to converge to a good history-matched ensemble of models, despite the
use of inflation coefficients factors chosen in the beginning of the process. Therefore, the a priori distributions
and the randomly sampled uncertain parameters contribute to achieving good results, whereby their ranges,
mean/standard deviation values should be carefully chosen and analyzed previously during screening studies and
sensitivity analysis;

e From the total of uncertain parameters used, the ones that impacted the most during the reservoir fluid flow
simulator were the wells productivity index multipliers. The productivity index of the well is one parameter that
represents the behavior of the fluid flow near the well, and the multiplier on them tries to simulate the skin
factor. Therefore, it can be concluded that these parameters directly affected the dynamic pressure values, but
also it was confirmed a possible non-linearity regarding these parameters, in which very small changes generated
ensembles with completely different responses. These responses affected some simulations where the reservoir
simulator did not completely finish the run, and, in order to continue the data assimilation method, those failed
simulations had to be re-run.

The ES-MDA approach’s overall performance is encouraging, and it offers great perspectives for the use of this data
assimilation method in a real scale reservoir with a considerate geological complexity. The easy implementation of this type
of ensemble smoother is desirable, being able not only to be used for reservoir engineering applications, but also for other
data assimilation processes. The major difficulties and deficiencies encountered are in relation to spurious correlations and
large loss of variability of the model ensemble, which can result in a poor estimate of reservoir uncertainties causing a poor
prediction of field life, even with a good historical fit. This fact can be mitigated by applying adaptive methodologies, where
the damping of each iteration as well as the number of iterations are set automatically and using covariance localization
methods to reduce the loss of variance due to possible sampling errors.

In addition to the data assimilation process using ES-MDA, it was used the internal software for history matching from
TotalEnergies, EST, to analyze one of the compartments of the reservoir. Experimental designs models that use interpolations
and proxy models in order to give an approximate response to inverse problems can drastically reduce the computational cost
necessary to run some forward operator, such as the reservoir simulator. However, as these responses are considerate to be an
estimate of the real problem, it is always necessary to analyze the results obtained and check if they are feasible, respecting
the physics of the problem involved and if the uncertainty is still well represented. With the results obtained from the work
using this method, some conclusion can be made:

e The dynamism of the software, giving instantaneous interpolated responses is its main attraction. Even with its
limitations, mainly with the maximum numbers of uncertain parameters that can be considered, it is possible to
have innumerous combinations, having the opportunity to find the best combination possible that best
approximates the responses to the observation data. However, because it is a manual process of choosing the
parameters values and visualizing the response in the interpolated model, this process can become extremely
time-consuming, with the possibility in not finding a good match with the uncertain parameters and its ranges
previously defined, being necessary to redo the process, either with other parameters or different ranges;

e Even though the kriging responses are instantaneous, it is only possible to analyze the response changing one
parameter at a time. That said, and knowing that with petroleum reservoirs, many parameters are related with
each other (e.g., permeability/porosity) this can become an issue if the production property vector in which we
want to obtain a match is large and there is a significant number of uncertainty parameters that is known to be
correlated or to have a possible correlation with each other;

e From the analysis of real response given by the reservoir simulator, it was observed some discrepancies between
the kriged response given by the best combination found of the uncertain parameters. These differences are
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greater on the dynamic pressures values from the injector’s bottom hole pressure. This could indicate a possible
high non-linear effect of the productivity index’s multipliers, as the kriged responses work with interpolations of
second degree, which might not be able to correctly describe this production property.

Due to the absence of the real reservoir response during the manual history matching process, EST multi solutions
process could have been used. For that matter, this methodology is iterative after having checked with the real reservoir
response, repeating the process until certain stop criteria arrive. The criteria are based on the cost function computation.
Nevertheless, EST with screening options could have also been used during initial phases of reservoir history matching, in
which the objective is not to get an history-matched model, but to determine the most influent parameters from a large
number of uncertain parameters (roughly 100) choices and ranges from their impacts on the production property vector.
Those most influent parameters could serve as inspiration and, possibly, inputs of the a priori distribution used afterwards in
history matching of petroleum reservoirs using data assimilation methods, such as ES-MDA.
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Appendix — Results obtained from ES-MDA and EST analysis on Alpha
Field

Appendix 1. Results obtained from ES-MDA on Alpha-East

From top to bottom — left to right: PROD10 bottom-hole pressure; PROD10 oil production rate; PROD10 oil water cut;
INJ12 bottom-hole pressure. The grey scale represents the initial ensemble spread. The red one represents the last ensemble.
Historical data and their uncertain region (noise in measurements) are in blue.
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Appendix 2. Results obtained from ES-MDA on Alpha-Central

From top to bottom — left to right: PROD6 bottom-hole pressure; PRODG oil production rate; PRODG oil water cut; INJ8
bottom-hole pressure. The grey scale represents the initial ensemble spread. The red one represents the last ensemble.
Historical data and their uncertain region (noise in measurements) are in blue.
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Appendix 3. Best kriged response found using EST
From top to bottom — left to right: PRODG6 bottom-hole pressure; INJ8 bottom-hole pressure; PROD6 oil production rate;

PRODG6 water cut. The blue curves are the 151 reservoir simulations. The red line is the best kr

KN N 814

iged response found.

Appendix 4. Fluid flow simulator response from the combination of uncertain parameters

obtained from EST

From top to bottom — left to right: PRODG6 bottom-hole pressure; INJ8 bottom-hole pressure; PRODG oil production rate;
PROD6 water cut. The continuous lines indicate the simulated production vector property. The black squares are the

historical data.
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