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RESUMO 

O ajuste de histórico na engenharia de reservatórios é uma das etapas mais 

importantes do fluxo de trabalho de geo-modelagem durante a fase de produção de 

qualquer campo petrolífero. Esta técnica permite ter um bom conhecimento sobre 

como o campo está produzindo e também ter um modelo de previsão. O maior desafio 

é ser capaz de gerar modelos com o nível de complexidade do reservatório que 

representem a realidade da melhor maneira possível. O objetivo deste trabalho é obter 

uma correspondência sobre as propriedades vetoriais de produção em um estudo de 

caso real de um reservatório turbidítico. Para tanto, foi utilizado um método baseado 

em conjuntos para assimilar os dados dinâmicos, o método Ensemble Smoother with 

Multiple Data Assimilation, a fim de encontrar a melhor combinação de parâmetros 

incertos utilizados como entrada para o simulador do reservatório. O modelo geológico 

usado é de um conjunto de dados reais e os canais de areia elementares são gerados 

com ULIKE™: um processo de modelagem baseado em regras que seguem os 

princípio da caminhada aleatória. Os processos de assimilação de dados produziram 

conjuntos de modelos históricos que honraram tanto os dados dinâmicos quanto o 

modelo geológico. Além disso, também foi utilizado um software de correspondência 

de histórico baseado em desenhos experimentais e modelos proxy usando 

superfícies/polinômios interpolados e krigagem para inspecionar os impactos dos 

parâmetros incertos, principalmente os multiplicadores do índice de produtividade. Os 

resultados mostram que o uso da interpolação para estimar a resposta do reservatório 

é mais rápido e exige um custo computacional mais baixo, mas requer a confirmação 

com a resposta numérica de um simulador de reservatório. 

Palavras-chave: Ajuste de histórico, Assimilação de Dados, ES-MDA, Parâmetros de 

incerteza, Resposta Real. 



 

 

ABSTRACT 

History matching in reservoir engineering is one of the most important steps of the geo-

modelling workflow during the production phase of any oil field. This technique allows 

to have a good knowledge about how the field is producing and also have a forecast 

model. The biggest challenge is to be able to generate models with the reservoir’s level 

of complexity that represents reality in the best way possible. The objective of this work 

is to get a match on production vector properties in a real case study of a turbiditic 

reservoir. For that matter, it was used an ensemble-based method to assimilate the 

dynamic data, the Ensemble Smoother with Multiple Data Assimilation method, in 

order to find the best combination of uncertain parameters used as input to the 

reservoir simulator. The geological model used is from a real dataset and the 

elementary sand channels are generated with ULIKE™: a rule-based modeling 

process based on the random-walk principle. The data assimilation processes 

produced ensembles of history matched models that honor both dynamic data and the 

geological model. Furthermore, it was also used an history matching software based 

on experimental designs and proxy-models using interpolated surfaces/polynomials 

and kriging to inspect the impacts from the uncertain parameters, mainly the 

productivity index multipliers. Results show that using interpolation to estimate the 

reservoir response is a quicker and demands a lower computational cost but requires 

the confirmation with the numerical response from a reservoir simulator.  

Keywords: History Matching, Data Assimilation, ES-MDA, Uncertain Parameters, 

Real Response 
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1 INTRODUCTION 

Along with the large variety of studies that are made to fully understand the area in 

which a production activity will take place, reservoir studies and, more specific, fluid 

flow simulations play one of the most important roles in this whole hydrocarbon 

recovery process. To build a reservoir simulation model, it is necessary to have data 

about rock and fluid properties (petrophysical attributes), in order to characterize the 

fluid flow and the entire physical process behind it. Besides, it is also of utmost 

importance to bear in mind that the data available for characterization is not exact and 

entirely correct, and therefore is uncertain. 

The reservoir simulation problem is one type of numeric simulation method used in 

Reservoir Engineering to estimate characteristics and predict behavior of an oil 

reservoir, following the techniques based on material balance, decline curves and 

Buckley-Leverett theory of displacement of non-miscible fluid. Indirect methods of 

evaluation are mainly used to acquire information about the subsurface formations’ 

physical properties, with reservoir models being built inside an uncertainty parameters 

domain, meaning that any prediction made from these models are also considered 

uncertain. 

Even though it may not be the best option for the problem in first sight, it is important 

to remember that obtaining information directly from the reservoir is an utterly difficult 

and costly operation, which is why it is needed to relay on dynamic information 

available from historical field production. Therefore, that is the reason history matching 

processes are being largely utilized in the industry in the last decades: improve the 

reliability of reservoir predictions using the models generated by available 

petrophysical data and statistical methods trying to incorporate field observation data 

in reservoir simulations models, allowing a better description of the uncertainty both in 

simulation predictions and reservoir parameters. 
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1.1 Objective 

The main objective of this work is to obtain a model that can predict the future behavior 

of the reservoir in order to optimize the production process and oil recovery. For this, 

given the observation data from some of the production vector properties (i.e., bottom 

hole pressure, water cut and oil production rate) and the simulation results from the 

model previous created with the uncertain parameters as inputs, a history matching 

process is proposed using the ensemble smoother with multiple data assimilation (ES-

MDA) to find the best combination of these uncertain parameters defined beforehand 

that gives the best match from the observed data. 

This workflow was applied on a real scale turbiditic reservoir with elementary sand 

channels modeled using a state-of-the art rule-base modelling tool: ULIKE™. The area 

of study will be designed as the Alpha Field. The analysis and history matching will 

focus on two of the three panels of the field: the Central panel and the Eastern panel. 

Moreover, for the Central compartment of the reservoir, it was realized a comparison 

with EST, an internal TotalEnergies software for assisted history matching that uses 

kriged responses, with the aim to see some parameters impacts and to check for a 

possible non-linearity from one of the uncertain parameters with kriged responses 

surfaces, also trying to find better new ranges for the initial ensembles used for ES-

MDA runs. 

All the research work done and reported in this work was developed during a 6-month 

internship inside TotalEnergies’ S.A R&D department team on the Centre Scientifique 

et Technique Jean-Féger (CSTJF). The ES-MDA algorithm was developed by the IT 

department of TotalEnergies and all the reservoir simulations were run inside the 

supercomputer PANGEA III using INTERSECT™ fluid flow simulator. 
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1.2 Motivation 

Data assimilation problems estimate parameters given both vectors of observation and 

simulated data and try to minimize the difference between both. Thus, for reservoir 

history matching with uncertain parameters, it is also considered a data assimilation 

process: one with a high number of variables, few data considered exact and certain, 

and the multiphase fluid flow of porous media, which is a highly non-linear 

phenomenon that demands a high computational cost in order to obtain good results 

for the history matching steps. 

Making a series of history-matched models is one method currently being used in the 

industry to measure the uncertainty in the reservoir model parameters. Decisions 

based on a single reservoir model may be misleading due to a model variability error. 

However, the generation of several history-matched models by itself does not provide 

accurate uncertainty assessment. 

The energy industry has since welcomed ensemble-based approaches of history 

matching that evolved in this situation. They can produce numerous history-matched 

models and give an indication of how uncertain the results of the reservoir simulation 

are. Examples of this kind of history matching techniques include the Ensemble 

Kalman filter (EnKF: EVENSEN, 1994) and the Ensemble Smother with Multiple Data 

Assimilation (ES-MDA: EMERICK; REYNOLDS, 2013). Despite being reliable 

methods, both still rely on linear Gaussian assumptions, hypotheses which may 

generate unrealistic outcomes and produce erroneous results in certain reservoir 

models with complex non-linear and non-Gaussian geological environments. 

1.3 Work organization 

This work is divided into six chapters, including the Introduction (Chapter 1) and 

Conclusions (Chapter 6). Bellow, the chapters are briefly described. 

• Chapter 2 provides an overview of the theoretical background that has been 

used to build this final graduation work. It discusses the ideas of reservoir 
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simulation and history matching with uncertainty quantification utilizing data 

assimilation techniques and proxy models; 

• Chapter 3 provides details on the approach used to create this work and the 

methodology used; 

• Chapter 4 includes a 2G&R (i.e., Geological, Geophysical and Reservoir 

characterization) synthesis of the study case area and the description of the 

complete procedure; 

• Chapter 5 shows the results obtained from the real case study reservoir, 

evaluating the ensemble-based data assimilation method used in this work for 

the history matching. Moreover, it also contains results from another history 

matching approach using mainly interpolation, making a comparison with the 

before used method.  
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2 BIBLIOGRAPHIC REVIEW 

2.1 Reservoir Fluid Flow Simulation 

Numerical tools are used in different scientific areas in order to replicate, in the best 

and most accurate way possible, the real case scenarios of physical phenomena. 

These tools demand a good understanding and description of the physical system 

under investigation. For that, it is applied mathematical models with complex 

equations, based on theories and laws that describes the problem which is being 

investigated. For that matter, numerical simulations are used to solve these models, 

as they are considered complex problems with a considerate number of unknows and 

equations. Solving these equations would be unfeasible to do without the aid of a 

computer. Within the reservoir engineering area, the scope of interest is the petroleum 

reservoir system, consisting of multiple geologic formations, with heterogeneities and 

with the possibility of containing hydrocarbons that are economically viable to be 

extracted. 

The reservoir model is a mathematical representation of a specific volume of rock 

incorporating all the characteristics necessary to analyze the dynamic behavior of 

fluids moving through the porous medium. This description is usually developed using 

a complex workflow which involves a great number of data sources that span a large 

variety of spatial and temporal scales, going from geological history of the basin on the 

surroundings with seismic and well logs to rock samples extracted from exploration 

and production wells (PYRCZ; DEUTSCH, 2014) . 

Even though simplifying hypothesis can be assumed, such as homogeneous and 

isotropic porous media with linear/radial one-dimensional flow displacement to 

describe the reservoir behavior, problems related with the energy industry are often 

linked to complex models with nonlinear partial differential equations relating pressure 

and saturation changes throughout time and space, in addition to complex 

multidimensional, multiphase and multicomponent flow models (ROSA; CARVALHO; 

XAVIER, 2006). 
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Given the high complexity of the subsurface geology, it is impossible to successfully 

run a reservoir simulation in which the model does not contains uncertainty. In fact, the 

fluid flow inside the pore system occurs in such a detailed level that is unconscionable 

to model it in perfection, resulting in an immense increase in computational cost to run 

the simulations and a higher degree of uncertainty related to these simulations’ 

outputs. Moreover, the scarcity of high-cost direct measurements and the big extension 

of the reservoir also contributes to these uncertainties in the models, and the reservoir 

behavior may not be precisely simulated as expected. In summary, the uncertainty 

reflects our lack of understanding about the subsurface geology. For that, the reservoir 

model has to be created including all available data possible in order to reproduce 

properly the fluid flow of the system. 

Before starting the production of any oil field, it is necessary to know the quality of the 

reservoir in which the production wells are being drilled into. In that case, in addition to 

the seismic data obtained during exploration phases and also some core information 

retrieved from appraisal wells, reservoir models are built into state-of-the-art software’s 

that tries to simulate all the conditions in which the actual reservoir is at the very 

beginning of production, with pressure data, initial saturation of fluids, WOC (water-oil 

contact) and GOC (gas-oil contact). With that information, the software proceeds to the 

fluid simulation part, where numerical methods are applied in order to solve the highly 

nonlinear set of differential equations that describe the fluid flow in porous media. The 

basics of reservoir fluid flow are very well described in the literature, such as in Gupta 

et al. (1991), Heimsund (2005) and Gerritsen & Durlofsky (2005). 

2.1.1 Concepts used in reservoir fluid flow simulations 

Mass transfer is  the main processes that occur in fluid flow. Up to three immiscible 

phases (water, oil, and gas) can flow at the same time, with mass transfer between 

them. The flow process is influenced by gravity, capillary, and viscous forces. All of 

these forces must be accounted for in the model equations, as well as an arbitrary 

reservoir description in terms of geological heterogeneity and geometry (PEACEMAN, 

1977). For each phase, the differential equations are constructed by combining Darcy's 

law with a simple differential material balance, resulting in the hydraulic diffusivity 

equation. 
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By being able to solve this equation, it is possible to identify all changes in pressure in 

the porous media versus space and time. The first derivation for the hydraulic diffusivity 

equation is considering a single-phase flow during a certain period of a porous medium 

which is a box on a tri-dimensional space (x, y and z-axis). In this case, Eq. (2.1) is 

derived on the form as a diffusivity equation which governs the three-dimensional linear 

flow though the porous medium fully saturated with only one fluid (ROSA; CARVALHO; 

XAVIER, 2006): 
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𝜕
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(𝜌

𝑘𝑧

𝜇

𝜕𝑝

𝜕𝑧
) = 𝜙𝑐𝑡𝜌

𝑑𝑝

𝑑𝑡
, (2.1) 

where 𝜌 is the fluid’s density, 𝑘𝑑 is the permeability of the porous medium in the flow 

direction (x, y or z-direction), 𝜇 is the fluid viscosity, 𝑝 is the pressure, 𝑡 is the time, 𝜙 

is the rock porosity, 𝑐𝑡 is the total compressibility – corresponding to the sum of the 

fluid compressibility 𝑐 and effective compressibility of the formation 𝑐𝑓. 

To solve the mathematical model, values of independent parameters must be obtained 

that concurrently check the governing equations and boundary conditions (i.e., external 

and wells conditions). Because it is implicitly dependent on density, permeability, 

viscosity, and compressibility, Eq. (2.1) is a nonlinear differential equation. It is 

impossible to solve this type of equation analytically (PEACEMAN, 1977). 

Furthermore, depending on the study's aims, the addition of mathematical statements 

makes the solution of the mathematical model more complex. Multiphase and 

multicomponent systems, as well as more particular and complex processes like steam 

injection, polymer injection, and thermal EOR, are examples (ROSA; CARVALHO; 

XAVIER, 2006). 

It is important to solve differential equations subject to the right boundary conditions in 

order to utilize them to forecast the behavior of a reservoir. The standard methods of 

mathematical physics can only find solutions for the simplest scenarios with 

homogenous reservoirs and very regular boundaries (such as a circular barrier around 

a single well). Numerical methods performed on high-performance computers, on the 

other hand, are exceedingly broad in their applicability and have proven to be effective 

in obtaining answers to extremely complex reservoir problems (PEACEMAN, 1977). 

To solve reservoir simulation models, most commercial simulators use finite difference 
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approaches. The nonlinear partial differential equation is replaced by the finite-

difference equivalent, which is derived from a Taylor series expansion of the function 

at a given location (ROSA; CARVALHO; XAVIER, 2006). Time is discretized into many 

time steps and the spatial domain is divided into a finite number of cells, commonly 

known as grid blocks. As a result, the numerical solution calculates solutions for each 

discrete spatial element within each discrete time interval. 

2.2 History Matching 

When working with reservoir simulations, it is necessary to infer the behavior of a real 

reservoir from the performance of a model – which may be physical and/or 

mathematical - of that reservoir. In this case, a mathematical model of a physical 

system is a set of partial differential equations, together with a set of boundary 

conditions that we believe sufficiently represents the significant physical processes 

occurring in that system. 

History matching is considered an inverse problem, because from a set of observed 

data, one predicts the factors that caused these observations. In other words, from the 

resulted effects of a given analysis, we use history matching to calculate the causes 

and what main parameters are associated with these direct observations. A classic 

example of this application is for weather predictions and atmospheric modeling 

(CHEN et al., 2021; CHO et al., 2020). 

Over the last decades, due to the need of inferring the behavior of a real reservoir 

through numerical model results and make forecasts from historical data, history 

matching began to be used in petroleum literature. To build a reservoir simulation 

model, not only it is required to have data about rock and fluid properties (i.e., 

petrophysical attributes), in order to characterize the fluid flow and the entire physical 

process behind it, but also it is of utmost importance always bear in mind that the data 

available for characterization is inaccurate and have uncertainty. 

With the reservoir simulation, it is possible to estimate characteristics and predict 

behavior of an oil reservoir, following the techniques based on material balance, 

decline curves and Buckley-Leverett theory of displacement of non-miscible fluid (E 

BUCKLEY; LEVERETT; AIME, 1942). That said,  as much as numerical methods and 
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approximations generate satisfactory results, the lack of knowledge about the geology 

that composes the reservoir is the main source of uncertainty in this activity. Thus, 

reservoir models are built inside an uncertainty parameters domain, meaning that any 

prediction made from these models are also considered uncertain. Even though it may 

not be the best option for the problem in first sight, it is important to remember that 

obtaining information directly from the reservoir is an utterly difficult and costly 

operation. 

Knowing the limitations that reservoir models can give and the uncertainties it 

generates after the incorporation of production data and with prior geostatistical 

knowledge, it was necessary to come up with a solution that could manage the 

uncertainty quantification of future reservoir performance. Uncertainty quantification in 

reservoir performance predictions and descriptions are made mainly to measure 

results and manage risks (i.e., decision-making), after the generation of multiple history 

matched models and their assessment of uncertainty (EMERICK, 2012). 

Generally speaking, the history matching problem can be thought as an optimization 

problem, in which the main objective is to find the best production vector of a certain 

reservoir model with a certain number 𝑚 of model variables such that: 

𝑚 = 𝐹−1(𝑑𝑜𝑏𝑠 + 𝜖). (2.2) 

In Eq. (2.2),  𝑑𝑜𝑏𝑠 is the vector of observed data, with 𝜖 being the uncertainty of the 

measurements, and 𝐹(∙)  is the forward model that maps the data into the model 

domain and therefore can be used to predict the reservoir behavior (i.e., the reservoir 

fluid flow simulator) (OLIVER; CHEN, 2010). The parameters chosen beforehand are 

determined by the model complexity (e.g., grid size, fluid composition, flow physics), 

always demanding a deep knowledge of the study area and the reservoir processes. 

Even though the main idea of a history matching process is to obtain less mismatches 

from the model response given a certain set of parameters vectors, in other words, a 

direct goal, there are innumerous algorithms that tackle this problem and try to assess 

uncertainty. These algorithms are mainly separated into two main categories: manual 

history matching or assisted history matching. 
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2.2.1 History matching algorithms 

Manual history matching was the first method applied in reservoir engineering with 

good engineering judgment and workflows that has been developed with years of 

experience in order to analyze the quality of the reservoir model and its 

parametrization. The work presented in Williams et al. (1998) is a well-structured 

approach to history matching. The strategy starts with an effort to match pressures at 

the large (field) scale by modifying a few important parameters, including the 

permeability multipliers, aquifer transmissibility, rock compressibility, and the ratio of 

vertical to horizontal permeability. The properties of individual flow units or layers are 

altered once the pressure has been properly matched at the field level, and then the 

properties of wells, or cells nearby wells, are adjusted. Once the pressure has been 

matched, Williams et al. (1998) suggest making modifications in other variables in 

order to match water arrival times and water cut, for example, relative permeability 

curves and vertical transmissibility values. 

Despite the convenience of this method, the experience of the engineer and the 

budget's size have a significant role in how well this form of history matching turns out. 

Since reservoirs are typically quite diverse, a typical reservoir simulation model has 

hundreds of thousands of grid blocks to estimate reservoir parameters in high 

resolution. Computers are used to automatically alter the parameters because manual 

history matching is frequently unreliable over prolonged periods of time and is always 

associated with significant uncertainty (RWECHUNGURA; DADASHPOUR; KLEPPE, 

2011). Therefore, it is more challenging to create a complex geological model which 

better depicts the reality, thus, limiting the prediction power of this method. 

The assisted history matching methods come to bypass these problems. Those 

methods also relate in finding the best match of a reservoir model, but now, 

automatized algorithms are developed with the purpose to minimize the objective 

function, which calculates basically the quadratic deviation between the simulated data 

and the observation one. A possible way of solving these types of problems is to use 

iteratives algorithms that will calculate the unknown parameters by successive 

approximations, trying to find the locals minima of the complex objective function, or 

even a global minimum (RWECHUNGURA; DADASHPOUR; KLEPPE, 2011). 
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An efficient class of optimization methods which have been used for a very long time 

are gradient-based history matching algorithms. In general, they are based on the 

calculation of the gradient of the objective function in respect of the model parameters, 

solving the adjoint state (COURANT; HILBERT, 2007). The history matching problem 

using adjoint approach is handled as an optimal control problem using the unknown 

model parameters as the control variables, with the objective function being minimized 

while being constrained to have the state variables follow the specified reservoir model 

(KALETA et al., 2010). The gradients methods have been used extensionally in 

reservoir history matching, with examples of applications in Anterion et al. (1989), 

Bissel et al. (1992) and Volkov et al.(2018). 

The minimization procedure is typically conducted using first-order gradient-based 

minimization techniques, like the Gauss-Newton and Levenberg-Marquardt 

algorithms, which avoid the explicit computation of the Hessian (second derivative) 

(KALETA et al., 2010). However, when using automatic history matching with gradients 

methods, it is necessary to calculate the derivatives while doing the reservoir fluid flow 

simulation. These processes are usually difficult to be made inside complex simulators, 

being necessary to come up with other implementations of the adjoint methods for 

derivative calculation. An example of an implementation for this is shown at Rodrigues 

(2005), which can be applied even outside the framework of standard optimization 

algorithms, for instance, with history matching integrating 4D seismic data attributes, 

such as: fluid contacts evolution with time; compartmentalization pressure estimates 

and fault seal; oil bypass locations, all in order to obtain better results and description 

of the reservoir (EMERICK; MORAES; RODRIGUES, 2007). 

Nevertheless, the fact that such methods typically converge to a local minimum in the 

objective function rather than the global minimum presents a possible issue. Inverse 

problems are known to be often ill-posed. In other words, these kinds of problems 

either have no solution in the desired class, or have many (two or more) solutions, or 

the procedure to obtain them is unstable, meaning that arbitrarily small errors in the 

measurement data may lead to indefinitely large errors in the solution (KABANIKHIN 

et al., 2008). It is well recognized that because of how ill-posed the reservoir history 

matching inverse problem is, there may be numerous local solutions, but only those 

that create an adequate fit to the data are interesting (GOMEZ; GOSSELIN; BARKER, 

2001).The Jacobian matrices of the system are typically available in reservoir models 
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since they are used in the Newton-Raphson iteration during the forward simulation. 

Still, applying the adjoint equations involves a significant amount of programming and 

necessitates having access to the numerical simulation code (KALETA et al., 

2010).This suggests that there is a need for gradient-based, adjoint-free optimization 

techniques or another approach on this history matching problem. 

Alternatively, there are methods that do not require the calculation of derivatives. 

Algorithms that search for the global optimum without using derivatives are classified 

as stochastic methods of assisted history matching. Some of the main algorithms are: 

Evolutionary Strategy, Genetic Algorithm, Simulated Annealing and Particle Swarm 

Optimization (RWECHUNGURA; DADASHPOUR; KLEPPE, 2011). The main 

drawback is that they are expensive and require a significant number of function 

evaluations. Furthermore, when a reservoir numerical simulator is used in such 

function assessments, this method could become unfeasible. 

In addition to all the methods previously cited, data assimilation processes have also 

been largely used in the last couple of decades (CARRASSI et al., 2018b; NÆVDAL; 

MANNSETH; VEFRING, 2002; VAN LEEUWEN; EVENSEN, 1996). The main goal is 

also to merge the information from observations into a numerical model while 

introducing uncertainty quantification, by using multiple samples drawn from 

conditional distributions from parameters available from the observation data. These 

methods relay on the use of different types of data combining readily with any type of 

numerical reservoir simulator.  

This work focuses on the ensemble methods, where they differ from common assisted 

history matching algorithms by mainly providing multiple simultaneously history 

matched models and calibration of both state (pressure, saturations) and model 

(porosity, log-permeability) variables (OLIVER; CHEN, 2010). 

 

2.2.2 Formulation of history matching problem for petroleum reservoirs 

It is possible to use the Bayesian formulation inside the history matching problem, 

mainly when the model parameters are poorly known and conditioned to data 
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considerate to be inaccurate. With Bayes’ theorem, one is allowed to write the 

conditional probability distribution function (pdf), 𝑓(𝑚|𝑑𝑜𝑏𝑠) , of a 𝑁𝑚 -dimensional 

vector of parameters, 𝑚, given a 𝑁𝑑-dimensional vector of observations, 𝑑𝑜𝑏𝑠, as 

𝑓(𝑚|𝑑𝑜𝑏𝑠) =
𝑓(𝑑𝑜𝑏𝑠|𝑚)𝑓(𝑚)

𝑓(𝑑𝑜𝑏𝑠)
=

𝑓(𝑑𝑜𝑏𝑠|𝑚)𝑓(𝑚)

∫𝐷𝑓(𝑑𝑜𝑏𝑠|𝑚)𝑓(𝑚)𝑑𝑚
= 𝐺𝐿(𝑚|𝑑𝑜𝑏𝑠)𝑓(𝑚). (2.3) 

In Eq. (2.3), 𝑓(𝑚) is the prior pdf of the vector containing the parameters’ models and 

𝑓(𝑑𝑜𝑏𝑠) is the pdf of the vector of observation data. 𝑓(𝑑𝑜𝑏𝑠|𝑚) is the conditional pdf of 

𝑑𝑜𝑏𝑠 given 𝑚. The pdf can also be written as a likelihood function, which is denoted by 

𝐿(𝑚|𝑑𝑜𝑏𝑠), and 𝐺 is a normalizing constant. If the prior’s pdf and measurement errors 

can be assumed to be Gaussian distributed (EMERICK, 2012), the conditional pdf of 

model parameters given observation data can also be written as: 
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(2.4) 

where 

𝑂(𝑚) = 𝑂𝑚(𝑚) + 𝑂𝑑(𝑚), (2.5) 

being 

𝑂𝑚(𝑚) =
1

2
(𝑚 − 𝑚𝑝𝑟)

𝑇
𝐶𝑀

−1(𝑚 − 𝑚𝑝𝑟), (2.6) 

and 

𝑂𝑑(𝑚) =
1

2
(𝑔(𝑚) − 𝑑𝑜𝑏𝑠)

𝑇𝐶𝐷
−1(𝑔(𝑚) − 𝑑𝑜𝑏𝑠). (2.7) 

In the equations above, 𝐶𝑀  is the 𝑁𝑚  ×  𝑁𝑚  prior covariance matrix of model 

parameters; 𝐶𝐷 is the 𝑁𝑑  ×  𝑁𝑑 covariance matrix of measurement errors and 𝑔(𝑚) is 

the vector of predicted data using the created model for a certain vector 𝑚. In history 
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matching, 𝑔(𝑚) are the results obtained with the reservoir flow simulation run. In Eq. 

(2.4), 𝑂(𝑚) is what is known as the objective function, in which the main objective 

inside a history matching problem is to find a minimum of this objective function in order 

to maximize the posterior pdf, 𝑓(𝑚|𝑑𝑜𝑏𝑠). It is important to notice that the objective 

function is made of two parts: the data mismatch part, 𝑂𝑑(𝑚) (Eq. 2.6)), and the model 

mismatch part, 𝑂𝑚(𝑚) (Eq. (2.7)). Finally, it is common to assume 𝑚𝑝𝑟  as a mean 

value of the vector of model parameters. 

Hence, the history matching problem for reservoirs become an optimization problem, 

in which the objective is to maximize the posterior probability distribution function of 

the defined parameters conditioned to field measurements (i.e., observed data). The 

problem of characterizing the uncertainty in the reservoir model parameters is reduced 

to the problem of sampling the probability density function from the vector of model 

parameters (EMERICK, 2012). Those are the main objectives of the statistical and 

numerical methods applied to solve the optimization method of these history matching 

problems for oil reservoirs (EVENSEN, 2018; TIERNEY, 1994). 

2.2.3 History matching using proxy models – Response-Surface Methodology 

(RSM), Design of Experiment (DOE) and Artificial Neural Networks (ANN) 

Even though with the advance of simulation resources and computational power, it is 

still desirable, and sometimes necessary, to have a method that solves inverse 

problems in a quick and efficient way, reproducing as best as possible the uncertainty 

of the problem, considering all data available and its quality. The use of computationally 

efficient proxy-models is therefore receiving a lot of attention as researchers continue 

to search for ways to minimize the computational burden associated with numerical 

fluid flow simulations. 

Proxy-models are referred to as a mathematical or statistical defined function which 

replicated a certain model output for different input parameters. In several scientific 

fields, proxy models are used to approximate mathematical modeling. In the scope of 

history matching, common use cases include: sensitivity analysis of uncertain 

variables; probabilistic forecasting and risk analysis; field development planning and 

production optimization and history matching (ZUBAREV, 2009). Proxy-models and 
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strategies for design of experiments are frequently utilized in sensitivity analysis. The 

conventional one-parameter-at-a-time method for linear sensitivity assessments as 

well as sophisticated experimental designs that can resolve correlation and higher 

order effects are examples of application situations. 

Yeten et al. (2005) examined sensitivity analysis and probabilistic forecasting as they 

investigated various experimental designs and proxy-models and their capacity to 

assess uncertainty in field performance. They claim positive outcomes when using 

space-filling designs and proxy-models based on polynomial, kriging, and splines. The 

same kinds of proxy-models produced worse outcomes for conventional designs that 

sample at the edges of the uncertainty area (e.g., Placket-Burman, central composite 

and D-optimal designs). 

History matching is frequently a challenging process that calls for numerous 

simulations to investigate the problem space and come up with workable answers. 

Proxy-models are appealing instruments to utilize as an effective replacement for 

complete reservoir simulation in the event that they can accurately represent important 

simulation output parameters. Nevertheless, the high quality of these models is directly 

related to the input dataset. Highly non-linear output is dealt with in reservoir 

simulation. Therefore, it may not be possible to design a suitable proxy-model using 

an input dataset with experiments spread equally across the uncertainty domain 

(ZUBAREV, 2009). 

Eide et al. (1994) introduced the idea of response surfaces and experimental design 

for automatic reservoir history matching. The main idea was to estimate response 

surfaces based on a set of reservoir simulations with different combination of reservoir 

parameters and estimate a simplified relation between reservoir simulator input and 

output (response). The authors managed to apply the workflow in a synthetic example 

with four input variables and five response variables. The quality of the response 

surfaces depends on the experimental design and on the model used for it. 

Additionally, Eide et al. (1994) concluded that a Bayesian strategy that uses prior 

knowledge of the distribution and the response surface can be used to focus the search 

on the most likely area of the input variables after matching and to add uncertainty to 

prediction estimations. 
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Amudo et al. (2009) described their practical experience in constructing experimental 

designs and using response surface models techniques in reservoir simulation studies. 

Their concepts and results were obtained after studying fifteen reservoirs situated in 

four different fields and at distinct stages of maturation. The authors conclude that is 

necessary an iterative and on-going process throughout the experimental design 

workflow in order to analyze the impacts of different choices of uncertain parameters 

and how they behave in the interpolation process during the response surface 

modeling. Besides, even with the best parameter conditioning, the combination of 

extremes can occasionally lead to non-physical experiments, which can require a lot 

of computer work and delay any further study. 

There have been studies that integrated the Response-Surface Methodology for 

history matching and probabilistic forecasting of reservoirs. Slotte et al. (2008) 

discussed the theory for assisted history matching and uncertainty evaluation using a 

Bayesian framework, conditioning the posterior pdf on the a priori geological 

information through ensembles of reservoir models sampled by a Markov Chain Monte 

Carlo (MCMC) technique. Slotte et al. (2008) built proxy functions for the flow 

simulator's output for each measurement that enters a global goal function. The proxy 

functions are built using multidimensional kriging and polynomials. To raise the caliber 

of the proxy functions, an iterative loop was undertaken in which ensembles of 

reservoir models are sampled from the posterior pdf. 

Wantawin et al. (2017) used a design of experiment (DOE) to investigate the 

relationship between those uncertain parameters and the variations known as 

response parameters. The authors developed a workflow combining history matching 

solutions with pdf forecasts into an integrated proxy-based approach that searches for 

both processes, evaluating them simultaneously. The combined workflow is an 

iterative approach, as the original proxy-model is continuously updated into higher 

degree of polynomial. Compared to the frequently utilized quadratic form, using higher-

degree polynomial equations seems to offer the advantage of providing a broader set 

of HM solutions inside the uncertain parameter space (WANTAWIN et al., 2017). 

Artificial neural networks (ANN) are another proxy model. The ability of ANNs to 

approach any continuous function with the appropriate precision is what enables them 

to be applied in a very efficient manner for various models in a variety of industries, 
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such as the aerospace for autonomous control and the defense for facial recognition. 

In fact, ANNs have taken the place of the reservoir simulator in several history 

matching and optimization studies to speed up the operations, e.g., Costa et al.(2010), 

Foroud et al. (2014), and Guerillot et al. (2017; 2016). 

Bruyelle et al. (2019) use an artificial neural network-based proxy model and  assessed 

and contrasted with proxy models typically used for history matching, such as 

polynomials or kriging techniques. The suggested method offers precise prediction 

outcomes that speed up and enhance the history matching process. An ANN was 

defined for each observed data that provides the mean and standard deviation of the 

data for a group of geological realizations. To construct an approximate definition of 

the goal function, all ANN are concatenated. To minimize the approximation of the 

objective function, a global optimizer is employed. The methodology was applied in a 

synthetic case study – the Brugge field – where the findings demonstrate that ANN has 

significantly superior prediction power than kriging or quadratic polynomial proxies 

(BRUYELLE; GUÉRILLOT, 2019). 

In a recent literature review about the use of proxy modelling in numerical reservoir 

simulation, Jaber et al. (2019) mention that it is better to understand the main aim of 

the proxy modeling (e.g., prediction, optimization, uncertainty) in order to choose the 

right approach for each of these categories. Successful use of proxies is documented 

in the review for a variety of reservoir simulation modeling applications, including 

assisted history matching, reservoir performance prediction, uncertainty analysis, and 

optimization. Traditionally, these applications have relied on reservoir simulation 

modeling, which is expensive in terms of the data resources used and the time 

required. While proxy modeling can give a quick assessment of the response with 

sufficient accuracy and simplify a complex procedure with respect to unclear 

parameters in the interested region. High nonlinearity, however, makes it more difficult 

to create a reliable proxy model (JABER; AL-JAWAD; ALHURAISHAWY, 2019). 

Building the proxy model involves many steps, one of which is evaluating the proxy 

model's quality. Therefore, it is important to verify the resulting solution obtained from 

the proxy model checking with the reservoir simulator. If the results from the simulator 

are away from the results obtained by the proxies, the input data must be amended by 

new data and the process becomes an iterative one, where finding the best proxy 

model is the main objective. 
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2.3 Ensembled-based methods for data assimilation 

The estimation of the status of a system, such as the atmosphere, the ocean, or any 

part of the Earth system or its entirety, at any arbitrary past, present, or future time is 

the problem that is supposed to be solved using data assimilation methods. There are 

two complementing sources of information: the observations and predicted data 

through numerical simulations, but they both have errors. By identifying connections 

between the model and the observations and utilizing the knowledge contained in 

each, data assimilation provides the conceptual and methodological tools to address 

the issue, as it is conveniently formalized as a discrete-model/discrete-observation 

estimation problem (CARRASSI et al., 2018a). 

In the scope of geoscience, innumerous research about data assimilation have 

contributed for the development of this area, being possible to combine data with 

geological models in a more precise and efficient way. One category of the different 

techniques inside data assimilation is statistical schemes, based on the theory of 

estimation and error covariances calculations of observations and model predictions 

in order to find the best linear combination between these two (JUNG et al., 2018). 

The ensemble-based methods follow a Monte Carlo implementation of a data 

assimilation scheme following the original Kalman Filter (KF) (KALMAN, 1960) 

equations and updates steps, having all the correlations between model forecast and 

observation data estimated from the ensemble of models and their respective data 

mismatch. They are used as an alternative to the approximate error covariance 

evolution equations used on data assimilation for non-linear models, such as the 

extended Kalman Filter (EKF), to compute forecast errors estimates with a significantly 

lower computational cost. In other words, ensembles methods rely on the stochastic 

integration of an ensemble of model states followed by observational updates using 

the forecast error covariance implicitly by the ensemble spread (BRASSEUR, 2011). 

For history matching, the first application of an ensemble method was presented by 

Lorentzen et al. (2001), where Ensemble Kalman Filter (EnKF) was applied in a two-

phase flow in a wellbore during drilling operations, to improve predictions of pressure 

behavior. In terms of petroleum reservoirs application, Nævdal et al. (2002) also used 

EnKF to update the permeability fields for near-well reservoir models. Nowadays, 
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many ensemble methods are applied even more in a more geological complex 

environment with multiple different goals, such as: 

• maximize the net present value of a hydraulically fractured horizontal well inside 

a shale gas reservoir using an ensemble-based optimization method (XUE et 

al., 2021); 

• quantify uncertainty and calibrate a reservoir model using dimension reduction 

techniques to enhance computation time (TADJER; BRATVOLD; HANEA, 

2021); 

• combine the workflow with a feature-oriented parametrization of geophysical 

data with ensemble-based history matching in order to characterize a fractured 

carbonate reservoir (ZHANG et al., 2022). 

2.3.1 Kalman Filter (KF) – the solution for the linear and Gaussian case in 

sequential data assimilation problems 

In reservoir engineering it is common to work with data available sequentially in time 

(e.g., production, pressure and time-lapse seismic data). The model forecast should 

be combined with the observation data in the process of updating the dynamic system 

by incorporating these data sequentially in time. This process is called sequential data 

assimilation (SDA) and falls into the scope of reservoir history matching problems, 

being described with a Bayesian framework and conveniently changing the parameter 

estimation problems to a parameter-state estimation one, the latter being discretized 

in time (EVENSEN, 2009, cap. 4). 

Introduced by Kalman (1960), the KF is a powerful recursive filter that accurately 

determines the state of a linear dynamical system from a collection of measurements. 

The filter is based on a model equation, in which the system's present state is 

connected to an uncertainty (expressed by a covariance matrix), and an observation 

equation, which connects a linear combination of the states to measurements. There 

is uncertainty surrounding the measurements as well. 

The equations used in the KF can be obtained in several ways. One of them mentioned 

in Stengel (1994) is by solving a weighted least square problem imposing additional 
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constraints that the measurement noise should be independent in time (i.e., there 

should be no correlation between the model noise and the measurement noise) and 

the weighting depends both on the uncertainty in the state variables and the 

measurements. Another derivation, which is most used, is done using Bayesian 

methodology, as shown in Cohn (1997). For that, the main requirements that needs to 

be done is that both the model and measurement noise are Gaussian and that the prior 

state are Gaussian distributed and unbiased. In that way, it is possible to update the 

prior conditional probability distribution of the system, based on forecasts and historical 

data. In that case, the pdf of the state vector 𝑦𝑛 would follow Eq. (2.4) formulation, 

noticing the equivalence between simultaneous and sequential data assimilation and 

under the KF hypothesis of Gaussian prior and linear relationship between state and 

predicted data. 

The pdf of the state vector in a certain time 𝑡𝑛 is, thus, given as (EVENSEN, 2009, cap. 

4): 

𝑓(𝑦𝑛,𝑎) = 𝑒𝑥𝑝 {−(
1

2
(𝑦𝑛,𝑎 − 𝑦𝑛,𝑓)𝑇(𝐶𝑌

𝑛,𝑓)
−1

(𝑦𝑛,𝑎 − 𝑦𝑛,𝑓)

+
1

2
(𝐻𝑛𝑦𝑛,𝑎 − 𝑑𝑜𝑏𝑠

𝑛 )𝑇(𝐶𝐷
𝑛)−1(𝐻𝑛𝑦𝑛,𝑎 − 𝑑𝑜𝑏𝑠

𝑛 ))}, 

(2.8) 

where, for each 𝑡𝑛: 𝐶𝑌
𝑓
 is the error covariance matrix of the model state; 𝑑𝑜𝑏𝑠 is the 

observation data vector; 𝐻 is the sensitivity matrix, which describes the linear relation 

between state vector and predicted data, i.e., 

𝑑𝑛,𝑓 = 𝐻𝑛𝑦𝑛,𝑓 , (2.9) 

and 𝐶𝐷 is the covariance matrix of the measurement errors. 

Furthermore, the state vector and its covariance matrix are updated sequentially in 

time using: 

𝑦𝑛,𝑎 = 𝑦𝑛,𝑓 + 𝐾𝑛(𝑑𝑜𝑏𝑠
𝑛 − 𝐻𝑛𝑦𝑛,𝑓), (2.10) 

and 
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𝐶𝑌
𝑛,𝑎 = (𝐼𝑁𝑦

− 𝐾𝑛𝐻𝑛)𝐶𝑌
𝑛,𝑓

, (2.11) 

where 

𝐾𝑛 ≡ 𝐶𝑌
𝑛,𝑓

𝐻𝑛
𝑇(𝐻𝑛𝐶𝑌

𝑛,𝑓
𝐻𝑛

𝑇 + 𝐶𝐷
𝑛)

−1
. (2.12) 

Eqs. (2.10−(2.12) are known as the KF analysis equations. In them, 𝐾𝑛 is known as 

the Kalman gain matrix. 𝐼𝑁𝑦
 is the 𝑁𝑦 × 𝑁𝑦  identity matrix, where 𝑁𝑦  denotes the 

dimension of the state vector 𝑦𝑛 .The superscripts 𝑎  and 𝑓  denote analysis and 

forecast, respectively. 

2.3.2 The Ensemble Kalman Filter (EnKF) 

Every time new data is available, the mean and covariance in the KF are changed. The 

state's size may be too big, even for linear situations, for Eq. (2.11) to update the state's 

covariance matrix computationally. Furthermore, the KF equations are no longer 

relevant if the problem at hands is nonlinear because the posterior pdf is no longer 

Gaussian. The Kalman filter was extended to work with non-linear models through the 

EKF. The EKF uses linearizations of the model and observation equations around the 

estimated mean of the state. These linearizations, however, may result in 

unconstrained instabilities in the covariance updates for highly nonlinear systems 

(EVENSEN, 2009, cap. 4). Additionally, updating the entire states covariance matrix is 

still required by the EKF, which is computationally unfeasible for high-dimensional 

problems (AANONSEN et al., 2009). 

In this context, Evensen (1994) first introduced the ensemble Kalman filter (EnKF) as 

an alternative for the EKF in high-dimensional nonlinear dynamical systems. The EnKF 

is a Monte Carlo approach in which the mean and covariance are successively updated 

over time and are represented by an ensemble of states. It was further implemented 

by Houtekamer et al. (1998) and Burgers et al. (1998), where it led to the current 

implementation of the EnKF by introducing the idea of updating each ensemble 

member with independently perturbed observations. Therefore, the uncertainty is 

propagated and represented using these ensembles of states. 
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There is a tendency to lessen the dependence on Gaussian assumptions because the 

initial ensemble in the EnKF represents a sampling from the prior distribution, because 

it is not a straightforward resampling of a Gaussian posterior distribution. Only the 

linear updates are added to the prior non-Gaussian ensemble. As a result, the updated 

ensemble will inherit many of the forecast ensemble's non-Gaussian properties. 

(EVENSEN, 2009, cap. 4). Nonetheless, because the analysis stage still relies on the 

distributions' first and second order moments, the performance of EnKF may suffer if 

the distributions deviate too much from Gaussian (AANONSEN et al., 2009). 

Unfortunately, EnKF's main approximation is also the ensemble representation. 

Limiting the ensemble's size is required to gain computational efficiency. Small 

ensembles, however, induce sampling errors that produce spurious correlations. 

Additionally, the space in which the solutions can be expressed is constrained by the 

ensemble's size. As a result, after data assimilation, it is noticeable an excessive drop 

in posterior covariances (EMERICK, 2012). 

The history matching problem using the EnKF modifies the classical and traditional 

problem from parameter estimation to a parameter-state estimation one. In that case, 

on the EnKF, both the reservoir model parameters to be estimated and primary 

dynamic variables of the reservoir simulator, such as gridblock pressure, and phase 

saturation. The problem is being viewed as a parameter-state estimation in order to 

avoid starting the reservoir simulations from scratch after each data assimilation step 

(EMERICK, 2012). 

The EnKF equations are typically introduced by defining the augmented state vector, 

𝑦𝑛, in which the predicted data vector, 𝑑𝑛, is also included, i.e., 

𝑦𝑗
𝑛 = [

𝑚𝑗
𝑛

𝑝𝑗
𝑛

𝑑𝑗
𝑛

], (2.13) 

where the subscript 𝑗 refers to the 𝑗th ensemble member. 𝑚𝑗
𝑛 and 𝑝𝑗

𝑛 are, respectively, 

the vector of model parameters and states of the dynamical system. For reservoir 

applications, 𝑚  includes all model parameters required in the history matching, 

generally gridblock porosities, permeabilities, end points of relative permeability, etc.; 

𝑝 includes the primary variables of the reservoir simulator, typically reservoir gridblock 



36 

 

pressure, fluid saturations, and bubble point pressure in a standard black-oil reservoir 

(EMERICK, 2012). This “trick” of augmenting the state vector allows the derivation of 

the EnKF equations following the same ideas to the standard KF equations without 

removing the effect of the nonlinearity, if, and only if, at every data assimilation time-

step, the predicted data vector is a linear function of the combined (un-augmented) 

state vector (LI; REYNOLDS, 2009). 

The EnKF analysis equation can be written as 

𝑦𝑗
𝑛,𝑎 = 𝑦𝑗

𝑛,𝑓
+ 𝐶̃𝑌𝐷

𝑛,𝑓(𝐶̃𝐷𝐷
𝑛,𝑓

+ 𝐶𝐷
𝑛)

−1
(𝑑𝑢𝑐,𝑗

𝑛 − 𝑑𝑗
𝑛,𝑓), ,        𝑓𝑜𝑟 𝑗 = 1, 2,⋯ , 𝑁𝑒, (2.14) 

in which 𝑁𝑒  is the number of state vectors in the ensemble, in other words, the 

ensemble size; 𝑑𝑢𝑐,𝑗
𝑛  is a sample from the Gaussian distribution 𝒩(𝑑𝑜𝑏𝑠

𝑛 , 𝐶𝐷
𝑛), normally 

called as a perturbed (or randomized) observed data vector. The tilde (~) introduced 

in the matrices notations is to emphasize that these matrices are estimated from an 

ensemble. Thus, 𝐶̃𝑌𝐷
𝑛,𝑓

 and 𝐶̃𝐷𝐷
𝑛,𝑓

 are the cross-covariance matrix between the 

augmented state vector parameters and observation data and auto-covariance matrix 

of predicted data, respectively, calculated by the following approximations: 

𝐶̃𝑌𝐷
𝑛,𝑓

=
1

𝑁𝑒 − 1
∑(𝑦𝑗

𝑛,𝑓
− 𝑦̅𝑗

𝑛,𝑓)

𝑁𝑒

𝑗=1

(𝑑𝑗
𝑛,𝑓

− 𝑑̅
𝑗
𝑛,𝑓)

Τ
, (2.15) 

and 

𝐶̃𝐷𝐷
𝑛,𝑓

=
1

𝑁𝑒 − 1
∑(𝑑𝑗

𝑛,𝑓
− 𝑑̅

𝑗
𝑛,𝑓)

𝑁𝑒

𝑗=1

(𝑑𝑗
𝑛,𝑓

− 𝑑̅
𝑗
𝑛,𝑓)

Τ
, (2.16) 

where 

𝑦̅𝑗
𝑛,𝑓

=
1

𝑁𝑒
∑𝑦𝑗

𝑛,𝑓

𝑁𝑒

𝑗=1

, (2.17) 

and 
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𝑑̅𝑗
𝑛,𝑓

=
1

𝑁𝑒
∑𝑑𝑗

𝑛,𝑓

𝑁𝑒

𝑗=1

. (2.18) 

The error in the estimate of the covariance decreases in a proportional rate of 1 √𝑁𝑒⁄ , 

meaning that a large ensemble may be necessary for an accurate estimate, and, if the 

ensemble size chosen is small, the error in the estimate may be large (AANONSEN et 

al., 2009). Also, in order to keep a reasonable computational cost for each data 

assimilation step, small ensembles are necessary, which introduce more sampling 

errors and limit the degrees of freedom to assimilate data and, thus, the ensemble 

variance obtained after each data assimilation can be underestimated, being this an 

important limitation of the EnKF (AANONSEN et al., 2009). 

To compensate for the underestimation of posterior variances in the EnKF, there have 

been literature about covariance inflation, method in which inflation factor are used to 

increase the covariance in the forecast ensemble without changing the mean. Some 

applications can be seen in Anderson (2016), Liang et al. (2012), Emerick (2019) and 

Silva et al. (2021), the last two being more focused on the application of covariance 

inflation in petroleum history matching. 

2.3.3 Ensemble Smoothers 

Unlike EnKF, in which data is sequentially assimilated in time, the ensemble smoother 

(ES) was proposed by van Leeuwen and Evensen (1996) and is a method that 

computes a global update by simultaneously assimilating all data available and 

realizing only one global change at the end of the operations. van Leeuwen and 

Evensen (1996) evaluated ES and EnKF with Lorenz equations and concluded that 

EnKF performed better than ES because the EnKF's recursive updates keep the 

ensemble of states on track and closer to the actual solution. 

Recently, Skjervheim et al. (2011) evaluated ES with EnKF and found that both 

approaches produced similar outcomes for the reservoir history-matching issues they 

were focusing on. The fundamental benefit of ES is that it prevents the reservoir 

simulator from having to restart, as is required by the EnKF sequential data assimilation 

method. When used to solve reservoir history-matching problems, this makes ES 
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significantly faster and simpler to use than EnKF. ES is a desirable alternative for data 

assimilation workflows that combine diverse aspects of the reservoir modeling process, 

such as seismic, structural, and geological modeling with flow simulation. The 

reduction of simulation restarts is another benefit of ES; see, e.g., Liu and Grana (2020) 

and Zachariassen et al. (2011). 

When implementing ES, we only need to consider the parameter-estimation issue if 

we overlook model uncertainty, which is a typical assumption in reservoir history-

matching situations. In this instance, using ES eliminates the parameter-state 

consistency problem that was seen while using EnKF to assimilate sequential data 

(EVENSEN, 2009, cap. 6). ES formulation is similar to EnKF, writing the analyzed 

vector of model parameters, 𝑚𝑗
𝑎, as: 

𝑚𝑗
𝑎 = 𝑚𝑗

𝑓
+ 𝐶̃𝑀𝐷

𝑓 (𝐶̃𝐷𝐷
𝑓

+ 𝐶𝐷)
−1

(𝑑𝑢𝑐,𝑗 − 𝑑𝑗
𝑓). (2.19) 

Even though the great reduction of computational cost of the ES is its main benefits, 

the single global data assimilation done by only one Gauss-Newton correction may not 

be able to provide feasible data matches results to reservoir history-matching 

problems. In such case, using the EnKF’s sequential application of corrections 

between data assimilation or, in other words, the accumulation of several Gauss-

Newton corrections, would give a better result for the reservoir history-matching 

problem, as production data is conditioned to each and several assimilation time-steps 

and the ensemble is conditioned to the production history (EMERICK, 2012). 

2.3.4 Ensemble Smoother with Multiple Data Assimilation (ES-MDA) 

To overcome the possible mismatch between observed and predicted data and the 

only global update of the parameters using ES, iterative ensemble smoothers (iES) 

have been developed. The iES can be used for reservoir models with a moderately 

large number of wells, a variety of data types and a relatively long production history. 

Chen and Oliver (2014) used this method in a North Sea field, the Norne field, and with 

the Levenberg-Marquardt iterative ensemble smoother were able to achieve improved 

data after three iterations of a model with an approximate total number of parameters 

of 150.000. Ma and Bi (2019) derived a novel and adaptive iES method, based on the 
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Levenberg-Marquardt algorithm for nonlinear least squares optimization, and 

demonstrated that it is possible to use the ensemble smoother as an approximate 

linear least squares solver and thus avoid expensive adjoint calculations. This 

transforms the history-matching problem in a nonlinear least squares problem and 

helps to mitigate the consequences of three of the main assumptions required by the 

EnKF and ES (MA; BI, 2019): a strictly linear relationship between the model and the 

parameters, Gaussian prior distribution for the model parameters and Gaussian 

measurement noise. 

To further improve the results and to optimize the data assimilation process in the 

highly nonlinear problem that is the reservoir modeling and simulation for petroleum 

engineering, Emerick and Reynolds (2012) first proved that there is an equivalence 

between single and multiple data assimilation (MDA) for the linear-Gaussian case 

when the same data is assimilated multiple times with the covariance matrix of the 

measurement errors multiplied by the number of data assimilations, presenting 

evidence that multiple data assimilations can improve EnKF estimates for the nonlinear 

case. Linking with the need to develop efficient iES and already with the knowledge of 

this method’s benefits, Emerick and Reynolds (2013) proposed the Ensemble 

Smoother with Multiple Data Assimilation method (ES-MDA), which is the use of MDA 

in conjunction with ES to assimilate the data. ES-MDA can be interpreted as an 

iterative form of ES, where the number of iterations (e.g., assimilations made) must be 

selected a priori.  

In order to use ES-MDA, it is necessary that the multiplication factors used to inflate 

the covariance matrix of the measurement errors for a correct a posteriori parameter’s 

distribution, satisfy the following expression (EMERICK; REYNOLDS, 2013): 

∑
1

𝛼ℓ
= 1

𝑁𝑎

ℓ=1

, (2.20) 

where 𝑁𝑎 is the number of data assimilation defined and 𝛼ℓ is the inflation coefficient. 

Therefore, for every ES-MDA problem, it is needed to choose the number of 

assimilations that will be done and the inflations coefficients before each assimilation 

step. The parameters updates steps follow the EnKF equations, taking into 
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consideration the inflation coefficients. The full ES-MDA algorithm construction can be 

visually interpreted in Figure 1, with more details in Section 3.1. 

 

Figure 1 - ES-MDA process 

From Eq. (2.20), it is noticeable that a simple choice for 𝛼  is 𝛼ℓ = 𝑁𝑎  for all ℓ . 

Nevertheless, it makes intuitive sense that selecting alpha in descending order can 

enhance the method's effectiveness (EMERICK; REYNOLDS, 2013). therefore, on 

initial steps data is assimilated with a high 𝛼 value, which corresponds to reducing the 

amplitude of the initial updates, and then we gradually decrease 𝛼. 

The need to define the number of iterations and the inflation factors before the 

assimilation process is one of the main drawbacks of the ES-MDA, in fact, being 

necessary to restart the entire process if the results quality is not desirable after the 

end of the algorithm (RANAZZI; SAMPAIO, 2019b). Nonetheless, Emerick (2012) 

shows us that changing the inflation coefficients in a decreasing order resulted in only 

small improvements compared to using them constant and equal to the number of data 

assimilations.  
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Maucec, et al. (2016) used an ensemble-based computer Assisted History Matching 

(AHM) workflow integrating probabilistic Bayesian interference using ES-MDA of a 

real-life carbonate oil field, with a sector model of, roughly, 17 million active grid cells 

with no application with simulation grid upscaling. The authors managed to obtain 

matches on field-level reservoir pressures spanning a long production history, also 

reporting a detailed uncertainty matrix with different ensembles of sensitivity scenarios. 

Emerick (2016) provided an assessment of the effectiveness of the ES-MDA used in 

the same field scenario as Emerick and Reynolds (2013) to absorb production and 

seismic data. According to this author, localization techniques are crucial for dealing 

with spurious correlations and variability loss. Additionally, an adaptive approach was 

created, where the iterations and inflation coefficients are chosen in accordance with 

how the data mismatch is progressing. Localization and inflation techniques for 

ensemble methods can be found in the literature (e.g., Bjarkason et al.(2021), Soares 

et al. (2018), Ranazzi et al. (2022; 2019a) and Emerick (2019)). 

Rosa et al. (2022) also employed the ES-MDA technique to assimilate 4D seismic data 

and production forecast in a deep-water oil field, located in offshore Southwest Brazil, 

in order to compare the impact of using grids with different resolutions, exploring 

options to incorporate 4D seismic maps in data assimilation and production forecast. 

The authors proposed the use of two types of grids: a coarser grid and a refined grid. 

Results shows that both grids can be used depending on the project’s objectives. Since 

it can accurately reflect forecasting with considerably less expensive models, the 

coarser grid is a useful choice for short-term investigations. Due to its safer risk 

analyses and improved representation of model uncertainty, the refined grid may be 

appropriate for long-term decisions. 

The development of the ensemble-based history matching (EnHM) software in the 

TotalEnergies’ geoscience platform known as Sismage-CIG is described in Abadpour 

et al. (2018). The ES-MDA approach forms the basis of the software. A mature large 

carbonate oil field, a deep-offshore turbidite field, and a carbonate gas field were the 

three complex genuine fields that were used to demonstrate the  performance of the 

methods. 



42 

 

3 METHODOLOGY 

The methodology presented in this work aims to apply ES-MDA (EMERICK; 

REYNOLDS, 2013) to a typical history matching problem of a reservoir model using 

real data. 

3.1 History matching using ES-MDA 

Following the definition of the uncertain parameters (Section 4.3) and their input on the 

model of the Alpha-system, it is necessary to sample them given the type of pdf 

predefined as one of the inputs. Every set of the different combinations of parameters 

are called ensembles, and they are essential on the history matching process with 

ensembled-method data assimilation. Each member 𝑗 of the ensemble with size 𝑁𝑒 

which contains the uncertain parameters of the model are defined as: 

𝑚𝑗
𝑢 = [

𝑚1

𝑚2

⋮
𝑚𝑁𝑚

], (3.1) 

where 𝑚𝑢 is the vector containing all 𝑁𝑚 uncertain parameters that will be updated, 

such as permeability and productivity multipliers indexes data. The superscript 𝑢 

stands for uncertain. 

After the sampling of the parameters for the 𝑁𝑒 ensembles, it is also generated 𝑁𝑒 

models which are taken to the forward operator, from time zero to the end of the 

historical period, in order to compute the vector of predicted data: 

𝑑𝑗
ℓ,𝑓

= 𝐹(𝑚𝑗
ℓ−1,𝑢),        𝑓𝑜𝑟 𝑗 = 1, 2,⋯ , 𝑁𝑒, (3.2) 

where 𝐹(∙)  is the forward operator (i.e., the non-linear model used to obtain the 

forecast observations); 𝑑𝑗
ℓ,𝑓

is the forecast (𝑓) model response with size 𝑁𝑑, the total 

number of measurements in the historical period, resulted from the combination 𝑚𝑗
ℓ−1,𝑢

 

of uncertain parameters. 
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For this work, the INTERSECT™ Reservoir Simulator was employed to compute the 

non-linear forward problem, hence simulating the dynamic behavior of the reservoir 

response to the different combination of uncertainty parameters previously defined. 

INTERSECT™ is a high-resolution reservoir simulator that, when coupled with a high-

performance computer, enables this work to fully parallelize the execution of dynamic 

simulations for every ensemble member. 

ES-MDA requires the 𝑁𝑑 measurements to be perturbed, i.e., apply Gaussian noise in 

order to be treated as random variables. The mean and standard deviation values are 

calculated from previous research of the study area during screening methods and 

single parameter research: 

𝑑𝑜𝑏𝑠𝑗,𝑢𝑐
ℓ = 𝑑𝑜𝑏𝑠 + √𝛼ℓ𝐶𝐷

1
2⁄ 𝓏𝑑 , 𝑓𝑜𝑟 𝑗 = 1, 2,⋯ ,𝑁𝑒, (3.3) 

where 𝑑𝑜𝑏𝑠𝑗,𝑢𝑐
ℓ  is the perturbed vector of observations; 𝓏𝑑  is sampled with 

𝓏𝑑~ 𝒩(0, 𝐼𝑁𝑑
); 𝐶𝐷  is the 𝑁𝑑 × 𝑁𝑑  covariance matrix of observed data measurement 

errors: 

𝐶𝐷 =

[
 
 
 
 
𝜎1

2 0 ⋯ 0

0 𝜎2
2 ⋮

⋮ ⋱ 0
0 ⋯ 0 𝜎𝑁𝑑

2
]
 
 
 
 

. (3.4) 

After that, the simulations results are compared with the observation data. As every 

process is based on statistical analysis and from observed data, there will certainly be 

uncertainty on the model, giving mismatches from the simulation results and the 

observation data. Hence, these discrepancies will be numerically used inside the data 

assimilation based on correlation computation, and, for each iteration ℓ, the previous 

sampled parameters will be updated to a new set of uncertain parameters, in order to 

reduce the variance of the discrepancy, following: 

𝑚𝑗
ℓ,𝑢 = 𝑚𝑗

ℓ−1,𝑢 + 𝐶̃𝑀𝐷
ℓ−1,𝑓(𝐶̃𝐷𝐷

ℓ−1,𝑓
+ 𝛼ℓ𝐶𝐷)

−1
(𝑑𝑜𝑏𝑠𝑗,𝑢𝑐

ℓ − 𝑑𝑗
ℓ,𝑓

), 

𝑓𝑜𝑟 𝑗 = 1, 2,⋯ , 𝑁𝑒 , 

(3.5) 

where, 𝐶̃𝑀𝐷
ℓ−1,𝑓

 represents the cross-covariance matrix between the prior vector of 

model parameters, 𝑚𝑗
ℓ−1,𝑢

, and the vector of predicted data, 𝑑𝑗
ℓ,𝑓

; 𝐶̃𝐷𝐷
ℓ−1,𝑓

 is the 𝑁𝑑 × 𝑁𝑑 



44 

 

auto-covariance matrix of predicted data. As before, the tilde (~) notation indicates that 

these covariances matrices are estimated around the ensemble mean: 

𝐶̃𝑀𝐷
ℓ−1,𝑓

=
1

𝑁𝑒 − 1
∑(𝑚𝑗

ℓ−1,𝑢 − 𝑚̅ℓ−1)

𝑁𝑒

𝑗=1

(𝑑𝑗
ℓ,𝑓

− 𝑑̅ℓ,𝑓)
𝑇
, (3.6) 

𝐶̃𝐷𝐷
ℓ−1,𝑓

=
1

𝑁𝑒 − 1
∑(𝑑𝑗

ℓ,𝑓
− 𝑑̅ℓ,𝑓)

𝑁𝑒

𝑗=1

(𝑑𝑗
ℓ,𝑓

− 𝑑̅ℓ,𝑓)
𝑇
, (3.7) 

whereby, 𝑚̅ℓ−1 and 𝑑̅ℓ−1 represent the average vector of the prior model parameters 

and the average vector of predicted data, respectively: 

𝑚̅ℓ−1 =
1

𝑁𝑒
∑𝑚𝑗

ℓ−1;                  

𝑁𝑒

𝑗=1

𝑑̅ℓ−1 =
1

𝑁𝑒
∑𝑑𝑗

ℓ−1

𝑁𝑒

𝑗=1

. (3.8) 

As mentioned, the ES-MDA processes will go on until the pre-defined number of 

assimilations (𝑁𝑎) is reached. It is important to mention that the assimilation process is 

made after the end of the forward operator and that the observation data are randomly 

sampled according to the data error covariance. Furthermore, for the update part, ES-

MDA uses an inflation factor 𝛼ℓ  for each assimilation step, and their choice must 

respect the condition stated in Eq. (2.20) for a correct a posteriori parameter’s 

distribution. 

In this work, for all study cases using ES-MDA process, the inflation factor used were 

constant and equals to the number of iterations, i.e., 𝛼ℓ = 𝑁𝑎. Figure 2 illustrates the 

workflow containing the steps of applying ES-MDA. 
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Figure 2 – ES-MDA workflow 

Source: Adapted from Ranazzi & Sampaio (2018) 

3.2 Objective function 

The Objective Function (OF) for each data assimilation at iteration ℓ used in this work 

is through the quadratic deviation between simulated model forecast and the 

observation data, normalized by the inverse of the covariance matrix of observed data 

measurement errors, 𝐶𝐷 and with the total number of observations 𝑁𝑑, as shown in Eq. 

(3.9). 

𝑂𝐹ℓ = √
∑ (𝑑𝑗

ℓ,𝑓
− 𝑑𝑜𝑏𝑠𝑗

ℓ )
𝑁𝑒

𝑗=1 𝐶𝐷
−2 (𝑑𝑗

ℓ,𝑓
− 𝑑𝑜𝑏𝑠𝑗

ℓ )
𝑇

𝑁𝐷
. (3.9) 
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4 STUDY CASE 

The study area of the work  focuses on the analysis of the Central and Eastern panel 

of the Alpha-Field. Thus, this section is divided between the initial model used for the 

reservoir system, containing explanation about the link between the geology and how 

to transfer the heterogeneities of the model to the fluid flow simulator in terms of 

numeric parameters. 

4.1 2G&R synthesis of the case study 

The field under study is located in an offshore basin, with the reservoir about 1000 

meters from the seafloor surface. The reservoir is of very good quality and consists of 

turbiditic sediments composed of a loosely consolidated sand with a very good 

permeability of up to 10 darcys (D). The oil is also of superior quality. 

The depositional environment is turbiditic, corresponding to the upper part of a turbiditic 

lobe. The channels are erosive-constructive. They form amalgamated channel 

complexes alternating between channel and levee facies. A fluid barrier is formed 

when the system comes into contact with diapirs to the east. As a result, the field is a 

reservoir bounded by the complex's erosive margins, the clay roof, and the diapirs. 

The studied field is called Alpha Field, a multi-story erosive constructive channel 

complex. The reservoir is placed at the level of a turtle-back salt anticlinal created after 

turbidite reservoir deposition. This structure causes a large number of Keystone faults, 

which are normal faults that run perpendicular to the system's elongation. The studied 

area is divided according to the direction of the channels from East to West into 3 

zones − Alpha-East, Alpha-Central and Alpha-West (Figure 3). Within the system, 

structural and stratigraphic heterogeneities will exist. There is little transmissibility 

between regions because the degree of depletion varies by region. The synthesis will 

also give us an indication of the uncertain parameters determined later. 
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Figure 3 - Top view of the erosive channel complex containing an explanatory diagram of the studied 
field with the highlighted wells for future analysis 

4.2 Initial model 

The optimization of parameters is a critical step in the reservoirs and management’s 

future. During the history matching step, dynamic parameters are updated. The fluid 

flow simulator used in this work − INTERSECT™ − allows us to change them based 

on the regions using three software’s keywords that correspond to three degrees of 

heterogeneity (SCHLUMBERGER, 2014). These functions are: 

• MULTNUM: defines regions for applying inter-region transmissibility multipliers, 

instead of applying them to flux regions defined by FLUXNUM; 

• FLUXNUM: identifies extent of each flux region, using with the flux boundary 

option to define regions that can be run as separate models with boundary 

fluxes defined in a previous full field run; 

• OPERNUM: defines regions for performing arithmetic operations on property 

array. 

The flow units in our Alpha-system that are cut by the faults within the center block are 

represented by MULTNUM. The faults run perpendicular to the system’s orientation. 

In our model, FLUXNUM represents the three vertical levels (Alpha-Lower, Alpha-

Middle, Alpha-Upper). Clay barriers can be found throughout the complex and are 

designated as maximum flooding surfaces (MFS), which translate geologically as clays 

in the vast majority of situations. The last function to represent our turbiditic system 

geology’s is OPERNUM , which represents the elementary channels. In the model, the 

sedimentary features used were sand channels, proximal levee and distal levee. 

AL  A EASTAL  A CENTRAL



48 

 

According to regional seismics, fluid circulation will be mostly within these formations 

due to their high permeability. 

For the modelling of the elementary channels, ULIKE™ was used. This process is a 

rule-based modelling tool that simulates the sediment transports by water flow 

following the random path that a particle would take along any designated fairway, 

which occurs in most of clastic systems. To build sedimentary systems with a specific 

domain flow, this approach employs the Random Walk principle, which is a form of 

stochastic process in which each move step is preset by a particular probability. Then, 

according to the user’s defined geometrical parameters and limitations, the random 

walk of a particle path is dressed in sedimentary features such as channels, levees, 

lobes, and so on. To keep the grid consistent, the process is applied to each layer 

defined on the model. ULIKE™ has the advantage of respecting seismic and well 

constraints at the level of turbiditic reservoirs (MASSONNAT, 2019). This method is 

comparable to object-based modeling; however, it yields better results than purely 

Boolean object-based modeling. 

Table 1 summarizes the values given to the regions according to their families. These 

values are used to identify the different areas of the reservoir, and to easily manage 

transmissibility between these regions, as multipliers will be applied during the fluid 

flow simulations and will also be considered as uncertain parameters during the data 

assimilation process. A reduction in transmissibility may be the effect of faults or 

system edges for MULTNUMS (Figure 4), MFS or clay barriers for FLUXNUM (Figure 

5) and channel skins for OPERNUMS (Figure 6). In the figures below, the reservoir 

complex is shown in a 3-dimensional space, with each heterogeneity displayed. 
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Figure 4 - MULTNUM regions and their specific numeric inside the reservoir model 

 

Figure 5 - FLUXNUM regions and their specific number inside the reservoir model 
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Figure 6 - OPERNUM regions and their specific number and sedimentary representation inside the 
reservoir model 

Table 1 - Figure association with regions by location 

 MULTNUM FLUXNUM OPERNUM 

Regions Flow units and fault 
blocks 

Alpha-lower, Alpha-
middle, Alpha-upper 

Elementary channels 

Alpha-Central 2, 38 and 39 21, 22 and 23 1, 2 and 4 
Alpha-Eastern 4 and 26 66, 67 and 68 

4.3 Influencing parameters on the history matching process of the Alpha 

field 

After the definition of the heterogeneity zones mentioned in Section 4.2, the uncertain 

parameters, such as transmissibility multipliers, elementary channels’ characteristics 

(i.e., porosity and permeability) and wells’ productivity indexes multipliers need to be 

chosen in order to assess their impact on the fluid flow. The choice of the parameters 

is directly related to the studied region and will be further detailed in Sections 5.1.1, 

5.1.2 and 5.2 , with their respective definitions in Tables 2, 3 and 4. 

This is considered to be one of the most challenging processes on reservoir simulation, 

as the number of parameters that can be considered and have directly and indirectly 

response on the flow simulator results is very large, sometimes can pass the 100,000 

parameters depending on the cell grid size and the heterogeneity of the reservoir. For 
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the Alpha-system, previous studies have already been carried out on the last couple 

of years in order to have a better geological understanding of the area and how to 

improve more and more this in a numerical representation. This work uses mostly 

multipliers uncertain parameters on flux/fault regions (MULTNUM) and on the vertical 

layers (FLUXNUM), as well as the elementary channel properties generated by 

ULIKE™ – permeabilities, porosity, net-to-gross ratio, and transmissibility multiplier 

applied in the boundaries of sand channel and proximal levee (OPERNUM) 

The importance of turbiditic elementary channels in matching water arrivals cannot be 

overstated. Indeed, the fluids will primarily rush into these places with extremely high 

permeability; but digitation will occur, leaving other areas un-swept. The ‘skin’ of the 

channel refers to how the channels communicate with the background. 

The seismic structure of the specific field reveals the presence of faults, which might 

be fluid conductive or fluid impermeable. The first key element in this field is the 

transmissibility between faults. It has a significant impact on the field’s exploitation. 

The transmissibility of faults has a big impact on pressure studies (BHP: Bottom Hole 

Pressure), but it also has a big impact on production mechanisms, especially if the fault 

restricts access to an aquifer or a connection with an injector. 

The analysis of the BHP is one of the most important of the reservoir. It shows two 

types of information: the flowing pressure and the average reservoir pressure. The first 

is the pressure when the well is active and producing. The pressure’s profile of a 

reservoir is a declining curve with a minimum pressure value in the well. The flowing 

pressure depends on the conditions of the well’s condition (i.e., the skin and the 

permeability on the well’s vicinity). In the model, the skin of the well and its vicinity’s 

condition are approximated with a productivity index (PI), as this property is linked with 

the pressure variation during the flowing part of the production. Therefore, this 

Productivity Index can be adjusted using a PI multiplier parameter. 

Besides, the average reservoir pressure is the one obtained away from the well. When 

production ceases, the pressure at the well will revert to the reservoir’s average 

pressure after a sufficient period of time; this is known as a static pressure, which can 

be calculated by extrapolating the build-up of pressure to a long period of time to 

achieve the constant pressure. This average reservoir pressure is linked to the 
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connected investigated volume; the lower the volume connected, the faster the 

pressure will drop. Nonetheless, aquifer and water injection lead to a pressure 

contribution. Therefore, the aquifer volume can also be considered as an uncertain 

parameter on the model and the connectivity to the injector. 

To keep the parameters consistent, the variation of the parameters is based on the 

2G&R synthesis, general reservoir geology understanding, and common sense. The 

single-parameter research previous made by studies on the Alpha-system in 

examining the reservoir’s behavior also aid on that perspective. 
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5 RESULTS 

The following sections contains the analysis of the two sections chosen of the Alpha 

field to be matched: Alpha-East and Alpha-Central. 

5.1 Alpha-East: PROD10 – INJ12 

The study of the Alpha-East compartment of the reservoir is divided into two ES-MDA 

analysis: 

1. The first ES-MDA: data assimilation from a set of runs in the reservoir fluid flow 

simulator with fewer uncertain parameters in order to check the behavior and 

stability of the method and if there are any corrections, adjustments and 

conclusion that could be proposed to obtain a better match of the production 

vector observation data; 

2. The second ES-MDA: data assimilation from the same reservoir compartment 

with more uncertain parameters defined mainly to obtain a better match on the 

flowing part of the fluid flow process and the reservoir pressure after the long 

shut-in of the producer well. 

5.1.1 First ES-MDA run on Alpha-East 

ES-MDA is used to update the uncertain parameters in order to find a model that 

behaved similarly to the real reservoir. It is possible to present a few indicators that led 

to the correct behavior of the interest response. There are three vertical FLUXNUM 

compartments in the East Block, which is itself a MULTNUM region, which correspond 

to three erosive channel steps. There are two wells within this compartment which will 

be analyzed, including one producer (PROD10) and one water injector (INJ12) (Figure 

3). The pressure study suggests that this block has strong communication. Water 

injection is the production mechanism, but it is insufficient to maintain reservoir 

pressure. Additional pressure support is provided by an aquifer. 
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The uncertain parameters definition for this panel and their respective definition  are 

shown in Table 2. For this analysis, the number of ensembles used was 𝑁𝑒  =  25 and 

with 3 iterations (𝑁𝑎  =  3) and the observations to match were: PROD10 water cut and 

bottom-hole pressure; INJ12 bottom-hole pressure. 

Table 2 – Parameter’s designation and their explanations on the analysis of Alpha-East 

Parameters Explanations 

m_4_26 Transmissibility multiplier between distal levee and channel fairways 

multregt_transm Transmissibility multiplier between channel and proximal levee 

op4_perm_i 
Elementary channel permeability in i-direction (assumed isotropy and 

permeability in k-direction is 10% of i-direction) 

op4_poro Elementary channel porosity 

op4_ntg_ratio Elementary channel net-to-gross ratio 

One of the simplest ways to verify the efficiency of an ES-MDA process is to analyze 

the simulator response before and after the adjustments. In this context, the producer 

PROD10 and injector INJ12 are the selected wells in order to assess the efficiency of 

the method over each iteration. On Figures 7, 8, 9 and 10, the red lines represent the 

initial ensemble spread, the green lines represent the last iterations of the assimilation 

process, and the black squares are the available observation data. It is possible to 

observe that the response of the model after the adjustments are able to better 

represent the observation data available compared with the initial ensembles. 

 

Figure 7 – Well bottom hole pressure for the producer PROD10. Box 1 shows the shut-in pressure and 
Box 2, the flowing pressure. The red lines indicate the initial ensemble. The green lines indicate the 

final ensemble. The black squares are the historical data. 
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Figure 8 – Local analysis at shut-in pressure of producer PROD10. The red lines indicate the initial 
ensemble. The green lines indicate the final ensemble. The black squares are the historical data. 

 

Figure 9 - Water cut for the producer PROD10. The red lines indicate the initial ensemble. Box 1 
shows the interval with higher simulated water cut values. The green lines indicate the final ensemble. 

The black squares are the historical data. 
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Figure 10 - Well bottom hole pressure for the injector INJ12. The red lines indicate the initial 
ensemble. The green lines indicate the final ensemble. The black squares are the historical data. 

These figures show the response adjustments of the models that minimize the variance 

from of the ensembles from each iteration. Furthermore, in Figure 8, the simulated 

response matches well the static pressure behavior, staying few barsas above the 

observation data.  

On the static process of the simulation, the well is shut and the pressure slowly builds-

up in order to maintain the equilibrium of the reservoir. The ∆𝑃 between the initial 

pressure (i.e., before production) and the lower long term shut-in pressure is related to 

the change of the component (e.g., water, gas, oil) volume (∆𝑉) in the reservoir from 

the cumulative produced volume of components and the cumulative injected volume 

of water. Secondly, the initial component connected volume in place impacts also this 

pressure difference. Finally, this ∆𝑃 is also dependent of the total compressibility of the 

system (i.e., resulting from the compressibility of the components − weighted by the 

fluid saturation − and the one of the rock). Then, bigger is the initial connected volume, 

less is the ∆𝑃. Since the aquifer volume is often uncertain, it is considered as a key 

parameter to match this ∆𝑃 difference. The inclusion of the aquifer volume and the 

analysis of ES-MDA results will be made on Section 5.1.2. 

Still on Figure 7, Box 2, gives us the flowing pressure. This simulation steps gives us 

more local comprehension of the system compared with the static pressure. In the 

vicinity of the well PROD10, the effect of the skin and permeability in the field are 

affecting the flowing pressure. That said, from ES-MDA’s final iteration curves, it is 

 nitial ensemble

Final iteration s ensemble

 istorical data
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necessary to adjust the well productivity index multipliers in order to obtain better 

matches on the flowing part. The productivity index of a well is defined as being the 

ratio of the flow rate by the pressure differential and is also very affected by the skin. 

In other sections (5.1.2 and 5.2), the PIs multipliers will be considered in some of the 

simulations and their strong non-linear response will also be discussed. 

From PROD10 water cut profile, Figure 9 shows that the initial ensemble manages to 

represent the early water breakthrough given the transmissibility parameters of the 

elementary channels predefined in the uncertain parameter list. However, the last data 

assimilation results give very tight ensembles, with a relatively late water breakthrough 

and an excess of water production which is represented in the interval in Box 1 of 

Figure 9. The final average value of the water cut was matched – roughly 0.6. 

In addition to the volume of the eastern aquifer, this mismatch of the water cut from the 

previous mentioned period of days can also be linked with the injector productivity 

index values (Figure 10). From INJ12 bottom hole pressure graphic, we can observe 

good match on the static parts but an underestimation on the flowing pressure.  

Figures 11 and 12 show the evolution of the objective function for each property of the 

production vector we want match. As expected from ES-MDA, the initial twenty-five 

simulations have very sparse values OF values, as the uncertain parameters are fist 

randomly sampled given the pdf and the ranges. With the first data assimilation 

iteration, the OF is reduced for all production vector properties, minimizing the best 

way possible given the observation data. Figure 12 shows an unstable evolution of OF 

over the iterations, but on the last ones it is possible to see a certain stabilization on 

the interval ES-MDA found for all the production vector properties. Finally, in Figure 13 

is the evolution of the average value of the OF, showing the same behavior as 

described earlier. 
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Figure 11 - Evolution of the pressure’s portion of the ES-MDA OF 

 

Figure 12 - Evolution of the water cut’s portion of the ES-MDA OF 
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Figure 13 - Mean OF value evolution of first ES-MDA run of Alpha-East 

The uncertain parameters values over the iterations are shown in Figures 14 and 15. 

The first figure shows the mean value calculated based on the numbers of ensembles 

and the error bar based on the standard deviation calculated from each iteration, giving 

a good estimation of the variance of each iteration of ES-MDA. The second figure 

depicts the spread of all the uncertain parameters with the related ensemble size 𝑁𝑒 

and the OF value for each ensemble.  
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Figure 14 - Uncertain parameter evolution of first ES-MDA run on Alpha-East  

 

Figure 15 - Uncertain parameters scatter over the iterations of first ES-MDA on Alpha-East 

Figure 14 shows that the errors are reduced for most of the parameters over the 

iterations, being the biggest variance related to the initial ensemble, as it is generated 

randomly from the a priori distributions. In Figure 15, it is possible to identify that, from 

an initial large spread of the five uncertain parameters values associated with a certain 

OF, ES-MDA reduces all spreads’ ranges into the best interval of parameters for all 

properties to minimize the OF. For all uncertain parameters, it is shown this behavior, 

as the uncertain parameters begin to agglomerate in regions where the OF have 
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smaller values. From iteration 0 to iteration 1, all parameters but the elementary 

channel’s porosity (op4_poro) reached the regions where they remain gathered until 

the end of all ES-MDA procedure.  

As the problem of reservoir fluid flow simulation is highly non-linear, it may exist the 

possibility of the OF to not have a global minimum, but several local minima. In this 

case, ES-MDA can converge to a certain range of uncertain parameters but give bad 

matches of the production vector properties. This happens because we are using a 

data assimilation method that depends on the number of ensembles employed; the 

smaller it is, the bigger are the uncertainties from each iteration, and higher is the 

probability of not obtaining a good match. For that reason, it is reasonable to pick a 

large number of ensembles for the next ES-MDA processes to be able to get more 

accuracy on the covariances calculated and better match results. 

5.1.2 Second ES-MDA run on Alpha-East 

In order to reduce the average simulated reservoir pressure after the long shut-in 

period of well PROD10, the aquifer volume was put into the new uncertain parameter 

list to see the behavior on the BHP in that simulation part. The aquifer is analytical and 

follows the Fetkovitch model. On the previous ES-MDA, the initial volume of the aquifer 

was 3.0 x 108 m3. It is also worth mentioning that the multiplier transmissibility between 

MULTNUM regions 26 and 4 is an important parameter in order to obtain a correct 

average pressure of the reservoir. 

For this new ES-MDA run, the PIs multipliers were considered as new uncertain 

parameters for both analyzed wells in Alpha-East. The two wells have a total of three 

completions, each one with its respective productivity index. The PI multiplier will try to 

simulate the skin factor in the vicinity in the wells. Furthermore, for the PROD10, after 

its closure in day 1190 (approximately), a second PI multiplier for each completion of 

the well will be applied, totalizing 9 PIs multipliers as new uncertain parameters. 

Lastly, to better represent the geology complexity of the reality, transmissibility 

multipliers for the three fluid regions (66-68) will also be included in this run. The new 

uncertain parameter list and their explanation in Table 3. For this analysis, the number 

of ensembles used was 𝑁𝑒  =  100 and with 5 iterations (𝑁𝑎  =  5) and, in addition to 
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the previous production vectors properties used to get a match, the oil production rate 

of PROD10 was also considered in this run. 

Table 3 - Uncertain parameter list for second ES-MDA run on Alpha-East 

Parameters Explanations 

m_4_26 Transmissibility multiplier between distal levee and channel fairways 

multregt_transm Transmissibility multiplier between channel and proximal levee 

op4_perm_i 
Elementary channel permeability in i-direction (assumed isotropy and 

permeability in k-direction is 10% of i-direction) 

op4_poro Elementary channel porosity 

op4_ntg_ratio Elementary channel net-to-gross ratio 

f_66_67 Transmissibility multiplier between flux region 66 and 67 

f_67_68 Transmissibility multiplier between flux region 67 and 68 

aq2_vol Analytical aquifer initial volume 

w12_pi_1 PI multiplier of INJ12 first completion 

w12_pi_2 PI multiplier of INJ12 second completion 

w12_pi_3 PI multiplier of INJ12 third completion 

w10_pi_1_a PI multiplier of PROD10 first completion at start of production 

w10_pi_2_a PI multiplier of PROD10 second completion at start of production 

w10_pi_3_a PI multiplier of PROD10 third completion at start of production 

w10_pi_1_b PI multiplier of PROD10 first completion at day 1092 

w10_pi_2_b PI multiplier of PROD10 second completion at day 1092 

w10_pi_3_b PI multiplier of PROD10 third completion at day 1092 

The results obtained are shown in on Figures 16, 17, 18 and 19 shown below. In these 

figures, the initial ensemble spread is represented in grey scale, and the last ensemble 

is on red. The black curve is the best ES-MDA run given the global OF. The observation 

data is in blue, and its uncertain region is also represented given the observation data 

variance. 
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Figure 16 - Well bottom hole pressure simulation results from second ES-MDA run for the PROD10. 
The grey scale represents the initial ensemble spread. The red one represents the last ensemble. 

Historical data and their uncertain region (noise in measurements) are in blue. 

 

Figure 17 - Well bottom hole pressure simulation results from second ES-MDA run for the INJ12. The 
grey scale represents the initial ensemble spread. The red one represents the last ensemble. 

Historical data and their uncertain region (noise in measurements) are in blue. 
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Figure 18 - Oil production rate simulation results from second ES-MDA for the PROD10. The grey 
scale represents the initial ensemble spread. The red one represents the last ensemble. Historical 

data and their uncertain region (noise in measurements) are in blue. 

 

Figure 19 - Water cut simulation results from second ES-MDA run for the PROD10. The grey scale 
represents the initial ensemble spread. The red one represents the last ensemble. Historical data and 

their uncertain region (noise in measurements) are in blue. 

Analyzing the BHP of PROD10 in Figure 16, it is possible to observe that a bigger 𝛥𝑃 

from the initial pressure and the final average reservoir pressure was obtained in 

comparison with Figure 8. Moreover, from the evolution of the mean uncertain 

parameters used in this ES-MDA run (Figure 21), the initial aquifer volume converged 

to a smaller value than the one used on the first run, confirming the hypothesis listed 
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on the previous section about using a smaller aquifer volume in order to obtain a better 

match on the average reservoir pressure after the long pressure build-up.  

Furthermore, it was obtained a good match on the flowing pressure of PROD10 in 

comparison to Box 2 of Figure 7. The inclusion of the 9 parameters related to the wells’ 

productivity indexes and the flux regions multipliers are the main responsible for this 

match, as these PIs multipliers are the parameters directly related to this flowing step, 

affecting the flowing pressure and simulating the skin factor effects in the wells vicinity. 

PROD 0’s water breakthrough is still a little late compared with the observations, as 

shown in Figure 19, but after the well closure on day 1092, compared to Figure 9, the 

water cut is better match, this time obtaining values in the lower bound of the 

observation error interval.  

From Figure 17 and the previous result obtained from the first ES-MDA run, the final 

ensemble spread is very similar with the one observed in Figure 10, with good matches 

on the static pressure and, in the flowing pressure, converging to smaller values 

compared to the observation data. Due to the high complexity of the reservoir’s 

geology, it is possible to have elementary channels with different properties then the 

ones defined from ULIKE™ inside the uncertain parameter list, which are permeability, 

porosity, and net-to-gross ratio. 

Figure 20 shows the evolution of the mean OF over the five data assimilation iterations. 

The value of the OF is bigger in this second run because the oil production rate of 

PROD10 was included as one term of the OF calculation. The picture shows an initial 

high OF value with a big uncertainty, but decreasing from iteration to iteration, with its 

variance following the same pattern. The evolution of the OF and the uncertain 

parameters spread over the iterations is shown in Figure 22, where is possible to 

visualize the convergence of the method over the iterations to a certain region of 

parameters values where the OF has low values. 
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Figure 20 - ES-MDA’s second run mean OF statistics 
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Figure 21 - Uncertain parameter evolution of second ES-MDA run on Alpha-East 
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Figure 22 - Uncertain parameters scatter over the iterations of second ES-MDA run on Alpha-East 
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The scatter plots in Figure 22 show the quick convergence of ES-MDA for some 

uncertain parameters of choice, such as: w10_pi_2_a, w10_pi_2_b and w10_pi_3_b. 

For these parameters, mainly for iteration 2 and iteration 3, the scatter data tends to 

follow a vertical line with a very small variance (Figure 21). In other words, similar 

values of these uncertain parameters generate different OF values for different 

ensembles. This can happen as ES-MDA works with a large number of parameters 

combinations; hence, the same value of an uncertain parameter can generate an OF 

with small or big values, depending on the combination with another parameter that 

also contributed to this specific result. The uncertain parameters’ scatter evolution over 

the iterations tend not to follow any specific or defined path in order to try to find the 

best combination for the defined OF. From an a priori scatter (iteration 0 of Figure 22) 

and following ES-MDA’s update equations, their values are updated minimizing the OF 

and the ensemble variance (spread). 

5.2 Alpha-Central: PROD6 – INJ8 

An injector well (INJ8) and a producer well (PROD6) make up the Central block. 

Multiple faults have a significant impact on this section, reducing transmissibility within 

the core region but not blocking the flow. The aquifer and the elementary channels 

generated by ULIKE™ are used in the production mechanism. 

The uncertain parameters considered in this section and their respective definition is 

shown in Table 4. For this analysis, the number of ensembles used was 𝑁𝑒  =  100 and 

with 5 iterations (𝑁𝑎  =  5) and the observations to match were the same as the second 

ES-MDA run. 
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Table 4 - Uncertain parameter list for ES-MDA run on Alpha-Central 

Parameters Explanations 

multregt_transm Transmissibility multiplier between channel and proximal levee 

op4_perm_i 
Elementary channel permeability in i-direction (assumed isotropy and 

permeability in k-direction is 10% of i-direction) 

op4_poro Elementary channel porosity 

op4_ntg_ratio Elementary channel net-to-gross ratio 

m_2_38 
Transmissibility multipliers between faulted areas 

m_38_39 

f_21_22 
Flux multiplier on vertical connection between Maximum Flooding Surfaces 

f_22_23 

p6_1 PI multiplier of PROD6 first completion 

p6_2 PI multiplier of PROD6 second completion 

p6_3 PI multiplier of PROD6 second completion 

p8_1 PI multiplier of INJ8 first completion 

p8_2 PI multiplier of INJ8 second completion 

p8_3 PI multiplier of INJ8 third completion 

The results obtained are on Figures 23, 24, 25 and 26 shown below. In them, the initial 

ensemble spread is represented in grey scale, and the last ensemble is on red. The 

black curve is the best ES-MDA run given the global OF. The observation data is in 

blue, and its uncertain region is also represented given the observation data variance. 

 

Figure 23 - Well bottom hole pressure simulation results from ES-MDA run for the PROD6. The grey 
scale represents the initial ensemble spread. The red one represents the last ensemble. Historical 

data and their uncertain region (noise in measurements) are in blue. 
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Figure 24 - Well bottom hole pressure simulation results from ES-MDA run for the INJ8. The grey 
scale represents the initial ensemble spread. The red one represents the last ensemble. Historical 

data and their uncertain region (noise in measurements) are in blue. 

 

Figure 25 - Oil production rate simulation results from ES-MDA run for the PROD6. The grey scale 
represents the initial ensemble spread. The red one represents the last ensemble. Historical data and 

their uncertain region (noise in measurements) are in blue. 
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Figure 26 - Water cut simulation results from ES-MDA run for the PROD6. The grey scale represents 
the initial ensemble spread. The red one represents the last ensemble. Historical data and their 

uncertain region (noise in measurements) are in blue. 

The BHP of PROD6 (Figure 23) shows that the simulated values are very close to the 

observation, mainly for the flowing part. Regarding the static pressure (all three build-

ups), there is gap between simulated and observed data, which could indicate a lack 

of connected volume between the injector INJ8 who helps to maintain the pressure for 

the producer. About INJ8 BHP, we see in Figure 24 that ES-MDA manages to get a 

good match on both fluid and static pressure. For instance, as observed mainly in the 

three falloffs between days 1000 and 2000, the short-term pressure drop is well 

matched, meaning that the behavior in the well’s vicinity is correctly guessed with the 

parameters of choice: in this case, the productivity index multiplier on the three 

completion layers. In the final days of the simulation, mainly for INJ8, there is relatively 

large mismatch on the pressure drop. This could also be an indicative that there is still 

some volume connectivity missing inside the model which could be improved in further 

analysis. 

Figures 25 and 26 show, respectively, the oil production rate and the water 

breakthrough of PROD6. Both properties are well matched during the whole simulated 

timesteps. Nonetheless, in Figure 26 we observe two more families of simulated 

ensembles (red curves) in the final ES-MDA iteration. This means that, if continued, 

the assimilation processes could be able to find not only a more significant 

representation of the water cut then it already is, but also for the others three production 
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vector properties analyzed. The water cut of a production well is not only function of 

the injection rate of the injector well helping to maintain a good pressure value for the 

oil recovery from the producer, but also on the faults’ transmissibility, which are all 

considered inside our uncertain parameter lists and the geological model applied for 

this ES-MDA run. 

Figure 27 shows the evolution of the mean OF over the five data assimilation iterations. 

As previously mentioned, in the final iterations, ES-MDA generated some new families 

of ensembles that do not follow the same mean behavior, hence the value increase of 

OF from iteration 3 to 4. These new ensemble families generated from iteration 4 to 5 

are not so dispersed around the mean, meaning that the variance estimated from the 

ensembles are reduced, as shown in the reduction of the error bar from the picture. 

Nevertheless, for the history matching results and analysis of the uncertain 

parameters, the data assimilation process should stop at iteration 2, as it reached a 

possible minimum of the OF. 

The evolution of both, mean uncertain parameters’ values and OF in respect with the 

uncertain parameters spread over the iterations are shown in Figures 28 and 29, 

respectively. 

 

Figure 27- ES-MDA run mean OF statistics on Alpha-Central 
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Figure 28- Uncertain parameter evolution of ES-MDA run on Alpha-Central 
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Figure 29 - Uncertain parameters scatter over the iterations on Alpha-Central 
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Figure 29 shows the same process of uncertain parameters’ scatter and evolution of 

the iterations of Figures 15 and 22. However, in Figure 29 it is noticeable a slower 

convergence of certain uncertain parameters values over the iteration, as shown in the 

parameters: op4_perm_i, op4_ntg_ratio, op4_poro, m_38_39 and p_8_2. In contrast, 

other parameters such as multregt_transm and f_21_22 converge early in iteration 1 

and do not undergo further significate updates over the next iterations. This can be an 

example of spurious correlation which can interfere with the data assimilation problem. 

Besides, as shown in Figures 23, 24 and 26, the last iteration did not generated one 

family of red curves with a relatively small ensemble variance, but at least two or three. 

This directly impacts the process of finding a global minimum and the best combination 

of uncertain parameters for the problem. 

5.2.1 Analysis of Alpha-Central using EST’s manual history matching with 

interpolated responses 

As detailed in Section 2.3.3, ES-MDA is a multiple data assimilation method used in 

inverse problems where the mismatches between simulated and observation data are 

reduced along the data assimilation, hence giving the best combination of a number of 

uncertain parameters defined for the forecast of the model response. One advantage 

of ES-MDA is that there is no limitation in the number of uncertain parameters defined 

to be used on the model to obtain the simulated data, as long as it is provided for each 

member of the uncertain parameter list the statistics necessary in order to build a 

probability distribution function for the initial random sampling to initiate the process. 

In this section of the work, the software EST – an internal software from TotalEnergies 

used for history matching – was used to also try to obtain a good match on the Alpha-

Central. The motivation of this comparison was the difficulty in finding a good range for 

the PROD6 and INJ8 productivity index for the initial ensemble of ES-MDA, which often 

generated spurious correlation values and parameters collapses in earlier iterations, 

not obtaining a good first spread over the observation data and, thus, failing to get a 

match. The goal of EST is to find a good response of the simulation data that fits the 

chosen parameters as well as the desired model responses. This model could be a 

kriging surface or a polynomial regression. 
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The kriged responses inside EST are created using second-degree polynomials. 

Therefore, a minimum, maximum, median value and, thus, a distribution of logarithmic 

or linear parameters must be established for each parameter. The median is required 

to calculate the second-degree coefficients for polynomial regression. After that, the 

regression should be as near to the experimental response points as possible. It will 

be required to determine a combination of factors in order to discover the maximum 

likeness to the experimental points. 

As opposed to ES-MDA, which is a method without limitation on the numbers of 

uncertain parameters, the maximum handled by EST are 11. Therefore, some 

parameters were removed (op4_ntg_ratio, f_22_23, f_21_22) from the list in Table 4 

to make this comparison and, in the INTERSECT™ input file, their values were 

replaced with the best ones found from the previous ES-MDA. In Figure 30, the 

simulations from which EST finds the polynomial regression parameters are 

represented in blue, with a total of 151 curves. From that, it is necessary to manually 

find the best combination of parameters that approximated most the observation data. 

That kriged response is shown in the red line. 

 

Figure 30 - From top to bottom – left to right: PROD6 bottom-hole pressure; INJ8 bottom-hole 
pressure; PROD6 oil production rate; PROD6 water cut. The blue curves are the 151 reservoir 

simulations. The red line is the best kriged response found. 
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With the combination of the parameters that generated the best kriged response, it is 

also necessary to confirm with the fluid flow simulator the real effect of those set of 

parameters, as there is a high uncertainty related to these interpolation processes and 

also the high non-linearity of the physics related to the problem. Figure 31 depicts the 

response from the combination of the uncertain parameters get from EST. We observe 

that in a general way, the simulation results follow the same trend of the observation 

data points, and the match is obtained for some production properties, like the PROD6 

bottom hole pressure and oil production rate. However, is it on the INJ8 bottom hole 

pressure where we can see the biggest discrepancies from EST kriged response and 

the real simulated one, especially on the flowing pressure (days 1100 to 1600, 

approximately). 

To improve the real response from EST kriged curves or even find a better combination 

of uncertain parameters, the process just described above for this workflow could be 

done iteratively. In other words, with the real response given by the fluid flow simulator, 

new ranges of uncertain parameters could be defined and retuned to EST to make a 

new analysis to obtain better matches. 

 

Figure 31 - From top to bottom – left to right: PROD6 bottom-hole pressure; INJ8 bottom-hole 
pressure; PROD6 oil production rate; PROD6 water cut. The continuous lines indicate the simulated 

production vector property. The black squares are the historical data. 
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6 CONCLUSION 

This final graduation work presented a history matching workflow application for a real 

scale reservoir model with complex geological models, using data assimilation 

methods, more specifically an ensemble-based method. Even while ensemble-based 

methods have been effectively used in many applications over the past decades, 

inverse problems with significant nonlinearity, such as reservoir history matching, 

continue to pose difficulties. The Gaussian assumption that underlies this class of 

approaches are primarily to blame for these issues. 

This work analyzed the real scale reservoir, denominated Alpha Field, into 

compartments due to the faults located in the area, which divided the turbiditic reservoir 

into different areas and regions. As mentioned, reservoir modeling is considered to be 

a complicated and time-consuming activity during the research and development 

process. This fact is mainly due to the geological complexity of petroleum reservoirs 

and the necessity of modeling the best was possible the geological features that may 

impact the fluid flow simulator results and, thus, the exploration activity. That said, it 

was proved the efficiency of the rule-based modeling tool ULIKE™, used to 

characterize the elementary sand channels and its respective fairways where the fluid 

flow is taken place and respecting all wells constraints of the field. These results affect 

directly in the history matching process of the analyzed area, as all the properties 

observed and the results obtained from the reservoir simulator is linked with the 

geology and how it is represented in the model, for instance, the connectivity between 

wells and how this impacts the bottom hole pressure. 

Using data assimilation based on ensemble-based methodology to perform the history 

matching of the study area, the ES-MDA algorithm proved to be functional for the study 

case, being capable of yielding ensembles of models that honor the geological model 

and observation data, generating sets of history-matched models of good quality, both 

qualitatively and quantitatively. From the results of the analysis of both reservoir 

compartments, the following conclusions are deduced: 

• In order to be able to check all the uncertain parameters responses for every 

ensemble member, it was necessary a high number of simultaneous reservoir 

fluid flow simulations, obtaining, thus, an ensemble of the forward operator used 
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to the data assimilation problem. In average, for each reservoir compartment 

analysis using 5 assimilations iterations and an ensemble size of 100, it was 

necessary a minimum of 600 reservoir simulations to obtain a good 

representativity from the model responses and then, observe the quality of the 

assimilations; 

• For all ES-MDA procedures made during this work, it was noted how much the 

initial ensembles models, resulted from the reservoir responses with the 

uncertain parameters sampled from the a priori distributions, affects the 

assimilation and history matching results. Many initial ensembles that did not 

have a big spread and did not cover the observation data failed to converge to 

a good history-matched ensemble of models, despite the use of inflation 

coefficients factors chosen in the beginning of the process. Therefore, the a 

priori distributions and the randomly sampled uncertain parameters contribute 

to achieving good results, whereby their ranges, mean/standard deviation 

values should be carefully chosen and analyzed previously during screening 

studies and sensitivity analysis;  

• From the results shown in Figures 16 − 19 and Figures 23 − 26, it was shown 

the quick convergence of the method. This is mainly due to the use of inflation 

coefficient factors and how ES-MDA was formulated, minimizing the ensemble 

variance in each assimilation iteration. Hence, the choice of these factors and 

the assimilations numbers also have a direct impact on the results. For both 

reservoir compartments analyzed, five data assimilations iterations were 

enough for providing good data matches; 

• The ensemble size also impacted on the history matching results. Small 

ensembles size failed to result in good history-matched models and also did not 

manage to give good uncertainty representations, regardless of the method’s 

convergence. In this work, for the dataset analyzed, an average ensemble size 

of 100 was the best value in which was possible to better analyze the results, 

even if the ES-MDA processes were not completed, due to computational 

issues or any other reason. Small ensembles size, however, can give a good 

first representation of the uncertain parameters choice and how will them 

behave with the reservoir simulator responses; 

• From the total of uncertain parameters used, the ones that impacted the most 

during the reservoir fluid flow simulator were the wells productivity index 
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multipliers. The productivity index of the well is one parameter that represents 

the behavior of the fluid flow near the well, and the multiplier on them tries to 

simulate the skin factor. Therefore, it can be concluded that these parameters 

directly affected the dynamic pressure values, but also it was confirmed a 

possible non-linearity regarding these parameters, in which very small changes 

generated ensembles with completely different responses. These responses 

affected some simulations where the reservoir simulator did not completely 

finish the run, and, in order to continue the data assimilation method, those 

failed simulations had to be re-run. 

The ES-MDA approach’s overall performance is encouraging, and it offers great 

perspectives for the use of this data assimilation method in a real scale reservoir with 

a considerate geological complexity. The easy implementation of this type of ensemble 

smoother is desirable, being able not only to be used for reservoir engineering 

applications, but also for other data assimilation processes. The major difficulties and 

deficiencies encountered are in relation to spurious correlations and large loss of 

variability of the model ensemble, which can result in a poor estimate of reservoir 

uncertainties causing a poor prediction of field life, even with a good historical fit. This 

fact can be mitigated by applying adaptive methodologies, where the damping of each 

iteration as well as the number of iterations are set automatically and using covariance 

localization methods to reduce the loss of variance due to possible sampling errors. 

In addition to the data assimilation process using ES-MDA, it was used the internal 

software for history matching from TotalEnergies, EST, to analyze one of the 

compartments of the reservoir. Experimental designs models that use interpolations 

and proxy models in order to give an approximate response to inverse problems can 

drastically reduce the computational cost necessary to run some forward operator, 

such as the reservoir simulator. However, as these responses are considerate to be 

an estimate of the real problem, it is always necessary to analyze the results obtained 

and check if they are feasible, respecting the physics of the problem involved and if 

the uncertainty is still well represented. With the results obtained from the work using 

this method, some conclusion can be made: 

• The dynamism of the software, giving instantaneous interpolated responses 

is its main attraction. Even with its limitations, mainly with the maximum 
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numbers of uncertain parameters that can be considered, it is possible to 

have innumerous combinations, having the opportunity to find the best 

combination possible that best approximates the responses to the 

observation data. However, because it is a manual process of choosing the 

parameters values and visualizing the response in the interpolated model, 

this process can become extremely time-consuming, with the possibility in 

not finding a good match with the uncertain parameters and its ranges 

previously defined, being necessary to redo the process, either with other 

parameters or different ranges; 

• Even though the kriging responses are instantaneous, it is only possible to 

analyze the response changing one parameter at a time. That said, and 

knowing that with petroleum reservoirs, many parameters are related with 

each other (e.g., permeability/porosity) this can become an issue if the 

production property vector in which we want to obtain a match is large and 

there is a significant number of uncertainty parameters that is known to be 

correlated or to have a possible correlation with each other; 

• From the analysis of real response given by the reservoir simulator, it was 

observed some discrepancies between the kriged response given by the 

best combination found of the uncertain parameters. These differences are 

greater on the dynamic pressures values from the injector’s bottom hole 

pressure. This could indicate a possible high non-linear effect of the 

productivity index’s multipliers, as the kriged responses work with 

interpolations of second degree, which might not be able to correctly 

describe this production property.  

With EST, the possibility of quickly screening the impact of some selected parameters 

as most influent that are used to calibrate the model with kriging responses can also 

give interactive insights about how the model is impacted with this specific parameter 

variation. EST history matching process was used considering the uncertain parameter 

as known. Due to the absence of the real reservoir response during the manual history 

matching process, EST multi solutions process could have been used. For that matter, 

this methodology is iterative after having checked with the real reservoir response, 

repeating the process until certain stop criteria arrive. The criteria are based on the 

cost function computation. Nevertheless, EST with screening options could have also 
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been used during initial phases of reservoir history matching, in which the objective is 

not to get an history-matched model, but to determine the most influent parameters 

from a large number of uncertain parameters (roughly 100) choices and ranges from 

their impacts on the production property vector. Those most influent parameters could 

serve as inspiration and, possibly, inputs of the a priori distribution used afterwards in 

history matching of petroleum reservoirs using data assimilation methods, such as ES-

MDA. 
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Abstract 

History matching in reservoir engineering is one of the most important steps of the geo-modelling workflow during the 

production phase of any oil field. This technique allows to have a good knowledge about how the field is producing and also 

have a forecast model. The biggest challenge is to be able to generate models with the reservoir’s level of complexity that 

represents reality in the best way possible. The objective of this work is to get a match on production vector properties in a 

real case study of a turbiditic reservoir. For that matter, it was used an ensemble-based method to assimilate the dynamic 

data, the Ensemble Smoother with Multiple Data Assimilation method, in order to find the best combination of uncertain 

parameters used as input to the reservoir simulator. The geological model used is from a real dataset and the elementary sand 

channels are generated with ULIKE™: a rule-based modeling process based on the random-walk principle. The data 

assimilation processes produced ensembles of history matched models that honor both dynamic data and the geological 

model. Furthermore, it was also used an history matching software based on experimental designs and proxy-models using 

interpolated surfaces/polynomials and kriging to inspect the impacts from the uncertain parameters, mainly the productivity 
index multipliers. Results show that using interpolation to estimate the reservoir response is a quicker and demands a lower 

computational cost but requires the confirmation with the numerical response from a reservoir simulator. 

1. Introduction 

Along with the large variety of studies that are made to fully understand the area in which a production activity will take 

place, reservoir studies and, more specific, fluid flow simulations play one of the most important roles in this whole 

hydrocarbon recovery process. To build a reservoir simulation model, it is necessary to have data about rock and fluid 

properties (petrophysical attributes), in order to characterize the fluid flow and the entire physical process behind it. Besides, 

it is also of utmost importance always bear in mind that the data available for characterization is not exact and entirely 

correct, as it is consisted of inaccuracy, inconsistency and uncertainty. As indirect methods of evaluation, such as seismic and 

well logs, are mainly used to acquire information about the subsurface formations’ physical properties, reservoir models are 

built inside an uncertainty parameters domain, meaning that any prediction made from these models are also considered 

uncertain. That is the reason why history matching processes are being largely utilized in the industry in the last decades: 

improve the reliability of reservoir predictions using the models generated by available petrophysical data and statistical 

methods trying to incorporate field observation data in reservoir simulations models, allowing a better description of the 
uncertainty both in simulation predictions and reservoir parameters. 

The main objective of this work is to obtain a model that can predict the future behavior of the reservoir in order to 

optimize the production process and oil recovery. For this, given the observation data from some of the production vector 

properties (i.e., bottom hole pressure, water cut and oil production rate) and the simulation results from the model previous 

created with the uncertain parameters (i.e., porosity, permeability, net-to-gross ratio, transmissibility multipliers between 

faulted regions and well productivity index’s multipliers) as inputs, a history matching process will be made using mainly the 

ensemble smoother with multiple data assimilation (ES-MDA: EMERICK; REYNOLDS, 2013) to find the best combination 

of these uncertain parameters defined beforehand that gives the best match from the observed data. 

1.1. Bibliographic Review 

The petroleum industry has adopted ensemble-based data assimilation techniques since they produce several history-

matched models and can also quantify the level of uncertainty in reservoir simulation results (AANONSEN et al., 2009; 
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EVENSEN, 2009). This group of data assimilation techniques includes ES-MDA, proposed by Emerick and Reynolds 

(2013). This method has been demonstrated to outperform existing ensemble-based approaches in both synthetic and real-

world scenarios, with improved data matching and reduced computational costs (EMERICK, 2016). 

The same data set is iteratively assimilated with an inflated measurement error covariance matrix in ES-MDA. For linear 

systems with Gaussian prior and Gaussian noise in the measurements, Emerick & Reynolds (2013) demonstrated that the 

inflation factors 𝛼′𝑠 must satisfy the following requirement to achieve the following equivalence between single and multiple 

data assimilations: 

∑
1

𝛼ℓ

= 1

𝑁𝑎

ℓ=1

, (1) 

where 𝑁𝑎 is the number of data assimilation defined and 𝛼ℓ is the inflation coefficient. Therefore, for every ES-MDA 

problem, it is needed to choose the number of assimilations that will be done and the inflations coefficients before each 

assimilation step. 

From Eq. (1), it is noticeable that a simple choice for 𝛼 is 𝛼ℓ = 𝑁𝑎, for all ℓ. Nevertheless, it makes intuitive sense that 

selecting alpha in descending order can enhance the method's effectiveness (EMERICK; REYNOLDS, 2013). In this 

instance, on initial steps, data is assimilated with a high 𝛼 value, which corresponds to reducing the amplitude of the initial 

updates, and then gradually decrease 𝛼 as the iterations pass by. Nonetheless, Emerick (2012) shows that changing the 
inflation coefficients in a decreasing order result in only small improvements compared to using them constant and equal to 

the number of data assimilations. 

Rosa et al. (2022) also employed the ES-MDA technique to assimilate 4D seismic data and production forecast in a deep-

water oil field, located in offshore Southwest Brazil, in order to compare the impact of using grids with different resolutions, 

exploring options to incorporate 4D seismic maps in data assimilation and production forecast. The authors proposed the use 

of two types of grids: a coarser grid or a refined grid. Results shows that both grids can be used depending on the project’s 

objectives. Since it can accurately reflect the immediate future with considerably less expensive models, the coarser grid is a 

useful choice for short-term investigations. Due to its safer risk analyses and improved representation of model uncertainty, 

the refined grid may be appropriate for long-term decisions. 

The development of the ensemble-based history matching (EnHM) software in the TotalEnergies’ geoscience platform 

known as Sismage-CIG is described in Abadpour et al. (2018). The ES-MDA approach with distance-based localization 
forms the basis of the software. A mature large carbonate oil field, a deep-offshore turbidite field, and a carbonate gas field 

were the three complex genuine fields that were used to demonstrate the performance of the methods. 

2. Methodology 

The methodology presented in this work aims to apply ES-MDA (EMERICK; REYNOLDS, 2013) to a typical history 

matching problem of a reservoir model using real data. 

2.1. History matching using ES-MDA 

Following the definition of the uncertain parameters and their input on the model, it is necessary to sample them given the 

type of pdf predefined as one of the inputs. Every set of the different combinations of parameters are called ensembles, and 

they are essential on the history matching process with ensembled-method data assimilation. Each member 𝑗 of the ensemble 

with size 𝑁𝑒 are containing the uncertain parameters of the model are defined as: 

𝑚𝑗
𝑢 = [

𝑚1

𝑚2

⋮
𝑚𝑁𝑚

], (2) 

where 𝑚𝑢 is the vector containing all 𝑁𝑚 uncertain parameters that will be updated, such as permeability and productivity 

multipliers indexes data. The superscript 𝑢 stands for uncertain. 

After the sampling of the parameters for the 𝑁𝑒 ensembles, it is also generated 𝑁𝑒 models which are taken to the forward 

operator, from time zero to the end of the historical period, in order to compute the vector of predicted data: 

𝑑𝑗
ℓ,𝑓

= 𝐹(𝑚𝑗
ℓ−1,𝑢),    𝑓𝑜𝑟 𝑗 = 1, 2, ⋯ ,𝑁𝑒 , 

(3) 

where 𝐹(∙) is the forward operator (i.e., the non-linear model used to obtain the forecast observations); 𝑑𝑗
ℓ,𝑓

is the forecast 

(𝑓) model response with size 𝑁𝑑, the total number of measurements in the historical period, resulted from the combination 

𝑚𝑗
ℓ−1,𝑢

 of uncertain parameters. 

For this work, the INTERSECT™ Reservoir Simulator was employed to compute the non-linear forward problem, hence 

simulating the dynamic behavior of the reservoir response to the different combination of uncertainty parameters previously 

defined. INTERSECT™ is a high-resolution reservoir simulator that, when coupled with a high-performance computer, 

enables this work to fully parallelize the execution of dynamic simulations for every ensemble member. 
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ES-MDA requires the 𝑁𝑑 measurements to be perturbed, i.e., apply Gaussian noise in order to be treated as random 

variables. The mean and standard deviation values are calculated from previous research of the study area during screening 

methods and single parameter research: 

 

𝑑𝑗
ℓ,𝑓

= 𝐹(𝑚𝑗
ℓ−1,𝑢),    𝑓𝑜𝑟 𝑗 = 1, 2, ⋯ ,𝑁𝑒 , 

(4) 

where 𝑑𝑜𝑏𝑠𝑗,𝑢𝑐
ℓ  is the perturbed vector of observations; 𝓏𝑑  is sampled with 𝓏𝑑~ 𝒩(0, 𝐼𝑁𝑑

); 𝐶𝐷 is the 𝑁𝑑 × 𝑁𝑑 covariance 

matrix of observed data measurement errors: 

𝐶𝐷 =

[
 
 
 
 
𝜎1

2 0 ⋯ 0

0 𝜎2
2 ⋮

⋮ ⋱ 0
0 ⋯ 0 𝜎𝑁𝑑

2
]
 
 
 
 

. 
(5) 

After that, the simulations results are compared with the observation data. As every process is based on statistical analysis 

and from observed data, there will certainly be uncertainty on the model, giving mismatches from the simulation results and 

the expectation (observations) data. Hence, these discrepancies will be numerically used inside the data assimilation based on 

correlation computation, and, for each iteration ℓ, the previous sampled parameters will be updated to a new set of uncertain 

parameters, in order to reduce the variance of the discrepancy, following: 

𝑚𝑗
ℓ,𝑢 = 𝑚𝑗

ℓ−1,𝑢 + 𝐶̃𝑀𝐷
ℓ−1,𝑓(𝐶̃𝐷𝐷

ℓ−1,𝑓
+ 𝛼ℓ𝐶𝐷)

−1
(𝑑𝑜𝑏𝑠𝑗,𝑢𝑐

ℓ − 𝑑𝑗
ℓ,𝑓

), 

𝑓𝑜𝑟 𝑗 = 1, 2, ⋯ , 𝑁𝑒, 

(6) 

where, 𝐶̃𝑀𝐷
ℓ−1,𝑓

 represents the cross-covariance matrix between the prior vector of model parameters, 𝑚𝑗
ℓ−1,𝑢

, and the 

vector of predicted data, 𝑑𝑗
ℓ,𝑓

; 𝐶̃𝐷𝐷
ℓ−1,𝑓

 is the 𝑁𝑑 × 𝑁𝑑 auto-covariance matrix of predicted data. As before, the tilde (~) notation 

indicates that these covariances matrices are estimated around the ensemble mean: 

𝐶̃𝑀𝐷
ℓ−1,𝑓

=
1

𝑁𝑒 − 1
∑(𝑚𝑗

ℓ−1,𝑢 − 𝑚̅ℓ−1)

𝑁𝑒

𝑗=1

(𝑑𝑗
ℓ,𝑓

− 𝑑̅ℓ,𝑓)
𝑇
, 

(7) 

𝐶̃𝐷𝐷
ℓ−1,𝑓

=
1

𝑁𝑒 − 1
∑(𝑑𝑗

ℓ,𝑓
− 𝑑̅ℓ,𝑓)

𝑁𝑒

𝑗=1

(𝑑𝑗
ℓ,𝑓

− 𝑑̅ℓ,𝑓)
𝑇
, 

(8) 

As mentioned, the ES-MDA processes will go on until the pre-defined number of assimilations (𝑁𝑎) is reached. It is 

important to mention that the assimilation process is made after the end of the forward operator and that the observation data 

are randomly sampled according to the data error covariance. Furthermore, for the update part, ES-MDA uses an inflation 

factor 𝛼ℓ for each assimilation step, and their choice must respect the condition stated in Eq. (1) for a correct a posteriori 

parameter’s distribution. In this work, for all study cases using ES-MDA process, the inflation factor used were constant and 

equals to the number of iterations, i.e., 𝛼ℓ = 𝑁𝑎. 

Figure 1 illustrates the workflow containing the steps of applying ES-MDA. 

 

Figure 1 - Workflow for history matching with ES-MDA on Alpha-Field 

Source: Adapted from Ranazzi & Sampaio (2018) 
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2.2. Objective function 

The Objective Function (OF) for each data assimilation at iteration ℓ used in this work is through the quadratic deviation 

between simulated model forecast and the observation data, normalized by the inverse of the covariance matrix of observed 

data measurement errors, 𝐶𝐷 and with the total number of observations 𝑁𝑑, as shown in Eq. (9) 

𝑂𝐹ℓ = √
∑ (𝑑𝑗

ℓ,𝑓
− 𝑑𝑜𝑏𝑠𝑗

ℓ )
𝑁𝑒
𝑗=1 𝐶𝐷

−2 (𝑑𝑗
ℓ,𝑓

− 𝑑𝑜𝑏𝑠𝑗

ℓ )
𝑇

𝑁𝐷

 
(9) 

3. Case Study 

The study area of the work focuses on the analysis of a real case field with a reservoir consisting of turbiditic sediments 

composed of a loosely consolidated sand. 

3.1. Synthesis of the case study and initial model 

The studied field is called Alpha-Field, a multi-story erosive constructive channel complex. The reservoir is placed at the 

level of a turtle-back salt anticlinal created after turbidite reservoir deposition. This structure causes a large number of 

Keystone faults, which are normal faults that run perpendicular to the system's elongation. The studied area is divided 

according to the direction of the channels from East to West into 3 zones - Alpha-East, Alpha-Central and Alpha-West. This 

work focus on two areas (Figure 2): 

• Alpha-Central, which contains 2 wells: one producer (PROD6) and one injector (INJ8); 

• Alpha-East, which also contains 2 wells: one producer (PROD10) and one injector (INJ12). 

Within the system, structural and stratigraphic heterogeneities will exist. There is little transmissibility between regions 

because the degree of depletion varies by region. For the modelling of the elementary channels, ULIKE™ − a rule-based 

modeling process based on the random-walk principle – was used (MASSONNAT, 2019). 

The uncertain parameters need to be chosen in order to assess their impact on the fluid flow and in the data assimilations 

processes. For the Alpha-system, lots of studies have already been carried out on the last couple of years in order to have a 

better geological understanding of the area and how to improve more and more this in a numerical representation. Hence, the 

uncertainty parameters considered for each section of the Alpha-field for this work is: 

• Alpha-Central: 

o Transmissibility multipliers between: faulted areas; distal levee and channel fairways; channel and 
proximal levee; 

o Elementary channel’s porosity, permeability and net-to-gross ratio; 

o Flux multiplier on vertical connections between Maximum Flooding Surfaces; 

o Wells productivity index multipliers 

 

• Alpha-East 

o Transmissibility multipliers between: distal levee and channel fairways; channel and proximal levee; 

o Elementary channel’s porosity, permeability and net-to-gross ratio; 

o Flux multiplier on vertical connections 

o Wells productivity index multipliers 

o Analytical aquifer’s initial volume 

 

Figure 2 - Top view of the erosive channel complex containing an explanatory diagram of the studied field with the highlighted wells 
for future analysis 
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4. Results 

4.1. Alpha-East: PROD10 − INJ12 

ES-MDA is used to update the uncertain parameters in order to find a model that behaved similarly to the real reservoir. It 

is possible to present a few indicators that led to the correct behavior of the interest response. For this analysis, the number of 

ensembles used was 𝑁𝑒 = 100 and with 5 iterations (𝑁𝑎 = 5). The production vectors properties to be matched are: 

• Producer well (PROD10) 
o Bottom Hole Pressure (BHP) 

o Oil Production Rate 

o Water cut 

• Injector well (INJ12) 

o Bottom Hole Pressure (BHP) 

The results obtained are shown in Appendix 1. These figures show the response adjustments of the models that minimize 

the variance from of the ensembles from each iteration. 

Analyzing the BHP of PROD10 and INJ12, it is possible to observe that a match was obtained for both flowing and static 

pressure, mainly after the long pressure build-up with PROD10’s shut down (roughly day 1700). Also, the final ensemble 

spread (red curves) of PROD10 oil production rate is inside the uncertain region of the historical data. The water 

breakthrough is a little late compared with the observations, but after the well closure on day 1092, the water cut is better 

matched, obtaining values in the lower bound of the observation error interval. Due to the high complexity of the reservoir’s 
geology, it is possible to have elementary channels with different properties then the ones defined from ULIKE™ inside the 

uncertain parameter list, which are permeability, porosity, and net-to-gross ratio. 

Figure 3 shows the evolution of the mean OF over the five data assimilation iterations. It depicts an initial high OF value 

with a big uncertainty, but decreasing from iteration to iteration, with its variance following the same pattern. 

 

Figure 3 - OF statistics of ES-MDA run on Alpha-East 

4.2. Alpha-Central: PROD6 – INJ8 

Multiple faults have a significant impact on this section, reducing transmissibility within the core region but not blocking 

the flow. The aquifer and the elementary channels generated by ULIKE™ are used in the production mechanism. For this 

analysis, the number of ensembles used was 𝑁𝑒  = 100 and with 5 iterations (𝑁𝑎  =  5). The production vectors properties to 

be matched are: 

• Producer well (PROD6) 

o Bottom Hole Pressure (BHP) 

o Oil Production Rate 

o Water cut 

• Injector well (INJ8) 
o Bottom Hole Pressure (BHP) 

Appendix 2 shows the results obtained from the history matching and data assimilation process on the Alpha-Central 

section. 

The BHP of PROD6 shows that the simulated values are very close to the observation, mainly for the flowing part. 

Regarding the static pressure (all three build-ups), there is gap between simulated and observed data, which could indicate a 

lack of connected volume between the injector INJ8 who helps to maintain the pressure for the producer. About INJ8 BHP, 

ES-MDA manages to get a good match on both fluid and static pressure. For instance, as observed mainly in the three fall-

offs between days 1000 and 2000, the short-term pressure drop is well matched, meaning that the behavior in the well’s 

vicinity is correctly guessed with the parameters of choice: in this case, the productivity index multiplier on the three 

completion layers. In the final days of the simulation, mainly for INJ8, there is relatively large mismatch on the pressure 

drop. This could also be an indicative that there is still some volume connectivity missing inside the model which could be 

improved in further analysis 
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Both oil production rate and water cut are well matched during the whole simulated timesteps. Nonetheless, we observe 

two more families of simulated ensembles (red curves) in the final ES-MDA iteration. This means that, if continued, the 

assimilation processes could be able to find not only a more significant representation of the water cut then it already is, but 

also for the others three production vector properties analyzed. The water cut of a production well is not only function of the 

injection rate of the injector well helping to maintain a good pressure value for the oil recovery from the producer, but also on 

the faults’ transmissibility, which are all considered inside our uncertain parameter lists and the geological model applied for 

this ES-MDA run. 

Figure 4 shows the evolution of the mean OF over the five data assimilation iterations. As previously mentioned, in the 

final iterations, ES-MDA generated some new families of ensembles that do not follow the same mean behavior, hence the 

value increase of OF from iteration 3 to 4. These new ensemble families generated from iteration 4 to 5 are not so dispersed 
around the mean, meaning that the variance estimated from the ensembles are reduced, as shown in the reduction of the error 

bar from the picture. Nevertheless, for the history matching results and analysis of the uncertain parameters, the data 

assimilation process should stop at iteration 3, as it reached a possible minimum of the OF. 

 

Figure 4 - OF statistics of ES-MDA run on Alpha-Central 

4.2.1. Analysis of Alpha-Central using EST’s manual history matching with interpolated responses 

In this section of the thesis, the software EST – an internal software from TotalEnergies used for history matching – was 

used to also try to obtain a good match on the Alpha-Central. The motivation of this comparison was the difficulty in finding 

a good range for the PROD6 and INJ8 productivity index for the initial ensemble of ES-MDA, which often generated 

spurious correlation values and parameters collapses in earlier iterations, not obtaining a good first spread over the 

observation data and, thus, failing to get a match. The goal of EST is to find a good response of the simulation data that fits 

the chosen parameters as well as the desired model responses. This model could be a kriging surface or a polynomial 

regression. As opposed to ES-MDA, which is a method without limitation on the numbers of uncertain parameters, the 

maximum handled by EST are 11. 

In Appendix 3 the simulations from which EST finds the polynomial regression parameters are represented in blue, with a 
total of 151 curves. From that, it is necessary to manually find the best combination of parameters that approximated most the 

observation data. That kriged response is shown in the red line. 

With the combination of the parameters that generated the best kriged response, it is also necessary to confirm with the 

fluid flow simulator the real effect of those set of parameters, as there is a high uncertainty related to these interpolation 

processes and also the high non-linearity of the physics related to the problem. Appendix 4 depicts the response from the 

combination of the uncertain parameters get from EST. We observe that in a general way, the simulation results follow the 

same trend of the observation data points, and the match is obtained for some production properties, like the PROD6 bottom 

hole pressure and oil production rate. However, is it on the INJ8 bottom hole pressure where we can see the biggest 

discrepancies from EST kriged response and the real simulated one, especially on the flowing pressure (days 1100 to 1600, 

approximately). 

5. Conclusions 

This final graduation work presented a history matching workflow application for a real scale reservoir model with 

complex geological models, using data assimilation methods, more specifically an ensemble-based method. Even while 

ensemble-based methods have been effectively used in many applications over the past decades, inverse problems with 
significant nonlinearity, such as reservoir history matching, continue to pose difficulties. The Gaussian assumption that 

underlies this class of approaches are primarily to blame for these issues. 

This work analyzed the real scale reservoir, denominated Alpha Field, into compartments due to the faults located in the 

area, which divided the turbiditic reservoir into different areas and regions. As mentioned, reservoir modeling is considered 

to be a complicated and time-consuming activity during the research and development process. This fact is mainly due to the 

geological complexity of petroleum reservoirs and the necessity of modeling the best was possible the geological features 

that may impact the fluid flow simulator results and, thus, the exploration activity. That said, it was proved the efficiency of 
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the rule-based modeling tool ULIKE™, used to characterize the elementary sand channels and its respective fairways where 

the fluid flow is taken place and respecting all wells constraints of the field. These results affect directly in the history 

matching process of the analyzed area, as all the properties observed and the results obtained from the reservoir simulator is 

linked with the geology and how it is represented in the model, for instance, the connectivity between wells and how this 

impacts the bottom hole pressure. 

Using data assimilation based on ensemble-based methodology to perform the history matching of the study area, the ES-

MDA algorithm proved to be functional for the study case, being capable of yielding ensembles of models that honor the 

geological model and observation data, generating sets of history-matched models of good quality, both qualitatively and 

quantitatively. From the results of the analysis of both reservoir compartments, the following conclusions are deduced: 

• In order to be able to check all the uncertain parameters responses for every ensemble member, it was necessary 
a high number of simultaneous reservoir fluid flow simulator, obtaining, thus, an ensemble of the forward 

operator used to the data assimilation problem. In average, for each reservoir compartment analysis using 5 

assimilations iterations and an ensemble size of 100, it was necessary a minimum of 600 reservoir simulations to 

obtain a good representativity from the model responses and then, observe the quality of the assimilations; 

• For all ES-MDA procedures made during this work, it was noted how much the initial ensembles models, 

resulted from the reservoir responses with the uncertain parameters sampled from the a priori distributions, 

affects the assimilation and history matching results. Many initial ensembles that did not have a big spread and 

did not cover the observation data failed to converge to a good history-matched ensemble of models, despite the 

use of inflation coefficients factors chosen in the beginning of the process. Therefore, the a priori distributions 

and the randomly sampled uncertain parameters contribute to achieving good results, whereby their ranges, 

mean/standard deviation values should be carefully chosen and analyzed previously during screening studies and 

sensitivity analysis;  

• From the total of uncertain parameters used, the ones that impacted the most during the reservoir fluid flow 

simulator were the wells productivity index multipliers. The productivity index of the well is one parameter that 

represents the behavior of the fluid flow near the well, and the multiplier on them tries to simulate the skin 

factor. Therefore, it can be concluded that these parameters directly affected the dynamic pressure values, but 

also it was confirmed a possible non-linearity regarding these parameters, in which very small changes generated 

ensembles with completely different responses. These responses affected some simulations where the reservoir 

simulator did not completely finish the run, and, in order to continue the data assimilation method, those failed 

simulations had to be re-run. 

The ES-MDA approach’s overall performance is encouraging, and it offers great perspectives for the use of this data 

assimilation method in a real scale reservoir with a considerate geological complexity. The easy implementation of this type 

of ensemble smoother is desirable, being able not only to be used for reservoir engineering applications, but also for other 
data assimilation processes. The major difficulties and deficiencies encountered are in relation to spurious correlations and 

large loss of variability of the model ensemble, which can result in a poor estimate of reservoir uncertainties causing a poor 

prediction of field life, even with a good historical fit. This fact can be mitigated by applying adaptive methodologies, where 

the damping of each iteration as well as the number of iterations are set automatically and using covariance localization 

methods to reduce the loss of variance due to possible sampling errors. 

In addition to the data assimilation process using ES-MDA, it was used the internal software for history matching from 

TotalEnergies, EST, to analyze one of the compartments of the reservoir. Experimental designs models that use interpolations 

and proxy models in order to give an approximate response to inverse problems can drastically reduce the computational cost 

necessary to run some forward operator, such as the reservoir simulator. However, as these responses are considerate to be an 

estimate of the real problem, it is always necessary to analyze the results obtained and check if they are feasible, respecting 

the physics of the problem involved and if the uncertainty is still well represented. With the results obtained from the work 
using this method, some conclusion can be made: 

• The dynamism of the software, giving instantaneous interpolated responses is its main attraction. Even with its 

limitations, mainly with the maximum numbers of uncertain parameters that can be considered, it is possible to 

have innumerous combinations, having the opportunity to find the best combination possible that best 

approximates the responses to the observation data. However, because it is a manual process of choosing the 

parameters values and visualizing the response in the interpolated model, this process can become extremely 

time-consuming, with the possibility in not finding a good match with the uncertain parameters and its ranges 

previously defined, being necessary to redo the process, either with other parameters or different ranges; 

• Even though the kriging responses are instantaneous, it is only possible to analyze the response changing one 

parameter at a time. That said, and knowing that with petroleum reservoirs, many parameters are related with 

each other (e.g., permeability/porosity) this can become an issue if the production property vector in which we 

want to obtain a match is large and there is a significant number of uncertainty parameters that is known to be 
correlated or to have a possible correlation with each other; 

• From the analysis of real response given by the reservoir simulator, it was observed some discrepancies between 

the kriged response given by the best combination found of the uncertain parameters. These differences are 
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greater on the dynamic pressures values from the injector’s bottom hole pressure. This could indicate a possible 

high non-linear effect of the productivity index’s multipliers, as the kriged responses work with interpolations of 

second degree, which might not be able to correctly describe this production property.  

Due to the absence of the real reservoir response during the manual history matching process, EST multi solutions 

process could have been used. For that matter, this methodology is iterative after having checked with the real reservoir 

response, repeating the process until certain stop criteria arrive. The criteria are based on the cost function computation. 

Nevertheless, EST with screening options could have also been used during initial phases of reservoir history matching, in 

which the objective is not to get an history-matched model, but to determine the most influent parameters from a large 

number of uncertain parameters (roughly 100) choices and ranges from their impacts on the production property vector. 

Those most influent parameters could serve as inspiration and, possibly, inputs of the a priori distribution used afterwards in 
history matching of petroleum reservoirs using data assimilation methods, such as ES-MDA. 
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Appendix – Results obtained from ES-MDA and EST analysis on Alpha 
Field 

Appendix 1. Results obtained from ES-MDA on Alpha-East 

From top to bottom – left to right: PROD10 bottom-hole pressure; PROD10 oil production rate; PROD10 oil water cut; 

INJ12 bottom-hole pressure. The grey scale represents the initial ensemble spread. The red one represents the last ensemble. 

Historical data and their uncertain region (noise in measurements) are in blue. 

 

Appendix 2. Results obtained from ES-MDA on Alpha-Central 

From top to bottom – left to right: PROD6 bottom-hole pressure; PROD6 oil production rate; PROD6 oil water cut; INJ8 

bottom-hole pressure. The grey scale represents the initial ensemble spread. The red one represents the last ensemble. 

Historical data and their uncertain region (noise in measurements) are in blue. 
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Appendix 3. Best kriged response found using EST 

From top to bottom – left to right: PROD6 bottom-hole pressure; INJ8 bottom-hole pressure; PROD6 oil production rate; 

PROD6 water cut. The blue curves are the 151 reservoir simulations. The red line is the best kriged response found. 

 

Appendix 4. Fluid flow simulator response from the combination of uncertain parameters 
obtained from EST 

From top to bottom – left to right: PROD6 bottom-hole pressure; INJ8 bottom-hole pressure; PROD6 oil production rate; 

PROD6 water cut. The continuous lines indicate the simulated production vector property. The black squares are the 
historical data. 

 

         

              

        

              

                        

              
               

              


