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1 INTRODUÇÃO 

1.1 Motivação 

Presente direta e indiretamente na vida de todos, o petróleo é mais do que uma 

importante fonte de energia. É um recurso de grande impacto na economia global, 

altamente estratégico, e que por isso influencia muitas das decisões políticas.  

Por ser não-renovável, novas fontes de petróleo precisam ser descobertas para a 

manutenção ou ampliação da demanda atual. Com o contínuo esgotamento das 

reservas de fácil exploração, restam as reservas de difícil acesso ou extração, o que 

exige o desenvolvimento de novas tecnologias de exploração para que as limitações 

e os desafios sejam superados. 

No Brasil, a maior parte das reservas de petróleo encontram-se em mar, como 

mostram os dados da ANP na Figura 1, o que justifica a produção offshore de petróleo 

em larga escala, caracterizada pela exigência de componentes de elevado nível 

tecnológico, como plataformas petrolíferas, elementos de ligação e mecanismos de 

controle. 

 

Figura 1 – Evolução das reservas provadas de petróleo, por localização (terra e mar) – 2003-2012. 

Fonte: (AGÊNCIA NACIONAL DO PETRÓLEO, 2013). 
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Os elementos de ligação, responsáveis por conectar os poços às plataformas e 

navios, exercem um papel essencial ao processo de produção de petróleo offshore, 

como ilustra a Figura 2. Estes elementos subdividem-se em: tubos flexíveis (Figura 3), 

cabos umbilicais (Figura 4) e linhas de ancoragem. 

 

 

Figura 2 - Elementos de ligação são responsáveis por interligar as plataformas às unidades de 

extração presentes no leito do oceano. Fonte: (2B1st Consulting, 2014). 

O projeto destes elementos de ligação é uma atividade de alta complexidade, devido 

às: 

 condições adversas de operação destes elementos, em geral grandes 

profundidades e sobre o efeito de fenômenos naturais, como correntes 

marítimas; 

 elevado número de componentes, como camadas, mangueiras e armaduras, 

que irão se interagir uns com os outros durante a operação; 

 elevada quantidade de requisitos de funcionalidade e de critérios de projeto.  

http://www.2b1stconsulting.com/wp-content/uploads/2012/07/Umbilical_Applications.jpg


17 
 

 

Figura 3 – Tubo flexível para aplicações offshore. Fonte: PETROLEO ENERGIA. 

 

 

Figura 4 – Exemplo de um cabo umbilical para aplicações offshore. Fonte: (VALLOUREC, 2014) 

As dificuldades intrínsecas ao projeto de tubos flexíveis e cabos umbilicais e também 

os prejuízos gerados por falhas destes componentes, tanto econômicos quanto 

ambientais, têm levado à elaboração de novas técnicas de engenharia e também ao 

desenvolvimento de ferramentas que auxiliem a execução desta tarefa. Seguindo esta 

linha, (PROVASI, 2013) desenvolveu em seu trabalho de doutorado uma ferramenta 

de análise direcionada ao projeto de tubos flexíveis e cabos umbilicais, conhecida por 

UFCad, que implementa uma formulação própria de macroelementos finitos. 

1.2 Objetivos 

(PROVASI, 2013) priorizou a formulação e validação dos modelos macroelementos 

finitos, deixando para uma etapa posterior a operacionalização do programa.  
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Portanto, este projeto de conclusão de curso consiste em uma extensão dos trabalhos 

realizados em “Contribuição ao Projeto de Cabos Umbilicais e Tubos Flexíveis: 

Ferramentas de CAD e Modelo de Macro Elementos” (PROVASI, 2013), tendo como 

objetivo o desenvolvimento de uma ferramenta eficiente para análise estrutural de 

tubos flexíveis, com o intuito de viabilizar a sua utilização em computadores 

convencionais e em aplicações práticas na indústria. Para que isto seja possível, os 

gargalos computacionais desta ferramenta devem ser identificados e devem ser 

executadas ações que resultem em redução do tempo de análise e do consumo de 

memória e processamento. Deseja-se também a validação de um caso de estudo, 

comparando a ferramenta desenvolvida com um software consolidado de elementos 

finitos, com o objetivo de garantir a confiabilidade dos resultados e de se realizar um 

benchmarking entre ambos os programas. 

1.3 Estrutura do Trabalho 

Este trabalho consiste em 10 capítulos, sendo o primeiro a introdução deste trabalho, 

e que visa contextualizar este trabalho e deixar claro a motivação para a realização 

do mesmo e seus respectivos objetivos. 

O capítulo 2 consiste em uma revisão bibliográfica dos macroelementos finitos 

desenvolvidos em (PROVASI, 2013), pois a compreensão destes elementos é de 

fundamental importância para o entendimento do funcionamento de uma ferramenta 

de análise que os implemente. 

O capítulo 3 traz uma formulação corrigida para o elemento de contato entre o 

elemento cilíndrico e o elemento de hélice, pois foi encontrada, durante a etapa de 

revisão bibliográfica, uma falha na formulação original.  

Além disso, foi identificada a inexistência de um modelo de forças para a expansão 

em série de Fourier das reações de contato, o que motivou a formulação de um 

modelo adequado para tal situação, que encontra-se no capítulo 4. 

O capítulo 5 consiste na importante etapa de identificação dos gargalos 

computacionais, que compuseram a base da estratégia adotada para aumentar a 

eficiência do programa. Para esta etapa foram utilizados profilers, que são 

ferramentas projetadas para a avaliação de outros programas. 

O capítulo 6 traz as modificações realizadas na implementação da ferramenta de 

análise que resultaram em ganhos de performance e no funcionamento adequado do 
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programa. As modificações realizadas no cálculo da matriz de rigidez, por exemplo, 

representaram uma redução de 10 a 20 no tempo de execução desta tarefa. 

O capítulo 7 foi dedicado exclusivamente à etapa de resolução do sistema linear, 

devido à importância que ela representa frente ao funcionamento do programa. Foram 

testados diversos métodos de resolução de sistemas lineares, inclusive com a 

implementação de uma biblioteca própria. Apesar disso, alguns problemas e 

limitações são encontrados, o que será abordado em mais detalhes neste capítulo. 

O capítulo 8 consiste na validação de um caso de estudo com a ferramenta de análise, 

comparando-a com um programa profissional de elementos finitos, o Abaqus. Neste 

capítulo é apresentado o caso de estudo e são detalhadas as principais etapas que 

levaram à obtenção dos resultados em ambos os programas. Por fim, os resultados 

são comparados e realiza-se um benchmarking com base em critérios definidos. 

No capítulo 9 encontram-se as conclusões deste trabalho e também propostas de 

trabalhos futuros. 

Por fim, no capítulo 10, são listadas as referências nas quais este trabalho se baseou. 
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2. REVISÃO BIBLIOGRÁFICA 

Para o projeto adequado de tubos flexíveis, deve-se conhecer as suas principais 

características, componentes e condições de operação. Por este motivo, será 

realizada no início deste capítulo uma breve revisão a respeito deste assunto. 

Com a finalidade de tornar eficiente uma ferramenta de análise que implemente 

macroelementos finitos formulados especificamente para o projeto de tubos flexíveis, 

é necessário conhecer as características destes elementos, suas hipóteses e suas 

formulações matemáticas. Por este motivo, realizou-se uma ampla revisão 

bibliográfica a respeito dos macroelementos finitos formulados por (PROVASI, 2013), 

que será apresentada a partir do item 2.3. 

2.1 Tubos Flexíveis e Cabos Umbilicais 

 “Cabos umbilicais são elementos que têm a finalidade de interligar uma unidade 

flutuante a um poço submerso, executando diversas funções, dentre as quais: controle 

elétrico e/ou hidráulico, transmissão de sinais elétricos e/ou óticos, transmissão de 

energia elétrica para bombeamento submerso ou injeção de fluidos no poço.” 

“Tubos, assim como cabos umbilicais, interligam a unidade flutuante ao poço produtor, 

porém têm como finalidade levar petróleo e gás do poço para a plataforma, injetar 

fluidos para melhorar a produtividade do poço (como por exemplo, a injeção de gás 

retirado do próprio poço, processo esse conhecido como Gas Lift), levar o óleo até 

refinarias ou estações de armazenamento (esses denominados de exportação), além 

de executar funções de perfuração, entre outras. Para cada uma das funções 

descritas, existem tipos específicos. Esses tubos são denominados risers quando se 

encontram suspensos e flowlines quando estão apoiados sobre o solo.” (PROVASI, 

2013).  

Tubos flexíveis são caracterizados por uma elevada quantidade de camadas e 

componentes, como ilustra a Figura 5. Esses tubos podem conter os seguintes 

elementos: 

 Carcaça intertravada;  

 Camadas plásticas; 

 Camada circunferencial de pressão; 

 Armadura de tração helicoidal; 
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 Fitas; 

 Fillers; 

 Núcleo elétrico; 

 Mangueiras hidráulicas; 

 Núcleo eletro-hidráulico. 

 

Figura 5 – Camadas de um tubo do tipo "Rough Bore Reinforced". Fonte: API RP 17B. 

A escolha da aplicação destes componentes depende de uma série de fatores, como 

o tipo do tubo (tubo flexível ou cabo umbilical), das especificações e requisitos de 

projeto que o ele deve atender. 

2.2 Abordagem ao problema 

O projeto de tubos flexíveis e cabos umbilicais é uma tarefa complexa. Modelos 

analíticos apresentam muitas limitações e são, em alguns casos, impossíveis de 

serem realizados. Modelagens numéricas mostram-se uma importante ferramenta de 

projeto, em especial as que utilizam o Método dos Elementos Finitos. 

Softwares convencionais de elementos finitos, como ANSYS e Abaqus, são muito 

genéricos, pois visam resolver os mais variados tipos de problema. Assim, ao longo 

das últimas décadas, modelos específicos têm sido formulados para facilitar o projeto 

e análise de tubos flexíveis e cabos umbilicais.  

(PROVASI, 2013) desenvolveu uma ferramenta de CAD direcionada com a finalidade 

de tornar o projeto de tubos flexíveis e cabos umbilicais uma tarefa mais simples. 
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2.3 Macroelementos Finitos 

PROVASI (2013) criou elementos próprios, utilizando-se para isso uma formulação de 

macroelementos finitos, o que facilita a inclusão, a customização dos modelos e a 

solução numérica destes problemas. Em seu trabalho, foram contemplados os 

seguintes elementos: 

 Elemento Cilíndrico de Parede Espessa; 

 Elemento de Hélice; 

 Elemento de Ligação “Bridge”; 

 Elementos de Contato. 

 

que serão detalhados a seguir. 

 

2.3.1 Elemento Cilíndrico de Parede Espessa 

É um elemento que pode ser utilizado para a modelagem de capas plásticas e, em 

uma abordagem inicial simplificada, para a modelagem de camadas equivalentes, pois 

este elemento possui uma formulação de material ortotrópico. 

(PROVASI & MARTINS, 2013-c) desenvolveram uma extensão do modelo de um 

elemento cilíndrico de parede espessa formulado por COOK. O modelo desenvolvido 

pelos autores tem como objetivo determinar os deslocamentos de uma capa cilíndrica 

sobre quaisquer tipos de carregamentos.  

Adotou-se a hipótese de material elástico e linear, e adotou-se um sistema de 

coordenadas cilíndrico, de acordo com a Figura 6, sendo:  

 𝑢 – o deslocamento na direção radial 

 𝑣 – o deslocamento na direção circunferencial 

 𝑤 – o deslocamento na direção axial 

Neste modelo, a expansão em Série de Fourier foi utilizada para descrever os 

deslocamentos e também os carregamentos atuantes no elemento (forças e 

momentos). 
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Figura 6 – Sistema de coordenadas utilizado na formulação do elemento cilíndrico de parede 

espessa. Fonte: (PROVASI & MARTINS, 2013-c). 

Através da formulação de elemento infinitesimal cilíndrico, mostrado na Figura 7, 

determina-se as equações para o equilíbrio das tensões. Utilizando o sistema de 

coordenadas cilíndrico, calcula-se as relações entre deformação de deslocamentos. 

Após uma extensa manipulação matemática e utilizando outros conceitos de 

mecânica dos meios contínuos, obtêm-se a matriz de rigidez do elemento. 

 

Figura 7 – Elemento infinitesimal cilíndrico. Fonte: (PROVASI & MARTINS, 2013-c). 

Como mostram a Figura 8 e a Figura 9, (PROVASI & MARTINS, 2013-c) compararam 

os resultados obtidos pela sua formulação com os obtidos através do software Ansys.  
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Figura 8 – Comparação de deslocamento radial para a superfície superior. Fonte: (PROVASI & 

MARTINS, 2013-c). 

 

 

Figura 9 – Comparação de deslocamentos radiais para a superfície de capa. Fonte: (PROVASI & 

MARTINS, 2013-c) 

 

2.3.2 Elemento de Hélice (ou Tendão) 

Baseado na formulação de ZHU e MEGUID, (PROVASI & MARTINS, 2011) 

desenvolveram um elemento tridimensional para helicoides. Por ser um elemento de 
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viga que leva em consideração os efeitos da curvatura e tortuosidade, este elemento 

é aplicável a uma vasta série de problemas, como por exemplo a modelagem dos 

tendões da armadura de tração. 

Para a formulação deste elemento, foram utilizadas as seguintes hipóteses: 

 Pequenas deformações e deslocamentos; 

 Não ocorre empenamento na seção transversal; 

 Material elástico e isotrópico. 

Como indicado Figura 10, este elemento possui um sistema de coordenadas local, um 

triedro de Frenet, que segue a nomenclatura utilizada por ZHU e MEGUID, na qual: 

𝑍 ≡  𝑡 é o vetor tangente à curva, 𝑋 ≡  𝑛⃗⃗ é o vetor normal, e 𝑌 ≡  𝑏⃗⃗ é o vetor binormal. 

 

Figura 10 – Esquematização do elemento e sistema de coordenas local associado. Fonte: PROVASI 

(2013). 

 

No entanto, para integrar o Elemento de Hélice aos demais elementos, que foram 

formulados em um sistema de coordenadas cilíndricas, é necessária uma rotação do 

sistema de coordenadas. Assim, além da matriz de rigidez do Elemento de Hélice, 

será apresentada também a matriz de transformação de coordenadas, e como 

descrever a matriz de rigidez para o sistema cilíndrico. 

As relações de deformação e deslocamento e que incluem os efeitos de curvatura e 

tortuosidade foram obtidas de (LOVE, 1944): 

𝜀𝑧 = 
𝜕𝑤(𝑠)

𝜕𝑠
− 𝑘 𝑢(𝑠) 

𝜔𝑥 =
𝜑𝑥(𝑠)

𝜕𝑠
− 𝜏𝜑𝑦(𝑠) +  𝑘 𝜑𝑧(𝑠)  

𝜔𝑦 =
𝜑𝑦(𝑠)

𝜕𝑠
+ 𝜏𝜑𝑥(𝑠)  
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𝜔𝑧 =
𝜑𝑧(𝑠)

𝜕𝑠
− 𝑘𝜑𝑥(𝑠) 

onde: 

 𝜀𝑧 – é a deformação axial; 

 𝜔𝑥 , 𝜔𝑦 𝑒 𝜔𝑧 – são as distorções angulares ao redor dos eixos 𝑥, 𝑦 e 𝑧 

respectivamente; 

 𝑢𝑥 , 𝑢𝑦  𝑒 𝑢𝑧 – são os deslocamentos nas direções x, y e z respectivamente; 

 𝜏 – é a tortuosidade inicial; 

 𝑘 – é a curvatura inicial. 

Baseado nas hipóteses adotadas, os autores formularam o descolamento na direção 

normal e binormal através de polinômios de quinta ordem. 

𝑢(𝑠) =  ∑𝑎𝑖

5

𝑖=0

𝑠𝑖 

𝑣(𝑠) =  ∑𝑏𝑖

5

𝑖=0

𝑠𝑖 

Os deslocamentos 𝑢𝑧 e 𝜑𝑧 são determinados pelas duas seguintes expressões, nas 

quais se obtêm os coeficientes 𝑎6 , 𝑎7 , 𝑎8 𝑒 𝑏6 , 𝑏7 , 𝑏8. 

𝑢𝑧 = ∫(𝜀𝑧 + 𝑘 𝑢𝑥) 𝑑𝑆 

𝜑𝑧 = ∫(𝜔𝑧 − 𝑘 
𝜕𝑢𝑦

𝜕𝑠
− 𝑘 𝜏 𝑢𝑥)  𝑑𝑆 

Das relações de (LOVE, 1944), obtêm-se as seguintes relações: 

𝜑𝑥 = − 
𝜕𝑢𝑦

𝜕𝑠
−  𝜏 𝑢𝑥 

𝜑𝑦 = 
𝜕𝑢𝑥
𝜕𝑠

−  𝜏 𝑢𝑦 + 𝑘𝑢𝑧 

 

(PROVASI & MARTINS, 2011) utilizaram um elemento de três nós, a partir do qual foi 

possível determinar todas as constantes necessárias. Com isso, formulou-se uma 

relação entre os deslocamentos nodais e as constates de integração dada por: 

𝒒 = 𝑪 𝒖𝒏𝒐𝒅𝒂𝒍 

Onde: 

 𝒒𝑻 = [𝑎0 … 𝑎8 𝑏0 … 𝑏8] – é o vetor das constantes de integração; 

 𝒖𝒏𝒐𝒅𝒂𝒍
𝑻 = [𝑢𝑛𝑜𝑑𝑎𝑙

1  𝑢𝑛𝑜𝑑𝑎𝑙
2  𝑢𝑛𝑜𝑑𝑎𝑙

3 ] – é o vetor dos deslocamentos nodais; 
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 𝑢𝑛𝑜𝑑𝑎𝑙
𝑖 = [𝑢𝑥𝑖 𝑢𝑦𝑖 𝑢𝑧𝑖    𝜑𝑥𝑖 𝜑𝑥𝑖 𝜑𝑥𝑖], com 𝑖 = 1,… ,3; 

 𝑪 = [

𝐶1 𝐶2 𝐶3
𝐶4 𝐶5 𝐶6
𝐶7 𝐶8 𝐶9

] – cada termo 𝐶𝑖 é uma matriz e pode ser encontrado em 

(PROVASI e MARTINS, 2011). 

 

Os deslocamentos 𝑢𝑇 = [𝑢𝑥𝑖 𝑢𝑦𝑖 𝑢𝑧𝑖    𝜑𝑥𝑖 𝜑𝑥𝑖 𝜑𝑥𝑖] foram expressos em função 

dos deslocamentos nodais por meio da expressão: 

𝒖 = 𝑨𝒒 = 𝑨𝑪𝒖𝒏𝒐𝒅𝒂𝒍 

𝑨 = [𝐴1 𝐴2 𝐴3] 

Assim, a matriz de rigidez do Elemento de Hélice pode ser calculada por: 

𝐾𝑒𝑙 = 𝐶
𝑇𝐵𝑇𝐻 𝐵 𝐶 

com: 

𝐻 = 

[
 
 
 
𝐸𝐴 0

0 𝐸𝐼𝑥

0 0

0 0
0 0

0 0

𝐸𝐼𝑦 0

0 𝐺𝐽]
 
 
 

 

𝐵 = [𝐵1 𝐵2 𝐵3] 

Os termos 𝐴𝑖 e 𝐵𝑖 estão definidos em (PROVASI & MARTINS, 2011). Para descrever 

as relações no sistema cilíndrico de coordenadas, fez-se necessário utilizar a seguinte 

matriz de transformação entre sistemas: 

𝑇 =  [
−1 0 0
0 −cos 𝛼 sin 𝛼
0 sin 𝛼 cos 𝛼

] 

Onde 𝛼 é o ângulo de assentamento de hélice. 

E a matriz de rigidez para o Elemento de Hélice no sistemas de coordenadas 

cilíndricos é determinada por: 

𝐾 = 𝕋𝑇 𝐾𝑒𝑙𝕋 

𝕋 é uma matriz diagonal, em que cada termo da diagonal é composto pela matriz T. 

 

2.3.3 Elemento de Ligação “Bridge” 

O principal objetivo do Elemento de ligação do tipo “bridge” é unir dois nós de 

diferentes tipos e formulações de maneira rígida, ou seja, sem deslocamento relativo 

entre eles. 
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A Figura 11 mostra um exemplo de aplicação deste elemento, em que ocorre uma 

ligação entre um elemento cilíndrico de parede espessa (que utiliza a formulação em 

Série de Fourier) e o elemento de hélice (que apresenta formulação convencional). 

 

Figura 11 – Elemento de ligação tipo "bridge". Fonte: (PROVASI, 2013). 

 

A formulação completa para este elemento encontra-se em (PROVASI & MARTINS, 

2013-a). É interessante ressaltar que, com base na Figura 11, a principal condição 

que rege esse elemento é a inexistência de deslocamento relativo entre os nós, dada 

por: 

𝑢2 − 𝑢1
′ = 0 

Utilizando uma formulação através do método das penalidades, os autores obtiveram 

a matriz de rigidez do elemento de ligação do tipo “bridge”. 

 

2.3.4 Elemento de Contato 

A necessidade de um elemento de contato justifica-se pela existência de vazios 

(“gaps”) entre os elementos e também pelas aplicações de pressão de contato, que 

podem envolver ou não a presença de atrito. 

Como mostra a Figura 12, ocorrerá contato entre dois corpos, quando a distância que 

os separa for nula. Na prática, o contato irá ocorrer quando essa distância atingir um 

valor menor ou igual à uma tolerância especificada. 
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Figura 12 – Dois corpos em situação de pré-contato. Fonte: (PROVASI, 2013). 

 

“Essa figura (Figura 12) ainda exibe o sistema de eixos ortonormal local no contato: a 

direção normal à superfície 𝒏 e as direções tangentes à superfície 𝒂𝟏 e 𝒂𝟐. Observa-

se também que são utilizadas duas superfícies: uma denominada máster (mestre) e 

outra denominada slave (escrava). Normalmente isto é feito para facilitar a descrição 

de cada uma delas, já que a superfície slave deve ser escolhida de tal forma que 

possua o maior número de elementos entre as duas. Isso é necessário para que os 

contatos sejam corretamente detectados após as discretizações necessárias nos 

métodos matemáticos a serem empregados.” (PROVASI, 2013). 

Se a distância entre as duas superfícies for negativa e de módulo maior que a 

tolerância especificada, ocorrerá a penetração da superfície master sobre a slave. A 

discretização da superfície está associada a qualidade do contato. Caso a superfície 

seja pouco discretizada, poderá ocorrer penetração, sem que esse fenômeno seja 

identificado pelos critérios de verificação adotados, o que está indicado na Figura 13. 

Ao se aumentar o grau de discretização, o problema é resolvido, porém o tempo de 

simulação também irá aumentar. Deve-se portanto escolher um grau de discretização 

que forneça níveis aceitáveis de penetração e ao mesmo tempo não inviabilize o 

tempo de simulação. 
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Figura 13 – Exemplos do efeito da discretização do contato: (a) pouco discretizada; (b) discretizada 

adequadamente. Fonte: (PROVASI, 2013). 

 

A função vazio (ou “gap”) é definida pela seguinte fórmula: 

𝑔𝑁 = (𝒙𝟏 − 𝒙𝟐) .  𝒏 

onde 𝒙𝟏 e 𝒙𝟐 são os pontos das superfícies master e slave, e 𝒏 é a direção normal. 

Se o gap for nulo, poderá haver uma pressão de contato que varie de zero à infinito, 

de modo que a expressão que descreve a condição de contato é dada por: 

𝑔𝑁 .  𝑝𝑁 = 0 

“A Figura 14 mostra o comportamento descrito pela equação acima. Porém a 

modelagem numérica é complicada dada a não-diferenciabilidade da curva. Para 

contornar tal problema, adotam-se leis que descrevam o comportamento de maneira 

mais suave (as chamadas Compliance Laws). O item (b) da Figura 14 exibe um 

exemplo que varia com uma potência do gap normal. Já o item (c) exibe um 

comportamento de variação linear com o gap. Este último é conhecido como método 

das penalidades, no qual varia-se o parâmetro de proporcionalidade tornando o 

comportamento dessa lei o mais próximo do real quanto se queira. A desvantagem 

dessa abordagem é que um valor alto desse parâmetro pode comprometer a 

convergência. Deve-se ressaltar que um valor muito pequeno também compromete o 

resultado, uma vez que faz com que a curva utilizada encontre-se longe do real 

comportamento do problema.” (PROVASI, 2013). 
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Figura 14 – Compliance Law para o contato normal: (a) comportamento ideal; (b) comportamento 

usando uma Compliance Law; (c) comportamento usando o método das penalidades. Fonte: 

(PROVASI, 2013). 

(PROVASI, 2013) considerou ainda o caso de contato tangencial, o qual inclui os 

efeitos do atrito, e que subdivide-se em duas situações, exibidas na Figura 15: 

 sliding – quando há movimento relativo entre as partes; 

 sticking – quando não há movimento relativo entre as partes. 

 

 

Figura 15 – Primeiro caso, configuração inicial. Bloco central, é uma situação com sticking. Bloco a 

direita, situação com sliding. Fonte: (PROVASI, 2013). 

 

A formulação matemática completa, incluindo as matrizes de rigidez, para a situação 

de contato considerando sticking e para a situação de contato considerando sliding 

pode ser encontrada em (PROVASI, 2013). 
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3. FORMULAÇÃO CORRIGIDA PARA O MACROELEMENTO 

FINITO DE CONTATO DO TIPO “NÓ-A-NÓ” ENTRE ELEMENTO 

CILÍNDRICO E ELEMENTO DE HÉLICE 

Durante a revisão bibliográfica do macroelemento finito de contato para nós que 

utilizam formulações distintas de deslocamento, (PROVASI & MARTINS, 2013-b), 

identificou-se uma inconsistência no desenvolvimento matemático do modelo. 

Portanto, o objetivo deste capítulo é apresentar esta inconsistência e propor uma 

formulação corrigida, que serão realizados no item 3.2. 

Por questões lógicas, será apresentada a formulação original no item 3.1, para que o 

leitor deste trabalho se familiarize com a formulação do elemento em questão e com 

a notação empregada.  

3.1 Formulação original de macroelemento finito de contato proposta por 

(PROVASI & MARTINS, 2013-b)  

Considerando-se a situação ilustrada na Figura 16, com um elemento cilíndrico de 

parede espessa envolto por um elemento de hélice, tem-se: 

 Nó 1 (nó de Fourier): com três graus de liberdade (𝑢, 𝑣 e 𝑤) e os deslocamentos 

expandidos em série de Fourier. 

 Nó 2 (nó de hélice): com três graus de liberdade (𝑢𝑥, 𝑢𝑦 e 𝑢𝑧), pois as rotações 

foram ignoradas. 

Para cada par de nós que podem vir a entrar ou que já estão em contato, conhece-se 

previamente os seguintes parâmetros: 

 𝜃0 – o ângulo, medido no sistema cilíndrico de coordenadas, da região de 

contato; 

 𝑃1 e 𝑃2 – pontos que representam as coordenadas dos nós em questão; 

 𝒏⃗⃗⃗𝟏 –  a normal da superfície no ponto 𝑃1; 

 𝒂⃗⃗⃗𝟏 e 𝒂⃗⃗⃗𝟐 – as direções tangenciais da superfície no ponto 𝑃1. 
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Figura 16 - Contato nó a nó: ponto 1 faz parte de um elemento cilíndrico e tem seu deslocamento 

representado através da expansão em Série de Fourier; o ponto 2 faz parte de um elemento de 

hélice. 

Definem-se os vetores: 

𝑂𝑃̅̅ ̅̅ 1 = 𝑿1
𝑟   e    𝑂𝑃̅̅ ̅̅ 1

′ = 𝒙1 

𝑂𝑃̅̅ ̅̅ 2 = 𝑿2
𝑟     e    𝑂𝑃̅̅ ̅̅ 2

′ = 𝒙2 

onde: 

 𝑿1   – é a posição do nó 1 na configuração inicial (não deformada) 

 𝒙1  – é a posição do nó 1 na configuração final (deformada) 

 𝑿2   – é a posição do nó 2 na configuração inicial (não deformada) 

 𝒙2 – é a posição do nó 1 na configuração final (deformada) 

Os deslocamentos dos dois nós são expressos por: 

𝒖𝟏 = 𝒙1 − 𝑿1 = {

𝑢1
𝑣1
𝑤1
} =  

{
 
 
 
 

 
 
 
 ∑𝑢̅1

𝑖

𝑛

𝑖=0

cos 𝑖𝜃0 +∑𝑢̿1
𝑖  sin 𝑖𝜃0

𝑛

𝑖=0

∑𝑣̅1
𝑖

𝑛

𝑖=0

sin 𝑖𝜃0 −∑𝑣̿1
𝑖

𝑛

𝑖=0

cos 𝑖𝜃0

∑𝑤̅1
𝑖

𝑛

𝑖=0

cos 𝑖𝜃0 +∑𝑤̿1
𝑖  sin 𝑖𝜃0

𝑛

𝑖=0 }
 
 
 
 

 
 
 
 

 

𝒖𝟐 = 𝒙2 − 𝑿2 = {

𝑢2
𝑣2
𝑤2
} 

Com o objetivo de facilitar a manipulação algébrica do deslocamento do nó 1 (Fourier), 

retira-se da somatória o termo de ordem 0. Portanto: 
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𝒖𝟏 = 

{
 
 
 
 

 
 
 
 𝑢̅1

0 +∑𝑢̅1
𝑖

𝑛

𝑖=1

cos 𝑖𝜃0 +∑𝑢̿1
𝑖  sin 𝑖𝜃0

𝑛

𝑖=1

−𝑣̿1
0 +∑𝑣̅1

𝑖

𝑛

𝑖=1

sin 𝑖𝜃0 −∑𝑣̿1
𝑖

𝑛

𝑖=1

cos 𝑖𝜃0

𝑤̅1
0 +∑𝑤̅1

𝑖

𝑛

𝑖=1

cos 𝑖𝜃0 +∑𝑤̿1
𝑖  sin 𝑖𝜃0

𝑛

𝑖=1 }
 
 
 
 

 
 
 
 

 

Os deslocamentos podem ser reescritos utilizando-se notação matricial: 

𝒖𝟏 = 𝒖𝟏
𝟎 + ∑[𝐶𝑖𝒖̅𝟏

𝒊 + 𝑆𝑖𝒖̿𝟏
𝒊 ]

𝑛

𝑖=1

 

Onde: 

 𝒖𝟏 = {

𝑢1
𝑣1
𝑤1
} 

 𝒖𝟏
𝟎 = {

𝑢̅1
0

−𝑣̿1
0

𝑤̅1
0

}   ,  𝒖̅𝟏
𝒊 = {

𝑢̅1
𝑖

𝑣̅1
𝑖

𝑤̅1
𝑖

}   e   𝒖̿𝟏
𝒊 = {

𝑢̿1
𝑖

𝑣̿1
𝑖

𝑤̿1
𝑖

}  

 𝐶𝑖 = [

cos 𝑖𝜃0 0 0
0 sin 𝑖𝜃0 0
0 0 cos 𝑖𝜃0

] 

 𝑆𝑖 = [

sin 𝑖𝜃0 0 0
0 −cos 𝑖𝜃0 0
0 0 sin 𝑖𝜃0

] 

Define-se a função gap normal: 

𝑔𝑁 = (𝒙2 − 𝒙1) . 𝒏⃗⃗⃗𝟏 

E também a função gap tangencial: 

𝑔𝑇 = 𝑔𝑇1 𝒂⃗⃗⃗𝟏 + 𝑔𝑇2 𝒂⃗⃗⃗𝟐 

Onde: 

𝑔𝑇𝛼 = (𝒙2 − 𝒙1). 𝒂⃗⃗⃗𝜶    para 𝛼 = 1, 2 

Com a aplicação do princípio virtual, expressa-se o trabalho virtual dos esforços por: 

𝛿𝑊𝑐𝑜𝑛𝑡𝑎𝑡𝑜 = 𝜀𝑁𝑔𝑁 . 𝛿𝑔𝑁 + 𝜀𝑇𝒈𝑻 . 𝜹𝒈𝑻  

Derivando-se a expressão do trabalho virtual obtêm-se a expressão: 

𝛿(𝛿𝑊𝑐𝑜𝑛𝑡𝑎𝑡𝑜) =  𝜀𝑁𝛿𝑔𝑁 . 𝛿𝑔𝑁 + 𝜀𝑇𝜹𝒈𝑻 . 𝜹𝒈𝑻 

Reescrevendo o problema na forma matricial, obtêm-se: 

𝛿(𝛿𝑊𝑐𝑜𝑛𝑡𝑎𝑡𝑜) =  𝜀𝑁𝛿𝑔𝑁𝛿𝑔𝑁 + 𝜀𝑇𝜹𝒈𝑻
𝑻𝜹𝒈𝑻 

Com: 
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𝜹𝒈𝑻 =  𝛿𝑔𝑇1 𝒂𝟏 + 𝛿𝑔𝑇2 𝒂𝟐, 

Onde: 

𝒏 =  {
1
0
0
}    ,    𝒂𝟏 = {

0
1
0
}   e   𝒂𝟐 = {

0
0
1
} 

Portanto, 

𝛿𝑔𝑁 = 𝒏
𝑻𝛿𝒙𝟐 − 𝒏

𝑻𝛿𝒙𝟏 

𝛿𝑔𝑇1 = 𝒂𝟏
𝑻𝛿𝒙𝟐 − 𝒂𝟏

𝑻𝛿𝒙𝟏 

𝛿𝑔𝑇2 = 𝒂𝟐
𝑻𝛿𝒙𝟐 − 𝑎2

𝑇𝛿𝒙𝟏 

 

(PROVASI & MARTINS, 2013-b) dizem, então, que 𝜹𝒙𝐢 =  𝜹𝒖𝐢, o que lhes permite 

determinar as variações das funções gap (𝛿𝑔𝑁, 𝛿𝑔𝑇1 e 𝛿𝑔𝑇2)  em função das variações 

de deslocamentos nodais (𝜹𝒖𝐢, 𝜹𝒖𝐢 e 𝜹𝒖𝐢). Com os valores de variações da função 

gap, determina-se a matriz de rigidez do elemento de contato por meio da expressão 

𝛿(𝛿𝑊𝑐𝑜𝑛𝑡𝑎𝑡𝑜) =  𝜀𝑁𝛿𝑔𝑁𝛿𝑔𝑁 + 𝜀𝑇𝜹𝒈𝑻
𝑻𝜹𝒈𝑻. 

3.2 Identificação da inconsistência matemática e formulação corrigida 

As relações entre a variação de deslocamento nodal e a variação de posição na 

configuração deformada estão definidas corretamente em (PROVASI & MARTINS, 

2013-b)  para os seguintes termos: 

𝜹𝒖𝟐 = 𝜹𝒙𝟐  ,   𝜹𝒖̅𝟏
𝒊 = 𝜹𝒙̅𝟏

𝒊     ,    𝜹𝒖̿𝟏
𝒊 = 𝜹𝒙̿𝟏

𝒊  

No entanto, esta relação é definida incorretamente para o termo de ordem zero da 

expansão em Série de Fourier, ou seja, 

𝜹𝒙𝟏
𝟎  ≠ 𝜹𝒖𝟏

𝟎  

pois o segundo termo do vetor 𝒖𝟏
𝟎 é negativo.  

Lembrando-se que 𝒖𝟏
𝟎 = [𝑢̅1

0 −𝑣̿1
0 𝑤̅1

0]𝑇, onde −𝑣̿1
0  é o primeiro termo da somatória 

−∑ 𝑣̿1
𝑖𝑛

𝑖=0 cos 𝑖𝜃0 (quando 𝑖 = 0), propõe-se a realização da seguinte transformação: 

𝒖𝟏
𝟎 = [

1 0 0
0 −1 0
0 0 1

] {

𝑢̅1
0

𝑣̿1
0

𝑤̅1
0

} =  𝐵 {

𝑢̅1
0

𝑣̿1
0

𝑤̅1
0

}  

Portanto, 

𝐵 𝜹𝒖𝟏
𝟎 = 𝜹𝒙𝟏

𝟎  

Com: 



36 
 

𝐵 = [
1 0 0
0 −1 0
0 0 1

] 

( 𝐵 = 𝐵𝑇    e     𝐵𝐵𝑇 = 𝐼  ) 

Utilizando-se a modificação proposta acima, as funções 𝛿𝑔𝑁, 𝛿𝑔𝑇1 e 𝛿𝑔𝑇2 são 

calculadas por: 

𝛿𝑔𝑁 = 𝒏
𝑻𝜹𝒖𝟐 −  𝒏

𝑻𝐵𝜹𝒖𝟏
𝟎 −∑[ 𝒏𝑻𝐶𝑖𝜹𝒖̅𝟏

𝒊 + 𝒏𝑻𝑆𝑖𝜹𝒖̿𝟏
𝒊 ]

𝑛

𝑖=1

 

𝛿𝑔𝑇1 = 𝒂𝟏
𝑻𝜹𝒖𝟐 −  𝒂𝟏

𝑻𝐵𝜹𝒖𝟏
𝟎 −∑[ 𝒂𝟏

𝑻𝐶𝑖𝜹𝒖̅𝟏
𝒊 + 𝒂𝟏

𝑻𝑆𝑖𝜹𝒖̿𝟏
𝒊 ]

𝑛

𝑖=1

 

𝑔𝑇2 = 𝒂𝟐
𝑻𝜹𝒖𝟐 −  𝒂𝟐

𝑻𝐵𝜹𝒖𝟏
𝟎 −∑[ 𝒂𝟐

𝑻𝐶𝑖𝜹𝒖̅𝟏
𝒊 + 𝒂𝟐

𝑻𝑆𝑖𝜹𝒖̿𝟏
𝒊 ]

𝑛

𝑖=1

 

Com isso, obtêm-se a matriz de rigidez para o caso de contato com sticking: 

𝐾𝑠𝑡𝑖𝑐𝑘𝑖𝑛𝑔 = 𝜀𝑁𝑀𝑛 + 𝜀𝑇𝑀𝑎1 + 𝜀𝑇𝑀𝑎2 

com: 

𝑀𝑛 =

[
 
 
 
 
 
 
 
𝒏𝒏𝑻 𝒏 𝐵𝑇𝒏𝑻𝐶1

𝑇 𝒏𝐵𝑇𝒏𝑻𝑆1
𝑇 … 𝒏𝐵𝑇𝒏𝑻𝐶𝑛

𝑇 𝒏𝐵𝑇𝒏𝑻𝑆𝑛
𝑇 −𝒏𝐵𝑇𝒏𝑻

𝐶1
𝑇𝒏𝐵𝒏𝑻 𝐶1

𝑇𝒏𝒏𝑻𝐶1
𝑇 𝐶1

𝑇𝒏𝒏𝑻𝑆1
𝑇 … 𝐶1

𝑇𝒏𝒏𝑻𝐶𝑛
𝑇 𝐶1

𝑇𝒏𝒏𝑻𝑆𝑛
𝑇 −𝐶1

𝑇𝒏𝒏𝑻

𝑆1
𝑇𝒏𝐵𝒏𝑻 𝑆1

𝑇𝒏𝒏𝑻𝐶1
𝑇 𝑆1

𝑇𝒏𝒏𝑻𝑆1
𝑇 … 𝑆1

𝑇𝒏𝒏𝑻𝐶𝑛
𝑇 𝑆1

𝑇𝒏𝒏𝑻𝑆𝑛
𝑇 −𝑆1

𝑇𝒏𝒏𝑻

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝐶𝑛
𝑇𝒏𝐵𝒏𝑻 𝐶𝑛

𝑇𝒏𝒏𝑻𝐶1
𝑇 𝐶𝑛

𝑇𝒏𝒏𝑻𝑆1
𝑇 … 𝐶𝑛

𝑇𝒏𝒏𝑻𝐶𝑛
𝑇 𝐶𝑛

𝑇𝒏𝒏𝑻𝑆𝑛
𝑇 −𝐶𝑛

𝑇𝒏𝒏𝑻

𝑆𝑛
𝑇𝒏𝐵𝒏𝑻 𝑆𝑛

𝑇𝒏𝒏𝑻𝐶1
𝑇 𝑆𝑛

𝑇𝒏𝒏𝑻𝑆1
𝑇 … 𝑆𝑛

𝑇𝒏𝒏𝑻𝐶𝑛
𝑇 𝑆𝑛

𝑇𝒏𝒏𝑻𝑆𝑛
𝑇 −𝑆𝑛

𝑇𝒏𝒏𝑻

−𝒏𝐵𝒏𝑻 −𝒏𝒏𝑻𝐶1
𝑇 −𝒏𝒏𝑻𝑆1

𝑇 … −𝒏𝒏𝑻𝐶𝑛
𝑇 −𝒏𝒏𝑻𝑆𝑛

𝑇 𝒏𝒏𝑻 ]
 
 
 
 
 
 
 

 

 

𝑀𝑎1 =

[
 
 
 
 
 
 
 
𝒂𝟏𝒂𝟏

𝑇 𝒂𝟏𝐵
𝑇𝒂𝟏

𝑇 𝒂𝟏𝐵
𝑇𝒂𝟏

𝑇𝑆1
𝑇 … 𝒂𝟏𝐵

𝑇𝒂𝟏
𝑇𝐶𝑛

𝑇 𝒂𝟏𝐵
𝑇𝒂𝟏

𝑇𝑆𝑛
𝑇 −𝒂𝟏𝐵

𝑇𝒂𝟏
𝑇

𝐶1
𝑇𝒂𝟏𝐵𝒂𝟏

𝑻 𝐶1
𝑇𝒂𝟏𝒂𝟏

𝑇𝐶1
𝑇 𝐶1

𝑇𝒂𝟏𝒂𝟏
𝑇𝑆1

𝑇 … 𝐶1
𝑇𝒂𝟏𝒂𝟏

𝑇𝐶𝑛
𝑇 𝐶1

𝑇𝒂𝟏𝒂𝟏
𝑇𝑆𝑛

𝑇 −𝐶1
𝑇𝒂𝟏𝒂𝟏

𝑇

𝑆1
𝑇𝒂𝟏𝐵𝒂𝟏

𝑻 𝑆1
𝑇𝒂𝟏𝒂𝟏

𝑇𝐶1
𝑇 𝑆1

𝑇𝒂𝟏𝒂𝟏
𝑇𝑆1

𝑇 … 𝑆1
𝑇𝒂𝟏𝒂𝟏

𝑇𝐶𝑛
𝑇 𝑆1

𝑇𝒂𝟏𝒂𝟏
𝑇𝑆𝑛

𝑇 −𝑆1
𝑇𝒂𝟏𝒂𝟏

𝑇

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝐶𝑛
𝑇𝒂𝟏𝐵𝒂𝟏

𝑻 𝐶𝑛
𝑇𝒂𝟏𝒂𝟏

𝑇𝐶1
𝑇 𝐶𝑛

𝑇𝒂𝟏𝒂𝟏
𝑇𝑆1

𝑇 … 𝐶𝑛
𝑇𝒂𝟏𝒂𝟏

𝑇𝐶𝑛
𝑇 𝐶𝑛

𝑇𝒂𝟏𝒂𝟏
𝑇𝑆𝑛

𝑇 −𝐶𝑛
𝑇𝒂𝟏𝒂𝟏

𝑇

𝑆𝑛
𝑇𝒂𝟏𝐵𝒂𝟏

𝑻 𝑆𝑛
𝑇𝒂𝟏𝒂𝟏

𝑇𝐶1
𝑇 𝑆𝑛

𝑇𝒂𝟏𝒂𝟏
𝑇𝑆1

𝑇 … 𝑆𝑛
𝑇𝒂𝟏𝒂𝟏

𝑇𝐶𝑛
𝑇 𝑆𝑛

𝑇𝒂𝟏𝒂𝟏
𝑇𝑆𝑛

𝑇 −𝑆𝑛
𝑇𝒂𝟏𝒂𝟏

𝑇

−𝒂𝟏𝐵𝒂𝟏
𝑻 −𝒂𝟏𝒂𝟏

𝑇𝐶1
𝑇 −𝒂𝟏𝒂𝟏

𝑇𝑆1
𝑇 … −𝒂𝟏𝒂𝟏

𝑇𝐶𝑛
𝑇 −𝒂𝟏𝒂𝟏

𝑇𝑆𝑛
𝑇 𝒂𝟏𝒂𝟏

𝑇 ]
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𝑀𝑎2 =

[
 
 
 
 
 
 
 
𝒂𝟐𝒂𝟐

𝑇 𝒂𝟐𝐵
𝑇𝒂𝟐

𝑇 𝒂𝟐𝐵
𝑇𝒂𝟐

𝑇𝑆1
𝑇 … 𝒂𝟐𝐵

𝑇𝒂𝟐
𝑇𝐶𝑛

𝑇 𝒂𝟐𝐵
𝑇𝒂𝟐

𝑇𝑆𝑛
𝑇 −𝒂𝟐𝐵

𝑇𝒂𝟐
𝑇

𝐶1
𝑇𝒂𝟐𝐵𝒂𝟐

𝑻 𝐶1
𝑇𝒂𝟐𝒂𝟐

𝑇𝐶1
𝑇 𝐶1

𝑇𝒂𝟐𝒂𝟐
𝑇𝑆1

𝑇 … 𝐶1
𝑇𝒂𝟐𝒂𝟐

𝑇𝐶𝑛
𝑇 𝐶1

𝑇𝒂𝟐𝒂𝟐
𝑇𝑆𝑛

𝑇 −𝐶1
𝑇𝒂𝟐𝒂𝟐

𝑇

𝑆1
𝑇𝒂𝟐𝐵𝒂𝟐

𝑻 𝑆1
𝑇𝒂𝟐𝒂𝟐

𝑇𝐶1
𝑇 𝑆1

𝑇𝒂𝟐𝒂𝟐
𝑇𝑆1

𝑇 … 𝑆1
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4. EXPANSÃO EM SÉRIE DE FOURIER DAS REAÇÕES DE 

CONTATO PARA O ELEMENTO CILÍNDRICO 

Embora a expansão em Série de Fourier dos esforços externos estivesse sendo 

realizada adequadamente para o elemento cilíndrico de parede espessa, notou-se que 

o mesmo não ocorria para as reações de contato. Isso porque, para este tipo de 

elemento não basta saber apenas o nó e a intensidade dos esforços aplicados sobre 

ele. É necessário conhecer também a distribuição destes esforços ao longo da direção 

angular para o nó em questão, como indicado na Figura 17. 

 

Figura 17 - Caso simplificado de apenas 1 elemento e em contato apenas no lado externo: a 
distribuição dos esforços deve ser conhecida para a aresta superior e para a inferior. 

 

 

Figura 18 - Exemplos de distribuições angulares de esforços expandidos em Série de Fourier. 
(COOK, MALKUS, PLESHA, & WITT, 2002) 

Assim como as forças externas, as reações de contato também devem ser expandidas 

em Série de Fourier, ou seja, 
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𝐅𝑭𝒐𝒖𝒓𝒊𝒆𝒓 =  {

𝐹𝑁𝐹𝑜𝑢𝑟𝑖𝑒𝑟
𝐹𝑎1𝐹𝑜𝑢𝑟𝑖𝑒𝑟
𝐹𝑎2𝐹𝑜𝑢𝑟𝑖𝑒𝑟

} =  

{
 
 
 
 

 
 
 
 ∑𝐹̅N

𝑖

𝑛

𝑖=0

cos 𝑖𝜃 +∑𝐹̿N
𝑖 sin 𝑖𝜃

𝑛

𝑖=0

∑𝐹̅𝑎1
𝑖

𝑛

𝑖=0

sin 𝑖𝜃 +∑𝐹̿𝑎1
𝑖

𝑛

𝑖=0

cos 𝑖𝜃

∑𝐹̅𝑎2
𝑖

𝑛

𝑖=0

cos 𝑖𝜃 +∑𝐹̿𝑎2
𝑖 sin 𝑖𝜃

𝑛

𝑖=0 }
 
 
 
 

 
 
 
 

 

 

Para a situação de contato de tipo “nó a nó” entre o elemento cilíndrico e o elemento 

de hélice, as reações de contato podem ser modeladas como esforços concentrados 

aplicados na região de contato. Portanto, pode-se utilizar a função Delta de Dirac, 

𝛿(𝑥 − 𝜃0), para representá-los. A Figura 19 ilustra esta hipótese para a situação de 

contato normal, na qual 𝐹𝑁 é considerada uma força pontual aplicada em 𝜃0. 

 

Figura 19 - Esforços concentrados na região de contato. Esta figura exemplifica a hipótese para a 

direção normal. Os modelos matemáticos são válidos para pequenas deformações e o fenômeno foi 

ampliado nesta imagem apenas para recurso didático. 

A função Delta de Dirac possui as seguintes propriedades: 

𝛿(𝑥 − 𝜃0) = 0 ,    para 𝑥 ≠ 𝜃0 

∫ 𝐹𝑗(𝑥)
∞

−∞
𝛿(𝑥 − 𝜃0) 𝑑𝑥 =  𝐹𝑗(𝜃0) ,   para 𝑗 =  𝑛, 𝑎1 𝑒 𝑎2 

A expansão em Série de Fourier obtém-se, para 𝑗 =  𝑛,  𝑎1 𝑒 𝑎2: 

𝐹𝑗𝐹𝑜𝑢𝑟𝑖𝑒𝑟 = 𝐹𝑗
0 +∑𝐹̅j

𝑖

𝑛

𝑖=1

cos 𝑖𝜃 +∑𝐹̿j
𝑖 sin 𝑖𝜃

𝑛

𝑖=1

 

𝐹𝑗
0 = 

𝐹𝑗

2𝜋
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𝐹̅j
𝑖 = 

𝐹𝑗

𝜋
 cos 𝜋  𝑖𝜃0 

𝐹̿j
𝑖 = 

𝐹𝑗

𝜋
 sin 𝜋  𝑖𝜃0 

A Figura 20 exemplifica a expansão em Série de Fourier para a situação de contato 

normal com uma força concentrada de 1N aplicada para  𝜃0 = 45°. 

 

 

Figura 20 - Expansão em série de Fourier de ordem 20 para uma força concentrada de valor unitário 

aplicada a π/4 (45°). A integral desta função é igual ao módulo da força aplicada, ou seja, 1N. 
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5. IDENTIFICAÇÃO DOS GARGALOS COMPUTACIONAIS 

Segundo o Princípio de Pareto, 80% dos recursos são utilizados por 20% das 

operações. Este princípio é utilizado em programação para ilustrar os efeitos gerados 

por gargalos computacionais, também conhecidos como “hot spots”, que são trechos 

de um código com elevada proporção de instruções executadas, que demandam 

elevada quantidade de memória, processamento e tempo. Por este motivo, os 

gargalos são os principais limitantes à utilização de um programa, que, para se tornar 

eficiente, é necessária a redução (ou se possível até a eliminação) da influência destes 

gargalos. 

Pelos motivos apresentados, buscou-se a identificação dos gargalos computacionais 

do software UFCad. No entanto, devido à complexidade desta rotina de elementos 

finitos, com diversas classes e métodos, identificar estes gargalos computacionais não 

é uma tarefa tão simples. Este fato obrigou a adoção de uma metodologia de 

identificação, que será apresentada neste capítulo, juntamente com os seus 

resultados. 

É interessante notar que os gargalos computacionais identificados compuseram a 

base da estratégia de otimização adotada, justificando as modificações no código que 

se fizeram necessárias e que serão apresentadas nos próximos capítulos. 

No item 5.1 deste capítulo serão apresentadas ferramentas específicas para a 

identificação destes gargalos computacionais, conhecidas como profilers, que 

auxiliaram na identificação dos mesmos. 

O UFCad apresentou dois tipos distintos de gargalos computacionais: 

 Gargalos de processamento, apresentado no item 5.2; 

 Gargalos de memória consumida, no item 9.3. 

 

5.1 Seleção dos profilers utilizados na identificação dos gargalos 

computacionais  

Com a crescente complexidade das rotinas implementadas, identificar estes gargalos 

computacionais torna-se uma tarefa longa e igualmente complexa. Otimizar o código 

todo é uma tarefa inviável e, na grande maioria das vezes, não necessária. A 

otimização de trechos de código que não foram selecionados adequadamente trará 

ganhos pouco substanciais à eficiência do mesmo. Segundo Donald Knuth, professor 
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emérito da Universidade de Stanford, as pequenas eficiências devem ser esquecidas 

em 97% dos casos, pois a otimização prematura é a raiz de todos os males (KNUTH, 

D., 1977). 

Uma maneira prática para se analisar o código e encontrar seus gargalos é através 

da utilização de ferramentas desenvolvidas para esta finalidade, os profilers, que 

monitoram uma série de parâmetros (como consumo de memória, tempo de análise, 

número de threads, etc) permitindo-se assim avaliá-lo. Como os profilers são 

ferramentas projetadas para o maior número possível de aplicações e finalidades, 

existem vários opões de análise, como por exemplo linha-por-linha (“line-by-line”), 

amostragem baseada em evento (“event-based sampling”), amostragem baseada em 

tempo (“time-based sampling”), etc. A escolha dos métodos e parâmetros depende do 

caso analisado, de modo geral baseados em alguns critérios como tempo, precisão e 

custo de análise. 

Como há uma distinção entre profilers para análise de processamento e profilers para 

análise de consumo de memória, a apresentação dos mesmos seguirá o mesmo 

padrão, conforme o respectivo tipo. 

5.1.1 Profiler para análise de processamento 

Para a análise de processamento, foram utilizados os seguintes profilers: “ANTS 

Performance Profiler 8” e “dotTrace 5.5 Performance”, que são ferramentas 

comerciais que dispõem de licenças para estudante. Ambos os programas são muito 

semelhantes e se propõem a fazer praticamente as mesmas tarefas, o que permitiu 

comparar os resultados. 

A Figura 21 e a Figura 22 mostram, respectivamente, as interfaces dos programas 

“dotTrace” e “ANTS”. Nestas imagens é possível ver a pilha de chamada, ou pilha de 

execução (em inglês “call stack”), na qual são listados os métodos e as funções que 

compõem o programa, bem como seus parâmetros estatísticos mais importantes, por 

exemplo, a contagem do número de execuções e a porcentagem de tempo que o 

programa gasta com cada um deles. A organização e disposição destas pilhas de 

chamadas foram otimizadas pelos desenvolvedores dos softwares de modo a facilitar 

a identificação dos trechos críticos do código. 
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Figura 21 – Pilha de execução gerada pelo software “dotTrace 5.5.5 Performance”. 

 

 

Figura 22 – Pilha de execução gerada pelo software “ANTS Performance Profiler 8”. 
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A Figura 23 é um exemplo de organograma gerado automaticamente pelo programa 

“ANTS Performance Profiler 8”. Este organograma mostra as relações hierárquicas 

entre os principais métodos chamados de um código, sendo muito útil para identificar 

aqueles que demandam proporcionalmente a maior parte do tempo de execução.  

Neste tipo de representação, os métodos que consomem poucos recursos de 

processamento são omitidos para não poluí-la visualmente, o que seria prejudicial à 

interpretação dos dados. 

 
Figura 23 - Exemplo de um organograma gerado automaticamente pelo software “ANTS Performance 

Profiler 8”. 

 

5.1.2 Profiler para análise de consumo de memória computacional 

Seguindo estratégia semelhante à da análise de processamento, testou-se os 

seguintes programas para a análise de consumo de memória: “ANTS Memory Profiler 

8” e “dotMemory 4.0”. Ambos são programas comerciais que dispõem de licenças para 

estudantes e há uma certa semelhança entre as análises que se propõem a realizar. 
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Por melhor se adequar as necessidades desta análise, o software “dotMemory 4.0” foi 

o escolhido. 

Na Figura 24 pode ser visto um gráfico de consumo de memória ao longo do tempo, 

que é gerado ao mesmo tempo em que a aplicação é executada. Para se analisar um 

determinado instante com maiores detalhes, deve-se acionar o comando snapshot, o 

qual captura as informações que estão sendo coletadas e permite uma análise 

completa do código no instante em questão. Pode ser visto na Figura 25 a interface 

de um snapshot gerada pelo programa “dotMemory 4.0”. O snapshot contém 

informações importantes, como o tamanho de memória ocupado pelos maiores 

objetos, vazamentos de memória e links para análises mais detalhadas, como a árvore 

de chamadas. 

 

 

Figura 24 - Gráfico de consumo de memória em função do tempo gerado pelo software “dotMemory 
4.0”. 
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Figura 25 – Interface exibida pelo programa “dotMemory 4.0” ao se analisar um snapshot. 

 

5.1.3 Problemas gerados pela utilização incorreta de Profilers 

É importante ressaltar que o profiler também consome recursos de memória e 

processamento do computador, de modo proporcional ao nível de detalhamento e à 

quantidade de variáveis que estão sendo monitoradas. Como a sua execução ocorre 

em paralelo com a aplicação analisada, o profiler causará interferência nos resultados 

obtidos. Se esta interferência for muito elevada, o profiler pode acabar “mascarando” 

os gargalos do código e monitorando valores que não condizem com a execução real 

do programa (como consumo de memória e tempo de análise). Nestes casos 

extremos, perde-se a capacidade de analisar o código e encontrar seus gargalos. 

Portanto deve-se sempre questionar os resultados e tomar todos os cuidados para 

que esta interferência seja minimizada. A Figura 26 é um bom exemplo deste 

fenômeno. Ao se utilizar o profiler “dotMemory 4.0” com nível máximo de 

detalhamento, foram necessários mais 3 minutos para concluir a análise. No entanto, 

a mesma rotina leva aproximadamente 12 segundos para ser executada. Isso significa 

que o nível máximo de detalhamento, além de desnecessário, impossibilita a análise 

de modelos de elementos finitos com elevado número de elementos. 
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Figura 26 – Gráfico de consumo de memória em função do tempo gerado pelo software “dotMemory 
4.0” 

 

Para as análises realizadas, escolheu-se parâmetros adequados (como por exemplo 

métodos de amostragem, que reduzem o número de coletas de memória), mas que 

ainda mantivessem a observabilidade do sistema. Com isso, foi possível realizar a 

análise pelo profiler com tempo compatível com o que a código levar para ser 

executado. Além disso, adotou-se a precaução de somente comparar casos que 

tenham utilizados exatamente os mesmos parâmetros de análise. 

 

5.2 Resultados e conclusões da análise de processamento 

 

Para a análise de processamento do “UFCad”, implementou-se um caso constituído 

de uma capa plástica e um arame de armadura conectados por elementos de contato 

(com a a condição de sticking e sliding), para o qual utilizou-se os profilers “ANTS 

Performance Profiler 8” e “dotTrace 5.5 Performance” para gerar organogramas como 

os das Figura 27 e Figura 28.  

Os resultados vistos nestas duas figuras são de uma simulação com reduzido número 

de elementos finitos, porém suficientes para observar que a montagem da matriz de 

rigidez constitui uma etapa crítica na eficiência do “UFCad”, levando mais de 90% do 

tempo total de execução. Isso ocorre, pois nesta etapa são realizadas muitas 
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operações matemáticas para o cálculo das matrizes de rigidez de cada um dos 

elementos finitos que compõem o modelo simulado. 

 

 
Figura 27 – Organograma criado através da compilação dos dados gerados pelo software “dotTrace 

5.5.5 Performance”. 

 

Figura 28 – Organograma gerado automaticamente pelo software “ANTS Performance Profiler”. 

 

O desempenho do programa “UFCad” é uma função não linear que depende de uma 

série de fatores, como por exemplo a forma como cada elemento é implementado, 

Program.Main

99,84%  •  221.417 ms  •  1 call

Program.HelixPlusCylMeshTestNewContact

99,83%   •  221.394 ms  •  1 call

Solver.SolveIterative

99,52%   •  220.722 ms  •  1 call

Solver.MountGlobalMatrices

96.88%  •  214.856 ms  •  1 call

Node.NodeContribution

87,18%  •  193.344 ms  •  563.175 calls

Cylinder.NodeContribution

50,34%  •  111.650 ms  •  900.360 calls

Cylinder.MountMatrixForOrder

46,57% •  103.281 ms  •  14.256 calls

FourierContact.NodeContribution

17,65% •  39.140 ms  •  337.905 calls

Helix.NodeContribution

17,80% •  39.467 ms  •  335.430 calls

Helix.Matrix

16,44%  •  11.917 ms  •  7.956 calls  
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proporção entre os tipos de elemento, trechos que apresentam comportamento 

variado de acordo com o tamanho dos dados matrizes manipulados, etc. 

Um modo interessante para avaliar a influência da montagem da matriz global de 

rigidez na eficiência do programa é comparar o tempo que a matriz global de rigidez 

leva para ser montada com o tempo total de execução. Isso foi feito para uma série 

de situações:  variando-se a quantidade de elementos do modelo de macroelementos 

finitos (Figura 29) e variando-se a ordem da expansão em Série de Fourier para os 

elementos de contato (Figura 30), o que consequentemente elevou também o 

tamanho, em megabytes, da matriz global de rigidez. Verifica-se que o valor da 

proporção de ambos os casos diminui à medida em que o tamanho da matriz global 

de rigidez aumenta. Isso ocorre, pois a resolução do sistema linear para obtenção dos 

deslocamentos possui influência crescente sobre a eficiência global do programa com 

o aumento do tamanho da matriz de rigidez. Este fato, no entanto, será devidamente 

explorado mais adiante, durante a análise de consumo de memória. O importante, 

tanto da Figura 29 quanto da Figura 30, é verificar que a montagem da matriz de 

rigidez requer um tempo significativo, de 50% à 95% do tempo total de simulação. 

 

 

Figura 29 – Comparação entre o tempo total de execução do programa “UFCad” e o tempo de 

montagem da matriz global de rigidez em função do tamanho (em megabytes) da matriz global de 

rigidez. A variação no tamanho da matriz de rigidez foi obtida aumentando-se o número de 
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macroelementos finitos do modelo e mantendo-se constante a ordem da expansão em Série de 

Fourier dos elementos de contato. 

 

 

Figura 30 – Comparação entre o tempo total de execução do programa “UFCad” e o tempo de 

montagem da matriz global de rigidez em função do tamanho (em megabytes) da matriz global de 

rigidez. A variação no tamanho da matriz de rigidez foi obtida aumentando-se a ordem da expansão 

em série de Fourier e mantendo-se constante o número de macroelementos finitos do modelo. 

 

Ao se verificar também o uso de CPU durante a execução do “UFCad”, notou-se que 

o mesmo variava entre 15% à 30%, como indicado na Figura 31.  Além disso, a 

distribuição de processamento entre os núcleos não era homogênea, inclusive com 

alguns deles não sendo utilizados. Com isso, conclui-se que o programa não está 

aproveitando todo o potencial de processamento disponível. Modificações com intuito 

de elevar esta taxa de utilização de CPU trarão ganhos substanciais em relação tempo 

de simulação. 
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Figura 31 – Uso de CPU durante a execução do profiler “ANTS”. 

Portanto, com os resultados apresentados acima, conclui-se que a estratégia mais 

adequada para abordar e reduzir os gargalos de processamento é através da 

introdução de métodos de paralelização computacional no trecho de código 

responsável pela montagem das matrizes de rigidez, o que elevará a taxa de uso de 

CPU. Com isso, espera-se aumentar a eficiência do código e reduzirão o tempo de 

análise, o que impactará diretamente nos custos de análises com elevado número de 

graus de liberdade. 

 

5.3 Resultados e conclusões da análise de consumo de memória 

computacional 

Para a avaliação do consumo de memória, considerou-se um caso envolvendo um 

cilindro e um arame interligados por elementos de contato, permitindo deslocamento 

normal e tangencial entre elementos cilíndricos e helicoidais, sob a condição de 

contorno imposta de descolamento compressivo. 

Realizou-se também uma análise da influência do número de elementos do modelo 

de elementos finitos. Os resultados desta análise podem ser vistos na Tabela 1 e 

Figura 32. 

 

Tabela 1 – Consumo de memória em função do número de elementos do modelo. Parâmetros fixos da 

análise:  matriz global de rigidez fora do loop; ordem de Fourier igual a 0. 

Nr Nº Elem. Hélice 
Nº Elem. 

Cilíndricos 
Máx. Mem. (MB) Tempo (s) 
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#1 25 100 93 12 

#2 50 400 163 29.3 

#3 75 900 442 87.4 

#4 75 1200 642 129.1 

#5 100 1600 1096 247.3 

#6 200 6400 OUT OF MEM. - 

 

 

Figura 32 - Consumo de memória (MB) em função do número de elementos cilíndricos. 

Também realizou-se uma análise da influência da ordem de expansão em série de 

Fourier no consumo máximo de memória. Os resultados podem ser conferidos na 

Tabela 2 e na Figura 33. 

 

Tabela 2 - Consumo de memória em função da ordem de expansão da série de Fourier. Parâmetros 

fixos da análise:  matriz global de rigidez fora do loop; número de elementos cilíndricos igual 100; 

número de elementos de hélice igual à 25. 

Nr Ord. Fourier 
Núm. elem. 
cilíndricos 

Máx. Mem. 
(MB) 

Tempo total 
(s) 

#1 0 100 93 12 
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#2 1 100 135 20,8 

#3 2 100 200 42,3 

#4 3 100 313 76,9 

#5 4 100 504 131,5 

#6 5 100 713 208,4 

 

 

Figura 33 - Consumo de memória (em megabytes) em função da ordem da expansão em Série de 

Fourier. 

 

O programa “UFCad” apresenta consumo exponencial de memória computacional 

com relação ao tamanho do modelo de macroelementos finitos, fazendo com que o 

limite máximo de memória disponível na CPU seja excedido com um número 

relativamente baixo de elementos. Isto ocorre por dois motivos: 

 O programa utiliza matrizes densas ao invés de matrizes esparsas para 

armazenar os dados; 

 Problemas e limitações com a resolução do sistema linear (assunto que será 

abordado em maiores detalhes no capítulo 7). 
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Adicionalmente, a configuração padrão da linguagem C# limita a criação e 

manipulação de matrizes a apenas 2 GB, o que inviabiliza a utilização do programa 

“UFCad” para a simulação de modelos de elementos finitos de grande escala.  
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6. MODIFICAÇÕES NO PROGRAMA UFCAD 

6.1 Modificação 01 – A alteração do número de vezes em que a matriz global 

de rigidez é computada 

Em função da natureza dos modelos de elementos finitos do programa “UFCad”, deve-

se utilizar o solver-interativo. Problemas que envolvem contato do tipo gap (abertura 

e fechamento) são não-lineares e requerem métodos iterativos para a convergência. 

O solver-interativo subdivide linearmente o carregamento externo em 10 steps, que 

subdividem-se em um número variável de substeps. De modo simplista, o solver-

interativo aplica o carregamento externo correspondente a um step, determina quais 

pares de contato estarão ativos para e em seguida atualiza as matrizes de rigidez dos 

elementos de contato correspondentes, caracterizando um substep. Para o mesmo 

carregamento externo, ele determina novamente os pares em contato e atualiza as 

matrizes de rigidez destes elementos, caracterizando um novo substep. Este ciclo 

persiste até que a convergência para este step seja atingida, quando então realiza-se 

o incremento de um décimo nos carregamentos externos, dando início aos substeps 

do próximo step.  

Antes da Modificação 01, para cada um dos 10 steps, o programa recalculava todas 

as matrizes de rigidez dos elementos finitos do modelo, montava a matriz global e 

armazenava-a como uma propriedade. Na transição de uma iteração para a outra, um 

novo espaço de memória era alocado na memória heap do sistema e a matriz de 

rigidez antiga era eliminada da memória somente quando o sistema realizava a 

operação “garbage collector”. 

Como mostra a Figura 34, esta operação somente faria sentido se os valores de 

deslocamentos fossem incluídos nos cálculos da nova matriz global de rigidez, o que 

aumentaria a taxa de convergência, ou seja, faria o problema convergir em menor 

número de iterações. 
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Figura 34 - Taxa de convergência em função da atualização ou não das dimensões no cálculo da 

matriz de rigidez (Newton-Raphson Option (NROPT), 2014). 

 

No entanto, como a matriz global de rigidez não está sendo reformulada, mas apenas 

recalculada, gasta-se tempo um tempo muito elevado e totalmente desnecessário 

nesta operação, com prejuízos de performance e consumo de memória.  

Deslocando-se a montagem da matriz global de rigidez para fora do loop de iterações, 

o número de vezes em que a matriz global de rigidez é calculada durante a execução 

do programa passou de 10 para apenas 1 vez. Ao eliminar-se esta repetição de 

cálculos, houve um ganho expressivo de performance do programa e também redução 

do tempo de simulação, conforme o indicado nas Figura 35 à Figura 40. 
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Figura 35 – Comparação de tempo de montagem de matriz global quando: a matriz é calculada 
apenas 1 vez (fora do loop, curva azul); a matriz é recalculada toda iteração (dentro do loop, curva 

vermelha). 

 

 

Figura 36 - Comparação de tempo total de execução do programa quando: a matriz é calculada 
apenas uma vez (fora do loop, curva azul); a matriz é recalculada toda iteração (dentro do loop, curva 

vermelha). 
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Figura 37 - Razão entre tempo de montagem da matriz global de rigidez e tempo total de execução 
quando: a matriz é calculada apenas 1 vez (fora do loop, curva azul); a matriz é recalculada toda 

iteração (dentro do loop, curva vermelha). 

 

 

Figura 38 – Comparação de consumo máximo de memória quando: a matriz é calculada apenas 1 vez 
(fora do loop, curva azul); a matriz é recalculada toda iteração (dentro do loop, curva vermelha). 
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valores de memória, cada um deles correspondentes aos 10 steps que o programa 

realiza. 

 

 

Figura 39 - Consumo de memória ao longo do tempo para o caso em que a matriz de rigidez é 
calculada em cada step. 

 

 

Figura 40 - Consumo de memória ao longo do tempo para o caso em que a matriz global de rigidez é 
calculada apenas uma vez. 
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6.2 Modificação 02 – Alteração na varredura de montagem da matriz de rigidez 

Também foi alterada a lógica de varredura dos nós para a montagem da matriz de 

rigidez do programa UFCad. A varredura consiste em identificar corretamente a 

posição na matriz global de rigidez em que cada uma das matrizes locais de rigidez 

deve ser adicionada. A varredura é realizada com algumas das propriedades que o 

UFCad armazena de cada um dos elementos finitos do modelo: o tipo de elemento e 

os nós que o compõem. 

O número de graus de liberdade dos nós de cada tipo de elemento é determinado pela 

formulação matemática dos elementos. Cada nó do elemento de hélice, por exemplo, 

possui 6 graus de liberdade, enquanto que, para o elemento cilíndrico, os nós 

possuem apenas 3 graus de liberdade, uma vez que neste caso as rotações foram 

desprezadas. 

A varredura por nó consiste em verificar na lista de elementos quais elementos finitos 

estão associados a cada um dos graus de liberdade do modelo. Isso exige uma 

quantidade de buscas que cresce quadraticamente com o número de graus de 

liberdade do modelo, o que se torna um processo demorado e de elevado custo 

computacional. Esta lógica foi substituída pela varredura por elemento. Sabendo-se 

quais nós que compõe o elemento finito, é possível determinar a posição na matriz de 

rigidez, pois existe uma correlação entre a numeração dos nós e suas respectivas 

localizações na matriz global de rigidez. A varredura por elemento exige uma 

quantidade de buscas na lista de elementos proporcional à quantidade de elementos, 

o que representa uma grande vantagem computacional, ilustrada na Figura 41. Neste 

caso, as eficiências de ambos os tipos de varredura foram comparadas através da 

medição do tempo de montagem em função do número de graus de liberdade do 

modelo. É importante dizer que, neste caso, o modelo simulado continha uma capa 

plástica externa conectada rigidamente à apenas uma armadura de tração. A 

quantidade de componentes foi mantida constante, de modo que a variação do 

número de graus de liberdade ocorreu somente pelo refinamento da discretização do 

modelo. Este gráfico comprova o crescimento quadrático do tempo total de montagem 

da matriz global de rigidez com o aumento do número de graus de liberdade para a 

varredura do por nó. 

Trata-se, portanto, de uma comparação de casos extremos, devido à baixa proporção 

entre a quantidade de elementos e graus de liberdade deste caso, o que explicita as 
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diferenças de performance entre as duas metodologias. Em geral, casos com maior 

proporção entre a quantidade de elementos e graus de liberdade (vários componentes 

conectados entre si, por exemplo) irão ocupar a região entre as duas curvas do gráfico 

da Figura 41. 

 

 

Figura 41 - Comparação de performance entre os métodos de montagem da matriz global de rigidez. 

 

6.3 Modificação 03 – Paralelização da montagem da matriz global de rigidez 

Computadores modernos possuem mais de um núcleo de processamento e um código 

que utilize paralelização pode tirar grande proveito disto. É possível reduzir 

significativamente o tempo total de simulação ao se utilizar ferramentas específicas 

de programação. Neste contexto, a paralelização da etapa de montagem de matriz 

global de rigidez pode trazer grandes vantagens ao programa, devido à elevada 

quantidade de operações realizadas nesta operação. 

Para a realização desta modificação, foi utilizado uma série de recursos 

disponibilizados pelo C#. “A classe Parallel na TPL permite paralelizar algumas 

construções de programação comuns, sem exigir uma reformulação do aplicativo. 

Internamente, a classe Parallel cria um conjunto próprio de objetos Task e sincroniza 

automaticamente essas tarefas quando finalizadas. A classe Parallel está localizada 

no namespace System.Threading.Tasks e dispõe de um pequeno conjunto de 
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métodos estáticos para indicar que o código deve ser executado em paralelo, se 

possível. Esses métodos são os seguintes: 

 Parallel.For – ele define um loop no qual as iterações podem ocorrer em 

paralelo ao utilizar tarefas. O método é executado para todo valor entre o valor 

inicial e um abaixo do valor final especificado, e o parâmetro é preenchido com 

um inteiro que especifica o valor atual. 

 Parallel.ForEach<T> – ele define um loop no qual as iterações podem ocorrer 

em paralelo. O método é executado para cada item na coleção. 

 Parallel.Invoke – você pode utilizar esse método para executar um conjunto 

de chamadas a métodos sem parâmetros como tarefas paralelas.” (SHARP, 

2011). 

Nem todas as etapas de um código podem ser paralelizadas. Isto ocorre para etapas 

que dependem de resultados das anteriores e, neste caso, deve-se garantir a correta 

execução do programa. Caso isso não seja respeitado, mesmo mantendo-se 

inalterados todos os parâmetros, o programa irá gerar resultados incorretos e que 

serão diferentes em todas as vezes que for executado. Um trecho de código é dito 

“thread-safe” quando ele manipula dados compartilhados entre estruturas de um modo 

que garanta a segurança de execução dos múltiplos threads ao mesmo tempo 

(ORACLE, 2010). 

Foi realizada a paralelização da etapa de montagem da matriz de rigidez, 

aumentando-se a taxa de uso processamento, mas esta operação ainda não pôde ser 

concluída, devido às dificuldades encontradas para se garantir o “thread safety”. Os 

testes realizados mostraram desvios na oitava casa decimal, mas que não podem ser 

desprezados, pois indicam uma falha na sequência de execução das operações. 

Portanto, esta etapa ainda requer melhorias para que seja integralmente finalizada. 

No entanto, é importante notar que os ganhos obtidos com as modificações 6.1 e 6.2 

tornaram os ganhos da paralelização apenas residuais, reduzindo a importância deste 

gargalo computacional. 
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6.4 Modificação 04 – Inclusão de recurso para habilitar matrizes com mais de 

2GB 

Foi disponibilizado após o lançamento do “.NET Framework 4.5” um método para 

desativar a limitação de matrizes de até 2GB de memória. Esta desativação é 

realizada através dos comandos indicados na Tabela 3. 

A utilização deste recurso permitiu um aumento considerável na quantidade de dados 

possíveis de serem armazenados na memória RAM, e com isso a simulação de 

modelos maiores, limitados apenas à quantidade disponível na CPU. 

 

Tabela 3 – Comando em C# para habilitar matrizes com mais de 2GB. 

 

<configuration> 

  <runtime> 

    <gcAllowVeryLargeObjects enabled="true" /> 

  </runtime> 

</configuration> 

 

 

6.5 Modificação 05 – Conversão das Matrizes da Classe “Solver” para Matrizes 

Esparsas 

Com o objetivo de reduzir o consumo de memória, realizou-se a conversão das 

matrizes da classe “Solver” de densas para esparsas. Esta modificação trouxe um 

ganho significativo ao programa quanto à capacidade de armazenamento, como 

indica a Figura 42, sendo possível implementar modelos com mais de 200000 graus 

de liberdade por meio da formulação esparsa, que anteriormente estavam limitados 

somente a 16000 graus de liberdade (para um computador com 8 GB de memória 

RAM disponíveis). 

No entanto, os benefícios desta modificação não puderam ser aproveitados, devido 

ao fato do programa UFCad ainda não contar com um método eficiente para a 

resolução de sistemas lineares esparsos de grande escala, o que será apresentado 

em maiores detalhes no próximo capítulo. 
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Figura 42 – Aumento na capacidade de armazenamento com a implementação do solver com 
matrizes esparsas. 

 

A conversão no formato das matrizes gerou uma perda de performance na montagem 

da matriz global de rigidez, o que pode ser visto na Figura 43. Operações algébricas 

com matrizes esparsas podem não ser vantajosas ao compará-las com matrizes 

densas, se a esparsidade for baixa, ou seja, quando a proporção de células nulas é 

baixa. Isso porque, neste caso, o número de operações matemáticas para ambos os 

formatos é muito próximo, porém com o agravante de que as matrizes esparsas 

requererem controles e verificações adicionais. Pode-se mesclar a utilização de 

matrizes densas e esparsas, sendo a escolha determinada pelos seus respectivos 

graus de esparsidade. No entanto, mesmo neste caso haverá perda de performance, 

pois será necessária a conversão de formatos para durante as operações algébricas. 

Deste modo, otimizar o programa a relação capacidade de armazenamento e 

performance não é uma tarefa simples ou linear. Assim, na medida do possível, cada 

matriz deve ser analisada individualmente, atentando-se ao impacto gerado pela 

alteração no tipo de armazenamento dos dados.  

Para o exemplo ilustrado na Figura 42, a perda de performance é totalmente aceitável 

quando comparada com o aumento gerado na capacidade de armazenamento. 
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Figura 43 – Perda de performance na montagem da matriz global de rigidez gerada pela 
implementação da matriz global de rigidez. 

 

6.6 Modificação 06 – Formulação e implementação de uma nova estratégia de 

detecção de contatos entre armaduras de tração. 

Originalmente, o programa utilizava a metodologia de pinball region para detectar os 

contatos entre armaduras, que consiste em procurar para cada nó do modelo outros 

nós que estejam dentro de uma região de raio especificado. Esta formulação é 

generalizada e muito empregada no método dos elementos finitos. No entanto, para 

um problema envolvendo armaduras de tração, com vários componentes que se 

cruzam e que se encontram muito próximos uns dos outros, esta formulação se 

mostrou deficiente, pois eram detectados muitos mais pares de contato do que o 

preciso, conectando partes da estrutura que não deveriam estar conectadas. 

Deste modo, foi necessária uma formulação específica para a detecção de contatos 

entre armaduras de tração, levando em conta o fato de possuírem geometria 

helicoidal, a qual encontra-se no item 6.6.1. Foram realizadas checagens desta 

formulação, desde a contagem do número de pares de contato até a utilização de 
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métodos gráficos. Os resultados, disponíveis no item 6.6.2, comprovam a efetividade 

da formulação proposta. 

 

6.6.1 Formulação de um novo método de detecção de contatos entre 
armaduras de tração. 

 

 

Figura 44 – Planificação das trajetórias dois arames de armaduras de tração. 

 

Parâmetros necessários: 

• ∅𝑖0   – ângulo inicial da armadura interna de tração; 

• ∅𝑒0  – ângulo inicial da armadura externa de tração; 

• 𝑅𝑖  – raio da armadura interna de tração; 

• 𝑅𝑒  – raio da armadura externa de tração; 

• 𝛼𝑖  – ângulo de assentamento da armadura interna; 

• 𝛼𝑒  – ângulo de assentamento da armadura externa; 

• 𝑃𝑖 =  
𝜋 2𝑅𝑖

tan𝛼𝑖
   – passo da armadura interna de tração; 

• 𝑃𝑒 =  
𝜋 2𝑅𝑒

tan𝛼𝑒
 – passo da armadura externa de tração; 

 

Equação da hélice em coordenadas cilíndricas: 

𝑥𝑖 = 𝑅𝑖  .  cos 𝑐𝑖. 𝑡 

𝑦𝑖 = 𝑅𝑖  .  sin 𝑐𝑖. 𝑡 

𝑧 = 𝑡 
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Onde,  

 𝑐𝑖 =  
2𝜋

𝑃𝑖
=  

tan𝛼𝑖
𝑅𝑖

 

 

Analogamente, para a armadura externa de tração: 

𝑥𝑒 = 𝑅𝑒 .  cos 𝑐𝑒 . 𝑡 

𝑦𝑒 = 𝑅𝑒 .  sin 𝑐𝑒 . 𝑡 

𝑧 = 𝑡 

 Com, 

 𝑐𝑒 =  
2𝜋

𝑃𝑒
=  

tan𝛼𝑒
𝑅𝑒

 

 

1º Passo: Identificar os pontos de intersecção 

Em coordenadas cilíndricas, para haver a interseção entre as armaduras, 

𝑡𝑖 =  𝑡𝑒 = 𝑡 

𝜃𝑖 =  𝜃𝑒 =  𝜃 

para 0 ≤ 𝑡 ≤ 𝐿𝑚𝑎𝑥 

Assim,  

𝜃𝑖 =  𝑐𝑖. 𝑡 + ∅𝑖0 

𝜃𝑒 =  𝑐𝑒 . 𝑡 + ∅𝑒0 

Igualando-se as expressões acima e levando-se em consideração o fato de que 𝜃 é 

uma variável periódica, obtém-se:  

 𝑐𝑖. 𝑡 + ∅𝑖0 =  𝑐𝑒 . 𝑡 + ∅𝑒0 + 𝑘 .  2𝜋 

E portanto, 

 

 

 

A expressão acima é empregada para determinar algebricamente as coordenadas dos 

pontos geométricos de interseção entre os dois arames. É interessante notar que a 

quantidade destes pontos depende da quantidade total de arames em cada armadura, 

𝒕 =  
∅𝒆𝟎 − ∅𝒊𝟎 +  𝒌 .  𝟐𝝅 

 𝒄𝒊 −  𝒄𝒆
 

para  𝒌 = 𝟎, 𝟏, 𝟐, . . ..   e    𝟎 ≤ 𝒕 ≤ 𝑳𝒎𝒂𝒙 
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e dos seus respectivos raios e ângulos de assentamento. No entanto, esta quantidade 

independe da quantidade de nós, ou seja, do grau de discretização das armaduras. 

 

 

Figura 45 – Pontos de intersecção são determinados algebricamente pela expressão apresentada. 

 

2º Passo: Identificar os nós mais próximos destes pontos geométricos 

 

Após identificados os pontos de interseção, deve-se identificar os nós de cada 

armadura que mais se aproximam deles. Esta identificação é realizada segundo a 

metodologia a seguir, ilustrada também na Figura 46: 

 Para cada ponto de interseção calculado; 

o Para cada uma das duas hélices; 

 Para cada um dos nós presentes na hélice; 

 Cálculo da distância do nó ao ponto de interseção; 

o Seleção do nó de menor distância. 
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Figura 46 – Exemplo de checagem de distância entre os nós da armadura externa e o primeiro ponto 

geométrico de intersecção. 

 

3º Passo: Ligar os nós mais próximos dos pontos geométricos 

 

Após determinados os nós que possuem a menor distâncias aos pontos geométricos 

de intersecção, deve-se associá-los corretamente e em seguida criar o elemento do 

tipo bonded ligando estes nós, procedimento ilustrado na Figura 47. 

 
Figura 47 – Elementos de contatos criados com base nos critérios da formulação proposta. 
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6.6.2 Resultados desta lógica de detecção de contatos 

 

Comparou-se a quantidade de elementos criados com a quantidade teórica para 

situações de números de arames variados, que mostram-se sempre compatíveis. 

Adicionalmente, criou-se um método gráfico para esta checagem, ilustrado na Figura 

48. Utilizou-se o UFCad para gerar um arquivo com os pares de nós e suas 

respectivas coordenadas de cada um dos elementos do tipo bonded criados. Utilizou-

se o programa Matlab para pós-processar estes resultados, convertendo os valores 

das coordenadas para o sistema cartesiano e respectiva plotagem em um sistema 

tridimensional. 

 

 
Figura 48 – Recurso gráfico gerado através do programa Matlab para verificar a formação dos pares 

de contato. 

 

6.7 Modificação 07 – Alteração na Geração de Malhas dos Elementos de 

Contato Tipo Bridge 

 

Durante a etapa de simulação do caso de estudo (que será apresentado no Capítulo 

0), encontrou-se uma falha na geração de malhas dos elementos de contato do tipo 

bridge. O programa sempre gerava uma quantidade de elementos bridge suficientes 
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para conectar apenas um arame da armadura de tração. Com isso, para armaduras 

de tração com mais do que um arame, era gerada uma quantidade insuficiente de 

elementos bridge, deixando de conectar a maior parte dos nós que deveriam estar 

unidos, invalidando completamente a utilização deste elemento. Após a identificação 

e correção do problema, todos os nós de todas as armaduras de tração passaram a 

ser computados, o que foi fundamental para a convergência do problema.  
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7. RESOLUÇÃO DO SISTEMA LINEAR 

A resolução do sistema linear é uma etapa crítica ao funcionamento do programa 

“UFCad”, com reflexos sobre o tempo total de simulação e também ao consumo total 

de memória. Ao longo deste trabalho, buscou-se várias soluções para contornar as 

restrições e limitações relativas a solução de sistema linear. Estas ferramentas serão 

apresentadas nos subitens a seguir. 

 

7.1 Bibliotecas e Métodos de Solução Testados 

7.1.1 Math.NET – Numerics – Solver 

A biblioteca “Math.NET – Numerics” dispõe de uma série de técnicas para a resolução 

de sistemas lineares que se aplicam tanto para matrizes densas quanto para 

esparsas. Estas técnicas são: 

 Decomposição LU 

 Decomposição QR 

 Decomposição Gram-Schmidt 

 Decomposição SVD 

 Decomposição Cholesky 

 Decomposição EVD 

 

No início deste trabalho, o programa “UFCad” empregava a biblioteca “Math.Net 

Numerics” para armazenar dados na forma de matrizes e vetores densos por meio de 

classes específicas por ela disponibilizadas, e também a decomposição do tipo LU 

para a resolução de sistemas lineares. Durante a realização deste trabalho, testou-se 

todas as técnicas de resolução listas acima, tanto para sistemas lineares de formato 

denso quanto esparso. Os métodos de decomposição de Cholesky e EVD exigem 

matrizes simétricas e portanto não puderam ser utilizados para casos de contato com 

atrito. 

No entanto, estes métodos de solução não são paralelizados e também otimizados 

para sistemas de grande escala. Este fato inviabiliza a utilização destes métodos para 

a resolução de sistemas lineares de médio e elevado número de graus de liberdade.  
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7.1.2 Math.NET – Numerics – Solver Iterative 

Durante este trabalho também foram testados métodos iterativos de solução 

disponibilizados pela biblioteca Math.Net – Numerics. Este método de solução requer 

a definição dos seguintes itens: 

𝑥 =  𝐴. SolveIterative(b, Iterative solver, Stop criteria, Preconditioner) 

 

Com os seguintes precondicionadores disponíveis: 

 MILU0Preconditioner() – “simple MILU(0) preconditioner”; 

 ILU0Preconditioner() – “incomplete, level 0, LU factorization preconditioner”; 

 ILUTPPreconditioner() – “incomplete LU factorization with drop tolerance and 

partial pivoting”. 

 

Os métodos iterativos de solução disponíveis nesta biblioteca são: 

 BiCgStab() – “Bi-Conjugate Gradient stabilized iterative matrix solver”; 

 GpBiCg() – “Generalized Product Bi-Conjugate Gradient iterative matrix 

solver”; 

 TFQMR() – “Transpose Free Quasi-Minimal Residual (TFQMR) iterative matrix 

solver”; 

 MlkBiCgStab() – “Multiple-Lanczos Bi-Conjugate Gradient stabilized iterative 

matrix solver”. 

 

Existem uma série de critérios de parada disponíveis e foi selecionado o critério de 

residual. Assim, o método somente iria chegar ao seu fim quando o residual fosse 

menor que o valor especificado. 

A grande vantagem deste método é que ele pode ser aplicado para a resolução de 

sistemas lineares esparsos, e as técnicas de precondicionamento podem ajudar a 

melhorar a convergência de sistemas mal escalados. 

Estes métodos iterativos mostraram-se mais eficientes que os métodos do item 7.1.1, 

porém a sua utilização ainda não é viável para sistemas de grande escala. Além disso, 

métodos derivados do método de gradiente conjugado não podem ser aplicados para 

a resolução de sistemas lineares assimétricos. 

 



74 
 

7.1.3 Math.NET – Numerics – MKL 

Ao longo da elaboração deste trabalho, incorporou-se ao programa “UFCad” uma 

biblioteca adicional, a “Math.Net Numerics MKL”, que é uma derivação freeware da 

biblioteca profissional “Intel® Math Kernel Library”. 

Esta biblioteca dispõe de um solver LU para a resolução de sistemas lineares 

caracterizado pela alta eficiência de execução e elevado grau de paralelização, o que 

permitiu uma redução considerável do tempo total de simulação. 

No entanto, uma grande desvantagem desta biblioteca é que ela não permite a 

utilização de matrizes esparsas na resolução do sistema linear. Com isso, apesar da 

ótima eficiência da mesma, não é possível utilizá-la para analisar modelos de 

macroelementos finitos com elevado número de graus de liberdade. O computador 

utilizado na avaliação do solver MKL dispunha de 8 GB de memória RAM, o que 

permitiu simular casos em que a matriz global de rigidez de ordem até [16.000 x 

16.000]. Se as dimensões da matriz global de rigidez ultrapassassem o limite 

especificado, o consumo de memória excedia o disponível na CPU e a execução era 

abortada. 

A Figura 49 mostra os resultados de simulação para um caso contendo um arame de 

armadura descrito por elementos de hélice interligados através de elementos contato 

rígido com elementos cilíndricos. Nota-se neste caso que tanto o consumo máximo de 

memória e o tempo total de simulação possuem relação cúbica com o tamanho da 

matriz global de rigidez. Este gráfico reforça a conclusão de que apesar a ferramenta 

MKL ser muito eficiente, o aumento no consumo de memória ocorre de forma muito 

acentuada, limitando a sua utilização. 
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Figura 49 – Resultados de simulação o caso “HelixPlusCylMeshBridgeTest()” (um arame de armadura 

descrito por elementos de hélice interligados através de elementos de contato rígido com elementos 

cilíndricos): consumo máximo de memória e tempo de simulação em função do tamanho, em 

megabytes, da matriz global de rigidez. 

 

Figura 50 - Resultados de simulação o caso “HelixPlusCylMeshTestNewContact()” (um arame de 

armadura descrito por elementos de hélice interligados com elementos cilíndricos através de 
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elementos de contato que permitem sticking e sliding): consumo máximo de memória e tempo de 

simulação em função do tamanho, em megabytes, da matriz global de rigidez. 

7.1.4 GMRES – Biblioteca Própria 

Ao longo do trabalho, desenvolveu-se uma biblioteca própria para a solução de 

sistemas lineares. Implementou-se um método de solução consolidado na 

computação numérica, o método “Generalized Minimal Residual Method” (GMRES), 

geralmente empregado na solução de grandes sistemas lineares esparsos e não 

simétricos. Utilizou-se como referência bibliográfica para esta atividade o livro 

“Iterative Methods for Sparse Linear Systems” do autor Yousef Saad. O algoritmo pode 

ser visto na Figura 51. 

 

 

Figura 51 – Algoritmo GMRES. 

 

Ao implementar este algoritmo, procurou-se armazenar os dados na forma de matrizes 

esparsas, além da utilização de suas propriedades para a redução do número de 

iterações necessárias para se obter a solução. No entanto, como este método de 

solução ainda não está otimizado, não está paralelizado e ainda não possui pré-

condicionador implementado. Portanto este método de solução ainda não pode ser 

empregado pelo programa “UFCad”. 

 

7.1.5 Bibliotecas profissionais (pagas) e PARDISO 

Uma alternativa para solucionar a curto prazo o problema de limitação de memória e 

processamento é a aquisição de bibliotecas numéricas comerciais, projetadas, 
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paralelizadas e otimizadas para a resolução de sistemas lineares esparsos. Esta 

alternativa no entanto implica em altos custos, não sendo possível adotá-la no 

momento. 

Outra alternativa, é a utilização do “PARDISO 5.0.0 Solver Project”, uma biblioteca 

preparada para a finalidade descrita acima e que dispõe de licença grátis para 

estudante durante o período de um ano. No entanto, está biblioteca funciona apenas 

para a linguagem de computação C++, o que exige a conversão integral do programa 

“UFCad” para esta linguagem ou a exportação dos dados necessários à resolução do 

sistema linear para conversão ao C++. 

Ainda não há uma alternativa ótima para a resolução do sistema linear. Todas as 

alternativas disponíveis até o momento possuem vantagens, desvantagens e 

principalmente limitações. A Tabela 4 resume todas estas informações, com o intuito 

de facilitar a comparação entre as alternativas de solução. 

7.2 Alternativa empregada 

Devido à baixa eficiência computacional dos demais métodos, optou-se pela utilização 

da biblioteca “Math.Net Numerics MKL”, caracterizada por elevado grau de 

paralelização e eficiência, e que utiliza 100% dos recursos de processamento 

disponíveis na CPU durante a solução de sistemas lineares. Comparações realizadas 

com a biblioteca convencional “Math.Net Numerics” indicaram uma redução de duas 

ordens de grandeza no tempo total de simulação.  

No entanto, a biblioteca MKL não pode ser aplicada à resolução de sistemas lineares 

esparsos. Deste modo, ao se optar por esta biblioteca, não foi possível aproveitar a 

considerável redução no consumo de memória propiciado pela conversão das 

matrizes da classe “Solver” para matrizes esparsas (item 6.5). 

Portanto, a utilização do UFCad requer a disponibilidade de computadores com 

elevada quantidade de memória, pois o programa não dispõe de um método eficiente 

para a resolução de sistemas lineares esparsos, sendo este o principal gargalo 

existente no momento. 
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7.3 Resumo dos Métodos de Solução de Sistemas Lineares 

 

A
 . 

x 
= 

b

Math.NET

MKL

LU

QR

SVD

Solver

LU

QR

SVD

Gram-Schmidt

Cholesky

EVD

Solver Iterative

BiCgStab

GpBiCg

MlkBiCgStab

TFQMR

GMRES Solver
Single

Restarted
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Tabela 4 – Resumo dos principais métodos de resolução de sistemas lineares do tipo A.x = b 

Biblioteca Método Comando Características Limitações Usos 

M
K

L
 M

a
th

.N
E

T
 

N
u
m

e
ri

c
s
 

LUSolve 
QRSolve 

SVDSolve 

solver.LUSolve(1, 
A.Values, A.RowCount, 

b.Values); 

Biblioteca desenvolvida 
pela Intel, muito 

eficiente, otimizada e 
com elevado grau de 

paralelização. 

Funciona apenas com 
matrizes densas. 

Consumo exponencial 
de memória em função 
do número de graus de 
liberdade do modelo. 

Para modelos com 
poucos graus de 

liberdade, em que a 
quantidade de memória 

disponível não é 
limitante. 

M
a
th

.N
E

T
 N

u
m

e
ri
c
s
 

Decomposição LU 
Decomposição QR 

Decomposição SVD 
Decomp. Gram-Shmidt 

x = A.LU().Solve(b); 
x = A.QR().Solve(b); 
A.Svd().Solve(b, x); 

A.GramSchmidt().Solve(b, 
x); 

Permitem a resolução 
de sistemas lineares de 

matrizes e vetores 
esparsos. 

Métodos não 
paralelizados, de baixa 
eficiência na resolução 
de sistemas lineares 
com matrizes muito 

grandes. 

Quando a biblioteca 
MKL não for capaz de 

resolver o sistema linear 
(limitações de memória), 

porém com perda 
expressiva de eficiência. 

Decomposição Cholesky 
Decomposição EVD 

A.Cholesky().Solve(b, x); 
A.Evd().Solve(b, x); 

Permitem a resolução 
de sistemas lineares de 

matrizes e vetores 
esparsos. 

A matriz A deve ser 
simétrica e positiva 

definida. Não pode ser 
utilizada quando há 

atrito no modelo. 

Apenas para casos em 
que a matriz global de 

rigidez é simétrica. 

M
a
th

.N
E

T
 N

u
m

e
ri
c
s
 

It
e
ra

ti
v
e

 S
o
lv

e
r 

BiCgStab() 
GpBiCg() 
TFQMR() 

MlkBiCgStab() 

MILU0Preconditioner() 
ILU0Preconditioner() 

ILUTPPreconditioner() 
 

x = A.SolveIterative(b, 
solverteste, iterator, 

preconditioner) 

Permite a solução de 
sistemas lineares com 

matrizes e vetores 
esparsos. Performance 
superior aos métodos 
comuns da biblioteca 
Math.NET Numerics. 

Performance bem 
inferior à biblioteca MKL. 
Algoritmos adequados 

para matrizes 
simétricas. 

Não adequado à 
solução de problemas 

de grande escala. 

Quando a matriz global 
de rigidez é armazenada 

de forma esparsa. 
Pré-condicionamento 

pode melhorar 
convergência da 

solução. 
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B
ib

lio
te

c
a

 p
ró

p
ri

a
 

GMRES Código próprio 

Permite a manipulação 
de matrizes esparsas. 

Método GMRES, 
indicado para sistemas 

esparsos e não 
simétricos. 

Baixa eficiência, pois 
ainda não foi otimizado. 

Biblioteca ainda em 
desenvolvimento. Deve 

ser paralelizada e 
otimizada. 

P
A

R
D

IS
O

 

LUSolve Comandos em C++ 

A biblioteca PARDISO 
dispõe de um solver LU 
para sistemas lineares 
com elevado grau de 

paralelização. Também 
permite a manipulação 
de matrizes esparsas. 

Não disponível para C#. 
Deve-se converter o 

código para C++ ou criar 
um “wrapper” para 
resolver apenas o 

sistema linear em C++. 

Modelos de elementos 
finitos de grande escala, 
pois reduz o consumo 
de memória e o tempo 
para resolver o sistema 

linear.  
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8. VALIDAÇÃO DE UM CASO DE ESTUDO COM O PROGRAMA 

UFCAD  

Com o objetivo de validar um caso de estudo através do programa UFCad, realizou-

se uma comparação com o programa Abaqus. Atualmente desenvolvido pela 

Dassault Systemes S.A., o Abaqus é uma consolidada ferramenta de análise por 

elementos finitos que está há mais de 35 anos no mercado. 

Neste capítulo, será especificado o caso de estudo, ou seja, os componentes de 

um tubo flexível que serão modelados em ambos os programas, com o intuito de 

compará-los em vários aspectos, desde resultados até performance. 

No item 8.1 o caso de estudo será detalhado, bem como os motivos que levaram a 

escolha do mesmo. Nos itens 8.2 e 8.3 serão apresentados os valores dos 

parâmetros geométricos e as propriedades de materiais, respectivamente. 

Nos itens 8.4 e 8.5 serão discutidos os detalhes de implementação em cada 

programa, incluindo as dificuldades encontradas durante o processo e as 

alternativas encontradas para contorna-las. 

Por fim, no item 8.6 será realizada uma ampla comparação entre ambos os 

programas, com base em critérios especificados, como qualidade dos resultados, 

tempo de análise, facilidade de implementação, entre outros. 

8.1 Definição do caso de estudo 

Como o programa UFCad ainda não dispõe de todos os macroelementos finitos 

necessários para modelar um tubo flexível completo, adotou-se um tubo mais 

simples para esta tarefa. Inicialmente, considerou-se o caso de estudo composto 

pelos seguintes componentes: um núcleo rígido, duas camadas de armaduras de 

tração e uma capa plástica, todos conectados por elementos de contato que 

permitissem deslocamentos normais e tangenciais com atrito. No entanto, também 

não foi possível adotar este caso, pois este o de elemento de contato utilizado ainda 

apresenta problemas em sua implementação computacional.  

Portanto, adotou-se um caso mais simples, ilustrado na Figura 52, porém factível 

com as ferramentas disponíveis até o momento. Este caso é composto pelos 

seguintes componentes: 
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 Armadura de tração interna, com 16 arames; 

 Armadura de tração interna, com 18 arames; 

 Capa plástica envolvendo as duas armaduras. 

 

Além disso, estes componentes foram conectados rigidamente nos pontos de 

contato, definidos pelas intersecções entre os arames das armaduras interna e 

externa de tração, além das interseções dos arames da armadura externa de tração 

com a capa plástica. 

 

 

Figura 52 - Tubo flexível adotado para o caso de estudo. 

8.2 Propriedades e parâmetros geométricos dos componentes 

 

Neste item estão apresentados os parâmetros geométricos para o caso de estudo 

escolhido. Para cada tipo componente, resumiu-se as informações de parâmetros 

nas Tabelas de Tabela 5 à Tabela 7. 
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Tabela 5 – Propriedades e parâmetros da capa plástica. 

Capa Plástica 

Espessura 7 mm 

Diâmetro médio 213,5 mm 

Material 
Polietileno de alta densidade ( 

Tabela 9) 

 

Tabela 6 – Propriedades e parâmetros da armadura externa de tração. 

Armadura Externa 

Número de arames 18 

Ângulo de assentamento -38° 

Diâmetro médio 206,5 mm 

Seção transversal (L x A) 8 mm x 4 mm 

Material 
Aço1020 ( 
Tabela 8) 

 

Tabela 7 – Propriedades e parâmetros da armadura interna de tração. 

Armadura Interna 

Número de arames 16 

Ângulo de assentamento 36° 

Diâmetro médio 202,5 mm 

Seção transversal (L x A) 8 mm x 4 mm 

Material 
Aço 1020 ( 
Tabela 8) 

 

8.3 Materiais do modelo 

As armaduras internas e externas de tração foram modeladas utilizando-se o 

material Aço 1020, cujas propriedades encontram-se na  

Tabela 8.  

É importante notar que o programa “UFCad” não permite a adoção de não-

linearidades de material. Por este motivo considerou-se o aço 1020 como sendo 

isotrópico linear elástico, utilizando para tal somente as propriedades somente do 
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trecho de módulo secante da curva de tensão e deformação. Já para o programa 

“Abaqus”, por permitir a utilização de tal recurso, foi adotada a propriedade de 

material elástico não-linear (com módulo secante e módulo tangente). 

 

Tabela 8 – Propriedades do aço 1020. 

Aço 1020 

Formulação Isotrópica 

Densidade 8,05 E-9 ton/mm3 

Módulo de elasticidade 207 GPa 

Coeficiente de Poisson 0,30 

Módulo tangente 1172 MPa 

Tensão de escoamento 650 MPa 

Comportamento (UFCad) Linear elástico 

Comportamento (Abaqus) Elástico não-linear 

Deformação plástica Figura 53 

 

 

Figura 53 – Curva de tensão deformação do aço 1020. 

 
Para a capa plástica, adotou-se como material um polietileno de alta densidade 

(HDPE – “High-density polyethylene”), cujas propriedades encontram-se na  
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Tabela 9. Neste caso também há uma diferença entre o comportamento deste 

material nos dois programas de elementos finitos, sendo linear elástico no “UFCad” 

e elastoplástico no “Abaqus”. 

 

Tabela 9 – Propriedades do material polietileno. 

Polietileno (HDPE) 

Formulação Isotrópica 

Densidade 9,41E-10 ton/mm3 

Módulo de Young 570,88 Mpa 

Coeficiente de Poisson 0,45 

Tensão de escoamento 20,74 MPa 

Comportamento (UFCad) Linear elástico 

Comportamento (Abaqus) Elastoplástico 

Deformação plástica Figura 54 

 

 

Figura 54 – Curva de tensão deformação do polietileno (HDPE). 

8.4 Análise realizada através do software Abaqus 

Este item contém as informações importantes à resolução do caso de estudo 

através do software Abaqus. Serão detalhadas as principais características da 
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implementação (item 8.4.1); os tipos de elementos e características das malhas de 

elementos finitos (item 8.4.2); os problemas com a implementação do contato e as 

alternativas encontradas para a solução (item 8.4.3); as condições de contorno 

(item 8.4.4); as precauções quanto a ocorrência de plastificação, o que poderia 

inviabilizar a comparação com o UFCad (item 8.4.5); e finalmente os resultados 

(item 8.4.6). 

 

8.4.1 Características da Implementação 

Para implementar o modelo, criou-se uma macro com os comandos do programa 

Abaqus, permitindo a parametrização do mesmo e versatilidade para se alterar os 

valores dos parâmetros, como, por exemplo, alterações no número de arames das 

armaduras. 

Foram feitos alguns testes com os métodos implícitos e explícitos de integração, 

mas optou-se pelo método implícito, por este permitir um maior timestep (maior 

fração de carga aplicada por iteração), resultando em um tempo menor de 

simulação; e também por este método permitir uma implementação mais simples 

de contato, pois no método implícito foi possível criar dois conjuntos de áreas 

(método detalhado no item 8.4.3), ao passo que o método explícito requeria a 

trabalhosa criação de pares individuais de contatos, inviabilizando a 

parametrização do modelo e consequentemente a utilização deste método de 

integração. 

 

8.4.2 Tipos de Elementos e Características das Malhas de Elementos 

Em função da simplicidade geométrica da capa plástica, ela foi modelada 

utilizando-se elementos de casca, ao invés de sólido, propiciando uma série de 

vantagens computacionais, como simplicidade de implementação e ganho de 

performance. Ao mesmo tempo, o elemento de casca também permite simulações 

de interações de contato com objetos sólidos. Na Tabela 10 encontram-se as 

características do elemento empregado na modelagem da capa plástica. 
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Tabela 10 – Propriedades do elemento utilizado para modelar a capa plástica 

Capa plástica 

Element Library: Standard 

Family: Shell 

Geometric Order: Quadratic 

Type: S8R: 8-node doubly curved thick shell 

Redunced integration: Yes 

DOF per node 6 

 

A geometria simples da capa plástica permitiu a criação de uma malha bem 

estruturada de elementos, Figura 55. 

 
Figura 55 – Malha estrutura de elementos finitos da capa plástica. 

 

Tanto os arames da armadura interna de tração quanto os arames da armadura 

externa de tração foram modelados com o mesmo tipo de elemento, cujas 

propriedades encontram-se na Tabela 11. Optou-se pela utilização de elementos 

sólidos, e não por elementos de viga, devido às dificuldades e problemas de 

convergência ao se utilizar vigas para descrevê-las. 
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Tabela 11 - Propriedades do elemento utilizado para modelar as armaduras de tração. 

Armaduras de tração 

Element Library: Standard 

Family: 3D Stress 

Geometric Order: Linear 

Type: C3D8: 8-node linear brick 

Redunced integration: No 

 

Criou-se uma malha estruturada para discretizar estes arames, com exceção das 

extremidades, que exigiram elementos triangulares em função da curvatura destes 

componentes. Podem ser vistas nas Figura 56 e Figura 57 as malhas de elementos 

finitos gerada pelo programa para as armaduras de tração. 

 

 

Figura 56 - Malha de elementos finitos dos arames das armaduras de tração. 
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Figura 57 - Imagem ampliada da malha de elementos finitos de um arame de tração. 

 

8.4.3 Implementação do Contato 

Durante esta atividade, verificou-se que o programa apresentava comportamentos 

completamente distintos conforme o tipo de integração escolhido, os métodos 

implícitos e explícitos. 

Devido à característica do contato escolhido, totalmente rígido (bonded), quando o 

método de solução é explícito, o Abaqus não permite a utilização do útil comando 

“General Contact”, o qual identifica automaticamente todos os pares de contato. 

Isto significa que os pares de contato devem ser informados manualmente ao 

programa antes da resolução do problema.  

Para o contato entre a armadura externa de tração com a armadura interna de 

tração, por exemplo, um método prático para identificar quais superfícies estão em 

contato é criar dois conjuntos de superfícies: 

 Um conjunto de superfícies composto pelas superfícies externas dos arames 

da armadura interna de tração; 

 Um conjunto de superfícies compostos pelas superfícies internas dos 

arames da armadura externa de tração. 

 

No entanto, quando o método explícito de integração é selecionado, esta 

implementação não funciona, pois o programa não permite o contato entre duas 
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superfícies não contínuas (cada conjunto é composto por uma série de áreas não 

contínuas). Assim, para continuar a utilizar o método explícito, devem ser 

especificadas de forma manual todas as combinações de áreas possíveis entre as 

armaduras internas e externas. Este fato torna a implementação extremamente 

trabalhosa e inviabiliza qualquer modificação posterior no modelo. 

Ao utilizar a formulação implícita de integração, o programa permitiu a utilização 

dos dois conjuntos de superfícies, mostrando-se um recurso muito útil de solução. 

Além da vantagem computacional, mencionada no item 8.4.1, a opção pelo método 

implícito de integração facilitou bastante a implementação do contato, sendo, 

portanto, o método escolhido. 

 

8.4.4 Condições de Contorno 

As condições de contorno do modelo criado estão ilustradas na Figura 58. 

Selecionou-se os nós da seção transversal da extremidade direita desta figura e 

todos os graus de liberdade destes nós foram impostos iguais a zero. Quanto aos 

nós da seção transversal da extremidade esquerda, aplicou-se o deslocamento 

imposto, cujo valor foi definido pela metodologia apresentada no item 8.4.5. 

 

 

Figura 58 - Condições de contorno do modelo. 
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8.4.5 Análise de Plastificação 

Por ser um programa completo, o Abaqus permite à resolução do problema a 

inclusão de não-linearidades geométricas e também a utilização de materiais reais 

(incluindo plastificação e não-linearidades de materiais). Estes efeitos não lineares 

se acentuam a medida em que as deformações geradas pelo deslocamento 

imposto aumentam. Como o UFCad permite a solução apenas de problemas 

lineares (tanto geométricas, quanto de materiais), foi necessária uma análise de 

tensão para adotar um deslocamento imposto que permitisse a comparação 

adequada entre ambos os programas. A Figura 59, a Figura 60 e Figura 61 mostram 

resultados de tensões de Von Mises para deslocamentos impostos de 40 mm, 20 

mm e 10 mm, respectivamente. Em todos os casos notou-se uma singularidade, 

gerando concentrações de tensão, nos pontos de intersecção entre as armaduras, 

o que pode ser visto na Figura 62. Acredita-se que isso ocorra devido ao fato de as 

armaduras estarem coladas umas às outras, impedindo-as de deslocar ou 

rotacionar, e de se acomodarem em uma configuração que minimize a energia 

interna do sistema. O valor desta tensão poderia ser reduzido se fosse utilizado 

elementos de contato que permitissem deslocamentos normais e tangenciais com 

atrito, o que não foi possível devido aos problemas já mencionados. 

 

 

Figura 59 – Tensões de Von Mises para um deslocamento imposto de 40mm. 𝜎𝑀𝑎𝑥 = 1273 𝑀𝑃𝑎, 

valor bem acima da tensão de plastificação. 
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Figura 60 – Tensões de Von Mises para um deslocamento imposto de 20mm. 𝜎𝑀𝑎𝑥 = 1146 𝑀𝑃𝑎, 

valor bem acima da tensão de plastificação. 

 

 

Figura 61 – Tensões de Von Mises para um deslocamento imposto de 10mm. 𝜎𝑀𝑎𝑥 = 837 𝑀𝑃𝑎, 

valor próximo à tensão de plastificação do aço 1020. 
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Figura 62 – Plastificação localiza, devido ao contato do tipo bonded. Tensões pontuais elevadas, 

devido ao fato das armaduras não poderem se acomodar em uma configuração de mínima 

energia. 

 

Com base nos resultados de tensão, adotou-se um deslocamento imposto de 10 

mm. Adicionalmente, para este deslocamento imposto realizou-se uma outra 

comparação, envolvendo os casos: 

 Modelo com não-linearidades geométricas e material plástico; 

 Modelo sem não-linearidades geométricas e material plástico; 

 Modelo sem não-linearidades geométricas e material elástico. 

 

O objetivo desta análise é verificar a validade de se comparar os resultados de um 

modelo que inclua não-linearidades geométricas e materiais plásticos (Abaqus) 

com um modelo totalmente linear (Abaqus ou UFCad). Os resultados desta análise 

encontram-se na Figura 63 e na Figura 64. 
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Figura 63 – Comparação de deslocamentos radiais da armadura interna de tração de modelos 
com e sem não-linearidades geométricas e materiais plásticos e elásticos. NLG: não linearidades 

geométricas. Elast: material elástico. Plast: material plástico. 

 

 

Figura 64 – Comparação de deslocamentos radiais da armadura externa de tração de modelos 

com e sem não-linearidades geométricas e materiais plásticos e elásticos. NLG: não linearidades 

geométricas. Elast: material elástico. Plast: material plástico. 
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Conclui-se que, para o deslocamento imposto selecionado de 10 mm, as diferenças 

entre o modelo totalmente linear e o modelo não-linear são apenas residuais. 

Conforme o esperado, os efeitos de plastificação ocorrem apenas localmente, não 

interferindo nos deslocamentos radiais das armaduras de tração. 

 

8.4.6 Resultados 

Os resultados finais da análise para o caso estabelecido utilizando-se o software 

Abaqus encontram-se na Figura 65. Como os contatos deste caso de estudo foram 

definidos como rígidos e sem separação, era esperado que a estrutura tivesse um 

comportamento próximo de um tubo homogêneo simples, com um deslocamento 

aproximadamente constante no trecho central, o que pode ser visto na Figura 65. 

Adicionalmente, os deslocamentos radiais nas extremidades devem ser nulos, uma 

vez que foram impostos pelas condições de contorno do problema. 

 

 

Figura 65 – Resultados do caso de estudo utilizando-se o software Abaqus. 
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Figura 66 - Deslocamentos radiais das armaduras de tração. 

8.5 Análise realizada através do software UFCad 

O mesmo caso de estudo foi implementado no programa UFCad. Utilizou-se a 

mesma parametrização aplicada ao programa Abaqus, com o intuito de facilitar 

eventuais modificações que pudessem ser realizadas no caso de estudo. 

Por se tratar de um programa em desenvolvimento, ao longo desta tarefa foram 

identificados alguns problemas de implementação dos modelos de 

macroelementos finitos de contato, tanto bridge quanto bonded, justificando as 

modificações no código apresentadas nos itens 6.6 e 6.7. Neste ponto, os 

resultados do programa Abaqus tiveram um papel muito importante, tanto para 

comparar a qualidade dos resultados do UFCad, quanto para guiar as ações de 

correção. Foram necessários muitos testes, principalmente para identificar os 

problemas que implementação, que não eram evidentes a princípio. 

 

8.5.1 Características da implementação 

O UFCad ainda não dispõe de interface gráfica e, por isso, a implementação se deu 

exclusivamente por linha de comando. O código foi implementado de forma 

estruturada e está segmentado em classes: 

 “Materials”: utilizada para criar os modelos de materiais (isotrópicos ou 

ortotrópicos); 
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 “Elements”: dispõe de todos os modelos de macroelementos finitos 

formulados até o momento; 

 “Mesh”: utilizada para criar a malha de elementos finitos do modelo; 

 “Loads”: utilizada para impor as condições de contorno do problema; 

 “Solver”: utilizada para a solução do problema de elementos finitos; 

 

Para um usuário familiarizado com a linguagem computacional, com os comandos 

do UFCad e com o seu funcionamento, a implementação do modelo deste caso de 

estudo é uma tarefa relativamente simples, uma vez que o UFCad é uma 

ferramenta de análise específica para tubos flexíveis. 

 

8.5.2 Resultados 

Além dos parâmetros de convergência, como “Load Step” e “Penalty Factor”, o 

programa dispõe para o caso de análise de 3 parâmetros de discretização da malha 

de elementos finitos: 

 “nel” – o número de divisões axiais das armaduras de tração; 

 “rdiv” – o número de divisões radiais da capa plástica; 

 “Fourier” – a ordem da expansão dos deslocamentos em série de Fourier 

dos elementos cilíndricos. 

Devido a condição de contato nó-a-nó ser necessária para a formulação dos 

contatos, o número de divisões axiais da capa plástica deve ser o dobro do número 

de divisões das armaduras de tração. 

Após uma análise de influência dos parâmetros, viu-se que o parâmetro “rdiv” 

possuía baixa influência sobre a convergência dos resultados. O parâmetro “nel” 

mostrou-se o mais importante de todos. Já o parâmetro “Fourier” foi responsável 

por introduzir um refinamento dos resultados, pois quanto maior o seu valor, mais 

termos de ordem superior são computados. 

Os resultados do programa UFCad podem ser vistos na Figura 67 e na Figura 68. 

Uma discussão mais detalhada será realizada no próximo item, na qual eles serão 

comparados com os resultados do programa Abaqus. 
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Figura 67 - Resultados de deslocamento radial para os parâmetros: nel = 30; rdiv = 2; Fourier = 0 

 

 

Figura 68 – Resultados de deslocamento radial para os parâmetros: nel = 50; rdiv = 2; Fourier = 5 
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8.6 Benchmarking: Abaqus x UFCad 

A comparação entre ambos os programas será realizada seguindo os critérios: 

 Facilidade de implementação 

 Qualidade dos resultados 

 Tempo e custo de simulação 

 Pós-processamento dos dados 

 

8.6.1 Facilidade de implementação 

Neste critério, o programa UFCad possui uma boa vantagem em relação ao 

Abaqus, pois o UFCad é um software desenvolvido especificamente para o projeto 

de tubos flexíveis, enquanto o Abaqus é um programa genérico de elementos 

finitos. Por este motivo, os macroelementos finitos disponíveis no UFCad levam em 

consideração a geometria dos componentes, o que simplifica a implementação do 

modelo e também a definição dos pares do contato. Isso quer dizer que, para 

implementar o mesmo caso em ambos os programas, o UFCad requer um número 

bem menor de tarefas e comandos. 

Além disso, deve-se levar em conta o fato de ambos os programas requererem 

treinamento do usuário para que o mesmo esteja apto a operá-lo. O treinamento 

para o programa UFCad é mais simples e demanda menor tempo. 

 

8.6.2 Qualidade dos resultados 

Analisando-se os resultados apresentados na Figura 69, Figura 70 e Figura 71, 

conclui-se que os resultados do UFCad estão muito próximos do programa Abaqus. 

Diferenças entre ambos os programas são esperadas, pois as formulações não são 

exatamente iguais. Por exemplo, no UFCad as armaduras de tração são modelas 

com vigas curvas e contatos são tipo nó-a-nó, enquanto que, no Abaqus, as 

armaduras são modelas com elementos sólidos e o contato é superfície com 

superfície (uma pequena área de intersecção está em contato, diferentemente do 

contato nó-a-nó, em que apenas dois pontos estão conectados). 

Percebe-se que para a primeira figura, os resultados do programa UFCad estão 

muito lisos (smooth), pois foi considerado neste caso apenas os termos de ordem 

zero da expansão em série de Fourier. Apesar de não ter convergido 
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completamente, este tipo de análise pode ser útil em uma primeira fase de projeto 

para estimar com boa precisão a ordem de grandeza dos deslocamentos, pois a 

demanda computacional deste caso é bem menor que a dos demais. 

Devido ao fato das condições de contorno de axissimétricas, era esperado que os 

deslocamentos apresentassem boa convergência somente com os termos de 

ordem 0, o que se confirmou nos resultados apresentados. Para carregamentos ou 

condições de contorno mais complexas, flexão, por exemplo, os termos de ordem 

superior serão necessários para os resultados convergirem. 

 

 

Figura 69 – Comparação de deslocamentos radiais das armaduras internas e externas dos 

programas UFCad e Abaqus. (UFCad: nel = 30; rdiv = 2; Fourier = 0). 
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Figura 70 – Comparação de deslocamentos radiais das armaduras internas e externas dos 

programas UFCad e Abaqus. (UFCad: nel = 50; rdiv = 2; Fourier = 5). 

 

 

Figura 71 – Comparação de deslocamentos radiais das armaduras internas e externas dos 

programas UFCad e Abaqus. (UFCad: nel = 60; rdiv = 2; Fourier = 8). 
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8.6.3 Tempo e custo de simulação 

Os resultados do Abaqus foram obtidos em uma máquina com 8 GB de memória 

RAM e levaram em torno de 1 hora para serem processados. O Abaqus é um 

software altamente paralelizado, que permite selecionar a quantidade de domínios 

em que o modelo será subdividido, sendo cada um deles distribuídos entre os 

núcleos de processamento disponíveis. Além disso, ainda é possível selecionar a 

porcentagem máxima de memória utilizada pelo computador. 

Quanto ao UFCad, a sua principal limitação diz respeito à quantidade de memória 

demandada, pois o programa ainda não contar com uma técnica eficiente para a 

resolução de sistemas lineares esparsos. A matriz global de rigidez deve ser 

armazenada na forma densa para o funcionamento da biblioteca MKL, o que eleva 

exponencialmente o consumo de memória e limita a utilização do programa às 

máquinas que dispõe de grande quantidade de memória RAM. 

Além disso, carregamentos externos não simétricos (a flexão, por exemplo), exigem 

vários termos de ordem superior da série de Fourier para a convergência dos 

resultados. Neste caso, dependendo da complexidade do modelo, mesmo 

máquinas que dispõem de elevada quantidade de memória podem não ser 

suficientes para a operação do programa, o que também justifica a busca por um 

método eficiente de resolução de sistemas lineares esparsos. 

Além disso, também é possível reduzir o tempo total de simulação com o programa 

UFCad com a implementação de técnicas mais avançadas do método dos 

elementos finitos, como decomposição do problema em subdomínios; aumentando-

se o grau de paralelização do programa; encontrando-se métodos mais eficientes 

de resolução de sistema linear.  

Os tempos de resolução do caso de estudo em ambos os programas são da mesma 

ordem de grandeza, como mostram a Tabela 12 e a Tabela 13. Compreende-se 

através disto, que a introdução de um método eficiente de resolução de sistemas 

lineares esparsos pode tornar competitivo o UFCad em relação ao programa 

Abaqus, principalmente se combinando adequadamente com métodos de 

paralelização. 
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Tabela 12 -  Tempo de simulação e consumo de memória do programa Abaqus. 

Tempo Max. Memória RAM 
Núcleos de 

processamento e 
subdomínios 

De 40 min à 1h30min 6 GB 8 

 
Tabela 13 - Tempo de simulação e consumo de memória do programa UFCad. 

Parâmetros Tempo Max. Memória RAM 

nel = 30; rdiv = 2; Fourier = 0 00 : 05 : 06 9 GB 

nel = 50; rdiv = 2; Fourier = 5 01 : 00 : 18 35 GB 

nel = 60; rdiv = 2; Fourier = 8 03 : 01 : 00 57 GB 

 

Com isso, conclui-se que apesar de todas as melhorias e avanços introduzidos no 

programa ao longo deste trabalho, o programa UFCad ainda não encontra-se 

otimizado o suficiente para ser utilizado por um computador convencional. 

 

 

8.6.4 Pós-processamento dos dados 

O pós-processamento dos dados mostrou-se uma atividade trabalhosa no 

programa Abaqus. Foi necessária a criação de conjuntos de geometrias para 

selecionar corretamente os nós das armaduras de tração, e posteriormente várias 

operações em Excel para ordená-los corretamente na sequência referente às suas 

coordenadas axiais. 

Já o pós-processamento de dados no UFCad mostrou-se muito mais fácil, devido 

à forma como o programa está implementado e aos recursos de sua linguagem 

computacional (C#), o que simplifica a tarefa de seleção dos nós de cada uma das 

armaduras de tração. Além disso, o fato de se conhecer o funcionamento interno 

do programa e a forma como os dados são manipulados representa um grande 

auxílio ao pós-processamento e análise dos resultados. 

 

8.6.5 Resumo da Análise de Benchmarking 

As conclusões obtidas ao longo do item 8.6 podem ser resumidas na Tabela 14. 
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Tabela 14 – Comparação relativa entre ambos os programas. 

Critério UFCAD ABAQUS 

Facilidade de implementação   

Qualidade dos resultados   

Tempo e custo de simulação   

Pós-processamento dos dados   
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9. CONCLUSÕES DO TRABALHO 

A montagem da matriz global de rigidez mostrou-se uma tarefa crítica no 

funcionamento do UFCAD, o que justificou as modificações realizadas no 

programa, sendo elas: a alteração no número de vezes em que a matriz global de 

rigidez é computada (item 6.1) e a alteração na varredura de montagem da matriz 

global de rigidez (item 6.2). Estas modificações possibilitaram um ganho expressivo 

de processamento, com uma redução no tempo de análise de 10 à 20 vezes. Foi 

realizada a paralelização da etapa de montagem da matriz de rigidez, aumentando-

se a taxa de uso processamento, mas esta operação ainda não pôde ser concluída, 

devido às dificuldades encontradas para se garantir o “thread safety”. No entanto, 

os ganhos obtidos com as modificações 6.1 e 6.2 tornaram os ganhos da 

paralelização apenas residuais. 

Além da montagem da matriz global de rigidez, a etapa de resolução de sistemas 

lineares mostrou-se um importante gargalo. Com o objetivo de eliminar este 

gargalo, foi incorporada a biblioteca de resolução de sistemas lineares “Math.Net 

Numerics MKL”, uma derivação freeware da biblioteca profissional “Intel® Math 

Kernel Library”, caracterizada por elevado grau de paralelização e eficiência, e que 

utiliza 100% dos recursos de processamento disponíveis na CPU durante a solução 

de sistemas lineares. Comparações realizadas com a biblioteca convencional 

“Math.Net Numerics” indicaram uma redução de duas ordens de grandeza no 

tempo total de simulação. No entanto, a biblioteca MKL não pode ser aplicada à 

resolução de sistemas lineares esparsos. 

Com a alteração das matrizes da classe “Solver” para matrizes esparsas (item 6.5), 

obteve-se uma redução expressiva no consumo de memória. No entanto, este 

benefício ainda não pode ser aproveitado, pois o UFCAD não dispõe de um método 

eficiente para a resolução de sistemas lineares esparsos, sendo este o principal 

gargalo existente no momento. 

Neste trabalho foram corrigidos problemas na geração de malhas dos elementos 

de contato do tipo bridge (item 6.7); foi implementada uma nova lógica de detecção 

de contatos entre armaduras (item 6.6), mais eficiente computacionalmente e que 

eliminou os problemas de formação de pares indesejados de contato; e também foi 

proposta uma formulação modificada para o macroelemento finito de contato do 
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tipo nó-a-nó entre elemento cilíndrico e elemento de hélice (capítulo 3). Todas estas 

modificações e correções realizadas no programa UFCAD tornaram-no capaz de 

simular um tubo com maior número de componentes.  

A validação de um caso de estudo realizada no capítulo 8, comparando o UFCad 

com o programa profissional de elementos finitos Abaqus, permitiu a realização de 

um benchmarking entre ambos os programas sob diversos critérios, cujos 

resultados encontram-se resumidos na Tabela 14. Os resultados de deslocamentos 

radiais das armaduras de tração de ambos os programas (Figura 71) estão muito 

próximos, o que permite validar os resultados de deslocamento o tubo flexível 

implementado e simulado. Diferenças entre ambos os programas são esperadas, 

pois as formulações não são exatamente iguais. Por exemplo, as armaduras de 

tração foram modelas utilizando-se vigas curvas no UFCAD e elementos sólidos no 

ABAQUS; foi utilizado o contato do tipo nó-a-nó no UFCAD e do tipo superfície com 

superfície no ABAQUS, no qual uma pequena área de intersecção está em contato, 

diferentemente do contato nó-a-nó, em que apenas dois pontos estão conectados. 

Mesmo ainda não estando otimizado o suficiente para ser utilizado por 

computadores convencionais, os resultados obtidos com este trabalho contribuíram 

para aumentar a eficiência do programa UFCad, com ganhos consideráveis de 

processamento e caminhos bem definidos para a redução do consumo de memória, 

já sendo possível a sua utilização para análise estrutural de tubos flexíveis de baixa 

à média complexidade. 

Como trabalhos futuros, é de grande valia o desenvolvimento de um método 

eficiente para a resolução de sistemas lineares esparsos, o que eliminaria o 

principal gargalo existente no programa atualmente, que é o consumo elevado de 

memória. Além disso, também é possível reduzir o tempo total de simulação com o 

programa UFCad com a implementação de técnicas mais avançadas do método 

dos elementos finitos, como decomposição do problema em subdomínios e 

aumentando-se o grau de paralelização do programa.
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