
UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

DEPARTAMENTO DE ENGENHARIA MECÂNICA

Projeto de Conclusão de Curso

Relatório Final - PME2600 - Projeto Integrado III

“Ferramenta Eficiente para Análise Estrutural de Tubos

Flexíveis usando Macroelementos Finitos”

Fernando Geremias Toni

Orientador: Prof. Dr. Clóvis de Arruda Martins

Coorientador: Prof. Dr. Rodrigo Provasi Correia

São Paulo

Novembro de 2014

2

3

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA
DEPARTAMENTO DE ENGENHARIA MECÂNICA

“Ferramenta Eficiente para Análise Estrutural de Tubos

Flexíveis usando Macroelementos Finitos”

Trabalho de formatura apresentado à Escola

Politécnica da Universidade de São Paulo para

obtenção do título de Graduação em

Engenharia.

Fernando Geremias Toni

Orientador: Prof. Dr. Clóvis de Arruda Martins

Coorientador: Prof. Dr. Rodrigo Provasi Correia

Área de Concentração: Elementos Finitos

São Paulo

Novembro de 2014

4

Toni, Fernando Geremias

Ferramenta eficiente para análise estrutural de tubos flexí-
veis usando macroelementos finitos / F.G. Toni. – São Paulo,
2014.

120 p.

Trabalho de Formatura - Escola Politécnica da Universidade
de São Paulo. Departamento de Engenharia Mecânica.

1.Método dos elementos finitos 2.Tubos flexíveis (Simula-

ção computacional) 3.Matrizes esparsas 4.Métodos diretos para
sistemas lineares I. Universidade de São Paulo. Escola Politéc-
nica. Departamento de Engenharia Mecânica II.t.

AGRADECIMENTOS

Ao Prof. Dr. Clóvis de Arruda Martins pela orientação deste trabalho de conclusão de

curso e pelas discussões que muito têm contribuído à minha formação profissional.

Ao Prof. Dr. Rodrigo Provasi pela coorientação deste trabalho de conclusão de curso.

Aos meus colegas de trabalho do LMO: Eduardo Malta, Marcos Rabelo, Leonardo

Garcez, Caio Santos e Rafael Salles, pelo agradável convívio e ambiente de trabalho

durante a realização deste projeto.

6

LISTA DE FIGURAS

Figura 1 – Evolução das reservas provadas de petróleo, por localização (terra e mar)

– 2003-2012. Fonte: (AGÊNCIA NACIONAL DO PETRÓLEO, 2013). 15

Figura 2 - Elementos de ligação são responsáveis por interligar as plataformas às

unidades de extração presentes no leito do oceano. Fonte: (2B1st Consulting, 2014).

 .. 16

Figura 3 – Tubo flexível para aplicações offshore. Fonte: PETROLEO ENERGIA. .. 17

Figura 4 – Exemplo de um cabo umbilical para aplicações offshore. Fonte:

(VALLOUREC, 2014) .. 17

Figura 5 – Camadas de um tubo do tipo "Rough Bore Reinforced". Fonte: API RP 17B.

 .. 21

Figura 6 – Sistema de coordenadas utilizado na formulação do elemento cilíndrico de

parede espessa. Fonte: (PROVASI & MARTINS, 2013-c). 23

Figura 7 – Elemento infinitesimal cilíndrico. Fonte: (PROVASI & MARTINS, 2013-c).

 .. 23

Figura 8 – Comparação de deslocamento radial para a superfície superior. Fonte:

(PROVASI & MARTINS, 2013-c). .. 24

Figura 9 – Comparação de deslocamentos radiais para a superfície de capa. Fonte:

(PROVASI & MARTINS, 2013-c) ... 24

Figura 10 – Esquematização do elemento e sistema de coordenas local associado.

Fonte: PROVASI (2013). ... 25

Figura 11 – Elemento de ligação tipo "bridge". Fonte: (PROVASI, 2013). 28

Figura 12 – Dois corpos em situação de pré-contato. Fonte: (PROVASI, 2013). 29

Figura 13 – Exemplos do efeito da discretização do contato: (a) pouco discretizada;

(b) discretizada adequadamente. Fonte: (PROVASI, 2013). 30

Figura 14 – Compliance Law para o contato normal: (a) comportamento ideal; (b)

comportamento usando uma Compliance Law; (c) comportamento usando o método

das penalidades. Fonte: (PROVASI, 2013). .. 31

Figura 15 – Primeiro caso, configuração inicial. Bloco central, é uma situação com

sticking. Bloco a direita, situação com sliding. Fonte: (PROVASI, 2013). 31

7

Figura 16 - Contato nó a nó: ponto 1 faz parte de um elemento cilíndrico e tem seu

deslocamento representado através da expansão em Série de Fourier; o ponto 2 faz

parte de um elemento de hélice. ... 33

Figura 17 - Caso simplificado de apenas 1 elemento e em contato apenas no lado

externo: a distribuição dos esforços deve ser conhecida para a aresta superior e para

a inferior. ... 38

Figura 18 - Exemplos de distribuições angulares de esforços expandidos em Série de

Fourier. (COOK, MALKUS, PLESHA, & WITT, 2002) ... 38

Figura 19 - Esforços concentrados na região de contato. Esta figura exemplifica a

hipótese para a direção normal. Os modelos matemáticos são válidos para pequenas

deformações e o fenômeno foi ampliado nesta imagem apenas para recurso didático.

 .. 39

Figura 20 - Expansão em série de Fourier de ordem 20 para uma força concentrada

de valor unitário aplicada a π/4 (45°). A integral desta função é igual ao módulo da

força aplicada, ou seja, 1N. ... 40

Figura 21 – Pilha de execução gerada pelo software “dotTrace 5.5.5 Performance”.

 .. 43

Figura 22 – Pilha de execução gerada pelo software “ANTS Performance Profiler 8”.

 .. 43

Figura 23 - Exemplo de um organograma gerado automaticamente pelo software

“ANTS Performance Profiler 8”. ... 44

Figura 24 - Gráfico de consumo de memória em função do tempo gerado pelo software

“dotMemory 4.0”. ... 45

Figura 25 – Interface exibida pelo programa “dotMemory 4.0” ao se analisar um

snapshot. ... 46

Figura 26 – Gráfico de consumo de memória em função do tempo gerado pelo

software “dotMemory 4.0” ... 47

Figura 27 – Organograma criado através da compilação dos dados gerados pelo

software “dotTrace 5.5.5 Performance”. .. 48

Figura 28 – Organograma gerado automaticamente pelo software “ANTS Performance

Profiler”. ... 48

Figura 29 – Comparação entre o tempo total de execução do programa “UFCad” e o

tempo de montagem da matriz global de rigidez em função do tamanho (em

8

megabytes) da matriz global de rigidez. A variação no tamanho da matriz de rigidez

foi obtida aumentando-se o número de macroelementos finitos do modelo e

mantendo-se constante a ordem da expansão em Série de Fourier dos elementos de

contato. ... 49

Figura 30 – Comparação entre o tempo total de execução do programa “UFCad” e o

tempo de montagem da matriz global de rigidez em função do tamanho (em

megabytes) da matriz global de rigidez. A variação no tamanho da matriz de rigidez

foi obtida aumentando-se a ordem da expansão em série de Fourier e mantendo-se

constante o número de macroelementos finitos do modelo. 50

Figura 31 – Uso de CPU durante a execução do profiler “ANTS”. 51

Figura 32 - Consumo de memória (MB) em função do número de elementos cilíndricos.

 .. 52

Figura 33 - Consumo de memória (em megabytes) em função da ordem da expansão

em Série de Fourier. .. 53

Figura 34 - Taxa de convergência em função da atualização ou não das dimensões

no cálculo da matriz de rigidez (Newton-Raphson Option (NROPT), 2014). 56

Figura 35 – Comparação de tempo de montagem de matriz global quando: a matriz é

calculada apenas 1 vez (fora do loop, curva azul); a matriz é recalculada toda iteração

(dentro do loop, curva vermelha). .. 57

Figura 36 - Comparação de tempo total de execução do programa quando: a matriz é

calculada apenas uma vez (fora do loop, curva azul); a matriz é recalculada toda

iteração (dentro do loop, curva vermelha). .. 57

Figura 37 - Razão entre tempo de montagem da matriz global de rigidez e tempo total

de execução quando: a matriz é calculada apenas 1 vez (fora do loop, curva azul); a

matriz é recalculada toda iteração (dentro do loop, curva vermelha). 58

Figura 38 – Comparação de consumo máximo de memória quando: a matriz é

calculada apenas 1 vez (fora do loop, curva azul); a matriz é recalculada toda iteração

(dentro do loop, curva vermelha). .. 58

Figura 39 - Consumo de memória ao longo do tempo para o caso em que a matriz de

rigidez é calculada em cada step. ... 59

Figura 40 - Consumo de memória ao longo do tempo para o caso em que a matriz

global de rigidez é calculada apenas uma vez. ... 59

9

Figura 41 - Comparação de performance entre os métodos de montagem da matriz

global de rigidez. ... 61

Figura 42 – Aumento na capacidade de armazenamento com a implementação do

solver com matrizes esparsas. .. 64

Figura 43 – Perda de performance na montagem da matriz global de rigidez gerada

pela implementação da matriz global de rigidez. ... 65

Figura 44 – Planificação das trajetórias dois arames de armaduras de tração. 66

Figura 45 – Pontos de intersecção são determinados algebricamente pela expressão

apresentada. ... 68

Figura 46 – Exemplo de checagem de distância entre os nós da armadura externa e

o primeiro ponto geométrico de intersecção. .. 69

Figura 47 – Elementos de contatos criados com base nos critérios da formulação

proposta. ... 69

Figura 48 – Recurso gráfico gerado através do programa Matlab para verificar a

formação dos pares de contato. .. 70

Figura 49 – Resultados de simulação o caso “HelixPlusCylMeshBridgeTest()” (um

arame de armadura descrito por elementos de hélice interligados através de

elementos de contato rígido com elementos cilíndricos): consumo máximo de memória

e tempo de simulação em função do tamanho, em megabytes, da matriz global de

rigidez. ... 75

Figura 50 - Resultados de simulação o caso “HelixPlusCylMeshTestNewContact()”

(um arame de armadura descrito por elementos de hélice interligados com elementos

cilíndricos através de elementos de contato que permitem sticking e sliding): consumo

máximo de memória e tempo de simulação em função do tamanho, em megabytes,

da matriz global de rigidez... 75

Figura 51 – Algoritmo GMRES. ... 76

Figura 52 - Tubo flexível adotado para o caso de estudo. .. 82

Figura 53 – Curva de tensão deformação do aço 1020. ... 84

Figura 54 – Curva de tensão deformação do polietileno (HDPE). 85

Figura 55 – Malha estrutura de elementos finitos da capa plástica. 87

Figura 56 - Malha de elementos finitos dos arames das armaduras de tração. 88

Figura 57 - Imagem ampliada da malha de elementos finitos de um arame de tração.

 .. 89

10

Figura 58 - Condições de contorno do modelo.. 90

Figura 59 – Tensões de Von Mises para um deslocamento imposto de 40mm. 𝜎𝑀𝑎𝑥 =

1273 𝑀𝑃𝑎, valor bem acima da tensão de plastificação. ... 91

Figura 60 – Tensões de Von Mises para um deslocamento imposto de 20mm. 𝜎𝑀𝑎𝑥 =

1146 𝑀𝑃𝑎, valor bem acima da tensão de plastificação. ... 92

Figura 61 – Tensões de Von Mises para um deslocamento imposto de 10mm. 𝜎𝑀𝑎𝑥 =

837 𝑀𝑃𝑎, valor próximo à tensão de plastificação do aço 1020. 92

Figura 62 – Plastificação localiza, devido ao contato do tipo bonded. Tensões pontuais

elevadas, devido ao fato das armaduras não poderem se acomodar em uma

configuração de mínima energia. .. 93

Figura 63 – Comparação de deslocamentos radiais da armadura interna de tração de

modelos com e sem não-linearidades geométricas e materiais plásticos e elásticos.

NLG: não linearidades geométricas. Elast: material elástico. Plast: material plástico.

 .. 94

Figura 64 – Comparação de deslocamentos radiais da armadura externa de tração de

modelos com e sem não-linearidades geométricas e materiais plásticos e elásticos.

NLG: não linearidades geométricas. Elast: material elástico. Plast: material plástico.

 .. 94

Figura 65 – Resultados do caso de estudo utilizando-se o software Abaqus. 95

Figura 66 - Deslocamentos radiais das armaduras de tração. 96

Figura 67 - Resultados de deslocamento radial para os parâmetros: nel = 30; rdiv = 2;

Fourier = 0 ... 98

Figura 68 – Resultados de deslocamento radial para os parâmetros: nel = 50; rdiv =

2; Fourier = 5 ... 98

Figura 69 – Comparação de deslocamentos radiais das armaduras internas e externas

dos programas UFCad e Abaqus. (UFCad: nel = 30; rdiv = 2; Fourier = 0). 100

Figura 70 – Comparação de deslocamentos radiais das armaduras internas e externas

dos programas UFCad e Abaqus. (UFCad: nel = 50; rdiv = 2; Fourier = 5). 101

Figura 71 – Comparação de deslocamentos radiais das armaduras internas e externas

dos programas UFCad e Abaqus. (UFCad: nel = 60; rdiv = 2; Fourier = 8). 101

LISTA DE TABELAS

Tabela 1 – Consumo de memória em função do número de elementos do modelo.

Parâmetros fixos da análise: matriz global de rigidez fora do loop; ordem de Fourier

igual a 0. .. 51

Tabela 2 - Consumo de memória em função da ordem de expansão da série de

Fourier. Parâmetros fixos da análise: matriz global de rigidez fora do loop; número de

elementos cilíndricos igual 100; número de elementos de hélice igual à 25. 52

Tabela 3 – Comando em C# para habilitar matrizes com mais de 2GB. 63

Tabela 4 – Resumo dos principais métodos de resolução de sistemas lineares do tipo

A.x = b ... 79

Tabela 5 – Propriedades e parâmetros da capa plástica. ... 83

Tabela 6 – Propriedades e parâmetros da armadura externa de tração. 83

Tabela 7 – Propriedades e parâmetros da armadura interna de tração. 83

Tabela 8 – Propriedades do aço 1020. ... 84

Tabela 9 – Propriedades do material polietileno. .. 85

Tabela 10 – Propriedades do elemento utilizado para modelar a capa plástica 87

Tabela 11 - Propriedades do elemento utilizado para modelar as armaduras de tração.

 .. 88

Tabela 12 - Tempo de simulação e consumo de memória do programa Abaqus. . 103

Tabela 13 - Tempo de simulação e consumo de memória do programa UFCad. ... 103

Tabela 14 – Comparação relativa entre ambos os programas. 104

12

SUMÁRIO

1 INTRODUÇÃO ... 15

1.1 MOTIVAÇÃO .. 15

1.2 OBJETIVOS ... 17

1.3 ESTRUTURA DO TRABALHO .. 18

2. REVISÃO BIBLIOGRÁFICA .. 20

2.1 TUBOS FLEXÍVEIS E CABOS UMBILICAIS .. 20

2.2 ABORDAGEM AO PROBLEMA ... 21

2.3 MACROELEMENTOS FINITOS .. 22

2.3.1 Elemento Cilíndrico de Parede Espessa ... 22

2.3.2 Elemento de Hélice (ou Tendão) .. 24

2.3.3 Elemento de Ligação “Bridge” ... 27

2.3.4 Elemento de Contato .. 28

3. FORMULAÇÃO CORRIGIDA PARA O MACROELEMENTO FINITO DE

CONTATO DO TIPO “NÓ-A-NÓ” ENTRE ELEMENTO CILÍNDRICO E ELEMENTO

DE HÉLICE ... 32

3.1 FORMULAÇÃO ORIGINAL DE MACROELEMENTO FINITO DE CONTATO PROPOSTA POR

(PROVASI & MARTINS, 2013-B) .. 32

3.2 IDENTIFICAÇÃO DA INCONSISTÊNCIA MATEMÁTICA E FORMULAÇÃO CORRIGIDA 35

4. EXPANSÃO EM SÉRIE DE FOURIER DAS REAÇÕES DE CONTATO PARA O

ELEMENTO CILÍNDRICO ... 38

5. IDENTIFICAÇÃO DOS GARGALOS COMPUTACIONAIS 41

5.1 SELEÇÃO DOS PROFILERS UTILIZADOS NA IDENTIFICAÇÃO DOS GARGALOS

COMPUTACIONAIS ... 41

5.1.1 Profiler para análise de processamento .. 42

5.1.2 Profiler para análise de consumo de memória computacional 44

5.1.3 Problemas gerados pela utilização incorreta de Profilers 46

5.2 RESULTADOS E CONCLUSÕES DA ANÁLISE DE PROCESSAMENTO 47

5.3 RESULTADOS E CONCLUSÕES DA ANÁLISE DE CONSUMO DE MEMÓRIA

COMPUTACIONAL .. 51

13

6. MODIFICAÇÕES NO PROGRAMA UFCAD .. 55

6.1 MODIFICAÇÃO 01 – A ALTERAÇÃO DO NÚMERO DE VEZES EM QUE A MATRIZ GLOBAL

DE RIGIDEZ É COMPUTADA ... 55

6.2 MODIFICAÇÃO 02 – ALTERAÇÃO NA VARREDURA DE MONTAGEM DA MATRIZ DE

RIGIDEZ ... 60

6.3 MODIFICAÇÃO 03 – PARALELIZAÇÃO DA MONTAGEM DA MATRIZ GLOBAL DE RIGIDEZ

 61

6.4 MODIFICAÇÃO 04 – INCLUSÃO DE RECURSO PARA HABILITAR MATRIZES COM MAIS

DE 2GB ... 63

6.5 MODIFICAÇÃO 05 – CONVERSÃO DAS MATRIZES DA CLASSE “SOLVER” PARA

MATRIZES ESPARSAS.. 63

6.6 MODIFICAÇÃO 06 – FORMULAÇÃO E IMPLEMENTAÇÃO DE UMA NOVA ESTRATÉGIA DE

DETECÇÃO DE CONTATOS ENTRE ARMADURAS DE TRAÇÃO.. 65

6.6.1 Formulação de um novo método de detecção de contatos entre armaduras

de tração. .. 66

6.6.2 Resultados desta lógica de detecção de contatos 70

6.7 MODIFICAÇÃO 07 – ALTERAÇÃO NA GERAÇÃO DE MALHAS DOS ELEMENTOS DE

CONTATO TIPO BRIDGE ... 70

7. RESOLUÇÃO DO SISTEMA LINEAR ... 72

7.1 BIBLIOTECAS E MÉTODOS DE SOLUÇÃO TESTADOS ... 72

7.1.1 Math.NET – Numerics – Solver ... 72

7.1.2 Math.NET – Numerics – Solver Iterative ... 73

7.1.3 Math.NET – Numerics – MKL ... 74

7.1.4 GMRES – Biblioteca Própria ... 76

7.1.5 Bibliotecas profissionais (pagas) e PARDISO ... 76

7.2 ALTERNATIVA EMPREGADA .. 77

7.3 RESUMO DOS MÉTODOS DE SOLUÇÃO DE SISTEMAS LINEARES 78

8. VALIDAÇÃO DE UM CASO DE ESTUDO COM O PROGRAMA UFCAD 81

8.1 DEFINIÇÃO DO CASO DE ESTUDO .. 81

8.2 PROPRIEDADES E PARÂMETROS GEOMÉTRICOS DOS COMPONENTES 82

8.3 MATERIAIS DO MODELO ... 83

8.4 ANÁLISE REALIZADA ATRAVÉS DO SOFTWARE ABAQUS 85

14

8.4.1 Características da Implementação .. 86

8.4.2 Tipos de Elementos e Características das Malhas de Elementos 86

8.4.3 Implementação do Contato ... 89

8.4.4 Condições de Contorno .. 90

8.4.5 Análise de Plastificação .. 91

8.4.6 Resultados .. 95

8.5 ANÁLISE REALIZADA ATRAVÉS DO SOFTWARE UFCAD .. 96

8.5.1 Características da implementação .. 96

8.5.2 Resultados .. 97

8.6 BENCHMARKING: ABAQUS X UFCAD ... 99

8.6.1 Facilidade de implementação ... 99

8.6.2 Qualidade dos resultados ... 99

8.6.3 Tempo e custo de simulação .. 102

8.6.4 Pós-processamento dos dados ... 103

8.6.5 Resumo da Análise de Benchmarking .. 103

9. CONCLUSÕES DO TRABALHO ... 105

10. REFERÊNCIAS ... 107

15

1 INTRODUÇÃO

1.1 Motivação

Presente direta e indiretamente na vida de todos, o petróleo é mais do que uma

importante fonte de energia. É um recurso de grande impacto na economia global,

altamente estratégico, e que por isso influencia muitas das decisões políticas.

Por ser não-renovável, novas fontes de petróleo precisam ser descobertas para a

manutenção ou ampliação da demanda atual. Com o contínuo esgotamento das

reservas de fácil exploração, restam as reservas de difícil acesso ou extração, o que

exige o desenvolvimento de novas tecnologias de exploração para que as limitações

e os desafios sejam superados.

No Brasil, a maior parte das reservas de petróleo encontram-se em mar, como

mostram os dados da ANP na Figura 1, o que justifica a produção offshore de petróleo

em larga escala, caracterizada pela exigência de componentes de elevado nível

tecnológico, como plataformas petrolíferas, elementos de ligação e mecanismos de

controle.

Figura 1 – Evolução das reservas provadas de petróleo, por localização (terra e mar) – 2003-2012.

Fonte: (AGÊNCIA NACIONAL DO PETRÓLEO, 2013).

16

Os elementos de ligação, responsáveis por conectar os poços às plataformas e

navios, exercem um papel essencial ao processo de produção de petróleo offshore,

como ilustra a Figura 2. Estes elementos subdividem-se em: tubos flexíveis (Figura 3),

cabos umbilicais (Figura 4) e linhas de ancoragem.

Figura 2 - Elementos de ligação são responsáveis por interligar as plataformas às unidades de

extração presentes no leito do oceano. Fonte: (2B1st Consulting, 2014).

O projeto destes elementos de ligação é uma atividade de alta complexidade, devido

às:

 condições adversas de operação destes elementos, em geral grandes

profundidades e sobre o efeito de fenômenos naturais, como correntes

marítimas;

 elevado número de componentes, como camadas, mangueiras e armaduras,

que irão se interagir uns com os outros durante a operação;

 elevada quantidade de requisitos de funcionalidade e de critérios de projeto.

http://www.2b1stconsulting.com/wp-content/uploads/2012/07/Umbilical_Applications.jpg

17

Figura 3 – Tubo flexível para aplicações offshore. Fonte: PETROLEO ENERGIA.

Figura 4 – Exemplo de um cabo umbilical para aplicações offshore. Fonte: (VALLOUREC, 2014)

As dificuldades intrínsecas ao projeto de tubos flexíveis e cabos umbilicais e também

os prejuízos gerados por falhas destes componentes, tanto econômicos quanto

ambientais, têm levado à elaboração de novas técnicas de engenharia e também ao

desenvolvimento de ferramentas que auxiliem a execução desta tarefa. Seguindo esta

linha, (PROVASI, 2013) desenvolveu em seu trabalho de doutorado uma ferramenta

de análise direcionada ao projeto de tubos flexíveis e cabos umbilicais, conhecida por

UFCad, que implementa uma formulação própria de macroelementos finitos.

1.2 Objetivos

(PROVASI, 2013) priorizou a formulação e validação dos modelos macroelementos

finitos, deixando para uma etapa posterior a operacionalização do programa.

18

Portanto, este projeto de conclusão de curso consiste em uma extensão dos trabalhos

realizados em “Contribuição ao Projeto de Cabos Umbilicais e Tubos Flexíveis:

Ferramentas de CAD e Modelo de Macro Elementos” (PROVASI, 2013), tendo como

objetivo o desenvolvimento de uma ferramenta eficiente para análise estrutural de

tubos flexíveis, com o intuito de viabilizar a sua utilização em computadores

convencionais e em aplicações práticas na indústria. Para que isto seja possível, os

gargalos computacionais desta ferramenta devem ser identificados e devem ser

executadas ações que resultem em redução do tempo de análise e do consumo de

memória e processamento. Deseja-se também a validação de um caso de estudo,

comparando a ferramenta desenvolvida com um software consolidado de elementos

finitos, com o objetivo de garantir a confiabilidade dos resultados e de se realizar um

benchmarking entre ambos os programas.

1.3 Estrutura do Trabalho

Este trabalho consiste em 10 capítulos, sendo o primeiro a introdução deste trabalho,

e que visa contextualizar este trabalho e deixar claro a motivação para a realização

do mesmo e seus respectivos objetivos.

O capítulo 2 consiste em uma revisão bibliográfica dos macroelementos finitos

desenvolvidos em (PROVASI, 2013), pois a compreensão destes elementos é de

fundamental importância para o entendimento do funcionamento de uma ferramenta

de análise que os implemente.

O capítulo 3 traz uma formulação corrigida para o elemento de contato entre o

elemento cilíndrico e o elemento de hélice, pois foi encontrada, durante a etapa de

revisão bibliográfica, uma falha na formulação original.

Além disso, foi identificada a inexistência de um modelo de forças para a expansão

em série de Fourier das reações de contato, o que motivou a formulação de um

modelo adequado para tal situação, que encontra-se no capítulo 4.

O capítulo 5 consiste na importante etapa de identificação dos gargalos

computacionais, que compuseram a base da estratégia adotada para aumentar a

eficiência do programa. Para esta etapa foram utilizados profilers, que são

ferramentas projetadas para a avaliação de outros programas.

O capítulo 6 traz as modificações realizadas na implementação da ferramenta de

análise que resultaram em ganhos de performance e no funcionamento adequado do

19

programa. As modificações realizadas no cálculo da matriz de rigidez, por exemplo,

representaram uma redução de 10 a 20 no tempo de execução desta tarefa.

O capítulo 7 foi dedicado exclusivamente à etapa de resolução do sistema linear,

devido à importância que ela representa frente ao funcionamento do programa. Foram

testados diversos métodos de resolução de sistemas lineares, inclusive com a

implementação de uma biblioteca própria. Apesar disso, alguns problemas e

limitações são encontrados, o que será abordado em mais detalhes neste capítulo.

O capítulo 8 consiste na validação de um caso de estudo com a ferramenta de análise,

comparando-a com um programa profissional de elementos finitos, o Abaqus. Neste

capítulo é apresentado o caso de estudo e são detalhadas as principais etapas que

levaram à obtenção dos resultados em ambos os programas. Por fim, os resultados

são comparados e realiza-se um benchmarking com base em critérios definidos.

No capítulo 9 encontram-se as conclusões deste trabalho e também propostas de

trabalhos futuros.

Por fim, no capítulo 10, são listadas as referências nas quais este trabalho se baseou.

20

2. REVISÃO BIBLIOGRÁFICA

Para o projeto adequado de tubos flexíveis, deve-se conhecer as suas principais

características, componentes e condições de operação. Por este motivo, será

realizada no início deste capítulo uma breve revisão a respeito deste assunto.

Com a finalidade de tornar eficiente uma ferramenta de análise que implemente

macroelementos finitos formulados especificamente para o projeto de tubos flexíveis,

é necessário conhecer as características destes elementos, suas hipóteses e suas

formulações matemáticas. Por este motivo, realizou-se uma ampla revisão

bibliográfica a respeito dos macroelementos finitos formulados por (PROVASI, 2013),

que será apresentada a partir do item 2.3.

2.1 Tubos Flexíveis e Cabos Umbilicais

 “Cabos umbilicais são elementos que têm a finalidade de interligar uma unidade

flutuante a um poço submerso, executando diversas funções, dentre as quais: controle

elétrico e/ou hidráulico, transmissão de sinais elétricos e/ou óticos, transmissão de

energia elétrica para bombeamento submerso ou injeção de fluidos no poço.”

“Tubos, assim como cabos umbilicais, interligam a unidade flutuante ao poço produtor,

porém têm como finalidade levar petróleo e gás do poço para a plataforma, injetar

fluidos para melhorar a produtividade do poço (como por exemplo, a injeção de gás

retirado do próprio poço, processo esse conhecido como Gas Lift), levar o óleo até

refinarias ou estações de armazenamento (esses denominados de exportação), além

de executar funções de perfuração, entre outras. Para cada uma das funções

descritas, existem tipos específicos. Esses tubos são denominados risers quando se

encontram suspensos e flowlines quando estão apoiados sobre o solo.” (PROVASI,

2013).

Tubos flexíveis são caracterizados por uma elevada quantidade de camadas e

componentes, como ilustra a Figura 5. Esses tubos podem conter os seguintes

elementos:

 Carcaça intertravada;

 Camadas plásticas;

 Camada circunferencial de pressão;

 Armadura de tração helicoidal;

21

 Fitas;

 Fillers;

 Núcleo elétrico;

 Mangueiras hidráulicas;

 Núcleo eletro-hidráulico.

Figura 5 – Camadas de um tubo do tipo "Rough Bore Reinforced". Fonte: API RP 17B.

A escolha da aplicação destes componentes depende de uma série de fatores, como

o tipo do tubo (tubo flexível ou cabo umbilical), das especificações e requisitos de

projeto que o ele deve atender.

2.2 Abordagem ao problema

O projeto de tubos flexíveis e cabos umbilicais é uma tarefa complexa. Modelos

analíticos apresentam muitas limitações e são, em alguns casos, impossíveis de

serem realizados. Modelagens numéricas mostram-se uma importante ferramenta de

projeto, em especial as que utilizam o Método dos Elementos Finitos.

Softwares convencionais de elementos finitos, como ANSYS e Abaqus, são muito

genéricos, pois visam resolver os mais variados tipos de problema. Assim, ao longo

das últimas décadas, modelos específicos têm sido formulados para facilitar o projeto

e análise de tubos flexíveis e cabos umbilicais.

(PROVASI, 2013) desenvolveu uma ferramenta de CAD direcionada com a finalidade

de tornar o projeto de tubos flexíveis e cabos umbilicais uma tarefa mais simples.

22

2.3 Macroelementos Finitos

PROVASI (2013) criou elementos próprios, utilizando-se para isso uma formulação de

macroelementos finitos, o que facilita a inclusão, a customização dos modelos e a

solução numérica destes problemas. Em seu trabalho, foram contemplados os

seguintes elementos:

 Elemento Cilíndrico de Parede Espessa;

 Elemento de Hélice;

 Elemento de Ligação “Bridge”;

 Elementos de Contato.

que serão detalhados a seguir.

2.3.1 Elemento Cilíndrico de Parede Espessa

É um elemento que pode ser utilizado para a modelagem de capas plásticas e, em

uma abordagem inicial simplificada, para a modelagem de camadas equivalentes, pois

este elemento possui uma formulação de material ortotrópico.

(PROVASI & MARTINS, 2013-c) desenvolveram uma extensão do modelo de um

elemento cilíndrico de parede espessa formulado por COOK. O modelo desenvolvido

pelos autores tem como objetivo determinar os deslocamentos de uma capa cilíndrica

sobre quaisquer tipos de carregamentos.

Adotou-se a hipótese de material elástico e linear, e adotou-se um sistema de

coordenadas cilíndrico, de acordo com a Figura 6, sendo:

 𝑢 – o deslocamento na direção radial

 𝑣 – o deslocamento na direção circunferencial

 𝑤 – o deslocamento na direção axial

Neste modelo, a expansão em Série de Fourier foi utilizada para descrever os

deslocamentos e também os carregamentos atuantes no elemento (forças e

momentos).

23

Figura 6 – Sistema de coordenadas utilizado na formulação do elemento cilíndrico de parede

espessa. Fonte: (PROVASI & MARTINS, 2013-c).

Através da formulação de elemento infinitesimal cilíndrico, mostrado na Figura 7,

determina-se as equações para o equilíbrio das tensões. Utilizando o sistema de

coordenadas cilíndrico, calcula-se as relações entre deformação de deslocamentos.

Após uma extensa manipulação matemática e utilizando outros conceitos de

mecânica dos meios contínuos, obtêm-se a matriz de rigidez do elemento.

Figura 7 – Elemento infinitesimal cilíndrico. Fonte: (PROVASI & MARTINS, 2013-c).

Como mostram a Figura 8 e a Figura 9, (PROVASI & MARTINS, 2013-c) compararam

os resultados obtidos pela sua formulação com os obtidos através do software Ansys.

24

Figura 8 – Comparação de deslocamento radial para a superfície superior. Fonte: (PROVASI &

MARTINS, 2013-c).

Figura 9 – Comparação de deslocamentos radiais para a superfície de capa. Fonte: (PROVASI &

MARTINS, 2013-c)

2.3.2 Elemento de Hélice (ou Tendão)

Baseado na formulação de ZHU e MEGUID, (PROVASI & MARTINS, 2011)

desenvolveram um elemento tridimensional para helicoides. Por ser um elemento de

25

viga que leva em consideração os efeitos da curvatura e tortuosidade, este elemento

é aplicável a uma vasta série de problemas, como por exemplo a modelagem dos

tendões da armadura de tração.

Para a formulação deste elemento, foram utilizadas as seguintes hipóteses:

 Pequenas deformações e deslocamentos;

 Não ocorre empenamento na seção transversal;

 Material elástico e isotrópico.

Como indicado Figura 10, este elemento possui um sistema de coordenadas local, um

triedro de Frenet, que segue a nomenclatura utilizada por ZHU e MEGUID, na qual:

𝑍 ≡ 𝑡 é o vetor tangente à curva, 𝑋 ≡ 𝑛⃗⃗ é o vetor normal, e 𝑌 ≡ 𝑏⃗⃗ é o vetor binormal.

Figura 10 – Esquematização do elemento e sistema de coordenas local associado. Fonte: PROVASI

(2013).

No entanto, para integrar o Elemento de Hélice aos demais elementos, que foram

formulados em um sistema de coordenadas cilíndricas, é necessária uma rotação do

sistema de coordenadas. Assim, além da matriz de rigidez do Elemento de Hélice,

será apresentada também a matriz de transformação de coordenadas, e como

descrever a matriz de rigidez para o sistema cilíndrico.

As relações de deformação e deslocamento e que incluem os efeitos de curvatura e

tortuosidade foram obtidas de (LOVE, 1944):

𝜀𝑧 =
𝜕𝑤(𝑠)

𝜕𝑠
− 𝑘 𝑢(𝑠)

𝜔𝑥 =
𝜑𝑥(𝑠)

𝜕𝑠
− 𝜏𝜑𝑦(𝑠) + 𝑘 𝜑𝑧(𝑠)

𝜔𝑦 =
𝜑𝑦(𝑠)

𝜕𝑠
+ 𝜏𝜑𝑥(𝑠)

26

𝜔𝑧 =
𝜑𝑧(𝑠)

𝜕𝑠
− 𝑘𝜑𝑥(𝑠)

onde:

 𝜀𝑧 – é a deformação axial;

 𝜔𝑥 , 𝜔𝑦 𝑒 𝜔𝑧 – são as distorções angulares ao redor dos eixos 𝑥, 𝑦 e 𝑧

respectivamente;

 𝑢𝑥 , 𝑢𝑦 𝑒 𝑢𝑧 – são os deslocamentos nas direções x, y e z respectivamente;

 𝜏 – é a tortuosidade inicial;

 𝑘 – é a curvatura inicial.

Baseado nas hipóteses adotadas, os autores formularam o descolamento na direção

normal e binormal através de polinômios de quinta ordem.

𝑢(𝑠) = ∑𝑎𝑖

5

𝑖=0

𝑠𝑖

𝑣(𝑠) = ∑𝑏𝑖

5

𝑖=0

𝑠𝑖

Os deslocamentos 𝑢𝑧 e 𝜑𝑧 são determinados pelas duas seguintes expressões, nas

quais se obtêm os coeficientes 𝑎6 , 𝑎7 , 𝑎8 𝑒 𝑏6 , 𝑏7 , 𝑏8.

𝑢𝑧 = ∫(𝜀𝑧 + 𝑘 𝑢𝑥) 𝑑𝑆

𝜑𝑧 = ∫(𝜔𝑧 − 𝑘
𝜕𝑢𝑦

𝜕𝑠
− 𝑘 𝜏 𝑢𝑥) 𝑑𝑆

Das relações de (LOVE, 1944), obtêm-se as seguintes relações:

𝜑𝑥 = −
𝜕𝑢𝑦

𝜕𝑠
− 𝜏 𝑢𝑥

𝜑𝑦 =
𝜕𝑢𝑥
𝜕𝑠

− 𝜏 𝑢𝑦 + 𝑘𝑢𝑧

(PROVASI & MARTINS, 2011) utilizaram um elemento de três nós, a partir do qual foi

possível determinar todas as constantes necessárias. Com isso, formulou-se uma

relação entre os deslocamentos nodais e as constates de integração dada por:

𝒒 = 𝑪 𝒖𝒏𝒐𝒅𝒂𝒍

Onde:

 𝒒𝑻 = [𝑎0 … 𝑎8 𝑏0 … 𝑏8] – é o vetor das constantes de integração;

 𝒖𝒏𝒐𝒅𝒂𝒍
𝑻 = [𝑢𝑛𝑜𝑑𝑎𝑙

1 𝑢𝑛𝑜𝑑𝑎𝑙
2 𝑢𝑛𝑜𝑑𝑎𝑙

3] – é o vetor dos deslocamentos nodais;

27

 𝑢𝑛𝑜𝑑𝑎𝑙
𝑖 = [𝑢𝑥𝑖 𝑢𝑦𝑖 𝑢𝑧𝑖 𝜑𝑥𝑖 𝜑𝑥𝑖 𝜑𝑥𝑖], com 𝑖 = 1,… ,3;

 𝑪 = [

𝐶1 𝐶2 𝐶3
𝐶4 𝐶5 𝐶6
𝐶7 𝐶8 𝐶9

] – cada termo 𝐶𝑖 é uma matriz e pode ser encontrado em

(PROVASI e MARTINS, 2011).

Os deslocamentos 𝑢𝑇 = [𝑢𝑥𝑖 𝑢𝑦𝑖 𝑢𝑧𝑖 𝜑𝑥𝑖 𝜑𝑥𝑖 𝜑𝑥𝑖] foram expressos em função

dos deslocamentos nodais por meio da expressão:

𝒖 = 𝑨𝒒 = 𝑨𝑪𝒖𝒏𝒐𝒅𝒂𝒍

𝑨 = [𝐴1 𝐴2 𝐴3]

Assim, a matriz de rigidez do Elemento de Hélice pode ser calculada por:

𝐾𝑒𝑙 = 𝐶
𝑇𝐵𝑇𝐻 𝐵 𝐶

com:

𝐻 =

[

𝐸𝐴 0

0 𝐸𝐼𝑥

0 0

0 0
0 0

0 0

𝐸𝐼𝑦 0

0 𝐺𝐽]

𝐵 = [𝐵1 𝐵2 𝐵3]

Os termos 𝐴𝑖 e 𝐵𝑖 estão definidos em (PROVASI & MARTINS, 2011). Para descrever

as relações no sistema cilíndrico de coordenadas, fez-se necessário utilizar a seguinte

matriz de transformação entre sistemas:

𝑇 = [
−1 0 0
0 −cos 𝛼 sin 𝛼
0 sin 𝛼 cos 𝛼

]

Onde 𝛼 é o ângulo de assentamento de hélice.

E a matriz de rigidez para o Elemento de Hélice no sistemas de coordenadas

cilíndricos é determinada por:

𝐾 = 𝕋𝑇 𝐾𝑒𝑙𝕋

𝕋 é uma matriz diagonal, em que cada termo da diagonal é composto pela matriz T.

2.3.3 Elemento de Ligação “Bridge”

O principal objetivo do Elemento de ligação do tipo “bridge” é unir dois nós de

diferentes tipos e formulações de maneira rígida, ou seja, sem deslocamento relativo

entre eles.

28

A Figura 11 mostra um exemplo de aplicação deste elemento, em que ocorre uma

ligação entre um elemento cilíndrico de parede espessa (que utiliza a formulação em

Série de Fourier) e o elemento de hélice (que apresenta formulação convencional).

Figura 11 – Elemento de ligação tipo "bridge". Fonte: (PROVASI, 2013).

A formulação completa para este elemento encontra-se em (PROVASI & MARTINS,

2013-a). É interessante ressaltar que, com base na Figura 11, a principal condição

que rege esse elemento é a inexistência de deslocamento relativo entre os nós, dada

por:

𝑢2 − 𝑢1
′ = 0

Utilizando uma formulação através do método das penalidades, os autores obtiveram

a matriz de rigidez do elemento de ligação do tipo “bridge”.

2.3.4 Elemento de Contato

A necessidade de um elemento de contato justifica-se pela existência de vazios

(“gaps”) entre os elementos e também pelas aplicações de pressão de contato, que

podem envolver ou não a presença de atrito.

Como mostra a Figura 12, ocorrerá contato entre dois corpos, quando a distância que

os separa for nula. Na prática, o contato irá ocorrer quando essa distância atingir um

valor menor ou igual à uma tolerância especificada.

29

Figura 12 – Dois corpos em situação de pré-contato. Fonte: (PROVASI, 2013).

“Essa figura (Figura 12) ainda exibe o sistema de eixos ortonormal local no contato: a

direção normal à superfície 𝒏 e as direções tangentes à superfície 𝒂𝟏 e 𝒂𝟐. Observa-

se também que são utilizadas duas superfícies: uma denominada máster (mestre) e

outra denominada slave (escrava). Normalmente isto é feito para facilitar a descrição

de cada uma delas, já que a superfície slave deve ser escolhida de tal forma que

possua o maior número de elementos entre as duas. Isso é necessário para que os

contatos sejam corretamente detectados após as discretizações necessárias nos

métodos matemáticos a serem empregados.” (PROVASI, 2013).

Se a distância entre as duas superfícies for negativa e de módulo maior que a

tolerância especificada, ocorrerá a penetração da superfície master sobre a slave. A

discretização da superfície está associada a qualidade do contato. Caso a superfície

seja pouco discretizada, poderá ocorrer penetração, sem que esse fenômeno seja

identificado pelos critérios de verificação adotados, o que está indicado na Figura 13.

Ao se aumentar o grau de discretização, o problema é resolvido, porém o tempo de

simulação também irá aumentar. Deve-se portanto escolher um grau de discretização

que forneça níveis aceitáveis de penetração e ao mesmo tempo não inviabilize o

tempo de simulação.

30

Figura 13 – Exemplos do efeito da discretização do contato: (a) pouco discretizada; (b) discretizada

adequadamente. Fonte: (PROVASI, 2013).

A função vazio (ou “gap”) é definida pela seguinte fórmula:

𝑔𝑁 = (𝒙𝟏 − 𝒙𝟐) . 𝒏

onde 𝒙𝟏 e 𝒙𝟐 são os pontos das superfícies master e slave, e 𝒏 é a direção normal.

Se o gap for nulo, poderá haver uma pressão de contato que varie de zero à infinito,

de modo que a expressão que descreve a condição de contato é dada por:

𝑔𝑁 . 𝑝𝑁 = 0

“A Figura 14 mostra o comportamento descrito pela equação acima. Porém a

modelagem numérica é complicada dada a não-diferenciabilidade da curva. Para

contornar tal problema, adotam-se leis que descrevam o comportamento de maneira

mais suave (as chamadas Compliance Laws). O item (b) da Figura 14 exibe um

exemplo que varia com uma potência do gap normal. Já o item (c) exibe um

comportamento de variação linear com o gap. Este último é conhecido como método

das penalidades, no qual varia-se o parâmetro de proporcionalidade tornando o

comportamento dessa lei o mais próximo do real quanto se queira. A desvantagem

dessa abordagem é que um valor alto desse parâmetro pode comprometer a

convergência. Deve-se ressaltar que um valor muito pequeno também compromete o

resultado, uma vez que faz com que a curva utilizada encontre-se longe do real

comportamento do problema.” (PROVASI, 2013).

31

Figura 14 – Compliance Law para o contato normal: (a) comportamento ideal; (b) comportamento

usando uma Compliance Law; (c) comportamento usando o método das penalidades. Fonte:

(PROVASI, 2013).

(PROVASI, 2013) considerou ainda o caso de contato tangencial, o qual inclui os

efeitos do atrito, e que subdivide-se em duas situações, exibidas na Figura 15:

 sliding – quando há movimento relativo entre as partes;

 sticking – quando não há movimento relativo entre as partes.

Figura 15 – Primeiro caso, configuração inicial. Bloco central, é uma situação com sticking. Bloco a

direita, situação com sliding. Fonte: (PROVASI, 2013).

A formulação matemática completa, incluindo as matrizes de rigidez, para a situação

de contato considerando sticking e para a situação de contato considerando sliding

pode ser encontrada em (PROVASI, 2013).

32

3. FORMULAÇÃO CORRIGIDA PARA O MACROELEMENTO

FINITO DE CONTATO DO TIPO “NÓ-A-NÓ” ENTRE ELEMENTO

CILÍNDRICO E ELEMENTO DE HÉLICE

Durante a revisão bibliográfica do macroelemento finito de contato para nós que

utilizam formulações distintas de deslocamento, (PROVASI & MARTINS, 2013-b),

identificou-se uma inconsistência no desenvolvimento matemático do modelo.

Portanto, o objetivo deste capítulo é apresentar esta inconsistência e propor uma

formulação corrigida, que serão realizados no item 3.2.

Por questões lógicas, será apresentada a formulação original no item 3.1, para que o

leitor deste trabalho se familiarize com a formulação do elemento em questão e com

a notação empregada.

3.1 Formulação original de macroelemento finito de contato proposta por

(PROVASI & MARTINS, 2013-b)

Considerando-se a situação ilustrada na Figura 16, com um elemento cilíndrico de

parede espessa envolto por um elemento de hélice, tem-se:

 Nó 1 (nó de Fourier): com três graus de liberdade (𝑢, 𝑣 e 𝑤) e os deslocamentos

expandidos em série de Fourier.

 Nó 2 (nó de hélice): com três graus de liberdade (𝑢𝑥, 𝑢𝑦 e 𝑢𝑧), pois as rotações

foram ignoradas.

Para cada par de nós que podem vir a entrar ou que já estão em contato, conhece-se

previamente os seguintes parâmetros:

 𝜃0 – o ângulo, medido no sistema cilíndrico de coordenadas, da região de

contato;

 𝑃1 e 𝑃2 – pontos que representam as coordenadas dos nós em questão;

 𝒏⃗⃗⃗𝟏 – a normal da superfície no ponto 𝑃1;

 𝒂⃗⃗⃗𝟏 e 𝒂⃗⃗⃗𝟐 – as direções tangenciais da superfície no ponto 𝑃1.

33

Figura 16 - Contato nó a nó: ponto 1 faz parte de um elemento cilíndrico e tem seu deslocamento

representado através da expansão em Série de Fourier; o ponto 2 faz parte de um elemento de

hélice.

Definem-se os vetores:

𝑂𝑃̅̅ ̅̅ 1 = 𝑿1
𝑟 e 𝑂𝑃̅̅ ̅̅ 1

′ = 𝒙1

𝑂𝑃̅̅ ̅̅ 2 = 𝑿2
𝑟 e 𝑂𝑃̅̅ ̅̅ 2

′ = 𝒙2

onde:

 𝑿1 – é a posição do nó 1 na configuração inicial (não deformada)

 𝒙1 – é a posição do nó 1 na configuração final (deformada)

 𝑿2 – é a posição do nó 2 na configuração inicial (não deformada)

 𝒙2 – é a posição do nó 1 na configuração final (deformada)

Os deslocamentos dos dois nós são expressos por:

𝒖𝟏 = 𝒙1 − 𝑿1 = {

𝑢1
𝑣1
𝑤1
} =

{

 ∑𝑢̅1

𝑖

𝑛

𝑖=0

cos 𝑖𝜃0 +∑𝑢̿1
𝑖 sin 𝑖𝜃0

𝑛

𝑖=0

∑𝑣̅1
𝑖

𝑛

𝑖=0

sin 𝑖𝜃0 −∑𝑣̿1
𝑖

𝑛

𝑖=0

cos 𝑖𝜃0

∑𝑤̅1
𝑖

𝑛

𝑖=0

cos 𝑖𝜃0 +∑𝑤̿1
𝑖 sin 𝑖𝜃0

𝑛

𝑖=0 }

𝒖𝟐 = 𝒙2 − 𝑿2 = {

𝑢2
𝑣2
𝑤2
}

Com o objetivo de facilitar a manipulação algébrica do deslocamento do nó 1 (Fourier),

retira-se da somatória o termo de ordem 0. Portanto:

34

𝒖𝟏 =

{

 𝑢̅1

0 +∑𝑢̅1
𝑖

𝑛

𝑖=1

cos 𝑖𝜃0 +∑𝑢̿1
𝑖 sin 𝑖𝜃0

𝑛

𝑖=1

−𝑣̿1
0 +∑𝑣̅1

𝑖

𝑛

𝑖=1

sin 𝑖𝜃0 −∑𝑣̿1
𝑖

𝑛

𝑖=1

cos 𝑖𝜃0

𝑤̅1
0 +∑𝑤̅1

𝑖

𝑛

𝑖=1

cos 𝑖𝜃0 +∑𝑤̿1
𝑖 sin 𝑖𝜃0

𝑛

𝑖=1 }

Os deslocamentos podem ser reescritos utilizando-se notação matricial:

𝒖𝟏 = 𝒖𝟏
𝟎 + ∑[𝐶𝑖𝒖̅𝟏

𝒊 + 𝑆𝑖𝒖̿𝟏
𝒊]

𝑛

𝑖=1

Onde:

 𝒖𝟏 = {

𝑢1
𝑣1
𝑤1
}

 𝒖𝟏
𝟎 = {

𝑢̅1
0

−𝑣̿1
0

𝑤̅1
0

} , 𝒖̅𝟏
𝒊 = {

𝑢̅1
𝑖

𝑣̅1
𝑖

𝑤̅1
𝑖

} e 𝒖̿𝟏
𝒊 = {

𝑢̿1
𝑖

𝑣̿1
𝑖

𝑤̿1
𝑖

}

 𝐶𝑖 = [

cos 𝑖𝜃0 0 0
0 sin 𝑖𝜃0 0
0 0 cos 𝑖𝜃0

]

 𝑆𝑖 = [

sin 𝑖𝜃0 0 0
0 −cos 𝑖𝜃0 0
0 0 sin 𝑖𝜃0

]

Define-se a função gap normal:

𝑔𝑁 = (𝒙2 − 𝒙1) . 𝒏⃗⃗⃗𝟏

E também a função gap tangencial:

𝑔𝑇 = 𝑔𝑇1 𝒂⃗⃗⃗𝟏 + 𝑔𝑇2 𝒂⃗⃗⃗𝟐

Onde:

𝑔𝑇𝛼 = (𝒙2 − 𝒙1). 𝒂⃗⃗⃗𝜶 para 𝛼 = 1, 2

Com a aplicação do princípio virtual, expressa-se o trabalho virtual dos esforços por:

𝛿𝑊𝑐𝑜𝑛𝑡𝑎𝑡𝑜 = 𝜀𝑁𝑔𝑁 . 𝛿𝑔𝑁 + 𝜀𝑇𝒈𝑻 . 𝜹𝒈𝑻

Derivando-se a expressão do trabalho virtual obtêm-se a expressão:

𝛿(𝛿𝑊𝑐𝑜𝑛𝑡𝑎𝑡𝑜) = 𝜀𝑁𝛿𝑔𝑁 . 𝛿𝑔𝑁 + 𝜀𝑇𝜹𝒈𝑻 . 𝜹𝒈𝑻

Reescrevendo o problema na forma matricial, obtêm-se:

𝛿(𝛿𝑊𝑐𝑜𝑛𝑡𝑎𝑡𝑜) = 𝜀𝑁𝛿𝑔𝑁𝛿𝑔𝑁 + 𝜀𝑇𝜹𝒈𝑻
𝑻𝜹𝒈𝑻

Com:

35

𝜹𝒈𝑻 = 𝛿𝑔𝑇1 𝒂𝟏 + 𝛿𝑔𝑇2 𝒂𝟐,

Onde:

𝒏 = {
1
0
0
} , 𝒂𝟏 = {

0
1
0
} e 𝒂𝟐 = {

0
0
1
}

Portanto,

𝛿𝑔𝑁 = 𝒏
𝑻𝛿𝒙𝟐 − 𝒏

𝑻𝛿𝒙𝟏

𝛿𝑔𝑇1 = 𝒂𝟏
𝑻𝛿𝒙𝟐 − 𝒂𝟏

𝑻𝛿𝒙𝟏

𝛿𝑔𝑇2 = 𝒂𝟐
𝑻𝛿𝒙𝟐 − 𝑎2

𝑇𝛿𝒙𝟏

(PROVASI & MARTINS, 2013-b) dizem, então, que 𝜹𝒙𝐢 = 𝜹𝒖𝐢, o que lhes permite

determinar as variações das funções gap (𝛿𝑔𝑁, 𝛿𝑔𝑇1 e 𝛿𝑔𝑇2) em função das variações

de deslocamentos nodais (𝜹𝒖𝐢, 𝜹𝒖𝐢 e 𝜹𝒖𝐢). Com os valores de variações da função

gap, determina-se a matriz de rigidez do elemento de contato por meio da expressão

𝛿(𝛿𝑊𝑐𝑜𝑛𝑡𝑎𝑡𝑜) = 𝜀𝑁𝛿𝑔𝑁𝛿𝑔𝑁 + 𝜀𝑇𝜹𝒈𝑻
𝑻𝜹𝒈𝑻.

3.2 Identificação da inconsistência matemática e formulação corrigida

As relações entre a variação de deslocamento nodal e a variação de posição na

configuração deformada estão definidas corretamente em (PROVASI & MARTINS,

2013-b) para os seguintes termos:

𝜹𝒖𝟐 = 𝜹𝒙𝟐 , 𝜹𝒖̅𝟏
𝒊 = 𝜹𝒙̅𝟏

𝒊 , 𝜹𝒖̿𝟏
𝒊 = 𝜹𝒙̿𝟏

𝒊

No entanto, esta relação é definida incorretamente para o termo de ordem zero da

expansão em Série de Fourier, ou seja,

𝜹𝒙𝟏
𝟎 ≠ 𝜹𝒖𝟏

𝟎

pois o segundo termo do vetor 𝒖𝟏
𝟎 é negativo.

Lembrando-se que 𝒖𝟏
𝟎 = [𝑢̅1

0 −𝑣̿1
0 𝑤̅1

0]𝑇, onde −𝑣̿1
0 é o primeiro termo da somatória

−∑ 𝑣̿1
𝑖𝑛

𝑖=0 cos 𝑖𝜃0 (quando 𝑖 = 0), propõe-se a realização da seguinte transformação:

𝒖𝟏
𝟎 = [

1 0 0
0 −1 0
0 0 1

] {

𝑢̅1
0

𝑣̿1
0

𝑤̅1
0

} = 𝐵 {

𝑢̅1
0

𝑣̿1
0

𝑤̅1
0

}

Portanto,

𝐵 𝜹𝒖𝟏
𝟎 = 𝜹𝒙𝟏

𝟎

Com:

36

𝐵 = [
1 0 0
0 −1 0
0 0 1

]

(𝐵 = 𝐵𝑇 e 𝐵𝐵𝑇 = 𝐼)

Utilizando-se a modificação proposta acima, as funções 𝛿𝑔𝑁, 𝛿𝑔𝑇1 e 𝛿𝑔𝑇2 são

calculadas por:

𝛿𝑔𝑁 = 𝒏
𝑻𝜹𝒖𝟐 − 𝒏

𝑻𝐵𝜹𝒖𝟏
𝟎 −∑[𝒏𝑻𝐶𝑖𝜹𝒖̅𝟏

𝒊 + 𝒏𝑻𝑆𝑖𝜹𝒖̿𝟏
𝒊]

𝑛

𝑖=1

𝛿𝑔𝑇1 = 𝒂𝟏
𝑻𝜹𝒖𝟐 − 𝒂𝟏

𝑻𝐵𝜹𝒖𝟏
𝟎 −∑[𝒂𝟏

𝑻𝐶𝑖𝜹𝒖̅𝟏
𝒊 + 𝒂𝟏

𝑻𝑆𝑖𝜹𝒖̿𝟏
𝒊]

𝑛

𝑖=1

𝑔𝑇2 = 𝒂𝟐
𝑻𝜹𝒖𝟐 − 𝒂𝟐

𝑻𝐵𝜹𝒖𝟏
𝟎 −∑[𝒂𝟐

𝑻𝐶𝑖𝜹𝒖̅𝟏
𝒊 + 𝒂𝟐

𝑻𝑆𝑖𝜹𝒖̿𝟏
𝒊]

𝑛

𝑖=1

Com isso, obtêm-se a matriz de rigidez para o caso de contato com sticking:

𝐾𝑠𝑡𝑖𝑐𝑘𝑖𝑛𝑔 = 𝜀𝑁𝑀𝑛 + 𝜀𝑇𝑀𝑎1 + 𝜀𝑇𝑀𝑎2

com:

𝑀𝑛 =

[

𝒏𝒏𝑻 𝒏 𝐵𝑇𝒏𝑻𝐶1

𝑇 𝒏𝐵𝑇𝒏𝑻𝑆1
𝑇 … 𝒏𝐵𝑇𝒏𝑻𝐶𝑛

𝑇 𝒏𝐵𝑇𝒏𝑻𝑆𝑛
𝑇 −𝒏𝐵𝑇𝒏𝑻

𝐶1
𝑇𝒏𝐵𝒏𝑻 𝐶1

𝑇𝒏𝒏𝑻𝐶1
𝑇 𝐶1

𝑇𝒏𝒏𝑻𝑆1
𝑇 … 𝐶1

𝑇𝒏𝒏𝑻𝐶𝑛
𝑇 𝐶1

𝑇𝒏𝒏𝑻𝑆𝑛
𝑇 −𝐶1

𝑇𝒏𝒏𝑻

𝑆1
𝑇𝒏𝐵𝒏𝑻 𝑆1

𝑇𝒏𝒏𝑻𝐶1
𝑇 𝑆1

𝑇𝒏𝒏𝑻𝑆1
𝑇 … 𝑆1

𝑇𝒏𝒏𝑻𝐶𝑛
𝑇 𝑆1

𝑇𝒏𝒏𝑻𝑆𝑛
𝑇 −𝑆1

𝑇𝒏𝒏𝑻

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝐶𝑛
𝑇𝒏𝐵𝒏𝑻 𝐶𝑛

𝑇𝒏𝒏𝑻𝐶1
𝑇 𝐶𝑛

𝑇𝒏𝒏𝑻𝑆1
𝑇 … 𝐶𝑛

𝑇𝒏𝒏𝑻𝐶𝑛
𝑇 𝐶𝑛

𝑇𝒏𝒏𝑻𝑆𝑛
𝑇 −𝐶𝑛

𝑇𝒏𝒏𝑻

𝑆𝑛
𝑇𝒏𝐵𝒏𝑻 𝑆𝑛

𝑇𝒏𝒏𝑻𝐶1
𝑇 𝑆𝑛

𝑇𝒏𝒏𝑻𝑆1
𝑇 … 𝑆𝑛

𝑇𝒏𝒏𝑻𝐶𝑛
𝑇 𝑆𝑛

𝑇𝒏𝒏𝑻𝑆𝑛
𝑇 −𝑆𝑛

𝑇𝒏𝒏𝑻

−𝒏𝐵𝒏𝑻 −𝒏𝒏𝑻𝐶1
𝑇 −𝒏𝒏𝑻𝑆1

𝑇 … −𝒏𝒏𝑻𝐶𝑛
𝑇 −𝒏𝒏𝑻𝑆𝑛

𝑇 𝒏𝒏𝑻]

𝑀𝑎1 =

[

𝒂𝟏𝒂𝟏

𝑇 𝒂𝟏𝐵
𝑇𝒂𝟏

𝑇 𝒂𝟏𝐵
𝑇𝒂𝟏

𝑇𝑆1
𝑇 … 𝒂𝟏𝐵

𝑇𝒂𝟏
𝑇𝐶𝑛

𝑇 𝒂𝟏𝐵
𝑇𝒂𝟏

𝑇𝑆𝑛
𝑇 −𝒂𝟏𝐵

𝑇𝒂𝟏
𝑇

𝐶1
𝑇𝒂𝟏𝐵𝒂𝟏

𝑻 𝐶1
𝑇𝒂𝟏𝒂𝟏

𝑇𝐶1
𝑇 𝐶1

𝑇𝒂𝟏𝒂𝟏
𝑇𝑆1

𝑇 … 𝐶1
𝑇𝒂𝟏𝒂𝟏

𝑇𝐶𝑛
𝑇 𝐶1

𝑇𝒂𝟏𝒂𝟏
𝑇𝑆𝑛

𝑇 −𝐶1
𝑇𝒂𝟏𝒂𝟏

𝑇

𝑆1
𝑇𝒂𝟏𝐵𝒂𝟏

𝑻 𝑆1
𝑇𝒂𝟏𝒂𝟏

𝑇𝐶1
𝑇 𝑆1

𝑇𝒂𝟏𝒂𝟏
𝑇𝑆1

𝑇 … 𝑆1
𝑇𝒂𝟏𝒂𝟏

𝑇𝐶𝑛
𝑇 𝑆1

𝑇𝒂𝟏𝒂𝟏
𝑇𝑆𝑛

𝑇 −𝑆1
𝑇𝒂𝟏𝒂𝟏

𝑇

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝐶𝑛
𝑇𝒂𝟏𝐵𝒂𝟏

𝑻 𝐶𝑛
𝑇𝒂𝟏𝒂𝟏

𝑇𝐶1
𝑇 𝐶𝑛

𝑇𝒂𝟏𝒂𝟏
𝑇𝑆1

𝑇 … 𝐶𝑛
𝑇𝒂𝟏𝒂𝟏

𝑇𝐶𝑛
𝑇 𝐶𝑛

𝑇𝒂𝟏𝒂𝟏
𝑇𝑆𝑛

𝑇 −𝐶𝑛
𝑇𝒂𝟏𝒂𝟏

𝑇

𝑆𝑛
𝑇𝒂𝟏𝐵𝒂𝟏

𝑻 𝑆𝑛
𝑇𝒂𝟏𝒂𝟏

𝑇𝐶1
𝑇 𝑆𝑛

𝑇𝒂𝟏𝒂𝟏
𝑇𝑆1

𝑇 … 𝑆𝑛
𝑇𝒂𝟏𝒂𝟏

𝑇𝐶𝑛
𝑇 𝑆𝑛

𝑇𝒂𝟏𝒂𝟏
𝑇𝑆𝑛

𝑇 −𝑆𝑛
𝑇𝒂𝟏𝒂𝟏

𝑇

−𝒂𝟏𝐵𝒂𝟏
𝑻 −𝒂𝟏𝒂𝟏

𝑇𝐶1
𝑇 −𝒂𝟏𝒂𝟏

𝑇𝑆1
𝑇 … −𝒂𝟏𝒂𝟏

𝑇𝐶𝑛
𝑇 −𝒂𝟏𝒂𝟏

𝑇𝑆𝑛
𝑇 𝒂𝟏𝒂𝟏

𝑇]

37

𝑀𝑎2 =

[

𝒂𝟐𝒂𝟐

𝑇 𝒂𝟐𝐵
𝑇𝒂𝟐

𝑇 𝒂𝟐𝐵
𝑇𝒂𝟐

𝑇𝑆1
𝑇 … 𝒂𝟐𝐵

𝑇𝒂𝟐
𝑇𝐶𝑛

𝑇 𝒂𝟐𝐵
𝑇𝒂𝟐

𝑇𝑆𝑛
𝑇 −𝒂𝟐𝐵

𝑇𝒂𝟐
𝑇

𝐶1
𝑇𝒂𝟐𝐵𝒂𝟐

𝑻 𝐶1
𝑇𝒂𝟐𝒂𝟐

𝑇𝐶1
𝑇 𝐶1

𝑇𝒂𝟐𝒂𝟐
𝑇𝑆1

𝑇 … 𝐶1
𝑇𝒂𝟐𝒂𝟐

𝑇𝐶𝑛
𝑇 𝐶1

𝑇𝒂𝟐𝒂𝟐
𝑇𝑆𝑛

𝑇 −𝐶1
𝑇𝒂𝟐𝒂𝟐

𝑇

𝑆1
𝑇𝒂𝟐𝐵𝒂𝟐

𝑻 𝑆1
𝑇𝒂𝟐𝒂𝟐

𝑇𝐶1
𝑇 𝑆1

𝑇𝒂𝟐𝒂𝟐
𝑇𝑆1

𝑇 … 𝑆1
𝑇𝒂𝟐𝒂𝟐

𝑇𝐶𝑛
𝑇 𝑆1

𝑇𝒂𝟐𝒂𝟐
𝑇𝑆𝑛

𝑇 −𝑆1
𝑇𝒂𝟐𝒂𝟐

𝑇

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝐶𝑛
𝑇𝒂𝟐𝐵𝒂𝟐

𝑻 𝐶𝑛
𝑇𝒂𝟐𝒂𝟐

𝑇𝐶1
𝑇 𝐶𝑛

𝑇𝒂𝟐𝒂𝟐
𝑇𝑆1

𝑇 … 𝐶𝑛
𝑇𝒂𝟐𝒂𝟐

𝑇𝐶𝑛
𝑇 𝐶𝑛

𝑇𝒂𝟐𝒂𝟐
𝑇𝑆𝑛

𝑇 −𝐶𝑛
𝑇𝒂𝟐𝒂𝟐

𝑇

𝑆𝑛
𝑇𝒂𝟐𝐵𝒂𝟐

𝑻 𝑆𝑛
𝑇𝒂𝟐𝒂𝟐

𝑇𝐶1
𝑇 𝑆𝑛

𝑇𝒂𝟐𝒂𝟐
𝑇𝑆1

𝑇 … 𝑆𝑛
𝑇𝒂𝟐𝒂𝟐

𝑇𝐶𝑛
𝑇 𝑆𝑛

𝑇𝒂𝟐𝒂𝟐
𝑇𝑆𝑛

𝑇 −𝑆𝑛
𝑇𝒂𝟐𝒂𝟐

𝑇

−𝒂𝟐𝐵𝒂𝟐
𝑻 −𝒂𝟐𝒂𝟐

𝑇𝐶1
𝑇 −𝒂𝟐𝒂𝟐

𝑇𝑆1
𝑇 … −𝒂𝟐𝒂𝟐

𝑇𝐶𝑛
𝑇 −𝒂𝟐𝒂𝟐

𝑇𝑆𝑛
𝑇 𝒂𝟐𝒂𝟐

𝑇]

38

4. EXPANSÃO EM SÉRIE DE FOURIER DAS REAÇÕES DE

CONTATO PARA O ELEMENTO CILÍNDRICO

Embora a expansão em Série de Fourier dos esforços externos estivesse sendo

realizada adequadamente para o elemento cilíndrico de parede espessa, notou-se que

o mesmo não ocorria para as reações de contato. Isso porque, para este tipo de

elemento não basta saber apenas o nó e a intensidade dos esforços aplicados sobre

ele. É necessário conhecer também a distribuição destes esforços ao longo da direção

angular para o nó em questão, como indicado na Figura 17.

Figura 17 - Caso simplificado de apenas 1 elemento e em contato apenas no lado externo: a
distribuição dos esforços deve ser conhecida para a aresta superior e para a inferior.

Figura 18 - Exemplos de distribuições angulares de esforços expandidos em Série de Fourier.
(COOK, MALKUS, PLESHA, & WITT, 2002)

Assim como as forças externas, as reações de contato também devem ser expandidas

em Série de Fourier, ou seja,

39

𝐅𝑭𝒐𝒖𝒓𝒊𝒆𝒓 = {

𝐹𝑁𝐹𝑜𝑢𝑟𝑖𝑒𝑟
𝐹𝑎1𝐹𝑜𝑢𝑟𝑖𝑒𝑟
𝐹𝑎2𝐹𝑜𝑢𝑟𝑖𝑒𝑟

} =

{

 ∑𝐹̅N

𝑖

𝑛

𝑖=0

cos 𝑖𝜃 +∑𝐹̿N
𝑖 sin 𝑖𝜃

𝑛

𝑖=0

∑𝐹̅𝑎1
𝑖

𝑛

𝑖=0

sin 𝑖𝜃 +∑𝐹̿𝑎1
𝑖

𝑛

𝑖=0

cos 𝑖𝜃

∑𝐹̅𝑎2
𝑖

𝑛

𝑖=0

cos 𝑖𝜃 +∑𝐹̿𝑎2
𝑖 sin 𝑖𝜃

𝑛

𝑖=0 }

Para a situação de contato de tipo “nó a nó” entre o elemento cilíndrico e o elemento

de hélice, as reações de contato podem ser modeladas como esforços concentrados

aplicados na região de contato. Portanto, pode-se utilizar a função Delta de Dirac,

𝛿(𝑥 − 𝜃0), para representá-los. A Figura 19 ilustra esta hipótese para a situação de

contato normal, na qual 𝐹𝑁 é considerada uma força pontual aplicada em 𝜃0.

Figura 19 - Esforços concentrados na região de contato. Esta figura exemplifica a hipótese para a

direção normal. Os modelos matemáticos são válidos para pequenas deformações e o fenômeno foi

ampliado nesta imagem apenas para recurso didático.

A função Delta de Dirac possui as seguintes propriedades:

𝛿(𝑥 − 𝜃0) = 0 , para 𝑥 ≠ 𝜃0

∫ 𝐹𝑗(𝑥)
∞

−∞
𝛿(𝑥 − 𝜃0) 𝑑𝑥 = 𝐹𝑗(𝜃0) , para 𝑗 = 𝑛, 𝑎1 𝑒 𝑎2

A expansão em Série de Fourier obtém-se, para 𝑗 = 𝑛, 𝑎1 𝑒 𝑎2:

𝐹𝑗𝐹𝑜𝑢𝑟𝑖𝑒𝑟 = 𝐹𝑗
0 +∑𝐹̅j

𝑖

𝑛

𝑖=1

cos 𝑖𝜃 +∑𝐹̿j
𝑖 sin 𝑖𝜃

𝑛

𝑖=1

𝐹𝑗
0 =

𝐹𝑗

2𝜋

40

𝐹̅j
𝑖 =

𝐹𝑗

𝜋
 cos 𝜋 𝑖𝜃0

𝐹̿j
𝑖 =

𝐹𝑗

𝜋
 sin 𝜋 𝑖𝜃0

A Figura 20 exemplifica a expansão em Série de Fourier para a situação de contato

normal com uma força concentrada de 1N aplicada para 𝜃0 = 45°.

Figura 20 - Expansão em série de Fourier de ordem 20 para uma força concentrada de valor unitário

aplicada a π/4 (45°). A integral desta função é igual ao módulo da força aplicada, ou seja, 1N.

-2,00

-1,00

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

0 1 2 3 4 5 6

Fo
rç

a
[N

]

Ângulo [rad]

41

5. IDENTIFICAÇÃO DOS GARGALOS COMPUTACIONAIS

Segundo o Princípio de Pareto, 80% dos recursos são utilizados por 20% das

operações. Este princípio é utilizado em programação para ilustrar os efeitos gerados

por gargalos computacionais, também conhecidos como “hot spots”, que são trechos

de um código com elevada proporção de instruções executadas, que demandam

elevada quantidade de memória, processamento e tempo. Por este motivo, os

gargalos são os principais limitantes à utilização de um programa, que, para se tornar

eficiente, é necessária a redução (ou se possível até a eliminação) da influência destes

gargalos.

Pelos motivos apresentados, buscou-se a identificação dos gargalos computacionais

do software UFCad. No entanto, devido à complexidade desta rotina de elementos

finitos, com diversas classes e métodos, identificar estes gargalos computacionais não

é uma tarefa tão simples. Este fato obrigou a adoção de uma metodologia de

identificação, que será apresentada neste capítulo, juntamente com os seus

resultados.

É interessante notar que os gargalos computacionais identificados compuseram a

base da estratégia de otimização adotada, justificando as modificações no código que

se fizeram necessárias e que serão apresentadas nos próximos capítulos.

No item 5.1 deste capítulo serão apresentadas ferramentas específicas para a

identificação destes gargalos computacionais, conhecidas como profilers, que

auxiliaram na identificação dos mesmos.

O UFCad apresentou dois tipos distintos de gargalos computacionais:

 Gargalos de processamento, apresentado no item 5.2;

 Gargalos de memória consumida, no item 9.3.

5.1 Seleção dos profilers utilizados na identificação dos gargalos

computacionais

Com a crescente complexidade das rotinas implementadas, identificar estes gargalos

computacionais torna-se uma tarefa longa e igualmente complexa. Otimizar o código

todo é uma tarefa inviável e, na grande maioria das vezes, não necessária. A

otimização de trechos de código que não foram selecionados adequadamente trará

ganhos pouco substanciais à eficiência do mesmo. Segundo Donald Knuth, professor

42

emérito da Universidade de Stanford, as pequenas eficiências devem ser esquecidas

em 97% dos casos, pois a otimização prematura é a raiz de todos os males (KNUTH,

D., 1977).

Uma maneira prática para se analisar o código e encontrar seus gargalos é através

da utilização de ferramentas desenvolvidas para esta finalidade, os profilers, que

monitoram uma série de parâmetros (como consumo de memória, tempo de análise,

número de threads, etc) permitindo-se assim avaliá-lo. Como os profilers são

ferramentas projetadas para o maior número possível de aplicações e finalidades,

existem vários opões de análise, como por exemplo linha-por-linha (“line-by-line”),

amostragem baseada em evento (“event-based sampling”), amostragem baseada em

tempo (“time-based sampling”), etc. A escolha dos métodos e parâmetros depende do

caso analisado, de modo geral baseados em alguns critérios como tempo, precisão e

custo de análise.

Como há uma distinção entre profilers para análise de processamento e profilers para

análise de consumo de memória, a apresentação dos mesmos seguirá o mesmo

padrão, conforme o respectivo tipo.

5.1.1 Profiler para análise de processamento

Para a análise de processamento, foram utilizados os seguintes profilers: “ANTS

Performance Profiler 8” e “dotTrace 5.5 Performance”, que são ferramentas

comerciais que dispõem de licenças para estudante. Ambos os programas são muito

semelhantes e se propõem a fazer praticamente as mesmas tarefas, o que permitiu

comparar os resultados.

A Figura 21 e a Figura 22 mostram, respectivamente, as interfaces dos programas

“dotTrace” e “ANTS”. Nestas imagens é possível ver a pilha de chamada, ou pilha de

execução (em inglês “call stack”), na qual são listados os métodos e as funções que

compõem o programa, bem como seus parâmetros estatísticos mais importantes, por

exemplo, a contagem do número de execuções e a porcentagem de tempo que o

programa gasta com cada um deles. A organização e disposição destas pilhas de

chamadas foram otimizadas pelos desenvolvedores dos softwares de modo a facilitar

a identificação dos trechos críticos do código.

43

Figura 21 – Pilha de execução gerada pelo software “dotTrace 5.5.5 Performance”.

Figura 22 – Pilha de execução gerada pelo software “ANTS Performance Profiler 8”.

44

A Figura 23 é um exemplo de organograma gerado automaticamente pelo programa

“ANTS Performance Profiler 8”. Este organograma mostra as relações hierárquicas

entre os principais métodos chamados de um código, sendo muito útil para identificar

aqueles que demandam proporcionalmente a maior parte do tempo de execução.

Neste tipo de representação, os métodos que consomem poucos recursos de

processamento são omitidos para não poluí-la visualmente, o que seria prejudicial à

interpretação dos dados.

Figura 23 - Exemplo de um organograma gerado automaticamente pelo software “ANTS Performance

Profiler 8”.

5.1.2 Profiler para análise de consumo de memória computacional

Seguindo estratégia semelhante à da análise de processamento, testou-se os

seguintes programas para a análise de consumo de memória: “ANTS Memory Profiler

8” e “dotMemory 4.0”. Ambos são programas comerciais que dispõem de licenças para

estudantes e há uma certa semelhança entre as análises que se propõem a realizar.

45

Por melhor se adequar as necessidades desta análise, o software “dotMemory 4.0” foi

o escolhido.

Na Figura 24 pode ser visto um gráfico de consumo de memória ao longo do tempo,

que é gerado ao mesmo tempo em que a aplicação é executada. Para se analisar um

determinado instante com maiores detalhes, deve-se acionar o comando snapshot, o

qual captura as informações que estão sendo coletadas e permite uma análise

completa do código no instante em questão. Pode ser visto na Figura 25 a interface

de um snapshot gerada pelo programa “dotMemory 4.0”. O snapshot contém

informações importantes, como o tamanho de memória ocupado pelos maiores

objetos, vazamentos de memória e links para análises mais detalhadas, como a árvore

de chamadas.

Figura 24 - Gráfico de consumo de memória em função do tempo gerado pelo software “dotMemory
4.0”.

46

Figura 25 – Interface exibida pelo programa “dotMemory 4.0” ao se analisar um snapshot.

5.1.3 Problemas gerados pela utilização incorreta de Profilers

É importante ressaltar que o profiler também consome recursos de memória e

processamento do computador, de modo proporcional ao nível de detalhamento e à

quantidade de variáveis que estão sendo monitoradas. Como a sua execução ocorre

em paralelo com a aplicação analisada, o profiler causará interferência nos resultados

obtidos. Se esta interferência for muito elevada, o profiler pode acabar “mascarando”

os gargalos do código e monitorando valores que não condizem com a execução real

do programa (como consumo de memória e tempo de análise). Nestes casos

extremos, perde-se a capacidade de analisar o código e encontrar seus gargalos.

Portanto deve-se sempre questionar os resultados e tomar todos os cuidados para

que esta interferência seja minimizada. A Figura 26 é um bom exemplo deste

fenômeno. Ao se utilizar o profiler “dotMemory 4.0” com nível máximo de

detalhamento, foram necessários mais 3 minutos para concluir a análise. No entanto,

a mesma rotina leva aproximadamente 12 segundos para ser executada. Isso significa

que o nível máximo de detalhamento, além de desnecessário, impossibilita a análise

de modelos de elementos finitos com elevado número de elementos.

47

Figura 26 – Gráfico de consumo de memória em função do tempo gerado pelo software “dotMemory
4.0”

Para as análises realizadas, escolheu-se parâmetros adequados (como por exemplo

métodos de amostragem, que reduzem o número de coletas de memória), mas que

ainda mantivessem a observabilidade do sistema. Com isso, foi possível realizar a

análise pelo profiler com tempo compatível com o que a código levar para ser

executado. Além disso, adotou-se a precaução de somente comparar casos que

tenham utilizados exatamente os mesmos parâmetros de análise.

5.2 Resultados e conclusões da análise de processamento

Para a análise de processamento do “UFCad”, implementou-se um caso constituído

de uma capa plástica e um arame de armadura conectados por elementos de contato

(com a a condição de sticking e sliding), para o qual utilizou-se os profilers “ANTS

Performance Profiler 8” e “dotTrace 5.5 Performance” para gerar organogramas como

os das Figura 27 e Figura 28.

Os resultados vistos nestas duas figuras são de uma simulação com reduzido número

de elementos finitos, porém suficientes para observar que a montagem da matriz de

rigidez constitui uma etapa crítica na eficiência do “UFCad”, levando mais de 90% do

tempo total de execução. Isso ocorre, pois nesta etapa são realizadas muitas

48

operações matemáticas para o cálculo das matrizes de rigidez de cada um dos

elementos finitos que compõem o modelo simulado.

Figura 27 – Organograma criado através da compilação dos dados gerados pelo software “dotTrace

5.5.5 Performance”.

Figura 28 – Organograma gerado automaticamente pelo software “ANTS Performance Profiler”.

O desempenho do programa “UFCad” é uma função não linear que depende de uma

série de fatores, como por exemplo a forma como cada elemento é implementado,

Program.Main

99,84% • 221.417 ms • 1 call

Program.HelixPlusCylMeshTestNewContact

99,83% • 221.394 ms • 1 call

Solver.SolveIterative

99,52% • 220.722 ms • 1 call

Solver.MountGlobalMatrices

96.88% • 214.856 ms • 1 call

Node.NodeContribution

87,18% • 193.344 ms • 563.175 calls

Cylinder.NodeContribution

50,34% • 111.650 ms • 900.360 calls

Cylinder.MountMatrixForOrder

46,57% • 103.281 ms • 14.256 calls

FourierContact.NodeContribution

17,65% • 39.140 ms • 337.905 calls

Helix.NodeContribution

17,80% • 39.467 ms • 335.430 calls

Helix.Matrix

16,44% • 11.917 ms • 7.956 calls

49

proporção entre os tipos de elemento, trechos que apresentam comportamento

variado de acordo com o tamanho dos dados matrizes manipulados, etc.

Um modo interessante para avaliar a influência da montagem da matriz global de

rigidez na eficiência do programa é comparar o tempo que a matriz global de rigidez

leva para ser montada com o tempo total de execução. Isso foi feito para uma série

de situações: variando-se a quantidade de elementos do modelo de macroelementos

finitos (Figura 29) e variando-se a ordem da expansão em Série de Fourier para os

elementos de contato (Figura 30), o que consequentemente elevou também o

tamanho, em megabytes, da matriz global de rigidez. Verifica-se que o valor da

proporção de ambos os casos diminui à medida em que o tamanho da matriz global

de rigidez aumenta. Isso ocorre, pois a resolução do sistema linear para obtenção dos

deslocamentos possui influência crescente sobre a eficiência global do programa com

o aumento do tamanho da matriz de rigidez. Este fato, no entanto, será devidamente

explorado mais adiante, durante a análise de consumo de memória. O importante,

tanto da Figura 29 quanto da Figura 30, é verificar que a montagem da matriz de

rigidez requer um tempo significativo, de 50% à 95% do tempo total de simulação.

Figura 29 – Comparação entre o tempo total de execução do programa “UFCad” e o tempo de

montagem da matriz global de rigidez em função do tamanho (em megabytes) da matriz global de

rigidez. A variação no tamanho da matriz de rigidez foi obtida aumentando-se o número de

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0

50

100

150

200

250

300

0,00 50,00 100,00 150,00 200,00 250,00 300,00 350,00

T
e
m

p
o

 (
s
)

Tamanho da matriz global de rigidez (em MB)

Tempo total Tempo montagem matriz rigidez Proporção

50

macroelementos finitos do modelo e mantendo-se constante a ordem da expansão em Série de

Fourier dos elementos de contato.

Figura 30 – Comparação entre o tempo total de execução do programa “UFCad” e o tempo de

montagem da matriz global de rigidez em função do tamanho (em megabytes) da matriz global de

rigidez. A variação no tamanho da matriz de rigidez foi obtida aumentando-se a ordem da expansão

em série de Fourier e mantendo-se constante o número de macroelementos finitos do modelo.

Ao se verificar também o uso de CPU durante a execução do “UFCad”, notou-se que

o mesmo variava entre 15% à 30%, como indicado na Figura 31. Além disso, a

distribuição de processamento entre os núcleos não era homogênea, inclusive com

alguns deles não sendo utilizados. Com isso, conclui-se que o programa não está

aproveitando todo o potencial de processamento disponível. Modificações com intuito

de elevar esta taxa de utilização de CPU trarão ganhos substanciais em relação tempo

de simulação.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

100

200

300

400

500

600

700

0,00 100,00 200,00 300,00 400,00 500,00

T
e
m

p
o

 (
s
)

Tamanho (em MB) da matriz global de rigidez

Tempo total Tempo montagem matriz rigidez Proporção

51

Figura 31 – Uso de CPU durante a execução do profiler “ANTS”.

Portanto, com os resultados apresentados acima, conclui-se que a estratégia mais

adequada para abordar e reduzir os gargalos de processamento é através da

introdução de métodos de paralelização computacional no trecho de código

responsável pela montagem das matrizes de rigidez, o que elevará a taxa de uso de

CPU. Com isso, espera-se aumentar a eficiência do código e reduzirão o tempo de

análise, o que impactará diretamente nos custos de análises com elevado número de

graus de liberdade.

5.3 Resultados e conclusões da análise de consumo de memória

computacional

Para a avaliação do consumo de memória, considerou-se um caso envolvendo um

cilindro e um arame interligados por elementos de contato, permitindo deslocamento

normal e tangencial entre elementos cilíndricos e helicoidais, sob a condição de

contorno imposta de descolamento compressivo.

Realizou-se também uma análise da influência do número de elementos do modelo

de elementos finitos. Os resultados desta análise podem ser vistos na Tabela 1 e

Figura 32.

Tabela 1 – Consumo de memória em função do número de elementos do modelo. Parâmetros fixos da

análise: matriz global de rigidez fora do loop; ordem de Fourier igual a 0.

Nr Nº Elem. Hélice
Nº Elem.

Cilíndricos
Máx. Mem. (MB) Tempo (s)

52

#1 25 100 93 12

#2 50 400 163 29.3

#3 75 900 442 87.4

#4 75 1200 642 129.1

#5 100 1600 1096 247.3

#6 200 6400 OUT OF MEM. -

Figura 32 - Consumo de memória (MB) em função do número de elementos cilíndricos.

Também realizou-se uma análise da influência da ordem de expansão em série de

Fourier no consumo máximo de memória. Os resultados podem ser conferidos na

Tabela 2 e na Figura 33.

Tabela 2 - Consumo de memória em função da ordem de expansão da série de Fourier. Parâmetros

fixos da análise: matriz global de rigidez fora do loop; número de elementos cilíndricos igual 100;

número de elementos de hélice igual à 25.

Nr Ord. Fourier
Núm. elem.
cilíndricos

Máx. Mem.
(MB)

Tempo total
(s)

#1 0 100 93 12

y = 84,615e0,0017x

R² = 0,99

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200 1400 1600 1800

M
B

Número de elementos cilíndricos

53

#2 1 100 135 20,8

#3 2 100 200 42,3

#4 3 100 313 76,9

#5 4 100 504 131,5

#6 5 100 713 208,4

Figura 33 - Consumo de memória (em megabytes) em função da ordem da expansão em Série de

Fourier.

O programa “UFCad” apresenta consumo exponencial de memória computacional

com relação ao tamanho do modelo de macroelementos finitos, fazendo com que o

limite máximo de memória disponível na CPU seja excedido com um número

relativamente baixo de elementos. Isto ocorre por dois motivos:

 O programa utiliza matrizes densas ao invés de matrizes esparsas para

armazenar os dados;

 Problemas e limitações com a resolução do sistema linear (assunto que será

abordado em maiores detalhes no capítulo 7).

y = 59,58e0,4167x

R² = 0,9981

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5

M
B

Ordem da expansão em Série de Fourier

54

Adicionalmente, a configuração padrão da linguagem C# limita a criação e

manipulação de matrizes a apenas 2 GB, o que inviabiliza a utilização do programa

“UFCad” para a simulação de modelos de elementos finitos de grande escala.

55

6. MODIFICAÇÕES NO PROGRAMA UFCAD

6.1 Modificação 01 – A alteração do número de vezes em que a matriz global

de rigidez é computada

Em função da natureza dos modelos de elementos finitos do programa “UFCad”, deve-

se utilizar o solver-interativo. Problemas que envolvem contato do tipo gap (abertura

e fechamento) são não-lineares e requerem métodos iterativos para a convergência.

O solver-interativo subdivide linearmente o carregamento externo em 10 steps, que

subdividem-se em um número variável de substeps. De modo simplista, o solver-

interativo aplica o carregamento externo correspondente a um step, determina quais

pares de contato estarão ativos para e em seguida atualiza as matrizes de rigidez dos

elementos de contato correspondentes, caracterizando um substep. Para o mesmo

carregamento externo, ele determina novamente os pares em contato e atualiza as

matrizes de rigidez destes elementos, caracterizando um novo substep. Este ciclo

persiste até que a convergência para este step seja atingida, quando então realiza-se

o incremento de um décimo nos carregamentos externos, dando início aos substeps

do próximo step.

Antes da Modificação 01, para cada um dos 10 steps, o programa recalculava todas

as matrizes de rigidez dos elementos finitos do modelo, montava a matriz global e

armazenava-a como uma propriedade. Na transição de uma iteração para a outra, um

novo espaço de memória era alocado na memória heap do sistema e a matriz de

rigidez antiga era eliminada da memória somente quando o sistema realizava a

operação “garbage collector”.

Como mostra a Figura 34, esta operação somente faria sentido se os valores de

deslocamentos fossem incluídos nos cálculos da nova matriz global de rigidez, o que

aumentaria a taxa de convergência, ou seja, faria o problema convergir em menor

número de iterações.

56

Figura 34 - Taxa de convergência em função da atualização ou não das dimensões no cálculo da

matriz de rigidez (Newton-Raphson Option (NROPT), 2014).

No entanto, como a matriz global de rigidez não está sendo reformulada, mas apenas

recalculada, gasta-se tempo um tempo muito elevado e totalmente desnecessário

nesta operação, com prejuízos de performance e consumo de memória.

Deslocando-se a montagem da matriz global de rigidez para fora do loop de iterações,

o número de vezes em que a matriz global de rigidez é calculada durante a execução

do programa passou de 10 para apenas 1 vez. Ao eliminar-se esta repetição de

cálculos, houve um ganho expressivo de performance do programa e também redução

do tempo de simulação, conforme o indicado nas Figura 35 à Figura 40.

57

Figura 35 – Comparação de tempo de montagem de matriz global quando: a matriz é calculada
apenas 1 vez (fora do loop, curva azul); a matriz é recalculada toda iteração (dentro do loop, curva

vermelha).

Figura 36 - Comparação de tempo total de execução do programa quando: a matriz é calculada
apenas uma vez (fora do loop, curva azul); a matriz é recalculada toda iteração (dentro do loop, curva

vermelha).

0,0

200,0

400,0

600,0

800,0

0,00 20,00 40,00 60,00 80,00 100,00 120,00 140,00

T
e
m

p
o
 (

s
)

Tamanho da matriz global de rigidez (em MB)

Tempo de montagem da matriz global de rigidez

Dentro do loop Fora do loop

0,0

200,0

400,0

600,0

800,0

0,00 20,00 40,00 60,00 80,00 100,00 120,00 140,00

T
e
m

p
o
 (

s
)

Tamanho da matriz global de rigidez (em MB)

Tempo total de execução do programa

Dentro do loop Fora do loop

58

Figura 37 - Razão entre tempo de montagem da matriz global de rigidez e tempo total de execução
quando: a matriz é calculada apenas 1 vez (fora do loop, curva azul); a matriz é recalculada toda

iteração (dentro do loop, curva vermelha).

Figura 38 – Comparação de consumo máximo de memória quando: a matriz é calculada apenas 1 vez
(fora do loop, curva azul); a matriz é recalculada toda iteração (dentro do loop, curva vermelha).

A Figura 39 mostra gráfico de consumo de memória ao longo do tempo para este

caso. Mais do que isso, nela também é possível notar 10 patamares distintos de

60%

70%

80%

90%

100%

0,00 20,00 40,00 60,00 80,00 100,00 120,00 140,00

Tamanho da matriz global de rigidez (em MB)

Razão entre tempo de montagem da matriz global de
rigidez e tempo total de execução

Dentro do loop Fora do loop

0

150

300

450

600

0,00 20,00 40,00 60,00 80,00 100,00 120,00 140,00

M
e
m

ó
ri
a
 (

M
B

)

Tamanho da matriz global de rigidez (em MB)

Consumo máximo de memória

Dentro do loop Fora do loop

59

valores de memória, cada um deles correspondentes aos 10 steps que o programa

realiza.

Figura 39 - Consumo de memória ao longo do tempo para o caso em que a matriz de rigidez é
calculada em cada step.

Figura 40 - Consumo de memória ao longo do tempo para o caso em que a matriz global de rigidez é
calculada apenas uma vez.

60

6.2 Modificação 02 – Alteração na varredura de montagem da matriz de rigidez

Também foi alterada a lógica de varredura dos nós para a montagem da matriz de

rigidez do programa UFCad. A varredura consiste em identificar corretamente a

posição na matriz global de rigidez em que cada uma das matrizes locais de rigidez

deve ser adicionada. A varredura é realizada com algumas das propriedades que o

UFCad armazena de cada um dos elementos finitos do modelo: o tipo de elemento e

os nós que o compõem.

O número de graus de liberdade dos nós de cada tipo de elemento é determinado pela

formulação matemática dos elementos. Cada nó do elemento de hélice, por exemplo,

possui 6 graus de liberdade, enquanto que, para o elemento cilíndrico, os nós

possuem apenas 3 graus de liberdade, uma vez que neste caso as rotações foram

desprezadas.

A varredura por nó consiste em verificar na lista de elementos quais elementos finitos

estão associados a cada um dos graus de liberdade do modelo. Isso exige uma

quantidade de buscas que cresce quadraticamente com o número de graus de

liberdade do modelo, o que se torna um processo demorado e de elevado custo

computacional. Esta lógica foi substituída pela varredura por elemento. Sabendo-se

quais nós que compõe o elemento finito, é possível determinar a posição na matriz de

rigidez, pois existe uma correlação entre a numeração dos nós e suas respectivas

localizações na matriz global de rigidez. A varredura por elemento exige uma

quantidade de buscas na lista de elementos proporcional à quantidade de elementos,

o que representa uma grande vantagem computacional, ilustrada na Figura 41. Neste

caso, as eficiências de ambos os tipos de varredura foram comparadas através da

medição do tempo de montagem em função do número de graus de liberdade do

modelo. É importante dizer que, neste caso, o modelo simulado continha uma capa

plástica externa conectada rigidamente à apenas uma armadura de tração. A

quantidade de componentes foi mantida constante, de modo que a variação do

número de graus de liberdade ocorreu somente pelo refinamento da discretização do

modelo. Este gráfico comprova o crescimento quadrático do tempo total de montagem

da matriz global de rigidez com o aumento do número de graus de liberdade para a

varredura do por nó.

Trata-se, portanto, de uma comparação de casos extremos, devido à baixa proporção

entre a quantidade de elementos e graus de liberdade deste caso, o que explicita as

61

diferenças de performance entre as duas metodologias. Em geral, casos com maior

proporção entre a quantidade de elementos e graus de liberdade (vários componentes

conectados entre si, por exemplo) irão ocupar a região entre as duas curvas do gráfico

da Figura 41.

Figura 41 - Comparação de performance entre os métodos de montagem da matriz global de rigidez.

6.3 Modificação 03 – Paralelização da montagem da matriz global de rigidez

Computadores modernos possuem mais de um núcleo de processamento e um código

que utilize paralelização pode tirar grande proveito disto. É possível reduzir

significativamente o tempo total de simulação ao se utilizar ferramentas específicas

de programação. Neste contexto, a paralelização da etapa de montagem de matriz

global de rigidez pode trazer grandes vantagens ao programa, devido à elevada

quantidade de operações realizadas nesta operação.

Para a realização desta modificação, foi utilizado uma série de recursos

disponibilizados pelo C#. “A classe Parallel na TPL permite paralelizar algumas

construções de programação comuns, sem exigir uma reformulação do aplicativo.

Internamente, a classe Parallel cria um conjunto próprio de objetos Task e sincroniza

automaticamente essas tarefas quando finalizadas. A classe Parallel está localizada

no namespace System.Threading.Tasks e dispõe de um pequeno conjunto de

0

150

300

450

0 2000 4000 6000 8000 10000 12000

T
e
m

p
o
 (

s
)

Número de linhas da matriz global de rigidez

Varredura por elemento Varredura por direção

62

métodos estáticos para indicar que o código deve ser executado em paralelo, se

possível. Esses métodos são os seguintes:

 Parallel.For – ele define um loop no qual as iterações podem ocorrer em

paralelo ao utilizar tarefas. O método é executado para todo valor entre o valor

inicial e um abaixo do valor final especificado, e o parâmetro é preenchido com

um inteiro que especifica o valor atual.

 Parallel.ForEach<T> – ele define um loop no qual as iterações podem ocorrer

em paralelo. O método é executado para cada item na coleção.

 Parallel.Invoke – você pode utilizar esse método para executar um conjunto

de chamadas a métodos sem parâmetros como tarefas paralelas.” (SHARP,

2011).

Nem todas as etapas de um código podem ser paralelizadas. Isto ocorre para etapas

que dependem de resultados das anteriores e, neste caso, deve-se garantir a correta

execução do programa. Caso isso não seja respeitado, mesmo mantendo-se

inalterados todos os parâmetros, o programa irá gerar resultados incorretos e que

serão diferentes em todas as vezes que for executado. Um trecho de código é dito

“thread-safe” quando ele manipula dados compartilhados entre estruturas de um modo

que garanta a segurança de execução dos múltiplos threads ao mesmo tempo

(ORACLE, 2010).

Foi realizada a paralelização da etapa de montagem da matriz de rigidez,

aumentando-se a taxa de uso processamento, mas esta operação ainda não pôde ser

concluída, devido às dificuldades encontradas para se garantir o “thread safety”. Os

testes realizados mostraram desvios na oitava casa decimal, mas que não podem ser

desprezados, pois indicam uma falha na sequência de execução das operações.

Portanto, esta etapa ainda requer melhorias para que seja integralmente finalizada.

No entanto, é importante notar que os ganhos obtidos com as modificações 6.1 e 6.2

tornaram os ganhos da paralelização apenas residuais, reduzindo a importância deste

gargalo computacional.

63

6.4 Modificação 04 – Inclusão de recurso para habilitar matrizes com mais de

2GB

Foi disponibilizado após o lançamento do “.NET Framework 4.5” um método para

desativar a limitação de matrizes de até 2GB de memória. Esta desativação é

realizada através dos comandos indicados na Tabela 3.

A utilização deste recurso permitiu um aumento considerável na quantidade de dados

possíveis de serem armazenados na memória RAM, e com isso a simulação de

modelos maiores, limitados apenas à quantidade disponível na CPU.

Tabela 3 – Comando em C# para habilitar matrizes com mais de 2GB.

<configuration>

 <runtime>

 <gcAllowVeryLargeObjects enabled="true" />

 </runtime>

</configuration>

6.5 Modificação 05 – Conversão das Matrizes da Classe “Solver” para Matrizes

Esparsas

Com o objetivo de reduzir o consumo de memória, realizou-se a conversão das

matrizes da classe “Solver” de densas para esparsas. Esta modificação trouxe um

ganho significativo ao programa quanto à capacidade de armazenamento, como

indica a Figura 42, sendo possível implementar modelos com mais de 200000 graus

de liberdade por meio da formulação esparsa, que anteriormente estavam limitados

somente a 16000 graus de liberdade (para um computador com 8 GB de memória

RAM disponíveis).

No entanto, os benefícios desta modificação não puderam ser aproveitados, devido

ao fato do programa UFCad ainda não contar com um método eficiente para a

resolução de sistemas lineares esparsos de grande escala, o que será apresentado

em maiores detalhes no próximo capítulo.

64

Figura 42 – Aumento na capacidade de armazenamento com a implementação do solver com
matrizes esparsas.

A conversão no formato das matrizes gerou uma perda de performance na montagem

da matriz global de rigidez, o que pode ser visto na Figura 43. Operações algébricas

com matrizes esparsas podem não ser vantajosas ao compará-las com matrizes

densas, se a esparsidade for baixa, ou seja, quando a proporção de células nulas é

baixa. Isso porque, neste caso, o número de operações matemáticas para ambos os

formatos é muito próximo, porém com o agravante de que as matrizes esparsas

requererem controles e verificações adicionais. Pode-se mesclar a utilização de

matrizes densas e esparsas, sendo a escolha determinada pelos seus respectivos

graus de esparsidade. No entanto, mesmo neste caso haverá perda de performance,

pois será necessária a conversão de formatos para durante as operações algébricas.

Deste modo, otimizar o programa a relação capacidade de armazenamento e

performance não é uma tarefa simples ou linear. Assim, na medida do possível, cada

matriz deve ser analisada individualmente, atentando-se ao impacto gerado pela

alteração no tipo de armazenamento dos dados.

Para o exemplo ilustrado na Figura 42, a perda de performance é totalmente aceitável

quando comparada com o aumento gerado na capacidade de armazenamento.

0,0

20,0

40,0

60,0

80,0

100,0

0 20000 40000 60000 80000 100000 120000 140000

T
e
m

p
o
 d

e
 m

o
n
ta

g
e
m

 (
s
)

Dimensão da matriz global de rigidez (nº de linhas)

Aumento na capacidade de armazenamento

Limite
solver
denso

Solver esparso

65

Figura 43 – Perda de performance na montagem da matriz global de rigidez gerada pela
implementação da matriz global de rigidez.

6.6 Modificação 06 – Formulação e implementação de uma nova estratégia de

detecção de contatos entre armaduras de tração.

Originalmente, o programa utilizava a metodologia de pinball region para detectar os

contatos entre armaduras, que consiste em procurar para cada nó do modelo outros

nós que estejam dentro de uma região de raio especificado. Esta formulação é

generalizada e muito empregada no método dos elementos finitos. No entanto, para

um problema envolvendo armaduras de tração, com vários componentes que se

cruzam e que se encontram muito próximos uns dos outros, esta formulação se

mostrou deficiente, pois eram detectados muitos mais pares de contato do que o

preciso, conectando partes da estrutura que não deveriam estar conectadas.

Deste modo, foi necessária uma formulação específica para a detecção de contatos

entre armaduras de tração, levando em conta o fato de possuírem geometria

helicoidal, a qual encontra-se no item 6.6.1. Foram realizadas checagens desta

formulação, desde a contagem do número de pares de contato até a utilização de

0,00

1,00

2,00

3,00

4,00

0 4000 8000 12000 16000 20000

T
e
m

p
o
 (

s
)

Dimensão da matriz da matriz global (nº linhas)

Tempo de montagem da matr iz global de r igidez

Solver Denso Solver Esparso

OUT OF
MEMORY

66

métodos gráficos. Os resultados, disponíveis no item 6.6.2, comprovam a efetividade

da formulação proposta.

6.6.1 Formulação de um novo método de detecção de contatos entre
armaduras de tração.

Figura 44 – Planificação das trajetórias dois arames de armaduras de tração.

Parâmetros necessários:

• ∅𝑖0 – ângulo inicial da armadura interna de tração;

• ∅𝑒0 – ângulo inicial da armadura externa de tração;

• 𝑅𝑖 – raio da armadura interna de tração;

• 𝑅𝑒 – raio da armadura externa de tração;

• 𝛼𝑖 – ângulo de assentamento da armadura interna;

• 𝛼𝑒 – ângulo de assentamento da armadura externa;

• 𝑃𝑖 =
𝜋 2𝑅𝑖

tan𝛼𝑖
 – passo da armadura interna de tração;

• 𝑃𝑒 =
𝜋 2𝑅𝑒

tan𝛼𝑒
 – passo da armadura externa de tração;

Equação da hélice em coordenadas cilíndricas:

𝑥𝑖 = 𝑅𝑖 . cos 𝑐𝑖. 𝑡

𝑦𝑖 = 𝑅𝑖 . sin 𝑐𝑖. 𝑡

𝑧 = 𝑡

67

Onde,

 𝑐𝑖 =
2𝜋

𝑃𝑖
=

tan𝛼𝑖
𝑅𝑖

Analogamente, para a armadura externa de tração:

𝑥𝑒 = 𝑅𝑒 . cos 𝑐𝑒 . 𝑡

𝑦𝑒 = 𝑅𝑒 . sin 𝑐𝑒 . 𝑡

𝑧 = 𝑡

 Com,

 𝑐𝑒 =
2𝜋

𝑃𝑒
=

tan𝛼𝑒
𝑅𝑒

1º Passo: Identificar os pontos de intersecção

Em coordenadas cilíndricas, para haver a interseção entre as armaduras,

𝑡𝑖 = 𝑡𝑒 = 𝑡

𝜃𝑖 = 𝜃𝑒 = 𝜃

para 0 ≤ 𝑡 ≤ 𝐿𝑚𝑎𝑥

Assim,

𝜃𝑖 = 𝑐𝑖. 𝑡 + ∅𝑖0

𝜃𝑒 = 𝑐𝑒 . 𝑡 + ∅𝑒0

Igualando-se as expressões acima e levando-se em consideração o fato de que 𝜃 é

uma variável periódica, obtém-se:

 𝑐𝑖. 𝑡 + ∅𝑖0 = 𝑐𝑒 . 𝑡 + ∅𝑒0 + 𝑘 . 2𝜋

E portanto,

A expressão acima é empregada para determinar algebricamente as coordenadas dos

pontos geométricos de interseção entre os dois arames. É interessante notar que a

quantidade destes pontos depende da quantidade total de arames em cada armadura,

𝒕 =
∅𝒆𝟎 − ∅𝒊𝟎 + 𝒌 . 𝟐𝝅

 𝒄𝒊 − 𝒄𝒆

para 𝒌 = 𝟎, 𝟏, 𝟐, e 𝟎 ≤ 𝒕 ≤ 𝑳𝒎𝒂𝒙

68

e dos seus respectivos raios e ângulos de assentamento. No entanto, esta quantidade

independe da quantidade de nós, ou seja, do grau de discretização das armaduras.

Figura 45 – Pontos de intersecção são determinados algebricamente pela expressão apresentada.

2º Passo: Identificar os nós mais próximos destes pontos geométricos

Após identificados os pontos de interseção, deve-se identificar os nós de cada

armadura que mais se aproximam deles. Esta identificação é realizada segundo a

metodologia a seguir, ilustrada também na Figura 46:

 Para cada ponto de interseção calculado;

o Para cada uma das duas hélices;

 Para cada um dos nós presentes na hélice;

 Cálculo da distância do nó ao ponto de interseção;

o Seleção do nó de menor distância.

69

Figura 46 – Exemplo de checagem de distância entre os nós da armadura externa e o primeiro ponto

geométrico de intersecção.

3º Passo: Ligar os nós mais próximos dos pontos geométricos

Após determinados os nós que possuem a menor distâncias aos pontos geométricos

de intersecção, deve-se associá-los corretamente e em seguida criar o elemento do

tipo bonded ligando estes nós, procedimento ilustrado na Figura 47.

Figura 47 – Elementos de contatos criados com base nos critérios da formulação proposta.

70

6.6.2 Resultados desta lógica de detecção de contatos

Comparou-se a quantidade de elementos criados com a quantidade teórica para

situações de números de arames variados, que mostram-se sempre compatíveis.

Adicionalmente, criou-se um método gráfico para esta checagem, ilustrado na Figura

48. Utilizou-se o UFCad para gerar um arquivo com os pares de nós e suas

respectivas coordenadas de cada um dos elementos do tipo bonded criados. Utilizou-

se o programa Matlab para pós-processar estes resultados, convertendo os valores

das coordenadas para o sistema cartesiano e respectiva plotagem em um sistema

tridimensional.

Figura 48 – Recurso gráfico gerado através do programa Matlab para verificar a formação dos pares

de contato.

6.7 Modificação 07 – Alteração na Geração de Malhas dos Elementos de

Contato Tipo Bridge

Durante a etapa de simulação do caso de estudo (que será apresentado no Capítulo

0), encontrou-se uma falha na geração de malhas dos elementos de contato do tipo

bridge. O programa sempre gerava uma quantidade de elementos bridge suficientes

71

para conectar apenas um arame da armadura de tração. Com isso, para armaduras

de tração com mais do que um arame, era gerada uma quantidade insuficiente de

elementos bridge, deixando de conectar a maior parte dos nós que deveriam estar

unidos, invalidando completamente a utilização deste elemento. Após a identificação

e correção do problema, todos os nós de todas as armaduras de tração passaram a

ser computados, o que foi fundamental para a convergência do problema.

72

7. RESOLUÇÃO DO SISTEMA LINEAR

A resolução do sistema linear é uma etapa crítica ao funcionamento do programa

“UFCad”, com reflexos sobre o tempo total de simulação e também ao consumo total

de memória. Ao longo deste trabalho, buscou-se várias soluções para contornar as

restrições e limitações relativas a solução de sistema linear. Estas ferramentas serão

apresentadas nos subitens a seguir.

7.1 Bibliotecas e Métodos de Solução Testados

7.1.1 Math.NET – Numerics – Solver

A biblioteca “Math.NET – Numerics” dispõe de uma série de técnicas para a resolução

de sistemas lineares que se aplicam tanto para matrizes densas quanto para

esparsas. Estas técnicas são:

 Decomposição LU

 Decomposição QR

 Decomposição Gram-Schmidt

 Decomposição SVD

 Decomposição Cholesky

 Decomposição EVD

No início deste trabalho, o programa “UFCad” empregava a biblioteca “Math.Net

Numerics” para armazenar dados na forma de matrizes e vetores densos por meio de

classes específicas por ela disponibilizadas, e também a decomposição do tipo LU

para a resolução de sistemas lineares. Durante a realização deste trabalho, testou-se

todas as técnicas de resolução listas acima, tanto para sistemas lineares de formato

denso quanto esparso. Os métodos de decomposição de Cholesky e EVD exigem

matrizes simétricas e portanto não puderam ser utilizados para casos de contato com

atrito.

No entanto, estes métodos de solução não são paralelizados e também otimizados

para sistemas de grande escala. Este fato inviabiliza a utilização destes métodos para

a resolução de sistemas lineares de médio e elevado número de graus de liberdade.

73

7.1.2 Math.NET – Numerics – Solver Iterative

Durante este trabalho também foram testados métodos iterativos de solução

disponibilizados pela biblioteca Math.Net – Numerics. Este método de solução requer

a definição dos seguintes itens:

𝑥 = 𝐴. SolveIterative(b, Iterative solver, Stop criteria, Preconditioner)

Com os seguintes precondicionadores disponíveis:

 MILU0Preconditioner() – “simple MILU(0) preconditioner”;

 ILU0Preconditioner() – “incomplete, level 0, LU factorization preconditioner”;

 ILUTPPreconditioner() – “incomplete LU factorization with drop tolerance and

partial pivoting”.

Os métodos iterativos de solução disponíveis nesta biblioteca são:

 BiCgStab() – “Bi-Conjugate Gradient stabilized iterative matrix solver”;

 GpBiCg() – “Generalized Product Bi-Conjugate Gradient iterative matrix

solver”;

 TFQMR() – “Transpose Free Quasi-Minimal Residual (TFQMR) iterative matrix

solver”;

 MlkBiCgStab() – “Multiple-Lanczos Bi-Conjugate Gradient stabilized iterative

matrix solver”.

Existem uma série de critérios de parada disponíveis e foi selecionado o critério de

residual. Assim, o método somente iria chegar ao seu fim quando o residual fosse

menor que o valor especificado.

A grande vantagem deste método é que ele pode ser aplicado para a resolução de

sistemas lineares esparsos, e as técnicas de precondicionamento podem ajudar a

melhorar a convergência de sistemas mal escalados.

Estes métodos iterativos mostraram-se mais eficientes que os métodos do item 7.1.1,

porém a sua utilização ainda não é viável para sistemas de grande escala. Além disso,

métodos derivados do método de gradiente conjugado não podem ser aplicados para

a resolução de sistemas lineares assimétricos.

74

7.1.3 Math.NET – Numerics – MKL

Ao longo da elaboração deste trabalho, incorporou-se ao programa “UFCad” uma

biblioteca adicional, a “Math.Net Numerics MKL”, que é uma derivação freeware da

biblioteca profissional “Intel® Math Kernel Library”.

Esta biblioteca dispõe de um solver LU para a resolução de sistemas lineares

caracterizado pela alta eficiência de execução e elevado grau de paralelização, o que

permitiu uma redução considerável do tempo total de simulação.

No entanto, uma grande desvantagem desta biblioteca é que ela não permite a

utilização de matrizes esparsas na resolução do sistema linear. Com isso, apesar da

ótima eficiência da mesma, não é possível utilizá-la para analisar modelos de

macroelementos finitos com elevado número de graus de liberdade. O computador

utilizado na avaliação do solver MKL dispunha de 8 GB de memória RAM, o que

permitiu simular casos em que a matriz global de rigidez de ordem até [16.000 x

16.000]. Se as dimensões da matriz global de rigidez ultrapassassem o limite

especificado, o consumo de memória excedia o disponível na CPU e a execução era

abortada.

A Figura 49 mostra os resultados de simulação para um caso contendo um arame de

armadura descrito por elementos de hélice interligados através de elementos contato

rígido com elementos cilíndricos. Nota-se neste caso que tanto o consumo máximo de

memória e o tempo total de simulação possuem relação cúbica com o tamanho da

matriz global de rigidez. Este gráfico reforça a conclusão de que apesar a ferramenta

MKL ser muito eficiente, o aumento no consumo de memória ocorre de forma muito

acentuada, limitando a sua utilização.

75

Figura 49 – Resultados de simulação o caso “HelixPlusCylMeshBridgeTest()” (um arame de armadura

descrito por elementos de hélice interligados através de elementos de contato rígido com elementos

cilíndricos): consumo máximo de memória e tempo de simulação em função do tamanho, em

megabytes, da matriz global de rigidez.

Figura 50 - Resultados de simulação o caso “HelixPlusCylMeshTestNewContact()” (um arame de

armadura descrito por elementos de hélice interligados com elementos cilíndricos através de

0

200

400

600

800

1000

1200

0

1000

2000

3000

4000

5000

6000

7000

1,00 10,00 100,00 1000,00

T
e
m

p
o
 (

s
)

M
e
m

ó
ri
a
 c

o
n
s
u
m

id
a
 (

M
B

)

Tamanhao (MB) da matriz global de rigidez

HelixPlusCylMeshBridgeTest() - MKL

Memória max Tempo total

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

400,00

450,00

500,00

0

500

1000

1500

2000

2500

3000

3500

1,0 10,0 100,0 1000,0

T
e
m

p
o
 (

s
)

M
e
m

ó
ri
a
 c

o
n
s
u
m

id
a
 (

M
B

)

Tamanhao (MB) da matriz global de rigidez

HelixPlusCylMeshTestNewContact() - MKL

Memória max Tempo total

76

elementos de contato que permitem sticking e sliding): consumo máximo de memória e tempo de

simulação em função do tamanho, em megabytes, da matriz global de rigidez.

7.1.4 GMRES – Biblioteca Própria

Ao longo do trabalho, desenvolveu-se uma biblioteca própria para a solução de

sistemas lineares. Implementou-se um método de solução consolidado na

computação numérica, o método “Generalized Minimal Residual Method” (GMRES),

geralmente empregado na solução de grandes sistemas lineares esparsos e não

simétricos. Utilizou-se como referência bibliográfica para esta atividade o livro

“Iterative Methods for Sparse Linear Systems” do autor Yousef Saad. O algoritmo pode

ser visto na Figura 51.

Figura 51 – Algoritmo GMRES.

Ao implementar este algoritmo, procurou-se armazenar os dados na forma de matrizes

esparsas, além da utilização de suas propriedades para a redução do número de

iterações necessárias para se obter a solução. No entanto, como este método de

solução ainda não está otimizado, não está paralelizado e ainda não possui pré-

condicionador implementado. Portanto este método de solução ainda não pode ser

empregado pelo programa “UFCad”.

7.1.5 Bibliotecas profissionais (pagas) e PARDISO

Uma alternativa para solucionar a curto prazo o problema de limitação de memória e

processamento é a aquisição de bibliotecas numéricas comerciais, projetadas,

77

paralelizadas e otimizadas para a resolução de sistemas lineares esparsos. Esta

alternativa no entanto implica em altos custos, não sendo possível adotá-la no

momento.

Outra alternativa, é a utilização do “PARDISO 5.0.0 Solver Project”, uma biblioteca

preparada para a finalidade descrita acima e que dispõe de licença grátis para

estudante durante o período de um ano. No entanto, está biblioteca funciona apenas

para a linguagem de computação C++, o que exige a conversão integral do programa

“UFCad” para esta linguagem ou a exportação dos dados necessários à resolução do

sistema linear para conversão ao C++.

Ainda não há uma alternativa ótima para a resolução do sistema linear. Todas as

alternativas disponíveis até o momento possuem vantagens, desvantagens e

principalmente limitações. A Tabela 4 resume todas estas informações, com o intuito

de facilitar a comparação entre as alternativas de solução.

7.2 Alternativa empregada

Devido à baixa eficiência computacional dos demais métodos, optou-se pela utilização

da biblioteca “Math.Net Numerics MKL”, caracterizada por elevado grau de

paralelização e eficiência, e que utiliza 100% dos recursos de processamento

disponíveis na CPU durante a solução de sistemas lineares. Comparações realizadas

com a biblioteca convencional “Math.Net Numerics” indicaram uma redução de duas

ordens de grandeza no tempo total de simulação.

No entanto, a biblioteca MKL não pode ser aplicada à resolução de sistemas lineares

esparsos. Deste modo, ao se optar por esta biblioteca, não foi possível aproveitar a

considerável redução no consumo de memória propiciado pela conversão das

matrizes da classe “Solver” para matrizes esparsas (item 6.5).

Portanto, a utilização do UFCad requer a disponibilidade de computadores com

elevada quantidade de memória, pois o programa não dispõe de um método eficiente

para a resolução de sistemas lineares esparsos, sendo este o principal gargalo

existente no momento.

78

7.3 Resumo dos Métodos de Solução de Sistemas Lineares

A
 .

x
=

b

Math.NET

MKL

LU

QR

SVD

Solver

LU

QR

SVD

Gram-Schmidt

Cholesky

EVD

Solver Iterative

BiCgStab

GpBiCg

MlkBiCgStab

TFQMR

GMRES Solver
Single

Restarted

79

Tabela 4 – Resumo dos principais métodos de resolução de sistemas lineares do tipo A.x = b

Biblioteca Método Comando Características Limitações Usos

M
K

L
 M

a
th

.N
E

T

N
u
m

e
ri

c
s

LUSolve
QRSolve

SVDSolve

solver.LUSolve(1,
A.Values, A.RowCount,

b.Values);

Biblioteca desenvolvida
pela Intel, muito

eficiente, otimizada e
com elevado grau de

paralelização.

Funciona apenas com
matrizes densas.

Consumo exponencial
de memória em função
do número de graus de
liberdade do modelo.

Para modelos com
poucos graus de

liberdade, em que a
quantidade de memória

disponível não é
limitante.

M
a
th

.N
E

T
 N

u
m

e
ri
c
s

Decomposição LU
Decomposição QR

Decomposição SVD
Decomp. Gram-Shmidt

x = A.LU().Solve(b);
x = A.QR().Solve(b);
A.Svd().Solve(b, x);

A.GramSchmidt().Solve(b,
x);

Permitem a resolução
de sistemas lineares de

matrizes e vetores
esparsos.

Métodos não
paralelizados, de baixa
eficiência na resolução
de sistemas lineares
com matrizes muito

grandes.

Quando a biblioteca
MKL não for capaz de

resolver o sistema linear
(limitações de memória),

porém com perda
expressiva de eficiência.

Decomposição Cholesky
Decomposição EVD

A.Cholesky().Solve(b, x);
A.Evd().Solve(b, x);

Permitem a resolução
de sistemas lineares de

matrizes e vetores
esparsos.

A matriz A deve ser
simétrica e positiva

definida. Não pode ser
utilizada quando há

atrito no modelo.

Apenas para casos em
que a matriz global de

rigidez é simétrica.

M
a
th

.N
E

T
 N

u
m

e
ri
c
s

It
e
ra

ti
v
e

 S
o
lv

e
r

BiCgStab()
GpBiCg()
TFQMR()

MlkBiCgStab()

MILU0Preconditioner()
ILU0Preconditioner()

ILUTPPreconditioner()

x = A.SolveIterative(b,
solverteste, iterator,

preconditioner)

Permite a solução de
sistemas lineares com

matrizes e vetores
esparsos. Performance
superior aos métodos
comuns da biblioteca
Math.NET Numerics.

Performance bem
inferior à biblioteca MKL.
Algoritmos adequados

para matrizes
simétricas.

Não adequado à
solução de problemas

de grande escala.

Quando a matriz global
de rigidez é armazenada

de forma esparsa.
Pré-condicionamento

pode melhorar
convergência da

solução.

80

B
ib

lio
te

c
a

 p
ró

p
ri

a

GMRES Código próprio

Permite a manipulação
de matrizes esparsas.

Método GMRES,
indicado para sistemas

esparsos e não
simétricos.

Baixa eficiência, pois
ainda não foi otimizado.

Biblioteca ainda em
desenvolvimento. Deve

ser paralelizada e
otimizada.

P
A

R
D

IS
O

LUSolve Comandos em C++

A biblioteca PARDISO
dispõe de um solver LU
para sistemas lineares
com elevado grau de

paralelização. Também
permite a manipulação
de matrizes esparsas.

Não disponível para C#.
Deve-se converter o

código para C++ ou criar
um “wrapper” para
resolver apenas o

sistema linear em C++.

Modelos de elementos
finitos de grande escala,
pois reduz o consumo
de memória e o tempo
para resolver o sistema

linear.

81

8. VALIDAÇÃO DE UM CASO DE ESTUDO COM O PROGRAMA

UFCAD

Com o objetivo de validar um caso de estudo através do programa UFCad, realizou-

se uma comparação com o programa Abaqus. Atualmente desenvolvido pela

Dassault Systemes S.A., o Abaqus é uma consolidada ferramenta de análise por

elementos finitos que está há mais de 35 anos no mercado.

Neste capítulo, será especificado o caso de estudo, ou seja, os componentes de

um tubo flexível que serão modelados em ambos os programas, com o intuito de

compará-los em vários aspectos, desde resultados até performance.

No item 8.1 o caso de estudo será detalhado, bem como os motivos que levaram a

escolha do mesmo. Nos itens 8.2 e 8.3 serão apresentados os valores dos

parâmetros geométricos e as propriedades de materiais, respectivamente.

Nos itens 8.4 e 8.5 serão discutidos os detalhes de implementação em cada

programa, incluindo as dificuldades encontradas durante o processo e as

alternativas encontradas para contorna-las.

Por fim, no item 8.6 será realizada uma ampla comparação entre ambos os

programas, com base em critérios especificados, como qualidade dos resultados,

tempo de análise, facilidade de implementação, entre outros.

8.1 Definição do caso de estudo

Como o programa UFCad ainda não dispõe de todos os macroelementos finitos

necessários para modelar um tubo flexível completo, adotou-se um tubo mais

simples para esta tarefa. Inicialmente, considerou-se o caso de estudo composto

pelos seguintes componentes: um núcleo rígido, duas camadas de armaduras de

tração e uma capa plástica, todos conectados por elementos de contato que

permitissem deslocamentos normais e tangenciais com atrito. No entanto, também

não foi possível adotar este caso, pois este o de elemento de contato utilizado ainda

apresenta problemas em sua implementação computacional.

Portanto, adotou-se um caso mais simples, ilustrado na Figura 52, porém factível

com as ferramentas disponíveis até o momento. Este caso é composto pelos

seguintes componentes:

82

 Armadura de tração interna, com 16 arames;

 Armadura de tração interna, com 18 arames;

 Capa plástica envolvendo as duas armaduras.

Além disso, estes componentes foram conectados rigidamente nos pontos de

contato, definidos pelas intersecções entre os arames das armaduras interna e

externa de tração, além das interseções dos arames da armadura externa de tração

com a capa plástica.

Figura 52 - Tubo flexível adotado para o caso de estudo.

8.2 Propriedades e parâmetros geométricos dos componentes

Neste item estão apresentados os parâmetros geométricos para o caso de estudo

escolhido. Para cada tipo componente, resumiu-se as informações de parâmetros

nas Tabelas de Tabela 5 à Tabela 7.

83

Tabela 5 – Propriedades e parâmetros da capa plástica.

Capa Plástica

Espessura 7 mm

Diâmetro médio 213,5 mm

Material
Polietileno de alta densidade (

Tabela 9)

Tabela 6 – Propriedades e parâmetros da armadura externa de tração.

Armadura Externa

Número de arames 18

Ângulo de assentamento -38°

Diâmetro médio 206,5 mm

Seção transversal (L x A) 8 mm x 4 mm

Material
Aço1020 (
Tabela 8)

Tabela 7 – Propriedades e parâmetros da armadura interna de tração.

Armadura Interna

Número de arames 16

Ângulo de assentamento 36°

Diâmetro médio 202,5 mm

Seção transversal (L x A) 8 mm x 4 mm

Material
Aço 1020 (
Tabela 8)

8.3 Materiais do modelo

As armaduras internas e externas de tração foram modeladas utilizando-se o

material Aço 1020, cujas propriedades encontram-se na

Tabela 8.

É importante notar que o programa “UFCad” não permite a adoção de não-

linearidades de material. Por este motivo considerou-se o aço 1020 como sendo

isotrópico linear elástico, utilizando para tal somente as propriedades somente do

84

trecho de módulo secante da curva de tensão e deformação. Já para o programa

“Abaqus”, por permitir a utilização de tal recurso, foi adotada a propriedade de

material elástico não-linear (com módulo secante e módulo tangente).

Tabela 8 – Propriedades do aço 1020.

Aço 1020

Formulação Isotrópica

Densidade 8,05 E-9 ton/mm3

Módulo de elasticidade 207 GPa

Coeficiente de Poisson 0,30

Módulo tangente 1172 MPa

Tensão de escoamento 650 MPa

Comportamento (UFCad) Linear elástico

Comportamento (Abaqus) Elástico não-linear

Deformação plástica Figura 53

Figura 53 – Curva de tensão deformação do aço 1020.

Para a capa plástica, adotou-se como material um polietileno de alta densidade

(HDPE – “High-density polyethylene”), cujas propriedades encontram-se na

0

325

650

975

1300

0 0,01 0,02 0,03 0,04 0,05

L
im

it
e
 d

e
 E

s
c
o
a
m

e
n
to

Deformação Plástica

σ = E . ε

85

Tabela 9. Neste caso também há uma diferença entre o comportamento deste

material nos dois programas de elementos finitos, sendo linear elástico no “UFCad”

e elastoplástico no “Abaqus”.

Tabela 9 – Propriedades do material polietileno.

Polietileno (HDPE)

Formulação Isotrópica

Densidade 9,41E-10 ton/mm3

Módulo de Young 570,88 Mpa

Coeficiente de Poisson 0,45

Tensão de escoamento 20,74 MPa

Comportamento (UFCad) Linear elástico

Comportamento (Abaqus) Elastoplástico

Deformação plástica Figura 54

Figura 54 – Curva de tensão deformação do polietileno (HDPE).

8.4 Análise realizada através do software Abaqus

Este item contém as informações importantes à resolução do caso de estudo

através do software Abaqus. Serão detalhadas as principais características da

0

10

20

30

0 0,03 0,06 0,09

L
im

it
e
 d

e
 E

s
c
o
a
m

e
n
to

Deformação Plástica

σ = E . ε

86

implementação (item 8.4.1); os tipos de elementos e características das malhas de

elementos finitos (item 8.4.2); os problemas com a implementação do contato e as

alternativas encontradas para a solução (item 8.4.3); as condições de contorno

(item 8.4.4); as precauções quanto a ocorrência de plastificação, o que poderia

inviabilizar a comparação com o UFCad (item 8.4.5); e finalmente os resultados

(item 8.4.6).

8.4.1 Características da Implementação

Para implementar o modelo, criou-se uma macro com os comandos do programa

Abaqus, permitindo a parametrização do mesmo e versatilidade para se alterar os

valores dos parâmetros, como, por exemplo, alterações no número de arames das

armaduras.

Foram feitos alguns testes com os métodos implícitos e explícitos de integração,

mas optou-se pelo método implícito, por este permitir um maior timestep (maior

fração de carga aplicada por iteração), resultando em um tempo menor de

simulação; e também por este método permitir uma implementação mais simples

de contato, pois no método implícito foi possível criar dois conjuntos de áreas

(método detalhado no item 8.4.3), ao passo que o método explícito requeria a

trabalhosa criação de pares individuais de contatos, inviabilizando a

parametrização do modelo e consequentemente a utilização deste método de

integração.

8.4.2 Tipos de Elementos e Características das Malhas de Elementos

Em função da simplicidade geométrica da capa plástica, ela foi modelada

utilizando-se elementos de casca, ao invés de sólido, propiciando uma série de

vantagens computacionais, como simplicidade de implementação e ganho de

performance. Ao mesmo tempo, o elemento de casca também permite simulações

de interações de contato com objetos sólidos. Na Tabela 10 encontram-se as

características do elemento empregado na modelagem da capa plástica.

87

Tabela 10 – Propriedades do elemento utilizado para modelar a capa plástica

Capa plástica

Element Library: Standard

Family: Shell

Geometric Order: Quadratic

Type: S8R: 8-node doubly curved thick shell

Redunced integration: Yes

DOF per node 6

A geometria simples da capa plástica permitiu a criação de uma malha bem

estruturada de elementos, Figura 55.

Figura 55 – Malha estrutura de elementos finitos da capa plástica.

Tanto os arames da armadura interna de tração quanto os arames da armadura

externa de tração foram modelados com o mesmo tipo de elemento, cujas

propriedades encontram-se na Tabela 11. Optou-se pela utilização de elementos

sólidos, e não por elementos de viga, devido às dificuldades e problemas de

convergência ao se utilizar vigas para descrevê-las.

88

Tabela 11 - Propriedades do elemento utilizado para modelar as armaduras de tração.

Armaduras de tração

Element Library: Standard

Family: 3D Stress

Geometric Order: Linear

Type: C3D8: 8-node linear brick

Redunced integration: No

Criou-se uma malha estruturada para discretizar estes arames, com exceção das

extremidades, que exigiram elementos triangulares em função da curvatura destes

componentes. Podem ser vistas nas Figura 56 e Figura 57 as malhas de elementos

finitos gerada pelo programa para as armaduras de tração.

Figura 56 - Malha de elementos finitos dos arames das armaduras de tração.

89

Figura 57 - Imagem ampliada da malha de elementos finitos de um arame de tração.

8.4.3 Implementação do Contato

Durante esta atividade, verificou-se que o programa apresentava comportamentos

completamente distintos conforme o tipo de integração escolhido, os métodos

implícitos e explícitos.

Devido à característica do contato escolhido, totalmente rígido (bonded), quando o

método de solução é explícito, o Abaqus não permite a utilização do útil comando

“General Contact”, o qual identifica automaticamente todos os pares de contato.

Isto significa que os pares de contato devem ser informados manualmente ao

programa antes da resolução do problema.

Para o contato entre a armadura externa de tração com a armadura interna de

tração, por exemplo, um método prático para identificar quais superfícies estão em

contato é criar dois conjuntos de superfícies:

 Um conjunto de superfícies composto pelas superfícies externas dos arames

da armadura interna de tração;

 Um conjunto de superfícies compostos pelas superfícies internas dos

arames da armadura externa de tração.

No entanto, quando o método explícito de integração é selecionado, esta

implementação não funciona, pois o programa não permite o contato entre duas

90

superfícies não contínuas (cada conjunto é composto por uma série de áreas não

contínuas). Assim, para continuar a utilizar o método explícito, devem ser

especificadas de forma manual todas as combinações de áreas possíveis entre as

armaduras internas e externas. Este fato torna a implementação extremamente

trabalhosa e inviabiliza qualquer modificação posterior no modelo.

Ao utilizar a formulação implícita de integração, o programa permitiu a utilização

dos dois conjuntos de superfícies, mostrando-se um recurso muito útil de solução.

Além da vantagem computacional, mencionada no item 8.4.1, a opção pelo método

implícito de integração facilitou bastante a implementação do contato, sendo,

portanto, o método escolhido.

8.4.4 Condições de Contorno

As condições de contorno do modelo criado estão ilustradas na Figura 58.

Selecionou-se os nós da seção transversal da extremidade direita desta figura e

todos os graus de liberdade destes nós foram impostos iguais a zero. Quanto aos

nós da seção transversal da extremidade esquerda, aplicou-se o deslocamento

imposto, cujo valor foi definido pela metodologia apresentada no item 8.4.5.

Figura 58 - Condições de contorno do modelo.

91

8.4.5 Análise de Plastificação

Por ser um programa completo, o Abaqus permite à resolução do problema a

inclusão de não-linearidades geométricas e também a utilização de materiais reais

(incluindo plastificação e não-linearidades de materiais). Estes efeitos não lineares

se acentuam a medida em que as deformações geradas pelo deslocamento

imposto aumentam. Como o UFCad permite a solução apenas de problemas

lineares (tanto geométricas, quanto de materiais), foi necessária uma análise de

tensão para adotar um deslocamento imposto que permitisse a comparação

adequada entre ambos os programas. A Figura 59, a Figura 60 e Figura 61 mostram

resultados de tensões de Von Mises para deslocamentos impostos de 40 mm, 20

mm e 10 mm, respectivamente. Em todos os casos notou-se uma singularidade,

gerando concentrações de tensão, nos pontos de intersecção entre as armaduras,

o que pode ser visto na Figura 62. Acredita-se que isso ocorra devido ao fato de as

armaduras estarem coladas umas às outras, impedindo-as de deslocar ou

rotacionar, e de se acomodarem em uma configuração que minimize a energia

interna do sistema. O valor desta tensão poderia ser reduzido se fosse utilizado

elementos de contato que permitissem deslocamentos normais e tangenciais com

atrito, o que não foi possível devido aos problemas já mencionados.

Figura 59 – Tensões de Von Mises para um deslocamento imposto de 40mm. 𝜎𝑀𝑎𝑥 = 1273 𝑀𝑃𝑎,

valor bem acima da tensão de plastificação.

92

Figura 60 – Tensões de Von Mises para um deslocamento imposto de 20mm. 𝜎𝑀𝑎𝑥 = 1146 𝑀𝑃𝑎,

valor bem acima da tensão de plastificação.

Figura 61 – Tensões de Von Mises para um deslocamento imposto de 10mm. 𝜎𝑀𝑎𝑥 = 837 𝑀𝑃𝑎,

valor próximo à tensão de plastificação do aço 1020.

93

Figura 62 – Plastificação localiza, devido ao contato do tipo bonded. Tensões pontuais elevadas,

devido ao fato das armaduras não poderem se acomodar em uma configuração de mínima

energia.

Com base nos resultados de tensão, adotou-se um deslocamento imposto de 10

mm. Adicionalmente, para este deslocamento imposto realizou-se uma outra

comparação, envolvendo os casos:

 Modelo com não-linearidades geométricas e material plástico;

 Modelo sem não-linearidades geométricas e material plástico;

 Modelo sem não-linearidades geométricas e material elástico.

O objetivo desta análise é verificar a validade de se comparar os resultados de um

modelo que inclua não-linearidades geométricas e materiais plásticos (Abaqus)

com um modelo totalmente linear (Abaqus ou UFCad). Os resultados desta análise

encontram-se na Figura 63 e na Figura 64.

94

Figura 63 – Comparação de deslocamentos radiais da armadura interna de tração de modelos
com e sem não-linearidades geométricas e materiais plásticos e elásticos. NLG: não linearidades

geométricas. Elast: material elástico. Plast: material plástico.

Figura 64 – Comparação de deslocamentos radiais da armadura externa de tração de modelos

com e sem não-linearidades geométricas e materiais plásticos e elásticos. NLG: não linearidades

geométricas. Elast: material elástico. Plast: material plástico.

-1,1

-1,0

-0,9

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0,0

0 250 500 750 1000 1250 1500 1750

D
e
s
lo

c
a
m

e
n
to

 r
a
d
ia

l
(m

m
)

Coordenada axial do tubo (mm)

Deslocamento Radial - Armadura Interna de Tração

NLG OFF - Elast NLG OFF - Plast NLG ON - Plast

-1,1

-1,0

-0,9

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0,0

0 250 500 750 1000 1250 1500 1750

D
e
s
lo

c
a
m

e
n
to

 r
a
d
ia

l
(m

m
)

Coordenada axial do tubo (mm)

Deslocamento Radial - Armadura Externa de Tração

NLG OFF - Elast NLG OFF - Plast NLG ON - Plast

95

Conclui-se que, para o deslocamento imposto selecionado de 10 mm, as diferenças

entre o modelo totalmente linear e o modelo não-linear são apenas residuais.

Conforme o esperado, os efeitos de plastificação ocorrem apenas localmente, não

interferindo nos deslocamentos radiais das armaduras de tração.

8.4.6 Resultados

Os resultados finais da análise para o caso estabelecido utilizando-se o software

Abaqus encontram-se na Figura 65. Como os contatos deste caso de estudo foram

definidos como rígidos e sem separação, era esperado que a estrutura tivesse um

comportamento próximo de um tubo homogêneo simples, com um deslocamento

aproximadamente constante no trecho central, o que pode ser visto na Figura 65.

Adicionalmente, os deslocamentos radiais nas extremidades devem ser nulos, uma

vez que foram impostos pelas condições de contorno do problema.

Figura 65 – Resultados do caso de estudo utilizando-se o software Abaqus.

-1,2

-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0 250 500 750 1000 1250 1500 1750

D
e
s
lo

c
a
m

e
n
to

 r
a
d
ia

l
(m

m
)

Coordenada axial do tubo (mm)

Deslocamento radial das armaduras em função da coordenada
axial do tubo

Armadura externa Armadura interna

96

Figura 66 - Deslocamentos radiais das armaduras de tração.

8.5 Análise realizada através do software UFCad

O mesmo caso de estudo foi implementado no programa UFCad. Utilizou-se a

mesma parametrização aplicada ao programa Abaqus, com o intuito de facilitar

eventuais modificações que pudessem ser realizadas no caso de estudo.

Por se tratar de um programa em desenvolvimento, ao longo desta tarefa foram

identificados alguns problemas de implementação dos modelos de

macroelementos finitos de contato, tanto bridge quanto bonded, justificando as

modificações no código apresentadas nos itens 6.6 e 6.7. Neste ponto, os

resultados do programa Abaqus tiveram um papel muito importante, tanto para

comparar a qualidade dos resultados do UFCad, quanto para guiar as ações de

correção. Foram necessários muitos testes, principalmente para identificar os

problemas que implementação, que não eram evidentes a princípio.

8.5.1 Características da implementação

O UFCad ainda não dispõe de interface gráfica e, por isso, a implementação se deu

exclusivamente por linha de comando. O código foi implementado de forma

estruturada e está segmentado em classes:

 “Materials”: utilizada para criar os modelos de materiais (isotrópicos ou

ortotrópicos);

97

 “Elements”: dispõe de todos os modelos de macroelementos finitos

formulados até o momento;

 “Mesh”: utilizada para criar a malha de elementos finitos do modelo;

 “Loads”: utilizada para impor as condições de contorno do problema;

 “Solver”: utilizada para a solução do problema de elementos finitos;

Para um usuário familiarizado com a linguagem computacional, com os comandos

do UFCad e com o seu funcionamento, a implementação do modelo deste caso de

estudo é uma tarefa relativamente simples, uma vez que o UFCad é uma

ferramenta de análise específica para tubos flexíveis.

8.5.2 Resultados

Além dos parâmetros de convergência, como “Load Step” e “Penalty Factor”, o

programa dispõe para o caso de análise de 3 parâmetros de discretização da malha

de elementos finitos:

 “nel” – o número de divisões axiais das armaduras de tração;

 “rdiv” – o número de divisões radiais da capa plástica;

 “Fourier” – a ordem da expansão dos deslocamentos em série de Fourier

dos elementos cilíndricos.

Devido a condição de contato nó-a-nó ser necessária para a formulação dos

contatos, o número de divisões axiais da capa plástica deve ser o dobro do número

de divisões das armaduras de tração.

Após uma análise de influência dos parâmetros, viu-se que o parâmetro “rdiv”

possuía baixa influência sobre a convergência dos resultados. O parâmetro “nel”

mostrou-se o mais importante de todos. Já o parâmetro “Fourier” foi responsável

por introduzir um refinamento dos resultados, pois quanto maior o seu valor, mais

termos de ordem superior são computados.

Os resultados do programa UFCad podem ser vistos na Figura 67 e na Figura 68.

Uma discussão mais detalhada será realizada no próximo item, na qual eles serão

comparados com os resultados do programa Abaqus.

98

Figura 67 - Resultados de deslocamento radial para os parâmetros: nel = 30; rdiv = 2; Fourier = 0

Figura 68 – Resultados de deslocamento radial para os parâmetros: nel = 50; rdiv = 2; Fourier = 5

-1,2

-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0 250 500 750 1000 1250 1500 1750

D
e
s
lo

c
a
m

e
n
to

 r
a
d
ia

l
(m

m
)

Comprimento axial do tubo (mm)

Deslocamento radial em função do comprimento do tubo

UFCad - Interna UFCad - Externa

-1,2

-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0 250 500 750 1000 1250 1500 1750

D
e
s
lo

c
a
m

e
n
to

 r
a
d
ia

l
(m

m
)

Comprimento axial do tubo (mm)

Deslocamento radial em função do comprimento do tubo

UFCad #2 - Interna UFCad #2 - Externa

99

8.6 Benchmarking: Abaqus x UFCad

A comparação entre ambos os programas será realizada seguindo os critérios:

 Facilidade de implementação

 Qualidade dos resultados

 Tempo e custo de simulação

 Pós-processamento dos dados

8.6.1 Facilidade de implementação

Neste critério, o programa UFCad possui uma boa vantagem em relação ao

Abaqus, pois o UFCad é um software desenvolvido especificamente para o projeto

de tubos flexíveis, enquanto o Abaqus é um programa genérico de elementos

finitos. Por este motivo, os macroelementos finitos disponíveis no UFCad levam em

consideração a geometria dos componentes, o que simplifica a implementação do

modelo e também a definição dos pares do contato. Isso quer dizer que, para

implementar o mesmo caso em ambos os programas, o UFCad requer um número

bem menor de tarefas e comandos.

Além disso, deve-se levar em conta o fato de ambos os programas requererem

treinamento do usuário para que o mesmo esteja apto a operá-lo. O treinamento

para o programa UFCad é mais simples e demanda menor tempo.

8.6.2 Qualidade dos resultados

Analisando-se os resultados apresentados na Figura 69, Figura 70 e Figura 71,

conclui-se que os resultados do UFCad estão muito próximos do programa Abaqus.

Diferenças entre ambos os programas são esperadas, pois as formulações não são

exatamente iguais. Por exemplo, no UFCad as armaduras de tração são modelas

com vigas curvas e contatos são tipo nó-a-nó, enquanto que, no Abaqus, as

armaduras são modelas com elementos sólidos e o contato é superfície com

superfície (uma pequena área de intersecção está em contato, diferentemente do

contato nó-a-nó, em que apenas dois pontos estão conectados).

Percebe-se que para a primeira figura, os resultados do programa UFCad estão

muito lisos (smooth), pois foi considerado neste caso apenas os termos de ordem

zero da expansão em série de Fourier. Apesar de não ter convergido

100

completamente, este tipo de análise pode ser útil em uma primeira fase de projeto

para estimar com boa precisão a ordem de grandeza dos deslocamentos, pois a

demanda computacional deste caso é bem menor que a dos demais.

Devido ao fato das condições de contorno de axissimétricas, era esperado que os

deslocamentos apresentassem boa convergência somente com os termos de

ordem 0, o que se confirmou nos resultados apresentados. Para carregamentos ou

condições de contorno mais complexas, flexão, por exemplo, os termos de ordem

superior serão necessários para os resultados convergirem.

Figura 69 – Comparação de deslocamentos radiais das armaduras internas e externas dos

programas UFCad e Abaqus. (UFCad: nel = 30; rdiv = 2; Fourier = 0).

-1,2

-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0 250 500 750 1000 1250 1500 1750

D
e
s
lo

c
a
m

e
n
to

 r
a
d
ia

l
(m

m
)

Comprimento do tubo (mm)

Abaqus - Interna Abaqus - Externa UFCad - Interna UFCad - Externa

101

Figura 70 – Comparação de deslocamentos radiais das armaduras internas e externas dos

programas UFCad e Abaqus. (UFCad: nel = 50; rdiv = 2; Fourier = 5).

Figura 71 – Comparação de deslocamentos radiais das armaduras internas e externas dos

programas UFCad e Abaqus. (UFCad: nel = 60; rdiv = 2; Fourier = 8).

-1,2

-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0 250 500 750 1000 1250 1500 1750

D
e
s
lo

c
a
m

e
n
to

 r
a
d
ia

l
(m

m
)

Comprimento do tubo (mm)

Abaqus - Interna Abaqus - Externa UFCad #2 - Interna UFCad #2 - Externa

-1,2

-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0 250 500 750 1000 1250 1500 1750

D
e
s
lo

c
a
m

e
n
to

 r
a
d
ia

l
(m

m
)

Comprimento do tubo (mm)

Abaqus - Interna Abaqus - Externa UFCad #4 - Interna UFCad #4 - Externa

102

8.6.3 Tempo e custo de simulação

Os resultados do Abaqus foram obtidos em uma máquina com 8 GB de memória

RAM e levaram em torno de 1 hora para serem processados. O Abaqus é um

software altamente paralelizado, que permite selecionar a quantidade de domínios

em que o modelo será subdividido, sendo cada um deles distribuídos entre os

núcleos de processamento disponíveis. Além disso, ainda é possível selecionar a

porcentagem máxima de memória utilizada pelo computador.

Quanto ao UFCad, a sua principal limitação diz respeito à quantidade de memória

demandada, pois o programa ainda não contar com uma técnica eficiente para a

resolução de sistemas lineares esparsos. A matriz global de rigidez deve ser

armazenada na forma densa para o funcionamento da biblioteca MKL, o que eleva

exponencialmente o consumo de memória e limita a utilização do programa às

máquinas que dispõe de grande quantidade de memória RAM.

Além disso, carregamentos externos não simétricos (a flexão, por exemplo), exigem

vários termos de ordem superior da série de Fourier para a convergência dos

resultados. Neste caso, dependendo da complexidade do modelo, mesmo

máquinas que dispõem de elevada quantidade de memória podem não ser

suficientes para a operação do programa, o que também justifica a busca por um

método eficiente de resolução de sistemas lineares esparsos.

Além disso, também é possível reduzir o tempo total de simulação com o programa

UFCad com a implementação de técnicas mais avançadas do método dos

elementos finitos, como decomposição do problema em subdomínios; aumentando-

se o grau de paralelização do programa; encontrando-se métodos mais eficientes

de resolução de sistema linear.

Os tempos de resolução do caso de estudo em ambos os programas são da mesma

ordem de grandeza, como mostram a Tabela 12 e a Tabela 13. Compreende-se

através disto, que a introdução de um método eficiente de resolução de sistemas

lineares esparsos pode tornar competitivo o UFCad em relação ao programa

Abaqus, principalmente se combinando adequadamente com métodos de

paralelização.

103

Tabela 12 - Tempo de simulação e consumo de memória do programa Abaqus.

Tempo Max. Memória RAM
Núcleos de

processamento e
subdomínios

De 40 min à 1h30min 6 GB 8

Tabela 13 - Tempo de simulação e consumo de memória do programa UFCad.

Parâmetros Tempo Max. Memória RAM

nel = 30; rdiv = 2; Fourier = 0 00 : 05 : 06 9 GB

nel = 50; rdiv = 2; Fourier = 5 01 : 00 : 18 35 GB

nel = 60; rdiv = 2; Fourier = 8 03 : 01 : 00 57 GB

Com isso, conclui-se que apesar de todas as melhorias e avanços introduzidos no

programa ao longo deste trabalho, o programa UFCad ainda não encontra-se

otimizado o suficiente para ser utilizado por um computador convencional.

8.6.4 Pós-processamento dos dados

O pós-processamento dos dados mostrou-se uma atividade trabalhosa no

programa Abaqus. Foi necessária a criação de conjuntos de geometrias para

selecionar corretamente os nós das armaduras de tração, e posteriormente várias

operações em Excel para ordená-los corretamente na sequência referente às suas

coordenadas axiais.

Já o pós-processamento de dados no UFCad mostrou-se muito mais fácil, devido

à forma como o programa está implementado e aos recursos de sua linguagem

computacional (C#), o que simplifica a tarefa de seleção dos nós de cada uma das

armaduras de tração. Além disso, o fato de se conhecer o funcionamento interno

do programa e a forma como os dados são manipulados representa um grande

auxílio ao pós-processamento e análise dos resultados.

8.6.5 Resumo da Análise de Benchmarking

As conclusões obtidas ao longo do item 8.6 podem ser resumidas na Tabela 14.

104

Tabela 14 – Comparação relativa entre ambos os programas.

Critério UFCAD ABAQUS

Facilidade de implementação  

Qualidade dos resultados  

Tempo e custo de simulação  

Pós-processamento dos dados  

105

9. CONCLUSÕES DO TRABALHO

A montagem da matriz global de rigidez mostrou-se uma tarefa crítica no

funcionamento do UFCAD, o que justificou as modificações realizadas no

programa, sendo elas: a alteração no número de vezes em que a matriz global de

rigidez é computada (item 6.1) e a alteração na varredura de montagem da matriz

global de rigidez (item 6.2). Estas modificações possibilitaram um ganho expressivo

de processamento, com uma redução no tempo de análise de 10 à 20 vezes. Foi

realizada a paralelização da etapa de montagem da matriz de rigidez, aumentando-

se a taxa de uso processamento, mas esta operação ainda não pôde ser concluída,

devido às dificuldades encontradas para se garantir o “thread safety”. No entanto,

os ganhos obtidos com as modificações 6.1 e 6.2 tornaram os ganhos da

paralelização apenas residuais.

Além da montagem da matriz global de rigidez, a etapa de resolução de sistemas

lineares mostrou-se um importante gargalo. Com o objetivo de eliminar este

gargalo, foi incorporada a biblioteca de resolução de sistemas lineares “Math.Net

Numerics MKL”, uma derivação freeware da biblioteca profissional “Intel® Math

Kernel Library”, caracterizada por elevado grau de paralelização e eficiência, e que

utiliza 100% dos recursos de processamento disponíveis na CPU durante a solução

de sistemas lineares. Comparações realizadas com a biblioteca convencional

“Math.Net Numerics” indicaram uma redução de duas ordens de grandeza no

tempo total de simulação. No entanto, a biblioteca MKL não pode ser aplicada à

resolução de sistemas lineares esparsos.

Com a alteração das matrizes da classe “Solver” para matrizes esparsas (item 6.5),

obteve-se uma redução expressiva no consumo de memória. No entanto, este

benefício ainda não pode ser aproveitado, pois o UFCAD não dispõe de um método

eficiente para a resolução de sistemas lineares esparsos, sendo este o principal

gargalo existente no momento.

Neste trabalho foram corrigidos problemas na geração de malhas dos elementos

de contato do tipo bridge (item 6.7); foi implementada uma nova lógica de detecção

de contatos entre armaduras (item 6.6), mais eficiente computacionalmente e que

eliminou os problemas de formação de pares indesejados de contato; e também foi

proposta uma formulação modificada para o macroelemento finito de contato do

106

tipo nó-a-nó entre elemento cilíndrico e elemento de hélice (capítulo 3). Todas estas

modificações e correções realizadas no programa UFCAD tornaram-no capaz de

simular um tubo com maior número de componentes.

A validação de um caso de estudo realizada no capítulo 8, comparando o UFCad

com o programa profissional de elementos finitos Abaqus, permitiu a realização de

um benchmarking entre ambos os programas sob diversos critérios, cujos

resultados encontram-se resumidos na Tabela 14. Os resultados de deslocamentos

radiais das armaduras de tração de ambos os programas (Figura 71) estão muito

próximos, o que permite validar os resultados de deslocamento o tubo flexível

implementado e simulado. Diferenças entre ambos os programas são esperadas,

pois as formulações não são exatamente iguais. Por exemplo, as armaduras de

tração foram modelas utilizando-se vigas curvas no UFCAD e elementos sólidos no

ABAQUS; foi utilizado o contato do tipo nó-a-nó no UFCAD e do tipo superfície com

superfície no ABAQUS, no qual uma pequena área de intersecção está em contato,

diferentemente do contato nó-a-nó, em que apenas dois pontos estão conectados.

Mesmo ainda não estando otimizado o suficiente para ser utilizado por

computadores convencionais, os resultados obtidos com este trabalho contribuíram

para aumentar a eficiência do programa UFCad, com ganhos consideráveis de

processamento e caminhos bem definidos para a redução do consumo de memória,

já sendo possível a sua utilização para análise estrutural de tubos flexíveis de baixa

à média complexidade.

Como trabalhos futuros, é de grande valia o desenvolvimento de um método

eficiente para a resolução de sistemas lineares esparsos, o que eliminaria o

principal gargalo existente no programa atualmente, que é o consumo elevado de

memória. Além disso, também é possível reduzir o tempo total de simulação com o

programa UFCad com a implementação de técnicas mais avançadas do método

dos elementos finitos, como decomposição do problema em subdomínios e

aumentando-se o grau de paralelização do programa.

107

10. REFERÊNCIAS

2B1st Consulting. (2014). Umbilical. Fonte: 2B1st Consulting:

http://www.2b1stconsulting.com/umbilical/

AGÊNCIA NACIONAL DO PETRÓLEO. (2013). Anuário Estatístico Brasileiro do

Petróleo, Gás Natural e Biocombustíveis. Rio de Janeiro: Ministério de Minas e

Energia.

API RP 17B. (2002). Recommended Pratice for Flexible Pipe. American Petroleum Institute.

BATHE, K. J. (1995). Finite Element Procedures (2. ed. [S.I.] ed.). Prentice Hall.

COOK, R. D., MALKUS, D. S., PLESHA, M. E., & WITT, R. J. (2002). Concepts and

Applications of Finite Element Analysis (4. ed. [S.I.] ed.). John Wiley & Sons.

KNUTH, D. (1977). Structured Programming with go to Statements. 41.

LOVE, A. E. (1944). A Treatise On The Mathematical Theory of Elasticity (4. ed. ed.). New

York: Dover.

MSDN. (2014). Introdução a consultas LINQ (C#). Fonte: Microsoft Developer Networker:

http://msdn.microsoft.com/pt-br/library/bb397906.aspx

MSDN. (2014). Paralelismo de dados (biblioteca de tarefas paralelas). Fonte: Microsoft

Developer Network: http://msdn.microsoft.com/pt-

br/library/dd537608(v=vs.110).aspx

MSDN. (2014). Visual C#. Fonte: Microsoft Developer Network:

http://msdn.microsoft.com/pt-br/library/kx37x362.aspx

Newton-Raphson Option (NROPT). (2014). Fonte: ANSYS CAE_Course:

http://office.es.ncku.edu.tw/leehh/ANSYS/ANSYS/CAE_Course/Chap16_Nonlinear/

NROPT.htm

ORACLE. (2010). A procedure is thread safe when the procedure is logically correct when

executed simultaneously by several threads. Fonte: Multithreaded Programming

Guide.

ORACLE. (2014). Lesson: Object-Oriented Programming Concepts. Fonte: ORACLE - "The

Java Tutorials": http://docs.oracle.com/javase/tutorial/java/concepts/index.html

PETROBRAS. (12 de 2013). Petrobras S.A. Fonte: <http://www.petro-bras.com.br/>

PETRÓLEO E ENERGIA. (12 de 2013). PETROLEO E ENERGIA. Fonte:

<http://www.petroleoenergia.com.br/-petroleo/wp-content/uploads/2013/09/Evonik-

PA12_Tubos-Flexiveis.jpg>

PROVASI, R. (2013). Contribuição ao Projeto de Cabos Umbilicais e Tubos Flexíveis:

Ferramentas de CAD e Modelo de Macro Elementos. Tese de Doutorado, Escola

Politécnica da Universidade de São Paulo.

PROVASI, R., & MARTINS, C. A. (2010-a). A Finite Macro-Element for Cylindrical Layer

Modeling. International Conference on Ocean, Offshore and Arctic Engineering -

OMAE2010. Shangai, China.

PROVASI, R., & MARTINS, C. A. (2010-b). CAD Software for Cable Design: a Three-

Dimensional Visualization Tool. International Conference on Ocean, Offshore and

Arctic Engineering - OMAE2010. Shangai, China.

PROVASI, R., & MARTINS, C. A. (2011). A three-dimensional curved beam element for

helical components modeling. International Conference on Ocean, Offshore and

Arctic Engineering - OMAE2011. Rotterdam, Netherlands.

PROVASI, R., & MARTINS, C. A. (2013-a). A rigid connection for macro-elements with

different node displacement natures. International Offshore and Polar Engineering

108

Anchorage, International Society of Offshore and Polar Engineers (ISOPE). Alaska,

USA.

PROVASI, R., & MARTINS, C. A. (2013-b). A Contact Element for Macro-Elements with

Different Node Displacement Natures. International Offshore and Polar Engineering

Anchorage, International Society of Offshore and Polar Engineers (ISOPE). Alaska,

USA.

PROVASI, R., & MARTINS, C. A. (2013-c). A Finite Macro-Element for Orthotropic

Cylindrical Layer Modeling. Journal of Offshore Mechanics and Arctic Engineering,

Volume 135, Issue 3.

PROVASI, R., MEIRELLES, C., & MARTINS, C. (2009). CAD Software For Cable Design:

A Consistent Modeling Method To Describe The Cable Structure And Associated

Interface. International Congress of Mechanical Engineering COBEM. Gramado,

Brazil.

SHARP, J. (2011). Microsoft Visual C# 2010: passo a passo. Bookman.

VALLOUREC. (2014). Fonte: http://finance.yahoo.com/news/vallourec-vallourec-widens-

premium-offer-063301518.html

WIKIPEDIA. (2014). C Sharp. Fonte: Wikipedia: http://pt.wikipedia.org/wiki/C_Sharp

WIKIPEDIA. (2014). Orientação a objetos. Fonte: Wikipedia:

http://pt.wikipedia.org/wiki/Orienta%C3%A7%C3%A3o_a_objetos

WRIGGERS, P. (2002). Computational Contact Mechanics. Wiley.

ZHU, Z. H., & MEGUID, S. A. (2004). Analysis of three-dimensional locking-free curved

beam element. International Journal of Computational Engineering Science, Vol. 5,

No. 3, pp. 535-556.

