
BRUNA MAIA BARBOSA

DIEGO MANZO DE ARRUDA

LIVIA LEITE DE ALMEIDA
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OTIMIZAÇÃO E PERFORMANCE DE
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com ênfase em Controle e Automação

São Paulo
2022



BRUNA MAIA BARBOSA

DIEGO MANZO DE ARRUDA

LIVIA LEITE DE ALMEIDA
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RESUMO

O projeto tem como objetivo compor uma carteira representativa do benchmark e
usar métodos de otimização e dados históricos para rastrear seu comportamento.

São estudados e aplicados sete métodos de otimização e o Ibovespa é o benchmark
escolhido. Dentre os métodos, quatro deles são métodos de programação linear e três são
métodos computacionais. Os métodos de programação linear minimizam o maior desvio
absoluto entre o retorno do portfólio e do benchmark ou a soma dos desvios absolutos.
Já os métodos computacionais, minimizam o erro quadrático, o erro não sistêmico ou a
variância do erro.

Por fim, é feita uma análise de performance dos resultados através do Índice de Sharpe,
do β de cada otimização e da capacidade da carteira de se aproximar do retorno do ı́ndice.

Palavras-Chave – Rastreamento, Ibovespa, Otimização, Retorno, Portfólio.



ABSTRACT

The project aims to compose a representative portfolio of the benchmark and use
optimization methods and historical data to track its behavior.

Seven optimization methods are studied and applied and Ibovespa is the chosen ben-
chmark. Among the methods, four of them are linear programming methods and three
are computational methods. Linear programming methods minimize the largest absolute
deviation between the portfolio and benchmark return or the sum of the absolute devi-
ations. Computational methods minimize the quadratic error, the non-systemic error or
the error variance.

At last, a performance analysis of the results is made through the Sharpe Ratio, the
β of each optimization and the portfolio’s ability to approach the index return.

Keywords – Tracking, Ibovespa, Optimization, Return, Portfolio.



LISTA DE FIGURAS
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2 Validação métodos de programação linear para o peŕıodo de 2020 . . . . . 35
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7 Índice de Sharpe obtido para cada método no ano de 2021 . . . . . . . . . 45
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SUMÁRIO

1 Introdução ao tema 10

2 Trabalhos relacionados 12

2.1 Fundo Passivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 O Modelo de Markowitz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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4.1 Criação de repositório Online . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Implementação 22

5.1 Automação da Solução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 Implementação das Simulações dos Modelos de Programação Linear . . . . 24

5.3 Implementação das Simulações dos Métodos Computacionais . . . . . . . . 27
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1 INTRODUÇÃO AO TEMA

A Bolsa de Valores coleta e organiza informações sobre os negócios realizados em

cada pregão e os divulga por meio de ı́ndices que mostram o comportamento do mercado.

Entre os ı́ndices divulgados, existe o Ibovespa (́Indice de Bolsa de Valores de São Paulo),

que foi criado em 1968 e é o indicador de desempenho das ações negociadas na B3, sigla

que representa a bolsa de valores oficial do Brasil, sediada na cidade de São Paulo, e faz

referência às letras iniciais de Brasil, Bolsa, Balcão.

Esse indicador reúne as empresas mais relevantes do mercado de capitais brasileiros e

serve como referência para os investidores. O Ibovespa também é uma forma de visualizar

o desempenho da economia brasileira à longo prazo:

Figura 1: Histórico do ı́ndice BOVESPA de 1995 até 2022

A partir dessa visão histórica, é posśıvel identificar como grandes eventos afetam a

economia, o que pode ser visto no gráfico acima, no ano de 2020, quando as cotações do

Ibovespa cáıram cerca de 44% por conta da pandemia da COVID-19, sendo um dos piores

momentos na história do ı́ndice.

Por ter essa caracteŕıstica de indicador de mercado, é muito comum que investidores
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tenham interesse em rastreá-lo, fazendo com que sua carteira acompanhe o ı́ndice e tenha

um retorno semelhante. Em certos fundos, o administrador é avaliado de acordo com a

capacidade de sua carteira seguir ou superar o comportamento de um ı́ndice. Os riscos

envolvidos são sistêmicos, uma vez que o ı́ndice não obrigatoriamente vai crescer com o

tempo, mas é uma forma interessante de se expor ao mercado e conseguir retornos maiores

do que os retornos oferecidos por investimentos em renda fixa, por exemplo.

Um desafio dessa estratégia é o fato de os ı́ndices serem compostos por um número

grande de ativos e muitos serem de dif́ıcil negociação, devido à sua liquidez. Dessa forma,

é necessária uma otimização da carteira, decidindo quais ativos escolher e em qual pro-

porção, de forma a se aproximar o máximo posśıvel do benchmark.

Ter um parâmetro para comparação, tanto na renda fixa quanto na renda variável pode

ajudar a definir se o investimento está sendo positivo ou não. Em geral, na renda fixa, o

benchmark costuma ser o CDI, enquanto na renda variável, costuma ser o Ibovespa. Por

isso, muitos investidores que possuem carteira de ações e querem avaliar a sua performance

costumam fazer a comparação de seus investimentos com o Ibovespa.

A principal motivação para a realização desse projeto de rastreamento é definir qual é

o melhor método para conseguir um bom desempenho em uma carteira de ações quando

comparada ao ı́ndice.
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2 TRABALHOS RELACIONADOS

Essa sessão traz uma breve explicação de alguns temas necessários para entender os

modelos escolhidos e as simulações de otimização em seguida.

2.1 Fundo Passivo

Um fundo passivo é um fundo que tem a estratégia de evitar correr riscos não

sistêmicos, de forma a obter retornos que se aproximem do benchmark escolhido.

Para seguir com essa estratégia, a solução mais intuitiva é montar uma carteira com as

mesmas proporções de ativos que a composição do benchmark. Entretanto, observa-se que

os ı́ndices no geral tem uma quantidade grande de ativos em sua composição e que nem

sempre esses ativos possuem a liquidez necessária para compor um fundo, dificultando

negociações.

Diante desse cenário, faz-se necessário o uso de métodos de otimização da carteira

que, por exemplo, minimizem o erro entre o retorno da carteira e do benchmark.

2.2 O Modelo de Markowitz

O modelo proposto por H. Markowitz em 1952, amplamente conhecido, permite que o

investidor componha uma carteira com a relação entre risco e retorno que faça mais sentido

para o seu objetivo a partir de uma fronteira eficiente. É um problema de otimização

quadrática com restrições lineares.

O modelo assume que os investidores avaliam sua carteira de acordo com o retorno

esperado e com a variância das taxas de retorno no peŕıodo analisado e parte da premissa

de que se os investidores precisassem escolher entre duas carteiras com retornos iguais,

escolheriam a de menor risco e entre duas carteiras de risco igual, escolheriam a de maior

retorno.

Para o caso de uma carteira com retorno P, que apresenta n ativos de risco, com

retornos R1, ...Rn, retornos esperados r1, ...rn e matriz de covariância Σ, uma proporção
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ωj é investida no ativo que possui retorno Rj:

P =
n∑

j=1

ωjRj

Usando uma notação vetorial para todos os valores de 1 à n e sabendo que:

ri = E(Ri)

Σ = cov(R) = E((R− r)(R− r)′)

Sendo µ a média do retorno P, dada por:

µ = E(P ) = E(ω′R) = ω′r

E sendo σ2 a variância de P, dada por :

σ2 = ω′Σω

Usa-se a notação vetorial a seguir:

e =


1
...

1

 ∈ ℜ

ω =


ω1

...

ωn

 ∈ Rn.

Tem-se o problema de otimização abaixo para uma rentabilidade µ almejada:

minω′Σω

sujeito a

ω′r = µ,

ω′e = 1,

ω ∈ Rn.
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2.3 Índice de Sharpe - IS

O ı́ndice de Sharpe, desenvolvido por William Sharpe, em 1966, é uma das formas

de avaliação de desempenho mais conhecidas e amplamente usada para avaliar fundos de

investimentos. O ı́ndice se relaciona com a teoria de seleção de carteira, principalmente

no modelo CAPM, que defende que nenhuma carteira deve ter seu IS maior do que a

carteira de mercado [1]. A utilização correta do ı́ndice depende da estimativa correta dos

seus parâmetros e de como será aplicado. O indice definido a seguir:

IS =
Re −Rf

σ

Sendo Re o retorno esperado, Rf o retorno livre de risco e σ a volatilidade. A volati-

lidade representa o risco da carteira, e o retorno livre de risco pode ser representado pelo

CDI, por exemplo. O ı́ndice deve ser usado pelo investidor para analisar a sua carteira.

Caso a carteira não possua investimentos com risco, seleciona-se aquela com maior IS.

2.4 CAPM - Modelo de Precificação de Ativos de

Capital

O CAPM é um modelo que analisa a relação entre o risco sistêmico e o retorno de um

investimento para determinar uma precificação de ativos de risco.

O método assume algumas premissas, como a que os investidores fazem uso da oti-

mização por média variância para alocar seus recursos. O modelo avalia o ativo da seguinte

forma:

E(R) = Rf + β(Rm −Rf )

Sendo E(r) o retorno esperado do investimento, Rf o retorno livre de risco, Rm a

rentabilidade oferecida pelo mercado e (Rm − Rf ) o chamado no mercado como ”prêmio

pelo risco”.

A mensuração de risco é alterada de σ para β, fazendo uma comparação do risco

tomado com o risco tomado pela carteira de mercado, ou seja, um β = 1 significa correr

um risco igual ao mercado. O β de uma carteira pode ser calculado utilizando a seguinte

expressão:

β =
cov(RM , R)

(σM)2
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Sabendo que RM é o retorno da carteira de mercado e que σM a variância do retorno

da carteira de mercado. O risco de um ativo pode ser separado em dois tipos, os quais

são associados pelo β: sistêmico, que é inerente ao mercado, e não-sistêmico, que pode

ser reduzido pela diversificação da carteira.
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3 MODELOS DE RASTREAMENTO

SELECIONADOS

3.1 Modelos de Programação Linear

Para a otimização de carteiras, é comum rastrear o erro quadrático por possuir melho-

res qualidades estat́ısticas e por sua facilidade de implementação computacional. Entre-

tanto, em várias situações o erro linear ou o desvio absoluto entre o resultado do portfólio

e do benchmark podem se mostrar mais relevantes ou serem resultados mais fáceis e

intuitivos de interpretar, mostrando-se melhores escolhas.

Para os modelos de programação linear mostrados a seguir, faz-se a minimização do

erro de rastreamento linear. Sendo ω a carteira a ser rastreada, ωB o benchmark, P o

retorno, e R a taxa de retorno, tem-se que o erro de rastreamento é descrito por:

Pe = P − PB = (ω − ωB)
′R

A partir de uma série histórica com T dados sobre o ı́ndice escolhido para o rastrea-

mento e de p ativos básicos que compõem o ı́ndice, y sendo o vetor T-dimensional com as

observações do ı́ndice que se deseja rastrear, e Γ a matriz T × p com T dados sobre os p

ativos básicos que se considera:

Γ =


R1(1) · · · Rp(1)

...
. . .

...

R1(T ) · · · Rp(T )


Os modelos de rastreamento abaixo foram propostos [2]:

I. MAD (Mean Absolute Deviation): O modelo MAD faz a minimização dos desvios

absolutos da média. Os pesos do portfólio são determinados de forma que a soma dos

desvios absolutos entre os retornos do benchmark e os retornos da carteira seja minimi-

zada:

min e′(|y − Γω|)
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com e =


1
...

1

 ∈ ℜT

Em modelos que utilizam o erro quadrático, os desvios da média são ressaltados por

conta de serem elevados ao quadrado, portanto são modelos mais senśıveis do que o modelo

MAD.

II. Min-Max: Minimiza o maior desvio entre os retornos da carteira e os do benchmark.

A estratégia do modelo é ser uma proteção para os piores casos posśıveis. O modelo Min-

Max é menos robusto em relação à desvios do que o MAD.

min (max |y − Γω|)

Uma percepção intuitiva de risco é observar se o retorno do portfólio está abaixo do

retorno do benchmark, por isso foram criadas as variações ”Downside”dos modelos MAD e

MinMax, que possuem a restrição de fazer a minimização apenas se o retorno representar

um risco. O traço nos vetores ω e y indica que só estão contidos os valores em que o

retorno do benchmark se mostrou menor do que o do portfolio:

III. MADD (Mean Absolute Downside Deviation): É uma variação do modelo MAD

que penaliza apenas quando o retorno está abaixo do benchmarking.

min e′(|y − Γω|)

IV. DMin-Max (Downside Min-Max): É uma variação do modelo Min-Max que pe-

naliza apenas quando o retorno está abaixo do benchmarking. O maior desvio negativo é

minimizado.

min (max |y − Γω|)

3.2 Métodos Computacionais

Os modelos de rastreamento abaixo foram propostos [3]:
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3.2.1 Mı́nima Variância do Erro

O modelo de mı́nima variância do erro tem por objetivo minimizar a volatilidade

existente entre o retorno da carteira e o do benchmark.

Ele possui o retorno esperado da carteira de mı́nima variância global µg = 0 e número

de ativos p < n. Para esse caso, a carteira ω que contém a distribuição otimizada dos

ativos possui a mesma dimensão n do benchmark, porém, apenas os p ativos escolhidos

são não-nulos. O seu modelo matemático é representado a seguir:

min (ω − ωB)
′
∑

(ω − ωB)

sujeito a

(ω − ωB)
′r = 0

ω ≥ 0

ω′e = 1

ωi = 0, i = n− p+ 1, ..., n

ω ∈ Rn

3.2.2 Mı́nimo Erro Não Sistêmico

Antes de apresentar o modelo de mı́nimo risco não-sistêmico, é necessário relembrar o

conceito de carteira de mercado: é uma carteira eficiente (ou seja, se encontra na hipérbole

do modelo de Markowitz) que representa o mercado, como por exemplo a composição do

ı́ndice Ibovespa. Essa carteira assume como premissa que o mercado faça otimização por

média-variância (por isso a carteira se encontra na hipérbole do modelo de Markowitz) e

assume também que não há arbitragem (mercado em equiĺıbrio).

Outro conceito que deve ser relembrado antes de prosseguir para o modelo propria-

mente dito é o conceito de β . Este muda a mensuração de risco do σ para β, fazendo uma

comparação do risco tomado com o risco tomado pela carteira de mercado, ou seja, um β

= 1 significa correr um risco igual ao mercado. O β de uma carteira pode ser calculado

utilizando a seguinte expressão:

β =
cov(PM , P )

(σM)2

Com P sendo o retorno da carteira e PM o retorno da carteira de mercado. De posse

destes conceitos, assumindo uma carteira com retorno P, retorno esperado µ e variância



19

σ2 Temos que:

σ2 = V ar(P ) = β2V ar(PM) + V ar(Z) = β2(σM)2 + V ar(Z)

A parcela β2(σM)2 representa o erro sistêmico, que não pode ser evitado, enquanto

que a V ar(Z) representa o risco não-sistêmico, que pode ser evitado com uma boa diver-

sificação.

Para o caso de rastrear a carteira de mercado, queremos β = 1, então podemos

enunciar o modelo da seguinte forma:

min ω′
∑

ω

sujeito a

ω ≥ 0

ω′e = 1
p∑

i=1

βiωi = 1

ω ∈ Rp

3.2.3 Mı́nimo Erro Quadrático

O modelo de mı́nimo erro quadrático tem por objetivo encontrar a carteira que mini-

mize a diferença ao quadrado entre seus retornos e os retornos do benchmark. O primeiro

passo necessário para o desenvolvimento do método é definir os p ativos que serão con-

siderados na otimização. Dado um benchmark com n ativos, selecionam-se p ativos, tal

que p ≤ n.

O critério de escolha dos ativos que serão utilizados na otimização é, em geral, o

percentual de participação no ı́ndice que será rastreado. O problema consiste, então, na

minimização do seguinte erro:

err = (y − Γω)

Sendo ω a composição da carteira que será escolhida ao fim da otimização. O seu

modelo matemático é representado a seguir:

min(y − Γω)′(y − Γω)

sujeito a
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ω ≥ 0

ω′e = 1

ω ∈ Rp
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4 AQUISIÇÃO DOS DADOS

Uma etapa crucial para a simulação dos modelos é garantir os dados necessários para

alimentar o modelo e realizar a simulação. Para isso é necessário encontrar uma fonte de

dados adequada e confiável para fazer a extração. No caso deste trabalho, foi utilizado o

site yahoo.finance, site que possui dados dos mais diversos ativos dispońıveis no mercado

financeiro e tem a facilidade de fornecê-los nos peŕıodos necessários e através de scripts

em Python.

Para obter os dados foi utilizada a biblioteca ”web.get data yahoo”em um script em

Python, em que todos os dados foram coletados. Após isso, foram necessários alguns

tratamentos para os datasets ficassem no formato adequado para o código. Sobre o tra-

tamento, pode-se citar a seleção e formatação do nome das colunas a serem utilizadas e o

cálculo da variação, por exemplo. Através desse script, para a coleta e o tratamento dos

dados, basta que seja definido o peŕıodo e os ativos que serão selecionados.

De inicio foram escolhidos 5 ativos: VALE3 (Vale), PETR4 (Petrobras), ITUB4 (Itaú

Unibanco), BBDC4 (Banco Bradesco) e B3SA3 (B3), por serem os mais representativos do

Ibovespa, ı́ndice utilizado como benchmark. Contudo, vale ressaltar que, como a aquisição

e transformação dos dados foi automatizada, é posśıvel mudar tanto a quantidade quanto

os ativos escolhidos.

4.1 Criação de repositório Online

Com o surgimento de um script em Python para a aquisição de dados, veio à tona

uma questão muito importante para qualquer projeto que envolva o desenvolvimento de

software: o controle de versões. Por isso, se tornou necessário utilizar um software que

ajudasse nesse controle. O software escolhido foi o GitHub, pois com ele é posśıvel criar

um repositório na nuvem para armazenar os códigos e também branchs para organizar as

versões do código.
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5 IMPLEMENTAÇÃO

5.1 Automação da Solução

Com a complexidade do projeto e sendo necessário executar diversos scripts para

obter os resultados, naturalmente, o processo começa a se tornar mais demorado e mais

complicado, fazendo com que seja necessário ter muito claro toda a ordenação de passos

para que os dados sejam armazenados e as simulações fiquem corretas. Por isso, foi

desenvolvida uma automação para que todos os processos de execução dos scripts sejam

feitos automaticamente, desde a aquisição, até a validação dos resultados. Foi utilizada a

linguagem Python por meio de um script.

Esse script é responsável pela orquestração de diversos outros scripts, tanto em Python

como em Matlab, sendo este utilizado apenas como um motor para execução da oti-

mização, enquanto que os demais processos seriam feitos todos na linguagem Python.

Além da aquisição de dados e da simulação dos scripts do Matlab para o cálculo da

otimização, também é necessário realizar a análise dos resultados obtidos. Para isso, em

substituição do Matlab, foram utilizados notebooks Jupyter, os quais são muito utilizados

nas áreas de análise de dados, por utilizarem a linguagem Python em um ambiente onde

o usuário tem um controle melhor das variáveis e de quais trechos do script Python estão

sendo executados.

Neste instante do fluxo de execução do projeto é que se percebe a importância da

automação dos processos de aquisição e simulação, uma vez que, com estes processos

automatizados, o usuário pode se preocupar apenas com as análises que deseja realizar,

sem precisar alterar parâmetros dentro dos comandos para gerar os dados que necessita,

fazendo o processo de geração dos dados da análise muito mais rápido e menos suscet́ıvel

a erros.

A seguir há uma representação gráfica dos scripts que são executados pela automação.

Na Figura 2, é posśıvel ver que o script principal, responsável por executar a au-

tomação, é o chamado ”simulation tool”. Os scripts dentro do script principal são res-

ponsáveis por executar os processos de aquisição e simulação da automação. No lado

esquerdo da figura há três arquivos Python que serão utilizados na aquisição de dados.
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Figura 2: Fluxo de execução da automação

O primeiro deles, ”initialization”, é o responsável por adquirir os dados para a simulação

desejada. Estes dados são parâmetros como as datas e os ativos que serão utilizados

durante a simulação e serão carregados via prompt de comandos em tempo de execução.

O segundo script a ser executado é o ”load data”, responsável por interagir com a

API que fornece os dados dos ativos e do benchmark selecionado e depois salvá-los em

formato csv.

Já o terceiro script, ”calculate gamma”, tem o papel de transformar os dados da

aquisição nas matrizes que serão utilizadas durante a simulação no Matlab.

De posse de todos os parâmetros necessários para a simulação, o script principal

executa as funções no Matlab, que retornam o valor encontrado para a otimização, ou

seja, o peso de cada ativo na carteira.

Uma vez que os pesos dos ativos na carteira são adquiridos, é executada uma etapa

de validação dos resultados obtidos, ou seja, os pesos são fixados e é simulado um peŕıodo

para avaliar o rastreamento.

Finalmente, o processo de automação acaba com o script ”save results”sendo execu-

tado para que os resultados dos métodos sejam salvos em formato csv.

Após a obtenção dos resultados dos métodos, é feita a execução do Jupyter Notebook,

com o objetivo de gerar, automaticamente, todos os gráficos que serão utilizados para as

análises. Assim, ao fim das simulalções, apenas com as informações sobre as datas de

otimização e validação, é posśıvel gerar as visualizações e fazer quaisquer análises que se

desejar sobre os resultados.
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5.2 Implementação das Simulações dos Modelos de

Programação Linear

Na seção a seguir há uma breve explicação sobre a implementação de cada um dos

modelos de otimização escolhidos. Foram usadas as funções linprog ou intlinprog do

Matlab para fazer as implementações. A minimização é realizada da seguinte forma:

minxf
Tx

sujeito a

A.x ≤ B,

Aeq.x = beq

lb ≤ x

I. MAD (Mean Absolute Deviation): O método é descrito por:

min e′(|y − Γω|)

com e = (1...1) ∈ ℜT

Para a implementação, chegou-se aos seguintes valores para as matrizes e vetores da

função:

var = 2.row + nfund;

sendo nfund o número de ativos usados;

A = [];

b = [];

e as seguintes variáveis auxiliares:

I = eye(row);

e = ones(nfund, 1);

et = ones(row, 1);

z = zeros(1, row);

z1 = zeros(1, nfund);
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e por fim, define-se:

f = [et′ et′ z1];

Aeq = [I − I.Γ; z z e′];

beq = [y 1];

lb = zeros(var, 1);

II. Min-Max: o modelo tem o objetivo de realizar a seguinte otimização:

min (max|y − Γω|)

Para a implementação, chegou-se aos seguintes valores para as matrizes e vetores da

função:

var = nfund + 1;

sendo nfund o número de ativos usados. Tem-se as variáveis auxiliares a seguir:

e = ones(nfund, 1);

et = ones(row, 1);

z1 = zeros(1, nfund);

e por fim, define-se:

A = [−et Γ;−et − Γ];

b = [y − y];

Aeq = [0 e′];

beq = [1];

lb = zeros(var, 1);

f = [1 z1];

III. MADD (Mean Absolute Downside Deviation): o método é definido por:

min e′(|y − Γω|)

Para a implementação, chegou-se aos seguintes valores para as matrizes e vetores da

função:

var = 2.row + nfund;
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sendo nfund o número de ativos usados. Tem-se as variáveis auxiliares a seguir:

I = eye(row);

e = ones(nfund, 1);

et = ones(row, 1);

z = zeros(1, row);

z1 = zeros(1, nfund);

e por fim, define-se:

A = [−I − Γ];

b = [−y];

Aeq = [z e′];

beq = [1];

f = [et′ z1];

lb = zeros(var, 1);

IV. DMin-Max (Downside Min-Max):o modelo realiza a otimização:

min (max|y − Γω|)

Para a implementação, chegou-se aos seguintes valores para as matrizes e vetores da

função:

var = nfund + 1;

sendo nfund o número de ativos usados. Tem-se as variáveis auxiliares a seguir:

e = ones(nfund, 1);

et = ones(row, 1);

z1 = zeros(1, nfund);

e por fim, define-se:

A = [−et Γ];

b = [−y];

Aeq = [0 e′];
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beq = [1];

lb = zeros(var, 1);

f = [1 z1];

5.3 Implementação das Simulações dos Métodos Com-

putacionais

Como os modelos computacionais não são lineares, não é posśıvel utilizar as funções

linprog ou intlinprog do Matlab para fazer as suas resoluções, conforme foi visto nos

modelos anteriores.

Portanto, foi utilizada a função quadprog, também presente no Matlab, mas utilizada

para resolver funções quadráticas com variáveis lineares. Essa função realiza a mini-

mização para um problema nos seguintes moldes:

minx
1

2
xTHx+ fTx

sujeito a

A.x ≤ B,

Aeq.x = beq

Para a resolução dos modelos a seguir, as equações de minimização foram adaptadas

para corresponder a esse molde e realizar a otimização seguindo cada um dos métodos.

5.3.1 Mı́nima Variância do Erro

Omodelo de mı́nima variância do erro, tem por objetivo realizar a seguinte otimização:

min(ω − ωB)
′Σ(ω − ωB)

sujeito a

(ω − ωB)
′r = 0

ω ≥ 0

ω′e = 1

ωi = 0, i = n− p+ 1, ..., n
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ω ∈ Rn

Conforme já mencionado anteriormente, a matriz Σ é a matriz de covariância e o vetor

ωB é a composição da carteira do benchmark que, no caso em questão, é o Ibovespa.

Em todos os modelos de simulação realizados só foi necessário coletar a variação dos

fundos que compunham a carteira de rastreamento e que foram utilizados na otimização.

Porém, nesse caso, diferentemente dos outros, precisou-se coletar toda a composição do

ı́ndice Ibovespa e as respectivas variações de cada um dos ativos.

Para realizar isso de uma maneira mais otimizada, foi feito um código em Python que,

a partir de uma composição do ı́ndice, coleta os dados de todos os ativos presentes.

Ao final dessa coleta, todos os dados necessários para a otimização já estavam pre-

sentes e, portanto, foi posśıvel realizar a equivalência dos valores da função quadprog do

Matlab com a equação de minimização do modelo.

Após algumas manipulações, chegou-se nos seguintes valores para as matrizes da

função:

H = 2Σ

f = −2ΣωB

E, para as matrizes que definem as restrições, obte-se o seguinte:

A = −I(nxn)

b = zeros(nx1)

Aeq =


ones′(nx1)

ones(1xn)

zeros(n−p,p) I(n−p)x(n−p)



beq ==


ω′
B.ones(nx1)

1

zeros(n−p,1)


O valor n corresponde a todos os ativos que compõem e o ı́ndice Ibovespa e o valor

p corresponde apenas aos ativos utilizados na otimização. As matrizes I, ones e zeros

representam uma matriz identidade, uma matriz de uns e uma matriz de zeros, respecti-

vamente. E os valores subescritos representam as dimensões de cada matriz.
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Com todos os valores definidos, foi posśıvel realizar o cálculo da função quadprog :

[x, z] = quadprog(H, f,A, b, Aeq, beq)

Como apenas os p primeiros valores de ω são os que representam a distribuição da

carteira otimizada, o resultado é definido da seguinte forma:

ω = x(1 : p, 1)

Por fim, para definir o z otimo é necessário somar uma constante ao valor z encontrado

pela função quadprog. Isso se deve ao fato de que, após a transformação da equação do

modelo nas matrizes da função do Matlab, sobrou um termo constante, que deve ser

adicionado ao resultado final da otimização. Portanto, o cálculo feito é:

zotimo = z + ω′
B.Σ.ωB

Assim, a otimização é finalizada com o valor da distribuição da carteira representado

por ω e o valor da Mı́nima Variância do Erro representado por z otimo.

5.3.2 Mı́nimo Erro Não Sistêmico

Para o modelo de mı́nimo erro não sistêmico, assim como no modelo anterior, foi

necessário construir a matriz de covariância Σ e, além disso, foi necessário calcular os

valores de β para cada ativo.

Esses valores de β serão utilizados na restrição de β da carteira. Inicialmente, será

assumido β = 1, ou seja, um risco igual ao risco de mercado. Recaptulando o modelo:

minω′
∑

ω

sujeito a

ω ≥ 0

ω′e = 1
P∑
i=1

βiωi = 1

ω ∈ RP

Para implementar este modelo no Matlab também foi utilizada a função quadprog
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com os seguintes parâmetros.

H = 2Σ

f = zeros(nx1)

As matrizes que definem as restrições foram preenchidas da seguinte forma.

A = −I(nxn)

b = zeros(nx1)

Aeq =

[
ones′(nx1)

betas

]
beq = ones(2x1)

Em que betas é um vetor contendo o valor de βi do ativo i.

5.3.3 Mı́nimo Erro Quadrático

Para a implementação do modelo do mı́nimo erro quadrático, assim como nos anteri-

ores, foi feita a equivalência da equação do modelo com a função quadprog do Matlab. A

partir da equação do método, dada por:

min(y − Γω)′(y − Γω)

sujeito a

ω ≥ 0

ω′e = 1

ω ∈ Rp

As equivalências encontradas para a função quadprog foram as seguintes:

H = 2Γ′Γ

f = −2Γ′y

As matrizes que definem as restrições foram preenchidas da seguinte forma:

A = −I(nxn)
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b = zeros(nx1)

Aeq = ones(1xn)

beq = 1
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6 RESULTADOS DAS SIMULAÇÕES

Nesta seção estão os resultados obtidos. O processo de simulação é separado em duas

partes: otimização e validação do modelo. Para cada modelo, foi necessário passar por

estes processos para obter os resultados.

Primeiramente, é necessário, a partir de uma série histórica de retornos, construir

a matriz Γ que é posteriormente utilizada na simulação dos modelos. Este processo de

construção de Γ é o que chamamos de otimização.

Para o processo de otimização foram utilizados dados de peŕıodos diferentes, de janeiro

de 2019 à dezembro de 2019, de janeiro de 2020 à dezembro de 2020 e de janeiro de 2021

à dezembro de 2021.

Essa abordagem foi definida porque o ı́ndice utilizado como benchmark (Ibovespa)

teve uma variação bastante brusca nos anos de 2020 e 2021 devido aos impactos da

pandemia da Covid-19, sendo interessante utilizar dados tanto do peŕıodo pré pandemia

quanto dados do peŕıodo de maior impacto no ı́ndice.

Na primeira parte dos resultados apresentados, a otimização foi feita apenas uma

vez, não sendo acrescentados dados conforme os meses se passam, ou seja, os percentuais

definidos inicialmente para cada ativo foram mantidos ao longo de toda a validação. Em

seguida, apresenta-se resultados com reotimizações realizadas trimestralmente, de forma

a analisar a influência do peŕıodo de treino na assertividade da previsão.

Por último, no processo de validação, é o momento que cada modelo é implementado

levando em consideração sua filosofia. A seguir estão os resultados e algumas análises do

que foi obtidos nas simulações.

6.1 Modelos de Programação Linear

6.1.1 Otimização e validação com os mesmos dados

De ińıcio pode não parecer intuitivo otimizar e validar o modelo com os mesmos

dados, mas com essa combinação de dados é posśıvel observar se os modelos de fato estão

entregando o que se propõem. A seguir, estão os gráficos e uma análise dos resultados
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obtidos das simulações executadas com os dados de 2019 e 2020.

• Otimização e validação com dados do ano de 2019

Figura 3: Resultado da simulação de otimização e validação com dados de 2019

Do gráfico é posśıvel perceber que os modelos conseguiram acompanhar o bench-

mark, no entanto, não é posśıvel fazer uma análise muito aprofundada da eficácia

dos métodos, por isso, foi criada a tabela abaixo.

A tabela ilustra o desempenho de cada um dos métodos perante quatro indicadores

de desempenho que são os indicadores utilizados como função objetivo nos métodos.

Dessa forma, é posśıvel analisar cada um dos métodos para constatar se de fato este

foi o melhor no indicador que utiliza, ou seja, o que se espera como resultado é um

melhor desempenho do método quando comparado aos outros no indicador utilizado

como sua função objetivo.

Na tabela, os valores em negrito representam o menor valor dentre os métodos.
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Tabela 1: Validação métodos de programação linear para o peŕıodo de 2019

Metodologia utilizada MAD MinMax MADD DMinMax

Soma dos desvios absolutos 21,57% 26,14% 26,76% 26,14%

Máximo desvio absoluto 4,84% 3,53% 8,57% 3,53%

Soma dos desvios negativos 17,30% 22,95% 13,46% 22,95%

Máximo desvio negativo 4,84% 3,53% 8,57% 3,53%

• Otimização e validação com dados do ano de 2020

Para as simulações utilizando os dados de 2020, os resultados foram muito se-

melhantes. Assim como no caso anterior, também foi constrúıda uma tabela para

análise da efetividade dos métodos.

Figura 4: Resultado da simulação de otimização e validação com dados de 2020
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Tabela 2: Validação métodos de programação linear para o peŕıodo de 2020

Metodologia utilizada MAD MinMax MADD DMinMax

Soma dos desvios absolutos 19,32% 23,37% 33,41% 39,16%

Máximo desvio absoluto 4,39% 3,68% 14,11% 13,23%

Soma dos desvios negativos 6,40% 8,91% 2,11% 2,99%

Máximo desvio negativo 3,63% 3,68% 1,61% 0,90%

Assim como era esperado, os métodos cumpriram com suas metodologias, entre-

gando os menores valores nos seus respectivos indicadores.

6.1.2 Otimização e validação com dados de peŕıodos diferentes

Agora serão mostradas as simulações que representam a realidade. Foram feitas oti-

mizações utilizando dados do passado e as porcentagens obtidas da otimização foram uti-

lizadas em uma ”carteira teórica”, simulando uma compra dos ativos no ińıcio do peŕıodo

de validação e levando-os até o fim desse peŕıodo. Fez-se treinos para prever resultados

anuais e treinos para prever resultados trimestralmente

• Otimização com dados do ano de 2019 e validação com dados do ano de 2021

A seguir estão os resultados das simulações. Assim como anteriormente, foi cons-

trúıda uma tabela para análise do desempenho dos métodos.

Tabela 3: Otimização por programação linear com dados de 2019 e validação com dados

de 2021

Metodologia utilizada MAD MinMax MADD DMinMax

Soma dos desvios absolutos 33,63% 37,22% 30,77% 37,22%

Máximo desvio absoluto 8,04% 7,29% 5,48% 7,29%

Soma dos desvios negativos 31,41% 35,09% 28,52% 35,09%

Máximo desvio negativo 8,04% 7,29% 5,48% 7,29%
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Figura 5: Resultado da simulação de otimização com dados de 2019 e validação com dados
de 2021

• Otimização com dados do ano de 2020 e validação com dados do ano de 2021

Tabela 4: Otimização por programação linear com dados de 2020 e validação com dados

de 2021

Metodologia utilizada MAD MinMax MADD DMinMax

Soma dos desvios absolutos 36,26% 35,37% 32,80% 31,26%

Máximo desvio absoluto 4,85% 5,10% 9,13% 8,26%

Soma dos desvios negativos 32,69% 31,54% 26,25% 23,83%

Máximo desvio negativo 4,85% 5,10% 9,13% 8,26%
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Figura 6: Resultado da simulação de otimização com dados de 2020 e validação com dados
de 2021

Observando os resultados, é posśıvel ver que, novamente, pelos gráficos, os métodos

conseguiram acompanhar a movimentação do benchmark, no entanto não é posśıvel

extrair informações muito detalhadas.

Já nas tabelas, houve uma grande diferença entre os casos com validação utili-

zando dados diferentes dos dados da otimização e os casos com validação utilizando

dados iguais aos dados da otimização. Desta vez, os métodos não se destacaram nos

seus respectivos indicadores, o que não é um problema, visto que, o retorno futuro

de um ı́ndice é uma variável aleatória que não pode ser prevista, apenas estimada.

Por último, apresenta-se uma simulação com reotimização trimestral, de forma a

avaliar se a otimização com um menor peŕıodo de tempo tem um resultado mais

assertivo. A cada 3 meses o Γ foi recalculado e foi aplicada uma carteira com novos

percentuais de cada ativo. Na sessão ”Análise dos Resultados”é apresentada uma

análise sobre os resultados dessa diferença de peŕıodo na otimização.

• Reotimização com dados trimestrais de outubro de 2020 à setembro de 2021 e va-

lidação trimestral de janeiro à dezembro de 2021
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Figura 7: Resultado da simulação de reotimização com dados semestrais para prever o

ano de 2021

6.2 Métodos Computacionais

A seguir é feita a validação dos métodos de Mı́nimo Erro Quadrático, Mı́nimo Erro

Não Sistêmico e Mı́nima Variância do Erro de forma a verificar se os métodos seguem

seus fundamentos teóricos. Para isso, são comparados os dados reais do benchmark com

a carteira simulada para o mesmo ano.

6.2.1 Otimização e validação com os mesmos dados

A seguir, estão os gráficos e uma análise dos resultados obtidos das simulações execu-

tadas com os dados de 2020 e 2021.

• Otimização e validação com dados do ano de 2020
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Figura 8: Resultado da simulação de otimização e validação com dados de 2020

A partir do gráfico, é posśıvel perceber que o método de Mı́nima Variância do

Erro apresentou uma maior variação em relação ao Ibovespa quando comparado

aos outros dois. Isso ocorreu, principalmente, pois, para realizar a otimização nesse

peŕıodo, foi necessário diminuir as restrições implementadas no Matlab, ou seja, o

erro permitido na simulação foi maior do que nos outros métodos. Essa alteração

foi necessária, pois, como foi utilizada uma composição fixa do ı́ndice Ibovespa -

do dia 26/09/2022 - há muitos ativos que hoje fazem parte do ı́ndice, mas que

não apresentam dados no ano de 2020. Esse fato acontece, pois, periodicamente,

a composição do Ibovespa se altera, retirando ativos antigos e adicionando novos.

Desse modo, uma otimização muito restrita não estava sendo capaz de encontrar

um valor ótimo e, então, essa alteração foi necessária.

Entretanto, mesmo com esse fato, é posśıvel perceber que os modelos acompanham

as tendências do benchmark. Por outro lado, não é posśıvel fazer uma análise

aprofundada da eficácia dos métodos, para isso usa-se a tabela abaixo.

A tabela busca ilustrar o desempenho de cada um dos métodos perante três

indicadores de desempenho que são utilizados como função objetivo nos métodos.
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Dessa forma, é posśıvel analisar cada um deles para constatar se de fato este foi o

melhor no indicador que utiliza, ou seja, o que se espera como resultado é um melhor

desempenho do método quando comparado aos outros no indicador utilizado como

sua função objetivo.

Na tabela, os valores em negrito representam o menor valor dentre os métodos.

Tabela 5: Otimização e validação dos métodos computacionais no ano de 2020

Metodologia utilizada MEQ MENS MVE

Mı́nimo erro quadrático 0,56% 0,64% 1,55%

Mı́nimo erro não sistêmico 1,69% 1,56% 2,64%

Mı́nima Variância do Erro 0,32% 0,34% 0,12%

• Otimização e validação com dados do ano de 2021

Para as simulações utilizando os dados de 2021, os resultados foram muito se-

melhantes. Porém, como pode-se perceber, como os dados são mais atualizados, é

posśıvel observar um melhor desempenho do método de Mı́nima Variância do Erro.

Figura 9: Resultado da simulação de otimização e validação com dados de 2021
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Assim como no caso anterior, também foi constrúıda uma tabela para análise da

efetividade dos métodos.

Tabela 6: Otimização e validação dos métodos computacionais no ano de 2021

Metodologia utilizada MEQ MENS MVE

Mı́nimo erro quadrático 0,44% 1,37% 0,51%

Mı́nimo erro não sistêmico 0,31% 0,20% 0,30%

Mı́nima Variância do Erro 0,17% 0,08% 0,03%

Conforme era esperado, os métodos cumpriram com suas metodologias, entre-

gando os menores valores nos seus respectivos indicadores.

6.2.2 Otimização e validação com dados de peŕıodos diferentes

Agora os métodos serão usados para prever resultados de um peŕıodo subsequente.

Foram feitas otimizações utilizando dados do passado e as carteiras obtidas na otimização

foram utilizadas em uma ”carteira teórica”, simulando uma compra dos ativos no ińıcio

do peŕıodo de validação e levando-os até o fim desse peŕıodo.

• Otimização com dados do ano de 2019 e validação com dados do ano de 2020

A seguir estão os resultados das simulações.
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Figura 10: Resultado da simulação de otimização com dados de 2019 e validação com

dados de 2020

• Otimização com dados do ano de 2020 e validação com dados do ano de 2021
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Figura 11: Resultado da simulação de otimização com dados de 2020 e validação com

dados de 2021

Observando os resultados, conclúımos que os métodos conseguiram acompanhar

a movimentação do benchmark.

Em seguida, foram realizadas outras otimizações, com peŕıodos menores, em busca

de resultaddos mais assertivos.

• Reotimização com dados trimestrais de outubro de 2020 à setembro de 2021 e va-

lidação trimestral de janeiro à dezembro de 2021



44

Figura 12: Resultado da simulação de reotimização com dados semestrais para prever o

ano de 2021
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7 ANÁLISE DOS RESULTADOS

Nesta seção há uma análise comparativa dos resultados obtidos pelas simulações dos

diferentes métodos. Para realizar esta análise foram utilizados três métricas de com-

paração: o ı́ndice de Sharpe, o β da carteira e o módulo do erro. Cada uma delas avalia

um aspecto da carteira. O ı́ndice de Sharpe serve como forma de medir se o risco tomado

por uma determinada composição da carteira justifica seu retorno se comparado a um

ativo livre de risco, o β é uma forma de mensurar o risco assumido pela carteira, e o

módulo do erro diz o quão distante o modelo ficou do benchmark em termos de retorno.

A seguir é feita a análise das três métricas separadamente. Para isso, foram utilizadas

duas formas de otimização, primeiro é feita a otimização utilizando dados mensais do ano

de 2020 e validação com dados de 2021 e depois é feita a otimização com dados semanais

em uma janela de três meses anteriores ao peŕıodo de validação até atingir um peŕıodo

de um ano, sendo a validação feita no ano de 2021.

7.1 Análise do ı́ndice de Sharpe

Nesta seção é feita a análise do ı́ndice de Sharpe de cada carteira.

Tabela 7: Índices de Sharpe obtidos para cada método no ano de 2021

Método IS

MAD -0,67

MADD -0,47

MINMAX -0,63

DMINMAX -0,44

MENS -0,65

MEQ -0,62

MVE -0,48

Em negrito está destacado o melhor valor obtido dentro os métodos. Neste caso, o

melhor valor é o mais alto dentre os métodos, ou seja, o menos negativo.
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É posśıvel ver que nenhuma carteira obteve um valor positivo, isso indica que o retorno

livre de risco conseguiu ser melhor do que o retorno de todas as carteiras obtidas nas

simulações. Esse resultado pode ser explicado pelo alto retorno que o ativo livre de risco

possui, então uma carteira precisa ter uma boa performance no peŕıodo para superá-lo,

algo dif́ıcil de ser alcançado em um peŕıodo de muitas incertezas e busca do mercado por

opções de investimentos mais seguros, como foi o ano de 2021.

Outro ponto interessante de analisar é o fato de que os dois métodos que obtiveram

os melhores resultados foram justamente os métodos de programação linear que não pe-

nalizam a carteira quando possuem um retorno maior do que o benchmark, isso mostra

que a filosofia utilizada para construção dos métodos mostrou resultado.

Os resultados obtidos com a otimização utilizando peŕıodos trimestrais são mostrados

a seguir.

Tabela 8: Índice de Sharpe obtido para cada método no ano de 2021 com otimização

trimestral

Método IS

MAD -0,29

MADD -0,28

MINMAX -0,23

DMINMAX -0,27

MENS -0,35

MEQ -0,25

MVE -0,29

Assim como no outro formato de otimização, todos os métodos obtiveram um ı́ndice de

Sharpe negativo. No entanto, neste caso o método que performou melhor foi o MINMAX.

Os valores obtidos nesta simulação se mostraram ligeiramente melhores que os obtidos

com otimização anual, ou seja, o retorno das carteiras se mostrou um pouco mais próximo

do retorno do ativo livre de risco.

7.2 Análise do β das carteiras

Agora é feita a análise do β das carteiras.
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Tabela 9: β da carteira para cada método no ano de 2021

Método β

MAD 1,143

MADD 1,172

MINMAX 1,188

DMINMAX 1,135

MENS 1,158

MEQ 1,161

MVE 1,319

Novamente, está destacado em negrito o melhor valor obtido dentro os métodos. Para

esta métrica, o melhor valor considerado é o menor dentre os valores de todos os métodos

dado que este indica menor volatilidade. Também poderia ser escolhido o valor mais alto

de β como melhor valor por indicar que a carteira pode ter um retorno maior do que o de

mercado, no entanto, como o foco está no rastreamento e não necessariamente no retorno

final da carteira, foi optado por utilizar o valor mais baixo, de menor risco.

Mais uma vez, todos os métodos apresentaram uma caracteŕıstica em comum, já que

obtiveram β maior do que um, ou seja, todas as carteiras estão assumindo um risco maior

do que o mercado. Olhando do ponto de vista do investidor, possuir um risco maior

do que um ativo que se deseja rastrear pode significar assumir um risco maior do que o

desejado.

Assim como na métrica anterior, para a otimização anual é posśıvel ver que o método

com o melhor resultado é o DMINMAX.

Para a otimização com peŕıodo trimestral, os resultados obtidos foram os seguintes.
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Tabela 10: β da carteira para cada método no ano de 2021 com otimização trimestral

Método β

MAD 0,958

MADD 0,867

MINMAX 0,868

DMINMAX 0,811

MENS 0,895

MEQ 0,956

MVE 0,853

Diferentemente da otimização anual, a otimização trimestral obteve, para todos os

casos, um β menor do que um, indicando que todas as carteiras possuem um risco menor

do que o mercado. Isso é importante, pois, se o retorno do ativo for semelhante ao retorno

do benchmark (que nesse caso representa o mercado), seria posśıvel obter o mesmo retorno

com um risco menor, sendo essa a melhor situação para um investidor.

7.3 Análise do módulo do erro

Por último é feita a análise do módulo do erro. Esta métrica é calculada obtendo o

módulo da diferença entre o retorno da carteira e o retorno do benchmark.

Tabela 11: Módulo do erro para cada método no ano de 2021

Método Módulo do erro

MAD 23,3%

MADD 17,0%

MINMAX 22,4%

DMINMAX 14,4%

MENS 22,3%

MEQ 21,9%

MVE 17,8%

Esta métrica é do interesse de um investidor que deseja fazer o rastreamento de um

ativo, pois, o mais importante em um rastreamento é o retorno que foi obtido no final do

peŕıodo do investimento, ou seja, quando o investidor faz a venda do ativo e observa a
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relação lucro/prejúızo. Por isso, o melhor valor é o menor dentre os métodos.

E mais uma vez, o método que se saiu melhor com otimização anual é o DMINMAX,

pois foi capaz de obter resultados significativamente melhores do que os outros métodos.

Estes resultados são surpreendentes, uma vez que, o método MEQ, por exemplo, foca

em diminuir justamente o erro entre a carteira e o benchmark, mas essa falha em obter

o melhor resultado mostra que quando se tenta prever o comportamento de um ativo

financeiro, o resultado obtido não tem nenhum compromisso com a realidade, fazendo

com que o resultado esperado não seja alcançado.

Tabela 12: Módulo do erro para cada método no ano de 2021 com otimização trimestral

Método Módulo do erro

MAD 10,3%

MADD 7,4%

MINMAX 2,6%

DMINMAX 3,5%

MENS 13,4%

MEQ 5,9%

MVE 9,7%

Neste formato de otimização, o erro obtido se mostrou muito mais baixo do que na

otimização anual. Neste caso, o método que melhor performou foi o MINMAX. O método

obteve erro baixo, o risco sendo um dos mais baixos dentre todos e risco menor do que um,

sendo uma boa alternativa para o investidor que deseja ter uma carteira que acompanha

o Ibovespa com um risco menor.
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8 CONCLUSÕES

No ińıcio do projeto foi definido como objetivo construir um algoritmo que fosse capaz

de compor uma carteira representativa de um benchmark utilizando dados históricos e

diversos métodos de otimização. Para isso, foram definidos sete métodos, sendo quatro de

programação linear e três métodos computacionais para alcançar o objetivo de rastrear o

ı́ndice que representa o mercado brasileiro, o Ibovespa.

Para alcançar estes objetivos foram desenvolvidas sete funções no Matlab, cada uma

implementando um método, e mais alguns scripts em Python responsáveis por fornecer os

elementos necessários para simulação e análise dos resultados. O conjunto composto pelas

funções do Matlab e os scripts de Python formaram uma automação que pode ser vista

como um produto completo para geração de carteiras para rastreamento de benchmarks.

Desde o ı́nicio do projeto esta visão de um produto final foi muito reforçada, pois,

facilita o processo do investidor na hora de gerar carteiras, não sendo necessário preparar

um novo script para cada otimização que desejar realizar. Além disso, essa visão de criação

de um produto trouxe um aprendizado muito grande na desenvolvimento de projetos,

visto que foi necessário utilizar frameworks de metodologia ágil bastante conhecidos no

mercado e técnicas de desenvolvimento de software, como a utilização de repositório em

nuvem para versionamento e armazenamento de dados.

Analisando os resultados, é posśıvel ver que os valores obtidos utilizando otimização

trimestral se mostraram superiores aos resultados obtidos na otimização anual, visto que

em termos de β obtiveram valores mais baixos, ou seja, risco mais baixo; em termos do

ı́ndice de Sharpe obtiveram valores menos negativos, isto é, mais próximos do retorno do

ativo livre de risco e em termos de módulo do erro, obtiveram valores significativamente

mais baixos, ou seja, conseguiram ao final do peŕıodo entregar uma carteira com retorno

mais próximo do benchmark. Esse resultado pode ser explicado pelo fato de a otimização

estar usando dados mais atualizados e com otimizações feitas para uma previsão mais

curta do que o caso anual.

Outro resultado importante é o fato de os métodos de programação linear, mesmo que

sendo mais simples, terem produzido resultados superiores aos métodos computacionais.

Em particular, o método MINMAX e seu variante DMINMAX que ganharam em todos



51

as métricas apontadas, com destaque para o método DMINMAX que se saiu melhor em

todas as simulações com otimização anual e também superou os outros métodos no β

para otimização trimestral. Já os métodos computacionais não tiveram resultados muito

inferiores aos resultados dos métodos de programação linear mas não mostraram que sua

complexidade trouxe resultado. Particularmente, o método MVE se mostrou bastante

dif́ıcil de ser implementado, uma vez que foi necessário abrir mão de restrições mais fortes

para obter um resultado para as simulações.
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3 COSTA, O. L. d. V.; ASSUNÇÃO, H. G. V. Análise de risco e retorno em
investimentos financeiros. 2005.

4 ROLL, R. A mean/variance analysis of tracking error. Journal of portfolio
management, v. 18, n. 4, p. 13–22, 1992.

5 PAULO, W. L. de; OLIVEIRA, E. M. de; COSTA, O. L. do V. Enhanced index
tracking optimal portfolio selection. Finance Research Letters, Elsevier, v. 16, p. 93–102,
2016.

6 PADULA FELIPE; PACHECO, G. J. M. Comparação de métodos de programação
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ANEXO A

1. Planilha com os cálculos realizados para criar as tabelas apresentadas na sessão ”Re-

sultados das Simulações”para métodos computacionais: Planilha teste de teoria métodos

computacionais

2. Planilha com os cálculos realizados para criar as tabelas apresentadas na sessão

”Resultados das Simulações”para métodos de programação linear: Planilha teste de teoria

programação linear

3. Repositório com todos os códigos desenvolvidos no trabalho: Repositório TCC

https://docs.google.com/spreadsheets/d/1wvE1OqQbIZdNaGgbb1A9_lfEc6dNu5EgV0ky5f9p8e4/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1wvE1OqQbIZdNaGgbb1A9_lfEc6dNu5EgV0ky5f9p8e4/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1wvE1OqQbIZdNaGgbb1A9_lfEc6dNu5EgV0ky5f9p8e4/edit#gid=715741659
https://docs.google.com/spreadsheets/d/1wvE1OqQbIZdNaGgbb1A9_lfEc6dNu5EgV0ky5f9p8e4/edit#gid=715741659
https://github.com/diego-arruda/TCC

