
FERNANDA MARTINS MARQUES E RODRIGO ARB DE CASTRO

COMANDO E MONITORAMENTO REMOTO DE SISTEMAS
PRODUTIVOS

São Paulo
2007

 2

FERNANDA MARTINS MARQUES E RODRIGO ARB DE CASTRO

COMANDO E MONITORAMENTO REMOTO DE SISTEMAS
PRODUTIVOS

Trabalho de formatura apresentado à
Escola Politécnica da Universidade de
São Paulo para obtenção do título de
Engenheiro

Área de concentração:
Engenharia Mecatrônica

Orientador: Prof. Dr. Paulo Eigi Miyagi

São Paulo
2007

 3

FICHA CATALOGRÁFICA

Marques, Fernanda Martins

Comando e monitoramento remoto de sistemas produtivos /
F.M. Marques, R.A. de Castro. -- São Paulo, 2007.

67 p.

Trabalho de Formatura - Escola Politécnica da Universidade
de São Paulo. Departamento de Engenharia Mecatrônica e de
Sistemas Mecânicos.

1.Controladores programáveis (Monitoramento) 2.Telecomu-
nicações I.Castro, Rodrigo Arb de II.Universidade de São Paulo.
Escola Politécnica. Departamento de Engenharia Mecatrônica e
de Sistemas Mecânicos III.t.

 4

Resumo

A globalização dos mercados, a tendência de distribuição geográfica das plantas

industriais e a evolução de tecnologias de telecomunicações e de mecatrônica têm motivado a

o desenvolvimento de novos conceitos e técnicas para a tele-operação de sistemas produtivos.

Neste contexto, existe especial interesse na implementação de sistemas de remotos de

gerenciamento que incluem a monitoração, comando e integração de diferentes controladores

via Internet. Assim, este trabalho apresenta o estudo e a implementação de um sistema de

comando e monitoração de estações de trabalho via Internet. O estudo de caso considerado

envolve duas estações de trabalho que fazem parte de um sistema de manufatura que executa

a montagem automática de variações de um mesmo produto

Palavras-chave: Telecomando, Monitoração remota, Sistemas Produtivos,

Controlador programável.

 5

Abstract

The globalization and the trend for geographic distribution of production plants, and

the use in large of telecommunication and mechatronics technologies motivates the

development of new concepts and techniques for teleoperation of productive systems. In this

context, there is interest in the implementation of remote management systems, which

includes the monitoring, command and integration of different control units via Internet.

Then, this work presents the study and implementation of command and monitoring of

workstations via Internet. The case study is workstations that compose a manufacturing

system, which assembly automatically variations of a basic product.

Keywords: Telecommand, Remote monitoring, Production systems, Programmable
control.

 6

SUMÁRIO

1. Introdução 07
2. Fundamentos Considerados 08

2.1. UML – Unified Modeling Language 08
2.1.1. Diagramas 08

2.2. Redes de Petri 09
2.2.1. Elementos estruturais básicos das redes de Petri 09

2.3. Controlador Programável (CP) 10
2.3.1. Componentes Básicos 10
2.3.2. Programação de CP 12

2.4. Orientação a Objetos 12
2.4.1. Conceitos 13

2.5. Linguagem de Programação para Computadores: o C++ 14
2.5.1. Conceitos Básicos 14
2.5.2. O Ambiente de Programação e o Compilador 17
2.5.3. Sockets 18

2.6. Comunicação entre CP e Computadores 19
2.6.1. Comunicação Serial 20
2.6.2. Comunicação Serial em C++ 20

2.7. Monitoramento Visual 21
2.7.1. Visualização de Imagens 21
2.7.2. Transmissão de imagens pela Internet 21

3. Descrição Geral do Projeto. 23
3.1. O Sistema Produtivo considerado 23

3.1.1. Descrição Geral 23
3.1.2. Estação de Distribuição 25
3.1.3. Estação de Testes 27
3.1.4. Sistema de Controle 29

3.2. Diagramação do Projeto 30
4. Implementação 31

4.1. Diagramas UML 31
4.1.1. Diagrama de Casos de Uso 31
4.1.2. Diagrama de Classes 32
4.1.3. Diagrama de atividades 33

4.2. Rede de Petri do sistema CIM 37
5. Testes e análise dos resultados 39

5.1. Programação do CP 39
5.1.1. Definição da Primeira Estratégia de Alteração do Programa 39
5.1.2. Comunicação Serial no CP 40
5.1.3. Reestruturação do Programa do CP 44

5.2. Comunicação Serial em C++ 49
5.2.1. Testes em C++ 49

5.3. Programação de conexão à Internet via Sockets 49
5.4. Programação da interface de controle da estação de distribuição 53
5.5. Monitoração via webcam 59
5.6. Transferência de imagens pela Internet. 60
5.7. Telas das interfaces finais no computador do usuário do SP 63
5.8. Metodologia para especificação de comando e monitoramento remoto de sistemas
produtivos

67

6. Conclusões 70
7. Referências Bibliográficas 72
8. Apêndice A – Programação dos CP da Festo 73

 7

1. Introdução

Na evolução dos processos produtivos são identificados marcos de fundamental

importância a partir dos quais pôde-se notar alterações definitivas no panorama industrial

mundial (Lee; Lau, 1999), (Shi; Gregory, 1998). Entre eles destacam-se o surgimento das

linhas de produção (sistematização e otimização de um processo especializado de manufatura)

em meados do século XVIII, a incorporação de sistemas computacionais para automação de

processos industriais na década de 70 e, mais recentemente, a integração dos diversos

equipamentos e computadores de uma indústria em um único sistema, eliminando o conceito

de ilhas de automação. Com a globalização, um maior número de indústrias de manufatura

tem se estabelecido de forma distribuída, onde não apenas componentes de produtos são

produzidos em diferentes plantas, mas em diferentes países, sendo então reunidos para a

montagem dos produtos finais. A adoção desta estrutura distribuída envolve uma nova

tecnologia: o monitoramento e o comando à distância de sistemas industriais (Martin, 1995).

Neste contexto se insere o projeto Telecomando e Monitoramento Remoto de Sistemas

de Manufatura, em desenvolvimento no grupo da Mecatrônica da EPUSP, com apoio da

FAPESP. Este projeto é parte do Programa TIDIA (Tecnologia da Informação no

Desenvolvimento da Internet Avançada), na modalidade Kyatera, que visa o estabelecimento,

de forma cooperativa, de uma rede de comunicação óptica de alto desempenho interligando

laboratórios de pesquisa para o estudo, desenvolvimento e demonstração de tecnologias e

aplicações da Internet Avançada. Entre os objetivos deste Projeto FAPESP, destaca-se o

estudo e desenvolvimento de sistemas de gerenciamento remoto para sistemas integrados de

manufatura, isto é, projeto e implementação do monitoramento e comando via internet das

estações de trabalho de um sistema de manufatura.

Neste sentido, o objetivo específico deste trabalho é o desenvolvimento de um

programa computacional que permita o acionamento via internet das estações de distribuição

e de testes do sistema flexível de manufatura existente e em operação na EPUSP.

.

 8

2. Fundamentos Considerados

A seguir são apresentados os principais conceitos, teorias, tecnologias e ferramentas

considerados para o desenvolvimento do presente trabalho.

Do ponto de vista da teoria, foram considerados inicialmente os diagramas da UML

(Unified Modelling Language) para elaborar a especificação do programa a ser desenvolvido,

contudo, na seqüência do projeto, modelagens em Redes de Petri complementaram esta

atividade. Foram também objeto de estudos os conceitos de controladores programáveis

(CPs), da orientação a objetos, da comunicação entre controladores programáveis e

computadores e da comunicação entre computadores pela Internet, via Sockets para o

desenvolvimento do projeto. No que se refere à implementação, a linguagem de programação

de CP adotada foi o STL, e a linguagem de programação de software adotada foi o C++.

Entre as ferramentas utilizadas, destacam-se o software de programação dos CPs da empresa

Festo (FST) e o ambiente de programação Borland C++ Builder versão 6.0. Foi ainda

utilizado o novo componente do C++ Builder, que permite a visualização das imagens de uma

webcam na interface de um programa e que foi implementado para realizar o monitoramento

visual do processo. Foram ainda estudados os novos conceitos de sockets necessários para

realizar a transferência de vídeo pela Internet.

2.1. UML – Unified Modeling Language

Como o próprio nome já indica, a UML (Unified Modeling Language) é uma

linguagem de modelagem. Ela estabelece uma notação para capturar e comunicar a estrutura e

o comportamento de um sistema orientado a objetos. De uma forma geral, pode-se descrever a

UML como uma linguagem que, a partir de alguns elementos básicos e dos tipos de relação

entre estes elementos, permite a descrição de diferentes aspectos estruturais e

comportamentais do sistema através da construção de uma série de diagramas (Bueno, 2002).

2.1.1. Diagramas

Os diagramas UML permitem visualizar sistemas orientados a objetos de uma maneira

funcional, permitindo uma melhor visualização de como controlá-lo e organizá-lo. A seguir

apresentam-se as definições dos diagramas mais relevantes considerados para o presente

projeto:

Diagrama de Casos de Uso: os diagramas de casos de uso mostram, de forma estática, as

possíveis interações entre o sistema e elementos externos, os chamados atores. Ele apresenta

uma visão ampla e genérica da funcionalidade do sistema, de uma forma que é facilmente

 9

compreensível por pessoas de formação não necessariamente técnica, como gerentes,

usuários, clientes, etc.

Diagrama de Classes: este tipo de diagrama indica um conjunto de classes que fazem parte

do sistema e as relações entre estas classes. Cada tipo de relação é representado por um arco

diferente. Além do tipo de relação é possível especificar a multiplicidade, isto é a quantidade

de objetos envolvidos em cada relação.

Diagrama de Atividades: o diagrama de atividade combina características derivadas de redes

de Petri para permitir a especificação de comportamentos como paralelismo e sincronismo.

Ele descreve as seqüências de atividades realizadas, por exemplo, para um cenário.

2.2. Redes de Petri

A rede de Petri é uma técnica matemática e gráfica que oferece um ambiente uniforme

para a modelagem, análise e projeto de sistemas a eventos discretos.

Como técnica matemática, um modelo em redes de Petri pode ser descrito por um

sistema de equações lineares, que refletem o comportamento dinâmico do sistema, o que

possibilita a análise do mesmo através da verificação formal de suas propriedades

(Cassandras; Lafortune, 1999).

2.2.1. Elementos estruturais básicos da rede de Petri

Transições: correspondem a um evento que causa a mudança de estado do sistema. Podem

ser temporizadas.

Lugares: representam condições (pré e pós-condições) que podem estar associadas ao

modo de operação ou à disponibilidade de um recurso no sistema.

Marcas: indicam a manutenção de condições. A existência de uma marca num lugar

eqüivale ao valor binário “1” e é “0” quando não existe marca no lugar.

Arcos orientados: estabelecem relações causais entre os eventos e as condições e vice-

versa.

Portas: que habilitam ou inibem a ocorrência dos eventos correspondentes às transições,

sendo denominadas habilitadoras ou inibidoras, conforme sua natureza. Para a porta

habilitadora, quando o sinal de origem for equivalente ao valor binário “1”; esta porta

habilita a transição à qual está conectada. Para a porta inibidora, quando o sinal de origem

for equivalente ao valor binário “1”, esta porta inibe a transição em que está conectada.

A Figura 1 mostra uma rede de Petri com seus principais componentes.

 10

Figura 1 – Exemplo de uma rede de Petri

2.3. Controlador Programável (CP)

O controlador lógico programável – CLP – nasceu dentro da empresa General Motors,

em 1968, devido à grande dificuldade de alterar a lógica de controle dos painéis de comando a

cada mudança na linha de montagem. Tais mudanças implicavam em altos gastos de tempo e

dinheiro (Souza, 2001).

As especificações iniciais requeriam um sistema com a flexibilidade do computador,

capaz de suportar o ambiente industrial, isto é, ser facilmente programado e reprogramado,

com manutenção fácil e ser também facilmente expansível e utilizável.

Devido ao intuito inicial de substituírem os painéis de relés no controle discreto, foram

chamados de controladores lógicos programáveis - CLP (Programmable Logic Controllers -

PLC). Porém, atualmente, os controladores dispõem de recursos para realizarem funções

relativamente complexas não se limitando a lógica do tipo E/OU, motivo pelo qual passaram a

ser chamados apenas de controladores programáveis – CP (Souza, 2001).

2.3.1. Componentes Básicos

O controlador programável é, segundo a NEMA - National Electrical Manufacturers

Association, "um aparelho eletrônico digital que usa uma memória programável para o

armazenamento interno de instruções a fim de implementar funções específicas tais como

lógica, seqüenciamento, temporização, contagem e operações aritméticas, para controlar

máquinas ou processos através de módulos de entradas/saídas de sinais analógicos ou

digitais". O diagrama de blocos do controlador é mostrado na Figura 2:

 11

Figura 2 – Componentes Básicos do CP

Um controlador programável é formado por cinco elementos básicos: processador,

memória, sistema de entradas/saídas, fonte de alimentação e terminal de programação.

As três partes principais (processador, memória e fonte de alimentação) formam o que

chamamos de CPU - unidade central de processamento. O processador lê dados de entrada de

vários dispositivos, executa o programa do usuário armazenado na memória e envia dados de

saída para comandar os dispositivos de controle. Este processo de leitura das entradas,

execução do programa e controle das saídas é feito de uma forma cíclica que é chamado de

ciclo de varredura. O sistema de entrada/saída de sinais forma a interface pela qual os

dispositivos de campo são conectados ao controlador. O propósito desta interface é

condicionar os vários sinais recebidos ou enviados ao mundo externo. Sinais provenientes de

dispositivos de comando e detecção tais como push-buttons, chaves limites, sensores

analógicos, chaves seletoras e chaves tipo tambor (thumbwheel), são conectados aos terminais

dos módulos de entrada. Dispositivos de atuação e de monitoração, como válvulas solenóides,

lâmpadas pilotos e outros, sãos conectados aos terminais dos módulos de saída. A fonte de

alimentação fornece a energia necessária para a devida operação do CP e da interface dos

módulos de entrada e saída.

Outro componente do controlador programável é o dispositivo de programação. Embora

seja considerado como parte do controlador, o terminal de programação, como antes era

chamado, é requerido apenas para carregar o programa de aplicação na memória do

controlador. Uma vez carregado o programa, o terminal pode ser desconectado do

 12

controlador. Atualmente utiliza-se um microcomputador para programar o CP e devido à

capacidade de processamento do mesmo, este também é utilizado na edição e depuração do

programa.

2.3.2. Programação de CP

Existem cinco tipos básicos de linguagem de programação que normalmente são

encontrados em CP padronizados pela norma IEC 61131-3: linguagens de relés ou diagrama

de contatos; linguagens por blocos funcionais; SFC - Sequential Function Chart (fluxogramas

funcionais); lista de instruções; texto estruturado (Warnock, 1988).

Dos tipos apresentados acima, o mais difundido e encontrado em quase todos os

controladores é a linguagem de relés. Os blocos funcionais também podem ser encontrados

com facilidade, sendo este último uma extensão do primeiro no sentido de incluir instruções

mais poderosas. Atualmente o SFC, derivado das Redes de Petri, vem recebendo várias

implementações, firmando-se como uma linguagem própria para processos de automação. Os

fluxogramas funcionais apresentam uma variação voltada para a implementação física.

No Anexo A está a descrição de como na prática se faz a programação dos CP da

Festo.

2.4. Orientação a Objetos

A orientação a objetos surgiu na década de 60 no âmbito da Engenharia de Software

como uma nova forma de programação. Até então, os programas computacionais eram

definidos como sendo compostos por uma coleção de funções que por sua vez podiam ser

decompostas em funções mais primitivas. O enfoque principal era na seqüência de operações

realizadas pelo programa. Esta forma de programação é conhecida como programação

estruturada. Em contrapartida, na programação orientada a objetos o programa é composto

por uma coleção de ‘objetos’ que interagem entre si para executar determinadas operações

(Bueno, 2002). Estes objetos são formados por uma associação de dados (atributos) e funções

(operações) (Figura 3).

 13

Figura 3 - Programação Estruturada x Programação Orientada a Objetos.

2.4.1. Conceitos

A orientação a objetos tem uma série de conceitos que auxiliam a delinear claramente o

problema e a identificar os objetos e seus relacionamentos. Descrevem-se a seguir os

conceitos básicos da análise orientada a objeto, isto é, a abstração, o objeto, as classes, os

atributos e os métodos.

Abstração: genericamente, abstração significa considerar isoladamente coisas que estão

unidas, ou seja, partindo do enfoque global de um determinado problema, procura-se separar

os elementos fundamentais e colocá-los de uma forma mais próxima da solução. A idéia da

abstração é identificar os elementos essenciais de um problema e suas propriedades

fundamentais, separando ocorrências e atributos acidentais. Para a análise orientada a objetos,

abstração é o processo de identificação dos objetos e seus relacionamentos. A análise

orientada a objetos permite ao programador concentrar-se no que um objeto é e o que ele faz

sem se preocupar em como ele o faz. A abstração se dá em diferentes níveis: inicialmente

abstrai-se o objeto; de um conjunto de objetos cria-se um conjunto de classes relacionadas, de

um conjunto de classes cria-se uma biblioteca de classes.

Objeto: Um objeto tem determinadas propriedades que o caracterizam, e que são armazenadas

no próprio objeto. As propriedades de um objeto são chamadas ainda de atributos. O objeto

interage com o meio e em função de excitações que sofre, realiza determinadas ações que

alteram o seu estado (seus atributos). Os atributos de um objeto não são estáticos, ou seja, eles

sofrem alterações com o tempo. Do ponto de vista da programação orientada a objetos, um

objeto é uma entidade única que reúne atributos e métodos, ou seja, reúne as propriedades do

objeto e as reações às excitações que sofre (AP, 2007). Quando se tem uma instância de uma

classe, tem-se um objeto desta classe.

 14

Classe: uma classe descreve um grupo de objetos com os mesmos atributos e

comportamentos, além dos mesmos relacionamentos com outros objetos. Uma classe pode ser

vista como um conjunto de códigos de programação que incluem a definição dos atributos e

dos métodos necessários para a criação de um ou mais objetos (AP, 2007).

Método: para qualquer objeto pode-se relacionar determinados comportamentos, ações e

reações. As ações ou comportamentos dos objetos são chamados de métodos. Assim, um

método é uma função, um serviço fornecido pelo objeto. Os comportamentos dos objetos são

definidos na classe através dos métodos e servem para manipular e alterar os atributos do

objeto (alteram o estado do objeto).

2.5. Linguagem de Programação para Computadores: o C++

A linguagem C++ é considerada própria para implementar funcionalidades que

envolvem formulações altamente abstratas como “classes”, permitindo um trabalho de alto

nível (trabalha-se ao nível de conceitos) e formulações de baixo nível, como o uso de

chamadas de interrupções que realizam tarefas altamente específicas no nível de hardware do

processador (Votre, 1998). Segundo os pesquisadores, o C++ proporciona ainda elevada

produtividade, grande reaproveitamento de código, além de facilidade de extensão e

manutenção. Os seus principais conceitos serão abordados a seguir.

2.5.1. Conceitos Básicos

Alguns dos conceitos básicos relacionados à programação em C++ são apresentados a

seguir (Barros, 2002).

Arquivo: é um texto contendo código fonte em C++ e comandos para o pré-processador.

Comentários: um comentário em C++ usa duas barras (//).

Exemplo:

 Aqui é programa ; //Aqui é comentário.

//Todo o resto da linha passa a ser um comentário.

Identificadores: seqüência de letras definidas pelo programador (nome dos objetos, nome dos

atributos e métodos).

Palavras Chaves: são de uso interno do C++, têm significado para a linguagem, para o

processo de compilação. Seus significados não podem ser alterados pelo usuário.

Operadores: símbolos cuja utilidade já é definida pelo C++; os operadores de C++ são:

! % _& * () - + = {} [] n ; ' : " < > ? , . /.

 15

Nome: um nome denota um objeto, uma função, um enumerador, um tipo, um membro de

classe, um modelo, um valor ou um label.

Atribuição: quando se armazena algum valor no objeto.

Declaração: diz que existe um objeto com nome qualquer, mas não cria o objeto. Uma

declaração pode ser repetida.

Definição: cria um ou mais objetos e reserva memória. Uma definição não pode ser repetida.

Escopo: define onde um objeto é visível. Pode ser um objeto local, de função, de arquivo, de

classe ou global.

Blocos: um bloco inicia com um “{“ e termina com um “}”. Objetos criados dentro do bloco

são automaticamente destruídos quando o bloco é encerrado. Objetos criados dentro do bloco

não podem ser acessados externamente (escopo).

Exemplo:

int main()

{ //inicio do bloco

} //fim do bloco

Diretrizes de pré-processamento: são informações/instruções que são passadas para o

compilador com o símbolo #.

 A seguir são apresentados alguns exemplos de declaração e definição de classes assim

como de instanciação de objetos.

Exemplo 1)

Classe:

class TNome

{

//Atributos

tipo nome;

static tipo nome;

const tipo nome;

mutable tipo nome;

volatile tipo nome;

//Métodos

tipo função(parâmetros);

tipo função(parâmetros) const ;

 16

static tipo função(parâmetros);

inline tipo função(parâmetros);

virtual tipo função(parâmetros);

virtual tipo função(parâmetros)=0;

};

 Acima tem-se um modelo padrão de declaração e definição de uma classe. Importante: observe

a presença de (;) no final do bloco que declara a classe.

Exemplo 2)

Objeto:

 Tnome nomeobjeto;

 Declara-se um objeto de uma determinada classe colocando o tipo do objeto (a classe a qual pertence)

seguido do nome do objeto criado. A partir de então, manipula-se o objeto da maneira desejada de

acordo com seus atributos e métodos (definidas na classe) (Pohl, 1991).

Exemplo 3)

//----------------------------------TEndereco.h

#include <string>

class TEndereco

{

//----------------------------------Atributo

int numero;

string rua;

//----------------------------------Métodos

int Getnumero();

string Getrua();

};

//------------------------criação de um objeto

int main()

{

 17

TEndereco rodrigo;

}

 Criou-se a partir da classe Tendereco um objeto que indica uma rua e um número relativo a

um endereço (atributos) e que poderão ser alterados (através dos métodos da classe).

2.5.2. Ambiente de Programação e o Compilador

O compilador considerado no presente trabalho é o Borland C++ Builder versão 6.0.

Este compilador possui interface com usuário composto pela janela ‘form’ na qual é

desenvolvida a interface do programa a se construir, pela janela ‘unit’ onde é escrito o código

fonte do programa, pela ‘paleta de componentes’ com os recursos (visuais ou não) que se

pode utilizar na confecção do programa, pelo ‘inspetor de objetos’ que auxilia na manipulação

dos recursos (objetos) utilizados na criação do programa e pela ‘árvore de objetos’ que

permite uma visualização geral dos objetos e respectivos agrupamentos (classes) (Almeda,

2003).

 A Figura 4, abaixo, ilustra a tela do ambiente de programação:

Figura 4 – Interface principal do ambiente de programação.

 O compilador utilizado possui duas vantagens; a primeira consiste numa interface com

o usuário relativamente simples, intuitiva e de fácil manipulação; a outra vantagem está no

fato de o código fonte básico ser automaticamente fornecido após adicionar-se cada elemento

à janela ‘form’ (DBCB, 2007).

palheta de componentes

árvore de
objetos

inspetor de
objetos

form

unit

Palheta de
componentes

 18

2.5.3. Sockets

Em se tratando de hardware, os sockets são como encaixes para o processador, módulos

de memória e outros componentes do computador. Mas, no contexto de software, os sockets

são módulos de programas que conectam os aplicativos ao protocolo da rede de comunicação,

facilitando o trabalho do programador, que precisa apenas instruir o programa a abrir um dos

sockets disponíveis. O programa passa então a enviar e receber dados através da rede de

comunicação (GDH, 2007). A Figura 5 mostra uma representação esquemática da utilização

de sockets:

Figura 5 – Esquema representando a comunicação entre servidor-cliente via sockets.

No caso de C++, e, mais especificamente, no caso do compilador Borland C++

Builder 6.0, a programação relativa a sockets consiste na adição de um objeto ClientSocket

(no caso de um programa cliente) ou ServerSocket (no caso de um programa servidor) à

interface (este é um objeto não-visual), na definição de seus principais atributos e, finalmente,

na confecção das subrotinas associadas a cada atividade de conexão (método).

Objeto Cliente

O objeto cliente é aquele que deseja acessar alguma informação disponível no servidor

(Donahoo, 2001).

Seus atributos elementares são:

Host: geralmente utiliza-se o IP do servidor a se conectar.

Port: determinação da porta onde será efetuada a conexão com a Internet via sockets.

Os principais métodos do objeto cliente são:

ClientSocketConnect: atividades realizadas pelo cliente quando este se conecta com o

servidor.

ClientSocketDisconnect: atividades realizadas pelo cliente quando este se desconecta do

servidor.

 19

ClientSocketRead: atividades realizadas pelo cliente quando o servidor manda informações

para o mesmo.

ClienteSocketError: atividades realizadas pelo cliente quando este não consegue estabelecer

conexão com o servidor.

Objeto Servidor

O objeto servidor é aquele que gerencia a conexão com clientes por conter

informações desejadas pelos mesmos (Donahoo, 2001).

Seu atributo elementar é :

Port: determinação da porta onde será efetuada a conexão com a Internet via sockets.

Os principais métodos do objeto servidor são:

ServerSocketClientConnect: atividades realizadas pelo servidor quando quando o cliente se

conecta.

ServerSocketClientDisconnect: atividades realizadas pelo servidor quando o cliente se

desconecta.

SeverSocketClientRead: atividades realizadas pelo servidor quando o cliente manda

informações.

ServerSocketAccept: atividades realizadas pelo servidor quando este aceita conexão com o

cliente.

2.6. Comunicação entre CP e computador

As principais opções para a implementação da comunicação entre os CP e o

computador local consideradas no presente trabalho foram: rede PROFIBUS; Ethernet;

comunicação serial.

No caso da rede PROFIBUS, a comunicação envolve recursos que estão disponíveis

somente em certos CPs de fabricantes que adotam o PROFIBUS.

Por outro lado, uma rede Ethernet não se justifica quando compara-se o custo de

soluções com comunicação serial.

Desta forma, a Comunicação Serial mostrou-se o mais conveniente para o caso de

estudo considerado e ela é, portanto, descrita a seguir.

 20

2.6.1. Comunicação serial

Na comunicação serial, apenas um bit é enviado de cada vez através da porta de

comunicação serial (do CP ou do computador). A comunicação utiliza-se de uma linguagem

de programação para a confecção dos protocolos responsáveis pelo envio e recebimento de

informações. Os dados enviados e recebidos são encapsulados em blocos, ou pacotes, cujo

formato é o seguinte:

• STX (0x2): byte que representa o início de um pacote;

• CRC: contador de referência cíclico, usado para verificação da integridade do pacote;

• BLK: número do pacote (16 bits);

• LEN: número de bytes de dados contidos no pacote (16 bits);

• DATA: bytes de dados do pacote de tamanho LEN ⇐ MAX_BLOCK_LEN

• MAX_BLOCK_LEN: é uma constante (por ex.: 512);

• ETX (0x3): byte que representa o fim de um pacote.

O último byte de cada pacote deve necessariamente ser NULL, indicando o fim da

informação transmitida.

2.6.2. Comunicação serial em C++

Em C++ existem classes já elaboradas e disponibilizadas por diversos autores que

permitem a realização da comunicação serial. Esta seção apresenta uma descrição destas

classes (Traverse, 2007).

Para que seja possível a comunicação serial, é preciso estabelecer uma série de

definições, tais como a porta a ser utilizada (COM1 ou COM2 no caso deste projeto), tempos

e constantes, velocidade e paridade (parâmetros da comunicação). Definidos todos os

parâmetros, é necessário criar rotinas para recepção e envio de dados, além, é claro, do

tratamento de erros no estabelecimento da comunicação, na abertura e no fechamento das

portas.

 Com todas estas rotinas implementadas, é possível estabelecer, de forma relativamente

simples, a comunicação serial através da linguagem C++.

 21

2.7. Monitoração Visual

2.7.1. Visualização de imagens

O componente VIDEO CAPTURE para C++ Builder da empresa XtimSoft

(XTIMSOFT, 2007) consiste em uma “janela” a ser adicionada na interface de um programa

qualquer. O acionamento desta “janela” a partir de um determinado evento faz com que as

imagens captadas por uma webcam instalada no computador sejam apresentadas na interface

deste programa através desta “janela”. A Figura 6 ilustra qual o procedimento para adicionar o

componente à interface de um programa.

Figura 6 – Utilizando o componente VIDEO CAPTURE.

2.7.2. Transmissão de imagens pela Internet

Utilizando o componente VIDEO CAPTURE num computador com conexão à Internet

e um componente de imagem (IMAGE) num outro computador também conectado à Internet

pode-se estabelecer uma transmissão de imagens.

O componente já adicionado à
interface do programa

O componente na palheta de
componentes

 22

A webcam instalada num computador captura um frame que é salvo em um arquivo

BITMAP, em seguida, o arquivo é transformado em uma stream para que esta seja

transmitida pela Internet. Ao receber uma stream o outro computador já sabe se tratar de uma

imagem e exibe-a em seu componente de imagem.

A sucessão dos frames exibidos no computador faz com que o componente de exibição

de imagem emule a exibição de um vídeo. A Figura 7 ilustra esquematicamente como

funciona a transmissão de imagens (captadas por uma webcam) entre o computador (servidor)

e o outro computador (cliente) utilizando-se a internet.

 Figura 7 – Transmissão de informação de vídeo pela internet.

 Uma vez estabelecida comunicação entre os computadores, de acordo com o processo

na Figura 7, o usuário poderá visualizar as imagens na tela do computador (cliente) como se a

webcam estivesse instalada nele próprio.

Frame atual de
uma webcam

(servidor)

Arquivo
bitmap

recebe o
frame

Internet
Arquivo é

transformado
em uma stream

Stream é lida
como imagem

(cliente)

 23

3. Descrição Geral do Projeto

3.1. O Sistema Produtivo considerado

O sistema produtivo considerado neste trabalho é um sistema de manufatura integrado

por computador que executa o processo de montagem automática de diferentes peças (Festo,

1998). Cada peça é composta por: uma base, de três cores possíveis (preta, prateada e rosa);

um pino para sustentar uma mola, de dois tipos possíveis (preto ou cinza); a mola citada e

uma tampa, ambos comuns aos três tipos. De acordo com a cor da base, as peças montadas

assumem diferentes composições, como pode ser observado na Figura 8:

Figura 8 – Montagem dos diferentes cilindros pelo sistema CIM.

3.1.1. Descrição Geral

O sistema CIM é um equipamento para fins de treinamento especializado da empresa

Festo que, na configuração disponível no Laboratório de Sistemas de Automação do PMR-

EPUSP, é composto de 5 estações de trabalho, cada qual capaz de ser operada

individualmente ou, no contexto de um sistema integrado e automatizado, cada estação possui

certa autonomia na execução de suas tarefas. As estações de trabalho são as seguintes:

Estação de Testes; Estação de Distribuição; Estação de Montagem com Unidade de Execução

da Montagem; Sistema Inteligente de Transporte (SIT); Estação de Controle de Célula de

Trabalho.

A Estação de Distribuição armazena as bases a serem montadas e as encaminha ao

processo de produção de acordo com a demanda. Já a Estação de Testes é responsável pela

identificação da cor (prateada, rosa ou preta) e teste da altura das bases vindas da estação de

distribuição. Esta estação é também responsável por descartar peças rejeitadas neste teste. O

Sistema Inteligente de Transporte conta com uma esteira de transporte e cinco carros (pallets).

Tampas

Molas

Pinos de
Suporte

Base

 24

Este sistema de transporte tem pré-definido quatro lugares distintos para a parada dos carros,

sendo um deles destinado à Estação de Testes e outro à Estação de Montagem. O SIT destina-

se a transportar as bases identificadas e testadas da Estação de Testes para a Estação de

Montagem, onde a montagem do produto é finalizada. Os produtos finais são então

transportados pelo SIT para uma outra localidade distinta.

Figura 9 – Esquema ilustrativo do sistema CIM.

Entre as características do sistema CIM encontram-se:

• Estações de Distribuição e Testes: possui dispositivos para manipulação, testes

de controle de qualidade através de sensores, aquisição e avaliação de sinais digitais e

analógicos, assim como um sistema de controle para cada estação, com CLPs;

• Estação de Montagem: possui um manipulador de 3 eixos para a montagem das

peças, sendo dois dos acionamentos por servo-motores (eixos x e y) e o terceiro por motor CC

(eixo z), dotado ainda de dispositivo de garra dedicado. O controle é realizado por controlador

programável.

• Sistema Inteligente de Transporte (SIT): visa o controle de fluxo de material e

é composto de módulos de esteiras flexíveis, dotadas de dispositivos pneumáticos de fixação

Estação de
Distribuição

Estação
de Testes

Estação de
Montagem

 SIT

Estação de Controle de
Célula de Trabalho

 25

de carros (pallets) e indexadores, que permitem o acesso para as estações de trabalho, além de

futuras expansões.

• Estação de Controle de Célula de Trabalho: implementa o controle supervisório

das demais estações e inclui um computador central (Host Controller) para controle do

processo, com sistema de visualização do processo on-line.

A seguir apresenta-se uma descrição detalhada das Estações de Distribuição e Testes

do sistema CIM, uma vez que estas são o material-base deste projeto.

3.1.2. Estação de Distribuição

A Estação de Distribuição pode ser definida como um sistema de alimentação cujas

principais funções são:

• Retirar uma peça (base) do magazine de distribuição;

• Disponibilizar a peça para o processo subseqüente.

Na estação de distribuição, constam um compartimento de armazenagem de bases

(magazine de distribuição), com sistema de retirada e posicionamento individual destas peças,

e um mecanismo de transporte entre a estação de distribuição e a estação de testes (módulo de

transferência).

Figura 10 - Detalhamento dos componentes das Estações de Distribuição e Testes

O magazine de distribuição conta com um sensor de presença óptico no seu

compartimento de armazenagem. Havendo peça neste compartimento, um feixe de luz é

interrompido pela presença física da peça, impedindo que o mesmo alcance o sensor

 26

(elemento foto-elétrico), que indica sua presença e sinaliza ao controle que o sistema pode

iniciar a tarefa seguinte.

A retirada e o posicionamento individual das bases são realizados por um pistão

pneumático, comandado por uma válvula de uma via. Este tipo de válvula apresenta somente

um estado que pode ser mantido constantemente, isto é, ou haste do pistão está avançada

(válvula fechada) ou recuada (válvula aberta). Neste dispositivo, o estado permanente da haste

do pistão é a de avanço total. Quando é necessária a retirada de uma peça do compartimento

de armazenagem e seu devido posicionamento, a válvula comuta seu estado e a haste do

pistão recua, carregando, neste movimento, a primeira peça da fila (posição inferior da pilha

de peças no compartimento de armazenagem) para a posição determinada, retornando em

seguida a sua posição original. O controle dos limites de avanço e recuo da haste é realizado

por sensores fim de curso magnéticos acoplados ao corpo do pistão.

Figura 11 - Retirada e posicionamento de bases na estação de distribuição (magazine de

distribuição)

O mecanismo de transporte entre as Estações de Distribuição e de Teste (módulo de

transferência) é um braço articulado em uma de suas extremidades, cujo movimento se dá em

plano vertical. O movimento deste braço mecânico é regulado por duas chaves fim de curso

de roletes, vinculadas à rotação do mesmo em torno de sua extremidade articulada. Na sua

extremidade livre, este mecanismo dispõe de uma "ventosa" capaz de fixar-se às peças através

de vácuo, gerado externamente em uma unidade de geração de vácuo. Para a liberação da

peça, basta eliminar o vácuo, permitindo-se contato das vias despressurizadas relacionadas a

este mecanismo com o meio externo, eliminando a ação do vácuo gerado.

 27

 Figura 12 - Módulo de transferência

3.1.3. Estação de Testes

 Tarefas importantes na execução de testes são a aquisição de informação e

comparação de características específicas e, resultante disto, uma decisão entre “peça aceita”

ou “peça rejeitada”.

As funções da Estação de Testes são:

• Estabelecer as características do material da peça;

• Descartar ou disponibilizar a peça para a estação subseqüente.

Esta estação apresenta uma plataforma elevatória e diferentes tipos de sensores para a

realização dos testes. Para tanto, esta estação define dois “andares”. No “andar” inferior,

existem três sensores distintos: indutivo, óptico e capacitivo, que estão dispostos de forma a

não interferir na livre movimentação tanto da plataforma elevatória como do braço articulado

do módulo de transferência (Estação de Distribuição). O sensor óptico é o único que

permanece acoplado à plataforma elevatória, sendo os demais fixos na base da unidade. O

sensor indutivo visa identificar peças metálicas (prateadas), o sensor óptico destina-se a

identificar peças que refletem a luz por ele emitida (rosas ou prateadas), e o sensor capacitivo

é utilizado para identificar a presença ou não de peças. Os três sinais emitidos pelos três

sensores devem ser analisados em conjunto e permitem assim identificar a cor da peça

presente na plataforma.

 28

Figura 13 - Arranjo físico dos sensores para teste do tipo/material das peças na Estação de

Testes

O “andar” superior, onde é realizado o teste de altura das peças, apresenta um pistão

pneumático e um mecanismo acoplado à extremidade de sua haste, cujo movimento pressiona

um sensor piezoelétrico acoplado à estrutura da plataforma elevatória, na posição vertical. O

contato com a peça é realizado por uma pequena haste metálica, que é comprimida contra a

peça a ser testada, em um movimento ao longo de seu eixo, gerando a compressão do

elemento piezoelétrico. A compressão do elemento piezoelétrico gera uma corrente elétrica. A

altura da peça pode ser, então, testada de acordo com a intensidade da corrente gerada deste

contato (maior para compressões maiores -peças mais altas- ou menores para menores

compressões - peças mais baixas), isto é, de acordo com a calibração deste sensor.

A plataforma elevatória conta com mais um pistão pneumático, na posição horizontal,

que também se desloca junto com a plataforma elevatória, responsável por expulsar as peças,

tanto aprovadas como reprovadas no teste de altura, através de rampas presentes em cada um

dos andares: a rampa do “andar” superior para peças aprovadas e a do “andar” inferior para

peças reprovadas. Para garantir a realização da tarefa, a ação deste pistão é temporizada,

mantendo sua haste avançada por um tempo pré-determinado na programação, para somente

então ocorrer o seu recuo, garantindo a expulsão da peça testada.

 29

Figura 14 - Plataforma elevatória e rampas inferior e superior

Após a realização dos testes, as peças aprovadas seguem para um carro transportador

(pallet) no sistema inteligente de transporte (SIT), por meio de uma rampa (superior), ou são

descartadas no andar inferior, por meio de outra rampa (inferior).

3.1.4. Sistema de Controle

Cada estação de trabalho é controlada por meio de um controlador programável. O

controlador que comanda a Estação de Distribuição é o FPC101-B, e o que controla a Estação

de Testes é o FPC101-AF ambos da empresa Festo.

A ligação entre os elementos da bancada (dispositivos de atuação e dispositivos de

detecção) e o controlador, em ambos os casos, é realizada através de dois terminais de

entrada/saída, um deles ligado diretamente ao controlador e aos elementos da bancada, e outro

ligado ao controlador e os dispositivos de comando e de monitoração (botões, chaves e

lâmpadas sinalizadoras) existentes na estação. Cada qual possui 8 entradas por onde chegam

as informações advindas dos dispositivos de controle e 8 saídas.

Os botões e chaves, que são únicos para as duas bancadas, possibilitam ativar o

funcionamento das estações. Estes proporcionam a realização do processo de duas formas: a

contínua, na qual o funcionamento das duas bancadas ocorre seqüenciada e ininterruptamente,

e por etapas, onde se pode escolher qual das estações deseja-se ativar. Além disso, através dos

botões e chaves pode-se interromper o processo a qualquer momento e retornar as estações às

suas posições iniciais.

 30

3.2. Considerações gerais sobre o projeto

 O projeto aqui consiste em programar os CPs de maneira que as estações de

trabalho executem o processo / tarefas previstas. Além disso, é necessário estabelecer a

comunicação entre os CPs e os PCs (Estações de controle), isto é, programar a interface local

e remota para que se comuniquem, respectivamente, com CP (serial) e PC Remoto (sockets) e

PC Local (sockets).

 A Figura 15 mostra uma representação esquemática das atividades

desenvolvidas e os conceitos considerados.

Figura 15 – Representação esquemática dos fundamentos aplicados ao projeto

UML
Rede de Petri

Programação de CP
Linguagem C++

Orientação a objetos

PC Local PC Remoto CP

internet RS232

Sockets Comunicação
serial

Monitoramento visual

 31

4. Implementação

 Para se implementar o comando e monitoramento das estações do sistema CIM

foi adotada uma estratégia para elaboração do sistema de controle. A idéia é que uma vez

visualizado o sistema, isto é, que se tenha definições e especificações precisas sobre sua

estrutura, componentes físicos e lógicos e, processos envolvidos, bem como as maneiras como

se deseja comandá-lo e monitorá-lo basta usar as ferramentas, conceitos e fundamentos

adequados para implementar aquilo que foi planejado. Assim, torna-se chave a questão de

como interpretar visualmente todas as possibilidades do seu sistema de controle. Neste

projeto, isto foi realizado através dos diagramas UML e da representação do sistema CIM em

redes de Petri, detalhados a seguir.

4.1. Diagramas UML

 Inicialmente, estudou-se o sistema de controle através de digramas UML, a fim

de se identificar todas as necessidades de interação entre sistema CIM, usuário local e usuário

remoto. Os principais diagramas considerados são detalhados abaixo.

4.1.1. Diagrama de Casos de Uso:

Os atores do sistema em desenvolvimento são os usuários do programa. Inicialmente

definiu-se três categorias de possíveis usuários, organizadas de forma hierárquica, de acordo

com as funções disponibilizadas para o controle das estações de trabalho:

• EXPERT – Usuários desta categoria podem tanto realizar o processo

continuamente (sem interrupções), quanto realizar o processo passo a passo (por etapas) ou

realizar uma ou mais etapas do processo de forma isolada.

• INTERMEDIÁRIO - Usuários desta categoria podem realizar o processo

continuamente ou passo a passo.

• LEIGO – Usuários desta categoria podem realizar o processo continuamente.

O diagrama de casos de uso resultante é apresentado na Figura 16:

 32

Executar processo
contínuo

Executar passo
a passo

Executar uma
etapa

Enviar
mensagem

Receber
 mensagem

Acessar lista
de espera

Expert

Intermediário

Leigo

Iniciar/Finalizar
o sistema

Figura 16 – Diagrama de casos de uso.

Nesta fase do projeto, para reduzir o tamanho do código de software, foi decidido que

só haveria apenas um tipo de usuário, e este teria acesso a todo tipo de controle da estação

(como seria o caso do usuário no topo da cadeia hierárquica pretendida).

4.1.2. Diagrama de Classes:
O ator externo “Usuário” solicita (via software) a execução de uma atividade para o

objeto Proc_peça, que aciona os devidos objetos das estações de trabalho (os equipamentos,

ou seja, os pistões, o braço mecânico e o gerador de vácuo) na ordem adequada para que a

atividade possa ser concluída corretamente. Por exemplo, no caso das duas estações de

trabalho consideradas tem-se o diagrama da Figura 17:

 33

Software

Pistão

Sensores de
posição

Pistão elevador

Pistão de
descarte/aceitação

Gerador de
Vácuo

Sensores de
posição

Braço mecânico

Sensores de Teste
(presença/cor/campo)

Proc_peça

Sensor
para teste
de altura

Pistão de
alocação

utiliza

utiliza *

1

1

3

7

3

Associação

Herança

Agregação

Legenda:

Figura 17 – Diagrama de classes.

4.1.3. Diagrama de atividades:
Os principais casos de uso são detalhados em diagramas de atividades.

 34

solicitação para iniciar o processo

alocação da peça (pistão)

posicionamento do braço + 'agarramento'

alocação da peça na estação de testes

teste da presença de peça

teste da cor

teste de campo

descarte teste de altura

lançamento da peça para esteira

STOP

Figura 18 – Diagrama de atividades do caso de uso ‘Executar processo contínuo’.

No modo de execução de processo contínuo (Figura 18), as etapas do processo são

realizadas em uma seqüência pré-estabelecida e, mesmo neste modo, é possível interromper o

processo a qualquer momento clicando no botão STOP da interface principal (a partir daqui,

esta será a referência para a tela principal do programa de controle desenvolvido). Durante a

execução, o campo de status, localizado na interface principal, é continuamente atualizado

para que o usuário possa monitorar o estado da estação de trabalho.

 35

solicitação para iniciar o processo

alocação da peça (pistão)

posicionamento do braço + 'agarramento'

alocação da peça na estação de testes

teste da presença de peça

teste da cor

teste de campo

descarte teste de altura

lançamento da peça para esteira

STOP

iniciar

iniciar

iniciar

iniciar

iniciar

iniciar

iniciar

iniciar

 Figura 19 – Diagrama de atividades do caso de uso ‘Executar processo por etapas’.

 No modo de execução de processo por etapa (Figura 19), as etapas do processo

também podem ser realizadas seqüencialmente, porém, é necessário que o usuário clique no

botão ‘Iniciar’ para indicar a etapa a ser executada dentro da seqüência pré-estabelecida. O

campo de status é atualizado após cada etapa. Clicando no botão STOP da interface principal

pode-se interromper o processo a qualquer momento.

 36

Usuário clica em 'Uma Etapa'

Habilita janela de selecionar etapa

Usuário seleciona etapa e clica em 'Iniciar'

Envia informação ao computador local

Atualiza janela de status

Etapa finalizada

Informa computador local

Solicita ´finalizar programa´

Fecha programa

Pede confirmação

Cancela Confirma

Figura 20 – Diagrama de atividades do caso de uso ‘Executar uma Etapa’.

 No diagrama da Figura 20 a etapa selecionada pelo usuário é executada uma

única vez. Durante a execução o campo de status é continuamente atualizado e o usuário pode

solicitar a interrupção da etapa.

 Após analisar todos os diagramas, ainda na fase inicial do projeto, optou-se por

simplificar o sistema de controle. A principal simplificação foi eliminar a hierarquização de

tipos de usuários. O estudo aprofundado de sockets foi fundamental para esta decisão uma vez

que foi percebida a complexidade em se realizar uma conexão via internet em meio a códigos

relativamente longos e complexos. Outras simplificações foram conseqüência da modelagem

do sistema CIM através de rede de Petri.

 37

4.2. Redes de Petri do sistema CIM

 A modelagem de todo o sistema de controle foi feita, inicialmente, para a

primeira estação de trabalho do sistema CIM, a estação de distribuição, e em seguida

expandido para a estação de testes. O modelo de rede de Petri do funcionamento da primeira

estação de trabalho considerada no projeto (Figura 21) foi decisivo na simplificação da

interface principal do programa com o usuário. A partir da modelagem pode-se elaborar uma

interface relativamente funcional, porém, sem alguns dos recursos periféricos planejados

anteriormente nos diagramas UML.

Figura 21 – Modelagem do funcionamento da estação de distribuição em rede de Petri

Para incluir o controle de outra estação de trabalho, isto é, além da estação de

distribuição, o controle também da estação de testes, foi necessário expandir o programa

responsável pelo comando e monitoração das estações. A expansão do programa segue a

mesma lógica de programação anteriormente adotada estendendo as funções de comando e de

monitoração. Para esta atividade, foi de fundamental importância o modelo em rede de Petri

do sistema envolvendo as duas estações de trabalho (Figura 22).

 38

Figura 22 – Modelo do funcionamento conjunto das estações de distribuição e de
testes em rede de Petri.

 39

5. Testes e análise dos resultados

Os principais resultados reportados seguem a ordem de comunicação do sistema de

controle. Inicialmente serão mostrados os resultados relativos à programação de CPs,

seguidos pelos resultados de comunicação serial entre computador e CP, e, pela utilização de

sockets para comunicar dois computadores através da Internet. Na seqüência, são mostrados

os resultados da programação da interface final (tanto remota como local) para a primeira

estação de trabalho (estação de distribuição), e, por fim, os resultados referentes à

monitoração visual e transferência de vídeo pela Internet, para então, serem apresentados os

resultados finais do projeto: a interface final do programa, já expandida para a estação de

testes, e a sugestão de metodologia para desenvolvimento de sistemas de comando e

monitoramento remoto de sistemas produtivos.

5.1. Programação do CP

A criação e implementação do programa do CP da estação de distribuição foi

executada em diversas etapas. Após os estudos sobre lista de instruções e comunicação serial,

foram analisadas possíveis formas de atualização do programa. A idéia inicial consistia em

alterar apenas o trecho que carregava os valores de sinais de dispositivos de comando para

uma variável indicativa de borda de subida, permanecendo o restante do código inalterado. A

tentativa foi carregar neste trecho de código os sinais vindos da comunicação serial,

substituindo os sinais originalmente vindos dos dispositivos de comando. Depois de definida

esta estratégia, o próximo passo foi a familiarização com a implementação da comunicação

serial através da lista de instruções. Ao fim desta etapa, foi possível concluir que a primeira

estratégia traçada foi equivocada. Portanto, foi definida uma nova estratégia de alteração do

programa, que embora mais trabalhosa devido ao fato de alterar significativamente o

programa original, mostrou-se de implementação mais simples. Por fim, implementou-se

todas as mudanças planejadas. A seguir, é detalhada cada uma das fases da concepção e

implementação da atualização do programa no CP.

5.1.1. Primeira estratégia de atualização do programa do CP

No programa original do CP da estação de distribuição, existia uma rotina que cuidava

da detecção de bordas de subida ocorridas devido ao acionamento dos botões da bancada. A

 40

primeira idéia concebida foi a de alterar apenas esta rotina. Esta idéia fez-se válida, entre

outros motivos, pelo fato de alterar apenas uma mínima parte do código original, reduzindo a

propensão aos erros causados por alterações indevidas no programa original. A alteração

idealizada é mostrada na Listagem 1 e Listagem 2:

STEP LOOP

IF NOP

 THEN LOAD (IW1 'Sinais dos botões

 EXOR Old_IW1) 'Sinais antigos

 AND IW1

 TO pEd_IW1 'Marcador de borda de subida

 LOAD IW1

 TO Old_IW1

 IF NOP

 THEN JMP TO LOOP

Listagem 1 – Rotina original

STEP LOOP

IF NOP

 THEN LOAD (Serial 'Porta serial

 EXOR OldSerial) 'Porta serial (sinais antigos)

 AND Serial

 TO pEd_Ser 'Marcador de borda de subida

 LOAD Serial

 TO OldSerial

IF NOP

 THEN JMP TO LOOP

Listagem 2 – Alteração na rotina original

Esta idéia foi abandonada após um maior entendimento do funcionamento da

comunicação serial na linguagem do CP, pois o CP é capaz de responder a um simples byte

enviado via porta serial, não havendo a necessidade de se trabalhar com operações que

identifiquem as mudanças entre os sinais antigos e atuais. Fazendo uma simples

correspondência entre os bytes recebidos e as ações executadas, é possível executar todas as

rotinas de funcionamento.

5.1.2. Comunicação serial no CP

O software no qual o programa foi desenvolvido, o FST 4.11, disponibiliza diversos

drivers, entre eles, o de comunicação serial. Ao adicionar este driver ao projeto, pode-se

utilizar as rotinas pertencentes a este. Os comandos são tratados pelo software como CFMs,

 41

ou seja, rotinas em outra linguagem às quais não se tem acesso ao código. Portanto, uma vez

incluídos os comandos ao projeto, pode-se utilizá-los, porém não alterá-los.

A linguagem de lista de instruções oferece uma série de comandos relacionados à

transmissão de dados através da comunicação serial. O programa desenvolvido para o CP da

empresa Festo no controle das estações de distribuição e testes do sistema CIM conta com

uma palavra (‘word’) que transmite os parâmetros necessários para este tipo de comunicação.

Trata-se da FU32, variável interna utilizada para passar parâmetros para módulos. No caso de

certos comandos, são necessárias outras palavras para que a informação seja transmitida, as

quais não existem no programa atual da Festo, mas podem ser inseridas. Os comandos que

possibilitam a transmissão de dados via comunicação serial, assim como os operandos

necessários para tal, são listados a seguir:

• OPENCOM: abre a interface serial;

Parâmetro de Entrada: FU32 – interface serial

Parâmetro de Retorno: verdadeiro (0)/falso (1)

• CLOSECOM: fecha interface serial aberta;

Parâmetro de Entrada: FU32 – interface serial

Parâmetro de Retorno: verdadeiro (0)/falso (1)

• GETCOM: lê um caractere de uma interface serial;

Parâmetro de Entrada: FU32 – interface serial

Parâmetros de Retorno: verdadeiro (0)/falso (1)/nenhum dado recebido (-1)

 FU33 – se FU32=0, FU33 recebe o caractere (0 a 255)

• PUTCOM: envia um caractere para uma interface serial;

Parâmetros de Entrada: FU32 – interface serial

 FU33 – caractere a ser enviado (0 a 255)

 42

Parâmetro de Retorno: verdadeiro (0)/falso (1)

A fim de compreender o funcionamento de cada um dos comandos, após integrá-los ao

projeto, foi realizada uma série de testes, descritos a seguir:

• Teste 1: Enviar um byte via porta serial – Para realizar tal teste, foi utilizado o

comando PUTCOM, definido no projeto como CFM4. Um programa simples em C++ (seção

4.2.1) foi desenvolvido para responder a este teste, mostrando um label caso o byte fosse

recebido. Os códigos são mostrados na Listagem 3:

Listagem 3 – Teste 1

• Teste 2: Mover pistão através do comando do computador local – Neste teste, o

byte correspondente ao movimento do pistão é ativado através de um programa em C++ que

envia o comando de acordo com o acionamento do botão presente na interface do software do

computador local. A recepção de sinal se dá através do comando GETCOM, definido como

CFM3. Ao receber o byte, o programa do CP o carrega na palavra de saída correspondente aos

atuadores da bancada, acionando o pistão. Os códigos programados são mostrados na

Listagem 4:

STEP INIT

 THEN CMP 0 'inicialzia operandos

STEP

 THEN LOAD V1

 TO FU32 'Parametro do GETCOM

STEP LOOP

 THEN

 CFM 3 'GETCOM

 IF FU32

 = V0

 THEN

STEP INIT

 THEN CMP 0 'inicializa operandos

STEP

 THEN LOAD V1

 TO FU32 'Parametros do PUTCOM

 LOAD V6

 TO FU33 'Parametros do PUTCOM

STEP

 THEN CFM 4 'PUTCOM

 43

 JMP TO 1

 OTHRW

 JMP TO LOOP

STEP 1

 THEN

 LOAD FU33 'Parametro do GETCOM

 TO OW0

Listagem 4 – Teste 2

• Teste 3: Como distinguir dois bytes recebidos – Adicionando-se outro botão à

interface do software em C++, envia-se dois diferentes bytes ao CP. De acordo com o byte

recebido, é carregado um valor diferente em uma palavra de saída. Os códigos programados

são mostrados na Listagem 5:

STEP INIT

 THEN CMP 0 'inicializa operandos

STEP

 THEN LOAD V1

 TO FU32

STEP LOOP

 THEN

 CFM 3 'GETCOM

 IF FU32

 = V0

 THEN

 JMP TO 0

 OTHRW

 JMP TO LOOP

STEP 0

 IF FU33

 = V63

 THEN JMP TO 1

 OTHRW

 JMP TO X

STEP X

 IF FU33

 = V62

 THEN JMP TO 2

 OTHRW

 JMP TO END

STEP 1

 THEN LOAD V6

 TO OW1

 JMP TO END

STEP 2

 THEN LOAD V1

 TO OW1

STEP END

 THEN LOAD V1

 TO FU32

Listagem 5 – Teste 3

 44

5.1.3. Reestruturação do programa do CP

A reestruturação do programa foi dividida em três casos: para o funcionamento

automático, para o funcionamento por etapas e para o caso em que se deseja testar o

funcionamento individual de qualquer dos componentes de uma estação de trabalho. Depois

da implementação de cada caso, o próximo passo foi juntar todos os modos de funcionamento

num único projeto, por meio da diferenciação dos bytes enviados conforme testes anteriores.

• Primeiro caso: Funcionamento automático – Adaptou-se do programa original

do CP a rotina de reset, que posiciona a estação em seu estado inicial, e o programa que

executa todos os procedimentos inerentes à estação de distribuição e de teste, em seqüência e

automaticamente. Criou-se então o programa principal, que ao receber um byte, ativa o

programa de reset e em seguida, o programa de controle que atua nas estações. Para que as

duas rotinas não fossem executadas simultaneamente, um flag é levantado quando a rotina de

reset é concluída, e a rotina seguinte só é executada caso este flag esteja levantado. Os

códigos programados são mostrados na Listagem 6:

STEP INIT

 THEN CMP 0 'inicializa operandos

STEP MainLoop

 THEN

 LOAD V1

 TO FU32

STEP LOOP

 THEN

 CFM 3 'GETCOM

 IF FU32

 = V0

 THEN

 JMP TO 1

 OTHRW

 JMP TO LOOP

STEP 1

 THEN

 SET P10 'P10: reset

STEP 2

 IF InitRdy 'F2.13: flag de Reset

 THEN

 SET P11 'P11: sequência de eventos

Listagem 6 – Funcionamento Automático das estações de distribuição e de testes

• Segundo caso: Funcionamento por etapas – Neste projeto, foram criadas

diversas rotinas, uma para cada etapa do processo, em substituição à rotina única do projeto

 45

anterior. Para cada byte recebido no programa principal do CP, uma nova rotina é executada.

Os códigos programados são mostrados na Listagem 7:

STEP INIT

 THEN CMP 0 'inicializa operandos

STEP MainLoop

 THEN

 LOAD V1

 TO FU32

STEP LOOP

 THEN

 CFM 3 'GETCOM

 IF FU32

 = V0

 THEN

 JMP TO 1

 OTHRW

 JMP TO LOOP

STEP 1

 THEN

 SET P10 'P10: reset

STEP 2

 THEN

 CFM 3 'GETCOM

 IF FU32

 = V0

 THEN

 JMP TO 3

 OTHRW

 JMP TO 2

STEP 3

 THEN

 SET P12 'P12: Passo 1

STEP 4

 THEN

 CFM 3 'GETCOM

 IF FU32

 = V0

 THEN

 JMP TO 5

 OTHRW

 JMP TO 4

STEP 5

 THEN

 SET P13 'P13: Passo 2

STEP 6

 THEN

 CFM 3 'GETCOM

 IF FU32

 = V0

 THEN

 JMP TO 7

 OTHRW

 JMP TO 6

STEP 7

 THEN

 SET P14 'P14: Passo 3

STEP 8

 THEN

 CFM 3 'GETCOM

 46

 IF FU32

 = V0

 THEN

 JMP TO 9

 OTHRW

 JMP TO 8

STEP 9

 THEN

 SET P15 'P15: Passo 4

STEP 10

 THEN

 CFM 3 'GETCOM

 IF FU32

 = V0

 THEN

 JMP TO 11

 OTHRW

 JMP TO 10

STEP 11

 THEN

 SET P16 'P16: Passo 5

STEP 12

 THEN

 CFM 3 'GETCOM

 IF FU32

 = V0

 THEN

 JMP TO 13

 OTHRW

 JMP TO 12

STEP 13

 THEN

 SET P17 'P17: Passo 6

STEP 14

 THEN

 CFM 3 'GETCOM

 IF FU32

 = V0

 THEN

 JMP TO 15

 OTHRW

 JMP TO 14

STEP 15

 THEN

 SET P18 'P18: Passo 7

STEP 14

 THEN

 CFM 3 'GETCOM

 IF FU32

 = V0

 THEN

 JMP TO 15

 OTHRW

 JMP TO 14

STEP 16

 THEN

 SET P19 'P19: Passo 8

STEP 15

 THEN

 CFM 3 'GETCOM

 IF FU32

 = V0

 THEN

 JMP TO 16

 OTHRW

 JMP TO 15

 47

STEP 16

 THEN

 SET P20 'P20: Passo 9

STEP 17

 THEN

 CFM 3 'GETCOM

 IF FU32

 = V0

 THEN

 JMP TO 18

 OTHRW

 JMP TO 17

STEP 18

 THEN

 SET P21 'P21: Passo 10

STEP 19

 THEN

 CFM 3 'GETCOM

 IF FU32

 = V0

 THEN

 JMP TO 20

 OTHRW

 JMP TO 19

STEP 20

 THEN

 SET P22 'P22: Passo 11

STEP 21

 THEN

 CFM 3 'GETCOM

 IF FU32

 = V0

 THEN

 JMP TO 22

 OTHRW

 JMP TO 21

STEP 22

 THEN

 SET P23 'P23: Passo 12

Listagem 7 – Funcionamento por etapas das estações de distribuição e de testes

• Terceiro caso: Teste dos atuadores – De forma semelhante ao segundo caso,

foram criadas rotinas específicas para cada tipo de teste que se deseje realizar. A principal

diferença deste caso para o caso anterior é que neste existe a necessidade de diferenciar os

bytes recebidos do computador, para que se possa definir qual teste deve ser executado. Os

códigos programados para a estação de distribuição são mostrados na Listagem 8:

STEP INIT

 THEN CMP 0 'inicializa operandos

STEP MainLoop

 THEN

 LOAD V1

 TO FU32

STEP LOOP

 THEN

 CFM 3 'GETCOM

 IF FU32

 = V0

 48

 THEN

 JMP TO 1

 OTHRW

 JMP TO LOOP

STEP 1

 THEN

 SET P10 'P10: reset

STEP 2

 THEN

 CFM 3 'GETCOM

 IF FU32

 = V0

 THEN

 JMP TO 3

 OTHRW

 JMP TO 2

STEP 3

 IF FU33

 = V10

 THEN

 SET P12 'P12: Teste 1

 JMP TO 2

 OTHRW JMP TO 4

STEP 4

 IF FU33

 = V20

 THEN

 SET P14 'P14: Teste 3

 JMP TO 2

 OTHRW JMP TO 5

STEP 5

 IF FU33

 = V30

 THEN

 SET P13 'P13: Teste 2

 JMP TO 2

 OTHRW JMP TO 6

STEP 6

 IF FU33

 = V40

 THEN

 SET P16 'P16: Teste 5

 JMP TO 2

 OTHRW JMP TO 7

STEP 7

 IF FU33

 = V50

 THEN

 SET P15 'P15: Teste 4

 JMP TO 2

 OTHRW JMP TO 8

STEP 8

 IF FU33

 = V63

 THEN

 SET P17 'P17: Teste 6

 JMP TO 2

 Listagem 8 – Funcionamento do teste dos atuadores da estação de distribuição

 49

5.2. Comunicação Serial em C++

A partir do código fornecido em (Traverse, 2007), foram adaptados primeiramente os

programas de teste que interagem com os programas-teste do CP. Com o funcionamento

destes, foi possível adaptar a interface elaborada no projeto, habilitando a comunicação serial

ao software final do projeto.

5.2.1. Testes em C++

O código obtido exemplifica a comunicação via serial a partir de dois memos. O

primeiro programa-teste adaptado deste código possui um botão que envia um byte e um label

invisível que aparece no programa do CP quando este recebe um byte. Para os demais testes,

foram adicionados mais botões, de acordo com as necessidades dos programas-teste do CP

(no caso do teste para diferenciar bytes recebidos, eram necessários dois botões, cada qual

enviando um byte diferente para o CP; no caso do teste dos atuadores eram necessários sete

botões, cada qual enviando um diferente byte para o CP). As diferenças concentram-se

essencialmente em dois eventos: o “clique” do botão e o evento DisplayIt(), que trata do

recebimento dos dados. As modificações são apresentadas na Listagem 9:

void __fastcall TForm1::Button1Click(TObject *Sender)

{

 byte = '?';

 // TRANSMITE O BYTE ESCOLHIDO.

 TransmitCommChar(hComm, byte);

}

void __fastcall TRead::DisplayIt(void)

{

Form1->Label1->Show();

}

Listagem 9 – Alterações dos Códigos para Testes em C++

Com a verificação do funcionamento dos programas de teste em comunicação em

C++, aplicaram-se os mesmos conceitos na interface do software do projeto.

5.3. Programação de conexão à Internet via sockets

Os dois testes mais relevantes para o projeto na fase de estudos de sockets foram: a

implementação dos programas (cliente e servidor) que trocassem informação (1 byte) entre si,

pela rede ao clicar-se em um botão; e a implementação dos programas (cliente e servidor) que

realizassem um simples chat entre si.

 50

TESTE 1:

Troca de informação:

 Figura 23 –Tela do programa cliente Figura 24 – Tela do programa servidor

O Cliente (Figura 23): Os objetos importantes do cliente e suas atividades vinculas aos
métodos usados são:

- Botão de Conexão (canto superior esquerdo da tela):

 Método OnClick :

ClientSocket->Host = "192.168.0.244"; // define o IP do servidor

ClientSocket->Active = true; // ativa o objeto ClientSocket

- ClienteSocket (ao lado do Botão de Conexão):

 Método ClientSocketConnect:

Form1->Label2->Show(); // mostra Label CONECTOU

 Método ClientSocketDisconnect:

Form1->Label4->Show(); // mostra Label DESCONECTOU

 Método ClientSocketError:

Form1->Label5->Show(); //mostra Label ERRO, relativo à

//impossibilidade de conexão

Método ClientSocketRead:

if (Socket->ReceiveText() == "Y"){ // se recebeu via sockets Y

 Form1->Label3->Show(); // mostra Label Y na tela

 }

- Botão de Enviar (Button1):

 51

 Método OnClick :

ClientSocket->Socket->SendText("X"); // manda X via sockets

O Servidor (Figura 24): Os objetos importantes do servidor e suas atividades vinculas

aos métodos usados são:

- Botão de Enviar (botão ‘Mandar’ da tela):

 Método OnClick :

ServerSocket1->Socket->Connections[0]->SendText("Y"); // manda Y

// via sockets

- ServerSocket (ao lado esquerdo do botão ‘Mandar’):

 Método ServerSocketAccept:

Form1->Label2->Show(); // mostra Label ACEITOU

 Método ServerSocketClientConnect:

Form1->Label3->Show(); // mostra Label CONECTOU

 Método ServerSocketClientDisconnect:

Form1->Label4->Show(); // mostra Label DESCONECTOU

Método ServerSocketClientRead:

if (Socket->ReceiveText() == "X") { // se recebeu via sockets X

 Form1->Label1->Show(); // mostra na tela Label Y

 }

Feito este teste, pode-se entender os princípios da comunicação via sockets e

desenvolver um programa que realizasse as funções básicas de um chat entre 2 usuários e a

troca de códigos (X e Y por exemplo).

 52

TESTE 2:

Chat:

 Figura 25 – Tela do programa cliente Figura 26 –Tela do programa servidor

O Cliente (Figura 25): Os objetos importantes do cliente e suas atividades vinculadas aos
métodos usados são:

- Botão de Conexão (canto superior esquerdo da tela):

 Método OnClick :

ClientSocket->Host = "192.168.0.244"; // define o IP do servidor ClientSocket-

>Active = true; // ativa o objeto ClientSocket

- ClienteSocket (ao lado do Botão de Conexão):

 Método ClientSocketConnect:

Memo2->Lines->Add("PC LOCAL CONECTADO..."); // coloca no quadro de mensagens a

//frase entre aspas duplo

 Método ClientSocketDisconnect:

Form1Memo2->Lines->Add("PC LOCAL DESCONECTADO!!!");

Memo2->Lines->Add("\r\n"); //depois de colocada a frase acima, pula linha

 Método ClientSocketError:

Memo2->Lines->Add("Error connecting to: PC LOCAL"); // adiciona…

Método ClientSocketRead:

c=Socket->ReceiveText(); //uma AnsiString recebe o que chega pela rede

 if (c == "Y") { // se for Y

 Label1->Show(); //mostre a mensagem de boas //vindas

 53

 }

 else { // caso contrario, o que quer que seja

 Memo2->Lines->Add("PC LOCAL: " + c);// ponha //no chat

 }

- Botão de Enviar (Button1 da tela):

 Método OnClick :

ClientSocket->Socket->SendText("X"); // manda X via sockets

- Edit (barra para escrever o texto a ser mandado):

 Método :

if (Key == VK_RETURN) //se apertou enter

{

 Memo2->Lines->Add("PC REMOTO: " + Edit1->Text); //escreva no seu quadro

de mensagens a mensagem digitada

 ClientSocket->Socket->SendText(Edit1->Text);// //mande para o servidor

 Edit1->Clear(); //limpe o campo onde você acabou //de escrever uma

mensagem

}

O Servidor (Figura 26): O raciocínio é análogo, porém no servidor não existe botão de

conexão e ao criar o Form já ativa-se o servidor com o comando:

ServerSocket->Active = true;

5.4. Programação da interface de controle da estação de distribuição

 Entendido como realizar comunicação via sockets, foi possível programar a interface

parcial do projeto, somente referente ao controle da estação de distribuição.

Comunicação pela Internet: O princípio básico de conexão foi que para estabelecer conexão,

o servidor deve permitir o controle remoto (quando o usuário remoto se conectar com o

servidor, caso esteja liberada a conexão remota o cliente receberá um byte para entender que

pode controlar a estação) caso contrário o controle estará restrito ao PC local. Os comandos

passados de cliente para servidor (e vice-versa) são códigos em forma de bytes interpretados e

traduzidos nos programas. Caso a informação recebida não corresponda a nenhum código (e,

portanto a nenhum comando ou resposta) esta deverá ser impressa no chat. As possíveis

situações de conexão já na interface final são:

 54

Situação 1:

O cliente não consegue acessar o controle da estação de trabalho porque este está

sendo usado pelo PC local (designação do computador que se encontra fisicamente no mesmo

local das estações de trabalho, o PC remoto é aquele que se conecta ao PC local via Internet e

pode se encontrar em qualquer localidade), mas mesmo assim, o cliente está conectado ao

servidor e pode conversar pelo chat com o mesmo (Figura 27):

Figura 27 – Cliente não consegue acessar a bancada.

 Neste caso, o PC local está com pleno acesso e pode realizar os comandos desejados,

além da possibilidade de conversar com o usuário remoto (Figura 28):

TELA DO
PC

REMOTO

 55

Figura 28 – Servidor conectado e operando.

O Status Bar e o quadro de mensagens (Figura 29) fornecem informações relevantes

tais como “conexão estabelecida”, “aguardando conexão”, “Usuário Remoto desconectado!”

para acompanhar a evolução da conexão e do processo (alem de dois Labels auxiliares).

Figura 29 – Chat no detalhe

TELA DO
PC

LOCAL

 56

Situação 2:

 O PC local pode permitir o uso remoto através do botão “Uso Remoto”. Se há cliente

online, este automaticamente passa a ter o controle da estação, se não há ainda, assim que um

cliente se conectar ao servidor ele automaticamente estará com o controle da estação de

trabalho (a não ser que o PC local pare de permitir uso remoto neste ínterim, o que recairia na

situação anterior) (Figura 30):

Figura 30 –Clienteconectado e operando.

Depois da conexão do usuário remoto, o usuário local deverá esperar o cliente se desconectar

para voltar a ter controle sobre a estação de trabalho. Lembrando que o chat está sempre

funcionando enquanto cliente e servidor estão online (Figura 31):

TELA DO
PC

REMOTO

 57

Figura 31 – Servidor online, mas sem o controle da estação.

Com base no mecanismo de conexão entre servidor e cliente, anteriormente citado, apresenta-

se agora a interface final funcionando para alguns casos específicos (Figura 32):

TELA DO
PC

LOCAL

 58

Figura 32 – Cliente escolhe uma etapa e realiza teste

 Enquanto o cliente realiza o processo de teste (durante todo processo que qualquer um

dos usuários estiver realizando, este só pode acionar o botão de STOP), o servidor apenas

acompanha a evolução dos comandos do cliente (e enquanto o usuário remoto não se

desconectar, o servidor estará com sua tela inteira, a exceção do chat, desabilitada) (Figura

33):

TELA DO
PC

REMOTO

 59

Figura 33 – Servidor acompanha Modo Teste (Remoto executando)

 Implementado o controle e monitoração da primeira bancada, para atingir os objetivos

do projeto ainda resta a expansão do controle para a estação de distribuição e o

aprimoramento das interfaces finais (dos PCs local e remoto) através da adição de um campo

onde serão mostradas as imagens do sistema CIM adquiridas por uma webcam.

5.5. Monitoração via webcam

Foi desenvolvido um programa de teste para a monitoração de estações de trabalho

através de uma webcam instalada no PC Local. O programa envolve três elementos para a

interação com o usuário: 2 botões e uma “janela” de vídeo. Ao se acionar um dos botões

(Button1) a “janela” de vídeo é ativada e o as imagens da webcam aparecem nesta “janela”, o

segundo botão (Button2) ao ser acionado desativa a “janela” de vídeo e a transmissão das

imagens é interrompida. As Figuras 34, 35 e 36 ilustram o funcionamento deste programa.

TELA DO
PC

LOCAL

 60

 O comando ao se acionar o Button1 que é executado é:

Video1->Enabled = true; // Video1 é a janela de vídeo

 Já o comando ao se acionar o Button2 que é executado é:

Video1->Enabled = false;

5.6. Transferência de imagens pela Internet

 Diversos programas de teste foram concebidos e implementados para estudar a

transferência de imagens pela Internet, dentre estes programas são apresentados a seguir

aqueles mais significativos no sentido que forneceram subsídios para a implementação

realizada.

Teste 1 : Salvando frames em um arquivo BITMAP

 O programa cuja tela é exibida na Figura 37 tem como propósito salvar cada frame

capturado pela webcam em um arquivo BITMAP.

Figura 37 –Tela do primeiro programa de teste

 Figura 34 –
Início.

Figura 35 – Após
acionar o Button1.

Figura 36 – Após
acionar o Button2.

 61

 O componente VIDEO CAPTURE é ativado quando se aciona o botão Button1. No
evento OnFrame, que é acionado a cada novo frame capturado pela webcam, executa-se a
seguinte linha de comando:

Video1->SaveFrameToFile('f');

 Assim, cada novo frame será salvo no arquivo f.

Teste 2 : Usando o componente de imagem

 Este programa é similar ao anterior, porém, além do componente VIDEO CAPTURE é

utilizado o componente IMAGE. Assim como no caso anterior, os frames capturados pela

webcam são salvos em um arquivo BITMAP, porém, além disso, esse mesmo arquivo é

carregado no componente de imagens toda vez que o frame vindo da webcam é alterado. O

comando responsável por essa ação também é executado no evento OnFrame e corresponde à

seguinte linha de comando:

Image1->Picture->Bitmap->LoadFromFile('f');

A tela desse programa pode ser vista na Figura 38:

Figura 38 –Tela do segundo programa de teste

 Esse programa demonstra que no cliente as imagens capturadas na webcam do

servidor podem ser carregadas a partir de um arquivo BITMAP ou uma stream

correspondente ao mesmo. Para tanto basta que este arquivo ou esta stream chegasse no

próprio cliente via sockets.

 62

Teste 3 : Usando a Internet

 Conhecendo-se como processar as informações de vídeo tanto no servidor como no

cliente, deve-se implementar a comunicação entre ambos para viabilizar a troca de imagens

pela Internet. Assim, a Figura 39 mostra a tela do programa servidor (aquele que deve ser

executado no computador com a webcam) e a Figura 40 a tela do programa cliente (que deve

receber e carregar as imagens).

Figura 39 – O servidor mostrando as imagens da webcam

 A diferença deste programa (servidor) para os anteriores é o fato deste possuir um

objeto (não-visível) responsável por enviar streams via sockets. Trata-se do objeto NMStrm

que tem como propriedades básicas o IP do computador que deverá receber as stremas

enviadas e a porta pela qual este programa deverá enviar as mesmas.

Assim, no evento OnFrame, este programa realiza duas outras tarefas além de salvar

cada novo frame no arquivo BITMAP. São elas: criar uma stream que recebe o arquivo de

imagem e enviar esta stream via sockets. As linhas de código para realizar tais novas tarefas

são:

frame = new TFileStream('f', fmShareDenyNone);
NMStrm1->PostIt(frame);

 O cliente por sua vez deve contar com o objeto (não-visível) NMStrmServ responsável

por manipular as streams recebidas via sockets. No evento OnMsg deste novo objeto as

 63

streams recebidas são processadas. As linhas de código referentes ao recebimento da stream e

de sua exibição no componente de imagem são:

frame = strm; // ao disparar, o evento OnMsg guarda a stream recebida na variável strm
Image1->Picture->Bitmap->LoadFromStream(frame);

Figura 40 – O cliente reproduzindo as imagens da webcam

 Desta forma alcançou-se à meta de transmitir informações de vídeo pela Internet,

utilizando-se do princípio de que diversos frames reproduzidos em seqüência emulam um

vídeo. Vale lembrar que quanto mais eficiente for a conexão com a Internet melhor será o

resultado do vídeo reproduzido no cliente.

5.7. Interfaces finais no computador do usuário do SP

A interface desenvolvida anteriormente (tanto no PC local como no PC remoto) da

estação de distribuição, foi aprimorada e expandida para incluir o comando e monitoração da

estação de teste. O aprimoramento do programa segue a mesma lógica de programação

anteriormente adotada estendendo, evidentemente, as funções de controle e de monitoração. A

tela de interface do PC local e a do PC foram redesenhadas para incluir um componente de

vídeo. Seguem abaixo as Figuras 41 a 46 com interfaces no PC local e no PC remoto durante

a execução de diversas tarefas:

 64

 Figura 41 – O usuário aciona no PC local a execução de uma tarefa no modo automático.

Figura 42 – O usuário aciona no PC local a execução de uma tarefa no modo passo a passo.

TELA DO
PC

LOCAL

TELA DO
PC

LOCAL

 65

Figura 43 – O usuário aciona no PC local a execução de um teste.

Figura 44 – Tela no PC remoto enquanto o usuário local está no controle das estações de
trabalho. O usuário remoto deve aguardar a permissão para ficar no controle, mas tem acesso
ao chat.

TELA DO
PC

LOCAL

TELA DO
PC

REMOTO

 66

Figura 45 – O usuário remoto agora com controle das estações de trabalho, aciona no PC
remoto a execução de uma tarefa no modo passo a passo.

Figura 46 – Tela no PC local enquanto o usuário remoto está no controle das estações de
trabalho. O usuário local tem acesso ao chat.

TELA DO
PC

REMOTO

TELA DO
PC

LOCAL

 67

5.8. Sugestão de metodologia para especificação de comando e monitoramento
remoto de sistemas produtivos

Com a experiência adquirida no desenvolvimento deste trabalho verificou-se que a

especificação do comando e monitoramento de sistemas produtivos pode ser organizada por

meio de uma seqüência de passos. Cada passo concerne um aspecto distinto do sistema e

aumenta o nível de detalhe da especificação. Em cada um dos passos, uma série de questões

deve ser respondida, analisando um aspecto determinado do sistema. O objetivo de organizar

cada passo em um conjunto de perguntas é guiar e facilitar a aplicação da metodologia.

Passo 1: Controle ou monitoramento?

O primeiro passo consiste em definir os propósitos do acesso remoto ao sistema. O

primeiro ponto a ser definido é se o sistema terá apenas funções de monitoramento ou se

possuirá funcionalidades de comando. A resposta a esta pergunta variam de acordo com as

limitações impostas pelas características do sistema e recursos disponíveis.

Em sistemas de acesso remoto, a informação adquirida do sistema de manufatura local

é disponibilizada em tempo real ao destino remoto. Logo, o controle remoto é justificável

apenas nos casos em que os dados recebidos são também processados e utilizados em tempo-

real em seu destino. Quando a disponibilidade de dados em tempo real não é uma

necessidade-chave, uma solução simples é armazenar os dados localmente e utilizar

ferramentas padrão de compartilhamento de dados via internet.

As primeiras perguntas as serem respondidas são:

Pergunta 1.1: Quais são as vantagens em tornar as informações do sistema disponíveis para

uso remoto em tempo-real?

Pergunta 1.2: Qual tipo de decisão pode ser tomada baseada nos dados disponibilizados no

destino remoto?

 As motivações para prover funcionalidades de controle podem ser investigadas através

do estabelecimento de quais decisões são tomadas baseadas nos dados disponibilizados pelo

acesso remoto. Basicamente, o ponto é determinar que módulos podem ser afetados pelas

decisões do sistema remoto. Se as decisões tomadas interferem na evolução apenas do módulo

remoto, o sistema é candidato a possuir somente monitoramento. Caso as decisões afetem a

evolução do módulo local, então o sistema é candidato a comando e monitoramento remoto.

 68

Passo 2: Especificação dos casos de uso e informações trocadas

Para determinar os dados a serem transmitidos entre os sistemas local e remoto, a primeira

pergunta do passo 2 deve ser:

Pergunta 2.1: Quais são os casos de uso do sistema e quem são os atores?

 Para responder a esta pergunta, o primeiro passo é desenvolver o diagrama UML de

casos de uso do sistema. Em seguida, deve-se fazer uma lista dos dados necessários para

tomar remotamente as decisões especificadas no passo 1. A segunda questão então é:

Pergunta 2.2: Quais informações são trocadas entre os sistemas local e remoto?

Passo 3: Análise de hardware

O passo 3 analisa a viabilidade do acesso remoto do ponto de vista do hardware:

Pergunta 3.1: Quais são os nós do sistema e como eles se comunicam entre si?

No caso de haver mais de um nó no sistema local, os nós locais podem se comunicar

através de redes locais. Cada nó local pode se comunicar diretamente com o sistema remoto

ou podem ser conectados a um servidor local que centraliza e gerencia a comunicação via

Internet com o sistema remoto. Outro ponto é como os nós locais são conectados com bases

de dados e registros históricos.

As próximas questões são:

Pergunta 3.2: Qual o hardware para a comunicação do sistema de manufatura local com a

Internet?

Pergunta 3.3: Qual o tipo de linguagem de programação usada para desenvolver o sistema de

acesso remoto e quais são as tecnologias disponíveis para implementar esta comunicação via

Internet?

Esta última questão deve especificar se o sistema de acesso remoto será uma página de

Internet ou um software desenvolvido para os propósitos em questão.

 69

Passo 4: Refinamento de software

 Neste passo, o caso de uso é detalhado. Isto pode ser feito através do desenvolvimento

do Diagrama UML de Atividades. As perguntas do passo 4 são:

Pergunta 4.1: Qual é a seqüência de atividades para cada caso de uso?

Pergunta 4.2: O sistema de manufatura local pode ser acessado por múltiplos usuários

remotos (simultaneamente ou não)?

Pergunta 4.3: No caso do sistema de controle remoto, como possíveis conflitos serão

gerenciados?

Passo 5: Requerimentos para acesso remoto

O último passo da especificação do sistema remoto diz respeito aos requerimentos

relacionados à natureza remota do controle e monitoramento do sistema. As perguntas a

serem respondidas são:

Pergunta 5.1: O que acontece caso a comunicação falhe: o sistema local é capaz de detectar a

falha de comunicação e deixar o sistema em um estado seguro?

Pergunta 5.2: Os atrasos de comunicação são críticos para a operação do sistema e o sistema

local checa estes atrasos, tomando as ações pertinentes quando necessário?

Pergunta 5.3: Quais as facilidades disponíveis para o sistema remoto reagindo a falhas no

sistema local de manufatura?

Pergunta 5.4: A natureza remota compromete a segurança do sistema?

 70

6. Conclusões

As metas apontadas para a execução do projeto, ou seja, a elaboração do software para

controlar e monitorar de forma integrada a estação de distribuição e a estação de testes e a

definição de uma metodologia para especificação de comando e monitoramento remoto de

sistemas produtivos foram devidamente atingidas.

Seguem as principais dificuldades encontradas ao longo do desenvolvimento do
projeto:

• A implementação da transmissão de imagens entre os computadores não é uma tarefa
trivial. Apesar de já se ter conhecimento dos recursos e funções envolvidas na sua
implementação e de ser possível identificar diversas propostas/programas para este
fim disponíveis na web, estes não têm código liberado a terceiros. Assim, a efetiva
implementação da transmissão de imagens via Internet foi relativamente trabalhosa.

• A expansão do programa desenvolvido para a estação de trabalho também não é uma
tarefa trivial. A depuração do programa resultante não é simples e muitas vezes, erros
(às vezes triviais) são difíceis de serem identificados já que na etapa de compilação
fica sempre a dúvida se o problema estava no código que já existia e foi alterado ou
no que foi adicionado. Assim, o desenvolvimento levou mais tempo do que o previsto
inicialmente.

Em relação ao presente projeto considera-se que apesar de se ter alcançado plenamente

os objetivos previstos, existem ainda outras partes para que um sistema de manufatura como

um todo possa ser telecomandado e monitorado remotamente, isto é, o sistema aqui

desenvolvido para as estações de distribuição e de testes deve ser revisto para que soluções

similares sejam implementadas para as outras estações de trabalho.

Quanto ao sistema específico desenvolvido para as estações de distribuição e de testes,

alguns testes confirmaram o funcionamento esperado, mas, é necessária uma análise mais

elaborada para avaliar aspectos como a confiabilidade do sistema e o grau de dependência das

características da rede de comunicação.

Em relação à expansão para outras estações de trabalho está claro que o uso de redes

de campo como o PROFIBUS deve ser considerado em futuras implementações, pois, é a

solução prática que se tem disponibilizado nas plantas industriais.

Especialmente no caso deste projeto, ressaltam-se a seguir alguns pontos de

aprendizado prático:

• Em se tratando de qualquer máquina, dispositivo ou software é fundamental dispor de

uma “boa” documentação e uma “boa” estratégia para a leitura desse material (e/ou dos

arquivos de apoio). Isso contribui efetivamente para a identificação tanto de

 71

procedimentos recomendáveis como de novas abordagens para os problemas

aparentemente não previstos. Por exemplo, no presente projeto, os arquivos de apoio do

Borland C++ Builder foram de uma ajuda muito grande.

• Softwares que envolvem comunicação merecem cuidados especiais principalmente se

houver mais de um tipo de comunicação deste software com o exterior. Isto é, a

programação e funcionamento dependem de várias outras variáveis e assim cenários e

situações específicas de teste e avaliação devem também ser considerados no

desenvolvimento destes softwares. Por exemplo, no presente caso, tratar simultaneamente

a comunicação serial concomitantemente com a comunicação via Internet (sockets)

aumentou em muito o grau de dificuldade para o desenvolvimento do sistema.

• Sempre que se controla máquinas/dispositivos eletromecânicos por computador, nunca se

deve esquecer que o tempo de execução do software no computador (ou no controlador) é

muito menor que o tempo de execução de movimentos físicos.

• Trabalhar com transmissão de informação de vídeo pela Internet requer estudo do material

sobre o assunto já disponível na Internet e dos arquivos de apoio de ferramentas tipo

Borland C++ Builder. Realizar diversos programas de teste acompanhando o andamento

do aprendizado em relação ao assunto é fundamental para assegurar o progresso do

desenvolvimento dentro de um cronograma.

• Um “bom” planejamento de como programas relativamente complexos devem ser

desenvolvidos diminui as chances de erros no meio do processo. Pois sem isso pode-se

perder o foco do trabalho e a desorganização das idéias certamente prejudica o produto

final e compromete o cronograma.

• Durante um projeto extenso, documentar cada etapa importante de trabalho cumprido é

fundamental para a tarefa de documentação final do projeto.

 72

7. Referências Bibliográficas

ALMEDA, W. M. Conhecendo o C++ Builder 6, 2003.

AP, www.apostilando.com.br, acessado em 18/11/2007.

BUENO, A. D. Apostila de programação orientada a Objeto em C++, v.0.4, 2002.

DBCB, www.dicasbcb.com.br, acessado em 22/09/2007, 10/10/2007, 27/10/2007.

DONAHOO, M. TCP/IP Sockets, The C version, 2001.

FESTO. Modulares Produktions-Sistem Station Prufen, Lernsystem Automatisierung und
Kommunkation. Esslingen: Festo Didactic Gmbh & CO, 1998.

GDH, www.guiadohardware.net, acessado em 05/09/2007, 07/09/2007.

LEE, W. B., LAU, H. C. W. Multi-agent modeling of dispersed manufacturing networks.
Expert Systems with Applications, v.16, p.297-306, 1999.

MARTIN, V. Industrial Perspective on Research Needs and Opportunities in Manufacturing
Assembly. Journal of Manufacturing Systems, v.14, n.1, 1995.

POHL, I. C++ para programadores de Pascal. Rio de Janeiro: Berkeley, 1991.

REMBOLD U.; NNAJI, B.; STORR, A. Computer Integrated Manufacturing And
Engineering. Londres: Addison-Wesley, 1994.

SHI, Y., GREGORY, M. International manufacturing networks - to develop global
competitive capabilities. Journal of Operations Management, v.16, p.195-214, 1998.

SOUZA, L. E. Controladores Lógicos Programáveis. FUPAI, 2001.

CASSANDRAS, C.; LAFORTUNE, S. Introduction to Discrete Event Systems. Kluwer
Academic Publ., 1999.

TRAVERSE, www.traverse.com/people/poinsett/bcbcomm.html, acessado em 14/10/2007.

VOTRE, V. P. C++ Explicado e Aplicado. Coleção ZeroErro em Engenharia de Software,
v.2, 1998.

WARNOCK, I. G. Programmable Controllers: Operation and Application. New York.Prentice
Hall, 1988.

XTRIMSOFT, http://www.xtrimsoft.com/downloads/BCBcomponent.htm, acessado em
22/09/2007.

 73

Anexo A - Programação dos CP da Festo

A programação dos CPs da empresa Festo é executada no software FST V4.10, que é

um ambiente que utiliza como linguagem de programação a lista de instruções.

A lista de instruções, ou STL (Statement List), é uma linguagem de programação de

baixo nível baseada em texto. Esta permite ao programador descrever as etapas de

funcionamento das funções do controlador a serem descritas por instruções relativamente

simples. A estrutura da linguagem permite a manipulação eficiente de tarefas complexas.

A linguagem pode ser descrita como um conjunto de ramos ou etapas onde cada uma

executa uma determinada rotina. Cada ramo é identificado como um STEP, e este pode conter

um ou muitos blocos; um bloco completo é composto pela parte condicional e a parte de

execução e apenas o primeiro bloco de um STEP pode ser incompleto, ou seja, conter apenas

um comando de execução sem que lhe seja imposta qualquer condição.

A passagem aos passos subseqüentes é gradual, embora seja possível executá-los em

qualquer ordem desejada através do comando JMP TO, cuja função é remeter à ramificação

desejada. O programa só avança para o próximo passo se no último bloco do passo corrente

um comando THEN ou OTHRW (que indicam a parte de execução do código) foi executado.

Um exemplo simples de um programa nesta linguagem pode ser visto na Listagem 1:

STEP label 1

 IF I1.0

 THEN SET F1.5

 OTHRW RESET F1.5

STEP label 2

 THEN RESET F0.0

 IF F1.5

 THEN SET O0.7

 SET F0.0

 OTHRW SET O0.0

 JMP TO label 1

STEP label 3

 IF F0.0

 AND I0.0

 THEN SET O0.4

STEP label 4

...

 Listagem 1 – Trecho de Programa em Lista de Instruções

Organização do Programa

Na criação de um programa por lista de instruções, este é composto, além dos programas

locais, por módulos, conhecidos por CFM (Calling Function Module) e CMP (Calling

Program Module), que serão sucintamente explicados a seguir:

 74

• CFM (Calling Function Module): quando o comando CFM é utilizado, um módulo de

função é chamado. Um módulo de função é uma sub-rotina que pode ser criada em C

ou na própria linguagem de lista de instruções e não apresenta a necessidade de ser

organizada em passos. Quando o comando é utilizado, não ocorrem mudanças na

tarefa executada, mas parâmetros são transferidos para o programa local em execução;

• CMP (Calling Program Module): quando o comando CMP é utilizado, um módulo de

programa é chamado. Um módulo de programa também é uma sub-rotina que pode ser

criada em C ou na própria linguagem de lista de instruções e não apresenta a

necessidade de ser organizada em passos. A diferença deste para o CFM consiste no

fato de que, quando executado o CMP, ocorre necessariamente mudança na tarefa

executada.

Principais Comandos

A fim de compreender a lógica do código apresentado, discorre-se abaixo sobre os principais

comandos desta linguagem:

• Comando IF: O comando IF determina a declaração de condições. Com a introdução

deste comando no código, os operandos podem ser chamados e arranjados de maneira

a formar expressões lógicas e aritméticas, que representarão condições para a

execução de processos posteriores.

Exemplo:
 IF I1.0 " IF 1 signal to I1.0

 AND N I1.1 " AND 0 signal to I1.1

 ...

• Comando THEN: o comando THEN inicia a execução de um processo. Tal processo

será executado se as possíveis condições anteriores estiverem satisfeitas.

Exemplo:
 THEN LOAD V100
 TO TP7

 ...

• Comando OTHRW: inicia uma segunda execução alternativa de um processo. Este

processo só será executado se as condições propostas para a execução de uma

 75

determinada tarefa não forem satisfeitas (ou seja, se o processo determinado pelo

comando THEN não puder ser executado).

Exemplo:

 ...
 THEN SET O1.0

 OTHRW RESET O1.0

• Comando SET: ajusta o valor do operando indicado para verdadeiro (1).

• Comando RESET: ajusta o valor do operando indicado para falso (0).

• Comando LOAD: Carrega um valor (de um ou mais bits), que através do comando TO

é transferido para um operando.

 Exemplo:

 THEN LOAD I0.1 " Single-bit

 TO F0.1 " Single-bit

 LOAD V500 " Multi-bit

 TO TP31 " Multi-bit

