FERNANDA MARTINS MARQUES E RODRIGO ARB DE CASTRO

COMANDO E MONITORAMENTO REMOTO DE SISTEMAS
PRODUTIVOS

Sao Paulo
2007

FERNANDA MARTINS MARQUES E RODRIGO ARB DE CASTRO

COMANDO E MONITORAMENTO REMOTO DE SISTEMAS
PRODUTIVOS

Trabalho de formatura apresentado a
Escola Politécnica da Universidade de
Sao Paulo para obtencdo do titulo de
Engenheiro

Area de concentragéo:
Engenharia Mecatrénica

Orientador: Prof. Dr. Paulo Eigi Miyagi

Sao Paulo
2007

FICHA CATALOGRAFICA

Marques, Fernanda Martins

Comando e monitoramento remoto de sistemas produtivos /
F.M. Marques, R.A. de Castro. -- Sdo Paulo, 2007.

67 p.

Trabalho de Formatura - Escola Politécnica da Universidade
de Sao Paulo. Departamento de Engenharia Mecatrénica e de
Sistemas Mecanicos.

1.Controladores programaveis (Monitoramento) 2.Telecomu-
nicacdes l.Castro, Rodrigo Arb de ll.Universidade de Sao Paulo.
Escola Politécnica. Departamento de Engenharia Mecatronica e
de Sistemas Mecanicos lll.t.

Resumo

A globalizagdo dos mercados, a tendéncia de distribuicdo geografica das plantas
industriais e a evolucdo de tecnologias de telecomunicac¢des e de mecatronica t€m motivado a
o desenvolvimento de novos conceitos e técnicas para a tele-operacdo de sistemas produtivos.
Neste contexto, existe especial interesse na implementacdo de sistemas de remotos de
gerenciamento que incluem a monitoragio, comando e integracdo de diferentes controladores
via Internet. Assim, este trabalho apresenta o estudo e a implementacdo de um sistema de
comando e monitoracdo de estacdes de trabalho via Internet. O estudo de caso considerado
envolve duas estagcdes de trabalho que fazem parte de um sistema de manufatura que executa
a montagem automadtica de variacdes de um mesmo produto

Palavras-chave: Telecomando, Monitoracio remota, Sistemas Produtivos,

Controlador programavel.

Abstract

The globalization and the trend for geographic distribution of production plants, and
the use in large of telecommunication and mechatronics technologies motivates the
development of new concepts and techniques for teleoperation of productive systems. In this
context, there is interest in the implementation of remote management systems, which
includes the monitoring, command and integration of different control units via Internet.
Then, this work presents the study and implementation of command and monitoring of
workstations via Internet. The case study is workstations that compose a manufacturing
system, which assembly automatically variations of a basic product.

Keywords: Telecommand, Remote monitoring, Production systems, Programmable
control.

1.
2. Fundamentos Considerados

SUMARIO

Introducao

2.1. UML - Unified Modeling Language
2.1.1. Diagramas
2.2. Redes de Petri

2.2.1. Elementos estruturais basicos das redes de Petri
2.3. Controlador Programavel (CP)
2.3.1. Componentes Bésicos

2.3.2. Programacio de CP

2.4. Orientacdo a Objetos
24.1. Conceitos

2.5. Linguagem de Programacdo para Computadores: o C++
2.5.1. Conceitos Basicos
2.5.2. O Ambiente de Programagdo e o Compilador
2.5.3. Sockets

2.6. Comunicacgdo entre CP e Computadores

2.6.1. Comunicagdo Serial
2.6.2. Comunicagdo Serial em C++
2.7. Monitoramento Visual
2.7.1. Visualizacdo de Imagens
2.7.2. Transmissdo de imagens pela Internet

Descrigdo Geral do Projeto.
3.1. O Sistema Produtivo considerado
3.1.1. Descri¢ao Geral
3.1.2. Estagdo de Distribui¢do
3.1.3. Estagdo de Testes
3.14. Sistema de Controle
3.2. Diagramacao do Projeto
Implementacdo
4.1. Diagramas UML
4.1.1. Diagrama de Casos de Uso
4.1.2. Diagrama de Classes
4.1.3. Diagrama de atividades
4.2. Rede de Petri do sistema CIM
Testes e andlise dos resultados
5.1. Programacio do CP

5.1.1. Definicdo da Primeira Estratégia de Alteragdo do Programa
5.1.2. Comunicagdo Serial no CP
5.1.3. Reestruturacdo do Programa do CP
5.2. Comunicagao Serial em C++
5.2.1. Testes em C++

5.3. Programacio de conexdo a Internet via Sockets

5.4. Programacdo da interface de controle da estacio de distribui¢do
5.5. Monitorag@o via webcam

5.6. Transferéncia de imagens pela Internet.

5.7. Telas das interfaces finais no computador do usuério do SP

5.8. Metodologia para especificacdo de comando e monitoramento remoto de sistemas

produtivos

6. Conclusdes
7. Referéncias Bibliograficas
8. Apéndice A — Programacdo dos CP da Festo

07
08
08
08
09
09
10
10
12
12
13
14
14
17
18
19
20
20
21
21
21
23
23
23
25
27
29
30
31
31
31
32
33
37
39
39
39
40
44
49
49
49
53
59
60
63

67
70
72
73

1. Introducao

Na evolugdo dos processos produtivos sdo identificados marcos de fundamental
importincia a partir dos quais pdde-se notar alteracdes definitivas no panorama industrial
mundial (Lee; Lau, 1999), (Shi; Gregory, 1998). Entre eles destacam-se o surgimento das
linhas de produgdo (sistematizagdo e otimizacdo de um processo especializado de manufatura)
em meados do século XVIII, a incorporacdo de sistemas computacionais para automacao de
processos industriais na década de 70 e, mais recentemente, a integracdo dos diversos
equipamentos e computadores de uma industria em um tnico sistema, eliminando o conceito
de ilhas de automacdo. Com a globalizacdo, um maior nimero de inddstrias de manufatura
tem se estabelecido de forma distribuida, onde ndo apenas componentes de produtos sio
produzidos em diferentes plantas, mas em diferentes paises, sendo entdo reunidos para a
montagem dos produtos finais. A adog¢do desta estrutura distribuida envolve uma nova
tecnologia: o monitoramento e o comando a distdncia de sistemas industriais (Martin, 1995).

Neste contexto se insere o projeto Telecomando e Monitoramento Remoto de Sistemas
de Manufatura, em desenvolvimento no grupo da Mecatronica da EPUSP, com apoio da
FAPESP. Este projeto é parte do Programa TIDIA (Tecnologia da Informacdo no
Desenvolvimento da Internet Avangada), na modalidade Kyatera, que visa o estabelecimento,
de forma cooperativa, de uma rede de comunicagdo 6ptica de alto desempenho interligando
laboratérios de pesquisa para o estudo, desenvolvimento e demonstracdo de tecnologias e
aplicacdes da Internet Avancada. Entre os objetivos deste Projeto FAPESP, destaca-se o
estudo e desenvolvimento de sistemas de gerenciamento remoto para sistemas integrados de
manufatura, isto €, projeto e implementacdo do monitoramento e comando via internet das
estacdes de trabalho de um sistema de manufatura.

Neste sentido, o objetivo especifico deste trabalho é o desenvolvimento de um
programa computacional que permita o acionamento via internet das estagdes de distribuicdo

e de testes do sistema flexivel de manufatura existente e em operagdo na EPUSP.

2. Fundamentos Considerados

A seguir sdo apresentados os principais conceitos, teorias, tecnologias e ferramentas
considerados para o desenvolvimento do presente trabalho.

Do ponto de vista da teoria, foram considerados inicialmente os diagramas da UML
(Unified Modelling Language) para elaborar a especificagdo do programa a ser desenvolvido,
contudo, na seqiiéncia do projeto, modelagens em Redes de Petri complementaram esta
atividade. Foram também objeto de estudos os conceitos de controladores programaveis
(CPs), da orientacdo a objetos, da comunicacio entre controladores programaveis e
computadores e da comunicacdo entre computadores pela Internet, via Sockets para o
desenvolvimento do projeto. No que se refere a implementacgdo, a linguagem de programacao
de CP adotada foi o STL, e a linguagem de programacdo de software adotada foi o C++.
Entre as ferramentas utilizadas, destacam-se o software de programacgdo dos CPs da empresa
Festo (FST) e o ambiente de programacdo Borland C++ Builder versdo 6.0. Foi ainda
utilizado o novo componente do C++ Builder, que permite a visualizacdo das imagens de uma
webcam na interface de um programa e que foi implementado para realizar o monitoramento
visual do processo. Foram ainda estudados os novos conceitos de sockets necessarios para

realizar a transferéncia de video pela Internet.

2.1. UML - Unified Modeling Language

Como o préprio nome ji indica, a UML (Unified Modeling Language) é uma
linguagem de modelagem. Ela estabelece uma notag@o para capturar e comunicar a estrutura e
o comportamento de um sistema orientado a objetos. De uma forma geral, pode-se descrever a
UML como uma linguagem que, a partir de alguns elementos basicos e dos tipos de relacio
entre estes elementos, permite a descrigdo de diferentes aspectos estruturais e

comportamentais do sistema através da constru¢io de uma série de diagramas (Bueno, 2002).

2.1.1. Diagramas
Os diagramas UML permitem visualizar sistemas orientados a objetos de uma maneira

funcional, permitindo uma melhor visualizacdo de como controld-lo e organiza-lo. A seguir
apresentam-se as defini¢cdes dos diagramas mais relevantes considerados para o presente
projeto:

Diagrama de Casos de Uso: os diagramas de casos de uso mostram, de forma estdtica, as
possiveis interagdes entre o sistema e elementos externos, os chamados atores. Ele apresenta

uma visdo ampla e genérica da funcionalidade do sistema, de uma forma que € facilmente

compreensivel por pessoas de formacdo ndo necessariamente técnica, como gerentes,
usudrios, clientes, etc.

Diagrama de Classes: este tipo de diagrama indica um conjunto de classes que fazem parte
do sistema e as relagdes entre estas classes. Cada tipo de relagdo é representado por um arco
diferente. Além do tipo de relagdo é possivel especificar a multiplicidade, isto é a quantidade
de objetos envolvidos em cada relacéo.

Diagrama de Atividades: o diagrama de atividade combina caracteristicas derivadas de redes
de Petri para permitir a especificacio de comportamentos como paralelismo e sincronismo.

Ele descreve as seqii€ncias de atividades realizadas, por exemplo, para um cendrio.

2.2. Redes de Petri

A rede de Petri é uma técnica matemadtica e grafica que oferece um ambiente uniforme
para a modelagem, andlise e projeto de sistemas a eventos discretos.

Como técnica matematica, um modelo em redes de Petri pode ser descrito por um
sistema de equagdes lineares, que refletem o comportamento dindmico do sistema, o que
possibilita a andlise do mesmo através da verificacio formal de suas propriedades
(Cassandras; Lafortune, 1999).

2.2.1. Elementos estruturais basicos da rede de Petri

Transicdes: correspondem a um evento que causa a mudanca de estado do sistema. Podem
ser temporizadas.

Lugares: representam condigdes (pré e pds-condi¢des) que podem estar associadas ao
modo de operacdo ou a disponibilidade de um recurso no sistema.

Marcas: indicam a manuteng¢do de condicdes. A existéncia de uma marca num lugar
eqiiivale ao valor bindrio “1” e € “0” quando ndo existe marca no lugar.

Arcos orientados: estabelecem relacdes causais entre os eventos e as condigdes e vice-
versa.

Portas: que habilitam ou inibem a ocorréncia dos eventos correspondentes as fransicoes,
sendo denominadas habilitadoras ou inibidoras, conforme sua natureza. Para a porta
habilitadora, quando o sinal de origem for equivalente ao valor bindrio “1”; esta porta
habilita a transicdo a qual estd conectada. Para a porta inibidora, quando o sinal de origem
for equivalente ao valor bindrio “1”, esta porta inibe a transicdo em que esta conectada.

A Figura 1 mostra uma rede de Petri com seus principais componentes.

LUGAR

ARCO
ORIENTADS

TRAMNSIGAD

Figura 1 — Exemplo de uma rede de Petri

2.3. Controlador Programavel (CP)

O controlador 16gico programavel — CLP — nasceu dentro da empresa General Motors,
em 1968, devido a grande dificuldade de alterar a I6gica de controle dos painéis de comando a
cada mudanca na linha de montagem. Tais mudangas implicavam em altos gastos de tempo e
dinheiro (Souza, 2001).

As especificagdes iniciais requeriam um sistema com a flexibilidade do computador,
capaz de suportar o ambiente industrial, isto é, ser facilmente programado e reprogramado,
com manutencdo ficil e ser também facilmente expansivel e utilizdvel.

Devido ao intuito inicial de substituirem os painéis de relés no controle discreto, foram
chamados de controladores 16gicos programaveis - CLP (Programmable Logic Controllers -
PLC). Porém, atualmente, os controladores dispdem de recursos para realizarem funcdes
relativamente complexas nfo se limitando a 16gica do tipo E/OU, motivo pelo qual passaram a

ser chamados apenas de controladores programaveis — CP (Souza, 2001).

2.3.1. Componentes Bésicos
O controlador programavel €, segundo a NEMA - National Electrical Manufacturers

Association, "um aparelho eletronico digital que usa uma memdria programdvel para o
armazenamento interno de instrugdes a fim de implementar funcdes especificas tais como
l6gica, seqiienciamento, temporizagdo, contagem e operacdes aritméticas, para controlar
mdaquinas ou processos através de modulos de entradas/saidas de sinais analdgicos ou

digitais". O diagrama de blocos do controlador ¢ mostrado na Figura 2:

10

Digital _|

Analégico

s] cEnTRAL DE —N] Analbgi
ENTRADA A A saipa m@sﬁ.&;

Pulsos PROCESSAMENTO M
[! ﬁr

— . . : i
T R N
teclado _,..—-""-I'. . - Limpadas

T PROCESSADOR } \ e

MEMORIA

Fonte de Alimentacio

Figura 2 — Componentes Basicos do CP

Um controlador programével é formado por cinco elementos bdasicos: processador,
memoria, sistema de entradas/saidas, fonte de alimentagéo e terminal de programacao.

As tré€s partes principais (processador, memoria e fonte de alimentacido) formam o que
chamamos de CPU - unidade central de processamento. O processador 1€ dados de entrada de
varios dispositivos, executa o programa do usudrio armazenado na memoria e envia dados de
saida para comandar os dispositivos de controle. Este processo de leitura das entradas,
execucdo do programa e controle das saidas é feito de uma forma ciclica que é chamado de
ciclo de varredura. O sistema de entrada/saida de sinais forma a interface pela qual os
dispositivos de campo sdo conectados ao controlador. O propdsito desta interface &
condicionar os vdrios sinais recebidos ou enviados ao mundo externo. Sinais provenientes de
dispositivos de comando e detec¢do tais como push-buttons, chaves limites, sensores
analdgicos, chaves seletoras e chaves tipo tambor (thumbwheel), sdo conectados aos terminais
dos médulos de entrada. Dispositivos de atuacdo e de monitoragdo, como vélvulas solendides,
lampadas pilotos e outros, sdos conectados aos terminais dos médulos de saida. A fonte de
alimentagc@o fornece a energia necessdria para a devida operagdo do CP e da interface dos
modulos de entrada e saida.

Outro componente do controlador programavel € o dispositivo de programacdo. Embora
seja considerado como parte do controlador, o terminal de programacdo, como antes era
chamado, é requerido apenas para carregar o programa de aplicacdo na memdria do

controlador. Uma vez carregado o programa, o terminal pode ser desconectado do

11

controlador. Atualmente utiliza-se um microcomputador para programar o CP e devido a
capacidade de processamento do mesmo, este também € utilizado na edicdo e depuragdo do

programa.

2.3.2. Programagao de CP
Existem cinco tipos bésicos de linguagem de programagdo que normalmente sio

encontrados em CP padronizados pela norma IEC 61131-3: linguagens de relés ou diagrama
de contatos; linguagens por blocos funcionais; SFC - Sequential Function Chart (fluxogramas
funcionais); lista de instrucdes; texto estruturado (Warnock, 1988).

Dos tipos apresentados acima, o mais difundido e encontrado em quase todos os
controladores € a linguagem de relés. Os blocos funcionais também podem ser encontrados
com facilidade, sendo este ultimo uma extensdo do primeiro no sentido de incluir instrug¢des
mais poderosas. Atualmente o SFC, derivado das Redes de Petri, vem recebendo varias
implementag¢des, firmando-se como uma linguagem propria para processos de automacio. Os
fluxogramas funcionais apresentam uma variacdo voltada para a implementacao fisica.

No Anexo A estd a descricdo de como na prética se faz a programacdo dos CP da

Festo.

2.4. Orientacio a Objetos

A orientacdo a objetos surgiu na década de 60 no ambito da Engenharia de Software
como uma nova forma de programacdo. Até entdo, os programas computacionais eram
definidos como sendo compostos por uma colecdo de fungdes que por sua vez podiam ser
decompostas em fun¢des mais primitivas. O enfoque principal era na seqii€éncia de operagdes
realizadas pelo programa. Esta forma de programagdo é conhecida como programacio
estruturada. Em contrapartida, na programacdo orientada a objetos o programa € composto
por uma colecdo de ‘objetos’ que interagem entre si para executar determinadas operacoes

(Bueno, 2002). Estes objetos sdo formados por uma associacdo de dados (atributos) e fungdes

(operagdes) (Figura 3).

12

Programagdo Estruturada Programacgdo Orientada a Objetos

Objeto Objeto

Fungao Fungao jmm - H B i .

| Afributos ;] |1 Afributos

[—— 1 [—— 1

jmmm——————— 1 jmmm—————— 1

! Operacoes | ! Operagoes |

Funcao Funcao bmm - !
Objeto Objeto

[P (I

I Atributos | | Atributos |

Fungao Funcao pommmrrrss) || emrssssss]

| Operacdes | | |} Operacbes |

| — 1 | —— 1

Figura 3 - Programacéo Estruturada x Programacio Orientada a Objetos.

2.4.1. Conceitos

A orientagdo a objetos tem uma série de conceitos que auxiliam a delinear claramente o
problema e a identificar os objetos e seus relacionamentos. Descrevem-se a seguir os
conceitos basicos da andlise orientada a objeto, isto é, a abstracdo, o objeto, as classes, 0s
atributos e 0s métodos.
Abstracdo: genericamente, abstracdo significa considerar isoladamente coisas que estdo
unidas, ou seja, partindo do enfoque global de um determinado problema, procura-se separar
os elementos fundamentais e colocd-los de uma forma mais préxima da solucdo. A idéia da
abstracdo € identificar os elementos essenciais de um problema e suas propriedades
fundamentais, separando ocorréncias e atributos acidentais. Para a andlise orientada a objetos,
abstracdo é o processo de identificacdo dos objefos e seus relacionamentos. A andlise
orientada a objetos permite ao programador concentrar-se no que um objeto € e o que ele faz
sem se preocupar em como ele o faz. A abstracdo se da em diferentes niveis: inicialmente
abstrai-se 0 objeto; de um conjunto de objetos cria-se um conjunto de classes relacionadas, de
um conjunto de classes cria-se uma biblioteca de classes.
Objeto: Um objeto tem determinadas propriedades que o caracterizam, e que sdo armazenadas
no préprio objeto. As propriedades de um objeto sdo chamadas ainda de atributos. O objeto
interage com o meio e em funcdo de excitacdes que sofre, realiza determinadas ag¢des que
alteram o seu estado (seus atributos). Os atributos de um objeto ndo sio estiticos, ou seja, eles
sofrem alteracdes com o tempo. Do ponto de vista da programacio orientada a objetos, um
objeto € uma entidade tnica que redne atributos e métodos, ou seja, retne as propriedades do
objeto e as reagdes as excitacdes que sofre (AP, 2007). Quando se tem uma instancia de uma

classe, tem-se um objeto desta classe.

13

Classe: uma classe descreve um grupo de objetos com o0s mesmos atributos e
comportamentos, além dos mesmos relacionamentos com outros objetos. Uma classe pode ser
vista como um conjunto de codigos de programacgdo que incluem a definicdo dos atributos e
dos métodos necessarios para a criagdo de um ou mais objeros (AP, 2007).

Meétodo: para qualquer objeto pode-se relacionar determinados comportamentos, agdes e
reacdes. As acdes ou comportamentos dos objetos sdo chamados de métodos. Assim, um
método é uma fun¢do, um servico fornecido pelo objeto. Os comportamentos dos objetos sdo
definidos na classe através dos métodos e servem para manipular e alterar os atributos do

objeto (alteram o estado do objeto).

2.5. Linguagem de Programacao para Computadores: o C++

A linguagem C++ € considerada propria para implementar funcionalidades que
envolvem formulagdes altamente abstratas como “classes”, permitindo um trabalho de alto
nivel (trabalha-se ao nivel de conceitos) e formulagcdes de baixo nivel, como o uso de
chamadas de interrupg¢des que realizam tarefas altamente especificas no nivel de hardware do
processador (Votre, 1998). Segundo os pesquisadores, o C++ proporciona ainda elevada
produtividade, grande reaproveitamento de coédigo, além de facilidade de extensdo e

manutengdo. Os seus principais conceitos serdo abordados a seguir.

2.5.1. Conceitos Bésicos

Alguns dos conceitos basicos relacionados a programacio em C++ s@o apresentados a
seguir (Barros, 2002).
Arquivo: é um texto contendo cédigo fonte em C++ e comandos para o pré-processador.
Comentdrios: um comentario em C++ usa duas barras (//).
Exemplo:

Aqui é programa ; //Aqui é comentdrio.
/ITodo o resto da linha passa a ser um comentdrio.

Identificadores: seqiiéncia de letras definidas pelo programador (nome dos objetos, nome dos
atributos e métodos).
Palavras Chaves: sdao de uso interno do C++, t€m significado para a linguagem, para o
processo de compilacdo. Seus significados ndo podem ser alterados pelo usudrio.

Operadores: simbolos cuja utilidade ja é definida pelo C++; os operadores de C++ sdo:

1% &*()-+={}[In;":"<>?,./.

14

Nome: um nome denota um objeto, uma funcdo, um enumerador, um tipo, um membro de
classe, um modelo, um valor ou um label.

Atribuicdo: quando se armazena algum valor no objeto.

Declaragdo: diz que existe um objeto com nome qualquer, mas ndo cria o objeto. Uma
declaracdo pode ser repetida.

Definicdo: cria um ou mais objetos e reserva memoria. Uma definicdo nio pode ser repetida.
Escopo: define onde um objeto é visivel. Pode ser um objeto local, de fun¢do, de arquivo, de
classe ou global.

Blocos: um bloco inicia com um “{*“ e termina com um “}”. Objetos criados dentro do bloco
sdo automaticamente destruidos quando o bloco € encerrado. Objetos criados dentro do bloco

ndo podem ser acessados externamente (escopo).

Exemplo:

int main()

{ //inicio do bloco

} //fim do bloco
Diretrizes de pré-processamento: siao informacgdes/instru¢des que sdo passadas para o
compilador com o simbolo #.

A seguir sdo apresentados alguns exemplos de declaracdo e defini¢do de classes assim
como de instanciacio de objetos.
Exemplo 1)

Classe:

class TNome

{

/I Atributos

tipo nome;

static tipo nome;

const tipo nome;
mutable tipo nome;
volatile tipo nome;
//Métodos

tipo funcao(pardmetros);

tipo funcdo(pardmetros) const ;

15

static tipo funcdo(parametros);
inline tipo funcéo(parametros);
virtual tipo func@o(parametros);
virtual tipo fungao(parametros)=0;

};

Acima tem-se um modelo padrdo de declaracdo e definicdo de uma classe. Importante: observe

a presenca de (;) no final do bloco que declara a classe.

Exemplo 2)
Objeto:

Tnome nomeobjeto;

Declara-se um objeto de uma determinada classe colocando o tipo do objeto (a classe a qual pertence)
seguido do nome do objeto criado. A partir de entdo, manipula-se 0 objeto da maneira desejada de

acordo com seus atributos e métodos (definidas na classe) (Pohl, 1991).

Exemplo 3)

/. -TEndereco.h

#include <string>
class TEndereco

{
/! -Atributo

int numero;
string rua;

/! -Métodos

int Getnumero();
string Getrua();
B

I/ criacdo de um objeto

int main()

{

16

palheta de componentes

TEndereco rodrigo;

}

Criou-se a partir da classe Tendereco um objeto que indica uma rua e um ndmero relativo a

um endereco (atributos) e que poderio ser alterados (através dos métodos da classe).

2.5.2. Ambiente de Programacio e o Compilador

O compilador considerado no presente trabalho é o Borland C++ Builder versdo 6.0.
Este compilador possui interface com usudrio composto pela janela ‘form’ na qual é
desenvolvida a interface do programa a se construir, pela janela ‘unit’ onde € escrito o c6digo
fonte do programa, pela ‘paleta de componentes’ com os recursos (visuais ou nao) que se
pode utilizar na confec¢do do programa, pelo ‘inspetor de objetos’ que auxilia na manipulacdo
dos recursos (objetos) utilizados na criacdo do programa e pela ‘drvore de objetos’ que
permite uma visualizacdo geral dos objetos e respectivos agrupamentos (classes) (Almeda,

2003).

A Figura 4, abaixo, ilustra a tela do ambiente de programacao:

Palheta de
componentes

(%, C++Builder 6 - Project] i

onHelp H [cton:

el | Win32| Sustem| DataAccess| D

[Object Treavie E

iagale ¥
Fom
arvore de
objetos — : : : : : :
i ity
@1 Project] -Classes o |
7
4include <vel.h>
[Gbsect inspea A #prama hazetop
Fomi Troml =

finclude "Uniciinr
Prapetties | Everts |

Action n| S fipragua package [swart_inith
ActiveCartol tpragua resource 7. dm

Algn aane. Trorml *Formiz
AlphsBlend | felse
55

ins fasteall TFormi::TFormi (TComponent® Ouner)
inspetor de chers [akelt akTop] i i TForm(Ouner)
1 uoSciol e
objetos ﬁm : ¢

tosize |fakse v
BDiMode | belefToRicht 7
Borderlcons | [iSystembeny,

BorderStyle | bsSizeable

Bordeiwidh
il

ClenHeight | 453

Cientwidh | 630

Color clatrF ace

EConshaints | (TSizeCorstain

i1} e ~l KT :
[Bishown 11 Modfied \ngﬁ“ Unit1.cppfUri.h {Diagram / /
Bistort] |] @) B || Blrearcalvodigo.sev - .. |[e vuiders GAIBOG s

Figura 4 — Interface principal do ambiente de programacao.
O compilador utilizado possui duas vantagens; a primeira consiste numa interface com
o usudrio relativamente simples, intuitiva e de facil manipulacdo; a outra vantagem estd no
fato de o c6digo fonte basico ser automaticamente fornecido apds adicionar-se cada elemento

ajanela ‘form’ (DBCB, 2007).

17

2.5.3. Sockets

Em se tratando de hardware, os sockets sdo como encaixes para o processador, médulos
de memdria e outros componentes do computador. Mas, no contexto de software, os sockets
sdo médulos de programas que conectam os aplicativos ao protocolo da rede de comunicagio,
facilitando o trabalho do programador, que precisa apenas instruir o programa a abrir um dos
sockets disponiveis. O programa passa entdo a enviar e receber dados através da rede de
comunica¢do (GDH, 2007). A Figura 5 mostra uma representacdo esquematica da utilizagio

de sockets:

CLIENTE —— PROTOCOLOROTOCOLOS —— S3ERVIDORE
sockets DE RELDE DE REDE sockets

Figura 5 — Esquema representando a comunicagéo entre servidor-cliente via sockets.

No caso de C++, e, mais especificamente, no caso do compilador Borland C++
Builder 6.0, a programacio relativa a sockets consiste na adicdo de um objeto ClientSocket
(no caso de um programa cliente) ou ServerSocket (no caso de um programa servidor) a
interface (este € um objeto ndo-visual), na definicdo de seus principais atributos e, finalmente,

na confeccdo das subrotinas associadas a cada atividade de conexao (método).

Objeto Cliente

O objeto cliente € aquele que deseja acessar alguma informacao disponivel no servidor
(Donahoo, 2001).

Seus atributos elementares sao:

Host: geralmente utiliza-se o IP do servidor a se conectar.

Port: determinagdo da porta onde serd efetuada a conexdo com a Internet via sockets.

Os principais métodos do objeto cliente sdo:
ClientSocketConnect: atividades realizadas pelo cliente quando este se conecta com o
servidor.

ClientSocketDisconnect: atividades realizadas pelo cliente quando este se desconecta do

servidor.

18

ClientSocketRead: atividades realizadas pelo cliente quando o servidor manda informacdes
para o0 mesmo.
ClienteSocketError: atividades realizadas pelo cliente quando este ndo consegue estabelecer

conexdo com o servidor.

Objeto Servidor

O objeto servidor € aquele que gerencia a conexao com clientes por conter

informacdes desejadas pelos mesmos (Donahoo, 2001).

Seu atributo elementar € :
Port: determinagdo da porta onde serd efetuada a conexdo com a Internet via sockets.

Os principais métodos do objeto servidor sdo:
ServerSocketClientConnect: atividades realizadas pelo servidor quando quando o cliente se
conecta.
ServerSocketClientDisconnect: atividades realizadas pelo servidor quando o cliente se
desconecta.
SeverSocketClientRead: atividades realizadas pelo servidor quando o cliente manda
informacdes.
ServerSocketAccept: atividades realizadas pelo servidor quando este aceita conexdo com o

cliente.

2.6. Comunicacao entre CP e computador

As principais opcdes para a implementagdo da comunicacdo entre os CP e o
computador local consideradas no presente trabalho foram: rede PROFIBUS; Ethernet;
comunicacao serial.

No caso da rede PROFIBUS, a comunicacido envolve recursos que estdo disponiveis
somente em certos CPs de fabricantes que adotam o PROFIBUS.

Por outro lado, uma rede Ethernet ndo se justifica quando compara-se o custo de
solu¢gdes com comunicagdo serial.

Desta forma, a Comunicacdo Serial mostrou-se o mais conveniente para o caso de

estudo considerado e ela é, portanto, descrita a seguir.

19

2.6.1. Comunicacio serial

Na comunicagdo serial, apenas um bit é enviado de cada vez através da porta de
comunicagdo serial (do CP ou do computador). A comunicacio utiliza-se de uma linguagem
de programacgado para a confeccdo dos protocolos responsaveis pelo envio e recebimento de
informagdes. Os dados enviados e recebidos s@o encapsulados em blocos, ou pacotes, cujo

formato € o seguinte:

1 2 2 2 LEN 1
5TX CRC BLK LEN DATA ETX
A I I A R
1] 1 3 3 7 F+LEM

e STX (0x2): byte que representa o inicio de um pacote;

¢ CRC: contador de referéncia ciclico, usado para verificagdo da integridade do pacote;
¢ BLK: niimero do pacote (16 bits);

e LEN: nimero de bytes de dados contidos no pacote (16 bits);

e DATA: bytes de dados do pacote de tamanho LEN < MAX_BLOCK_LEN

e MAX_BLOCK_LEN: é uma constante (por ex.: 512);

e ETX (0x3): byte que representa o fim de um pacote.

O dltimo byte de cada pacote deve necessariamente ser NULL, indicando o fim da

informacgdo transmitida.

2.6.2. Comunicacio serial em C++

Em C++ existem classes ja elaboradas e disponibilizadas por diversos autores que
permitem a realizacdo da comunicacdo serial. Esta secdo apresenta uma descricdo destas
classes (Traverse, 2007).

Para que seja possivel a comunicag¢do serial, € preciso estabelecer uma série de
definicdes, tais como a porta a ser utilizada (COM1 ou COM2 no caso deste projeto), tempos
e constantes, velocidade e paridade (parametros da comunicacdo). Definidos todos os
parametros, é necessario criar rotinas para recep¢do e envio de dados, além, é claro, do
tratamento de erros no estabelecimento da comunicacio, na abertura e no fechamento das
portas.

Com todas estas rotinas implementadas, € possivel estabelecer, de forma relativamente

simples, a comunicacdo serial através da linguagem C++.

20

2.7. Monitoracao Visual

2.7.1. Visualizacdo de imagens

O componente VIDEO CAPTURE para C++ Builder da empresa XtimSoft
(XTIMSOFT, 2007) consiste em uma “janela” a ser adicionada na interface de um programa
qualquer. O acionamento desta “janela” a partir de um determinado evento faz com que as
imagens captadas por uma webcam instalada no computador sejam apresentadas na interface
deste programa através desta “janela”. A Figura 6 ilustra qual o procedimento para adicionar o

componente a interface de um programa.

O componente na palheta de

C++Builder 6 - Project1

DE-Rar SS €
= R

Object TreeYiew [x] orm1

Dbject Inspector

ideal Thideo

Froperties i Eventgl

alMone

Cursor criDefault

..Enable
_FrameF ate

 HelpKepus
HelpType htContext

All shown
interface do programa
Figura 6 — Utilizando o componente VIDEO CAPTURE.
2.7.2. Transmissdo de imagens pela Internet

Utilizando o componente VIDEO CAPTURE num computador com conexao a Internet

e um componente de imagem (IMAGE) num outro computador também conectado & Internet

pode-se estabelecer uma transmissao de imagens.

21

A webcam instalada num computador captura um frame que é salvo em um arquivo
BITMAP, em seguida, o arquivo € transformado em uma stream para que esta seja
transmitida pela Internet. Ao receber uma stream o outro computador j4 sabe se tratar de uma
imagem e exibe-a em seu componente de imagem.

A sucessdo dos frames exibidos no computador faz com que o componente de exibi¢do
de imagem emule a exibicdo de um video. A Figura 7 ilustra esquematicamente como
funciona a transmissdo de imagens (captadas por uma webcam) entre o computador (servidor)

e o outro computador (cliente) utilizando-se a internet.

Frame atual de Arquivo Arquivo é Streal?a ¢ lida
uma webcam .| bitmap | transformado Internet como 1magem
(servidor) | recebe o | em uma stream (cliente)
frame

Figura 7 — Transmissdo de informagdo de video pela internet.

Uma vez estabelecida comunicacio entre os computadores, de acordo com o processo
na Figura 7, o usudrio podera visualizar as imagens na tela do computador (cliente) como se a

webcam estivesse instalada nele préprio.

22

3. Descricao Geral do Projeto
3.1. O Sistema Produtivo considerado

O sistema produtivo considerado neste trabalho € um sistema de manufatura integrado
por computador que executa o processo de montagem automatica de diferentes pegas (Festo,
1998). Cada peca € composta por: uma base, de trés cores possiveis (preta, prateada e rosa);
um pino para sustentar uma mola, de dois tipos possiveis (preto ou cinza); a mola citada e
uma tampa, ambos comuns aos trés tipos. De acordo com a cor da base, as pecas montadas

assumem diferentes composicdes, como pode ser observado na Figura 8:

Tampas

Molas

Pinos de
Suporte

Base

Figura 8 — Montagem dos diferentes cilindros pelo sistema CIM.

3.1.1. Descrigao Geral
O sistema CIM é um equipamento para fins de treinamento especializado da empresa

Festo que, na configuracdo disponivel no Laboratério de Sistemas de Automacdo do PMR-
EPUSP, é composto de 5 estacdes de trabalho, cada qual capaz de ser operada
individualmente ou, no contexto de um sistema integrado e automatizado, cada estacio possui
certa autonomia na execu¢do de suas tarefas. As estacdes de trabalho s@o as seguintes:
Estagdo de Testes; Estacdo de Distribuicdo; Estagdo de Montagem com Unidade de Execucdo
da Montagem; Sistema Inteligente de Transporte (SIT); Estacdo de Controle de Célula de
Trabalho.

A Estagdo de Distribuicdo armazena as bases a serem montadas e as encaminha ao
processo de producdo de acordo com a demanda. Ja a Estagcdo de Testes € responsdvel pela
identificacdo da cor (prateada, rosa ou preta) e teste da altura das bases vindas da estacdo de

distribuicdo. Esta estacdo é também responsavel por descartar pegas rejeitadas neste teste. O

Sistema Inteligente de Transporte conta com uma esteira de transporte e cinco carros (pallets).

23

Este sistema de transporte tem pré-definido quatro lugares distintos para a parada dos carros,
sendo um deles destinado & Estacdo de Testes e outro a Estacdo de Montagem. O SIT destina-
se a transportar as bases identificadas e testadas da Estacdo de Testes para a Estagcdo de
Montagem, onde a montagem do produto € finalizada. Os produtos finais sdo entio

transportados pelo SIT para uma outra localidade distinta.

Estacdo de Estacdo
Distribuicdo de Testes l

| @

|
[olE el

!

Estacdo de
¢ Montagem

Estacdo de Controle de
Célula de Trabalho

Figura 9 — Esquema ilustrativo do sistema CIM.
Entre as caracteristicas do sistema CIM encontram-se:

. Estacdes de Distribuicdo e Testes: possui dispositivos para manipulagdo, testes
de controle de qualidade através de sensores, aquisicdo e avaliacdo de sinais digitais e

analdgicos, assim como um sistema de controle para cada estagdo, com CLPs;

. Estacdo de Montagem: possui um manipulador de 3 eixos para a montagem das
pecas, sendo dois dos acionamentos por servo-motores (eixos x e y) e o terceiro por motor CC
(eixo z), dotado ainda de dispositivo de garra dedicado. O controle € realizado por controlador

programavel.

° Sistema Inteligente de Transporte (SIT): visa o controle de fluxo de material e

€ composto de mddulos de esteiras flexiveis, dotadas de dispositivos pneumaticos de fixacao

24

de carros (pallets) e indexadores, que permitem o acesso para as esta¢des de trabalho, além de

futuras expansoes.

. Estacdo de Controle de Célula de Trabalho: implementa o controle supervisério
das demais estacdes e inclui um computador central (Host Controller) para controle do

processo, com sistema de visualizacio do processo on-line.

A seguir apresenta-se uma descricdo detalhada das Estacdes de Distribui¢do e Testes

do sistema CIM, uma vez que estas sdo o material-base deste projeto.

3.1.2. Estagdo de Distribuicdo
A Estacdo de Distribui¢do pode ser definida como um sistema de alimentag@o cujas

principais fungdes sao:
. Retirar uma peca (base) do magazine de distribuigéo;
. Disponibilizar a peca para o processo subseqiiente.

Na estagdao de distribuicdo, constam um compartimento de armazenagem de bases
(magazine de distribuicdo), com sistema de retirada e posicionamento individual destas pecas,
e um mecanismo de transporte entre a estacio de distribui¢do e a estagdo de testes (médulo de

transferéncia).

Medidores de Pressao de Linha

Magzzine de

Alimentacin
/? Sensores
-" / Rampas
Madulo de j/
Transferéncia
Cerador “Walvulas de
de acuo I Comandn dos
Estagio de Estagio Fistiizs

Distribuicdo de Testes

Figura 10 - Detalhamento dos componentes das Estacdes de Distribuicao e Testes

O magazine de distribuicio conta com um sensor de presenca Optico no seu
compartimento de armazenagem. Havendo pega neste compartimento, um feixe de luz é

interrompido pela presenca fisica da peca, impedindo que o mesmo alcance o sensor

25

(elemento foto-elétrico), que indica sua presenca e sinaliza ao controle que o sistema pode
iniciar a tarefa seguinte.

A retirada e o posicionamento individual das bases sdo realizados por um pistdo
pneumadtico, comandado por uma véalvula de uma via. Este tipo de vélvula apresenta somente
um estado que pode ser mantido constantemente, isto é, ou haste do pistdo estd avangada
(valvula fechada) ou recuada (valvula aberta). Neste dispositivo, o estado permanente da haste
do pistdo € a de avanco total. Quando € necessdria a retirada de uma peg¢a do compartimento
de armazenagem e seu devido posicionamento, a vdlvula comuta seu estado e a haste do
pistdo recua, carregando, neste movimento, a primeira peca da fila (posi¢do inferior da pilha
de pecas no compartimento de armazenagem) para a posi¢do determinada, retornando em
seguida a sua posicao original. O controle dos limites de avango e recuo da haste é realizado

por sensores fim de curso magnéticos acoplados ao corpo do pistdo.

Compattimento de

Armazenagerm \

Sensor Optico
de Fresenga

Pecas

Fosicionamento
da Pega

Fistao Fneumatico

de Posicionamanto | |
\ ! |—|>

r \\ -
Y S
Sensores Magnéticos

de Fim de Cursao

Figura 11 - Retirada e posicionamento de bases na estag@o de distribui¢do (magazine de
distribuicao)

O mecanismo de transporte entre as Estacdes de Distribuicdo e de Teste (médulo de
transferéncia) é um brago articulado em uma de suas extremidades, cujo movimento se dd em
plano vertical. O movimento deste bragco mecanico é regulado por duas chaves fim de curso
de roletes, vinculadas a rotacdo do mesmo em torno de sua extremidade articulada. Na sua
extremidade livre, este mecanismo dispde de uma "ventosa" capaz de fixar-se as pecas através
de véacuo, gerado externamente em uma unidade de geracdo de vacuo. Para a liberagcdo da
peca, basta eliminar o vdcuo, permitindo-se contato das vias despressurizadas relacionadas a

este mecanismo com o meio externo, eliminando a acdo do vacuo gerado.

26

Chaves Fimn de
Curso de Roletes

-4 _ ¥y Y F I_ 1
IXLJ_ 4-{ [O) 1'|
!
\Eoy A,
é J'J —‘v—{ “Yeniosa
Esiapdo de Estacidn de
Oistribuigéo Testes
Figura 12 - Médulo de transferéncia
3.1.3. Estacio de Testes

Tarefas importantes na execugdo de testes sdo a aquisi¢do de informacio e
comparagdo de caracteristicas especificas e, resultante disto, uma decisdo entre “peca aceita”

ou “peca rejeitada”.
As fungdes da Estacdo de Testes sdo:
. Estabelecer as caracteristicas do material da pega;
. Descartar ou disponibilizar a peca para a estagc@o subseqiiente.

Esta estacdo apresenta uma plataforma elevatdria e diferentes tipos de sensores para a
realizacdo dos testes. Para tanto, esta estacdo define dois “andares”. No “andar” inferior,
existem trés sensores distintos: indutivo, éptico e capacitivo, que estdo dispostos de forma a
ndo interferir na livre movimentacao tanto da plataforma elevatéria como do brago articulado
do moédulo de transferéncia (Estagdo de Distribuicdo). O sensor 6ptico € o uUnico que
permanece acoplado a plataforma elevatdria, sendo os demais fixos na base da unidade. O
sensor indutivo visa identificar pecas metdlicas (prateadas), o sensor Optico destina-se a
identificar pecas que refletem a luz por ele emitida (rosas ou prateadas), e o sensor capacitivo
¢ utilizado para identificar a presenca ou ndo de pecas. Os trés sinais emitidos pelos trés
sensores devem ser analisados em conjunto e permitem assim identificar a cor da peca

presente na plataforma.

27

Sensar Capaciivo FJ
Sensar Optico

\K“‘-x_

Fistao para expulsan
da peca da platsforma

''_'_'_'_,_,.,-'-"
Plataforma
Elevatdria
.—'—'—''_'_'_F'_

densor Indutivo _/'J

Figura 13 - Arranjo fisico dos sensores para teste do tipo/material das pecas na Estacdo de
Testes

O “andar” superior, onde ¢é realizado o teste de altura das pecas, apresenta um pistao
pneumdtico e um mecanismo acoplado a extremidade de sua haste, cujo movimento pressiona
um sensor piezoelétrico acoplado a estrutura da plataforma elevatdria, na posi¢do vertical. O
contato com a peca € realizado por uma pequena haste metélica, que é comprimida contra a
peca a ser testada, em um movimento ao longo de seu eixo, gerando a compressdo do
elemento piezoelétrico. A compressdo do elemento piezoelétrico gera uma corrente elétrica. A
altura da pega pode ser, entdo, testada de acordo com a intensidade da corrente gerada deste
contato (maior para compressdes maiores -pecas mais altas- ou menores para menores
compressoes - pecas mais baixas), isto €, de acordo com a calibracio deste sensor.

A plataforma elevatéria conta com mais um pistdo pneumatico, na posi¢do horizontal,
que também se desloca junto com a plataforma elevatoria, responsavel por expulsar as pegas,
tanto aprovadas como reprovadas no teste de altura, através de rampas presentes em cada um
dos andares: a rampa do “andar” superior para pecas aprovadas e a do “andar” inferior para
pecas reprovadas. Para garantir a realizacdo da tarefa, a acdo deste pistdo é temporizada,
mantendo sua haste avancada por um tempo pré-determinado na programacado, para somente

entdo ocorrer o seu recuo, garantindo a expulsdo da peca testada.

28

Pi=iaon

Prieumatico
Hasgle lj
Matalica Az
Rampa ﬂ P]
Superiar
Sistema
Inteligenta de
Transporte (SIT) Platafarma
Elzvatona
Sensar
Sensor m e Uptica
Rampa Capacitivo
Inferiar
FPecas
Dozcatadas

mn e
L G L S T e T

Figura 14 - Plataforma elevatéria e rampas inferior e superior

Apds a realizacdo dos testes, as pecas aprovadas seguem para um carro transportador
(pallet) no sistema inteligente de transporte (SIT), por meio de uma rampa (superior), ou sdo

descartadas no andar inferior, por meio de outra rampa (inferior).

3.1.4. Sistema de Controle
Cada estagdo de trabalho é controlada por meio de um controlador programavel. O

controlador que comanda a Estacdo de Distribuicdo é o FPC101-B, e o que controla a Estacdo
de Testes € o FPC101-AF ambos da empresa Festo.

A ligacdo entre os elementos da bancada (dispositivos de atuacdo e dispositivos de
detec¢do) e o controlador, em ambos os casos, € realizada através de dois terminais de
entrada/saida, um deles ligado diretamente ao controlador e aos elementos da bancada, e outro
ligado ao controlador e os dispositivos de comando e de monitoragdo (botdes, chaves e
lampadas sinalizadoras) existentes na estacdo. Cada qual possui 8 entradas por onde chegam
as informacdes advindas dos dispositivos de controle e 8 saidas.

Os botdes e chaves, que sdo unicos para as duas bancadas, possibilitam ativar o
funcionamento das estacdes. Estes proporcionam a realizagdao do processo de duas formas: a
continua, na qual o funcionamento das duas bancadas ocorre seqiienciada e ininterruptamente,
e por etapas, onde se pode escolher qual das estacdes deseja-se ativar. Além disso, através dos

botdes e chaves pode-se interromper o processo a qualquer momento e retornar as estagdes as

suas posigdes iniciais.

29

3.2. Consideracoes gerais sobre o projeto

O projeto aqui consiste em programar os CPs de maneira que as estagdes de
trabalho executem o processo / tarefas previstas. Além disso, € necessdrio estabelecer a
comunicacdo entre os CPs e os PCs (Estagdes de controle), isto €, programar a interface local
e remota para que se comuniquem, respectivamente, com CP (serial) e PC Remoto (sockets) e

PC Local (sockets).

A Figura 15 mostra uma representacdo esquemdtica das atividades

desenvolvidas e os conceitos considerados.

emoto

internet =

-~ ”
. g

Sockets -

serial

Orientacao a objetos
Linguagem C++

Monitoramento visual

Programacgéao de CP

Rede de Petri

Figura 15 — Representacdo esquemadtica dos fundamentos aplicados ao projeto

30

4. Implementacao

Para se implementar o comando e monitoramento das estagdes do sistema CIM
foi adotada uma estratégia para elaboracdo do sistema de controle. A idéia é que uma vez
visualizado o sistema, isto €, que se tenha defini¢cdes e especificagdes precisas sobre sua
estrutura, componentes fisicos e 16gicos e, processos envolvidos, bem como as maneiras como
se deseja comandd-lo e monitord-lo basta usar as ferramentas, conceitos e fundamentos
adequados para implementar aquilo que foi planejado. Assim, torna-se chave a questdo de
como interpretar visualmente todas as possibilidades do seu sistema de controle. Neste
projeto, isto foi realizado através dos diagramas UML e da representacio do sistema CIM em

redes de Petri, detalhados a seguir.

4.1. Diagramas UML

Inicialmente, estudou-se o sistema de controle através de digramas UML, a fim
de se identificar todas as necessidades de interac@o entre sistema CIM, usudrio local e usudrio

remoto. Os principais diagramas considerados sdo detalhados abaixo.

4.1.1. Diagrama de Casos de Uso:
Os atores do sistema em desenvolvimento sdo os usudrios do programa. Inicialmente

definiu-se trés categorias de possiveis usudrios, organizadas de forma hierarquica, de acordo

com as fun¢des disponibilizadas para o controle das esta¢des de trabalho:

. EXPERT - Usudrios desta categoria podem tanto realizar o processo
continuamente (sem interrupg¢des), quanto realizar o processo passo a passo (por etapas) ou

realizar uma ou mais etapas do processo de forma isolada.

. INTERMEDIARIO - Usudrios desta categoria podem realizar o processo

continuamente ou Ppasso a passo.

. LEIGO — Usudrios desta categoria podem realizar o processo continuamente.

O diagrama de casos de uso resultante € apresentado na Figura 16:

31

niciar/Finalizar
o sistema

Acessar lista
de espera

Enviar
agem />
Leigo

mensagem

Expert

Executar processo

continuo

Intermediario

xecutar passo
a passo

Figura 16 — Diagrama de casos de uso.

Nesta fase do projeto, para reduzir o tamanho do cédigo de software, foi decidido que
sO haveria apenas um tipo de usudrio, e este teria acesso a todo tipo de controle da estacdo

(como seria o caso do usudrio no topo da cadeia hierarquica pretendida).

4.1.2. Diagrama de Classes:
O ator externo “Usudrio” solicita (via software) a execucdo de uma atividade para o

objeto Proc_peca, que aciona os devidos objetos das estagdes de trabalho (os equipamentos,
ou seja, os pistdes, o braco mecanico e o gerador de vicuo) na ordem adequada para que a
atividade possa ser concluida corretamente. Por exemplo, no caso das duas estacdes de

trabalho consideradas tem-se o diagrama da Figura 17:

32

utiliza *

Software

1

Proc_peca

Sensores de

Pistdo de

é posicao

7

utiliza

Legenda:

<|—

alocacgao

Pistdo de
descarte/aceitagao

Pistao <E

<|—

Sensor

Pistdo elevador

K >— para teste

de altura

Braco mecéanico

K>

Sensores de
posicao

T

Gerador de
Vacuo

Associacao
<}— Heranca
<>>— Agregacdo

Sensores de Teste
(presencga/cor/campo)

4.1.3. Diagrama de atividades:

Figura 17 — Diagrama de classes.

Os principais casos de uso sdo detalhados em diagramas de atividades.

33

Gﬂicitagéo para iniciar o process}

alocagéo da peca (pistdo)

v

% L

posicionamento do brago + 'agarramento’

v

@oca@éo da pecga na estagédo de testes

()

teste da presenga de pega

»

teste da cor

»

teste de campo

»

teste de altura

Y

v

@ngamento da peca para estei@

Figura 18 — Diagrama de atividades do caso de uso ‘Executar processo continuo’.

No modo de execucdo de processo continuo (Figura 18), as etapas do processo sio
realizadas em uma seqii€ncia pré-estabelecida e, mesmo neste modo, é possivel interromper o
processo a qualquer momento clicando no botdo STOP da interface principal (a partir daqui,
esta serd a referéncia para a tela principal do programa de controle desenvolvido). Durante a
execucdo, o campo de status, localizado na interface principal, € continuamente atualizado

para que o usudrio possa monitorar o estado da estacdo de trabalho.

34

élicitagéo para iniciar o proces@

iniciar

alocagao da pega (pistéao)

iniciar

@sicionamento do brago + 'agarramento’

iniciar

Glocagéo da peca na estagao de testes

Gste da presenca de pe@

iniciar

teste da cor

teste de campo

teste de altura

@ngamento da peca para estei@

Figura 19 — Diagrama de atividades do caso de uso ‘Executar processo por etapas’.

No modo de execugdo de processo por etapa (Figura 19), as etapas do processo
também podem ser realizadas seqiiencialmente, porém, € necessdrio que o usudrio clique no
botdo ‘Iniciar’ para indicar a etapa a ser executada dentro da seqii€ncia pré-estabelecida. O
campo de status € atualizado apds cada etapa. Clicando no botdo STOP da interface principal

pode-se interromper o processo a qualquer momento.

35

Usudrio clica em 'Uma Etapa’

Habilita janela de selecionar etapa

quério seleciona etapa e clica em 'Inici@e
@via informagdo ao computador Io@

Solicita ‘finalizar programa”

Pede confirmacao

Confirma

Cancela

Atualiza janela de status

Informa computador local

Fecha programa

Etapa finalizada

Figura 20 — Diagrama de atividades do caso de uso ‘Executar uma Etapa’.

No diagrama da Figura 20 a etapa selecionada pelo usuario é executada uma
unica vez. Durante a execug@o o campo de status € continuamente atualizado e o usudrio pode

solicitar a interrupcao da etapa.

Ap6s analisar todos os diagramas, ainda na fase inicial do projeto, optou-se por
simplificar o sistema de controle. A principal simplificacdo foi eliminar a hierarquizagcdo de
tipos de usudrios. O estudo aprofundado de sockets foi fundamental para esta decisdo uma vez
que foi percebida a complexidade em se realizar uma conexao via internet em meio a c6digos
relativamente longos e complexos. Outras simplificacdes foram conseqii€ncia da modelagem

do sistema CIM através de rede de Petri.

36

4.2. Redes de Petri do sistema CIM

A modelagem de todo o sistema de controle foi feita, inicialmente, para a
primeira estacdo de trabalho do sistema CIM, a estacdo de distribuicdo, e em seguida
expandido para a estagcdo de testes. O modelo de rede de Petri do funcionamento da primeira
estacdo de trabalho considerada no projeto (Figura 21) foi decisivo na simplificacdo da
interface principal do programa com o usudrio. A partir da modelagem pode-se elaborar uma
interface relativamente funcional, porém, sem alguns dos recursos periféricos planejados
anteriormente nos diagramas UML.

inicio

Pega liberada (zilindro estendidao)
Brago na pozigdo magazine
Pistdo recuado

“Wacuo acionado

Pega na posigan elevador

“acuo desligado

Figura 21 — Modelagem do funcionamento da estacdo de distribui¢do em rede de Petri

Para incluir o controle de outra estacdo de trabalho, isto €, além da estacdo de
distribuicdo, o controle também da estacdo de testes, foi necessdrio expandir o programa
responsavel pelo comando e monitoracdo das estacdes. A expansdo do programa segue a
mesma légica de programacgao anteriormente adotada estendendo as fungdes de comando e de
monitoracdo. Para esta atividade, foi de fundamental importancia o modelo em rede de Petri

do sistema envolvendo as duas estagdes de trabalho (Figura 22).

37

inicio /wdo teste

Pega liberada icilindro estandide) g
ensores

Brago na posigdn magazine

indutivo capacitivo

Pistda recuado

wAcuo acionado

Pega na posigdo elevador

wacuo desligado

Fim do teste

Testes de tipo de pega

Teste de attura

Pega descartada
Pega aprowada

Figura 22 — Modelo do funcionamento conjunto das estagdes de distribuicio e de
testes em rede de Petri.

38

5. Testes e analise dos resultados

Os principais resultados reportados seguem a ordem de comunicagdo do sistema de
controle. Inicialmente serdo mostrados os resultados relativos a programacdo de CPs,
seguidos pelos resultados de comunicagéo serial entre computador e CP, e, pela utilizacdo de
sockets para comunicar dois computadores através da Infernet. Na seqiiéncia, sao mostrados
os resultados da programacdo da interface final (tanto remota como local) para a primeira
estacdo de trabalho (estacdo de distribui¢do), e, por fim, os resultados referentes a
monitoragdo visual e transferéncia de video pela Internet, para entdo, serem apresentados os
resultados finais do projeto: a interface final do programa, ji expandida para a estagdo de
testes, € a sugestdo de metodologia para desenvolvimento de sistemas de comando e

monitoramento remoto de sistemas produtivos.

5.1. Programacao do CP

A criacdo e implementagio do programa do CP da estacdo de distribui¢do foi
executada em diversas etapas. Apods os estudos sobre lista de instrugdes e comunicacao serial,
foram analisadas possiveis formas de atualizacdo do programa. A idéia inicial consistia em
alterar apenas o trecho que carregava os valores de sinais de dispositivos de comando para
uma varidvel indicativa de borda de subida, permanecendo o restante do cddigo inalterado. A
tentativa foi carregar neste trecho de codigo os sinais vindos da comunicacdo serial,
substituindo os sinais originalmente vindos dos dispositivos de comando. Depois de definida
esta estratégia, o proximo passo foi a familiarizacdo com a implementagdo da comunicacio
serial através da lista de instrucdes. Ao fim desta etapa, foi possivel concluir que a primeira
estratégia tracada foi equivocada. Portanto, foi definida uma nova estratégia de alteragdo do
programa, que embora mais trabalhosa devido ao fato de alterar significativamente o
programa original, mostrou-se de implementacdo mais simples. Por fim, implementou-se
todas as mudancas planejadas. A seguir, ¢ detalhada cada uma das fases da concepgdo e

implementagéo da atualizacdo do programa no CP.

5.1.1. Primeira estrat€gia de atualizacdo do programa do CP

No programa original do CP da estagdo de distribuicdo, existia uma rotina que cuidava
da detec¢@o de bordas de subida ocorridas devido ao acionamento dos botdes da bancada. A

39

primeira idéia concebida foi a de alterar apenas esta rotina. Esta idéia fez-se vélida, entre
outros motivos, pelo fato de alterar apenas uma minima parte do codigo original, reduzindo a
propensdo aos erros causados por alteragdes indevidas no programa original. A alteracio

idealizada € mostrada na Listagem 1 e Listagem 2:

STEP LOOP
IF NOP
THEN LOAD (Iwl 'Sinais dos botdes
EXOR 0ld_Iwl) 'Sinais antigos
AND Iwl
TO pEd_IWl 'Marcador de borda de subida
LOAD Iwl
TO O0ld_Iwl
IF NOP

THEN JMP TO LOOP

Listagem 1 — Rotina original

STEP LOOP
IF NOP
THEN LOAD (Serial 'Porta serial
EXOR OldSerial) 'Porta serial (sinais antigos)
AND Serial
TO pEd_Ser 'Marcador de borda de subida
LOAD Serial
TO OldSerial
IF NOP

THEN JMP TO LOOP
Listagem 2 — Alteracdo na rotina original

Esta idéia foi abandonada apdés um maior entendimento do funcionamento da
comunicacdo serial na linguagem do CP, pois o CP é capaz de responder a um simples byte
enviado via porta serial, ndo havendo a necessidade de se trabalhar com operacdes que
identifiquem as mudangas entre os sinais antigos e atuais. Fazendo uma simples
correspondéncia entre os bytes recebidos e as acdes executadas, é possivel executar todas as

rotinas de funcionamento.

5.1.2. Comunicacio serial no CP

O software no qual o programa foi desenvolvido, o FST 4.11, disponibiliza diversos
drivers, entre eles, o de comunicacdo serial. Ao adicionar este driver ao projeto, pode-se

utilizar as rotinas pertencentes a este. Os comandos sdo tratados pelo software como CFMs,

40

ou seja, rotinas em outra linguagem as quais nao se tem acesso ao cddigo. Portanto, uma vez

incluidos os comandos ao projeto, pode-se utiliza-los, porém ndo altera-los.

A linguagem de lista de instrugdes oferece uma série de comandos relacionados a
transmiss@o de dados através da comunicacdo serial. O programa desenvolvido para o CP da
empresa Festo no controle das estacdes de distribuicdo e testes do sistema CIM conta com
uma palavra (‘word’) que transmite os parimetros necessarios para este tipo de comunicagao.
Trata-se da FU32, varidvel interna utilizada para passar parametros para mddulos. No caso de
certos comandos, sdo necessdrias outras palavras para que a informacgdo seja transmitida, as
quais ndo existem no programa atual da Festo, mas podem ser inseridas. Os comandos que
possibilitam a transmissdo de dados via comunicacdo serial, assim como os operandos

necessarios para tal, s@o listados a seguir:

° OPENCOM: abre a interface serial;

Parametro de Entrada: FU32 — interface serial

Parametro de Retorno: verdadeiro (0)/falso (1)

° CLOSECOM: fecha interface serial aberta;

Parametro de Entrada: FU32 — interface serial

Parametro de Retorno: verdadeiro (0)/falso (1)

° GETCOM: 1€ um caractere de uma interface serial;

Pardmetro de Entrada: FU32 — interface serial

Parametros de Retorno: verdadeiro (0)/falso (1)/nenhum dado recebido (-1)
FU33 — se FU32=0, FU33 recebe o caractere (0 a 255)

° PUTCOM: envia um caractere para uma interface serial;

Parametros de Entrada: FU32 — interface serial

FU33 — caractere a ser enviado (0 a 255)

41

Parametro de Retorno: verdadeiro (0)/falso (1)

A fim de compreender o funcionamento de cada um dos comandos, apds integra-los ao

projeto, foi realizada uma série de testes, descritos a seguir:

. Teste 1: Enviar um byfe via porta serial — Para realizar tal teste, foi utilizado o
comando PUTCOM, definido no projeto como CFM4. Um programa simples em C++ (secdo
4.2.1) foi desenvolvido para responder a este teste, mostrando um label caso o byte fosse

recebido. Os c6digos sdo mostrados na Listagem 3:

STEP INIT
THEN CMP 0 'inicializa operandos
STEP
THEN LOAD V1

TO FU32 'Parametros do PUTCOM

LOAD vé

TO FU33 'Parametros do PUTCOM
STEP
THEN CFM 4 'PUTCOM

Listagem 3 — Teste 1
. Teste 2: Mover pistio através do comando do computador local — Neste teste, o

byte correspondente a0 movimento do pistdo € ativado através de um programa em C++ que
envia o comando de acordo com o acionamento do botdo presente na interface do software do
computador local. A recepcdo de sinal se da através do comando GETCOM, definido como
CFM3. Ao receber o byte, o programa do CP o carrega na palavra de saida correspondente aos
atuadores da bancada, acionando o pistdo. Os cdédigos programados sdo mostrados na

Listagem 4:

STEP INIT
THEN CMP 0 'inicialzia operandos

STEP
THEN LOAD V1
TO FU32 'Parametro do GETCOM

STEP LOOP
THEN
CFM 3 'GETCOM
IF FU32

THEN

42

JMP TO 1
OTHRW

JMP TO LOOP
STEP 1
THEN

LOAD FU33 'Parametro do GETCOM
TO OowWo

Listagem 4 — Teste 2

. Teste 3: Como distinguir dois bytes recebidos — Adicionando-se outro botdo a
interface do software em C++, envia-se dois diferentes bytes ao CP. De acordo com o byte
recebido, é carregado um valor diferente em uma palavra de saida. Os cédigos programados

sdo mostrados na Listagem 5:

STEP INIT
THEN CMP 0 'inicializa operandos
STEP
THEN LOAD V1
TO FU32
STEP LOOP
THEN
CFM 3 'GETCOM
IF FU32
= vO0
THEN
JMP TO 0
OTHRW
JMP TO LOOP
STEP 0
IF FU33
= V63
THEN JMP TO 1
OTHRW
JMP TO X
STEP X
IF FU33
= V62
THEN JMP TO 2
OTHRW
JMP TO END
STEP 1
THEN LOAD V6
TO oWl
JMP TO END
STEP 2
THEN LOAD V1
TO oWl
STEP END
THEN LOAD V1
TO FU32

Listagem 5 — Teste 3

43

5.1.3. Reestruturacdo do programa do CP

A reestruturagdo do programa foi dividida em trés casos: para o funcionamento
automadtico, para o funcionamento por etapas e para o caso em que se deseja testar o
funcionamento individual de qualquer dos componentes de uma estagdo de trabalho. Depois
da implementacdo de cada caso, o préximo passo foi juntar todos os modos de funcionamento

num tnico projeto, por meio da diferenciacio dos byres enviados conforme testes anteriores.

. Primeiro caso: Funcionamento automatico — Adaptou-se do programa original
do CP a rotina de reset, que posiciona a estacdo em seu estado inicial, e o programa que
executa todos os procedimentos inerentes a estacdo de distribuicdo e de teste, em seqiiéncia e
automaticamente. Criou-se entdo o programa principal, que ao receber um byte, ativa o
programa de reset e em seguida, o programa de controle que atua nas estagcdes. Para que as
duas rotinas ndo fossem executadas simultaneamente, um flag € levantado quando a rotina de
reset é concluida, e a rotina seguinte s6 é executada caso este flag esteja levantado. Os

codigos programados sdo mostrados na Listagem 6:

STEP INIT
THEN CMP 0 'inicializa operandos

STEP MainLoop

THEN

LOAD V1
TO FU32
STEP LOOP
THEN
CFM 3 'GETCOM
IF FU32
= 4
THEN
JMP TO 1

OTHRW
JMP TO LOOP

STEP 1
THEN
SET P10 'P10: reset
STEP 2
IF InitRdy 'F2.13: flag de Reset
THEN
SET P11 'P11l: sequéncia de eventos

Listagem 6 — Funcionamento Automético das estagdes de distribuicdo e de testes

. Segundo caso: Funcionamento por etapas — Neste projeto, foram criadas

diversas rotinas, uma para cada etapa do processo, em substitui¢do & rotina tnica do projeto

44

anterior. Para cada byte recebido no programa principal do CP, uma nova rotina € executada.

Os codigos programados s@o mostrados na Listagem 7:

STEP INIT
THEN CMP

STEP MainLo
THEN
LOAD
TO
STEP LOOP
THEN
CFM
IF
THEN
JMP
OTHRW
JMP
STEP 1
THEN
SET
STEP 2
THEN
CFM
IF
THEN
JMP
OTHRW
JMP
STEP 3
THEN
SET
STEP 4
THEN
CFM
IF
THEN
JMP
OTHRW
JMP
STEP 5
THEN
SET
STEP 6
THEN
CFM
IF
THEN
JMP
OTHRW
JMP
STEP 7
THEN
SET
STEP 8
THEN
CFM

0

op

V1

FU32
3

FU32

4
TO 1
TO LOCOP

P10
3

FU32

Vo
TO 3
TO 2

P12
3

FU32

4
TO 5
TO 4

P13
3

FU32

4
TO 7
TO 6

P14
3

'inicializa operandos

'GETCOM

'P10: reset

'GETCOM

'P12: Passo 1

'GETCOM

'P13: Passo 2

'GETCOM

'P14: Passo 3

'GETCOM

45

IF
THEN
JMP
OTHRW
JMP
STEP 9
THEN
SET
STEP 10
THEN
CFM
IF
THEN
JMP
OTHRW
JMP
STEP 11
THEN
SET
STEP 12
THEN
CFM
IF
THEN
JMP
OTHRW
JMP
STEP 13
THEN
SET
STEP 14
THEN
CFM
IF
THEN
JMP
OTHRW
JMP
STEP 15
THEN
SET
STEP 14
THEN
CFM
IF
THEN
JMP
OTHRW
JMP
STEP 16
THEN
SET
STEP 15
THEN
CFM
IF
THEN
JMP
OTHRW
JMP

TO 9

TO 8

TO 11

TO 10

TO 13

TO 12

TO 15

TO 14

TO 15

TO 14

TO 16

TO 15

FU32
4

P15

FU32
Vo

P16

FU32
4

P17

FU32
Vo

P18

FU32
Vo

P19

FU32
Vo

'P15: Passo 4

'GETCOM

'Pl6: Passo 5

'GETCOM

'P17: Passo 6

'GETCOM

'P18: Passo 7

'GETCOM

'P19: Passo 8

'GETCOM

46

STEP 16

THEN
SET P20 'P20: Passo 9
STEP 17
THEN
CFM 3 'GETCOM
IF FU32
= V0
THEN
JMP TO 18
OTHRW
JMP TO 17
STEP 18
THEN
SET P21 'P21: Passo 10
STEP 19
THEN
CFM 3 'GETCOM
IF FU32
= Vo
THEN
JMP TO 20
OTHRW
JMP TO 19
STEP 20
THEN
SET P22 'P22: Passo 11
STEP 21
THEN
CFM 3 'GETCOM
IF FU32
= V0
THEN
JMP TO 22
OTHRW
JMP TO 21
STEP 22
THEN
SET P23 'P23: Passo 12

Listagem 7 — Funcionamento por etapas das esta¢des de distribuicdo e de testes

. Terceiro caso: Teste dos atuadores — De forma semelhante ao segundo caso,
foram criadas rotinas especificas para cada tipo de teste que se deseje realizar. A principal
diferenca deste caso para o caso anterior € que neste existe a necessidade de diferenciar os
bytes recebidos do computador, para que se possa definir qual teste deve ser executado. Os

codigos programados para a estagcdo de distribuicdo sdo mostrados na Listagem 8:

STEP INIT
THEN CMP 0 'inicializa operandos

STEP MainLoop

THEN
LOAD V1
TO FU32
STEP LOOP
THEN
CFM 3 'GETCOM
IF FU32
= 0

47

THEN

OTHRW

STEP 1
THEN

STEP 2

THEN

IF

THEN

OTHRW

STEP 3

IF

THEN

OTHRW

STEP 4
IF

THEN

OTHRW

STEP 5

IF

THEN

OTHRW

STEP 6

IF

THEN

OTHRW

STEP 7

IF

THEN

OTHRW

STEP 8

IF

THEN

JMP

JMP

SET

CFM

JMP

JMP

SET
JMP
JMP

SET
JMP
JMP

SET
JMP
JMP

SET
JMP
JMP

SET
JMP
JMP

SET
JMP

TO 1

TO LOOP

TO 3

TO 2

TO 2
TO 4

TO 2
TO 5

TO 2
TO 6

TO 2
TO 7

TO 2
TO 8

TO 2

P10

FU32
Vo

FU33
V10

Pl2

FU33
v20

Pl4

FU33
V30

P13

FU33
V40

P16

FU33
V50

P15

FU33
V63

P17

'P10: reset
'GETCOM

'P12: Teste 1
'P1l4: Teste 3
'P13: Teste 2
'P16: Teste 5
'P15: Teste 4
'P17: Teste 6

Listagem 8 — Funcionamento do teste dos atuadores da estag@o de distribui¢do

48

5.2. Comunicacao Serial em C++

A partir do cddigo fornecido em (Traverse, 2007), foram adaptados primeiramente os
programas de teste que interagem com os programas-teste do CP. Com o funcionamento
destes, foi possivel adaptar a interface elaborada no projeto, habilitando a comunicacio serial

ao software final do projeto.

5.2.1. Testes em C++

O codigo obtido exemplifica a comunicagdo via serial a partir de dois memos. O
primeiro programa-teste adaptado deste c6digo possui um botdo que envia um byte e um label
invisivel que aparece no programa do CP quando este recebe um byte. Para os demais testes,
foram adicionados mais botdes, de acordo com as necessidades dos programas-teste do CP
(no caso do teste para diferenciar bytes recebidos, eram necessarios dois botdes, cada qual
enviando um byte diferente para o CP; no caso do teste dos atuadores eram necessarios sete
botdes, cada qual enviando um diferente byfe para o CP). As diferencas concentram-se
essencialmente em dois eventos: o “clique” do botdo e o evento Displaylt(), que trata do

recebimento dos dados. As modificagdes sdo apresentadas na Listagem 9:

void ___fastcall TForml::ButtonlClick (TObject *Sender)
{

byte = '?';

// TRANSMITE O BYTE ESCOLHIDO.

TransmitCommChar (hComm, byte);
}

void ___fastcall TRead::DisplayIt (void)
{

Forml->Labell->Show () ;

}

Listagem 9 — Alteracdes dos Codigos para Testes em C++

Com a verificagdo do funcionamento dos programas de teste em comunica¢do em

C++, aplicaram-se os mesmos conceitos na interface do software do projeto.

5.3. Programacao de conexao a Internet via sockets

Os dois testes mais relevantes para o projeto na fase de estudos de sockets foram: a
implementagdo dos programas (cliente e servidor) que trocassem informacao (1 byte) entre si,
pela rede ao clicar-se em um botdo; e a implementacdo dos programas (cliente e servidor) que

realizassem um simples chat entre si.

49

TESTE 1:

Troca de informacdo:

“ C++Builder Chat @Iz] {C++Builder Chat

Figura 23 —Tela do programa cliente Figura 24 — Tela do programa servidor

O Cliente (Figura 23): Os objetos importantes do cliente e suas atividades vinculas aos
métodos usados sio:

- Botdo de Conexao (canto superior esquerdo da tela):

Método OnClick :
ClientSocket->Host = "192.168.0.244"; // define o IP do servidor
ClientSocket->Active = true; // ativa o objeto ClientSocket

- ClienteSocket (ao lado do Botido de Conexao):
Método ClientSocketConnect:
Forml->Label2->Show() ; // mostra Label CONECTOU

Método ClientSocketDisconnect:

Forml->Label4->Show () ; // mostra Label DESCONECTOU

Método ClientSocketError:

Forml->Label5->Show() ; //mostra Label ERRO, relativo a
//impossibilidade de conexédo

Método ClientSocketRead:

if (Socket->ReceiveText () == "Y"){ // se recebeu via sockets Y

Forml->Label3->Show () ; // mostra Label Y na tela

- Botdo de Enviar (Button1):

50

Método OnClick :

ClientSocket->Socket->SendText ("X") ; // manda X via sockets

O Servidor (Figura 24): Os objetos importantes do servidor e suas atividades vinculas

aos métodos usados sao:

- Botdo de Enviar (botdo ‘Mandar’ da tela):

Método OnClick :

ServerSocketl->Socket->Connections[0]->SendText ("Y");
// via sockets

- ServerSocket (ao lado esquerdo do botdo ‘Mandar’):
Meétodo ServerSocketAccept:
Forml->Label2->Show(); // mostra Label ACEITOU
Método ServerSocketClientConnect:
Forml->Label3->Show() ; // mostra Label CONECTOU
Método ServerSocketClientDisconnect:
Forml->Label4->Show() ; // mostra Label DESCONECTOU

Método ServerSocketClientRead:

if (Socket->ReceiveText () == "X") { // se recebeu via sockets X

Forml->Labell->Show() ; // mostra na tela Label Y

Feito este teste, pode-se entender os principios da comunicacdo via sockets e

desenvolver um programa que realizasse as fungdes basicas de um chat entre 2 usudrios e a

troca de cédigos (X e Y por exemplo).

TESTE 2:

Chat:

++Builder Chat M(=1E3 ++Builder Chat

Lo o Button1
- Butanl |- i s

Figura 25 — Tela do programa cliente Figura 26 —Tela do programa servidor

O Cliente (Figura 25): Os objetos importantes do cliente e suas atividades vinculadas aos
métodos usados sio:

- Botdo de Conexao (canto superior esquerdo da tela):

Método OnClick :
ClientSocket->Host = "192.168.0.244"; // define o IP do servidor ClientSocket—
>Active = true; // ativa o objeto ClientSocket

- ClienteSocket (ao lado do Botido de Conexao):

Método ClientSocketConnect:

Memo2->Lines->Add ("PC LOCAL CONECTADO..."); // coloca no quadro de mensagens a
//frase entre aspas duplo

Método ClientSocketDisconnect:

FormlMemo2->Lines->Add ("PC LOCAL DESCONECTADO!!!");

Memo2->Lines—>Add ("\r\n"); //depois de colocada a frase acima, pula linha
Método ClientSocketError:

Memo2->Lines—->Add ("Error connecting to: PC LOCAL"); // adiciona..

Método ClientSocketRead:

c=Socket->ReceiveText (); //uma AnsiString recebe o que chega pela rede
if (¢ == "Y") { // se for Y

Labell->Show(); //mostre a mensagem de boas //vindas

52

else { // caso contrario, o que quer que seja

Memo2->Lines->Add ("PC LOCAL: " + c);// ponha //no chat

- Botdo de Enviar (Buttonl da tela):

Método OnClick :

ClientSocket—->Socket—->SendText ("X") ; // manda X via sockets
- Edit (barra para escrever o texto a ser mandado):

Método :

if (Key == VK_RETURN) //se apertou enter

Memo2->Lines—->Add ("PC REMOTO: " + Editl->Text); //escreva no seu quadro
de mensagens a mensagem digitada

ClientSocket->Socket->SendText (Editl->Text);// //mande para o servidor

Editl->Clear(); //limpe o campo onde vocé acabou //de escrever uma
mensagem

O Servidor (Figura 26): O raciocinio € andlogo, porém no servidor ndo existe botdo de

conexao e ao criar o Form j4 ativa-se o servidor com o comando:

ServerSocket->Active = true;
5.4. Programacao da interface de controle da estacao de distribuicao

Entendido como realizar comunicagdo via sockets, foi possivel programar a interface

parcial do projeto, somente referente ao controle da estacdo de distribui¢do.

Comunicagdo pela Internet: O principio basico de conexao foi que para estabelecer conexio,
o servidor deve permitir o controle remoto (quando o usudrio remoto se conectar com o
servidor, caso esteja liberada a conexdo remota o cliente receberd um byte para entender que
pode controlar a estacdo) caso contrdrio o controle estard restrito ao PC local. Os comandos
passados de cliente para servidor (e vice-versa) sdo codigos em forma de bytes interpretados e
traduzidos nos programas. Caso a informagdo recebida ndo corresponda a nenhum cédigo (e,
portanto a nenhum comando ou resposta) esta deverd ser impressa no chat. As possiveis

situacdes de conexdo ja na interface final sdo:

53

Situacgao 1:

O cliente ndo consegue acessar o controle da estacdo de trabalho porque este estd
sendo usado pelo PC local (designacdo do computador que se encontra fisicamente no mesmo
local das estacdes de trabalho, o PC remoto € aquele que se conecta ao PC local via Internet e
pode se encontrar em qualquer localidade), mas mesmo assim, o cliente esta conectado ao

servidor e pode conversar pelo chat com o mesmo (Figura 27):

“f Form1 7 i o] e |

Programa Orline Ajuda

FC LOCAL COMECTADD..
FCREMOTO: OI4 PC Local
FC LOCAL: Seja Bem vindo PC Rematal

TELA DO
PC
REMOTO

i

Siskemna em espera o

Figura 27 — Cliente ndo consegue acessar a bancada.

Neste caso, o PC local estd com pleno acesso e pode realizar os comandos desejados,

além da possibilidade de conversar com o usudrio remoto (Figura 28):

54

#Form1 s o [5”

Programa Ajuda

Sistema em Operagao

PCREMOTO CONECTADD...
PC REMOTO: 013 PC Locall
FC LOC&L: Seja Bem vindo PC Remoto!

TELA DO
PC
LOCAL

[

POR ETAPAS

Sistema Liberada A

Figura 28 — Servidor conectado e operando.

O Status Bar e o quadro de mensagens (Figura 29) fornecem informacdes relevantes
tais como “conexdo estabelecida”, “aguardando conexio”, “Usudrio Remoto desconectado!”

para acompanhar a evolug@o da conexao e do processo (alem de dois Labels auxiliares).

PCREMOTO COMECTADO. .
PCREMOTO: 014 PC Local

PCLOCAL: Seja Bem windo PC Remaotal
ISUARIO REMOTO DESCONECTADON

Figura 29 — Chat no detalhe

55

Situagao 2:

O PC local pode permitir o uso remoto através do botdo “Uso Remoto”. Se ha cliente
online, este automaticamente passa a ter o controle da estacio, se ndo ha ainda, assim que um
cliente se conectar ao servidor ele automaticamente estard com o controle da estagdo de
trabalho (a ndo ser que o PC local pare de permitir uso remoto neste interim, o que recairia na

situacao anterior) (Figura 30):

i

Programa Online Ajuda

Sistema em Operagéo

PC LOCAL CONECTADO
PCREMOTO: 014 PC Locall
PCLOCAL: Seja Bem vindo PC Rematal

TELA DO
PC
REMOTO

l

Congxdo estabelecida

Figura 30 —Clienteconectado e operando.

Depois da conexdo do usudrio remoto, o usudrio local deverd esperar o cliente se desconectar
para voltar a ter controle sobre a estacdo de trabalho. Lembrando que o chat estd sempre

funcionando enquanto cliente e servidor estdo online (Figura 31):

56

i Form1 2 I R =) =i

Programa Ajuda

FCREMOTO COMECTADD..
FCREMOTO: Ol4 PC Local
PCLOCAL: Seja Bem vinda PC Rematal

Sistema em uso remoto

TELA DO

PC

LOCAL

[

Conexdo estabelecida

Figura 31 — Servidor online, mas sem o controle da estacao.

Com base no mecanismo de conexao entre servidor e cliente, anteriormente citado, apresenta-

se agora a interface final funcionando para alguns casos especificos (Figura 32):

57

Form1 P] 54 '

Programa Online Ajuda

Sistema em Operacio

PC LOCAL COMECTADD...

FC LOCAL: Favor Recolher o pistdo. Modo de Teste
FC REMOTO: Verificar ze ha pega blogueando a movimentacdo

FC LOCAL: Yerficagdo feita. Execute o processo,

TELA DO
PC
REMOTO

MODO DE TESTE

SISTEMA PRONTO!
Pizt3n na posigla inicial;

Conexéo estabelecida

Figura 32 — Cliente escolhe uma etapa e realiza teste

Enquanto o cliente realiza o processo de teste (durante todo processo que qualquer um
dos usudrios estiver realizando, este s6 pode acionar o botdo de STOP), o servidor apenas
acompanha a evolucdo dos comandos do cliente (e enquanto o usudrio remoto nio se
desconectar, o servidor estard com sua tela inteira, a excecdo do chat, desabilitada) (Figura

33):

58

&5 Forml I _|E||1|I

Programa Ajuda

PCREMOTO CONECTADD...
PCLOCAL: Favor Recolher o pistio. Modo de Teste

FC REMOTO: Verficar s2 hé pega bloqueando a movimentagdo
PCLOCAL: Verificag3o feita. Execute o processo,

TELA DO
PC
LOCAL

MODODE TESTE

SISTEMA PRONTO!
Piztio na posicia inicial;

Conexdo estabelecida

Figura 33 — Servidor acompanha Modo Teste (Remoto executando)

Implementado o controle e monitora¢do da primeira bancada, para atingir os objetivos
do projeto ainda resta a expansdo do controle para a estacdo de distribuicio e o
aprimoramento das interfaces finais (dos PCs local e remoto) através da adicdo de um campo

onde serdo mostradas as imagens do sistema CIM adquiridas por uma webcam.

5.5. Monitoracao via webcam

Foi desenvolvido um programa de teste para a monitoracdo de estacdes de trabalho
através de uma webcam instalada no PC Local. O programa envolve trés elementos para a
interacdo com o usudrio: 2 botdes e uma “janela” de video. Ao se acionar um dos botdes
(Buttonl) a “janela” de video € ativada e o as imagens da webcam aparecem nesta “janela”, o
segundo botdo (Button2) ao ser acionado desativa a “janela” de video e a transmissao das

imagens € interrompida. As Figuras 34, 35 e 36 ilustram o funcionamento deste programa.

59

i Form/1 g@

{Buttoni Buttor2 e Button?

Buttanl

< > < | >

Figura 34 - Figura 35 — Apds Figura 36 — Apés
Inicio. acionar o Buttonl. acionar o Button2.

O comando ao se acionar o Buttonl que é executado é:
Videol->Enabled = true; // Videol é a janela de video
Ja o comando ao se acionar o Button2 que é executado é:
Videol->Enabled = false;

5.6. Transferéncia de imagens pela Internet

Diversos programas de teste foram concebidos e implementados para estudar a
transferéncia de imagens pela Internet, dentre estes programas sdo apresentados a seguir
aqueles mais significativos no sentido que forneceram subsidios para a implementacgdo

realizada.

Teste 1 : Salvando frames em um arquivo BITMAP

O programa cuja tela é exibida na Figura 37 tem como propdsito salvar cada frame

capturado pela webcam em um arquivo BITMAP.

CEEX

Figura 37 —Tela do primeiro programa de teste

60

O componente VIDEO CAPTURE ¢ ativado quando se aciona o botdo Buttonl. No
evento OnFrame, que é acionado a cada novo frame capturado pela webcam, executa-se a
seguinte linha de comando:

Videol->SaveFrameToFile('f'");
Assim, cada novo frame sera salvo no arquivo f.

Teste 2 : Usando o componente de imagem

Este programa € similar ao anterior, porém, além do componente VIDEO CAPTURE ¢
utilizado o componente IMAGE. Assim como no caso anterior, os frames capturados pela
webcam s@o salvos em um arquivo BITMAP, porém, além disso, esse mesmo arquivo é
carregado no componente de imagens toda vez que o frame vindo da webcam ¢ alterado. O
comando responsdvel por essa acdo também € executado no evento OnFrame e corresponde a

seguinte linha de comando:

Imagel->Picture->Bitmap->LoadFromFile('f"');

A tela desse programa pode ser vista na Figura 38:

Figura 38 —Tela do segundo programa de teste

Esse programa demonstra que no cliente as imagens capturadas na webcam do
servidor podem ser carregadas a partir de um arquivo BITMAP ou uma stream
correspondente ao mesmo. Para tanto basta que este arquivo ou esta stream chegasse no

proprio cliente via sockets.

61

Teste 3 : Usando a Internet

Conhecendo-se como processar as informacdes de video tanto no servidor como no
cliente, deve-se implementar a comunicagdo entre ambos para viabilizar a troca de imagens
pela Internet. Assim, a Figura 39 mostra a tela do programa servidor (aquele que deve ser
executado no computador com a webcam) e a Figura 40 a tela do programa cliente (que deve

receber e carregar as imagens).

Iniciar

|I._i.si:e.|.'|iné. 5

Figura 39 — O servidor mostrando as imagens da webcam

A diferenca deste programa (servidor) para os anteriores é o fato deste possuir um
objeto (ndo-visivel) responsdvel por enviar streams via sockets. Trata-se do objeto NMStrm
que tem como propriedades bdsicas o IP do computador que deverd receber as stremas

enviadas e a porta pela qual este programa deverd enviar as mesmas.

Assim, no evento OnFrame, este programa realiza duas outras tarefas além de salvar
cada novo frame no arquivo BITMAP. Sio elas: criar uma stream que recebe o arquivo de
imagem e enviar esta stream via sockets. As linhas de c6digo para realizar tais novas tarefas
sdo:

frame = new TFileStream('f', fmShareDenyNone);
NMStrm1->Postlt(frame);

O cliente por sua vez deve contar com o objeto (ndo-visivel) NMStrmServ responsavel

por manipular as streams recebidas via sockets. No evento OnMsg deste novo objeto as

62

streams recebidas sdo processadas. As linhas de cédigo referentes ao recebimento da stream e

de sua exibicdo no componente de imagem sdo:

frame = strm; // ao disparar, o evento OnMsg guarda a stream recebida na varidvel strm
Image1->Picture->Bitmap->LoadFromStream(frame);

Il.. C++Builder Chat

Figura 40 — O cliente reproduzindo as imagens da webcam

Desta forma alcangou-se a meta de transmitir informacdes de video pela Internet,
utilizando-se do principio de que diversos frames reproduzidos em seqiiéncia emulam um
video. Vale lembrar que quanto mais eficiente for a conexdo com a Internet melhor serd o

resultado do video reproduzido no cliente.

5.7. Interfaces finais no computador do usuario do SP

A interface desenvolvida anteriormente (tanto no PC local como no PC remoto) da
estacdo de distribui¢do, foi aprimorada e expandida para incluir o comando e monitoracdo da
estacdo de teste. O aprimoramento do programa segue a mesma logica de programacio
anteriormente adotada estendendo, evidentemente, as funcdes de controle e de monitoracao. A
tela de interface do PC local e a do PC foram redesenhadas para incluir um componente de
video. Seguem abaixo as Figuras 41 a 46 com interfaces no PC local e no PC remoto durante

a execugdo de diversas tarefas:

63

Programa Ajuda

Sistema em Operagao

Modo Automatico

e

I

I/

-]

| |

 E

TELA DO
:] PC

e e LOCAL

Etapa 4 conchids: Vcun acionado; Pega presa na gana: PCRERUTO CONECTALO
Etapa 5 concluida: Brago na posicSo proxima estagio; PC REMOTO: 01 BC local i

Etapa B concluida: Yacuo desligado; Pega liberada; PC LOCAL: Ol4 PC remotal

Etapa 7 concluida: Brage na posigo magazine; PC LOCAL: O sistema estd sendo uliizado localmente, favor
Etapa 8 concluida: A pega & ROSA; aguardar alguns instantes

Etapa 9 concluida: Elevador na posigio superior;
Etapa 10 concluida: Teste de altura realizado; PCREMOTO: 0K

Uso Femoto PO CTAPAS

Sistema Liberada A

Figura 41 — O usudrio aciona no PC local a execucdo de uma tarefa no modo automatico.

B e |

Programa Ajuda
Sistema em Operagao

Modo Passo a Passo

TELA DO
PC
LOCAL

MODO PASS0 A PASSO

FC REMOTO COMECTADD. .
PC REMOTO: 015 PC local |
FC LOCAL: Ola PC rematal

E::n: 12 23:2:::3: S:Ztas na;lazgldanﬂzcaa :I:Em\blhzada: PC LOCAL: O sisterna esta sendo uliizade localmente, favor
P : Brago na posic: fel 3 aguardar alguns instantes.

Etapa 3 cancluida: Pistio na posicéa inicial; :I e e

SISTEMa PRONTO!

Etapa 4 concluida: Yacuo acionado; Pega presa na ganra;

Uso Remato BOA ETARAS

Sistema Liberado

Figura 42 — O usudrio aciona no PC local a execugdo de uma tarefa no modo passo a passo.

64

[EFormi =lop x|

Programa Ajuda

Sistema em Operagao
Modo de Teste

TELA DO
PC
FROCESS0 INTERROMFIDO I LOCAL
PC REMOTO CONECTADD
PCREMOTO: p\é PC Ioca‘l !
MOBDDESTESLE PELOEAL 0 o i servdo wiicad localmente, favor
aguardar alguns instantes.
SISTEMA PRONTI! EEREMETOSENS
Sistema Liberadn >
Figura 43 — O usudrio aciona no PC local a execu¢@o de um teste.
TELA DO
PC
REMOTO

=

Figura 44 — Tela no PC remoto enquanto o usudrio local estd no controle das estagdes de
trabalho. O usudrio remoto deve aguardar a permissdo para ficar no controle, mas tem acesso
ao chat.

65

Sistema am Ope

Mlods Passo ol

TELA DO
PC
REMOTO

Enaney 3 powsch iy, Fiablio g oocrims e mmcacd,
Eva d pomsihldiy Woniusi iairndin Pl e it (i :|
-

Seiteay Lbeeydo £

Figura 45 — O usudrio remoto agora com controle das estacdes de trabalho, aciona no PC
remoto a execugdo de uma tarefa no modo passo a passo.

TELA DO
PC
LOCAL

BEEEEEEE
m

m

Etspa 3 conchuids: Filo na porg 5o mecal:
i scmnsda: Fers pecs ne gana:
Etspa 5 conchuida Biagn fa poaican piicina stsiio. P AEMOTO: D PC ozl |
P LOCAL: D08 PC emotal
PCLOCAL: O sslene e:ks serdo wilizado locamenle, [

Figura 46 — Tela no PC local enquanto o usudrio remoto estd no controle das estagdes de
trabalho. O usudrio local tem acesso ao chat.

66

5.8. Sugestio de metodologia para especificacio de comando e monitoramento
remoto de sistemas produtivos

Com a experiéncia adquirida no desenvolvimento deste trabalho verificou-se que a

especificagdo do comando e monitoramento de sistemas produtivos pode ser organizada por

meio de uma seqiiéncia de passos. Cada passo concerne um aspecto distinto do sistema e

aumenta o nivel de detalhe da especificagdo. Em cada um dos passos, uma série de questdes

deve ser respondida, analisando um aspecto determinado do sistema. O objetivo de organizar

cada passo em um conjunto de perguntas é guiar e facilitar a aplicacdo da metodologia.

Passo 1: Controle ou monitoramento?

O primeiro passo consiste em definir os prop6sitos do acesso remoto ao sistema. O
primeiro ponto a ser definido € se o sistema terd apenas fungdes de monitoramento ou se
possuird funcionalidades de comando. A resposta a esta pergunta variam de acordo com as
limitacdes impostas pelas caracteristicas do sistema e recursos disponiveis.

Em sistemas de acesso remoto, a informagdo adquirida do sistema de manufatura local
¢ disponibilizada em tempo real ao destino remoto. Logo, o controle remoto € justificavel
apenas nos casos em que os dados recebidos sdo também processados e utilizados em tempo-
real em seu destino. Quando a disponibilidade de dados em tempo real ndo é uma
necessidade-chave, uma solucdo simples € armazenar os dados localmente e utilizar
ferramentas padrido de compartilhamento de dados via internet.

As primeiras perguntas as serem respondidas sdo:

Pergunta 1.1: Quais sdo as vantagens em tornar as informacdes do sistema disponiveis para
uso remoto em tempo-real?
Pergunta 1.2: Qual tipo de decisdo pode ser tomada baseada nos dados disponibilizados no

destino remoto?

As motivagdes para prover funcionalidades de controle podem ser investigadas através
do estabelecimento de quais decisdes sdo tomadas baseadas nos dados disponibilizados pelo
acesso remoto. Basicamente, o ponto ¢ determinar que mdédulos podem ser afetados pelas
decisdes do sistema remoto. Se as decisdes tomadas interferem na evolugdo apenas do médulo
remoto, o sistema € candidato a possuir somente monitoramento. Caso as decisdes afetem a

evolucdo do mddulo local, entdo o sistema € candidato a comando e monitoramento remoto.

67

Passo 2: Especificacio dos casos de uso e informagdes trocadas

Para determinar os dados a serem transmitidos entre os sistemas local e remoto, a primeira

pergunta do passo 2 deve ser:

Pergunta 2.1: Quais sio os casos de uso do sistema e quem sdo os atores?

Para responder a esta pergunta, o primeiro passo € desenvolver o diagrama UML de
casos de uso do sistema. Em seguida, deve-se fazer uma lista dos dados necessdrios para

tomar remotamente as decisdes especificadas no passo 1. A segunda questao entdo é:

Pergunta 2.2: Quais informagdes s@o trocadas entre os sistemas local e remoto?

Passo 3: Analise de hardware

O passo 3 analisa a viabilidade do acesso remoto do ponto de vista do hardware:

Pergunta 3.1: Quais sdo os nés do sistema e como eles se comunicam entre si?

No caso de haver mais de um né no sistema local, os nds locais podem se comunicar
através de redes locais. Cada n6 local pode se comunicar diretamente com o sistema remoto
ou podem ser conectados a um servidor local que centraliza e gerencia a comunicagdo via
Internet com o sistema remoto. Outro ponto é como os nds locais sdo conectados com bases
de dados e registros histdricos.

As préximas questdes sdo:

Pergunta 3.2: Qual o hardware para a comunicagdo do sistema de manufatura local com a
Internet?

Pergunta 3.3: Qual o tipo de linguagem de programacdo usada para desenvolver o sistema de
acesso remoto e quais sdo as tecnologias disponiveis para implementar esta comunicacgio via

Internet?

Esta ultima questio deve especificar se o sistema de acesso remoto serd uma pagina de

Internet ou um software desenvolvido para os propdsitos em questdo.

68

Passo 4: Refinamento de software

Neste passo, o caso de uso € detalhado. Isto pode ser feito através do desenvolvimento

do Diagrama UML de Atividades. As perguntas do passo 4 sdo:

Pergunta 4.1: Qual € a seqiiéncia de atividades para cada caso de uso?

Pergunta 4.2: O sistema de manufatura local pode ser acessado por multiplos usudrios
remotos (simultaneamente ou nao)?

Pergunta 4.3: No caso do sistema de controle remoto, como possiveis conflitos serdo

gerenciados?

Passo 5: Requerimentos para acesso remoto

O ultimo passo da especificacdo do sistema remoto diz respeito aos requerimentos
relacionados a natureza remota do controle e monitoramento do sistema. As perguntas a

serem respondidas sdo:

Pergunta 5.1: O que acontece caso a comunicacdo falhe: o sistema local é capaz de detectar a
falha de comunicagdo e deixar o sistema em um estado seguro?

Pergunta 5.2: Os atrasos de comunicagdo s@o criticos para a operacdo do sistema e o sistema
local checa estes atrasos, tomando as agdes pertinentes quando necessario?

Pergunta 5.3: Quais as facilidades disponiveis para o sistema remoto reagindo a falhas no
sistema local de manufatura?

Pergunta 5.4: A natureza remota compromete a seguranga do sistema?

69

6. Conclusoes

As metas apontadas para a execugdo do projeto, ou seja, a elaboragido do software para
controlar e monitorar de forma integrada a estacdo de distribui¢do e a estacdo de testes € a
definicdo de uma metodologia para especificagdo de comando e monitoramento remoto de
sistemas produtivos foram devidamente atingidas.

Seguem as principais dificuldades encontradas ao longo do desenvolvimento do

projeto:

¢ A implementacdo da transmissdo de imagens entre os computadores ndo é uma tarefa
trivial. Apesar de ja se ter conhecimento dos recursos e fungdes envolvidas na sua
implementagdo e de ser possivel identificar diversas propostas/programas para este
fim disponiveis na web, estes ndo t€ém cddigo liberado a terceiros. Assim, a efetiva
implementagdo da transmissdo de imagens via Internet foi relativamente trabalhosa.

e A expansdo do programa desenvolvido para a estagdo de trabalho também néo é uma
tarefa trivial. A depuracdo do programa resultante ndo é simples e muitas vezes, erros
(as vezes triviais) s@o dificeis de serem identificados ja que na etapa de compilagio
fica sempre a divida se o problema estava no codigo que ja existia e foi alterado ou
no que foi adicionado. Assim, o desenvolvimento levou mais tempo do que o previsto
inicialmente.

Em relacdo ao presente projeto considera-se que apesar de se ter alcancado plenamente
0s objetivos previstos, existem ainda outras partes para que um sistema de manufatura como
um todo possa ser telecomandado e monitorado remotamente, isto €, o sistema aqui
desenvolvido para as estagdes de distribuicdo e de testes deve ser revisto para que solugdes
similares sejam implementadas para as outras estacdes de trabalho.

Quanto ao sistema especifico desenvolvido para as estacdes de distribuicéo e de testes,
alguns testes confirmaram o funcionamento esperado, mas, é necessdaria uma andlise mais
elaborada para avaliar aspectos como a confiabilidade do sistema e o grau de dependéncia das
caracteristicas da rede de comunicacao.

Em relacdo a expansdo para outras estacdes de trabalho estd claro que o uso de redes
de campo como o PROFIBUS deve ser considerado em futuras implementagdes, pois, € a
solucdo pratica que se tem disponibilizado nas plantas industriais.

Especialmente no caso deste projeto, ressaltam-se a seguir alguns pontos de

aprendizado prético:

¢ Em se tratando de qualquer mdaquina, dispositivo ou software € fundamental dispor de
uma “boa” documentagdo e uma “boa” estratégia para a leitura desse material (e/ou dos

arquivos de apoio). Isso contribui efetivamente para a identificacio tanto de

70

procedimentos recomendaveis como de novas abordagens para os problemas
aparentemente ndo previstos. Por exemplo, no presente projeto, os arquivos de apoio do
Borland C++ Builder foram de uma ajuda muito grande.

Softwares que envolvem comunicagdo merecem cuidados especiais principalmente se
houver mais de um tipo de comunica¢do deste software com o exterior. Isto é, a
programacdo e funcionamento dependem de vérias outras varidveis e assim cendrios e
situacdes especificas de teste e avaliacdo devem também ser considerados no
desenvolvimento destes softwares. Por exemplo, no presente caso, tratar simultaneamente
a comunicagdo serial concomitantemente com a comunicacdo via Internet (sockets)
aumentou em muito o grau de dificuldade para o desenvolvimento do sistema.

Sempre que se controla méaquinas/dispositivos eletromecanicos por computador, nunca se
deve esquecer que o tempo de execugdo do software no computador (ou no controlador) é
muito menor que o tempo de execugdo de movimentos fisicos.

Trabalhar com transmissdo de informagao de video pela Internet requer estudo do material
sobre o assunto ja disponivel na Internet e dos arquivos de apoio de ferramentas tipo
Borland C++ Builder. Realizar diversos programas de teste acompanhando o andamento
do aprendizado em relacdo ao assunto é fundamental para assegurar o progresso do
desenvolvimento dentro de um cronograma.

Um “bom” planejamento de como programas relativamente complexos devem ser
desenvolvidos diminui as chances de erros no meio do processo. Pois sem isso pode-se
perder o foco do trabalho e a desorganizacdo das idéias certamente prejudica o produto

final e compromete o cronograma.

Durante um projeto extenso, documentar cada etapa importante de trabalho cumprido é

fundamental para a tarefa de documentagao final do projeto.

71

7. Referéncias Bibliograficas

ALMEDA, W. M. Conhecendo o C++ Builder 6, 2003.
AP, www.apostilando.com.br, acessado em 18/11/2007.
BUENO, A. D. Apostila de programacao orientada a Objeto em C++, v.0.4, 2002.
DBCB, www.dicasbcb.com.br, acessado em 22/09/2007, 10/10/2007, 27/10/2007.
DONAHOO, M. TCP/IP Sockets, The C version, 2001.

FESTO. Modulares Produktions-Sistem Station Prufen, Lernsystem Automatisierung und
Kommunkation. Esslingen: Festo Didactic Gmbh & CO, 1998.

GDH, www.guiadohardware.net, acessado em 05/09/2007, 07/09/2007.

LEE, W. B., LAU, H. C. W. Multi-agent modeling of dispersed manufacturing networks.
Expert Systems with Applications, v.16, p.297-306, 1999.

MARTIN, V. Industrial Perspective on Research Needs and Opportunities in Manufacturing
Assembly. Journal of Manufacturing Systems, v.14, n.1, 1995.

POHL, I. C++ para programadores de Pascal. Rio de Janeiro: Berkeley, 1991.

REMBOLD U.; NNAJI, B.; STORR, A. Computer Integrated Manufacturing And
Engineering. Londres: Addison-Wesley, 1994.

SHI, Y., GREGORY, M. International manufacturing networks - to develop global
competitive capabilities. Journal of Operations Management, v.16, p.195-214, 1998.

SOUZA, L. E. Controladores Logicos Programaveis. FUPAI, 2001.

CASSANDRAS, C.; LAFORTUNE, S. Introduction to Discrete Event Systems. Kluwer
Academic Publ., 1999.

TRAVERSE, www.traverse.com/people/poinsett/bcbcomm.html, acessado em 14/10/2007.

VOTRE, V. P. C++ Explicado e Aplicado. Colecdo ZeroErro em Engenharia de Software,
v.2, 1998.

WARNOCK, I. G. Programmable Controllers: Operation and Application. New York.Prentice
Hall, 1988.

XTRIMSOFT, http://www.xtrimsoft.com/downloads/BCBcomponent.htm, acessado em
22/09/2007.

72

Anexo A - Programacio dos CP da Festo

A programacio dos CPs da empresa Festo é executada no software FST V4.10, que é
um ambiente que utiliza como linguagem de programacao a lista de instrugdes.

A lista de instrugdes, ou STL (Statement List), € uma linguagem de programacgao de
baixo nivel baseada em texto. Esta permite ao programador descrever as etapas de
funcionamento das fun¢des do controlador a serem descritas por instrucdes relativamente
simples. A estrutura da linguagem permite a manipulagdo eficiente de tarefas complexas.

A linguagem pode ser descrita como um conjunto de ramos ou etapas onde cada uma
executa uma determinada rotina. Cada ramo € identificado como um STEP, e este pode conter
um ou muitos blocos; um bloco completo é composto pela parte condicional e a parte de
execucdo e apenas o primeiro bloco de um STEP pode ser incompleto, ou seja, conter apenas
um comando de execugdo sem que lhe seja imposta qualquer condicdo.

A passagem aos passos subseqiientes € gradual, embora seja possivel executd-los em
qualquer ordem desejada através do comando JMP TO, cuja fun¢éo é remeter a ramificacio
desejada. O programa sé avanga para o préoximo passo se no ultimo bloco do passo corrente
um comando THEN ou OTHRW (que indicam a parte de execugdo do codigo) foi executado.

Um exemplo simples de um programa nesta linguagem pode ser visto na Listagem 1:

STEP label 1

IF I1.0
THEN SET F1.5
OTHRW RESET F1.5

STEP label 2

THEN RESET FO0.0
IF F1.5
THEN SET 00.7

SET FO0.0
OTHRW SET 00.0

JMP TO label 1

STEP label 3

IF F0.0
AND I0.0
THEN SET 00.4

STEP label 4
Listagem 1 — Trecho de Programa em Lista de Instrugdes
Organizacdo do Programa
Na criacdo de um programa por lista de instrugdes, este € composto, além dos programas
locais, por médulos, conhecidos por CFM (Calling Function Module) e CMP (Calling

Program Module), que serdo sucintamente explicados a seguir:

73

e CFM (Calling Function Module): quando o comando CFM ¢ utilizado, um médulo de
funcgdo é chamado. Um mddulo de fung@o € uma sub-rotina que pode ser criada em C
ou na propria linguagem de lista de instru¢des e ndo apresenta a necessidade de ser
organizada em passos. Quando o comando é utilizado, ndo ocorrem mudangas na

tarefa executada, mas parametros sdo transferidos para o programa local em execugao;

e CMP (Calling Program Module): quando o comando CMP ¢ utilizado, um médulo de
programa é chamado. Um médulo de programa também é uma sub-rotina que pode ser
criada em C ou na propria linguagem de lista de instrugdes e ndo apresenta a
necessidade de ser organizada em passos. A diferenca deste para o CFM consiste no
fato de que, quando executado o CMP, ocorre necessariamente mudancga na tarefa

executada.

Principais Comandos
A fim de compreender a ldgica do cédigo apresentado, discorre-se abaixo sobre os principais

comandos desta linguagem:

¢ Comando IF: O comando IF determina a declaracdo de condi¢des. Com a introducdo
deste comando no c6digo, os operandos podem ser chamados e arranjados de maneira
a formar expressdes ldgicas e aritméticas, que representardo condigdes para a

execugdo de processos posteriores.

Exemplo:
IF I1.0 " IF 1 signal to Il1.0
AND N I1.1 " AND 0 signal to Il.1

e Comando THEN: o comando THEN inicia a execugdo de um processo. Tal processo
serd executado se as possiveis condi¢cdes anteriores estiverem satisfeitas.

Exemplo:

THEN LOAD V100
TO TP7

e Comando OTHRW: inicia uma segunda execugdo alternativa de um processo. Este

processo s6 serd executado se as condi¢des propostas para a execucdo de uma

74

determinada tarefa nido forem satisfeitas (ou seja, se o processo determinado pelo

comando THEN néo puder ser executado).

Exemplo:
THEN SET 01.0
OTHRW RESET 01.0

e Comando SET: ajusta o valor do operando indicado para verdadeiro (1).
¢ Comando RESET: ajusta o valor do operando indicado para falso (0).
e Comando LOAD: Carrega um valor (de um ou mais bits), que através do comando TO

¢ transferido para um operando.

Exemplo:
THEN LOAD I0.1 " Single-bit
TO FO.1 " Single-bit
LOAD V500 " Multi-bit
TO TP31 " Multi-bit

75

