JULIO CESAR LIMA

Roteiro para a Utilizagcao da Arquitetura Hexagonal
no Projeto Dirigido pelo Dominio

Sao Paulo
2016

JULIO CESAR LIMA

Roteiro para a Utilizagcao da Arquitetura Hexagonal
no Projeto Dirigido pelo Dominio

Monografia apresentada a Escola
Politécnica da Universidade de Séo Paulo
para obtencdo do MBA em Tecnologia de
Software

Sao Paulo
2016

JULIO CESAR LIMA

Roteiro para a Utilizagcao da Arquitetura Hexagonal
no Projeto Dirigido pelo Dominio

Monografia apresentada a Escola
Politécnica da Universidade de Séo Paulo
para obtencdo do MBA em Tecnologia de
Software

Area de concentrago:
PECE/POLI

Orientador:
Prof. Dr. Paulo Sérgio Muniz Silva

Sao Paulo
2016

AGRADECIMENTOS

Ao professor Paulo Sérgio Muniz Silva, pelo aprendizado em suas aulas e durante as
reunides de orientacao deste trabalho.

A Andréa Britto Mattos Lima, minha esposa, por todo apoio, carinho e incentivo em
meus estudos e para a elaboragao deste trabalho.

RESUMO

O controle da complexidade do desenvolvimento do software ndo é uma tarefa trivial.
Um dos fatores fundamentais para conter essa complexidade € a elaboracdo de um
modelo apropriado do dominio da aplicacdo, que deve ser isolado dos varios
mecanismos necessarios a implementagdo do software que ndo dizem respeito ao
dominio (persisténcia, controle de transacfes, etc.). Essa é a esséncia do Projeto
Dirigido pelo Dominio (Domain Driven Design - DDD). Esse isolamento implica a
selecdo de uma arquitetura apropriada para tratar a interacdo de um dominio da
aplicacdo ndo s6 com outros dominios, mas com interagdes heterogéneas tais como
protocolos e suportes de comunicagdo distintos. Além disso, esses elementos
normalmente evoluem com o tempo, aumentando a complexidade do software a ser
tratada pela arquitetura. Um estilo arquitetdénico flexivel proposto para solucionar
esses problemas no ambito do DDD é a Arquitetura Hexagonal. No entanto, o
desenvolvedor iniciante carece de uma orientagcédo para utilizar essa arquitetura, de
modo aderente ao DDD, em projetos de software que tenham tais caracteristicas de
complexidade. Para contribuir no preenchimento dessa lacuna, o presente trabalho
propde um roteiro para a utilizacdo da Arquitetura Hexagonal como base para a
integracdo entre dominios e com flexibilidade para o suporte de dispositivos que se

comunicam com um dominio-alvo.

Palavras-chave: Arquitetura Hexagonal. Integracdo de dominios. Projeto Dirigido pelo
Dominio (DDD).

ABSTRACT

Controlling the complexity of software development is not a trivial task. One of the key
factors to minimize this complexity is the development of an appropriate model of the
application domain, which must be isolated from various mechanisms required for the
implementation of the software that are unrelated to the domain (persistence,
transaction control, etc.). This is the essence of Domain Driven Design (DDD). Such
isolation implies on the selection of an appropriate architecture capable of addressing
the interaction of an application domain not only with other areas, but also with
heterogeneous interactions, such as different communication protocols and supports.
Furthermore, these elements typically evolve over time, increasing the complexity of
software to be treated by the architecture. A flexible architectural style proposed to
solve these problems within the DDD is the Hexagonal Architecture. However, an
inexperienced developer lacks orientation on how to use this architecture, adhering to
the DDD model, in software designs that have such complexity characteristics. This
work aims to contribute on filling this gap by proposing a roadmap for using the
Hexagonal Architecture as the basis for integration across domains with flexibility to

support devices that communicate with a target domain.

Keywords: Hexagonal Architecture. Integration domains. Project Managed by domain
(DDD).

LISTA DE ILUSTRACOES

Figura 1 - Modelo geral de Arquitetura em Camadas...........ccoevveeeeiieiiiiiiiiineeeeeeeeeeanns 15
Figura 2 - ArqUITETUIA SOAot e e e e e e e e e e e e et e e e eeeeeanennns 16
Figura 3 - Arquitetura HEXagOoNalcoeoiiiiiiiiiie et e e e eananees 17
Figura 4 - MEtOUO FADIICAuuviviiiiiiiiiiiieieiieeeee ettt e e e e e eeeeeseeeneeeeeees 20
Figura 5 - FADICA ADSIIAtaA.uuvieiiiiiiiiiiiiiiiiie ettt e e eeeeeeeeeeeees 20
Figura 6 - Padr@io Adaptador.............iieieeeie s e e e et s e e e e e e e eeernan e e e eeeeannnnn 21
Figura 7 - Padr@o Fachada..............ccooiiiiiiiiieeie e e e 22
Figura 8 - Padr8io EStA0O0cooieiiiiiiiii et 22
Figura 9 - PAdrao ESIrat@giaueueueeeeeiiiiiiiiieiiiiieeiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesssseenenees 23
Figura 10 - Mapa CONEXIUALuuuiiiieeeieeeeiiie e e e e e e e e e e eee et e e e e e eeanannes 27
Figura 11 - NUcleo Compartilnado...........coovveriiiiiiii e e e 28
Figura 12 - Camada ANLICOMUPGADceeeeiiiiiiiiiiaee e e eeeeeeiiiie e e e e e e e eeeetba e e e e e eeennnnns 30
o [0 = U R I Y | = To = Lo [0 PSPPI 32
Figura 14 - Mapa Contextual de eXemplOccoiiiieiiiiiiiiiiiie e e e 37

Figura 15 - Mapa Contextual de exemplo com Padrao Estratégico de Integracéo....38

Figura 16 - Estereotipo da Porta concCeitualevevevviiiiiviiiiiiiiiiiiiieiieeeeeeeeeeeeeeee 39
Figura 17 — Notagao da Porta CoNCeitualeeveeeiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeee 39
Figura 18 - Agregado AMOSIFAgEIMoooiiiiiiiiiiiee e ettt e e eee et e e e e e e eennnes 43
Figura 19 - Agregado QUESTIONANIOcceeviiiiiiiiiee e eee e s e e e e e e et e e e e e e e annnees 44
Figura 20 - Mapa contextual do domiNiOceieeieiiiiieeici e e eeeaees 46
Figura 21 - Mapa contextual de iINteQraGaocoevveeiiiieiiiiiiiee e eeeeeiiiiee e e e eeeeeens 47
FIgura 22 - HA/PA PAra 0 CASO.....uuuuuiieeeeeeiiiiiiiaa e e e e e e eeeetttiia s s e e e e e e eeeesbbna s e e e e eeeennenns 48
Figura 23 - Integracao entre MOAUIOSovvuiiiiiiie e e e e e aanaees 49
Figura 24 - Integracao entre Modulos com portas CONCeituals.............ueeeeeeeeereenennns 50

o [= W24 S I o] a0 [W olo] £ USPPPPPRTTRR 51

Figura 26 - onda.core.variaveldemografiCaccooeeeiiiiiiiiiiiiiie e 54

Figura 27 - onda.core.questionarioreSPONAidOcoevveviiiiiiiiiee et eeeeeens 55
FIgura 28 - ONA@.aMOSIIAcceeviiiiiiiiie e eeee e e e e e e e e e e e e e e eetar e e e eeeeeannnnes 56
Figura 29 - gerenciador.qUeSiONAriO.COMB.......uuuuiiiieeeeeeeeeiiiiie e e e e e eeeeeestina e e e eeeeeeennnns 58
Figura 30 - onda.aplicacan.backoffiCe ... 58
Figura 31 - onda.aplicacan.Web ... 59
Figura 32 - onda.aplicacan.mobileoooeviiiiiiii e 60
Figura 33 - onda.apliCacan.iMPreSS0cccvvuuuruiiiieeeeeeeeeeeiiee e s e e e e e e eeerr e e e e eeeenannns 61

Figura 34 - ONda.PerSISIENCIAuuuuiiii et e et e e e e eeeeeeees 62

Tabela 1 - Padrdes de Projeto

LISTA DE TABELAS

ACL
API
DDD
HA/PA

SOA

LISTA DE SIGLAS E ABREVIATURAS

Anticorruption Layer

Application Programmed Interface

Domain Driven Design

Hexagonal Architecture / Ports and Adapters

Service Oriented Architecture

1.

SUMARIO

INTRODUGAO ...ttt ae st eaens 11
1.1, MOUVAGEOD ... 11
I ©] o] =1 1Y/ o TSRS 12
1.3. Meétodo de TrabalNOoooiiiiiiiiiiiiicce e 13
1.4. Estrutura do TrabalNo..........coooiiii e 13

PADROES DE PROJETO DE SOFTWAREcoioeiteeteeteeteete et 14
2.1. Padrdes de Projeto ArquUItetONICO........ccevvvieriiiiiiee e e eeeeeeeiiee e e e e e 14

2.1.1. Arguitetura €m Camadas........ccceeeeeeiiiiiiiiiiiee e 14

2.1.2. Arquitetura Orientada @ ServiGO............uuuuiiieeeeeerieeiiiiiiiae e e e eeeeeennnn 15

2.1.3. Arquitetura Hexagonalcooi oo 16
2.2. Padrdes do Projeto Detalnadocoooeeiviiiiiiiiiieee e 18

2.2.1. Principais Padroes Adotados neste Trabalho............ccccooooiiiiiiiiiiiinnnnn. 19

2.2.2. Principios de Projeto FuNndamentaisS..............uevveeeeiviiiieiiieiieeeeeeeeeeeeeeeeen 23

PROJETO DIRIGIDO PELO DOMINIO.......ccocoeitiiiecieeeceeeeee e 25
3.1. Projeto Dirigido pelo DOMINIO (DDD)........uuvuveeieeieiieiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeees 25
3.2. Linguagem ONIPreSENTEccveiiiiiiei e e e et e e e e e e e et e e e e e e e eeaeea s 26
3.3, Projeto EStrat@giCOuuii i ettt e e 26

3.3.1. Contexto Delimitadoeeuiiiieiiiiiiiiiiiiee e 26

3.3.2. Mapa ConteXtUal.........ccouveiiiiiiiiie e 26

3.3.3. Relacdes entre Contextos DelimitadosS...........ccoevvvevvvviiiiieeeeeeeeeeeiiinn, 27
I S o (0] (=] (TR = 11 oo L 30

341, ENUAAAE ... 30

3.4.2. ODJELIO VaAlOr 31

Bi4. 3. SEIVIGOS ... 31

S 1Y/ [To [] o 32

IR ST Yo | (=T = (o [ISP 32

Bid.B. FADIICA. .. e 33

K R = L= o 0 1] (o] 1 [0 TP 33

4. ROTEIRO PARA UTILIZACAO DA ARQUITETURA HEXAGONAL 34
4.1. Resumo da pesquisa bibliografiCauuvveeviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee 34
4.2. Roteiro proposto para a utilizagdo da Arquitetura Hexagonal 34

72 N N =7 {1 0 o= To o [o o (o 0 1] o TS 34
4.2.2. Projeto de alto NIVEI.........uuiiiii e 35
4.2.3. Projeto Detalnadoueuiiiiiiiiiiieee e 36

72 G T B = 11 0 o= To I [0 RS o T= 1S3 1 36

4.3.1. Passo 1. DefinicAdo dos Contextos Delimitados e da Linguagem

(@11 o] £oTT=T o (= TSP 37
4.3.2. Passo 2: Projeto Estratégico — INtegragao.........cccceeeveiiiiinnnnnnnnnnnnnnnnns 38

4.3.3. Passo 3: Projeto Estratégico — Arquitetura Hexagonal — Definicdo das

Portas 39
4.3.4. Passo 4: Projeto TAtiCo — INtEQraGan..........ccvveevvvvviiiieeeeeeeeeeviiiine e e e e 39
4.3.5. Passo 5: Projeto Tatico — Detalhamento dos Modulosccceeeeeeee. 40
5. UM EXEMPLO DE APLICACAO DA ARQUITETURA HEXAGONAL 41
5.1. Descricdo do dominio do problema...............ceeiiiiiiiiiiiiiiiiiee e 41

5.2. Passo 1: Definicdo dos Contextos Delimitados e Linguagem Onipresente..42

5.2.1. Descricdo dos Contextos Delimitadoscccevvvveviiiiiiiie e, 42
5.2.2. Mapa Contextual do DOMINIOcccevvviiiiiiiee e 46
5.3. Passo 2: Projeto Estratégico — INtegracaocoeeeeveeeiiiiiiiiiieeeeeeeeeeeee, 47
5.3.1. ONda-AMOSITAGEIMooiiiiiiiiiiiee ettt e e e e e e eeraaa s 47
5.3.2. ONda-QUESLIONATIOceeviiiiiiie e e e 47
5.3.3. Mapa Contextual com os Padrdes Estratégicos de Integracéo 47

5.4. Passo 3: Projeto Estratégico — Arquitetura Hexagonal — Definicdo das Portas
48

5.5. Passo 4: Projeto TAtiCO — INtEQraCa0uuvvuiieeeeeeeieeiiiiiee e e e ee e e eeeaeas 49

5.5.1. Modelo de Integracdo entre MOAUIOSccooriiiiiiiiiiiiieiiiiiiieeeeen 49

5.5.2. Modelo da Integragéo entre médulos com as Portas conceituais da HA/PA

49
5.6. Passo 5: Projeto Tatico — Detalhamento dos MOdulos............cccevvvveviivnnnnnn. 50
IO T R B 1] 2= Tot=To Jo (ST 0T To [£ 1= P 50
5.6.2. Detalhnamento doS MOAUIOSccooiiiiiiiiiiiieeeie e 51
6. CONCLUSAO ..ottt 63
6.1. CONSIAEIraChES GEIAIS. .. .iieeeeeeeeriiiiiieeeeeeeeeeetita s e e e e e e aeeeaaaraa e e e eaaeeeennannas 63
6.2. Trabalnos fUTUIOSoiiiiiiiiiii e 64

REFERENCIASceeeeeeeee e et e e et e e e et e e e e ettt e e e e et e e e e e et e e e e e nenees 65

11

1. INTRODUCAO
1.1 Motivacéo

Controlar a complexidade do desenvolvimento de softwares ndo é trivial (EVANS,
2010, p. xxi). Portanto, é fundamental dedicar-se para alcancar um bom modelo que
permita 0 maximo de aproveitamento do software, de maneira a conter essa
complexidade. Entretanto, a modelagem de dominios é também uma tarefa complexa,
por isso € importante considerar continuamente o modelo conceitual juntamente com
as tarefas de implementacdo. Portanto, os modelos de dominio ndo devem ser
primeiro projetados para entdo serem implementados: bons modelos devem ser
adaptados e evoluidos em conjunto ao longo do projeto, tornando-se enriquecidos
apos varias iteracOes de projeto (design). Isso constitui a pedra fundamental do
Projeto Dirigido pelo Dominio (Domain Driven Design - DDD) (EVANS, 2010).

Devido a complexidade do dominio, um software torna-se mais dificil de ser
compreendido em todos 0s seus estados e mais dificil de ser extensivel sem efeitos
colaterais (DA-WEI, 2007). Além do mais, um software torna-se mais complexo por
suas proprias implicacdes técnicas, dentre as quais as dependéncias dos mecanismos
de persisténcia, de controle de transacbes, de seguranca, dentre outros
(GHAZARIAN, 2015). Para organizar estas implicagbes em configuracbes de
componentes, uma arquitetura de software visa domar essa complexidade. No
entanto, € necessario selecionar a arquitetura adequada, tendo-se o entendimento
dos varios estilos arquitetdnicos, para que se tenha sucesso no tratamento da
complexidade do software (GARLAN e SHAW, 1994, p. 2).

O problema da complexidade de software aumenta quando se defronta com a
integracdo de subsistemas que devem implementar requisitos de software de
dominios distintos. Em (JAIN, et al., 2008) foi realizado um estudo para avaliar os
impactos da complexidade no processo de integracdo de sistemas, em que foi
apontado que as arquiteturas de integracdo de sistemas, se nao bem planejadas,
podem levar um sistema a falha, especialmente se o escopo da integracdo néo foi
bem definido. Requisitos de projeto da arquitetura e do plano de integracdo sao
algumas das entradas do processo de integracdo de sistemas. Uma concluséo € que
o dominio da aplicagdo tem impacto direto no projeto de uma arquitetura de sistema

12

e, consequentemente, na integracdo das arquiteturas dos subsistemas que o

compdem.

Outro problema importante que surge na escolha da arquitetura apropriada para um
determinado dominio da aplicacdo € a flexibilidade para tratar varios subsistemas
clientes possuindo interacdes heterogéneas (por exemplo, protocolos e suportes de
comunicacdo distintos), que podem se alterar ao longo do tempo, ou mesmo a
inclusé@o ou exclusdo destes clientes. A questdo é como produzir uma simetria nesse
tratamento, de tal modo que as interacdes sejam vistas de modo similar e que a
aplicacdo nao seja afetada por essa diversidade. Um estilo arquitetbnico proposto
para solucionar esse problema no ambito do DDD, assim como para facilitar a
integracdo de dominios distintos, é a Arquitetura Hexagonal (COCKBURN, 2005),
dando foco no dominio-alvo para atender a heterogeneidade dos subsistemas clientes
e liberar o projeto do dominio-alvo das questdes de integracdo. A integracao é tratada
num segundo momento do projeto, permitindo uma flexibilidade na evolugcdo do

sistema.

No entanto, a pesquisa bibliografica feita parece indicar que, aparentemente, o
desenvolvedor iniciante carece de uma orientacdo relativamente detalhada para
utilizar essa arquitetura, de modo aderente ao DDD, em projetos de software que
tenham tais caracteristicas de complexidade.

1.2. Objetivo

O objetivo deste trabalho € propor um roteiro para a utilizagdo da Arquitetura
Hexagonal como base para a integracdo entre dominios e com flexibilidade para que
dispositivos possam se comunicar com um dominio-alvo. O roteiro baseia-se em
técnicas do Projeto Dirigido pelo Dominio (Domain Driven Design — DDD) e pretende
ser utilizado por desenvolvedores iniciantes no DDD. A Arquitetura Hexagonal foi
escolhida porque mantém o enfoque no dominio-alvo, aplicando o DDD e liberando
seu projeto da complexidade adicional imposta pela integracdo e a diversidade dos

dispositivos.

O roteiro é exercitado em um fragmento significativo de uma aplicacdo de software

real de grande porte.

13

1.3. Método de Trabalho
O método de trabalho utilizado nesta monografia seguiu 0s seguintes passos:

» Definicdo de um caso de negdcio a ser projetado;

* Definicdo do DDD como técnica de modelo de dominio;

» Estudo do DDD (pesquisa bibliografica);

» Estudo da Arquitetura Hexagonal como padrao arquiteténico;

» Definicdo de um roteiro para o emprego da Arquitetura Hexagonal no DDD.

* Projeto (design) do Modelo Estratégico e Tatico para a Arquitetura Hexagonal.
1.4. Estrutura do Trabalho
CAPITULO 2 — PADROES DE PROJETO DE SOFTWARE

Descreve alguns padrdes de projeto, tanto arquitetdnico quanto detalhado, que seréao
abordados como possiveis solugdes de projeto de sistemas. A énfase é dada aos

padrdes utilizados no presente trabalho.

CAPITULO 3 — PROJETO DIRIGIDO PELO DOMINIO

Prové os principais pontos do projeto estratégico e do projeto tatico como abordagem

para a modelagem de um sistema baseado no dominio de negdcio.

CAPITULO 4 — ROTEIRO PARA UTILIZACAO DA ARQUITETURA HEXAGONAL

Descricdo de um roteiro para a utilizacdo da Arquitetura Hexagonal em conjunto com

o Projeto Dirigido pelo Dominio.

CAPITULO 5 — UM EXEMPLO DE APLICACAO DA ARQUITETURA HEXAGONAL

Apresenta um caso real de uma empresa como exemplo para elaborar um projeto de

sistema baseado no roteiro proposto no capitulo 4.

CAPITULO 6 — CONCLUSAO

Conclusao do trabalho e trabalhos futuros.

14

2. PADROES DE PROJETO DE SOFTWARE

Descrevem-se neste capitulo alguns Padrbes de Projeto Arquitetbnico e alguns
Padrbes de Projeto Detalhado de interesse para este trabalho.

Neste capitulo, entende-se por Padrdes de Projeto solu¢cdes técnicas para problemas
especificos de uma implementacdo de software. Sdo utilizados em sistemas de
software com a finalidade de dar flexibilidade, reutilizagdo e permitir extensdes de
componentes, além de facilitar a novos integrantes de uma equipe de

desenvolvimento a familiarizacdo com as técnicas implementadas.
2.1. Padrdes de Projeto Arquitetdnico

Os padrdes arquitetdnicos de software (BUSCHMANN, et al., 1996, p. 26) séo
modelos nos quais desenvolvedores se apoiam na construcdo de um software,
dividindo-o em partes e componentes para a definicdo de responsabilidades. Nao ha
um modelo de arquitetura correto para todos os softwares. Para um determinado caso,
um padrao de arquitetura de software pode ser mais adequada que outra para fornecer

a melhor solucao de um problema e a melhoria no desenvolvimento de um software.
2.1.1. Arquitetura em Camadas

A Arquitetura em Camadas (BUSCHMANN, et al., 1996, p. 31) é mais conhecida pela
divisdo em 3 camadas, dividida normalmente em Apresentacao, Negécio e Acesso a
Dados (FOWLER, et al., 2002, p. 19) (TIE, JIN e WANG, 2011), como representado

na Figura 1.

A dependéncia entre camadas é de cima para baixo (EVANS, 2010, p. 65). A
vantagem desse modelo é a de preparar a aplicagdo para potenciais alteragcbes em
determinada camada para que mudancas especificas ndo sejam necessérias em
outras camadas. Por exemplo, no caso de um servidor estar sobrecarregado com o
gerenciamento de dados e légica de negdcio, a divisdo de carga poderia ser dividida
entre dois servidores, sendo um apenas para dados e outro para légica de negdcio,
além da apresentacdo. Este modelo também auxilia na separacdo da aplicacéo por
especialistas, como um desenvolvedor web, programador e um especialista em banco

de dados.

15

Figura 1 - Modelo geral de Arquitetura em Camadas

Agfg;gﬂfa‘égo Interface do Usuario
Camadade

Servidor de Aplicacao

Ldgica de Negocio

Camada de l

Armazenamento Servidor de Base de dados
de dados

Fonte (TIE, JIN e WANG, 2011)

Algumas variacdes do modelo de camadas sdo as responsabilidades que cada
camada possui, ou a adicdo de camadas de apresentacdo superiores utilizando a
camada de negocio/dados. Neste modelo, a forte dependéncia das camadas
superiores dificulta os testes na camada de negdcio, além da adicdo de camadas de
dados conforme necessério. Ao adicionar uma camada abaixo, sera necessario levar

essa dependéncia para as camadas acima.
2.1.2. Arquitetura Orientada a Servico

A Arquitetura Orientada a Servico ou Service Oriented Architecture (SOA) (OASIS
SOA REFERENCE MODEL TC, 2006) tem por objetivo fornecer servigos através de
tecnologias que permitam a comunicacao entre partes de uma ou varias aplicacoes.
As tecnologias XML, SOAP, WSDL, UDDI e HTTP permitem que diferentes
plataformas sejam integradas, abstraindo da aplicacdo-cliente a implementacéo por
tras do servico (WANG e LIAO, 20009).

O projeto do servi¢co pode utilizar outras tecnologias para permitir escalabilidade ou
um fluxo de processamento especifico, localizado na mesma rede de uma empresa
ou na internet. A proposta da SOA é ser flexivel e reutilizavel, embora necessite de
um controle efetivo para que as aplicagcdes dependentes ndo sofram com alteragbes
nao previstas. Apesar das vantagens da integracdo, ndo €& de simples

desenvolvimento.

Na Figura 2, é apresentada a relacao entre os principais agentes da SOA, sendo eles:

16

O Consumidor de Servico, fazendo o papel de cliente, que para utilizar servigos,
primeiramente, precisa encontrar os servi¢os disponiveis através de um Intermediador
de Servico. O Intermediador de Servico conhece 0s Servigcos, pois um Provedor o
publicou para entrar no catalogo. Para que o Cliente de Servico possa utilizar um

servico, ele deve respeitar o contrato e entdo efetivamente interagir com o Servico.

Figura 2 - Arquitetura SOA

Intermediador
de Servico

Encontrar Publicar

Contrato
de Servico

Provedor
de Servico

Consumidor
de Servico

Interagir
Fonte (HAAS, 2003)

Os servicos disponibilizados também devem ser desenvolvidos adequadamente para
0s propositos que foram concebidos, para que representem o servi¢co de negécio que

a empresa espera que seja resolvido.
2.1.3. Arquitetura Hexagonal

A Arquitetura Hexagonal (COCKBURN, 2005) tem por proposta separar o dominio da
aplicacdo da infraestrutura técnica da aplicacdo (PRYCE, 2009). A metafora do
hexdgono enfatiza as multiplas possibilidades em que os clientes do software
interagem com ele, além de delimitar duas areas principais: a externa e a interna, a
qual contém efetivamente o projeto dos servi¢os oferecidos pelo software. Cada lado
representa um tipo de porta de comunicagédo do dominio com o mundo externo e vice-
versa, ou seja, cada lado do hexagono tem um objetivo de acesso de uma parte do
dominio especifico. Apesar de ser representada por um hexagono, esta representacao
nao é limitada a seis lados apenas, mas a quantos lados forem necessarios para a

comunicacéo do lado interno com o lado externo. Dada uma finalidade de um lado do

17

hexagono, ela ndo esta restrita a um tipo de comunicacgao, pois varios dispositivos

podem ser integrados aquela porta através de adaptadores.

Na Figura 3, é representada a Arquitetura Hexagonal com exemplos das finalidades
dos lados do hexagono, metaforicamente, e com tipos de dispositivos com o qual se
comunicam. Cada lado do hexagono € uma Camada de Aplicacdo, que neste exemplo
possui 4 pontos de comunicagdo com o dominio: Administracdo do sistema,
Recebimento de dados, Envio de notificagdes e Base de Dados.

Figura 3 - Arquitetura Hexagonal

Dispositivo ”' Adaptador de maquina
c%beado (ﬂ‘(9—0 de atendimento

U4
Adaptad
ggtaesger B & Adaptadorde email
Dispositivo |cemh»
HTTP |HT1TR| Slmuladorde
Recebimento telefone

de dados . -~ Notificagﬁes
Aplicacao
Interface
do usario -

Adaptador |=mk»
HTTP HTTF

e

" -
W Base de dados
-

Ll
Aplicativo-para- \l
. (N + Base de dados

aplicativo
= I;I —)&+’ simulada
Adaptador ﬁ/ ~—
de teste

Fonte (COCKBURN, 2005) / Adaptado (o autor)

Esta arquitetura é também conhecida como Portas e Adaptadores. Neste trabalho,
sera utilizada a abreviatura HA/PA do inglés Hexagonal Architecture / Ports and

Adapters.

Diferentemente da Arquitetura em Camadas tradicional (se¢do 2.1.1), em que a
camada superior acessa a camada inferior, a HA/PA centraliza o negdécio e abstrai as
demais camadas, tornando-se disponivel para ser utilizado com o minimo de
dependéncias. Isso facilita os testes automatizados e promove a flexibilidade, pois
novas camadas podem ser plugadas através de portas e adaptadores.

A flexibilidade da HA/PA é fornecida por suas portas, vistas como APIs (Application

Programmed Interface), que sdo desenvolvidas em volta do centro. Nao apenas a

18

flexibilidade, mas também os testes automatizados s&o essenciais para garantir que
o dominio esteja integro e que a nova API esteja funcionando. Técnicas de testes
amplamente abordadas sé&o apoiadas pela a HA/PA (FREEMAN e PRYCE, 2009).

Com o foco no dominio, a eliminacdo de regras de negécio na camada de
apresentacao ou base de dados € encorajada para mostrar que o dominio trata de

todas as regras esperadas.
2.1.3.1. Porta

Uma Porta da HA/PA ndo tem uma definicdo formal, sendo compreendida como um
acesso a parte dominio, ou ao centro do hexagono. Em sua proposta (COCKBURN,
2005) propde que de alguma face do hexagono h& a comunicacdo com a parte externa
e que cada face tem o objetivo de limitar a comunicacdo necesséaria com o dominio
(COCKBURN, 2006).

Para garantir o funcionamento da Porta, testes sdo necessarios para validar o modelo
de dominio acessado por aquela porta (FREEMAN e PRYCE, 2009, p. 10).

As Portas da HA/PA podem ser caracterizadas como Camadas de Aplicagéo, onde

interage entre o dominio e com dispositivos e meios de comunicacgao.
2.1.3.2. Adaptador

Um adaptador para a HA/PA é qualquer artificio da arquitetura que permita modificar
algo que tente se comunicar com o centro do hexagono e precisa ser modificado para
seu correto funcionamento, permitindo uma traducdo para o dominio. Do ponto de
vista do design, o Adaptador da HA/PA pode assumir o papel de um Adaptador (se¢éao
2.2.1.3) do (GAMMA, et al., 2007).

A comunicacdo com uma base de dados MySQL, por exemplo, seria através de uma
API para fazer as requisicfes. A maneira como a aplicacéo utiliza a APl do MySQL
deve ser transparente para o dominio, podendo utilizar para tanto um Adaptador. O
padrdao Adaptador, dos Padrbes de Projetos (GAMMA, et al., 2007), € bastante

apropriado para ser utilizado pela HA/PA.
2.2. Padrdes do Projeto Detalhado

“Os padrbes de projeto ajudam a escolher alternativas de projeto que tornam um

sistema reutilizavel e a evitar alternativas que comprometam a reutilizacdo. Os

19

padrdes de projeto podem melhorar a documentacédo e a manutencéao de sistemas ao
fornecer uma especificacdo explicita de interagbes de classes e objetos e o0 seu
objetivo subjacente. Em suma, ajudam um projetista a obter mais rapidamente um
projeto adequado.” (GAMMA, et al., 2007, p. 18).

2.2.1. Principais Padrdes Adotados neste Trabalho
Tipos de padrbes

Os Padrbes de Projeto séo divididos por finalidade (sdo trés) e escopo (GAMMA, et

al., 2007), conforme a Tabela 1.

Tabela 1 - Padrdes de Projeto

Finalidade
Criacao Estrutural Comportamental

Escopo | Classe Método Fabrica Adaptador (classe) Interprete

Método Modelo
Objeto Fabrica Abstrata | Adaptador (objeto) Cadeia de Responsabilidade

Construtor Ponte (Bridge) Comando
Prototipo Compésito (Composite) | Iterador
Instancia Unica Decorador Mediador

Fachada Memento
Peso-mosca (Flyweight) | Observador
Proxy Estado
Estratégia

Visitante

Fonte (GAMMA, et al., 2007, p. 26)
Criacéo

Os padrbes de criacdo abstraem o processo de instanciacdo. Eles usam a heranca
para variar a classe que é instanciada. Desta maneira, o sistema pode funcionar de
maneira independente de quantos filhos (quantas generalizacbes) uma classe pai
pode ter.

20

Estruturais

Os padrdes estruturais resolvem problemas de composicdo de classes e objetos
dando flexibilidade a expanséo do sistema.

Comportamentais

Os padrdes comportamentais resolvem problemas de tempo de execug¢do e mostram

como montar estruturas para que o fluxo de comunicacgao seja simplificado.
2.2.1.1. Método Fabrica

O Método Fabrica instancia uma subclasse de outra classe abstrata na subclasse que
precisa de uma instancia. A classe concreta de uma classe abstrata € quem define

qual subclasse é utilizada quando for necessaria, como ilustrado na Figura 4.

Figura 4 - Método Fabrica

Criador

MétodoDeFabrica() N

UmaOpera¢do() O—----- produto = MétodoDeFabrical()

?

| ProdutoConcreto }4 ——————— CriadorConcreto

MétodoDeFabrica()O4——-—-—-— I retorna novo ProdutoConcreto k|

Fonte (GAMMA, et al., 2007, p. 113)

2.2.1.2. Fabrica Abstrata
Figura 5 - Fabrica Abstrata
FdbricaAbstrata Cliente
CriaProdutoA() Prod atoA €
CriaProdutoB()
r -ﬂ ProdutoA1 | | ProdutoA2 |<— 3
i i
[| i i
FabricaConcretal [~ FabricaConcreta2 |———--————-—— |
I i
CriaProdutoA() | CriaProdutoA() ! |
CriaProdutoB() : CriaProdutoB() 1 1
I I |
I I I
: - *}{ ProdutoB1 | | ProdutoB2 }1— —:
I I

Fonte (GAMMA, et al., 2007, p. 97)

O padrao Fabrica Abstrata, apresentado na Figura 5, permite um cliente utilizar uma
classe criadora de objetos sem especificar qual implementacéo é utilizada pela sua

21

interface. Classes de fabricas concretas definem as classes concretas de outras

generalizagbes que serdao instanciadas.
2.2.1.3. Adaptador

O padrao de projeto Adaptador € responsavel por converter uma interface em outra
interface que se pretende utilizar. Quando o cliente utiliza uma interface, mas a
implementacdo estaria implementada em outra interface, uma implementacao
intermediaria, o adaptador, faria a traducdo para a chamada da outra interface. Para
aplicar este padrao, a classe adaptador deve implementar a interface alvo e utilizar,

por associacao, a interface adaptada, como representado na Figura 6.

Figura 6 - Padrdo Adaptador

Requisicdo() RequisicdoEspecifical)
%k adaptado
Adaptador
Requisicdo() O-t--———-—-—-——- adaptado->Requisi¢doEspecifica() E'

Fonte (GAMMA, et al., 2007, p. 142)

2.2.1.4. Fachada

O padréo Fachada abstrai as dependéncias de diversas interfaces para um cliente de
modo a reduzir as dependéncias. Por exemplo, ao executar um caso de uso, que
possui uma ordem de execucdo, a Fachada teria as referéncias das interfaces
dependentes e executaria as chamadas para as outras interfaces, deixando o cliente
livre do conhecimento de diversas interfaces uma vez que o cliente tem apenas a

Fachada como referéncia ao subsistema. A Figura 7 ilustra este padréo.

22

Figura 7 - Padrdo Fachada

ada

Fach
Classes do subsistema K

Fonte (GAMMA, et al., 2007, p. 181)

2.2.15. Estado

O padrao Estado resolve por delegagédo o comportamento de uma classe de acordo
com seu estado interno. O contexto de uma classe possui uma associacao a classe
abstrata Estado. Suas subclasses respondem pelo comportamento, como

representado na Figura 8.

Figura 8 - Padrédo Estado

estado

Contexto < p| Estado
Requisi¢ao() Q Handle()

I

: A

5 2 W

. l |
estado->Handle() S EstadoConcretoA EstadoConcretoB

Handle() Handle()

Fonte (GAMMA, et al., 2007, p. 285)

2.2.1.6. Estratégia

O padrao Estratégia, representado na Figura 9, encapsula em cada subclasse de uma
interface os algoritmos que podem mudar dependendo da instancia. O contexto de
uma classe tem associacdo com uma interface, a qual tem subclasses concretas com

diferentes algoritmos.

23

Figura 9 - Padréo Estratégia

estratégia

v

Contexto Estratégia

InterfaceDoContexto() InterfaceDoAlgoritmo()

A
[[I

EstratégiaConcretaA EstratégiaConcretaB EstratégiaConcretaC

InterfaceDoAlgoritmo() InterfaceDoAlgoritmo() InterfaceDoAlgoritmo()

Fonte (GAMMA, et al., 2007, p. 294)

2.2.2. Principios de Projeto Fundamentais

Os Principios de Projeto (MARTIN, 2002, p. 86) esclarecem os motivos dos Padrdes
de Projeto, uma vez que sozinhos solucionam problemas especificos. Os Principios

definem de forma mais ampla o que se procura resolver na orientacédo a objeto.
2.2.2.1. Principio da Responsabilidade Unica

Uma classe deve ter apenas uma responsabilidade para nao sofrer com modificagbes
por mais de um motivo. Caso sejam necessarias modificacdes, o desenvolvedor nado
deve se preocupar em alterar outros comportamentos sendo o da classe em
modificacdo (MARTIN, 2002, p. 95).

2.2.2.2. Principio Aberto — Fechado

Uma aplicacdo deve ser projetada para ser aberto para extensdo, quando novos
requisitos sdo desenvolvidos, mas fechado para modificacfes, para ndo comprometer
um comportamento ja em funcionamento. Para atingi-lo, a chave do projeto esta na
abstracdo e polimorfismo de classes, para que novos comportamentos sejam
desenvolvidos em subclasses e a abstracdo néo sofra altera¢cdes (MARTIN, 2002, p.
99).

2.2.2.3. Principio da substituicdo de Liskov

Uma classe que possui referéncia para uma classe-base ndo deve conhecer as
subclasses. Este principio permite forcar o principio aberto-fechado, pois uma classe
que referencie qualquer subclasse ndo permitira estender o sistema (MARTIN, 2002,
p. 111).

2.2.2.4. Principio da segregacao de interface

Uma interface deve atender a apenas um comportamento especifico. Quando um

cliente utilizar a interface, ele utiliza as operacdes da interface por completo para o

24

escopo que ela foi projetada. Caso um cliente utilize uma interface parcialmente, o
cliente podera sofrer impactos com alteracées que ndo fariam sentido em operacdes
gue néo sao utilizados (MARTIN, 2002, p. 135).

2.2.2.5. Principio da inverséo de dependéncia

Para reduzir dependéncias, a separacao de Médulos e, portanto, suas classes devem
respeitar hierarquias, para que o médulo superior ndo dependa de Mddulo inferior.
Moédulos inferiores devem depender das abstracdes dos Modulos superiores
(MARTIN, 2002, p. 127).

25

3. PROJETO DIRIGIDO PELO DOMINIO

Neste capitulo descreve-se algumas caracteristicas do Projeto Dirigido pelo Dominio
(DDD), tais como: Linguagem Onipresente, Contexto Delimitado, Projeto Estratégico

e Projeto Tatico.
3.1. Projeto Dirigido pelo Dominio (DDD)

O Projeto Dirigido pelo Dominio, DDD (Domain Driven Design) (EVANS, 2010), prop&e
padrées para implementar software utilizando modelos de dominio, cujo objetivo é
trazer o software, no codigo, o mais proximo possivel da linguagem do negocio. O
beneficio de juntar especialistas no dominio e desenvolvedores € o de que eles
tenham a mesma interpretagcdo do que é proposto em um projeto de software,

facilitando o desenvolvimento através de técnicas focalizadas no dominio.

O DDD surgiu do reconhecimento de que a modelagem e o design sao fundamentais
no desenvolvimento de software. Ele prové diretivas que orientam a escolha de um

modelo de software que deve atender os requisitos de um dominio.

O modelo e o nucleo do design ddo forma um ao outro. A conexao entre o modelo e
a implementacéo é que torna o modelo relevante, garantindo sua aplicacédo ao produto
final. Essa ligacdo € também muito util para as atividades de manutencédo e
desenvolvimento continuo do codigo, que pode ser interpretado com base na

compreensao do modelo.

O modelo € a principal base da linguagem utilizada por todos os membros da equipe.
Uma vez que modelo e implementacdo estejam conectados, os desenvolvedores
podem conversar sobre o programa nessa linguagem particular. Eles podem
comunicar-se como especialistas no dominio sem ter, idealmente, a necessidade de
traducdo. Como a linguagem de comunicacdo é baseada nesse modelo, a ideia
motivadora do DDD € que a capacidade linguistica natural dos membros da equipe

(negécio e software) pode ser usada para refinar o préprio modelo.

O modelo é um conhecimento refinado, constituindo a forma aceita pela equipe para
estruturar o conhecimento do dominio e distinguir os elementos de maior interesse. A
linguagem de comunicacdo compartilhada permite que os desenvolvedores e 0s
especialistas do dominio trabalhem efetivamente em conjunto a medida em que

colocam informagdes nessa forma.

26

O DDD refina os caminhos da Modelagem Dirigida por Modelo. Fowler indica que o
Modelo de Dominio é separado por uma camada isolada, onde as regras de negdcio
sao transformadas em objetos e servicos (FOWLER, et al., 2002, p. 116). No DDD
sdo apresentados os Padrdes de Dominio que devem ser utilizados no design
(SOARES, et al., 2015).

3.2. Linguagem Onipresente

Base fundamental do DDD, a Linguagem Onipresente utiliza os jargdes dos
especialistas do dominio no software e seus modelos. Quando desenvolvedores
conversam e querem tirar duvidas sobre o dominio com os especialistas, néo
precisariam traduzir as nomenclaturas de classes e métodos que apenas eles
compreenderiam, mas sim desenvolver um modelo do software com as nomenclaturas
do dominio, para que haja fluidez no entendimento entre todos os envolvidos (EVANS,
2010, p. 22).

3.3. Projeto Estratégico

O Projeto Estratégico auxilia no trabalho de como 0 modelo do dominio sera projetado.
No Projeto Estratégico, identifica-se como criar os Contextos Delimitados e
modularizar o dominio, para entdo se chegar a integracdo. Apesar de gerar
integracdes entre Mddulos, deixa-se claro a responsabilidade de cada parte e como
serdo integradas, assim como no dominio da vida real (EVANS, 2010, p. 317) .

3.3.1. Contexto Delimitado

O Contexto Delimitado define claramente até onde o modelo do dominio tem seu
escopo. Um projeto pode ter um modelo muito grande e com jargdes semelhantes
para cenarios diferentes. Para que o modelo ndao sofra com uma grande carga de
informacéo e torne-se demasiadamente complexo, a definicdo do Contexto Delimitado
de um modelo é essencial para compreender o que esta sendo abordado (EVANS,
2010, p. 321).

3.3.2. Mapa Contextual

O Mapa Contextual auxilia as equipes responsaveis em seus subsistemas, assim
como no projeto de um novo subsistema, na compreenséo do limite de seu escopo.
Auxilia de forma visual a compreender a separagédo e a associagéo entre Contextos
Delimitados (EVANS, 2010, p. 329), como ilustrado na Figura 10.

27

Figura 10 - Mapa Contextual

L

Mapa de ; L
Tradugdo ,' \

Fonte (EVANS, 2010, p. 329)

3.3.3. Relagdes entre Contextos Delimitados

As relacdes entre os Contextos Delimitados podem ser definidas como padrdes de
integracdo de subsistemas e equipes, de maneira a esclarecer como é tratada a

abordagem de integracdo no nivel estratégico (EVANS, 2010, p. 337).

Nas descricbes que seguem, 0S termos “mais acima” e “mais abaixo”, relativos a
contextos delimitados, significam que o contexto mais abaixo depende do mais acima.
Em outras palavras, uma modificacdo no contexto mais acima desconsidera o

contexto mais abaixo, podendo gerar efeito colateral neste ultimo.
As relacdes constituem um mapa de traducdes entre os elementos dos dominios.
3.3.3.1. Contexto Delimitado Unico

O Contexto Delimitado Unico é aplicado quando a Linguagem Onipresente € Ginica em
todos os envolvidos e a solu¢do é uma sé6. E um padrdo que requer cuidados, pois
podera ocorrer alguma traducdo no seu contexto e isto pode mostrar a necessidade
da separacdo de um contexto distinto. O entendimento do sistema € um s6 e ndo de
integracdo com qualquer outro contexto para satisfazer seu propésito (EVANS, 2010,
p. 326).

3.3.3.2. Nucleo Compartilhado

O Nucleo Compartilhado (EVANS, 2010, p. 338) é utilizado quando dois ou mais
Contextos Delimitados tém parte da Linguagem Onipresente igual dentre os
envolvidos, cujas diferencas nao justificariam um novo Contexto Delimitado completo.
O nucleo é mantido e os dois contextos o utilizam. Um contexto pode ser dependente

do outro ou ambos dependem de um, caracterizando-o como o dominio principal.

A Figura 11 ilustra como dois contextos compartilham o mesmo nucleo.

Figura 11 - Nacleo Compartilhado

——

Fonte (EVANS, 2010, p. 338)

Um exemplo € uma camada de infraestrutura compartiihada entre Contextos
Delimitados.

3.3.3.3. Cliente / Fornecedor

O padrao Cliente/Fornecedor (EVANS, 2010, p. 340) € definido por “contexto acima”
e “contexto abaixo”. Alteragcdes no contexto mais acima devem ser informadas ao
contexto mais abaixo, e um requisito do contexto abaixo deve ser solicitado ao
contexto acima. Possuem linguagens diferentes, mas com forte dependéncia entre
eles. Pode ocorrer quando o publico alvo destes dois contextos € diferente, mas

dependentes. A relagéo entre as equipes de desenvolvimento pode ser levada em
consideracao, se a gestao das equipes for distinta.

29

Por exemplo, suponha-se que ja exista um sistema de transporte de cargas e a
empresa deseja construir um sistema de andlises que permitam o melhor
aproveitamento do espaco de navios com as cargas. O sistema de reserva de cargas
ja esta desenvolvido e um novo sistema de analise precisa utilizar o dominio existente,
construido com tecnologias distintas. O novo sistema de analise seria um cliente que

utiliza o sistema de reservas em sua linguagem como fornecedor.
3.3.3.4. Servico de Host Aberto

Ao expor seu Contexto Delimitado a diversas integracdes, um esclarecimento da
utilizacdo pode ser necessario e a disponibilizacdo de servicos especificos sao
fornecidas para possiveis integracées (EVANS, 2010, p. 357). O contexto em

desenvolvimento é quem provera servigos a outros contextos para integracao.
3.3.3.5. Linguagem Publicada

A Linguagem Publicada (EVANS, 2010, p. 358) é a disponibilizacdo de um Contexto
Delimitado de forma bem documentada para que a integragdo ndo necessite ter

traducdes, mas que saiba exatamente como utilizar a outra parte.
3.3.3.6. Camada Anticorrupgéao (Anticorruption Layer — ACL)

A camada anticorrupcéo pode ser utilizada quando ndo ha o controle do Contexto
Delimitado que esta sendo trabalhado e outro contexto a ser integrado. Quando o
Contexto Delimitado que esté sendo trabalho prevé integracdo com outro contexto que
nao se tem controle, ou € um legado de dificil manutencéo e a integracao € necessaria,
pode ser criada uma camada de traducdo que proteja o contexto utilizando a
Linguagem Onipresente, chamada de ACL (Anticorruption Layer) (EVANS, 2010, p.
348). A ACL é utilizada para que a interpretacdo da integracdo seja clara para o
Contexto Delimitado em construcéo/integracdo, de modo independente de como o
outro foi desenvolvido. A Linguagem Onipresente na ACL ainda é a do Contexto
Delimitado trabalhado, mas com adaptacdes / implementagbes para integrar com 0
outro contexto. A Figura 12 ilustra as linhas gerais deste padréo.

30

Figura 12 - Camada Anticorrupcdo

seu subsistema ‘ camada anticorrupgdo outro subsistema

Classe Elegante " Servigo A 17 |, Interface |

4]_1; Adaptador A complicada {
algo
Classe Muito al *Ii

= =
7) 17 1 “ irrelevante
M Tradutor1 W
L Mais coisas .

T — classe confusa

‘ boas Tradutor2 |

Ok, algumas

VvOcé nem quer
coisas devem ser ——— senicoB | AdaptadorB saber

refatoradas

Fonte (EVANS, 2010, p. 351)

Por exemplo, para desenvolver um novo aplicativo de reservas que se comunica com
um sistema legado, deve-se construir uma camada de traducédo entre o novo aplicativo
e o0 sistema legado para ndo contaminar o novo dominio em desenvolvimento
(EVANS, 2010, p. 353).

3.3.3.7. Conformista

Quando um contexto “mais abaixo” ndo pode contar com altera¢des do contexto “mais
acima” e ha forte dependéncia do “mais abaixo” com o0 “mais acima” bem projetado, a
abordagem do Conformista (EVANS, 2010, p. 345) seria a mais indicada. O contexto
“mais abaixo” realiza uma forte integracgéo, inclusive na Linguagem Onipresente, com
0 contexto “mais acima”. Deve ser usado com muita cautela, pois alteragbes no
contexto “mais acima” ndo seriam mais previstas e corromperiam por completo o

contexto “mais abaixo”.
3.4. Projeto Tatico

O Projeto Tatico no DDD implementa o modelo estratégico para a visdo do projeto ja
mais proximo da implementac&o. Fornece conceitos para o entendimento profundo do
dominio para permitir a implementacao mais clara do modelo. Os conceitos no projeto
tatico auxiliam o desenvolvedor a refinar seu grau de conhecimento para o

fortalecimento do dominio implementados no software.
3.4.1. Entidade

Entidade € um modelo que representa algo distinguivel por uma identidade. Mesmo
que através do ciclo de vida ele se transforme, ele deve permanecer Unico e

rastreavel. A identidade Unica deve corresponder a mesma distingdo na vida real, em

31

que atributos podem ser iguais, mas de maneira que se possa identificar unicamente

um elemento.

Por exemplo, tome-se uma transa¢do bancéria. Uma transagdo bancéria tem um
identificador Unico para diferenciar, por exemplo, dois depdsitos ocorridos no mesmo
dia, na mesma conta da mesma origem. Para diferencia-los, possuem um identificador
e neste dominio seria uma Entidade (EVANS, 2010, p. 84).

3.4.2. Objeto Valor

Sao0 objetos que ndo possuem uma identidade, ou seja, ndo precisam ser
identificaveis, mas trazem um significado ao dominio. Podem ser copiados dentro do
sistema, desde que se tenham as devidas precaucdes para que a alteragdo em uma
referéncia seja aplicada a outros objetos. Por exemplo, uma Entidade que tenha uma

referéncia para um Objeto Valor.

Como exemplo, seguindo com a transacéo bancaria, enquanto a TransacaoBancaria
seria uma Entidade, uma propriedade do tipo Dinheiro seria um Objeto Valor, uma vez
gue o dinheiro ndo precisa de um identificador, mas representa algo importante no

dominio como representacdo monetéaria (EVANS, 2010, p. 92).
3.4.3. Servigcos
3.4.3.1. Servico de Dominio

O Servico de Dominio (EVANS, 2010, p. 100) é normalmente responsavel por
executar uma tarefa, ou um conjunto de tarefas, que tem um significado no dominio
nao pertinente a uma Entidade ou Objeto Valor. Separa uma acdo que nao teria
sentido no modelo de objetos para uma abstracdo separada, que representa uma
acao da Linguagem Onipresente. N&o possui um estado e se relaciona com o dominio.

Por exemplo, um servi¢co que possa transferir fundos de uma conta para outra em um

contexto bancario.
3.4.3.2. Servico de Aplicacao

Os Servicos de Aplicacdo (EVANS, 2010, p. 101) e (FOWLER, et al., 2002, p. 133-
134), definem uma fronteira da aplicagcdo com um conjunto de servigcos que define
operacOes disponiveis e coordena a resposta da aplicacdo a cada operacdo. Ela

abstrai a implementacao do contexto delimitado, isolando e protegendo a integridade

32

do modelo de dominio. Por exemplo, os servicos de aplicacdo realizam o
comportamento de casos de uso coordenando a execucgdo da l6gica de dominio do

ponto de vista transacional, seguranca, etc.
3.4.4. Modulo

Um Madulo (EVANS, 2010, p. 104) é um agregador de classes que podem juntas fazer
algum sentido. Com a aplicagcdo do DDD, um Modulo pode tornar-se parte da definicdo
do dominio, tornando-se referéncia na Linguagem Onipresente. A separacdo de um
contexto de um conjunto de classes pode fisicamente estar separada em Maddulos,
permitindo melhor compreenséo do que faz parte ou ndo do dominio e como o dominio

é ligado a outras partes.
3.45. Agregado

O Agregado (EVANS, 2010, p. 119) € um conjunto de objetos que juntos tém forte
significado ao dominio. Possui uma Entidade raiz e outras Entidades ou Objetos de
Valor associados que, sozinhos nédo teriam significado para o dominio. O Agregado
deve ter um limite de associa¢gdes bem definido e ndo podem ser acessados a néo ser
pela Entidade raiz. Auxilia a manter objetos inalterados além do seu objeto raiz, a fim

de defender o modelo de altera¢des simultaneas no sistema.

Figura 13 - Agregado

pode referenciara raiz, Carro, ou consultar

Um objeto fora do limite do Agregado
a base por ele por ID.

o

<<Rafzdo Agregado>>
Motor /

*

<<Raiz do Agregado>>
Carro

3

Posicao

Cliente

|

* Y

g

pode ndo ter uma referéncia para Pneu,
pois Pneus estd dentro (do Agregado).

Um objeto fora do limite do Agregado T

Fonte (EVANS, 2010, p. 121)

Por exemplo, a Figura 13 ilustra as relacdes entre as classes que compdem um Carro.
Como Carro € que contém as classes Roda, Pneu e Posicado, entdo, neste contexto,
estas partes nao fariam sentido sem o Carro. Portanto, Carro é a raiz do Agregado.

Outro exemplo é um Motor. Ele é constituido por varias partes, sendo, portanto, a raiz

33

de um Agregado. Assim definidos, esses dois agregados podem ter uma associacao

um com o outro, sempre relacionados por suas raizes.
3.4.6. Fabrica

As Fabricas (EVANS, 2010, p. 129) servem para montar conjuntos de objetos
complexos, inclusive Agregados, a fim de remover a complexidade das associacoes
de objetos. Deixando a responsabilidade técnica a cargo da fabrica, o cddigo cliente

nao sofrerd com o aumento do alto acoplamento e baixa coesao.

Por exemplo, a construcdo de um Agregado Carro pode ser muito complexa para que
um cliente tenha tanta responsabilidade em criar este Agregado. Entéo, pode-se criar
uma FabricaCarro, responsavel por montar o carro, motor, pneu e todas as

dependéncias que crie um Agregado consistente.
3.4.7. Repositorio

O Repositério (EVANS, 2010, p. 140) encapsula a complexidade da utilizacdo da
infraestrutura de dados para ndo enfraquecer o modelo do dominio. Se para a
reconstituicio de um objeto sdo necessarias diversas consultas a base de dados,
frameworks de recuperacdo podem ser utilizados, assim como a utilizagdo de
Fabricas, para remontar Agregados. A responsabilidade da entrega de um modelo
persistido em Agregado €é do Repositorio. Por exemplo, um
RepositorioPedidoComercial representa a cole¢céo de PedidoComercial.

34

4. ROTEIRO PARA UTILIZACAO DA ARQUITETURA HEXAGONAL

PropBe-se aqui um roteiro para a modelagem do dominio, aplicando os conceitos do
Projeto Estratégico e Projeto Téatico de (EVANS, 2010) utilizando a Arquitetura

Hexagonal como base de padrdo arquitetdbnico como solucao de projeto.

Este trabalho ndo tem foco em processos de desenvolvimento de software, mas sim
nas atividades sequenciais para se chegar no projeto detalhado de um modelo de

software.
4.1. Resumo da pesquisa bibliografica

Da pesquisa bibliografica utilizada nos capitulos 2 e 3 pode-se dizer que, em resumo,
Evans considera que essencialmente € necessario avaliar o Mapa Contextual, a
Linguagem Onipresente, o Dominio Principal, o Projeto (Design) Dirigido por Modelos,
além de outros dois pontos que envolvem equipes (EVANS, 2010, p. 464). No entanto,
nao ha explicitamente a descricdo para aplicar o DDD, particularmente, a arquitetura.
Mostra-se mais claramente como lidar com a questdo arquitetdnica através de dois
estilos focalizados em equipes: um que nao possui um projeto/padrédo de arquitetura
antes de iniciar o desenvolvimento; e outro com a equipe de arquitetura focalizada no
cliente; isto €, uma equipe centralizada que possa ajudar as demais equipes (EVANS,
2010, p. 465).

4.2. Roteiro proposto para a utilizagao da Arquitet ura Hexagonal

O roteiro apresentado a seguir propde, em primeiro lugar a analise do contexto do
sistema a ser projetado antes do inicio do projeto detalhado. Tendo a visdo do
contexto do sistema, € possivel definir-se uma estratégia do relacionamento entre
sistemas para evitar, ou minimizar, problemas de integracéo arquiteténica (JAIN, et
al., 2008). Somente com a visdo estratégica definida € que se deve avancar nos

Projeto Estratégico e Projeto Tatico do DDD.
4.2.1. Definicdo do dominio

Para a definicdo do modelo de dominio, (EVANS, 2010) inicia seu livro apresentando
o Projeto Tatico. Na Parte IV — Projeto (Design) Estratégico do livro, descreve-se o
Contexto Delimitado, o Mapa Contextual e o emprego da Linguagem Onipresente para
a relacdo entre contextos. Também, é nesta parte que descreve seu ponto de vista

sobre arquitetura de software.

35

Para a definicdo da Linguagem Onipresente, é necessario entender o contexto que
esta sob andlise. Através dos Contextos Delimitados e suas relacdes pelo Mapa
Contextual, é possivel compreender sob qual escopo de negdcio o sistema esta em
projeto, e entdo definir a Linguagem Onipresente. Portanto, para a utilizagcdo do DDD
requer-se, inicialmente, desses elementos. Assim, tem-se o Passo 1: Definicdo dos

Contextos Delimitados e da Linguagem Onipresente.
4.2.2. Projeto de alto nivel

Com o Mapa Contextual elaborado no primeiro passo, € possivel avaliar os padroes
de integracdo entre Contextos Delimitados. A avaliacdo de integracdo somente é
possivel apds ter-se em maos os Contextos Delimitados no Mapa Contextual,
utilizando a Linguagem Onipresente. Este é o nivel do Projeto Estratégico de Evans.

Assim, tem-se o0 Passo 2: Projeto Estratégico — Integracao.

Ainda no Projeto Estratégico, a escolha de uma arquitetura deve levar em
consideragcdo como uma empresa trabalha: com ou sem uma equipe de arquitetura
focalizada. Para este trabalho, a abordagem selecionada pelas caracteristicas do
dominio utiliza a Arquitetura Hexagonal (HA/PA) no DDD, adotando-se a abordagem
de definir-se uma arquitetura antes do desenvolvimento (equipe de arquitetura
focalizada). A HA/PA foi a arquitetura escolhida por enfocar a resolucdo de problemas
de dominio, de diversidade de dispositivos que interagem com o dominio-alvo e de
integracéo. Do ponto de vista do DDD, as integracdes entre Contextos Delimitados
sao solucionadas através dos Padrdes Estratégicos. A flexibilidade dessa arquitetura
fornece uma solucdo para integragdes no mesmo modelo de dominio entre varios

contextos e dispositivos que requerem padrdes de integragéo distintos.

O modelo do dominio é centralizado no hexagono, que pode ser testado atraves de
testes automatizados, conectado a novos dispositivos que venham a utiliza-lo, assim

como integra-lo a outros contextos.

Uma vez que o desenvolvedor compreende a abrangéncia da HA/PA, uma viséo
arquitetdnica diferenciada € dada antes mesmo de o projeto ser iniciado, levando-o a
focalizar primeiro na interpretacdo do dominio e depois nas possiveis integracdes
entre sistemas. Outros pontos técnicos e de integracdo podem ser resolvidos através
das portas e adaptadores, uma vez que o dominio esteja integro, pois todos os lados

36

do hexagono utilizardo os mesmos critérios para tais integracdes. Um beneficio
imediato disso € o de potencialmente poderem contar com especialistas em tecnologia
de integragéo que ndo conhecam bem o dominio, mas que precisam atuar focalizados

em um lado do hexagono (uma integracéo especifica ou outras similares).

ApoOs a avaliacdo da integracdo entre contextos, pode-se entdo definir o Passo 3:

Projeto Estratégico — Arquitetura Hexagonal — Definicdo das Portas.
4.2.3. Projeto Detalhado

Como a visao arquitetdnica definida, pode-se entéo partir para o Projeto Detalhado,
para refinar a visdo do sistema mais proxima da implementacdo. Como se tem em
maos as definicbes das portas da HA/PA, pode-se avaliar a integracdo detalhada e
identificar os modulos do sistema. Neste nivel de abstracdo, utilizando a Linguagem

Onipresente, identifica-se o Passo 4: Projeto Tético — Integracao.

Com o projeto tatico de integracdo entre modulos, pode-se refinar e identificar as

classes através do Passo 5: Projeto Tatico — Detalhamento dos Mdodulos.
4.3. Definicdo dos passos

Dados os conceitos do DDD e da Arquitetura Hexagonal (HA/PA), e as consideracdes
expostas no topico anterior, propfe-se 0 roteiro que segue para a utilizacdo da
Arquitetura Hexagonal como solucdo para os problemas descritos. As sec¢bes que
seguem detalham os passos do roteiro.

* Passo 1: Definicdo dos Contextos Delimitados edaL inguagem
Onipresente

» Passo 2: Projeto Estratégico — Integracéo

» Passo 3: Projeto Estratégico — Arquitetura Hexagona | — Defini¢cdo das
Portas

» Passo 4: Projeto Tatico — Integracéo

» Passo 5: Projeto Tatico — Detalhamento dos Mddulos

4.3.1. Passo 1: Definicdo dos Contextos Delimitados e da Linguagem

Onipresente
Entrada:
» Descricdo do dominio.
Saida:

» Descrigcao dos Contextos Delimitados;
* Modelo conceitual com a Linguagem Onipresente.

* Mapa Contextual do Dominio;

Figura 14 - Mapa Contextual de exemplo

Subdominio Genérico

Contexto B

Contexto A

Diominio Principal

Fonte (o autor)

37

Descricdo: Descrever o dominio em andlise para a compreensdo dos contextos

envolvidos. Desta maneira, revelam-se 0s sistemas que potencialmente

correspondem a estes contextos, gerando o Mapa Contextual do dominio, como

ilustrado um exemplo na Figura 14. O Mapa Contextual contém a indicacéo do dominio

que esta sendo projetado, identificando-o como “Dominio Principal”. Os demais

contextos que serdo utilizados sao identificados como “Subdominio Genérico”. Uma

vez identificados outros contextos, é necessario descrevé-los para que posteriormente

se pense na provavel integracdo entre eles. Basta um modelo conceitual dos

contextos envolvidos para compreender seus limites.

4.3.2. Passo 2: Projeto Estratégico — Integracao
Entrada:

» Descricao dos Contextos Delimitados;
* Mapa Contextual do Dominio;

« Diagrama do modelo conceitual com a Linguagem Onipresente.
Saida:

* Mapa Contextual do Dominio com os Padrbes Estratégicos de Integracao.

Figura 15 - Mapa Contextual de exemplo com Padrao Estratégico de Integragéo

Subdominio Genérico

Contexto B

A

Camada Anticorrupgao

Contexto A

Dominio Principal

Fonte (o autor)

38

Descricdo: Com a identificagcdo dos Contextos Delimitados envolvidos, principalmente

em projecéo, verificar qual padrdo estratégico de integracdo € mais adequado nos

pontos de integracdo, como visto em 3.3.3. Indicar o Padrdo Estratégico de integracédo

adotado nas associagdes entre os Contextos Delimitados dentro do Mapa Contextual

elaborado no Passo 1. A Figura 15 ilustra a utlizacdo do padrdo Camada

Anticorrupcéo (ACL).

39

4.3.3. Passo 3: Projeto Estratégico — Arquitetura H exagonal — Definicado das

Portas
Entrada:
* Mapa Contextual do Dominio com Padréo Estratégico de Integracao.
Saida:
* Projeto da Arquitetura Hexagonal com definicdo das portas.

Descricdo: Uma vez definidos os padrdes estratégicos de integracdo, as portas
conceituais da HA/PA tém relagdo direta com as estratégias pré-definidas. Identificar
outras portas de acesso ao dominio que podem estar associadas apenas ao contexto

em projeto. O Projeto da HA/PA faz parte do Projeto Estratégico.
4.3.4. Passo 4: Projeto Tatico — Integracéo
Entrada:

* Mapa Contextual do Dominio com Padréo Estratégico de Integracao

* Projeto da Arquitetura Hexagonal com definicdo das portas.
Saida:

* Modelo de Integracao entre Modulos;

* Modelo da Integracao entre moédulos com as Portas conceituais da HA/PA.

Descricdo: Com o projeto da HA/PA e suas portas definidas, iniciar a projecdo em
diagramas UML, avaliando os Modulos nomeados pela Linguagem Onipresente, como
cada Moddulo é integrado no seu dominio, assim como na aplicacdo (interface de

usuario, base de dados, etc.).

Figura 16 - Estereotipo da Porta conceitual Figura 17 — Notac&o da Porta conceitual

i— =

< =Porta== Mome da porta
Mome da porta

Fonte (o autor) Fonte (o autor)

40

Para representar as portas da HA/PA no modelo, o esteredtipo <<Porta>> € colocado
na representacdo do médulo (pacote) da UML, e dentro dele os mddulos fisicos
projetados, como na Figura 16. Para facilitar a identificacdo da representacéo grafica
de uma Porta, a Figura 17 ilustra a substituicdo do estereétipo <<Porta>> pela

marcacao de um quadrado no topo do pacote do projeto.
4.3.5. Passo 5: Projeto Téatico — Detalhamento dos M 6dulos
Entrada:

» Diagrama de Integracéo entre Médulos;
» Diagrama do modelo conceitual com a Linguagem Onipresente;

» Descri¢cao do Contexto Delimitado;
Saida:
» Detalhamento dos Modulos

Descricdo: Com os Mddulos inicialmente definidos, aplicar o projeto tatico do DDD
com as Entidades, Objetos Valor, Servicos de Dominio, Repositorios e outros
conceitos taticos necessarios. Utilizar os padrdes de projeto detalhado nos médulos

definidos.

41

5. UM EXEMPLO DE APLICACAO DA ARQUITETURA HEXAGONAL

Neste capitulo sera aplicado o roteiro do capitulo 4 em uma parte do projeto
arquitetdnico de um software para uma empresa real. Apresenta-se uma descricdo do
dominio do problema e aplica-se o roteiro proposto apresentando os resultados em

diagramas e descricdes como saida de cada passo do roteiro.
5.1. Descri¢cédo do dominio do problema

Uma empresa de pesquisa de mercado, chamaremos de Research Corp por motivos
confidenciais, deseja um sistema que permita realizar entrevistas com diversas
pessoas para gerar informacdo de consumo para seus clientes. A Research Corp é
especialista em controle de amostra, sistema que controla a quantidade de individuos
necessarios para representar um determinado perfil demografico. A Research Corp ja
possui um sistema que realiza a gestdo de individuos candidatos a participar de uma
pesquisa e seleciona aleatoriamente, dado um filtro demografico, um grupo de

individuos para responder a uma “onda” de questionario.

Por onda entende-se a aplicacdo de um mesmo questionario (as mesmas perguntas),
por certo periodo de tempo, em individuos selecionados para representar os perfis

demograficos.

A cada onda, um questionario diferente é elaborado para ser utilizado. Ao receber as
respostas, é feita uma consolidacdo de dados para a geracdo de relatérios com

informacdes de consumo e caracteristicas do publico que participou da onda.

A Research Corp também possui um sistema para gerenciamento de questionarios,
mas toda entrega de questionarios, coleta das respostas e transcri¢cdo de resultados

é feita por uma empresa terceira.

A Research Corp patrocinou um projeto de software para ela mesma ter o sistema de
pesquisa e consolidacdo de dados para entregar aos seus clientes. A Research Corp
também esté interessada em realizar as entrevistas em diferentes formas para permitir
mais opc¢des de resposta dos individuos da amostra, pois ha pessoas de classes
sociais mais baixas que ndo possuem recursos de responder digitalmente. Algumas
possibilidades de se fazer entrevistas serdo descritas, mas a empresa deseja

flexibilidade para adicionar novas maneiras de se realizar as entrevistas.

42

De acordo com essa descricdo, pode-se definir o seguinte escopo para o projeto de

software:

1. Possibilidades de realizagédo da entrevista:
a. Entrevistador que bate de porta-em-porta para deixar um questionario
em papel e recolher apds certo periodo;
b. Entrevistador com um tablet realizando entrevista face-a-face com o
entrevistado;
c. Entrevistado responder via website.
2. Permitir o controle das ondas e seus questionarios.

3. Consolidar as respostas dos questionarios.

5.2. Passo 1: Definicdo dos Contextos Delimitados e Linguagem

Onipresente

Para compreender melhor a divisdo do escopo e quais contextos estao envolvidos, o
Mapa Contextual descreve como os contextos sdo delimitados e associados através
do novo dominio a ser projetado. Segue a descricdo dos conceitos dos contextos em

sua Linguagem Onipresente.
5.2.1. Descricao dos Contextos Delimitados
5.2.1.1. Contexto Amostragem

O contexto Amostragem gerencia os individuos que podem participar de pesquisas
para a empresa, inclusive para responder pesquisas via questionarios. A amostra
(individuos que estéo registrados na listagem da empresa) ndo € exclusiva para seu
proprio sistema, Amostragem, mas pode ser utilizada para diversos fins. Outros
sistemas que precisem dela podem utilizar sua porta de comunicagéo padréo, através
de servicos web (web-service). Nao sera detalhado como individuos sdo convidados
a fazer parte da amostra, mas, uma vez que concordem em participar dela, eles sédo
registrados neste sistema e representados no projeto conceitual. Este sistema é
encarado como um legado, pois ndo havera alteracdes de projeto.

Modelo conceitual

O modelo conceitual contém as classes que representam o sistema de amostra de
modo simplificado. Para este trabalho, o conceito mais importante € o individuo que
faz parte da amostra, que possui caracteristicas que representardo outras pessoas

43

estatisticamente. Este modelo € o de um Agregado, pois suas partes sO tém sentido

guando unificados, como apresentado na Figura 18.

Figura 18 - Agregado Amostragem

amostragem.core

Individuo VariavelDemografica TipoVariavelDemografica

Fonte (o autor)

Linguagem Onipresente

e Amostragem: um conjunto de individuos que juntos representam um universo
de pesquisa,;

e Individuo: uma pessoa que faz parte da amostragem,;

» Variavel demografica: informacao que descreve algo que represente um perfil,
por exemplo, género, regido onde mora, classe social;

* Peso: a quantidade de pessoas representadas através de um individuo.
Responsabilidades do Contexto Delimitado

» Gerenciar individuos que participam da amostra;
» Controlar individuos que participardo de uma amostra a partir de um periodo
solicitado;

* Realizar célculos de ponderacéo para o peso dos individuos.
5.2.1.2. Contexto Gerenciamento de Questionarios

Para que uma pesquisa seja feita, € necessario ter um questionario definido. O
contexto Gerenciamento de Questionarios foi projetado para a responsabilidade de
mesmo nome. Inicialmente, ele deveria controlar o andamento da pesquisa e gerar 0s
resultados finais, mas, uma reflexdo mais aprofundada revelou que o dominio para o
gerenciamento de questionarios é distinto daquele em que se aplica um questionario,

COM USOS e usuarios distintos.

44

Modelo conceitual

O modelo conceitual de um Questionario tem ao menos uma Pergunta com Possiveis
Respostas atreladas a esta pergunta. As Possiveis Respostas tém as Possibilidades

de Respostas, com um Tipo, e o Tipo pertence a um Grupo.

Por exemplo, um objeto QuestionarioEleicao possui uma
PerguntaQuantasTelevisoesHaEmCasa. A prépria
PerguntaQuantasTelevisoesHaEmCasa ja possui a associagdo com um
GrupoTipoRespostaUnica. As possibilidades de TipoRespostaUnica sé&o
PossibilidadeRespostaNenhuma, PossibilidadeRespostaUma,

PossibilidadeRespostaDuas, PossibilidadeRespostaTresOuMais.

O Questionario € armazenado no RepositérioQuestionario, que possui sua

implementagcdo RepositorioQuestionarioBD.

A implementacdo do Repositorio esta no mesmo Maodulo. Possui a Linguagem
Onipresente forte, mas alguns pontos de modularizagdo ndo parecem ter tanta
importancia para a equipe de desenvolvimento deste sistema. A Figura 19 apresenta

0 modelo conceitual adotado.

Figura 19 - Agregado Questionario

gerendador. questionario, core

QUESHIONATIO |- ..ot e S d e B e S e e S e RepositorioQuestionario

* +Incluir

+Listar()
1,.% +Obter{IDQuestionario)
Pergunta GrupoTipoResposta &
1
1
1= RepositorioQuestionarioBD

PossibilidadeResposta TipoResposta

Fonte (o autor)
Linguagem Onipresente
e Questionario: um conjunto de perguntas. Cada questionario é unico, pois &

necessario manter o historico dos questionarios ja associados a onda para

efeitos de auditoria;

45

* Pergunta: uma pergunta especifica em um questionario;
» Possiveis Respostas: possiveis respostas para uma pergunta;
» Tipos de Respostas: Tipo de uma resposta para uma pergunta. Resposta Unica

ou multi-selecéo.
Responsabilidades do Contexto Delimitado

e Criar um questionario;

» Adicionar perguntas e definir seu tipo;

» Adicionar possiveis respostas em uma pergunta respeitando o tipo da pergunta;
» Fechar um questionario (fechamento) para indicar que ele esta pronto para ser

utilizado em uma onda.
5.2.1.3. Contexto Onda

O contexto Onda € o principal ponto a ser projetado nesta monografia. E o contexto
quem cria 0 conceito de uma Onda, representando um periodo que um nuamero
determinado de individuos, que fazem parte da amostra, serdo selecionados para
responder um questionario num prazo determinado. Os individuos e suas respostas
representardo estatisticamente um universo, permitindo que ao final do periodo de
entrevistas as respostas sejam transformadas em informacdes significantes através

de uma consolidacdo de dados.

Vocabulario

» Onda: periodo em que um questionario €é utilizado para uma pesquisa;
* Individuo: pessoa que respondeu o questionario da Onda;

* Respostas: respostas das perguntas respondidas pelo individuo.
Requisitos do Contexto Delimitado

e Criar uma Onda num sistema administrativo:
o Data de inicio e fim;
o Perfis demograficos e quantidade de individuos necessarios para atingir
uma amostra especificada;
o Questionario que sera utilizado para a onda;
» Aplicar a Onda e seu questionario nos individuos através das plataformas de

comunicacao:

46

o Entrevista face-a-face com um entrevistador utilizando um tablet;
o Deixar o questionario impresso para buscar posteriormente;
o Envio de link de questionario via e-mail para acesso e preenchimento
via web;
» Controlar quantas entrevistas foram concluidas (respondidas por um
entrevistado) e quantas ainda sdo necessarias;
» Fazer a projecdo da quantidade de entrevistas necessarias por dia de acordo
com o prazo de encerramento da onda e tamanho da amostra;
» Consolidar entrevistas no encerramento da onda e disponibilizar um relatorio

com os dados calculados.
5.2.2. Mapa Contextual do Dominio

O Mapa Contextual, como visto no Capitulo 3 e Passo 1 do Capitulo 4, auxilia
visualmente como sera abordado e como estdo divididos os contextos derivados da
descrigcéo. A Figura 20 apresenta este mapa.

Identificados os Contextos Delimitados, a Onda, sendo o foco do projeto elaborado
neste trabalho, esta identificada como “Dominio Principal’. Os contextos Amostragem
e Questionario serdo utilizados pelo contexto Onda, sendo identificados como

“Subdominio Genérico”.

Figura 20 - Mapa contextual do dominio

; ; Subdominio Genérico
Subdominio Genérico

Contexto de Amostragem Contexto de Questiondrio

Contexto de Onda

Dominio Principal

Fonte (o autor)

a7

5.3. Passo 2: Projeto Estratégico — Integracao
Segue a utilizagdo de Padrdes Estratégicos nos Contextos Delimitados.
5.3.1. Onda-Amostragem

A integracao entre os contextos Onda e Amostragem utilizar4 o padrao estratégico
Camada Anticorrupcao (visto em 3.3.3), do ponto de vista do Contexto Onda, pois 0
contexto Amostragem é um sistema legado existente na empresa que disponibiliza
servigos para a integragdo com outros sistemas. Descartam-se alteragdes no sistema
legado. A camada de traducdo da linguagem sera utilizada para ndo corromper o

dominio principal (Contexto Onda).
5.3.2. Onda-Questionario

A integracdo entre os contextos Onda e Questiondrio utilizara o padrao estratégico
Cliente/Fornecedor, pois havera comunicacao entre as equipes de desenvolvimento
numa relacdo em que a equipe do contexto Questionario podera ter que desenvolver
funcionalidades para a equipe que desenvolve o contexto Onda. A integracao é forte,
mas nao € o mesmo nucleo, pois o entendimento da montagem do questionario é
diferente da utilizacdo de um questionario pronto durante a aplicacdo da Onda. O

contexto Questionario sera fornecedor para o contexto Onda, cliente.

5.3.3. Mapa Contextual com os Padrdes Estratégicos de Integracao

Figura 21 - Mapa contextual de integracéo

Subdominio Genérico Subdominio Genérico

Contexto de Amostragem

Servigo de Host Aberto N
Linguagem Publicada

Contexto de Questionario

Cliente/Fornecedor {fornecedor)

ClienteFornecedor {diente)

Camada Anticorrupgdo 5

Contexto de Onda

Dominio Principal

Fonte (o autor)

48

Apbés a descricdo da relacdo entre os contextos Onda-Amostragem e Onda-
Questionario, realizou-se a anotacao das relacées no Mapa Contextual, visualizado

na Figura 21, como exemplificado em 4.3.2.

5.4. Passo 3: Projeto Estratégico — Arquitetura Hex agonal — Definicdo das

Portas

A Figura 22 representa 0 projeto arquitetbnico proposto para a HA/PA.
Metaforicamente, cinco lados tém comunicacdo com o dominio por dispositivos
distintos que potencialmente se integrardo com a “area interna” — a Aplicacdo — e com

a “area externa” — outros dominios.

Figura 22 - HA/PA para o caso

\ /
A% Componente

Dispositivo \ v - v
(oM G ., 1
. N : - |==k=| Aplicativo-para-
Dispositivo D Integracao HTTF | aplicativo
movel L com
Interface Questionario
do usdrio -

EJ‘:} Adaptador

A |- -
Adaptadar l \ll Recebimento Integracao deteste

de teste de questionarios com Amostra

. I.I
cljréztﬁrs?rcig W Base de dados
L

l‘- .‘.\
oo
Adaptador [~ > ,! Basede dados
de teste ’{ — &~ simulada

Fonte (o autor)

Separando o dominio Onda, como proposto pelo DDD, com a HA/PA, o dominio fica
livre das integracfes e desconhece os dispositivos que o utilizardo, dando foco no
Contexto Delimitado. As portas e adaptadores de apresentacao, dados e integracdes
com dispositivos necessarios para receber o0s questionarios respondidos sé&o

desenvolvidos posteriormente.

49

5.5. Passo 4: Projeto Tatico — Integracao

Utilizando a Arquitetura Hexagonal como base para comportar os detalhes do dominio
e dar suporte as integrac6es posteriores, seja entre sistemas, ou para dispositivos, o
projeto tatico segue mais detalhado no ndcleo para demonstrar sua importancia e

interdependéncias.
5.5.1. Modelo de Integracéo entre Mddulos

Uma Onda, como descrito anteriormente, caracteriza-se principalmente por
representar um periodo de tempo, coletando respostas de um Unico questionario para

um conjunto de individuos.

Foi feita uma divisdo em Mddulos para minimizar o acoplamento e aumentar a coeséo

do dominio, representado na Figura 23.

Figura 23 - Integracdo entre Médulos

<<(Camada Aplicagio>> <<Camada Aplicacdo>> <<Camada Aplicacio > > <<Camada Aplicagdo= >
onda.aplicacao.backoffice onda.aplicacao.web onda. aplicacac.maobile onda.aplicacao.impresso

<<Camada Anticorrupgo>> '__ _E_
onda.amostra

<<Dominio > > <<Dominio>>
onda.core [TTTTT7T By onda.core. questionariorespondido

A

< <Dominio > <<Cliente / Fornecedor ==
onda.core. variaveldemografica gerendador. questionario.core

WY

1

< <Camada Infraestrutura=> -~ '
onda. persistendia R S e e e L e e e e

Fonte (o autor)

A anotacdo “Camada Aplicacdo” caracteriza os modulos em camadas de aplicacédo

gue se comunicam com dispositivos externos.

5.5.2. Modelo da Integracdo entre moédulos com as Po rtas conceituais da
HA/PA

Na integracdo entre Modulos pode-se verificar que ao centralizar o modelo de
dominio, é possivel estendé-lo com outros sistemas, permitindo seu uso por

integracbes que podem ser modificadas no futuro. Para adequa-lo a HA/PA, foi

50

adicionado ao modelo de integracdo entre Modulos as portas conceituais da
arquitetura. A convencdao utilizada para descrever as portas conceituais no diagrama
€ apresentada no Capitulo 4. A Figura 24 ilustra a integragdo entre médulos com a

representacao conceitual das portas da HA/PA.

Figura 24 - Integracdo entre Mddulos com portas conceituais

0— 0 |
Administracdo Recebimento de Questionarios

— e 1 [

<<Camada Aplicagdo»> <<Camada Aplicagio>> <<Camada Aplicacéo>> <<Camada Aplicacio>>
onda. aplicacan. backoffice onda.aplicacso.web onds. aplicacao.mobile onda. aplicacao.impresso

Integracio Amostrai & __ |+ 4 3 r 1
¥ Ly
<<Camada.~\nﬁcorrupg50>><”L < «Dominio > > <<Dominio=>
onda.amostra onda.core [TTTTTTTTTC = onda.core.questionariorespondido
E E : E E """""""" 7 A
E i I Ini:‘Eg‘?'agSo Questiondrio
rE da?os: | < <Domirio > > Al
! E : : onda.core.variaveldemografica
WO Y E < <Cliente { Fornecedor >
5 T ' gerencdiador. guestionario. core
<<Camada Infraestrutura>> 1 -
onda.persistencia
Fonte (o autor)
. sy 7
5.6. Passo 5: Projeto Tatico — Detalhamento dos Mod ulos

5.6.1. Utilizacdo de padrdes

Para este trabalho, foram utilizados alguns padrdes detalhados de projeto. Para refinar
a Arquitetura Hexagonal é necessério aumentar o nivel de detalhe no projeto da

solugéo.
5.6.1.1. Fabricas

Além da definicdo feita no Capitulo 3, uma Fabrica cria uma raiz integra de um
Agregado verificando as condi¢des dos invariantes (0 que € sempre verdadeiro). Caso
a condicdo de um invariante seja violada, a Fabrica notificard um erro a quem a utiliza.
As associacfes dos Agregados sao verificadas pelas Fabricas. As Fabricas neste
trabalho ndo sao responsaveis pela remontagem de objetos ja persistidos. Assume-
se que isto é solucionado tecnicamente por frameworks de desenvolvimento, do tipo

ORM (Mapeamento Objeto-Relacional).

5.6.2.

5.6.2.1.

Detalhamento dos Moédulos

<<Dominio>> onda.core

51

O Mobdulo onda.core é o nulcleo do contexto delimitado Onda e encontra-se no

Agregado principal Onda, apresentado na Figura 25.

Figura 25 - onda.core

< <5Servico Dominio > =
ConsolidacacOnda

+ConsolidarCnda ()

<< Dominio ==
onda.core

< <Servigo Dominio >
FornecimentoDeQuestionario

+FormecerQuestionarioDaOnda({IDOnda)

< <Servico Dominio > =
RecebimentoDeQuestionario

+IncluirQuestionarioRespondido(IDCnda, QuestionarioDolndividuo) E T ,

W

iy

PerfilDemografico

+QuantidadeEntrevistashlecessarias

+IncuirvariavelDemografica)

< <Fabricaz>

+ConstruirOnda ()

{}#4,.<<Objem'dalor>> e

IDOnda

< <Interface Repositdrio> = <<Raiz Agregado=>
RepositorieOnda Onda

+Induir() Hlome

+0bter()

-H_istaré" +InduirQuestionarioDolndividuo ()
+LancarCnda()
+EncerrarOndal)

<<Entidade>> 1 9

1 Hnidof 1

Data

<<0Ohjeto Valor=>

P

+Terming

< <0bjeto Valor=>> : i
PESE—— S Periodo |

<<0bjeto Valor=> i
IDQuestionario

FabricaOnda |[--- ‘.i

<<enumeration =
SituacacOnda

Hilova
+EmAndamento
+Encerrada
+Cancelada

Seguem as descri¢cdes dos elementos do Médulo.

» <<lInterface Repositério>> RepositorioOnda

Fonte (o autor)

onda.amostra

< <Camada Anticorrupcdo ==

i

< <Cliente [Fornecedor ==
oo gerendador, guestionario.core

]

<<Dominio =
onda.core, gquestionariorespondido

[

<<Dominio ==

i
=)onda.core.variaveldemograﬁca

o Classe Abstrata de Repositorio para armazenar (ainda ndo se trata da

implementacdo, mas sim a representacédo das abstracdes) o Agregado

Onda. Para armazenar a Raiz Onda, o Repositorio recebe o Agregado
ja criado pela FabricaOnda.

e <<Fabrica>> FabricaOnda

0 A classe Fabrica do DDD é responsavel por criar a primeira instancia do

Agregado Onda e validar seus invariantes. Valida se a Data Inicio &

menor que a Data Término.

52

<<Raiz Agregado>> Onda
o Araiz do Agregado que modela a Onda do dominio, ou seja, um periodo
especifico e um questionario que representa uma pesquisa.
<<Objeto Valor>> IDOnda
o Objeto Valor para definir uma identidade para a Onda.
<<Objeto Valor>> IDQuestionario
o Um Objeto Valor para referenciar um Questionario especifico do
Contexto Delimitado Gerenciamento de questionarios.
<<Objeto Valor / Enumerador>> SituacaoOnda
o Enumerador que tem as situacdes que uma onde pode conter:
= Nova — ao concluir a criacdo da Onda, tem a situacéo Nova;
= Em Andamento — Quando a data de inicio da Onda for a data
calendario, a onda é considerada em andamento;
= Encerrada — Quando o prazo atingir a data calendario, a onda &
considerada encerrada;
= Cancelada — Situagdo quando ha a intervencdo de um usuario
interno da empresa e cancela a onda.
<<Objeto Valor>> Periodo
o Periodo em que a onda ocorre, utilizando a classe Data para ter Inicio e
Fim.
<<Objeto Valor>> Data
o Classe que representa uma data (um dia do calendario).
<<Entidade>> PerfilDemografico
o Entidade agregada a Onda para representar qual publico alvo devera
ser atingido com a Onda para a realizagao de entrevistas.
<<Servico Dominio>> FornecimentoDeQuestionario
o Servigo de dominio para disponibilizar o questionério associado a Onda
para 0s Servicos de Aplicacdo. Como o Agregado Questionério
encontra-se no outro sistema integrado pelo padrdo estratégico
Cliente/Fornecedor, o servico utiliza o Repositorio de questionario e seu

Agregado para entregar o Questionario a aplicacao.

53

» <<Servigco Dominio>> RecebimentoDeQuestionario

o Servico de Dominio que inclui um questionario respondido na Onda.

Utiliza 0s Repositérios RepositorioOnda e

RepositorioQuestionarioDolndividuo para aplicar a persisténcia.

e <<Servico Dominio>> ConsolidacaoOnda

5.6.2.2.

o Servico de Dominio que realiza o procedimento de juntar o Agregado

Onda e suas dependéncias, realizar validagdes e calcular a ponderagao
dos individuos que participaram (responderam) ao questionario,
tornando-os representativos para o perfil demografico definido na
criacdo da Onda. Para realizar a consolidacdo, calculos, séao
necessérias as informag¢des do individuo que se encontram em outro
sistema. Para isso, utiliza o servico CalculoAmostral e o
RepositorioAmostra na camada anticorrupgdo para se integrar com o
outro sistema, Amostragem, e obter as informacgfes dos individuos

significantes para o contexto Onda.

<<Dominio>> onda.core.variaveldemografica

Médulo em que as generalizagbes da classe VariavelDemografica estao

implementadas, representado na Figura 26.

54

Figura 26 - onda.core.variaveldemografica

<-<Dominio ==
onda. core

= <Entidade > >
PerfilDemografico

+QuantidadeEntrevistashecessarias

HnduirVariavelDemografical)

x < <Dominio ==
L. onda.core, variaveldemografica

{inbjetc- Valorz:= < =0Objeto Valor==
VariavelDemografica {]— VariavelDemograficaRegiao

<<Ohjeto Valor ==
VariavelDemograficaFaicaEtaria

= «0hjeto Valor = >
VariavelDemograficaClasseSocial

Fonte (o autor)

Seguem as descri¢cdes dos elementos do Modulo.

* <<Objeto Valor>> VariavelDemografica
o A variavel demografica que faz parte do critério do publico alvo.
e <<Objeto Valor>> VariavelDemograficaRegiao
o Variavel demogréafica de uma regido. Podera ser de qualquer escala
(pais, estado, cidade, regido metropolitana...). Outras generalizacoes
podem ser acrescentadas se necessario.
* <<Objeto Valor>> VariavelDemograficaClasseSocial
o Variavel demografica que caracteriza a classe social que sera aplicada
a Onda. Sera o filtro na aplicacdo de Questionario para Individuo com
as mesmas variaveis demograficas.
* <<Objeto Valor>> VariavelDemograficaFaixaEtaria
o Variavel demografica que declara a faixa etaria (faixa de idades) aceita

na Onda para um individuo que respondera o Questionario.

55

5.6.2.3. <<Dominio>> onda.core.questionariorespondido

Mdédulo que contém as classes de um questionario respondido. Utiliza diretamente o
Moédulo (contexto) gerenciador.questionario.core utilizando o padrdo estratégico

Cliente/Fornecedor, como representado na Figura 27.

Figura 27 - onda.core.questionariorespondido

< <Dominio > |
onda. core.questionariorespondido < <Cliente [Fornecedor ==
gerenciador.questionario. core

< «Interface Repositdrio>> < <Fbricaz>
R, HorioOuecti ioDolmdividh - 5 soDoIndivid
=P QuestionarioDolndividuo| _________ | FabricaQuestionarioD: £
+HIncluir () +ConstruirQuestionarioRespondidal} I A :
+0bter(IDQuestionarioDoIndividua)
Histar()

<<Rajz Agregado>> 3 <<Objeto Valor=»
QuestionariocDolIndividuo IDQuestionaricDolndividuo
L | 1
<<0Ohjeto Valor==
IDIndividuo
1.
<<Entidade> > [S S
RespostasDeUmaPergunta o
i <<Objeto Valor=>
" IDPergunta
1.%
<<Bntidade == | .
Resposta

Fonte (o autor)

Seguem as descri¢cdes dos elementos do Modulo.

» <<lInterface Repositorio >> RepositorioQuestionarioDolndividuo
o Classe abstrata de Repositério para declarar os métodos definidos para
interagir com o QuestionarioDolndividuo. Para armazenar a Raiz
QuestionarioDolndividuo, o Repositério recebe o Agregado ja criado
pela FabricaQuestionarioDolndividuo. A recuperacdo dos dados via
persisténcia € implicita e poderia utilizar um framework de
desenvolvimento ORM (Mapeamento objeto-relacional).
* <<Raiz Agregado>> QuestionarioDolndividuo
o Entidade raiz do Agregado que representa o questionario respondido por
um individuo.
* <<Objeto Valor>> IDQuestionarioDolndividuo
o Objeto Valor que identifica o Agregado QuestionarioDolndividuo

56

<<Objeto Valor>> IDIndividuo
0o Objeto Valor do IDIndividuo do outro sistema “Amostragem”, que
identifica o Agregado Individuo.
<<Entidade >> RespostasDeUmaPergunta
o Entidade que relaciona respostas do Individuo a uma Pergunta.
<<Objeto Valor>> IDPergunta
o ldentificador da Pergunta do outro Contexto Delimitado Gerenciamento
de Questionarios.
<<Entidade>> Resposta
o Uma das respostas de um conjunto RespostasDeUmaPergunta de um
individuo.
<<Fabrica>> FabricaQuestionarioDolndividuo

o Fabrica para a constru¢cao do Agregado QuestionarioDolndividuo.

5.6.2.4. <<Camada Anticorrup¢cdo>> onda.amostra

Moédulo que encapsula a Camada Anticorrupcdo que faz a ligacdo entre os Contextos

Delimitados Onda e Amostragem, conforme representado na Figura 28.

Figura 28 - onda.amostra

<< Camada Anticorrupcao ==
onda.amostra

< <8ervico Dominio ==
CalculoAmostral

+Calcular AmostraParaMovalndal) p---------- '
+PonderaramostraPara0ndal)

< <Interface Repositdrio ==
RepositorioAmostra

+0bterIndividuo{IDIndividuo)
& W

; < <Objeto Yalor ==

! IndividuoOnda
< <Adaptador == >
Ty +FaixaEtaria
AdaptadorRepositoricAmostra +| shegia
+ClasseSodal

Fonte (o autor)

57

Seguem as descricdes dos elementos do Médulo.

e <<lInterface Repositorio>> RepositorioAmostra

0 Repositério para utilizar o Contexto Delimitado Amostragem

* <<Adaptador>> AdaptadorRepositorioAmostra

o Adaptador que faz a integracdo com o Contexto Delimitado

Amostragem. O AdaptadorRepositorioAmostra encapsula a
comunicagdo com o Contexto Amostragem, inibindo que o Contexto
Onda tenha dependéncia com implementacfes técnicas ou altere a
préopria Linguagem Onipresente por causa do outro contexto. O Contexto

Onda permanece integro em sua Linguagem Onipresente.

* <<Objeto Valor >> IndividuoOnda

o Objeto Valor para trazer informacdes relevantes ao dominio Onda para

a consolidagéo dos dados, independente de como seja seu projeto no

outro sistema.

e <<Servico Dominio> CalculoAmostral

5.6.2.5.

0 Servigco que utiliza o contexto Amostragem para calcular a amostra da

guantidade de individuos/entrevistas necessarias para uma Onda, dado
o Perfil Demografico. O cliente que utilizar esse Servico de Dominio,

deve enviar uma colecédo de IndividuoOnda para o Calculo Amostral.

<<Camada Cliente/Fornecedor>> gerenciador.questionario.core

Com o padréo estratégico Cliente/Fornecedor, h& forte relagdo entre os contextos

Onda e Questionario no nivel de Mddulo. Desta maneira, o contexto Onda utiliza

diretamente o contexto Questionario, inclusive utilizando sua Linguagem Onipresente,

como ilustrado na Figura 29.

58

Figura 29 - gerenciador.questionario.core

=z =Cliente [Fornecedor ==
gerendador. guestionario, core

< <Interface Repositorio == <<] ______ << Adaptador Repositorio > =
RepositorioQuestionario RepositorioQuestionarioBD
+istar()

+0bter(IDQuestionario)

Fonte (o autor)

Seguem as descri¢cdes dos elementos do Modulo.

* <<lInterface Repositorio>> RepositorioQuestionario
o Repositério para utilizar o Agregado Questionario do contexto
Gerenciamento de Questionarios.
» <<Adaptador Repositério>> RepositorioQuestionarioBD
0o Adaptador que faz a integracdo com o Contexto Delimitado

Gerenciamento de Questionario.
5.6.2.6. <<Camada Aplicagdo>> onda.aplicacao.backoffice

Camada de Aplicacdo para o gerenciamento da Onda composta por Servicos de
Aplicacao. E utilizada por departamento interno da empresa para criagdo da Onda. No

encerramento, faz a consolidacdo dos dados. A Figura 30 ilustra este Modulo.

Figura 30 - onda.aplicacao.backoffice

<=Camada Aplicacdo == << Camada Infraestrutura>>
onda. aplicacan. backoffice N onda.persistencia

< <Servico Aplicacdo ==
Criacao0Onda

1

<< Camada Anticorrupgan > =
onda.amostra

+CriarOndal) =0 Fe-eseeesieesioodeaosans =3l

< <Servigo Aplicacao ==
FechamentoOnda ;3
+EncerrarOndal) :
E < =Dominio ==
; onda.core

Fonte (o autor)

59

Seguem as descricdes dos elementos do Médulo.

e <<Servico Aplicacdo>> CriacaoOnda
o Servico de Aplicacdo para criar uma Onda. O servico utiliza a
FabricaOnda para montar o Agregado Onda e RepositorioOnda para a
sua persisténcia.
» <<Servigo Aplicacdo>> FechamentoOnda
0 Servico de Aplicagdo que utiliza SERVICOS DE DOMINIO para
validagbes do encerramento da Onda.

Figura 31 - onda.aplicacao.web

—]
<<Camada &plicacio=> | _____.. = <« Camada Infraestrutura==
onda.aplicacac.web onda.persistenda
<<5ervico Aplicacdo ==
EntregaQuestionaricoWeb
+Ewibir) 0000 Feemeeemeeopeeemioonees ;
< <Servico Aplicacdo = Z
RecebimentoQuestionarioWeb [---[------- = AT 2
onda.care
+IncluirQuestionarioR.espandida)
Fonte (o autor)

5.6.2.7. <<Camada Aplicacdo>> onda.aplicacao.web

Camada de Aplicacdo para web, utilizando Servicos de Aplicacao representados na
Figura 31.

Seguem as descri¢des dos elementos do Modulo.

* <<Servico Aplicacdo>> EntregaQuestionarioWeb
o Servico de Aplicacdo para a entrega do questionario para a web que
prové acesso a camada da Interface de Usuario.
* <<Servigo Aplicacdo>> RecebimentoQuestionarioWeb
0 Servico de Aplicacdo para o recebimento de um questionario respondido

atraves da web (Interface de Usuario).

60

5.6.2.8. <<Camada Aplicagdo>> onda.aplicacao.mobile

Camada de Aplicacéo para aplicativos moveis, utilizando SERVICOS DE APLICACAO
como na Figura 32.

Figura 32 - onda.aplicacao.mobile

| I
<<Camada Aplicacdo>> <«<Camada Infraestrutura s »
onda.aplicacao.mobile ™ L..o.o.s e onda.persistencia
< <Servico Aplicacdo ==

EntregaQuestionarioMobile
+5erializar])

< =5ervico Aplicacdo ==

e < <Dominio >
RecebimentoQuestionarioMobile S TR

onda.care

+InduirQuestionarioR espondido()

Fonte (o autor)

Seguem as descricdes dos elementos do Médulo.

e <<Servico Aplicacdo>> EntregaQuestionarioMobile
o Servico de Aplicacdo para a entrega do questionario para a web,
provendo acesso a camada da Interface de Usuario.
* <<Servico Aplicacdo>> RecebimentoQuestionarioMobile
o0 Servico de Aplicacao para o recebimento de um questionario respondido
através da web (da Interface de Usuario).

5.6.2.9. <<Camada Aplicacdo>> onda.aplicacao.impresso

Camada de Aplicagéo para lidar com questionarios impressos, como representado na
Figura 33.

61

Figura 33 - onda.aplicacao.impresso

< «Camada Aplicacdo ==
onda.aplicacan.impresso

«<5Servico Aplicacdo > =
EntregaQuestionarioParalmpressao [- - - -

+Imprimir{)

< =5ervico Aplicacdo == < <5ervico Aplicacdo >

RecebimentoQuestionariolmpresso| | o ConversorImagemQuestionarioRespondido
+IncuirQuestionarioRespondida () E +Digitalizar
Ermazi =
< <Camada Infraestrutura = < <Dominio > =
onda. persistencia onda.core

Fonte (o autor)

Seguem as descri¢cdes dos elementos do Modulo.

» <<Servico Aplicacdo>> EntregaQuestionarioParalmpressao
o Servico de Aplicacdo para a entrega do questionario para a web,
provendo acesso a camada da Interface de Usuéario.
* <<Servico Aplicacdo>> RecebimentoQuestionariolmpresso
o0 Servico de Aplicacdo para o recebimento de um questionario respondido
através da web (da Interface de Usuério).
* <<Servigo Aplicacdo>> ConversosimagemQuestionarioRespondido
o0 Servico de Aplicagdo que lida com dispositivos de impressédo e
digitalizacdo para questionarios impressos.

5.6.2.10. <<Camada Infraestrutura>> onda.persistencia

Mdédulo de infraestrutura que contém as implementacdes dos Repositorios do sistema

Onda, representado na Figura 34.

62

Figura 34 - onda.persistencia

««<Camada Aplicacdo=> <= Camada Aplicacdo == <= Camada Aplicacdo= >
onda.aplicacan. backoffice onda.aplicacan. web onda. aplicacan, mobile
b oo

== Camada Aplicacio ==
onda.aplicacan.impresso

< <Camada Infraestruturaz=
onda.persistencia

.| ==Adaptador Repositorio= >
RepositoricOndaBD

<<Adaptador Repositdrio > =
RepositoricQuestionaricDoIndividuoBD

< < Dominio == <<Dominio >
onda.core onda.core, questionariorespondido

Fonte (o autor)

Seguem as descri¢cdes dos elementos do Modulo.

* <<Adaptador Repositorio>> RepositorioOndaBD
o Implementacdo do Repositorio RepositorioOnda para banco de dados
* <<Adaptador Repositorio>> RepositorioQuestionarioDolndividuoBD
o Implementacdo do Repositério RepositorioQuestionarioDolndividuo

para banco de dados

63

6. CONCLUSAO
6.1. Consideracdes gerais

O DDD auxilia no entendimento Unico do negdcio tanto pelo solicitante do projeto
quanto pelo desenvolvedor/projetista. O entendimento € definido pela Linguagem
Onipresente e assim potenciais problemas de interpretacdo, como a néao
implementacao de funcionalidades esperadas ou comportamentos diferentes, tendem
a ser minimizados. A visdo do Projeto Estratégico do DDD fornece caminhos de
integracdo entre contextos a serem escolhidos, conforme as circunstancias do
negocio e as técnicas disponiveis. Centrando o foco no dominio-alvo em vez de
guestdes técnicas, os desenvolvedores adquirem conhecimento do dominio da
aplicacao e ganham argumentos para discutir com os solicitantes do projeto, aumento

a probabilidade de sucesso do software entregue.

A Arquitetura Hexagonal (HA/PA) tem o enfoque no dominio-alvo e deixa para resolver
a integracdo através das portas conceituais, entendidas como pontos de acesso a
partes do dominio. No essencial, essa arquitetura ndo deixa de ser uma Arquitetura
em Camadas, mas com uma diferenca fundamental: ela constitui um conjunto
articulado de camadas que encapsulam as portas conceituais e organizado em torno
de uma camada central que encapsula um Unico modelo do dominio da aplicacao.
Essa organizacéo leva o desenvolvedor a primeiro pensar no dominio e, a0 mesmo
tempo, atender a alguns dos principios de do projeto arquitetdnico, como os Principios
da Inversdo de Dependéncia, Aberto — Fechado e Responsabilidade Unica. Embora
(EVANS, 2010) aborde diversas técnicas para o projeto do dominio e da arquitetura
do software, ele ndo fornece um roteiro para um projeto arquitetbnico. A HA/PA
utilizando o DDD permite um projeto arquitetdnico flexivel, uma vez que permite o
atendimento da heterogeneidade das interacdes com subsistemas clientes e libera o
projeto do dominio-alvo das questdes de integracdo, mas (COCKBURN, 2005)

também nao fornece um roteiro para o seu emprego.

O roteiro proposto visa cobrir esta falta. Seguindo o roteiro, é esperado que um
desenvolvedor/projetista menos experiente no DDD possa utiliza-lo para elaborar o
projeto de um software real que requeira a integracdo entre dominios. Espera-se
também que o roteiro permita a esse desenvolvedor/projetista assimilar mais

facilmente os conceitos e o emprego do DDD.

64

Apesar de o roteiro cobrir os principais aspectos do DDD, utilizando a HA/PA como
escolha arquitetonica, ele ndo aborda o DDD como um todo e equipes mais
experientes podem sentir falta de mais passos. Apesar de a HA/PA ser aderente ao
DDD, a falta de material bibliografico mais detalhado sobre este estilo arquitetdnico
dificultou a elaboracédo do roteiro. O proprio DDD evoluiu desde a sua concepcéao
original, refinando alguns conceitos como os Servigos de Aplicagédo e SERVICOS DE
DOMINIO, havendo inclusive diferencas na definicdo dependendo da referéncia
bibliografica utilizada. Aléem disso, existem arquiteturas semelhantes a HA/PA, como
a Onion Architecture (PALERMO, 2008), que também pretende resolver os mesmos
problemas tratados neste trabalho. No entanto, a consideracdo de todas elas
dificultaria a elaboracéo do roteiro.

Finalmente, uma licAo importante apontada por (EVANS, 2010) (FOWLER, et al.,
2002): o emprego do DDD em um sistema que implementa um dominio
potencialmente simples, com evolugéo e integracdo potencialmente simples, pode

torna-lo desnecessariamente complexo.
6.2. Trabalhos futuros

Um dos trabalhos futuros, que estende o presente trabalho, é o estudo da integracao
do dominio-alvo com um sistema de terceiros. Por exemplo, uma empresa que fizesse
a pesquisa por conta prépria e precisasse utilizar os questionarios criados no sistema

da Research Corp e depois consolida-los.

Como o roteiro apresentado neste trabalho ndo entrou no detalhe da implementacéo
do software (co6digo), poderia ser oportuno identificar mais passos para que o roteiro
chegasse ao nivel da codificagdo.

Por fim, € importante realizar um experimento — ou um estudo de caso — em que 0
roteiro proposto fosse aplicado por uma equipe experiente no DDD em um projeto real,

para que se tivesse uma avaliacdo inicial da viabilidade prética do roteiro.

65

REFERENCIAS

BUSCHMANN, F. et al. Pattern-Oriented Software Architecture: A System of
Patterns. Chichester, New York, Brisbane, Toronto, Singapore: John Wiley & Sons,
Ltd, v. 1, 1996.

COCKBURN, A. Hexagonal Architecture. alistair.cockburn.us , 2005. Disponivel em:
<http://alistair.cockburn.us/Hexagonal+architecture>. Acesso em: 21 abr. 2016.

COCKBURN, A. Ports And Adapters Architecture. c2.com, 2006. Disponivel em:
<http://c2.com/cgi/wiki?PortsAndAdaptersArchitecture>. Acesso em: 21 abr. 2016.

DA-WEI, E. The Software Complexity Model and Metrics for Objec t-Oriented .
2007 International Workshop on Anti-Counterfeiting, Security and Identification (ASID).
Xiamen, Fujian: IEEE. 2007. p. 464-4609.

EVANS, E. Domain Driven Design: Atacando as Complexidades no Coracédo do
Software. 2a. ed. Rio de Janeiro: Alta Books Editora, 2010.

FOWLER, M. et al. Patterns of Enterprise Application Architecture . Boston, San
Francisco, New York, Toronto, Montreal, London, Munich, Paris, Madrid, Capetown,

Sydney, Tokyo, Singapore, Mexico City: Addison-Wesley, 2002.

FREEMAN, S.; PRYCE, N. Growing Object-Oriented Software, Guided by Tests
Upper Saddle River, Boston, Indianapolis, San Francisco, New York, Toronto,
Montreal, London, Munich, Paris, Madrid, Cape Town, Sydney, Tokyo, Singapore,
Mexico City: Addison-Wesley, 20009.

GAMMA, E. et al. Padrdes de Projeto: Solucdes reutilizaveis de software orientado a

objetos. Porto Alegre: Bookman, 2007.

GARLAN, D.; SHAW, M. An Introduction to Software Architecture . School of
Computer Science, Carnegie Mellon University. Pittsburgh, PA. 1994. (CMU-CS-94-
166).

GHAZARIAN, A. A Theory of Software Complexity . General Theory of Software
Engineering (GTSE), 2015 IEEE/ACM 4th SEMAT Workshop on a. Florence: IEEE.
2015. p. 29-32.

HAAS, H. Designing the architecture for Web services. w3.org, 2003. Disponivel em:
<https://www.w3.0rg/2003/Talks/0521-hh-wsa/>. Acesso em: 21 abr. 2016.

66

JAIN, R. et al. Exploring the Impact of Systems Architecture and Systems
Requirements on Systems Integration Complexity. IEEE Systems Journal , v. 2, n. 2,
p. 209-223, jun. 2008. ISSN ISSN: 1932-8184.

MARTIN, R. C. Agile Software Development: Principles, Patterns, and Practices.
2nd. ed. Upper Saddle River: Prentice Hall, 2002.

OASIS SOA REFERENCE MODEL TC. Reference Model for Service Oriented
Architecture 1.0. OASIS, 2006. Disponivel em: <https://docs.oasis-open.org/soa-

rm/v1.0/soa-rm.pdf>. Acesso em: 29 maio 2016.

PALERMO, J. The Onion Architecture. jeffreypalermo.com , 2008. Disponivel em:
<http://jeffreypalermo.com/blog/the-onion-architecture-part-1/>. Acesso em: 5 jun.
2016.

PRYCE, N. Visualising Test Terminology. natpryce.com , 2009. Disponivel em:
<http://www.natpryce.com/articles/000772.html>. Acesso em: 21 abr. 2016.

SOARES, S. A. et al. Dribbling complexity in model driven development us ing
Naked Objects, domain driven design, and software d esign patterns . Computing
Conference (CLEI), 2015 Latin American. Arequipa: IEEE. 2015. p. 1-11.

TIE, J.; JIN, J.; WANG, X. Study on application model of three-tiered architec ture.
Mechanic Automation and Control Engineering (MACE), 2011 Second. Hohhot: IEEE.
2011. p. 7715-7718.

WANG, Y.-H.; LIAO, J. C. Why or Why Not Service Oriented Architecture . Services
Science, Management and Engineering, 2009. SSME '09. IITA International
Conference on. Zhangjiajie: IEEE. 2009. p. 65-68.

