
JÚLIO CESAR LIMA

Roteiro para a Utilização da Arquitetura Hexagonal

no Projeto Dirigido pelo Domínio

São Paulo
2016

JÚLIO CESAR LIMA

Roteiro para a Utilização da Arquitetura Hexagonal

no Projeto Dirigido pelo Domínio

Monografia apresentada à Escola
Politécnica da Universidade de São Paulo
para obtenção do MBA em Tecnologia de
Software

São Paulo
2016

JÚLIO CESAR LIMA

Roteiro para a Utilização da Arquitetura Hexagonal

no Projeto Dirigido pelo Domínio

Monografia apresentada à Escola
Politécnica da Universidade de São Paulo
para obtenção do MBA em Tecnologia de
Software

Área de concentração:

PECE/POLI

Orientador:
Prof. Dr. Paulo Sérgio Muniz Silva

São Paulo
2016

AGRADECIMENTOS

Ao professor Paulo Sérgio Muniz Silva, pelo aprendizado em suas aulas e durante as

reuniões de orientação deste trabalho.

À Andréa Britto Mattos Lima, minha esposa, por todo apoio, carinho e incentivo em

meus estudos e para a elaboração deste trabalho.

RESUMO

O controle da complexidade do desenvolvimento do software não é uma tarefa trivial.

Um dos fatores fundamentais para conter essa complexidade é a elaboração de um

modelo apropriado do domínio da aplicação, que deve ser isolado dos vários

mecanismos necessários à implementação do software que não dizem respeito ao

domínio (persistência, controle de transações, etc.). Essa é a essência do Projeto

Dirigido pelo Domínio (Domain Driven Design - DDD). Esse isolamento implica a

seleção de uma arquitetura apropriada para tratar a interação de um domínio da

aplicação não só com outros domínios, mas com interações heterogêneas tais como

protocolos e suportes de comunicação distintos. Além disso, esses elementos

normalmente evoluem com o tempo, aumentando a complexidade do software a ser

tratada pela arquitetura. Um estilo arquitetônico flexível proposto para solucionar

esses problemas no âmbito do DDD é a Arquitetura Hexagonal. No entanto, o

desenvolvedor iniciante carece de uma orientação para utilizar essa arquitetura, de

modo aderente ao DDD, em projetos de software que tenham tais características de

complexidade. Para contribuir no preenchimento dessa lacuna, o presente trabalho

propõe um roteiro para a utilização da Arquitetura Hexagonal como base para a

integração entre domínios e com flexibilidade para o suporte de dispositivos que se

comunicam com um domínio-alvo.

Palavras-chave: Arquitetura Hexagonal. Integração de domínios. Projeto Dirigido pelo

Domínio (DDD).

ABSTRACT

Controlling the complexity of software development is not a trivial task. One of the key

factors to minimize this complexity is the development of an appropriate model of the

application domain, which must be isolated from various mechanisms required for the

implementation of the software that are unrelated to the domain (persistence,

transaction control, etc.). This is the essence of Domain Driven Design (DDD). Such

isolation implies on the selection of an appropriate architecture capable of addressing

the interaction of an application domain not only with other areas, but also with

heterogeneous interactions, such as different communication protocols and supports.

Furthermore, these elements typically evolve over time, increasing the complexity of

software to be treated by the architecture. A flexible architectural style proposed to

solve these problems within the DDD is the Hexagonal Architecture. However, an

inexperienced developer lacks orientation on how to use this architecture, adhering to

the DDD model, in software designs that have such complexity characteristics. This

work aims to contribute on filling this gap by proposing a roadmap for using the

Hexagonal Architecture as the basis for integration across domains with flexibility to

support devices that communicate with a target domain.

Keywords: Hexagonal Architecture. Integration domains. Project Managed by domain

(DDD).

LISTA DE ILUSTRAÇÔES

Figura 1 - Modelo geral de Arquitetura em Camadas .. 15

Figura 2 - Arquitetura SOA .. 16

Figura 3 - Arquitetura Hexagonal .. 17

Figura 4 - Método Fábrica ... 20

Figura 5 - Fábrica Abstrata .. 20

Figura 6 - Padrão Adaptador ... 21

Figura 7 - Padrão Fachada.. 22

Figura 8 - Padrão Estado .. 22

Figura 9 - Padrão Estratégia ... 23

Figura 10 - Mapa Contextual ... 27

Figura 11 - Núcleo Compartilhado ... 28

Figura 12 - Camada Anticorrupção ... 30

Figura 13 - Agregado .. 32

Figura 14 - Mapa Contextual de exemplo ... 37

Figura 15 - Mapa Contextual de exemplo com Padrão Estratégico de Integração.... 38

Figura 16 - Estereótipo da Porta conceitual .. 39

Figura 17 – Notação da Porta conceitual .. 39

Figura 18 - Agregado Amostragem ... 43

Figura 19 - Agregado Questionário ... 44

Figura 20 - Mapa contextual do domínio ... 46

Figura 21 - Mapa contextual de integração ... 47

Figura 22 - HA/PA para o caso .. 48

Figura 23 - Integração entre Módulos ... 49

Figura 24 - Integração entre Módulos com portas conceituais 50

Figura 25 - onda.core .. 51

Figura 26 - onda.core.variaveldemografica ... 54

Figura 27 - onda.core.questionariorespondido .. 55

Figura 28 - onda.amostra .. 56

Figura 29 - gerenciador.questionario.core ... 58

Figura 30 - onda.aplicacao.backoffice ... 58

Figura 31 - onda.aplicacao.web .. 59

Figura 32 - onda.aplicacao.mobile .. 60

Figura 33 - onda.aplicacao.impresso .. 61

Figura 34 - onda.persistencia .. 62

LISTA DE TABELAS

Tabela 1 - Padrões de Projeto ... 19

LISTA DE SIGLAS E ABREVIATURAS

ACL Anticorruption Layer

API Application Programmed Interface

DDD Domain Driven Design

HA/PA Hexagonal Architecture / Ports and Adapters

SOA Service Oriented Architecture

SUMÁRIO

1. INTRODUÇÃO ... 11

1.1. Motivação ... 11

1.2. Objetivo .. 12

1.3. Método de Trabalho ... 13

1.4. Estrutura do Trabalho ... 13

2. PADRÕES DE PROJETO DE SOFTWARE ... 14

2.1. Padrões de Projeto Arquitetônico ... 14

2.1.1. Arquitetura em Camadas ... 14

2.1.2. Arquitetura Orientada a Serviço... 15

2.1.3. Arquitetura Hexagonal ... 16

2.2. Padrões do Projeto Detalhado ... 18

2.2.1. Principais Padrões Adotados neste Trabalho .. 19

2.2.2. Princípios de Projeto Fundamentais .. 23

3. PROJETO DIRIGIDO PELO DOMÍNIO .. 25

3.1. Projeto Dirigido pelo Domínio (DDD).. 25

3.2. Linguagem Onipresente ... 26

3.3. Projeto Estratégico ... 26

3.3.1. Contexto Delimitado .. 26

3.3.2. Mapa Contextual .. 26

3.3.3. Relações entre Contextos Delimitados .. 27

3.4. Projeto Tático ... 30

3.4.1. Entidade .. 30

3.4.2. Objeto Valor ... 31

3.4.3. Serviços ... 31

3.4.4. Módulo ... 32

3.4.5. Agregado ... 32

3.4.6. Fábrica ... 33

3.4.7. Repositório .. 33

4. ROTEIRO PARA UTILIZAÇÃO DA ARQUITETURA HEXAGONAL 34

4.1. Resumo da pesquisa bibliográfica ... 34

4.2. Roteiro proposto para a utilização da Arquitetura Hexagonal 34

4.2.1. Definição do domínio ... 34

4.2.2. Projeto de alto nível ... 35

4.2.3. Projeto Detalhado .. 36

4.3. Definição dos passos ... 36

4.3.1. Passo 1: Definição dos Contextos Delimitados e da Linguagem

Onipresente .. 37

4.3.2. Passo 2: Projeto Estratégico – Integração ... 38

4.3.3. Passo 3: Projeto Estratégico – Arquitetura Hexagonal – Definição das

Portas 39

4.3.4. Passo 4: Projeto Tático – Integração ... 39

4.3.5. Passo 5: Projeto Tático – Detalhamento dos Módulos 40

5. UM EXEMPLO DE APLICAÇÃO DA ARQUITETURA HEXAGONAL 41

5.1. Descrição do domínio do problema .. 41

5.2. Passo 1: Definição dos Contextos Delimitados e Linguagem Onipresente .. 42

5.2.1. Descrição dos Contextos Delimitados ... 42

5.2.2. Mapa Contextual do Domínio .. 46

5.3. Passo 2: Projeto Estratégico – Integração ... 47

5.3.1. Onda-Amostragem .. 47

5.3.2. Onda-Questionário .. 47

5.3.3. Mapa Contextual com os Padrões Estratégicos de Integração 47

5.4. Passo 3: Projeto Estratégico – Arquitetura Hexagonal – Definição das Portas

 48

5.5. Passo 4: Projeto Tático – Integração ... 49

5.5.1. Modelo de Integração entre Módulos .. 49

5.5.2. Modelo da Integração entre módulos com as Portas conceituais da HA/PA

 49

5.6. Passo 5: Projeto Tático – Detalhamento dos Módulos 50

5.6.1. Utilização de padrões .. 50

5.6.2. Detalhamento dos Módulos ... 51

6. CONCLUSÃO .. 63

6.1. Considerações gerais ... 63

6.2. Trabalhos futuros ... 64

REFERÊNCIAS ... 65

11

1. INTRODUÇÃO

1.1. Motivação

Controlar a complexidade do desenvolvimento de softwares não é trivial (EVANS,

2010, p. xxi). Portanto, é fundamental dedicar-se para alcançar um bom modelo que

permita o máximo de aproveitamento do software, de maneira a conter essa

complexidade. Entretanto, a modelagem de domínios é também uma tarefa complexa,

por isso é importante considerar continuamente o modelo conceitual juntamente com

as tarefas de implementação. Portanto, os modelos de domínio não devem ser

primeiro projetados para então serem implementados: bons modelos devem ser

adaptados e evoluídos em conjunto ao longo do projeto, tornando-se enriquecidos

após várias iterações de projeto (design). Isso constitui a pedra fundamental do

Projeto Dirigido pelo Domínio (Domain Driven Design - DDD) (EVANS, 2010).

Devido à complexidade do domínio, um software torna-se mais difícil de ser

compreendido em todos os seus estados e mais difícil de ser extensível sem efeitos

colaterais (DA-WEI, 2007). Além do mais, um software torna-se mais complexo por

suas próprias implicações técnicas, dentre as quais as dependências dos mecanismos

de persistência, de controle de transações, de segurança, dentre outros

(GHAZARIAN, 2015). Para organizar estas implicações em configurações de

componentes, uma arquitetura de software visa domar essa complexidade. No

entanto, é necessário selecionar a arquitetura adequada, tendo-se o entendimento

dos vários estilos arquitetônicos, para que se tenha sucesso no tratamento da

complexidade do software (GARLAN e SHAW, 1994, p. 2).

O problema da complexidade de software aumenta quando se defronta com a

integração de subsistemas que devem implementar requisitos de software de

domínios distintos. Em (JAIN, et al., 2008) foi realizado um estudo para avaliar os

impactos da complexidade no processo de integração de sistemas, em que foi

apontado que as arquiteturas de integração de sistemas, se não bem planejadas,

podem levar um sistema à falha, especialmente se o escopo da integração não foi

bem definido. Requisitos de projeto da arquitetura e do plano de integração são

algumas das entradas do processo de integração de sistemas. Uma conclusão é que

o domínio da aplicação tem impacto direto no projeto de uma arquitetura de sistema

12

e, consequentemente, na integração das arquiteturas dos subsistemas que o

compõem.

Outro problema importante que surge na escolha da arquitetura apropriada para um

determinado domínio da aplicação é a flexibilidade para tratar vários subsistemas

clientes possuindo interações heterogêneas (por exemplo, protocolos e suportes de

comunicação distintos), que podem se alterar ao longo do tempo, ou mesmo a

inclusão ou exclusão destes clientes. A questão é como produzir uma simetria nesse

tratamento, de tal modo que as interações sejam vistas de modo similar e que a

aplicação não seja afetada por essa diversidade. Um estilo arquitetônico proposto

para solucionar esse problema no âmbito do DDD, assim como para facilitar a

integração de domínios distintos, é a Arquitetura Hexagonal (COCKBURN, 2005),

dando foco no domínio-alvo para atender à heterogeneidade dos subsistemas clientes

e liberar o projeto do domínio-alvo das questões de integração. A integração é tratada

num segundo momento do projeto, permitindo uma flexibilidade na evolução do

sistema.

No entanto, a pesquisa bibliográfica feita parece indicar que, aparentemente, o

desenvolvedor iniciante carece de uma orientação relativamente detalhada para

utilizar essa arquitetura, de modo aderente ao DDD, em projetos de software que

tenham tais características de complexidade.

1.2. Objetivo

O objetivo deste trabalho é propor um roteiro para a utilização da Arquitetura

Hexagonal como base para a integração entre domínios e com flexibilidade para que

dispositivos possam se comunicar com um domínio-alvo. O roteiro baseia-se em

técnicas do Projeto Dirigido pelo Domínio (Domain Driven Design – DDD) e pretende

ser utilizado por desenvolvedores iniciantes no DDD. A Arquitetura Hexagonal foi

escolhida porque mantém o enfoque no domínio-alvo, aplicando o DDD e liberando

seu projeto da complexidade adicional imposta pela integração e a diversidade dos

dispositivos.

O roteiro é exercitado em um fragmento significativo de uma aplicação de software

real de grande porte.

13

1.3. Método de Trabalho

O método de trabalho utilizado nesta monografia seguiu os seguintes passos:

• Definição de um caso de negócio a ser projetado;

• Definição do DDD como técnica de modelo de domínio;

• Estudo do DDD (pesquisa bibliográfica);

• Estudo da Arquitetura Hexagonal como padrão arquitetônico;

• Definição de um roteiro para o emprego da Arquitetura Hexagonal no DDD.

• Projeto (design) do Modelo Estratégico e Tático para a Arquitetura Hexagonal.

1.4. Estrutura do Trabalho

CAPÍTULO 2 – PADRÕES DE PROJETO DE SOFTWARE

Descreve alguns padrões de projeto, tanto arquitetônico quanto detalhado, que serão

abordados como possíveis soluções de projeto de sistemas. A ênfase é dada aos

padrões utilizados no presente trabalho.

CAPÍTULO 3 – PROJETO DIRIGIDO PELO DOMÍNIO

Provê os principais pontos do projeto estratégico e do projeto tático como abordagem

para a modelagem de um sistema baseado no domínio de negócio.

CAPÍTULO 4 – ROTEIRO PARA UTILIZAÇÃO DA ARQUITETURA HEXAGONAL

Descrição de um roteiro para a utilização da Arquitetura Hexagonal em conjunto com

o Projeto Dirigido pelo Domínio.

CAPÍTULO 5 – UM EXEMPLO DE APLICAÇÃO DA ARQUITETURA HEXAGONAL

Apresenta um caso real de uma empresa como exemplo para elaborar um projeto de

sistema baseado no roteiro proposto no capítulo 4.

CAPÍTULO 6 – CONCLUSÃO

Conclusão do trabalho e trabalhos futuros.

14

2. PADRÕES DE PROJETO DE SOFTWARE

Descrevem-se neste capítulo alguns Padrões de Projeto Arquitetônico e alguns

Padrões de Projeto Detalhado de interesse para este trabalho.

Neste capítulo, entende-se por Padrões de Projeto soluções técnicas para problemas

específicos de uma implementação de software. São utilizados em sistemas de

software com a finalidade de dar flexibilidade, reutilização e permitir extensões de

componentes, além de facilitar a novos integrantes de uma equipe de

desenvolvimento a familiarização com as técnicas implementadas.

2.1. Padrões de Projeto Arquitetônico

Os padrões arquitetônicos de software (BUSCHMANN, et al., 1996, p. 26) são

modelos nos quais desenvolvedores se apoiam na construção de um software,

dividindo-o em partes e componentes para a definição de responsabilidades. Não há

um modelo de arquitetura correto para todos os softwares. Para um determinado caso,

um padrão de arquitetura de software pode ser mais adequada que outra para fornecer

a melhor solução de um problema e a melhoria no desenvolvimento de um software.

2.1.1. Arquitetura em Camadas

A Arquitetura em Camadas (BUSCHMANN, et al., 1996, p. 31) é mais conhecida pela

divisão em 3 camadas, dividida normalmente em Apresentação, Negócio e Acesso a

Dados (FOWLER, et al., 2002, p. 19) (TIE, JIN e WANG, 2011), como representado

na Figura 1.

A dependência entre camadas é de cima para baixo (EVANS, 2010, p. 65). A

vantagem desse modelo é a de preparar a aplicação para potenciais alterações em

determinada camada para que mudanças específicas não sejam necessárias em

outras camadas. Por exemplo, no caso de um servidor estar sobrecarregado com o

gerenciamento de dados e lógica de negócio, a divisão de carga poderia ser dividida

entre dois servidores, sendo um apenas para dados e outro para lógica de negócio,

além da apresentação. Este modelo também auxilia na separação da aplicação por

especialistas, como um desenvolvedor web, programador e um especialista em banco

de dados.

15

Figura 1 - Modelo geral de Arquitetura em Camadas

Fonte (TIE, JIN e WANG, 2011)

Algumas variações do modelo de camadas são as responsabilidades que cada

camada possui, ou a adição de camadas de apresentação superiores utilizando a

camada de negócio/dados. Neste modelo, a forte dependência das camadas

superiores dificulta os testes na camada de negócio, além da adição de camadas de

dados conforme necessário. Ao adicionar uma camada abaixo, será necessário levar

essa dependência para as camadas acima.

2.1.2. Arquitetura Orientada a Serviço

A Arquitetura Orientada a Serviço ou Service Oriented Architecture (SOA) (OASIS

SOA REFERENCE MODEL TC, 2006) tem por objetivo fornecer serviços através de

tecnologias que permitam a comunicação entre partes de uma ou várias aplicações.

As tecnologias XML, SOAP, WSDL, UDDI e HTTP permitem que diferentes

plataformas sejam integradas, abstraindo da aplicação-cliente a implementação por

trás do serviço (WANG e LIAO, 2009).

O projeto do serviço pode utilizar outras tecnologias para permitir escalabilidade ou

um fluxo de processamento específico, localizado na mesma rede de uma empresa

ou na internet. A proposta da SOA é ser flexível e reutilizável, embora necessite de

um controle efetivo para que as aplicações dependentes não sofram com alterações

não previstas. Apesar das vantagens da integração, não é de simples

desenvolvimento.

Na Figura 2, é apresentada a relação entre os principais agentes da SOA, sendo eles:

16

O Consumidor de Serviço, fazendo o papel de cliente, que para utilizar serviços,

primeiramente, precisa encontrar os serviços disponíveis através de um Intermediador

de Serviço. O Intermediador de Serviço conhece os Serviços, pois um Provedor o

publicou para entrar no catálogo. Para que o Cliente de Serviço possa utilizar um

serviço, ele deve respeitar o contrato e então efetivamente interagir com o Serviço.

Figura 2 - Arquitetura SOA

Fonte (HAAS, 2003)

Os serviços disponibilizados também devem ser desenvolvidos adequadamente para

os propósitos que foram concebidos, para que representem o serviço de negócio que

a empresa espera que seja resolvido.

2.1.3. Arquitetura Hexagonal

A Arquitetura Hexagonal (COCKBURN, 2005) tem por proposta separar o domínio da

aplicação da infraestrutura técnica da aplicação (PRYCE, 2009). A metáfora do

hexágono enfatiza as múltiplas possibilidades em que os clientes do software

interagem com ele, além de delimitar duas áreas principais: a externa e a interna, a

qual contém efetivamente o projeto dos serviços oferecidos pelo software. Cada lado

representa um tipo de porta de comunicação do domínio com o mundo externo e vice-

versa, ou seja, cada lado do hexágono tem um objetivo de acesso de uma parte do

domínio específico. Apesar de ser representada por um hexágono, esta representação

não é limitada a seis lados apenas, mas a quantos lados forem necessários para a

comunicação do lado interno com o lado externo. Dada uma finalidade de um lado do

17

hexágono, ela não está restrita a um tipo de comunicação, pois vários dispositivos

podem ser integrados àquela porta através de adaptadores.

Na Figura 3, é representada a Arquitetura Hexagonal com exemplos das finalidades

dos lados do hexágono, metaforicamente, e com tipos de dispositivos com o qual se

comunicam. Cada lado do hexágono é uma Camada de Aplicação, que neste exemplo

possui 4 pontos de comunicação com o domínio: Administração do sistema,

Recebimento de dados, Envio de notificações e Base de Dados.

Figura 3 - Arquitetura Hexagonal

Fonte (COCKBURN, 2005) / Adaptado (o autor)

Esta arquitetura é também conhecida como Portas e Adaptadores. Neste trabalho,

será utilizada a abreviatura HA/PA do inglês Hexagonal Architecture / Ports and

Adapters.

Diferentemente da Arquitetura em Camadas tradicional (seção 2.1.1), em que a

camada superior acessa a camada inferior, a HA/PA centraliza o negócio e abstrai as

demais camadas, tornando-se disponível para ser utilizado com o mínimo de

dependências. Isso facilita os testes automatizados e promove a flexibilidade, pois

novas camadas podem ser plugadas através de portas e adaptadores.

A flexibilidade da HA/PA é fornecida por suas portas, vistas como APIs (Application

Programmed Interface), que são desenvolvidas em volta do centro. Não apenas a

18

flexibilidade, mas também os testes automatizados são essenciais para garantir que

o domínio esteja íntegro e que a nova API esteja funcionando. Técnicas de testes

amplamente abordadas são apoiadas pela a HA/PA (FREEMAN e PRYCE, 2009).

Com o foco no domínio, a eliminação de regras de negócio na camada de

apresentação ou base de dados é encorajada para mostrar que o domínio trata de

todas as regras esperadas.

2.1.3.1. Porta

Uma Porta da HA/PA não tem uma definição formal, sendo compreendida como um

acesso à parte domínio, ou ao centro do hexágono. Em sua proposta (COCKBURN,

2005) propõe que de alguma face do hexágono há a comunicação com a parte externa

e que cada face tem o objetivo de limitar a comunicação necessária com o domínio

(COCKBURN, 2006).

Para garantir o funcionamento da Porta, testes são necessários para validar o modelo

de domínio acessado por aquela porta (FREEMAN e PRYCE, 2009, p. 10).

As Portas da HA/PA podem ser caracterizadas como Camadas de Aplicação, onde

interage entre o domínio e com dispositivos e meios de comunicação.

2.1.3.2. Adaptador

Um adaptador para a HA/PA é qualquer artifício da arquitetura que permita modificar

algo que tente se comunicar com o centro do hexágono e precisa ser modificado para

seu correto funcionamento, permitindo uma tradução para o domínio. Do ponto de

vista do design, o Adaptador da HA/PA pode assumir o papel de um Adaptador (seção

2.2.1.3) do (GAMMA, et al., 2007).

A comunicação com uma base de dados MySQL, por exemplo, seria através de uma

API para fazer as requisições. A maneira como a aplicação utiliza a API do MySQL

deve ser transparente para o domínio, podendo utilizar para tanto um Adaptador. O

padrão Adaptador, dos Padrões de Projetos (GAMMA, et al., 2007), é bastante

apropriado para ser utilizado pela HA/PA.

2.2. Padrões do Projeto Detalhado

“Os padrões de projeto ajudam a escolher alternativas de projeto que tornam um

sistema reutilizável e a evitar alternativas que comprometam a reutilização. Os

19

padrões de projeto podem melhorar a documentação e a manutenção de sistemas ao

fornecer uma especificação explícita de interações de classes e objetos e o seu

objetivo subjacente. Em suma, ajudam um projetista a obter mais rapidamente um

projeto adequado.” (GAMMA, et al., 2007, p. 18).

2.2.1. Principais Padrões Adotados neste Trabalho

Tipos de padrões

Os Padrões de Projeto são divididos por finalidade (são três) e escopo (GAMMA, et

al., 2007), conforme a Tabela 1.

Tabela 1 - Padrões de Projeto

 Finalidade

Criação Estrutural Comportamental

Escopo Classe Método Fábrica Adaptador (classe) Interprete

Método Modelo

 Objeto Fábrica Abstrata

Construtor

Protótipo

Instância Única

Adaptador (objeto)

Ponte (Bridge)

Compósito (Composite)

Decorador

Fachada

Peso-mosca (Flyweight)

Proxy

Cadeia de Responsabilidade

Comando

Iterador

Mediador

Memento

Observador

Estado

Estratégia

Visitante

Fonte (GAMMA, et al., 2007, p. 26)

Criação

Os padrões de criação abstraem o processo de instanciação. Eles usam a herança

para variar a classe que é instanciada. Desta maneira, o sistema pode funcionar de

maneira independente de quantos filhos (quantas generalizações) uma classe pai

pode ter.

20

Estruturais

Os padrões estruturais resolvem problemas de composição de classes e objetos

dando flexibilidade à expansão do sistema.

Comportamentais

Os padrões comportamentais resolvem problemas de tempo de execução e mostram

como montar estruturas para que o fluxo de comunicação seja simplificado.

2.2.1.1. Método Fábrica

O Método Fábrica instancia uma subclasse de outra classe abstrata na subclasse que

precisa de uma instância. A classe concreta de uma classe abstrata é quem define

qual subclasse é utilizada quando for necessária, como ilustrado na Figura 4.

Figura 4 - Método Fábrica

Fonte (GAMMA, et al., 2007, p. 113)

2.2.1.2. Fábrica Abstrata

Figura 5 - Fábrica Abstrata

Fonte (GAMMA, et al., 2007, p. 97)

O padrão Fábrica Abstrata, apresentado na Figura 5, permite um cliente utilizar uma

classe criadora de objetos sem especificar qual implementação é utilizada pela sua

21

interface. Classes de fábricas concretas definem as classes concretas de outras

generalizações que serão instanciadas.

2.2.1.3. Adaptador

O padrão de projeto Adaptador é responsável por converter uma interface em outra

interface que se pretende utilizar. Quando o cliente utiliza uma interface, mas a

implementação estaria implementada em outra interface, uma implementação

intermediária, o adaptador, faria a tradução para a chamada da outra interface. Para

aplicar este padrão, a classe adaptador deve implementar a interface alvo e utilizar,

por associação, a interface adaptada, como representado na Figura 6.

Figura 6 - Padrão Adaptador

Fonte (GAMMA, et al., 2007, p. 142)

2.2.1.4. Fachada

O padrão Fachada abstrai as dependências de diversas interfaces para um cliente de

modo a reduzir as dependências. Por exemplo, ao executar um caso de uso, que

possui uma ordem de execução, a Fachada teria as referências das interfaces

dependentes e executaria as chamadas para as outras interfaces, deixando o cliente

livre do conhecimento de diversas interfaces uma vez que o cliente tem apenas a

Fachada como referência ao subsistema. A Figura 7 ilustra este padrão.

22

Figura 7 - Padrão Fachada

Fonte (GAMMA, et al., 2007, p. 181)

2.2.1.5. Estado

O padrão Estado resolve por delegação o comportamento de uma classe de acordo

com seu estado interno. O contexto de uma classe possui uma associação à classe

abstrata Estado. Suas subclasses respondem pelo comportamento, como

representado na Figura 8.

Figura 8 - Padrão Estado

Fonte (GAMMA, et al., 2007, p. 285)

2.2.1.6. Estratégia

O padrão Estratégia, representado na Figura 9, encapsula em cada subclasse de uma

interface os algoritmos que podem mudar dependendo da instância. O contexto de

uma classe tem associação com uma interface, a qual tem subclasses concretas com

diferentes algoritmos.

23

Figura 9 - Padrão Estratégia

Fonte (GAMMA, et al., 2007, p. 294)

2.2.2. Princípios de Projeto Fundamentais

Os Princípios de Projeto (MARTIN, 2002, p. 86) esclarecem os motivos dos Padrões

de Projeto, uma vez que sozinhos solucionam problemas específicos. Os Princípios

definem de forma mais ampla o que se procura resolver na orientação a objeto.

2.2.2.1. Princípio da Responsabilidade Única

Uma classe deve ter apenas uma responsabilidade para não sofrer com modificações

por mais de um motivo. Caso sejam necessárias modificações, o desenvolvedor não

deve se preocupar em alterar outros comportamentos senão o da classe em

modificação (MARTIN, 2002, p. 95).

2.2.2.2. Princípio Aberto – Fechado

Uma aplicação deve ser projetada para ser aberto para extensão, quando novos

requisitos são desenvolvidos, mas fechado para modificações, para não comprometer

um comportamento já em funcionamento. Para atingi-lo, a chave do projeto está na

abstração e polimorfismo de classes, para que novos comportamentos sejam

desenvolvidos em subclasses e a abstração não sofra alterações (MARTIN, 2002, p.

99).

2.2.2.3. Princípio da substituição de Liskov

Uma classe que possui referência para uma classe-base não deve conhecer as

subclasses. Este princípio permite forçar o princípio aberto-fechado, pois uma classe

que referencie qualquer subclasse não permitirá estender o sistema (MARTIN, 2002,

p. 111).

2.2.2.4. Princípio da segregação de interface

Uma interface deve atender a apenas um comportamento específico. Quando um

cliente utilizar a interface, ele utiliza as operações da interface por completo para o

24

escopo que ela foi projetada. Caso um cliente utilize uma interface parcialmente, o

cliente poderá sofrer impactos com alterações que não fariam sentido em operações

que não são utilizados (MARTIN, 2002, p. 135).

2.2.2.5. Princípio da inversão de dependência

Para reduzir dependências, a separação de Módulos e, portanto, suas classes devem

respeitar hierarquias, para que o módulo superior não dependa de Módulo inferior.

Módulos inferiores devem depender das abstrações dos Módulos superiores

(MARTIN, 2002, p. 127).

25

3. PROJETO DIRIGIDO PELO DOMÍNIO

Neste capítulo descreve-se algumas características do Projeto Dirigido pelo Domínio

(DDD), tais como: Linguagem Onipresente, Contexto Delimitado, Projeto Estratégico

e Projeto Tático.

3.1. Projeto Dirigido pelo Domínio (DDD)

O Projeto Dirigido pelo Domínio, DDD (Domain Driven Design) (EVANS, 2010), propõe

padrões para implementar software utilizando modelos de domínio, cujo objetivo é

trazer o software, no código, o mais próximo possível da linguagem do negócio. O

benefício de juntar especialistas no domínio e desenvolvedores é o de que eles

tenham a mesma interpretação do que é proposto em um projeto de software,

facilitando o desenvolvimento através de técnicas focalizadas no domínio.

O DDD surgiu do reconhecimento de que a modelagem e o design são fundamentais

no desenvolvimento de software. Ele provê diretivas que orientam a escolha de um

modelo de software que deve atender os requisitos de um domínio.

O modelo e o núcleo do design dão forma um ao outro. A conexão entre o modelo e

a implementação é que torna o modelo relevante, garantindo sua aplicação ao produto

final. Essa ligação é também muito útil para as atividades de manutenção e

desenvolvimento contínuo do código, que pode ser interpretado com base na

compreensão do modelo.

O modelo é a principal base da linguagem utilizada por todos os membros da equipe.

Uma vez que modelo e implementação estejam conectados, os desenvolvedores

podem conversar sobre o programa nessa linguagem particular. Eles podem

comunicar-se como especialistas no domínio sem ter, idealmente, a necessidade de

tradução. Como a linguagem de comunicação é baseada nesse modelo, a ideia

motivadora do DDD é que a capacidade linguística natural dos membros da equipe

(negócio e software) pode ser usada para refinar o próprio modelo.

O modelo é um conhecimento refinado, constituindo a forma aceita pela equipe para

estruturar o conhecimento do domínio e distinguir os elementos de maior interesse. A

linguagem de comunicação compartilhada permite que os desenvolvedores e os

especialistas do domínio trabalhem efetivamente em conjunto à medida em que

colocam informações nessa forma.

26

O DDD refina os caminhos da Modelagem Dirigida por Modelo. Fowler indica que o

Modelo de Domínio é separado por uma camada isolada, onde as regras de negócio

são transformadas em objetos e serviços (FOWLER, et al., 2002, p. 116). No DDD

são apresentados os Padrões de Domínio que devem ser utilizados no design

(SOARES, et al., 2015).

3.2. Linguagem Onipresente

Base fundamental do DDD, a Linguagem Onipresente utiliza os jargões dos

especialistas do domínio no software e seus modelos. Quando desenvolvedores

conversam e querem tirar dúvidas sobre o domínio com os especialistas, não

precisariam traduzir as nomenclaturas de classes e métodos que apenas eles

compreenderiam, mas sim desenvolver um modelo do software com as nomenclaturas

do domínio, para que haja fluidez no entendimento entre todos os envolvidos (EVANS,

2010, p. 22).

3.3. Projeto Estratégico

O Projeto Estratégico auxilia no trabalho de como o modelo do domínio será projetado.

No Projeto Estratégico, identifica-se como criar os Contextos Delimitados e

modularizar o domínio, para então se chegar a integração. Apesar de gerar

integrações entre Módulos, deixa-se claro a responsabilidade de cada parte e como

serão integradas, assim como no domínio da vida real (EVANS, 2010, p. 317) .

3.3.1. Contexto Delimitado

O Contexto Delimitado define claramente até onde o modelo do domínio tem seu

escopo. Um projeto pode ter um modelo muito grande e com jargões semelhantes

para cenários diferentes. Para que o modelo não sofra com uma grande carga de

informação e torne-se demasiadamente complexo, a definição do Contexto Delimitado

de um modelo é essencial para compreender o que está sendo abordado (EVANS,

2010, p. 321).

3.3.2. Mapa Contextual

O Mapa Contextual auxilia as equipes responsáveis em seus subsistemas, assim

como no projeto de um novo subsistema, na compreensão do limite de seu escopo.

Auxilia de forma visual a compreender a separação e a associação entre Contextos

Delimitados (EVANS, 2010, p. 329), como ilustrado na Figura 10.

27

Figura 10 - Mapa Contextual

Fonte (EVANS, 2010, p. 329)

3.3.3. Relações entre Contextos Delimitados

As relações entre os Contextos Delimitados podem ser definidas como padrões de

integração de subsistemas e equipes, de maneira a esclarecer como é tratada a

abordagem de integração no nível estratégico (EVANS, 2010, p. 337).

Nas descrições que seguem, os termos “mais acima” e “mais abaixo”, relativos a

contextos delimitados, significam que o contexto mais abaixo depende do mais acima.

Em outras palavras, uma modificação no contexto mais acima desconsidera o

contexto mais abaixo, podendo gerar efeito colateral neste último.

As relações constituem um mapa de traduções entre os elementos dos domínios.

3.3.3.1. Contexto Delimitado Único

O Contexto Delimitado Único é aplicado quando a Linguagem Onipresente é única em

todos os envolvidos e a solução é uma só. É um padrão que requer cuidados, pois

poderá ocorrer alguma tradução no seu contexto e isto pode mostrar a necessidade

da separação de um contexto distinto. O entendimento do sistema é um só e não de

integração com qualquer outro contexto para satisfazer seu propósito (EVANS, 2010,

p. 326).

28

3.3.3.2. Núcleo Compartilhado

O Núcleo Compartilhado (EVANS, 2010, p. 338) é utilizado quando dois ou mais

Contextos Delimitados têm parte da Linguagem Onipresente igual dentre os

envolvidos, cujas diferenças não justificariam um novo Contexto Delimitado completo.

O núcleo é mantido e os dois contextos o utilizam. Um contexto pode ser dependente

do outro ou ambos dependem de um, caracterizando-o como o domínio principal.

A Figura 11 ilustra como dois contextos compartilham o mesmo núcleo.

Figura 11 - Núcleo Compartilhado

Fonte (EVANS, 2010, p. 338)

Um exemplo é uma camada de infraestrutura compartilhada entre Contextos

Delimitados.

3.3.3.3. Cliente / Fornecedor

O padrão Cliente/Fornecedor (EVANS, 2010, p. 340) é definido por “contexto acima”

e “contexto abaixo”. Alterações no contexto mais acima devem ser informadas ao

contexto mais abaixo, e um requisito do contexto abaixo deve ser solicitado ao

contexto acima. Possuem linguagens diferentes, mas com forte dependência entre

eles. Pode ocorrer quando o público alvo destes dois contextos é diferente, mas

dependentes. A relação entre as equipes de desenvolvimento pode ser levada em

consideração, se a gestão das equipes for distinta.

29

Por exemplo, suponha-se que já exista um sistema de transporte de cargas e a

empresa deseja construir um sistema de análises que permitam o melhor

aproveitamento do espaço de navios com as cargas. O sistema de reserva de cargas

já está desenvolvido e um novo sistema de análise precisa utilizar o domínio existente,

construído com tecnologias distintas. O novo sistema de análise seria um cliente que

utiliza o sistema de reservas em sua linguagem como fornecedor.

3.3.3.4. Serviço de Host Aberto

Ao expor seu Contexto Delimitado a diversas integrações, um esclarecimento da

utilização pode ser necessário e a disponibilização de serviços específicos são

fornecidas para possíveis integrações (EVANS, 2010, p. 357). O contexto em

desenvolvimento é quem proverá serviços a outros contextos para integração.

3.3.3.5. Linguagem Publicada

A Linguagem Publicada (EVANS, 2010, p. 358) é a disponibilização de um Contexto

Delimitado de forma bem documentada para que a integração não necessite ter

traduções, mas que saiba exatamente como utilizar a outra parte.

3.3.3.6. Camada Anticorrupção (Anticorruption Layer – ACL)

A camada anticorrupção pode ser utilizada quando não há o controle do Contexto

Delimitado que está sendo trabalhado e outro contexto a ser integrado. Quando o

Contexto Delimitado que está sendo trabalho prevê integração com outro contexto que

não se tem controle, ou é um legado de difícil manutenção e a integração é necessária,

pode ser criada uma camada de tradução que proteja o contexto utilizando a

Linguagem Onipresente, chamada de ACL (Anticorruption Layer) (EVANS, 2010, p.

348). A ACL é utilizada para que a interpretação da integração seja clara para o

Contexto Delimitado em construção/integração, de modo independente de como o

outro foi desenvolvido. A Linguagem Onipresente na ACL ainda é a do Contexto

Delimitado trabalhado, mas com adaptações / implementações para integrar com o

outro contexto. A Figura 12 ilustra as linhas gerais deste padrão.

30

Figura 12 - Camada Anticorrupção

Fonte (EVANS, 2010, p. 351)

Por exemplo, para desenvolver um novo aplicativo de reservas que se comunica com

um sistema legado, deve-se construir uma camada de tradução entre o novo aplicativo

e o sistema legado para não contaminar o novo domínio em desenvolvimento

(EVANS, 2010, p. 353).

3.3.3.7. Conformista

Quando um contexto “mais abaixo” não pode contar com alterações do contexto “mais

acima” e há forte dependência do “mais abaixo” com o “mais acima” bem projetado, a

abordagem do Conformista (EVANS, 2010, p. 345) seria a mais indicada. O contexto

“mais abaixo” realiza uma forte integração, inclusive na Linguagem Onipresente, com

o contexto “mais acima”. Deve ser usado com muita cautela, pois alterações no

contexto “mais acima” não seriam mais previstas e corromperiam por completo o

contexto “mais abaixo”.

3.4. Projeto Tático

O Projeto Tático no DDD implementa o modelo estratégico para a visão do projeto já

mais próximo da implementação. Fornece conceitos para o entendimento profundo do

domínio para permitir a implementação mais clara do modelo. Os conceitos no projeto

tático auxiliam o desenvolvedor a refinar seu grau de conhecimento para o

fortalecimento do domínio implementados no software.

3.4.1. Entidade

Entidade é um modelo que representa algo distinguível por uma identidade. Mesmo

que através do ciclo de vida ele se transforme, ele deve permanecer único e

rastreável. A identidade única deve corresponder à mesma distinção na vida real, em

31

que atributos podem ser iguais, mas de maneira que se possa identificar unicamente

um elemento.

Por exemplo, tome-se uma transação bancária. Uma transação bancária tem um

identificador único para diferenciar, por exemplo, dois depósitos ocorridos no mesmo

dia, na mesma conta da mesma origem. Para diferenciá-los, possuem um identificador

e neste domínio seria uma Entidade (EVANS, 2010, p. 84).

3.4.2. Objeto Valor

São objetos que não possuem uma identidade, ou seja, não precisam ser

identificáveis, mas trazem um significado ao domínio. Podem ser copiados dentro do

sistema, desde que se tenham as devidas precauções para que a alteração em uma

referência seja aplicada a outros objetos. Por exemplo, uma Entidade que tenha uma

referência para um Objeto Valor.

Como exemplo, seguindo com a transação bancária, enquanto a TransacaoBancaria

seria uma Entidade, uma propriedade do tipo Dinheiro seria um Objeto Valor, uma vez

que o dinheiro não precisa de um identificador, mas representa algo importante no

domínio como representação monetária (EVANS, 2010, p. 92).

3.4.3. Serviços

3.4.3.1. Serviço de Domínio

O Serviço de Domínio (EVANS, 2010, p. 100) é normalmente responsável por

executar uma tarefa, ou um conjunto de tarefas, que tem um significado no domínio

não pertinente a uma Entidade ou Objeto Valor. Separa uma ação que não teria

sentido no modelo de objetos para uma abstração separada, que representa uma

ação da Linguagem Onipresente. Não possui um estado e se relaciona com o domínio.

Por exemplo, um serviço que possa transferir fundos de uma conta para outra em um

contexto bancário.

3.4.3.2. Serviço de Aplicação

Os Serviços de Aplicação (EVANS, 2010, p. 101) e (FOWLER, et al., 2002, p. 133-

134), definem uma fronteira da aplicação com um conjunto de serviços que define

operações disponíveis e coordena a resposta da aplicação a cada operação. Ela

abstrai a implementação do contexto delimitado, isolando e protegendo a integridade

32

do modelo de domínio. Por exemplo, os serviços de aplicação realizam o

comportamento de casos de uso coordenando a execução da lógica de domínio do

ponto de vista transacional, segurança, etc.

3.4.4. Módulo

Um Módulo (EVANS, 2010, p. 104) é um agregador de classes que podem juntas fazer

algum sentido. Com a aplicação do DDD, um Módulo pode tornar-se parte da definição

do domínio, tornando-se referência na Linguagem Onipresente. A separação de um

contexto de um conjunto de classes pode fisicamente estar separada em Módulos,

permitindo melhor compreensão do que faz parte ou não do domínio e como o domínio

é ligado a outras partes.

3.4.5. Agregado

O Agregado (EVANS, 2010, p. 119) é um conjunto de objetos que juntos têm forte

significado ao domínio. Possui uma Entidade raiz e outras Entidades ou Objetos de

Valor associados que, sozinhos não teriam significado para o domínio. O Agregado

deve ter um limite de associações bem definido e não podem ser acessados a não ser

pela Entidade raiz. Auxilia a manter objetos inalterados além do seu objeto raiz, a fim

de defender o modelo de alterações simultâneas no sistema.

Figura 13 - Agregado

Fonte (EVANS, 2010, p. 121)

Por exemplo, a Figura 13 ilustra as relações entre as classes que compõem um Carro.

Como Carro é que contém as classes Roda, Pneu e Posição, então, neste contexto,

estas partes não fariam sentido sem o Carro. Portanto, Carro é a raiz do Agregado.

Outro exemplo é um Motor. Ele é constituído por várias partes, sendo, portanto, a raiz

33

de um Agregado. Assim definidos, esses dois agregados podem ter uma associação

um com o outro, sempre relacionados por suas raízes.

3.4.6. Fábrica

As Fábricas (EVANS, 2010, p. 129) servem para montar conjuntos de objetos

complexos, inclusive Agregados, a fim de remover a complexidade das associações

de objetos. Deixando a responsabilidade técnica a cargo da fábrica, o código cliente

não sofrerá com o aumento do alto acoplamento e baixa coesão.

Por exemplo, a construção de um Agregado Carro pode ser muito complexa para que

um cliente tenha tanta responsabilidade em criar este Agregado. Então, pode-se criar

uma FabricaCarro, responsável por montar o carro, motor, pneu e todas as

dependências que crie um Agregado consistente.

3.4.7. Repositório

O Repositório (EVANS, 2010, p. 140) encapsula a complexidade da utilização da

infraestrutura de dados para não enfraquecer o modelo do domínio. Se para a

reconstituição de um objeto são necessárias diversas consultas à base de dados,

frameworks de recuperação podem ser utilizados, assim como a utilização de

Fábricas, para remontar Agregados. A responsabilidade da entrega de um modelo

persistido em Agregado é do Repositório. Por exemplo, um

RepositorioPedidoComercial representa a coleção de PedidoComercial.

34

4. ROTEIRO PARA UTILIZAÇÃO DA ARQUITETURA HEXAGONAL

Propõe-se aqui um roteiro para a modelagem do domínio, aplicando os conceitos do

Projeto Estratégico e Projeto Tático de (EVANS, 2010) utilizando a Arquitetura

Hexagonal como base de padrão arquitetônico como solução de projeto.

Este trabalho não tem foco em processos de desenvolvimento de software, mas sim

nas atividades sequenciais para se chegar no projeto detalhado de um modelo de

software.

4.1. Resumo da pesquisa bibliográfica

Da pesquisa bibliográfica utilizada nos capítulos 2 e 3 pode-se dizer que, em resumo,

Evans considera que essencialmente é necessário avaliar o Mapa Contextual, a

Linguagem Onipresente, o Domínio Principal, o Projeto (Design) Dirigido por Modelos,

além de outros dois pontos que envolvem equipes (EVANS, 2010, p. 464). No entanto,

não há explicitamente a descrição para aplicar o DDD, particularmente, à arquitetura.

Mostra-se mais claramente como lidar com a questão arquitetônica através de dois

estilos focalizados em equipes: um que não possui um projeto/padrão de arquitetura

antes de iniciar o desenvolvimento; e outro com a equipe de arquitetura focalizada no

cliente; isto é, uma equipe centralizada que possa ajudar às demais equipes (EVANS,

2010, p. 465).

4.2. Roteiro proposto para a utilização da Arquitet ura Hexagonal

O roteiro apresentado a seguir propõe, em primeiro lugar a análise do contexto do

sistema a ser projetado antes do início do projeto detalhado. Tendo a visão do

contexto do sistema, é possível definir-se uma estratégia do relacionamento entre

sistemas para evitar, ou minimizar, problemas de integração arquitetônica (JAIN, et

al., 2008). Somente com a visão estratégica definida é que se deve avançar nos

Projeto Estratégico e Projeto Tático do DDD.

4.2.1. Definição do domínio

Para a definição do modelo de domínio, (EVANS, 2010) inicia seu livro apresentando

o Projeto Tático. Na Parte IV – Projeto (Design) Estratégico do livro, descreve-se o

Contexto Delimitado, o Mapa Contextual e o emprego da Linguagem Onipresente para

a relação entre contextos. Também, é nesta parte que descreve seu ponto de vista

sobre arquitetura de software.

35

Para a definição da Linguagem Onipresente, é necessário entender o contexto que

está sob análise. Através dos Contextos Delimitados e suas relações pelo Mapa

Contextual, é possível compreender sob qual escopo de negócio o sistema está em

projeto, e então definir a Linguagem Onipresente. Portanto, para a utilização do DDD

requer-se, inicialmente, desses elementos. Assim, tem-se o Passo 1: Definição dos

Contextos Delimitados e da Linguagem Onipresente.

4.2.2. Projeto de alto nível

Com o Mapa Contextual elaborado no primeiro passo, é possível avaliar os padrões

de integração entre Contextos Delimitados. A avaliação de integração somente é

possível após ter-se em mãos os Contextos Delimitados no Mapa Contextual,

utilizando a Linguagem Onipresente. Este é o nível do Projeto Estratégico de Evans.

Assim, tem-se o Passo 2: Projeto Estratégico – Integração.

Ainda no Projeto Estratégico, a escolha de uma arquitetura deve levar em

consideração como uma empresa trabalha: com ou sem uma equipe de arquitetura

focalizada. Para este trabalho, a abordagem selecionada pelas características do

domínio utiliza a Arquitetura Hexagonal (HA/PA) no DDD, adotando-se a abordagem

de definir-se uma arquitetura antes do desenvolvimento (equipe de arquitetura

focalizada). A HA/PA foi a arquitetura escolhida por enfocar a resolução de problemas

de domínio, de diversidade de dispositivos que interagem com o domínio-alvo e de

integração. Do ponto de vista do DDD, as integrações entre Contextos Delimitados

são solucionadas através dos Padrões Estratégicos. A flexibilidade dessa arquitetura

fornece uma solução para integrações no mesmo modelo de domínio entre vários

contextos e dispositivos que requerem padrões de integração distintos.

O modelo do domínio é centralizado no hexágono, que pode ser testado através de

testes automatizados, conectado a novos dispositivos que venham a utilizá-lo, assim

como integrá-lo a outros contextos.

Uma vez que o desenvolvedor compreende a abrangência da HA/PA, uma visão

arquitetônica diferenciada é dada antes mesmo de o projeto ser iniciado, levando-o a

focalizar primeiro na interpretação do domínio e depois nas possíveis integrações

entre sistemas. Outros pontos técnicos e de integração podem ser resolvidos através

das portas e adaptadores, uma vez que o domínio esteja íntegro, pois todos os lados

36

do hexágono utilizarão os mesmos critérios para tais integrações. Um benefício

imediato disso é o de potencialmente poderem contar com especialistas em tecnologia

de integração que não conheçam bem o domínio, mas que precisam atuar focalizados

em um lado do hexágono (uma integração específica ou outras similares).

Após a avaliação da integração entre contextos, pode-se então definir o Passo 3:

Projeto Estratégico – Arquitetura Hexagonal – Definição das Portas.

4.2.3. Projeto Detalhado

Como a visão arquitetônica definida, pode-se então partir para o Projeto Detalhado,

para refinar a visão do sistema mais próxima da implementação. Como se tem em

mãos as definições das portas da HA/PA, pode-se avaliar a integração detalhada e

identificar os módulos do sistema. Neste nível de abstração, utilizando a Linguagem

Onipresente, identifica-se o Passo 4: Projeto Tático – Integração.

Com o projeto tático de integração entre módulos, pode-se refinar e identificar as

classes através do Passo 5: Projeto Tático – Detalhamento dos Módulos.

4.3. Definição dos passos

Dados os conceitos do DDD e da Arquitetura Hexagonal (HA/PA), e as considerações

expostas no tópico anterior, propõe-se o roteiro que segue para a utilização da

Arquitetura Hexagonal como solução para os problemas descritos. As seções que

seguem detalham os passos do roteiro.

• Passo 1: Definição dos Contextos Delimitados e da L inguagem

Onipresente

• Passo 2: Projeto Estratégico – Integração

• Passo 3: Projeto Estratégico – Arquitetura Hexagona l – Definição das

Portas

• Passo 4: Projeto Tático – Integração

• Passo 5: Projeto Tático – Detalhamento dos Módulos

37

4.3.1. Passo 1: Definição dos Contextos Delimitados e da Linguagem

Onipresente

Entrada:

• Descrição do domínio.

Saída:

• Descrição dos Contextos Delimitados;

• Modelo conceitual com a Linguagem Onipresente.

• Mapa Contextual do Domínio;

Figura 14 - Mapa Contextual de exemplo

Fonte (o autor)

Descrição: Descrever o domínio em análise para a compreensão dos contextos

envolvidos. Desta maneira, revelam-se os sistemas que potencialmente

correspondem a estes contextos, gerando o Mapa Contextual do domínio, como

ilustrado um exemplo na Figura 14. O Mapa Contextual contém a indicação do domínio

que está sendo projetado, identificando-o como “Domínio Principal”. Os demais

contextos que serão utilizados são identificados como “Subdomínio Genérico”. Uma

vez identificados outros contextos, é necessário descrevê-los para que posteriormente

se pense na provável integração entre eles. Basta um modelo conceitual dos

contextos envolvidos para compreender seus limites.

38

4.3.2. Passo 2: Projeto Estratégico – Integração

Entrada:

• Descrição dos Contextos Delimitados;

• Mapa Contextual do Domínio;

• Diagrama do modelo conceitual com a Linguagem Onipresente.

Saída:

• Mapa Contextual do Domínio com os Padrões Estratégicos de Integração.

Figura 15 - Mapa Contextual de exemplo com Padrão Estratégico de Integração

Fonte (o autor)

Descrição: Com a identificação dos Contextos Delimitados envolvidos, principalmente

em projeção, verificar qual padrão estratégico de integração é mais adequado nos

pontos de integração, como visto em 3.3.3. Indicar o Padrão Estratégico de integração

adotado nas associações entre os Contextos Delimitados dentro do Mapa Contextual

elaborado no Passo 1. A Figura 15 ilustra a utilização do padrão Camada

Anticorrupção (ACL).

39

4.3.3. Passo 3: Projeto Estratégico – Arquitetura H exagonal – Definição das

Portas

Entrada:

• Mapa Contextual do Domínio com Padrão Estratégico de Integração.

Saída:

• Projeto da Arquitetura Hexagonal com definição das portas.

Descrição: Uma vez definidos os padrões estratégicos de integração, as portas

conceituais da HA/PA têm relação direta com as estratégias pré-definidas. Identificar

outras portas de acesso ao domínio que podem estar associadas apenas ao contexto

em projeto. O Projeto da HA/PA faz parte do Projeto Estratégico.

4.3.4. Passo 4: Projeto Tático – Integração

Entrada:

• Mapa Contextual do Domínio com Padrão Estratégico de Integração

• Projeto da Arquitetura Hexagonal com definição das portas.

Saída:

• Modelo de Integração entre Módulos;

• Modelo da Integração entre módulos com as Portas conceituais da HA/PA.

Descrição: Com o projeto da HA/PA e suas portas definidas, iniciar a projeção em

diagramas UML, avaliando os Módulos nomeados pela Linguagem Onipresente, como

cada Módulo é integrado no seu domínio, assim como na aplicação (interface de

usuário, base de dados, etc.).

Figura 16 - Estereótipo da Porta conceitual

Fonte (o autor)

Figura 17 – Notação da Porta conceitual

Fonte (o autor)

40

Para representar as portas da HA/PA no modelo, o estereótipo <<Porta>> é colocado

na representação do módulo (pacote) da UML, e dentro dele os módulos físicos

projetados, como na Figura 16. Para facilitar a identificação da representação gráfica

de uma Porta, a Figura 17 ilustra a substituição do estereótipo <<Porta>> pela

marcação de um quadrado no topo do pacote do projeto.

4.3.5. Passo 5: Projeto Tático – Detalhamento dos M ódulos

Entrada:

• Diagrama de Integração entre Módulos;

• Diagrama do modelo conceitual com a Linguagem Onipresente;

• Descrição do Contexto Delimitado;

Saída:

• Detalhamento dos Módulos

Descrição: Com os Módulos inicialmente definidos, aplicar o projeto tático do DDD

com as Entidades, Objetos Valor, Serviços de Domínio, Repositórios e outros

conceitos táticos necessários. Utilizar os padrões de projeto detalhado nos módulos

definidos.

41

5. UM EXEMPLO DE APLICAÇÃO DA ARQUITETURA HEXAGONAL

Neste capítulo será aplicado o roteiro do capítulo 4 em uma parte do projeto

arquitetônico de um software para uma empresa real. Apresenta-se uma descrição do

domínio do problema e aplica-se o roteiro proposto apresentando os resultados em

diagramas e descrições como saída de cada passo do roteiro.

5.1. Descrição do domínio do problema

Uma empresa de pesquisa de mercado, chamaremos de Research Corp por motivos

confidenciais, deseja um sistema que permita realizar entrevistas com diversas

pessoas para gerar informação de consumo para seus clientes. A Research Corp é

especialista em controle de amostra, sistema que controla a quantidade de indivíduos

necessários para representar um determinado perfil demográfico. A Research Corp já

possui um sistema que realiza a gestão de indivíduos candidatos a participar de uma

pesquisa e seleciona aleatoriamente, dado um filtro demográfico, um grupo de

indivíduos para responder a uma “onda” de questionário.

Por onda entende-se a aplicação de um mesmo questionário (as mesmas perguntas),

por certo período de tempo, em indivíduos selecionados para representar os perfis

demográficos.

A cada onda, um questionário diferente é elaborado para ser utilizado. Ao receber as

respostas, é feita uma consolidação de dados para a geração de relatórios com

informações de consumo e características do público que participou da onda.

A Research Corp também possui um sistema para gerenciamento de questionários,

mas toda entrega de questionários, coleta das respostas e transcrição de resultados

é feita por uma empresa terceira.

A Research Corp patrocinou um projeto de software para ela mesma ter o sistema de

pesquisa e consolidação de dados para entregar aos seus clientes. A Research Corp

também está interessada em realizar as entrevistas em diferentes formas para permitir

mais opções de resposta dos indivíduos da amostra, pois há pessoas de classes

sociais mais baixas que não possuem recursos de responder digitalmente. Algumas

possibilidades de se fazer entrevistas serão descritas, mas a empresa deseja

flexibilidade para adicionar novas maneiras de se realizar as entrevistas.

42

De acordo com essa descrição, pode-se definir o seguinte escopo para o projeto de

software:

1. Possibilidades de realização da entrevista:

a. Entrevistador que bate de porta-em-porta para deixar um questionário

em papel e recolher após certo período;

b. Entrevistador com um tablet realizando entrevista face-a-face com o

entrevistado;

c. Entrevistado responder via website.

2. Permitir o controle das ondas e seus questionários.

3. Consolidar as respostas dos questionários.

5.2. Passo 1: Definição dos Contextos Delimitados e Linguagem

Onipresente

Para compreender melhor a divisão do escopo e quais contextos estão envolvidos, o

Mapa Contextual descreve como os contextos são delimitados e associados através

do novo domínio a ser projetado. Segue a descrição dos conceitos dos contextos em

sua Linguagem Onipresente.

5.2.1. Descrição dos Contextos Delimitados

5.2.1.1. Contexto Amostragem

O contexto Amostragem gerencia os indivíduos que podem participar de pesquisas

para a empresa, inclusive para responder pesquisas via questionários. A amostra

(indivíduos que estão registrados na listagem da empresa) não é exclusiva para seu

próprio sistema, Amostragem, mas pode ser utilizada para diversos fins. Outros

sistemas que precisem dela podem utilizar sua porta de comunicação padrão, através

de serviços web (web-service). Não será detalhado como indivíduos são convidados

a fazer parte da amostra, mas, uma vez que concordem em participar dela, eles são

registrados neste sistema e representados no projeto conceitual. Este sistema é

encarado como um legado, pois não haverá alterações de projeto.

Modelo conceitual

O modelo conceitual contém as classes que representam o sistema de amostra de

modo simplificado. Para este trabalho, o conceito mais importante é o indivíduo que

faz parte da amostra, que possui características que representarão outras pessoas

43

estatisticamente. Este modelo é o de um Agregado, pois suas partes só têm sentido

quando unificados, como apresentado na Figura 18.

Figura 18 - Agregado Amostragem

Fonte (o autor)

Linguagem Onipresente

• Amostragem: um conjunto de indivíduos que juntos representam um universo

de pesquisa;

• Indivíduo: uma pessoa que faz parte da amostragem;

• Variável demográfica: informação que descreve algo que represente um perfil,

por exemplo, gênero, região onde mora, classe social;

• Peso: a quantidade de pessoas representadas através de um indivíduo.

Responsabilidades do Contexto Delimitado

• Gerenciar indivíduos que participam da amostra;

• Controlar indivíduos que participarão de uma amostra a partir de um período

solicitado;

• Realizar cálculos de ponderação para o peso dos indivíduos.

5.2.1.2. Contexto Gerenciamento de Questionários

Para que uma pesquisa seja feita, é necessário ter um questionário definido. O

contexto Gerenciamento de Questionários foi projetado para a responsabilidade de

mesmo nome. Inicialmente, ele deveria controlar o andamento da pesquisa e gerar os

resultados finais, mas, uma reflexão mais aprofundada revelou que o domínio para o

gerenciamento de questionários é distinto daquele em que se aplica um questionário,

com usos e usuários distintos.

44

Modelo conceitual

O modelo conceitual de um Questionário tem ao menos uma Pergunta com Possíveis

Respostas atreladas a esta pergunta. As Possíveis Respostas têm as Possibilidades

de Respostas, com um Tipo, e o Tipo pertence a um Grupo.

Por exemplo, um objeto QuestionarioEleicao possui uma

PerguntaQuantasTelevisoesHaEmCasa. A própria

PerguntaQuantasTelevisoesHaEmCasa já possui a associação com um

GrupoTipoRespostaUnica. As possibilidades de TipoRespostaUnica são

PossibilidadeRespostaNenhuma, PossibilidadeRespostaUma,

PossibilidadeRespostaDuas, PossibilidadeRespostaTresOuMais.

O Questionário é armazenado no RepositórioQuestionario, que possui sua

implementação RepositorioQuestionarioBD.

A implementação do Repositório está no mesmo Módulo. Possui a Linguagem

Onipresente forte, mas alguns pontos de modularização não parecem ter tanta

importância para a equipe de desenvolvimento deste sistema. A Figura 19 apresenta

o modelo conceitual adotado.

Figura 19 - Agregado Questionário

Fonte (o autor)

Linguagem Onipresente

• Questionário: um conjunto de perguntas. Cada questionário é único, pois é

necessário manter o histórico dos questionários já associados à onda para

efeitos de auditoria;

45

• Pergunta: uma pergunta específica em um questionário;

• Possíveis Respostas: possíveis respostas para uma pergunta;

• Tipos de Respostas: Tipo de uma resposta para uma pergunta. Resposta única

ou multi-seleção.

Responsabilidades do Contexto Delimitado

• Criar um questionário;

• Adicionar perguntas e definir seu tipo;

• Adicionar possíveis respostas em uma pergunta respeitando o tipo da pergunta;

• Fechar um questionário (fechamento) para indicar que ele está pronto para ser

utilizado em uma onda.

5.2.1.3. Contexto Onda

O contexto Onda é o principal ponto a ser projetado nesta monografia. É o contexto

quem cria o conceito de uma Onda, representando um período que um número

determinado de indivíduos, que fazem parte da amostra, serão selecionados para

responder um questionário num prazo determinado. Os indivíduos e suas respostas

representarão estatisticamente um universo, permitindo que ao final do período de

entrevistas as respostas sejam transformadas em informações significantes através

de uma consolidação de dados.

Vocabulário

• Onda: período em que um questionário é utilizado para uma pesquisa;

• Indivíduo: pessoa que respondeu o questionário da Onda;

• Respostas: respostas das perguntas respondidas pelo indivíduo.

Requisitos do Contexto Delimitado

• Criar uma Onda num sistema administrativo:

o Data de início e fim;

o Perfis demográficos e quantidade de indivíduos necessários para atingir

uma amostra especificada;

o Questionário que será utilizado para a onda;

• Aplicar a Onda e seu questionário nos indivíduos através das plataformas de

comunicação:

46

o Entrevista face-a-face com um entrevistador utilizando um tablet;

o Deixar o questionário impresso para buscar posteriormente;

o Envio de link de questionário via e-mail para acesso e preenchimento

via web;

• Controlar quantas entrevistas foram concluídas (respondidas por um

entrevistado) e quantas ainda são necessárias;

• Fazer a projeção da quantidade de entrevistas necessárias por dia de acordo

com o prazo de encerramento da onda e tamanho da amostra;

• Consolidar entrevistas no encerramento da onda e disponibilizar um relatório

com os dados calculados.

5.2.2. Mapa Contextual do Domínio

O Mapa Contextual, como visto no Capítulo 3 e Passo 1 do Capítulo 4, auxilia

visualmente como será abordado e como estão divididos os contextos derivados da

descrição. A Figura 20 apresenta este mapa.

Identificados os Contextos Delimitados, a Onda, sendo o foco do projeto elaborado

neste trabalho, está identificada como “Domínio Principal”. Os contextos Amostragem

e Questionário serão utilizados pelo contexto Onda, sendo identificados como

“Subdomínio Genérico”.

Figura 20 - Mapa contextual do domínio

Fonte (o autor)

47

5.3. Passo 2: Projeto Estratégico – Integração

Segue a utilização de Padrões Estratégicos nos Contextos Delimitados.

5.3.1. Onda-Amostragem

A integração entre os contextos Onda e Amostragem utilizará o padrão estratégico

Camada Anticorrupção (visto em 3.3.3), do ponto de vista do Contexto Onda, pois o

contexto Amostragem é um sistema legado existente na empresa que disponibiliza

serviços para a integração com outros sistemas. Descartam-se alterações no sistema

legado. A camada de tradução da linguagem será utilizada para não corromper o

domínio principal (Contexto Onda).

5.3.2. Onda-Questionário

A integração entre os contextos Onda e Questionário utilizará o padrão estratégico

Cliente/Fornecedor, pois haverá comunicação entre as equipes de desenvolvimento

numa relação em que a equipe do contexto Questionário poderá ter que desenvolver

funcionalidades para a equipe que desenvolve o contexto Onda. A integração é forte,

mas não é o mesmo núcleo, pois o entendimento da montagem do questionário é

diferente da utilização de um questionário pronto durante a aplicação da Onda. O

contexto Questionário será fornecedor para o contexto Onda, cliente.

5.3.3. Mapa Contextual com os Padrões Estratégicos de Integração

Figura 21 - Mapa contextual de integração

Fonte (o autor)

48

Após a descrição da relação entre os contextos Onda-Amostragem e Onda-

Questionário, realizou-se a anotação das relações no Mapa Contextual, visualizado

na Figura 21, como exemplificado em 4.3.2.

5.4. Passo 3: Projeto Estratégico – Arquitetura Hex agonal – Definição das

Portas

A Figura 22 representa o projeto arquitetônico proposto para a HA/PA.

Metaforicamente, cinco lados têm comunicação com o domínio por dispositivos

distintos que potencialmente se integrarão com a “área interna” – a Aplicação – e com

a “área externa” – outros domínios.

Figura 22 - HA/PA para o caso

Fonte (o autor)

Separando o domínio Onda, como proposto pelo DDD, com a HA/PA, o domínio fica

livre das integrações e desconhece os dispositivos que o utilizarão, dando foco no

Contexto Delimitado. As portas e adaptadores de apresentação, dados e integrações

com dispositivos necessários para receber os questionários respondidos são

desenvolvidos posteriormente.

49

5.5. Passo 4: Projeto Tático – Integração

Utilizando a Arquitetura Hexagonal como base para comportar os detalhes do domínio

e dar suporte às integrações posteriores, seja entre sistemas, ou para dispositivos, o

projeto tático segue mais detalhado no núcleo para demonstrar sua importância e

interdependências.

5.5.1. Modelo de Integração entre Módulos

Uma Onda, como descrito anteriormente, caracteriza-se principalmente por

representar um período de tempo, coletando respostas de um único questionário para

um conjunto de indivíduos.

Foi feita uma divisão em Módulos para minimizar o acoplamento e aumentar a coesão

do domínio, representado na Figura 23.

Figura 23 - Integração entre Módulos

Fonte (o autor)

A anotação “Camada Aplicação” caracteriza os módulos em camadas de aplicação

que se comunicam com dispositivos externos.

5.5.2. Modelo da Integração entre módulos com as Po rtas conceituais da

HA/PA

Na integração entre Módulos pode-se verificar que ao centralizar o modelo de

domínio, é possível estendê-lo com outros sistemas, permitindo seu uso por

integrações que podem ser modificadas no futuro. Para adequá-lo à HA/PA, foi

50

adicionado ao modelo de integração entre Módulos as portas conceituais da

arquitetura. A convenção utilizada para descrever as portas conceituais no diagrama

é apresentada no Capítulo 4. A Figura 24 ilustra a integração entre módulos com a

representação conceitual das portas da HA/PA.

Figura 24 - Integração entre Módulos com portas conceituais

Fonte (o autor)

5.6. Passo 5: Projeto Tático – Detalhamento dos Mód ulos

5.6.1. Utilização de padrões

Para este trabalho, foram utilizados alguns padrões detalhados de projeto. Para refinar

a Arquitetura Hexagonal é necessário aumentar o nível de detalhe no projeto da

solução.

5.6.1.1. Fábricas

Além da definição feita no Capítulo 3, uma Fábrica cria uma raiz íntegra de um

Agregado verificando as condições dos invariantes (o que é sempre verdadeiro). Caso

a condição de um invariante seja violada, a Fábrica notificará um erro a quem a utiliza.

As associações dos Agregados são verificadas pelas Fábricas. As Fábricas neste

trabalho não são responsáveis pela remontagem de objetos já persistidos. Assume-

se que isto é solucionado tecnicamente por frameworks de desenvolvimento, do tipo

ORM (Mapeamento Objeto-Relacional).

51

5.6.2. Detalhamento dos Módulos

5.6.2.1. <<Domínio>> onda.core

O Módulo onda.core é o núcleo do contexto delimitado Onda e encontra-se no

Agregado principal Onda, apresentado na Figura 25.

Figura 25 - onda.core

Fonte (o autor)

Seguem as descrições dos elementos do Módulo.

• <<Interface Repositório>> RepositorioOnda

o Classe Abstrata de Repositório para armazenar (ainda não se trata da

implementação, mas sim a representação das abstrações) o Agregado

Onda. Para armazenar a Raiz Onda, o Repositório recebe o Agregado

já criado pela FabricaOnda.

• <<Fábrica>> FabricaOnda

o A classe Fábrica do DDD é responsável por criar a primeira instância do

Agregado Onda e validar seus invariantes. Valida se a Data Início é

menor que a Data Término.

52

• <<Raiz Agregado>> Onda

o A raiz do Agregado que modela a Onda do domínio, ou seja, um período

específico e um questionário que representa uma pesquisa.

• <<Objeto Valor>> IDOnda

o Objeto Valor para definir uma identidade para a Onda.

• <<Objeto Valor>> IDQuestionario

o Um Objeto Valor para referenciar um Questionário específico do

Contexto Delimitado Gerenciamento de questionários.

• <<Objeto Valor / Enumerador>> SituacaoOnda

o Enumerador que tem as situações que uma onde pode conter:

� Nova – ao concluir a criação da Onda, tem a situação Nova;

� Em Andamento – Quando a data de início da Onda for a data

calendário, a onda é considerada em andamento;

� Encerrada – Quando o prazo atingir a data calendário, a onda é

considerada encerrada;

� Cancelada – Situação quando há a intervenção de um usuário

interno da empresa e cancela a onda.

• <<Objeto Valor>> Periodo

o Período em que a onda ocorre, utilizando a classe Data para ter Início e

Fim.

• <<Objeto Valor>> Data

o Classe que representa uma data (um dia do calendário).

• <<Entidade>> PerfilDemográfico

o Entidade agregada à Onda para representar qual público alvo deverá

ser atingido com a Onda para a realização de entrevistas.

• <<Serviço Domínio>> FornecimentoDeQuestionario

o Serviço de domínio para disponibilizar o questionário associado à Onda

para os Serviços de Aplicação. Como o Agregado Questionário

encontra-se no outro sistema integrado pelo padrão estratégico

Cliente/Fornecedor, o serviço utiliza o Repositório de questionário e seu

Agregado para entregar o Questionário à aplicação.

53

• <<Serviço Domínio>> RecebimentoDeQuestionario

o Serviço de Domínio que inclui um questionário respondido na Onda.

Utiliza os Repositórios RepositorioOnda e

RepositorioQuestionarioDoIndividuo para aplicar a persistência.

• <<Serviço Domínio>> ConsolidacaoOnda

o Serviço de Domínio que realiza o procedimento de juntar o Agregado

Onda e suas dependências, realizar validações e calcular a ponderação

dos indivíduos que participaram (responderam) ao questionário,

tornando-os representativos para o perfil demográfico definido na

criação da Onda. Para realizar a consolidação, cálculos, são

necessárias as informações do indivíduo que se encontram em outro

sistema. Para isso, utiliza o serviço CalculoAmostral e o

RepositorioAmostra na camada anticorrupção para se integrar com o

outro sistema, Amostragem, e obter as informações dos indivíduos

significantes para o contexto Onda.

5.6.2.2. <<Domínio>> onda.core.variaveldemografica

Módulo em que as generalizações da classe VariavelDemografica estão

implementadas, representado na Figura 26.

54

Figura 26 - onda.core.variaveldemografica

Fonte (o autor)

Seguem as descrições dos elementos do Módulo.

• <<Objeto Valor>> VariavelDemografica

o A variável demográfica que faz parte do critério do público alvo.

• <<Objeto Valor>> VariavelDemograficaRegiao

o Variável demográfica de uma região. Poderá ser de qualquer escala

(país, estado, cidade, região metropolitana...). Outras generalizações

podem ser acrescentadas se necessário.

• <<Objeto Valor>> VariavelDemograficaClasseSocial

o Variável demográfica que caracteriza a classe social que será aplicada

à Onda. Será o filtro na aplicação de Questionário para Indivíduo com

as mesmas variáveis demográficas.

• <<Objeto Valor>> VariavelDemograficaFaixaEtaria

o Variável demográfica que declara a faixa etária (faixa de idades) aceita

na Onda para um indivíduo que responderá o Questionário.

55

5.6.2.3. <<Domínio>> onda.core.questionariorespondido

Módulo que contém as classes de um questionário respondido. Utiliza diretamente o

Módulo (contexto) gerenciador.questionario.core utilizando o padrão estratégico

Cliente/Fornecedor, como representado na Figura 27.

Figura 27 - onda.core.questionariorespondido

Fonte (o autor)

Seguem as descrições dos elementos do Módulo.

• <<Interface Repositório >> RepositorioQuestionarioDoIndividuo

o Classe abstrata de Repositório para declarar os métodos definidos para

interagir com o QuestionárioDoIndividuo. Para armazenar a Raiz

QuestionarioDoIndividuo, o Repositório recebe o Agregado já criado

pela FabricaQuestionarioDoIndividuo. A recuperação dos dados via

persistência é implícita e poderia utilizar um framework de

desenvolvimento ORM (Mapeamento objeto-relacional).

• <<Raiz Agregado>> QuestionarioDoIndividuo

o Entidade raiz do Agregado que representa o questionário respondido por

um indivíduo.

• <<Objeto Valor>> IDQuestionarioDoIndividuo

o Objeto Valor que identifica o Agregado QuestionarioDoIndividuo

56

• <<Objeto Valor>> IDIndividuo

o Objeto Valor do IDIndividuo do outro sistema “Amostragem”, que

identifica o Agregado Individuo.

• <<Entidade >> RespostasDeUmaPergunta

o Entidade que relaciona respostas do Individuo a uma Pergunta.

• <<Objeto Valor>> IDPergunta

o Identificador da Pergunta do outro Contexto Delimitado Gerenciamento

de Questionários.

• <<Entidade>> Resposta

o Uma das respostas de um conjunto RespostasDeUmaPergunta de um

indivíduo.

• <<Fábrica>> FabricaQuestionarioDoIndividuo

o Fábrica para a construção do Agregado QuestionárioDoIndividuo.

5.6.2.4. <<Camada Anticorrupção>> onda.amostra

Módulo que encapsula a Camada Anticorrupção que faz a ligação entre os Contextos

Delimitados Onda e Amostragem, conforme representado na Figura 28.

Figura 28 - onda.amostra

Fonte (o autor)

57

Seguem as descrições dos elementos do Módulo.

• <<Interface Repositório>> RepositorioAmostra

o Repositório para utilizar o Contexto Delimitado Amostragem

• <<Adaptador>> AdaptadorRepositorioAmostra

o Adaptador que faz a integração com o Contexto Delimitado

Amostragem. O AdaptadorRepositorioAmostra encapsula a

comunicação com o Contexto Amostragem, inibindo que o Contexto

Onda tenha dependência com implementações técnicas ou altere a

própria Linguagem Onipresente por causa do outro contexto. O Contexto

Onda permanece íntegro em sua Linguagem Onipresente.

• <<Objeto Valor >> IndividuoOnda

o Objeto Valor para trazer informações relevantes ao domínio Onda para

a consolidação dos dados, independente de como seja seu projeto no

outro sistema.

• <<Serviço Domínio> CalculoAmostral

o Serviço que utiliza o contexto Amostragem para calcular a amostra da

quantidade de indivíduos/entrevistas necessárias para uma Onda, dado

o Perfil Demográfico. O cliente que utilizar esse Serviço de Domínio,

deve enviar uma coleção de IndividuoOnda para o Cálculo Amostral.

5.6.2.5. <<Camada Cliente/Fornecedor>> gerenciador.questionario.core

Com o padrão estratégico Cliente/Fornecedor, há forte relação entre os contextos

Onda e Questionário no nível de Módulo. Desta maneira, o contexto Onda utiliza

diretamente o contexto Questionário, inclusive utilizando sua Linguagem Onipresente,

como ilustrado na Figura 29.

58

Figura 29 - gerenciador.questionario.core

Fonte (o autor)

Seguem as descrições dos elementos do Módulo.

• <<Interface Repositório>> RepositorioQuestionario

o Repositório para utilizar o Agregado Questionário do contexto

Gerenciamento de Questionários.

• <<Adaptador Repositório>> RepositorioQuestionarioBD

o Adaptador que faz a integração com o Contexto Delimitado

Gerenciamento de Questionário.

5.6.2.6. <<Camada Aplicação>> onda.aplicacao.backoffice

Camada de Aplicação para o gerenciamento da Onda composta por Serviços de

Aplicação. É utilizada por departamento interno da empresa para criação da Onda. No

encerramento, faz a consolidação dos dados. A Figura 30 ilustra este Módulo.

Figura 30 - onda.aplicacao.backoffice

Fonte (o autor)

59

Seguem as descrições dos elementos do Módulo.

• <<Serviço Aplicação>> CriacaoOnda

o Serviço de Aplicação para criar uma Onda. O serviço utiliza a

FabricaOnda para montar o Agregado Onda e RepositorioOnda para a

sua persistência.

• <<Serviço Aplicação>> FechamentoOnda

o Serviço de Aplicação que utiliza SERVIÇOS DE DOMÍNIO para

validações do encerramento da Onda.

Figura 31 - onda.aplicacao.web

Fonte (o autor)

5.6.2.7. <<Camada Aplicação>> onda.aplicacao.web

Camada de Aplicação para web, utilizando Serviços de Aplicação representados na

Figura 31.

Seguem as descrições dos elementos do Módulo.

• <<Serviço Aplicação>> EntregaQuestionarioWeb

o Serviço de Aplicação para a entrega do questionário para a web que

provê acesso à camada da Interface de Usuário.

• <<Serviço Aplicação>> RecebimentoQuestionarioWeb

o Serviço de Aplicação para o recebimento de um questionário respondido

através da web (Interface de Usuário).

60

5.6.2.8. <<Camada Aplicação>> onda.aplicacao.mobile

Camada de Aplicação para aplicativos móveis, utilizando SERVIÇOS DE APLICAÇÂO

como na Figura 32.

Figura 32 - onda.aplicacao.mobile

Fonte (o autor)

Seguem as descrições dos elementos do Módulo.

• <<Serviço Aplicação>> EntregaQuestionarioMobile

o Serviço de Aplicação para a entrega do questionário para a web,

provendo acesso à camada da Interface de Usuário.

• <<Serviço Aplicação>> RecebimentoQuestionarioMobile

o Serviço de Aplicação para o recebimento de um questionário respondido

através da web (da Interface de Usuário).

5.6.2.9. <<Camada Aplicação>> onda.aplicacao.impresso

Camada de Aplicação para lidar com questionários impressos, como representado na

Figura 33.

61

Figura 33 - onda.aplicacao.impresso

Fonte (o autor)

Seguem as descrições dos elementos do Módulo.

• <<Serviço Aplicação>> EntregaQuestionarioParaImpressao

o Serviço de Aplicação para a entrega do questionário para a web,

provendo acesso à camada da Interface de Usuário.

• <<Serviço Aplicação>> RecebimentoQuestionarioImpresso

o Serviço de Aplicação para o recebimento de um questionário respondido

através da web (da Interface de Usuário).

• <<Serviço Aplicação>> ConversosImagemQuestionarioRespondido

o Serviço de Aplicação que lida com dispositivos de impressão e

digitalização para questionários impressos.

5.6.2.10. <<Camada Infraestrutura>> onda.persistencia

Módulo de infraestrutura que contém as implementações dos Repositórios do sistema

Onda, representado na Figura 34.

62

Figura 34 - onda.persistencia

Fonte (o autor)

Seguem as descrições dos elementos do Módulo.

• <<Adaptador Repositório>> RepositorioOndaBD

o Implementação do Repositório RepositorioOnda para banco de dados

• <<Adaptador Repositório>> RepositorioQuestionarioDoIndividuoBD

o Implementação do Repositório RepositorioQuestionarioDoIndividuo

para banco de dados

63

6. CONCLUSÃO

6.1. Considerações gerais

O DDD auxilia no entendimento único do negócio tanto pelo solicitante do projeto

quanto pelo desenvolvedor/projetista. O entendimento é definido pela Linguagem

Onipresente e assim potenciais problemas de interpretação, como a não

implementação de funcionalidades esperadas ou comportamentos diferentes, tendem

a ser minimizados. A visão do Projeto Estratégico do DDD fornece caminhos de

integração entre contextos a serem escolhidos, conforme as circunstâncias do

negócio e as técnicas disponíveis. Centrando o foco no domínio-alvo em vez de

questões técnicas, os desenvolvedores adquirem conhecimento do domínio da

aplicação e ganham argumentos para discutir com os solicitantes do projeto, aumento

a probabilidade de sucesso do software entregue.

A Arquitetura Hexagonal (HA/PA) tem o enfoque no domínio-alvo e deixa para resolver

a integração através das portas conceituais, entendidas como pontos de acesso a

partes do domínio. No essencial, essa arquitetura não deixa de ser uma Arquitetura

em Camadas, mas com uma diferença fundamental: ela constitui um conjunto

articulado de camadas que encapsulam as portas conceituais e organizado em torno

de uma camada central que encapsula um único modelo do domínio da aplicação.

Essa organização leva o desenvolvedor a primeiro pensar no domínio e, ao mesmo

tempo, atender a alguns dos princípios de do projeto arquitetônico, como os Princípios

da Inversão de Dependência, Aberto – Fechado e Responsabilidade Única. Embora

(EVANS, 2010) aborde diversas técnicas para o projeto do domínio e da arquitetura

do software, ele não fornece um roteiro para um projeto arquitetônico. A HA/PA

utilizando o DDD permite um projeto arquitetônico flexível, uma vez que permite o

atendimento da heterogeneidade das interações com subsistemas clientes e libera o

projeto do domínio-alvo das questões de integração, mas (COCKBURN, 2005)

também não fornece um roteiro para o seu emprego.

O roteiro proposto visa cobrir esta falta. Seguindo o roteiro, é esperado que um

desenvolvedor/projetista menos experiente no DDD possa utilizá-lo para elaborar o

projeto de um software real que requeira a integração entre domínios. Espera-se

também que o roteiro permita a esse desenvolvedor/projetista assimilar mais

facilmente os conceitos e o emprego do DDD.

64

Apesar de o roteiro cobrir os principais aspectos do DDD, utilizando a HA/PA como

escolha arquitetônica, ele não aborda o DDD como um todo e equipes mais

experientes podem sentir falta de mais passos. Apesar de a HA/PA ser aderente ao

DDD, a falta de material bibliográfico mais detalhado sobre este estilo arquitetônico

dificultou a elaboração do roteiro. O próprio DDD evoluiu desde a sua concepção

original, refinando alguns conceitos como os Serviços de Aplicação e SERVIÇOS DE

DOMÍNIO, havendo inclusive diferenças na definição dependendo da referência

bibliográfica utilizada. Além disso, existem arquiteturas semelhantes à HA/PA, como

a Onion Architecture (PALERMO, 2008), que também pretende resolver os mesmos

problemas tratados neste trabalho. No entanto, a consideração de todas elas

dificultaria a elaboração do roteiro.

Finalmente, uma lição importante apontada por (EVANS, 2010) (FOWLER, et al.,

2002): o emprego do DDD em um sistema que implementa um domínio

potencialmente simples, com evolução e integração potencialmente simples, pode

torná-lo desnecessariamente complexo.

6.2. Trabalhos futuros

Um dos trabalhos futuros, que estende o presente trabalho, é o estudo da integração

do domínio-alvo com um sistema de terceiros. Por exemplo, uma empresa que fizesse

a pesquisa por conta própria e precisasse utilizar os questionários criados no sistema

da Research Corp e depois consolidá-los.

Como o roteiro apresentado neste trabalho não entrou no detalhe da implementação

do software (código), poderia ser oportuno identificar mais passos para que o roteiro

chegasse ao nível da codificação.

Por fim, é importante realizar um experimento – ou um estudo de caso – em que o

roteiro proposto fosse aplicado por uma equipe experiente no DDD em um projeto real,

para que se tivesse uma avaliação inicial da viabilidade prática do roteiro.

65

REFERÊNCIAS

BUSCHMANN, F. et al. Pattern-Oriented Software Architecture: A System of

Patterns. Chichester, New York, Brisbane, Toronto, Singapore: John Wiley & Sons,

Ltd, v. 1, 1996.

COCKBURN, A. Hexagonal Architecture. alistair.cockburn.us , 2005. Disponivel em:

<http://alistair.cockburn.us/Hexagonal+architecture>. Acesso em: 21 abr. 2016.

COCKBURN, A. Ports And Adapters Architecture. c2.com , 2006. Disponivel em:

<http://c2.com/cgi/wiki?PortsAndAdaptersArchitecture>. Acesso em: 21 abr. 2016.

DA-WEI, E. The Software Complexity Model and Metrics for Objec t-Oriented .

2007 International Workshop on Anti-Counterfeiting, Security and Identification (ASID).

Xiamen, Fujian: IEEE. 2007. p. 464-469.

EVANS, E. Domain Driven Design: Atacando as Complexidades no Coração do

Software. 2a. ed. Rio de Janeiro: Alta Books Editora, 2010.

FOWLER, M. et al. Patterns of Enterprise Application Architecture . Boston, San

Francisco, New York, Toronto, Montreal, London, Munich, Paris, Madrid, Capetown,

Sydney, Tokyo, Singapore, Mexico City: Addison-Wesley, 2002.

FREEMAN, S.; PRYCE, N. Growing Object-Oriented Software, Guided by Tests .

Upper Saddle River, Boston, Indianapolis, San Francisco, New York, Toronto,

Montreal, London, Munich, Paris, Madrid, Cape Town, Sydney, Tokyo, Singapore,

Mexico City: Addison-Wesley, 2009.

GAMMA, E. et al. Padrões de Projeto: Soluções reutilizáveis de software orientado a

objetos. Porto Alegre: Bookman, 2007.

GARLAN, D.; SHAW, M. An Introduction to Software Architecture . School of

Computer Science, Carnegie Mellon University. Pittsburgh, PA. 1994. (CMU-CS-94-

166).

GHAZARIAN, A. A Theory of Software Complexity . General Theory of Software

Engineering (GTSE), 2015 IEEE/ACM 4th SEMAT Workshop on a. Florence: IEEE.

2015. p. 29-32.

HAAS, H. Designing the architecture for Web services. w3.org , 2003. Disponivel em:

<https://www.w3.org/2003/Talks/0521-hh-wsa/>. Acesso em: 21 abr. 2016.

66

JAIN, R. et al. Exploring the Impact of Systems Architecture and Systems

Requirements on Systems Integration Complexity. IEEE Systems Journal , v. 2, n. 2,

p. 209-223, jun. 2008. ISSN ISSN: 1932-8184.

MARTIN, R. C. Agile Software Development: Principles, Patterns, and Practices.

2nd. ed. Upper Saddle River: Prentice Hall, 2002.

OASIS SOA REFERENCE MODEL TC. Reference Model for Service Oriented

Architecture 1.0. OASIS, 2006. Disponivel em: <https://docs.oasis-open.org/soa-

rm/v1.0/soa-rm.pdf>. Acesso em: 29 maio 2016.

PALERMO, J. The Onion Architecture. jeffreypalermo.com , 2008. Disponivel em:

<http://jeffreypalermo.com/blog/the-onion-architecture-part-1/>. Acesso em: 5 jun.

2016.

PRYCE, N. Visualising Test Terminology. natpryce.com , 2009. Disponivel em:

<http://www.natpryce.com/articles/000772.html>. Acesso em: 21 abr. 2016.

SOARES, S. A. et al. Dribbling complexity in model driven development us ing

Naked Objects, domain driven design, and software d esign patterns . Computing

Conference (CLEI), 2015 Latin American. Arequipa: IEEE. 2015. p. 1-11.

TIE, J.; JIN, J.; WANG, X. Study on application model of three-tiered architec ture .

Mechanic Automation and Control Engineering (MACE), 2011 Second. Hohhot: IEEE.

2011. p. 7715-7718.

WANG, Y.-H.; LIAO, J. C. Why or Why Not Service Oriented Architecture . Services

Science, Management and Engineering, 2009. SSME '09. IITA International

Conference on. Zhangjiajie: IEEE. 2009. p. 65-68.

