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RESUMO 

 

RODRIGUES NETO, A. Desenvolvimento de um modelo numérico para otimização 

topológica de estruturas planas utilizando o Método dos Elementos Finitos e análise por 

metodologia de confiabilidade estrutural. 2016. 91 f. Trabalho de Conclusão de Curso – 

Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos. 2016. 

 

O presente trabalho consiste no desenvolvimento de modelos numéricos para otimização de 

estruturas planas e análise das geometrias obtidas baseado na confiabilidade estrutural. Para 

tal, foi utilizado o método denominado Otimização Estrutural Evolucionária (ESO – 

Evolutionary Structural Optimization), visando a obtenção da geometria ótima de estruturas 

2D. Este algoritmo foi acoplado ao modelo estrutural, o qual utiliza o Método dos Elementos 

Finitos (MEF), implementado com a utilização de elementos isoparamétricos planos com 

aproximação linear. Por fim, as geometrias obtidas são analisadas quanto à confiabilidade 

estrutural. Neste tópico, as fontes de incertezas atuantes na estrutura são incorporadas ao 

problema e seu comportamento estrutural diante desse cenário é avaliado, por meio da 

verificação de estados-limite para segurança e falha. Para o cálculo da probabilidade de falha 

é utilizado o método da Simulação de Monte Carlo Direta. O objetivo final da análise é 

avaliar a robustez das geometrias otimizadas e seu comportamento quando variações no 

cenário inicial do problema são incorporados. Todos os métodos estudados foram 

implementados numericamente e exemplos foram apresentados, validando e mostrando a 

eficiência das formulações estudadas. 

 

Palavras-chave: Método dos elementos finitos.Otimização topológica. Confiabilidade 

estrutural. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

ABSTRACT 

 

RODRIGUES NETO, A. Numerical model development for topology optimization of 

plane structures using the Finite Element Method and analysis by structural reliability 

methodology. 2016. 91 f. Trabalho de Conclusão de Curso – Escola de Engenharia de São 

Carlos, Universidade de São Paulo, São Carlos. 2016.  

 

This work deals with the development of numerical algorithms for plane structures 

optimization and analysis of obtained geometries, based on structural reliability. For this, it is 

used a method called Evolutionary Structural Optimization (ESO), in order to obtain the 

optimal geometry of two-dimensional structures. The optimization algorithm is coupled with 

the structural algorithm, which uses the Finite Element Method (FEM), implemented with flat 

isoparametric elements and linear approach. Finally, the obtained geometries are analyzed by 

structural reliability. In this topic, uncertainty sources of the structure are incorporated into the 

problem and its structural behavior within this scenario is evaluated, by verifying states-limit 

for safety and failure. To calculate the failure probability is used the method Direct Monte 

Carlo Simulation. The final objective of this analysis is to evaluate the robustness of the 

optimized geometries and their behavior when variations in initial scenario are incorporated to 

the problem. All methods studied are implemented numerically and examples are presented, 

in order to show the efficiency and accuracy of the proposed formulations in dealing with 

structural analysis, optimization problems and reliability analysis. 

 

Keywords: Finite Element Method. Topology optimization. Structural reliability. 
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1. INTRODUÇÃO 

1.1. Motivação  

Este trabalho se insere em um domínio científico que vem recebendo destacada 

atenção por parte de diversos centros de pesquisa de excelência. A proposição de modelos 

mais realistas para a análise de problemas de engenharia e o desenvolvimento de 

metodologias adequadas para o aprimoramento de projetos mecânicos têm se tornado 

prioritários no cenário científico internacional, sendo linhas de pesquisa em grande evidência 

na atualidade.  

A concepção de estruturas que executem suas funções com nível de segurança 

desejado utilizando quantidade mínima de material é um dos objetivos a serem alcançados em 

todo projeto estrutural. Para se estudar e garantir um nível de segurança adequado pode-se 

utilizar de técnicas e dos conceitos da confiabilidade estrutural. No contexto da engenharia, a 

confiabilidade é muito bem definida. Na engenharia de estruturas, pode ser entendida como a 

probabilidade de sobrevivência de um componente, ou de um sistema, desde que utilizado de 

acordo com as especificações de projeto. Portanto, a confiabilidade é dada pelo complemento 

da probabilidade de falha (ANG; TANG, 1984). 

Nesse contexto, a confiabilidade tem um papel central nas decisões de engenharia, 

sendo diretamente ligada à qualidade de produtos, segurança da população, estudo de 

viabilidade econômica e otimização de custos. Para avaliar o desempenho e a qualidade de um 

sistema com relação a sua utilização e segurança, o conceito embutido na variável 

confiabilidade é mais realista, inclusive sob o ponto de vista matemático, para a determinação 

de custos. Em estruturas complexas, os cenários de falha são identificados por meio de 

modelos mecânicos numéricos (modelos que simulam comportamento mecânico da estrutura), 

sendo os algoritmos de confiabilidade responsáveis por determinar a probabilidade do cenário 

de falha identificado ser atingido. Dessa forma, as análises de confiabilidade somente 

conduzem a resultados precisos se os cenários de falha forem corretamente identificados e 

mensurados pelos modelos mecânicos (NOGUEIRA; LEONEL; CODA, 2012). 

Já a minimização do uso de material na estrutura pode ser atingida empregando-se as 

técnicas e os conceitos apresentados na teoria da otimização. Nesse trabalho são estudados 

problemas relacionados à otimização topológica de estruturas planas. Neste tipo de 

otimização, busca-se a determinação da geometria ótima da estrutura, aquela que emprega a 

mínima quantidade de material, respeitando-se restrições relacionadas ao estado de tensão dos 
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pontos constituintes da estrutura e à sua segurança. A técnica de otimização a ser utilizada 

nesse trabalho é denominada Evolutionary Structural Optimization (ESO). Segundo Lanes 

(2013), esta técnica permite a remoção gradativa de material estrutural não eficiente até a 

obtenção da estrutura ótima. A remoção de material é baseada em critérios de tensão, sendo 

regiões menos solicitadas removidas gradativamente segundo um critério de velocidade. O 

ESO é acoplado a um modelo baseado nas equações algébricas do Método dos Elementos 

Finitos (MEF). São empregados elementos isoparamétricos planos de ordem linear para a 

resolução do problema mecânico. 

Pretende-se, com este trabalho, evoluir no estudo de soluções inovadoras no domínio 

da engenharia, envolvendo métodos numéricos e análises de otimização. Pretende-se ainda 

avaliar os resultados dos métodos de otimização com base na confiabilidade estrutural, 

associando incertezas físicas aplicadas à estrutura, buscando conclusões sobre a robustez e 

segurança das geometrias encontradas.  

 

1.2. Objetivos 

Com esse trabalho objetiva-se dar continuidade ao estudo e desenvolvimento de temas 

relevantes e atuais nos campos da mecânica computacional e mecânica dos materiais. Os 

objetivos tratam do desenvolvimento de um modelo numérico baseado no MEF para a análise 

da otimização topológica de estruturas planas e análise de confiabilidade associada à tais 

estrutura. A implementação será realizada utilizando a linguagem FORTRAN, que 

inicialmente no trabalho foi estudada e compreendida com auxílio do trabalho de Chapman 

(2008). 

Inicialmente objetiva-se o desenvolvimento de um código base considerando o MEF 

com elementos isoparamétricos planos. Foi considerada aproximação linear para os 

deslocamentos no corpo. Nesse código base, objetiva-se a determinação dos deslocamentos 

em todos os nós da estrutura e também do estado de tensão nos pontos de integração do 

elemento. Em seguida, objetiva-se o acoplamento da técnica ESO a esse código base. Tal 

técnica envolve a remoção gradativa de material segundo um critério de velocidade 

estabelecido. Os parâmetros que influenciam a velocidade de remoção dos elementos foram 

estudados e intervalos de amplitude desses parâmetros foram recomendados. 

Em seguida, os resultados obtidos por esses métodos foram avaliados com base na 

confiabilidade estrutural, por meio da utilização de um programa implementado para executar 
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a Simulação de Monte Carlo Direta. Esse tipo de simulação calcula a probabilidade de falha 

de uma dada estrutura, considerando as incertezas associadas à esta. Dessa forma, objetiva-se 

a obtenção de conclusões sobre robustez e segurança das geometrias ótimas determinadas, 

comparando-as às geometrias iniciais e intermediárias no processo de otimização topológica. 

Deve-se destacar ainda que a análise acoplada da otimização topológica e 

confiabilidade representa uma importante contribuição científica desse trabalho.  

 

1.3. Metodologia 

A partir dos objetivos gerais definidos anteriormente, podem ser listados alguns itens 

específicos que foram tratados ao longo do desenvolvimento do trabalho:  

1) Revisão bibliográfica 1: Estudo dos conceitos e fundamentos do MEF. Elementos planos 

isoparamétricos, elementos de treliça e integração numérica. 

2) Implementação computacional 1: Desenvolvimento de um código base na linguagem 

FORTRAN para a análise plana considerando elementos isoparamétricos. 

3) Revisão bibliográfica 2: Estudo de conceitos relacionados a otimização topológica. 

Técnica ESO. 

4) Implementação computacional 2: Implementação da técnica ESO e acoplamento ao 

modelo desenvolvido no item 2. 

5) Revisão bibliográfica 3: Estudo de conceitos e metodologia de análise de confiabilidade 

estrutural. Simulação de Monte Carlo. 

6) Implementação computacional 3: Implementação da técnica Simulação de Monte Carlo 

direta e acoplamento ao modelo desenvolvido no item 4. 

7) Execução de exemplos com diferentes geometrias de estruturas utilizando as três 

implementações computacional realizadas. 

8) Redação de relatório final. 

Para as implementações computacionais que utilizam a linguagem FORTRAN, foi 

utilizado o compilador Intel(R) Visual Fortran 11.1.048, instalado para execução no software 

Visual Studio® 2008. Para todos os exemplos numéricos analisados, os códigos foram 

executados utilizando um computador do tipo notebook com as seguintes configurações:  

 Processador Intel® Core i5 5200U 5ª geração; 2.7 GHz e 3 MB de cache; 

 Memória RAM: 8 GB DDR3 1600 MHz; 

 Disco rígido: 1 TB; 
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 Placa de vídeo: Geforce® GT 920M 2GB; 

Em certos momentos deste trabalho é citado o tempo de execução dos códigos para 

alguns métodos. Para isso, pode-se considerar que o equipamento utilizado foi uma máquina 

com as especificações citadas acima. Destaca-se ainda que, a utilização de uma máquina com 

maior poder de processamento certamente levaria à uma diminuição nos tempos de execução, 

minimizando este problema para alguns métodos mais custosos computacionalmente. Porém, 

neste trabalho, dificuldades relacionadas com este problema foram facilmente superadas e não 

foi necessária a utilização de outros equipamentos. 
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2. FORMULAÇÃO TEÓRICA 1:     

ELEMENTOS FINITOS 

Para as análises mecânicas de estruturas nesse trabalho é utilizado o MEF, o qual 

possibilita a obtenção de deslocamentos, deformações e tensões ao longo do domínio de uma 

estrutura submetida a carregamentos externos conhecidos. Em corpos contínuos, tensões e 

deformações variam de forma contínua ao longo do domínio, sendo regidos por equações 

diferenciais de complexa resolução. A ideia principal do método é que, ao dividir a estrutura 

em partes menores, os denominados elementos finitos, a estrutura permaneça contínua e seu 

campo de deslocamentos seja aproximado por funções polinomiais de ordem desejada. Assim, 

com base nessa aproximação, obtém-se equações algébricas aproximadas sobre o domínio do 

corpo em análise. 

Portanto, no método, o domínio do modelo é dividido em um número discreto de 

subdomínios de dimensões finitas, denominados “elementos finitos”, que são interconectados 

por meio de interfaces (nós para o caso unidimensional, linhas para o caso bidimensional e 

superfícies para o caso tridimensional). Esses elementos deformam-se segundo uma função de 

aproximação associada a ele (a chamada função de forma). Então o equilíbrio contínuo da 

estrutura que se considera no modelo matemático é substituído pelo equilíbrio de cada 

elemento discreto. A partir disso se trocam equações diferenciais por equações algébricas para 

representar o mesmo, obtendo-se um sistema de equações de equilíbrio da malha, o qual 

permite a determinação dos deslocamentos nodais. Utilizando teorias baseadas no princípio 

dos trabalhos virtuais, relações deformação-deslocamentos e deformação-tensões, pode-se 

escrever o sistema que governa o equilíbrio dos elementos finitos e da estrutura como um todo 

da seguinte forma (ZIENKIEWICZ; TAYLOR, 2000): 

K ∗ U = F (2.1) 

Onde F é o vetor contendo as forças aplicadas na estrutura ou no elemento e U é o 

vetor que armazena os deslocamentos nodais dos nós constituintes da estrutura ou dos 

elementos. K é a chamada matriz de rigidez, a qual armazena parcelas de energia relacionadas 

a cada grau de liberdade de cada um dos nós da estrutura. 

Tendo em mãos esse sistema, percebe-se que ao analisar o sistema global, não há 

solução. Isso ocorre pois a matriz de rigidez é uma matriz singular, ou seja, det(𝐾) = 0. 

Fisicamente, essa singularidade representa a possibilidade da estrutura realizar movimento de 
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corpo rígido, quando verifica-se a ausência de deformações e tensões na estrutura. Para retirar 

esta singularidade do sistema é necessário reduzi-lo com a imposição das condições de 

contorno. Matematicamente, isso significa impor deslocamento nulo nos pontos de apoio: nas 

duas coordenadas no caso de apoio duplo e somente em uma coordenada no caso de apoio 

simples. Assim, há duas maneiras de se resolver o sistema: zerar as linhas e colunas da matriz 

de rigidez que representam o deslocamento restrito e colocar valor 1 na diagonal, isto é, os 

elementos da matriz que multiplicam esse deslocamento, ou então criar uma nova matriz de 

rigidez retirando tais linhas ou colunas, chamada então de matriz de rigidez reduzida.  

O ponto crucial da resolução pelo método é o cálculo da matriz de rigidez de cada 

elemento finito, pois nesse ponto os diferentes tipos de elementos utilizados causam uma 

enorme diferença. As outras etapas (montagem da matriz de rigidez global, imposição das 

restrições, resolução do sistema e cálculo de tensões e deformações) são sempre as mesmas. 

As seções seguintes descrevem cada passo do método para executar a análise via MEF. 

 

2.1. Obtenção da matriz de rigidez de um elemento 

2.1.1. Treliças planas 

Apesar de não ter sido utilizado de fato no trabalho, a formulação para treliças planas 

foi estudada e inserida nesse texto à título de revisão bibliográfica e estudo do método. Nesse 

caso, o mais simples de todos, a matriz de rigidez tem uma fórmula bem simples. Conforme 

será demonstrado a seguir, segundo Pitangueira (2003). Destacando que o elemento de treliça 

está sujeito às hipóteses usuais: 

(i) Somente esforços normais; 

(ii) Qualquer deslocamento transversal é desprezado (associado ao deslocamento de 

corpo rígido); 

(iii) O comportamento do material segue a Lei de Hooke para o caso unidimensional; 

Considerando o elemento de treliça apresentado na Figura 1, segundo a definição de 

deformação específica ‘ε(x)’ para um elemento diferencial da barra, sendo ‘x’ o eixo 

longitudinal desta (ilustrado na Figura 1 como eixo ‘u’), tem-se: 

ε(x) =
∆L

Li
=

u(x)+du(x)−u(x)

dx
=

d

dx
u(x)   (2.2) 
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Figura 1: Representação elemento de dois nós 

Considerando o elemento como ideal (discreto), pode-se escrever: 

ε(x) =
d

dx
u(x) =

d2x−d1x

L
  (2.3) 

Onde d1x e d2x são os deslocamentos do primeiro e segundo nós do elemento na 

coordenada longitudinal, respectivamente e ‘L’ o comprimento do elemento. A lei de Hooke 

para o caso unidimensional é definida como: 

σ(x) = Yε(x) (2.4) 

Sendo Y o módulo de elasticidade longitudinal (módulo de Young). Considerando o 

equilíbrio de forças ao longo da direção ‘x’, no primeiro nó do elemento. Sendo f1x e f2x as 

forças nodais na direção ‘x’ e ‘A’ a área transversal do elemento, tem-se: 

f1x + σ(x) ∗ A = 0              

f1x = −σ(x) ∗ A (2.5) 

Analogamente no segundo nó, obtém-se: 

f2x − σ(x) ∗ A = 0           

f2x = σ(x) ∗ A (2.6) 

Substituindo as relações (2.3) e (2.4) nas equações (2.5) e (2.6), tem-se: 



20 

 

 

f1x =
YA

L
(d1x − d2x) ; f2x =

YA

L
(d2x − d1x)       

Na forma matricial: 

(
f1x

f2x
) =

YA

L
[

1 −1
−1 1

] ∗ (
d1x

d2x
)  

(2.7) 

 

Claramente percebe-se que foi encontrado um sistema linear do tipo da Eq. (2.1), 

justamente como é formulado o MEF. Portanto: 

Ke =
YA

L
[

1 −1
−1 1

]  (2.8) 

Onde aparecem as constantes: ‘A’ = área da seção transversal da treliça; ‘Y’ = Módulo 

de elasticidade longitudinal e ‘L’ = comprimento do elemento. Enfatizando que, ao utilizar 

essa fórmula, deve-se referenciar deslocamentos e forças no sistema de coordenadas local do 

elemento, nesse caso o eixo ‘x’ (longitudinal) seria o eixo ‘u’ da Figura 1. 

Para determinar a matriz de rigidez da estrutura, precisa-se colocar todos os 

parâmetros em relação a um sistema global de coordenadas cartesianas, ‘xy’ no presente caso. 

Para encontrar a matriz de rigidez em relação às coordenadas globais, deve-se utilizar rotação 

de vetores em sistemas de coordenadas, encontrando então Eq. (2.9). 

Ke =
YA

L
[

c2 cs −c2 −cs
cs s2 −cs −s2

−c2 −cs c2 cs
−cs −s2 cs s2

]  

 

(2.9) 

Onde tem-se as variáveis: c = cos(θ) , s = sen(θ), sendo θ o ângulo do elemento 

com o eixo ‘x’, como mostrado na Figura 1. 

Então, essa matriz de rigidez é válida baseada em deslocamentos e forças definidos em 

relação ao sistema de coordenadas global (sistema ‘xy’), valendo então o sistema apresentado 

na Eq. (2.10): 

YA

L
[

c2 cs −c2 −cs
cs s2 −cs −s2

−c2 −cs c2 cs
−cs −s2 cs s2

] ∗ (

u1x
u1y

u2x
u2y

) =

(

 
 

f1x

f1y

f2x

f2y)

 
 

  

 

 

(2.10) 
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Portanto, a Eq. (2.9) traduz a matriz de rigidez de cada elemento finito utilizada para 

construir a matriz de rigidez global da estrutura, quando aplica-se o método para elementos do 

tipo treliça plana. 

 

2.1.2. Elemento bidimensional 

Nesse caso, não há uma fórmula fechada a ser aplicada para a determinação da matriz 

de rigidez do elemento finito, tornando-se necessário uma integração numérica para cada 

elemento. Primeiramente, é dada uma breve demonstração da formulação da integração 

numérica utilizando a Quadratura de Gauss-Legendre, segundo Bortoli (2001). A teoria de tal 

integração se baseia em aproximar a integral de uma determinada função, sempre no intervalo 

[−1,1] por um somatório do tipo: 

∫ f(x)dx
1

−1
= ∑ ai ∗ f(xi)

n
i=1   (2.11) 

Em Gauss-Legendre, precisa-se encontrar os chamados polinômios ortogonais, que 

determinam os parâmetros do somatório, pois os pontos xi’s, utilizados no somatório são as 

raízes dos polinômios ortogonais e os pesos ‘ai’ são tais que: 

ai = ∫ li(x)dx
1

−1
  (2.12) 

Onde ‘li(x)’ são os polinômios de interpolação de Lagrange, tendo como pontos de 

interpolação também as raízes dos polinômios ortogonais. Existem métodos para o cálculo 

desses polinômios ortogonais, como o método de ortogonalização de Gran-Schimidt. Porém, 

na prática, as raízes desses polinômios já foram calculadas, e tanto pontos de integração como 

pesos dos pontos são encontrados em tabelas. 

Para utilizar esse método na obtenção das matrizes de rigidez dos elementos finitos, é 

utilizada uma forma de normalizar o elemento, deixando-o com coordenadas adimensionais, 

chamadas ‘ξ’ e ‘η’. Além disso, são criadas as funções de forma (Φi), que são demonstradas 

abaixo. Para essas funções de forma pode-se simplificar dizendo que tais funções têm valor 

um no respectivo nó ‘i’, e valor zero nos demais nós constituintes do elemento finito. Essas 

funções são determinadas conforme a Eq. (2.13). Sendo ‘li’ e ‘lk’ os polinômios 

interpoladores de Lagrange, para as coordenadas ‘ξ’ e ‘η’, respectivamente, e ‘Φi’ as funções 

de forma para cada nó do elemento finito: 
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Φi = lj(ξ) ∗ lk(η) (2.13) 

A demonstração da formulação utilizada no elemento bidimensional é referenciada em 

Zienkiewicz e Taylor (2000). O trabalho de Weaver e Johnston (1984) também foi utilizado 

como referência bibliográfica neste tema, para auxiliar no entendimento do método. A 

demonstração parte inicialmente do princípio dos deslocamentos virtuais aplicado ao 

elemento finito, onde δUe é a energia de deformação virtual de tensões internas e δWe é o 

trabalho virtual das forças externas: 

δUe = δWe (2.14) 

Primeiramente, denota-se ‘u’ sendo o vetor de deslocamentos genéricos em qualquer 

ponto dentro do elemento, onde as variáveis ‘ux’ e ‘vy’ são as translações nas direções ‘x’ e 

‘y’, respectivamente: 

u = [ux vy]T (2.15) 

Baseado no elemento quadrilateral (quatro nós), é definido ‘q’ como o vetor dos 

deslocamentos nodais do elemento, onde ‘i’ é o número do nó dentro do elemento (i=1, ..., 4), 

tem-se: 

q = {qi} ; qi = {qx1; qx2} = {ux,1, vy,1} (2.16) 

Define-se uma relação entre os deslocamentos ‘u’ e os deslocamentos nodais ‘q’, 

traduzida por uma matriz retangular ‘f’, que faz com que ‘u’ seja completamente 

independente de ‘q’: 

u = f ∗ q (2.17) 

A matriz que armazena as deformações (ϵ) do elemento é obtida pela diferenciação 

dos deslocamentos genéricos (u), formando uma matriz ‘d’, denominada operador diferencial 

linear: 

ϵ = d ∗ u (2.18) 

Substituindo Eq.(2.17) em (2.18), tem-se: 

ϵ = d ∗ f ∗ q = B ∗ q   ;      B = d ∗ f (2.19) 
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Utilizando essa relação de deformação (ϵ) na lei de Hooke generalizada, obtém-se: 

σ = E ∗ ϵ = E ∗ B ∗ q (2.20) 

Sendo ‘E’ a matriz que indica a relação entre tensões (𝜎) e deformações (𝜖) no caso 

generalizado. Assim, pode-se escrever a energia de deformação virtual como: 

δUe = ∫ δϵTσ ∗ dA
A

  (2.21) 

E o trabalho virtual de forças externas se torna: 

δW = δqTp + ∫ δuTb ∗ dA
A

  (2.22) 

Onde ‘p’ é o vetor que armazena as forças internas nas coordenadas ‘x’ e ‘y’ em cada 

nó do elemento. Já ‘b’ é o vetor que armazena as forças de corpo no elemento. Dessa forma, 

substituindo Eq. (2.21) e (2.22) em (2.14), obtém-se: 

∫ δϵTσ ∗ dA
A

= δqTp + ∫ δuTb ∗ dA
A

  (2.23) 

Então, substitui-se a Eq. (2.20) para ‘σ’ e as Eq. (2.17) e (2.19) diferenciadas na 

relação (2.23) para obter: 

δqT ∫ BTE ϵ dA
A

= δqTp + δqT ∫ fTb dA
A

  (2.24) 

 Eliminando o termo ‘δqT’ de ambos membros da Eq.(2.24) e substituindo a Eq.(2.19) 

tem-se: 

(∫ BTE B dA
A

) q = p + δqT ∫ fTb dA
A

  (2.25) 

 Que pode ser escrita da seguinte forma: 

K ∙ q = p + pb = F (2.26) 

 Onde claramente se encontra o formato do sistema linear do MEF, como na Eq. (2.1), 

sendo K a matriz de rigidez: 

Ke = ∫ BTEB dA
A

  (2.27) 

 Essa é então a integral utilizada para a determinação da matriz de rigidez de um 

elemento geral bidimensional. Vale observar que para o caso 3D a formulação seria análoga, 
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porém as dimensões das matrizes seriam maiores e as integrais seriam no volume. Então 

parte-se para a explicação de como são obtidas as matrizes necessárias para encontrar Ke, 

baseado no elemento de quatro nós utilizado, o qual é ilustrado na Figura 2. 

 

Figura 2: Elemento com quatro nós 

Primeiramente, a matriz ‘E’ traduz a relação entre tensão e deformação na lei de 

Hooke, como mostrado na Eq. (2.4). Para o caso bidimensional, essa relação fica expressa de 

duas diferentes formas: 

Para estado plano de tensões (quando σz = τxz = τyx = 0) utiliza-se EEPT:  

EEPT =
Y

1−ν2 [

1 ν 0
ν 1 0

0 0
1−ν

2

]  

(2.28) 

Para o estado plano de deformações (quando εz = γxz = γyz = 0) utiliza-se EEPD: 

EEPD =
Y(1−ν)

(1+ν)(1−2ν)

[
 
 
 
 1

ν

1−ν
0

ν

1−ν
1 0

0 0
1−2ν

2(1−ν)]
 
 
 
 

  

 

(2.29) 

Sendo a variável ‘Y’ o módulo de elasticidade longitudinal e ‘ν’ o coeficiente de 

Poisson. Os dois estados são utilizados nesse trabalho, sendo que a escolha de um deles fica 

como opção do usuário do código, pois consta como variável de entrada. Em seguida, deve-se 

definir a matriz ‘B’, que, como pode-se ver na equação (2.19), depende das matrizes ‘d’ e ‘f’.  
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De início, a matriz ‘d’ é definida como a relação entre a deformação e os 

deslocamentos genéricos de qualquer ponto do elemento (ux, vy). Analogamente à Eq. (2.2), 

pode-se definir as relações para deformações (εx, εx e  γxy), segundo a elasticidade plana: 

εx =
∂u

∂x
  ;     εy =

∂v

∂y
  ;      γxy =

∂u

∂y
+

∂v

∂x
  (2.30) 

E então a matriz ‘d’ pode ser escrita da seguinte forma: 

ϵ = d ∗ u =

[
 
 
 
 

∂u

∂x
∂v

∂y

∂u

∂y
+

∂v

∂x]
 
 
 
 

          ∴    d =

[
 
 
 
 

∂

∂x
0

0
∂

∂y

∂

∂y

∂

∂x]
 
 
 
 

  

 

(2.31) 

A matriz ‘f’ representa a relação entre os deslocamentos genéricos, em qualquer ponto 

do elemento (ux, vy) com os deslocamentos nodais (q1, q2, q3, q4), como na Eq. (2.16). Essa 

matriz armazena as chamadas funções de forma: tais funções aproximam o campo de 

deslocamentos genéricos em função dos deslocamentos nodais.  Para tal, são utilizadas as 

coordenadas adimensionais (ξ, η). Conforme apresentado na Figura 2, nota-se que as faces do 

elemento são definidas por ξ = 1 ou − 1 e η = 1 ou − 1. Com interpolação linear nas 

direções ‘ξ’ e ‘η’, a localização de um ponto genérico pode ser expresso da seguinte forma: 

x =
1

4
[(ξ − 1)(η − 1)x1 + (ξ + 1)(1 − η)x2 + (ξ + 1)(η + 1)x3 + (1 − ξ)(η + 1)x4]  

y =
1

4
[(ξ − 1)(η − 1)y1 + (ξ + 1)(1 − η)y2 + (ξ + 1)(η + 1)y3 + (1 − ξ)(η + 1)y4]  

 

(2.32) 

Portanto, a relação entre os deslocamentos genéricos e os deslocamentos nodais se dá 

com a mesma relação mostrada na Eq. (2.31). Porém com ‘uX, vy’ no lugar de ‘x, y’ e os 

deslocamentos nodais no lugar das coordenadas nodais. Portanto definem-se essas funções de 

‘ξ, η’ como sendo as funções de forma: 

u = f ∗ q →  [
u
v
] = [

Φ1 Φ2 Φ3 Φ4

Φ1 Φ2 Φ3 Φ4
] ∗ [

u1 v1

u2 v2

u3 v3

u4 v4

]  

 

(2.33) 

 Sendo: 

Φ1 =
(ξ−1)(η−1)

4
 ;   Φ2 =

(ξ+1)(1−η)

4
 ;   Φ3 =

(ξ+1)(η+1)

4
 ;   Φ4 =

(1−ξ)(η+1)

4
  (2.34) 
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 Em seguida, deve-se fazer a multiplicação de ‘d’ por ‘f’ para determinar a matriz ‘B’, 

conforme a Eq. (2.19). Isso significa derivar as funções ‘Φ’ em relação à ‘x’ e ‘y’. Porém tais 

funções são definidas em relação à ‘ξ’ e ‘η’. Então aplica-se a regra da cadeia: 

∂Φ

∂x
=

∂Φ

∂ξ

∂ξ

∂x
+

∂Φ

∂η

∂η

∂x
  (2.35) 

Analogamente para a derivada na direção de ‘y’. Porém, como mostrado, não é 

possível encontrar ‘ξ, η’ em função de ‘x, y’. Portanto, não é possível encontrar as derivadas 

das coordenadas adimensionais em relação às globais (x, y). Por isso é efetuada a regra da 

cadeia da maneira oposta: 

∂Φ

∂ξ
=

∂Φ

∂x

∂x

∂ξ
+

∂Φ

∂y

∂y

∂ξ
  (2.36) 

E analogamente para ‘η’. Juntando essas derivadas obtém-se: 

[

∂Φ

∂ξ

∂Φ

∂η

] = [

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

] ∗ [

∂Φ

∂x
∂Φ

∂y

]  

 

(2.37) 

 

[

∂Φ

∂x
∂Φ

∂y

] = [

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

]

−1

∗ [

∂Φ

∂ξ

∂Φ

∂η

]  

 

(2.38) 

A matriz encontrada na Eq. (2.38), que envolve as derivadas das coordenadas globais 

em relação às coordenadas adimensionais é então denominada de matriz Jacobiana (J). Essa 

matriz realiza o mapeamento dos pontos entre os espaços real e adimensional. Derivando as 

Equações (2.34), nota-se que essa matriz pode ser encontrada pelas seguintes operações 

matriciais: 

J = [

∂Φ1

∂ξ

∂Φ2

∂ξ

∂Φ3

∂ξ

∂Φ4

∂ξ

∂Φ1

∂η

∂Φ2

∂η

∂Φ3

∂η

∂Φ4

∂η

] ∗ [

x1 y1

x2 y2

x3 y3

x4 y4

]  

J = DL ∗ CN 

 

(2.39) 

Resolvendo as derivadas a matriz ‘DL’ fica: 
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DL = [

(η−1)

4

(1−η)

4

(η+1)

4

−(η+1)

4
(ξ−1)

4

−(ξ+1)

4

(ξ+1)

4

(1−ξ)

4

]  

 

(2.40) 

 Voltando então para a Eq. (2.32), encontra-se a matriz das derivadas parciais das 

funções de forma em relação às coordenadas globais, ‘DG’: 

DG = J−1 ∗ DL = [

∂Φ1

∂x

∂Φ2

∂x

∂Φ3

∂x

∂Φ4

∂x
∂Φ1

∂y

∂Φ2

∂y

∂Φ3

∂y

∂Φ4

∂y

]  

 

(2.41) 

 Portanto, os termos que compõe a matriz ‘B’ encontram-se dentro de ‘DG’. Utilizando 

a Eq. (2.19) para encontrar a matriz ‘B’, verifica-se que: 

Bi = d ∗ fi =

[
 
 
 
 

∂

∂x
0

0
∂

∂y

∂

∂y

∂

∂x]
 
 
 
 

∗ Φi =

[
 
 
 
 
∂Φi

∂x
0

0
∂Φi

∂y

∂Φi

∂y

∂Φi

∂x ]
 
 
 
 

  

 

(2.42) 

 Percebe-se que tais derivadas são encontradas nas células de ‘DG’ da seguinte forma: 

∂Φi

∂x
= DG1i

  ;     
∂Φi

∂y
= DG2i

  (2.43) 

 Portanto a matriz B pode ser escrita como: 

B =  [

DG11
0 DG12

0 DG13
0 DG14

0

0 DG21
0 DG22

0 DG23
0 DG24

DG21
DG11

DG22
DG12

DG23
DG13

DG24
DG14

]  

(2.44) 

 Por fim, na integração, na Eq. (2.27) o infinitesimal ‘dA’ deve ser substituído por uma 

expressão em função dos adimensionais ‘ξ’ e ‘η’. Neste passo não será demonstrada a 

obtenção da solução, pois trata-se de uma passagem simplesmente de cálculo integral e tal 

demonstração não teria grande contribuição para o trabalho em questão. Então, por 

substituição de variável na integral, encontra-se: 

dA = (
∂x

∂ξ

∂y

∂η
−

∂y

∂ξ

∂x

∂η
) ∂ξ ∂η  (2.45) 

dA = |

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

| ∙ ∂ξ ∂η  

 

(2.46) 
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dA = |J| ∗ ∂ξ ∂η  (2.47) 

 Tendo então tudo em mãos, pode-se voltar à Eq. (2.27) e então resolvê-la como uma 

integração numérica, Eq. (2.11). Os pesos dos pontos de integração (ai) são denominados 

‘pesoi’ e o resultado da integração deve ser multiplicado pela espessura do elemento: 

Ke = t∑ ∑ pesoi ∗ pesoj ∗ BT ∗ EEPT ∗ B ∗ |J|ji   (2.48) 

 Os parâmetros que variam (‘i’ e ‘j’) seguem os pontos de integração de Gauss, como 

mostrado na Tabela 1. Exemplificando, se for escolhido realizar a integral com 2 pontos, tem-

se: i1 = −0,57735 com peso1 = 1 e i2 = 0,57735 com ai = 1. Tais valores se encontram já 

calculados dentro de uma biblioteca do próprio FORTRAN, sendo apresentados para 4 pontos 

de integração na Tabela 1. 

Tabela 1: Parâmetros de integração para até 4 pontos de integração 

N 
it
 

𝑎𝑖 

1 00 t
 

 

2 

57735,0

57735,0

1

0





t

t

 
1

1

1

0





A

A

 
3 

0

77459667,0

77459667,0

2

1

0







t

t

t

 
9

8

9
5

9
5

2

1

0







A

A

A

 
4 

33998104,0

33998104,0

86113631,0

86113631,0

2

2

1

0









t

t

t

t

 
65214516,0

65214516,0

34785484,0

34785484,0

3

2

1

0









A

A

A

A

 
 

No código desenvolvido, o que se faz é calcular as matrizes ‘DL’, ‘J’, ‘DG’, segundo as 

equações (2.39), (2.40) e (2.41) e finalmente calcular B, segundo a Eq. (2.44). Este processo é 

realizado para cada um dos pontos de integração (‘i’ e ‘j’). Então as operações matriciais são 

efetuadas, multiplicando-se pelos respectivos pesos do ponto de integração. Por fim, a 

somatória de todos os pontos de integração é feita e multiplica-se o final pela espessura (t). 

Dessa forma, a matriz de rigidez do elemento (Ke) é obtida. 
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2.2. Obtenção da matriz de rigidez global (“espalhamento”) 

Uma vez calculada a matriz de rigidez de cada elemento, o seguinte procedimento é a 

composição da matriz de rigidez global da estrutura, que é denominado “espalhamento”. Tal 

processo consiste em somar as matrizes de rigidez de cada elemento em uma matriz global. 

Somando cada termo em sua respectiva parcela de energia, como exemplificado abaixo: 

Assumindo um elemento constituído por dois nós 1 e 2, a matriz de rigidez deste 

elemento (Ke) tem a seguinte forma: 

Ke = 

𝓀11 𝓀12 𝓀13 𝓀14 ← qx1

𝓀21 𝓀22 𝓀23 𝓀24 ← qy1

𝓀31 𝓀32 𝓀33 𝓀34 ← qx2

𝓀41 𝓀42 𝓀43 𝓀44 ← qy2

↑ ↑ ↑ ↑
qx1 qy1 qx2 qy2

  

Como indicado pelas setas, cada parcela da matriz de rigidez corresponde a um par de 

graus de liberdade dos nós do elemento finito. Então cada uma dessas parcelas deve ser 

somada à posição correta na matriz de rigidez global, que por sua vez também tem cada 

parcela relacionada graus de liberdade, porém nesta, consideramos todos os nós da estrutura. 

Assim: 

KG =

𝓀11 𝓀12 ⋯ 𝓀1n ← qx1

𝓀21 𝓀22 ⋯ 𝓀2n ← qy1

⋮ ⋮ ⋱ ⋮
𝓀n1 𝓀n2 ⋮ 𝓀nn ← qyn

↑ ↑ ↑
qx1 qy1 qyn

  

Portanto, basta inicializar a matriz global com zeros e somar as parcelas de todas as 

matrizes dos elementos finitos aos seus respectivos lugares, levando em conta o par de graus 

de liberdade de cada parcela. 

 

2.3. Redução do sistema linear 

Depois de efetuado o espalhamento, basta fazer a redução da matriz de rigidez global, 

como já explicado anteriormente. Essa redução deve ser acompanhada por uma redução 
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também nos vetores de deslocamentos e de cargas nodais. Esta é realizada da mesma forma: 

retirando do vetor as parcelas correspondentes a graus de liberdade de nós fixos (os apoios). 

Então se deve resolver o sistema do tipo KR ∗ UR = FR (reduzido) para então encontrar todos 

os deslocamentos possíveis. Monta-se então o vetor de deslocamentos total, simplesmente 

colocando zero nos deslocamentos que foram retirados, os apoios. Se necessário, para 

encontrar as forças nos apoios, deve-se multiplicar a matriz de rigidez global (não reduzida) 

pelos deslocamentos totais, então se calcula todas as forças nos nós, onde as forças atuantes 

nos nós de deslocamentos restringidos são as forças de apoio. 

 

2.4. Obtenção de tensões e deformações 

Encontrado todos os deslocamentos (U), facilmente podem-se encontrar as tensões e 

as deformações, seguindo sucinta explicação: 

Definem-se vetores de deformação e tensão locais para cada elemento: εL =

[

εx

εx

γxy

] , σL = [

σx

σy

τxy

]. 

Então, para determinar o vetor de deformações deve-se utilizar a matriz ‘B’, definida 

conforme Eq. (2.44), procedendo da seguinte forma: 

εL = Belem ∗ Uelem (2.49) 

A dedução desta expressão é trivial, pois segundo mostram as Eq. (2.19) e (2.44), a 

matriz ‘B’ nada mais é do que o agrupamento dos diferenciais em ‘x’ e ‘y’ que, aplicados aos 

deslocamentos nodais, resultam nas deformações (εx, εx, γxy). 

Na Eq. (2.49), os subscritos das matrizes ‘B’ e ‘U’ indicam que são matrizes do 

elemento, ou seja, ‘B’ é a mesma que foi utilizada na integração de tal elemento. Porém não 

aplicada nos pontos de integração e sim em cada nó do elemento, ou seja, as coordenadas 

adimensionais são as coordenadas de cada nó. O vetor ‘U’ contém os deslocamentos nas 

direções vertical e horizontal dos nós pertencentes ao mesmo elemento finito. Portanto, 

resulta em um deslocamento para cada nó dentro do elemento. Para encontrar as tensões basta 

aplicar a lei de Hooke generalizada, porém aplicada ao ponto analisado, conforme Eq. (2.50): 
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σL = EEPT ∗ εL (2.50) 

Na Eq. (2.50), foi escolhido o estado plano de tensões para a representação da Lei de 

Hooke bidimensional. Caso a escolha for pela utilização do estado plano de deformações, 

deve-se utilizando a matriz EEPD no lugar de EEPT, segundo as Eq. (2.28) e (2.29). Vale citar 

aqui que o resultado das tensões claramente depende dessa escolha. 

Dessa forma, já são conhecidas deformações e tensões de cada elemento, armazenadas 

nos vetores ‘εL’ e ‘σL’. Então, basta criar matrizes de deformações e tensões globais que 

armazenamos dados de todos os elementos, tendo em cada coluna as informações de 

determinado elemento. Essas matrizes devem ter três dimensões, como por exemplo, no caso 

linear, a dimensão deve ser [N_Elementos;4;3]: a primeira dimensão (de tamanho igual ao 

número de elementos) armazena um conjunto de informações para cada elemento; a segunda 

dimensão (de tamanho igual a 4) armazena informações para cada um dos quatro nós de um 

elementos. Por fim, a terceira dimensão (de tamanho igual a 3) armazena as três tensões (σx, 

σy, τxy) para um nó. 

Nesse método resultam-se, então, as tensões contribuintes de cada nó dentro do 

elemento finito. Porém, é mais consistente analisar uma tensão média para cada elemento 

finito da estrutura. Dessa forma, tem-se somente um valor de tensão para cada elemento 

finito, tornando mais fácil julgar analiticamente como é a variação da tensão na estrutura. 

Para tal, o procedimento consiste em fazer uma somatória da multiplicação da função 

de forma de cada nó, aplicada no ponto central do elemento (onde as coordenadas 

adimensionais são todas iguais a zero) pela tensão do correspondente nó, como demonstrado 

na Eq. (2.51). Como se pode observar, nada mais é do que calcular um valor de tensão 

exatamente no centro do elemento. 

σelemento = ∑Φi(0,0) ∗ σi

a

i=1

 
 

(2.51) 

Na Eq. (2.51), ‘i’ é o número do nó do elemento finito, ‘σi’ é a tensão correspondente 

a esse nó para esse elemento, calculada conforme Eq. (2.50). Finalmente, ‘Φi (0,0)’ é a 

função de forma do nó ‘i’ aplicada nas coordenadas adimensionais todas iguais a zero e a 

variável ‘a’ é número de nós do elemento finito (quatro para o caso linear). Note que, com 

essa equação pode-se encontrar o valor da tensão em qualquer ponto do elemento, bastando 

mudar os valores das coordenadas adimensionais nas quais as funções de forma dos nós são 
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aplicadas, sendo que ao colocar as coordenadas de um nó, o resultado da tensão é o próprio 

‘σi’ desse nó, pois faz parte da definição da função de forma que ela deve ter valor igual a 1 

quando aplicada no correspondente nó e igual a zero quando aplicada nos demais nós. 

A aplicação de tal fórmula para elementos de aproximação linear do campo de 

deslocamentos, como é o utilizado nesse trabalho, resulta em uma simples média aritmética 

das tensões de cada nó do elemento. Pois, ao aplicar as funções de forma no centro do 

elemento elas resultam em valores todos iguais a ‘1/a’, o que equivale a somar todas as 

tensões e dividir pelo número de nós do elemento.  

 

2.5. Implementação computacional I 

A construção do código computacional que execute o MEF foi realizada com base em 

sub-rotinas no FORTRAN. O programa principal (main) chama as sub-rotinas na ordem 

correta, enviando para cada uma as variáveis necessárias. Matrizes e variáveis importantes 

para todo o método são salvas de forma global, de forma que todas as rotinas e sub-rotinas 

possam acessá-las, sem que estas precisem ser enviadas como argumentos. O código é 

composto pelas seguintes sub-rotinas: 

 Entrada de dados; 

 Rigidez local; 

 Espalhamento; 

 Condições de contorno; 

 Tensões e deformações; 

 Saída de dados. 

O início do código se dá pela sub-rotina de entrada de dados, que realiza a leitura de 

um arquivo de texto, obtendo as informações necessárias para realizar a análise via MEF. Esta 

rotina deve ler todas as informações e armazenar os dados nas respectivas variáveis. Este 

arquivo de texto contém as seguintes informações:  

 Quantidade de nós e de elementos da malha; 

 Coordenadas ‘xy’ de cada nó; 

 Número dos 4 nós que definem cada elemento; 



33 

 

 

 Espessura, módulo de elasticidade longitudinal e coeficiente de Poisson de cada 

elemento; 

 Análise por estado plano de tensões ou de deformações; 

 Nós vinculados nas direções ‘x’ e ‘y’; 

 Nós com forças externas aplicadas nas direções ‘x’ e ‘y’. 

Em seguida, o código segue para a próxima sub-rotina, denominada rigidez local. Esta 

tem a função de calcular as matrizes de rigidez para cada um dos elementos finitos. Portanto, 

os cálculos presentes nesta rotina devem ser repetidos até a quantidade total de elementos 

finitos. Nesta etapa, segue-se o cálculo das matrizes necessárias para realizar a integração 

numérica, segundo descrito nesse capítulo. A Figura 3 abaixo ilustra, resumidamente, a 

seguinte sequência de cálculos que o código realiza e especifica quais equações são utilizadas 

em cada passo. 

 
Figura 3: Fluxograma de cálculos da rotina Rigidez local 

Dessa forma, quando finaliza-se a rotina de cálculo acima, a somatório das parcelas de 

Ke é igual à matriz de rigidez do elemento finito em questão. Evidencia-se que, o número de 

pontos de integração de Gauss influencia diretamente na quantidade de iterações que esta 

rotina realiza para calcular Ke. O código construído deixa esse número como uma variável 

que pode ser alterada durante sua construção. Pela literatura consultada e experiência em 

outros trabalhos nessa área, foi fixado para os exemplos numéricos 4 pontos de iteração por 
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coordenada (‘ξ’ e ‘η’). O passo seguinte é repetir a rotina para todos os elementos da estrutura 

e então, finaliza-se esta sub-rotina.  

A seguinte sub-rotina implementada é denominada espalhamento. Esta sub-rotina é 

responsável pela obtenção da matriz de rigidez global da estrutura, a partir das matrizes de 

rigidez de cada elemento finito, conforme teoria apresentada no Item 2.2.  

O processo tem início com a inicialização de uma matriz (KGLOBAL) com todos os 

elementos iguais a zero. Dado um elemento com matriz de rigidez Ke conhecida, o ponto 

crucial desta rotina é definir em quais células de KGLOBAL as parcelas de Ke devem ser 

somadas. Supondo que os nós que compõem o elemento finito em questão tenham as 

seguintes coordenadas: (x1; y1),… , (xi; yi), … , (x4; y4). A Equação (2.52) mostra uma 

representação da matriz ‘Ke’ (reduzida, mostrando somente as parcelas relacionadas à um 

dado nó), onde em cada célula de ‘Ke’ está identificada a posição da célula na qual esta 

parcela deve ser somada em KGLOBAL: 

Ke = [
KGLOBAL [2xi − 1; 2yi − 1] KGLOBAL [2xi; 2yi − 1]

KGLOBAL [2xi − 1; 2yi] KGLOBAL [2xi; 2yi] 
]  

(2.52) 

Portanto, deve-se ser construída uma estrutura de repetição para somar os ternos nas 

parcelas apresentadas na Eq. (2.52), repetindo esse processo para cada um dos 4 pontos 

pertencentes ao elemento finito em questão. Em seguida, repetir o processo para cada um dos 

elementos constituintes da estrutura. Dessa forma, finaliza-se a construção da matriz de 

rigidez global da estrutura.  

Seguindo a execução do MEF, a próxima sub-rotina é denominada condições de 

contorno. Esta sub-rotina é responsável pela redução de KGLOBAL, zerando linhas e colunas 

que multiplicam um deslocamento nulo (onde existe um apoio restringindo o movimento) e 

colocando o valor 1 na intersecção entre a linha e a coluna. Nesta sub-rotina também é 

construído o vetor de forças (F) reduzido, ou seja, excluem-se as células relacionadas ao nós 

com deslocamento nulo. Dessa forma, a resolução do sistema da Eq. (2.1) torna-se possível, e 

esta é realizada utilizando uma função interna do FORTRAN. Portanto, neste passo são 

obtidos os deslocamentos nodais. 

A sub-rotina final do MEF deve calcular tensões e deformações, informações que 

serão utilizadas no algoritmo de otimização. Segundo explicado no Item 2.4, primeiramente 

calcula-se a matriz ‘B’, com processo análogo ao apresentado na Figura 3, porém não são 
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utilizados os pontos de integração, mas cada um dos nós que compõem o elemento em 

questão. Com a aplicação da Eq. (2.49) e Eq. (2.50) obtém-se deformações e tensões para 

cada um dos nós. E, finalmente, com a Eq. (2.51) obtém-se o valor da tensão central do 

elemento finito. Este processo é repetido para cada um dos elementos da estrutura e as 

informações são armazenadas em vetores globais. 

É ainda implementada uma função de saída de dados, a qual cria uma arquivo de texto, 

mostrando todas as informações obtidas pelo MEF: deslocamentos nodais, tensões e 

deformações dos elementos. O código não produz diretamente resultados em forma de 

gráficos ou figuras. Estes devem ser construídos manualmente no software Microsoft Excel®, 

importando o arquivo texto da saída de dados para que se obtenham as informações.    
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3. FORMULAÇÃO TEÓRICA 2:                         

OTIMIZAÇÃO TOPOLÓGICA 

Segundo Lanes (2013), um problema de otimização topológica consiste 

essencialmente na identificação da melhor distribuição de material em uma determinada 

região preestabelecida, quando a estrutura está sujeita a alguma restrição de projeto, que 

podem ser: volume, taxas de deformações, frequências naturais, etc. Para o caso plano, a 

otimização topológica parte de uma chapa retangular com o maior tamanho possível dentro do 

domínio e termina com uma geometria final diferente, que respeite as restrições de projeto, 

como esquematizado na Figura 4. 

 

Figura 4: Representação do problema de otimização topológica 

FONTE: FERNANDES, 2013, p. 03. 

Sanches (2011) define o problema de otimização estrutural segundo uma primeira 

abordagem relacionada à própria análise: a avaliação das possíveis configurações da estrutura. 

Diante dos resultados avalia-se e define-se a configuração ótima para o domínio estudado. A 

necessidade de se alcançar uma configuração ótima para um determinado critério de 

otimização agrega ao estudo um nível de análise estrutural dependente de um domínio 

discreto, o que possibilita o emprego do MEF. Então essa discretização permite a 

implementação de uma rotina computacional eficiente no processo de análise. Porém existe a 

possibilidade de problemas de instabilidade numérica como desvantagem. As referências 

apresentadas definem tais problemas em três categorias: irregularidades do tabuleiro de 

xadrez, dependência da malha e problemas de ótimos locais. 

A irregularidade do tabuleiro de xadrez caracteriza-se pela configuração estrutural 

alternada em vazios de materiais, como pode ser observado na Figura 5. A origem desse 

problema está associada a erros numéricos do processo de aproximação do elemento finito 

(DIAZ; SIGMUND, 1995 e JOG; HABER, 1996). Como técnica para eliminação desse 
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problema, Bendsøe Sigmund (2003) sugerem a utilização de elementos com função 

interpoladora de ordem superior, como quadrática ou cúbica, pois tais elementos apresentam 

uma melhor aproximação do campo de deslocamentos.  

 

Figura 5: Representação qualitativa da irregularidade de tabuleiro de xadrez 

FONTE: LANES, 2013, p. 12. 

 A dependência de malha é um problema inerente à discretização do domínio. 

Intuitivamente espera-se que, quanto mais refinada a malha, maior a fidelidade das condições 

de contorno descrita pela topologia ótima. Porém, não é isso que ocorre. Muitas vezes as 

malhas mais refinadas resultam em topologia mais detalhadas, porém qualitativamente 

diferentes de outras malhas ou modelos. Basicamente, com o aumento do refinamento da 

malha, há um aumento de espaços vazios. Várias referências citam trabalhos com métodos 

atenuantes, filtros, para reduzir essa dependência da malha, como descritos em Jog e Haber 

(1996), Sigmund (1997) ou Sigmund e Petersson (1998). 

 O problema de ótimos locais está relacionado à natureza não convexa do problema 

matemático envolvido, sujeito a inúmeros resultados com soluções localizadas (COUTINHO, 

2006 e SANT’ANNA, 2002). Ou seja, para um mesmo problema muitos ótimos podem ser 

encontrados, dependendo dos parâmetros escolhidos. De todos os problemas, talvez a 

determinação de soluções globais seja um dos maiores desafios na otimização topológica, o 

que permite entender que a identificação de ótimos locais já seja suficiente o bastante para a 

maioria dos projetos de engenharia. 
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3.1. Otimização estrutural evolucionária (ESO) 

O método de otimização topológica utilizado nesse trabalho se baseia no algoritmo 

ESO (Evolutionary Structural Optimization), ou otimização estrutural evolucionária, em 

português. Tal método foi primeiramente proposto por Xie e Steven (1993), como um método 

com conceitos simples para a determinação topológica de projetos. A ideia básica do método 

consiste na execução de um algoritmo de aproximação heurística com remoção gradual de 

regiões menos solicitadas do domínio, com base em um critério de penalidade. O primeiro 

critério apresentado pelos autores foi baseado em tensões equivalentes de von Mises: 

elementos com tensões abaixo de um dado valor limite são removidos a cada iteração do 

processo, permitindo então encontrar uma estrutura com rigidez ótima para um determinado 

volume remanescente. Essa metodologia ficou conhecida como ESO sob nível de tensão. 

Num primeiro momento, os critérios de remoção (como von Mises ou tensões médias) 

propostos levaram a contestações a respeito de sua validação e questionamentos sobre à 

escassez de embasamento matemático (ZHOU; ROZVANY, 2001). Essa motivação levou à 

criação de outra vertente: o método ESO em nível de deslocamentos. Tal se baseava na 

igualdade das energias total e de deformação para problemas com restrição de rigidez 

associado a um número de sensibilidade, o qual era dependente das matrizes de rigidez de 

deslocamento (CHU et al., 1996). Posteriormente, Zhao et al. (1998) constataram a coerência 

dos resultados encontrados para as duas metodologias do ESO, tanto sob nível de tensão 

como de deformação. Em seguida, Tanskanen (2002) concluiu que tal método é capaz de 

proporcionar uma base teórica equivalente ao método de otimização Programação Linear 

Sequencial. 

Com a consolidação do método ESO, foram propostas variações do algoritmo, visando 

suprir limitações, como o problema de ótimos locais. Dentre estas, vale citar: GESO 

(Otimização estrutural evolucionária genética), que integra operações da Genética (seleção, 

cruzamento e mutação) ao ESO original; ESO Aditivo, que se baseia na adição de elementos 

ao sistema em regiões de alta concentração de tensão; e BESO (Otimização estrutural 

evolucionária bidirecional), que adiciona e remove elementos do sistema simultaneamente. 

Também foram formuladas aplicações do algoritmo para análises dinâmicas. O que se utiliza 

nesse trabalho é apenas o método ESO original em nível de tensão, por se tratar de um 

método de aplicação mais simples e de fácil implementação. 
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3.2. Formulação ESO em nível de tensão 

Nesta formulação do método, elementos com baixo nível de tensão são 

sistematicamente removidos da estrutura, para obtenção de um projeto eficiente. Tal remoção 

ocorre durante um processo evolutivo e, a cada análise, novos elementos ineficientes são 

eliminados, até que o critério objetivo seja alcançado.  

Para determinar quais elementos serão removidos da estrutura é utilizado um critério 

de penalidade, o qual utiliza uma formulação de tensões equivalentes de cada elemento para 

ranqueá-los, ou seja, encontrar aquele com maior tensão e os de menores tensão para serem 

retirados da estrutura. É arbitrada uma taxa de remoção, ou seja, qual o nível de tensão 

máxima, no qual os elementos que não atingirem este valor serão removidos, como mostra a 

Eq. (3.1): 

σeq

σeqMAX

< RR  (3.1) 

Isso quer dizer que, em uma determinada iteração, todos os elementos que 

apresentarem uma tensão equivalente menor do que ‘RR ∙ σeMAX
’ serão removidos da 

estrutura. O parâmetro ‘RR’ é denominado taxa ou razão de rejeição na iteração. No início do 

processo é estipulado um valor inicial chamado ‘RRi’, então para a primeira iteração é 

utilizado esse valor. Quando, numa dada iteração, existem elementos com nível de tensão 

menor do que este, estes são eliminados e então o processo segue para a iteração seguinte. 

Quando não há nenhum elemento a ser removido, ou seja, todos apresentam tensões 

equivalentes maiores do que ‘RRi ∙ σeMAX
’, então a taxa é acrescida de um valor ER, 

denominado razão de evolução ou passo do aumento de ‘RRi’, até que exista pelo menos um 

elemento à ser removido na iteração atual. 

RR = RRi + ER (3.2) 

 Vale citar que ‘RRi’ é constante para todo o processo. Portanto, todas as iterações 

iniciam-se com uma taxa de remoção igual.  Essa forma é utilizada para atenuar a remoção de 

elementos: sempre tenta-se eliminar os elementos com menor nível de tensão, mesmo que 

essa taxa ‘RR’ seja menor do que a praticada na iteração anterior. 

Querin (1997) sugere que para taxa de remoção e seu passo sejam adotados valores 

pequenos, próximos de 1%, para que seja garantida melhor convergência. Porém na prática 
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desse trabalho, a cada exemplo devem ser testados diferentes parâmetros de otimização com 

objetivo de verificação de convergência. Portanto, em alguns casos uma taxa maior do que 

essa já garante uma convergência adequada, porém para outros é necessária a utilização de 

valores abaixo de 1%. 

O processo evolucionário como um todo pode ser resumido nos seguintes passos 

(LANES, 2013): 

 Passo 1: discretização do domínio inicial da estrutura, utilizando-se uma malha fina de 

elementos finitos e aplicação de condições de contorno e ações prescritas; 

 Passo 2: analise estrutural via MEF; 

 Passo 3: remover elementos que satisfaçam (3.1); 

 Passo 4: repetir os passos 2 à 4, até que o projeto ótimo seja alcançado. 

A Figura 6 ilustra o processo na forma de um digrama: 

 

Figura 6: Algoritmo ESO em nível de tensão. 

Em análises desse tipo, fixa-se o volume de material alvo a ser encontrado, o qual 

define a geometria ótima. Como o problema estudado é bidimensional, este valor é medido 

como uma relação de área da estrutura.   
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Para o cálculo da tensão equivalente de cada elemento a ser utilizada no critério de 

penalidade são utilizadas duas diferentes formulações nesse trabalho: tensão equivalente de 

von Mises e tensão equivalente de Rankine, demonstrados nos próximos títulos. 

 

3.3. Tensão equivalente de von Mises 

Em 1913, R. von Mises desenvolveu um critério de escoamento com base na teoria da 

energia de distorção, o qual diz que o escoamento do material ocorre quando a energia de 

distorção por unidade de volume do material é igual ou maior do que a energia de distorção 

por unidade de volume do mesmo material quando submetido a escoamento em um ensaio de 

tração simples (HIBBELER, 2010). Pela formulação de von Mises, isso equivale 

matematicamente ao segundo invariante do tensor (J2) atingir seu valor crítico. Esse invariante 

pode ser escrito como: 

J2 =
1

6
[(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2]  (3.3) 

Assumindo caso uniaxial, ou seja, σ1 = σesc e σ2 = σ3 = 0 pode-se encontrar o valor 

do invariante J2: 

J2 =
1

6
[(σesc − 0)2 + (0 − σesc)

2] =
σesc

2

3
  (3.4) 

Substituindo a Eq. (3.4) em (3.3) obtém-se 

σesc =
√2

2
√(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2  

(3.5) 

Supondo-se que esse escoamento ocorra para uma dada tensão de von Mises no 

elemento, tem-se que σesc = σeq. Aplicando a equação (3.5) ao caso estudado, tensões no 

plano, para um elemento finito a equação se reduz à: 

σeq = √σx
2 − σxσy + 3τxy

2   
(3.6) 

Essa tensão equivalente ficou bastante conhecida como tensão de von Mises, mas 

também pode apresentar o nome de energia de distorção máxima, ou von Mises-Hencky. 
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3.4. Tensão equivalente de Rankine 

Em meados do século XIX, W. Rankine propôs a chamada teoria da tensão normal 

máxima. Tal teoria descreve que, como materiais frágeis tendem a falhar repentinamente por 

ruptura, sem escoamento, quando aplica-se tração a ruptura ocorre quando a tensão normal 

atinge o limite de resistência ‘σr’ e quando aplica-se torção a ruptura ocorre devido à tensão 

de tração máxima novamente. Portanto, o critério de Rankine afirma que o material frágil 

falha quando a tensão principal máxima ‘σ1’ no material atingir um valor limite igual ao 

limite de resistência à tensão normal que o material pode suportar quando submetido à tração 

simples. 

Ou seja, a tensão equivalente de Rankine a ser utilizada como critério de falha é 

simplesmente o módulo da máxima tensão principal. No caso plano, tem-se: 

σeq = max (|σ1|, |σ2|) (3.7) 

É interessante observar que esse critério difere de von Mises, pois quando se trata de 

materiais frágeis a falha acontece basicamente por ruptura repentina, com baixos níveis de 

deformação. Para os materiais mais dúcteis ocorre a deformação do material até o escoamento 

(falha) e essa energia perdida para deformar deve ser incorporada na tensão equivalente do 

critério de falha, portanto para esses materiais se utiliza o critério da energia máxima de 

distorção (von Mises). 

 

3.5. Implementação computacional II 

Novamente, o método foi implementado computacionalmente utilizando a linguagem 

FORTRAN.  Tendo o MEF implementado, conforme descrito no Capítulo 2, bastou o 

desenvolvimento de um código que executasse o algoritmo de otimização, seguindo o 

fluxograma da Figura 6.  

Primeiramente, a criação da malha de elementos finitos foi realizada com o auxílio do 

software comercial ANSYS®. Um arquivo de texto com dados da malha (coordenadas dos nós 

e conectividade dos elementos finitos) é gerado no software e então este arquivo é utilizado na 

entrada de dados do código que executa o MEF. A partir da Eq. (2.51) obtém-se um valor de 
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σ para cada elemento finito, que é utilizado para calcular a tensão equivalente pelo critério 

escolhido (Von Mises ou Rankine), segundo as Equações (3.7) e (3.5). 

Para isto, é necessário o cálculo das tensões principais (σ1 e σ2). Estas são obtidas 

pelas Eq. (3.8), segundo Hibbeler (2010):  

σ1,2 =
σx+σy

2
± √(

σx+σy

2
)
2
+ τxy

2   
(3.8) 

Em seguida, o processo de avaliação dos elementos que devem ser eliminados é 

trivial: é comparada a relação de tensões de cada elementos com a variável ‘RR’ (taxa de 

rejeição), a qual deve ser incrementada quando não for possível eliminar nenhum elemento 

em determinada iteração. O processo de “eliminar” os elementos da análise é realizado 

através da criação de um vetor denominado ‘KILL’. Este vetor tem a dimensão igual ao 

número total de elementos da malha e é inicializado com valores iguais a 1 em todas as 

células. A cada elemento retirado da estrutura, deve-se zerar a linha correspondente à 

numeração deste elemento na matriz ‘KILL’. 

 Portanto, todas as matrizes de rigidez dos elementos (‘Ke’) são multiplicadas por cada 

linha correspondente ao elemento do vetor ‘KILL’. Dessa forma, os elementos que foram 

eliminados não contribuem mais para a rigidez da estrutura. Ao final do processo, os valores 

armazenados no vetor ‘KILL’ indicam quais elementos foram eliminados e quais ainda fazem 

parte da estrutura.  

 Ao final do processo de otimização, a sub-rotina de saída de dados gera um arquivo de 

texto indicando somente os nós pertencentes à elementos que não foram eliminados no 

processo. Isto é implementado através de uma estrutura seletiva (“IF / ELSE”), responsável 

por analisar os valores do vetor ‘KILL’ e escrever no arquivo de saída de dados os nós dos 

elementos que apresentarem um valor igual a 1 na célula respectiva neste vetor. 

 A representação gráfica da topologia final da otimização é construída a partir da 

exportação do arquivo de saída de dados para o software Microsoft Excel®. Recebendo os nós 

e as coordenadas destes, constrói-se um gráfico de dispersão baseado nas coordenadas dos 

nós. Ajustando a escala dos eixos do gráfico, para que fique compatível com as dimensões da 

estrutura, o resultado deste é uma representação fiel da malha final gerada pela otimização 

topológica. 
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4. FORMULAÇÃO TEÓRICA 3:                

CONFIABILIDADE ESTRUTURAL 

Segundo Leonel (2009), em uma análise de confiabilidade estrutural existem critérios 

a serem avaliados, como eventos estatísticos que levam a cenários de falha. A verificação de 

cada critério significa verificar cada modo potencial de falha da estrutura. Para isso, deve-se 

descrever e formular o problema considerando suas variáveis e devidas incertezas. Com essa 

formulação, pode-se determinar uma probabilidade de que se observe uma situação de falha, 

considerando o conhecimento estatístico de cada variável e sua influência sobre o 

comportamento da estrutura. 

Quando uma estrutura se encontra em uma situação onde a mesma não é mais capaz 

de cumprir requisitos de serviço e de segurança, ela se encontra em uma situação indesejável, 

ou seja, a situação que é denominada falha. Para chegar ao ponto de falha existem várias 

maneiras distintas, cada uma delas é chamada de modo de falha.  

Para cada modo de falha existe um estado limite associado, os quais são avaliados 

pelas equações de estado limite. Sendo (x1, x2, x3, ..., xn) as variáveis que descrevem o 

comportamento da estrutura e seus carregamentos, a representação da equação de estado 

limite para um dado modo de falha pode ser definida como: 

g(x) = g(x1, x2, … , xn) = 0 (4.1) 

Esta equação deve ser definida para que, quando a função da Eq. (4.1) for maior do 

que zero, a estrutura se encontre em uma situação de segurança e quando g(x) < 0, numa 

situação de falha. No ponto onde g(x) = 0, a equação se encontra na fronteira entre os dois 

domínios, denominada superfície de falha. A Figura 7 ilustra graficamente essas análises: 

 
Figura 7: Representação dos domínios de g(x) em um espaço de três variáveis 
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Nesse trabalho não são analisados casos de confiabilidade dependentes do tempo. 

Portanto as variações que estejam ligadas ao histórico de uso da estrutura de forma periódica 

devem estar expressas dentro das informações estatísticas das variáveis a serem utilizadas, 

caso precisem ser levadas em conta. Tendo essa consideração, é possível fazer uma ilustração 

em que as variáveis do problema são classificadas como sendo de solicitação (S) e resistência 

(R), então a equação de estado limite pode ser escrita como: 

g(R, S) = R − S = 0 (4.2) 

Como utilizado em vários exemplos, a equação de estado limite pode ser 

simplesmente dependente da tensão à qual a estrutura é submetida, sendo então igual à: 

g(σ, σadm) = σadm − σ (4.3) 

Assim, quando g > 0 significa que a tensão admissível é maior do que a tensão 

aplicada (σ), portanto uma situação de segurança. Se g < 0 significa que a tensão aplicada é 

maior do que a tensão admissível, portanto uma situação de falha. 

Na confiabilidade estrutural, o cálculo da probabilidade de falha para um problema 

genérico de duas variáveis X e Y é dado por: 

PF = P(X ≤ Y) ou PF = P(X − Y ≤ 0) (4.4) 

Sendo ‘fXY(x, y)’ a função conjunta de densidade de probabilidade das variáveis ‘X’ e 

‘Y’, a probabilidade de falha pode ser representada novamente como sendo: 

PF = ∫ ∫ fXY(x, y)dxdy
∞

−∞

∞

−∞
  (4.5) 

 Admitindo que ‘X’ e ‘Y’ sejam estatisticamente independentes, a função ‘fXY(x, y)’ e 

a probabilidade de falha podem ser reescritas como: 

PF = ∫ fX(x)
∞

−∞
[∫ fY(y)

∞

−∞
dy]dx  (4.6) 

 Assim, para um exemplo onde ‘X’ e ‘Y’ sejam variáveis de distribuição normal 

padrão, utilizando cálculos estatísticos pode-se obter a probabilidade de falha. Em alguns 

exemplos simplificados, a resistência pode ser dada por uma tensão admissível constante, ou 

seja, essa variável é constante. Portanto, o problema se resume a avaliar as distribuições das 

variáveis de solicitação: as tensões admissíveis, que por sua vez podem também depender de 
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outras variáveis, como carregamentos externos e geometria da estrutura. Essa última, 

geralmente, pode ser adotada como seguindo uma distribuição normal, pois, segundo estudos 

sobre processos de fabricação mecânica, quando o processo é afetado somente por causas 

naturais (não há perturbações especiais) a dimensão final segue uma distribuição normal ou 

Gaussiana centrada, ou seja, com média (μ) igual à dimensão nominal.  

 Nessa distribuição, a função densidade de probabilidade é matematicamente expressa 

por:  

P(x) =
1

√2π
exp {−

1

2s2
(x − μ)2}  (4.7) 

Porém, por facilidade, uma distribuição normal qualquer pode ser expressa como uma 

distribuição normal padrão ou reduzida, que apresenta média zero e desvio padrão (s) igual a 

um, sendo representada por Z ≅ N(0,1). O processo de transformação para uma distribuição 

normal qualquer de ‘x’ em padrão ‘z’ é feito pela seguinte equação:  

Z(0,1) =
x − μ

s
 (4.8) 

 Para a distribuição normal padrão, a densidade de probabilidade é tabelada, conforme 

Tabela 2. Dessa forma, pode ser facilmente consultada para se obter uma solução relacionada 

à ela, processo que foi utilizado nesse trabalho para verificar e validar respostas obtidas pelos 

códigos desenvolvidos para avaliar a confiabilidade. 

 

4.1. Simulação de Monte Carlo Direta 

Segundo Leonel (2009), essa técnica se caracteriza por envolver grande número de 

repetições de um processo de amostragem ou de realizações das variáveis aleatórias do 

problema. Essas realizações são obtidas de acordo com números aleatórios gerados conforme 

conveniente distribuição de probabilidades. As repetições fornecem um conjunto de soluções 

(uma para cada realização) que representam a resposta simulada do modelo mecânico. Esses 

resultados podem receber um tratamento estatísticos, se assemelhando à análise de uma 

amostra aleatória de uma população. Sendo uma técnica de amostragem, o método está sujeito 

aos problemas relativos a erros de amostragem.  Portanto, para se obter um resultado 

estatisticamente preciso, é necessário um número consideravelmente grande de simulações 

(ANG; TANG, 1984). 



48 

 

 

Tabela 2: Valores tabelados para distribuição normal padrão 

 

Percebe-se então que, para aplicar este método é requerido conhecimento prévio sobre 

distribuições de probabilidades de ocorrência das variáveis aleatórias envolvidas no problema. 

No contexto de confiabilidade estrutural, a técnica de Monte Carlo crua ou direta é baseada na 

geração de valores pseudorrandômicos para as variáveis aleatórias do problema (podendo ser 

tensão de escoamento, área ou carregamentos) mediante suas distribuições de probabilidades. 

Este conjunto de valores deve ser gerado de acordo com regras especiais, de modo a resultar 

em valores confiáveis (NOGUEIRA, 2010). Esse processo pode ser realizado, por exemplo, 
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utilizando-se algoritmos recursivos com gerador linear congruencial (GLC), segundo 

formalizado em Nowak e Collins (2000). 

Segundo Pellizzer (2015), a obtenção desta amostra de variável aleatória, com função 

de distribuição cumulativa de probabilidade ‘FX(x)’ conhecida, pode ser dividida em duas 

etapas: primeiramente, gera-se um número aleatório ‘ψi’, com distribuição uniforme entre 0 e 

1; e então determina-se a inversa da função de distribuição cumulativa de probabilidades no 

ponto ‘ψi’ para obter-se ‘χi’ (amostra da variável aleatória), segundo a equação (4.9): 

χi = FX
−1(ψi) (4.9) 

Vale ressaltar que a distribuição cumulativa de probabilidade ‘FX(a)’ é igual a integral 

da função densidade de probabilidade, como demonstra a equação (4.10): 

FX(a) = ∫
1

√2π
exp {−

1

2s2
(a − μ)2}

a

−∞
  (4.10) 

Para os casos de incertezas associadas modeladas como variáveis de distribuição 

normal, as equações (4.9) e (4.10) foram resolvidas numericamente, utilizando métodos de 

integração numérica, como demonstrado no item 2.1.2. Outras incertezas foram modeladas 

como variáveis de distribuição uniforme, com intervalos de (a, b). Neste caso, foi utilizada a 

equação (4.11) para o cálculo do desvio padrão desta distribuição e (4.12) para a média. Essas 

expressões são facilmente deduzidas por meio da expressão da distribuição uniforme 

contínua, estatisticamente. Porém essa dedução não faz parte do escopo do trabalho, então as 

Eq. (4.11) e (4.12) foram obtidas de Ross (2010). 

sUNIF = √
(b−a)2

12
  

(4.11) 

μUNIF  =
b−a

2
  (4.12) 

Desta forma, obtendo os valores de todas as incertezas associadas ao problema para 

cada repetição, a equação de estado limite deve ser avaliada para cada simulação, verificando 

se há falha ou não. Em cada caso de falha, é somada uma unidade na variável de número de 

falhas (nFALHAS). Este procedimento é repetido por várias vezes até atingir um tamanho de 

amostras pré-determinado (nAMOSTRA). A probabilidade de falha é dada pela equação (4.5). 

Porém, com a simulação de Monte Carlo pode-se calcular essa probabilidade pelo seu 

estimador, simplesmente com a Eq.(4.13): 
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PF̂ =
nFALHAS

nAMOSTRA
 

(4.13) 

O tratamento estatístico para demonstrar que essa probabilidade obtida utilizando a 

amostra em questão é realmente um bom estimador para a probabilidade real (populacional) 

não faz parte do escopo desse trabalho. Baseado nas formulações teóricas encontradas na 

literatura, assume-se que o resultado da Eq. (4.13) pode ser utilizado para este fim, e as 

demonstrações estatísticas não serão aqui apresentadas. 

Graficamente, a utilização dessa metodologia obtém resultados como exposto na 

Figura 8, que apresenta as amostras obtidas para um problema com duas variáveis aleatórias, 

em um domínio que apresenta um estado limite g(x). 

 

Figura 8: Pontos de amostragem Simulação de Monte Carlo 

FONTE: NEVES, 2004. 

Este tipo de simulação é bastante robusto a respeito da quantidade de variáveis 

aleatórias que podem ser introduzidas e também é de fácil implementação computacional. No 

entanto, o número de simulações para obter um valor aceitável de ‘PF’ é bastante elevado, 

pois o resultado da Eq. (4.13) está sujeito aos erros estatísticos de se utilizar um estimador 

baseado em amostragem. Portanto, a simulação de Monte Carlo Direta se torna bastante 

custosa computacionalmente. Segundo a literatura, para estimar uma probabilidade de falha 

da ordem de 10-n, o número de simulações não deve ser inferior à 10n+2 ou 10n+3. 

Este método foi escolhido para ser utilizado no cálculo de probabilidade de falha, 

devido à sua fácil implementação. Apesar das dificuldades computacionais admitidas pelo 

método, atualmente até mesmo computadores pessoais já contam com processadores 
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poderosos que são capazes de executá-lo com um tempo que não ultrapasse aproximadamente 

48 horas. 

 

4.2. Implementação computacional III 

A implementação computacional da Simulação de Monte Carlo para avaliação da 

confiabilidade é realizada com base em sub-rotinas do FORTRN. O programa principal 

(main) realiza a chamada dessas sub-rotinas, seguindo o fluxograma apresentado na Figura 9:  

 

Figura 9: Fluxograma do código de análise de confiabilidade 

Inicialmente, deve-se obter os valores das variáveis de incertezas ‘x1, … , xn’, 

modeladas como pseudoaleatórias. A primeira sub-rotina então é denominada cálculo das 

incertezas. Nesta sub-rotina, um arquivo de texto de entrada de dados contendo a quantidade 

de variáveis, suas médias e desvios padrões é lido pelo código. As Equações (4.9) e (4.10) são 

resolvidas numericamente, utilizando a metodologia de integração de Gauss, analogamente 

como foi utilizado no MEF. A variável ‘ψi’ é gerado através de uma função interna do 

FORTRAN, que retorna um número aleatório baseado em uma distribuição uniforme [0;1]. 

Em seguida, os valores gerados são incorporados na entrada de dados da análise via 

MEF. Neste ponto, é chamada a sub-rotina que executa o MEF. Esta sub-rotina engloba o 

programa main da implementação computacional citada no Capítulo 2. Dessa forma, é 

método é executado considerando os dados de entrada obtidos, resultando nos valores de 

tensões e deformações estruturais.  
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A sub-rotina seguinte utiliza a resposta do MEF para avaliar os modos de falha 

‘gi(x1, … , xn)’, conforme as Equações (4.2) e (4.3). Dessa forma, quando for identificada uma 

falha, esta é contabilizada na variável ‘NFALHAS’. Finalmente, o código segue para a próxima 

repetição, até que seja concluído um número pré-determinado de repetições (‘NAMOSTRA’). A 

probabilidade de falha é então encontrada pela Eq. (4.13). 
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5. RESULTADOS E DISCUSSÃO 

Nesse trabalho, os códigos implementados com as formulações descritas nos Capítulos 

2, 3 e 4 serão utilizados para a análise de exemplos de aplicação, onde estruturas de diferentes 

geometrias serão analisadas. Todas as geometrias serão avaliadas utilizando o MEF 

implementado, visando obter resultados de tensões e deformações. Para todos os exemplos 

executados é considerando o estado plano de tensões (EPT). Então, a otimização topológica 

será executada para os exemplo, segundo algoritmo apresentado no Capítulo 3. Finalmente, os 

resultados obtidos serão comparados com resultados da literatura, verificando e discutindo a 

convergência da otimização.  

Após esse processo, as geometrias ótimas obtidas pelo algoritmo de otimização devem 

ser avaliadas quanto à confiabilidade estrutural. Utilizando o método da Simulação de Monte 

Carlo Direta, conforme descrito no Capítulo 4. Nesta análise, são buscadas conclusões 

coerentes com os resultados estruturais da análise e comportamento esperado. As geometrias 

ótimas são comparadas com as geometrias iniciais e intermediárias do processo de 

otimização, buscando, dessa forma, concluir sobre a robustez das estruturas otimizadas. Serão 

avaliadas também as influências da consideração de incertezas em parâmetros de 

carregamentos e materiais do problema. 

 

5.1. Exemplo 1: Chapa tracionada 

No primeiro exemplo busca-se analisar o problema de otimização mais simples, 

segundo a literatura consultada. Esse problema seria uma chapa tracionada por uma única 

força P = 100N horizontal no centro de sua extremidade direita. A extremidade esquerda está 

fixa na parte superior e inferior por apoios modelados como duplos (com restrição de 

deslocamento nas direções horizontal e vertical), ou seja, a estrutura é hiperestática. Porém 

testes mostraram que o tipo de apoio utilizado praticamente não influencia no resultado da 

otimização, desde que a estrutura seja no mínimo isostática. A Figura 10 ilustra o esquema 

estrutural. O objetivo é obter a configuração geométrica ideal para esta estrutura, que suporte 

o carregamento aplicado, porém utilizando somente 30% do volume de material do domínio 

inicial. 
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Figura 10: Estrutura inicial do Exemplo 1(dimensões em cm) 

FONTE: OLIVEIRA, 2015. 

 Como parâmetros geométricos e de material, a espessura da chapa é considerada 

unitária, seu módulo de elasticidade Y = 210 GPa e o coeficiente de Poisson ν = 0,3. Porém 

para estudos de otimização topológica, a literatura indica que tais parâmetros não mostram 

influência no resultado final, já que praticamente não alteram a diferença entre os valores de 

tensão de cada elemento da malha. Isso reforça o fato dos resultados serem apenas 

qualitativos, não quantitativos. A estrutura deve ser otimizada para 30% do volume inicial. 

Para a análise via MEF, são utilizadas três diferentes malhas, sendo a primeira mais 

grosseira e a terceira mais refinada, conforme mostrado na Figura 11. Objetiva-se obter a 

geometria ótima para as três malhas e comparar os resultados para cada uma. Dessa forma, 

avalia-se a qualidade da resposta para as malhas utilizadas e possíveis problemas como ótimos 

locais e interferência de malha, os quais a literatura cita como bastantes comuns para este tipo 

de análise. As características de cada malha são: 

 Malha 1: 200 elementos de 10 por 10 cm; 

 Malha 2: 800 elementos de 5 por 5 cm; 

 Malha 3: 3200 elementos de 2,5 por 2,5 cm; 
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Figura 11: Malhas de elementos finitos para chapa do Exemplo 1 

Visando analisar a qualidade da malha utilizada, um parâmetro denominado de 

densidade da malha de elementos finitos (ρm) foi definido. Este parâmetro contabiliza a 

relação entre a área de um elemento finito e a área total da estrutura. Isto quer dizer que, 

quanto menor essa relação, mais refinada é a malha e, portanto, melhor é sua a aproximação. 

Para as três malhas utilizadas neste exemplo, os valores obtidos são os seguintes: 

ρm,1 =
10 ∗ 10

200 ∗ 100
= 5 ∗ 10−3 

(5.1) 

ρm,2 =
5 ∗ 5

200 ∗ 100
= 1,25 ∗ 10−3 

(5.2) 

ρm,3 =
2,5 ∗ 2,5

200 ∗ 100
= 3,125 ∗ 10−4 

(5.3) 

Para a otimização utilizando a primeira malha, os parâmetros foram os seguintes: a 

menor razão de rejeição a cada iteração RRi = 2% e passo de aumento dessa razão igual à 

metade de ‘RRi’ (ER = 1%). Foi utilizando primeiramente o critério de Von Mises para 

ranquear os elementos e depois Rankine, visando comparar os resultados. A Figura 12 mostra 

a evolução da geometria até o ótimo encontrado ao final do processo, com Von Mises (a) e 

com Rankine (b). 
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Figura 12: Evolução da geometria até o ótimo obtido para a malha 1 do Item 5.1 

A Figura 13 resume o processo evolutivo para o parâmetro ‘RRi’ (denominado de 

Taxa de Rejeição por iteração) e quantidade percentual de volume removido em relação ao 

volume inicial (denominado Retirada de material), quando o critério de Von Mises é utilizado. 

Vale observar que tais gráficos, quando obtidos para utilização do critério de Rankine, não 

foram adicionados a este relatório, pois não possuem diferença significativa com relação ao 

apresentado na Figura 13. 

 

Figura 13: Evolução dos parâmetros de otimização para malha 1 do Item 5.1 
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Figura 14: Evolução da geometria até o ótimo obtido para a malha 2 do Item 5.1 

A Figura 15 é utilizada para resumir o processo evolutivo para o parâmetro ‘RRi’ 

(denominado Taxa de rejeição por iteração na Figura 15) e a quantidade percentual de volume 

removido em relação ao volume inicial (denominado Retirada de material) quando a segunda 

malha foi utilizada. O gráfico apresentado na Figura 15 refere-se à utilização do critério de 

Von Mises. Os gráficos referentes à utilização do critério de Rankine não foram apresentados 

por não apresentarem mudanças significativas. 

 

Figura 15: Evolução dos parâmetros de otimização para malha 2 do Item 5.1 
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Finalmente, para a terceira malha, os parâmetros de otimização utilizados foram 

também os mesmos (RRi = 2% e ER = 1%). Também foram utilizados os critérios de tensão 

equivalente de Von Mises e de Rankine para ranquear os elementos. A Figura 16 ilustra a 

evolução da geometria até desde o domínio inicial até ótimo encontrado ao final do processo, 

com Von Mises (a) e com Rankine (b): 

 

Figura 16: Evolução da geometria até o ótimo obtido para a malha 3 do Item 5.1 

Da mesma forma, as Figura 17 e Figura 18 resumem o processo evolutivo para o 

parâmetro ‘RRi’ (denominado Taxa de rejeição por iteração) e a quantidade percentual de 

volume removido em relação ao volume inicial (denominado Retirada de material) para o 

processo utilizando a terceira malha. Neste caso, foram separadas as informações obtidas 

quando se utiliza os critérios de Von Mises e de Rankine para ranquear os elementos, 

resultando nas Figura 17 e Figura 18, respectivamente. A apresentação desses resultados 

separadamente possibilita a comparação entre eles, o que, neste caso é relevante, visto que 

foram encontradas diferenças significativas. 
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Figura 17: Evolução dos parâmetros para malha 3 com critério de Von Mises do Item 5.1 

 

 

Figura 18: Evolução dos parâmetros para malha 3 com critério de Rankine do Item 5.1 

Na terceira malha houve, pela primeira vez, uma diferença significativa nos gráficos 

obtidos quando se utiliza Von Mises ou Rankine (como pode ser visto nas Figura 17 e Figura 

18). Percebe-se que por volta da iteração 150 a distribuição de tensão nos elementos finitos 

foi tal que, em determinada iteração foram encontrados vários elementos com um nível 

baixíssimo de tensão equivalente de Rankine e então houve uma grande retirada de material 

com uma pequena taxa de rejeição (por volta de 2%). Comparando com a parte (b) da Figura 

16 pode-se claramente ligar essa grande e rápida retirada de material com a transição entre a 

4ª e 5ª situação da geometria do domínio, onde ocorreu uma grande mudança na geometria, 

com a retirada de praticamente uma área inteira de material. Nesta situação, provavelmente, 

encontram-se os tais elementos com um nível de tensão baixíssimo citados logo acima. 

Porém, como essa situação ocorreu em uma iteração bastante longe do final do processo, não 

houve influência na geometria final obtida. Quando é utilizado o critério de von Mises 

percebe-se que a evolução dos parâmetros é bem mais comportada e não ocorrem situações 
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como essa, o que pode ser comprovado analisando a parte (a) da Figura 16. Nesta figura, 

pode-se verificar que as transições de geometria entre os momentos indicados são mais 

suaves. 

Explicada a diferença encontrada nas Figura 17 e Figura 18, pode-se dizer que não 

houve uma diferença significativa na geometria ótima encontrada pelo método utilizando 

critério de von Mises ou Rankine. Comparando os resultados finais obtidos com ambos, a 

diferença não fica maior do que 5% dos elementos. A Figura 19 mostra exatamente os 

elementos “ativos” ao final do processo para as três malhas utilizadas, dando assim uma 

melhor representatividade da geometria ótima. 

 

Figura 19: Geometria ótima encontrada com as três malhas utilizadas no Exemplo 1 

A primeira conclusão a ser tomada deste exemplo é que não ocorreu nenhum problema 

numérico no processo de otimização. Além disso, não foi encontrada nenhuma interferência 

da malha no resultado, como pode ser observado na Figura 19. As geometrias encontradas 

pelas três malhas são coerentes e praticamente iguais, considerando o nível de refinamento 

crescente da primeira para a terceira. Por fim, essa geometria ótima é comparada à um 

resultado encontrado na literatura (Figura 20) e então pode-se finalmente dizer que os 

resultados encontrados são corretos e conforme o esperado.  
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Figura 20: Geometria ótima para o Exemplo 1 encontrada na literatura 

FONTE: OLIVEIRA, 2015. 

Finalmente, é importante ressaltar o tempo de execução do código de otimização para 

este exemplo. Para a primeira malha, o processo finaliza-se com menos de 5 segundos, já para 

a segunda malha são necessários 3 minutos e para a terceira, quase 5 horas. Percebe-se que o 

refinamento da malha resulta em um aumento exponencial do tempo de execução, tornando o 

algoritmo bastante custoso computacionalmente quando utiliza-se malhas muito refinadas. 

Porém, avalia-se que, mesmo para a terceira malha utilizada, o tempo de processamento não 

impossibilita a utilização deste método, pois a espera das 5 horas citadas não trouxe 

obstáculos para a realização deste trabalho. Vale citar ainda que, foi utilizado um computador 

pessoal, com configurações de processamento de baixo custo e facilmente encontradas no 

mercado. A utilização de uma máquina mais potente poderia minimizar drasticamente este 

tempo de processamento. 

 

5.2. Análise de Confiabilidade: Exemplo 1 – Chapa tracionada 

Os resultados obtidos anteriormente, no Item 5.1 são agora analisados quanto à 

confiabilidade estrutural. A geometria analisada será a mostrada na Figura 19. Será utilizada a 

segunda malha para análise via MEF. Esta escolha foi baseada na avaliação do bom grau de 

refinamento da malha, segundo Eq. (5.2), na geometria final bem comportada, segundo Figura 

19 e no tempo de execução do método apresentado quando esta malha foi utilizada. Segundo 

citado no item anterior, o processo de otimização foi finalizado com aproximadamente 3 

minutos, o que foi considerado satisfatório e bem abaixo do tempo da terceira malha 

(aproximadamente 5 horas).  

Para a análise de confiabilidade foi utilizada a Simulação de Monte Carlo Direta com 

10 mil amostras. Segundo citado no item 4.1, esta quantidade resulta na avaliação precisa de 
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uma probabilidade de falha da ordem de 10-2 ou até 10-3. Vale citar que, para este tamanho de 

amostra e utilizando uma máquina com as configurações citadas no Capítulo 1, o código que 

executa a Simulação de Monte Carlo apresenta um tempo de processamento entre 6 e 8 horas. 

Este tempo foi avaliado como satisfatório para os exemplos desse trabalho, pois não se 

apresentou como obstáculo para as análises realizadas. 

Os modos de falha analisados são as tensões de Von Mises máximas em cada 

elemento finito da malha. Considera-se falha quando a tensão de Von Mises atuante é maior 

que a tensão de escoamento do material em um determinado elemento finito. 

Para este exemplo, é simulado como material um aço carbono SAE 1020, cuja tensão 

de escoamento e sua incerteza foram consideradas segundo DOMENEGHETTI (2011). O 

coeficiente de Poisson é fixado em 0,3 e módulo de elasticidade Y=210 GPa. A espessura da 

chapa analisada é de 1 cm.  

 Como incertezas associadas foram consideradas a tensão de escoamento, força 

aplicada e também seu ângulo em relação a horizontal (α). O ângulo (α) pode ser visualizado 

na Figura 21. Foram analisados 4 diferentes casos, sendo que as variáveis aleatórias foram 

adicionadas uma a uma em cada caso, visando mostrar a influência de cada uma no resultado 

final da confiabilidade da estrutura, como mostra a Tabela 3. 

 
Figura 21: Ângulo considerado como incerteza associada 

Na Tabela 3 observa-se que a diferença entre os casos 3 e 4 se resume ao desvio 

padrão da distribuição do ângulo (α): no terceiro caso a distribuição uniforme de α é entre -15º 

e +15º; já no quarto caso é entre -45º e +45º. Vale observar que o desvio padrão para as 

variáveis uniformes é dado pela Eq. (4.11), do item 4.1. 
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Tabela 3: Resultados da análise de confiabilidade para o item 5.2 

 

Variáveis aleatórias 
Tipo de 

Distribuição 
Média 

Desvio 
padrão 

Resultado de 
Probabilidade 

de Falha 

Caso 1 Tensão Escoamento [kN/cm2] Normal 29,8 0,5 2,64% 

Caso 2 
Tensão Escoamento [kN/cm2] Normal 29,8 0,5 

3,82% 
Força Nodal [kN] Normal 70 7 

Caso 3 

Tensão Escoamento [kN/cm2] Normal 29,8 0,5 

35,35% Força Nodal [kN] Normal 70 7 

Ângulo α [graus] Uniforme 0  8,66025 

Caso 4 

Tensão Escoamento [kN/cm2] Normal 29,8 0,5 

 73,16% 
 

Força Nodal [kN] Normal 70 7 

Ângulo (α) [graus] Uniforme 0  25,98076 

 

Com estes resultados de probabilidade de falha em mãos, pode-se concluir que a 

confiabilidade da estrutura é criticamente afetada pela variação da direção da força aplicada 

nos nós (representada para incerteza no ângulo α). Outros parâmetros não influenciaram 

significativamente na confiabilidade da estrutura. Esse comportamento pode ser explicado 

pela característica da otimização topológica, que apresenta um resultado quantitativo 

extremamente voltado para as condições iniciais do problema. Isto significa que, uma 

mudança na geometria do problema (como a direção das forças) faz com que o resultado da 

otimização perca sua qualidade. Ou seja, o ótimo encontrado pelo algoritmo é extremamente 

sensível às mudanças geométricas, em outras palavras, pouco robusto. A comparação entre os 

resultados do terceiro e quarto casos enfatiza a grande influência desse parâmetro na 

confiabilidade estrutural, pois o aumento da variação do ângulo da direção da força aplicada 

fez com que a probabilidade de falha mais que dobrasse. 

 Em seguida, outra análise foi realizada em cima deste exemplo. O código de 

otimização topológica foi executado, buscando obter as geometrias finais para reduções de 

material de 30% e 50%. Dessa forma, a confiabilidade pode ser analisada em cinco diferentes 

geometrias para este mesmo problema: 0%, 30%, 50% e 70% de material removido. Sendo 

que para 0% é utilizada a geometria inicial do problema, sem nenhuma alteração e 70% é a 

geometria ótima já analisada (resultado do item 5.1). A Figura 22 deixa claro as cinco 

geometrias utilizadas. 
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Figura 22: Diferentes geometrias analisadas quanto à confiabilidade para item 5.2 

 Para todas as geometrias, foram analisados os casos 3 e 4 da Tabela 3 e foi adicionado 

um quinto caso, que é análogo aos outros citados, porém com variação de α entre -30º e +30º. 

Dessa forma, procura-se analisar a totalidade das interferências da quantidade de material 

removido e da amplitude de variação do ângulo da força aplicada. Portanto, tem-se 12 casos a 

serem analisados nesta etapa (4 geometrias com diferentes remoção de material e 3 

amplitudes de variação do ângulo α para cada uma). Os resultados são apresentados na ura 23 

em forma de gráfico.  
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Figura 23: Resultados de confiabilidade para item 5.2 

Conforme apresentado na Figura 23, pode-se obter as seguintes conclusões: claramente 

percebe-se que o aumento na porcentagem de material removido na estrutura gera um 

aumento significativo da probabilidade de falha, ainda mais a partir dos 30%. Percebe-se 

também que a amplitude da variação do ângulo de aplicação da força também interfere 

fortemente no resultado da confiabilidade. Quanto maior for a remoção de material da 

estrutura, mais essa variação influencia na confiabilidade, ou seja, menos robusta é a 

estrutura. Já para a geometria inicial (0%), os três valores de amplitudes do ângulo não 

modificam de forma significativa a confiabilidade, ou seja, trata-se de uma estrutura mais 

robusta e que, quanto mais se remove material, mais vulnerável se torna. 

Neste exemplo confirma-se que todos os resultados esperados fisicamente foram 

obtidos a partir das simulações implementadas numericamente. Confirma-se também que a 

otimização topológica é extremamente focada nas condições geométricas iniciais da estrutura 

e do carregamento, e que esta torna a estrutura bastante vulnerável à variações nestes 

parâmetros, exatamente como era esperado. 
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5.3. Exemplo 2: Chapa em balanço 

No segundo exemplo busca-se analisar um problema de otimização com solução um 

pouco mais complexa. Porém, ainda um problema clássico que possui solução na literatura. 

Esse seria uma chapa em balanço sujeita a uma ação elástica. A extremidade esquerda está 

fixa na parte superior e inferior e há uma força aplicada na extremidade superior direita P =

3000 N. A Figura 24 ilustra a geometria inicial do problema, carregamentos e vinculações. A 

espessura da chapa é unitária. As propriedades do material utilizadas são módulo de 

elasticidade igual a 210 GPa e coeficiente de Poisson igual a 0,3. A estrutura será otimizada 

para 40% do volume inicial de material. 

 
Figura 24: Estrutura inicial do Exemplo 2 

FONTE: VITORIO JUNIOR, 2015, p. 830. 

Para este exemplo, são utilizadas duas diferentes malhas, sendo uma mais grosseira e 

outra mais refinada, conforme mostrado na Figura 25: 

 Malha 1: 160 elementos de 0,4 por 0,4 cm; 

 Malha 2: 640 elementos de 0,2 por 0,2 cm; 

O parâmetro densidade da malha (ρm) neste exemplo fica igual a: 

ρm,1 =
0,4 ∗ 0,4

6,4 ∗ 4,0
= 6,25 ∗ 10−3 

(5.4) 

ρm,2 =
0,2 ∗ 0,2

6,4 ∗ 4,0
= 1,56 ∗ 10−3 

(5.5) 
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Figura 25: Malhas de elementos finitos para chapa do Exemplo 2 

Para a primeira malha, os parâmetros de otimização utilizados foram os seguintes: a 

menor razão de rejeição a cada iteração RRi = 2,5% e passo de aumento dessa razão igual à 

metade de ‘RRi’ (1,25%). Foi utilizando primeiramente o critério de Von Mises para ranquear 

os elementos e depois Rankine, visando comparar os resultados. A Figura 26 mostra a 

evolução da geometria até o ótimo encontrado ao final do processo, com Von Mises (a) e com 

Rankine (b). 

 

Figura 26: Evolução da geometria até o ótimo obtido para a malha 1 do Item 5.3 

A Figura 27 resume o processo evolutivo para o parâmetro ‘𝑅𝑅𝑖’ (denominado de 

Taxa de Rejeição por iteração) e quantidade percentual de volume removido em relação ao 

volume inicial (denominado Retirada de material), quando o critério de Von Mises é utilizado. 

A evolução destes parâmetros quando a otimização é executada com o critério de Rankine 
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para ranquear os elementos não foi representada nesse trabalho. Pois, tal análise foi observada 

e não mostrou diferenças significativas em relação à evolução dos parâmetros apresentada na 

Figura 27. 

 

Figura 27: Evolução dos parâmetros de otimização para a malha 1 do Item 5.3 

Para a segunda malha, os parâmetros de otimização utilizados foram os seguintes: a 

menor razão de rejeição RRi = 0,25% e passo de aumento ER = 0,125%. Constatações dos 

exemplos anteriores mostraram que existe uma equivalência entre utilizar o critério de Von 

Mises ou Rankine para ranquear os elementos por tensão equivalente. Por este motivo, neste 

caso são apresentados os resultados apenas na utilização de Von Mises. A Figura 28 ilustra a 

evolução da geometria até o ótimo encontrado ao final do processo de otimização. 

 

Figura 28: Evolução da geometria até o ótimo obtido para a malha 2 do Item 5.3 
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Como foi realizado em itens anteriores neste Capítulo, a Figura 29 apresenta o resumo 

do processo evolutivo para os parâmetros ‘RRi’ (taxa de rejeição por iteração) e quantidade 

percentual de volume removido em relação ao volume inicial (Retirada de material). Ambos 

os parâmetros são apresentados nesses gráficos em função do número de iterações. 

 

Figura 29: Evolução dos parâmetros de otimização para a malha 2 do Item 5.3 

Por fim, os resultados obtidos para este exemplo podem ser avaliados como 

satisfatórios. Percebe-se que na malha mais grosseira o contorno do buraco formado no meio 

da estrutura fica ligeiramente diferente. Porém isto pode ser explicado pela falta de resolução 

desta discretização. Pode-se afirmar que ambas as respostas encontradas são coerentes, não 

houve nenhum problema numérico ou interferência da malha neste caso. Quando comparado 

com a geometria ótima encontrada na literatura (Figura 30), conclui-se também que o 

resultado encontrado está dentro do esperado, apesar da diferença nas dimensões externas da 

estrutura e seu contorno. Estas diferenças existem devido ao fato de Vitorio Junior (2013) 

utilizar um algoritmo de otimização baseado no Método dos Elementos de Contorno (MEC) e 

Método Level Set para análise mecânica, diferente do MEF utilizado nesse trabalho. 

 

Figura 30: Geometria ótima para o Exemplo 2 encontrada na literatura 

FONTE: VITORIO JUNIOR, 2015, p. 830. 
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Adicionalmente ao estudo já feito para este exemplo, uma terceira malha mais 

refinada, composta por 2560 elementos de dimensão 0,1 por 0,1 cm foi analisada. Esta malha 

apresenta uma densidade ρm = 3,9 ∗ 10−4. Essa análise busca a obtenção desse mesmo 

resultado final, porém tendo a aproximação de uma malha bem mais refinada. A geometria 

final também objetiva uma remoção de material total igual a 70%. 

Neste caso, foram testados diferentes valores dos parâmetros de otimização ‘RRi’ e 

‘ER’. Porém, com nenhuma combinação destes valores foi encontrada a geometria ótima 

como na Figura 30. Independente dos valores utilizados, a otimização encontrou 

interferências de malha e problemas de mínimos locais. Dessa forma, não foi possível chegar 

à geometria idêntica à encontrada na literatura utilizando o algoritmo ESO puro. Uma 

diminuição drástica nos parâmetros de taxa de rejeição de iteração (RRi) e passo do aumento 

dessa razão (ER) foi tentada, porém em nenhum caso obteve-se êxito. A Figura 31 apresenta 

os resultados da otimização obtidos, quando são utilizados diferentes valores para os 

parâmetros ‘RRi’ e ‘ER’. Nesta figura percebe-se claramente que existe uma grande diferença 

entre as geometrias ótimas encontradas e a apresentada na Figura 30. 

 

Figura 31: Geometrias encontradas no Exemplo 2 com diferentes parâmetros para malha 3 
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Essa diferença nos resultados e dificuldade em encontrar uma resposta independente 

da malha ou dos parâmetros pode ser explicada pela existência de mínimos locais. As 

diferentes geometrias encontradas mostradas na Figura 31 são ótimos locais para a função de 

otimização. Todas estas geometrias respeitam parâmetros e requisitos impostos na otimização, 

porém nenhuma delas é igual entre si ou ao ótimo encontrado na literatura. Por este lado, 

acredita-se que o refinamento da malha aumente a ocorrência de mínimos locais par a função 

de otimização encontrados pelo algoritmo. Essa constatação se dá devido ao fato da melhor 

aproximação e discretização do campo de tensões da estrutura levar à uma melhor 

aproximação da própria função de otimização. Dessa forma, os mínimos locais são mais 

facilmente encontrados no processo. Adicionalmente, uma vez que o processo se aproximou 

de um deste mínimos locais, o algoritmo não é capaz de sair desta região, ficando preso à essa 

resposta. 

Essa situação não é observada quando são utilizadas malhas mais grosseiras. Ao 

contrário do problema descrito no parágrafo anterior, a malha menos refinada gera uma 

aproximação do campo de tensões menos perfeita, resultando em uma pior representação da 

função de otimização. Dessa forma, os mínimos locais que apresentam uma pequena variação 

nesta função não são identificados no processo de otimização. Por este motivo, é mais 

provável que o algoritmo chegue até o ponto ótimo global, pois somente grandes variações 

podem ser identificadas na aproximação da função de otimização.  

Dessa forma, percebe-se que existe um valor ideal para densidade da malha de 

elementos finitos. Este valor representaria a melhor discretização da estrutura que pode-se 

utilizar, sem que o algoritmo de otimização encontre problemas de mínimos locais. 

Claramente observa-se que para cada problema esse valor ótimo é diferente, pois a função de 

otimização não é a mesma. A análise de outros problemas nesse trabalho buscará um valor 

típico para essa densidade, quando se utiliza os métodos implementados. 

Os tempos de processamento do código de otimização apresentados neste exemplo 

foram muito semelhantes aos obtidos no Item 5.1. Para a primeira malha foram somente 

alguns segundos e para a segunda malha foram aproximadamente 4 minutos. Já para a terceira 

malha, o processo levou aproximadamente 5 horas. Vale citar que esse tempo de 

processamento para a terceira malha, mesmo sendo bastante elevado em relação aos demais, 

não foi um obstáculo para que o processo fosse executado diversas vezes em busca do ótimo 

global, como demonstrado na Figura 31. 



72 

 

 

5.4. Análise de Confiabilidade: Exemplo 2 – Chapa em balanço 

Os resultados obtidos no item 5.3 serão analisados quanto à confiabilidade estrutural. 

Inicialmente, a geometria analisada será a geometria final obtida pela otimização. Será 

utilizada também a segunda malha para análise de elementos finitos. Esta escolha foi baseada 

baseado nos mesmo argumentos do Item 5.2. 

Para a análise de confiabilidade foi utilizado, novamente, um tamanho de 10 mil 

amostras para a Simulação de Monte Carlo. Os modos de falha analisados também são como 

no Item 5.2, a comparação entre tensões de Von Mises máximas e tensão de escoamento em 

cada elemento finito da malha. 

Para este exemplo, os parâmetros do material foram ligeiramente diferentes do 

exemplo anterior. Foi mantido o coeficiente de Poisson em 0,3 e módulo de elasticidade 

Y=210 GPa, com chapa de espessura de 1 cm. O valor da tensão de escoamento foi analisado 

como uma variável de incerteza, com valores em torno de 35 kN/cm2. 

 Além da tensão de escoamento, como incertezas associadas foram considerados 

também o módulo da força aplicada e seu ângulo em relação a vertical (α). O ângulo (α) é 

análogo ao utilizado no Item 5.2, como pode-se verificar na Figura 21. Porém, neste caso, é o 

ângulo entre a força aplicada e a direção vertical. Neste exemplo, foram analisados 3 

diferentes casos, todos eles já iniciaram com todas as variáveis aleatórias incorporadas, sendo 

que para cada um foi considerado um diferente valor para variação do ângulo α (-15 e +15º 

para Caso 1, -30 e +30º para Caso 2, -45 e +45º para Caso 3). O resultado é mostrado na 

Tabela 4. 

Tabela 4: Resultados da análise de confiabilidade para o Item 5.4 

 

Variáveis aleatórias 
Tipo de 

Distribuição 
Média 

Desvio 
padrão 

Resultado de 
Probabilidade 

de Falha 

Caso 1 
Tensão Escoamento [kN/cm2] Normal 35,0 1,0 

9,86% Força Nodal [kN] 
Ângulo α [graus] 

Normal 
Uniforme 

4,0 
0 

0,4 
8,66025 

Caso 2 

Tensão Escoamento [kN/cm2] Normal 35,0 1,0 

13,89% Força Nodal [kN] Normal 4,0 0,4 

Ângulo α [graus] Uniforme 0  17,3205 

Caso 3 

Tensão Escoamento [kN/cm2] Normal 35,0 1,0 

 14,60% 
 

Força Nodal [kN] Normal 4,0 0,4 

Ângulo α [graus] Uniforme 0  25,98076 
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 Neste exemplo não foram analisados casos com menor número de variáveis aleatórias, 

pois no Item 5.2 esse tipo de análise foi feita, visando certificar a validação do código 

construído. Nesta etapa, considera-se que essa validação já está corretamente realizada. 

 Vale observar também que o desvio padrão para a distribuição uniforme é dada pela 

Eq. (4.13), como no Item 5.2. Portanto os valores de desvio padrão para ângulo (α) mostrados 

na Tabela 4 são resultados da aplicação desta equação para variação do ângulo entre (-15º; 

+15º), (-30º; +30º) e (-45º; +45º) para os Casos 1, 2 e 3, respectivamente. 

 Conforme resultados apresentados na Tabela 4, pode-se concluir sobre a influência da 

incerteza do ângulo de aplicação da força na confiabilidade da estrutura. Percebe-se que o 

aumento dessa incerteza gera uma diminuição na confiabilidade. Porém não é um efeito muito 

acentuado, como no exemplo anterior. Na Tabela 3percebe-se que, na outra estrutura, ao 

aumentar a variação do ângulo (α) de (-15º; +15º) para (-45º; +45º) a probabilidade de falha 

cresce de 35,35% para 73,16%. Enquanto nesta mesma comparação para esta estrutura, a 

probabilidade cresce de 9,86% para 14,60%. Claramente observa-se que houve um aumento 

no valor, porém não tão grande como se observou no exemplo anterior. 

 Como foi realizado no Item 5.2 a análise seguinte consiste em executar o código de 

otimização topológica novamente, buscando obter a geometria ótima para uma redução de 

material de 30%. Dessa forma, a confiabilidade pode ser analisada em três diferentes 

geometrias para este mesmo problema: 0%, 30% e 60% de material removido. Sendo que para 

0% é utilizada a geometria inicial do problema, sem nenhuma alteração e 60% é a geometria 

ótima já analisada (como resultados da Tabela 4). A Figura 32 ilustra as três geometrias 

utilizadas. 

Para estas geometrias, foram analisado os casos 1, 2 e 3 da Tabela 4. Isso significa que 

será possível analisar as interferências tanto da quantidade de material removido, quanto da 

amplitude de variação do ângulo da força aplicada. Portanto, tem-se 9 casos a serem 

analisados nesta etapa (3 diferentes geometrias, como mostrando na Figura 32, com 3 

amplitudes de variação do ângulo α para cada uma). Os resultados são apresentados na Figura 

33 em forma de gráfico. 
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Figura 32: Diferentes geometrias analisadas quanto à confiabilidade no Item 5.4 

 

 

Figura 33: Resultados da confiabilidade para o item 5.4 
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 Conforme apresentado na Figura 33, pode-se concluir que o aumento na porcentagem 

de material removido da estrutura reduz sua confiabilidade consideravelmente a partir dos 

30%. Ainda é destacada a comparação entre as duas geometrias com 0% e 30% de material 

removido, onde houve uma redução da probabilidade de falha para os casos 1 e 2. 

Considerando o erro estatístico ao qual o resultado da Simulação de Monte Carlo está sujeito, 

pode-se considerar que estes dois resultados representam um mesmo valor de probabilidade 

de falha.  

 Finalmente, conclui-se que, segundo resultados da Figura 33, tanto a amplitude da 

variação do ângulo de aplicação da força e a porcentagem de material removidas influenciam 

de forma ligeiramente negativa para a confiabilidade estrutural. Diminuindo de forma sutil a 

robustez da estrutura quando se aumenta o material removido ou a amplitude de variação 

deste ângulo. Porém, deve-se ressaltar que essa influência não é tão acentuada como no Item 

5.2, pois percebe-se que os valores de probabilidade de falha sofrem um aumento discreto, 

não atingindo valores muito elevados em relação à geometria inicial. 

 Para explicar esse comportamento diferente do ocorrido no Item 5.2, deve-se observar 

o tipo de carregamento atuante na estrutura, através da Figura 24. Pode-se analisar que a força 

concentrada na extremidade direita da estrutura acarreta um esforço de força cortante 

constante e momento fletor que vai de zero na extremidade direita até seu valor máximo 

próximo ao apoio. Conclui-se que a tensão predominante na estrutura é a tensão normal ao 

longo do eixo horizontal da estrutura, representada pela fórmula geral da flexão, segundo 

Hibbeler (2010), como mostra a Eq. (5.6): 

σ =
N

A
−

Mfzy

Iz
+

Mfyz

Iy
 

(5.6) 

 Para o problema analisado, a parcela da tensão associada aos momentos fletores são 

maiores do que a parcela atribuída à força normal. Isso acontece devido às variáveis 

multiplicadoras desses esforços na Eq. (5.6). O que ocorre neste exemplo é que, ao aumentar a 

amplitude da incerteza no ângulo de aplicação da força concentrada, é aumentada a parcela de 

força normal atuante na estrutura.  

Em outras palavras, a estrutura já está inicialmente solicitada na condição crítica, ou 

seja, flexão. Por este motivo, mudar as condições iniciais não influencia significativamente no 

resultado de confiabilidade estrutural. 
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O oposto desse efeito é observado no exemplo anterior (Itens 5.1 e 5.2), pois, segundo 

a Figura 10 percebe-se claramente que a força externa aplicada gera, inicialmente, um esforço 

predominantemente de tração pura. Então, ao aumentar a amplitude da incerteza no ângulo de 

aplicação desta força, é aumentada a parcela vertical, a qual causa o esforço de momento 

fletor. O aumento desse tipo de esforço causa um crescimento significativo da tensão normal, 

pois aumenta seu fator predominante. Dessa forma, a confiabilidade da estrutura cai 

consideravelmente ao aumentar a variação do ângulo (α). 

 Finalmente, conclui-se que neste exemplo foram obtidos todos os resultados esperados 

fisicamente, a partir das simulações implementadas. Foi observado também que as geometrias 

encontrados pela otimização topológica se apresentaram mais robustas do que no Item 5.2. 

Pois o aumento na porcentagem de material removido não causou grande variação no 

resultado da confiabilidade estrutural. Porém, se confirmou que houve um ligeiro aumento na 

probabilidade de falha, devido ao caráter altamente particularizado do resultado final da 

otimização topológica, que torna a estrutura vulnerável à variações nos parâmetros 

geométricos e físicos do problema inicial.  

 

5.5. Exemplo 3: Chapa em balanço – Força central 

Este exemplo consiste na análise de uma estrutura com a mesma geometria do Item 

5.3. Porém, a força P = 3000N é aplicada no centro da face direita do domínio, e não mais na 

sua extremidade superior. Todos os outros parâmetros e geometria são equivalentes ao Item 

5.3. A Figura 34 ilustra a geometria, carregamentos aplicados e apoios dessa estrutura. Neste 

exemplo busca-se a otimização para 40% do volume inicial de material. 

As malhas utilizadas para análise via MEF também são as mesmas do exemplo 

anterior e somente o critério de Von Misses é utilizado. Esta escolha foi feita com base em 

comparações anteriores, que já mostraram a equivalência das respostas entre a utilização do 

critério de Rankine e Von Mises. Vale lembrar que os parâmetros de densidade da malha 

valem, respectivamente 6,25 milésimos e 1,56 milésimos para as malhas 1 e 2, 

respectivamente. Isso significa que, em comparação com os exemplos executados nesse 

trabalho, a segunda malha apresenta a densidade mais próxima da ideal para o processo de 

otimização. 
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Figura 34: Estrutura inicial do Exemplo 3 

Para a primeira malha foram utilizados os parâmetros RRi = 2,0% e ER = 1,0%. Já 

para a segunda malha, RRi = 0,25% e ER = 0,05% (um quinto de ‘RRi’). Destaca-se que os 

parâmetros da segunda são consideravelmente menores, devido aos problemas de influência 

de malha e de mínimos locais já comentado. A Figura 35 mostra as geometrias ótimas 

encontradas para ambas as malhas.  

 

Figura 35: Geometrias ótimas encontradas para o Item 5.5 
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A Figura 36 mostra a evolução da geometria na otimização topológica, quando foi 

utilizada a segunda malha. Esta malha se mostrou mais adequada, tanto pelo parâmetro de 

densidade quanto pelas respostas observadas na Figura 35. 

A Figura 37 é utilizada para resumir do processo evolutivo para os parâmetros ‘RRi’ e 

porcentagem de material removido em relação ao volume inicial (denominado Retirada de 

material). Vale observar que estes gráficos não se distanciaram do padrão desenvolvido nos 

processos de otimização dos exemplos anteriores.  

Para validar a respostas desse exemplo, a estrutura ótima encontrada na literatura é 

mostrada na Figura 38. Claramente, percebe-se a semelhança entre esta e o resultado da 

segunda malha, o que demonstra que a resposta está coerente com o esperado. A primeira 

malha apresenta apresentou algumas disparidades. Porém, pode-se atribuir estas diferenças à 

falta de resolução da discretização que essa malha apresenta, ou seja, o elevado tamanho dos 

elementos finitos. Levando em consideração este fator, também pode-se dizer que a resposta 

confere com o esperado, devido à forma da geometria e até o número de buracos internos 

abertos na estrutura. Estas constatações mostram que não houveram problemas numéricos, 

interferência da malha ou problemas de mínimos locais para esse exemplo analisado. 

 

Figura 36: Evolução da geometria para malha 2 do item 5.5 
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Figura 37: Evolução dos parâmetros da otimização para malha 2 no item 5.5 

 

 

Figura 38: Topologia ótima para o Exemplo 3 encontrada na literatura 

FONTE: LANES, 2013, p. 61. 

 

 Como no exemplo anterior, constatou-se que para a primeira malha o resultado foi 

correto, porém a geometria fica mal representada devido à falta de refinamento da malha. Já 

para a segunda malha, o resultado obtido foi exatamente como esperado, e a geometria 

apresentou boa qualidade, devido ao refinamento da malha. A terceira malha do Item 5.3 não 

foi utilizada, pois a análise de seus resultados indicou que esta encontraria problemas com 

mínimos locais. Além disso, o Item 5.3 também já demonstrou que a segunda malha apresenta 

um refinamento aceitável e não encontra esses problemas.  

Os resultados desse exemplo evidenciam que a densidade da malha, ou seja, a relação 

entre a área do elemento finito e a área da estrutura apresenta um valor ideal próximo à 

densidade dessa segunda malha, segundo Eq. (5.7): 

ρm = 1,56 ∗ 10−3 (5.7) 
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 Isso significa que valores muito menores do que esse resultam em pouca qualidade da 

aproximação da geometria, já valores muito maiores, resultam em dificuldades numéricas 

para encontrar o ótimo global. Essa situação pode ser analisada também no Item 5.1, onde 

todas as malhas utilizadas resultaram na geometria esperada (devido à simplicidade do 

exemplo), porém observa-se que a segunda malha, com ρm = 1,25 ∗ 10−3 resultou em uma 

geometria correta e também uma boa aproximação. Esse valor está bastante próximo do 

apresentado na Eq. (78), o que contribui para validação da hipótese. 

Conclui-se que, genericamente, pode-se dizer que para exemplos futuros utilizando 

estes métodos, uma malha com aproximadamente esse valor de densidade resultará em uma 

resposta satisfatória, não presa a mínimos locais e com uma aproximação adequada. 

 

5.6. Análise de Confiabilidade: Exemplo 3 – Chapa em balanço – 

Força Central 

Neste item será realizada a análise de confiabilidade para a estrutura otimizada no item 

5.5. A primeira análise se dá com a geometria final obtida pela otimização. Será utilizada 

também a segunda malha do Item 5.5 para análise via MEF. 

Para a análise de confiabilidade foi utilizado um tamanho de 10 mil amostras para a 

Simulação de Monte Carlo. Os modos de falha analisados são as tensões de Von Mises 

máximas em cada elemento finito da malha. Considera-se falha quando a tensão atuante é 

maior do que a tensão de escoamento do material. 

Neste exemplo, os parâmetros foram exatamente iguais aos do Item 5.4, pois trata-se 

da mesma estrutura, somente o ponto de aplicação da carga foi modificado. Portanto, tem-se 

coeficiente de Poisson igual a 0,3 e módulo de elasticidade Y=210 GPa, com chapa de 

espessura de 1 cm. O valor da tensão de escoamento foi considerado como uma variável de 

incerteza do problema, com mesmos parâmetros do item anterior citado. 

 Além da tensão de escoamento, como incertezas associadas foram considerados 

também a intensidade da força aplicada e seu ângulo em relação a vertical (𝛼). Exatamente 

como no Item 5.4. Foram analisados os mesmos casos de variáveis aleatórias. A Tabela 5 foi 

construída, replicando os dados de variáveis aleatórias da Tabela 4 e indicado os resultados 

das análises de confiabilidade executada neste exemplo. 
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Tabela 5: Resultados da análise de confiabilidade para o Item 5.6 

 

Variáveis aleatórias 
Tipo de 

Distribuição 
Média 

Desvio 
padrão 

Resultado de 
Probabilidade 

de Falha 

Caso 1 
Tensão Escoamento [kN/cm2] Normal 35,0 1,0 

3,25 % Força Nodal [kN] 
Ângulo α [graus] 

Normal 
Uniforme 

4,0 
0 

0,4 
8,66025 

Caso 2 

Tensão Escoamento [kN/cm2] Normal 35,0 1,0 

3,10 % Força Nodal [kN] Normal 4,0 0,4 

Ângulo α [graus] Uniforme 0  17,3205 

Caso 3 

Tensão Escoamento [kN/cm2] Normal 35,0 1,0 

2,17 % 
 

Força Nodal [kN] Normal 4,0 0,4 

Ângulo α [graus] Uniforme 0  25,98076 

 

O desvio padrão para a distribuição uniforme indicada na Tabela 5é dada pela Eq. 

(4.13). Portanto, os casos 1, 2 e 3 apresentam uma variação do ângulo (α) entre (-15º; +15º), (-

30º; +30º) e (-45º; +45º), respectivamente. 

 Os resultados de confiabilidade apresentados na Tabela 5mostram que a probabilidade 

de falha desta estrutura pouco é afetada pela incerteza no ângulo (α) de aplicação da força. 

Essa influência fica ainda menor do que foi observado no Item 5.4. A partir da consideração 

de todas as incertezas do problema, o valor da probabilidade não foi alterado 

significativamente com o aumento de (α). Em alguns casos houve uma diminuição neste 

valor. Em todos os outros exemplos analisados foi possível caracterizar o efeito negativo 

desse parâmetro na confiabilidade estrutural, mesmo que de forma sutil. Nesse caso, pode-se 

dizer que a diferença nos valores obtidos para os casos 1,2 e 3 ficam dentro do erro estatístico 

ao qual o resultado da Simulação da Monte Carlo está sujeito. 

 Em seguida, outra análise foi realizada com base nesse exemplo. Foi analisado a 

confiabilidade com outras geometrias. Para isso, o código de otimização topológica foi 

executado, buscando obter a geometria ótima para uma redução de material de 30%. Dessa 

forma, a confiabilidade pode ser analisada em três diferentes geometrias para este mesmo 

problema: 0%, 30% e 60% de material removido. Sendo que para 0% é utilizada a geometria 

inicial do problema, sem nenhuma alteração. Já para 60% é utilizada a geometria ótima já 

analisada (como resultados da Tabela 5). A Figura 39 ilustra as três geometrias utilizadas. 
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Para estas geometrias, foram analisados os casos 1, 2 e 3 da Tabela 5. O objetivo aqui 

é avaliar a influência da quantidade de material removido e da amplitude de variação do 

ângulo da força aplicada no resultado de confiabilidade estrutural. Portanto, tem-se 9 casos a 

serem analisados (3 diferentes geometrias, como mostrando na Figura 39e 3 diferentes 

amplitudes de variação de α para cada uma). Os resultados são apresentados em forma de 

gráfico, na Figura 40. 

Analisando os resultados apresentados Figura 40, pode-se obter as seguintes 

conclusões: como já citado, a amplitude de variação do ângulo (α) pouco influi no resultado 

da probabilidade de falha. Além disso, percebe-se que o aumento na porcentagem de material 

removido na estrutura diminui sua confiabilidade, principalmente a partir dos 30% de material 

removido. Esse comportamento já foi visualizado em exemplos anteriores. Porém, este 

aumento não é muito acentuado. 

 

Figura 39: Diferentes geometrias analisadas quanto à confiabilidade no Item 5.6 
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Figura 40: Resultados da confiabilidade para o item 5.6 

 Ainda analisando os resultados da Figura 40, percebe-se que essa pequena diferença 

nos valores de probabilidade de falha encontra-se dentro do erro estatístico ao qual a resposta 

do método de cálculo da confiabilidade está sujeito. Portanto, pode-se concluir que a 

confiabilidade da estrutura também é pouco afetada pela porcentagem de remoção de 

material. Porém, fica claro a tendência de aumento da probabilidade de falha com o evolução 

da retirada de material pela otimização topológica, principalmente após os 30% de material 

removido. 

 O resultado mais peculiar deste exemplo, segundo apresentado na Figura 40 é o fato 

de que os casos analisados quando (α) varia entre (-45º; +45º) apresentaram uma 

probabilidade abaixo dos outros casos. Esse comportamento é o oposto do que foi avaliado 

em outros exemplos. Nesse caso, fica claro a influência da flexão na solicitação de tensão da 

estrutura, pois quanto maior a variação do ângulo, mais próxima a força fica de realizar um 

esforço de tração pura. Como explicado no Item 5.4, a partir da Eq. (5.6), a flexão domina a 

tensão atuante nesta estrutura, enquanto a tração representa uma menor influência e menor 

parcela de tensão. 

 Nessa análise conclui-se que, quanto mais próximo da flexão pura estiver a solicitação 

da estrutura, maior será a tensão normal final e portanto mais crítico será o estado de tensão 

estrutural. Isso explicou, no Item 5.4, o pequeno aumento da probabilidade de falha com o 
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aumento da variação de (α). Neste item essa análise fica ainda mais evidente, pois quando a 

variação de (α) aproxima-se mais da direção horizontal (que seria a tração pura) a 

probabilidade de falha sofre uma diminuição. 

Finalmente, conclui-se que neste exemplo os resultados obtidos a partir das simulações 

apresentam um significado físico coerentemente. Foi observado que, em comparação com o 

exemplo da chapa em balanço (Itens 5.3 e 5.4), essa estrutura se mostrou mais robusta. Pois 

foram utilizados os mesmos valores para todos os parâmetros e, ao final, os resultados de 

confiabilidade apresentados foram maiores nesta estrutura para todos os casos. Além disso, 

foi demonstrado que nesse exemplo a confiabilidade é menos afetada pelo aumento das 

incertezas associadas e pela quantidade de material removida pela otimização. 
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6. CONCLUSÃO 

Ao fim da realização desse trabalho, foi possível elaborar várias conclusões. 

Primeiramente, o MEF com elementos isoparamétricos lineares que foi utilizado se mostrou 

confiável e poderoso para resolver inúmeros problemas de estruturas, tanto isostáticas como 

hiperestáticas. Diferentemente dos métodos analíticos, este se mostrou capaz de analisar 

mecanicamente diferentes geometrias de estruturas, quando se trata de problemas planos. Vale 

citar que estruturas tridimensionais não fizeram parte do escopo do trabalho, os elementos 

finitos utilizados se limitam à estruturas 2D, com esforços aplicados no mesmo plano e 

identificando a espessura do elemento, na dimensão ‘z’. Porém, este seria um interessante 

tema de pesquisa futuro, visando dar continuidade à esse trabalho. 

Outro ponto importante a ser citado nesta conclusão é a utilização de elementos com 

respostas lineares. Este aspecto facilitou a modelagem de problemas reais, simplificando a 

representação de esforços e apoios. Segundo o projeto de iniciação científica conduzido por 

este mesmo autor (RODRIGUES NETO, 2014), onde foram estudados elementos finitos de 

ordem linear e quadrática, a ordem superior gera uma resposta muito mais precisa e rica, 

quando comparado elemento à elemento. Porém, ao refinar suficientemente a malha da 

estrutura, mesmo ao utilizar elemento de ordem menor, o resultado final pode chegar a ser 

satisfatório, pois o refinamento da malha faz com que a discretização do domínio seja 

próxima o suficiente da continuidade para que a aproximação do campo de tensões do 

elemento seja adequada. Outro ponto levado em consideração nesse trabalho foi o tempo de 

execução do código, pois ao realizar a análise de confiabilidade, o mesmo modelo deve ser 

executado dezenas de milhares de vezes e nesse ponto o elemento linear apresenta uma 

grande vantagem.  

Em seguida, a implementação da otimização topológica baseada no algoritmo ESO 

utilizando o MEF como modelo mecânico para obter tensões e deformações se mostrou 

corretamente executada, pois foi possível chegar a soluções coerentes com as encontradas na 

literatura. Nesse ponto vale citar, com grande importância, que não foram encontradas 

inconsistências numéricas do tipo tabuleiro de xadrez, a qual a literatura cita como um 

problema bastante comum neste tipo de abordagem. Problemas de dependência de malha e 

ótimos locais foram encontrados ao se utilizar malhas bastante refinadas nos últimos 

exemplos, o que também não está fora do esperado. Dessa forma, os resultados obtidos pelo 
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algoritmo implementado concluíram que este é muito eficaz e leva à bons resultados de 

otimização. 

Também é importante observar as limitações encontradas na utilização do algoritmo. 

Como ocorreu no Item 5.3, utilizando a malha mais refinada não foi possível chegar na 

geometria coerente com a encontrada na literatura, caracterizando um problema de ótimos 

locais. Foi constatado que ao utilizar uma malha muito refinada, a função de otimização passa 

a ser mais perfeitamente aproximada. Dessa forma o processo de otimização fica mais 

suscetível a identificar um ponto de mínimo local e, uma vez identificado, o algoritmo 

implementado não é capaz de sair deste mínimo. A literatura já prevê que estes problemas são 

comuns nesta abordagem e descreve alguns métodos para evita-los (Cap. 3 da Formulação 

Teórica). Porém nesse trabalho foi dado foco à utilização do algoritmo evolutivo puro, para 

que os esforços pudessem também ser aplicados aos outros tópicos. Vale citar que este seria 

um ponto de possibilidade de continuidade dessa pesquisa no futuro, o estudo e 

aprimoramento do algoritmo para evitar os problemas citados.  

Conforme os exemplos estudados, foi encontrada uma densidade de malha que 

agregou tanto um refinamento adequado, quanto uma resposta satisfatória (ou seja, sem 

problemas de mínimos locais ou outros citados pela literatura). Esse valor foi chamado de 

“densidade de malha ideal” para o método implementado. 

O passo seguinte foi a implementação da análise de confiabilidade, a qual foi realizada 

utilizando a Simulação de Monte Carlo Direta. Este objetivo também foi alcançado, sendo que 

sua utilização possibilitou a análise das geometrias ótimas encontradas para todos os 

exemplos executados no projeto. Segundo citado no Cap. 4 da Formulação Teórica, esse 

método é bastante custoso computacionalmente, pois é necessário um número muito elevado 

de repetições para que o estimador da probabilidade de falha se aproxime do valor real. Em 

todos os exemplos foram utilizadas 10 mil repetições, o que resulta na avaliação precisa de 

probabilidades de falha na ordem de 10-2 até 10-3. Esse valor com certeza poderia ser melhor, 

utilizando um tamanho maior de amostra, porém devido ao grande número de vezes que essa 

análise seria executada nesse trabalho, foi escolhido que esse valor seria suficiente para os 

resultados procurados. Vale citar também que este seria outro ponto de possível continuidade 

dessa pesquisa no futuro, o estudo e implementação de outras metodologias de análise de 

confiabilidade estrutural, mais eficientes e menos custosas computacionalmente. 
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Finalmente, a Simulação de Monte Carlo foi escolhida pela sua simplicidade de 

implementação e didática, onde tratamentos e formulações estatísticas podem facilmente 

serem descartados, dessa forma esforços puderam ser mais aproveitados no estudo da física e 

engenharia dos problemas. 

Como já se esperava, a confiabilidade confirmou que o resultado da otimização 

topológica gera uma estrutura efetivamente mais propensa ao colapso do que a geometria 

inicial. Além disso, em alguns exemplos essa estrutura se mostrou fortemente específica para 

as condições iniciais consideradas na otimização, pois a variação de parâmetros geométricos 

da estrutura levou à uma diminuição considerável da confiabilidade estrutural. Em outros 

exemplos o efeito observado foi diferente, porém todos tiveram seu significado físico 

estudado e explicado. 

Por fim, este trabalho se mostrou de grande valor, tanto no estudo da formulação 

teórica como na aplicação dos métodos propostos. Tais métodos tem uma vasta área de 

aplicação e sua utilização é muito importante para a engenharia em geral.  A realização desse 

trabalho foi de enorme importância para o desenvolvimento acadêmico, aumento do 

conhecimento e ganho de experiência para o aluno. Além disso, também trouxe uma grande 

motivação para dar sequência à sua vida acadêmica, deixando possibilidades de utilização 

deste trabalho como ponto de partida para o desenvolvimento de outros projetos de pesquisa 

no futuro na área da mecânica computacional. 
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