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RESUMO

RODRIGUES NETO, A. Desenvolvimento de um modelo numérico para otimizagéo
topoldgica de estruturas planas utilizando o Método dos Elementos Finitos e analise por
metodologia de confiabilidade estrutural. 2016. 91 f. Trabalho de Concluséo de Curso —
Escola de Engenharia de Sdo Carlos, Universidade de Sdo Paulo, S&o Carlos. 2016.

O presente trabalho consiste no desenvolvimento de modelos numéricos para otimizacao de
estruturas planas e andlise das geometrias obtidas baseado na confiabilidade estrutural. Para
tal, foi utilizado o método denominado Otimizacdo Estrutural Evolucionaria (ESO —
Evolutionary Structural Optimization), visando a obtencdo da geometria étima de estruturas
2D. Este algoritmo foi acoplado ao modelo estrutural, o qual utiliza o0 Método dos Elementos
Finitos (MEF), implementado com a utilizacdo de elementos isoparamétricos planos com
aproximacdo linear. Por fim, as geometrias obtidas sdo analisadas quanto a confiabilidade
estrutural. Neste topico, as fontes de incertezas atuantes na estrutura sao incorporadas ao
problema e seu comportamento estrutural diante desse cenario é avaliado, por meio da
verificacdo de estados-limite para seguranca e falha. Para o calculo da probabilidade de falha
¢ utilizado o método da Simulacdo de Monte Carlo Direta. O objetivo final da analise é
avaliar a robustez das geometrias otimizadas e seu comportamento quando variacbes no
cenario inicial do problema sdo incorporados. Todos o0s métodos estudados foram
implementados numericamente e exemplos foram apresentados, validando e mostrando a

eficiéncia das formulacdes estudadas.

Palavras-chave: Método dos elementos finitos.Otimizacao topologica. Confiabilidade

estrutural.






ABSTRACT

RODRIGUES NETO, A. Numerical model development for topology optimization of
plane structures using the Finite Element Method and analysis by structural reliability
methodology. 2016. 91 f. Trabalho de Conclusdo de Curso — Escola de Engenharia de Séo
Carlos, Universidade de Séo Paulo, S&o Carlos. 2016.

This work deals with the development of numerical algorithms for plane structures
optimization and analysis of obtained geometries, based on structural reliability. For this, it is
used a method called Evolutionary Structural Optimization (ESO), in order to obtain the
optimal geometry of two-dimensional structures. The optimization algorithm is coupled with
the structural algorithm, which uses the Finite Element Method (FEM), implemented with flat
isoparametric elements and linear approach. Finally, the obtained geometries are analyzed by
structural reliability. In this topic, uncertainty sources of the structure are incorporated into the
problem and its structural behavior within this scenario is evaluated, by verifying states-limit
for safety and failure. To calculate the failure probability is used the method Direct Monte
Carlo Simulation. The final objective of this analysis is to evaluate the robustness of the
optimized geometries and their behavior when variations in initial scenario are incorporated to
the problem. All methods studied are implemented numerically and examples are presented,
in order to show the efficiency and accuracy of the proposed formulations in dealing with

structural analysis, optimization problems and reliability analysis.

Keywords: Finite Element Method. Topology optimization. Structural reliability.
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1. INTRODUCAO

1.1.  Motivacao

Este trabalho se insere em um dominio cientifico que vem recebendo destacada
atencdo por parte de diversos centros de pesquisa de exceléncia. A proposi¢do de modelos
mais realistas para a analise de problemas de engenharia e o desenvolvimento de
metodologias adequadas para o aprimoramento de projetos mecanicos tém se tornado
prioritarios no cenario cientifico internacional, sendo linhas de pesquisa em grande evidéncia
na atualidade.

A concep¢do de estruturas que executem suas funcBes com nivel de seguranca
desejado utilizando quantidade minima de material é um dos objetivos a serem alcancados em
todo projeto estrutural. Para se estudar e garantir um nivel de seguranca adequado pode-se
utilizar de técnicas e dos conceitos da confiabilidade estrutural. No contexto da engenharia, a
confiabilidade ¢ muito bem definida. Na engenharia de estruturas, pode ser entendida como a
probabilidade de sobrevivéncia de um componente, ou de um sistema, desde que utilizado de
acordo com as especificacfes de projeto. Portanto, a confiabilidade é dada pelo complemento
da probabilidade de falha (ANG; TANG, 1984).

Nesse contexto, a confiabilidade tem um papel central nas decisdes de engenharia,
sendo diretamente ligada a qualidade de produtos, seguranca da populacdo, estudo de
viabilidade econdmica e otimizacdo de custos. Para avaliar o desempenho e a qualidade de um
sistema com relacdo a sua utilizacdo e seguranca, o conceito embutido na varidvel
confiabilidade é mais realista, inclusive sob o ponto de vista matematico, para a determinacgéo
de custos. Em estruturas complexas, os cenarios de falha sdo identificados por meio de
modelos mecanicos numéricos (modelos que simulam comportamento mecanico da estrutura),
sendo os algoritmos de confiabilidade responsaveis por determinar a probabilidade do cenério
de falha identificado ser atingido. Dessa forma, as andlises de confiabilidade somente
conduzem a resultados precisos se os cenarios de falha forem corretamente identificados e
mensurados pelos modelos mecénicos (NOGUEIRA; LEONEL; CODA, 2012).

J& a minimizacdo do uso de material na estrutura pode ser atingida empregando-se as
técnicas e 0s conceitos apresentados na teoria da otimizacdo. Nesse trabalho séo estudados
problemas relacionados a otimizacdo topologica de estruturas planas. Neste tipo de
otimizacdo, busca-se a determinacdo da geometria 6tima da estrutura, aquela que emprega a

minima quantidade de material, respeitando-se restrigdes relacionadas ao estado de tensdo dos
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pontos constituintes da estrutura e a sua seguranca. A técnica de otimizacdo a ser utilizada
nesse trabalho é denominada Evolutionary Structural Optimization (ESO). Segundo Lanes
(2013), esta técnica permite a remocdo gradativa de material estrutural ndo eficiente até a
obtencdo da estrutura 6tima. A remocéo de material € baseada em critérios de tensdo, sendo
regides menos solicitadas removidas gradativamente segundo um critério de velocidade. O
ESO é acoplado a um modelo baseado nas equacgdes algébricas do Método dos Elementos
Finitos (MEF). Sdo empregados elementos isoparamétricos planos de ordem linear para a
resolucdo do problema mecanico.

Pretende-se, com este trabalho, evoluir no estudo de solucGes inovadoras no dominio
da engenharia, envolvendo métodos numéricos e analises de otimizacdo. Pretende-se ainda
avaliar os resultados dos métodos de otimizacdo com base na confiabilidade estrutural,
associando incertezas fisicas aplicadas a estrutura, buscando conclusdes sobre a robustez e

seguranca das geometrias encontradas.

1.2.  Objetivos

Com esse trabalho objetiva-se dar continuidade ao estudo e desenvolvimento de temas
relevantes e atuais nos campos da mecanica computacional e mecanica dos materiais. Os
objetivos tratam do desenvolvimento de um modelo numérico baseado no MEF para a anélise
da otimizacdo topoldgica de estruturas planas e analise de confiabilidade associada a tais
estrutura. A implementacdo sera realizada utilizando a linguagem FORTRAN, que
inicialmente no trabalho foi estudada e compreendida com auxilio do trabalho de Chapman
(2008).

Inicialmente objetiva-se o desenvolvimento de um cddigo base considerando o MEF
com elementos isoparamétricos planos. Foi considerada aproximacdo linear para 0s
deslocamentos no corpo. Nesse codigo base, objetiva-se a determinacdo dos deslocamentos
em todos os nds da estrutura e também do estado de tensdo nos pontos de integracdo do
elemento. Em seguida, objetiva-se 0 acoplamento da técnica ESO a esse cddigo base. Tal
técnica envolve a remocdo gradativa de material segundo um critério de velocidade
estabelecido. Os parametros que influenciam a velocidade de remocdo dos elementos foram
estudados e intervalos de amplitude desses parametros foram recomendados.

Em seguida, os resultados obtidos por esses métodos foram avaliados com base na

confiabilidade estrutural, por meio da utilizacdo de um programa implementado para executar
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a Simulagdo de Monte Carlo Direta. Esse tipo de simulacdo calcula a probabilidade de falha
de uma dada estrutura, considerando as incertezas associadas a esta. Dessa forma, objetiva-se
a obtencdo de conclusdes sobre robustez e seguranca das geometrias 6timas determinadas,
comparando-as as geometrias iniciais e intermediarias no processo de otimizacao topologica.
Deve-se destacar ainda que a analise acoplada da otimizacdo topoldgica e
confiabilidade representa uma importante contribuicéo cientifica desse trabalho.

1.3. Metodologia

A partir dos objetivos gerais definidos anteriormente, podem ser listados alguns itens
especificos que foram tratados ao longo do desenvolvimento do trabalho:

1) Revisdo bibliografica 1: Estudo dos conceitos e fundamentos do MEF. Elementos planos
isoparamétricos, elementos de trelica e integracdo numérica.

2) Implementacdo computacional 1. Desenvolvimento de um cddigo base na linguagem
FORTRAN para a analise plana considerando elementos isoparamétricos.

3) Revisdo bibliografica 2: Estudo de conceitos relacionados a otimizacdo topoldgica.
Técnica ESO.

4) Implementacdo computacional 2: Implementacdo da técnica ESO e acoplamento ao
modelo desenvolvido no item 2.

5) Revisdo bibliogréfica 3: Estudo de conceitos e metodologia de analise de confiabilidade
estrutural. Simulacdo de Monte Carlo.

6) Implementacdo computacional 3: Implementacdo da técnica Simulacdo de Monte Carlo
direta e acoplamento ao modelo desenvolvido no item 4.

7) Execucdo de exemplos com diferentes geometrias de estruturas utilizando as trés
implementagdes computacional realizadas.

8) Redacéo de relatorio final.

Para as implementagdes computacionais que utilizam a linguagem FORTRAN, foi
utilizado o compilador Intel(R) Visual Fortran 11.1.048, instalado para execugdo no software
Visual Studio® 2008. Para todos os exemplos numeéricos analisados, os codigos foram
executados utilizando um computador do tipo notebook com as seguintes configuracdes:

e Processador Intel® Core i5 5200U 52 geracdo; 2.7 GHz e 3 MB de cache;
e Memoria RAM: 8 GB DDR3 1600 MHz;
e Disco rigido: 1 TB;
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e Placa de video: Geforce® GT 920M 2GB;

Em certos momentos deste trabalho é citado o tempo de execucdo dos codigos para
alguns métodos. Para isso, pode-se considerar que o equipamento utilizado foi uma méquina
com as especificacdes citadas acima. Destaca-se ainda que, a utilizacdo de uma méaquina com
maior poder de processamento certamente levaria a uma diminui¢do nos tempos de execucéo,
minimizando este problema para alguns métodos mais custosos computacionalmente. Porém,
neste trabalho, dificuldades relacionadas com este problema foram facilmente superadas e néo

foi necessaria a utilizacdo de outros equipamentos.
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2. FORMULACAO TEORICA 1:
ELEMENTOS FINITOS

Para as andlises mecéanicas de estruturas nesse trabalho é utilizado o MEF, o qual
possibilita a obtencdo de deslocamentos, deformacdes e tenses ao longo do dominio de uma
estrutura submetida a carregamentos externos conhecidos. Em corpos continuos, tensbes e
deformacdes variam de forma continua ao longo do dominio, sendo regidos por equacdes
diferenciais de complexa resolucdo. A ideia principal do método é que, ao dividir a estrutura
em partes menores, os denominados elementos finitos, a estrutura permaneca continua e seu
campo de deslocamentos seja aproximado por fungdes polinomiais de ordem desejada. Assim,
com base nessa aproximacao, obtém-se equacdes algébricas aproximadas sobre o dominio do

corpo em analise.

Portanto, no método, o dominio do modelo é dividido em um numero discreto de
subdominios de dimensdes finitas, denominados “elementos finitos”, que sdo interconectados
por meio de interfaces (n6s para o caso unidimensional, linhas para o caso bidimensional e
superficies para o caso tridimensional). Esses elementos deformam-se segundo uma funcao de
aproximacdo associada a ele (a chamada funcdo de forma). Entdo o equilibrio continuo da
estrutura que se considera no modelo matematico é substituido pelo equilibrio de cada
elemento discreto. A partir disso se trocam equacGes diferenciais por equagdes algébricas para
representar 0 mesmo, obtendo-se um sistema de equacBes de equilibrio da malha, o qual
permite a determinacdo dos deslocamentos nodais. Utilizando teorias baseadas no principio
dos trabalhos virtuais, relagdes deformacgédo-deslocamentos e deformagéo-tensdes, pode-se
escrever o sistema que governa o equilibrio dos elementos finitos e da estrutura como um todo
da seguinte forma (ZIENKIEWICZ; TAYLOR, 2000):

K+«U=F (2.1)

Onde F é o vetor contendo as forgas aplicadas na estrutura ou no elemento e U é o
vetor que armazena os deslocamentos nodais dos nds constituintes da estrutura ou dos
elementos. K é a chamada matriz de rigidez, a qual armazena parcelas de energia relacionadas

a cada grau de liberdade de cada um dos nds da estrutura.

Tendo em maos esse sistema, percebe-se que ao analisar o sistema global, ndo ha
solucdo. Isso ocorre pois a matriz de rigidez € uma matriz singular, ou seja, det(K) = 0.

Fisicamente, essa singularidade representa a possibilidade da estrutura realizar movimento de



18

corpo rigido, quando verifica-se a auséncia de deformacgdes e tensdes na estrutura. Para retirar
esta singularidade do sistema é necessario reduzi-lo com a imposicdo das condi¢cbes de
contorno. Matematicamente, isso significa impor deslocamento nulo nos pontos de apoio: nas
duas coordenadas no caso de apoio duplo e somente em uma coordenada no caso de apoio
simples. Assim, ha duas maneiras de se resolver o sistema: zerar as linhas e colunas da matriz
de rigidez que representam o deslocamento restrito e colocar valor 1 na diagonal, isto &, os
elementos da matriz que multiplicam esse deslocamento, ou entdo criar uma nova matriz de

rigidez retirando tais linhas ou colunas, chamada entdo de matriz de rigidez reduzida.

O ponto crucial da resolucdo pelo método é o célculo da matriz de rigidez de cada
elemento finito, pois nesse ponto os diferentes tipos de elementos utilizados causam uma
enorme diferenca. As outras etapas (montagem da matriz de rigidez global, imposicdo das
restricdes, resolucdo do sistema e célculo de tensdes e deformacgfes) sdo sempre as mesmas.

As secOes seguintes descrevem cada passo do método para executar a anélise via MEF.

2.1.  Obtencéo da matriz de rigidez de um elemento

2.1.1. Treligas planas

Apesar de ndo ter sido utilizado de fato no trabalho, a formulacgéo para treligas planas
foi estudada e inserida nesse texto a titulo de revisdo bibliogréfica e estudo do método. Nesse
caso, 0 mais simples de todos, a matriz de rigidez tem uma férmula bem simples. Conforme
sera demonstrado a seguir, segundo Pitangueira (2003). Destacando que o elemento de trelica

esta sujeito as hipoteses usuais:

0] Somente esforgos normais;
(i)  Qualquer deslocamento transversal é desprezado (associado ao deslocamento de
corpo rigido);

(i) O comportamento do material segue a Lei de Hooke para o caso unidimensional;

Considerando o elemento de trelica apresentado na Figura 1, segundo a defini¢do de
deformacdo especifica ‘e(x)’ para um elemento diferencial da barra, sendo ‘x’ 0 eixo

longitudinal desta (ilustrado na Figura 1 como eixo ‘u’), tem-se:

AL u(x)+dux)—u(x) d
e(x) = P P &u(x) (2.2)
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f] U ’ ([ l u
Figura 1: Representagdo elemento de dois nos

Considerando o elemento como ideal (discreto), pode-se escrever:

e(x) = %u(x) = @ (2.3)

Onde dix e dox sdo os deslocamentos do primeiro e segundo nds do elemento na
coordenada longitudinal, respectivamente e ‘L’ o comprimento do elemento. A lei de Hooke

para o caso unidimensional é definida como:
o(x) = Ye(x) (2.4)

Sendo Y o mddulo de elasticidade longitudinal (mddulo de Young). Considerando o
equilibrio de forgas ao longo da dire¢do ‘x’, no primeiro nd do elemento. Sendo fix e fax as

forgas nodais na diregdo ‘x’ e ‘A’ a area transversal do elemento, tem-se:
fix+ox)*A=0
fi, =—0(x)*A (2.5)
Analogamente no segundo né, obtém-se:
fox —o(x)*A=0
fox = o(x) * A (2.6)

Substituindo as relagdes (2.3) e (2.4) nas equacoes (2.5) e (2.6), tem-se:
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YA YA
flx = T (dlx - dZX) ;fZX = T (d2x - dlx)

Na forma matricial:

(=20 7@ 0
f2x Li-1 1 dZX
Claramente percebe-se que foi encontrado um sistema linear do tipo da Eq. (2.1),

justamente como é formulado o MEF. Portanto:

Ke — E[ 1 _1] (2-8)

Onde aparecem as constantes: ‘A’ = area da sec¢do transversal da trelica; ‘Y’ = Modulo
de elasticidade longitudinal e ‘L’ = comprimento do elemento. Enfatizando que, ao utilizar
essa formula, deve-se referenciar deslocamentos e forgas no sistema de coordenadas local do

elemento, nesse caso o eixo ‘X’ (longitudinal) seria o eixo “u’ da Figura 1.

Para determinar a matriz de rigidez da estrutura, precisa-se colocar todos 0s
parametros em relacdo a um sistema global de coordenadas cartesianas, ‘Xy’ no presente caso.
Para encontrar a matriz de rigidez em relacdo as coordenadas globais, deve-se utilizar rotacao

de vetores em sistemas de coordenadas, encontrando entdo Eqg. (2.9).

2 2

C cs —c2 —cs
_ YAl cs s? —cs —s?
Ke=71T1_"" 2 (2.9)
—c2 —cs ¢ cs
2 2

—CS —S CS S

Onde tem-se as variaveis: ¢ = cos(0), s = sen(0), sendo 6 o angulo do elemento

com 0 eixo ‘X’, como mostrado na Figura 1.

Entdo, essa matriz de rigidez é valida baseada em deslocamentos e forgas definidos em

relacdo ao sistema de coordenadas global (sistema ‘xy’), valendo entdo o sistema apresentado

na Eq. (2.10):

u fy
c2 ¢ —c® -—cs 1x ¢ X
u
YAl ¢s s? —cs —s? Iy \ _| 'y
T |2 2 Nu, |7 ¢
Ll=c* —cs ¢ cs 2x 2 (2.10)
_ 2 2 u, '
cs S cs S y f2y
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Portanto, a Eq. (2.9) traduz a matriz de rigidez de cada elemento finito utilizada para
construir a matriz de rigidez global da estrutura, quando aplica-se o método para elementos do

tipo trelica plana.

2.1.2. Elemento bidimensional

Nesse caso, ndo ha uma férmula fechada a ser aplicada para a determinacdo da matriz
de rigidez do elemento finito, tornando-se necessario uma integracdo numeérica para cada
elemento. Primeiramente, ¢ dada uma breve demonstracdo da formulacdo da integracdo
numérica utilizando a Quadratura de Gauss-Legendre, segundo Bortoli (2001). A teoria de tal
integracdo se baseia em aproximar a integral de uma determinada fungéo, sempre no intervalo

[—1,1] por um somatorio do tipo:
f_11 f(x)dx = XL a; = f(x;) (2.11)

Em Gauss-Legendre, precisa-se encontrar os chamados polindmios ortogonais, que
determinam os parametros do somatorio, pois 0s pontos x;’s, utilizados no somatorio sdo as

raizes dos polindmios ortogonais e 0s pesos ‘a;’ sdo tais que:
a; = [ Li(x)dx (2.12)

Onde ‘l;(x)’ sdo os polindbmios de interpolacdo de Lagrange, tendo como pontos de
interpolacdo também as raizes dos polinémios ortogonais. Existem métodos para o célculo
desses polindmios ortogonais, como o método de ortogonalizacdo de Gran-Schimidt. Porém,
na pratica, as raizes desses polinémios ja foram calculadas, e tanto pontos de integracdo como

pesos dos pontos séo encontrados em tabelas.

Para utilizar esse método na obtencéo das matrizes de rigidez dos elementos finitos, é
utilizada uma forma de normalizar o elemento, deixando-o com coordenadas adimensionais,
chamadas ‘€’ e ‘n’. Além disso, sdo criadas as funcbes de forma (®;), que sdo demonstradas
abaixo. Para essas funcbes de forma pode-se simplificar dizendo que tais funcbes tém valor
um no respectivo no ‘i’, e valor zero nos demais nds constituintes do elemento finito. Essas
funcbes sdo determinadas conforme a Eqg. (2.13). Sendo ‘I, e ‘I’ os polindmios
interpoladores de Lagrange, para as coordenadas ‘¢’ e ‘n’, respectivamente, ¢ ‘®;’ as fungdes

de forma para cada n6 do elemento finito:
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®; = 1) * () (2.13)

A demonstracdo da formulacgéo utilizada no elemento bidimensional é referenciada em
Zienkiewicz e Taylor (2000). O trabalho de Weaver e Johnston (1984) também foi utilizado
como referéncia bibliogréfica neste tema, para auxiliar no entendimento do método. A
demonstracdo parte inicialmente do principio dos deslocamentos virtuais aplicado ao
elemento finito, onde 8U, € a energia de deformacdo virtual de tensdes internas e W, é 0

trabalho virtual das forcas externas:
8U, = 8W, (2.14)

Primeiramente, denota-se ‘U’ sendo o vetor de deslocamentos genéricos em qualquer
ponto dentro do elemento, onde as variaveis ‘ux’ e ‘vy’ S30 as translagdes nas diregdes ‘x’ ¢

‘y’, respectivamente:
= [ Wl (2.15)

Baseado no elemento quadrilateral (quatro ndés), é definido ‘q> como o vetor dos
deslocamentos nodais do elemento, onde ‘i’ € 0 nimero do no dentro do elemento (i=1, ..., 4),

tem-se:
q= {ql} y4i = {qxl; qXZ} = {ux,l' Vy,l} (216)

Define-se uma relacdo entre os deslocamentos ‘u’ e os deslocamentos nodais ‘q’,
traduzida por uma matriz retangular ‘f’, que faz com que ‘u’ seja completamente

independente de ‘q’:
u=f*q (2.17)

A matriz que armazena as deformacdes (€) do elemento é obtida pela diferenciacdo
dos deslocamentos genéricos (u), formando uma matriz ‘d’, denominada operador diferencial

linear:
e=d=xu (2.18)
Substituindo Eq.(2.17) em (2.18), tem-se:

e=dx+xfxq=Bx*xq ; B=d=x*f (2.19)
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Utilizando essa relacdo de deformacéo (€) na lei de Hooke generalizada, obtém-se:
c=Exe=ExB=xq (2.20)

Sendo ‘E’ a matriz que indica a relagdo entre tensdes (o) e deformagdes (€) no caso

generalizado. Assim, pode-se escrever a energia de deformacdo virtual como:
8U. = [, 8e'o+dA (2.21)
E o trabalho virtual de forgas externas se torna:

SW = 8qTp + [, 5u™b*dA (2.22)
Onde ‘p’ é 0 vetor que armazena as forgas internas nas coordenadas ‘x’ e ‘y’ em cada

né do elemento. Ja ‘b’ é o vetor que armazena as forcas de corpo no elemento. Dessa forma,
substituindo Eq. (2.21) e (2.22) em (2.14), obtém-se:

f, 8€ToxdA =8q"p+ [, SuTbxdA (2.23)

Entdo, substitui-se a Eq. (2.20) para ‘o’ e as Eq. (2.17) e (2.19) diferenciadas na
relagdo (2.23) para obter:

8q" [, BTEedA = 8qTp +8q" [, fb dA (2.24)

Eliminando o termo ‘8q™’ de ambos membros da Eq.(2.24) e substituindo a Eq.(2.19)
tem-se:

(f, BTEBdA)q=p+5qT [, f'bdA (2.25)
Que pode ser escrita da seguinte forma:
K-q=p+pp=F (2.26)

Onde claramente se encontra o formato do sistema linear do MEF, como na Eq. (2.1),
sendo K a matriz de rigidez:

K. = f, BTEBdA (2.27)

Essa é entdo a integral utilizada para a determinacdo da matriz de rigidez de um

elemento geral bidimensional. Vale observar que para o caso 3D a formulagdo seria anéloga,
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porém as dimensdes das matrizes seriam maiores e as integrais seriam no volume. Entéo

parte-se para a explicacdo de como sdo obtidas as matrizes necessarias para encontrar Ke,

baseado no elemento de quatro nos utilizado, o qual € ilustrado na Figura 2.

M
1 N6 3
(LY (LY

No 4

SR

('17'1) (I'D

0
No 1 -1 No 2

Figura 2: Elemento com quatro nds

Primeiramente, a matriz ‘E’ traduz a relacdo entre tensdo e deformacdo na lei de

Hooke, como mostrado na Eq. (2.4). Para o caso bidimensional, essa relacao fica expressa de
duas diferentes formas:

Para estado plano de tensdes (quando o, = Ty, = Tyx = 0) utiliza-se Egpr:

0
0

1-v

(2.28)
Y
Egpr = PR

1
\Y
0

S R <

Para o estado plano de deformagdes (quando &, = vy, = Yy, = 0) utiliza-se Eepp:

\Y%
[1 — 0]
_Ya-v | v 0 (2.29)
EPD ™ (14v)a-2v) [ 1~V

1-2v
0 0 2(1-v)

=

Sendo a variavel Y’ 0 mddulo de elasticidade longitudinal e ‘v’ o coeficiente de
Poisson. Os dois estados sdo utilizados nesse trabalho, sendo que a escolha de um deles fica
como opgdo do usuario do codigo, pois consta como variavel de entrada. Em seguida, deve-se

definir a matriz ‘B’, que, como pode-se ver na equacao (2.19), depende das matrizes ‘d’ e ‘f".
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De inicio, a matriz ‘d” é definida como a relacdo entre a deformagdo e o0s

deslocamentos genéricos de qualquer ponto do elemento (uy, vy). Analogamente a Eq. (2.2),

pode-se definir as relagdes para deformagdes (g, £x € Yxy), Segundo a elasticidade plana:

_ Ou _ov __O0u  ov (230)
Sx_ax' Ey_ay' ny_6y+6x

E entdo a matriz ‘d’ pode ser escrita da seguinte forma:

0
| 5 | = °|
9 d 2.31
e=dru=| 2 | a=[0 2| (230
Jdu ov ad ad
le&J LTy a_J

A matriz ‘f* representa a relacdo entre os deslocamentos genéricos, em qualquer ponto
do elemento (uy, vy) com os deslocamentos nodais (q;,q2, q3,q4), COMo na Eq. (2.16). Essa
matriz armazena as chamadas fungdes de forma: tais fungdes aproximam o campo de
deslocamentos genéricos em funcdo dos deslocamentos nodais. Para tal, sdo utilizadas as
coordenadas adimensionais (§,1). Conforme apresentado na Figura 2, nota-se que as faces do
elemento sdo definidas por €=1ou—1 e 1 =10ou—1. Com interpolacdo linear nas

direcdes ‘€’ e ‘n’, a localizacdo de um ponto genérico pode ser expresso da seguinte forma:

X = %[(f— D —=Dx + E+ DA —mxz + E+ D+ Dxz + (1 =8 (n + 1)xy]

y=E= D0 - Dys + E+ DA -y, + G+ D@+ Dya + A =D+ Dy,] >

Portanto, a relacdo entre os deslocamentos genéricos e os deslocamentos nodais se da

com a mesma relagdo mostrada na Eg. (2.31). Porém com ‘uy, vy’ no lugar de ‘x,y’ e os

deslocamentos nodais no lugar das coordenadas nodais. Portanto definem-se essas fungdes de

‘¢, ” como sendo as funcdes de forma:

u v
_ u _ CI)l (DZ (D3 (D4_ U, V,
u=fxq- [v] o, o, ®, o, |uz vs (2.33)

Uy Vyu

Sendo:

E-Dm-1) E+nE-n) E+D+1) A-9@+D)
D) === Dy = Dy = by = (2:34)
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Em seguida, deve-se fazer a multiplicagdo de ‘d” por ‘f* para determinar a matriz ‘B’,
conforme a Eq. (2.19). Isso significa derivar as funcdes ‘®’ em relacdo a ‘x’ e ‘y’. Porém tais
funcgdes sdo definidas em relacdo a ‘€’ e ‘n’. Entdo aplica-se a regra da cadeia:

20 _002% , 300m (2.35)
ax 9t dx  an ox

Analogamente para a derivada na direcdo de ‘y’. Porém, como mostrado, ndo é
possivel encontrar ‘¢, > em fungdo de ‘x,y’. Portanto, ndo é possivel encontrar as derivadas
das coordenadas adimensionais em relacdo as globais (x,y). Por isso é efetuada a regra da

cadeia da maneira oposta:

0% _ 0w 0x | 000y (2.36)
985~ 0x 0t = dy 0%

E analogamente para ‘n’. Juntando essas derivadas obtém-se:

o® 9x oyl [o%
ot | _|og og| |ox
oo = |ox ay|” |9 (2.37)
on on om ay
ow]  rox vt o
ox| _ |08 0% 3
62‘ = [dx ay| ¥ oo (2.38)
dy an an on

A matriz encontrada na Eqg. (2.38), que envolve as derivadas das coordenadas globais
em relacdo as coordenadas adimensionais é entdo denominada de matriz Jacobiana (J). Essa
matriz realiza 0 mapeamento dos pontos entre os espacos real e adimensional. Derivando as
Equacbes (2.34), nota-se que essa matriz pode ser encontrada pelas seguintes operagdes
matriciais:

a0, 0D, 0D; 0D, X1 V1
98 05 0% 0% X2 Y2

I=loo, o0, o0y 0w *|x5 ys (2:39)
on  0n on  0n X4 Va
] =Dy, *Cy

Resolvendo as derivadas a matriz ‘D’ fica:
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m-1 A-n) M+ -M+1)

D _ 4 4 4 4
L= [E-n -G+ G+ (1-9 (2.40)
4 4 4 4

Voltando entdo para a Eq. (2.32), encontra-se a matriz das derivadas parciais das
funcgdes de forma em relacgdo as coordenadas globais, ‘Dg’:
20, 00z 205 204

-1 _ | ox 0x 0x 0x
De=]7"*DL = |50, o0, 005 o0, (2.41)

ay dy 9y ay

Portanto, os termos que compde a matriz ‘B’ encontram-se dentro de ‘Dg’. Utilizando

a Eq. (2.19) para encontrar a matriz ‘B’, verifica-se que:

5} 0D
[ I e
5} 0D .
Bj=dxf=]|0 a—y|*d>i=|0 El
[z 2 00, &J
dy 0x ady ax

Percebe-se que tais derivadas sdo encontradas nas células de ‘D¢’ da seguinte forma:

9%; _ . 0% 2.43

Portanto a matriz B pode ser escrita como:

DG11 0 DG12 0 DG13 0 DG14 0 (2-44)
B = 0 DG21 0 DG22 0 DG23 0 DGz4
D021 DG11 DGzz DG12 DG23 DG13 DG24 DG14

Por fim, na integracdo, na Eq. (2.27) o infinitesimal ‘dA” deve ser substituido por uma
expressdo em funcdo dos adimensionais ‘€” e ‘n’. Neste passo ndo sera demonstrada a
obtencdo da solucdo, pois trata-se de uma passagem simplesmente de célculo integral e tal
demonstracdo ndo teria grande contribuicdo para o trabalho em questdo. Entdo, por

substituicdo de varidvel na integral, encontra-se:

_ (0x9y _ 9y ox 2.45
dA_(azan azan)azan (2.49)
ox 2y
_ oz ol
dA = |y ay| 080N (2.46)

o an
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dA = |J| * 9€dn (2.47)

Tendo entdo tudo em méos, pode-se voltar a Eq. (2.27) e entdo resolvé-la como uma
integracdo numeérica, Eq. (2.11). Os pesos dos pontos de integracdo (a;) sdo denominados

‘peso;’ e 0 resultado da integracdo deve ser multiplicado pela espessura do elemento:
Ko = tY; X peso; * peso; * BT « Egpr * B * |]| (2.48)

Os parametros que variam (‘i’ e ‘j’) seguem os pontos de integracdo de Gauss, como
mostrado na Tabela 1. Exemplificando, se for escolhido realizar a integral com 2 pontos, tem-
se: i; = —0,57735 com peso; = 1 e i, = 0,57735 com a; = 1. Tais valores se encontram ja
calculados dentro de uma biblioteca do préprio FORTRAN, sendo apresentados para 4 pontos

de integracdo na Tabela 1.

Tabela 1: Pardmetros de integragdo para até 4 pontos de integracéo

N t, a;
1 t, =0
2 t, = -0,57735 A, =1
t, =0,57735
A =1
3 t, =0,77459667 A =5
:12 - O0,77459667 A=Y
A, =84
t, =0,86113631 A, =0,34785484
t, =-0,86113631 A, =0,34785484
t, =0,33998104 A, =0,65214516
t, =-0,33998104 A, =0,65214516

No codigo desenvolvido, o que se faz é calcular as matrizes ‘Dy’, ‘J’, ‘Dg’, segundo as
equacdes (2.39), (2.40) e (2.41) e finalmente calcular B, segundo a Eq. (2.44). Este processo €
realizado para cada um dos pontos de integragdo (‘i’ e ‘j”). Entdo as operagOes matriciais sdo
efetuadas, multiplicando-se pelos respectivos pesos do ponto de integracdo. Por fim, a
somatdria de todos os pontos de integracdo é feita e multiplica-se o final pela espessura (t).

Dessa forma, a matriz de rigidez do elemento (K.) € obtida.
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2.2.  Obtenc¢ao da matriz de rigidez global (“espalhamento”)

Uma vez calculada a matriz de rigidez de cada elemento, o seguinte procedimento é a
composicado da matriz de rigidez global da estrutura, que é denominado “espalhamento”. Tal
processo consiste em somar as matrizes de rigidez de cada elemento em uma matriz global.

Somando cada termo em sua respectiva parcela de energia, como exemplificado abaixo:

Assumindo um elemento constituido por dois nés 1 e 2, a matriz de rigidez deste

elemento (Ke) tem a seguinte forma:

11 Rz Rz R < Oxa

feyr oz oz Ros < dy1

K. = fez1 Hzy Rzz Rax < Ay
€ hyr Ruy Rz Ras < dy2

Como indicado pelas setas, cada parcela da matriz de rigidez corresponde a um par de
graus de liberdade dos nés do elemento finito. Entdo cada uma dessas parcelas deve ser
somada a posi¢do correta na matriz de rigidez global, que por sua vez também tem cada
parcela relacionada graus de liberdade, porém nesta, consideramos todos o0s nés da estrutura.

Assim:
11 Rz 0 R < Axa
foyr oz 0 Mon « dy1
K. — :
G ’knl ’&/nz ’knn < qyn
T T T
dx1 qyl qyn

Portanto, basta inicializar a matriz global com zeros e somar as parcelas de todas as
matrizes dos elementos finitos aos seus respectivos lugares, levando em conta o par de graus

de liberdade de cada parcela.

2.3.  Reducdao do sistema linear

Depois de efetuado o espalhamento, basta fazer a reducdo da matriz de rigidez global,

como ja explicado anteriormente. Essa redugdo deve ser acompanhada por uma reducdo
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também nos vetores de deslocamentos e de cargas nodais. Esta é realizada da mesma forma:
retirando do vetor as parcelas correspondentes a graus de liberdade de nds fixos (0s apoios).
Entdo se deve resolver o sistema do tipo Kg * Ug = Fy (reduzido) para ent&o encontrar todos
os deslocamentos possiveis. Monta-se entdo o vetor de deslocamentos total, simplesmente
colocando zero nos deslocamentos que foram retirados, oS apoios. Se necessario, para
encontrar as forgas nos apoios, deve-se multiplicar a matriz de rigidez global (ndo reduzida)
pelos deslocamentos totais, entdo se calcula todas as forcas nos nés, onde as forcas atuantes

nos nos de deslocamentos restringidos sdo as forcas de apoio.

2.4.  Obtencéo de tensdes e deformacdes

Encontrado todos os deslocamentos (U), facilmente podem-se encontrar as tensdes e

as deformacdes, seguindo sucinta explicacéo:

Definem-se vetores de deformacdo e tensdo locais para cada elemento: g =

EX GX
EX , 01, = Gy .
Yxy Txy

Entdo, para determinar o vetor de deformacdes deve-se utilizar a matriz ‘B’, definida

conforme Eq. (2.44), procedendo da seguinte forma:
€L = Belem * Uelem (249)

A deducdo desta expressdo é trivial, pois segundo mostram as Eq. (2.19) e (2.44), a
matriz ‘B’ nada mais é do que o agrupamento dos diferenciais em ‘x’ e ‘y’ que, aplicados aos

deslocamentos nodais, resultam nas deformagdes (e, &y, Yxy)-

Na Eq. (2.49), os subscritos das matrizes ‘B’ e ‘U’ indicam que sdo matrizes do
elemento, ou seja, ‘B’ € a mesma que foi utilizada na integracdo de tal elemento. Porém néo
aplicada nos pontos de integragdo e sim em cada n6 do elemento, ou seja, as coordenadas
adimensionais sdo as coordenadas de cada no. O vetor ‘U’ contém os deslocamentos nas
direcbes vertical e horizontal dos nds pertencentes ao mesmo elemento finito. Portanto,
resulta em um deslocamento para cada n6 dentro do elemento. Para encontrar as tensfes basta

aplicar a lei de Hooke generalizada, porém aplicada ao ponto analisado, conforme Eq. (2.50):
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oL = EEPT * &, (250)

Na Eqg. (2.50), foi escolhido o estado plano de tensdes para a representacédo da Lei de
Hooke bidimensional. Caso a escolha for pela utilizacdo do estado plano de deformagdes,
deve-se utilizando a matriz Eepp no lugar de Eept, segundo as Eq. (2.28) e (2.29). Vale citar

aqui que o resultado das tensdes claramente depende dessa escolha.

Dessa forma, ja s@o conhecidas deformacdes e tensdes de cada elemento, armazenadas
nos vetores ‘e’ e ‘op’. Entdo, basta criar matrizes de deformacfes e tensdes globais que
armazenamos dados de todos os elementos, tendo em cada coluna as informacgdes de
determinado elemento. Essas matrizes devem ter trés dimensdes, como por exemplo, no caso
linear, a dimensdo deve ser [N_Elementos;4;3]: a primeira dimensdo (de tamanho igual ao
numero de elementos) armazena um conjunto de informacdes para cada elemento; a segunda
dimensdo (de tamanho igual a 4) armazena informacGes para cada um dos quatro n6s de um
elementos. Por fim, a terceira dimensdo (de tamanho igual a 3) armazena as trés tensdes (oy,

Oy, Txy) Para um no.

Nesse método resultam-se, entdo, as tensfes contribuintes de cada n6 dentro do
elemento finito. Porém, é mais consistente analisar uma tensdo média para cada elemento
finito da estrutura. Dessa forma, tem-se somente um valor de tensdo para cada elemento

finito, tornando mais facil julgar analiticamente como é a variacdo da tensdo na estrutura.

Para tal, o procedimento consiste em fazer uma somatéria da multiplicacdo da funcéo
de forma de cada no, aplicada no ponto central do elemento (onde as coordenadas
adimensionais sdo todas iguais a zero) pela tensdo do correspondente nd, como demonstrado
na Eg. (2.51). Como se pode observar, nada mais € do que calcular um valor de tenséo

exatamente no centro do elemento.
a
Oclemento — Z (Di(0,0) * Oj (2 51)
i=1

Na Eq. (2.51), ‘i’ € o nimero do né do elemento finito, ‘c;’ € a tenséo correspondente
a esse nd para esse elemento, calculada conforme Eq. (2.50). Finalmente, ‘®; (0,0)’ é a
funcdo de forma do né ‘i’ aplicada nas coordenadas adimensionais todas iguais a zero e a
variavel ‘a’ € numero de noés do elemento finito (quatro para o caso linear). Note que, com
essa equacdo pode-se encontrar o valor da tensdo em qualquer ponto do elemento, bastando

mudar os valores das coordenadas adimensionais nas quais as fungdes de forma dos nos séo
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aplicadas, sendo que ao colocar as coordenadas de um nd, o resultado da tenséo € o proprio
‘o;” desse no, pois faz parte da definicdo da funcdo de forma que ela deve ter valor igual a 1

quando aplicada no correspondente no e igual a zero quando aplicada nos demais nos.

A aplicagdo de tal formula para elementos de aproximacdo linear do campo de
deslocamentos, como é o utilizado nesse trabalho, resulta em uma simples média aritmética
das tensdes de cada n6 do elemento. Pois, ao aplicar as funcdes de forma no centro do
elemento elas resultam em valores todos iguais a ‘1/a’, 0 que equivale a somar todas as

tensdes e dividir pelo numero de nds do elemento.

2.5.  Implementagio computacional |

A construcdo do codigo computacional que execute 0 MEF foi realizada com base em
sub-rotinas no FORTRAN. O programa principal (main) chama as sub-rotinas na ordem
correta, enviando para cada uma as varidveis necessarias. Matrizes e varidveis importantes
para todo o método sdo salvas de forma global, de forma que todas as rotinas e sub-rotinas
possam acessa-las, sem que estas precisem ser enviadas como argumentos. O cddigo é

composto pelas seguintes sub-rotinas:

e Entrada de dados;

e Rigidez local;

e Espalhamento;

e CondicGes de contorno;
e TensOes e deformagdes;
e Saida de dados.

O inicio do cddigo se d& pela sub-rotina de entrada de dados, que realiza a leitura de
um arquivo de texto, obtendo as informacdes necessarias para realizar a analise via MEF. Esta
rotina deve ler todas as informacGes e armazenar os dados nas respectivas variaveis. Este

arquivo de texto contém as seguintes informacoes:

e Quantidade de nos e de elementos da malha;
e (Coordenadas ‘xy’ de cada no;

e NuUmero dos 4 nos que definem cada elemento;
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e Espessura, médulo de elasticidade longitudinal e coeficiente de Poisson de cada
elemento;

e Analise por estado plano de tensdes ou de deformacdes;

e Nos vinculados nas diregdes ‘X’ € ‘y’;

e Nos com forgas externas aplicadas nas dire¢des ‘x’ e ‘y’.

Em seguida, o codigo segue para a proxima sub-rotina, denominada rigidez local. Esta
tem a funcgéo de calcular as matrizes de rigidez para cada um dos elementos finitos. Portanto,
os calculos presentes nesta rotina devem ser repetidos até a quantidade total de elementos
finitos. Nesta etapa, segue-se o calculo das matrizes necessarias para realizar a integracédo
numérica, segundo descrito nesse capitulo. A Figura 3 abaixo ilustra, resumidamente, a
seguinte sequéncia de calculos que o cddigo realiza e especifica quais equagdes sao utilizadas

em cada passo.

Eepr OU Egpp
Eg. (2.2B) ou (2.29)

k4

Pontos e Pesos da
integracdo de Gauss

Fungdo FORTRAN
o
1. E:onto ge J (jacobiana) Hell] De
MHegragao Eq. {2.39) Fungdes FORTRAN Eg. (2.41)
A
L 4
J f o | B
7| Eq. (2.40) Eqg. (2.44)
L 4
Préximo [ Parcela de 'ﬁg, ) BT
ponto de Eg.[2.48) Funcdo FORTRAN
integracido
Nio ltimo ponto d&

¥ K. de todos pontos ]

integragdo ? Eq. [2.48)

Figura 3: Fluxograma de calculos da rotina Rigidez local

Dessa forma, quando finaliza-se a rotina de calculo acima, a somatorio das parcelas de
Ke € igual & matriz de rigidez do elemento finito em questéo. Evidencia-se que, o numero de
pontos de integragdo de Gauss influencia diretamente na quantidade de iteragdes que esta
rotina realiza para calcular Ke. O cddigo construido deixa esse nimero como uma variavel
que pode ser alterada durante sua construgdo. Pela literatura consultada e experiéncia em

outros trabalhos nessa area, foi fixado para os exemplos numéricos 4 pontos de iteracdo por
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coordenada (€’ e ‘n’). O passo seguinte é repetir a rotina para todos os elementos da estrutura

e entdo, finaliza-se esta sub-rotina.

A seguinte sub-rotina implementada é denominada espalhamento. Esta sub-rotina é
responsavel pela obtencdo da matriz de rigidez global da estrutura, a partir das matrizes de
rigidez de cada elemento finito, conforme teoria apresentada no Item 2.2.

O processo tem inicio com a inicializagdo de uma matriz (KeLosaL) com todos os
elementos iguais a zero. Dado um elemento com matriz de rigidez Ke conhecida, o ponto
crucial desta rotina € definir em quais células de KgeLosaL as parcelas de K. devem ser
somadas. Supondo que 0s nos que compdem o elemento finito em questdo tenham as
seguintes coordenadas: (X1;y1), -, Xi; Vi), -» (X43¥4). A Equacdo (2.52) mostra uma
representacdo da matriz ‘K¢’ (reduzida, mostrando somente as parcelas relacionadas a um
dado nd), onde em cada célula de ‘K¢’ esta identificada a posicdo da célula na qual esta

parcela deve ser somada em KgLoBAL:

K = Kerosar [2xi — 1;2y; — 1] Kgrosar [2xi; 2y; — 1] (2.52)
¢ KerosaL [2x; — 1; 2yi] KerogaL [2xi; 2yi]

Portanto, deve-se ser construida uma estrutura de repeticdo para somar 0s ternos nas
parcelas apresentadas na Eq. (2.52), repetindo esse processo para cada um dos 4 pontos
pertencentes ao elemento finito em questdo. Em seguida, repetir o processo para cada um dos
elementos constituintes da estrutura. Dessa forma, finaliza-se a construgdo da matriz de

rigidez global da estrutura.

Seguindo a execucdo do MEF, a proxima sub-rotina é denominada condigcbes de
contorno. Esta sub-rotina é responsével pela reducdo de KgLoeaL, zerando linhas e colunas
que multiplicam um deslocamento nulo (onde existe um apoio restringindo 0 movimento) e
colocando o valor 1 na interseccdo entre a linha e a coluna. Nesta sub-rotina também &
construido o vetor de forgas (F) reduzido, ou seja, excluem-se as células relacionadas ao nos
com deslocamento nulo. Dessa forma, a resolugdo do sistema da Eqg. (2.1) torna-se possivel, e
esta é realizada utilizando uma funcéo interna do FORTRAN. Portanto, neste passo séo

obtidos os deslocamentos nodais.

A sub-rotina final do MEF deve calcular tensdes e deformagdes, informacdes que
serdo utilizadas no algoritmo de otimizagdo. Segundo explicado no Item 2.4, primeiramente

calcula-se a matriz ‘B’, com processo analogo ao apresentado na Figura 3, porém ndo sdo
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utilizados os pontos de integracdo, mas cada um dos n6s que compdem o elemento em
questdo. Com a aplicacdo da Eq. (2.49) e Eq. (2.50) obtém-se deformacges e tensdes para
cada um dos nés. E, finalmente, com a Eg. (2.51) obtém-se o valor da tensdo central do
elemento finito. Este processo é repetido para cada um dos elementos da estrutura e as

informagdes séo armazenadas em vetores globais.

E ainda implementada uma funcéo de saida de dados, a qual cria uma arquivo de texto,
mostrando todas as informacGes obtidas pelo MEF: deslocamentos nodais, tensdes e
deformacgdes dos elementos. O cddigo ndo produz diretamente resultados em forma de
gréaficos ou figuras. Estes devem ser construidos manualmente no software Microsoft Excel®,

importando o arquivo texto da saida de dados para que se obtenham as informacdes.
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3. FORMULAGCAO TEORICA 2:
OTIMIZACAO TOPOLOGICA

Segundo Lanes (2013), um problema de otimizacdo topoldgica consiste
essencialmente na identificagdo da melhor distribuicdo de material em uma determinada
regido preestabelecida, quando a estrutura estd sujeita a alguma restricdo de projeto, que
podem ser: volume, taxas de deformacdes, frequéncias naturais, etc. Para o caso plano, a
otimizacdo topologica parte de uma chapa retangular com o maior tamanho possivel dentro do
dominio e termina com uma geometria final diferente, que respeite as restricdes de projeto,

como esquematizado na Figura 4.

i dr

configuracao Inicial configuragio otima

Figura 4: Representa¢do do problema de otimizacdo topoldgica
FONTE: FERNANDES, 2013, p. 03.

Sanches (2011) define o problema de otimizacdo estrutural segundo uma primeira
abordagem relacionada a propria analise: a avaliacao das possiveis configuracGes da estrutura.
Diante dos resultados avalia-se e define-se a configuracdo 6tima para o dominio estudado. A
necessidade de se alcancar uma configuracdo Otima para um determinado critério de
otimizacdo agrega ao estudo um nivel de andlise estrutural dependente de um dominio
discreto, o que possibilita o emprego do MEF. Entdo essa discretizacdo permite a
implementacdo de uma rotina computacional eficiente no processo de anélise. Porém existe a
possibilidade de problemas de instabilidade numérica como desvantagem. As referéncias
apresentadas definem tais problemas em trés categorias: irregularidades do tabuleiro de
xadrez, dependéncia da malha e problemas de 6timos locais.

A irregularidade do tabuleiro de xadrez caracteriza-se pela configuracdo estrutural
alternada em vazios de materiais, como pode ser observado na Figura 5. A origem desse
problema estd associada a erros numéricos do processo de aproximacdo do elemento finito
(DIAZ; SIGMUND, 1995 e JOG; HABER, 1996). Como técnica para eliminacdo desse
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problema, Bendsge Sigmund (2003) sugerem a utilizacdo de elementos com funcéo
interpoladora de ordem superior, como quadratica ou cubica, pois tais elementos apresentam

uma melhor aproximacdo do campo de deslocamentos.

Figura 5: Representagdo qualitativa da irregularidade de tabuleiro de xadrez
FONTE: LANES, 2013, p. 12.

A dependéncia de malha € um problema inerente a discretizacdo do dominio.
Intuitivamente espera-se que, quanto mais refinada a malha, maior a fidelidade das condig¢des
de contorno descrita pela topologia 6tima. Porém, ndo é isso que ocorre. Muitas vezes as
malhas mais refinadas resultam em topologia mais detalhadas, porém qualitativamente
diferentes de outras malhas ou modelos. Basicamente, com o aumento do refinamento da
malha, hd um aumento de espacos vazios. Vérias referéncias citam trabalhos com métodos
atenuantes, filtros, para reduzir essa dependéncia da malha, como descritos em Jog e Haber
(1996), Sigmund (1997) ou Sigmund e Petersson (1998).

O problema de 6timos locais esté relacionado a natureza ndo convexa do problema
matematico envolvido, sujeito a inameros resultados com solugdes localizadas (COUTINHO,
2006 e SANT’ANNA, 2002). Ou seja, para um mesmo problema muitos 6timos podem ser
encontrados, dependendo dos parametros escolhidos. De todos os problemas, talvez a
determinacdo de solucdes globais seja um dos maiores desafios na otimizagdo topologica, o
que permite entender que a identificagdo de 6timos locais ja seja suficiente o bastante para a

maioria dos projetos de engenharia.
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3.1.  Otimizacéo estrutural evolucionaria (ESO)

O método de otimizacdo topoldgica utilizado nesse trabalho se baseia no algoritmo
ESO (Evolutionary Structural Optimization), ou otimizacdo estrutural evolucionéria, em
portugués. Tal método foi primeiramente proposto por Xie e Steven (1993), como um método
com conceitos simples para a determinacédo topoldgica de projetos. A ideia basica do método
consiste na execucdo de um algoritmo de aproximacgdo heuristica com remocao gradual de
regides menos solicitadas do dominio, com base em um critério de penalidade. O primeiro
critério apresentado pelos autores foi baseado em tensbes equivalentes de von Mises:
elementos com tensBes abaixo de um dado valor limite sdo removidos a cada iteracdo do
processo, permitindo entdo encontrar uma estrutura com rigidez 6tima para um determinado

volume remanescente. Essa metodologia ficou conhecida como ESO sob nivel de tenséo.

Num primeiro momento, os critérios de remocao (como von Mises ou tensdes médias)
propostos levaram a contestacGes a respeito de sua validacdo e questionamentos sobre a
escassez de embasamento matematico (ZHOU; ROZVANY, 2001). Essa motivacdo levou a
criacdo de outra vertente: 0 método ESO em nivel de deslocamentos. Tal se baseava na
igualdade das energias total e de deformacdo para problemas com restricdo de rigidez
associado a um numero de sensibilidade, o qual era dependente das matrizes de rigidez de
deslocamento (CHU et al., 1996). Posteriormente, Zhao et al. (1998) constataram a coeréncia
dos resultados encontrados para as duas metodologias do ESO, tanto sob nivel de tensdo
como de deformacdo. Em seguida, Tanskanen (2002) concluiu que tal método é capaz de
proporcionar uma base teorica equivalente ao método de otimizacdo Programacdo Linear

Sequencial.

Com a consolidacdo do método ESO, foram propostas variagdes do algoritmo, visando
suprir limitagdes, como o problema de o6timos locais. Dentre estas, vale citar: GESO
(Otimizacdo estrutural evolucionaria genética), que integra operacdes da Genética (selecéo,
cruzamento e mutacao) ao ESO original; ESO Aditivo, que se baseia na adi¢do de elementos
ao sistema em regides de alta concentracdo de tensdo; e BESO (Otimizacdo estrutural
evolucionéria bidirecional), que adiciona e remove elementos do sistema simultaneamente.
Também foram formuladas aplica¢des do algoritmo para andlises dinamicas. O que se utiliza
nesse trabalho é apenas o método ESO original em nivel de tensdo, por se tratar de um

método de aplicacdo mais simples e de facil implementacéo.
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3.2. Formulagio ESO em nivel de tenséo

Nesta formulagdo do método, elementos com baixo nivel de tensdo sdo
sistematicamente removidos da estrutura, para obtencdo de um projeto eficiente. Tal remocéo
ocorre durante um processo evolutivo e, a cada andlise, novos elementos ineficientes sao

eliminados, até que o critério objetivo seja alcancado.

Para determinar quais elementos serdo removidos da estrutura € utilizado um critério
de penalidade, o qual utiliza uma formulacdo de tensbes equivalentes de cada elemento para
ranquea-los, ou seja, encontrar aquele com maior tensdo e os de menores tensdo para serem
retirados da estrutura. E arbitrada uma taxa de remocdo, ou seja, qual o nivel de tensdo
méaxima, no qual os elementos que ndo atingirem este valor serdo removidos, como mostra a
Eq. (3.1):

@ < RR 3.1)

Seamax

Isso quer dizer que, em uma determinada iteracdo, todos os elementos que
apresentarem uma tensdo equivalente menor do que ‘RR-o,,,’ serdo removidos da
estrutura. O parametro ‘RR’ é denominado taxa ou razdo de rejeicdo na iteracdo. No inicio do
processo é estipulado um valor inicial chamado ‘RR;’, entdo para a primeira iteracdo é
utilizado esse valor. Quando, numa dada iteracdo, existem elementos com nivel de tensdo
menor do que este, estes sdo eliminados e entdo o0 processo segue para a iteracdo seguinte.
Quando ndo ha nenhum elemento a ser removido, ou seja, todos apresentam tensdes
equivalentes maiores do que ‘RR;-o.,,,’, entdo a taxa € acrescida de um valor ER,
denominado razéo de evolucdo ou passo do aumento de ‘RR;’, até que exista pelo menos um

elemento a ser removido na iteracdo atual.
RR = RR; + ER (3.2)

Vale citar que ‘RR;’ é constante para todo o processo. Portanto, todas as iteragdes
iniciam-se com uma taxa de remocdo igual. Essa forma é utilizada para atenuar a remogéo de
elementos: sempre tenta-se eliminar os elementos com menor nivel de tensédo, mesmo que

essa taxa ‘RR’ seja menor do que a praticada na iteragdo anterior.

Querin (1997) sugere que para taxa de remocdo e seu passo sejam adotados valores

pequenos, proximos de 1%, para que seja garantida melhor convergéncia. Porém na préatica
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desse trabalho, a cada exemplo devem ser testados diferentes pardmetros de otimizacdo com
objetivo de verificacdo de convergéncia. Portanto, em alguns casos uma taxa maior do que
essa ja garante uma convergéncia adequada, porém para outros € necessaria a utilizacdo de

valores abaixo de 1%.

O processo evolucionario como um todo pode ser resumido nos seguintes passos
(LANES, 2013):

e Passo 1: discretizacdo do dominio inicial da estrutura, utilizando-se uma malha fina de
elementos finitos e aplicacdo de condicdes de contorno e acdes prescritas;

e Passo 2: analise estrutural via MEF;

e Passo 3: remover elementos que satisfagam (3.1);

e Passo 4: repetir 0s passos 2 a 4, até que o projeto 6timo seja alcangado.

A Figura 6 ilustra o processo na forma de um digrama:

Figura 6: Algoritmo ESO em nivel de tenséo.

Em andlises desse tipo, fixa-se 0 volume de material alvo a ser encontrado, o qual
define a geometria 6tima. Como o problema estudado € bidimensional, este valor € medido

como uma relacdo de area da estrutura.
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Para o céalculo da tensdo equivalente de cada elemento a ser utilizada no critério de
penalidade s&o utilizadas duas diferentes formulagdes nesse trabalho: tensdo equivalente de

von Mises e tensdo equivalente de Rankine, demonstrados nos préximos titulos.

3.3.  Tensdo equivalente de von Mises

Em 1913, R. von Mises desenvolveu um critério de escoamento com base na teoria da
energia de distor¢do, o qual diz que o escoamento do material ocorre quando a energia de
distorcao por unidade de volume do material é igual ou maior do que a energia de distorcédo
por unidade de volume do mesmo material quando submetido a escoamento em um ensaio de
tracdo simples (HIBBELER, 2010). Pela formulacdo de wvon Mises, isso equivale
matematicamente ao segundo invariante do tensor (J2) atingir seu valor critico. Esse invariante

pode ser escrito como:
J2 = %[(01 —03)* + (0 — 03)% + (03 — 61)?] (33)

Assumindo caso uniaxial, ou seja, 6; = 0.sc € 0, = 03 = 0 pode-se encontrar o valor

do invariante Jo:

I, = %[(Gesc - 0)2 + (0 - Gesc)z] = % (34)

Substituindo a Eq. (3.4) em (3.3) obtém-se

N 3.5

Oesc = 7\/(01 —03)% + (0, — 03)* + (03 — 01)? (3.5)
Supondo-se que esse escoamento ocorra para uma dada tensdo de von Mises no

elemento, tem-se que o.sc = 0cq. Aplicando a equagdo (3.5) ao caso estudado, tensdes no

plano, para um elemento finito a equacéo se reduz a:

3.6
Oeq = \/0§ — 040y + 31%, (36)

Essa tensdo equivalente ficou bastante conhecida como tensdo de von Mises, mas

também pode apresentar 0 nome de energia de distor¢cdo maxima, ou von Mises-Hencky.
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3.4. Tenséao equivalente de Rankine

Em meados do século XIX, W. Rankine prop6s a chamada teoria da tensdo normal
maxima. Tal teoria descreve que, como materiais frageis tendem a falhar repentinamente por
ruptura, sem escoamento, quando aplica-se tracdo a ruptura ocorre quando a tensdo normal
atinge o limite de resisténcia ‘o, e quando aplica-se tor¢do a ruptura ocorre devido a tensao
de tracdo méaxima novamente. Portanto, o critério de Rankine afirma que o material fragil
falha quando a tensdo principal méxima ‘c;’ no material atingir um valor limite igual ao
limite de resisténcia a tensdo normal que o material pode suportar quando submetido a tracéo

simples.

Ou seja, a tensdo equivalente de Rankine a ser utilizada como critério de falha é

simplesmente 0 modulo da méxima tenséo principal. No caso plano, tem-se:

Oeq = max(|o], |o,]) (3.7)

E interessante observar que esse critério difere de von Mises, pois quando se trata de
materiais frageis a falha acontece basicamente por ruptura repentina, com baixos niveis de
deformacéo. Para os materiais mais ducteis ocorre a deformacgdo do material até o escoamento
(falha) e essa energia perdida para deformar deve ser incorporada na tenséo equivalente do
critério de falha, portanto para esses materiais se utiliza o critério da energia maxima de

distorcdo (von Mises).

3.5. Implementacdo computacional Il

Novamente, o método foi implementado computacionalmente utilizando a linguagem
FORTRAN. Tendo o MEF implementado, conforme descrito no Capitulo 2, bastou o
desenvolvimento de um codigo que executasse o algoritmo de otimizacdo, seguindo o

fluxograma da Figura 6.

Primeiramente, a criagdo da malha de elementos finitos foi realizada com o auxilio do
software comercial ANSYS®. Um arquivo de texto com dados da malha (coordenadas dos nés
e conectividade dos elementos finitos) é gerado no software e entdo este arquivo € utilizado na

entrada de dados do codigo que executa 0 MEF. A partir da Eq. (2.51) obtém-se um valor de
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o para cada elemento finito, que é utilizado para calcular a tensdo equivalente pelo critério

escolhido (Von Mises ou Rankine), segundo as Equacdes (3.7) e (3.5).

Para isto, é necessario o célculo das tensdes principais (o; € o0,). Estas sdo obtidas
pelas Eqg. (3.8), sequndo Hibbeler (2010):

(3.8)

2
Ox+0y Ox+0y 2
012 == i\/(T T oy

Em seguida, o processo de avaliagdo dos elementos que devem ser eliminados é
trivial: € comparada a relacdo de tensdes de cada elementos com a variavel ‘RR’ (taxa de
rejeicdo), a qual deve ser incrementada quando ndo for possivel eliminar nenhum elemento
em determinada iteragdo. O processo de ‘“eliminar” os elementos da analise ¢ realizado
através da criacdo de um vetor denominado ‘KILL’. Este vetor tem a dimensdo igual ao
namero total de elementos da malha e é inicializado com valores iguais a 1 em todas as
células. A cada elemento retirado da estrutura, deve-se zerar a linha correspondente a

numeracao deste elemento na matriz ‘KILL’.

Portanto, todas as matrizes de rigidez dos elementos (‘Ke’) sdao multiplicadas por cada
linha correspondente ao elemento do vetor ‘KILL’. Dessa forma, os elementos que foram
eliminados ndo contribuem mais para a rigidez da estrutura. Ao final do processo, os valores
armazenados no vetor ‘KILL’ indicam quais elementos foram eliminados e quais ainda fazem

parte da estrutura.

Ao final do processo de otimizacdo, a sub-rotina de saida de dados gera um arquivo de
texto indicando somente os nds pertencentes a elementos que ndo foram eliminados no
processo. Isto ¢ implementado através de uma estrutura seletiva (“IF / ELSE”), responsavel
por analisar os valores do vetor ‘KILL’ e escrever no arquivo de saida de dados os nos dos

elementos que apresentarem um valor igual a 1 na célula respectiva neste vetor.

A representacdo gréfica da topologia final da otimizagdo é construida a partir da
exportacdo do arquivo de saida de dados para o software Microsoft Excel®. Recebendo os nos
e as coordenadas destes, constrdi-se um grafico de dispersao baseado nas coordenadas dos
nos. Ajustando a escala dos eixos do grafico, para que fique compativel com as dimensdes da
estrutura, o resultado deste é uma representacdo fiel da malha final gerada pela otimizacao

topoldgica.
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4. FORMULACAO TEORICA 3:
CONFIABILIDADE ESTRUTURAL

Segundo Leonel (2009), em uma analise de confiabilidade estrutural existem critérios
a serem avaliados, como eventos estatisticos que levam a cenarios de falha. A verificacdo de
cada critério significa verificar cada modo potencial de falha da estrutura. Para isso, deve-se
descrever e formular o problema considerando suas variaveis e devidas incertezas. Com essa
formulacédo, pode-se determinar uma probabilidade de que se observe uma situacdo de falha,
considerando o conhecimento estatistico de cada varidvel e sua influéncia sobre o

comportamento da estrutura.

Quando uma estrutura se encontra em uma situacdo onde a mesma ndo é mais capaz
de cumprir requisitos de servico e de seguranca, ela se encontra em uma situacdo indesejavel,
ou seja, a situacdo que é denominada falha. Para chegar ao ponto de falha existem varias

maneiras distintas, cada uma delas é chamada de modo de falha.

Para cada modo de falha existe um estado limite associado, 0s quais sé&o avaliados
pelas equacbes de estado limite. Sendo (X1, X2, X3, ..., Xn) &S variaveis que descrevem o
comportamento da estrutura e seus carregamentos, a representacdo da equacgdo de estado

limite para um dado modo de falha pode ser definida como:
8(x) = g(x1, Xz, ., Xn) = 0 (4.1)

Esta equacdo deve ser definida para que, quando a fungéo da Eq. (4.1) for maior do
que zero, a estrutura se encontre em uma situacdo de seguranca e quando g(x) < 0, numa
situacdo de falha. No ponto onde g(x) = 0, a equacdo se encontra na fronteira entre os dois

dominios, denominada superficie de falha. A Figura 7 ilustra graficamente essas anélises:

Jx(x)

2(x)<0
dominio de falha

g(x)>0

dominio de seguranga

X

Figura 7: Representagdo dos dominios de g(x) em um espaco de trés variaveis
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Nesse trabalho n&o sdo analisados casos de confiabilidade dependentes do tempo.
Portanto as variagfes que estejam ligadas ao historico de uso da estrutura de forma periddica
devem estar expressas dentro das informacdes estatisticas das varidveis a serem utilizadas,
caso precisem ser levadas em conta. Tendo essa consideracéo, € possivel fazer uma ilustracao
em que as variaveis do problema sdo classificadas como sendo de solicitacdo (S) e resisténcia

(R), entdo a equacdo de estado limite pode ser escrita como:
g(R,S)=R—-S=0 (4.2)

Como utilizado em varios exemplos, a equacdo de estado limite pode ser

simplesmente dependente da tensdo a qual a estrutura é submetida, sendo entdo igual a:
g(O', Cadm) = Oadm — O (4.3)

Assim, quando g > 0 significa que a tensdo admissivel ¢ maior do que a tensdo
aplicada (o), portanto uma situagdo de seguranga. Se g < 0 significa que a tensdo aplicada é

maior do que a tensdo admissivel, portanto uma situacdo de falha.

Na confiabilidade estrutural, o calculo da probabilidade de falha para um problema

genérico de duas variaveis X e Y é dado por:
Pe=PX<Y)ouPr=PX-Y<0) (4.4)

Sendo ‘fxy(x,y)’ a funcdo conjunta de densidade de probabilidade das varidveis ‘X’ e

“Y’, a probabilidade de falha pode ser representada novamente como sendo:
Pr = fjooo fjooo fyy (x, y)dxdy (4.5)

Admitindo que ‘X’ e ‘Y’ sejam estatisticamente independentes, a funcdo ‘fxy(x,y)’ €

a probabilidade de falha podem ser reescritas como:
Pe= [ 5O [/, fr (v) dy]dx (4.6)

Assim, para um exemplo onde ‘X’ e ‘Y’ sejam variaveis de distribuicdo normal
padrdo, utilizando célculos estatisticos pode-se obter a probabilidade de falha. Em alguns
exemplos simplificados, a resisténcia pode ser dada por uma tensdo admissivel constante, ou
seja, essa variavel é constante. Portanto, o problema se resume a avaliar as distribuicdes das

variaveis de solicitacdo: as tensdes admissiveis, que por sua vez podem também depender de
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outras variaveis, como carregamentos externos e geometria da estrutura. Essa Ultima,
geralmente, pode ser adotada como seguindo uma distribuicdo normal, pois, segundo estudos
sobre processos de fabricagdo mecéanica, quando o processo é afetado somente por causas
naturais (ndo ha perturbacdes especiais) a dimensao final segue uma distribuicdo normal ou

Gaussiana centrada, ou seja, com média (p) igual a dimenséo nominal.

Nessa distribuicdo, a funcdo densidade de probabilidade é matematicamente expressa

por:

P(x) = \/%_T[exp {— % (x — u)z} (4.7)

Porém, por facilidade, uma distribuicdo normal qualquer pode ser expressa como uma
distribuicdo normal padrdo ou reduzida, que apresenta média zero e desvio padrdo (s) igual a
um, sendo representada por Z = N(0,1). O processo de transformacdo para uma distribuicéo

normal qualquer de ‘x’ em padrdo ‘z’ ¢ feito pela seguinte equagao:

7(0,1) = X;—“ (4.8)

Para a distribuicdo normal padréo, a densidade de probabilidade é tabelada, conforme
Tabela 2. Dessa forma, pode ser facilmente consultada para se obter uma solucao relacionada
a ela, processo que foi utilizado nesse trabalho para verificar e validar respostas obtidas pelos

codigos desenvolvidos para avaliar a confiabilidade.

4.1. Simulacdo de Monte Carlo Direta

Segundo Leonel (2009), essa técnica se caracteriza por envolver grande nimero de
repetices de um processo de amostragem ou de realizagcBes das varidveis aleatorias do
problema. Essas realizagdes sdo obtidas de acordo com numeros aleatorios gerados conforme
conveniente distribuicdo de probabilidades. As repeti¢cdes fornecem um conjunto de solucdes
(uma para cada realizagdo) que representam a resposta simulada do modelo mecanico. Esses
resultados podem receber um tratamento estatisticos, se assemelhando a analise de uma
amostra aleatdria de uma populagdo. Sendo uma técnica de amostragem, o método esta sujeito
aos problemas relativos a erros de amostragem. Portanto, para se obter um resultado
estatisticamente preciso, é necessario um numero consideravelmente grande de simulacGes
(ANG; TANG, 1984).
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Tabela 2: Valores tabelados para distribuigdo normal padréo

Tabela Il — Distribuicdio Normal Padréo

Z ~ N(0, 1) o

Corpo da tabela da a probabilidade p, tal que p = P(0<Z < Z) P
0 Z z
rhe in- in-
pl;'lu e Segunda decimal de 7, p‘:l::‘ e
primeira primeira
decimal decimal
do, 0 1 2 3 4 5 6 7 8 9 doz,

p=0
0,0 00000 00399 00798 01197 01595 01994 02392 02790 03188 03586 0,0
0,1 03983 04380 04776 05172 05567 05962 06356 06749 07142 07535 0,1
0,2 07926 08317 08706 09095 09483 09871 10257 10642 11026 11409 0,2
03 11791 12172 12552 12930 13307 13683 14058 14431 14803 15173 0,3
0,4 15542 15910 16276 16640 17003 17364 17724 18082 18439 18793 0,4
0,5 19146 19497 19847 20194 20540 20884 21226 21566 21904 22240 0,5
06 22575 22907 23237 23565 23891 24215 24537 , 24857 25175, 25490 0,6
0,7 25804 26115 26424 26730 27035 27337 27637 27935 28230 28524 07
08 28814 29103 29389 29673 29955 30234 30511 30785 31057 31327 08
0,9 31594 31859 32121 32381 32639 32894 33147 33398 33646 33891 09

10 34134 34375 34614 34850 35083 35314 35543 35769 35993 34214 1,0
11 36433 36650 36864 37076 37286 37493 37698 37900 38100 38298 11
1 38493 38686 38877 39065 39251 39435 39617 39796 39973 40147 T2

1,3 40320 40490 40658 40824 40988 41149 41309 41466 41621 41774 1,3
1.4 41924 42073 42220 42364 42507 42647 42786 42922 43056 43189 1,4
1,5 43319 A3448  A3574 43699 43822 43943 44062 44179 44295 44408 1.5
1.6 44520 44630 44738 44845 44950 45053 45154 45254 45352 45449 1,6
1.7 45543 45637 45728 45818 45907 45994 46080 46164 46246 46327 1,7

18 46407 48485 46562 46638 46712 46784 46856 46926 46995 47062 18

1,9 47128 47193 47257 47320 47381 47441 47500 47558 47615 47670 1.9
2,0 47725 47778 47831 47882 47932 47982 48030 48077 48124 48149 20
2,1 48214 48257 48300  4834) 48382  4B422  4B461 48500 48537 48574 2,1

Z2 48610 48645  4B679 48713 4B745 48778 48809 48840 48870 48899 22
2,3 48928 48956 48983 49010 49036 49061 49086 49111 49134 49158 23
24 49180 49202 49224 49245 49266 49286 49305 49324 49343 49361 24
2,5 49379 49396 49413 49430 49446 49461 49477 49492 49506 49520 25
26 49534 49547 49560 49573 49585 49598 494609 49621 49632 49643 2,6
27 49653 49664 49674 49683 49693 49702 49711 49720 49728 49736 2,7
28 49744 A9752 49760  A9767 49774 49781 49788 49795 49801 49807 28
29 49813 49819 49825 49831 49836 49841 49846 49851 49856 49861 29
3.0 49865 49869 49874 49878 49882 49886 49889 49893 49897 49900 3,0
31 49903 49906 49910 49913 49916 49918 49921 49924 49926 49929 3,1
3.2 49931 49934 49936 49938 49940 49942 49944 49946 49948 49950 32
3,3 49952  A9953  A9955 49957 49958 49960 49941 49962 49964 49965 33
34 49966  APP68 49969 49970 49971 49972 49973 49974 49975 49976 34
35 49977 49978 49978 49979 49980 49981 49981 49982 - 49983 49983 3,5
36 49984 49985 49985 49986 49986 49987 49987 49988 49988 49989 346
3.7 49989 49990 49990 49990 49991 49991 49992 49992 49992 49992 37
38 49993 49993 49993 49994 49994 49994 49994 49995 49995 49995 38
3,9 49995  A9995  A9996 49996 49996 49996 49996 49996 49997 49997 3,9
4,0 49997 A9997  A9997  A9997 49997 49997 49998 49998 49998 49998 40
4,5 49999 50000 50000 50000 50000 50000 50000 50000 50000 50000 4,5

Percebe-se entdo que, para aplicar este método é requerido conhecimento prévio sobre
distribuic6es de probabilidades de ocorréncia das variaveis aleatdrias envolvidas no problema.
No contexto de confiabilidade estrutural, a técnica de Monte Carlo crua ou direta é baseada na
geracdo de valores pseudorranddémicos para as variaveis aleatérias do problema (podendo ser
tensdo de escoamento, area ou carregamentos) mediante suas distribuicGes de probabilidades.
Este conjunto de valores deve ser gerado de acordo com regras especiais, de modo a resultar

em valores confidveis (NOGUEIRA, 2010). Esse processo pode ser realizado, por exemplo,
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utilizando-se algoritmos recursivos com gerador linear congruencial (GLC), segundo
formalizado em Nowak e Collins (2000).

Segundo Pellizzer (2015), a obtencdo desta amostra de variavel aleatoria, com funcao
de distribuicdo cumulativa de probabilidade ‘Fx(x)’ conhecida, pode ser dividida em duas
etapas: primeiramente, gera-se um numero aleatorio ‘ys;”, com distribuicdo uniforme entre 0 e
1; e entdo determina-se a inversa da funcdo de distribuicdo cumulativa de probabilidades no

ponto ‘ys;” para obter-se “x;” (amostra da variavel aleatoria), segundo a equacéo (4.9):
Xi = Fx' (W) (4.9)

Vale ressaltar que a distribuicdo cumulativa de probabilidade ‘Fx(a)’ é igual a integral

da funcao densidade de probabilidade, como demonstra a equagéo (4.10):
Fx(@) = [ =exp{- -5 (a—w?} (4.10)

Para os casos de incertezas associadas modeladas como variaveis de distribuicdo
normal, as equacdes (4.9) e (4.10) foram resolvidas numericamente, utilizando métodos de
integracdo numérica, como demonstrado no item 2.1.2. Outras incertezas foram modeladas
como variaveis de distribuicdo uniforme, com intervalos de (a, b). Neste caso, foi utilizada a
equacdo (4.11) para o calculo do desvio padrdo desta distribuicdo e (4.12) para a média. Essas
expressoes sdo facilmente deduzidas por meio da expressdo da distribuicdo uniforme
continua, estatisticamente. Porém essa deducdo nédo faz parte do escopo do trabalho, entdo as
Eq. (4.11) e (4.12) foram obtidas de Ross (2010).

(b—a)2 (4.11)
SUNIF = 12
b—

HuNIF = Ta (4.12)

Desta forma, obtendo os valores de todas as incertezas associadas ao problema para
cada repeticdo, a equacéo de estado limite deve ser avaliada para cada simulacéo, verificando
se ha falha ou ndo. Em cada caso de falha, ¢ somada uma unidade na variavel de nimero de
falhas (ngappas). Este procedimento é repetido por varias vezes até atingir um tamanho de
amostras pré-determinado (namostra)- A probabilidade de falha é dada pela equacdo (4.5).
Porém, com a simulacdo de Monte Carlo pode-se calcular essa probabilidade pelo seu

estimador, simplesmente com a Eq.(4.13):
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PAF _ NEALHAS (4.13)

NAMOSTRA

O tratamento estatistico para demonstrar que essa probabilidade obtida utilizando a
amostra em questdo é realmente um bom estimador para a probabilidade real (populacional)
ndo faz parte do escopo desse trabalho. Baseado nas formulacdes tedricas encontradas na
literatura, assume-se que o resultado da Eq. (4.13) pode ser utilizado para este fim, e as

demonstragdes estatisticas ndo serdo aqui apresentadas.

Graficamente, a utilizacdo dessa metodologia obtém resultados como exposto na
Figura 8, que apresenta as amostras obtidas para um problema com duas variaveis aleatorias,

em um dominio que apresenta um estado limite g(x).

I

Dominio de falha Oy
G ) <0

Figura 8: Pontos de amostragem Simulacdo de Monte Carlo
FONTE: NEVES, 2004.

Este tipo de simulagdo é bastante robusto a respeito da quantidade de variaveis
aleatorias que podem ser introduzidas e também é de facil implementacdo computacional. No
entanto, o nimero de simulagdes para obter um valor aceitavel de ‘Pg’ € bastante elevado,
pois o resultado da Eq. (4.13) esta sujeito aos erros estatisticos de se utilizar um estimador
baseado em amostragem. Portanto, a simulacdo de Monte Carlo Direta se torna bastante
custosa computacionalmente. Segundo a literatura, para estimar uma probabilidade de falha

da ordem de 10™, o nimero de simulagBes ndo deve ser inferior a 102 ou 10™*3,

Este método foi escolhido para ser utilizado no calculo de probabilidade de falha,
devido a sua facil implementacdo. Apesar das dificuldades computacionais admitidas pelo

método, atualmente até mesmo computadores pessoais ja contam com processadores
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poderosos que sdo capazes de executa-lo com um tempo que ndo ultrapasse aproximadamente
48 horas.

4.2. Implementacéo computacional 111

A implementacdo computacional da Simulacdo de Monte Carlo para avaliacdo da
confiabilidade é realizada com base em sub-rotinas do FORTRN. O programa principal

(main) realiza a chamada dessas sub-rotinas, seguindo o fluxograma apresentado na Figura 9:

Caleular varidveis de
incerteza (xy, ..., X))
Eg. (4.9) e (4.10)

Incorporar (xy, .., X,) na
entrada de dados

L 4

Praxima

e Analise via MEF
Repeticao

Falha

Avaliar modos de falha

Z1(x1, -, Xals wons BlXa, -, %)

Neairas = Neapnas +1 ]

N&o Falha

-

Figura 9: Fluxograma do codigo de analise de confiabilidade

b

Inicialmente, deve-se obter os valores das variaveis de incertezas ‘xq,...,X,’,
modeladas como pseudoaleatorias. A primeira sub-rotina entdo € denominada calculo das
incertezas. Nesta sub-rotina, um arquivo de texto de entrada de dados contendo a quantidade
de variaveis, suas médias e desvios padrdes € lido pelo cédigo. As Equacdes (4.9) e (4.10) séo
resolvidas numericamente, utilizando a metodologia de integracédo de Gauss, analogamente
como foi utilizado no MEF. A variavel ‘{5;” é gerado através de uma fungdo interna do

FORTRAN, que retorna um namero aleatorio baseado em uma distribui¢do uniforme [0;1].

Em seguida, os valores gerados séo incorporados na entrada de dados da analise via
MEF. Neste ponto, € chamada a sub-rotina que executa o0 MEF. Esta sub-rotina engloba o
programa main da implementacdo computacional citada no Capitulo 2. Dessa forma, é
método é executado considerando os dados de entrada obtidos, resultando nos valores de

tensdes e deformacdes estruturais.
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A sub-rotina seguinte utiliza a resposta do MEF para avaliar os modos de falha
‘gi(X4, ..., Xy)’, conforme as Equagdes (4.2) e (4.3). Dessa forma, quando for identificada uma
falha, esta ¢ contabilizada na varidvel ‘NraLnas’. Finalmente, o codigo segue para a proxima
repeticdo, até que seja concluido um nimero pré-determinado de repeti¢cdes (‘NamostrA’). A

probabilidade de falha é entdo encontrada pela Eq. (4.13).
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5. RESULTADOS E DISCUSSAO

Nesse trabalho, os codigos implementados com as formulagdes descritas nos Capitulos
2, 3 e 4 serdo utilizados para a analise de exemplos de aplicacdo, onde estruturas de diferentes
geometrias serdo analisadas. Todas as geometrias serdo avaliadas utilizando o MEF
implementado, visando obter resultados de tensdes e deformacdes. Para todos os exemplos
executados é considerando o estado plano de tensdes (EPT). Entdo, a otimizacao topoldgica
sera executada para os exemplo, segundo algoritmo apresentado no Capitulo 3. Finalmente, 0s
resultados obtidos serdo comparados com resultados da literatura, verificando e discutindo a

convergéncia da otimizacao.

Ap0s esse processo, as geometrias 6timas obtidas pelo algoritmo de otimizacdo devem
ser avaliadas quanto a confiabilidade estrutural. Utilizando o método da Simulagdo de Monte
Carlo Direta, conforme descrito no Capitulo 4. Nesta analise, sdo buscadas conclusbes
coerentes com os resultados estruturais da analise e comportamento esperado. As geometrias
Otimas sdo comparadas com as geometrias iniciais e intermedidrias do processo de
otimizagdo, buscando, dessa forma, concluir sobre a robustez das estruturas otimizadas. Seréo
avaliadas também as influéncias da consideracdo de incertezas em parametros de

carregamentos e materiais do problema.

5.1. Exemplo 1: Chapa tracionada

No primeiro exemplo busca-se analisar o problema de otimizacdo mais simples,
segundo a literatura consultada. Esse problema seria uma chapa tracionada por uma Unica
forca P = 100N horizontal no centro de sua extremidade direita. A extremidade esquerda esta
fixa na parte superior e inferior por apoios modelados como duplos (com restricdo de
deslocamento nas dire¢fes horizontal e vertical), ou seja, a estrutura é hiperestatica. Porém
testes mostraram que o tipo de apoio utilizado praticamente ndo influencia no resultado da
otimizacdo, desde que a estrutura seja no minimo isostatica. A Figura 10 ilustra 0 esquema
estrutural. O objetivo é obter a configuragdo geométrica ideal para esta estrutura, que suporte
o0 carregamento aplicado, porém utilizando somente 30% do volume de material do dominio

inicial.
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Figura 10: Estrutura inicial do Exemplo 1(dimensdes em cm)
FONTE: OLIVEIRA, 2015.

Como pardmetros geométricos e de material, a espessura da chapa é considerada
unitaria, seu modulo de elasticidade Y = 210 GPa e o coeficiente de Poisson v = 0,3. Porém
para estudos de otimizacdo topoldgica, a literatura indica que tais parametros ndo mostram
influéncia no resultado final, ja que praticamente ndo alteram a diferenca entre os valores de
tensdo de cada elemento da malha. Isso reforca o fato dos resultados serem apenas

qualitativos, ndo quantitativos. A estrutura deve ser otimizada para 30% do volume inicial.

Para a andlise via MEF, sdo utilizadas trés diferentes malhas, sendo a primeira mais
grosseira e a terceira mais refinada, conforme mostrado na Figura 11. Objetiva-se obter a
geometria 6tima para as trés malhas e comparar os resultados para cada uma. Dessa forma,
avalia-se a qualidade da resposta para as malhas utilizadas e possiveis problemas como 6timos
locais e interferéncia de malha, os quais a literatura cita como bastantes comuns para este tipo

de analise. As caracteristicas de cada malha sdo:

e Malha 1: 200 elementos de 10 por 10 cm;
e Malha 2: 800 elementos de 5 por 5 cm;
e Malha 3: 3200 elementos de 2,5 por 2,5 cm;
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Malha 1 Malha 2 Malha 3

Figura 11: Malhas de elementos finitos para chapa do Exemplo 1

Visando analisar a qualidade da malha utilizada, um pardmetro denominado de
densidade da malha de elementos finitos (p,,) foi definido. Este pardmetro contabiliza a
relacdo entre a area de um elemento finito e a area total da estrutura. Isto quer dizer que,
guanto menor essa relacdo, mais refinada é a malha e, portanto, melhor é sua a aproximacéao.

Para as trés malhas utilizadas neste exemplo, os valores obtidos sdo o0s seguintes:

10 % 10 (5.1)
—_— — -3
Pm1 = 300% 100 >~ 10
545 oc. g0 (5.2)

Pm2 = 500 % 100
_ 2,5%25
Pm3 = 500 % 100

=3,125*107* (5:3)

Para a otimizacdo utilizando a primeira malha, os parametros foram 0s seguintes: a
menor razdo de rejeicdo a cada iteracdo RR; = 2% e passo de aumento dessa razdo igual a
metade de ‘RR;’ (ER = 1%). Foi utilizando primeiramente o critério de Von Mises para
ranquear os elementos e depois Rankine, visando comparar os resultados. A Figura 12 mostra
a evolucdo da geometria até o 6timo encontrado ao final do processo, com Von Mises (a) e

com Rankine (b).
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(b) RANK

Figura 12: Evolugdo da geometria até o 6timo obtido para a malha 1 do Item 5.1

A Figura 13 resume o processo evolutivo para o pardmetro ‘RR;’ (denominado de

Taxa de Rejeicdo por iteracdo) e quantidade percentual de volume removido em relacdo ao

volume inicial (denominado Retirada de material), quando o critério de Von Mises é utilizado.

Vale observar que tais graficos, quando obtidos para utilizacdo do critério de Rankine, ndo

foram adicionados a este relatorio, pois ndo possuem diferenca significativa com relacdo ao

apresentado na Figura 13.
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Figura 13: Evolucdo dos parametros de otimizacdo para malha 1 do Item 5.1
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(a) VM (b) RANK

Figura 14: Evolucao da geometria até o 6timo obtido para a malha 2 do Item 5.1

A Figura 15 € utilizada para resumir o processo evolutivo para o parametro ‘RR;’
(denominado Taxa de rejeicdo por iteracdo na Figura 15) e a quantidade percentual de volume
removido em relacdo ao volume inicial (denominado Retirada de material) quando a segunda
malha foi utilizada. O gréfico apresentado na Figura 15 refere-se a utilizacdo do critério de
Von Mises. Os gréaficos referentes a utilizacdo do critério de Rankine ndo foram apresentados

por ndo apresentarem mudancas significativas.

Taxa de rejeigdo por iteracao Retirada de material
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g 107 . s e T 40
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o 50 100 0 50 100
Iteracdo () Iteragdo ()

Figura 15: Evolucdo dos pardmetros de otimizacdo para malha 2 do Item 5.1



Finalmente, para a terceira malha, os pardmetros de otimizacdo utilizados foram
também os mesmos (RR; = 2% e ER = 1%). Também foram utilizados os critérios de tenséo
equivalente de Von Mises e de Rankine para ranquear os elementos. A Figura 16 ilustra a
evolucdo da geometria até desde o dominio inicial até 6timo encontrado ao final do processo,

com Von Mises (a) e com Rankine (b):
(

(@) VM b) RANK

Figura 16: Evolugdo da geometria até o 6timo obtido para a malha 3 do Item 5.1

Da mesma forma, as Figura 17 e Figura 18 resumem o processo evolutivo para o
pardmetro ‘RR;’ (denominado Taxa de rejeicdo por iteracdo) e a quantidade percentual de
volume removido em relagdo ao volume inicial (denominado Retirada de material) para o
processo utilizando a terceira malha. Neste caso, foram separadas as informacgdes obtidas
quando se utiliza os critérios de Von Mises e de Rankine para ranquear os elementos,
resultando nas Figura 17 e Figura 18, respectivamente. A apresentacdo desses resultados
separadamente possibilita a comparacdo entre eles, o que, neste caso é relevante, visto que

foram encontradas diferencas significativas.
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Taxa de rejeigdo por iteracao Retirada de material
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Figura 17: Evolucdo dos pardmetros para malha 3 com critério de Von Mises do Item 5.1
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Figura 18: Evolugao dos pardmetros para malha 3 com critério de Rankine do Item 5.1

Na terceira malha houve, pela primeira vez, uma diferenca significativa nos gréaficos
obtidos quando se utiliza Von Mises ou Rankine (como pode ser visto nas Figura 17 e Figura
18). Percebe-se que por volta da iteracdo 150 a distribuicdo de tensdo nos elementos finitos
foi tal que, em determinada iteracdo foram encontrados varios elementos com um nivel
baixissimo de tensdo equivalente de Rankine e entdo houve uma grande retirada de material
com uma pequena taxa de rejeicdo (por volta de 2%). Comparando com a parte (b) da Figura
16 pode-se claramente ligar essa grande e rapida retirada de material com a transicao entre a
42 e 52 situacdo da geometria do dominio, onde ocorreu uma grande mudancga na geometria,
com a retirada de praticamente uma area inteira de material. Nesta situacéo, provavelmente,
encontram-se 0s tais elementos com um nivel de tensdo baixissimo citados logo acima.
Porém, como essa situacdo ocorreu em uma iteracdo bastante longe do final do processo, ndo
houve influéncia na geometria final obtida. Quando é utilizado o critério de von Mises

percebe-se que a evolucdo dos parametros € bem mais comportada e ndo ocorrem situagdes



60

como essa, 0 que pode ser comprovado analisando a parte (a) da Figura 16. Nesta figura,
pode-se verificar que as transic0es de geometria entre 0s momentos indicados sdo mais

suaves.

Explicada a diferenca encontrada nas Figura 17 e Figura 18, pode-se dizer que néo
houve uma diferenca significativa na geometria 6tima encontrada pelo método utilizando
critério de von Mises ou Rankine. Comparando os resultados finais obtidos com ambos, a
diferenca ndo fica maior do que 5% dos elementos. A Figura 19 mostra exatamente 0s
elementos “ativos” a0 final do processo para as trés malhas utilizadas, dando assim uma

melhor representatividade da geometria 6tima.

X T X

x
Malha 1 Malha 2 Malha 3

Figura 19: Geometria 6tima encontrada com as trés malhas utilizadas no Exemplo 1

A primeira conclusdo a ser tomada deste exemplo é que ndo ocorreu nenhum problema
numérico no processo de otimizacdo. Além disso, ndo foi encontrada nenhuma interferéncia
da malha no resultado, como pode ser observado na Figura 19. As geometrias encontradas
pelas trés malhas sdo coerentes e praticamente iguais, considerando o nivel de refinamento
crescente da primeira para a terceira. Por fim, essa geometria 6tima é comparada a um
resultado encontrado na literatura (Figura 20) e entdo pode-se finalmente dizer que 0s

resultados encontrados séo corretos e conforme o esperado.
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—

Estrutura inicial Estrutura final
Volume = TV, Volume = 0,3V,

Figura 20: Geometria étima para o0 Exemplo 1 encontrada na literatura
FONTE: OLIVEIRA, 2015.

Finalmente, é importante ressaltar o tempo de execu¢do do codigo de otimizagdo para
este exemplo. Para a primeira malha, o processo finaliza-se com menos de 5 segundos, ja para
a segunda malha sdo necessarios 3 minutos e para a terceira, quase 5 horas. Percebe-se que 0
refinamento da malha resulta em um aumento exponencial do tempo de execugéo, tornando o
algoritmo bastante custoso computacionalmente quando utiliza-se malhas muito refinadas.
Porém, avalia-se que, mesmo para a terceira malha utilizada, o tempo de processamento nao
impossibilita a utilizacdo deste método, pois a espera das 5 horas citadas ndo trouxe
obstaculos para a realizacéo deste trabalho. Vale citar ainda que, foi utilizado um computador
pessoal, com configuracdes de processamento de baixo custo e facilmente encontradas no
mercado. A utilizacdo de uma maquina mais potente poderia minimizar drasticamente este

tempo de processamento.

5.2.  Andlise de Confiabilidade: Exemplo 1 — Chapa tracionada

Os resultados obtidos anteriormente, no Item 5.1 sdo agora analisados quanto a
confiabilidade estrutural. A geometria analisada sera a mostrada na Figura 19. Serd utilizada a
segunda malha para anélise via MEF. Esta escolha foi baseada na avaliacdo do bom grau de
refinamento da malha, segundo Eq. (5.2), na geometria final bem comportada, segundo Figura
19 e no tempo de execucdo do método apresentado quando esta malha foi utilizada. Segundo
citado no item anterior, o processo de otimizacdo foi finalizado com aproximadamente 3
minutos, o que foi considerado satisfatério e bem abaixo do tempo da terceira malha

(aproximadamente 5 horas).

Para a anélise de confiabilidade foi utilizada a Simulagdo de Monte Carlo Direta com

10 mil amostras. Segundo citado no item 4.1, esta quantidade resulta na avaliagdo precisa de
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uma probabilidade de falha da ordem de 1072 ou até 107. Vale citar que, para este tamanho de
amostra e utilizando uma méaquina com as configuracoes citadas no Capitulo 1, o cédigo que
executa a Simulacdo de Monte Carlo apresenta um tempo de processamento entre 6 e 8 horas.
Este tempo foi avaliado como satisfatorio para os exemplos desse trabalho, pois ndo se

apresentou como obstéculo para as analises realizadas.

Os modos de falha analisados sdo as tensdes de Von Mises maximas em cada
elemento finito da malha. Considera-se falha quando a tensdo de VVon Mises atuante é maior

que a tenséo de escoamento do material em um determinado elemento finito.

Para este exemplo, é simulado como material um ago carbono SAE 1020, cuja tensdo
de escoamento e sua incerteza foram consideradas segundo DOMENEGHETTI (2011). O
coeficiente de Poisson é fixado em 0,3 e modulo de elasticidade Y=210 GPa. A espessura da

chapa analisada é de 1 cm.

Como incertezas associadas foram consideradas a tensdo de escoamento, forcga
aplicada e também seu angulo em relacdo a horizontal (). O angulo (o) pode ser visualizado
na Figura 21. Foram analisados 4 diferentes casos, sendo que as varidveis aleatorias foram
adicionadas uma a uma em cada caso, visando mostrar a influéncia de cada uma no resultado

final da confiabilidade da estrutura, como mostra a Tabela 3.

/]
Z

‘A

/
/
/A

Figura 21: Angulo considerado como incerteza associada

Na Tabela 3 observa-se que a diferenga entre os casos 3 e 4 se resume ao desvio
padréo da distribui¢do do angulo (a): no terceiro caso a distribuicdo uniforme de a € entre -15°
e +15°% ja no quarto caso é entre -45° e +45° Vale observar que o desvio padrdo para as

variaveis uniformes € dado pela Eq. (4.11), do item 4.1.
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Tabela 3: Resultados da andlise de confiabilidade para o item 5.2

S ‘. Tipo de . Desvio Resulta.qo de
Variaveis aleatorias . . | Média - Probabilidade
Distribuigcao padrao
de Falha
Caso 1 [ Tens3o Escoamento [KN/cm?] Normal 29,8 0,5 2,64%
Caso 2 Tensdo Escoamento [KN/cm?] Normal 29,8 0,5 3.82%
Forga Nodal [KN] Normal 70 7
Tens3o Escoamento [kKN/cm?] Normal 29,8 0,5
Caso 3 | For¢a Nodal [KN] Normal 70 7 35,35%
Angulo o [graus] Uniforme 0| 8,66025
Tensdo Escoamento [KN/cm?] Normal 29,8 0,5
Caso 4 | For¢a Nodal [KN] Normal 70 7 73,16%
Angulo (a) [graus] Uniforme 0| 25,98076

Com estes resultados de probabilidade de falha em maos, pode-se concluir que a
confiabilidade da estrutura é criticamente afetada pela variacdo da direcdo da forca aplicada
nos noés (representada para incerteza no angulo o). Outros parametros ndo influenciaram
significativamente na confiabilidade da estrutura. Esse comportamento pode ser explicado
pela caracteristica da otimizacdo topoldgica, que apresenta um resultado quantitativo
extremamente voltado para as condi¢fes iniciais do problema. Isto significa que, uma
mudanga na geometria do problema (como a direcdo das forgas) faz com que o resultado da
otimizacdo perca sua qualidade. Ou seja, 0 6timo encontrado pelo algoritmo é extremamente
sensivel as mudancas geométricas, em outras palavras, pouco robusto. A comparacdo entre 0s
resultados do terceiro e quarto casos enfatiza a grande influéncia desse pardmetro na
confiabilidade estrutural, pois 0 aumento da variacdo do angulo da direcdo da forca aplicada

fez com que a probabilidade de falha mais que dobrasse.

Em seguida, outra andlise foi realizada em cima deste exemplo. O cddigo de
otimizacgdo topolodgica foi executado, buscando obter as geometrias finais para reducfes de
material de 30% e 50%. Dessa forma, a confiabilidade pode ser analisada em cinco diferentes
geometrias para este mesmo problema: 0%, 30%, 50% e 70% de material removido. Sendo
que para 0% é utilizada a geometria inicial do problema, sem nenhuma alteracéo e 70% ¢ a
geometria Otima ja analisada (resultado do item 5.1). A Figura 22 deixa claro as cinco

geometrias utilizadas.
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Figura 22: Diferentes geometrias analisadas quanto a confiabilidade para item 5.2

Para todas as geometrias, foram analisados o0s casos 3 e 4 da Tabela 3 e foi adicionado
um quinto caso, que € analogo aos outros citados, porém com variacao de a entre -30° e +30°.
Dessa forma, procura-se analisar a totalidade das interferéncias da quantidade de material
removido e da amplitude de variacdo do angulo da forca aplicada. Portanto, tem-se 12 casos a
serem analisados nesta etapa (4 geometrias com diferentes remocdo de material e 3
amplitudes de variacdo do angulo a para cada uma). Os resultados sdo apresentados na ura 23
em forma de grafico.
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Figura 23: Resultados de confiabilidade para item 5.2

Conforme apresentado na Figura 23, pode-se obter as seguintes conclus@es: claramente
percebe-se que o aumento na porcentagem de material removido na estrutura gera um
aumento significativo da probabilidade de falha, ainda mais a partir dos 30%. Percebe-se
também que a amplitude da variacdo do angulo de aplicacdo da forca também interfere
fortemente no resultado da confiabilidade. Quanto maior for a remocdo de material da
estrutura, mais essa variacdo influencia na confiabilidade, ou seja, menos robusta é a
estrutura. J& para a geometria inicial (0%), os trés valores de amplitudes do angulo nao
modificam de forma significativa a confiabilidade, ou seja, trata-se de uma estrutura mais

robusta e que, quanto mais se remove material, mais vulneravel se torna.

Neste exemplo confirma-se que todos os resultados esperados fisicamente foram
obtidos a partir das simulacdes implementadas numericamente. Confirma-se também que a
otimizacdo topologica é extremamente focada nas condi¢cBes geométricas iniciais da estrutura
e do carregamento, e que esta torna a estrutura bastante vulneravel a variacdes nestes

parametros, exatamente como era esperado.
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5.3. Exemplo 2: Chapa em balanco

No segundo exemplo busca-se analisar um problema de otimizagdo com solugdo um
pouco mais complexa. Porém, ainda um problema classico que possui solucdo na literatura.
Esse seria uma chapa em balanco sujeita a uma acao elastica. A extremidade esquerda esta
fixa na parte superior e inferior e ha uma forca aplicada na extremidade superior direita P =
3000 N. A Figura 24 ilustra a geometria inicial do problema, carregamentos e vinculacfes. A
espessura da chapa é unitaria. As propriedades do material utilizadas sdo modulo de
elasticidade igual a 210 GPa e coeficiente de Poisson igual a 0,3. A estrutura serd otimizada

para 40% do volume inicial de material.
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Figura 24: Estrutura inicial do Exemplo 2
FONTE: VITORIO JUNIOR, 2015, p. 830.

Para este exemplo, sdo utilizadas duas diferentes malhas, sendo uma mais grosseira e

outra mais refinada, conforme mostrado na Figura 25:

e Malha 1: 160 elementos de 0,4 por 0,4 cm;
e Malha 2: 640 elementos de 0,2 por 0,2 cm;

O parametro densidade da malha (p,,) neste exemplo fica igual a:

04 %04 (5.4)
— — -3
Pm1 =gargg = 625+ 10
0,2 0,2 :
= 1,56 41073 (5:5)

Pm2 = 54540
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Malha 1 Malha 2

Figura 25: Malhas de elementos finitos para chapa do Exemplo 2

Para a primeira malha, os parametros de otimizacdo utilizados foram os seguintes: a
menor razdo de rejeicdo a cada iteracdo RR; = 2,5% e passo de aumento dessa razdo igual a
metade de ‘RR;’ (1,25%). Foi utilizando primeiramente o critério de VVon Mises para ranquear
os elementos e depois Rankine, visando comparar os resultados. A Figura 26 mostra a
evolucdo da geometria até o 6timo encontrado ao final do processo, com VVon Mises (a) e com

Rankine (b).

(a) VM

Figura 26: Evolucéo da geometria até o 4timo obtido para a malha 1 do Item 5.3

A Figura 27 resume 0 processo evolutivo para o parametro ‘RR;’ (denominado de
Taxa de Rejeicdo por iteracdo) e quantidade percentual de volume removido em relacdo ao
volume inicial (denominado Retirada de material), quando o critério de VVon Mises é utilizado.

A evolucdo destes parametros quando a otimizagdo é executada com o critério de Rankine
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para ranquear os elementos ndo foi representada nesse trabalho. Pois, tal anélise foi observada
e ndo mostrou diferencas significativas em relagcdo a evolugdo dos pardmetros apresentada na

Figura 27.
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Figura 27: Evolucdo dos parametros de otimizagdo para a malha 1 do Item 5.3

Para a segunda malha, os parametros de otimizacao utilizados foram os seguintes: a
menor razdo de rejeicdo RR; = 0,25% e passo de aumento ER = 0,125%. Constata¢des dos
exemplos anteriores mostraram que existe uma equivaléncia entre utilizar o critério de Von
Mises ou Rankine para ranquear os elementos por tensdo equivalente. Por este motivo, neste
caso sdo apresentados os resultados apenas na utilizacdo de Von Mises. A Figura 28 ilustra a

evolucdo da geometria até o 6timo encontrado ao final do processo de otimizagéo.

Figura 28: Evolucdo da geometria até o 6timo obtido para a malha 2 do Item 5.3
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Como foi realizado em itens anteriores neste Capitulo, a Figura 29 apresenta o resumo
do processo evolutivo para os parametros ‘RR;’ (taxa de rejeicdo por iteracdo) e quantidade
percentual de volume removido em relagdo ao volume inicial (Retirada de material). Ambos

0s parametros sdo apresentados nesses graficos em funcdo do nimero de iteracdes.

Taxa de rejeigdo por iteracao Retirada de material

70

Retirada (%)

1} 100 200 300 4] 100 200 300

Iteracdo () Iteracdo ()

Figura 29: Evolucdo dos parametros de otimizacdo para a malha 2 do Item 5.3

Por fim, os resultados obtidos para este exemplo podem ser avaliados como
satisfatorios. Percebe-se que na malha mais grosseira o contorno do buraco formado no meio
da estrutura fica ligeiramente diferente. Porém isto pode ser explicado pela falta de resolugéo
desta discretizacdo. Pode-se afirmar que ambas as respostas encontradas sdo coerentes, ndo
houve nenhum problema numérico ou interferéncia da malha neste caso. Quando comparado
com a geometria 6tima encontrada na literatura (Figura 30), conclui-se também que o
resultado encontrado esta dentro do esperado, apesar da diferenca nas dimensdes externas da
estrutura e seu contorno. Estas diferencas existem devido ao fato de Vitorio Junior (2013)
utilizar um algoritmo de otimizacao baseado no Método dos Elementos de Contorno (MEC) e

Método Level Set para analise mecanica, diferente do MEF utilizado nesse trabalho.

Figura 30: Geometria 6tima para o Exemplo 2 encontrada na literatura
FONTE: VITORIO JUNIOR, 2015, p. 830.
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Adicionalmente ao estudo j& feito para este exemplo, uma terceira malha mais
refinada, composta por 2560 elementos de dimensdo 0,1 por 0,1 cm foi analisada. Esta malha
apresenta uma densidade p,, = 3,9 * 10~*. Essa analise busca a obtencdo desse mesmo
resultado final, porém tendo a aproximacdo de uma malha bem mais refinada. A geometria

final também objetiva uma remocéao de material total igual a 70%.

Neste caso, foram testados diferentes valores dos parametros de otimizagdo ‘RRi’ e
‘ER’. Porém, com nenhuma combinacdo destes valores foi encontrada a geometria étima
como na Figura 30. Independente dos valores utilizados, a otimizacdo encontrou
interferéncias de malha e problemas de minimos locais. Dessa forma, ndo foi possivel chegar
a geometria idéntica & encontrada na literatura utilizando o algoritmo ESO puro. Uma
diminuicao drastica nos parametros de taxa de rejeicdo de iteracdo (RR;) e passo do aumento
dessa razdo (ER) foi tentada, porém em nenhum caso obteve-se éxito. A Figura 31 apresenta
os resultados da otimizacdo obtidos, quando sdo utilizados diferentes valores para 0s
parametros ‘RR;’ e ‘ER’. Nesta figura percebe-se claramente que existe uma grande diferenca

entre as geometrias 6timas encontradas e a apresentada na Figura 30.

04 14 24 34 44 54 6.4 04 14 24 3.4 44 54 64

RRi=3% ER=1,5% RRi=2,5% ER=1,25%

04 14 24 3.4 44 54 64 04 14 24 34 44 54 64

RRi=0,5%  ER=0,25% RRi=0,2%  ER=0,05%

Figura 31: Geometrias encontradas no Exemplo 2 com diferentes parametros para malha 3
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Essa diferenga nos resultados e dificuldade em encontrar uma resposta independente
da malha ou dos pardmetros pode ser explicada pela existéncia de minimos locais. As
diferentes geometrias encontradas mostradas na Figura 31 sdo 6timos locais para a funcéo de
otimizacdo. Todas estas geometrias respeitam parametros e requisitos impostos na otimizacéo,
porém nenhuma delas é igual entre si ou ao 6timo encontrado na literatura. Por este lado,
acredita-se que o refinamento da malha aumente a ocorréncia de minimos locais par a funcéo
de otimizacao encontrados pelo algoritmo. Essa constatacdo se da devido ao fato da melhor
aproximacdo e discretizacdo do campo de tensbes da estrutura levar a uma melhor
aproximacdo da prdpria funcdo de otimizacdo. Dessa forma, os minimos locais sdo mais
facilmente encontrados no processo. Adicionalmente, uma vez que 0 processo se aproximou
de um deste minimos locais, o algoritmo ndo é capaz de sair desta regido, ficando preso a essa

resposta.

Essa situacdo ndo € observada quando sdo utilizadas malhas mais grosseiras. Ao
contrério do problema descrito no paragrafo anterior, a malha menos refinada gera uma
aproximacdo do campo de tensGes menos perfeita, resultando em uma pior representacdo da
funcdo de otimizacdo. Dessa forma, os minimos locais que apresentam uma pequena variacdo
nesta funcdo ndo sdo identificados no processo de otimizacdo. Por este motivo, € mais
provavel que o algoritmo chegue até o ponto 6timo global, pois somente grandes variacdes
podem ser identificadas na aproximacéo da funcéo de otimizagé&o.

Dessa forma, percebe-se que existe um valor ideal para densidade da malha de
elementos finitos. Este valor representaria a melhor discretizacdo da estrutura que pode-se
utilizar, sem que o algoritmo de otimizagdo encontre problemas de minimos locais.
Claramente observa-se que para cada problema esse valor 6timo é diferente, pois a funcéo de
otimizagdo ndo é a mesma. A andlise de outros problemas nesse trabalho buscara um valor

tipico para essa densidade, quando se utiliza os métodos implementados.

Os tempos de processamento do codigo de otimizacdo apresentados neste exemplo
foram muito semelhantes aos obtidos no Item 5.1. Para a primeira malha foram somente
alguns segundos e para a segunda malha foram aproximadamente 4 minutos. Ja para a terceira
malha, o processo levou aproximadamente 5 horas. Vale citar que esse tempo de
processamento para a terceira malha, mesmo sendo bastante elevado em relagdo aos demais,
ndo foi um obstaculo para que o processo fosse executado diversas vezes em busca do 6timo

global, como demonstrado na Figura 31.
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5.4.  Analise de Confiabilidade: Exemplo 2 — Chapa em balanco

Os resultados obtidos no item 5.3 serdo analisados quanto a confiabilidade estrutural.
Inicialmente, a geometria analisada sera a geometria final obtida pela otimizacdo. Sera
utilizada também a segunda malha para analise de elementos finitos. Esta escolha foi baseada

baseado nos mesmo argumentos do Item 5.2.

Para a analise de confiabilidade foi utilizado, novamente, um tamanho de 10 mil
amostras para a Simulagdo de Monte Carlo. Os modos de falha analisados também s&o como
no Item 5.2, a comparagdo entre tensdes de VVon Mises méximas e tensdo de escoamento em

cada elemento finito da malha.

Para este exemplo, os parametros do material foram ligeiramente diferentes do
exemplo anterior. Foi mantido o coeficiente de Poisson em 0,3 e modulo de elasticidade
Y=210 GPa, com chapa de espessura de 1 cm. O valor da tensdo de escoamento foi analisado

como uma variavel de incerteza, com valores em torno de 35 kN/cm?.

Além da tensdo de escoamento, como incertezas associadas foram considerados
também o modulo da forca aplicada e seu angulo em relagéo a vertical (o). O angulo (o) é
analogo ao utilizado no Item 5.2, como pode-se verificar na Figura 21. Porém, neste caso, é o
angulo entre a forga aplicada e a diregdo vertical. Neste exemplo, foram analisados 3
diferentes casos, todos eles ja iniciaram com todas as varidveis aleatdrias incorporadas, sendo
que para cada um foi considerado um diferente valor para variacdo do angulo a (-15 e +15°
para Caso 1, -30 e +30° para Caso 2, -45 e +45° para Caso 3). O resultado é mostrado na
Tabela 4.

Tabela 4: Resultados da anélise de confiabilidade para o Item 5.4

il . .. Tipo de . - Desvio Resultarc!o de
Variaveis aleatdrias . .~ | Média o Probabilidade
Distribuicao padrao
de Falha
Tensdo Escoamento [KN/cm?] Normal 35,0 1,0
Caso 1 | For¢a Nodal [kN] Normal 4,0 0,4 9,86%
Angulo a [graus] Uniforme 0| 8,66025
Tensdo Escoamento [KN/cm?] Normal 35,0 1,0
Caso 2 | Forca Nodal [kN] Normal 4,0 0,4 13,89%
Angulo o [graus] Uniforme 0| 17,3205
Tensdo Escoamento [KN/cm?] Normal 35,0 1,0
Caso 3 | Forca Nodal [kN] Normal 4,0 0,4 14,60%
Angulo a [graus] Uniforme 0| 25,98076
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Neste exemplo ndo foram analisados casos com menor nimero de variaveis aleatorias,
pois no Item 5.2 esse tipo de andlise foi feita, visando certificar a validacdo do codigo

construido. Nesta etapa, considera-se que essa validacdo ja esta corretamente realizada.

Vale observar também que o desvio padrdo para a distribuicdo uniforme é dada pela
Eq. (4.13), como no Item 5.2. Portanto os valores de desvio padrdo para angulo (o) mostrados
na Tabela 4 sé&o resultados da aplicacdo desta equacdo para variagdo do angulo entre (-15°;
+159), (-30°; +30°) e (-45°; +45°) para os Casos 1, 2 e 3, respectivamente.

Conforme resultados apresentados na Tabela 4, pode-se concluir sobre a influéncia da
incerteza do angulo de aplicacdo da forca na confiabilidade da estrutura. Percebe-se que 0
aumento dessa incerteza gera uma diminuicdo na confiabilidade. Porém nao é um efeito muito
acentuado, como no exemplo anterior. Na Tabela 3percebe-se que, na outra estrutura, ao
aumentar a variagdo do angulo (o) de (-15°; +15°) para (-45°; +45°) a probabilidade de falha
cresce de 35,35% para 73,16%. Enquanto nesta mesma comparagao para esta estrutura, a
probabilidade cresce de 9,86% para 14,60%. Claramente observa-se que houve um aumento
no valor, porém ndo tdo grande como se observou no exemplo anterior.

Como foi realizado no Item 5.2 a analise seguinte consiste em executar o codigo de
otimizacdo topoldgica novamente, buscando obter a geometria 6tima para uma reducdo de
material de 30%. Dessa forma, a confiabilidade pode ser analisada em trés diferentes
geometrias para este mesmo problema: 0%, 30% e 60% de material removido. Sendo que para
0% ¢é utilizada a geometria inicial do problema, sem nenhuma alteracéo e 60% €é a geometria
6tima ja analisada (como resultados da Tabela 4). A Figura 32 ilustra as trés geometrias

utilizadas.

Para estas geometrias, foram analisado os casos 1, 2 e 3 da Tabela 4. Isso significa que
sera possivel analisar as interferéncias tanto da quantidade de material removido, quanto da
amplitude de variacdo do angulo da forca aplicada. Portanto, tem-se 9 casos a serem
analisados nesta etapa (3 diferentes geometrias, como mostrando na Figura 32, com 3
amplitudes de variagdo do angulo a para cada uma). Os resultados sdo apresentados na Figura

33 em forma de gréfico.
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Figura 32: Diferentes geometrias analisadas quanto a confiabilidade no Item 5.4
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Conforme apresentado na Figura 33, pode-se concluir que 0 aumento na porcentagem
de material removido da estrutura reduz sua confiabilidade consideravelmente a partir dos
30%. Ainda é destacada a comparacdo entre as duas geometrias com 0% e 30% de material
removido, onde houve uma reducdo da probabilidade de falha para os casos 1 e 2.
Considerando o erro estatistico ao qual o resultado da Simulacdo de Monte Carlo esta sujeito,
pode-se considerar que estes dois resultados representam um mesmo valor de probabilidade
de falha.

Finalmente, conclui-se que, segundo resultados da Figura 33, tanto a amplitude da
variacdo do angulo de aplicacéo da forca e a porcentagem de material removidas influenciam
de forma ligeiramente negativa para a confiabilidade estrutural. Diminuindo de forma sutil a
robustez da estrutura quando se aumenta o material removido ou a amplitude de variacdo
deste angulo. Porém, deve-se ressaltar que essa influéncia ndo é tdo acentuada como no Item
5.2, pois percebe-se que os valores de probabilidade de falha sofrem um aumento discreto,

ndo atingindo valores muito elevados em relacdo a geometria inicial.

Para explicar esse comportamento diferente do ocorrido no Item 5.2, deve-se observar
o tipo de carregamento atuante na estrutura, através da Figura 24. Pode-se analisar que a forca
concentrada na extremidade direita da estrutura acarreta um esforgo de forga cortante
constante e momento fletor que vai de zero na extremidade direita até seu valor maximo
préximo ao apoio. Conclui-se que a tensdo predominante na estrutura é a tensdo normal ao
longo do eixo horizontal da estrutura, representada pela formula geral da flexdo, segundo
Hibbeler (2010), como mostra a Eq. (5.6):

N Mgy Mgz (5.6)

=
°TaATTL, T

y

Para o problema analisado, a parcela da tensdo associada aos momentos fletores séo
maiores do que a parcela atribuida a forca normal. Isso acontece devido as variaveis
multiplicadoras desses esforcos na Eg. (5.6). O que ocorre neste exemplo é que, a0 aumentar a
amplitude da incerteza no angulo de aplicacdo da forca concentrada, é aumentada a parcela de

forga normal atuante na estrutura.

Em outras palavras, a estrutura ja esta inicialmente solicitada na condicéo critica, ou
seja, flexdo. Por este motivo, mudar as condigdes iniciais ndo influencia significativamente no

resultado de confiabilidade estrutural.
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O oposto desse efeito é observado no exemplo anterior (Itens 5.1 e 5.2), pois, segundo
a Figura 10 percebe-se claramente que a forga externa aplicada gera, inicialmente, um esforco
predominantemente de tracdo pura. Entdo, ao aumentar a amplitude da incerteza no angulo de
aplicacdo desta forca, € aumentada a parcela vertical, a qual causa o esforco de momento
fletor. O aumento desse tipo de esfor¢o causa um crescimento significativo da tensédo normal,
pois aumenta seu fator predominante. Dessa forma, a confiabilidade da estrutura cai

consideravelmente ao aumentar a variacdo do angulo (o).

Finalmente, conclui-se que neste exemplo foram obtidos todos os resultados esperados
fisicamente, a partir das simulacGes implementadas. Foi observado também que as geometrias
encontrados pela otimizacéo topologica se apresentaram mais robustas do que no Item 5.2.
Pois 0 aumento na porcentagem de material removido ndo causou grande variagdo no
resultado da confiabilidade estrutural. Porém, se confirmou que houve um ligeiro aumento na
probabilidade de falha, devido ao carater altamente particularizado do resultado final da
otimizacdo topologica, que torna a estrutura vulneravel a variagdes nos parametros

geométricos e fisicos do problema inicial.

5.5. Exemplo 3: Chapa em balanco — Forca central

Este exemplo consiste na analise de uma estrutura com a mesma geometria do Item
5.3. Porém, a forca P = 3000N é aplicada no centro da face direita do dominio, e ndo mais na
sua extremidade superior. Todos 0s outros parametros e geometria sdo equivalentes ao Item
5.3. A Figura 34 ilustra a geometria, carregamentos aplicados e apoios dessa estrutura. Neste

exemplo busca-se a otimizacdo para 40% do volume inicial de material.

As malhas utilizadas para analise via MEF também sdo as mesmas do exemplo
anterior e somente o critério de Von Misses € utilizado. Esta escolha foi feita com base em
comparacOes anteriores, que j& mostraram a equivaléncia das respostas entre a utilizagdo do
critério de Rankine e Von Mises. Vale lembrar que os parametros de densidade da malha
valem, respectivamente 6,25 milésimos e 1,56 milésimos para as malhas 1 e 2,
respectivamente. Isso significa que, em comparacdo com 0s exemplos executados nesse
trabalho, a segunda malha apresenta a densidade mais proxima da ideal para o processo de

otimizacao.
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Figura 34: Estrutura inicial do Exemplo 3

Para a primeira malha foram utilizados os parametros RR; = 2,0% e ER = 1,0%. Ja
para a segunda malha, RR; = 0,25% e ER = 0,05% (um quinto de ‘RR;’). Destaca-se que 0s
parametros da segunda sdo consideravelmente menores, devido aos problemas de influéncia
de malha e de minimos locais j& comentado. A Figura 35 mostra as geometrias Otimas

encontradas para ambas as malhas.
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Figura 35: Geometrias 6timas encontradas para o Item 5.5
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A Figura 36 mostra a evolugdo da geometria na otimizacdo topoldgica, quando foi
utilizada a segunda malha. Esta malha se mostrou mais adequada, tanto pelo parametro de

densidade quanto pelas respostas observadas na Figura 35.

A Figura 37 € utilizada para resumir do processo evolutivo para os parametros ‘RR;’ e
porcentagem de material removido em relacdo ao volume inicial (denominado Retirada de
material). Vale observar que estes graficos ndo se distanciaram do padrdo desenvolvido nos

processos de otimizagdo dos exemplos anteriores.

Para validar a respostas desse exemplo, a estrutura 6tima encontrada na literatura é
mostrada na Figura 38. Claramente, percebe-se a semelhanca entre esta e o resultado da
segunda malha, o que demonstra que a resposta estd coerente com o esperado. A primeira
malha apresenta apresentou algumas disparidades. Porém, pode-se atribuir estas diferencas a
falta de resolucdo da discretizagdo que essa malha apresenta, ou seja, o elevado tamanho dos
elementos finitos. Levando em consideracdo este fator, também pode-se dizer que a resposta
confere com o esperado, devido a forma da geometria e até o nimero de buracos internos
abertos na estrutura. Estas constatagbes mostram que ndo houveram problemas numéricos,

interferéncia da malha ou problemas de minimos locais para esse exemplo analisado.
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Figura 36: Evolucdo da geometria para malha 2 do item 5.5
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Como no exemplo anterior, constatou-se que para a primeira malha o resultado foi

correto, porém a geometria fica mal representada devido & falta de refinamento da malha. J&

para a segunda malha, o resultado obtido foi exatamente como esperado, e a geometria

apresentou boa qualidade, devido ao refinamento da malha. A terceira malha do Item 5.3 ndo

foi utilizada, pois a analise de seus resultados indicou que esta encontraria problemas com

minimos locais. Além disso, o Item 5.3 também ja demonstrou que a segunda malha apresenta

um refinamento aceitavel e ndo encontra esses problemas.

Os resultados desse exemplo evidenciam que a densidade da malha, ou seja, a relagao

entre a area do elemento finito e a area da estrutura apresenta um valor ideal proximo a

densidade dessa segunda malha, segundo Eq. (5.7):

Pm = 1,56 % 1073

(5.7)
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Isso significa que valores muito menores do que esse resultam em pouca qualidade da
aproximagdo da geometria, ja valores muito maiores, resultam em dificuldades numéricas
para encontrar o 6timo global. Essa situacdo pode ser analisada também no Item 5.1, onde
todas as malhas utilizadas resultaram na geometria esperada (devido a simplicidade do
exemplo), porém observa-se que a segunda malha, com p,, = 1,25 * 1073 resultou em uma
geometria correta e também uma boa aproximacdo. Esse valor esta bastante proximo do

apresentado na Eq. (78), o que contribui para validacao da hipétese.

Conclui-se que, genericamente, pode-se dizer que para exemplos futuros utilizando
estes métodos, uma malha com aproximadamente esse valor de densidade resultara em uma

resposta satisfatoria, ndo presa a minimos locais e com uma aproximagao adequada.

5.6.  Anélise de Confiabilidade: Exemplo 3 — Chapa em balanco —
Forca Central

Neste item sera realizada a analise de confiabilidade para a estrutura otimizada no item
5.5. A primeira analise se da com a geometria final obtida pela otimizacdo. Sera utilizada

também a segunda malha do Item 5.5 para anélise via MEF.

Para a analise de confiabilidade foi utilizado um tamanho de 10 mil amostras para a
Simulagdo de Monte Carlo. Os modos de falha analisados sé&o as tensdes de Von Mises
méaximas em cada elemento finito da malha. Considera-se falha quando a tensdo atuante é

maior do que a tensdo de escoamento do material.

Neste exemplo, os parametros foram exatamente iguais aos do Item 5.4, pois trata-se
da mesma estrutura, somente o ponto de aplicacdo da carga foi modificado. Portanto, tem-se
coeficiente de Poisson igual a 0,3 e mddulo de elasticidade Y=210 GPa, com chapa de
espessura de 1 cm. O valor da tensdo de escoamento foi considerado como uma variavel de

incerteza do problema, com mesmos parametros do item anterior citado.

Além da tensdo de escoamento, como incertezas associadas foram considerados
também a intensidade da forca aplicada e seu angulo em relacdo a vertical (a). Exatamente
como no ltem 5.4. Foram analisados 0s mesmos casos de varidveis aleatorias. A Tabela 5 foi
construida, replicando os dados de variaveis aleatdrias da Tabela 4 e indicado os resultados

das analises de confiabilidade executada neste exemplo.
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Tabela 5: Resultados da analise de confiabilidade para o Item 5.6

e . L. Tipo de - Desvio Resultart?o de
Variaveis aleatdrias ... .~ |Média . Probabilidade
Distribuicao padrao
de Falha
Tens3o Escoamento [kKN/cm?] Normal 35,0 1,0
Caso 1 | Forca Nodal [kN] Normal 4,0 0,4 3,25 %
Angulo o [graus] Uniforme 0| 8,66025
Tens3o Escoamento [kKN/cm?] Normal 35,0 1,0
Caso 2 | For¢a Nodal [KN] Normal 4,0 0,4 3,10 %
Angulo o [graus] Uniforme 0| 17,3205
Tensdo Escoamento [KN/cm?] Normal 35,0 1,0
Caso 3 | For¢a Nodal [KN] Normal 4,0 0,4 2,17 %
Angulo o [graus] Uniforme 0| 25,98076

O desvio padrdo para a distribuicdo uniforme indicada na Tabela 5¢ dada pela Eqg.
(4.13). Portanto, os casos 1, 2 e 3 apresentam uma variac¢do do angulo (o) entre (-15°; +15°), (-
30°; +30°) e (-45°; +459), respectivamente.

Os resultados de confiabilidade apresentados na Tabela 5Smostram que a probabilidade
de falha desta estrutura pouco é afetada pela incerteza no angulo (a)) de aplicacdo da forca.
Essa influéncia fica ainda menor do que foi observado no Item 5.4. A partir da consideracéao
de todas as incertezas do problema, o valor da probabilidade ndo foi alterado
significativamente com o aumento de (o). Em alguns casos houve uma diminui¢do neste
valor. Em todos os outros exemplos analisados foi possivel caracterizar o efeito negativo
desse parametro na confiabilidade estrutural, mesmo que de forma sutil. Nesse caso, pode-se
dizer que a diferenca nos valores obtidos para os casos 1,2 e 3 ficam dentro do erro estatistico

ao qual o resultado da Simulacdo da Monte Carlo esta sujeito.

Em seguida, outra analise foi realizada com base nesse exemplo. Foi analisado a
confiabilidade com outras geometrias. Para isso, 0 codigo de otimizacdo topoldgica foi
executado, buscando obter a geometria 6tima para uma reducdo de material de 30%. Dessa
forma, a confiabilidade pode ser analisada em trés diferentes geometrias para este mesmo
problema: 0%, 30% e 60% de material removido. Sendo que para 0% ¢é utilizada a geometria
inicial do problema, sem nenhuma alteracdo. Ja para 60% é utilizada a geometria 6tima ja

analisada (como resultados da Tabela 5). A Figura 39 ilustra as trés geometrias utilizadas.
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Para estas geometrias, foram analisados os casos 1, 2 e 3 da Tabela 5. O objetivo aqui
é avaliar a influéncia da quantidade de material removido e da amplitude de variacdo do
angulo da forca aplicada no resultado de confiabilidade estrutural. Portanto, tem-se 9 casos a
serem analisados (3 diferentes geometrias, como mostrando na Figura 39e 3 diferentes
amplitudes de variacdo de a para cada uma). Os resultados sdo apresentados em forma de
grafico, na Figura 40.

Analisando os resultados apresentados Figura 40, pode-se obter as seguintes
conclus@es: como ja citado, a amplitude de variacdo do angulo (o) pouco influi no resultado
da probabilidade de falha. Além disso, percebe-se que o aumento na porcentagem de material
removido na estrutura diminui sua confiabilidade, principalmente a partir dos 30% de material
removido. Esse comportamento ja foi visualizado em exemplos anteriores. Porém, este
aumento ndo € muito acentuado.
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Figura 39: Diferentes geometrias analisadas quanto a confiabilidade no Item 5.6
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Figura 40: Resultados da confiabilidade para o item 5.6

Ainda analisando os resultados da Figura 40, percebe-se que essa pequena diferenca
nos valores de probabilidade de falha encontra-se dentro do erro estatistico ao qual a resposta
do método de calculo da confiabilidade estd sujeito. Portanto, pode-se concluir que a
confiabilidade da estrutura também € pouco afetada pela porcentagem de remocdo de
material. Porém, fica claro a tendéncia de aumento da probabilidade de falha com o evolugéo
da retirada de material pela otimizacdo topoldgica, principalmente apds os 30% de material

removido.

O resultado mais peculiar deste exemplo, segundo apresentado na Figura 40 é o fato
de que os casos analisados quando (o) varia entre (-45° +45°) apresentaram uma
probabilidade abaixo dos outros casos. Esse comportamento é o oposto do que foi avaliado
em outros exemplos. Nesse caso, fica claro a influéncia da flex&o na solicitacdo de tenséo da
estrutura, pois quanto maior a variacdo do angulo, mais proxima a forga fica de realizar um
esforco de tracdo pura. Como explicado no Item 5.4, a partir da Eq. (5.6), a flexdo domina a
tensdo atuante nesta estrutura, enquanto a tracdo representa uma menor influéncia e menor

parcela de tenséo.

Nessa analise conclui-se que, quanto mais proximo da flexdo pura estiver a solicitacéo
da estrutura, maior sera a tensdo normal final e portanto mais critico serd o estado de tensao

estrutural. Isso explicou, no Item 5.4, o pequeno aumento da probabilidade de falha com o
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aumento da variacdo de (a). Neste item essa andlise fica ainda mais evidente, pois quando a
variagdo de (o) aproxima-se mais da direcdo horizontal (que seria a tracdo pura) a

probabilidade de falha sofre uma diminuicao.

Finalmente, conclui-se que neste exemplo os resultados obtidos a partir das simulacfes
apresentam um significado fisico coerentemente. Foi observado que, em comparagdo com o
exemplo da chapa em balanco (ltens 5.3 e 5.4), essa estrutura se mostrou mais robusta. Pois
foram utilizados os mesmos valores para todos os parametros e, ao final, os resultados de
confiabilidade apresentados foram maiores nesta estrutura para todos os casos. Além disso,
foi demonstrado que nesse exemplo a confiabilidade é menos afetada pelo aumento das

incertezas associadas e pela quantidade de material removida pela otimizacéo.
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6. CONCLUSAO

Ao fim da realizagdo desse trabalho, foi possivel elaborar vérias conclusoes.
Primeiramente, 0 MEF com elementos isoparamétricos lineares que foi utilizado se mostrou
confiavel e poderoso para resolver inUmeros problemas de estruturas, tanto isostaticas como
hiperestaticas. Diferentemente dos métodos analiticos, este se mostrou capaz de analisar
mecanicamente diferentes geometrias de estruturas, quando se trata de problemas planos. Vale
citar que estruturas tridimensionais ndo fizeram parte do escopo do trabalho, os elementos
finitos utilizados se limitam a estruturas 2D, com esforcos aplicados no mesmo plano e
identificando a espessura do elemento, na dimensdo ‘z’. Porém, este seria um interessante

tema de pesquisa futuro, visando dar continuidade a esse trabalho.

Outro ponto importante a ser citado nesta conclusao € a utilizacdo de elementos com
respostas lineares. Este aspecto facilitou a modelagem de problemas reais, simplificando a
representacdo de esforgos e apoios. Segundo o projeto de iniciacdo cientifica conduzido por
este mesmo autor (RODRIGUES NETO, 2014), onde foram estudados elementos finitos de
ordem linear e quadratica, a ordem superior gera uma resposta muito mais precisa e rica,
quando comparado elemento a elemento. Porém, ao refinar suficientemente a malha da
estrutura, mesmo ao utilizar elemento de ordem menor, o resultado final pode chegar a ser
satisfatorio, pois o refinamento da malha faz com que a discretizacdo do dominio seja
préxima o suficiente da continuidade para que a aproximacdo do campo de tensdes do
elemento seja adequada. Outro ponto levado em consideracdo nesse trabalho foi o tempo de
execucdo do cddigo, pois ao realizar a anélise de confiabilidade, 0 mesmo modelo deve ser
executado dezenas de milhares de vezes e nesse ponto o elemento linear apresenta uma

grande vantagem.

Em seguida, a implementagdo da otimizacdo topoldgica baseada no algoritmo ESO
utilizando o MEF como modelo mecanico para obter tensdes e deformagdes se mostrou
corretamente executada, pois foi possivel chegar a solugdes coerentes com as encontradas na
literatura. Nesse ponto vale citar, com grande importancia, que ndo foram encontradas
inconsisténcias numéricas do tipo tabuleiro de xadrez, a qual a literatura cita como um
problema bastante comum neste tipo de abordagem. Problemas de dependéncia de malha e
otimos locais foram encontrados ao se utilizar malhas bastante refinadas nos ualtimos

exemplos, o que também néo estd fora do esperado. Dessa forma, os resultados obtidos pelo
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algoritmo implementado concluiram que este é muito eficaz e leva a bons resultados de

otimizacéo.

Também é importante observar as limitagdes encontradas na utilizagdo do algoritmo.
Como ocorreu no Item 5.3, utilizando a malha mais refinada ndo foi possivel chegar na
geometria coerente com a encontrada na literatura, caracterizando um problema de 6timos
locais. Foi constatado que ao utilizar uma malha muito refinada, a fungéo de otimizagéo passa
a ser mais perfeitamente aproximada. Dessa forma o processo de otimizacdo fica mais
suscetivel a identificar um ponto de minimo local e, uma vez identificado, o algoritmo
implementado ndo é capaz de sair deste minimo. A literatura ja prevé que estes problemas séo
comuns nesta abordagem e descreve alguns métodos para evita-los (Cap. 3 da Formulacéo
Teorica). Porém nesse trabalho foi dado foco a utilizagdo do algoritmo evolutivo puro, para
que os esforcos pudessem também ser aplicados aos outros topicos. Vale citar que este seria
um ponto de possibilidade de continuidade dessa pesquisa no futuro, o estudo e

aprimoramento do algoritmo para evitar os problemas citados.

Conforme os exemplos estudados, foi encontrada uma densidade de malha que
agregou tanto um refinamento adequado, quanto uma resposta satisfatoria (ou seja, sem
problemas de minimos locais ou outros citados pela literatura). Esse valor foi chamado de

“densidade de malha ideal” para o método implementado.

O passo seguinte foi a implementacdo da analise de confiabilidade, a qual foi realizada
utilizando a Simulacdo de Monte Carlo Direta. Este objetivo também foi alcancado, sendo que
sua utilizacdo possibilitou a analise das geometrias Otimas encontradas para todos 0s
exemplos executados no projeto. Segundo citado no Cap. 4 da Formulagdo Tedrica, esse
método € bastante custoso computacionalmente, pois é necessario um nimero muito elevado
de repeticOes para que o estimador da probabilidade de falha se aproxime do valor real. Em
todos os exemplos foram utilizadas 10 mil repeti¢des, o que resulta na avaliagéo precisa de
probabilidades de falha na ordem de 102 até 103, Esse valor com certeza poderia ser melhor,
utilizando um tamanho maior de amostra, porém devido ao grande nimero de vezes que essa
analise seria executada nesse trabalho, foi escolhido que esse valor seria suficiente para 0s
resultados procurados. Vale citar também que este seria outro ponto de possivel continuidade
dessa pesquisa no futuro, o estudo e implementagcdo de outras metodologias de anélise de

confiabilidade estrutural, mais eficientes e menos custosas computacionalmente.
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Finalmente, a Simulagdo de Monte Carlo foi escolhida pela sua simplicidade de
implementacdo e didatica, onde tratamentos e formulagcfes estatisticas podem facilmente
serem descartados, dessa forma esforcos puderam ser mais aproveitados no estudo da fisica e

engenharia dos problemas.

Como ja se esperava, a confiabilidade confirmou que o resultado da otimizacdo
topoldgica gera uma estrutura efetivamente mais propensa ao colapso do que a geometria
inicial. Além disso, em alguns exemplos essa estrutura se mostrou fortemente especifica para
as condicdes iniciais consideradas na otimizacdo, pois a variagdo de pardmetros geométricos
da estrutura levou a uma diminuicdo consideravel da confiabilidade estrutural. Em outros
exemplos o efeito observado foi diferente, porém todos tiveram seu significado fisico

estudado e explicado.

Por fim, este trabalho se mostrou de grande valor, tanto no estudo da formulacéo
tedrica como na aplicacdo dos métodos propostos. Tais métodos tem uma vasta area de
aplicacdo e sua utilizacdo é muito importante para a engenharia em geral. A realizacdo desse
trabalho foi de enorme importancia para o desenvolvimento académico, aumento do
conhecimento e ganho de experiéncia para o aluno. Além disso, também trouxe uma grande
motivacdo para dar sequéncia a sua vida académica, deixando possibilidades de utilizacdo
deste trabalho como ponto de partida para o desenvolvimento de outros projetos de pesquisa

no futuro na area da mecanica computacional.



88



89

7. REFERENCIAS

ANG, A.H.-S.; TANG, W.H. Probability concepts in engineering planning and design,
v.2, New York: John Wiley & Sons, 1984.

BENDS@E, M.P.; SIGMUND, O. Topology optimization: Theory, Methods and
Application. Berlin: Springer-Verlag, 2003.

BORTOLI, A.L.; CARDOSO, C.; FACHIN, M.P.G.; CUNHA, R.D. Introducéo ao Célculo
Numérico.2® ed. Departamento de matematica pura e aplicada, Instituto de matematica,
Universidade Federal do Rio Grande do Sul, 2001.

CHAPMAN, S.J. Fortran 95/2003 for Scientists and Engineers. 3". Edition. McGraw-Hill,
2008.

CHU, D. N.; XIE, Y. M.; HIRA, A.; STEVEN, G. P. Evolutionaty Structural optimization for
problems with stiffness constraints. Finite Elements in Analysis and Design, v. 21, 1996. p.
239-251.

COUTINHO, K.D. Método de otimizacdo topoldgica em estruturas tridimensionais. 2006.
96 f. Dissertacdo (Mestrado em Engenharia Mecanica) - Departamento de Engenharia
Mecénica, Universidade Federal do Rio Grande do Norte, Natal, 2006.

DIAZ, A.; SIGMUND, O. (1995) Checkerboad Patterns in Layout Optimization. Structural
Optimization, V. 10, p. 40-45, 1995. Disponivel em:
http://www.qgiref.ulaval.ca/~deteix/bois/documents_references/sigmund1995.pdf .Acesso em:
10 jul. 2016.

DOMENEGHETTI, G. A expressdo da incerteza de medi¢do em ensaios mecéanicos: 1ISSO
GUM e Monte Carlo aplicados no ensaio de tracdo. 2011. 121 f. Dissertacdo (Mestrado em
Engenharia Mecanica) — Sociedade Educacional de Santa Catarina — Instituto Superior Tupy,
Joinville, 2011,

FERNANDES, W.S. Estudo de otimizacao topoldgica em estruturas 2D considerando a
ndo linearidade geométrica. 2013. 100 f. Dissertacdo (Mestrado em Engenharia Civil) —
Escola de Minas, Universidade Federal de Outro Preto, Ouro Preto, 2013.

HIBBELER, R.C. Resisténcia dos Materiais. 82 ed. Sdo Paulo: Pearson Hall, 2010.

JOG, C.S.; HABER, R.B. Stability of finite element model for distributed parameter
optimization and topology design. Comp. Meth. Appl. Mech. Engineering. v. 130, 1996.
p.203-226.

LANES, R.M. Investigacdo de um método de otimizacdo topoldgica evolucionaria
desenvolvido em script. 2013. 133 f. Tese (Mestrado em Engenharia da Estruturas) — Escola
de Engenharia da UFMG, Universidade Federal de Minas Gerais, Belo Horizonte. 2013.

LEONEL, E.D. Modelos néo-lineares do Método dos Elementos de Contorno para a
analise de problemas de fratura e aplicacdo de modelos de confiabilidade e otimizagao
em estruturas submetidas a fadiga.2009.406p. Tese (Doutorado em Engenharia de
Estruturas) — Escola de Engenharia de Sdo Carlos, Séo Carlos, 2009.


http://www.giref.ulaval.ca/~deteix/bois/documents_references/sigmund1995.pdf

90

NEVES, R.A. Desenvolvimento de modelos mecanico-probabilisticos para estruturas de
pavimentos de edificios.2004. 200 f. Tese (Doutorado) — Escola de Engenharia de Sé&o
Carlos, Universidade de S&o Paulo, S&o Carlos. 2004.

NOGUEIRA, C.G. Desenvolvimento de modelos mecanicos, de confiabilidade e de
otimizacdo para aplicagdo em estruturas de concreto armado.2010. 345 f. Tese
(Doutorado em Engenharia de Estruturas), Escola de Engenharia de S&o Carlos, Universidade
de S&o Paulo, Séo Carlos, 2010.

NOGUEIRA, C.G.; LEONEL, E.D.; CODA, H.B. Corrosion time initiation modelling
considering uncertainties. In: International symposium on uncertainty quantification and
stochastic modeling, 1., 2012, Maresias, Sd0 Sebastido. Proceedings... Maresias, S&o
Sebastido, 2012,

NOWAK, A.S.; COLLINS, K.R. Reliability of structures, Boston: McGraw-Hill, 2000.

OLIVEIRA, H.L. Desenvolvimento de modelos numéricos para analises de otimizacao
topoldgica probabilistica utilizando o método dos elementos de contorno. 2015. Tese
(Exame de qualificacdo de Doutorado) — Escola de Engenharia de Sao Carlos, Universidade
de S&o Paulo, Séo Carlos. 2015.

PELLIZZER, G.P. Anélise mecanica e probabilistica da corrosdo de armaduras de
estruturas de concreto armado submetidas a penetracdo de cloretos.2015. 247 f.
Dissertacdo (Mestrado em Engenharia de Estruturas), Escola de Engenharia de S&o Carlos,
Universidade de Sdo Paulo, Séo Carlos, 2015.

PITANGUEIRA, R. Introducdo ao Método dos Elementos Finitos: Notas de aula do
Curso Teoria das Estruturas I11. Escola de Engenharia, UFMG, 2003.

QUERIN, O. M. Evolutionary structural optimization stress based formulation and
implementation.1997. 250 f. Tese de Doutorado. Sydney, Australia: University of Sydney,
1997.

RODRIGUES NETO, A. Desenvolvimento de um modelo numérico para a otimizacao de
forma de trelicas planas considerando comportamento estrutural elastoplastico e
incertezas associadas. 2015. 59 f. Relatorio Final (Iniciacdo Cientifica) — Escola de
Engenharia de Sdo Carlos, Universidade de Sdo Paulo, S&o Carlos. 2015.

RODRIGUES NETO, A. Modelos numéricos para a analise mecanica de corpos
deformaveis utilizando o método dos elementos finitos e elementos isoparamétricos de
alta ordem. 2014. 64 f. Relatorio Final (Iniciacdo Cientifica) — Escola de Engenharia de Sdo
Carlos, Universidade de S&o Paulo, S&o Carlos. 2014.

ROSS, S. Probabilidade: um curso moderno com aplicacGes. 82 ed. Porto Alegre: Bookman,
2010.

SANCHES, R.P. Otimizagéo estrutural evolucionaria usando malhas hexagonais.2011.
Dissertacdo (Mestrado em Engenharia Mecénica) — Faculdade de Engenharia Mecénica,
Universidade Estadual de Campinas — Unicamp, Campinas. 2011.

SANT'ANNA, H.M. Otimizacdo topologica de estruturas bidimensionais continuas
submetidas a restricdes de flexibilidade e tensdo. 2002. 161 f. Dissertacdo. (Mestrado em
Engenharia Mecénica) - Universidade Federal do Rio Grande do Sul, Porto Alegre, 2002.



91

SIGMUND, O. On the design compliant mechanisms using topology optimization.
Mechanics of Structures and Machines, v. 25, n. 4, 1997. p. 493-524,

SIGMUND, O.; PETERSSON, J. Numerical instabilities in topology optimization: a survey
on procedures dealing with checkerboards, mesh dependencies and local minima. Structural
Optimization, Springer-Verlag, v. 16, 1998. p. 68-75.

TANSKANEN, P. The evolutionary structural optimization method: theoretical aspects.
Computer Methods in Applied Mechanics and Engineering, Elsevier, v. 191, 2002. p. 47-
48, 5485-5498,

VITORIO JUNIOR, P.C.; LEONEL, E.D. Level set analysis of topology optimization in 2D
structures using boundary element method. 15t Pan-American Congress on Computational
Mechanics — PANACOM 201. p. 823-833, 2015.

W. WEAVER, JR.; JOHNSTON, P.R. Finite Elements for Structural Analysis. Prentice-
Hall Inc., Englewood Cliffs, New Jersey. 1984.

XIE, M. Y.; STEVEN, G. P. A simple evolutionary procedure for Structural optimization.
Computer & Structures, Elsevier, v. 49, n. 5, 1993. p. 885-896.

ZHAO, C.; HORNBY, P.; STEVEN G. P.; XIE, Y. M. A generalized evolutionay method for
numerical topology optimization of structures under static loading conditions. Structural
Optimization, Springer-Verlag, v. 15, n. 3-4, 1998. p. 251-260.

ZHOU, M.; ROZVANY, G. I. N. On the validity of ESO type methods in topology
optimization. Struct. Multidisc Optim., Springer-Verlag, v. 21, n. 1, 2001. p. 80-83.

ZIENKIEWICZ, O. C.; TAYLOR, R. L. The finite element method. Oxford: Butterworth-
Heinemann, Boston, 2000.



