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RESUMO

Aprendizado de Maquina ou “Machine Learning” € uma ferramenta bastante utilizada
no momento, por estatisticos e cientistas de dados para ajudar a analise de um numero
elevado de dados, além de pertencer a uma subarea do campo da Inteligéncia Artificial, que
consiste em grande parte em fazer predigdes por reconhecimento de padrées nos dados de
atributos ou features através do uso de métodos de aprendizado estatistico e computacional.
Geocientistas estao utilizando Aprendizado de Maquina combinado aos diferentes processos
e métodos de interpretagdo e uma das aplicagdes é a classificacdo de facies, sendo crucial
para interpretacdo de perfis de pocos, visto que rochas diferentes tém permeabilidade e
saturacgao de fluido distintos para uma dada porosidade.

A finalidade deste trabalho, com levantamento bibliografico, € mostrar esta
ferramenta computacional como um mecanismo agregador ao desenvolvimento da area de
geociéncias, discutindo a forma como ela pode atuar desde a analise de dados até a
interpretagdo de resultados no reconhecimento de padrées, mostrar a relacdo de
comportamento de um conceito geoldgico descritivo interpretativo, como facies, com a
performance de um algoritmo de Aprendizado de Maquina, a verificar quanto as técnicas
computacionais podem auxiliar o conhecimento geoldgico.

O estudo pretende mostrar a importancia do tratamento dos dados brutos e seus
métodos aplicados, bem como os processos necessarios para definir um modelo preditivo
de classificagdo de facies. O conjunto de dados de perfis de pocos deste localizados no
sudoeste do estado do Kansas, nos Estados Unidos, denominado Panoma Field. O
processamento dos dados brutos e aplicagdo de feature engineering melhoraram os
resultados de acuracia e o algoritmo Gradient Boosting desempenhou de forma satisfatéria,
sempre verificando os métodos de otimizagdo dos hiperparametros para produzir melhores
resultados. A aplicagdo do modelo otimizado aos dados de teste obteve pogos preditivos
muito préximos aos dados reais, alcangando uma acuracia de 0,63, e quando se considera

as facies adjacentes este valor chega a 0,93.

Palavras-chave: Aprendizado de Maquina, classificacdo de facies, Gradient

Boosting



ABSTRACT

Machine Learning is a tool widely used at the moment by statisticians and data
scientists to help analyze a large number of data, in addition to belonging to a subarea of the
Artificial Intelligence field which consists of largely making prediction by pattern recognition
in the features through the use of statistical learning methods.

Geoscientists are using machine learning combined with the different processes and
methods of interpretation. Besides that, one of the applications is the facies classification,
Geoscientists are using Machine Learning combined with the different processes and
methods of interpretation and one of the applications is the facies classification, being crucial
for the interpretation of well logs, since different rocks have different permeability and fluid
saturation for a given porosity.

The purpose of this work, with bibliographic survey, is to show this computational tool
as an aggregating mechanism for the development of the geosciences area, discussing how
it can act from data analysis to the interpretation of results in pattern recognition, showing the
relationship of behavior of a descriptive interpretive geological concept, such as facies, with
the performance of a Machine Learning algorithm, to verify how computational techniques
can help geological knowledge.

The study aims to show the importance of processing raw data and its applied
methods, as well as the processes necessary to define a predictive model for facies
classification. The data set of well logs from is located in southwest Kansas, in the United
States, called Panoma Field. The processing of raw data and the application of feature
engineering improved the accuracy results and the Gradient Boosting algorithm performed
satisfactorily, always checking the optimization methods of the hyperparameters to produce
better results. The application of the optimized model to the test data obtained predictive
wells very close to the real data, reaching an accuracy of 0.63, and when considering the

adjacent facies this value reaches 0.93.

Keywords: Machine Learning, facies classification, Gradient Boosting
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1. INTRODUGAO

A formacao do pesquisador da area de geociéncias nos dias de hoje pode fazer uso
de recursos na area de Ciéncia de Dados. E um dos métodos mais importantes de analise
de dados é o Aprendizado de Maquina.

Aprendizado de Maquina ou Machine Learning € uma ferramenta muito utilizada no
momento, por estatisticos e cientistas de dados para ajudar a analise de um numero elevado
de informacgdes, além de pertencer a uma subarea do campo da Inteligéncia Atrtificial, que
consiste em grande parte em fazer predi¢des por reconhecimento de padrées nos dados de
atributos ou features através do uso de métodos de aprendizado estatistico (Hastie et al.,
2001).

Geocientistas estao utilizando Aprendizado de Maquina combinado aos diferentes
processos € métodos de interpretacdo e uma das aplicagdes € a classificacdo de facies
utilizando dados de perfis de pogos (Hall, 2016; Bestagini, 2017; Guarido, 2018). O conjunto
de dados explorado neste estudo é oriundo da Universidade de Kansas, nos Estados Unidos
(Kansas University, USA) de seu departamento de pesquisa geoldgico, Kansas Geological
Survey (KGS), que tem como estudo o campo de gas Hugoton e Panoma, sudoeste do
Kansas (Figura 1). Dubois et al. (2007) utilizam este conjunto de exemplos como dados de
treino e de teste para classificacdo de facies, observando o comportamento de cada
classificador.

O tipo de dado que fornecera as informacdes para o desenvolvimento do projeto se
da por meio de perfis geofisicos de pocgos, os denominados well logs, utilizados pela
industria de petréleo e gas. As medidas dos perfis de pogos, os dados de entrada, sdo: raios
gama (GR), resistividade (ILD_log10), efeito fotoelétrico (PE), diferengca de porosidade de
densidade de néutrons e porosidade de densidade de néutrons média (DeltaPHI e PHIND);
€ as nove amostras de rochas ou facies correspondentes a estes perfis de pogos, através da
descricao de aproximadamente 609 metros de testemunho e analise de perfis de pogos
(Dubois, et al., 2003 a,b).

A linguagem usada é Python, versdo 3.9.0, open source, ndo sendo necessaria
nenhuma licenca para uso e suas plataformas de programacdo Jupyter e Google
Collaboratory. O algoritmo treina o conjunto de dados, facies (labels) associadas as suas
correspondentes medidas de well logs, fazendo com que se aplique a estes dados um
modelo de aprendizado, e posteriormente, aplicada uma validagdo, submeter a um dado
conjunto de pogos que nao possui dados de facies (output ). Criando, assim, um modelo
preditivo de facies baseado no processo de aprendizado (Bishop, 2006; Hall, 2016), a fim de
garantir a automatizagao, reprodutibilidade e o reconhecimento de padrdes do processo que

o procedimento usual ndo possui.



2. OBJETIVOS E MEIOS

A finalidade deste trabalho é mostrar esta ferramenta computacional como um
mecanismo agregador ao desenvolvimento da area de geociéncias, discutindo a forma como
ela pode atuar, desde a anadlise de dados até a interpretacdo de resultados no
reconhecimento de padrbdes, mostrar a relacdo de comportamento de um conceito geoldgico
descritivo interpretativo, como facies, com a performance de um algoritmo de Aprendizado
de Maquina. Ademais, o estudo pretende mostrar a importancia do tratamento dos dados
brutos e seus métodos aplicados bem como o0s processos necessarios para definir um
modelo preditivo de classificacao de facies.

Para isso, foi realizado um levantamento bibliografico de outros trabalhos que
usaram Aprendizado de Maquina na area de geociéncias para classificacdo de facies
utilizando perfis de pogos, discutindo métodos utilizados no processamento dos dados bem
como executar ajustes que possam melhorar o modelo, além da busca de entendimento do
funcionamento da perfilagem geofisica de pogcos com seus parametros medidos para
desenvolver melhor a pesquisa. Desse modo, a implicagdo do estudo € uma manipulacéo
dos parametros dos dados, as propriedades fisicas das rochas, tais como porosidade,
densidade, resistividade, radioatividade, bem como a manipulagdo das bibliotecas Numpy,

Pandas, Matplotlib, Seaborn e Sklearn da linguagem Python.

3. TRABALHOS DE REFERENCIAS

3.1. Area de estudo

Dubois et al. (2003 a,b) utilizam estes pardmetros como dados de treino e de teste

para classificagdo de facies e observa-se o comportamento de cada classificador, dados

localizados no campo de gas Hugoton e Panoma, no sudoeste do Kansas (Figura 1).



Figura 1: Campo de Panoma ¢é localizado no Embasamento Hugoton da Bacia Anadarko no sudoeste do estado
do Kansas- Estados Unidos (Modificado de Bohling & Dubois, 2003).

O Grupo Permiano Council Grove no Campo de Panoma, sudoeste do estado de
Kansas, produziu 80 x 109 metros cubicos de gas de aproximadamente 2600 pogos de um
intervalo de 60 metros em profundidades de 800 a 1.000 metros desde sua descoberta na
década de 1960. A saturacao inicial de gas, as taxas de producao e a produg¢ao acumulada
no Campo de Panoma sao controladas pela distribuicdo de porosidade e permeabilidade no
campo, que por sua vez sao controladas pela distribuicao de facies ( Dubois et al., 2003 a,
b).

Esse conjunto de dados é de 10 pogos: SHRIMPLIN, SHANKLE, LUKE G U, CROSS
H CATTLE, NOLAN, Recruit F9, NEWBY, CHURCHMAN BIBLE, ALEXANDER D, KIMZEY
A (4149 instancias), consistindo em um conjunto de sete variaveis preditoras e nove facies
(classe) para cada valor de entrada de exemplo e para dados de validagao, dois pocos de
teste sem informagao de classes, STUART e CRAWFORD (830 instancias) com as mesmas

variaveis preditoras (Figura 2).
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Figura 2: Mapa mostrando a localizagdo de oito pogos no conjunto de treinamento (tridngulos grandes) e 515
pocos sem informacgdes de litofacies (sem triangulos). As dimensées do mapa s&o aproximadamente 150 por 135

km (Modificado de Dubois et al., 2005).

3.2. Contexto Geoldgico

O Council Grove Group é um grupo geoldgico em Kansas, Oklahoma, Nebraska, e
Colorado. Este grupo preserva fésseis que datam do limite Carbonifero-Permiano, esta
abaixo do Grupo Chase, onde se localiza o campo Hugoton, na estratigrafia (Dubois et al.,

2001; Dubois et al., 2003) observada na Figura 3.
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Figura 3: Coluna estratigrafica da regido da area de estudo (Modificado de Dubois et al., 2003).

Grupo Council Grove é composto por sequéncias marinhas-ndo-marinhas de quarta

ordem delimitadas por inconformidades na superficie de carbonato exposto.

Uma tipica sucessao vertical, comecando na exposta superficie de carbonato,

contendo, principalmente, silte, areias muito finas e silte-argilosos ricos com paleossolos.

Acima de carbonatos, estes sdo cobertos por aguas mais profundas de siltitos marinhos

escuros e carbonato, sobrepostos por grainstones, interpretados para indicar aumento da

onda ou agitacdo das marés; também dolomitos siltosos, onde houve pouca ou nenhuma

agitacao das ondas (Dubois et al., 2003 a, b)- Figura 4.
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Figura 4: Imagens de 5 das 8 classes de litofacies e ambiente deposicional do grupo Council Grove
(Modificado de Dubois et al., 2003b).

3.3. Perfis geofisicos e as variaveis do estudo

O tipo de dado que fornece as informacgdes para o desenvolvimento do projeto, se da
por meio de perfis geofisicos de pogos, os denominados well logs, utilizados pela industria
de petroleo e gas. Eles tém a vantagem de medir propriedades de rochas in situ que nao
podem ser medidas em laboratério por amostras de testemunhos ou cortes de maior custo
econdmico (Bestagini, 2017).

Os parametros medidos nao fornecem informagbes precisas de quanto gas e 6leo
existem na subsuperficie ou quanto serdo produzidos, no entanto, destes parametros
derivam informacgdes importantes que podem, com pressupostos confirmados, guiar uma
estimativa significativa na busca por hidrocarbonetos. Tais parametros sdo: porosidade,
densidade, resistividade, radiagdo gama, velocidade, efeito fotoelétrico (Bjgrlykke et al.,
2015).

A perfilagem é feita através de um cabo de aco que é deslocado pelo pogo gerado
(Figura 5), na extremidade deste cabo existem eletrodos que captam os sinais de medi¢des
que serao processados na estacdo de tratamento de dados, dados armazenados em um
sistema computacional e estes sao produzidos em papel ou filme (Bjgrlykke et al., 2015), e

atualmente por softwares.
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Figura 5: Exemplos de uma ferramenta de perfilagem e sua operagéo, ao lado direito, um perfil gerado de

radiagdo gama (Bjarlykke et al., 2015).

Uma fundamental propriedade volumétrica de rocha, que pode ser medida pela
perfilagem geofisica de maneira indireta, € a porosidade. Ela descreve o potencial volume
armazenado de fluidos (agua, gas e 0leo) e influencia a maior parte das propriedades das
rochas tais como velocidade de onda elastica, resistividade elétrica, densidade (Schon ,
2016). Existe uma forte relagao entre densidade e porosidade, para rochas sedimentares, ha
geralmente um intervalo amplo de valores de densidade que refletem variacbes de
porosidade e saturacido, de modo que valores baixos de densidade resultam do aumento da
porosidade e/ou aumento de gas nos poros (Schon , 2016).

A variavel radiagdo gama é muito utilizada em rochas reservatoério, em particular
arenitos e carbonatos, na medicdo de densidade aplicada para calculo de porosidade,
devido a maior penetracdo em relagao a radiagao alfa e beta, sendo os trés principais
elementos radioativos de ocorréncia nas rochas sao: Tério, Uranio e Potassio (Schon, 2016).
Geralmente, folhelhos terdo maior nivel de radioatividade que outros sedimentos,
consequentemente, sonda de raios gama é usada para fazer esta distin¢cdo, entretanto,
carbonatos e arenitos apresentam indices baixos de radioatividade (Schén, 2016). A medida
de efeito fotoelétrico é produto da interagdo da radiagcdo gama e as propriedades nucleares
das rochas (Schon, 2016).

A porosidade também ¢ verificada através da interacao da radiagao de néutrons, de

forma que em uma rocha saturada de 6leo e agua, como folhelho, a resposta de néutrons
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reflete a porosidade, ao passo que uma rocha com presenca de gas, de baixo teor de
hidrogénio, reflete um efeito de néutrons menor (Schén , 2016).

A resistividade, propriedade elétrica da rocha, indica fracdo de volume da rocha
(porosidade, saturagao) e distribuicdo do eletrdlito na rocha, de modo que poros saturados
de agua possuem resistividade baixa com aumento da porosidade e fraturamento, no
entanto, poros com 6leo e gas apresentam resistividade maior (Schon, 2016).

Para este trabalho, as facies sdo baseadas na descri¢do de aproximadamente 609
metros de testemunho a intervalos de amostragem de 15 cm (Dubois et al., 2003b; Dubois et
al., 2005). As variaveis sao essencialmente continuas s&o raios gama (GR), resistividade
(ILD_log10), efeito fotoelétrico (PE), diferenga de porosidade de densidade de néutrons e
porosidade de densidade de néutrons média (DeltaPHI e PHIND). As nove facies (classes
de rochas) sao: arenito ndo marinho (SS), siltito grosso ndo marinho (CSiS), siltito fino ndo
marinho (FSiS), siltito e xisto marinhos (SiSh), mudstone (calcario) (MS), wackestone (WS)
(calcario), dolomito (D), packstone-grainstone (PS) (calcario), bafflestone fildide-algal
(calcario) (BS). As facies sao discretas que possuem facies vizinhas bastante proximas,

expostas na Tabela 1.

Tabela 1: As facies e seus nomes abreviados e seus vizinhos préximos.

Facies Siglas Facies Adjacentes

1 2

2 1,3
3 2

4 SiSh 5

5 MS 4,6
6 5,7
7 6,8
8 PS 6,7,9
9 BS 7,8
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3.4. Feature Engineering

A sistematizagao cientifica que foi adotada leva em consideracdo a questado
geoloégica que se pretende responder, no caso, € um modelo preditivo de facies que
automatize por padrdes o processo de analise dos perfis geofisicos no dmbito de exploracao
de Oleo e gas. Considerar um conjunto de atributos, variaveis ou o termo em inglés, que sera
usado neste trabalho, features; a terminologia para isso é “processamento de features”, que
é a verificacdo de features usados para o problema, selecao de um modelo final confiavel e,
por fim, fazer a classificacdo que seleciona por aprendizado seus dados no espago de
entrada automaticamente e os resultados da predicao sao analisados (Smith, 2018).

Em Aprendizado de Maquina, features descrevem aspectos dos dados de
determinado problema, além de distinguir e caracterizar diferentes grupos de objetos. O seu
tratamento e verificagdo € de suma importancia para gerar modelos acurados de predicao
(Guozhu & Huan, 2018). Além disso, estes componentes devem derivar de maneira natural
do tipo de dado bruto que esta disponivel (Zheng & Casari, 2018), ndo somente se os dados
contém informagdes importantes, mas também qual informagéao existe, através de regras e
features descobertos (Liu & Motoda, 1998). A relacao features e modelos é muito estreita
visto que alguns modelos sdo mais apropriados para alguns tipos de variaveis e vice-versa,
isso porque determinados features devem ser mais faceis para a modelagem assimilar
(Zheng & Casari, 2018). E seus tipos sao classificados como: binario, categorico, discreto,
continuo e complexo (Duboue, 2020).

O processo de tratamento para formulacao de features mais adequado aos dados,
modelo e a tarefa, € conhecido por feature engineering (Figura 6), esta etapa € melhor
compreendida apdés a execucdo da analise exploratéria de dados brutos que extrai
informacdes sobre o comportamento dos dados, principalmente, referente a determinado
feature analisado e uma grande quantidade de dados pode auxiliar a capacidade de retirar
features significativos (Duboue, 2020).

Analise exploratéria € um importante primeiro passo para analisar a variedade de
valores dos dados brutos dispostos em diferentes colunas, fazendo uso de analise
estatistica descritiva tais como média, mediana, moda, extremos (maximo e minimo),
variancia, desvio padrao e visualizagbes como box-plots sdo bastante uUteis neste estagio
(Duboue, 2020).

Muitos problemas, que se tentam resolver em Aprendizado de Maquina, ndo obtém
éxito devido aos parametros utilizados e a maneira de resolver é fazer uso de engenharia de
parametros (“feature engineering”, que sera abreviado daqui em diante por FE) (Domingos,
2012), este processo basicamente (1) identifica features considerados bons e expande-os;

(2) identifica features redundantes e elimina-os (Duboue, 2020).
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Figura 6: Local de atuagao de Feature Engineering no fluxo de processo de ciéncia de dados (Zheng & Casari,
2018).

Duboue (2020) divide este processo em feature combinado, expandido e reduzido .
Combinado refere-se a normalizacao, discretizagcao. Normalizacdo € uma maneira de reduzir
as variagdes nos valores de feature, variagbes ou ordem de grandeza que muitas vezes
prejudicam o modelo, certificando que esses valores sempre estdo em um mesmo intervalo
durante o treinamento. Alguns modelos como Maquina de Vetor Suporte (Support Vector
Machine) e Redes Neurais necessitam de dados de entrada escalados a intervalos
especificos como 0 e 1 ou -1 e 1, dessa forma é necessario subtrair o minimo valor de cada
variavel e dividir pela diferenga entre o maximo e o minimo (Duboue, 2020). Outra maneira,
€ a padronizacao que transforma features com média zero e unidade de variancia, através
da subtracido de cada ponto dividido pelo desvio padrdao. Processo whitening que padroniza
e também remove a correlacédo entre as variaveis, a linearidade entre os dados, aplicado a
um dominio nao linear (Duboue, 2020).

Feature expandido, refere-se a imputagcdo de variaveis ausentes, lidar com dados
ausentes € uma realidade recorrente em ciéncia de dados, excluir os dados que nao tem
informacado pode ser uma alternativa quando conjunto de dados de treino é grande o
suficiente, no entanto, dados ausentes em geral tendem a ser representativos de um
fendbmeno particular dos dados coletados, podendo, entdo, aumentar o erro quando existe
um esforgco de imputar informagdes aos dados faltantes, isto €, adicionar um maior viés
(Duboue, 2020). A considerar o tipo de problema, uma maneira de lidar com isso é substituir
com valores representativos como a média, mediana ou a moda para fazer com que o
algoritmo ignore valores ausentes de features, logo uma solug&o seria checar se funciona a
imputagédo de valores para o algoritmo e comparar o desempenho do modelo de treino nos
dados com os dados imputados (Duboue, 2020). Ainda assim, a forma mais confiavel de

imputar dados é treinar um classificador ou um regressor de features restantes para prever
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dados ausentes, um exemplo de escolha confiavel e de rapida operagao € o algoritmo K-
vizinhos mais proximos-KNN (Duboue, 2020).

Feature reduzido, selecado de feature e reducédo de dimensédo completam o processo
de feature engineering. Selecao de features € uma forma de escolher um subconjunto de
features que sao Uteis para construir uma ferramenta preditora (Duboue, 2020), um conjunto
reduzido torna o uso computacional factivel de certos algoritmos, levando-os uma qualidade
melhor de resultados (Guozhu & Huan, 2018). Redugédo dos dados também é uma técnica
que consiste em reduzir a representagcdo dos dados em um volume de dados menor sem
perder a integridade do conjunto original, uma forma de reduzir é por remoc¢ao de atributos
repetitivos ou dimensdes e atributos irrelevantes, uma técnica importante para reduzir
dimensao, visto que a medida que a dimensionalidade aumenta, a visualizagdo e a
modelagem tornam-se cada vez mais dificeis, pois dados comegam a ficar mais esparsos,
uma forma, portanto, de tratar este problema é aplicar uma Andlise de Principais
Componentes ou Principal Components Analysis (PCA), de modo que despreze
componentes insignificantes, eliminando casos de menor variancia de modo a visualizar
melhor os dados (Alasadi & Bhaya, 2017; Zheng & Casari, 2018; Duboue, 2020). Dessa
maneira, com menos features, pode-se manipular mais facilmente os dados, organizando as
formas mais relevantes para melhorar o aprendizado (Liu & Motoda, 1998). Outra técnica de
transformacgao dos dados é clustering ou agrupamento que consiste em particionar dado
conjunto de dados em clusters ou grupos que busquem uma similaridade entre objetos de
um mesmo grupo e diferenca entre os varios grupos formados, sendo a similaridade medida
frequentemente através de uma fungao de distancia (Guozhu & Huan, 2018), as bibliotecas
de Aprendizado de Maquina, como Sklearn que oferece varios algoritmos de clustering de
acordo com dados usados e um tipo muito utilizado é o algoritmo K-means (Guarido, 2018).

Uma técnica de feature engineering foi utilizada no pré-processamento dos dados,
denominada feature augmentation, para separar melhor as classes, somando algumas nao
linearidades, desenvolvido por Bestagini et al (2017). Primeiramente, calcula-se o vetor

feature augmented f,, aplicando expans&o quadratica a feature f,,,, vetor associado &

profundidade e ao pocgo:

Saw= T2 = [0SR ) - (fSR), (fRES) - fRES) )] (Bestagini etal., 2017)

Todas as operagdes sdo aplicadas como produto de matrizes de mesma dimenséo.

Alem disso, calcula-se vetor augmented fl,,w considerando todos os termos de interacdo de

segunda ordem:
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" R ES R E M P P
fd,W - [ dw ° dw>Jdw ° dws o Jdw ° d,W] (Bestaglnl et al., 2017)
De fato, considerando que as facies nas camadas vizinhas sao fortemente
correlacionadas, ou seja, features das camadas d +1e d—1podem ajudar a classificar a

camada d . Dessa forma, define-se o gradiente de feature augmented:

e fd—l,w_fd,w .
dw — W (Bestagini et al., 2017)
onde todas as operagbes sdo aplicadas como produto de matrizes de mesma
dimenséo, e Adepth é a diferenga de profundidade em metros entre as camadas d e d— 1.
Uma vez que os trés features augmented s&o calculados, concatena-se todos eles

em unico vetor:

faw= Vays o J4,] (Bestagini et al., 2017)

E importante esta abordagem, pois dado um valor de um feature como raios gama,
GR, que indica transicdo de areia para folhelho, garante a nog¢ao intuitiva de gradiente
baseado nas propriedades de dados de perfis de pogos, e assim, acaba fornecendo um
atributo para identificar mudancas litologicas (Bestagini et al., 2017).

Portanto, € de suma importancia para o cientista de dados fazer pré-processamento
de dados: a preparacao e transformacao dos dados de forma que o espaco de entrada
possa ser facilmente interpretado pelo algoritmo, limpeza dos dados, transformacio e
selecédo (Alasadi & Bhaya, 2017), técnicas que acabam sendo a tarefa mais importante da

analise de dados.

3.5. Aprendizado de Maquina

Geocientistas estdo utilizando Aprendizado de Maquina ligado aos diferentes
processos e métodos de interpretacdo e uma das aplicagcbes, no momento mais usada, é a
classificagcao de facies (Hall, 2016; Guarido, 2018).

A forma convencional de analise de perfis geofisicos é feita de forma analitica, com
ajuda de softwares especializados, que néo sdo open source, necessitando de licenga para

serem usados, 0 que eleva o tempo de analise e o custo de operacao (Bestagini, 2017).
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Além disso, os interpretadores e analistas ndo reconhecem todos os padrdes, aqueles
ocultos, que os perfis fornecem (Guarido, 2018).

Com uma metodologia de aprendizado adequada, o algoritmo pode treinar o conjunto
de dados, facies (labels) associadas aos seus correspondentes parametros de well logs
(porosidade, resistividade, radiacdo de gama natural, densidade, neutrbnico, efeito
fotoelétrico) (Hall, 2016; Bestagini, et al., 2017; Guarido, 2018). e fazer com que se aplique
a estes dados um modelo de aprendizado, e posteriormente, feita a validagéo, aplicar a
parametros que nao possuem dados de facies (output desejado), criando um modelo
preditivo de facies (Hall, 2016; Bestagini et al., 2017; Guarido, 2018) baseado no processo
de aprendizado (Bishop, 2006;). Além disso, a vantagem da classificagdao automatica &
permitir a reprodutibilidade e a padronizagéo do processo.

O termo classificacado se deve ao tipo de variavel que esta sendo utilizada para ser
prevista como valor de saida, resposta ou outputs, no caso, a variavel dependente, facies,
como resultado € do tipo categdrica ou discreta, representada por valores inteiros. Ao passo
que os valores de entrada (inputs) sdo denominados de preditores, variaveis independentes,
mais usualmente chamados de caracteristicas ou atributos (features). Quando se utilizam
conjuntos de valores de entrada e de saida a fim de tentar prever novos valores de saida,
este tipo de aprendizado se denomina supervisionado (Hastie et al., 2001).

As condi¢des, para as técnicas de Aprendizado de Maquina funcionarem, sao:
existéncia de um padrao, ser dificil de modelar matematicamente e possuir uma quantidade
representativa de dados (Abu-Mostafa et al., 2012).

Neste trabalho, a forma como estao dispostas as facies associadas aos features em
um perfil & definida por um padrédo a ser descoberto, respeitando a sequéncia estratigrafica
local. Entretanto, ndo ha um modelo matematico que consiga definir esta classificacao,
somente a partir dos dados treinados é criado um sistema (Abu-Mostafa et al,.2012).

A formalizacdo matematica para o problema de aprendizado (Abu-Mostafa et
al,.2012) :

-Entrada: x - valores de entrada; um vetor de dimenséo d.

-Saida: y - valores de saida; a resposta.

-Funcgao alvo: F : X — Y ; fungdo com dominio X de onde vem o conjunto de dados
de entrada e um contradominio Y, dados de saida. A fungédo alvo € a fungao ideal de
classificacado de facies, que é desconhecida, no caso.

-Dados: (x |,y,), (x,, ¥,),..(xy,yy), presentes no conjunto de dados, um vetor x
associado a um vetor y .
-Hipétese: G: X — Y ; funcdo a ser aprendida g deve aproximar bem a funcdo

desconhecida F , G é criada para aproximara F , este é objetivo do aprendizado.
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-Conjunto de Hipoteses: H={h} GeH.

Basicamente para o processo de aprendizado, o que se almeja aproximar é a fungao
alvo, através dos exemplos de treinamento, o conjunto de dados. O objetivo é produzir a
hipétese final, que é a férmula utilizada para classificagdo, com G se aproximando de F . O
que conecta os exemplos de treinamento com a hipétese final € o algoritmo de aprendizado,
este cria a formula a partir de um modelo de formulas candidatas, formando um conjunto de
hipoteses, a partir do qual, escolhe-se uma hipétese final (Abu-Mostafa et al,.2012). Deste
conjunto de hipoteses H, o algoritmo de aprendizado escolhe uma hipotese %, denota-se
a fungéo escolhida por G , compondo o modelo de aprendizado. Quando existe um modelo,
ha também um conjunto de hipdteses, havendo um algoritmo que produzira uma dessas
hipéteses (Abu-Mostafa et al,.2012).

Ademais, € preciso adicionar os elementos da teoria da probabilidade neste modelo
de aprendizado, uma vez que existe um elemento de incerteza associado ao
reconhecimento de padrées, os conceitos de probabilidade fornecem estrutura de
manipulacdo, quantificacdo de incertezas e formam um dos fundamentos centrais do
reconhecimento de padrdes (Bishop, 2006). Dessa maneira, no espago de entrada X dos
dados € aplicada uma distribuicdo de probabilidade P aos pontos x,,..,.x, deste espaco,
ou seja, existe uma probabilidade de selecionar um ponto de maneira independente.
Atrelada a isso, ha a medida de erro definidora de quanto G se aproxima de F em dado
ponto x de teste gerado da mesma distribuicdo de probabilidade. Para adequar a fungao
alvo a esta distribuicdo probabilistica, substitui-se y = F(x) por P(y/x), dependendo ainda
de x , assim, quando x for gerado, y também sera gerado de maneira probabilistica, sendo
par (x,y) gerado pela distribuicdo conjunta P(x)P(y/x)(Abu-Mostafa et al., 2012). O
diagrama abaixo, retirado de notas de aula do professor Yaser Abu-Mostafa do Caltech-

EUA, propde organizar estes conceitos apresentados (Figura 7).
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Figura 7: Elementos que compdem o diagrama de Aprendizado Supervisionado (retirado do curso
Learning from data de Abu-Mostafa do Calltech, 2012.).

Entre os trés tipos de métodos de Aprendizado de Maquina (supervisionado, nao
supervisionado, e reforgo), o Aprendizado Supervisionado é o mais adequado para a
classificagdo (Caté et al.,, 2018). H4 muitos modelos de aprendizado com aplicagdo em
geociéncias para classificacdo de facies: Classificador Bayes (Dubois et al., 2007), K-
vizinhos mais proximos, ou KNN (Caté et al., 2017), Métodos de Arvores de decisdo:
Gradient Boosting, Florestas aleatdérias ou Random Forest (Hall, 2016; Caté et al.,2018;
Guarido, 2017), Maquina de Vetores de Suporte, ou SVM (Caté et al., 2017; Alexsandro et
al., 2017), Redes neurais (Dubois et al., 2007; Silva et al., 2014).

3.6. Algoritmos de Aprendizado de Maquina do problema

A metodologia para este escopo sera baseada em Arvores (Breiman et al., 1984;
Breiman et al., 2001) e o modelo usado para predigdes € o Gradient Boosting que € uma
combinagéo de modelos mais simples de Arvores de Decisdo (Breiman et al., 1984; Breiman
et al., 2001). Nesta secao, é feita a discussdo sobre os métodos de Arvores e sdo
introduzidas as definicdes dos seus principais tipos de métodos: Arvores de Decisdo,
Florestas Aleatérias, que pode ser implementado para melhorar a classificagdo por Arvores

de Decisao, e por ultimo, o classificador Gradient Boosting.
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3.6.1. Métodos Baseados em Arvores

Algoritmos baseados em Arvores sdo um dos mais usados em Aprendizado
Supervisionado, possuem um desempenho muito satisfatério em problemas nao lineares,
diferentemente de quando se usa modelos lineares. Além disso, sdo adaptaveis para
qualquer tipo de problema, tanto regressdo como classificagdo (Breiman et al., 1984;
Breiman et al., 2001). Arvores de Decisdo, Florestas Aleatérias, Gradient Boosting s&o
usados em diversos problemas em ciéncia de dados, e também na area de geociéncias
(Guarido, 2018).

3.6.1.2. Arvores de Decisio

Arvores de Decisdo é um tipo de algoritmo de Aprendizado Supervisionado
amplamente usado em problemas de classificagdo. Nessas estruturas em arvores, as folhas
ou né terminal representam classes ou uma distribuicao de probabilidade ligada por um
conjunto de variaveis, denominado de né de decisdo (Breiman et al., 1984). A forma de criar
uma Arvore de Decisdo é feita por escolha de uma variavel a cada passo que melhor divide
um conjunto de itens (Breiman et al., 1984). Utilizam-se diferentes métricas, para conseguir
melhores divisbes em cada né que fornecem a homogeneidade da variavel alvo dentro dos
subconjuntos de forma que os valores resultantes sdo combinados para fornecer a medida
da qualidade da divisdo do ndé em dois ou mais subnés (Breiman et al., 1984), uma das
métricas mais usadas € impureza Gini (Breiman et al., 1984).

Arvore de Decisdo esta distante de ser uma ferramenta ideal para o aprendizado
preditivo, devido a sua imprecisao (Breiman et al., 1984), isto &, funciona muito bem para
dados utilizados para cria-la, contudo, ndo é flexivel o suficiente para classificar novas
amostras.

Para contornar o compromisso existente de viés e variancia em qualquer modelagem
preditiva, é utilizado método denominado Ensemble que envolve grupo de modelos
preditivos para conseguir uma melhor acuracia e estabilidade do modelo, através de
decisdes de multiplos classificadores para melhorar o desempenho de todo modelo, seus
tipos sdo Bagging ou Bootstrapped, Boosting e Stacking (Breiman et al., 1984). Neste

estudo, serdo focados os modelos Bagging e Boosting.

3.6.1.3. Florestas Aleatoérias (treinamentos multiplos paralelos)

Uma implementagdo de modelo Bagging é o algoritmo Florestas Aleatorias, que

combina a simplicidade de Arvores de Decisdo, com a flexibilidade, resultando em grande
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melhoria na acuracia (Breiman, 2001), ou seja, 0 modelo Ensemble combina conjunto de
modelos mais simples, como Arvores de Decis3o, a fim de obter um resultado generalizado,
através do uso de subconjuntos com o propdsito de obter uma ideia do conjunto todo
(Breiman, 2001). A principal ideia do algoritmo € melhorar a redugao da variancia do método
Bagging por diminuicdo da correlacdo entre as arvores, sem aumentar muito a variancia
(Breiman, 2001), isso porque apenas se considera um subconjunto aleatorio de variaveis a

cada passo (Breiman, 2001).
3.6.1.4. Gradient Boosting (treinamentos muiltiplos sequenciais)

Conforme descrito acima, Aprendizado de Maquina tem como objetivo criar uma
funcdo que se ajuste aos pontos dados (x,y), esta funcao, chamada de modelo, mapeia x e
y, que pode fazer predigbes dados valores de x desconhecidos (Abu-Mostafa et al., 2012).
Adicionar uma série de subfungdes para criar uma fungdo composta modeladora de alguns
pontos de dados é, entdo, denominado modelo aditivo.

Arvore Boosting é a combinagdo de modelos simples, estes sdo chamados de
modelos fracos (Hastie et al., 2001), tipicamente estes modelos s&o Arvores de Decis&o, o
algoritmo combina classificadores fracos com intuito de produzir um classificador forte
(Hastie et al., 2001). Diferente do Bagging, a criagao de subconjuntos nao é feita de maneira
aleatoria, e sim feita priorizando subconjuntos mal classificados (Hastie et al., 2001).

Um dos principais algoritmos Boosting é o Classificador Gradient Boosting, também
conhecido como Gradient Boosting Machine (GBM) ou Gradient Boosted Regression Tree
(GBRT) (Chen & Guestrin, 2016), € um algoritmo que faz a classificagéo através do modelo
aditivo (Friedman, 1999; Hastie et al., 2001). Gradient Boosting faz uso de modelos aditivos
para gradualmente aproximar um melhor modelo, de modo a somar submodelos ao modelo
composto. Arvores de Decisdo tendem a gerar sobreajuste (overfitting), e para solucionar
este problema, o Gradient Boosting é implementado (Zheng, 2017).

Algoritmo de Gradient Boosting em um conjunto de dados {(x;,y;)} " e uma fungéo
de Custo, Loss Function L(y,, F(x)), estimadora dos parametros destas aproximacdes
ajustando os dados, algoritmos de aprendizado usualmente realizam otimizacdo sobre uma
fungéo de custo especifico, sendo y, diferenciavel € o valor observado e F(x) € o valor
predito (Friedman, 1999; Hastie et al., 2001).

Primeiro passo iniciar o modelo com valor constante:

Fo(x) = argmin . L(y;,y) (Friedman,1999)
i=1
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v, € o valor observado e y s&o valores preditos.

Essa equacao significa que € necessario encontrar valor predito que minimize esta
soma. O F(x) representa apenas uma folha da arvore. O passo seguinte é o processo de
iteracao de todas as M arvores, numero de arvores, iniciando com a primeira arvore m = 1.
Dentro desta iteragéo, € calculado o valor do residuo r,,, a diferenga entre o valor

observado e o predito para cada amostra.

_ [ dL(y;, F(x;)

=[ =5Fo) | (Friedman,1999)

im

Sao m amostras para i=1,..,n; onde n é o numero de amostras, esta equagao
representa Gradient Boosting. Posteriormente, dentro do processo iterativo é feito o ajuste
de uma arvore de regressao aos valores r,, e criam-se regides terminais R;, para cada
folha na nova arvore, usando atributos para prever os residuos r. A seguir, para cada folha

na nova arvore para j =1 até j,,, calcula-se:

Vim = argmin Y. L(y;, Fn(x;)+v) (Friedman,1999)

xeR

valor de saida para cada folha que minimiza a soma, a ultima etapa do laco iterativo atualiza

Jm
a fungdo F,(x)=F, (x) +v X Viml; x€R;,, que é feita nova predi¢do para cada amostra
i=1
utilizando a predigdo anterior F,_,(x). Nesta etapa, € usado o coeficiente de aprendizado v
redutor do efeito que cada arvore tem na perdicao final e tende a melhorar a acuracia a
longo prazo. Finalmente, com o fim do ciclo de iterago, retorna-se o valor final de F,, da

ultima arvore.
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Figura 8: Fluxograma de modelo de aprendizado de Gradient Boosting.

3.7. Validagao e Avaliagao

Em um problema de aprendizado supervisionado, pelo menos dois conjuntos sao
necessarios: o conjunto de treinamento/validagdo e o conjunto de testes. O modelo é
treinado usando dados do conjunto de treinamento resultando em um modelo G, este
modelo, entdo, prevé as classes para um conjunto de teste através do modelo predito,
denominado generalizagéo, com isso estima-se o erro de predigéo (Hastie et al., 2001).

Objetivo principal ndo é classificar os dados de treino uma vez que as classes dos
dados de treino ja s&o conhecidas, o modelo deve desempenhar bem nos dados
desconhecidos ou dados de teste de modo que o intervalo entre o erro de treino e o de teste
seja o minimo possivel, tendo dois resultados possiveis: sub-ajuste ou undeffitting quando o
modelo n&o é capaz de obter um erro de treino baixo suficientemente; e sobreajuste ou
overfitting ocorre quando o intervalo entre erro de treino e de teste € muito grande; esta
heuristica € chamada de compromisso viés varidncia (Hastie et al., 2001). Este
compromisso interfere na habilidade de um método de aprendizado generalizar, ou seja,
quando a variancia € alta implica que o modelo ajusta o ruido aleatério no conjunto de treino,
resultando em poder baixo de generalizagao (overfitting) ao passo que modelo com alto viés
indica baixa diferenga no erro de predigdo entre o conjunto de treino e conjunto de teste,

porém, geralmente possui desempenho ruim (underfitting)- Figura 9; (Hastie et al., 2001).
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Figura 9: Curvas solidas de erros de treino (azul) e de teste (vermelho), sendo as médias de todas as curvas. A
menor complexidade do modelo com pouca diferenga entre as curvas representa sub-ajuste (underfitting), e
confirme o modelo aumenta sua complexidade, a diferenga entre as curvas aumenta e o modelo se encontra em
sobre-ajuste (oveffitting)-neste exemplo as curvas foram calculadas usando 100 diferentes conjunto de dados
com tamanho de 50 cada um; Hastie et al. (2001).

3.8. Métrica de classificagao

Para quantificar a qualidade do modelo, certas métricas sdo necessarias, para
avaliar os modelos. As principais métricas sdo acuracia, precisdo, recall, F1 (Hossin &
Sulaiman, 2015).

Acuracia € um meétodo de métrica de avaliagdo mais usado para problemas de
classificacdo binaria ou de multiclasses, uma vez que a solugdo produzida é avaliada
baseada na porcentagem de predicbes correta sobre o total de insténcias, a métrica
complementar de acuracia € a taxa de erro que avalia a solugdo produzida por sua
porcentagem de medigdes incorretas (Hossin & Sulaiman, 2015).

Precisdo e recall sdo métricas que fornecem mais informagdées sobre como
classificador executa para classes individuais, precisdo é a probabilidade de que um dado
resultado de classificagdo para uma amostra realmente pertenga a essa classe, ou seja, das
classes que foram classificadas como corretas, quantas estdo de fato corretas (Hossin &

Sulaiman, 2015).
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Recall é a probabilidade de uma amostra seja classificada corretamente para uma
determinada classe, ou seja, a frequéncia que o classificador encontra, se de fato pertencer
realmente a esta classe. F1 € a média harménica de precisao e do recall, uma combinagao
de ambas para dar uma medida Unica de relevancia dos resultados do classificador (Hossin
& Sulaiman, 2015).

Matriz de confusdo é uma representacdo matematica destas métricas, usada para
descrever o desempenho do modelo, o qual cada entrada da matriz indica a porcentagem de
observagcdoes de uma dada classe (verdadeira), representada pelas linhas da matriz,
identificada como qualquer classe (predita), representada pelas colunas da matriz; e o valor
de acuracia pode ser obtido pelos valores da diagonal da matriz de confusao (Bestagini,
2017).

3.9. Ajuste do modelo

Classificacdo pode ser feita através dos parametros padroes e também pode ser
obtida através de escolhas de parametros ideais ou também chamado de hiperparametros,
esta ultima forma é denominada ajuste do modelo ou de parametro porque nao ha formula
analitica disponivel para calcular um valor apropriado para este ajuste (Abu-Mostafa et al.,
2012; Hastie et al., 2001).

Os hiperparametros controlam a complexidade de um modelo, ajustando o viés e a
variancia de um algoritmo. Eles ndo sdo diretamente estimados dos dados de treinamento,
ha diferentes métodos para otimizar e buscar hiperparametros apropriados para um dado
modelo.

A validagcédo para ciéncia de dados € aplicada através da técnica de amostragem,
amplamente usada para estimar o desempenho do modelo, denominada de validagéo
cruzada K- fold pelo qual as amostras sado aleatoriamente particionadas em um conjunto k
de aproximadamente mesmo tamanho, e em cada interagdo com k-1 destas pastas (folds) é
usada para treinamento, sendo a pasta restante usada para avaliacdo do modelo
(Abu-Mostafa et al., 2012; Hastie et al., 2001). Outro método é o leave-one-out, um caso
especifico do k-fold, com k igual ao numero total de dados . Nesta abordagem, é realizado
um numero de calculos de erro proporcional ao numero dados, um para cada dado. Apesar
de apresentar uma investigagdo completa sobre a variagdo do modelo em relagdo aos
dados utilizados, este método possui um alto custo computacional, mais indicado para
situagbes nas quais poucos dados estao disponiveis (Abu-Mostafa et al., 2012; Hastie et al.,
2001). Existem outros métodos de validacao que este projeto ndo abordou como leave p out
e holdout.
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Além disso, outro parametro importante é o fator de regularizagdo que define quanto
se pode evitar classificagcdes incorretas, de modo que um razoavel fator de regularizagao
tentara classificar corretamente mais exemplos dos dados de treinamento. No entanto, um
fator de regularizagdo muito elevado pode ocasionar overfitting dos dados e falhar em
generalizar para dados de teste, ao passo que um fator de regularizagdo muito pequeno néao
sera satisfatério no ajuste de outliers e tera um grande erro no conjunto de treinamento
(Abu-Mostafa et al., 2012; Hastie et al., 2001).

De forma sucinta, regularizacdo é uma forma de evitar o overfitting, buscando
penalizar parametros muito grandes para que seus crescimentos nao prejudiquem a
capacidade de generalizacdo do modelo (Abu-Mostafa et al., 2012; Hastie et al., 2001).

Portanto, o ajuste de pardmetros é uma parte critica do fluxo de trabalho quando se

busca construir um modelo de Aprendizado de Maquina.

4. RESULTADOS OBTIDOS

Os resultados gerados foram produzidos através da implementagdo de cdodigos de
programagdo em linguagem Python e suas bibliotecas como Pandas, Numpy e Matplotlib
(Hall, 2016). Foi feita a analise exploratéria dos dados, verificando a distribuicdo estatistica
dos dados, visualizacado dos perfis dos pogos e graficos de correlagdo entre as variaveis do
estudo. Também, foi feito o pré-processamento dos dados com tratamento de features, com
aplicacao da técnica de PCA e FE. Ademais, o algoritmo escolhido foi Gradient Boosting que
desempenhou muito bem em comparagdo a outros métodos como Maquina de Vetores
Suporte, Redes neurais, Florestas Aleatorias, Adaboost (Hall, 2016). A partir da validagao
cruzada, divisdo do numero de dados de treinamento/validacdo e teste, encontram-se
parametros 6timos para o modelo, processo denominado grid searching, fazendo com que o
modelo seja treinado, para atingir uma avaliacao final para novos dados de teste (Hastie et
al., 2001).

Tendo como base os trabalhos implementados por Hall (2016), os resultados obtidos
foram adquiridos importando as bibliotecas de Python como Numpy, Pandas e Matplotlib,
Seaborn e Sklearn. Com Pandas, versao 1.1.5, é possivel ler os dados que estdo no formato
de uma planilha excel.csv através da criacdo de um Data Frame (VanderPlas, 2016) na

forma de uma tabela de 4149 linhas e 11 colunas, Tabela 2.
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Tabela 2: Conjunto de dados de treinamento pela biblioteca Pandas (Hall, 2016).

Facies

0 3

1 3
2 3
3 3
&4 3
4144 5
4145 5
4146 5
4147 5
4148 5

Formation
A1 SH
A1 SH
A1 SH
A1 SH
A1 SH

CLM
CLM
CLM
CLM
CLM

4149 rows x 11 columns

Well Name
SHRIMPLIN
SHRIMPLIN
SHRIMPLIN
SHRIMPLIN
SHRIMPLIN

CHURCHMAN BIBLE

CHURCHMAN BIBLE

CHURCHMAN BIBLE

CHURCHMAN BIBLE

CHURCHMAN BIBLE

2793.0 77.450
2793.5 78.260
2794.0 79.050
27945 86.100
2795.0 74.580

31205 46.719
3121.0 44.563
31215 49.719
3122.0 51.469

Depth GR ILD_logle DeltaPHI
0.664 9.800
0.661 14.200
0.658 14.800
0.655 13.900
0.647 13.500
0.947 1.828
0.953 2.241
0.964 2.925
0.965 3.083
0.970 2.609

31225 50.031

PHIND
11.915
12.565
13.050
13.115
13.300

7.254
8.013
8.013
7.708
6.668

PE NM_M RELPOS

4.600
4.100
3.600
3.500
3.400

3.617
3.344
3.190
3.152
3.295

1
1
1

ST S B S TR S T 6]

Além disso, outra tabela foi gerada, Tabela 3, que descreve a distribuicdo estatistica

de features de entrada, mostrando numero de vetores de features, média, desvio padrao,

mediana, quartil,

percentil, valores maximos e minimos do conjunto de dados de

treinamento; e o tratamento estatistico dos dados (Figuras 11,12 e 13).

Tabela 3: Distribuicdo estatistica das variaveis/features por Pandas (Hall, 2016).

Facies

count 4148.000000

mean
std
min
25%
50%
75%

max

4.503254
2474324
1.000000
2.000000
4.000000
6.000000
9.000000

Depth GR ILD_logie
4149.000000 4149.000000 4149.000000
2906.867438 64.933985 0.659566

133.300164 30.302530 0.252703
2573.500000 10.149000 -0.025949
2821.500000 44.730000 0.498000
2932.500000 64.990000 0.639000
3007.000000 79.438000 0.822000
3138.000000  361.150000 1.800000

DeltaPHI
4149.000000
4.402484
5.274947
-21.832000
1.600000
4.300000
7.500000
19.312000

PHIND
4149.000000
13.201066
7.132846
0.550000
8.500000
12.020000
16.050000
84.400000

PE
3232.000000
3.725014
0.896152
0.200000
3.100000
3.551500
4.300000
8.094000

NM_M

4149.000000

1.518438

0.499720

1.000000

1.000000

2.000000

2.000000

2.000000

1.000
0.979
0.957
0.936
0.915

0.685
0.677
0.669
0.661
0.653

RELPOS

4149.000000

0.521852

0.286644

0.000000

0.277000

0.528000

0.769000

1.000000

As variaveis sdo processadas e € realizada a atribuicdo de classes das facies

definidas por cores para cada tipo de rocha de modo que os /logs sdo ordenados pela

profundidade de forma crescente por Hall (2016)- Figura 10.
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Figura 10: Perfil de poco SHRIMPLIN e as cinco variaveis: raios gama, resistividade, porosidade, densidade e

efeito fotoelétrico; a direita interpretagdo do pogo com oito facies representadas em cores diferentes (Hall, 2016).

E importante visualizar como as facies estdo distribuidas numericamente através do
conjunto dos dados de forma completa em um histograma, Figura 11, a observar um maior
numero de exemplos, 649, de rochas de siltito grosso ndo marinho (CSiS) € um menor

numero de rochas de dolomito (D), 81 exemplos.
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Distribuicdo dos dados de treinamento por facies

200 -

500 1

400 -
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e g ° 4 3
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Sish

Figura 11: Histograma dos dados de treinamento desbalanceados que mostra o nimero de exemplos em cada

facies, destaque na diferenga entre facies 2 e 7 (Hall, 2016).

Pela distribuicdo de facies de cada poco (Figura 12), verifica-se que os exemplos de
facies 9, bafflestone fildide-algal (BS) sdo muito baixos. E preciso comentar que o pogo
Recruit F9 (Hall, 2016) foi criado artificialmente, pseudo poco, para representar este tipo de

rocha. Ademais, somente alguns pogos contém amostras para todas as classes.
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Figura 12: Distribuicdo de facies por pogos (Bestagini et al., 2017).

Além disso, pela distribuicdo de features de cada poco (Figura 13), observa-se

auséncia da variavel efeito fotoelétrico (PE) nos pogos Kimzey A, Alexander D e Recruit F9.
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Figura 13: Distribuicdo de features dos pogos do estudo, mostrando se algum pogo possui ou nao determinada

caracteristica (Bestagini et al., 2017).

A seguir, a Figura 14 mostra graficos 'crossplots', uma ferramenta, pela biblioteca de
graficos Seaborn do Python, muito utilizada em geociéncias para visualizar como duas
propriedades variam com determinada rocha. A denominada matriz de dispersdo pode
ajudar a visualizar rapidamente a correlagdo entre as 5 variaveis-raios gama (GR), registro
de resistividade (ILD_log10), efeito fotoelétrico (PE), diferenga de porosidade de densidade

de néutrons e porosidade de densidade de néutrons média (DeltaPHI e PHIND); foram
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excluidas neste grafico as indicadoras ndao marinho-marinho (NM_M) e posicéo relativa
(RELPOS). Cada painel do grafico, abaixo e acima da diagonal principal, mostra a relagéo
entre duas das variaveis nos eixos x e y, com cada ponto colorido de acordo com suas
facies. O mesmo mapa de cores é usado para representar as 9 facies.

A diagonal principal contém a curva distribuicdo de densidade de probabilidade de
cada feature, notam-se a sobreposicdo de classes de features, sendo dificil distinguir qual
variavel possui determinada classe, ou seja, é dificil assumir com grande certeza que
determinado ponto pertenca de fato a cor amarela, facies 1, por exemplo.

A correlagdo entre estas varidveis mostra uma evidente sobreposicdo e dificil
separagao das classes, principalmente, entre as facies 2, de maior quantidade, e facies 3,
isso se deve, provavelmente, a diferenca de granulometria entre o siltito grosso € o fino.

Nota-se que alguns features parecem ser afetados por outliers, ou seja, facies que

estdo nas extremidades, distantes de agrupamentos de pontos.
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Figura 14: Graficos crossplots de classes e features gerados por Seaborn (Hall, 2016).
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E feita aplicacdo de PCA, Analise de Principais Componentes, para visualizar melhor

as classes, dividindo-as quanto a litologia em rochas clasticas (facies 1,2,3,4,5) e

carbonaticas (facies 6,7,8,9)- Figura 15; tipos marinhos (facies 1,2,3) e ndo marinhos

(4,5,6,7,8,9)- Figura 16; ambientes deposicionais clastico ndo marinho (1,2,3), clastico

marinho (4), plataforma carbonatica (5,6,7,8,9)- Figura 17; tendo como base o modelo

geoldgico e estratigrafico da regido. Essas classes definidas em novos eixos PCA1 e PCA2

(X_pca_1 e X _pca_2) sao a representagdo matematica de todo treinamento de features

apos a aplicagao de PCA. A técnica de PCA foi implementada através da biblioteca Sklearn

bem como outras bibliotecas Python para manipulagédo do processo de FE.

X pca 2

Novamente, uma implicacao disso € o uso mais refinado de técnicas de FE.

Lithology = Clastic

Lithology = Carb

Facies
E FSis
CSiS

| | | | | |
-0 8 6 4 -2 0 2
X pca 1

-10 6 -6 4 -2 0 2 4 6

X pca 1

Figura 15: Separagdo em duas classes por litologia por aplicagédo de principais componentes (PCA).

M vs NM = Non-marine

M vs NM = Marine

| I | | I |
-0 8 6 4 -2 0 2
X pca 1

-10 8 € 4 -2 0 2 4 &

X pca 1

Figura 16: Tipos marinhos e ndo marinhos de rocha existentes no problema.
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Dep Environment = Clastic Non-marine Dep Environment = Carb Platform Dep Environment = Clastic Marine
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Figura 17: Separacao das classes por ambiente deposicional (PCA).

Como foi observada na analise exploratéria dos dados, ndo ha valores de feature PE,
efeito fotoelétrico, em trés dos dez pogos. Uma forma de completar estes dados é pela
média dos valores de PE (Bestagini et al., 2017) ou usando dados de treinamento de valores
de sete bons pocgos e predizer valores dos outros dois pogos que faltam por regresséo linear
(Guarido, 2018). Dessa forma, optou-se neste estudo pela média e pelo uso de todos os 10
pOGOS.

O algoritmo Gradient Boosting considerou uma floresta de 100 arvores, cada uma
alimentada com n&o mais do que 10 features, e adotada a estratégia um contra um para
lidar com problemas de multi classes , no caso, de 9 facies (Bestagini, 2017).

A validagao foi feita pelo método validacédo cruzada 10-fold, em que cada poco é um
fold, ou seja, sao selecionados os dados do conjunto de treinamento de 9 pogos, em média
3734 exemplos, para treinar o classificador, entao, testa-se no décimo pogo, em média 415
dados, de modo que o procedimento de teste e treino é repetido dez vezes, misturando os
pocos a fim de construir diferentes conjuntos de treino e teste com cada pogo de uma vez
apenas, os resultados sao calculados em média ao longo de 10 experimentos (Bestagini,
2017).

Definem-se os parametros de otimizacdo tais como: sele¢do da divisdo dos dados,
normalizacdo de features, para ter variaveis preditoras no mesmo intervalo para poder
comparar diversos perfis, usando um dimensionador robusto, principalmente para outliers,
treinamento do classificador, teste do classificador treinado nos dados de validacéao, repetido
para todas as divisdes e obtendo a média dos F1 score, com a expectativa do classificador
ser capaz de generalizar bem o conjunto de teste. A partir deste método, geram-se duas

matrizes de confusdo (Figuras 18 e 19), que seréo explicadas na proxima segao.
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Se for necessario verificar pontualmente o desempenho de um poco nos dados de

treino, assume-se um poco ndo visualizado em relacdo aos demais pogos, o blind well, este

poco serve de comparacdo para avaliar se a sequéncia produzida no treinamento esta

semelhante ao pogo verdadeiro (Guarido, 2018) (Figuras 20 e 21), detalhado na préxima

secao.

Aplica-se, ap0s este processo, o0 modelo de classificagao para dados de teste sem as

classes, para verificar se houve significativa generalizagdo dos dados no modelo, uma vez

treinado o modelo de classificagdo, pode-se usar o modelo para identificar pogcos que nao

tém dados de testemunho, ou ainda, para qualquer numero de pogos que tenha mesmo

conjunto de perfis de pogos, variaveis preditoras, como entrada, fazendo, entao, predi¢ao de

classes de dados sem classes. No caso deste estudo, serdo aplicados para dois pogos
STUART e CRAWFORD- Figuras 22 e 23.
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Figura 18: Matriz de confusdo produto da validagdo com feature augmentation, destaque na diagonal para CSiS

e BS -73% e 77% das amostras foram preditas como verdadeira, entretanto, calcarios MS com 12% e WS se

confundem na predicéo (Bestagini et al., 2017).
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Figura 19: Matriz de confusdo sem feature augmentation, note que as porcentagens de predi¢do diminuiram em

relagdo a outra matriz (Bestagini et al., 2017).
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Figura 20: Pogo Shankle colocado como blind well, para verificar o modelo preditivo no conjunto de dados de
treinamento comparado a facies verdadeiras, resultado gerado sem realizar o pré-processamento das variaveis
preditoras (Guarido, 2018).
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Figura 21: Pogo Shankle colocado como blind well, para verificar o modelo preditivo com ajustes de parametros

de otimizacdo no conjunto de dados de treinamento comparado a facies verdadeiras, resultado gerado com o

pré-processamento das variaveis preditoras (Guarido, 2018).
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Figura 22: Pogco STUART gerado da aplicagdo do modelo de classificagdo para dados de teste sem classes
(Bestagini,2017).
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Figura 23: Poco CRAWFORD gerado da aplicagdo do modelo de classificagdo para dados de teste sem classes

(Bestagini,2017).
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5. INTERPRETAGAO E DISCUSSAO DOS RESULTADOS

A comparacéao feita entre as sequéncias de facies preditas e verdadeiras no pogo
Shankle como blind well mostra a diferenca entre o ndo uso de dados pré-processados
(Figura 20) e quando aplicam-se métodos de tratamento de features e ajustes de
parametros de otimizagao (Figura 21) (Guarido, 2018). Ainda que na parte rasa do perfil em
ambas as maneiras, ha inconsisténcias na classificagdo. Portanto, modelos ajustados e com
melhor tratamento nos dados possuem maior consisténcia na classificagdo (Guarido, 2018),
entretanto, uma analise mais completa do desempenho é feita através da matriz de
confusao.

O resultado produzido da Figura 18 mostra que algumas facies possuem de fato
mais facilidade para classificar do que outras, por exemplo, é possivel corretamente
identificar que 77% de bafflestone (BS) e 73% de siltito grosso ndo marinho (CSiS), isto é,
estas porcentagens na diagonal da matriz representam quanto foi previsto para cada facies
de maneira correta. Por outro lado, mudstone (MS) é mais identificado como wackstone
(WS), grupo de calcérios, ou seja, 47% de WS, predito nesta classe, sdo na verdade MS.
Facies marinhas (SiSh, MS, WS, D, PS, BS) séo classificadas de forma incorreta em relagéo
a outras facies marinhas, da mesma forma que facies ndo marinhas (SS, CSiS, FSiS), em
relacdo a outras ndo marinhas (Bestagini, 2017). Um exemplo disso é o que se refere a
granulometria, para siltitos ndo marinhos grosso e fino - CSiS e FSiS, o algoritmo nao
consegue diferenciar de forma eficiente, produzindo grande erro no modelo, mesmo a
analise petrografica de testemunho é um desafio para interpretacao. A Figura 14 da matriz
de dispersao reitera a dificuldade de interpretacao de features dos perfis de pocos, visto que
estdo bastante superpostos. E raramente, facies marinhas sdo confundidas com né&o
marinhas e vice-versa.

Ademais, a matriz de confusdo sem o método de feature augmentation foi mostrada
a titulo de comparagao (Figura 19), observa-se que a diagonal principal possui valores
menores em relagdo a matriz de confusdo com a técnica aplicada. Em termos de f-score, 0
algoritmo alcancou 0,61 em média sobre o disponivel 10 folds, este valor cai para 0,55 sem
a aplicacédo de feature augmentation (Bestagini, 2017). Uma maneira de aumentar a
acuracia é considerar as facies adjacentes, o que aumenta para cerca de 0,93 (Hall, 2016),
uma vez que se considera que as facies ndo mudam abruptamente de uma dada
profundidade para uma proxima (Hall, 2016), a mesma ideia para realizar feature
augmentation quando se considera features de camadas vizinhas estarem de alguma forma

correlacionadas.

43



Uma explicagdo porque algumas facies sdo melhores classificadas do que outras
esta na Figura 11 que mostra numero de facies por pogos, em particular MS que possui um
numero de amostras menor, fazendo com que o algoritmo ndo aprenda significamente como
caracteriza-las, ao passo que o maior numero de exemplos de CSiS explica o maior
desempenho de classificagdo, pois as classes estdo desbalanceadas. Dessa forma, é
necessario ter um maior conjunto de pogos para que o algoritmo possa alcangar um
desempenho melhor no aprendizado e também teria sido importante ter aplicado uma
técnica de balanceamento entre as classes para evitar essa diferenga de desempenho, isto
podera ser feito em trabalhos futuros. Outra forma de reduzir problemas de sobreposi¢ao de
features e em relagdo o contato entre as facies é selecionar as por¢gdes das classes mais
representativas que também pode ser desenvolvido futuramente.

Na parte de generalizagdo do modelo dos dados de teste para pogos sem classes,
as figuras 24 e 25 mostram a comparagao entre os pogos gerados do modelo e 0s pogos

verdadeiros.
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Figura 24: Pogo STUART gerado por predicdo a esquerda e o pogo verdadeiro a direita
(Bestagini et al., 2017).
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Figura 25: Pogo CRAWFORD gerado por predicdo a esquerda e o pogo verdadeiro a direita
(Bestagini et al., 2017).

No pogo STUART (Figura 24), o resultado gerado do modelo preditivo para um pogo
sem informagdes, para verificar a generalizagdo, foi no geral bastante significativo,
entretanto, para intercalagdes contidas em um tipo de rocha existente no pogo verdadeiro, o
modelo ndo obteve um desempenho de maneira satisfatoria, interpretando muitas
intercalacbes como inexistentes, e em alguns casos, interpretou a existéncia de
intercalagdes em rochas que n&o as possuem, e os detalhes de muitas intercalagbes o
modelo ndo os interpretou. Ademais, o modelo classificou de maneira incorreta partes mais
rasas.

O poco CRAWFORD (Figura 25), da mesma forma do outro pocgo, teve dificuldades
com as intercalagdes, classificou melhor também em profundidades maiores. De maneira
geral, obteve um modelo preditivo satisfatorio.

Os resultados das métricas de classificacdo para estes dois pogos foram os
seguintes conforme mostram a Tabela 4 e a matriz de confusdo (Figura 26). O valor de

acuracia foi de 0,46 e para facies adjacentes, de aproximadamente 0,77.
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Tabela 4: Métricas de classificagdo dos dados de teste (Bestagini et al., 2017).

Classes | SS | CSiS BS
Precisdo | 0,50 | 0,42 0,18
Recall 0,29 | 0,60 0,33
F1 0,36 | 0,49 0,24
75
W - 4 7 0 1 0 2 0 0 0 0
w- 4 D | 2% 2 12 0 0
d 60
wm- 0 I ] 2 6 0 W]
i
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Figura 26: Matriz de confuséo para os dois pogos de teste STUART e CRAWFORD (Bestagini et al., 2017).

As meétricas mostram que o desempenho dos dados de teste ainda esta longe do
ideal para um modelo preditivo que deve ser utilizado na industria com acuracia ideal de
80% a 90%.

6. CONCLUSAO

Pelos resultados obtidos, mostrou-se neste estudo que o conjunto de dados ainda
nao é suficiente para fazer uma analise mais profunda do estudo, necessitando de dados
mais representativos de cada classe para evitar um maior viés do analista e aplicagao de
técnicas de balanceamento entre as classes. A forma como esta apresentado o conjunto de

dados mostra que realmente é necessario um pré-processamento de todas as variaveis
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preditoras do problema, e um excelente tratamento vai garantir resultados bastante
satisfatérios, a levar um bom tempo gasto nesta fase do estudo.

Feature engineering/augmentation mostrou-se fundamental na aplicagdo a este
conjunto de dados para melhor desempenho, aumentando em 13% a acuracia de predicao,
como a matriz de confusao esbocou.

O algoritmo Gradient Boosting implementado forneceu um importante método de
predigdo, atingindo um bom desempenho para o conjunto de dados; e o ajuste dos
parametros de otimizacdo € fundamental, pois evita o sobre-ajuste e o sub-ajuste,
consequentemente, melhora o resultado.

Mesmo obtendo um baixo valor de acuracia de predi¢cao neste trabalho, ja que uma
pontuacédo de 90 a 95% de acuracia seria o ideal para dar confianga na implementagdo do
modelo em um campo de 6leo e gas em produgao, é um grande inicio de implementacéo de
métodos computacionais na area de geociéncias para automacao de trabalhos que levam
bastante tempo de execucgao, gerando um maior debate cientifico em areas diferentes e, ao
mesmo tempo, produz uma ligagdo entre a comunidade de geociéncias e area de ciéncia de

dados, Aprendizado de Maquina e Institutos de Matematica e Computagéao.
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