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       RESUMO 

 

Aprendizado de Máquina ou ‘’Machine Learning’’ é uma ferramenta bastante utilizada           

no momento, por estatísticos e cientistas de dados para ajudar a análise de um número               

elevado de dados, além de pertencer a uma subárea do campo da Inteligência Artificial, que               

consiste em grande parte em fazer predições por reconhecimento de padrões nos dados de              

atributos ou ​features através do uso de métodos de aprendizado estatístico e computacional.             

Geocientistas estão utilizando Aprendizado de Máquina combinado aos diferentes processos          

e métodos de interpretação e uma das aplicações é a classificação de fácies, sendo crucial               

para interpretação de perfis de poços, visto que rochas diferentes têm permeabilidade e             

saturação de fluido distintos para uma dada porosidade. 

A finalidade deste trabalho, com levantamento bibliográfico, é mostrar esta          

ferramenta computacional como um mecanismo agregador ao desenvolvimento da área de           

geociências, discutindo a forma como ela pode atuar desde a análise de dados até a               

interpretação de resultados no reconhecimento de padrões, mostrar a relação de           

comportamento de um conceito geológico descritivo interpretativo, como fácies, com a           

performance de um algoritmo de Aprendizado de Máquina, a verificar quanto às técnicas             

computacionais podem auxiliar o conhecimento geológico.  

O estudo pretende mostrar a importância do tratamento dos dados brutos e seus             

métodos aplicados, bem como os processos necessários para definir um modelo preditivo            

de classificação de fácies. O conjunto de dados de perfis de poços deste localizados no               

sudoeste do estado do Kansas, nos Estados Unidos, denominado Panoma Field. O            

processamento dos dados brutos e aplicação de ​feature engineering melhoraram os           

resultados de acurácia e o algoritmo Gradient Boosting desempenhou de forma satisfatória,            

sempre verificando os métodos de otimização dos hiperparâmetros para produzir melhores           

resultados. A aplicação do modelo otimizado aos dados de teste obteve poços preditivos             

muito próximos aos dados reais, alcançando uma acurácia de 0,63, e quando se considera              

as fácies adjacentes este valor chega a 0,93.  

 

 

Palavras-chave​: Aprendizado de Máquina, classificação de fácies, Gradient        

Boosting 

 

 

 
 

   

 



ABSTRACT 
 

Machine Learning is a tool widely used at the moment by statisticians and data              

scientists to help analyze a large number of data, in addition to belonging to a subarea of the                  

Artificial Intelligence field which consists of largely making prediction by pattern recognition            

in the features through the use of statistical learning methods.  

Geoscientists are using machine learning combined with the different processes and           

methods of interpretation. Besides that, one of the applications is the facies classification,             

Geoscientists are using Machine Learning combined with the different processes and           

methods of interpretation and one of the applications is the facies classification, being crucial              

for the interpretation of well logs, since different rocks have different permeability and fluid              

saturation for a given porosity. 

The purpose of this work, with bibliographic survey, is to show this computational tool              

as an aggregating mechanism for the development of the geosciences area, discussing how             

it can act from data analysis to the interpretation of results in pattern recognition, showing the                

relationship of behavior of a descriptive interpretive geological concept, such as facies, with             

the performance of a Machine Learning algorithm, to verify how computational techniques            

can help geological knowledge. 

The study aims to show the importance of processing raw data and its applied              

methods, as well as the processes necessary to define a predictive model for facies              

classification. The data set of well logs from is located in southwest Kansas, in the United                

States, called Panoma Field. The processing of raw data and the application of feature              

engineering improved the accuracy results and the Gradient Boosting algorithm performed           

satisfactorily, always checking the optimization methods of the hyperparameters to produce           

better results. The application of the optimized model to the test data obtained predictive              

wells very close to the real data, reaching an accuracy of 0.63, and when considering the                

adjacent facies this value reaches 0.93. 

 

 

Keywords​: Machine Learning, facies classification, Gradient Boosting  
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1. INTRODUÇÃO 

 
A formação do pesquisador da área de geociências nos dias de hoje pode fazer uso                

de recursos na área de Ciência de Dados. E um dos métodos mais importantes de análise                

de dados é o Aprendizado de Máquina.  

Aprendizado de Máquina ou ​Machine Learning é uma ferramenta muito utilizada no            

momento, por estatísticos e cientistas de dados para ajudar a análise de um número elevado               

de informações, além de pertencer a uma subárea do campo da Inteligência Artificial, que              

consiste em grande parte em fazer predições por reconhecimento de padrões nos dados de              

atributos ou ​features através do uso de métodos de aprendizado estatístico (Hastie et al.,              

2001). 

Geocientistas estão utilizando Aprendizado de Máquina combinado aos diferentes         

processos e métodos de interpretação e uma das aplicações é a classificação de fácies              

utilizando dados de perfis de poços (Hall, 2016; Bestagini, 2017; Guarido, 2018). O conjunto              

de dados explorado neste estudo é oriundo da Universidade de Kansas, nos Estados Unidos              

(​Kansas University, USA​) de seu departamento de pesquisa geológico, ​Kansas Geological           

Survey (KGS), que tem como estudo o campo de gás Hugoton e Panoma, sudoeste do               

Kansas (Figura 1). Dubois et al. (2007) utilizam este conjunto de exemplos como dados de               

treino e de teste para classificação de fácies, observando o comportamento de cada             

classificador.  

O tipo de dado que fornecerá as informações para o desenvolvimento do projeto se              

dá por meio de perfis geofísicos de poços, os denominados ​well logs​, utilizados pela              

indústria de petróleo e gás. ​As medidas dos perfis de poços, os dados de entrada, são: raios                 

gama (GR), resistividade (ILD_log10), efeito fotoelétrico (PE), diferença de porosidade de           

densidade de nêutrons e porosidade de densidade de nêutrons média (DeltaPHI e PHIND);             

e as nove amostras de rochas ou fácies correspondentes a estes perfis de poços, através da                

descrição de aproximadamente 609 metros de testemunho e análise de perfis de poços             

(​Dubois, et al., 2003 a,b). 

A linguagem usada é Python, versão 3.9.0, ​open source, não sendo necessária            

nenhuma licença para uso e suas plataformas de programação Jupyter e Google            

Collaboratory. O algoritmo treina o conjunto de dados, fácies (​labels​) associadas às suas             

correspondentes medidas de ​well logs​, fazendo com que se aplique a estes dados um              

modelo de aprendizado, e posteriormente, aplicada uma validação, submeter a um dado            

conjunto de poços que não possui dados de fácies (​output ). Criando, assim, um modelo               

preditivo de fácies baseado no processo de aprendizado (Bishop, 2006; Hall, 2016), a fim de               

garantir a automatização, reprodutibilidade e o reconhecimento de padrões do processo que            

o procedimento usual não possui. 
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2​. ​OBJETIVOS E MEIOS  

 
 
A finalidade deste trabalho é mostrar esta ferramenta computacional como um           

mecanismo agregador ao desenvolvimento da área de geociências, discutindo a forma como            

ela pode atuar, desde a análise de dados até a interpretação de resultados no              

reconhecimento de padrões, mostrar a relação de comportamento de um conceito geológico            

descritivo interpretativo, como fácies, com a performance de um algoritmo de Aprendizado            

de Máquina. Ademais, o estudo pretende mostrar a importância do tratamento dos dados             

brutos e seus métodos aplicados bem como os processos necessários para definir um             

modelo preditivo de classificação de fácies. 

Para isso, foi realizado um levantamento bibliográfico de outros trabalhos que           

usaram Aprendizado de Máquina na área de geociências para classificação de fácies            

utilizando perfis de poços, discutindo métodos utilizados no processamento dos dados bem            

como executar ajustes que possam melhorar o modelo, além da busca de entendimento do              

funcionamento da perfilagem geofísica de poços com seus parâmetros medidos para           

desenvolver melhor a pesquisa. Desse modo, a implicação do estudo é uma manipulação             

dos parâmetros dos dados, as propriedades físicas das rochas, tais como porosidade,            

densidade, resistividade, radioatividade, bem como a manipulação das bibliotecas Numpy,          

Pandas, Matplotlib, Seaborn e Sklearn da linguagem Python. 

 
3. TRABALHOS DE REFERÊNCIAS 
 
3.1. Área de estudo 

 
Dubois et al. (2003 a,b) utilizam estes parâmetros como dados de treino e de teste               

para classificação de fácies e observa-se o comportamento de cada classificador, dados            

localizados no campo de gás Hugoton e Panoma, no sudoeste do Kansas (Figura 1). 
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Figura 1: Campo de Panoma é localizado no Embasamento Hugoton da Bacia Anadarko no sudoeste do estado 

do Kansas- Estados Unidos (Modificado de Bohling & Dubois, 2003). 

 

O Grupo Permiano Council Grove no Campo de Panoma, sudoeste do estado de             

Kansas, produziu 80 x 109 metros cúbicos de gás de aproximadamente 2600 poços de um               

intervalo de 60 metros em profundidades de 800 a 1.000 metros desde sua descoberta na               

década de 1960. A saturação inicial de gás, as taxas de produção e a produção acumulada                

no Campo de Panoma são controladas pela distribuição de porosidade e permeabilidade no             

campo, que por sua vez são controladas pela distribuição de fácies ( Dubois et al., 2003 a,                 

b). 

Esse conjunto de dados é de 10 poços: ​SHRIMPLIN, SHANKLE, LUKE G U, CROSS              

H CATTLE, NOLAN, Recruit F9, NEWBY, CHURCHMAN BIBLE, ALEXANDER D, KIMZEY           

A (4149 instâncias), consistindo em um conjunto de sete variáveis preditoras e nove fácies              

(classe) para cada valor de entrada de exemplo e para dados de validação, dois poços de                

teste sem informação de classes, STUART e CRAWFORD (830 instâncias) com as mesmas             

variáveis preditoras (Figura 2). 
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Figura 2: Mapa mostrando a localização de oito poços no conjunto de treinamento (triângulos grandes) e 515                 
poços sem informações de litofácies (sem triângulos). As dimensões do mapa são aproximadamente 150 por 135                
km (Modificado de Dubois et al., 2005). 
 

3.2. Contexto Geológico 
 

O Council Grove Group é um grupo geológico em Kansas, Oklahoma, Nebraska, e             

Colorado. Este grupo preserva fósseis que datam do limite Carbonífero-Permiano, está           

abaixo do Grupo Chase, onde se localiza o campo Hugoton, na estratigrafia (Dubois et al.,               

2001; Dubois et al., 2003) observada na Figura 3. 
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      Figura 3: ​Coluna estratigráfica da região da área de estudo (Modificado de Dubois et al., 2003). 

 

Grupo Council Grove é composto por sequências marinhas-não-marinhas de quarta 

ordem delimitadas por inconformidades  na superfície de carbonato exposto. 

Uma típica sucessão vertical, começando na exposta superfície de carbonato,          

contendo, principalmente, silte, areias muito finas e silte-argilosos ricos com paleossolos.           

Acima de carbonatos, estes são cobertos por águas mais profundas de siltitos marinhos             

escuros e carbonato, sobrepostos por grainstones, interpretados para indicar aumento da           

onda ou agitação das marés; também dolomitos siltosos, onde houve pouca ou nenhuma             

agitação das ondas (Dubois et al., 2003 a, b)- Figura 4. 
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Figura 4: Imagens de 5 das 8 classes de litofácies e ambiente deposicional do grupo Council Grove                 

(Modificado de Dubois et al., 2003b). 

3.3. Perfis geofísicos e as variáveis do estudo 
 

O tipo de dado que fornece as informações para o desenvolvimento do projeto, se dá               

por meio de perfis geofísicos de poços, os denominados ​well logs​, utilizados pela indústria              

de petróleo e gás. Eles têm a vantagem de medir propriedades de rochas ​in situ que não                 

podem ser medidas em laboratório por amostras de testemunhos ou cortes de maior custo              

econômico (Bestagini, 2017).  

Os parâmetros medidos não fornecem informações precisas de quanto gás e óleo            

existem na subsuperfície ou quanto serão produzidos, no entanto, destes parâmetros           

derivam ​informações importantes que podem, com pressupostos confirmados, guiar uma          

estimativa significativa na busca por hidrocarbonetos. Tais parâmetros são: porosidade,          

densidade, resistividade, radiação gama, velocidade, efeito fotoelétrico ​(Bjørlykke et al.,          

2015). 

A perfilagem é feita através de um cabo de aço que é deslocado pelo poço gerado                 

(Figura 5), na extremidade deste cabo existem eletrodos que captam os sinais de medições              

que serão processados na estação de tratamento de dados, dados armazenados em um             

sistema computacional e estes são produzidos em papel ou filme ​(Bjørlykke et al., 2015), e               

atualmente por softwares. 
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  Figura 5: Exemplos de uma ferramenta de perfilagem e sua operação, ao lado direito, um perfil gerado de 

radiação gama (Bjørlykke et al., 2015). 

 

Uma fundamental propriedade volumétrica de rocha, que pode ser medida pela           

perfilagem geofísica de maneira indireta, é a porosidade. Ela descreve o potencial volume             

armazenado de fluidos (água, gás e óleo) e influencia a maior parte das propriedades das               

rochas tais como velocidade de onda elástica, resistividade elétrica, densidade (​Schön ​,            

2016). Existe uma forte relação entre densidade e porosidade, para rochas sedimentares, há             

geralmente um intervalo amplo de valores de densidade que refletem variações de            

porosidade e saturação, de modo que valores baixos de densidade resultam do aumento da              

porosidade e/ou aumento de gás nos poros (​Schön​ ​, 2016). 

A variável radiação gama é muito utilizada em rochas reservatório, em particular            

arenitos e carbonatos, na medição de densidade aplicada para cálculo de porosidade,            

devido à maior penetração em relação à radiação alfa e beta, sendo os três principais               

elementos radioativos de ocorrência nas rochas são: Tório, Urânio e Potássio ​(​Schön​, ​2016).             

Geralmente, folhelhos terão maior nível de radioatividade que outros sedimentos,          

consequentemente, sonda de raios gama é usada para fazer esta distinção, entretanto,            

carbonatos e arenitos apresentam índices baixos de radioatividade ​(​Schön​, ​2016). A medida            

de efeito fotoelétrico é produto da interação da radiação gama e as propriedades nucleares              

das rochas ​(​Schön​, ​2016). 

A porosidade também é verificada através da interação da radiação de nêutrons, de             

forma que em uma rocha saturada de óleo e água, como folhelho, a resposta de nêutrons                
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reflete a porosidade, ao passo que uma rocha com presença de gás, de baixo teor de                

hidrogênio, reflete um efeito de nêutrons menor ​(​Schön​ ​, 2016). 

A resistividade, propriedade elétrica da rocha, indica fração de volume da rocha            

(porosidade, saturação) e distribuição do eletrólito na rocha, de modo que poros saturados             

de água possuem resistividade baixa com aumento da porosidade e fraturamento, no            

entanto, poros com óleo e gás apresentam resistividade maior ​(​Schön​, ​2016). 

Para este trabalho, as fácies são baseadas na ​descrição de aproximadamente 609            

metros de testemunho a intervalos de amostragem de 15 cm ​(Dubois et al., 2003b; Dubois et                

al., 2005). As variáveis são essencialmente contínuas são raios gama (GR), resistividade            

(ILD_log10), efeito fotoelétrico (PE), diferença de porosidade de densidade de nêutrons e            

porosidade de densidade de nêutrons média (DeltaPHI e PHIND). ​As nove fácies (classes             

de rochas) são: arenito não marinho (SS), siltito grosso não marinho (CSiS), siltito fino não               

marinho (FSiS), siltito e xisto marinhos (​SiSh)​, mudstone (calcário) (​MS)​, wackestone (WS)            

(calcário), dolomito (D), packstone-grainstone (PS) (calcário), bafflestone filóide-algal        

(calcário) (BS). As fácies são discretas que possuem fácies vizinhas bastante próximas,            

expostas na Tabela 1. 

 
Tabela 1:  As fácies e seus nomes abreviados e seus vizinhos próximos. 
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Fácies Siglas Fácies Adjacentes  

1 SS 2 

2 CSiS 1,3 

3 FSiS 2 

4 SiSh 5 

5 MS 4,6 

6 WS 5,7 

7 D 6,8 

8 PS 6,7,9 

9 BS 7,8 



3.4.  Feature Engineering 
 

A sistematização científica que foi adotada leva em consideração a questão           

geológica que se pretende responder, no caso, é um modelo preditivo de fácies que              

automatize por padrões o processo de análise dos perfis geofísicos no âmbito de exploração              

de óleo e gás. Considerar um conjunto de atributos, variáveis ou o termo em inglês, que será                 

usado neste trabalho, ​features​; a terminologia para isso é ‘’processamento de features’’, que             

é a verificação de features usados para o problema, seleção de um modelo final confiável e,                

por fim, fazer a classificação que seleciona por aprendizado seus dados no espaço de              

entrada automaticamente e os resultados da predição são analisados (Smith, 2018). 

Em Aprendizado de Máquina, ​features descrevem aspectos dos dados de          

determinado problema, além de distinguir e caracterizar diferentes grupos de objetos. O seu             

tratamento e verificação é de suma importância para gerar modelos acurados de predição             

(Guozhu & Huan, 2018). Além disso, estes componentes devem derivar de maneira natural             

do tipo de dado bruto que está disponível (Zheng & Casari, 2018), não somente se os dados                 

contêm informações importantes, mas também qual informação existe, através de regras e            

features descobertos (Liu & Motoda, 1998). A relação ​features e modelos é muito estreita              

visto que alguns modelos são mais apropriados para alguns tipos de variáveis e vice-versa,              

isso porque determinados ​features devem ser mais fáceis para a modelagem assimilar            

(Zheng & Casari, 2018). E seus tipos são classificados como: binário, categórico, discreto,             

contínuo e complexo (Duboue, 2020). 

O processo de tratamento para formulação de ​features mais adequado aos dados,            

modelo e a tarefa, é conhecido por ​feature engineering (Figura 6), esta etapa é melhor               

compreendida após a execução da análise exploratória de dados brutos que extrai            

informações sobre o comportamento dos dados, principalmente, referente a determinado          

feature analisado e uma grande quantidade de dados pode auxiliar a capacidade de retirar              

features​ significativos (Duboue, 2020). 

Análise exploratória é um importante primeiro passo para analisar a variedade de            

valores dos dados brutos dispostos em diferentes colunas, fazendo uso de análise            

estatística descritiva tais como média, mediana, moda, extremos (máximo e mínimo),           

variância, desvio padrão e visualizações como box-plots são bastante úteis neste estágio            

(Duboue, 2020). 

Muitos problemas, que se tentam resolver em Aprendizado de Máquina, não obtêm            

êxito devido aos parâmetros utilizados e a maneira de resolver é fazer uso de engenharia de                

parâmetros (​‘’feature engineering’​’, que será abreviado daqui em diante por FE) (Domingos,            

2012), este processo basicamente (1) identifica ​features considerados bons e expande-os;           

(2) identifica features redundantes e elimina-os (Duboue, 2020). 
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Figura 6: Local de atuação de ​Feature Engineering no fluxo de processo de ciência de dados (Zheng & Casari,                    
2018). 

Duboue (2020) divide este processo em feature combinado, expandido e reduzido .            

Combinado refere-se a normalização, discretização. Normalização é uma maneira de reduzir           

as variações nos valores de ​feature​, variações ou ordem de grandeza que muitas vezes              

prejudicam o modelo, certificando que esses valores sempre estão em um mesmo intervalo             

durante o treinamento. Alguns modelos como Máquina de Vetor Suporte (Support Vector            

Machine) e Redes Neurais necessitam de dados de entrada escalados a intervalos            

específicos como 0 e 1 ou -1 e 1, dessa forma é necessário subtrair o mínimo valor de cada                   

variável e dividir pela diferença entre o máximo e o mínimo (Duboue, 2020). Outra maneira,               

é a padronização que transforma features com média zero e unidade de variância, através              

da subtração de cada ponto dividido pelo desvio padrão. Processo ​whitening que padroniza             

e também remove a correlação entre as variáveis, a linearidade entre os dados, aplicado a               

um domínio não linear (Duboue, 2020). 

Feature expandido, refere-se à imputação de variáveis ausentes, lidar com dados           

ausentes é uma realidade recorrente em ciência de dados, excluir os dados que não tem               

informação pode ser uma alternativa quando conjunto de dados de treino é grande o              

suficiente, no entanto, dados ausentes em geral tendem a ser representativos de um             

fenômeno particular dos dados coletados, podendo, então, aumentar o erro quando existe            

um esforço de imputar informações aos dados faltantes, isto é, adicionar um maior viés              

(Duboue, 2020). A considerar o tipo de problema, uma maneira de lidar com isso é substituir                

com valores representativos como a média, mediana ou a moda para fazer com que o               

algoritmo ignore valores ausentes de ​features​, logo uma solução seria checar se funciona a              

imputação de valores para o algoritmo e comparar o desempenho do modelo de treino nos               

dados com os dados imputados (Duboue, 2020). Ainda assim, a forma mais confiável de              

imputar dados é treinar um classificador ou um regressor de ​features restantes para prever              

16 



dados ausentes, um exemplo de escolha confiável e de rápida operação é o algoritmo K-               

vizinhos mais próximos-KNN  (Duboue, 2020).  

Feature reduzido, seleção de feature e redução de dimensão completam o processo            

de ​feature engineering​. Seleção de features é uma forma de escolher um subconjunto de              

features que são úteis para construir uma ferramenta preditora (Duboue, 2020), um conjunto             

reduzido torna o uso computacional factível de certos algoritmos, levando-os uma qualidade            

melhor de resultados (Guozhu & Huan, 2018). Redução dos dados também é uma técnica              

que consiste em reduzir a representação dos dados em um volume de dados menor sem               

perder a integridade do conjunto original, uma forma de reduzir é por remoção de atributos               

repetitivos ou dimensões e atributos irrelevantes, uma técnica importante para reduzir           

dimensão, visto que à medida que a dimensionalidade aumenta, a visualização e a             

modelagem tornam-se cada vez mais difíceis, pois dados começam a ficar mais esparsos,             

uma forma, portanto, de tratar este problema é aplicar uma Análise de Principais             

Componentes ou Principal Components Analysis (PCA), de modo que despreze          

componentes insignificantes, eliminando casos de menor variância de modo a visualizar           

melhor os dados (Alasadi & Bhaya, 2017; Zheng & Casari, 2018; Duboue, 2020). Dessa              

maneira, com menos ​features​, pode-se manipular mais facilmente os dados, organizando as            

formas mais relevantes para melhorar o aprendizado (Liu & Motoda, 1998). Outra técnica de              

transformação dos dados é ​clustering ou agrupamento que consiste em particionar dado            

conjunto de dados em ​clusters ou grupos que busquem uma similaridade entre objetos de              

um mesmo grupo e diferença entre os vários grupos formados, sendo a similaridade medida              

frequentemente através de uma função de distância (Guozhu & Huan, 2018), as bibliotecas             

de Aprendizado de Máquina, como Sklearn que oferece vários algoritmos de ​clustering de             

acordo com dados usados e um tipo muito utilizado é o algoritmo ​K-means​ (Guarido, 2018). 

Uma técnica de ​feature engineering foi utilizada no pré-processamento dos dados,           

denominada feature augmentation​, para separar melhor as classes, somando algumas não           

linearidades, desenvolvido por Bestagini et al (2017). Primeiramente, calcula-se o vetor           

feature augmented aplicando expansão quadrática a ​feature , vetor associado à   f   ′
d,w       f  

d,w     

profundidade e ao poço: 

 

( (Bestagini et al., 2017) f [(f )f   ′
d,w =   2

d,w =  GR
d,w

 
· ),  f ) f ), ...)]  fGRd,w ( d,w

RES ·  d,w
RES .    

 

 

Todas as operações são aplicadas como produto de matrizes de mesma dimensão.            

Além disso, calcula-se vetor augmented considerando todos os termos de interação de     f  ′′
d,w         

segunda ordem:  
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 (Bestagini et al., 2017)[ f , f , .., f ]                          f  ′′
d,w =  GR

d,w · f d,w
RES  GR

d,w · fPEd,w .  d,w
NM · fRPd,w

 

  

De fato, considerando que as fácies nas camadas vizinhas são fortemente           

correlacionadas, ou seja, ​features das camadas e podem ajudar a classificar a       d + 1  d − 1      

camada  . Dessa forma, define-se o gradiente de ​feature augmented​:d  

 

(Bestagini et al., 2017)                         f ′′′
d,w = Δdepth

f − f 
d−1,w

 
d,w

 

onde todas as operações são aplicadas como produto de matrizes de mesma            

dimensão, e  é a diferença de profundidade em metros entre as camadas  e depthΔ d .d − 1  

Uma vez que os três features augmented são calculados, concatena-se todos eles            

em único vetor: 

 

(Bestagini et al., 2017)[f , f , f ]                                              f  
d,w =   ′

d,w  ′′
d,w  ′′′

d,w  

 

 

É importante esta abordagem, pois dado um valor de um ​feature ​como raios gama,              

GR, que indica transição de areia para folhelho, garante a noção intuitiva de gradiente              

baseado nas propriedades de dados de perfis de poços, e assim, acaba fornecendo um              

atributo para identificar mudanças litológicas (Bestagini et al., 2017). 

Portanto, é de suma importância para o cientista de dados fazer pré-processamento            

de dados: a preparação e transformação dos dados de forma que o espaço de entrada               

possa ser facilmente interpretado pelo algoritmo, limpeza dos dados, transformação e           

seleção (Alasadi & Bhaya, 2017), técnicas que acabam sendo a tarefa mais importante da              

análise de dados. 

 

 
3.5. Aprendizado de Máquina 
 

Geocientistas estão utilizando Aprendizado de Máquina ligado aos diferentes         

processos e métodos de interpretação e uma das aplicações, no momento mais usada, é a               

classificação de fácies (Hall, 2016; Guarido, 2018).  

A forma convencional de análise de perfis geofísicos é feita de forma analítica, com              

ajuda de ​softwares ​especializados, que não são open source​, necessitando de licença para             

serem usados, o que eleva o tempo de análise e o custo de operação (Bestagini, 2017).                
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Além disso, os interpretadores e analistas não reconhecem todos os padrões, aqueles            

ocultos, que os perfis fornecem (Guarido, 2018). 

Com uma metodologia de aprendizado adequada, o algoritmo pode treinar o conjunto            

de dados, fácies (​labels​) associadas aos seus correspondentes parâmetros de ​well logs            

(porosidade, resistividade, radiação de gama natural, densidade, neutrônico, efeito         

fotoelétrico) (Hall, 2016; Bestagini, et al., 2017; Guarido, 2018). e fazer com que se aplique               

a estes dados um modelo de aprendizado, e posteriormente, feita a validação, aplicar a              

parâmetros que não possuem dados de fácies (​output desejado), criando um modelo            

preditivo de fácies (Hall, 2016; Bestagini et al., 2017; Guarido, 2018) baseado no processo              

de aprendizado (Bishop, 2006;). Além disso, a vantagem da classificação automática é            

permitir a reprodutibilidade e a padronização do processo. 

O termo classificação se deve ao tipo de variável que está sendo utilizada para ser               

prevista como valor de saída, resposta ou ​outputs​, no caso, a variável dependente, fácies,              

como resultado é do tipo categórica ou discreta, representada por valores inteiros. Ao passo              

que os valores de entrada (​inputs​) ​são denominados de preditores, variáveis independentes,            

mais usualmente chamados de características ou atributos (​features​). Quando se utilizam           

conjuntos de valores de entrada e de saída a fim de tentar prever novos valores de saída,                 

este tipo de aprendizado se denomina supervisionado (Hastie et al., 2001).  

As condições, para as técnicas de Aprendizado de Máquina funcionarem, são:           

existência de um padrão, ser difícil de modelar matematicamente e possuir uma quantidade             

representativa de dados (Abu-Mostafa et al., 2012). 

Neste trabalho, a forma como estão dispostas as fácies associadas aos ​features em             

um perfil é definida por um padrão a ser descoberto, respeitando a sequência estratigráfica              

local. Entretanto, não há um modelo matemático que consiga definir esta classificação,            

somente a partir dos dados treinados é criado um sistema (Abu-Mostafa et al,.2012).  

A formalização matemática para o problema de aprendizado (Abu-Mostafa et          

al,.2012) : 

-Entrada​:  - valores de entrada; um vetor de dimensão d. x  

-Saída: - valores de saída; a resposta.y 
  

-Função alvo: ; função com domínio X de onde vem o conjunto de dados  F : X → Y             

de entrada ​e um contradomínio Y, dados de saída. A função alvo é a função ideal de                 

classificação de fácies, que é desconhecida, no caso. 

-Dados: , presentes no conjunto de dados, um vetor), ..(x , )(x , ), (x , y1 y 
1  2  2 . N yN         x 

associado a um vetor . y 
    

-Hipótese: ; função a ser aprendida deve aproximar bem a função  G : X → Y      g       

desconhecida  ,    é criada para aproximar a   , este é objetivo do aprendizado.F G F  
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-Conjunto de Hipóteses:  h}    G ε H .H = {  

Basicamente para o processo de aprendizado, o que se almeja aproximar é a função              

alvo, através dos exemplos de treinamento, o conjunto de dados. O objetivo é produzir a               

hipótese final, que é a fórmula utilizada para classificação, com se aproximando de . O            G    F   

que conecta os exemplos de treinamento com a hipótese final é o algoritmo de aprendizado,               

este cria a fórmula a partir de um modelo de fórmulas candidatas, formando um conjunto de                

hipóteses, a partir do qual, escolhe-se uma hipótese final (Abu-Mostafa et al,.2012). Deste             

conjunto de hipóteses , o algoritmo de aprendizado escolhe uma hipótese , denota-se   H         h   

a função escolhida por , compondo o modelo de aprendizado. Quando existe um modelo,    G            

há também um conjunto de hipóteses, havendo um algoritmo que produzirá uma dessas             

hipóteses (Abu-Mostafa et al,.2012).  

Ademais, é preciso adicionar os elementos da teoria da probabilidade neste modelo            

de aprendizado, uma vez que existe um elemento de incerteza associado ao            

reconhecimento de padrões, os conceitos de probabilidade fornecem estrutura de          

manipulação, quantificação de incertezas e formam um dos fundamentos centrais do           

reconhecimento de padrões (Bishop, 2006). Dessa maneira, no espaço de entrada ​dos           X   

dados é aplicada uma distribuição de probabilidade aos pontos deste espaço,       P    , ., xx1 . . N    

ou seja, existe uma probabilidade de selecionar um ponto de maneira independente.            

Atrelada a isso, há a medida de erro definidora de quanto se aproxima de em dado           G     F    

ponto de teste gerado da mesma distribuição de probabilidade. Para adequar a função x              

alvo a esta distribuição probabilística, substitui-se por , dependendo ainda      (x) y = F    (y / x)P    

de , assim, quando for gerado, também será gerado de maneira probabilística, sendo x     x    y 
        

par ( ) gerado pela distribuição conjunta (Abu-Mostafa et al., 2012). O ,x y      (x)P (y/x)P      

diagrama abaixo, retirado de notas de aula do professor Yaser Abu-Mostafa do Caltech-             

EUA, propõe organizar estes conceitos apresentados (Figura 7). 
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Figura 7: Elementos que compõem o diagrama de Aprendizado Supervisionado (retirado do curso             

Learning from data​ de Abu-Mostafa do Calltech, 2012.). 
 
Entre os três tipos de métodos de Aprendizado de Máquina (supervisionado, não            

supervisionado, e reforço), o Aprendizado Supervisionado é o mais adequado para a            

classificação (Caté et al., 2018). Há muitos modelos de aprendizado com aplicação em             

geociências para classificação de fácies: Classificador Bayes (Dubois et al., 2007), K-            

vizinhos mais próximos, ou KNN (Caté et al., 2017), Métodos de Árvores de decisão:              

Gradient Boosting, Florestas aleatórias ou ​Random Forest ​(Hall, 2016; Caté et al.,2018;            

Guarido, 2017), Máquina de Vetores de Suporte, ou SVM (Caté et al., 2017; Alexsandro et               

al., 2017), Redes neurais (Dubois et al., 2007; Silva et al., 2014). 

  
3.6. Algoritmos de Aprendizado de Máquina do problema 
 

A metodologia para este escopo será baseada em Árvores (​Breiman et al., 1984;             

Breiman et al., 2001) e o modelo usado para predições é o Gradient Boosting ​que é uma                 

combinação de modelos mais simples de Árvores de Decisão ​(​Breiman et al., 1984; Breiman              

et al., 2001). Nesta seção, é feita a discussão sobre os métodos de Árvores e são                

introduzidas as definições dos seus principais tipos de métodos: Árvores de Decisão,            

Florestas Aleatórias, que pode ser implementado para melhorar a classificação por Árvores            

de Decisão, e por último, o classificador Gradient Boosting. 
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3.6.1.  Métodos Baseados em Árvores  
 

Algoritmos baseados em Árvores são um dos mais usados em Aprendizado           

Supervisionado, possuem um desempenho muito satisfatório em problemas não lineares,          

diferentemente de quando se usa modelos lineares. Além disso, são adaptáveis para            

qualquer tipo de problema, tanto regressão como classificação ​(​Breiman et al., 1984;            

Breiman et al., 2001). Árvores de Decisão, Florestas Aleatórias, Gradient Boosting são            

usados em diversos problemas em ciência de dados, e também na área de geociências              

(Guarido, 2018). 

 
3.6.1.2.  Árvores de Decisão 
 

Árvores de Decisão é um tipo de algoritmo de Aprendizado Supervisionado           

amplamente usado em problemas de classificação. Nessas estruturas em árvores, as folhas            

ou nó terminal representam classes ou uma distribuição de probabilidade ligada por um             

conjunto de variáveis, denominado de nó de decisão (​Breiman et al., 1984). A forma de criar                

uma Árvore de Decisão é feita por escolha de uma variável a cada passo que melhor divide                 

um conjunto de itens ​(​Breiman et al., 1984). Utilizam-se diferentes métricas, para conseguir             

melhores divisões em cada nó que fornecem a homogeneidade da variável alvo dentro dos              

subconjuntos de forma que os valores resultantes são combinados para fornecer a medida             

da qualidade da divisão do nó em dois ou mais subnós ​(​Breiman et al., 1984), uma das                 

métricas mais usadas é impureza Gini ​(​Breiman et al., 1984). 

Árvore de Decisão está distante de ser uma ferramenta ideal para o aprendizado             

preditivo, devido à sua imprecisão ​(​Breiman et al., 1984), isto é, funciona muito bem para               

dados utilizados para criá-la, contudo, não é flexível o suficiente para classificar novas             

amostras. 

Para contornar o compromisso existente de viés e variância em qualquer modelagem            

preditiva, é utilizado método denominado ​Ensemble ​que envolve grupo de modelos           

preditivos para conseguir uma melhor acurácia e estabilidade do modelo, através de            

decisões de múltiplos classificadores para melhorar o desempenho de todo modelo, seus            

tipos são ​Bagging ou ​Bootstrapped​, ​Boosting e ​Stacking ​(​Breiman et al., 1984). Neste             

estudo, serão focados os modelos ​Bagging​ e ​Boosting​. 

 
3.6.1.3.​ ​Florestas Aleatórias (treinamentos múltiplos paralelos) 
 

 

Uma implementação de modelo ​Bagging é o algoritmo Florestas Aleatórias, que           

combina a simplicidade de Árvores de Decisão, com a flexibilidade, resultando em grande             
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melhoria na acurácia ​(​Breiman, 2001), ou seja, o modelo ​Ensemble combina conjunto de             

modelos mais simples, como Árvores de Decisão, a fim de obter um resultado generalizado,              

através do uso de subconjuntos com o propósito de obter uma ideia do conjunto todo               

(​Breiman, 2001). A principal ideia do algoritmo é melhorar a redução da variância do método               

Bagging ​por diminuição da correlação entre as árvores, sem aumentar muito a variância             

(​Breiman, 2001), isso porque apenas se considera um subconjunto aleatório de variáveis a             

cada passo ​(​Breiman, 2001). 

 
 
3.6.1.4. Gradient Boosting (treinamentos múltiplos sequenciais) 
 

 

Conforme descrito acima, Aprendizado de Máquina tem como objetivo criar uma           

função que se ajuste aos pontos dados (x,y), esta função, chamada de modelo, mapeia x e                

y, que pode fazer predições dados valores de x desconhecidos ​(Abu-Mostafa et al., 2012)​.              

Adicionar uma série de subfunções para criar uma função composta modeladora de alguns             

pontos de dados é, então, denominado modelo aditivo.  

Árvore Boosting é a combinação de modelos simples, estes são chamados de            

modelos fracos (Hastie et al., 2001), tipicamente estes modelos são Árvores de Decisão, o              

algoritmo combina classificadores fracos com intuito de produzir um classificador forte           

(Hastie et al., 2001). Diferente do ​Bagging​, a criação de subconjuntos não é feita de maneira                

aleatória, e sim feita priorizando subconjuntos mal classificados (Hastie et al., 2001). 

Um dos principais algoritmos ​Boosting é o Classificador Gradient Boosting, também           

conhecido como Gradient Boosting Machine ​(GBM) ​ou Gradient Boosted Regression Tree           

(GBRT) (Chen & Guestrin, 2016), ​é um algoritmo que faz a classificação através do modelo               

aditivo ​(Friedman, 1999; Hastie et al., 2001). Gradient Boosting faz uso de modelos aditivos              

para gradualmente aproximar um melhor modelo, de modo a somar submodelos ao modelo             

composto. ​Árvores de Decisão tendem a gerar sobreajuste (​overfitting​), e para solucionar            

este problema, o Gradient Boosting  é implementado (Zheng, 2017). 

Algoritmo de ​Gradient Boosting em um conjunto de dados e uma função         {(x  ,  )}i yi  n     

de Custo, Loss Function , estimadora dos parâmetros destas aproximações    (y , F (x))L i        

ajustando os dados, algoritmos de aprendizado usualmente realizam otimização sobre uma           

função de custo específico, sendo diferenciável é o valor observado e é o valor     yi        (x)F     

predito ​(Friedman, 1999; Hastie et al., 2001). 

Primeiro passo iniciar o modelo com valor constante: 

 

(Friedman,1999)(x) argmin (y , )   F 0 =  ∑
n

i=1
L i γ  
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             é o valor observado e são valores preditos.yi γ  

 
Essa equação significa que é necessário encontrar valor predito que minimize esta            

soma. O representa apenas uma folha da árvore. O passo seguinte é o processo de  (x)   F 0               

iteração de todas as árvores, número de árvores, iniciando com a primeira árvore    M           .  m = 1  

Dentro desta iteração, é calculado o valor do resíduo , a diferença entre o valor          rim       

observado e o predito para cada amostra. 

 

(Friedman,1999)    ]rim = [ δF (x )i
δL(y , F (x ))i i  

 

São amostras para ; onde é o número de amostras, esta equação  m    , ..,  i = 1 . n    n         

representa Gradient Boosting. Posteriormente, dentro do processo iterativo é feito o ajuste            

de uma árvore de regressão aos valores e criam-se regiões terminais para cada        rim      Rjm    

folha na nova árvore, usando atributos para prever os resíduos . A seguir, para cada folha           r       

na nova árvore para  até , calcula-se:j = 1 jm  

 

 

 (Friedman,1999)rgmin (y , F (x ) )γjm = a ∑
 

x ε Ri

L i  m i + γ  

 

valor de saída para cada folha que minimiza a soma, a última etapa do laço iterativo atualiza                 

a função que é feita nova predição para cada amostra  (x)Fm = F (x) I; x ε Rm−1 + ν ∑
Jm

i=1
γjm  jm

 
         

utilizando a predição anterior . Nesta etapa, é usado o coeficiente de aprendizado    (x)Fm−1          ν  

redutor do efeito que cada árvore tem na perdição final e tende a melhorar a acurácia a                 

longo prazo. Finalmente, com o fim do ciclo de iteração, retorna-se o valor final de da               FM   

última árvore. 
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     Figura 8: Fluxograma de modelo de aprendizado de Gradient Boosting. 

 
 

 

3.7. ​Validação e Avaliação 
 

Em um problema de aprendizado supervisionado, pelo menos dois conjuntos são           

necessários: o conjunto de treinamento/validação e o conjunto de testes​. ​O modelo é              

treinado usando dados do conjunto de treinamento resultando em um modelo G​, este             

modelo, então, prevê as classes para um conjunto de teste através do modelo predito,              

denominado generalização, com isso estima-se o erro de predição (Hastie et al., 2001).  

Objetivo principal não é classificar os dados de treino uma vez que as classes dos               

dados de treino já são conhecidas, o modelo deve desempenhar bem nos dados             

desconhecidos ou dados de teste de modo que o intervalo entre o erro de treino e o de teste                   

seja o mínimo possível, tendo dois resultados possíveis: sub-ajuste ou ​underfitting quando o             

modelo não é capaz de obter um erro de treino baixo suficientemente; e sobreajuste ou               

overfitting ocorre quando o intervalo entre erro de treino e de teste é muito grande; esta                

heurística é chamada de compromisso viés variância (​Hastie et al., 2001). Este            

compromisso interfere na habilidade de um método de aprendizado generalizar, ou seja,            

quando a variância é alta implica que o modelo ajusta o ruído aleatório no conjunto de treino,                 

resultando em poder baixo de generalização (​overfitting​) ao passo que modelo com alto viés              

indica baixa diferença no erro de predição entre o conjunto de treino e conjunto de teste,                

porém, geralmente possui desempenho ruim (​underfitting​)- Figura 9; (​Hastie et al., 2001).  
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Figura 9: Curvas sólidas de erros de treino (azul) e de teste (vermelho), sendo as médias de todas as curvas. A                     
menor complexidade do modelo com pouca diferença entre as curvas representa sub-ajuste (​underfitting​), e              
confirme o modelo aumenta sua complexidade, a diferença entre as curvas aumenta e o modelo se encontra em                  
sobre-ajuste (​overfitting​)-neste exemplo as curvas foram calculadas usando 100 diferentes conjunto de dados             
com tamanho de 50 cada um; Hastie et al. (2001). 
 
3.8. ​Métrica de classificação 
 

Para quantificar a qualidade do modelo, certas métricas são necessárias, para           

avaliar os modelos. As principais métricas são acurácia, precisão, recall, F1 (Hossin &             

Sulaiman, 2015). 

Acurácia é um método de métrica de avaliação mais usado para problemas de             

classificação binária ou de multiclasses, uma vez que a solução produzida é avaliada             

baseada na porcentagem de predições correta sobre o total de instâncias, a métrica             

complementar de acurácia é a taxa de erro que avalia a solução produzida por sua               

porcentagem de medições incorretas (Hossin & Sulaiman, 2015). 

Precisão e recall são métricas que fornecem mais informações sobre como           

classificador executa para classes individuais, precisão é a probabilidade de que um dado             

resultado de classificação para uma amostra realmente pertença a essa classe, ou seja, das              

classes que foram classificadas como corretas, quantas estão de fato corretas (Hossin &             

Sulaiman, 2015). 
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Recall é a probabilidade de uma amostra seja classificada corretamente para uma            

determinada classe, ou seja, a frequência que o classificador encontra, se de fato pertencer              

realmente a esta classe. F1 é a média harmônica de precisão e do recall, uma combinação                

de ambas para dar uma medida única de relevância dos resultados do classificador (Hossin              

& Sulaiman, 2015). 

Matriz de confusão é uma representação matemática destas métricas, usada para           

descrever o desempenho do modelo, o qual cada entrada da matriz indica a porcentagem de               

observações de uma dada classe (verdadeira), representada pelas linhas da matriz,           

identificada como qualquer classe (predita), representada pelas colunas da matriz; e o valor             

de acurácia pode ser obtido pelos valores da diagonal da matriz de confusão (Bestagini,              

2017). 

 
3.9. ​Ajuste do modelo 
 

Classificação pode ser feita através dos parâmetros padrões e também pode ser            

obtida através de escolhas de parâmetros ideais ou também chamado de hiperparâmetros,            

esta última forma é denominada ajuste do modelo ou de parâmetro porque não há fórmula               

analítica disponível para calcular um valor apropriado para este ajuste ​(Abu-Mostafa et al.,             

2012; ​Hastie et al., 2001).  

Os hiperparâmetros controlam a complexidade de um modelo, ajustando o viés e a             

variância de um algoritmo. Eles não são diretamente estimados dos dados de treinamento,             

há diferentes métodos para otimizar e buscar hiperparâmetros apropriados para um dado            

modelo.  

A validação para ciência de dados é aplicada através da técnica de amostragem,             

amplamente usada para estimar o desempenho do modelo, denominada de validação           

cruzada ​K- fold pelo qual as amostras são aleatoriamente particionadas em um conjunto k              

de aproximadamente mesmo tamanho, e em cada interação com k-1 destas pastas (​folds​) é              

usada para treinamento, sendo a pasta restante usada para avaliação do modelo            

(Abu-Mostafa et al., 2012; ​Hastie et al., 2001). ​Outro método é o ​leave-one-out​, um caso               

específico do ​k-fold​, com ​k igual ao número total de dados . Nesta abordagem, é realizado                

um número de cálculos de erro proporcional ao número dados, um para cada dado. Apesar               

de apresentar uma investigação completa sobre a variação do modelo em relação aos             

dados utilizados, este método possui um alto custo computacional, mais indicado para            

situações nas quais poucos dados estão disponíveis ​(​Abu-Mostafa et al., 2012; ​Hastie et al.,              

2001). Existem outros métodos de validação que este projeto não abordou como l​eave p out               

e ​holdout​. 
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Além disso, outro parâmetro importante é o fator de regularização que define quanto             

se pode evitar classificações incorretas, de modo que um razoável fator de regularização             

tentará classificar corretamente mais exemplos dos dados de treinamento. No entanto, um            

fator de regularização muito elevado pode ocasionar ​overfitting dos dados e falhar em             

generalizar para dados de teste, ao passo que um fator de regularização muito pequeno não               

será satisfatório no ajuste de ​outliers e terá um grande erro no conjunto de treinamento               

(​Abu-Mostafa et al., 2012; ​Hastie et al., 2001). 

De forma sucinta, regularização é uma forma de evitar o overfitting, buscando            

penalizar parâmetros muito grandes para que seus crescimentos não prejudiquem a           

capacidade de generalização do modelo (​Abu-Mostafa et al., 2012; ​Hastie et al., 2001). 

Portanto, o ajuste de parâmetros é uma parte crítica do fluxo de trabalho quando se               

busca construir um modelo de Aprendizado de Máquina. 

 
 

4. RESULTADOS OBTIDOS 
 

Os resultados gerados foram produzidos através da implementação de códigos de           

programação em linguagem Python e suas bibliotecas como Pandas, Numpy e Matplotlib            

(Hall, 2016). Foi feita a análise exploratória dos dados, verificando a distribuição estatística             

dos dados, visualização dos perfis dos poços e gráficos de correlação entre as variáveis do               

estudo. Também, foi feito o pré-processamento dos dados com tratamento de ​features​, com             

aplicação da técnica de PCA e FE. ​Ademais, o algoritmo escolhido foi Gradient Boosting que               

desempenhou muito bem em comparação a outros métodos como Máquina de Vetores            

Suporte, Redes neurais, Florestas Aleatórias, Adaboost (Hall, 2016). A partir da validação            

cruzada, divisão do número de dados de treinamento/validação e teste, encontram-se           

parâmetros ótimos para o modelo, processo denominado ​grid searching​, fazendo com que o             

modelo seja treinado, para atingir uma avaliação final para novos dados de teste (Hastie et               

al., 2001).  

Tendo como base os trabalhos implementados por Hall (2016), os resultados obtidos            

foram adquiridos importando as bibliotecas de Python como Numpy, Pandas e Matplotlib,            

Seaborn e Sklearn. Com Pandas, versão 1.1.5, é possível ler os dados que estão no formato                

de uma planilha excel.csv através da criação de um Data Frame (VanderPlas, 2016) na              

forma de uma tabela de 4149 linhas e 11 colunas, Tabela 2. 

 
 

 

 

28 



 

Tabela 2: Conjunto de dados de treinamento pela biblioteca Pandas (Hall, 2016). 

 

 

  

 

Além disso, outra tabela foi gerada, Tabela 3, que descreve a distribuição estatística             

de ​features de entrada, mostrando número de vetores de ​features​, média, desvio padrão,             

mediana, quartil, percentil, valores máximos e mínimos do conjunto de dados de            

treinamento; e o  tratamento estatístico dos dados (Figuras 11,12 e 13). 

 

 
Tabela 3: Distribuição estatística das variáveis/features por Pandas ​(Hall, 2016). 

  

 

 

As variáveis são processadas e é realizada a atribuição de classes das fácies             

definidas por cores para cada tipo de rocha de modo que os ​logs são ordenados pela                

profundidade de forma crescente por Hall (2016)- Figura 10. 
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Figura 10: Perfil de poço SHRIMPLIN e as cinco variáveis: raios gama, resistividade, porosidade, densidade e                 

efeito fotoelétrico; à direita interpretação do poço com oito fácies representadas em cores diferentes (Hall, 2016). 

 

 

É importante visualizar como as fácies estão distribuídas numericamente através do           

conjunto dos dados de forma completa em um histograma, Figura 11, a observar um maior               

número de exemplos, 649, de rochas de siltito grosso não marinho (CSiS) e um menor               

número de rochas de dolomito (D), 81 exemplos. 
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Figura 11: Histograma dos dados de treinamento desbalanceados que mostra o número de exemplos em cada                

fácies, destaque na diferença entre fácies 2 e 7 (Hall, 2016). 

 

Pela distribuição de fácies de cada poço (Figura 12), verifica-se que os exemplos de              

fácies 9, bafflestone filóide-algal (BS) são muito baixos. É preciso comentar que o poço              

Recruit F9 (Hall, 2016) foi criado artificialmente, pseudo poço, para representar este tipo de              

rocha. Ademais, ​somente alguns poços contêm amostras para todas as classes. 
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Figura 12: Distribuição de fácies por poços ​(Bestagini et al., 2017). 

 

Além disso, pela distribuição de ​features de cada poço (Figura 13), observa-se            

ausência da variável efeito fotoelétrico (PE) nos poços Kimzey A, Alexander D e Recruit F9. 
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​Figura 13: Distribuição de features dos poços do estudo, mostrando se algum poço possui ou não determinada                  

característica ​(Bestagini et al., 2017). 

 

 

A seguir, a Figura 14 mostra gráficos '​crossplots​', uma ferramenta, pela biblioteca de             

gráficos Seaborn do Python, muito utilizada em geociências para visualizar como duas            

propriedades variam com determinada rocha. A denominada matriz de dispersão pode           

ajudar a visualizar rapidamente a correlação entre as 5 variáveis-raios gama (GR), registro             

de resistividade (ILD_log10), efeito fotoelétrico (PE), diferença de porosidade de densidade           

de nêutrons e porosidade de densidade de nêutrons média (DeltaPHI e PHIND); foram             
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excluídas neste gráfico as indicadoras não marinho-marinho (NM_M) e posição relativa           

(RELPOS). Cada painel do gráfico, abaixo e acima da diagonal principal, mostra a relação              

entre duas das variáveis nos eixos x e y, com cada ponto colorido de acordo com suas                 

fácies. O mesmo mapa de cores é usado para representar as 9 fácies.  

A diagonal principal contém a curva distribuição de densidade de probabilidade de            

cada ​feature, notam-se a sobreposição de classes de ​features​, sendo difícil distinguir qual             

variável possui determinada classe, ou seja, é difícil assumir com grande certeza que             

determinado ponto pertença de fato à cor amarela, fácies 1, por exemplo.  

A correlação entre estas variáveis mostra uma evidente sobreposição e difícil           

separação das classes, principalmente, entre as fácies 2, de maior quantidade, e fácies 3,              

isso se deve, provavelmente, à diferença de granulometria entre o siltito grosso e o fino. 

Nota-se que alguns ​features parecem ser afetados por ​outliers​, ou seja, fácies que             

estão nas extremidades, distantes de agrupamentos de pontos.  

 

Figura 14: Gráficos crossplots de classes e features gerados por Seaborn (Hall, 2016). 
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É feita aplicação de PCA, Análise de Principais Componentes, para visualizar melhor            

as classes, dividindo-as quanto a litologia em rochas clásticas (fácies 1,2,3,4,5) e            

carbonáticas (fácies 6,7,8,9)- Figura 15; tipos marinhos (fácies 1,2,3) e não marinhos            

(4,5,6,7,8,9)- Figura 16; ambientes deposicionais clástico não marinho (1,2,3), clástico          

marinho (4), plataforma carbonática (5,6,7,8,9)- Figura 17; tendo como base o modelo            

geológico e estratigráfico da região. Essas classes definidas em novos eixos PCA1 e PCA2              

(X_pca_1 e X_pca_2) são a representação matemática de todo treinamento de ​features            

após a aplicação de PCA. A técnica de PCA foi implementada através da biblioteca Sklearn               

bem como outras bibliotecas Python para manipulação do processo de FE. 

Novamente, uma implicação disso é o uso mais refinado de técnicas de FE. 

 

 

 
              Figura 15: Separação em duas classes por litologia por aplicação de principais componentes (PCA). 
 

 
                  Figura 16:  Tipos marinhos e não marinhos de rocha existentes no problema. 
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              ​Figura 17: Separação das classes por ambiente deposicional (PCA). 
 
 
 
 

Como foi observada na análise exploratória dos dados, não há valores de ​feature PE,              

efeito fotoelétrico, em três dos dez poços. Uma forma de completar estes dados é pela               

média dos valores de PE (Bestagini et al., 2017) ou usando dados de treinamento de valores                

de sete bons poços e predizer valores dos outros dois poços que faltam por regressão linear                

(Guarido, 2018). Dessa forma, optou-se neste estudo pela média e pelo uso de todos os 10                

poços. 

O algoritmo Gradient Boosting considerou uma floresta de 100 árvores, cada uma            

alimentada com não mais do que 10 ​features​, e adotada a estratégia um contra um para                

lidar com problemas de multi classes , no caso, de 9 fácies (Bestagini, 2017). 

A validação foi feita pelo método validação cruzada 10-​fold​, em que cada poço é um               

fold​, ou seja, são selecionados os dados do conjunto de treinamento de 9 poços, em média                

3734 exemplos, para treinar o classificador, então, testa-se no décimo poço, em média 415              

dados, de modo que o procedimento de teste e treino é repetido dez vezes, misturando os                

poços a fim de construir diferentes conjuntos de treino e teste com cada poço de uma vez                 

apenas, os resultados são calculados em média ao longo de 10 experimentos (Bestagini,             

2017). 

Definem-se os parâmetros de otimização tais como: seleção da divisão dos dados,            

normalização de ​features​, para ter variáveis preditoras no mesmo intervalo para poder            

comparar diversos perfis, usando um dimensionador robusto, principalmente para ​outliers​,          

treinamento do classificador, teste do classificador treinado nos dados de validação, repetido            

para todas as divisões e obtendo a média dos F1 score, com a expectativa do classificador                

ser capaz de generalizar bem o conjunto de teste. A partir deste método, geram-se duas               

matrizes de confusão (Figuras 18 e 19), que serão explicadas na próxima seção.  
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Se for necessário verificar pontualmente o desempenho de um poço nos dados de             

treino, assume-se um poço não visualizado em relação aos demais poços, o ​blind well​, este               

poço serve de comparação para avaliar se a sequência produzida no treinamento está             

semelhante ao poço verdadeiro (Guarido, 2018) (Figuras 20 e 21), detalhado na próxima             

seção. 

Aplica-se, após este processo, o modelo de classificação para dados de teste sem as              

classes, para verificar se houve significativa generalização dos dados no modelo, uma vez             

treinado o modelo de classificação, pode-se usar o modelo para identificar poços que não              

têm dados de testemunho, ou ainda, para qualquer número de poços que tenha mesmo              

conjunto de perfis de poços, variáveis preditoras, como entrada, fazendo, então, predição de             

classes de dados sem classes. No caso deste estudo, serão aplicados para dois poços              

STUART e CRAWFOR​D- ​Figuras 22 e 23. 

 
Figura 18: Matriz de confusão produto da validação com ​feature augmentation​, destaque na diagonal para CSiS                

e BS -73% e 77% das amostras foram preditas como verdadeira, entretanto, calcários MS com 12% e WS se                   

confundem na predição (Bestagini et al., 2017). 
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Figura 19: Matriz de confusão sem ​feature augmentation​, note que as porcentagens de predição diminuíram em                

relação a outra matriz (Bestagini et al., 2017). 
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Figura 20: Poço Shankle colocado como blind well, para verificar o modelo preditivo no conjunto de dados de                  

treinamento comparado a fácies verdadeiras, resultado gerado sem realizar o pré-processamento das variáveis             

preditoras (Guarido, 2018).  
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Figura 21: Poço Shankle colocado como blind well, para verificar o modelo preditivo com ajustes de parâmetros                 

de otimização no conjunto de dados de treinamento comparado a fácies verdadeiras, resultado gerado com o                

pré-processamento das variáveis preditoras (Guarido, 2018).  
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Figura 22: Poço STUART gerado da aplicação do modelo de classificação para dados de teste sem classes                 

(Bestagini,2017). 
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Figura 23: Poço CRAWFORD gerado da aplicação do modelo de classificação para dados de teste sem classes                 

(Bestagini,2017). 
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5.  INTERPRETAÇÃO E DISCUSSÃO DOS RESULTADOS 

 

A comparação feita entre as sequências de fácies preditas e verdadeiras no poço              

Shankle como ​blind well mostra a diferença entre o não uso de dados pré-processados              

(Figura 20) e quando aplicam-se métodos de tratamento de ​features e ajustes de             

parâmetros de otimização (Figura 21) (Guarido, 2018). Ainda que na parte rasa do perfil em               

ambas as maneiras, há inconsistências na classificação. Portanto, modelos ajustados e com            

melhor tratamento nos dados possuem maior consistência na classificação (Guarido, 2018),           

entretanto, uma análise mais completa do desempenho é feita através da matriz de             

confusão. 

O resultado produzido da Figura 18 mostra que algumas fácies possuem de fato             

mais facilidade para classificar do que outras, por exemplo, é possível corretamente            

identificar que 77% de bafflestone (BS) e 73% de siltito grosso não marinho (CSiS), isto é,                

estas porcentagens na diagonal da matriz representam quanto foi previsto para cada fácies             

de maneira correta. Por outro lado, mudstone (MS) é mais identificado como wackstone             

(WS), grupo de calcários, ou seja, 47% de WS, predito nesta classe, são na verdade MS.                

Fácies marinhas (SiSh, MS, WS, D, PS, BS) são classificadas de forma incorreta em relação               

a outras fácies marinhas, da mesma forma que fácies não marinhas (SS, CSiS, FSiS), em               

relação a outras não marinhas (Bestagini, 2017). Um exemplo disso é o que se refere à                

granulometria, para siltitos não marinhos grosso e fino - CSiS e FSiS, o algoritmo não               

consegue diferenciar de forma eficiente, produzindo grande erro no modelo, mesmo a            

análise petrográfica de testemunho é um desafio para interpretação. A Figura 14 da matriz              

de dispersão reitera a dificuldade de interpretação de ​features dos perfis de poços, visto que               

estão bastante superpostos. E raramente, fácies marinhas são confundidas com não           

marinhas e vice-versa. 

Ademais, a matriz de confusão sem o método de feature augmentation ​foi mostrada              

a título de comparação (Figura 19), observa-se que a diagonal principal possui valores             

menores em relação a matriz de confusão com a técnica aplicada. Em termos de f-score, o                

algoritmo alcançou 0,61 em média sobre o disponível 10 ​folds​, este valor cai para 0,55 sem                

a aplicação de feature augmentation (Bestagini, 2017). Uma maneira de aumentar a            

acurácia é considerar as fácies adjacentes, o que aumenta para cerca de 0,93 (Hall, 2016),               

uma vez que se considera que as fácies não mudam abruptamente de uma dada              

profundidade para uma próxima (Hall, 2016), a mesma ideia para realizar ​feature            

augmentation quando se considera ​features ​de camadas vizinhas estarem de alguma forma            

correlacionadas. 
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Uma explicação porque algumas fácies são melhores classificadas do que outras           

está na Figura 11 que mostra número de fácies por poços, em particular MS que possui um                 

número de amostras menor, fazendo com que o algoritmo não aprenda significamente como             

caracterizá-las, ao passo que o maior número de exemplos de CSiS explica o maior              

desempenho de classificação, pois as classes estão desbalanceadas. Dessa forma, é           

necessário ter um maior conjunto de poços para que o algoritmo possa alcançar um              

desempenho melhor no aprendizado e também teria sido importante ter aplicado uma            

técnica de balanceamento entre as classes para evitar essa diferença de desempenho, isto             

poderá ser feito em trabalhos futuros. Outra forma de reduzir problemas de sobreposição de              

features e em relação o contato entre as fácies é selecionar as porções das classes mais                

representativas que também pode ser desenvolvido futuramente. 

Na parte de generalização do modelo dos dados de teste para poços sem classes,              

as figuras 24 e 25 mostram a comparação entre os poços gerados do modelo e os poços                 

verdadeiros.  

 

 
Figura 24: Poço STUART gerado por predição à esquerda e o poço verdadeiro à direita                             

(Bestagini et al., 2017). 
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Figura 25: Poço CRAWFORD gerado por predição à esquerda e o poço verdadeiro à direita               

(Bestagini et al., 2017). 

 
 

No poço STUART (Figura 24), o resultado gerado do modelo preditivo para um poço              

sem informações, para verificar a generalização, foi no geral bastante significativo,           

entretanto, para intercalações contidas em um tipo de rocha existente no poço verdadeiro, o              

modelo não obteve um desempenho de maneira satisfatória, interpretando muitas          

intercalações como inexistentes, e em alguns casos, interpretou a existência de           

intercalações em rochas que não as possuem, e os detalhes de muitas intercalações o              

modelo não os interpretou. Ademais, o modelo classificou de maneira incorreta partes mais             

rasas. 

O poço CRAWFORD (Figura 25), da mesma forma do outro poço, teve dificuldades             

com as intercalações, classificou melhor também em profundidades maiores. De maneira           

geral, obteve um modelo preditivo satisfatório. 

Os resultados das métricas de classificação para estes dois poços foram os            

seguintes conforme mostram a Tabela 4 e a matriz de confusão (Figura 26). O valor de                

acurácia foi de 0,46 e para fácies adjacentes, de aproximadamente 0,77. 
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Tabela 4: Métricas de classificação dos dados de teste (Bestagini et al., 2017). 

 

 
          Figura 26: Matriz de confusão para os dois poços de teste STUART e CRAWFORD (Bestagini et al., 2017). 

 

As métricas mostram que o desempenho dos dados de teste ainda está longe do              

ideal para um modelo preditivo que deve ser utilizado na indústria com acurácia ideal de               

80% a 90%. 

 
6. CONCLUSÃO 
 

Pelos resultados obtidos, mostrou-se neste estudo que o conjunto de dados ainda            

não é suficiente para fazer uma análise mais profunda do estudo, necessitando de dados              

mais representativos de cada classe para evitar um maior viés do analista e aplicação de               

técnicas de balanceamento entre as classes. A forma como está apresentado o conjunto de              

dados mostra que realmente é necessário um pré-processamento de todas as variáveis            

46 

Classes SS CSiS FSiS SiSh MS WS D PS BS 

Precisão 0,50 0,42 0,62 0,68 0,59 0,38 0,72 0,32 0,18 

Recall 0,29 0,60 0,37 0,78 0,35 0,36 0,48 0,45 0,33 

F1 0,36 0,49 0,46 0,73 0,44 0,37 0,58 0,37 0,24 



preditoras do problema, e um excelente tratamento vai garantir resultados bastante           

satisfatórios, a levar um bom tempo gasto nesta fase do estudo. 

Feature engineering/augmentation mostrou-se fundamental na aplicação a este        

conjunto de dados para melhor desempenho, aumentando em 13% a acurácia de predição,             

como a matriz de confusão esboçou. 

O algoritmo Gradient Boosting implementado forneceu um importante método de          

predição, atingindo um bom desempenho para o conjunto de dados; e o ajuste dos              

parâmetros de otimização é fundamental, pois evita o sobre-ajuste e o sub-ajuste,            

consequentemente, melhora o resultado. 

Mesmo obtendo um baixo valor de acurácia de predição neste trabalho, já que uma              

pontuação de 90 a 95% de acurácia seria o ideal para dar confiança na implementação do                

modelo em um campo de óleo e gás em produção, é um grande início de implementação de                 

métodos computacionais na área de geociências para automação de trabalhos que levam            

bastante tempo de execução, gerando um maior debate científico em áreas diferentes e, ao              

mesmo tempo, produz uma ligação entre a comunidade de geociências e área de ciência de               

dados, Aprendizado de Máquina e Institutos de Matemática e Computação.  
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