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RESUMO

Godoi, L.A.G. deProducédo de hidrogénio a partir de sacarose em re@t anaerobio de
leito fixo ordenado tendo espuma de poliuretano commaterial suporte. 2010. 58 f.
Monografia, Escola de Engenharia de Sao Carlosydusidade de Sdo Paulo, Sdo Carlos,
2010.

O interesse no uso de hidrogénio como carreadagétieo tem crescido devido as suas
propriedades, sendo considerado um combustivelliopa vez que sua combustédo gera
apenas energia e vapor de 4gua. Entre os procassdsiente utilizados na producdo do gas
hidrogénio a partir de fontes nao-fésseis, dessaca-processo bioldgico, com possibilidade
de uso de aguas residuarias predominantementeicagaomo fonte primaria. O objetivo
deste trabalho foi avaliar a producéo biologichideogénio em reator anaerobio de leito fixo
ordenado e fluxo ascendente, alimentado com A&gsiduégia sintética, tendo sacarose
(C12H22011) como fonte de carbono, e espuma de poliuretanmpterial suporte. A proposta
de ordenamento do leito se deve a necessidadetde @acumulo de biomassa no reator, o
qual pode ser prejudicial para a producédo de hériog O reator foi operado por 60 dias a
25°C e com um Tempo de Detencdo Hidraulica (TDH)2dboras. O valor médio de
produtividade de Hfoi de 1,21 mol-H.mol-sa¢'. O biogas produzido foi composto de &
CO,, com composicdo média de 48,70% e 51,3%, respeodnte. Os produtos
intermediarios produzidos durante a producao gddokam principalmente acidos acético e
butirico, além do etanol. Os problemas apresentadoguncdo do uso de espuma como
material suporte consistiram na grande quantidaddidmassa e polimeros extracelulares
produzida, a qual, quando desprendida do leitcsiocau a obstrucdo das saidas de efluente

do reator.

Palavras-chaveproducgéo biologica de hidrogénio, reator anaerdbidleito fixo ordenado,
sacarose, espuma de poliuretano.
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1. INTRODUCAO

Diante dos desafios do aquecimento global, a bpscdéontes limpas de energia tem
ganhado importancia. A relacdo direta entre o atongéa emissdo de gases produzidos pela
gueima de combustiveis fésseis e 0 aguecimentalglein sido cada vez mais sustentada. A
principal parcela dos gases do efeito estufa, cdec®7%, é derivada dos processos de
producdo e uso deste tipo de energia. Apesar distogombustiveis fosseis ainda séo
responsaveis por cerca de 80% do suprimento da rdtzmanergética mundial (Das e
Veziroglu, 2001).

Diante de tal quadro, a diversificacdo da matrergética dos paises tem sido tratada
como assunto prioritdrio e essencial para a mirigiia dos problemas ambientais
decorrentes da emissédo crescente de gas carb@atmosfera.

Apresentando calor de combustédo cerca de 2,75 veags que a energia obtida a
partir de hidrocarbonetos (Van Ginket al, 2001), ou seja, 122 kXge gerando em sua
gueima apenas vapor de agua, o hidrogénio podeosmiderado um combustivel limpo
desde que sua geracao seja igualmente limpa.

Segundo Layet al. (1999), existem quatro processos utilizados nayg@&o do gas
hidrogénio a partir de fontes priméarias de enendia-fosseis. Entre estas quatro formas, que
compreendem a eletrélise da agua, processos teimiags e processos radioliticos, tem-se
também os processos bioldgicos.

A obtencdo de hidrogénio por via biologica podermropor meio de processos
fotossintéticos ou fermentativos, sendo a ferméuataecnicamente mais simples e a que

apresenta como vantagens altas velocidades nagémdo gas hidrogénio e baixos custos de
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implementacédo (Peixoto, 2008). A geracao biolégieahidrogénio via fermentacdo tem se
destacado por constituir uma alternativa energétieaos agressiva ao ambiente, uma vez
gue se utiliza de matérias-primas renovaveis no @@cesso, podendo ser realizada
independentemente da disponibilidade de combustf@sseis que, ha maioria das vezes em
gue sado empregados, contribuem para o aumentondardoacdo de gases do efeito estufa
decorrentes da sua combustéo (Shida, 2008).

De fato, a biotecnologia anaerobia € bem aceitssehinada para o tratamento de
aguas residuarias no Brasil devido as condicoesiatias tropicais (as quais séo
extremamente favoraveis para o processo), ao lmaigio de implantacdo e de operacgéo, ao
baixo consumo de energia, a baixa geracdo de lmdoglro e pela tolerancia a elevadas
cargas organicas (Chernicharo, 1997; Forestial, 1999). Além de contribuir com o
tratamento biolégico de aguas residuarias, os psosefermentativos podem gerar fontes de
energia alternativa, como hidrogénio e metano, dyeraa partir da digestdo da matéria
organica presente nos efluentes industriais e d@mués 0os quais representam verdadeira
matéria prima de baixo custo.

Para a producao biolégica de hidrogénio leva-secamta que os carboidratos séo a
fonte preferencial de carbono organico em via fetatera (Hawkeset al, 2002). Assim,
neste trabalho utilizou-se a sacarose’iigzO1;) como fonte de carbono para os
microrganismos.

Para a realizacdo deste estudo adotou-se a espeirpalidretano como material
suporte a ser ordenado no leito pela facilidadem@museio, bem como para testar sua
eficiéncia na fixacdo de microrganismos e na gerdedhidrogénio.

A configuracdo adotada para o reator foi a de et ordenado, ou seja, o material
suporte, no caso espuma, € ordenado por meio tlestaes fixacdo de modo a minimizar a

existéncia de intersticios no leito nos quais padatorrer acumulo de biomassa, causando o
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aumento da perda de carga no interior do reator reudanca do seu comportamento

hidrodinamico.
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2. OBJETIVOS

2.1. Objetivo Geral

O objetivo principal dessa pesquisa foi avaliar@pc¢éo bioldgica de hidrogénio em
reator anaerobio de leito fixo ordenado e fluxoeadente tendo sacarose como fonte de

carbono e espuma de poliuretano como material ®ipara aderéncia dos microrganismos.

2.2. Objetivos Especificos

Os objetivos especificos do projeto foram:

* Avaliar a estabilidade da producéo de hidrogéniaestor anaerdbio de leito fixo

ordenado;
e Avaliar o uso de espuma de poliuretano como matesugorte adotado na
producao bioldgica de hidrogénio;

« Auvaliar a producéo de acidos organicos volateis;



Revisao Bibliografica 15

3. REVISAO BIBLIOGRAFICA

3.1. O Hidrogénio

O hidrogénio é o elemento presente em maior quadgicho universo, podendo ser
encontrado em abundéancia na Terra, principalmente@nbinacdo com outros elementos,
como na agua (Das e Veziroglu, 2001), ja que nadestivre o hidrogénio s6 pode ser
encontrado em quantias muito pequenas na atmo&epassivel encontrar hidrogénio em
todos os componentes da matéria viva e mineralmAtfe todos os acidos conterem
hidrogénio, este também faz parte essencial dasdathonetos e de uma grande variedade
de outras sustancias organicas.

Entre as aplicagcdes que o hidrogénio tem recebatbe-ge citar o seu uso como
reagente nos processos de hidrogenacao, para repaicdica de oxigénio e evitar processos
de corroséo e de oxidacéo (Das e Veziroglu, 2001).

Cerca de 50 milhdes de toneladas de hidrogénioceawrcializadas ao redor do
mundo, com taxa de crescimento de quase 10% ao Bameados nas estimativas do
programa nacional de hidrogénio dos Estados Unigaxntribuicdo de hidrogénio para o
mercado total de energia podera ser quase 10%mdeaR025 (Arguret al, 2008; Oztekiret
al. 2008).

Atualmente o hidrogénio tem sido alvo de estudesmtificos sobre seu potencial
como carreador de energia (Van Ginkelal, 2001; Leeet al, 2003; Lin e Lay, 2004a,

2004b, 2005; Leitet al, 2008).
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3.2. Producéo de Hidrogénio

Os combustiveis fosseis podem ser utilizados entepsms de producdo de
hidrogénio. Atualmente, estas técnicas respondermps de 96% da geracdo de hidrogénio
no mundo (Vijayaraghavan®oom 2004). S&o elas: 1) Reforma do vapor do gas aktily
Craqueamento térmico do gas natural; 1ll) Oxidagarcial da nafta; e IV) Gaseificacdo do
carvao (Das e Veziroglu, 2001).

Segundo Layet al. (1999), existem quatro processos utilizados nayg@&o do gas
hidrogénio a partir de fontes primarias de energia-fosseis: 1) Eletrélise da agua; II)
Processos termoquimicos; Ill) Processos radioifiedV) Processos bioldgicos, os quais tem
sido aplicados com sucesso a geracao de hidrogénio.

A producao biologica de hidrogénio pode ser diadai: I) Biofotolise da agua por
algas e cianobactérias; 1l) Foto-decomposicdo depostos organicos por bactérias
fotossintéticas; Ill) Producao fermentativa de dg#mio a partir de compostos organicos; e
IV) Sistemas hibridos usando tanto bactérias fottdgcas quanto fermentativas (Rojas,
2010).

A geracao biolégica de hidrogénio via fermentag@no se destacado por constituir
uma alternativa energética menos agressiva ao atapigma vez que se utiliza de matérias-
primas renovaveis no seu processo, podendo seizadal independentemente da
disponibilidade de combustiveis fosseis que, nan@adas vezes em que sdo empregados,
contribuem para o aumento da concentracdo de ghksedeito estufa decorrentes da sua
combustéo (Shida, 2008).

Segundo Fernandes (2008), a fermentacdo se ddatab&m por consistir em um
processo mais simples do ponto de vista técnicoreapresentar de forma vantajosa altas

velocidades na producéo de hidrogénio e baixo®sus implementacao.
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Na fermentacao, o hidrogénio e os acidos volatélsamis sédo obtidos principalmente
de carboidratos presentes em aguas residuariastéA&t al. 2007; Lin e Lay, 2004a;
Fernandes, 2008;).

Segundo Asada e Miyake (1999), o hidrogénio pode peduzido por
microrganismos gracas as enzimas hidrogenase ageniase, quando ativas em suas rotas

metabodlicas.

3.3. O Processo Fermentativo

Segundo Peixoto (2008), a producdo biologica deopi&hio via fermentacéo
apresenta algumas vantagens com relacédo aos medessssintéticos, tais como:

 Bactérias fermentativas resultam em maior vebmgdde producéo de hidrogénio;

* O processo néo requer luz;

* Nao ha necessidade de culturas puras de miciengas;

» Bactérias fermentativas ja se encontram condiclas para produzir hidrogénio;

» Ocorréncia de producdo de acidos, tais como itoitipropidnico e acético, que
podem ser utilizados na industria quimica e alincen{Leiteet al, 2008).

Em condicbes anaerdbias, a matéria-organica € dxidao excesso de elétrons é
usado para produzir hidrogénio, processo estatéainl pela enzima hidrogenase.

Um segundo mecanismo para a producdo de hidrogimuoe quando NADH é
formado através da glicélise (conversédo da glieopguvato). O NADH é oxidado conforme

a seguinte reacao:

NADH + H* — H, + NAD" (Equagdo 3.1)
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Segundo Speece (1996), a digestdo anaerdbia € agespp complexo, que envolve
diversas fases intermediarias e diferentes cladsdmctérias. Primeiramente, se o substrato
contém componentes organicos mais complexos (palghestes devem ser hidrolisados em
compostos mais simples (mondémeros). Os produtoadgsr sdo metabolizados pelas
bactérias fermentativas, sendo convertidos em scuddateis, alcoois, acido lactico, gas
carbonico, hidrogénio, amoénia/amoénio e sulfato ideogénio. Os acidos volateis com mais
de dois carbonos sdo convertidos em acetato e igasg@nio pelas bactérias conhecidas
como produtoras obrigatorias de hidrogénio. Finabme acetato e o gas hidrogénio podem
ser convertidos em metano quando ha presenca deiagmetanogénicas. O processo €

apresentado na Figura 3.1.
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r
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Figura 3.1- Esquematizagdo da digestdo anaerdbialf€rnicharo, 1997).
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Uma vez que o processo de digestdo anaerdbia goddividido em duas grandes
etapas, ou seja, em acidogénese e metanogéndsengam de hidrogénio so é possivel se o
processo for interrompido na primeira etapa, ja queidrogénio caracteriza-se como um
intermediario do processo, sendo produzido na praretapa e consumido na segunda na
geracao de metano (Peixoto, 2008).

A etapa fermentativa da digestdo anaerdbia deu@sidrganicos é o processo que
produz hidrogénio. Por esta etapa os microrganisactdogénicos decompdem a matéria
organica em b CQO, e acidos graxos volateis de cadeia curta.

E adequado, portanto, impor ao sistema um desedailientre as populacdes
produtoras de hidrogénio (responsaveis pela fasegénica) com relacdo as populacdes de
arqueias metanogénicas (consumidoras do hidrog@reag et al, 2008).

Os trabalhos de Das e Veziroglu (2001) e tambéMijdgaraghavan e Soom (2004)
apontaram como sendo as principais bactérias mr@Etutde hidrogénio as seguintes:
Enterobacter aerogengsEnterobacter cloacge Clostridium butyricum Clostridium
pasteurianum Desulfovibrio vulgaris Magashaera elsdenii Citrobacter intermediuse
Escherichia coli

Conforme estudos comparativos realizados por Haekak (2002), o rendimento de
hidrogénio a partir de espécies do gér@astridiumé maior que aquele obtido por espécies
aerdbias facultativas conttnterobacter sp

A Tabela 3.1 apresenta os rendimentos maximosathupéio de hidrogénio a partir da

sacarose conforme as rotas metabdlicas dos predesstentativos (Maintinguer, 2009).
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Tabela 3.1 — Rendimentos maximos da sacarose na gugéo de hidrogénio em processos fermentativos
(Maintinguer, 2009).

Rota Metabdlica Rendimento

CioH20011 + 5 HO - 4 CHRCOOH + 4 CQ+ 8 H, 8 mol H, mol sacarosé

CioH20011 + H,O —» 2 CHCH,CH,COOH +4 CQ +4H, 4 mol H..mol Sacaros'b

3.4. Fonte de Carbono

Segundo Shida (2008), diversos substratos temuililcados nas pesquisas aplicadas
a producéo biolégica do hidrogénio. Entre as ppaisi fontes de carbono testadas e que
apresentaram promissores resultados tem-se: Sac@osret al, 2005; Chang e Lin, 2004,
Chenet al, 2006; Rojas, 2010), glicose (Amorim, 2009; Fangue 2002), 4guas residuarias,
principalmente de industrias alimenticias e deigefantes (Van Ginkel e Logan, 2005;

Hawkeset al, 2008; Peixoto, 2008) e esgoto sanitario (Moétaal, 2008).

3.5. Nutrientes

A producédo de hidrogénio por via fermentativa etétamente ligada as condi¢cbes
ambientais e nutricionais as quais 0s microrgarnssestdo expostos (Oztekat al, 2008).
Desta forma, € necessario atentar para as neassigatricionais dos microrganismos.
Estas, por sua vez, sdo definidas pela composigatap das células dos ultimos.

Uma célula microbiana contém, principalmente, aléen hidrogénio e oxigénio,
carbono, nitrogénio, fosforo e enxofre. Estes sésnentos representam cerca de 95% do
peso seco celular. Muitos elementos sédo encontradodracfes tracos como: potassio,

magnésio, calcio, ferro, manganés, cobalto, cobmajbdénio e zinco. Desta forma, os
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nutrientes disponiveis para o0 desenvolvimento aelygodem ser divididos em: os
macronutrientes, que sao requeridos em grandestidades, e 0S micronutrientes,
necessarios em quantidades extremamente pequenabdB2007).

O nitrogénio pode ser encontrado na célula micr@be&m associagdo com compostos
organicos e de forma reduzida no grupo amino, matitoicdo de proteinas, aminoacidos e
coenzimas. As fontes de nitrogénio para as cétulamobianas sdo os aminoacidos, amoénia e
nitrato (Madigaret al. 1996).

Alguns estudos reportados indicaram que tanto rogé@hio quanto o ferro sédo os
nutrientes mais importantes para a producdo dedgdio. Baixas ou elevadas concentracfes
desses nutrientes causam pouco rendimento e peqgueloaidades de producdo do gas pois
podem agir como fatores limitantes, mudar as not@isbdlicas, reduzir a atividade bioldgica,
causar efeitos inibitorios, variar as culturas oliganas dominantes e os produtos da
fermentacao (Oztekiet al, 2008).

Fator limitante é considerado como a quantidadeinmainnecessaria de uma
determinada substancia ou elemento para mantenngds vitais dos organismos. Pode
também ser considerado fator limitante o excessoekmo material (Odum, 1983).

Muitos trabalhos tem utilizado como afluente dostores fermentativos substratos
sintéticos que contém sacarose como fonte de carlboganico e uma suplementacdo
inorganica como fonte de nutrientes (Rojas, 20etn&ndes, 2008; Chen al, 2006;).

De acordo com Rojas (2010), diversas pesquisaaraestdiferentes relagbes C/N
buscando melhorias na producédo de hidrogénio.ifft&ncia € geralmente avaliada sobre o
conteudo de gas hidrogénio no biogas produzidopdugividade de hidrogénio (quantidade
de produto por quantidade de substrato) e a veldeide producéo do hidrogénio no reator.

Peixoto (2008) testou a producao de hidrogénio enreator de leito fixo de fluxo

ascendente utilizando efluente de industria deigexfintes e comparou os resultados do
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experimento quando o reator foi operado com e sdigd@ de meio com nutrientes
alcancando uma relacdo C/N = 100. O maior rendionmtobtido no reator sem adicdo de
nutrientes, o qual atingiu 4,2 mokhkhol* de substrato contra 2,5 melMol™ de substrato
obtido no reator que recebeu suplementacdo nutdki® autor concluiu que a adicdo de
macro e micro nutrientes pode propiciar a exisgm@ microrganismos nao produtores de
hidrogénio, tais como as leveduras.

Deve-se observar, portanto, que ndo é sO importanpgesenca ou auséncia de
nutrientes, mas a propor¢cado na qual estdo dispenive acordo com Lin e Lay (2004), a
razao entre carbono e nitrogénio pode influir digaiivamente no conteudo de hidrogénio no
biogas e na velocidade de formacao do gas hidrogéni

Baseando-se nos resultados do trabalho de Roja8)(28m semelhantes condi¢cbes, a
melhor relacdo carbono/nitrogénio (C/N) é proximad8 gC/gN, a qual apresentou melhor
desempenho na producéo de hidrogénio a partirceas®e em reator anaerdbio de leito fixo

tendo polietileno de baixa densidade como matsujpbrte.

3.6. Reatores Anaerobios Aplicados a Producéo de Hidmigé

Conforme os estudos comparativos realizados poreWai. (2002), a producao de
hidrogénio foi maior em reatores com células adesrial um suporte de gel de alginato com
carvao ativado em comparacao a reator de célulgsessas, o qual apresentou os piores
resultados. De acordo com os mesmos autores, aigirodbiologica de hidrogénio em
sistemas com células suspensas € geralmente irmaldequara reatores continuos, ja que
resulta em problemas com o reciclo da biomasseulldndo a obtencdo de concentracéo

celular suficiente para alta producéo de hidrog@bavido a esse fator, o reator de leito fixo,
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por apresentar suporte para aderéncia dos miciengas, apresenta melhores resultados em

operacdes continuas com baixos tempos de deteitfaalita (TDH) (Zaiakt al, 1997).

Lee et al. (2003), utilizando reatores anaerobios de leitgpantado aplicados a
producdo anaerdbia de hidrogénio a partir de sseatendo carvdo ativado por material
suporte, avaliaram a producao de hidrogénio mesliargfeito da porosidade e do tempo de
detencéo hidraulica (TDH) em 3 colunas preenchates carvdo ativado com porosidades
diferentes: 70, 80 e 90%. Os melhores resultadtdasbquanto a fracdo de hidrogénio no
biogas, velocidade de producdo de hidrogénio, é&fata de utilizacdo de substrato e

rendimento, foram obtidos para o leito constitudidm porosidade de 90% e TDH de 0,5 h.

A partir destes dados pode-se notar que a prodiedodrogénio é favorecida tanto
pela eficiéncia de imobilizacdo da biomassa emoddikos quanto pela manutencdo de uma

elevada porosidade no leito.

3.7. Influéncia do TDH na Producao Bioldgica de H

Diversos estudos foram realizados acerca da irflaédo Tempo de Detencéo
Hidraulica (TDH) sobre a producao de hidrogéni@id@s organicos em diversos reatores de
crescimento suspenso (Liu e Fang, 2002; Van Giekkebgan, 2005; Gavalat al, 2006;
Zhanget al. 2006) e em reatores de crescimento imobilizaddedm fixo (Changet al.,
2002). Estes estudos demonstraram que a produchamgénio e acidos organicos sofre

grande influéncia do TDH.

Changet al. (2002), Leeet al. (2003) e Chewt al. (2004) apresentaram como um dos
métodos de inibicdo dos processos metanogénicagaores anaerobios, a operacado destes

em baixos tempos de detencdo hidraulica (TDH), e facilita o arraste das arqueias
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metanogénicas para fora dos sistemas. O carregamesses microrganismos para fora dos
reatores acontece por causa de sua baixa velocdpéeifica maxima de crescimentg 4l
da ordem de 0,0167% que é menor que a das bactérias acidogénice= (de 0,083 1.
Dessa forma, 0os microrganismos metanogénicos acabado eliminados do sistema (Chen

et al, 2001).

Com a diminuicao gradual do TDH de 20 para 2,5 dipssteriormente a 6 h em um
reator aplicado a producéo de hidrogénio a padisacarose e com provavel presenca de
microrganismos consumidores de hidrogénio no satebihen e Lin (2004) conseguiram
selecionar uma cultura dominada for pasteurianuma qual é uma espécie produtora de

hidrogénio.

3.8. Influéncia da Temperatura na Producao Biologica dié

Segundo os estudos de Maharaj e Elefsniotis (2@&iperaturas menores que 25°C
prejudicam o processo acidogénico de geracéo ded&dio bem como a producdo de acidos
organicos. Zhang e Shen (2005) também observaram quelhor faixa de temperaturas para

a producéo de hidrogénio é a de 25 a 40°C.

Processos termofilicos podem ser propostos pararesacontinuos aplicados a
producdo de hidrogénio, muito embora os gastos coaguecimento do sistema possam

tornar o processo inviavel (Hawkes,al, 2002).
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3.9. Influéncia do pH na Producéo Biolégica de H

O pH é um parametro operacional muito importante piwcessos de producéo de
hidrogénio, uma vez que influencia diretamente lacigade de producdo de hidrogénio e a
acdo de microrganismos hidrogenotroéficos (consuregide hidrogénio) (Fang e Liu, 2002).
Os autores operaram um reator anaerébio em batgiatentado a base de glicose. Durante o
processo, ndo foi constatado o consumo de hidroggoi arqueias metanogénicas para
valores de pH menores que 5,5 e, portanto, estw dal pH inviabilizou a producédo de

metano no sistema.

Segundo Lat al. (1999), valores mais baixos de pH também sao dasteeis para
a producao de hidrogénio. Conforme o autor, umrd¢opH abaixo de 4,7 inibe a atividade

de enzimas como a hidrogenase, essenciais pacz@spp.

Trabalhos realizados por Fernandes (2008) e Peif@®08) no Laboratério de
Processos Biologicos da USP constataram que o ipihuii logo na entrada do reator. Desta
forma, deve-se cuidar para que o valor de pH aftupa alimentacdo do sistema seja tal que
na entrada do reator este caia para proximo deoS¢fplal se encontra em uma faixa mais

apropriada para a producéo de hidrogénio.

3.10. Influéncia do Material Suporte na Producédo Bioloégicde H

Entre os materiais suporte comumente utilizadoseatores anaerobios tem-se areia,
antracito, carvao ativado (Mendoneiaal, 2004), argila expandida (cinasita) (Amorim, 2009;
Leite, 2005), poliestireno (Amorim, 2007; Omena ilve&s 2007) e espuma de poliuretano

(Nocko e Foresti, 2007).
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Entre os principais problemas no uso de espumaldeagtano como material suporte
em reatores anaerobios tem-se a facilidade de ier@nfm do leito, em funcdo da geracéo de
polimeros pelos microrganismos. Este entupimentsiona um aumento consideravel na

perda de carga do reator, prejudicando a eficiadaimesmo (Oliveira, 2007).

Ortegaet al. (2001) realizaram um estudo para avaliar quaisarganismos aderiam
preferencialmente sobre varios tipos de materigloda. Os autores verificaram que a
guantidade de biomassa imobilizada foi maior emer@$s mais porosos e com maior
tamanho de poros. Concluiram também que a argilanekda foi 0 suporte menos eficaz na
retencdo celular da maioria dos organismos enwmdvith degradacdo de esgoto, havendo

predominéancia de bactérias filamentosas no matesajuais prejudicaram o processo.

De acordo com Fernandetal. (2006), os quais realizaram um estudo comparatvo
diferentes materiais suportes em reator anaerd@leiw fixo para producdo de hidrogénio, o
carvao vegetal e o polietileno de baixa densidads os materiais que apresentaram melhor
desempenho, uma vez que ndo promoveram a adesAuvcd®ganismos metanogénicos,

apresentando inclusive melhor estabilidade quandgarados ao reator de argila expandida.

Uma importante questdo relacionada a do materirtel é a baixa solubilidade do
hidrogénio. Alguns autores mostraram poder melharaficiéncia do processo de producao
do hidrogénio com o aumento da porosidade do lpitmmmovendo desta forma a presenca

tanto de biomassa aderida quanto suspensa (€uaty 1997; Leeet al, 2003).

3.11. Consideracoes Finais

O interesse pela producdo biolégica de hidrogénipagtir de matérias-primas

renovaveis gera a necessidade de aprimoramentoddgicos que tornem viaveis e eficazes



Revisao Bibliografica 27

estes processos. Para isto, devem-se investigas mowfiguracdes de reatores, bem como o
uso de diferentes materiais suportes, os quaisnlévenelhor relacaousto x beneficie que
permitam a expansdo desta possibilidade energéficareciso, ainda, determinar os
problemas de instabilidade na producéo biolégichidmgénio, de modo a serem propostas
técnicas preventivas que garantam a produtividadgas ao longo de todo o processo de

maneira estavel e atrativa dos pontos de vista mahe ambiental.
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4. MATERIAL E METODOS

4.1. Descricdo do Reator

A Figura 4.1 representa esquematicamente o sisteomiado para a realizacdao do

presente trabalho.

; @ ..... :

Efluente gasoso

Reservatorio

R,

1 0 0 0

RS

Pontos de amostragem

Reator biolbgico

Figura 4.1 — Representacao esquematica do sistemamtado para a realizagao do estudo.
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Utilizou-se um reator anaerobio de leito fixo oradén construido utilizando tubos de
acrilico (Figura 4.1). Para o ordenamento do lmtam utilizadas hastes de fixacdo para os
materiais suporte. O uso dessa configuracdo vigalinao efeito do ordenamento do material
suporte na producdo de hidrogénio, minimizando iaténcia de intersticios no leito. O
ordenamento do leito do reator possibilita tamb&ntat o crescimento microbiano aderido a

espuma (formacéao de biofilme), quanto o crescimdatoélulas suspensas.

O reator foi composto por trés compartimentos:agl@rdo afluente, saida de efluente
e leito. O leito apresentava 5 pontos de amostsaggralmente espacados para obtencéo de
dados em funcdo do comprimento. A parte superideiio foi vedada para evitar possiveis
vazamentos de gases e apresentava tubo em “L” extreanidade apontando para o sentido

oposto do fluxo gasoso e liquido.

O Volume total do reator foi de 3,17 L. E o voluefetivo (preenchido com material

suporte) foi de 2,32 L.

A Figura 4.2 apresenta um desenho esquematiccati rgtilizado no estudo.

Saida de Gas

Efluente i
=

Hastes do leito

i,
i

~

Pontos de amostragem

o || & Entrada do afluente

Figura 4.2 — Desenho esquematico do reator utilizacho estudo.
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A Figura 4.3 representa esquematicamente o ordemarde leito.

Figura 4.3 — Representacao esquematica do ordenantero leito.

Na Tabela 4.1 estdo listadas as dimensdes estsutlaraeator.

Tabela 4.1 — Dimensdes do reator utilizado no estad

Aspecto Dimensao
Diametro interno 8 cm
Altura total 74 cm
Altura util 70 cm
Zona de entrada 8 cm
Zona do leito 50 cm
Zona de saida 14 cm
Porosidade do leito 73 %
Headspace 4 cm
Distancia entre pontos de coleta 10 cm

Na Figura 4.4 o reator pode ser observado em cp@rac
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Figura 4.4 — Reator em operacéo.

4.2. Material Suporte

Para a realizagdo deste estudo adotou-se a espuma material suporte a ser
ordenado no leito pela facilidade de manuseio, bemo para testar sua eficiéncia na fixacado

de microrganismos e na geragao de hidrogénio.

O reator foi preenchido com 100 cilindros de espdmdiametro igual a 2 cm e altura
igual a 2,5 cm. O material suporte foi ordenaddeito utilizando-se de 5 hastes metélicas

contendo cada uma delas 20 espumas.

Na Figura 4.5 tem-se uma amostra das espumasdtkzno preenchimento do leito.
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Figura 4.5 — Amostra de espumas utilizadas no leito

Na Figura 4.6 é apresentado um detalhe do leitoedtor ja preenchido de forma

ordenada.

Figura 4.6 — Detalhe do leito ordenado de espumas.

4.3. Substrato Sintético

O reator foi alimentado com afluente preparado selde sacarose. O carbono foi

disponibilizado pela prépria sacarose, enquanto auenitrogénio necessario foi
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disponibilizado pela uréia, que foi dosada de madoantermos uma relacdo C/N = 140. O
fosforo foi mantido em excesso com fosfato para héditar o processo fermentativo.

Manteve-se a relacdo DQO:P menor que 1000:2.

A DQO do substrato sintético é igual a 2000 rifg Além disso, bicarbonato de sédio
(500 mg.LY) e é&cido cloridrico (0,45 mL de acidd.l— 10 mol.LY) foram adicionados
segundo as quantidades determinadas para mantedo afluente préximo de 6,5, visto que
trabalhos feitos no LPB (Fernandes, 2008; Peix2@08) indicam que este diminui para 5,5
logo na entrada de afluente do reator, sendo efksaaamais apropriada para a producédo de

hidrogénio.

Na Tabela 4.2 temos a relacdo dos componentessecsunaentracdes no meio de

alimentacéo.

Tabela 4.2 — Composi¢cédo do meio sintético utilizad®el Nery, 1987).

Composto Concentracédo (mg.t)
Sacarose 1781,24
Uréia 11,5
Sulfato de niquel 0,50
Sulfato ferroso 2,50
Cloreto férrico 0,25
Cloreto de célcio 2,06
Cloreto de cobalto 0,040
Oxido de selénio 0,036
Fosfato de potassio monobasico 5,36
Fosfato de potassio dibasico 1,30

Fosfato de sodio dibasico 2,7
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4.4, Inoculacéo

A inoculacéo foi realizada de forma natural semdgé&® de indculo. O meio foi
preparado em agua de abastecimento e permaneceepeaso por trés dias em recipiente
aberto antes do inicio da operacédo dos reatofas,de favorecer fermentacao natural, obtida
por meio do contato de microrganismos presentesatmaosfera com o0 substrato e

provenientes da agua de abastecimento utilizad@dueao.

A imobilizacdo da biomassa ocorreu por contato fieeate com o meio suporte,

sendo recirculado durante uma semana conformepogim por Leitest al. (2008).

4.5, Analises

Foram coletadas amostras simples do afluenteedldente liquido para as analises de
monitoramento descritas na Tabela 4.3. Igualmeatedetaram amostras gasosas para

determinar a porcentagem de géas hidrogénio na csigfmdo biogas produzido pelo reator.

Tabela 4.3 — Paradmetros e frequéncia de monitoramast.

Parametro Método Frequéncia
(vezes/semana)
Producao de hidrogénio Vazao Volumétrica 4
Composigdo do Biogés Cromatografia gasosa 4
Carboidratos (Sacarose) Dubeisal. 1956 4
Acidos volateis Cromatografia gasosa 4
Alcoois Cromatografia gasosa 4
pH Potenciométrico
STe STV Gravimetrico
DQO filtrada (mg.[}) Espectrofotométrico

*APHA (1998).
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A quantificacdo do volume de biogas produzidadailizada por meio de medidor on-
line de gas milligasCounter, Ritter. Cada proceditmele medicdo da vazao volumétrica de
hidrogénio consistiu em anotar o volume do biogdantjficado pelo medidor durante um

tempo definido e multiplicado pela porcentagem maé&aH: no biogas gerado.

4.6. Analises Hidrodinamicas

O TDH utilizado foi de duas horas. Utilizou-serefm de s6dio como tracador, o qual
foi aplicado nos reatores na forma de estimulo alegegundo a metodologia Levenspiel
(2000). A montagem do experimento foi feita conferigeixoto (2008) e consistiu em instalar
na saida do efluente um vertedor com uma sondadeteacao de condutividade, acoplada a
um coletor de dados da Texas Instrument®, que ez foi acoplado a uma calculadora
Texas TI-89®. Os sinais foram interpretados pelautadora durante trés vezes o TDH
tedrico (6 h).

Por meio da calculadora foram obtidos os dadosererpntais da curva C
(Concentracdo x Tempo). Com o auxilio do softwarerdtal Origin 8.0® foram calculadas
as curvas F (Equacéo 4.1) e curvas E (Equacagdrd)cada fase em ambos os reatores e foi

determinado o TDH médio de acordo com a Equacaf.é\&nspiel, 2000).

C
F= (Equacéo 4.1)
C"'ﬂ-ﬂx
EF = E (Equacao 4.2)
dt

_ [y tc@).dt

=== Equagéo 4.3
[, €(®).dt (Equacdo 4.3)
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Nas quaisfh € o TDH médio, C a concentracdo do tracador empo.
A variancia ¢ %) das curvas, que indica a disperséo da distribufgéicalculada com

a Equacao 4.4 (Levenspiel 2000):

. [(t—BR)’.c(). dt
- [, c).dt

(Equacéo 4.4)

A partir do célculo da variancia adimensional (&0 4.5), utilizou-se o modelo de
tanques de mistura completa em série e se calauloimero de reatores (N) a partir da

Equacéo 4.6 (Levenspiel, 2000):

(8]

UE; = _g—z (Equacéo 4.5)
6h
1 <
a8 =— (Equacao 4.6)
N
4.7. Procedimento Experimental

O reator foi operado com leito fixo de espuma pad@a com fluxo ascendente e
porosidade do leito de 73%. O tempo de detencd&ddiida (TDH) empregado foi de 2,0 h
conforme estudos realizados no LPB (Fernandes,; 208&oto, 2008) e a temperatura foi
mantida préxima dos 25°C. A vazéao imposta ao ssfeana obter o TDH requerido foi de 19

mL.min.



Resultados e Discussao 37

5. RESULTADOS E DISCUSSAO

5.1. Producao de Hidrogénio

Para realizar a analise dos dados da producaadmyénio procedeu-se a divisdo do
tempo de operacdo em duas etapas em relacdo asremda sacarose, uma vez que nao pode
ser definida com clareza uma etapa de estabilizagdoroducdo do biogas. Na Figura 5.1
apresentam-se as duas etapas da operacéo: Etapant®, até o 24° dia de operacao, e etapa
de estabilizacdo, do 25° de operacdo até o finahédlia de conversdo de sacarose para o
tempo total da operacéo foi de (78,7 £ 15,5)%.urartte a etapa de estabilizacdo, a média de
conversao obtida foi de (89,2 +5,6)%. Resultade ssmilar ao que foi apresentado por

Fernandes (2008).

100
90
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50 A
40 -
30 |

20 Etapa transiente Etapa de estabilizacdo

10 -

0 —

0 5 10 15 20 25 30 35 40 45 50 55 60

Tempo de operacéao [dias]

Eficiéncia [%0]

Figura 5.1 — Variacdo temporal da eficiéncia de carersdo da sacarose.
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Na Figura 5.2 apresenta-se a producdo temporbiogds e na Tabela 5.1 os valores
maximos e médios da producdo. Observa-se que o wawimo de producédo do biogas foi

alcancado durante a etapa transiente.

500 I
_ | S
Etapa transiente | Etapa de estabilizagédo

400 - |
e |
= |
T 300 |
<
o 200 -
Q
m

100 -

0
0 5 10 15 20 25 30 35 40 45 50 55 60
Tempo de Operacéo [dias]
Figura 5.2 — Producéo temporal do biogas.
Tabela 5.1 — Valores maximos e médios na producédo Biogas.
Producao de biogas [mL.H]
Tempo Total Transiente Estabilizacéo
P (até 24° dia) (desde 25° dia)
Média Maxima Média Maxima Média Maxima

220,8 89,4 458,7 253,0+£83,4  458,7 188,6 + 90,6346,8

Determinou-se a porcentagem de composi¢cdo dodédio e didxido de carbono no
biogas como mostrado na Figura 5.3. Conforme desana Tabela 5.2, a porcentagem média
de hidrogénio ao longo da operacao foi de (48,75}94 e a maxima de 57,5%. Para 0,GO

porcentagem média foi de (26,9 + 5,8)% e a maxiena3j8%.
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Etapa transiente | Etapa de estabilizacdo

Biogas [%]

0 5 10 15 20 25 30 35 40 45 50 55 60

Tempo de operacao [dias] -= Hidrogénio (%)
-o- Gas Carbonico (%)
Figura 5.3 — Porcentagens de f CO, no biogas.

Tabela 5.2 — Valores maximos e médios na composigém biogas.

Porcentagem no Biogés [%]

H-, CO,
Média Maxima Média Méaxima
48,7+ 7,5 57,5 26,9+58 39,8

A Figura 5.4 apresenta os valores de rendimentidaspara o hidrogénio ao longo
do tempo em termos de mokhhol-Sacarosé Na Tabela 5.3 estdo resumidos os valores
maximos e médios do rendimento ao longo do temppa® etapas transiente e de
estabilizacdo. O rendimento maximo de hidrogéniabiam foi observado durante o periodo

transiente, apresentando um comportamento dectesam@ifongo do periodo de estabilizacao.



40 Resultados e Discussao

4,0
3,5
3,0
2,5
2,0

Etapa transiente Etapa de estabilizacéo

1,5
1,0
0,5
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mol-H..mol-Sac*

0O 5 10 15 20 25 30 35 40 45 50 55 60
Tempo de operacéo [dias]

Figura 5.4 — Rendimento de H

Tabela 5.3 — Valores maximos e médios de rendimente H,.

Produtividade de H2 [mol-H2.mol-sa&']

Transiente Estabilizacéao

(até 24° dia) (desde 25° dia)
Média Maximo Média Maximo Média Méaximo

1,2+0,8 3,4 1,7+0,8 3,4 0,8+0,5 1,9

Tempo Total

5.2. Valores de pH

A Figura 5.5 apresenta a variacao dos valoredHdeopefluente do reator ao longo do

tempo de operacéao.
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Figura 5.5 — Variacdo de pH ao longo do tempo.

Pode-se observar que os valores de pH efluentegpecem proximos a 5 ao longo da
operacao, o que limita a fixacdo de microrganismetanogénicos (Fang e Liu, 2002).

Conforme Rojas (2010), a importancia destes valde pH efluente manterem-se
estaveis ao longo do tempo, proximos de um valostemte, indicam a nao ocorréncia de

mudancas das rotas metabdlicas.

5.3. Produtos Intermediarios

Durante a fermentacdo acidogénica (responsavalgretiucao de hidrogénio) foram
produzidos alguns produtos intermediarios como pedebservado na Figura 5.6.

Entre os produtos intermediarios observados paslmtitados os mais importantes:
etanol, acidos acético e butirico. Em menores lehds também foram produzidos acido
propidnico, n-butanol, acetona, acido isobutiriconetanol. A média de producédo desses

produtos no tempo total de operacao dos reatote@snad abela 5.4.
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Figura 5.6 — Produtos intermediarios da fermentacéo

Tabela 5.4 — Producéo de Acidos e Alcoois na ferntago.

Produtos Intermediarios  Producéo média [mg.L]

Etanol 189,4+91,0
Acido Acético 321,3+81,3
Acido Butirico 231,4 +94,1

Acido Propiénico 23,7 +20,0
n-Butanol 26,9 £6,7
Acetona 15,4 +7,0
Acido Isobutirico 29,5 + 56,4
Metanol 5,0+9,6
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5.4. Analise de Sdélidos

Outro parametro analisado foi a concentracao tiéosdésuspensos volateis (SSV) no
efluente do reator a fim de monitorar o arrastbidmassa e de polimeros extracelulares para
fora do sistema.

A Figura 5.7 apresenta a variagdo no arraste lidosésuspensos volateis para o
exterior do reator. A alta variacdo nos valoresda@&los suspensos obtidos deve-se ao fato de

o desprendimento do material do meio suporte ocdeéorma intermitente.

50,00

40,00

30,00

[mg.L™]

20,00

10,00

0,00 \ \ \ \ T

0 10 20 30 40 50 60
Tempo de operacéo [dias]

Figura 5.7 — Concentracao de sélidos suspensos \ela (SSV) no efluente do reator.

A grande quantidade de biomassa e polimeros ekitaces formada provocou
problemas na operacdo do sistema. O constanteedegpento desse material no interior do
reator ocasionou a obstrucdo da saida de efluemeacconsequente interrup¢do do fluxo e

variagbes momentaneas no TDH.
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Na Figura 5.8 pode-se observar um detalhe da friiisnde polimeros e crescimento

de biomassa no material suporte:

Figura 5.8 — Detalhe da biomassa e polimeros extrelalares acumulados no leito do reator.

5.5. Perfis Espaciais de Monitoramento

No ultimo dia de operacéo do reator (60° dia)rforaalizados alguns perfis espaciais
de alguns parametros de monitoramento do reator cowbjetivo de acompanhar o
comportamento dos seus processos. Os parametrbsadoa espacialmente foram: pH,
consumo de sacarose e producdo de acidos e alcoois.

Os pontos de coletas utilizados foram marcadosoooe a Figura 5.9, sendo o
namero 1 a entrada do reator, os niumeros 2, 3g4 6s pontos de amostragem ao longo do

leito e o nUmero 7 a saida de efluente do reator.
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Figura 5.9 — Pontos de coleta de amostras do reator

No perfil espacial de pH (Figura 5.10) observaegge no primeiro ponto de
amostragem o valor de pH cai para menos de 6, squdoo valor de pH afluente foi
controlado e mantido em 6,5. Este comportamentmc@® com o demonstrado por
Fernandes (2008), Peixoto (2008) e também obserpadoRojas (2010) nas diferentes

relacbes C/N estudadas.

7.00
6,00 -
5,00+ \-\*—N
— |
L 400
2 300
2.00
1,00 -

0,00 T \ \ \ \ \ T
0,5 15 2,5 3,5 4,5 5,5 6,5 7,5 8,5

L.d*

Figura 5.10 - Perfil espacial de pH.
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Na Figura 5.11 apresenta-se o perfil do consumeagarose (%), o qual variou de
forma decrescente ao longo do reator. Este faiodara presenca de organismos ao longo de

todo o leito, porém concentrados nas zonas proxinedrada do mesmo.

=
o
o

90
80
70
60
50
40 -
30
20
10

Consumo da Sacarose [%)]

o

0,5 15 2,5 3,5 45 55 6,5 7,5 8,5
L.d*?

Figura 5.11 — Perfil espacial do consumo de sacams

A geracdo de produtos no meio liquido (Figura b.64d0 seguiu padrdo muito
definido, mas os &cidos acético e butirico e oadtboaram produzidos ao longo de todo o
comprimento do reator, sendo que o acido butiricoetanol apresentaram maior produgéo

préxima a saida do reator.
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Figura 5.12 - Perfil espacial de geracéo de produsdntermediarios.

5.6. Comportamento hidrodinamico do reator

No ultimo dia de operacédo (60° dia) realizou-sebi&m o ensaio hidrodinamico do
reator no intuito de verificar as caracteristicapddrdo de escoamento.

Conforme a metodologia descrita anteriormentetfa¢ada a curva F, ajustada a
sigmoide Boltzmann e transformada em curva E pastepgormente obter a curvas de

distribuicdo do tempo de residéncia como se obse\Fgura 5.13.
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Figura 5.13 — Curva DTR.

Observa-se na Figura 5.13 que o Tempo de Detdtichidulica (TDH) experimental
esteve muito perto do tedrico esperado, sugeringo apm o leito organizado de forma
ordenada evitam-se caminhos preferenciais ou zopdss; segundo Levenspiel (2000) estas
anomalias poderiam mudar significativamente o cataptento do escoamento do reator.

Com o0 objetivo de comparar os resultados com sutrabalhos similares, na
Tabela 5.5 encontram-se os dados obtidos na cuR/& ® os valores obtidos por Rojas

(2010) no reator com C/N igual a 140.

Tabela 5.5 - Dados obtidos das curvas DTR.

Dados obtidos nas Reator com leito Reator com polietileno
curvas DTR organizado de espuma  de baixa densidade
C/N 140 C/N 140*
TDH teorico 2h 2h
TDH experimental 1,94 h 1,20 h
N 10 5

*Rojas (2010).
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Pode-se observar que o modelo de tanques em (®€rielemonstrou que ouve
diferenca no grau de mistura entre o reator d® leifdenado e o reator com leito de
polietileno de baixa densidade, o que indica gueito ordenado favoreceu o padrao de
escoamento tipo pistdo. Ao minimizar a existén@airdersticios, o leito ordenado evita a

formacao de caminhos preferenciais e zonas mootasgoamento.

5.7. Instabilidade na Produc&o do Hidrogénio

Na Figura 5.2 e na Figura 5.4 pode ser obsendigdante a etapa de estabilizacéo, a
queda na producéo de biogas e na produtividade de kngo do tempo.

Embora a estratégia utilizada para o ordenameuntleitb tenha sido proposta para
evitar o acumulo de biomassa intersticial, a qualepia inibir a producéo de hidrogénio, nao
se obteve melhora significativa na producdo de &siog tampouco na produtividade de
hidrogénio quando comparado com os trabalhos eeflz com reatores de leito empacotado
(Fernandes, 2008 e Rojas, 2010). Desta forma, ped®nstatar que o aumento de biomassa
intersticial ndo é o fator mais determinante emsepossiveis causadores da queda na
producao do gas hidrogénio ao longo do tempo.

Nas analises cromatograficas realizadas, naoefgicthda a presenca de gas metano
(CHy). Se isto tivesse ocorrido, a diminuicdo na prédude hidrogénio poderia ser explicada
pela fixacdo de microrganismos metanogénicos nenseés 0s quais estariam convertendo o
hidrogénio produzido em gas metano. Como nao seralns a producdo de metano, e
também pelo fato da proporcdo (porcentagem) erdrgases hidrogénio e carbbnico se
manter constante mesmo com a queda da producdogses lfFigura 5.3), entdo o gas gerado

poderia estar sendo consumido como um todo de alguitna forma.
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Semelhantes resultados ja foram observados matlita. Fernandes (2008) apontava
0 crescimento excessivo de microrganismos no titeeator com a consequente diminuicao
das cargas organicas especificas como uma davgiessiusas de queda no rendimento de
hidrogénio, muito embora a queda na produtividadéa se dado ndo apenas para este gas
especifico, mas sim observada para todo o biogakipido.

Conforme Levinet al. (2004) o aumento na producédo de acido propidnaxtepa
afetar negativamente a producdo de hidrogénio. €amb aumento nas concentracbes de
acido acético poderia sinalizar o consumo de h&hmge gas carbbénico no processo de
homoacetogénese (Rojas, 2010). Como esses dast@aboforam observados, uma vez que a
pequena producao de acido propidnico caiu ao lolegempo e a producéo de acido acético
nao apresentou comportamento exclusivamente crtescenbiogas poderia estar sendo
consumido por algum microrganismo estabelecidceator.

Galéset al. (2004) descreve o microrganisnBarkholdeirasp., o qual utiliza gas
hidrogénio como fonte de energia, o oxigénio comeptor de elétrons e o diéxido de
carbono como fonte de carbono em seu metabolism@rdtesso fermentativo de geragao de
hidrogénio, H e CQ séo os principais gases liberados. Alguns proldamheadificil controle,
como a microaeracao do reator, poderiam possitdientrada de £ho sistema. Maintinguer
(2009) também encontrdBurkholdeirasp. em andlises microbiolégicas e, de acordo com o
autor, o crescimento deste microrganismo seriaréaito pela presenca de sacarose e uréia,
ambos os elementos utilizados na alimentacao tensasprodutor de hidrogénio.

Todos estes indicios permitem supor que este rgemismo possa ser o principal

responsavel pela queda na producao de hidrogénio.
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6. CONCLUSOES

Pode-se concluir pelo presente trabalho que o doldeumaterial intersticial no leito
do reator ndo é um fator decisivo na queda da gémdde hidrogénio. Apesar da estratégia de
ordenamento do leito adotada, observou-se inddal#i na producédo de biogas e sua queda
ao longo do tempo. Tal diminuicdo na producdo pestar sendo, muito provavelmente,
promovido pela fixacdo de microrganismos que witiztanto gas hidrogénio, quanto gés
carbdnico em seu metabolismo. Para um microrgantamotais caracteristicas, por exemplo
Burkholdeirasp., o biogas produzido é uma fonte tanto de @nexganto de carbono, o que
configura uma situagéo ideal que permite sua fixagareator.

Uma necessidade que surge para posteriores invgdtig € a realizacdo de analises
microbiolégicas das populagbBes presentes nos esatoraerobios aplicados a producéo de
hidrogénio que apresentam semelhante comportamgraig verificar a presenca de
microrganismos consumidores do biogas.

Quanto ao material suporte utilizado, a espuma sgmostrou um material mais
adequado para a producéao de hidrogénio, uma vendu@roporcionou maior estabilidade
na producdo do biogas que outros materiais. Aléermdis, mesmo tendo sido aplicada em
reator com configuracdo ordenada, a biomassa ®loagros extracelulares produzidos em
quantidade se acumularam no leito, obstruindo idasale efluente e ocasionando problemas
técnicos na operacédo do sistema.

Os produtos intermediarios mais importantes prathszforam: etanol, acidos acético
e butirico. Em menores quantidades também foramugidos acido propiénico, n-butanol,

acetona, acido isobutirico e metanol.
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