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RESUMO

Este trabalho apresenta uma introducao a sistemas de interesse em matéria condensada,
com foco especial no efeito Hall quantico inteiro. Primeiramente, é realizada uma anélise
do efeito Hall classico, que fornece ferramentas essenciais para a compreensao do efeito
Hall quantico. Em seguida, resolve-se a equacao de Schrodinger para sistemas com campos
elétrico e magnético, utilizando dois gauges diferentes. Além disso, introduz-se o conceito
de fase de Berry e realiza-se uma andalise do fenomeno de fluxo espectral, fundamental
para compreender o comportamento da condutividade no efeito Hall. Discute-se também
o papel da desordem na formacao de platés no gréafico da resistividade do efeito Hall, e
desenvolve-se o cédlculo da condutividade e seu carater quantizado. Por fim, aplica-se a
formalizagao da segunda quantizacao para o estudo do modelo tight-binding, analisando
tanto o caso bidimensional sem desordem quanto o caso unidimensional, considerando os

efeitos da desordem.

Palavras-chave: Efeito Hall. Topologia. Localizagdo de Anderson.

1 INTRODUCAO

O efeito Hall quantico inteiro trata-se de um sistema formado por elétrons nao
interagentes com movimento restrito a um plano perpendicular a um forte campo magnético.
Os elétrons estao confinados a uma area do plano que, em grande parte do tempo, vamos

tratar como uma area retangular, por onde passa um campo elétrico.

Tal organizacao do sistema faz com que a condutividade e a resistividade da amostra

nao sejam mais niameros, e sim, matrizes. A resistividade, por exemplo, é dada por uma

P Py
p= ’ (1)
—Pzy  Pxx

O interessante do efeito Hall quantico inteiro é que, quando mediu-se, experimen-

matriz da forma

talmente, o valor da resistividade p,, em funcao do campo magnético B, o resultado foi
excepcional: para valores maiores de B, o comportamento de p,, se deu por meio de platos,

como pode ser visto na Fig. 1, dados por

2mh 1
Py = —5

: (2)

ez v

2mhn

"o, onde n ¢ a densidade de elétrons.

com v € N*. Os centros do platds ocorriam em B =



pxy 2 pXX

0

Figura 1 — Comportamento esquematico das resistividades longitudinal p, e transversal p,, como fungdo do
campo magnético no efeito Hall quantico inteiro. A curva vermelha continua representa o resultado
experimental de pgz, a curva azul continua representa o resultado experimental de pg,, a curva vermelha
pontilhada representa a expectativa classica para pz, € a curva azul pontilhada representa a expectativa
classica para pgy.

Esse resultado era encontrado com ainda mais precisao quando a desordem do
sistema aumentava, ou seja, o valor inteiro de v era medido com ainda mais exatidao. Esse

resultado claramente discordava do resultando classico, como veremos mais a seguir.

1.1 Efeito Hall classico

Considera-se entao uma placa de elétrons
restrita ao plano (x, y) perpendicular a um campo

magnético constante B = (0,0, B), com o campo

elétrico E constante na dire¢ao x, como na Fig. ‘

2. Sendo M a massa de um elétron, —e a sua g

carga e U a sua velocidade.Para resolvermos clas-

sicamente esse caso, ¢ interessante utilizarmos o Figura 2 — Desenho sistemético do efeito Hall clds-

modelo de Drude!, de forma que a equacio de sico.

movimento dos elétrons é dada por

d—» 5 R M—’
MY = —eox B—eB -7 (3)
dt T

onde 7 é chamado tempo de espalhamento?. Para o caso sem considerar o termo de

espalhamento, e sem campo elétrico, a solugao é dada por:

z(t) =X — Rsin (wpt +¢) e y(t) =Y + Rcos (wpt + ¢) (4)

onde wg = % é chamada frequéncia de ciclotron. Por esse resultado temos que a trajetéria

do elétron seria uma circunferéncia de raio R centrada em (X,Y).

1 No modelo de Drude, considera-se um termo de friccio linear que, por sua vez, resumiria tudo aquilo que pode
estar impedindo o elétron de seguir sua trajetéria.

2 O tempo médio entre colisdes dos elétrons, por exemplo.



Agora, considerando o campo elétrico E = (E,0,0), como estamos interessados no

dv

. ~ — G_T — = o B_T — ~
o = 0 e entdo temos v+ 570 x B = $fek. Essa equagao pode

( 1 UJBT) 7 6%75 (5)
—wpT 1 m

onde J = —nev é a densidade de corrente, e n é densidade dos portadores de carga. Repare

caso de equilibrio, tomamos

ser reescrita por

que essa equacao pode ser reescrita como a lei de Ohm J = o F, em que a condutividade

o é uma matriz da forma

T Y 1 -
o — Oy g; y _ O'DC2 wpT (6)
—Ogy Oaz 14+ wgT \wpt 1

2, . . "
# ¢ a condutividade da corrente DC na auséncia do campo magnético. A

onde opc =

resistividade, que é dada pelo inverso da condutividade, é da forma

1 1 wBpT
p=— ( y ) . (7)
Opc \—wpT 1

Os elementos de matriz da resistividade p,, = FNQIT € Puy = % tem propriedades
muito interessantes. O primeiro s6 depende de 7 e tende a zero quando 7 tende a infinito, ou
seja, quando as colisoes dos elétrons tornam-se mais escassas. A resistividade pg,, por outro
lado, nao depende de 7, implicando sua independéncia das impurezas do sistema, além de
que ele depende linearmente de B. Na Fig. 1, vemos o grafico de ambas resistividades em

funcao do campo magnético.

Acima consideramos que o sistema se encontra em equilibrio, o qual é de fato
alcangado. Considerando a placa de elétrons sem o campo magnético, como ja foi comentado,
teriamos apenas uma corrente na diregao de E (vamos assumir que ¢é a diregao ). Ligando
entdo o campo magnético, este desviaria os elétrons na direcao y, de forma que os
elétrons comegariam a se acumular nas bordas inferiores da placa, criando uma tensao
Vi = I, B/(ned) como na Fig. 2, onde d é a espessura da placa. O equilibrio é atingido
quando o campo elétrico em y é forte o suficiente para anular o desvio de B: e entao

voltariamos a ter apenas uma corrente na direcao x.

2 ELETRONS LIVRES NO CAMPO MAGNETICO: TRATAMENTO QUANTICO

Nesse tépico, faremos uma introducao da mecanica quantica de elétrons livres no

campo eletromagnético em duas dimensoes.

2.1 Niveis de Landau



O Hamiltoniano de uma particula de carga —e em um

E
campo magnético B =V x A é dado por n=5
1 n=4
. T n=3
= W(P +eA)? 8) o
n=1
onde = MZ — eA é o operador do momento candnico advindo "0 >k

da Lagrangiana (aqui, Z é o vetor posi¢ao). Definimos o momento
Figura 3 — Niveis de Lan-

cinético 7 = p'+ eA = M7 cuja relagdo de comutagao é [m,, )] = daw.
—ieh B, a partir dos quais definimos os operadores de abaixamento
o T 1 . . . ’
e levantamento a = —\/m( —imy) e a' = =—=(m, + im,), respectivamente, isomorficos
aos do oscilador harménico, que podem ser encontrados em [2]. Dessa forma, reescrevemos
o Hamiltoniano como H = mﬂ’ T = hwp (aTa + %) Os niveis de energia entao sao dados
por
1
E, = hwg n+§ , 9)

graficados na Fig. 3. Esses niveis de energia sao chamados niveis de Landau. Sera tutil
estudarmos a degenerecéncia dos niveis de Landau para duas escolhas diferentes de

potencial vetor: o gauge de Landau e o gauge simétrico.

2.1.1 Gauge de Landau

Inicialmente escolhemos o gauge de Landau, temos entao o potencial vetor A=
rBj. Repare que A é invariante por translacdo em vy, dessa forma, supomos que os
autoestados do Hamiltoniano sejam também autoestados de p,, da forma iy (z,y) =

e fi.(x). Simplificamos entdo o Hamiltoniano

1
oM

1 1 Mw?
(Rt eB)?) = ——p? + B (1 4 22

2
(0: + (b +eB)’) = 537 o Ty

dito que hk € autovalor de p,.Repare que esse ¢ o Hamiltoniano do oscilador harmonico

deslocado, onde lp = 4/ }}B ¢ o chamado comprimento magnético.

As fungoes de onda entao serao da forma
Un (2, y) ~ €MV H, (x + Kl e )/ ) (10)

onde H,, sao os polindmios de Hermite. As func¢oes de onda sao exponencialmente localizadas

em torno de x = —kl%. Com essa aproximagao, temos que o nﬁmero de estados que cabem
, __ eBA
em nossa amostra retangular de lados L, e L,, ¢ dado por N = f_ Loz, Ak = Mz =

onde A= L,L, é a area da amostra.

Acrescentando um campo elétrico na diregao x, atualizamos o Hamiltoniano para

2 Mw?
pL + B

= 2M 2 <x+le+eBZ

+ (hk+eB)?*) +eEbx =

— k= (11)

ME>2 ME? E
2 B2 B

2M<



Na segunda igualdade, houve completamento de quadrados. Temos entao os niveis de

Landau (vide Fig. 4) dados por

I\ ME® _ E
Ep = Tiwn <n + 5) - e T (12)

e as autofungoes sao deslocadas em x: ¢¥(z,y) = i (:E + (eMTf;J), y)

Agora os niveis de energia dependem linearmente de k, e

os estados sofrem um desvio na direcao de y cuja velocidade de E
A B |[e=—
grupo ¢ dada por i
10B ¢, B 1 e
/U = — [ —— —_— —— =
Y h Ok RoP B n=l | ————
n=0

Para chegarmos no resultado acima, basta notarmos que ¢, (y,t) =
i(hy— En . o
25 \If(k‘)eb(ky #)dk. Considerando uma aproximagao de Taylor pigyra 4 — Niveis de Landau

E(k) = Ey + (k — ko) Ej), onde Ejj = 8?);’6) em kg, temos de uma configu-
racao com campo

ELt elétrico.
7

Unly ) = o) [~ w0 g )

—00

onde o termo da funcao de onda caracterizado pela integral é uma onda envelope com
velocidade v, = Ej/h..

2.1.2  Gauge simétrico

O gauge simétrico é 1til para problemas com simetria cilindrica, o potencial vetor
é dado porfl' = —3% + %, que nao ¢ invariante sob nenhuma simetria translacional,
contudo preserva simetria rotacional pelo eixo z. A degenerecéncia dos estados sera
evidenciada através de um novo momento definido por @ = p'— eA. Para o gauge simétrico
em especifico, temos a relagdo de comutagao [m;, 7;] = 0,para ¢ = z,y e j = x,y. Definimos

entao, respectivamente, os operados de abaixamento e levantamento: b = \/ﬁ(ﬁx + i7ty)

e b = e (f, — ifry).
Um estado genérico no espaco de Hilbert é dado por

atmpim
In,m) = ol 10,0) (15)

onde m é o nimero relacionado ao momento angular da fungdo de onda. Para encontrarmos
a autofuncao do nivel de Landau mais baixo, faremos algumas manipulagoes. Primeiro,

considere as seguintes defini¢oes:

z=x—1y e Z=T+1y

8—1 i—l—zﬁ e 5—1 2—z2
S 2\0zx Oy S 2\0x  oy)



Entao, reescrevemos os operadores de abaixamento e levantamento:

a:—t\/§<l35+i> € aT:z'\/ﬁ(lB&)—i)
4lp 4lp

_ Z P (‘_i>
b zﬂ<zBa+4lB) e b =iva (10 i)

O estado do nivel de Landau mais baixo é aniquilado por a e por b, logo, temos
Yomen ~ eI/ AIE), (16)

As autofuncdes para m # 0 sdo encontradas utilizando o operador de levantamento bf, de

forma que obtemos:

b (2" 1), an

B
O restante das autofuncoes pode ser encontrado aplicando o operador de levantamento a'.

A autofuncdo de momento angular m concentra-se em uma regiao de raio r = v/2mlip.

E facil ver que m é o niimero quantico associado ao momento angular, basta notar

que o operador de momento angular é dado por

L =1ih xg— 0

9y Yar | = h(z0 — z0),

se operarmos ele na autofungao do nivel de Landau mais baixo, obtemos L), = hmbg p,.

Logo, os autovalores de L sao hm.

Vale notar que, para os diferentes gauge, encontramos diferentes autoestados. Isto
nao é um problema, visto que os estados nao contribuem fisicamente para o nosso estudo.
Permanece invariante, contudo, o niimero de estados que cabe em nossa amostra de area A.
Considere uma amostra circular de drea A = 7R?, o ntimero de estados, pela aproximacao

acima feita para a localizacao dos estados, é dado por

M R2/(212) R? A
N:/d :/ dm = 2 — 2 _ .BA/(2rh 1
Jo T " 20% 273 eBA/(2mh) (1)

onde M seria o maior momento cujo estado cabe na amostra.

2.2 Fase de Berry

Considera-se um Hamiltoniano qualquer de um sistema que depende das coor-
denadas generalizadas e de certos parametros fixos determinados por fatores externos,
vamos entdo variar esses parametros adiabaticamente® e veremos o que acontece com seus

autoestados.

3 O teorema adiabético prediz que, se variarmos esses pardmetros de maneira suficientemente lenta, o estado

atual do sistema (que por suposi¢éo, é ndo degenerado) permanecerd o mesmo por todo o processo de variagio,
ou seja, ndo serd excitado para nenhum nivel mais alto ou mais baixo de energia. Em outras palavras, ndo
havera cruzamento de nivel.



Digamos que o sistema encontra-se em um certo estado (o estado fundamental, por
exemplo), com uma certa escolha fixa de pardmetros X. Considerando que os autoestados
dependam dos parametros, ao varia-los lentamente de forma que a escolha de parametros
final seja igual a inicial, temos que o estado final do sistema é igual ao estado inicial
do sistema a menos de uma fase. Essa fase que depende da variacao dos parametros é
chamada fase de Berry. Vale notar que a fase (e"#*/") j4 existiria de antemaéo (diferente

da fase de Berry), por conta da prépria evolugao temporal dos estados.

Para o calculo da fase de Berry, consideremos a equagao de Schrédinger ih% =
H(X(£))|t). Para cada escolha de pardmetros, fixamos um estado fundamental, formando
entdo uma familia de estados chamada de estados de referéncia |n()A)). Depois de um
ciclo do espaco dos parametros do Hamiltoniano, o estado do sistema sera dado por
[(t)) = U(t)|n(A(t))), onde U(t) é uma fase dependente do tempo. Projeta-se o estado

em sua derivada temporal para a obtencao da seguinte relacao

UU = —(n]n) = — (n] — |n) A (19)

O\
Na equagao acima, foi utilizada notacao de Einstein. Vale lembrar que, como todos os

estados de referéncia sao estados fundamentais, consideramos que suas autoenergias sao

nulas. Podemos defenir agora a conexdo de Berry como A;(\) = —i (n| 35 [n). Para um

caminho fechado, encontramos entao a fase dada por

Ut) = exp{(—i / Ai(/\)}\idt>} . exp{(—i 750 Ai(/\)d/\i>} (20)

A conexao de Berry nao ¢é invariante por transformacoes de gauge no espaco de parametros,

_ 04, _ 94
contudo, sua curvatura, dada por Fi;(\) = 37 — 5%

ser reescrita pela curvatura da conexao utilizando o teorema de Stokes para dimensoes

é invariante. A fase de Berry pode

mais altas: U(t) = exp{(—i [¢ F};(\)dS"”)}. Perceba que é uma integral de superficie no
espaco dos parametros, e que seu resultado depende da superficie escolhida, evidenciando

a dependéncia da fase de Berry em relagao a variacao dos parametros.

2.3 Fluxo Espectral

Consideremos um fluxo de campo magnético ® delimitado por um cilindro, de
forma que, fora do cilindro, o campo magnético é nulo, e, dentro, ele é constante. Podemos
integrar o potencial vetor em um caminho fechado circular fora do cilindro, obtendo
$e A di = il B -dS = ® que é satisfeito pelo potencial vetor em coordenadas cilindricas

Ay = %. Temos entao o Hamiltoniano do sistema

1 , 1 L0 ed)’
H—%(pdy—i—eA(z,) = o <_Zha(b+2ﬂ'> . (21)

Supondo que as autofuncdes do Hamiltoniano sdo da forma 1 = e, e supondo condicoes

periddicas de contorno, ou seja, 1(¢) = ¥ (¢ + 27), obtemos as autofunc¢des normalizadas



e suas devidas autoenergias, respectivamente:

2 2
W(.r) = —m—c e, By= " (“‘g> (22)

2mr " 2mi? D,

onden e Ze ®y= @ ¢é chamado quantum de fluxo. O interessante desse sistema é que,
se o fluxo for um multiplo de ®(, o espectro das energias nao sera diretamente afetado
pelo fluxo dentro do cilindro, mas caso o fluxo nao seja um multiplo de @y, o espectro
¢ transladado. Imagine que o campo magnético esta desligado no inicio, de modo que o
fluxo é nulo, e o sistema encontra-se no estado fundamental (com n = 0), entdo vamos
lentamente aumentando o fluxo magnético dentro do cilindro. Nesse caso, ndo podemos
usar a fase de Berry para descobrirmos o estado final do sistema, ja que nao podemos
garantir o nao cruzamento de niveis de energia. Mas, quando o fluxo atingir o valor de ®,
temos que a energia do estado nesse momento serd a mesma energia do primeiro estado
excitado em relacao ao estado inicial, assim como cada nivel de energia é transladado para
o nivel logo acima. Esse fenomeno chama-se fluxo espectral: a mudanca de um parametro

do Hamiltoniano causa a translacao inteira dos niveis de energia.

3 A CONDUTIVIDADE NO EFEITO HALL QUANTICO INTEIRO

O motivo pelo qual o efeito Hall quantico inteiro se torna interessante ¢, de fato, a
exatidao dos platds presentes no grafico da resistividade p,, em funcao do campo magnético.

Sobre esse fendmeno, podemos fazer os seguintes questionamentos:

1. Por que os platos existem?

2. Por que esse fend6meno nao é atrapalhado pela desordem do sistema,

e, sim, favorecido?

3. Por que, em um plato, a resistividade tem o valor exato de p,, =
27h 1

smn 1 * P

5o com v € N* T
Neste topico, deve ser feito um estudo béasico sobre as possiveis respostas desses questi-
onamentos. Comeg¢amos com um Hamiltoniano igual o descrito na Eq. 7?7 A densidade
de corrente é dada por J = (e¢/A)Z, onde A é a drea da amostra, e MZ = p'+ eA. Parece
razoavel supor que a densidade de corrente total seria igual a corrente de todos os estados

ocupados somados:

- e ) -

estados ocupados
Na direcao x, a densidade de corrente ¢ nula, ja que a média do momento em x ¢ nula

para todos os estados (como no oscilador harménico), mas na diregao y, temos:

(&

o= =37 22 5 sl + exB i)
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Como as fun(;()es de onda séo localizadas em x = —2& — ME “temos que (¢ k| x| thn k) =
——Z’g — —e 57 Logo temos,
E E E E AB E
v T2y TV AB —YaB” T B O ey(bo

onde N é o numero de estados que cabem na amostra, calculado na Eq. 18. A densidade

f:( O ):aE (23)

de corrente entao ¢ dada por

evE [ ®
Dessa forma, temos que a condutividade e a resistividade assumem os seus valores es-
__ —ev __ 27h : .
perados 0, = Do € Poy = 23, espectivamente. Enfim, chegamos ao resultado obtido

experimentalmente para os valores de p,, para v niveis de Landau preenchidos, contudo,
esse modelo tem muitos pontos de insatisfacao, a comecar pelo fato de que ele nao prevé
nenhum plato, além de que nele é considerado que todos os estados colaboram igualmente

para a condutividade, e também, em nenhum ponto foi considerada a desordem do sistema.

3.1 Modos de Borda

Antes de entrarmos com mais afinco no papel de desor-

dem, ¢é necessario comentar sobre a importancia das bordas do q

O

ORI
e
NN

sistema do efeito Hall. Consideremos, primeiramente, o caso em g

que o campo elétrico esta desligado. Temos que, classicamente, a

trajetoria dos elétrons seria circular, como na Fig. 5, exceto por
perto das bordas, onde os elétrons seriam obrigados a seguir por Figura 5 — Trajetoria  clas-

di ~ E das bord 16 .. d sica dos elétrons
irecoes opostas. Em uma das bordas, os elétrons seguiriam todos por perto  das
ao longo de uma direcao, e na outra borda, eles seguiriam pela bordas.

direcao contraria.

Dessa forma, na auséncia do campo elétrico, a corrente desaparece. Agora, anali-

sando o caso em que nao temos apenas o campo magnético, consideramos o Hamiltoniano

dado por

1
onde V(z) é um potencial qualquer, desde que seja suave o suficiente em escalas de
distancia Iz. A velocidade de grupo de desvio dos estados ¢ dada por v, = %%‘; €como

ja foi utilizado na Eq. 13. Podemos entao calcular a corrente gerada por esse potencial.
Se esse potencial for uma ddp AP aplicada em duas bordas opostas da amostra, temos a
corrente ik oV ()
' e [ x e
I, =- / k dv = —— AP 25
Y ¢ ] ol )277 2mh ar U 2R (25)

2
. . e , . .
onde AP = eV, e 04y = 1,/Vi, entdo 0,y = 5 que ¢é a condutividade para um nivel de

Landau preenchido. O ponto é que isso é verdade para qualquer potencial que for ligado
no centro da amostra, contanto que tenha a diferenca de potencial nas bordas. O estado

desses elétrons que seguem em apenas uma direcao sao chamados modos de borda.
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3.2 Estados localizados e estendidos

Nesse topico, devemos discutir o papel da desordem na formacao dos platos.

Resumidamente, segue abaixo o que a desordem causa no sistema do efeito Hall:

o A desordem levanta a degenerecéncia dos estados, de forma que os
niveis de Landau deixam de ser algo como na Fig. 3 e passam a ser

mais parecidos com a Fig. 6;

o A desordem diminui a quantidade de estados estendidos na amostra,

e aumenta a quantidade de estados localizados.

O motivo pelo qual a desordem levanta estados degenerados vem de teoria da
perturbacao. Um potencial desordenado quebra simetrias que antes produziam as degene-
rescéncias, cada estado pode experienciar uma mudanca diferente de energia a depender

da sua posicao espacial.

3.2.1 Operadores de centro de orbita

No efeito Hall classico, encontramos a trajetéria dos elé-
trons sem o campo elétrico, vide Eq. 4. Os operadores de centro E

de orbita sao entdo definidos por

. Y Ty
X =x(t R t =r— =—=r— —
x(t) + Rsin (wpt + ¢) = x o T o
Y = y(t) — Reos (wpt+ ) = y + — =y + —=
= — Rcos (w = — =
Y B Y wp Y MQJB &

—

e, quando aplicados sobre um estado, esses operadores devem

. ~ . ~ Figura 6 — Transformagao
resultar na localizacao aproximada desse estado, ou entao, no
de estados esten-
caso classico, no centro de orbita da particula. Ambos claramente didos (vermelho)
. . ~ ara localizados
comutam com o Hamiltoniano sem a desordem, e sua relacao de (p )
azul).

comutagao é [X,Y] =il3.

A sua variacao temporal em um sistema com o potencial desordenado V' é dada por

e, analogamente,ih}y = —il%g—;. Se em uma determinada regiao do sistema, V' possuir um

ponto de minimo, o estado ficaria localizado em uma equipotencial ao redor desse ponto.
No sistema limpo, como foi visto na Secao 2, na direcao y, a fun¢do de onda tem a forma
de uma onda plana, entao espera-se uma condutividade continua em acordo com a teoria
classica ilustrada na linha azul pontilhada da Fig. 1, entretanto, o potencial visto pelos
elétrons ¢ randdmico por conta da presenga de impurezas/defeitos no material. Os efeitos

de potenciais randomicos em uma e duas dimensoes levam ao fendmeno da localizacao
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de Anderson de todos os estados, de acordo com [7], devido a baixa probabilidade de
interferéncia construtiva entre as fungoes de onda dos elétrons. Os platds da condutividade
entdao acontecem porque o preenchimento de estados localizados mantém a condutividade
constante, ja que estes nao influenciam nos valores da condutividade, apenas os estados

estendidos, de acordo com [3].

3.2.2 Fluxo Espectral revisitado

Deve-se mostrar agora que, apesar da desordem, os valores da condutividade e
resistividade encontrados nos platds sdo condizentes pela teoria. Para isso, consideremos
um sistema como o da Fig. 7, onde temos os elétrons confinados a uma estrutura anelar
por onde passa um campo magnético perpendicular a este, além de um fluxo magnético
adicional confinado a um cilindro no centro do anel. O mesmo execicio de variar o fluxo
de 0 até @, deve ser feito nesse caso, em um dado tempo T >> 1/wp, criando uma forga
eletromotriz ¢ = —®y/T ao redor do anel, de forma que, no processo, n elétrons vao se

deslocar do interior do anel para seu raio mais externo, criando uma corrente dada por
e __ 2rh1l
I~ e n?

com as predi¢oes. Agora é necessario provar que n elétrons se deslocaram do raio mais

I, = —ne/T. Dessa forma, o valor da resistividade seria p,, = o que condiz

interno para o raio mais externo no processo.

Ainda nao considerando a desordem, pela simetria do
sistema, deve-se estudar o caso com gauge simétrico. Fazendo a
substituicdo z = o — iy = re'?, as funcoes de onda do nivel de

Landau mais baixo sao dadas por

T S (26)

A func¢éo de onda de momento m é localizada pelo raio r = v/2ml .
Mas, pela analise do fluxo espectral, ao final do processo de Figura 7 — Estrutura anelar

variagao do fluxo, a nova funcao de onda do estado é a funcgao com fluxo no cen-
de onda do nivel imediatamente superior, ou seja, a fungdo de tro-
momento m + 1 que é fortemente localizada em r = /2(m + 1)l5. Dessa forma, se todos
os estados do nivel de Landau estiverem preenchidos, apés um tempo 7', um elétron se
desloca do raio mais interno para o raio mais externo. Se n niveis de Landau estiverem

completamente preenchidos, n elétrons serao deslocados.
O Hamiltoniano do caso com a desordem é dado por

1 210 (0 Hnd eBr ed\’ N

Com uma transformacao de gauge, podemos tentar anular o fluxo, por meio de
(0, @) — e®/Ch)a) (0, ¢), satisfazendo a condicdo de que ¥(6, ¢) = (6, ¢ + 27). Para
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os estados localizados, essa condi¢ao é sempre satisfeita, de forma que eles nao sao afetados
pelo fluxo. Para os estados estendidos, essa condicao s6 é satisfeita quando o fluxo é
multiplo de ®,. Dessa maneira, a analise feita anteriormente ainda vale, porém apenas

para os estados estendidos do nivel de Landau.

3.3 Andlise matematica da condutividade o,

3.3.1 Teoria de perturbagao para a condutividade

Primeiramente, faremos uma rapida passagem por teoria de perturbacao apenas
para trazer alguns resultados. O Hamiltoniano é dado por H = Hy + AH, onde Hy é o
Hamiltoniano nao perturbado de um sistema com intimeras particulas antes de ser ligado
o campo elétrico dado por E= —8th, e AH=—]- ff, onde J é um operador associado
com a corrente. Na resolucao adiante, trataremos J como o operador da densidade de

corrente em prol da simplificagdo dos céalculos.

Também é considerado que o campo elétrico aplicado é da forma E = Fe ™! ou

seja, um campo AC. Consequentemente, temos A = %e"m.

Por teoria de perturbacao, sabemos que a evolucao temporal dos estados ocorre

i [t / U
por |(t)) = U(t, to)|w(ty)) com Ul(t, ty) = Te_ﬁfto Ao T 6 constante satisfazendo
Zh‘fi—g = AHU de modo que U(t,ty) seja unitario. Mais adiante, vamos considerar T' como

a identidade. Os operadores evoluem por meio de O(t) = etHot/hQe=iHot/h,

Considerando um sistemas com particulas no estado fundamental, inicialmente no

momento ty — —oo, a evolucao temporal do valor medido pela corrente se da por

<f(t)>=<()|f()l0()> (OIU~(8)J(H)U (1)]0)
)

<0‘(1+ / AH(t dt) (1——/ AH(t )dt>
onde expandimos o operador U (t, ty) em Taylor e consideramos apenas os primeiros termos

~ o+ (ol [ 1anw), S o)

da série. O primeiro termo do lado direito da equacao é a corrente na auséncia do campo
elétrico, a qual sera considerada nula. O sistema ¢ invariante por translacao temporal,
dessa forma, podemos fazer uma substituicao de varidveis em termos de t” =t — t'. Logo,

substituindo o valor de AH, temos, para cada componente de f,
> 1

(H) = 7 ([ e QUG ©). T )0)de") Eye™ (28)

com ¢, j = x,y. Logo, temos para a condutividade, o valor de

1 o W T T
ooy = 5 | € OIT0), T 0)]l0)at (29)
Essa é chamada a férmula de Kubo para a condutividade. A féormula de Kubo é uma

expressao que representa como as medidas de um certo observavel mudam sob influéncia

de alguma forca perturbativa no sistema .
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Evoluindo o operador J no tempo, temos

1

r € SOl 0} 0 (O] ol 0 =

(30)

Note que os operadores ja foram projetados em uma base |n) completa de autoesta-

Oay(w) =

dos do Hamiltoniano ndo perturbado. Repare que os estados |n) = |0) ndo contri-

buem para o somatério Podemos fazer a aproximacao para o caso DC em que w — O:

1 ~ 1
hw+En—FEo ~ n—Eo

por desaparecer, pelo fato do sistema ser invariante por rotagao, ou seja, deve ser invariante

~ Eo e+ O(w?). O primeiro termo do lado direito da equagio acaba

sob a transformacado x — y e y — —x, levando a

> {01 Jy[n)(n]J2]0) + (0] J;|n)(n|Jy]0) = 0
de modo que, integrando a Eq. 30, chegamos em

Ouy = ihLyLy S

n#0

(0] Jy|n)(n|J:]0) — (0| Jx|n){n|J, |0>
(Eo — En)?

(31)

onde a correcao de corrente para densidade de corrente ja foi feita, através da multiplicacao

pelas dimensoes da amostra retangular de lados L, e L.

3.3.2 Topologia do efeito Hall

Voltando para a analise do efeito Hall, consideremos nosso sistema localizado em um
Toro espacial formado pelo dobramento do retangulo de lados L, e L,, de forma que temos
algumas condi¢oes de contorno a mais para as fungoes de onda. Definimos os operadores
de translacio magnéticos como T'(d) = e~ @V+eA/n)  de forma que T, = T(d = (L, 0)) e
T, = T(d = (0, L,)).

As novas condigoes de contorno entdao devem ser T,0(x,y) = ¥(x,y) e Ty (z,y) =

W(x,y), utilizando entdo o gauge de Landau, temos

Tob(z,y) = (x + Lyyy) e Tpp(a,y) = e P /Mp(z,y + Ly). (32)

Repare que essas nao sao as condicoes de contorno usuais ¥ (z,y) = ¢ (z,y + L), e essas
equagdes ndo sio consistentes para qualquer escolha B, visto que T, T, = e~ BL=Lv/PT, T,
contudo, ao aplicarmos 7,7, precisamos chegar no mesmo estado apos aplicarmos 7,75, o
que s6 é verdade se % € 2n/Z. Repare que essa relacdo representa uma quantizagao

do fluxo magnético em termos de P,

Agora, analisaremos o sistema perturbado. A vantagem que temos de estarmos
enxergando a nossa amostra como um Toro, ao invés de um retangulo, é que podemos
inserir diferentes fluxos magnéticos no nosso sistema, os quais serdo utilizados para a teoria

de perturbacao, como mostra a Fig. 8.
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O novo potencial vetor, portanto, (lembrando que estamos

usando o gauge de Landau) é da forma A= (%’ % + Bz, O).

Topologicamente, essa sistematizacao de fluxos pode ser

substituida pela vizualizacao da Fig. 9(a); lembrando que, nessa

representacao, o fluxo ®,, por exemplo, pode se encontrar con-
Figura 8 — Fluxos perturba-

tornando qualquer circunferéncia vertical do Toro, ndo especifi- tivos @, em azul
camente a da imagem; analogamente para ®,. Entao, utilizando e ¢ em verme-
lho.

a nova vizualizagao, corta-se o toro na parte serrilhada.

S
7 7
Y Y
1 >>
(a) Fluxos no Toro. (b) Fluxos no ci- (¢) Fluxos no plano.

lindro.

Figura 9 — Nova visdo dos fluxos &, em azul e ®, em vermelho.

Obtém-se algo como a Fig. 9(b), onde as setas nas bordas
indicam a direcao a qual elas estdao orientadas ao utilizarmos sua relacao de equivaléncia,

como explicado em [6]. Entdo, novamente, corté-se o cilindro na parte serrilhada.

Obtém-se entdao algo como a Fig. 9(c) mostra. O fluxo
®, é de um campo que cruza a amostra (em todos os pontos da

amostra) na direcao em vermelho, e ®,, é de um campo que cruza

a amostra na direcao em azul. As bordas com uma seta seriam

as de comprimento L, e com duas setas teriam comprimento L. Figura 10 — Caminho trivial
(em laranja) e

Assim como no caso do fluxo espectral, o espectro do .
nao trivial (em

sistema ¢ invariante para transformacoes de ®, e ®, multiplas do azul) em um
quantum de fluxo. Dessa forma, a perturbacao do Hamiltoniano é Toro.
dada por AH = —3>,_, % Por teoria de perturbagao, o novo
estado fundamental é dado por
oy = o0+ 3 G )

Estamos interessados em repetir o procedimento do caso do fluxo espectral, entdo vamos

variar ®;. Derivando a Eq. 33, temos

O\ 1 (n|Ji| o)
|6_<I>1> =7 R%O E —E n). (34)



16

Substituindo esses valores na Eq. 31, temos

Oy, O Oy O 0 0
ooy i ((ai(;|a;/)2> B <agz|8gz>> _ i ( <¢0|63§0> <¢o| 7/J0)> . (35)

Como o importante nao sao os fluxo ®;, e, sim, o resto da divisdo de ®; por Py, o espaco

formado por esses fluxos é um Toro T% diferente do Toro ja mencionado formado pelas

coordenadas espaciais. Parametrizemos entao T(ZI; com as coordenadas 0; = % com

0; € [0,27). Entdo, a conexdo de Berry para a variagio desses pardmetros e sua respectiva

curvatura sao dadas por

A#) = —i <¢o

J Do Oy
8_&‘%> e JFuy=— ( <1/10| > <¢0| )) (36)

Substituindos o valor da curvatura na Eq. 35, obtemos 0., = —%]—"xy. Supondo que a
condutividade é na verdade a média desse valor sobre todos os fluxos, de forma que temos

que na verdade integrar a curvatura de Berry sobre todo T2

e? d?*0 e?
T =T T2 Foy (2m)2 _27TFLO (37)

onde C' é conhecido como primeiro niimero de Chern, dado por C' = % jT% Fuyd?0. A
principio, dirifamos que C' = 0, visto que, como T% é uma superficie fechada, podemos
usar o teorema de Gauss pelo volume interior de T?I;, de forma que o integrando ¢é nulo, ja
que seria o divergente de um rotacional. Contudo, a conexao de Berry nao ¢ invariante
por transformacgoes de gauge, de forma que, para uma transformacao A; — A; + J;w,

onde w é uma funcao qualquer, o nimero de Chern é dado por
1 1
C= o / (A + Vw)ds =5 / Vw)ds

onde ds representa o infinitesimal de uma curva, e foi usado na segunda igualdade que
a integral do gauge original é nula. A ultima integral da Eq. 3.3.2 também seria nula se
calculada em um caminho fechado qualquer trivial de T<2f>v como a curva (3 na Fig. 10, a
qual pode ser deformada em um ponto. Porém, uma curva néo trivial, como a « nao pode
ser deformada em um ponto, de forma que o resultado da integral é dado por 27n, onde n

¢ o numero de voltas que o caminho faz no Toro, de forma que C € Z.

Esse resultado entao condiz experimentalmente para o que ¢ encontrado para oy,.
O numero de Chern é um invariante topolégico, o que significa que ele é o mesmo para

espagos homeomorfos.

4 PROBLEMA NA REDE QUADRADA

O Hamiltoniano segundo quantizado pelo modelo de tight binding" para elétrons em

uma rede quadrada de parametro a, sem desordem e sem considerar o spin das particulas,

4 Qu seja, considerando autoestados restritos a sitios de uma rede.
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com o campo magnético perpendicular, ¢ dado por

H=—t> (MM m 4 1 n)(m,n| + 2 m n + 1) (m,n| + he).  (38)

m,n
onde x = (ma, na) e t é o termo de hopping entre um sitio e outro. Para a tradugao do
Hamiltoniano do modelo de tight binding usual para esse Hamiltoniano, usa-se o método
da substituigdo de Peierls, vide [4], o qual afirma que, para elétrons em uma rede na
presenca de um potencial vetor que varia pouco espacialmente, os operadores de translacao

na rede sao substituidos por
T, = e%nnlm + 1,n)(m,n| e T,=e%nm, n+1)(m,n| (39)

x _ e m+l e n+l . ,
onde 0, . =+ [ Ai(z,n)dv et =7 [ Ax(m,y)dy. Como o potencial vetor é quase
constante em um sitio, usamos a aproximagao
e

I3

aA(x), 0V A %aAQ(X). (40)

T
em,n R

Fazendo a substituicao, temos que o Hamiltoniano resultante ¢ dado pela Eq. 38.
Restringindo o problema para campo magnético constante de valor B na vertical, podemos
usar novamente o gauge de Landau, ou seja, A; =0 e Ay = Bx =. Resolvendo a equagao
de Schrédinger para um estado qualquer de momento k = (k,, ky), |Vx) = > j aijxli, 7)),
obtemos a equagao

E(k)

—LeBa?m LeBa?m _
Am+1,nk + m—1,n.k +e r Um,n+1,k + en Amn—1k = + Qm,n,k (41)

onde foi utilizado x = ma. O gauge de Landau possibilita que os coeficientes sejam

wng . O fluxo magnético em

reescritos por separagao de variaveis através de an,,k = €
um sitio, dado por ® = Ba?, de acordo com [5], pode ser parametrizado em fungao do

quantum de fluxo:

o ="Lo, (42)
q
onde p,q € N, p < ¢ e mde(p,q) = 1. A equagao secular é, entao, dada por
P E
Im+1 T Gm-1 + 2 cos (2777”5 - 7/) Imn = 79m (43)

Reescrevendo na forma de matriz, temos:

(gmH) B (§_zcos (2em —v) 1) (gm) )
9m 1 0 m—1

A parametrizacao dada na Eq. 42 é conveniente para a periodicidade em m da matriz em
Eq. 44, com periodo q. Dessa forma, podemos impor as condi¢oes de contorno seguindo o

teorema de Bloch:
Im+q = €mqk‘”gm (45)
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O ntmero v estaria relacionado com o nimero quantico k,, o qual varia através

de [—qla, q’r—a], por conta do campo magnético, diferente de k,, que varia por {—%, g] A
Fig. 11 representa a diagonalizacdo do sistema em fun¢ao do fluxo. Nota-se ¢ bandas de
energia para (}% = %’.

1.0 1

0.8 1

0.6

®/®g

0.4 1

0.2 1

0.0

Figura 11 — Autoenergias da rede em funcéo do fluxo magnético.

4.1 Localizagdo de Anderson em sistemas unidimensionais

Agora, vamos considerar o tight biding para um sistema unidimensional, o Hamil-

toniano segundo-quantizado para o modelo de é dado por
H = [ea|n){n] — t(|n + 1){(n| + h.c.)] (46)

O primeiro termo na somatoria refere-se a energia do sitio, enquanto o segundo é o termo
de hopping, que representa a possibilidade da transicao da particula de um sitio para os
seus vizinhos. Um potencial desordenado pode ser atribuido a aleatoriedade dos coeficientes
€n, por exemplo. O fenémeno da localizacdo de Anderson trata da localizacdo de estados
do sistema o aumento da amplitude de desordem; no caso da auséncia da desordem, temos

estados estendidos.

Um modo de estudarmos a localizagao de estados do sistema é por meio da
localizagao dos autoestados, dados, em geral, por ¢ (7) = %e%, onde £ é o comprimentode
localizacao; isso pode ser feito através da quantidade chamada inverse participation ratio,
calculada por PR = Y1, |aji|*, onde |¢r) = S5 ajxlj) ¢ um autoestado para o
sistema e L é o seu tamanho. O IPR de um autoestado localizado tende a uma constante
proporcional ao inverso do comprimento de localizacdao do estado, conforme mudamos o
tamanho do sistema, e quanto maior o I PR, mais localizado seria esse estado. Para um
estado perfeitamente estendido sobre toda a rede, terfamos a;; = 1/ VL paraj=1,.., L,

de modo que, para autoestados estendidos temos I PR o< 1/L.

Resolvendo a equagao de Schrodinger para o Hamiltoniano em Eq. 46, obtemos a
equacao secular

Fa, = € a, — ta,_1 — tanq (47)
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que pode ser reescrita na forma matricial, utilizando condigdes peridédicas de contorno.
Utilizando um método computacional de diagonalizagao, e variando ¢, através de uma
distribui¢ao uniforme [—W, W], onde W é o parametro de desordem, obtemos o resultado
ilustrado na Fig. 12(a). Observe que para cada valor distinto de L, o inverso da média do
I PR permanece constante, indicando a localizagao dos estados, enquanto, no caso limpo,

1 ~ .
a <m> permanece constante, o que mostra que os estados sao estendidos.

T T T T e e e B T N A p e
L =100 1 @ (=] 1
L =200
L =400 1
301 L =800 0.8k i
~ 1 £ Emsssssssscssssasess—", 1
& & 0.6k ) J
&0t | &06
= = @ ]
v =
1 YoafF E
O L=100 ]
10 -1 o L =200
L L =400 i
] 0.2 4 L =800
N 1 N 1 N 1 N 1 L 1 " L 1 " 1 " 1 L 1 L 1 L
0—3 -2 -1 0 1 2 3 0—3 -2 -1 0 1 2 3
Autoenergia Autoenergia
(a) Média do inverso de IPR. (b) Média do inverso de IPR - L para o

caso sem desordem.

Figura 12 — I PR para cada autoestado da rede.
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(a) Escalar linear no eixo y. (b) Escala logaritmica no eixo y.

Figura 13 — Densidade de probabilidade em escala em funcdo da posicdo na rede, o caso limpo foi implementado
apenas para t = 100, quando ja estava estendido, e o caso desordenado com W = 4 foi implementado
para trés instantes diferentes.

Outro meio de analise sobre a localizacao dos estados é feito a partir da evolucao
temporal de um estado inicialmente localizado. Na Fig. 13(a), temos a densidade de
probabilidade distribuida pela rede em um instante t = 100 de um estado que, em t = 0,
estava localizado no sitio central, para W = 0 e para W = 4. Perceba que, para o caso
com desordem, o estado continua localizado, em comparacao ao caso sem desordem. Esse

resultado fica mais evidente na Fig. 13(b).
5 CONCLUSAO

O objetivo deste trabalho foi introduzir conceitos fundamentais da fisica da matéria

condensada, com foco no efeito Hall quantico inteiro. Foram calculados os autoestados e
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autoenergias do Hamiltoniano com campo magnético em dois gauges distintos, destacando a
semelhanca com o oscilador harmonico quantico. Discutiu-se a fase geométrica de Berry e o
conceito de quantum de fluxo, o qual diz respeito a uma maneira quatizada de incrementar
fluxo ao sistema, ressaltando sua utilidade na parametrizacdo do fluxo magnético em uma
rede. A formacao de platos de resistividade no efeito Hall foi explicada pela transicao
de estados estendidos para estados localizados devido a desordem, que também levanta
a degenerescéncia dos niveis de Landau, impactando a condutividade em sistemas com
topologia de Toro. O trabalho também abordou os estados de borda, que surgem para
todos os niveis de Landau de maneira independente da desordem, e introduziu o fenémeno
da localizacao de Anderson, mostrando como a desordem afeta a natureza dos estados,

tornando-os localizados.
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