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INTRODUCAO

1. DESCRICAO DC PROBLEMA

Um corpo orbitando ao redor de um planeta, embora este-
ja totalmente livre ou desvinculado mecanicamente, esta su-
jeito a condicdes gue geram tensées internas., Essas tensodes
sdo provenientes de dois mecanismos distintos. O primeiro €
resultante da influéncia térmica do sol e do espaco. Um cor-
po sdlido orbitando no espag¢o terd uma parte de sua superfi-
cie externa exposta ao sol, enquanto gque outra parte estara
oculta. Nessa condigdo, enguanto gue a superficie exposta ao
sol recebe muito mais energia de radiacdo do que cede, ten-
dendo assim a atingir uma alta temperatura, a superficie o-
culta cede muito mais energia de radiagdo do gue recebe, ten
dendo assim a atingir uma temperatura muito baixa. Cria-se
assim um gradiente térmico através do corpo e consequentemen
te um gradiente de dilatagdes. Esse gradiente de dilatacoes

gera, entdo, tensoes internas.

As tensdes geradas por esse fendmeno dependem, entre ou



tros, de fatores tais como: forma do Corpo, propriedades tér
micas dos materiais, propriedades da superficie (emissivida-
de, refletividade, etc.}, propriedades mecinicas dos mate-

riais, movimento do corpo, etc.

O movimento do corpo &, sem divida, um fator de grande
importa@ncia no fendmeno, uma vez que infiui diretamente na

maneira como o corpo receberi a radiagdo solar.

O outro mecanismo que gera tensdo & de natureza dinami-
ca. Um corpo pode ser considerado como um conjunto de parti-
culas P; com massas m, . Seja um corpo sélido orbitando ao re
dor de um planeta, cada particula desse COrpo ocupa uma posi
géo.fi no espaco e possui uma velocidade Vi.

E sabido, da Mec&@nica Newlonsna, que para uma particula
orbitando ao redor de um centro de atracao, se sdo definidas
?i e ?i, fica definida a &rbita ?i(t) da particula. Sendo
assim, cada particula de um corpo sSlido, se estivesse des-
vinculada das demais, descreveria uma Srbita distinta defini
da por ;i e'Gi. Como todas as particulas estio vinculadas,

criam-se tensdes internas. Isso pode ser verificado matemati

camente, como feito a seguir,

Seja um corpo sélido constituido de n particulas, com
vetores posigdo ?i € massas m, orbitando ao redor de um cen
tro de atragdo gravitacional. As posigdes das n particulas r,

podem ser determinadas através das seguintes eguagoes.

Da 22 lei de Newton, teremos n equacdes do tipo:




a2y F;
i
r = (1)
dt m;
onde F; € a forgca aplicada i particula i,e da condigdo de

corpo solido, teremos n equacgdes do tipo:

-t

- = ~ - -~ - L d
onde rj, rk e rl 580 os vetores posicdo de trés particulas

(j, k e 1) quaisquer do corpo.

Ou seja, dadas as posi¢des de trés particulas de um cor

po sélido, as posigdes de todas as demais ficam determinadas.

A forga-Ei aplicada a cada particula pode ser dividida

em:dois tipos:

F, = ng + 2; Fij (3)
J=1
onde:
ng é a forga gravitacional
Eij € a forca aplicada i particula i pela particula j.

A forga gravitacional & fun¢do, unicamente, da distan-
cia entre a particula e o centro de atragdo:

—

ng = fg(ri) (4)

—

Se ndo existirem tensSes internas ao corpo, entao as

forgas internas Fij serao nulas e portanto as n equagdes (1)




terdo a forma:

azr. £_(r.)
_ i _ g1 (5)
dt? m

Ou seja, para determinarmos a posigdo das n particulas,
teremos 2n equagdes ((5) e (2)) e apenas n incégnitas (ri), o
que demonstra que as forgas internas nio poderao ser nulas e

portanto surgirdoc tensdes internas.

Os fatores,entre outros, dos quais dependem essas ten-
sGes sao: forma do corpo, propriedades mecinicas dos mate—

riais, movimento do corpo, etc.

2. COMENTARIOS SOBRE A INFLUENCTA DOS FATORES TERMICOS

SOBRE AS TENSOES DE NATUREZA DINAMICA E VICE-VERSA

Embora os mecanismos de geracdo de tensSes térmico e
dindmico sejam totalmente distintos, as tensdes de origem
dinamica dependem fortemente de fatores de natureza térmica

e vice~versa,

No casc das tensGes de origem dindmica, um dos fatores
dos gquais elas dependem &, por exemplo, os médulos de elasti
cidade dos materiais. Essa propriedade depende, por sua vez,

da temperatura, que & um fator de natureza tdrmica.



No caso das tensdes de origem térmica, um dos fatores
dos quais elas dependem € o movimento ou trajetdria do cor-

PO, que & um fator de natureza dinamica.

Portanto, para um estudo completo das tensdes, tanto de
origem dindmica como térmica, devem ser estudados os fatores

de natureza dindmica e térmica.

3. O OBJETIVO DESSE TRABALHO

O objetivo desse trabalho se concentra no mecanismo de
geragdo de tensdes de natureza dinamica. E ainda assim ndo &
um estudo completo, pois considera apenas os fatores de natu
reza din@mica. Isso, porém, nio o torna invédlido, pois a
maior parte das andlises feitas se aplica a qualquer caso.Na
primeira parte, & introduzido um método para a andlise das
tensdes. Esse método, embora dependa do estudo de outros fa-

tores, se aplica a qualquer caso.

Na segunda parte € feita uma andlise completa das ten-
sbes para um caso. Nessa andlise, embora os resultados fi-
nais obviamente s& sejam vdlidos dentro das hipdteses feitas,

sdo feitos estudos que se aplicam a casos mals gerais.




1A PARTE:

UM METODO PARA ANALISE DE TENSOES DE ORIGEM DINAMICA

Nessa parte & apresentado um método para anidlise de ten
sGes de origem dindmica num corpo sélido que orbita ao redor
de um planeta, e se aplica também guando esse corpo tem vin-

culos com outros corpos,

1. IDEIA CENTRAL

Nesse método, € considerado como um dado inicial a for-
ma do corpo solido ou estrutura na qual se deseja calcular
as tensdes. A idé&ia central é de calcular un carregamento
que serd deneminado "carregamento equivalente", e que se fos
se aplicado & estrutura em questao, mas numa condicdo esgta-
tica, geraria as mesmas tensées resultantes da condicdo co-
nhecida, ou seja, na condicdo de movimento orbital. Conheci-
dos a forma da estrutura e o carregamento equivalente, poder
—-se-1a calcular as tensdes por meio das teorias da "Resistén

cia dos materiais" que se aplicam a corpos ou estruturas




estdticas. Por exemplo, se a estrutura em questdo fosse uma
estrutura tipo treliga, poder-se-ia aplicar a teoria das vi-
gas e outras aplicdveis ao caso. Se o corpo fosse um disco,

poder-se-ia aplicar a teoria das placas, e assim por diante.

2. DETERMINACAO DO CARREGAMENTO EQUIVALENTE

Na determinacio das tensGes num ponto de um corpo estd-
tico sujeito a um carregamento, uma das equagbes utilizadas
€ a decorrente da condigdo de estaticidade aplicada is parti

culas do corpo:

onde:
F, = forca aplicada a particula i,

As forgas aplicadas a uma particula i poderiam ser divi

didas em dois tipos:

e

1. Forgas externas ao corpo = fexti

2. Forgas de tensdo {ou internas ao corpo) = fTi

As forgas externas, por sua vez, podem ser divididas em

dois tipos:




1. Forgas externas de acgdo = fai

2. Forgas de reacdo dos vinculos no corpo = fvi'

Teremos, portanto:

Zfai g vai o ZfTi =0 (1.2)
dai:
Sy == E - g (1.3)
As forcas externas de agao sao as forcas de carregamen~
to fci'

Dai:
S e e 2f 0 (1.4)
Essa seria, portanto, uma das equagoes utilizadas na

determinagdo das tensSes num corpo estitico.

Analisemos como ficaria a equacdo anterior para um cor-
PO ndo estdtico. Nesse caso, a condigdo de estaticidade se-

ria substituida pela 22 lei de Newton:

jﬂ F, = mg.oa; (1.5)
onde:
m, = massa da particula i

i




-gi = vetor aceleragdo da particula i em relagao a um
referencial inercial
dai:
Zf“l= Zga1+ r:EVl+ zg;,l~ml ay (1.6}
Ea m, B - EEY ol

Essa seria, portanto, a forma da equacao (1.4) para um

corpo nao estatico.

Nota-se que a Gnica mudancga da equagdo (1.4) para a e-
quacdo (1.7) & a soma da forga mi-;i ao segundo termo. Sen-

do assim, podemos escrever a equagido (1.7) na mesma forma

que a equagao (1.4):
> fng = = Zlogy = Sfyq (1.8)

onde :

—_—

5? fcei = carregamento equivalente

0 carregamento equivalente serd, portanto, determinado

pela equagdo:

. foei = 2*fai - Myay (1.9)
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3. O CARREGAMENTO EQUIVALENTE DESCRITO COMO FUNGAO

DC MOVIMENTO DO CORPO

Para escrevermos o carregamento equivalente como fungio
do movimento do corpo, fixaremos um referencial ao mesmo e
escreveremos o carregamento equivalente em termos do movimen

to desse referencial.

Considerando-se um referencial fixo ao corpo, podemos

escrever a aceleracdo de uma particula i como:
- — —
&, = 8, ¢+ a_ + a.. + a . (1.10)

onde:

a£ € a aceleracdo da particula em relacdo ac referen—

cial fixo ao corpo

—y
a, € a acelerag¢do da origem do referencial fixo ao cor

po em relacdo a um referencial inercial

—N "
a.'hl ST G sy’ laakks L= T % b =T €

a_ . € a aceleracdo de (loriolis da particula i

cl |
e

~ dif e B OERRe

i = FE XIj* !1.(174ri) - ri.().2 {1.11)

— _ — -""

8,4 = 2 _vai (1.12)
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onde:

S

{) & o vetor velocidade angular do referencial fixo ao

corpo em relag@o a um referencial inercial

r, € o vetor posicdo da particula i em relacdo ao refe
rencial fixo ao corpo
v£ é a velocidade da particula i em relacido ao referen

cial fixo ao corpo.

Portanto, o carregamento equivalente pode ser descrito

pela equagao:

— a = \ -— —= .
X E, = ) fai = my@) + 3 + 3, +a) (1.13)

4. COMENTARIOS SOBRE A DETERMINACAO DAS COMPONENTES DO

CARREGAMENTO EQUIVALENTE

4,1 Forgas de Acdo

Num corpo em orbita, as forgas de acao podem ser gravi-

tacional , aerodindmica, < -sofras.

As forgas de aclo seriam, portanto, a soma dessas

componentes,
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4.2 Forgas de Inércia

As forgas de inércia sdo as componentes dindmicas, ou
. —_— . i, —y —
seja, a.', a a,, ea_,.
I9r Byr B0 B4y ci
As aceleracbes relativa e de Cariolis sao nulas, uma

vez que € imposto que o referencial seja fixo ao corpo.

AR=EI0
i

[}
b
}

As aceleracbes da origem do referencial e de transporte

sdo fungbes do movimento do corpo.

A aceleracdo de transporte é uma funcdo da velocidade
angular e da aceleragac angular do corpo, enquanto que a ace
leracdo da origem do referencial & uma funcio do movimento
do baricentro do corpo, da velocidade angular e da acelera-

cdo angular do corpo.

E conveniente posicionar a origem do referencial no ba-
ricentro do corpo, 0 que torna a aceleracfo da origem uma fun

g¢do apenas do movimento do baricentro.

Portanto, para a determinagao dessas componentes do car
regamento equivalente, torna-se necessario um estudo sobre o

movimento angular e do baricentro do corpo.
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0 carregamento equivalente sera determinado, entdo, pe--

la equagado:

a..) (1.14)
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2A PARTE:

ESTUDO DE TENSOGES EM UMA VIGA EM ORBITA

Nessa parte € apresentado um estudo de tensdes num cor-
po em Orbita para um caso particular. Esse estudo se baseia

no método descrito na primeira parte desse trabalho,

O caso que sera estudado € o de uma viga de grandes di-

mensdes em Orbita,

As hipoteses adotadas sdo apresentadas ao longo do de-
senvolvimento do estudo a medida em que isso se faz necessa-

rio.

1. DETERMINACAO DO CARREGAMENTO EQUIVALENTE

1.1 Forcas de Acao

Como foi comentado na primeira parte, essas forgas po-
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dem ser aerodindmica , gravitacional, €tc .ilesse estude zeral con
siderada apenas a forg¢a gravitacional.A primeira hipdtese a-
dotada, portanto, serd a ndo consideracdo de ooutros lorqﬁq,

€ A 2T } . '

Hipatese 1 = A Unica forga nsiderada & a ‘f«i"a-v"-l':‘...;-ﬁr\a\.

Para o calculo da forga gravitacional, serdo adotadas

as seguintes hipoteses:

Hipotese 2 - A terra tem formato perfeitamente esférico e

distribuicdo esferica-simétrica de massa e, portanto, pode  ser

considerada como um ponto de atragao gravitacional.

Hipotese 3 - A lei de forca entre dois corpos que possuem

massa € a lei de Newtov:.

.3 -

1 M, Tip . T (2.1)

= - 2

onde:

—

F12 = forga de atragao que o corpa 1 exerce sobre o cor-

po 2
k = constante gravitacional
m, € m, = massas dos corpos 1 e 2

vetor posicdo do corpo 2 em relagdo ao corpo 1

I

e lr12[
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Hipotese 4 -~ A massa da barra é desprezivel em comparacdo

com a massa da terra.

Hipétese 5 = C e ntr m = rre Pode e g e rado

ey Ol—l(len reilal.

Tendo adotado as hipdteses (4) e (5), podemos escrever

a lei de forcga aplicada a uma particula i pela terra como:

— _3 iy
Fi = -n{_mi ry . ry (2.2)
onde:
).,t = k*M
M = massa da terra
— - = = N
r. = vetor posicao da particula i em relacdo & terra.

Hipétese 6 - A viga em questfio é delgada, ou seja, as dimen-

soes da seg¢do transversal sd3o despreziveis em relacdo

ao comprimento.

Hipotese 7 - A viga tem densidade linear constante em toda a

sua extensiao.

Escrevendo a equagdo (2.2) na forma diferencial, tere-

mos:

d; = —L{ dwnr_% T

Das hipéteses (6) e (7), teremos:
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onde:

ol
I

comprimento da viga

massa total da viga

=
i

A forca de agdo pode, entdo, ser determinada pela equa~

g m -3 -
dr = -—L‘l T r . r .dl (2.3)

1.2 Forcas de Inércia

Como foi mostrado na primeira parte, as forgas de inér-
cia se reduzem a duas componentes. Uma devida i aceleracdo
da origem do referencial e outra devida a aceleracio de trans

porte.

A aceleraglo de transporte é calculada pela equacdo

(1.11):

—

aw
dt

x1 +w.fwel) - 1.w? (2.4)

a =

t

onde a notagdo r foi substituida pela notacdo 1, e a notacao

{1, pela notagio w.

As forgas de inércia sdo calculadas pela equacao:
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forcas de inércia =

s

(EO + Et)dl (2.5)

Como foi dito anteriormente, o cllculo das forgas de i-
nércia exige o conhecimento do movimento angular e do movi-
mento do baricentro do corpo em guestdo. Um estudo sobre o

mesmo & feito em seguida, para a viga delgada.

1.3 Estudo do Movimento Geral de uma Viga em Orbita

0 estudo do movimento geral de um corpo compreende tan-
to o estudo do movimento angular como do movimento do bari-

centro,

E sabido, da Mecanica Celeste, que a trajetdria descri-
ta por um corpo com massa concentrada num ponto, ou seija,com
dimensoes pequenas, ao redor de um planeta perfeitamente es-—
férico e com distribuigdo simeicrice. de massa, serd uma cdni-
ca. A hipdtese (2) do presente estudo permite que se gonside
re a terra como um ponto de atracdo gravitacional. Porém,ndo
€ possivel se considerar o corpo em questdo come um ponto,
pois todo esse trabalho & feito visando a corpos de grandes
dimensdes. Portanto, nac serd possivel adotar a Srbita céni-
ca genericamente como sendo o movimento descrito pelo centro

de massa da viga.

Serd feito, portanto, um estudo simult@neo do movimento

do baricentro e do movimento angular.
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Esse estudo se reduz 3§ aplicacdo do teorema do baricen-

tro e do teorema do momento angular. Sdo conhecidas, para es
sa aplicacao, a lei de forga e a forma geométria do corpo.

No caso de existirem dois ou mais corpos sélidos vincu-~

lados mecanicamente, mas com algum grau de liberdade, deve-

-se aplicar os teoremas para cada um dos corpos sdlidos e

mais as condigées vinculares.

1.3.1 Sistemas de referéncia adotados

Nesse estudo saoc utilizados dois sistemas de referéncia.

a) Sistema inercial com origem fixa em O e eixos i-

nerciais (OX*Y*Z). Os vetores representados nesse
. — o~ . -t -

sistema terao notagao "asterisco" (A*). <& =2

© centre de massa. . terra_

b) Sistema com origem fixa ao baricentro da viga, eixo
Z' coincidente com o eixo longitudinal da viga e ei-
xo X' pertencente ao plano X*~Y* do referencial iner
cial (BX'Y'Z'). Os vetores representados nesse siste

ma terao a notacdo "linha" (K')

Observagao: O sistema BX'Y'Z’ ndo é totalmente fixo &
viga, pois esta pode girar no seu prdprio eixo. Esse movimen
to ndo terd nenhuma influéncia, uma vez que a viga & delga-

da.
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Os angulos utilizados para descrever a posicgéo angular

relativa entre os dois sistemas s3o mostrados na figura 1.

Z [}
M
. | Z%*
i)
>
viga +7
.
= Y
\
— . \ e 1
A~
P 3 od —
e
/ ’\ s
ol >
Vs N
X* 2+
//"X,
Figura 1,

Esses angulos («/ e 4 ) coincidem com dois dos angulos

de Euler, sendo o outro indeter~minads.

A posigdo do baricentro da viga e portanto da origem do

referencial mével serd descrita por coordenadas cartesianas.

Nota-se que a viga pode ter um perfil qualquer. Porem,
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nem a forma e nem a orientagdo desse perfil terdo importin-

cia no estudo do movimento, em decorréncia da hipdtese (6).

Tendo sido apresentados os &ngulos gue descrevem a posi
gdo angular relativa entre os dois sistemas de referéncia,
sao apresentadas a seguir uma série de relacgdes matemdticas
entre os dois sistemas, que serao de grande utilidade ao es-

tudo.

Seja A um vetor qualquer, representado no sistema iner-
cial por A* e representado no sistema mdvel por A', sdo vali

das as seguintes relacdes:

1. A* = G+&' (2.6)
2. A' = cT. A% (2.7}
3. W+ =M- (2.8)
4, W' =N-E (2.9)
Sige EerEt = (2.10)
6. G -a=,0" . (2.11)

onde

cT & a matriz transposta de G

w & o vetor velocidade angular do sistema mével em rela

¢do ao sistema inercial

G & a derivada da matriz G em relagdo ao tempo.



w!

G171 G2
Gyq  Gaa
Gayl . Sp
/ 0 —wz*
wz* 0
I —wy¥ WX
0 -wz'!
wz' 0
\--wy' wx'
wX* 3
wy*
wz*
/ wxl N
Wyl
N WZ'
‘0 cos ol
0

sen & sen (5)

seno/ (-cos® sen F,)

0

cos(?;

/

22
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0 1 0
i = sen g 0 0
kcosp 0 1

G = COS o

11

G12 = —sen cosﬁ
G13 = sen ol Senp
G21 = sen ol

G22 = COS X cos@

Gy3 = ~COS senp
G3q = 0

G32 = senj

G33 = cosg

1.3.2 Aplicacgdo do Teorema do Baricentro

Por conveniéncia, como j& c¢itado anteriormente, a ori-
gem do sistema mdvel serd coincidente com o baricentro da vi

ga. Sendo assim, podemos escrever:

—

d?a
dt

F =m

onde:

F &€ a forca total aplicada a viga
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-

a € o vetor posigdo da origem do sistema mével.
A forga total aplicada a viga se resume na forga gravi-
tacional total aplicada & viga, uma vez que & desprezado o

efeito da atmosfera.

Sendo assim:

_ﬁ= ['—p( r‘-'3 T dm
m

como dm = = 41
B
L/2
E=_L{—E- f r2 T oa (2.12)
~L/2

Como mostrade na figura 2, podemos escrever:

r=a+1

"}w\
7
T />
! ,[:i*jura_ VA
- , .
== B lOGLI‘"r'C-‘.’ h'f'f"'@;
a »
- “Vigea.
0 e
(terra)

Representando-se 0s vetores no sistema mével, teremos:

[ 0]
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A ;
(G,” (3:21 G:,,1 N X+ ) (G”x“ + G21y* + G31z*\
a' = G12 G22 G32 | . y* = G,lzx"'< + G22y* + G322*
LGz Ga3 G333, 7)) Gqg¥f + Gyt + Gy7*
/)
= y'
gl
Ul
. - . |
dai: el 5 gd o 8 o v' (2.13)
z'" + 1
e /
1/2
r = [r'[ = (e aaiep B3R DA R i U g 2

> 1/2
r = (a  + 2z' 1 + 17)

1/2

ou (C + B 1 + 12)

8
i

onde: C = a
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(g n
» X* G131
.-
SR T Gyyl
*
Z +G331/
Reescrevendo entao a equagao (2.12), representada no

sistema inercial:

/2 (% + 3l )

( 2)--3/2 J
= m C +BL +1°) . | y*+G.l [.d1
F*_,__L,L._L f 23

<L/2 | 2"+ Gaal

Utilizando as seguintes relagoes:

-3/2 41 + 2B 2
2 _ p/4C # B
inc + Bl +17) dl = (4C - B2) (C + BL + 12)1/2
(2.14) _ L s p/4c= B2
2(1 + B/2)
=3/2
(4C-B7)(C+B1L+17)
(2.15) S (21 + B/2) p/AC = B2
2 (L + B/2)2
teremos:
{x*I IO ([ pxx )
1 1372
TR - ooy B
F T y*I1 + G,yaT, Fy*
L z*I1 + 33I2, | Fz=
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onde:
I - 2 _ (B + L) i (B - L)
T e - 8% (C+P£+L2)1/2 c-p+1?) "
2 4 5 4
para 4C # B’
2 2 2
o AR - S p/ 4C = B (2.16}
b = (B + L)
] 1 (4C - BL) ly (4C + BL)
i (._g_L_Jrﬁ)Uz (C+&+£2)1/2
2 2 2 4
para 4C # B
- 282-0) 262+ paagc-g @A
B - 1) (B + L)

=
A derivada Fﬁnw°rm,de a* em relacdo ac tempo sera:

A aplicag¢do do teorema do baricentro fornece, portanto,

trés equagdes diferenciais de segunda ordem:
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Xe o= o M (xx I, + Gy I2) (2.18)
L

v .

y* = i% (y* I, + Gog I,) (2.19)

2k = - —‘;} (S A ele s ) (2.20)

1.3.3 Aplicacac do Teorema do Momento Angular

Assim como a origem do sistema movel foi posicionada no
baricentro, também & conveniente escolher os eixos princi-
pais de inércia da estrutura que estd sendo estudada como oOs
eixos do sistema. Para a viga, em virtude da hipStese de vi-
ga delgada, apenas a escolha do baricentro como origem do
sistema e a escolha do eixo longitudinal da viga como um dos
eixos do sistema serd suficiente para a simplificacdo do es-
tudo, uma vez que serd desprezada a influéncia da orientacgdo

da secao transversal.

Sendo assim, a aplicagdo do teorema do momento angular

ac baricentro serd a mais conveniente.

il

4aL

N = 22

dt




29

onde:

N € o torque das forgas externas em relagdo ao baricen-

tro

L € o momento angular da viga em relacido ac baricentro

As forgas externas, assim como na aplicag¢ao do teorema

do baricentro, serac as forg¢as gravitacionais, portanto:

Q.

Lo |

It

1
L

H

R

o)

I—l

Representando todos os vetores no sistema movel, tere-

nos:

/0 Y
I = | o

l/
4arf = - %-—E— oo e = 0l
dN':l'xdF':—’-t%m -3 l'xr' 41

Da equagac (2.13), temos:
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Dai:
il j"l El /_y.l l\
1'xx! = | 0 0 1 = | x' 1
x' y' z'+l § 0 )
T g it
N - SR == A ' |
dN' = % T r % 1 (. 41
{
N
/ N
L/2 I
N o= - Y s x' 1| 41
L . .
-L/2 , 0 )

Da relacado (2.15), teremos:

Para calcularmos a derivada do momento angular, utiliza

remos a seguinte relacgao:

L= I.w

onde T & o tensor dos momentos de inércia.

Representando-se no sistema movel:
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r Ix' -Px'y’ -yx'z’\
Il = _leyl IYI __Pylzl
(Px'z' -Py'z' Iz' /

Lembrando que o eixo z' & coincidente com o eixo longi-
tudinal da viga, passando pelo baricentro, e gque a viga edel

gada, teremos:

Ix' = Iy' = A
Px'y' =0
pPx'z' =0
Py'z' = 0

Iz' =0

Teremos, entdo:

o= cl. (LH
1* = G.L' = G. {I'.W')
D = G. (I'.W') + G. (I'.(W9)
Lembrando que -.\;' = (V_J"")
dai DT G T W) e (T W)

Usando a relacdo (2.11):

— 3 .

L' =(L. (I' .w') +(I'.W")



Usando a relacao
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wx'"
5 W - wy' |
! ﬁz'J
3
0 0 { wx'\ /WX'\
A0 .| wy! = A, wy'
1
G 2
0 -wz! wy” A mm'\ Wy’ wz'\
= wz' 0  wwx! . A wy' =A. wx' wz'
L} 1
V.\TX' \1
wy'
L0
S
éy' + wx' wz! (2.21)
: /
(2.9):
o 1 o) (&)
= } senf3 0 0] . ﬁ =
kcos@ 0 ik L0 /
/ . N y
A wx'
= senf of | = | yy!
\ cosp oL ) { wz'




senp ol + cos‘d ol p

<
L}

*e

wz' = cosp ol - senﬁ o (6
A variacao do momento angular serd, entdo:

/.3 = senﬁ cos g o2

L'=A-lsenp Y e cos‘é&fé

K 0

O teorema do momento angular fornece, portanto,

duas equagoOes diferenciais de segunda ordem:

33

mais

12 -i{—; (B ~ senfj cos £ X (2.22)
L3

- 12 M = seng o + 2 cosf o (é (2.23)
L3

Temos, assim, cinco equacdes diferenciais de segunda or

dem. Nota-se gque estas sf8o de dificil solugdo analitica.

virtude disso, serdo feitas integragdoesnuméricas de

casos.

Em

alguns
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1.3.4 Integracao numérica das equagdes do movimento

A integragdo numérica das equagoes deduzidas anterior-—
mente foi feita utilizando~se uma subrotina para resoclugao
de sistemas de equag¢des diferenciais de primeira ordem pelo
método Runge Kutta-Verner. A linguagem utilizada é o Fortran TY

e a subrotina utilizada é de biblioteca.

1.3.4.1 Transformag¢do do sistema de segunda ordem

num sistema de primeira ordem

Como foi mencionado, a subrotina integra sistemas de
primeira ordem. Como © sistema que se deseja integrar é de
cinco equacgdes de segunda ordem, o mesmo deve ser transforma

do num sistema de dez equagdes de primeira ordem.

Teremos assim:

ol

]
By
&
n
in
et

™
H
L«
%]
e
1]
b
~J]

Rk = Y3 XK = y8
y* = Y4 5/’* = Y9
2% = ¥s 2% = Yq9




onde:

E o sistema seri:

) S g
Y2 = Y7
Y3 = YS
Y4 =~ Yg
Y5 = Yqo
( 5
[] 1
Vg = 1 _ 12ﬂ I, %' _, cos (y, ) Ye ¥l
sen(yz) L3 g
N
/
o _ 12 4 I, vy
Yo = L3 + sen(yz) cos(y2) y62
Yg = - Ji" L SRR
Yo = - ﬁ (Yqg Iq %Gy TI,)

NI-
il
Gy

11 Y3 * Gy ¥4 + G3q Vs

T )
Y' = G2 ¥3 %Gy v, + Gy v

35




G13

2 .

Y3 * Gyz Yy t Gyy

(B + L)

¥s5
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(B - L)

(4C - B%) L(C + BL/2 4 202" ¢ sz + 12a) 2

1 {

{4C - BL)

(4C + BL)

(4c - 8% | (C - BL/2 + 1/4) 172

pmﬁz4C;éBZ
2 2
g = 2
(B - L) (B + L)
2(B/2 ~ L) 2(B/2 + L)
(B - L)2 (B + 12
para 4C = B2
28z
2 2
Y3 +Y4 +Y52
= cos(y1)
= —Sen(Y1) cos (y,)
= sen(y1) sen(yz)
= sen{y1)
= cos(y1) cos(yz)
= —cos(y1) sen(yz)
=0
= sen(yz)

= cos(yz)

-

(C + BL/2 + L2/4)1/2;
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1.3.4.2 Verificagdo da conservacdo da energia

Nota-se que o sistema de equagdes deduzido é bastante
complexo, o gue aumenta a possibilidade de erro na sua dedu-
cdo. Por essa razdo & feita, paralelamente & integracio numé
rica, uma verificagdo da conservacdo da energia do sistema.

Esse sistema é conservativo, pois foram despreza
das as forcas de atrito com a atmosfera, que seriam dissipa-

tivas,

A energia total do sistema & a soma da energia cinética

com a energia potencial:

E = energia total
T = energia cinética
P = energia potencial

A energia cinética pode ser escrita como:

]

onde T energia cinética de translac8o do baricentro

=3
H

energia cinética de rotacio
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TB=~IB——-—-VB—— e Tc=—;'T.I'.—v-v'
2 2
onde:
Vg € a velocidade do baricentro
w' T € a transposta de w'
V’G2 = 3.3 = }'("'2 + }'7*2 + z*?
. e 2
T =——§ (2 4 wy'2) = L (e + wy'?)
24
Dai:
¢ \
m Y w2 o %2 *2 I? 12 v 2
T = — | x Py + zZ + —— (wx 4wy)
2 L 12 /

T
(P - B) = f dF.dr
r
o
2 7 F o
j dr.dr = —L(dm r-,'3 T.dr = —-;.tdm f ___er
2
r — —
0 rO ¥
1 1 1
=--l,(dm('f‘—fg) = Ltdm('r—;" —E_-)
L/2
_ A ) Yy m A !
P Po-fl-((ro-—r}dm— L[(ro—?)dl
m -L/2
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onde:

B+1 + (L? + 2BL + 4C)1/2
B-L+ (L" - 2BL + 40)
2 2
— 12 -
%3-—L + (L -2%)L-+4q9
Convémn convencionar E =0
Dai:
PO + TO = 0
Po = —TO
— g . -
P =g (I5 - I) - T,
Por unidade de massa, teremos:
S 2 S k2 o e 2 2
%: R T - (WX'%2 4+ wy'2) = Te (2.26)
2 24
P TQ
—— — - =
s i (227
T Ta*2Z & an > %2 2 2 2
o . .Xo bde e o (wx | + Wy ') = T,
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Teremos assinm:

B ER = o (2.28)

Essa condicdo terj deser verificada durante a integra-
¢8o. Deve-se observar, porém, que & admitido um Pequeno auy-
mento ou diminui¢do gradual da energia, pois isso serda decor
rente da imprecisio go cdlculo, A amplitude dessa variac¢do

deverad ser pequena em relacdo 3 energia cinética do sistema.

1.3.4.3 Varidveis a serem calculadas

As varidveis que sdo integradas sdo os angulos o e e

viga, apds a integragdo sio calculadas outras variaveis que

descrevem melhor O movimento.

Essas varidveis sdo ag coordenadas polares do baricen-
tro da viga em relagao ao referencial inercial, e o dngulo
¥, que substitui o angulo of . Essas varidveis sio mostradas

nas figuras (3) e (4).
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7 *

Figura 3

Z*
Y&

/.
v

(terra)o

X*

Figura 4




42

Os angulos g e ¢ descreven, assim, a posicdo angular

da viga.

As equagbes que relacionam as variaveis integradas com

as variadveis apresentadas acima S80;
ik 1
a = \J- Xi—.-E + Y*z + 2*2

arc sen{z*/a)

S
H

D
]

arc cos(x*/a cos %)) para y* > 0

8= 27 -arc cos(x*/fa cos§)) para % <L)

Obs. : 0 £ 8 < 3600

o -M/2 -~ 6

-6
1

Além dessas varidveis € da energia por unidade de mas-
sa, sdo calculadas mais duas outras. 0O angulo p e a varidvel

W5, que sdo determinados pelas sequintes equagdes:
z!
P = arc cos(—_~)
a
Wy = wx'? o4 oyy!'?
Essas varidveis sio calculadas porque, como sers visto

posteriormente, sdo utilizadas para calcular os esforgos so-

licitantes na viga (momento fletor e forga de tracao).
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O programa fornece, portanto, como resultados, as se-

guintes variaveis:

1. angulo A

2. angulo Y

3. distancia a (coordenada polar)

4. angulo € (coordenada polar)

5. d@ngulo § (coordenada polar)

6. dngulo p

7. variavel W,

8. energia especifica total do sistema

9. as varidveis integradas (o, d,{ﬁ,(B, X%, x*, y¥*, y*,

0 ..
VA z‘x)

1.3.4.4 Comentdrios gerais sobre o programa

No presente estudo do movimento angular da viga, deseja
~Sse obter os valores das varidveis ao longo do tempo. Sendo
assim, 0 programa foi concebido de maneira a fornecer seus va
lores para um nimero de instantes especificado, espac¢ados por

um intervalo de tempo também especificado.

Os dados de entrada sdo, portanto, as condigdes ini-
ciais do caso que estd se estudando, o nimero de instantes

onde se deseja a solugdo, e o espacamento ou intervalo de
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tempo entre esses instantes.

O programa fornece como saida o valor das varidveis, ou

solugdo, para diversos instantes.

A listagem do programa encontra-se nos anexos, juntamen
te com o manual de utilizacado da subrotina de integracao uti

lizada. A linguagem utilizada é o FORTRAN IV.

1.3.4.5 Casos estudados

Os casos que foram estudados foram ag condigdes de equi
librio, ou seja, as posicdes de torque gravitacional nulo.Es
ses casos foram estudados quanto & sua estabilidade. Também
foram estudados mais dois casos. Um caso de oscilacdo no pla
no de orbita e o Gltimo caso, em que é dada uma rotacdo ini-
cial elevada em relagdo aoperiodo da Srbita. Para todos es-
ses casos, a Orbita inicial € a mesma. Essa Orbita & circu-
lar, com periodo de 105 minutos. O comprimento da viga estu-

dada &€ de 1 km.

Teremos assim, as seguintes condig¢Ses iniciais genéri-

cas:

T = 105 min (Fer'n’oalo da.  orbite)
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3 2
a = /-4 Y = 1434963240 km’/min?

472

a = 7372,58654 km
onde a, € a distdncia inicial entre o baricentro da vi-

ga e o centro da terra.
A velocidade inicial sera:

e e 441,1745469 km/min

To

Tomando o plano X*Y* como plano orbital inicial, e a po
sicdo (aO,O,O)*, como posigdo inicial, teremos as seguintes

condigdes inciais comuns a todos og casos estudados:

X * =a = 7372,58654 knm
o] o

Yo'l=0

Z_ ¥ =0

o

X * =

XO_O

Yo* = 441,1745469 km/min
zo* =0

Para cada caso, especificamente, teremos as seguintes

condigbes iniciais:
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Caso 1

Esse € o0 caso em que a viga estd permanentemente alinha

da com a Terra. Para isto, o periodo de sua rotacdo deve co-

incidir com o periodo da Orbita. Teremos assim:

% =T /2 rd d¢ = %ﬂ,= 0,05983986 rd/min
o)
(30 = ”... /2 rd éo = 0
A toleridncia adotada na integracdo é de 1%. ( Tolecénci o
e -”"”I’"c'“' o >'i"'u;- > Je entread 2 vore
Caso 2 e intege, )

Nesse caso, a viga est3d no Planc da 6rbita, mas seu eji-
X0 estd perpendicular 3 direcdo da terra. Tambeém aqui o pe-
riodo de sua rotacao deve coincidir com o periodo da Grbita.
Para se estudar a estabilidade desse caso, € adotado um pe-
queno desvio em relacdo a essa pPosigdo, de aproximadamente

3,59, Teremos assim:

o= T/2 + 0,01 = 71,5808 rd

£
0
I

/30= 'JT/2 j.'c{

il

& A rd/min
T
O

I}
o

fo

A tolerancia adotada & de 1%.
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Caso 3
Nesse caso a viga esti perpendicular aoc plano da &rbita,
As equacbes deduzidas nio funcionam quando £ = 09, por esse

motivo, e para se estudar a estabilidade, serd adotado um

desvio de aproximadamente 3,5©, Teremos assim:

0,06 rd (= 3,50)

™
[+]
|

A tolerdncia adotada &€ de 1%.

Caso 4

A viga estd no plano da drbita, mas nio alinhada com a
terra. Estudaremos o caso em que a viga faz um &ngulo de 450
com a direcdo da terra. Também aqui o periodo de sua rotacio
deve coincidir com o periodo da Srbita, Essa nao € uma posi-

¢do de equilibrio. Teremos assim:

o, T/4 rd '

o0

fl

W /2 rd ’
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&

0,05983986 rd/min

A toleréncia adotada é de 1%.

Caso 5

Nesse caso serd dada uma rotacdo inicial alta em rela-—
¢ao ao periodo da Srbita. O plano em que a viga gira inicial

mente estd a 30° do plano da“orbita. Teremos assim:

oly = T/2 d
do= T/3 rd
C.)/,’z 1 rd/min

A tolerdncia adotada € de 0,1%

Para melhor visualizar os casos estudados, estes sao

mostrados nas figuras (5), (6), (7) e (8).
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\y/ 3,5°
~
.
el ~
T~ ~ ~
! T~
== Caso 2
\E‘r"‘-____\ TE—y. =
I T
!
/
Caso 3 (& _ /
~ ! .
- / viga
\\ / ’/ﬂ/(/
~ .-
! & Caso 1
b 0 (terra)
~
e
3 {
B Ve
Caso 4 pa =
Laso & ™ Srbita
Figura 5
v
\ j
/’\ ; 3,50 Caso 3
N
0 (terra)

viga — )il\
l
[
{
{

\\\~plano orbital

A
\

Figura 6
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Orbita

0
b
Figura 7
e
e //
Wo //
0 /‘\300
o & =
plano orbital Caso 5
Vfga,
Figura 8

1.3.4.6 Resultados

Os resultados obtidos com as integragdes numéricas sio

apresentados na forma de grificos. Nesses gréficos sfo apre-

sentadas as varidveis que descrevem a posicado da viga e as

variaveis utilizadas no cdlculo dos esforgos, em funcido do
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tempo. Esses grdficos encontram-se no final da apresentacédo

dos resultados,

Resultados gerais:

Em todos os casos, a &rbita permaneceu circular e cons-
tante, ou seja, nao houve variacao significativa do raio da

Odrbita e nem do plano orbital tro o e

Lt I R e For N ) AT { A

Pode-se concluir com isso que, para uma viga de 1 km de

comprimento, ndc hd grande influéncia de sua forma e movimen

to angular na sua Srbita c " idade acim,
r /
a(t) = 7372,6 knm
8(t) = t. 360/105 graus

Ll
o

5(t)

Caso 1

Esse caso demonstrou ser estivel, ou seja, a viga perma
neceu alinhada com a terra. Os &ngulos Y e 2 Permaneceram
constantes. Para esse caso, dispensam-se og graficos, uma vez
que ndo houve nenhuma variacdo. Abaixo sdo colocados os valo

res das varidveis.
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Y(t) =0
ﬁ(t) = 90°
p(t) = 0

w2(t) = wx'? + wy'? = 0,0035808 rd/min?

Caso 2

Esse caso demonstrou ser instdvel. A partir da posicéo
inicial, a viga oscilou no plano da érbita. O periodo de osci
lagao, para um angulco de desvio de aproximadamente 3,59, foi
de cerca de 161 minutos. Deve-se observar porém gue esse pe-

ricdo depende fortemente do desvio inicial.

Foram levantados graficos para os &ngulos f e p,e para
a variavel W,y €m fungéo do tempo. O angulo ﬂ permanceu cons

tante.
ﬂ(t) = 900©

Os graficos levantados para esse caso sao os graficos

(1), (2) e (3),
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Caso 3

Esse caso também demonstrou ser instavel. 0 movimento
angular foi mais complexo que no caso 2. O angulo F3 desviou
-se rapidamente da posigdo inicial, atingindo 90© apds apro-
ximadamente 60 minutos, Tanto o angulo ﬂ quanto o dngulo ¢
apresentaram uma oscilagdo complexa. Os grdficos mostram que
a viga apresenta uma oscilacdo em torno da posigdo de equili
brio estdvel, que corresponde ao caso 1. Como nao ha amor-

tecimento, essa oscilagdo & permanente.

Foram levantados grdficos para os angulos ? : ﬁ ep e

para a variavel Wy Os graficos para esse caso sdo os grafi-

cos (4), (5), (6) e (7).

Caso 4

Esse caso teve comportamento essencialmente idéntico ao
caso 2. A viga oscilou no plano da orbita. A Unica diferenca
foi no pericdo e amplitude de oscilagdo. O periodo foi de a-
proximadamente 72 minutos. Foram levantados os graficos pa--

ra os dngulos % e p e para a varidvel w,.

O &ngulo ﬁ permaneceu constante.
P(t) = 90¢

Os gr&ficos para esse caso sdo os de nimero (8), (9) e

(10).
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Caso 5

Egsse caso demonstrou pouca variacdo em relacao a condi-
¢io inicial, ou seja, a rotagdo imposta a4 viga permaneceu
praticamente constante e, consequentemente, seu momento angu
lar também. Isso se explica pelo fato do torque gravitacio-
nal ser relativamente pequeno em relaclo ao momento angular,
e além disso o seu sentido se altera 4 medida em que a Orbi-

ta se desenvolve.

Para esse caso ndo & conveniente levantarem-se os gré-
ficos dos angulos o ,(3 e p, pois esses variam muito rapida
mente devido a rotagﬁo da viga e ndo descreveriam bem o seu
movimento angular. Para melhor descrever esse movimento, fo-
ram levantados os gradficos das componentes do momento angu-
lar por unidade de massa, em relacido ao referencial inercial.
A partir delas pode~se ter uma idéia da direcao da rotagdo

da viga ao longo do tempo.

O angulo p variou praticamente de 0° a 90©, e a varia-
vel w, permaneceu praticamente constante. Para efeito de cal

culo dos esforcos pode-se adotar para todo o instante:
wy, = 0,75 rd/min?

0s grificos para esse caso sd@c os graficos (11), (12) e

{(13).

O momento angular especifico € calculado pelas seguin-

tes equacgdes:



Xe

ye

ze

= % (ﬁ'cos()é -~ sene{ cosp senf o¢ )

Lz

Tz-—(ﬁ.senfx-cos&. cos[g senp ol )

2

—%‘—2— senzlé ol
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Expressédo Final do Carregamento Eguivalente

Sendo conhecidas as componentes do carregamento equiva-

lente, podemos escrever sua expressao final para uma viga.

Reescrevendo a equagéo

afc = dﬁa -~ dm (56 =)

(t.14) na forma diferencial:

&)

Convém representar o carregamento egquivalente no siste-

ma movel, para depois calcular os esforgos solicitantes.

dra =

)

g

g

X

}

-

0
T o= —-%-%} iy y' .dl
L z' + 1 )
(;'. f3) = Tﬁ w?
/e
(o) wy'l
0 = —wx 'l
1) | 0
9 . o - O Veter 1I e
TSR 1 P |
A, A T 1 ) F-‘\..- 2
[ wx!' wz'\
Wyl Wzl
1z
| w2 p
+ wz'?




66

1' w? = 0 Ak
wx'? + wy'? + wz'zf
bal:
e 1 1 l\
wy' + wx WZ
E&' = 1 —wx' + wy' wz'

(‘:le - wy' wz' (_Yl]
-—hg _ o ' i ; _ i : - _}:_ﬂ_ ; }
L' = A wy' + wx' wz'| =N ' = -4+ I, | x |
1\ V:TZ' L 0 :]
. 1
Dai: wy' + wx' wz' = - 12 % LA
L3
~wx' + wy' wz' = - L % £ 85
LB

A expressdo final do carregamento equivalente ser&, por

tanto:
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[(afe * )
X
)
dfc’ = | afc.’
c c, l
1
L dfc )
dfcxl T Lt._I_E_. x' r-—3 g ::Il:'_:l = 12]'_;3:[2 1 dl (2.29)
LN A
¢ Y
are b=~ g | F3 e 1B g el (2300
i \ /
I m r -3 ) ] 12 12
afe,' = F | -4 r e ]) +% (2 I,+I,) + 1owx'? +wy'?) | dl
LY

(2.31)

As componentes dfcx' e dfcy‘ sao perpendiculares a viga
e nota-se que estas dependem apenas da posicao da viga, en-
guanto gque a componente dfcz', gue € paralela a viga, depen-

de da posigdo e da velocidade angular.

2, CALCULO DOS ESFORCOS NA VIGA

Para o calculo das tensdes na viga, sera utilizada a te

oria das vigas delgadas.

Os esforcos solicitantes que serdo considerados para es
se cdlculo serdo o momento fletor e a forga normal ou de tra

cao.



2,1 Ccalculo da Forga de Tragdo
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Uma vez calculado o carregamento equivalente, pode-se

calcular facilmente a forcga de tracdo ao longo da viga. A Vi

ga nao possui nenhum vinculo e portanto a forga de tragao

numa secdo serd a integral do carregamento na direcio longi-

tudinal desde a secdo em questdo até uma das extremidades:

Retomando a equacdo (2.31), teremos:

/
o n "'3 1 1
dfcZ -T\-—LL r (z +l)+-%— (z .I1+IZ)+
‘\r

+ 1 (wx'? +wy'2)) al

Efetuando-se a integral, utilizando-se as relagoes

(2.14) e (2.15), teremos:

m
L

(
P = e ~L((I3 z'+I4)+—% (z' I1+12)(—]5--—s)+
S

172 A
+ wWx'?2 + wy'?) (—7f_ - s8?)
/
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onde:
o L [ a.am __s.m )
3" ac-) (Ccrmrz 2 crrs )2
para 4C # B2
I, - ey, e o e (2.32)
2 {8 + B/2) (B + L)
o 1 ( 2BS + 4C _ (4C + BL) ]
1T ) (cems s’ cemy2 /0
para 4C # 82
14 = i {2s « B/ZL = (2n + B; para 4C = B2 {(2.33)
2 (S + B/2) (L + B)

2.2 Calculo do Momento Fletor

Analogamente a forca de tragdo, o momento fletor numa
secdo & calculado integrando-se O momento do carregamento e-
quivalente em relacdo & segdo em questado desde a mesma até

uma das extremidades.

N dfc?
KT'
S B
S :x
\§{ viga
segao S 7 ‘$;



=
M= (1 ~ S) xdfc
S
{ 0 \ /dfc'\
X
. . . |
1LY = @Y = 0 dfc' = dfcy'
Kl—S} [dfCZ'J
y
-dfc )
N R y
(1'* = s') xdfe' = (1 - 8). dfcx’
\ 0

M I
X

E
- 1 - 8) dfe !
[ a-s am,
S
E

f’ (1 - s) dch'
S

Retomando as equagOes (2,29) e (2.30), teremos:
L./2
m ( 3 I 12 . 1 1 1
| L0 "'__ - 42 -
T e
g \
L/2 5
. mo ~3 I 17 i aro) Wi
My = —-ﬂ T X rT - - 3 (1 -s5)dl
S E /

Efetuando«~se as integrais:
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i
. ( 1 (L2 SL _ $%
Mb S S S A \(14‘13 8) -~ (g~ -7 *+ 7"
- 2 Iz(La_SL2+_s_3_)\‘
L3 24 8 6 ')
m I, 1z sL  8&?
M= - Y xT [(I,-Iy S) --———~(--— -8, 5
Y L L '8 2 2
_ﬂi(z_ﬁ_g)‘
13 24 8 6 ' |

Essas s8o as duas componentes do momento fletor. Uma na

direcdo do eixo x' e outra na direcdo do eixo y'.
0 momento fletor total sera , em SR
———————
|Ml= A/ M o+ M2
y X Y

/Y!C}‘ ” 4 5 - n rr me 5 tor t_l'. o VT o [« WY

20 T noda. estiver Tao Alra. & +f"""ﬁ—, tecemos

L 8 2 2

M = DA [(I4~I3S) _L(Lz_%+g) -

Como foi dito antes, as componentes do carregamento e~
quivalente gue sdo perpendiculares a viga s6 dependem da po-
sicdo da mesma. Isso faz com gue o momento fletor também de-—
penda apenas da posigdo da viga. Essa posigdo pode ser des-—

crita pelos angulos p e n, mostrados na figura (10} .
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} Z' (= eixo da viga)

!

I\

e
Z \\\p ///Jéi/o (terra)
\

> |
(baricentro da B |
viga) Ry e !
\ --\L y]
x! — PN i —
/ n \\ | 7\
- _ N :&_
= N Y
A
/{/
Xl
Figura 10
Teremos, entao:
z' = a cosp
x'? + y'? = a? sen?p cos?n + a? sen’p sen’n = a‘sen’p

Portanto, teremos o momento fletor como funcdo uUnica do
dngulo p, que & o angulo entre o eixo da viga e a direcgdo de
finida pelo baricentro da mesma e a terra, e da distancia en

tre a viga e a terra.
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Retomando a equacdo da forga de trag¢dao, nota-se que u-

ma parte também depende apenas da posicdo da viga.
( )
T= 2 -y (I e e g gt e e R G )
3 4 1 2
L | I 2 )
A /
2 er ot
+m (Wwx'Ziwy'?) OEL—-é—J ' ey ,
& fAes ViRE
A parcela que depende apenas da posigdo é a forga de

tracdo gravitacional, enguanto que a parcela que depende da

velocidade angular & a forga de tragdo centrifuga:

T = Tg + ch (2.34)
- 4
Tg = m;f@ ~I, a cosp - I, + (a cosp I, + I,)
L
_,_s]
(5 )'
2
ch =m (wx'? + wy'?) (—E-- §—)
4 L

pPodemos escrever esses esforgos por unidade de massa.Te
remos assim as equagdes do momento fletor especifico, tra-

cdo gravitacional especifica e tracdo centrifuga especifica,
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Rt | g 2, ‘o
1 S 53 )
=2 IZ ( - + ) a senp
2¢ L8 L6 (2.35)
( .
Toa = -HvL K--I3 a cosp-I, + (acosp I+ Iz)(?- S))
(2.36)
- T2 12 RIS s?
Toge = (R + SN e =g ) (2.37)

W' + wy'? =W,

Para os esforcos que dependem apenas da posigdo da viga,
foram levantados graficos, em fungdo da secao, para diversas
posigbes angulares, ou seja, para diversos dngulos p. Esses
graficos sdo validos para O caso que esta sendo estudado, ou
seja, distdncia de 7372 km entre a viga e o centro da terra

e viga com 1 km de comprimento,

Verifica-se, pelos mesmos, gue 0S8 esforcos maximos ocor
rem sempre na secao central da viga. sendo assim, foram le-
vantados graficos desses esforgos para a secao central, em

funcio do dngulo p.
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22 Esforgos Solicitantes Maximos para os

Casos Estudados

Os esforgos solicitantes apresentados sdo o momento fle
tor, a tracdo gravitacional e a tracf3o centrifuga, todos e-

les por unidade de massa da viga.

Para cada caso sd&o apresentadas duas condigdes. A condi
c&o em gue o momento fletor € mdximo e a condigdo em gue a
tragao gravitacional e a tracgio centrifuga sao maximas. Co-
mo pode ser observado no grafico (17), a primeira condicio
ocorrerd quando o dngulo p € o mais préximo de 30° ou o mais
proximo de 90°, E pelo grdfico (16), observa-se que a condi-
gdo de maxima tracdo gravitacional ocorrerd quando p atingir
seu valor mais baixo. Observa-se, pelos grdficos levantados
para o angulo p e para a variavel W, Nos casos estudados, que
w, Sempre atinge seu miximo quando p é minimo. E consequente
mente, a condigdo de mixima trac¢do gravitacional ocorre si-
multaneamente com a condigao de maxima trac¢do centriguga. &
por esse motivo que se consideram essas duas condigdes como

uma so.

As condi¢Ges de maximos sdo apresentadas na forma de ta
belas. Foram utilizados os graficos (17) e (16) para a deter
minacao do momento fletor e tracao gravitacional, e a equa-
¢do (2.37) para o cadlculo da tragdo centrifuga, além dos gra
ficos levantados para o dngulo p e para a varidvel Wo em

funcdo do tempo, para cada caso,




Caso 1

No caso 1 o momento fletoré sempre nulo e a tracao &

constante. Portanto é uma condigdo Unica.

Tabela 1
tempo (min) -
p (graus) 0
y (graus) 0
¢ (graus) 90
Me (m? /<) 0
-4
Tge(m/sz) DUSER I
wz(rd/minz) 0,0035808
2
Tpe (M/87) 0,000248667
( L wx'?2 + wy'? )
Caso 2
Tabela 2
tempo (min) 35 40
p (graus) 30 0
? (graus) 30 0
b (graus) 90 90
M_ (m? /57 1,45, 107° 0
-4 -4
Tge(m/sz) 1,53. 10 2,5.10
wz(rd/minz) 0,0225 0,028
che(m/sz) 0,0015625 0,001944
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0 momento fletor atinge seu maximo no instante t=35 mi-

nutos, enquanto que a tragdo € maxima para t = 40 minutos.

Observacdo: Observa-se, pelos graficos (2) e (3), que
essas condicdes se repetem para outros instantes, embora se-

jam apresentados apenas dois.

Caso 3

Tabela 3
tempo (min) 107
p (graus) 34
? (graus) : 185
s 6{graus) 55
M_ (m?/s?) 1,44 . 10~°
|
2
Tge(m/s ) L 1,287 , 10
w2(rd/min2) ! 0,0212
2
che(m/s ) L 0,001472

Nesse caso a condigdo de momento fletor maximo coincide

com a condicio de tracdo mdxima, pois p minimo & 34°.




Caso 4

QObs.:

Tabela 4

tempo (min) 9 WS
p (graus) 30 0
¥ (graus) 30 0
ﬁtgraus) a0 90
M_ (m*/s?) 1,45 . 10”° 0

-4 -4
Tge(m/sz) 1,53 .10 2,5. 10
wz(rd/minz) 0,016 00,0177

2

che(m/s ) 0,001111 0,00123
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Observa-se pelos graficos (9) e (10), gue essas

condigOes se repetem para outros instantes.

Caso 5

. 0,052083

Tabela 5
- tempo (min) 0 71
L p(graus) 30 0
¥ (graus) 0 0
ﬁ(graus) 60 90
M (m?/5?) 1,45, 10”° 0
i . i | ~4d
I Tge(m/sz)‘ 1,53 . 10 L 2,5. 10
wz(rd/minz) 0,75 0,75
2
T_go (M/5?) 0,052083
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2.4 Cadlculo das TensOes na Viga

Conhecendo-se os esforgcos ac longo da viga, podemos cal
cular o valor da maxima tensdo, E importante observar, po-
rém, que, como fol mencionado na introducao desse trabalho,
nio serdo considerados os fatores té&rmicos nesse calculo. Es
ses fatores sfo de grande importdncia caso exista um gradien
te térmico ao longo da secgdo transversal da viga, uma vesz
gque isso provocaria uma variacdo no moédule de elasticidade
ao longo da segdo transversal. O valor do médulo de elastici
dade aoc longo da segdo transversal & um fator gue influi mui
to as tensdes decorrentes tanto do momento fletor como da
forca de tracgdo. Essa &, portanto, uma das hipdteses adota-

das no calculo final das tensoes.

Hipdtese 8. O mSdulo de elasticidade & constante em toda a

viga.

Todos os calculos feitos até aqui ndo necessitaram le-
var em conta a forma e as dimensdes da segdo transversal e
nem a massa da viga. Para se calcular as tensdes serad necessa
rio adotar um determinado perfil e uma densidade para o mate

rial da viga.

A viga para a qual serdc calculadas as tensdes serd uma
barra circular, com difmetro de 10 cm. O material terd densi

dade de 7000 kg/m® (aproximadamente a densidade de um acgo).

As tensdes serdo calculadas pelas seguintes férmulas da




teoria das vigas delgadas:

G
M W

T
Tty
(T: G—M-l- G’T

onde:
Tp = tensio de tracdo devida ac momento fletor
Tp = tensdo de tracado devida & forga de tracéao.
("= tensdo total de tragdo

momento fletor

=
I

T = forga de tragao

W = modulo de resisténcia da secao

drea da secdo

i
I

Para a barra em estudo, teremos:
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1000 m

B
I

7000 kg/m?

R
il

m=S L F = 54978 kg

As tensOes para as condigdes listadas para cada caso nas

tabelas (1) a (5) serdo, portanto:

Caso 1
M=K, m=0 — G =0
T= (T +T_.)m= (2,5..10"% 4 2,486. 107%). 54978
ge cfe fi i : )
T = 27,41 N = 2,797 kgf
Tp = — = 227 _ 0,03561 kgf/cm?
s 78,54
T = 0p + Gy = 0,03567 kgf/cm?
Caso 2

Condigao de momento fletor maximo:

1,45.107% | 54978 = 0,07972 Nm =

=
1
=
=
1

[}

0,81345 kgf.cm
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T,y = M 0,008286 kgf/cm?
W
T = (T__ + T .).m= (1,53. 1072 « 15,625. 10~%).52978
ge cfe’” s ! ' i
T = 94,3 N = 9,624 kgf
T 2
GTI = —— = 0,1225 kgf/cm
s

O = Q’M + O"T = 0,008286 + 0,1225 = 0,1308 kgf/cm?
0= 0,1308 kgf/cm?

Condigdo de forc¢a de tragioc maxima:
M=0 — . =20

M

120,6 N = 12,3 kgf

H
|

CTT = 0,1567 kgf/cm?

0 = 0,1567 kgf/cm?

Caso 3

M = 0,07916 Nm = 0,80784 kgf.cm
CTM = 0,008228 kgf/cm?

T = 88 N = 8,98 kgf




Q‘T = 0,11433 kgf/cm?

q = G?M + Jp = 0,12256 kgf/cm’

Caso 4

Condicdo de momento fletor maximo:

M = 0,81345 kgf.cm
(TM = 0,008286 kgf/cm?
T = 7,1 kgf

Tp = 0,090285 kgf/cm?

0= qp + Ty = 0,098571 kgf/om?

Condicdo de forca de tracdo maxima:

=
[}

8,3 kgf
Tp = 0,1057 kgf/cm?

T = 0,1057 kgf/cm?

Caso 5

Condigdo de momento fletor méximo:

87
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M = 0,81345 kgf.cm
O’M = 0,008286 kgf/cm?
T = 293 kgf

Tp = 3,7311 kgf/cm?

g = 634 + qﬁf = 3,7394 kgf/cm?

Condigao de forca de trag¢do mdaxima:

H
I

= 293,58 kgf

O’T = 3,738 kgf/cm?

5

3,738 kgf/cm?

3. COMENTARIOS FINAIS

As tensCes obtidas no exemplo estudado sdo extremamen-—

te baixas.

Verifica-se que na maloria dos casos a tensfo devida &
tragdo centrifuga & predominante sobre as demais, A tensao
devida ao momento fletor &€ extremamente baixa em todos os

casos e pode ser desprezada frente 3s demais,
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Lembrando, porém, que os esforgos, e portanto as ten-
sbes, sao proporcionais a massa da viga ou estrutura, as ten
sbes numa estrutura pederiam ser significativamente mais al-
tas, caso nessa estrutura apenas uma pequena parcela de sua
massa ou material contribuisse na resisténcia mec&nica. 0
momento fletor, gue no caso da viga revelou-se muito baixo,
pode tornar-—se importante numa estrutura com cutra geometrig
como por exemplco numa estrutura triangular. Numa estrutura
desse tipo, o momento fletor dependeria nao so da posicdo da
mesma, como também da sua velocidade angular, pois ele teria

uma componente centrifuga.
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ANEXQOS

Listagem do programa utilizado para a integracio numéri

ca das equagdes do movimento da viga.

C SUBROTINA QUE DESENVOLVE 0 SISTEMA DE EQUACOES.
SUROUTINE FCN(N,T,Y,YD)
INTEGER N
REAL Y(N), YD(N), T, L, MI, SA, SB, CA, CB, G(3,3)
REAL YX, YL, ZL, C6, C7, AP
DOUBLE PRECISION It, I2, C1, C2, C3, C4, C5, A, B, C
C ATRIBUICAO DE VALORES
L=1
MI = 1434963240
C CALCULO DE COEFICIENTES
SA=SIN(Y(1))
SB=SIN(Y(2))
CA=CcoS(y(1))
CB = C0S(Y(2))
G(1,1)=CA
G(1,2) = ~SA*CB
G(1,3) = SA*SB
G(2,1) = SA
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20

G(2,2) = CA*CB

G(2,3) = -CA*SB

6(3,2) =SB

G(3,3) =CB

XL = G(1,1)*Y(3}+G(2,1)*Y(4)

YL =G(1,2)*Y(3)+6(2,2)*Y(4)+G(3,2}*Y(5)

ZL = G(1,3)*Y(3)+6(2,3)*Y(4)+G(3,3)*Y(5)
C=Y(3)*Y(3)+Y(4)*Y(4)+Y(5)*Y(5)

A = DSQRT(C)

B = 2%ZL

C1=4%C- B*B

C4 = B+l

C5 = B-L

QUANDO C1 <108, 0 ANGULO P E MENOR QUE #.F4 GRAUS
IF(C1.GT.18B) GO TO 14

11 =2/(C5%C5)-2/(C4*C4)

12 = 2*(B*@,5-L)/(C5*C5)-2*%(B*B.5+L)/(C4*C4)

GO TO 24

C2 = DSQRT(C+B*L*@,5+L*L*f.25)

C3

il

DSQRT(C~B*L*@.5+L*L*f#.25)
I1=2%(C4/C2-C5/C3)/Ct

12 = ((4*C+B*L)/C3-(4*C+B*L)/C2)/CH
€6 =MI/L

C7=12%C6*12/(L*L)

1l

CALCULO DAS DERIVADAS

YD(1) =Y(6)
YD(2) = ¥(7)
YD(3) = Y(8)
YD(4) = Y(9)

Yo(s)=vy(018)
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YD(6) = (-C7*XL-2*CB*Y(6)*Y(7))/SB
YD(7) = C7*YL+SB*CB*Y(6)*Y(6)

YD(8) = ~COB*(Y(3)*I1+G(1,3)*I12)

YD(9) = -C6*(Y(4)*I114G(2,3)*12)
YD(10) = -C6*(Y(5)*I1+G(3,3)*I2)

RETURN

END

SUBROTINA PARA CALCULO DE VARIAVEIS
SUBROUTINE RESULT (Y,N,K,FI,AP,A,DL,TT,W2,E,TH,150)
INTEGER N,K

REAL Y(N),FI,XL,YL,ZL,DL,TT,AP, WX, WY, W2
REAL T,P,E,G(3,3),SA,SB,CA,CB,L,MI,T@
DOUBLE PRECISION A,B,C,C1,C2,I5,I50
ATRIBUICAOG DE VALORES

L=1

MI=143496324§

CALCULO DE COEFICIENTES

SA=SIN({Y(1))

SB=SIN(Y(2))

CA=COS(Y(1))

CB=COS(Y(2))

G(1,1)=CA

G(1,2)=-SA*CB

G(1,3)=SA*SB

G(2,1)=SA

G(2,2)=CA*CB

G(2,3)=-CA*SB

G(3,2)=SB

G(3,3)=CB

XL=G({1,1)*Y(3)+6(2,1)}*Y(4)
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YL=G(1,2)*Y(3)+G6(2,2)*Y(4)+G(3,2)*Y(5)
ZL=6G(1,3)*Y(3)+G(2,3)*Y{(4)+G(3,3)*Y(5)
C=Y(3)*Y(3)+Y(4)*Y(4)+Y(5)*Y(5)
CALCULO DE A (COORDENADA POLAR)
A=DSQRT(C)

B=2*ZL

CALCULO DE DELTA (COORDENADA POLAR)
DL=Y(5)/A

DL=ARSIN(DL)

CALCULO DE TETA (COORDENADA POLAR)
TT=Y(3)/(A*COS(DL))

TT=ARCOS(TT)

IF (Y(4).LT.#) TT=6,2831853p7-TT
CALCULO DA VARIAVEL W2

WX=Y(7)

WY=Y(6)*SB

W2=WX*WX+WY*HY

CALCULO DO ANGULO FI
FI=Y(1)-1.579796237-TT

CALCULO DA ENERGIA
T=B.5*(Y(8)*Y(8)+Y(9)*Y(9)+Y(18)*Y{18))+L*L*W2/24
C1=B+L+DSQRT(L*L + 2*B*L+4*C)
€2=B-L+DSQRT{L*L ~ 2*¥B*L+4%*C)
15=DLOG{DABS(C1/C2))

NA CONDICAO INICIAL K=p E PORTANTO E=f
IF (K.GT.#) GO TO 1B

I50=15

T=T

P=MI*(I58-15)/L-T@

E=T+P
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CALCULO DO ANGULO P
AP=ZL/A

AP=ARCOS (AP)

RETURN

END

PROGRAMA PRINCIPAL

INTEGER N,NW,IND,NI,K,IER,I

REAL TOL,TI,T,L,MI,¥{(18),WX,WY,W2,TEND,C(24)
REAL FI,DL,TT,AP,W2,E,TQ

DOUBLE PRECISION A,I58

FORMATOS DE IMPRESSAQ

FORMAT (IHE)

FORMAT (1X,10E12.5)

FORMAT (1X,5HIND=§,15,7HBPIER=F,I5)

EXTERNAL FCN

INICIALIZACAO DE PARAMETROS DA SUBROTINA DVERK
N=18

NW=1p

TOL=Q.R1

IND=1

ESPECIFICACAO DO NUMERO DE INSTANTES E INTERVALO ENTRE
ELES

NI=t2g

TI=3.5

CONDICOES INICIAIS (CORRESPONDE A0 CASO 4)
T=0

Y(1)=0,785398164

Y(2)=1.578796237

Y(3)=7372,58654
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Y(4)=90

Y(5)=p

Y(6)}=0.05983986007

Y(7)=P

Y(8)=p

Y(9)=441.1745469

Y(10)=p

CALCULA YARIAVEIS INICIAILS

CALL RESULT (Y,N,K,FI,AP,A,DL,TT,W2,E,T@,I50)
IMPRIME VARIAVEIS E CONDICAO INICIAIS
WRITE(6,181) T,¥(2), FI, AP,A,DL,TT,W2,E
WRITE(6,181) (Y(I),I=1,18)

WRITE(6,188)

TEND=T

CALCULA NI-1 SOLUCOES

DO 18 K=2,NI

TEND=TEND+TI

CHAMA A SUBROTINA DE INTEGRACAO

CALL DVERK (N,FCN,T,Y,TEND,TOL,IND,C,NW,W,IER)
CALCULA VARIAVEIS A PARTIR DA SQLUCAD

CALL RESULT (Y,N,K,FI,AP,A,DL,TT,W2,E,T@,I50)
IMPRESSAO DE RESULTADOS

WRITE(6,181) T,Y(2),FL,AP,A,DL,TT,W2,E
WRITE(6,181) (Y(I),I=1,10)

WRITE(6,128)

VERIFICA SE HOUVE ERRO

IF (IND.LT.®.0R.IER.GT.B) GO TO 28

CONTINUE

WRITE (6,118) IND, IER

STOP
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END

Esse programa utiliza a subrotina de biblioteca "DVERK".

0 manual de utilizac¢8o dessa subrotina se encontra em anexo.




5L ROUTINE NAME

IRPOSE

3AGE

RGUMENTS

FCN

XEND

TOL

- DVERK - A~9
_ DIFFERENTIAL EQUATION SOLVER = RUNGE
KUTTA-VERNER FIFTH AND SIXTH ORDER METHOD

- CALL DVERK (N,FCN,X,Y,XEND,TOL,IND,C,NW,W,IER)

- NUMBER OF EQUATIONS. (INPUT)
- NAME OF SUBROUTINE FOR EVALUATING FUNCTIONS.
{INPUT)
THE SUBROUTINE ITSELF MUST ALSO BE PROVIDED
BY THE USER AND 1T SHOULD BE OF THE
FOLLOWING FORM
. SUBROUTINE FCN(N,X,Y,YPRIME)
REAL Y(N),YPRIME(N)

FCN SHOULD EVALUATE YPRIME(l),...,YPﬁIME(N)

GIVEN N,X, AND ¥(1) e X (N) YPRIME (I)
15 THE FIRST DERIVATIVE OF Y(T) WITH
RESPECT TO X.

FCN MUST APPEAR IN AN EXTERNAL STATEMENT IN
THE CALLING PROGRAM AND N,X,Y(1), .00 ¥ (N
MUST NOT BE ALTERED BY FCN. .

— INDEPENDENT VARIABLE. (INPUT AND OUTPUT)

ON INPUT, X SUPPLIES THE INITIAL VALUE.

ON OUTPUT, X IS REPLACED WITH XEND UNLESS
ERROR CONDITIONS ARISE. SEE THE DBES-
CRIPTION OF PARAMETER IND.

— DEPENDENT VARIABLES, VECTOR OF LENGTH N.

(INPUT AND QUTPUT)

ON INPUT, Y{(1) .-« sY(N) SUPPLY INITIAL
VALUES.

OoN OUTPUT, ¥(1),.--,¥(N) RRE REPLACED WITH
AN APPROXIMATE SOLUTION AT XEND UNLESS
ERROR CONDITIONS ARIGE. SEE THE DES-
CRIPTION OF PARAMETER IND.

_ VALUE OF X AT WHICH SOLUTION IS DESIRED.

(INPUT)
XEND MAY BE LESS THAN THE INITIAL VALUE OF

X.
- TOLERBNCE FOR ERROR CONTROL. (INPUT)

THE SUBROUTINE ATTEMPTS TO CONTROL A NORM
OF THE LOCAL ERROR IN SUCH A WAY THAT THE
GLOBAL ERROR 15 PROPORTIONAL TO TOL.
'MAKING TOL SMALLER;IMPROVES ACCURACY AND
MORE THAN ONE RUN, WITH DIFFERENT VALUES
OF TOL, CAN BE USED IN AN ATTEMPT TO

IN THE DEFAULT CASE (IND=1) , THE GLOBAL
ERROR 1S
MAX(ABS(E(l)).--.,ABS(E(N)))
WHERE E(K)=(Y{K)—YT(K))/MAX(l.ABS(Y(K)))
yT(K) IS THE TRUE SOLUTION, AND
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y(X) IS THE COMPUTED SOLUTION AT XEND, .10
. FOR K=1,2,...,N.
OTHER ERROR CONTROL OPTIONS ARE AVAILABLE.
SEE THE DESCRIPTICN OF PARAMETERS IND AND
C BELOW.
IND - INDICATOR. (INPUT AND OUTPUT)

ON INITIAL ENTRY IND MUST BE SET EQUAL TO

EITHER 1 OR 2.

IND = 1 CAUSES ALL DEFAULT OPTIONS TO BE
USED AND ELIMINATES THE NEED TO SET
SPECIFIC VALUES IN THE COMMUNICATIONS
VECTOR C.

IND = 2 ALLOWS OPTIONS TO BE SELECTED. 1IN
THIS CASE, THE FIRST 9 COMPONENTS OF C
MUST BE INITIALIZED TO SELECT OPTIONS AS
DESCRIBED BELOW.

THE SUBROUTINE WILL NORMALLY RETURN WITH
IND = 3, HAVING REPLACED THE INITIAL VALUES
OF X AND Y WITH, RESPECTIVELY, THE VALUE
XEND AND AN APPROXIMATION TO Y AT XEND.

THE SUBROUTINE CAN BE CALLED REPEATEDLY WITH

- NEW VALUES OF XEND WITHOUT CHANGING ANY

OF THE OTHER PARAMETERS.

THREE ERROR RETURNS ARE ALSO POSSIBLE, IN
WHICH CASE X AND Y WILL BE THE MOST
RECENTLY ACCEPTED VALUES.

IND = -3 INDICATES THAT THE SUBROUTINE WAS
UNABLE TO SATISFY THE ERROR REQUIREMENT.
THIS MAY MEAN THAT TOL IS TO0 SMALL.

IND = -2 INDICATES THAT THE vALUE OF HMIN
(MINIMUM STEP-SIZE) IS GREATER THAN HMAX
(MAXIMUM STEP-SIZE), WHICH PROBABLY MEANS
THAT THE REQUESTED TOL (WHICH IS USED IN
PHE CALCULATION OF HMIN) IS TOO SMALL.

IND = -1 INDICATES THAT THE ALLOWED MAXIMUM
NUMBER OF FCN EVALUATIONS HAS BEEN
EXCEEDED. THIS CAN ONLY OCCUR IF OPTION,
c(7), AS DESCRIBED BELOW, HAS BEEN USED.

C - COMMUNICATIONS VECTOR OF LENGTH 24. (INPUT IF

IND.NE.l, AND OUTPUT). .

c IS USED TO SELECT ODTIONS AND TO RETAIN
INFORMATION BETWEEN CALLS. THE USER NEED
NOT BE CONCERNED WITH THE FOLLOWING
DESCRIPTION OF THE ELEMENTS OF C WHEN
'DEFAULT OPTIONS ARE USED (IND=1)}.
HOWEVER, WHEN IT IS DESIRED TO USE IND=2
AND SELECT OPTIONS, A BASIC UNDERSTANDING
OF DVERK IS REQUIRED. THE FOLLOWING

- PARAGRAPH DESCRIBES, BRIEFLY, THE BASIC
TERMS. FOR MORE DETAILS, SEE THE DOCUMENT
REFERENCE.

DVERK ADVANCES THE INDEPENDENT VARIABLE
¥ ONE STEP.-AT A TIME UNTIL XEND IS
REACHED. THE SOLUTION IS COMPUTED AT
XTRIAL = X+HTRIAL ALONG WITH AN ERROR
FESTIMATE EST. IF EST IS 1ESS THAN OR
EQUAL TO TOL (SUCCESSFUL STEP), THE STEP
1S ACCEPTED AND X IS ADVANCED TO XTRIAL.
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IF EST IS GREATER THAN TOL (FAILURE) A-1l
HTRIAL IS ADJUSTED AND THE SOLUTION IS
RECOMPUTED. HMAG = ABS (HTRIAL) IS NEVER
ALLOWED TO EXCEED HMAX NOR 1s IT ALLOWED
TO BECOME SMALLER THAN HMIN. THE FIRST
TRIAL STEP IS HSTART. DURING THE
COMPUTATION, A COUNTER (Cc(23)) I5
INCREMENTED EACH TIME A TRIAL STEP FAILS
TO PROVIDE A SOLUTION SATISFYING THE ERROR
TOLERANCE. ANOTHER COUNTER (c{22)) IS
USED TO RECORD THE NUMBER OF SUCCESSFUL
STEPS. AFTER A SUCCESSFUL STEP, C(23) IS
SET TO ZERO.

OPTIONS. IF THE SUBROUTINE IS ENTERED WITH

IND=2, THE FIRST 9 COMPONENTS OF THE
COMMUNICATIONS VECTOR MUST BE INITIALIZED
BY THE USER. NORMALLY THIS IS DONE BY
FIRST SETTING THEM ALL TO ZERO, AND THEN
THOSE CORRESPONDING TO PARTICULAR OPTIONS
ARE MADE NON-ZERO.

— ERROR CONTROL INDICATOR.

THE SUBROUTINE ATTEMPTS TO CONTROL A NORM
OF THE LOCAL ERROR IN SUCH A WAY THAT THE
GLOBAL'ERROR?IS'PRQPORTIONAL TO TOL.
THE DEFINITION OF GLOBAL ERROR FOR THE
DEFAULT CASE (IND=1) 15 GIVEN IN THE
DESCRIPTION OF PARAMETER TOL. THE DEFAULT
WEIGHTS ARE 1/MAX(1,ABS(¥(K)))- WHEN IND=2
1S USED, THE WEIGHTS ARE DETERMINED
ACCORDING TO THE VALUE OF c(l).
IF C(1)=1 THE WEIGHTS ARE 1

(ABSOLUTE 'ERROR CONTROL)

<F C(1)=2 THE WEIGHTS ARE 1/ABS (¥ (X))

FOR K=1'-2'— .. 'N.
(RELATIVE ERROR CONTROL)

. “IF C(1)=3 THE WEIGHTS ARE

l/MAX(ABS(C(z)),ABS(Y(K)))

“FOR K=1,2,.--,N.

_ (RELATIVE ERROR CONTROL, UNLESS
ABS (Y(K)) IS LESS THAN THE FLOOR
VALUE,ABS (C(2)))

1F¥ C(1)=4 THE WEIGHTS ARE

1/MAX(ABS(C(K+30)),ABS(Y(K)))

FOR K=1,2,...,N.
(HERE INDIVIDUAL FLOOR VALUES

ARE USED)

TN THIS CASE, THE DIMENSION OF C
MUST ‘BE ‘GREATER THAN OR EQUAL TO
“N+30 AND C(31), Cc(32),---,C(N+30)
MUST BE INITIALIZED BY THE USER.

IF c{1)=5 THE WEIGHTS ARE 1/ABS (C(K+30))

FOR k=1,2,...,N.

TN THIS CASE, THE DIMENSION OF c
MUST BE GREATER THAN OR EQUAL TO
N+30 AND C{31), C(32),...,C(N+30)
MUST BE INITIALIZED BY THE USER.
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j . FOR ALL OTHER VALUES OF C(1), INCLUDING  a.32
C(1)=0 THE DEFAULT VALUES OF
THE WEIGHTS ARE TAKEN TO BE
1/MAX (1,ABS (Y(K)))

. FOR K=1,2,...,N.

FLOOR VALUE. USED WHEN THE INDICATOR C(1)
HAS THE VALUE 3.

Cc(3) ~— HMIN SPECIFICATION. TIF NOT ZERO, THE SUB-
ROUTINE CHOOSES HMIN TO BE ABS (C(3)).
OTHERWISE IT USES THE DEFAULT VALUE
.lO*MAX(DWARF,RREB*MAX(NORM(Y)/TOL,ABS(X)))
WHERE DWARF IS A VERY SMALL POSITIVE MACHINE
NUMBER .AND RREB IS THE RELATIVE ROUNDOFF
ERROR BOUND.

HSTART SPECIFICATION. IF NOT ZERO, THE SUB-
ROUTINE WILL USE AN INITIAL HMAG EQUAL TO
ABS(C(4)), EXCEPT OF COURSE FOR THE RE-
STRICTIONS IMPOSED BY HMIN AND HMAX.
OTHERWISE IT USES THE DEFAULT VALUE

HMAX* (TOL)** (1/6) . ,
c(5) — SCALE SPECIFICATION. THIS IS INTENDED TO BE
A MEASURE OF THE SCALE OF THE PROBLEM.
LARGER VALUES OF SCALE TEND TO MAKE THE
METHOD MORE RELIABLE, FIRST BY POSSIBLY RE-
STRICTING HMAX (AS DESCRIBED BELOW) AND
SECOND, BY TIGHTENING THE ACCEPTANCE
REQUIREMENT. IF C(5) IS ZERO, A DEFAULT
VALUE OF 1 IS USED. FOR LINEAR BOMOGENEOUS
PROBLEMS WITH CONSTANT COEFFICIENTS, AN
APPROPRIATE VALUE FOR SCALE IS A NORM OF
THE ASSOCIATED MATRIX. FOR OTHER PROBLEMS,
AN -APPROXIMATION TO AN AVERAGE VALUE OF A
NORM OF THE .JACOBIAN ALONG THE TRAJEC-
TORY MAY .BE APPROPRIATE.
c(6) - HMAX SPECIFICATION. FOUR CASES ARE POSSIBLE,
IF C(6).NE.0 AND C(5) -NE.0, HMAX IS TAKEN
TO BE MIN (ABS (C(6)) ,2/BBS(C(5))) -
IF C(6).NE.O AND C(5).EQ.0, HMAX 1S TAKEN .~
TO BE ABS (C(6)).
1F C(6)~EQ.0 AND C(5).NE.O, HMAX 1S TAKEN
TO BE 2/ABS(C(5)).
IF C(6).EQ.0 BND C(5).EQ.0, HMAX IS GIVEN
2 DEFAULT VALUE OF .2.
c(7) - MAXIMUM NUMBER OF FUNCTION EVALUATIONS. IF
NOT ZERO, AN ERROR RETURN WITH IND = -1
WILL BE CAUSED WHEN THE NUMBER OF FUNCTION
EVALUATIONS EXCEEDS ABS({C(7)}.
c{8) — INTERRUPT NUMBER 1 . IF NOT ZERO, THE SUB-
ROUTINE WILL INTERRUPT THE CALCULATIONS
AFTER IT HAS CHOSEN ITS PRELIMINARY VALUE
OF HMAG, AND JUST BEFORE CHOOSING HTRIAL
AND XTRIAL IN PREPARATION FOR TAKING A STEP
(HTRIAL MAY DIFFER FROM HMAG IN SIGN, 2AND
MAY REQUIRE ADJUSTMENT IF XEND 15 NEAR) .
THE SUBROUTINE RETURNS WITH IND = 4, AND
WILL RESUME CALCULATION AT THE POINT OF
INTERRUPTION IF RE-ENTERED WITH IND = 4.

c(2)

c(4)

DVERK-4




c(9) - INTERRUPT NUMBER 2. 1IF NOT ZERO, THE SUB- .33

: ROUTINE WILL INTERRUPT THE CALCULATIONS :
IMMEDIATELY AFTER IT HAS DECIDED WHETHER OR
NOT TO ACCEPT THE RESULT OF THE MOST RECENT
TRIAL STEP, WITH IND = 5 IF IT PLANS TO
ACCEPT, OR IND = 6 IF 1T PLANS TO REJECT.
Y(*) IS THE PREVIOUSLY ACCEPTED RESULT,
WHILE W(*,9).1IS THE NEWLY COMPUTED TRIAL
VALUE, AND W(*,2) IS THE UNWEIGHTED ERROR
_ESTIMATE VECTOR. THE SUBROUTINE WILL RESUME
CALCULATIONS AT THE POINT OF INTERRUPTION
ON RE-ENTRY WITH IND = 5 OR 6.
IND MAY BE CHANGED BY TEE USER IN ORDER TO
FORCE ACCEPTANCE OF A STEP (BY CHANGING IND
FROM 6 TO 5) THAT WOULD OTHERWISE BE
REJECTED, OR VICE VERSA.

W EXACTLY AS

NwW - ROW DIMENSION OF THE MATRIX
SPECIFIED IN THE "DIMENSION STATEMENT

1N THE .CALLING PROGRAM. (INPDT)
. NW MUST ‘BE GREATER THAN OR EQUAL TO N.
W ~ WORKSPACE MATRIX.
THE FIRST DIMENSION OF W MUST BE NW AND THE
SECOND MUST BE GREATER THAN OR EQUAL TO 9.
W MUST REMAIN UNCHANGED BETWEEN SUCCESSIVE
CALLS DURING INTEGRATION. -
IER — ERROR PARAMETER. (OUTPUT) ‘
TERMINAL ERROR
IER = 129, NW I5 LESS THAN N OR TOL IS LESS

THAN OR EQUAL TO ZERO. ;
1IER = 130, “IND IS ‘NOT -IN THE RANGE 1 TO Ba !

IER = 131, XEND HAS NOT BEEN CHANGED FROM
PREVIOUS CALL-OR X IS NOT SET TO
THE PREVIOUS XEND VALUE.

IER = 132, THE-RELATIVE “ERROR CONTROL
OPTION {(C{1)=2) WAS SELECTED AND
ONE OF THE. SOLUTION COMPONENTS -

.IS ZERO. - :

PRECISION/HARDWARE -— SINGLE AND "DOUBLE/H32
- SINGLE/H36 ,/H48,H60

REQD. IMSL ROUTINES - UERTST ,UGETIO

— TINFORMATION ON SPECIAL NOTATION AND
CONVENTIONS 1S AVAILABLE IN . THE MANUAL
INTRODUCTION OR THROUGH IMSL ROUTINE UEELP

NOTATION

REMARKS 1. 1IN A TYPICAL SITUATION,
REPEATEDLY WITH A SEQUEN
AFTER EACH SUCH.CALL, THE DSER .SH
IND AND IER. ERROR CONDITIONS ARE

IND IS LESS THAN ZERO AND/OR IER IS5 GREATER THAN
ZERO. CORRECTIVE ACTION (SUCH AS CHANGING CERTAIN
TAKEN PRIOR TO RE-ENTRY.

PARAMETER VALUES) MUST BE
77 IS OFTEN HELPFUL

2. WHEN ERROR CONDITIONS ARISE, i,
T0 EXAMINE COMPONENTS OF THE COMMUNICATIONS VECTOr

C. A SUMMARY FOLLOWS-
June, 1982 DVERK-5




Algorithm

PRESCRIBED AT THE OPTION OF THE USER

C(1) ERROR CONTROL INDICATOR
C(2) FLOOR VALUE

C(3) HMIN SPECIFICATION

C(4) HSTART SPECIFICATION

‘C(5) SCALE SPECIFICATION

C(6) BMAX SPECIFICATION

C(7) MAXIMUM NUMBER OF FCN EVALUATIONS
C(8) INTERRUPT NUMRER 1

C(9) INTERRUPT NUMBER 2

DETERMINED BY THE PROGRAM

C(10) RREB (RELATIVE ROUNDOFF ERROR BOUND)
C(11) .DWARF (VERY SMALL MACHINE NUMBER)

C(12) WEIGETED NORM OF Y

C(13) HMIN .

C(14) EMAG - - 3 -
C(15) ScaLE

C(16) HMAX

C(17) XTRIAL

C(18) HTRIAL

C{19) EST

C(20) PREVIOUS XEND

C(21) FLAG FOR XEND _
C(22) NUMBER OF SUCCESSFUL STEPS

C(23) NUMBER OF SUCCESSIVE FAILURES

C(24) NUMBER OF FCN EVALUATIONS

-

IF C(1) = 4 OR 5, C(31),C(32),...,C(N+30) ARE ¥LOOR
VALUES. .

PARAMETER NW GIVES 'THE ROW DIMENSION OF W EXACTLY AS
IT APPEARS IN THE DIMENSION STATEMENT IN THE CALLING
PROGRAM. IF ONLY ONE SYSTEM OF EQUATIONS IS BEING
SOLVED, NW NORMALLY WILL HAVE THE SAME VALUE AS N.
HOWEVER, IF MORE THAN ONE 'SYSTEM IS BEING HANDLED,
AND THEY ARE TO USE A COMMON WORKSPACE, W, ONE AFTER
THE OTHER, THE VALUE OF NW (AND HENCE, THE ROW
DIMENSION OF W IN THE CALLING PROGRAM) MUST BE AS
IARGE AS THE MAXIMUM VALUE OF THE INDIVIDUAL "N VALUES.

3 L
SRS R R

-

-DVERK finds approximations to the solution of a system of first order
-ordinary differential eguations of the form y'=f(X;y) with initial con-
It is designed to be easy to use. By setting parametrer I..C
to 1, the user need only provide parameters to describe the problisx:

‘ditions.

everything else is done automatically by the subroutine.

the user may set IND to 2 and then select any one_of_severaloptic:j:.,c
including different kinds of error control, restriciions on step sizes,

and interxupts which permit the nser -to examine the state of the c=

lations (and perhaps make modifications) during.intermediate staces.
DVERK attempts to keep the global error proportional to a tolerance
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acified by the user. The pr0portionality depends on the kind of }
ror control that is used as well as the differential equation and A-15 |

e range of integration.

ERX is efficient for non-stiff systems where derivative evaluations |
e not expensive and where solutions are not required at a large i
mber of finely spaced points (as might be the case for example with

-aphical output). See the Chapter D prelude for general guidelines. |

,e subroutine is based on a code designed by T. E. Hull, W. H. |
wright, and K. R. Jackson. It uses Runge-Kutta formulas of orders 5 :

2ad 6 that were developed by J. H. Verner.

se references:

p, E. Hull, W. H. Enright, and K. R. Jackson, wygser's Guide for
DVERK - & subroutine for ‘Solving Non-Stiff ODE's", TR No. 100,
pepartment of Computer Science, University of Toronto, October,

1976.

) K. R. Jackson, W. H. Enright, and T. .E. Hull, "a Theoretical
Criterion for Comparing Runge-Kutta Formulas'TRlOl“, January, 1977.

Ixample 1

This example jliustrates the basic usage (all default options) of
DVERK. A table of solution-valueS'for x = 1.0,2.0,...,10.0 is obtained |

for the predator-prey problem:

Yl' = zyl(l—y2) Yl =1
at x =0
vy' = ¥ ¥ ¥y = 3
INTEGER N,IND,NW,IER,XK : ‘
REAL Y(2),C(24),W(Z,B),X,TOL,XEND
EXTERNAL FCN1 '
NW = 2 & i . '
N =2 _ :
X = 0.0
y(1) = 1.0%
v(2) = 3.0
TOoL = .0001
iND =1 '
DO 10 X=1,10
XEND=FLOAT (K)

CALL DVERK(N,FCNl,X,Y,XEND,TOL,IND,C,NW,W,IER}

IF(IND.LT.O.ORJIER.GT.O) GO TO 20
: vy (1)} and Y(2) are current solution values at X.

Insert write statement hexe.
CONTINUE

STOP
CONTINUE
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, A-16
Handle IND.LT.0 or IER.GT.O
Items that may help diagnose, the problem should be
output here.

IND, TOL,N,W,¥(1),...,Y(N) ,XEND, and C(1),...,C(24). |

POP

)

JBROUTINE FCN1 (N, X,¥,YPRIME)
{TEGER N

EAL Y (N) , YPRIME (N) ,X

PRIME(1l) = 2.0*Y(1)*(1.0-¥(2)),
) = ¥(2)*(¥(1)-1.0)

ETURN
ND
utput:
ER =0
X Y(1l) Y(2)
1. 0.08 1.46
2. 0.09 0.58-
3. 0.29 0.25
4. 1.45 . 0.19
Lo 4.05 1.44
6. 0.18 2.26
7. 0.07 0.91
8. 0.15 0.37
9. 0.65 0.19
10. 3.15 0.35
xample 2 (

‘his example shows how IND = 2 is used to select'specific options, while
1sing default values for others. The differential eguation [

e

y'=vy , y=1latx=0, -

is solved for x = .1,.2,...,31.0, using -the .absolute error control optibn
(c(1)=1).

[NTEGER N,IND,NW,IER,I,K

REAL y(1),c(24),w(1,9),X,TOL,XEND
IXTERNAL FCN2
wo =1
N =1
K = 0.0
y{(l) = 1.0
roL, = 0.0005
IND = 2
Select all default options, first
po 5 1=1,9
c(I) = 0.0

Then specify C(1l)=1.0 to select t+he absolute error

] contreol option.

c({1) = 1.0 :

po 10 K=1,10 o
XEND = FLOAT(X)*0.1
CALL DVERK(N,FCNZ,X,Y,XEND,TOL,IND,C,NW,W,IER)
IF (IND.LT.0.0R.IER.GT.0) GO TO 20

DVERK-8



A-17 v(1) is the current solution value at X. Insert write
statement here.

) CONTINUE
STOP
) CONTINUE
SD Handle IND.LT.0 or IER.GT.0
Items that may help diagnose the problem should be
output here.
IND,TOL,N,X,¥(1),....Y(N) ,XEND, and C(1),...,C(24).

STOP
END
SUBROUTINE FCN2 (N,X,Y,YPRIME)
INTEGER N )
REAL v (N) , YPRIME {N) ,X
YPRIME (1) = Y (1)
RETURN
END
Output:
IER = 0 -

X Y(1)

odl 1.105

0 1.221

.3 1.350

.4 1.492

.5 1.649

.6 1.822

o7 2.014

48 2.226

.9 2.460

1.0 2.718



