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RESUMO 

BENÍCIO DE ALMEIDA CAJUEIRO, E.  Emulação de uma Lei de Controle Preditivo via 

Arquiteturas de Redes Neurais.   2024.  56 f.  Trabalho de conclusão de curso (MBA em 

Inteligência Artificial e Big Data) – Instituto de Ciências Matemáticas e de Computação, 

Universidade de São Paulo, São Carlos, 2024. 

 

Neste trabalho, uma metodologia foi desenvolvida com o objetivo de substituir a lei de controle 

do controlador preditivo baseado em modelo (MPC) linear incremental por uma estrutura de 

inteligência artificial, mais especificamente, uma rede neural feedforward. A hipótese foi que 

redes neurais artificiais (RNAs) poderiam substituir o MPC em questão, proporcionando 

respostas similares nas saídas da planta escolhida, além de oferecer uma solução mais eficiente 

em termos de custo computacional, permitindo, em aplicações futuras, a implementação do 

controlador em sistemas embarcados com recursos computacionais limitados, ao mesmo tempo 

mantendo ou até melhorando a estabilidade do sistema devido à otimização do tempo de 

resposta do controlador. Para validar essa abordagem, foram utilizados dados simulados de um 

subsistema de uma torre de destilação, onde as entradas do sistema eram a taxa de fluxo de 

vapor no refervedor (𝑢₁, em ton/h) e a taxa de fluxo de refluxo (𝑢₂, em m³/d), enquanto as saídas 

monitoradas foram o nível de líquido no vaso superior (𝑦₁, em %) e a temperatura no prato 68 

(𝑦₂, em °C). Duas simulações foram realizadas: a primeira considerou a inserção de 

perturbações não medidas sem variação no setpoint, enquanto a segunda incluiu tanto 

perturbações não medidas quanto a variação do setpoint. Em ambas as simulações, os resultados 

foram satisfatórios. A rede neural foi treinada com base no sinal de erro ao longo do horizonte 

de predição, sendo que a saída da rede representava o incremento de controle. Os resultados 

demonstraram que a rede neural foi capaz de emular de forma eficaz o comportamento do MPC, 

proporcionando respostas rápidas e estáveis, similares às encontradas com o uso do MPC, 

mesmo na presença de perturbações e mudanças no setpoint. Além disso, a redução no custo 

computacional indicou que a abordagem proposta pode ser viável para controle em sistemas 

embarcados com recursos computacionais limitados, oferecendo um desempenho equivalente 

ao MPC convencional. 

 

Palavras-chave: controle preditivo baseado em modelo (MPC); redes neurais artificiais; torre 

de destilação; eficiência computacional. 

  



 

 

ABSTRACT 

BENÍCIO DE ALMEIDA CAJUEIRO, E.  Emulation of a Predictive Control Law via 

Neural Network Architectures.   2024. 56 f. Trabalho de conclusão de curso (MBA em 

Inteligência Artificial e Big Data) – Instituto de Ciências Matemáticas e de Computação, 

Universidade de São Paulo, São Carlos, 2024. 

 

In this work, a methodology was developed with the objective of replacing the control law of 

the linear incremental model predictive controller (MPC) with an artificial intelligence 

structure, more specifically a feedforward neural network. The hypothesis was that artificial 

neural networks (ANNs) could replace the MPC in question, providing similar responses in the 

outputs of the chosen plant, in addition to offering a more efficient solution in terms of 

computational cost, enabling, in future applications, the implementation of the controller in 

embedded systems with limited computational resources, while maintaining or even improving 

system stability due to the optimization of the controller's response time. To validate this 

approach, simulated data from a subsystem of a distillation column were used, where the system 

inputs were the vapor flow rate in the reboiler (𝑢₁, in ton/h) and the reflux flow rate (𝑢₂, in 

m³/d), while the monitored outputs were the liquid level in the top vessel (𝑦₁, in %) and the 

temperature at tray 68 (𝑦₂, in °C). Two simulations were performed: the first considered the 

insertion of unmeasured disturbances without setpoint variation, while the second included both 

unmeasured disturbances and setpoint variation. In both simulations, the results were 

satisfactory. The neural network was trained based on the error signal over the prediction 

horizon, with the network's output representing the control increment. The results showed that 

the neural network was able to effectively emulate the behavior of the MPC, providing fast and 

stable responses, similar to those obtained using the MPC, even in the presence of disturbances 

and setpoint changes. Additionally, the reduction in computational cost indicated that the 

proposed approach may be viable for control in embedded systems with limited computational 

resources, offering performance equivalent to that of the conventional MPC. 

 

 

Keywords: model predictive control (MPC); artificial neural networks; distillation column; 

computational efficiency.  
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1 INTRODUÇÃO 

 

 O controle preditivo baseado em modelo (do inglês, Model Predictive Control - MPC) 

envolve a solução de problemas de otimização a cada período de amostragem. Neste intervalo 

de tempo se faz necessário gerar uma sequência de ações de controle com base nas informações 

mais recentes disponíveis (Camacho e Bordons, 1995). Essa necessidade de otimização online, 

historicamente, tem implicado para a indústria a adição de mais um nível na pirâmide de 

automação industrial devido ao elevado esforço computacional neste tipo de tarefa (de Prada, 

2021).  

Na camada de otimização da pirâmide de automação é comum o uso de hardware 

especializado (de Prada, 2021), isso porque atrasos significativos na resolução da otimização 

podem impactar negativamente o desempenho do MPC, uma vez que o controle pode não ser 

ajustado em tempo hábil para mudanças rápidas no sistema (Richalet e O’donovan, 2009). Além 

disso, muitos algoritmos de otimização utilizados no MPC são iterativos, o que pode exigir 

estratégias eficientes para inicialização e convergência. 

Para que a otimização em tempo real seja possível, deseja-se que as leis de MPC, 

resolvidas por meio de técnicas de inteligência artificial (IA), alcancem melhor desempenho do 

que por métodos convencionais de solução numérica (como exemplo, a programação 

quadrática). Por isso, a justificativa para o desenvolvimento do presente trabalho consiste na 

necessidade, ainda corrente, de se investigar métodos de sintetização de leis de MPC, para que 

a indústria possa implementá-los em controladores industriais (ex.: o controlador lógico 

programável) e sistemas embarcados, os quais, muitas vezes, possuem menor poder 

computacional. 

Trabalhos têm sido desenvolvidos buscando uma implementação eficiente de métodos 

de MPC em sistemas embarcados. Santana et al. (2023) propõem um método prático e bem-

sucedido para embarcar duas diferentes estratégias de MPC: o MPC de Horizonte Infinito 

Robusto (do inglês, Robust Infinite Horizon MPC - RIHMPC) e o Controle Preditivo Não 

Linear (do inglês, Nonlinear Model Predictive Control - NMPC), em um sistema 

microcontrolado. 

O objetivo deste trabalho é sintetizar estruturas de inteligência artificial (IA) com o 

propósito de emular uma lei de controle preditivo baseado em modelo (MPC), mais 

especificamente, o MPC linear na forma incremental. Como aplicação para extração dos sinais 

que serão usados no treinamento de uma Rede Neural Artificial (RNA), serão considerados dois 
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subsistemas de uma torre de destilação. Os subsistemas da referida torre de destilação são 

descritos no artigo de Alvarez et al. (2009). 

As torres de destilação são de grande importância na indústria química e petroquímica, 

pois desempenham um papel de separação de misturas líquidas em seus componentes 

individuais. Esse processo é útil para a produção de substâncias puras e para a obtenção de 

produtos específicos. A destilação é amplamente utilizada para separar hidrocarbonetos no 

refino de petróleo, bem como na produção de solventes, produtos farmacêuticos e bebidas 

alcoólicas. As torres operam com base na diferença de volatilidade entre os componentes de 

uma mistura, utilizando o aquecimento e a condensação seletiva para fracionar as substâncias 

(Luyben, 2013). 

Além de sua relevância para a separação de produtos, a eficiência das torres de 

destilação afeta diretamente a rentabilidade e a sustentabilidade dos processos industriais. 

Projetos otimizados de torres, que maximizam a recuperação de produtos e minimizam o 

consumo de energia, são essenciais para a redução dos custos operacionais. Ademais, a 

automação e o controle ótimo das malhas de controle da torre garantem que o processo de 

destilação ocorra de forma eficiente, segura e em conformidade com as normas ambientais 

(Luyben, 2013). 

Os resultados esperados tendo como aplicação a torre de destilação podem ser 

expandidos para as demais áreas que envolvem o controle automático de sistemas dinâmicos 

lineares. 

 

1.1 Hipótese de Pesquisa 

 

A hipótese deste estudo é que o controle preditivo baseado em RNA pode ser uma 

alternativa mais eficaz, do ponto de vista prático, em comparação ao MPC linear na forma 

incremental para o controle de processos em tempo real. Ao utilizar RNAs para substituir a 

resolução de problemas de otimização em tempo real, além de a RNA conseguir fazer o papel 

do MPC em questão no controle ótimo de processos, obtém-se uma redução significativa no 

custo computacional. Isso pode permitir a implementação desse controlador em computadores 

industriais, como CLPs, instrumentos inteligentes e sistemas embarcados mais acessíveis, 

mantendo ou até melhorando a estabilidade do sistema devido à otimização do tempo de 

resposta do controlador. 
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1.2 Estrutura do Trabalho 

 

No capítulo 2 é realizada uma breve revisão bibliográfica sobre métodos de inteligência 

artificial para emulação de MPC tradicionais e sua aplicação em subsistemas de uma torre de 

destilação. Em seguida, no capítulo 3, é abordada a fundamentação teórica, a qual trata 

brevemente sobre o MPC, RNA feeedforward, função de correlação cruzada e a validação via 

equação do ajuste. A metodologia necessária para substituição de uma lei de MPC via RNA é 

tratada no capítulo 4. No capítulo 5 são apresentados os resultados. Por fim, no capítulo 6, 

conclui-se o trabalho com uma avaliação crítica dos resultados e sugestões para futuras 

pesquisas. 
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2 REVISÃO BIBLIOGRÁFICA 

 

 Implementar o MPC em sistemas com dinâmica rápida ainda é desafiador, e essa 

dificuldade aumenta se o modelo do processo for não-linear (Kather et al., 2023; Chan et al., 

2021). Sistemas não-lineares acrescentam complexidade ao problema de otimização do MPC, 

pois requerem algoritmos de otimização mais sofisticados que são computacionalmente mais 

intensos. Como o tempo de cálculo do otimizador já é limitado pela rapidez da dinâmica do 

sistema, pode não ser viável encontrar a solução ótima da lei de MPC dentro do tempo 

disponível, exigindo abordagens de otimização mais rápidas, simplificações do modelo ou 

abordagens que envolvam a sintetização de uma IA capaz de reproduzir o comportamento de 

um MPC. 

As RNAs são consideradas aproximadores universais devido a capacidade de, partindo 

de uma dada arquitetura de rede previamente selecionada, aprenderem diretamente a partir dos 

sinais de entrada e saída de sistemas complexos e com forte não-linearidades (Haykin, 2009). 

De acordo com Hecht-Nielsen (1989), uma RNA feedforward de três camadas, treinada com 

algoritmo backpropragation, é teoricamente capaz de modelar qualquer função contínua que 

possua energia limitada (funções no espaço 𝐿2). 

Li et al. (1991) propuseram um algoritmo de RNAs para uma lei de MPC. Neste 

trabalho, as RNAs desempenham um papel duplo no controle preditivo.  Enquanto uma RNA 

atua como um preditor de um passo à frente, prevendo a próxima saída da planta com base na 

informação atual e passada. A outra RNA atua como um controlador preditivo, que utiliza as 

previsões do preditor para tomar decisões de controle no sistema. Eles usaram uma RNA 

feedforward com múltiplas camadas, com função de ativação sigmoide, e a treinaram via 

algoritmo backpropagation (Haykin, 2009). De acordo com os autores, os resultados obtidos 

mostram que o sistema de controle baseado em RNAs consegue alcançar um desempenho 

superior em comparação com métodos tradicionais de MPC, especialmente em sistemas com 

dinâmicas complexas e não-lineares.  

Wang e Boyd (2010) abordam métodos online para reduzir o tempo de cálculo do MPC 

para sistemas com dinâmica rápida. Os autores ressaltam que uma forma comum de lidar com 

o MPC para sistemas de dinâmica rápida é calcular a solução da programação quadrática (QP) 

de forma explícita, porém offline. Nesse caso, implementa-se a ação de controle online, na 

forma de uma tabela de pesquisa, o que torna este método conveniente para sistemas em que o 

número de estados considerados não é maior do que cerca de cinco. Isso ocorre, pois o número 
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de entradas na tabela tende a crescer exponencialmente com o incremento do número de 

estados, restrições, entradas e horizonte de predição.    

A estratégia adotada por Wang e Boyd (2010) consiste em explorar a estrutura da QP 

reordenando-a de modo que um problema com 𝑂(𝑇3(𝑛 + 𝑚)3) operações por passo, via 

método de ponto interior, se torne 𝑂(𝑇(𝑛 + 𝑚)3). Em que 𝑛 é a dimensão do estado, 𝑚 é a 

dimensão da entrada e 𝑇 é o horizonte de controle.  Assim, o artigo em questão faz uma análise 

detalhada de um conjunto de métodos de otimização online que exploram a estrutura específica 

do problema de QP na solução de MPC para acelerar o cálculo da ação de controle. Estes 

métodos são variações de um método chamado “Método de Barreira Primal”.  

De acordo com Wang e Boyd (2010), ajustes (variações) nesses métodos permitem a 

execução do MPC com esforço computacional significativamente menor (na ordem de 100 

vezes mais rápido) em comparação com a solução via otimizadores genéricos. Os autores 

destacam a necessidade de análises formais de garantia da estabilidade para as soluções 

propostas. Os autores disponibilizam um código escrito em linguagem C (ver 

http://www.stanford.edu/~boyd/fast_mpc.html) para download da implementação do método 

desenvolvido. A dificuldade da implementação em microcontrolador, do método tratado por 

estes autores, reside na necessidade ainda presente do uso de um algoritmo de otimização para 

solução da lei de controle. 

Williams et al. (2017) apresentaram um algoritmo de MPC para modelos baseados em 

RL capaz de lidar com dinâmicas complexas e não-lineares.  RNAs multicamadas são usadas 

como modelos de dinâmica no algoritmo MPC, facilitando a resolução de tarefas de RL baseada 

em modelo. Os autores implementarem o método em um modelo simulado de um pêndulo 

invertido, além de um sistema físico (um veículo de rally, para controle de trajetória). Eles 

ressaltam que o método desenvolvido demanda auto custo computacional, devido a arquitetura 

da RNA (número de parâmetros e funções de ativação nã-lineares), para que seja simulado em 

tempo real. 

Tange et al. (2019) investigaram a integração do MPC com técnicas de aprendizado por 

reforço profundo (ARP) para melhorar o desempenho de sistemas de controle lineares e 

invariantes no tempo sujeitos a perturbação. Esta abordagem utiliza um modelo linear pré-

identificado para prever erros de rastreamento futuros, que são então utilizados como estado 

observado por um compensador ARP. O artigo foca em casos em que, embora o modelo em 

espaço de estados seja contínuo, o sinal de controle só pode assumir níveis predeterminados, 

como -1, 0 ou 1 (controle multinível). Através de exemplos numéricos, de acordo com os 

autores, esta metodologia supera métodos de controle baseados em aprendizagem por reforço 
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que utilizam o controle proporcional (P) e proporcional-integral (PI) em termos de desempenho 

de controle e convergência. 

Nos métodos tradicionais de MPC cada decisão de controle requer a resolução de um 

problema de otimização que minimiza uma função de custo prevista ao longo de um horizonte 

de tempo futuro, sujeita a restrições operacionais. Essa otimização é computacionalmente 

intensiva e precisa ser realizada em tempo real à medida que novos dados se tornam disponíveis. 

No entanto, o método proposto por Tange et al. (2019) utiliza um compensador (baseado em 

DRL) que já "aprendeu" a melhor política de controle durante a fase de treinamento. Portanto, 

em vez de resolver um problema de otimização a cada período de amostragem, o sistema 

consulta a política aprendida para determinar a ação de controle. Este método é menos oneroso 

do ponto de vista computacional. 

Ressalta-se que no estudo de Tange et al. (2019), a aplicabilidade do sistema proposto 

foi demonstrada por meio de simulações realizadas no software Matlab, adotando-se um 

período de amostragem de um segundo. É importante notar que a implementação em sistemas 

baseados em microprocessadores não foi abordada. 

Cotrufo et al. (2020) aliaram RNAs Profundas com técnicas com o MPC. Os autores 

usaram estas redes para predição do comportamento energético em edifícios (temperatura ao 

longo de 24 horas e demanda energética) que são aquecidos com mais de uma fonte de energia 

(exemplo: gás e elétrica). De acordo com o autor, os modelos baseados em aprendizagem 

profunda (AP) superaram seis outros métodos de IA que haviam sido usados para este fim, os 

quais foram: regressão multilinear (MLR), rede elástica (RE), florestas aleatórias (FA), 

máquinas de aumento de gradiente (MAG), regressão de vetores de suporte (SVR), árvores de 

aumento de gradiente extremo (AAGE). Os autores usaram a lei de MPC visando a 

minimização do consumo de gás natural. O controlador agiu de modo a selecionar o melhor 

perfil de setpoint que alcançasse o menor consumo de gás natural. 

Embora o trabalho de Cotrufo et al. (2020) não trate especificamente sobre a sintetização 

de MPCs baseado em IA, este é um artigo que deve ser levado em consideração para o 

seguimento deste trabalho, uma vez que o MPC depende de um modelo, e a obtenção de um 

modelo caixa preta para implementação do controlador é uma estratégia que pode ser 

considerada. 

Wang et al. (2021) treinaram uma RNA para emular um MPC em aplicações de 

conversores multiníveis modulares. Os autores destacam que, como o treinamento da rede foi 

realizado offline, a maior parte do custo computacional deste sistema de controle, 

tradicionalmente realizado em tempo real, deixou de existir. Através dessa abordagem, os 
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autores conseguiram que a RNA alcançasse um desempenho de controle comparável ao do 

MPC convencional para esta mesma aplicação, mas com uma significativa redução no custo 

computacional para aplicações em tempo real. 

Lale et al. (2021) combinaram aprendizado por reforço (RL) e controle preditivo no que 

eles chamaram de Controle Preditivo de Aprendizagem de Modelo (MLPC). O MLPC usa um 

modelo identificado de um processo não-linear parcialmente observável (um pêndulo invertido) 

obtido online por meio de uma função Não-Linear Autoregressiva com Entradas Exógenas 

(NARX) (Nelles, 2001), em que Representações de Fourier Aleatórias (RFF) (Rahimi e Recht, 

2007) são usadas para representar o comportamento não-linear da planta. O algoritmo do MPC 

usado para a planta é obtido de modo online via RL.  

O MLPC descrito em  Lale et al. (2021) usa um MPC (chamado pelo autor de 

“oráculo”), dentro da função custo para projetar o sinal de controle do MPC obtido via RL para 

controle da planta. O MPC “oráculo” resolve um problema de controle ótimo de horizonte finito 

e fornece um sinal de controle para o modelo NARX identificado. A saída da planta é 

comparada com a saída produzida pelo “oráculo” no modelo NARX, para planejamento, 

atualizando ocasionalmente as estimativas do modelo subjacente para melhorar o MPC. Como 

relatado pelos autores a estrutura do MLPC para o problema do pêndulo invertido foi 

implementada em um toolbox para RL chamado OpenAI Gym (BROCKMAN, 2016). 

Sobre o método RFF, este se mostra bastante útil na modelagem de sistemas não-

lineares. De acordo com Rahimi e Recht (2007), a RFF é uma função eficiente para aplicar 

técnicas de aprendizado de máquina baseadas em kernel, como Máquinas de Vetores de Suporte 

(SVMs) e regressão kernel, a grandes conjuntos de dados, que de outra forma seriam 

proibitivamente caros de se computar diretamente devido ao custo computacional de avaliar o 

kernel. Isso, porque esta função é capaz de mapear os sinais do sistema (relação entrada/saída) 

que se quer modelar para um espaço de alta dimensão (possivelmente infinita), sendo possível 

realizar operações lineares que correspondem a operações não-lineares no espaço original dos 

dados. Esse método é eficiente porque a dimensionalidade do espaço de características é finita 

(e frequentemente muito menor que a dimensionalidade do espaço de Hilbert original 

correspondente ao kernel), e as operações no espaço transformado são lineares e mais simples 

de calcular (Rahimi e Recht, 2007; Lale et al. 2021).  

O conceito de kernel em aprendizado de máquina refere-se a uma função usada para 

mapear dados em um espaço de dimensão mais alta, onde é possível resolver problemas que 

não são linearmente separáveis no espaço original (Schölkopf e Smola, 2018). Essencialmente, 

um kernel é uma função que calcula o produto interno de dois vetores (representando dados) 
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em um espaço de características, sem a necessidade de calcular explicitamente a transformação 

para esse espaço (Müller, 2001). 
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3 FUNDAMENTAÇÃO TEÓRICA 

 

Este capítulo está organizado da seguinte forma: A Seção 3.1 apresenta os princípios do 

Controle Preditivo Baseado em Modelo (MPC). A Seção 3.2 oferece uma breve revisão sobre 

Redes Neurais Artificiais (RNA) feedforward. A Seção 3.3 discute a função de correlação 

cruzada, utilizada na fase de pré-processamento dos sinais. Por fim, a Seção 3.4 aborda a 

equação de ajuste, aplicada na etapa de teste da RNA no presente trabalho. 

As equações e deduções que serão mostradas nas subseções a seguir são bem conhecidas 

no campo do MPC e das RNA feedforward. Para um estudo detalhado sobre MPC recomenda-

se a leitura dos livros de Camacho e Bordon (1995), Richalet e O’Donovan (2009) e Wang 

(2009), referenciados ao longo da Seção 3.1. Para um estudo detalhado sobre RNAs, 

recomenda-se a leitura de Li et al. (1991), Pham e Xing (1995), Haykin (2009) e Nelles (2001).  

 

3.1 Controle Preditivo Baseado em Modelo (MPC) 

 

Controle Preditivo Baseado em Modelo (MPC) é uma técnica avançada de controle de 

processos que usa modelos para prever e otimizar o comportamento futuro de um sistema 

(Richalet e O’Donovan, 2009). Utilizando um horizonte de previsão para antecipar eventos 

futuros e um horizonte de controle para determinar as ações de controle ótimas, o MPC ajusta 

as entradas do sistema de maneira a cumprir os objetivos de controle, como seguir uma trajetória 

desejada ou manter uma condição operacional estável, respeitando as restrições do sistema 

(Wang, 2009). 

No projeto de um MPC, é comum a utilização de modelos em espaço de estados devido 

à sua capacidade de representação compacta e adequada das dinâmicas de um sistema (Richalet 

e O’Donovan, 2009). Esse modelo é essencialmente um conjunto de equações que descrevem 

como o estado do sistema evolui ao longo do tempo em resposta a entradas externas (Ogata, 

1995). A informação atual do sistema é suficiente para prever seu comportamento futuro. Isso 

é formalizado através da variável de estado, que encapsula o estado presente e é utilizada para 

calcular o estado em um próximo instante de tempo (Wang, 2009) 

 

𝑥𝑚(𝑘 + 1) = 𝐴𝑚𝑥𝑚(𝑘) + 𝐵𝑚𝑢(𝑘) (3.1) 

𝑦(𝑘) = 𝐶𝑚𝑥𝑚(𝑘) + 𝐷𝑚𝑢(𝑘) (3.2) 
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onde 𝑢(𝑘) é a variável manipulada ou variável de entrada, 𝑦(𝑘) é a saída medida do processo 

e 𝑥𝑚 o vetor de variáveis de estados com dimensão 𝑛1. A matriz 𝐴𝑚 captura a dinâmica do 

sistema, enquanto 𝐵𝑚 e 𝐶𝑚 descrevem a relação entre a entrada e o estado, e o estado e a saída, 

respectivamente; e 𝐷𝑚 representa a matriz que teoricamente transmitiria o sinal de entrada 

diretamente para a saída. No entanto, como a entrada 𝑢(𝑘) não pode afetar a saída 𝑦(𝑘) ao 

mesmo tempo, então, 𝐷𝑚 = 0. Assim, consideramos somente: 

 

𝑦(𝑘) = 𝐶𝑚𝑥𝑚(𝑘) (3.3) 

 

A Fig. 1 mostra um diagrama de blocos genérico de um MPC. O passo a passo do 

funcionamento deste controlador é dado a seguir (Richalet e O’Donovan, 2009): 

 

 

1. Definição do setpoint: O processo começa com a definição de um setpoint, que é o 

objetivo ou o valor desejado para a variável controlada (CV). Este é o alvo que o sistema 

de controle tenta alcançar e manter. 

2. Controlador recebe o sinal de setpoint: O controlador 𝑅 recebe o setpoint como 

referência e usa os modelos internos 𝑀1 e 𝑀2 para prever o comportamento futuro do 

processo. O modelo 𝑀1 simula a resposta do processo a mudanças na variável 

manipulada (MV), enquanto 𝑀2 considera as perturbações externas que podem afetar o 

processo. 

Fonte: Richalet e O’Donovan (2009). 

Figura 1: Diagrama de blocos de um MPC. 
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3. Cálculo da variável manipulada (𝑴𝑽∗): O controlador, utilizando a lógica do MPC e 

os modelos de previsão, calcula a variável manipulada ideal 𝑀𝑉∗, que é a ação de 

controle que o sistema teoricamente deve aplicar para que a variável controlada (CV) 

atinja o setpoint. 

4. Aplicação de restrições à 𝑴𝑽∗ : A variável manipulada calculada 𝑀𝑉∗ pode precisar 

ser ajustada por um limitador para garantir que não exceda os limites operacionais ou 

de segurança do processo. Isso resulta na variável manipulada aplicada 𝑀𝑉, que é a 

ação de controle que realmente será implementada no processo. 

5. Ação de controle no processo: A variável manipulada 𝑀𝑉 é então enviada para o 

modelo interno do regulador 𝑀1 e para o processo 𝑃1 afetando a variável controlada CV 

e tentando trazê-la para o valor desejado definido pelo setpoint. 

6. Medição da variável controlada e das perturbações: Enquanto isso, o sistema de 

controle mede continuamente a variável controlada CV e pode também medir as 

perturbações conhecidas 𝐷𝑉𝑚. As perturbações não medidas 𝐷𝑉𝑛𝑚, por definição, não 

são medidas diretamente, porém afetam diretamente o processo por meio do sinal 

𝑆𝐷𝑉𝑁𝑀
. Já a perturbação 𝐷𝑉𝑚 afeta o processo por meio do sinal 𝑆𝐷𝑉𝑀

. 

7. Feedforward das Perturbações: Se perturbações são esperadas ou medidas, como 𝐷𝑉𝑚, 

um sinal de feedforward pode ser gerado e aplicado ao controlador para compensar essas 

perturbações antes que elas afetem a variável controlada. 

8. Ajuste do controlador baseado nas medidas: Com base nas medições e nas previsões 

atualizadas dos modelos internos 𝑀1 e 𝑀2, o controlador ajusta continuamente a 

variável manipulada MV para minimizar a diferença entre o setpoint e a variável 

controlada CV, levando em consideração as perturbações. 

9. Resposta a perturbações não medidas: Se houver perturbações não medidas afetando 

o processo, como 𝑆𝐷𝑉𝑁𝑀
, o sistema de controle precisará ser robusto o suficiente para 

lidar com essas incertezas e manter a variável controlada o mais próximo possível do 

setpoint. 

 

O processo de um MPC é iterativo e contínuo, com o controlador fazendo ajustes em 

tempo real com base nas informações que recebe e nas previsões que faz. A eficácia do MPC 
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reside na sua capacidade de antecipar eventos futuros e tomar ações preventivas para manter o 

processo estável e próximo ao seu objetivo desejado (Camacho e Bordon, 1995). 

Ressalta-se que no presente trabalho tanto 𝑅 quanto o bloco limitador serão substituídos 

por uma RNA. 

As Subseções 3.1.1 e 3.1.2 contém fundamentos necessários para o entendimento do 

projeto do MPC. 

 

3.1.1 Modelo em Espaço de Estado Aumentado 

 

A fim de eliminar o erro do sistema de controle em regime permanente, é comum o uso 

de um modelo em espaço de estados aumentado. Para isso, se faz necessário incluir na Eq. (3.1) 

um termo somador. Este termo somador pode ser incluído obtendo-se a diferença para ambos 

os lados da Eq. (1). Esta operação pode ser vista na Eq. (3.4): 

 

𝑥𝑚(𝑘 + 1) − 𝑥𝑚(𝑘) = 𝐴𝑚(𝑥𝑚(𝑘) − 𝑥𝑚(𝑘 − 1)) + 𝐵𝑚(𝑢(𝑘) − 𝑢(𝑘 − 1)) (3.4) 

 

e pode ser reescrita, como: 

 

Δ𝑥𝑚(𝑘 + 1) = 𝐴𝑚Δ𝑥𝑚(𝑘) + 𝐵𝑚Δ𝑢(𝑘) (3.5) 

 

onde Δ𝑥𝑚(𝑘 + 1) = 𝑥𝑚(𝑘 + 1) − 𝑥𝑚(𝑘), Δ𝑥𝑚(𝑘) = 𝑥𝑚(𝑘) − 𝑥𝑚(𝑘 − 1) e Δ𝑢(𝑘) = 𝑢(𝑘) −

𝑢(𝑘 − 1). Em que Δ𝑥𝑚(𝑘 + 1) é a variação do vetor de estado entre o número de amostra 𝑘 +

1 e 𝑘, Δ𝑥𝑚(𝑘) é a variação do vetor de estado entre o número de amostra 𝑘 e 𝑘 − 1, e Δ𝑢(𝑘) é 

a variação do sinal de controle entre o número de amostra 𝑘 e 𝑘 − 1. 

De forma análoga, repetindo o procedimento de diferenças para a Eq. (3.3), obtém-se 

 

𝑦(𝑘 + 1) − 𝑦(𝑘) = 𝐶𝑚Δ𝑥𝑚(𝑘 + 1) (3.6) 

 

Substituindo a Eq. (3.5) na Eq. (3.6), resulta 

 

𝑦(𝑘 + 1) − 𝑦(𝑘) = 𝐶𝑚(𝐴𝑚𝛥𝑥𝑚(𝑘) + 𝐵𝑚𝛥𝑢(𝑘))  

𝑦(𝑘 + 1) = 𝐶𝑚𝐴𝑚Δ𝑥𝑚(𝑘) + 𝐶𝑚𝐵𝑚Δ𝑢(𝑘) + 𝑦(𝑘) 

 

(3.7) 



27 

 

 

A partir das Eqs. (3.5) e (3.7) pode-se obter a equação em espaço de estados aumentada: 

[
𝛥𝑥𝑚(𝑘 + 1)

𝑦(𝑘 + 1)
] = [

𝐴𝑚 𝑜𝑚
𝑇

𝐶𝑚𝐴𝑚 1
] [

𝛥𝑥𝑚(𝑘)

𝑦(𝑘)
] + [

𝐵𝑚

𝐶𝑚𝐵𝑚
] 𝛥𝑢(𝑘) 

(3.8) 

𝑦(𝑘) = [𝑜𝑚   1] [
𝛥𝑥𝑚(𝑘)

𝑦(𝑘)
] 

(3.9) 

 

 

onde 𝑜𝑚 = [0 0 …  0] e 𝑥(𝑘) = [Δ𝑥𝑚(𝑘) 𝑦(𝑘)]𝑇. As Eqs. (3.8) e (3.9) serão usadas no 

projeto do MPC. 

 

Para fins de escrita, as Eqs. (3.8) e (3.9) serão renomeadas conforme a seguir: 

 

𝐴 = [
𝐴𝑚 𝑜𝑚

𝑇

𝐶𝑚𝐴𝑚 1
] 𝐵 = [

𝐵𝑚

𝐶𝑚𝐵𝑚
] 

𝐶 = [𝑜𝑚   1] 

 

Em consequência, o modelo aumentado pode ser reescrito de acordo com as Eqs. (3.10) e (3.11) 

(Wang, 2009): 

 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝛥𝑢(𝑘) (3.10) 

𝑦(𝑘) = 𝐶𝑥(𝑘) (3.11) 

 

3.1.2 Controle Preditivo de Horizonte Recuado 

 

No contexto do controle preditivo, uma vez que um modelo matemático é estabelecido, 

o próximo passo no desenvolvimento deste controlador consiste no cálculo da saída predita do 

processo com base nos sinais de controle futuros, que são tratados como variáveis que podem 

ser ajustadas. Esta predição é realizada dentro de uma janela de otimização específica. O 

sistema de controle preditivo tem como propósito principal a minimização do erro entre o set-

point e a saída do processo prevista. Ele emprega informações atualizadas do processo, 

representadas pelo vetor de estado 𝑥(𝑘𝑖), e utiliza um modelo de espaço de estados para projetar 

o comportamento futuro da planta. A partir desse modelo, estabelece-se a trajetória de controle 

ótima por meio de uma série de incrementos de controle, denotada por Δ𝑈 = [Δ𝑢(𝑘𝑖)  Δ𝑢(𝑘𝑖 +

1)   Δ𝑢(𝑘𝑖 + 2) …  Δ𝑢(𝑘𝑖 + 𝑁𝑐 − 1)]𝑇 (Wang, 2009). 
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Embora a trajetória de controle ótima seja computada levando em conta 𝑁𝑐 amostras 

futuras, o controle preditivo aplica somente a primeira amostra, Δ𝑢(𝑘𝑖), e desconsidera as 

restantes na implementação. Esse processo é repetido a cada novo período de amostragem, 

seguindo o princípio de controle de horizonte recuado, onde o feedback é intrínseco ao design 

do sistema de controle. 

A lei de controle de MPC no contexto de restrições rígidas é proposta como a 

determinação do vetor de parâmetros ΔU que minimiza a função custo 𝐽 (Wang, 2009): 

𝐽 = (𝑅𝑠 − 𝐹𝑥(𝑘𝑖))
𝑇

(𝑅𝑠 − 𝐹𝑥(𝑘𝑖)) − 2Δ𝑈𝑇Φ𝑇(𝑅𝑠 − 𝐹𝑥(𝑘𝑖)) + Δ𝑈𝑇(Φ𝑇Φ + 𝑅̅)Δ𝑈  

 (3.12) 

 

sujeito às restrições 

Δ𝑈𝑚𝑖𝑛 ≤ Δ𝑈 ≤ Δ𝑈𝑚𝑎𝑥 (3.13) 

𝑌𝑚𝑖𝑛 ≤ 𝐹𝑥(𝑘𝑖) + ΦΔ𝑈 ≤ 𝑌𝑚𝑎𝑥 (3.14) 

𝑥(𝑘𝑖)𝑚𝑖𝑛 ≤ 𝑥(𝑘𝑖) ≤ 𝑥(𝑘𝑖) (3.15) 

 

onde a função de custo 𝐽 apresentada na equação (3.12) representa o desvio entre o estado 

desejado 𝑅𝑠 e o estado estimado 𝐹𝑥(𝑘𝑖), penalizando também as variações no vetor de controle 

Δ𝑈; 𝐹 é uma matriz que relaciona os estados futuros com o estado inicial 𝑥(𝑘𝑖); Φ é uma matriz 

que relaciona as entradas futuras Δ𝑈 com os estados futuros; 𝑅̅ é uma matriz diagonal , formada 

como 𝑅̅ = 𝑟𝜔𝐼𝑁𝑐×𝑁, em que 𝑟𝜔 ≥ 0 é usado como um parâmetro de sintonia para desejada 

performance em malha fechada e 𝐼 é a matriz identidade. 

A minimização de 𝐽 resulta em uma lei de controle que ajusta os incrementos de controle 

Δ𝑈 de modo a aproximar o sistema do setpoint 𝑅𝑠, considerando as restrições do problema. As 

restrições vistas nas equações (3.13), (3.14) e (3.15), limitam tanto o valor do controle Δ𝑈, 

quanto as saídas 𝐹𝑥(𝑘𝑖) e os estados 𝑥(𝑘𝑖): 

 

A técnica de controle preditivo discreto de horizonte recuado e com restrições é bem 

conhecida no campo do MPC. Logo, para o desenvolvimento da formulação matemática deste 

método, recomenda-se a leitura do livro de Wang (2009). 

 

3.2 Rede Neural Feedforward 
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A RNA feedforward, também conhecida como rede neural de múltiplas camadas (MLP), 

é uma das arquiteturas mais antigas e mais simples dentro do campo da IA, com raízes históricas 

que remontam às primeiras tentativas de emular o comportamento de neurônios humanos 

(Aggarwal, 2018). Ela foi proposta inicialmente como um modelo matemático inspirado no 

cérebro humano, sendo capaz de aprender padrões a partir de sinais de entrada (Haykin, 2009). 

A estrutura de uma RNA feedforward atualmente pode ser descrita como um conjunto 

de camadas interconectadas de neurônios artificiais, onde as conexões seguem um fluxo 

unidirecional, ou seja, os sinais percorrem da camada de entrada, passando pela(s) camada(s) 

oculta(s), até chegar à camada de saída. Não há realimentação entre os neurônios, o que 

caracteriza o nome "feedforward" (alimentação adiante). A Fig. 2 mostra uma rede feedforward 

com duas camadas. 

 

Para a Fig. 2, a camada de entrada é representada pelos neurônios 𝑥1, 𝑥2, … , 𝑥𝑛, que 

correspondem às variáveis de entrada do sistema. No contexto do controle preditivo, as entradas 

poderiam representar o vetor de erro do horizonte de predição. A camada oculta é composta por 

múltiplos neurônios interconectados que aplicam uma função de ativação não-linear, denotada 

como 𝜎(∙), com o objetivo de aprender padrões dos sinais de entrada. Cada neurônio nesta 

camada recebe entradas ponderadas, calculadas pelas matrizes de pesos 𝑉𝑇, e aplica uma função 

de ativação para gerar uma saída que será transmitida para a próxima camada. Após o 

processamento pela camada oculta (ou camadas ocultas), as saídas da rede 𝑦1, 𝑦2, … , 𝑦𝑚, são 

geradas na camada final (camada de saída). Neste trabalho, para o problema de emulação de 

um MPC, essas saídas representarão os incrementos de controle calculados pela RNA. 

Figura 2: RNA feeedforward de duas camadas. 
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A equação matemática, em notação matricial, que descreve a RNA dada na Fig. 2 é 

mostrada na Eq. (3.16) 

 

𝑦 = 𝜎(𝑊̅𝑇𝜎̅(𝑉̅𝑇𝑥̅ + 𝑏𝑣) + 𝑏𝑤) (3.16) 

  

Onde 𝑉̅ refere-se a matriz de pesos da primeira camada, 𝑊̅ a matriz de peso da segunda camada, 

𝜎 o vetor de funções de ativação, 𝑏𝑣 e 𝑏𝑤, os vetores de bias da primeira e da segunda camada, 

respectivamente. 

O processo de treinamento desta rede consiste em ajustar os pesos 𝑉𝑇 e 𝑊𝑇 de forma 

que a rede minimize o erro entre suas saídas preditas e os valores esperados. Isso é feito 

utilizando um algoritmo de retropropagação, onde o erro calculado na saída é "propagado para 

trás" pela rede, ajustando os pesos de cada camada, até que a rede aprenda a aproximar a função 

desejada (Hecht-Nielsen, 1990; Haykin, 2009). Essa arquitetura, apesar de simples, tem sido 

amplamente utilizada devido à sua capacidade de aproximação universal, ou seja, teoricamente, 

uma rede feedforward com um número adequado de neurônios pode aproximar qualquer função 

contínua (Cybenko, 1989; Funahashi, 1989; Hecht-Nielsen, 1990; Hornik, 1991; Leshno et al., 

1993). Na prática, as redes feedforward são eficazes em uma variedade de aplicações, como 

previsão de séries temporais, classificação, e, como no caso deste trabalho, emulação de 

controladores avançados como o MPC. 

Neste trabalho, a rede feedforward será treinada por meio do algoritmo de Levenberg-

Marquardt, que é conhecido por ser eficiente para redes de tamanho moderado. Como descrito 

no livro do Haykin (2009), este método é um compromisso entre o método de Newton e o 

método do gradiente descendente. Para uma compreensão de como este método funciona, 

recomenda-se a leitura de Haykin (2009). 

 

3.3 Função de Correlação Cruzada 

 

Para conhecer melhor o grau de relacionamento linear entre os sinais de entrada 𝑢1 e 

𝑢2, e entre a entrada 𝑢1 e saída 𝑦2, e entre a entrada 𝑢2 e saída 𝑦1, a função de correlação 

cruzada dada pela equação Eq. (3.17) será aplicada 

𝑟𝐴𝐵(𝑛) =
1

𝑁
∑ 𝑓(𝑘)𝑔(𝑛 + 𝑘)

∞

𝑘=−∞

 (3.17) 
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O resultado da FCC é normalmente dado entre -1 e 1, em que valores próximos de 1 

mostram forte relação linear, já valores próximos de -1 mostram forte relação linear inversa. O 

eixo das abscissas, no cálculo da FCC, é chamado de atraso de tempo e diz respeito a defasagem 

no deslocamento entre o sinal móvel e o fixo, dos sinais que se quer analisar (Isermann e 

Münchhof, 2010).  

Na prática, para que o resultado da FCC fique entre -1 e 1 se faz necessário realizar a 

adimensionalização dos sinais. A adimensionalização, para o cálculo da FCC é dada da seguinte 

forma 𝑔𝑎𝑑𝑚 =
𝑔

√∑ 𝑔2
 e 𝑓𝑎𝑑𝑚 =

𝑓

√∑ 𝑓2
. 

 

3.4 Teste 

 

No teste o desempenho do modelo identificado é avaliado para um conjunto de dados 

diferente daquele usado para a estimação dos parâmetros. Isto pode ser possível, por exemplo, 

dividindo-se o conjunto de dados em três partes: os primeiros 2/3 do total do número de 

amostras é utilizado para a estimação de parâmetros, enquanto o 1/3 restante é usado para 

avaliar a qualidade do modelo (Juditsky et al., 1995).  

A Eq. (3.18) mostra, em porcentagem, o quanto o modelo estimado se ajusta aos dados 

experimentais de validação: 

𝑎𝑗𝑢𝑠𝑡𝑒 = (1 −
∑ |𝑦𝑘 − 𝑦𝑠𝑘|𝑁

𝑘=1

∑ |𝑦𝑘 − 𝑦̅|𝑁
𝑘=1

) × 100, (3.18) 

 

onde yk (y, …, yN) é a saída medida, ysk (ys1, …, ysN) é a saída do modelo estimado, e 𝑦̅ é a 

media do vetor  yk. Para esta equação o valor de 100% corresponde a um ajuste perfeito. 

Ressalta-se que no campo de identificação de sistemas dinâmicos, o termo “teste” é 

chamado de “validação”, como pode ser visto no artigo de Ljung e Hjalmarsso (1995). Neste 

trabalho, quando estiver sendo realizada a comparação visual e numérica entre as saídas 𝑦1 e 

𝑦2 geradas pelo MPC (ao injetar o incremento de controle na planta), e as saídas 𝑦1 e 𝑦2 geradas 

pela RNA treinada para emular o MPC (ao injetar o incremento de controle na planta), o termo 

validação será usado com o mesmo contexto do termo teste. Este mesmo raciocínio será 

considerado para os sinais 𝑢1 e 𝑢2. 
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4 METODOLOGIA 

 

As etapas realizadas para a substituição do MPC por uma RNA são dadas no diagrama 

da Figura 3, e são detalhas nas subseções a seguir. Os resultados e discussões serão apresentados 

no capítulo 5. 

 

 

 

4.1 Simulação da Planta com o MPC 

 

O sistema da torre de destilação usado para simulação da planta com o MPC foi obtido 

do trabalho de Alvarez et al. (2009), e é mostrado na Figura 4. 

 

Figura 3: Etapas usadas para substituição de um MPC por uma RNA. 
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O estudo considera uma coluna de destilação deisobutanizadora, usada na unidade de 

alquilação da refinaria de petróleo da PETROBRAS/Cubatão. Essa coluna recebe uma 

alimentação da unidade FCC, que inclui isobutano, 1-buteno, cis-2-buteno, trans-2-buteno, n-

butano e n-pentano. O produto do topo, composto principalmente por isobutano e butenos leves, 

é direcionado ao reator de alquilação, enquanto a corrente do fundo, rica em n-butano e butenos 

pesados, é armazenada para posterior processamento (Alvarez et al., 2009). 

Para simulação deste processo Alvarez et al. (2009) consideraram um modelo de função 

de transferência simplificado, derivado de um modelo experimental mais complexo. Este 

modelo captura a relação entre as entradas e saídas do sistema. No presente trabalho, para 

controlar este sistema serão consideradas as entradas 𝑢1 e 𝑢2 as quais referem-se, 

respectivamente, a taxa de fluxo de vapor no refervedor (ton/h) e a taxa de fluxo de refluxo 

(m³/d). Já as saídas 𝑦1 e 𝑦2 serão consideradas como nível de líquido no vaso superior (%) e 

temperatura no prato 68 (ºC), respectivamente. 

Figura 4: Diagrama de instrumentação e tubulação de uma torre de destilação deisobutanizadora. 

Fonte: Alvarez, et al. (2009) (adaptado). 
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Para a simulação do sistema controlado por meio do MPC considerou-se as seguintes 

característica do processo e MPC: 

 

Ressalta-se que o período de amostragem de 1 minuto foi mantido do trabalho de 

Alvarez et al. (2009). Como se trata de um sistema lento, este período de amostragem é 

suficiente para uma representação adequada do comportamento dinâmico do sistema. Com 

relação as restrições impostas ao MPC, elas permitem que o sistema opere dentro dos limites 

desejados, assegurando a estabilidade e eficiência do processo de destilação. 

Para avaliar a robustez e a capacidade de generalização da RNA no controle do sistema 

de torre de destilação, foi necessário introduzir uma variedade de perturbações não medidas 

durante a simulação. Essas perturbações foram inseridas para simular condições de distúrbios 

que o sistema pode enfrentar. Elas foram introduzidas em quinze instantes específicos ao longo 

da simulação. Os momentos de aplicação das perturbações foram escolhidos para garantir uma 

distribuição uniforme ao longo do tempo de simulação, enquanto as magnitudes das 

perturbações foram variadas para simular diferentes intensidades de distúrbios. A Tabela 1 

apresenta os instantes e magnitudes das perturbações aplicadas. 

Quadro 1: Parâmetros do processo e do MPC considerados para coleta de dados. 
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Tabela 1: Instantes de aplicação de perturbações. 

Instantes Magnitude 

50 -0,4 

200 0,3 

400 0,7 

600 0,5 

800 -0,8 

1000 -0,5 

1200 0,4 

1400 -0,9 

1600 0,2 

1800 -0,2 

2000 -0,3 

2200 0,8 

2400 0,6 

2600 -0,6 

2800 0,7 

 

O resultado da simulação, para uma janela de tempo de 450 minutos, para os sinais 𝑦1 

e 𝑦2 podem ser observados nas Figuras 5 (a) e (b). 
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Observa-se que os sinais de saída permanecem obedecendo as restrições impostas 

mesmo após o sistema ter sido submetido a sequência de perturbações dada na Tabela 1. É 

importante ressaltar que o código implementado torna aleatória a sequência de aplicação das 

perturbações paramétricas a cada simulação. Logo, a ordem dos valores apresentados na Tabela 

1, e consequentemente os resultados das Figuras 5 e 6, sofrerão alterações a cada simulação, 

porém os valores de magnitude são os mesmos. 

A Figura 6 mostra uma janela de tempo de 450 minutos dos sinais de controle 𝑢1 e 𝑢2. 

Observa-se que os sinais de controle reagem às perturbações sofridas pelo sistema, na forma de 

variação paramétrica, para compensar as alterações sofridas nas variáveis controladas 𝑦1 e 𝑦2. 

 

Figura 5: (a) Sinal de nível no vaso superior. (b) Sinal de temperatura no prato 68. 
1 

(a) 

(b) 
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A Figura 7 mostra o resultado da função custo para um tempo de experimento de três 

mil segundos. Observa-se que as variações na função custo são resultantes das perturbações 

impostas na forma de variação paramétrica ao processo controlado. É importante notar que o 

algoritmo de otimização do MPC converge rapidamente e o sistema é controlado satisfazendo 

todas as restrições. Espera-se que esse mesmo comportamento seja obtido por meio da rede 

neural que será usada para emulação do MPC. 

 

Figura 6: (a) Taxa de fluxo de vapor no refervedor (ton/h). (b) Taxa de fluxo de refluxo (m³/d). 
Figura 6: (a) Taxa de fluxo de vapor no  1 

(a) 

(b) 
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4.2 Armazenamento e Pré-Processamento dos Dados 

 

Durante a simulação do processo controlado com o MPC, os sinais de erro e de 

incremento de controle (Δu(k)) são coletados. O vetor de erro, calculado como a diferença 

entre o vetor de setpoint (ysp) e as saídas previstas do modelo (𝐹  𝑥𝑚), é construído empilhando 

os setpoints para cada passo do horizonte de predição (𝑝), resultando em um vetor de dimensão 

𝑝. 𝑛𝑦, em que 𝑛𝑦 é o número de saídas do processo. Assim, a entrada da RNA é o vetor de erro 

calculado em cada passo de tempo, e, ao longo de todo o tempo de simulação, terá uma 

dimensão de 𝑁 × 𝑝. 𝑛𝑦. Onde 𝑁 se refere ao número total de amostras obtido durante a 

simulação. Do ponto de vista teórico, este número de amostras é dado por 
𝑡𝑓𝑖𝑛𝑎𝑙

𝑇𝑠
, onde 𝑇𝑠 

representa o período de amostragem e 𝑡𝑓𝑖𝑛𝑎𝑙 representa o tempo de simulação. 

Para o presente trabalho será considerado 𝑝 = 120, 𝑇𝑠 = 1 𝑠 e um 𝑡𝑓𝑖𝑛𝑎𝑙 = 3000 𝑠. Isto 

resultará em um vetor de entrada da RNA de tamanho 𝑝 .  𝑛𝑦= 120 . 2 = 240. Assim, a RNA 

que será considerada tanto no treinamento quanto na simulação terá dimensão de 1 × 240 a 

cada período de amostragem, totalizando ao longo de toda a simulação uma dimensão de 

3000 × 240. 

Os sinais de incremento de controle Δu(k) de saída que serão usados no treinamento da 

RNA, e posteriormente na simulação, são coletados a cada período de amostragem. Assim, a 

dimensão dos sinais de saída da RNA será 3000 × 2. 

Figura 7: Resultado da função custo para um tempo de 300 minutos.  
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Durante a simulação do processo foram adquiridas 720 000 amostras relativas aos sinais 

de entrada e 6000 amostras relativas aos sinais de saída. Estas amostras foram armazenadas do 

seguinte modo: 

𝑒𝑛𝑡𝑟𝑎𝑑𝑎𝑠 𝑑𝑒 𝑡𝑟𝑒𝑖𝑛𝑎𝑚𝑒𝑛𝑡𝑜

= [𝑒1(1|𝑘), 𝑒2(1|𝑘), 𝑒1(2|𝑘), 𝑒2(2|𝑘), … , 𝑒1(120|𝑘), 𝑒2(120|𝑘) ], 𝑝𝑎𝑟𝑎 1 ≤ 𝑘 ≤ 3000; 

𝑠𝑎í𝑑𝑎𝑠 𝑑𝑒 𝑇𝑟𝑒𝑖𝑛𝑎𝑚𝑒𝑛𝑡𝑜 = [
Δ𝑢1(1), Δ𝑢1(2), , … , Δ𝑢1(3000) 

Δ𝑢2(1), Δ𝑢2(2), , … , Δ𝑢2(3000)
]

𝑇

. 

 

Em seguida, foram separadas em 70% para treinamento, 15% para validação e 15% para teste. 

É importante ressaltar que os sinais Δ𝑢1(𝑘) e Δ𝑢2(𝑘) são selecionados baseados no 

conceito de horizonte recuado (Wang, 2009). Devido ao princípio do controle de horizonte 

recuado só se faz necessário tomar o primeiro elemento de Δ𝑢1 e de Δ𝑢2, para cada instante 𝑘.  

Quando o sistema começa a operar a partir de condições iniciais nulas, ele experimenta 

um transiente devido à resposta inicial aos valores de entrada e às condições de contorno 

impostas pelo controlador. Deste modo, o MPC ajusta as entradas para levar o sistema ao ponto 

de operação desejado (4,7 ton/h e 2,65 m3/d para 𝑢1 e 𝑢2 e 47 % e 52,5 °C para 𝑦1 e 𝑦2, 

respectivamente) o que pode causar oscilações iniciais. Assim, como este comportamento só 

ocorre na partida no sistema, as amostras iniciais poderiam ser descartadas. No entanto, neste 

trabalho, decidiu-se manter este comportamento inicial do MPC para a RNA, pois em situações 

reais, no momento da partida do sistema, a RNA inevitavelmente será submetida a esse tipo e 

comportamento. 

As janelas de dados usadas para treinamento, validação e teste da rede neural são 

ilustradas de acordo com a ordem mencionada na Figura 8 para os sinais de saída. 
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A Figura 9 ilustra as janelas de sinais de treinamento (vermelha), validação (azul) e teste (verde) 

para os sinais de entrada da rede neural. 

Figura 8: Separação dos sinais de saída em subconjuntos para treinamento (janela vermelha), 

validação (janela azul) e teste (janela verde) da rede neural. 

Figura 8: Separação dos sinais de saída  1 
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A fim de conhecer melhor o grau de relacionamento linear entre os sinais de entrada de 

entrada da planta 𝑢1 e 𝑢2, e entre estes sinais com relação as saídas 𝑦1 e 𝑦2, a função de 

correlação cruzada dada pela equação Eq. (22) foi aplicada. Os resultados obtidos são 

apresentados na Figura 10. 

Figura 9: Separação dos sinais de entrada em subconjuntos para estimação (janela vermelha), 

validação (janela azul) e teste (janela verde). 
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Observa-se na Figura 10 que os sinais estão fortemente relacionados de modo linear e de forma 

direta entre si, e isto indica que qualquer um destes sinais pode ser obtido, de forma aproximada, 

por meio de uma combinação linear com o outro sinal. Além disso, este é um indicativo que a 

Figura 10: Resultado da FCC entre os sinais: (a) 𝑢1 e 𝑢2; (b) 𝑢1 e 𝑦1; (c) 𝑢1 e 𝑦2; (d)  𝑢2 e 𝑦1; e (e) 

𝑢2 e 𝑦2. 

(a) (b) 

(c) (d) 

(e) 
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RNA que será treinada considerando o setpoint do sistema fixo, será suficiente para substituir 

o MPC quando for realizada uma simulação do MPC com mudanças aleatórias no setpoint. 

 

4.3 Simulação com Modelo de Rede Neural 

 

A simulação do processo utilizando uma das RNAs como controlador será conduzida 

de duas maneiras: com o setpoint constante e com variação do setpoint. Em ambos os casos, o 

modelo do processo não nominal estará sujeito tanto às entradas não medidas, conforme 

discutido na seção 4.1, quanto a desvios constantes no modelo do processo. 

A Figura 11 apresenta o diagrama de fluxo do algoritmo implementado para a simulação 

da rede neural feedforward que emula o controlador preditivo baseado em modelo (MPC). O 

fluxo descreve as etapas seguidas durante a simulação do controle, partindo do momento em 

que o modelo da rede neural é carregado até a aplicação do controle no sistema. 

 

 

Inicialmente, a RNA previamente treinada para substituir o MPC, é carregada para 

realizar o controle em tempo real (primeira etapa). O sinal de erro, calculado como a diferença 

entre o setpoint e a saída prevista ao longo do horizonte de predição, é então determinado e 

utilizado como entrada da RNA, exatamente da mesma forma como foi utilizado no processo 

de treinamento (segunda etapa). 

Na sequência, a RNA calcula o incremento de controle com base no erro, que será usado 

para corrigir o comportamento do sistema (terceira etapa). Este incremento é então somado ao 

controle anterior, e o controle ajustado é aplicado aos modelos simulados nominais e não 

nominais (quarta etapa) da torre de destilação. Durante essa última etapa, tanto os sinais de 

Figura 11. Diagrama de fluxo para simulação da RNA que substituiu o MPC. 
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controle quanto as saídas geradas pela RNA são armazenados para análise e comparação 

posterior com o MPC. E isso permite verificar a eficácia da RNA como substituta do 

controlador original. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 

 

5 RESULTADOS E DISCUSSÃO 

 

Neste capítulo, são apresentados e discutidos os resultados das simulações realizadas 

com o controlador baseado em RNAs, emulando o MPC linear na forma incremental. 

 

5.1 Emulação do MPC linear incremental via RNA Feedforward 

 

A arquitetura implementada nesta seção é uma RNA feedforward composta por uma 

camada de entrada, uma camada oculta e uma camada de saída. Como abordado no capítulo 4, 

a camada de entrada recebe um vetor de erro ao longo do horizonte de predição do controlador, 

com dimensão definida pelo número de elementos no vetor de erro. A camada oculta contém 

10 neurônios, configurados com a função de ativação tangente hiperbólica, que mapeia os 

valores para o intervalo [-1, 1]. A rede foi treinada utilizando o algoritmo de Levenberg-

Marquardt, com 70% dos dados alocados para treinamento, 15% para validação e 15% para 

teste. O treinamento teve como objetivo mapear os sinais de erro ao longo do horizonte de 

predição para os incrementos de controle correspondentes, permitindo que a rede reproduza o 

comportamento do MPC. 

 A Figura 12 compara o resultado da simulação da emulação do MPC linear incremental 

utilizando uma RNA feedforward com os resultados obtidos pelo MPC linear incremental como 

controlador, considerando o setpoint constante para a saída 𝑦1 (nível no vaso). 
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A Figura 13 mostra uma janela de tempo de cerca de 130 minutos do resultado 

apresentado na Figura 12. Observa-se que a RNA feedforward emula de modo satisfatório o 

comportamento do sistema controlado pelo MPC. Como dito anteriormente, a RNA foi iniciada 

de modo aleatório e é capaz de se antecipar de um número de amostra (1 minuto) em relação a 

saída dada pelo MPC. Isto ocorre, pois embora a RNA feedforward não tenha memória temporal 

explícita, ao alimentar a rede com um vetor de erros futuros preditos, ela implicitamente 

aprende a realizar correções antecipadas. Esse é um comportamento similar ao de um 

controlador preditivo. Ou seja, a antecipação da rede neural não é um resultado intrínseco da 

arquitetura feedforward em si, mas da informação contida no vetor de erro ao longo do 

horizonte de predição. 

Em seguida, realizou-se uma comparação quantitativa entre os sinais apresentados na 

Figura 12. Para garantir a coerência dessa comparação, os sinais foram ajustados para estarem 

em fase e as 20 primeiras amostras foram descartadas. Esse procedimento é necessário para 

evitar que os valores do início da simulação, onde a RNA inicia com condições iniciais distintas 

das utilizadas pelo MPC, impactem negativamente o cálculo. Após o processamento, obteve-se 

um ajuste de aproximadamente 95% entre os sinais de saída 𝑦1, evidenciando um impacto 

similar entre ambos os controladores nesta saída do sistema. 

 

Figura 12: 𝑦1 gerado pelo MPC versus 𝑦1 gerado pela RNA feeedforward com o setpoint 

constante. 
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A Figura 14 mostra o sinal de controle 𝑢1 (vazão de vapor) e compara o resultado deste 

sinal para a simulação da emulação do MPC linear incremental utilizando uma RNA 

feedforward com os resultados obtidos pelo MPC linear incremental como controlador. 

 

 

Figura 13: 𝑦1 gerado pelo MPC versus 𝑦1 gerado pela RNA feeedforward com o setpoint 

constante. 

Figura 14: 𝑢1 gerado pelo MPC versus 𝑢1 gerado pela RNA feeedforward. 



48 

 

 

A Figura 15 mostra uma janela de tempo de cerca de 220 minutos do resultado 

apresentado na Figura 14. Observa-se que o sinal de controle produzido pela rede neural emula 

de modo aproximado o resultado produzido pelo MPC. Devido as razões já discutidas para o 

sinal de saída 𝑦1, o sinal de controle 𝑢1 produzido pela RNA feedforward está antecipado de 

um número de amostra em relação ao do MPC. 

 

 

Uma comparação quantitativa entre os sinais de controle 𝑢1 gerados pela RNA e pelo 

MPC foi realizada, utilizando os mesmos critérios adotados para a saída 𝑦1. Assim, os sinais 

foram postos em fase e as 20 primeiras amostras foram descartadas para evitar influências das 

condições iniciais. Como resultado, obteve-se um ajuste de aproximadamente 99%, 

demonstrando uma forte concordância entre as ações de controle calculadas pela RNA e pelo 

MPC. 

Resultados similares aos apresentados anteriormente, também foram obtidos para os 

sinais de temperatura 𝑦2 e de vazão de refluxo 𝑢2. Os resultados da simulação para estes sinais, 

considerando o setpoint constante, são mostrados na Figuras 16 (a) e (b). 

 

 

Figura 15: 𝑢1 gerado pelo MPC versus 𝑢1 gerado pela RNA feeedforward. 

Figura 15: u_1 gerado pelo MPC versus u_ 1 



49 

 

 

 

Seguindo os mesmos critérios adotados nas comparações anteriores para os sinais y1 e 

u1, realizou-se a análise quantitativa para os sinais y2 e u2. Os resultados mostram um ajuste 

de aproximadamente 99% tanto para o sinal y2 quanto para o sinal u2, evidenciando uma forte 

correspondência entre os valores produzidos pela RNA e pelo MPC. 

Figura 16: (a) 𝑦2 gerado pelo MPC versus 𝑦2 gerado pela RNA feeedforward considerando setpoint 

constante. (b) 𝑢2 gerado pelo MPC versus 𝑢2 gerado pela RNA feeedforward. 

Figura 16: (a) y_2 gerado pelo MPC versu 1 (a) 

(b) 
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Na sequência deste estudo, a próxima simulação consistiu na mudança do setpoint do 

MPC, de forma aleatória, adotando uma seed para fins de comparação com a emulação do MPC 

por meio da RNA. Para esta emulação, utilizou-se a RNA treinada para o caso sem mudança de 

setpoint. Os resultados nas saídas do sistema 𝑦1 e 𝑦2 para uma janela de tempo de cerca de 370 

minutos são apresentados na Figura 17. 

 

 

 

Figura 17: (a) 𝑦1 gerado pelo MPC versus 𝑦1 gerado pela RNA feeedforward para uma mudança 

aleatória de setpoint. (a) 𝑦2 gerado pelo MPC versus 𝑦2 gerado pela RNA feeedforward para uma 

mudança aleatória de setpoint. 

(a) 

(b) 
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Devido à forte relação linear entre os sinais de controle (𝑢1 𝑒 𝑢2) e saída (𝑦1 𝑒 𝑦2) da 

planta, observa-se que a RNA que havia sido treinada sem levar em conta a variação do setpoint 

entregou um resultado satisfatório mesmo considerando mudanças aleatórias no setpoint. O uso 

da equação do ajuste demonstra um ajuste de aproximadamente 97% entre os sinais de saída 

𝑦1, e de 95% entre os sinais de saída 𝑦2. 

Os resultados para os sinais de controle 𝑢1 𝑒 𝑢2, para uma janela de tempo de cerca de 

370 minutos, são mostrados na Figura 18. Para estes sinais, o uso da equação do ajuste 

demonstra um ajuste de aproximadamente 98% entre os sinais de saída 𝑢1, e de 93% entre os 

sinais de saída 𝑢2. 
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5.2 Análise de Tempo de Execução dos Controladores MPC e RNA 

 

As Figuras 19 (a) e (b) mostram os resultados do tempo de execução do algoritmo de 

otimização do controlador MPC e da função de predição da RNA para cada passo de simulação 

considerando o setpoint constante. Observa-se que o tempo de execução da função de predição 

Figura 18: (a) 𝑢1 gerado pelo MPC versus 𝑢1 gerado pela RNA feeedforward com o setpoint 

aleatório. (b) 𝑢2 gerado pelo MPC versus 𝑢2 gerado pela RNA feeedforward com o setpoint 

aleatório. 

(a) 

(b) 
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da RNA é inferior ao do algoritmo de otimização do MPC. A fim de obter um valor médio 

comparativo, cada código de simulação dos controladores foi executado cinco vezes. Em 

seguida, calculou-se a média de tempo, para cada uma das cinco execuções, a partir do tempo 

médio gasto nos três mil passos de simulação. Para o MPC, obteve-se um valor médio de 

40,7334 ms, enquanto para a RNA, obteve-se um valor médio de 2,4640 ms. Este resultado 

demonstra que a emulação do MPC via RNA é aproximadamente 16,5 vezes mais rápida do 

que a execução do algoritmo de otimização do MPC. 

 

 

Cálculos similares de tempo de execução foram realizados considerando a variação 

aleatória do setpoint. Para o MPC, foi obtido um tempo médio de execução de 47,7619 ms, 

enquanto para a RNA o valor médio foi de 2,3098 ms. Esse resultado demonstra que a emulação 

do MPC por meio da RNA, mesmo com o setpoint variável, praticamente não sofreu alteração 

em relação ao caso de setpoint constante. Por outro lado, observa-se que a variação do setpoint 

aumentou significativamente o tempo de execução do algoritmo de otimização do MPC, 

resultando em um acréscimo de cerca de 7 ms no tempo médio. 

 

 

 

Figura 19: (a) Tempo de execução do algoritmo de otimização do MPC. (b) Tempo de execução da 

função de predição da RNA.  

(a) (b) 
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6 CONCLUSÃO 

 

O controlador preditivo baseado em modelo (MPC), a cada instante de tempo, resolve 

um problema de otimização com o objetivo de minimizar uma função custo que leva em conta 

o erro ao longo de um horizonte de predição. Contudo, o tempo gasto para a solução desse 

problema, seguido pela aplicação da correção, pode gerar uma latência indesejada no sistema 

de controle. Tal questão é particularmente crítica em sistemas que apresentam dinâmicas 

rápidas e alta complexidade, nos quais o MPC pode não ser capaz de fornecer uma solução 

dentro do tempo necessário. 

A rede neural artificial (RNA) treinada neste trabalho, por outro lado, foi concebida para 

imitar o MPC sem a necessidade de resolver problemas de otimização a cada período de 

amostragem. A rede aplica diretamente as correções com base no vetor de erro ao longo do 

horizonte de predição, tornando-a uma alternativa promissora em situações em que o MPC é 

inviável, especialmente devido às suas altas exigências computacionais. Isso é especialmente 

relevante em sistemas embarcados, como controladores lógicos programáveis (CLPs) e 

microcontroladores, onde os recursos de processamento são limitados. 

Apesar de o sistema analisado neste estudo ser de baixa complexidade - linear, 

invariante no tempo e estável - os resultados indicam que a substituição do MPC por uma RNA 

tem grande potencial. Como visto no capítulo 2, a literatura já sugere que RNAs podem ser 

aplicadas com sucesso em sistemas não-lineares e variantes no tempo, abrindo caminho para 

futuras investigações mais abrangentes sobre o tema. 

Inicialmente, a proposta deste trabalho incluía a exploração de diferentes arquiteturas 

de inteligência artificial para emular o comportamento do MPC. Entretanto, como a rede 

feedforward selecionada conseguiu alcançar os resultados esperados, optou-se por não utilizar 

outras arquiteturas.  

Para trabalhos futuros, seria interessante explorar a eficácia de outras configurações de 

IA, como redes neurais recorrentes ou com mecanismos de atenção, ampliando o escopo da 

emulação de MPCs.  

Por fim, sugere-se a implementação desta rede neural em microcontroladores, CLPs ou 

outros sistemas embarcados, com o objetivo de testar seu desempenho em cenários mais 

próximos de aplicações reais. Essa etapa permitirá avaliar a viabilidade prática da proposta em 

termos de desempenho computacional e capacidade de controle.  
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