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RESUMO

BENICIO DE ALMEIDA CAJUEIRO, E. Emulacéo de uma Lei de Controle Preditivo via
Arquiteturas de Redes Neurais. 2024. 56 f. Trabalho de concluséo de curso (MBA em
Inteligéncia Artificial e Big Data) — Instituto de Ciéncias Matematicas e de Computacéo,

Universidade de Sdo Paulo, Sdo Carlos, 2024.

Neste trabalho, uma metodologia foi desenvolvida com o objetivo de substituir a lei de controle
do controlador preditivo baseado em modelo (MPC) linear incremental por uma estrutura de
inteligéncia artificial, mais especificamente, uma rede neural feedforward. A hipétese foi que
redes neurais artificiais (RNASs) poderiam substituir o MPC em questdo, proporcionando
respostas similares nas saidas da planta escolhida, além de oferecer uma solugdo mais eficiente
em termos de custo computacional, permitindo, em aplica¢fes futuras, a implementacéo do
controlador em sistemas embarcados com recursos computacionais limitados, ao mesmo tempo
mantendo ou até melhorando a estabilidade do sistema devido a otimizacdo do tempo de
resposta do controlador. Para validar essa abordagem, foram utilizados dados simulados de um
subsistema de uma torre de destilacdo, onde as entradas do sistema eram a taxa de fluxo de
vapor no refervedor (ui, em ton/h) e a taxa de fluxo de refluxo (u2, em m3/d), enquanto as saidas
monitoradas foram o nivel de liquido no vaso superior (y:, em %) e a temperatura no prato 68
(y2, em °C). Duas simulagdes foram realizadas: a primeira considerou a inser¢do de
perturbacbes ndo medidas sem variacdo no setpoint, enquanto a segunda incluiu tanto
perturbacdes ndo medidas quanto a variacdo do setpoint. Em ambas as simulages, os resultados
foram satisfatorios. A rede neural foi treinada com base no sinal de erro ao longo do horizonte
de predicdo, sendo que a saida da rede representava o incremento de controle. Os resultados
demonstraram que a rede neural foi capaz de emular de forma eficaz o comportamento do MPC,
proporcionando respostas rapidas e estaveis, similares as encontradas com o uso do MPC,
mesmo na presenca de perturbacdes e mudancas no setpoint. Além disso, a reducdo no custo
computacional indicou que a abordagem proposta pode ser viavel para controle em sistemas
embarcados com recursos computacionais limitados, oferecendo um desempenho equivalente

ao MPC convencional.

Palavras-chave: controle preditivo baseado em modelo (MPC); redes neurais artificiais; torre

de destilacéo; eficiéncia computacional.



ABSTRACT

BENICIO DE ALMEIDA CAJUEIRO, E. Emulation of a Predictive Control Law via
Neural Network Architectures. 2024. 56 f. Trabalho de conclusdo de curso (MBA em
Inteligéncia Artificial e Big Data) — Instituto de Ciéncias Matematicas e de Computago,

Universidade de Sdo Paulo, Sdo Carlos, 2024.

In this work, a methodology was developed with the objective of replacing the control law of
the linear incremental model predictive controller (MPC) with an artificial intelligence
structure, more specifically a feedforward neural network. The hypothesis was that artificial
neural networks (ANNS) could replace the MPC in question, providing similar responses in the
outputs of the chosen plant, in addition to offering a more efficient solution in terms of
computational cost, enabling, in future applications, the implementation of the controller in
embedded systems with limited computational resources, while maintaining or even improving
system stability due to the optimization of the controller's response time. To validate this
approach, simulated data from a subsystem of a distillation column were used, where the system
inputs were the vapor flow rate in the reboiler (ui, in ton/h) and the reflux flow rate (u2, in
m?3/d), while the monitored outputs were the liquid level in the top vessel (yi, in %) and the
temperature at tray 68 (y-, in °C). Two simulations were performed: the first considered the
insertion of unmeasured disturbances without setpoint variation, while the second included both
unmeasured disturbances and setpoint variation. In both simulations, the results were
satisfactory. The neural network was trained based on the error signal over the prediction
horizon, with the network's output representing the control increment. The results showed that
the neural network was able to effectively emulate the behavior of the MPC, providing fast and
stable responses, similar to those obtained using the MPC, even in the presence of disturbances
and setpoint changes. Additionally, the reduction in computational cost indicated that the
proposed approach may be viable for control in embedded systems with limited computational

resources, offering performance equivalent to that of the conventional MPC.

Keywords: model predictive control (MPC); artificial neural networks; distillation column;

computational efficiency.
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1 INTRODUCAO

O controle preditivo baseado em modelo (do inglés, Model Predictive Control - MPC)
envolve a solugdo de problemas de otimizagdo a cada periodo de amostragem. Neste intervalo
de tempo se faz necessario gerar uma sequéncia de acdes de controle com base nas informacdes
mais recentes disponiveis (Camacho e Bordons, 1995). Essa necessidade de otimizagéo online,
historicamente, tem implicado para a indUstria a adicdo de mais um nivel na pirdmide de
automacdo industrial devido ao elevado esforco computacional neste tipo de tarefa (de Prada,
2021).

Na camada de otimizacdo da piramide de automacdo € comum o0 uso de hardware
especializado (de Prada, 2021), isso porque atrasos significativos na resolucdo da otimizacao
podem impactar negativamente o desempenho do MPC, uma vez que o controle pode ndo ser
ajustado em tempo hébil para mudangas rapidas no sistema (Richalet e O’donovan, 2009). Além
disso, muitos algoritmos de otimizacdo utilizados no MPC séo iterativos, 0 que pode exigir
estratégias eficientes para inicializagdo e convergéncia.

Para que a otimizagdo em tempo real seja possivel, deseja-se que as leis de MPC,
resolvidas por meio de técnicas de inteligéncia artificial (1A), alcancem melhor desempenho do
gue por métodos convencionais de solucdo numérica (como exemplo, a programacdo
quadrética). Por isso, a justificativa para o desenvolvimento do presente trabalho consiste na
necessidade, ainda corrente, de se investigar métodos de sintetizacdo de leis de MPC, para que
a industria possa implementa-los em controladores industriais (ex.: o controlador logico
programavel) e sistemas embarcados, 0s quais, muitas vezes, possuem menor poder
computacional.

Trabalhos tém sido desenvolvidos buscando uma implementacéao eficiente de métodos
de MPC em sistemas embarcados. Santana et al. (2023) propdem um método pratico e bem-
sucedido para embarcar duas diferentes estratégias de MPC: o MPC de Horizonte Infinito
Robusto (do inglés, Robust Infinite Horizon MPC - RIHMPC) e o Controle Preditivo Nao
Linear (do inglés, Nonlinear Model Predictive Control - NMPC), em um sistema
microcontrolado.

O objetivo deste trabalho é sintetizar estruturas de inteligéncia artificial (IA) com o
propdsito de emular uma lei de controle preditivo baseado em modelo (MPC), mais
especificamente, o0 MPC linear na forma incremental. Como aplicagdo para extragéo dos sinais

que serdo usados no treinamento de uma Rede Neural Artificial (RNA), serdo considerados dois
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subsistemas de uma torre de destilagdo. Os subsistemas da referida torre de destilagdo sdo
descritos no artigo de Alvarez et al. (2009).

As torres de destilacdo sdo de grande importancia na industria quimica e petroquimica,
pois desempenham um papel de separacdo de misturas liquidas em seus componentes
individuais. Esse processo é Util para a producdo de substancias puras e para a obtencdo de
produtos especificos. A destilacdo é amplamente utilizada para separar hidrocarbonetos no
refino de petréleo, bem como na producdo de solventes, produtos farmacéuticos e bebidas
alcoolicas. As torres operam com base na diferenca de volatilidade entre os componentes de
uma mistura, utilizando o aquecimento e a condensacao seletiva para fracionar as substancias
(Luyben, 2013).

Além de sua relevancia para a separacdo de produtos, a eficiéncia das torres de
destilacdo afeta diretamente a rentabilidade e a sustentabilidade dos processos industriais.
Projetos otimizados de torres, que maximizam a recuperacdo de produtos e minimizam o
consumo de energia, sdo essenciais para a reducdo dos custos operacionais. Ademais, a
automacdo e o controle 6timo das malhas de controle da torre garantem que o processo de
destilacdo ocorra de forma eficiente, segura e em conformidade com as normas ambientais
(Luyben, 2013).

Os resultados esperados tendo como aplicacdo a torre de destilacdo podem ser
expandidos para as demais areas que envolvem o controle automético de sistemas dindmicos

lineares.

1.1 Hipotese de Pesquisa

A hipétese deste estudo é que o controle preditivo baseado em RNA pode ser uma
alternativa mais eficaz, do ponto de vista pratico, em comparagcdo ao MPC linear na forma
incremental para o controle de processos em tempo real. Ao utilizar RNAs para substituir a
resolucéo de problemas de otimizacdo em tempo real, além de a RNA conseguir fazer o papel
do MPC em questdo no controle 6timo de processos, obtém-se uma reducéo significativa no
custo computacional. I1sso pode permitir a implementagéo desse controlador em computadores
industriais, como CLPs, instrumentos inteligentes e sistemas embarcados mais acessiveis,
mantendo ou até melhorando a estabilidade do sistema devido & otimizagdo do tempo de

resposta do controlador.
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1.2 Estrutura do Trabalho

No capitulo 2 é realizada uma breve revisdo bibliogréafica sobre métodos de inteligéncia
artificial para emulacdo de MPC tradicionais e sua aplicagcdo em subsistemas de uma torre de
destilacdo. Em seguida, no capitulo 3, € abordada a fundamentacdo tedrica, a qual trata
brevemente sobre o0 MPC, RNA feeedforward, funcédo de correlacdo cruzada e a validacdo via
equacdo do ajuste. A metodologia necesséria para substituicdo de uma lei de MPC via RNA é
tratada no capitulo 4. No capitulo 5 sdo apresentados os resultados. Por fim, no capitulo 6,
conclui-se o trabalho com uma avaliacdo critica dos resultados e sugestdes para futuras

pesquisas.
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2 REVISAO BIBLIOGRAFICA

Implementar o MPC em sistemas com dindmica rapida ainda é desafiador, e essa
dificuldade aumenta se 0 modelo do processo for ndo-linear (Kather et al., 2023; Chan et al.,
2021). Sistemas nédo-lineares acrescentam complexidade ao problema de otimiza¢do do MPC,
pois requerem algoritmos de otimizacdo mais sofisticados que sdo computacionalmente mais
intensos. Como o tempo de calculo do otimizador ja é limitado pela rapidez da dindmica do
sistema, pode ndo ser viavel encontrar a solugdo 6tima da lei de MPC dentro do tempo
disponivel, exigindo abordagens de otimizacdo mais rapidas, simplificacbes do modelo ou
abordagens que envolvam a sintetizacdo de uma IA capaz de reproduzir o comportamento de
um MPC.

As RNAs sdo consideradas aproximadores universais devido a capacidade de, partindo
de uma dada arquitetura de rede previamente selecionada, aprenderem diretamente a partir dos
sinais de entrada e saida de sistemas complexos e com forte ndo-linearidades (Haykin, 2009).
De acordo com Hecht-Nielsen (1989), uma RNA feedforward de trés camadas, treinada com
algoritmo backpropragation, é teoricamente capaz de modelar qualquer funcdo continua que
possua energia limitada (funcbes no espaco L,).

Li et al. (1991) propuseram um algoritmo de RNAs para uma lei de MPC. Neste
trabalho, as RNAs desempenham um papel duplo no controle preditivo. Enquanto uma RNA
atua como um preditor de um passo a frente, prevendo a proxima saida da planta com base na
informagdo atual e passada. A outra RNA atua como um controlador preditivo, que utiliza as
previsdes do preditor para tomar decisdes de controle no sistema. Eles usaram uma RNA
feedforward com multiplas camadas, com funcdo de ativacdo sigmoide, e a treinaram via
algoritmo backpropagation (Haykin, 2009). De acordo com os autores, 0s resultados obtidos
mostram que o sistema de controle baseado em RNAs consegue alcangar um desempenho
superior em comparagdo com métodos tradicionais de MPC, especialmente em sistemas com
dindmicas complexas e ndo-lineares.

Wang e Boyd (2010) abordam métodos online para reduzir o tempo de calculo do MPC
para sistemas com dindmica rapida. Os autores ressaltam que uma forma comum de lidar com
0 MPC para sistemas de dindmica rapida é calcular a solucdo da programacao quadratica (QP)
de forma explicita, porém offline. Nesse caso, implementa-se a agdo de controle online, na
forma de uma tabela de pesquisa, 0 que torna este método conveniente para sistemas em que 0

numero de estados considerados ndo é maior do que cerca de cinco. Isso ocorre, pois 0 niumero
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de entradas na tabela tende a crescer exponencialmente com o incremento do ndmero de
estados, restri¢des, entradas e horizonte de predicéo.

A estratégia adotada por Wang e Boyd (2010) consiste em explorar a estrutura da QP
reordenando-a de modo que um problema com O(T3(n + m)3) operacdes por passo, via
método de ponto interior, se torne O(T(n + m)3). Em que n é a dimenséo do estado, m ¢ a
dimensdo da entrada e T € o horizonte de controle. Assim, o artigo em questdo faz uma analise
detalhada de um conjunto de métodos de otimizacéo online que exploram a estrutura especifica
do problema de QP na solucdo de MPC para acelerar o calculo da acdo de controle. Estes
métodos sdo variagdes de um método chamado “Método de Barreira Primal”.

De acordo com Wang e Boyd (2010), ajustes (variacdes) nesses métodos permitem a
execucdo do MPC com esfor¢co computacional significativamente menor (na ordem de 100
vezes mais rapido) em comparacdo com a solucdo via otimizadores genéricos. Os autores
destacam a necessidade de analises formais de garantia da estabilidade para as solucGes
propostas. Os autores disponibilizam um cddigo escrito em linguagem C (ver
http://www.stanford.edu/~boyd/fast_mpc.html) para download da implementacdo do método
desenvolvido. A dificuldade da implementacdo em microcontrolador, do método tratado por
estes autores, reside na necessidade ainda presente do uso de um algoritmo de otimizagéao para
solucéo da lei de controle.

Williams et al. (2017) apresentaram um algoritmo de MPC para modelos baseados em
RL capaz de lidar com dindmicas complexas e nao-lineares. RNAs multicamadas sdo usadas
como modelos de dindmica no algoritmo MPC, facilitando a resolucéo de tarefas de RL baseada
em modelo. Os autores implementarem o método em um modelo simulado de um péndulo
invertido, além de um sistema fisico (um veiculo de rally, para controle de trajetdria). Eles
ressaltam que o método desenvolvido demanda auto custo computacional, devido a arquitetura
da RNA (nimero de parametros e funcdes de ativacdo na-lineares), para que seja simulado em
tempo real.

Tange et al. (2019) investigaram a integracdo do MPC com técnicas de aprendizado por
reforco profundo (ARP) para melhorar o desempenho de sistemas de controle lineares e
invariantes no tempo sujeitos a perturbacdo. Esta abordagem utiliza um modelo linear pré-
identificado para prever erros de rastreamento futuros, que sdo entdo utilizados como estado
observado por um compensador ARP. O artigo foca em casos em que, embora 0 modelo em
espaco de estados seja continuo, o sinal de controle s6 pode assumir niveis predeterminados,
como -1, 0 ou 1 (controle multinivel). Através de exemplos numéricos, de acordo com 0s

autores, esta metodologia supera métodos de controle baseados em aprendizagem por reforco
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que utilizam o controle proporcional (P) e proporcional-integral (P1) em termos de desempenho
de controle e convergéncia.

Nos métodos tradicionais de MPC cada decisao de controle requer a resolugdo de um
problema de otimizagdo que minimiza uma funcao de custo prevista ao longo de um horizonte
de tempo futuro, sujeita a restricdes operacionais. Essa otimizacdo é computacionalmente
intensiva e precisa ser realizada em tempo real a medida que novos dados se tornam disponiveis.
No entanto, 0 método proposto por Tange et al. (2019) utiliza um compensador (baseado em
DRL) que ja "aprendeu™ a melhor politica de controle durante a fase de treinamento. Portanto,
em vez de resolver um problema de otimizacdo a cada periodo de amostragem, o sistema
consulta a politica aprendida para determinar a agao de controle. Este método € menos oneroso
do ponto de vista computacional.

Ressalta-se que no estudo de Tange et al. (2019), a aplicabilidade do sistema proposto
foi demonstrada por meio de simulagOes realizadas no software Matlab, adotando-se um
periodo de amostragem de um segundo. E importante notar que a implementacio em sistemas
baseados em microprocessadores nao foi abordada.

Cotrufo et al. (2020) aliaram RNAs Profundas com técnicas com o MPC. Os autores
usaram estas redes para predicdo do comportamento energético em edificios (temperatura ao
longo de 24 horas e demanda energética) que sdo aquecidos com mais de uma fonte de energia
(exemplo: gas e elétrica). De acordo com o autor, os modelos baseados em aprendizagem
profunda (AP) superaram seis outros metodos de 1A que haviam sido usados para este fim, os
quais foram: regressao multilinear (MLR), rede elastica (RE), florestas aleatorias (FA),
maquinas de aumento de gradiente (MAG), regressao de vetores de suporte (SVR), arvores de
aumento de gradiente extremo (AAGE). Os autores usaram a lei de MPC visando a
minimizacdo do consumo de gas natural. O controlador agiu de modo a selecionar o melhor
perfil de setpoint que alcancasse 0 menor consumo de gas natural.

Embora o trabalho de Cotrufo et al. (2020) ndo trate especificamente sobre a sintetizacéo
de MPCs baseado em IA, este € um artigo que deve ser levado em consideracdo para o
seguimento deste trabalho, uma vez que o MPC depende de um modelo, e a obtencdo de um
modelo caixa preta para implementacdo do controlador € uma estratégia que pode ser
considerada.

Wang et al. (2021) treinaram uma RNA para emular um MPC em aplicagdes de
conversores multiniveis modulares. Os autores destacam que, como o treinamento da rede foi
realizado offline, a maior parte do custo computacional deste sistema de controle,

tradicionalmente realizado em tempo real, deixou de existir. Através dessa abordagem, 0s
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autores conseguiram que a RNA alcancasse um desempenho de controle comparéavel ao do
MPC convencional para esta mesma aplicacdo, mas com uma significativa redugéo no custo
computacional para aplicacdes em tempo real.

Lale et al. (2021) combinaram aprendizado por reforco (RL) e controle preditivo no que
eles chamaram de Controle Preditivo de Aprendizagem de Modelo (MLPC). O MLPC usa um
modelo identificado de um processo ndo-linear parcialmente observavel (um péndulo invertido)
obtido online por meio de uma funcdo N&o-Linear Autoregressiva com Entradas Exogenas
(NARX) (Nelles, 2001), em que Representacdes de Fourier Aleatdrias (RFF) (Rahimi e Recht,
2007) s&o usadas para representar o comportamento ndo-linear da planta. O algoritmo do MPC
usado para a planta é obtido de modo online via RL.

O MLPC descrito em Lale et al. (2021) usa um MPC (chamado pelo autor de
“oraculo”), dentro da funcao custo para projetar o sinal de controle do MPC obtido via RL para
controle da planta. O MPC “oraculo” resolve um problema de controle 6timo de horizonte finito
e fornece um sinal de controle para o modelo NARX identificado. A saida da planta é
comparada com a saida produzida pelo “ordculo” no modelo NARX, para planejamento,
atualizando ocasionalmente as estimativas do modelo subjacente para melhorar o MPC. Como
relatado pelos autores a estrutura do MLPC para o problema do péndulo invertido foi
implementada em um toolbox para RL chamado OpenAl Gym (BROCKMAN, 2016).

Sobre 0 método RFF, este se mostra bastante Util na modelagem de sistemas nao-
lineares. De acordo com Rahimi e Recht (2007), a RFF é uma funcdo eficiente para aplicar
técnicas de aprendizado de maquina baseadas em kernel, como Méaquinas de Vetores de Suporte
(SVMs) e regressdo kernel, a grandes conjuntos de dados, que de outra forma seriam
proibitivamente caros de se computar diretamente devido ao custo computacional de avaliar o
kernel. Isso, porque esta funcéo € capaz de mapear os sinais do sistema (relacdo entrada/saida)
que se quer modelar para um espaco de alta dimensédo (possivelmente infinita), sendo possivel
realizar operagdes lineares que correspondem a operagdes ndo-lineares no espacgo original dos
dados. Esse método ¢ eficiente porque a dimensionalidade do espaco de caracteristicas € finita
(e frequentemente muito menor que a dimensionalidade do espago de Hilbert original
correspondente ao kernel), e as operagdes no espaco transformado s&o lineares e mais simples
de calcular (Rahimi e Recht, 2007; Lale et al. 2021).

O conceito de kernel em aprendizado de maquina refere-se a uma fungéo usada para
mapear dados em um espago de dimensdo mais alta, onde é possivel resolver problemas que
ndo sdo linearmente separaveis no espaco original (Schélkopf e Smola, 2018). Essencialmente,

um kernel € uma funcdo que calcula o produto interno de dois vetores (representando dados)
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em um espaco de caracteristicas, sem a necessidade de calcular explicitamente a transformacéo

para esse espago (Muller, 2001).
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3 FUNDAMENTACAO TEORICA

Este capitulo estd organizado da seguinte forma: A Secédo 3.1 apresenta os principios do
Controle Preditivo Baseado em Modelo (MPC). A Secdo 3.2 oferece uma breve revisdo sobre
Redes Neurais Artificiais (RNA) feedforward. A Secdo 3.3 discute a funcdo de correlacéo
cruzada, utilizada na fase de pré-processamento dos sinais. Por fim, a Secdo 3.4 aborda a
equacao de ajuste, aplicada na etapa de teste da RNA no presente trabalho.

As equacdes e deducdes que serdo mostradas nas subsecdes a seguir sdo bem conhecidas
no campo do MPC e das RNA feedforward. Para um estudo detalhado sobre MPC recomenda-
se a leitura dos livros de Camacho e Bordon (1995), Richalet ¢ O’Donovan (2009) e Wang
(2009), referenciados ao longo da Secdo 3.1. Para um estudo detalhado sobre RNAs,
recomenda-se a leitura de Li et al. (1991), Pham e Xing (1995), Haykin (2009) e Nelles (2001).

3.1 Controle Preditivo Baseado em Modelo (MPC)

Controle Preditivo Baseado em Modelo (MPC) € uma técnica avangada de controle de
processos que usa modelos para prever e otimizar 0 comportamento futuro de um sistema
(Richalet e O’Donovan, 2009). Utilizando um horizonte de previsdo para antecipar eventos
futuros e um horizonte de controle para determinar as a¢cdes de controle 6timas, 0 MPC ajusta
as entradas do sistema de maneira a cumprir 0s objetivos de controle, como seguir uma trajetoria
desejada ou manter uma condicdo operacional estavel, respeitando as restricbes do sistema
(Wang, 2009).

No projeto de um MPC, é comum a utilizacdo de modelos em espaco de estados devido
a sua capacidade de representacdo compacta e adequada das dinamicas de um sistema (Richalet
e O’Donovan, 2009). Esse modelo é essencialmente um conjunto de equagfes que descrevem
como o estado do sistema evolui ao longo do tempo em resposta a entradas externas (Ogata,
1995). A informac&o atual do sistema € suficiente para prever seu comportamento futuro. Isso
é formalizado através da variavel de estado, que encapsula o estado presente e € utilizada para

calcular o estado em um proximo instante de tempo (Wang, 2009)

Xm(k +1) = Apxpy (k) + Bpu(k) (3.1)
y(k) = Cpnxm(k) + Du(k) (3.2)
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onde u(k) é a varidvel manipulada ou varidvel de entrada, y(k) € a saida medida do processo
e x,, 0 vetor de varidveis de estados com dimensdo n,. A matriz A4,, captura a dindmica do
sistema, enquanto B,, e C,, descrevem a relacéo entre a entrada e o estado, e 0 estado e a saida,
respectivamente; e D,,, representa a matriz que teoricamente transmitiria o sinal de entrada
diretamente para a saida. No entanto, como a entrada u(k) ndo pode afetar a saida y(k) ao

mesmo tempo, entdo, D,,, = 0. Assim, consideramos somente:

y(k) = Cxp (k) 3.3)

A Fig. 1 mostra um diagrama de blocos genérico de um MPC. O passo a passo do
funcionamento deste controlador é dado a seguir (Richalet e O’Donovan, 2009):

Figura 1: Diagrama de blocos de um MPC.

DV DVim
Feedforward M, |«
Y A 4
P2 P 3
M; [—
Sm
A\ 4
Setpoint R MV*» |/ MV» P,
Controle
Preditivo

Fonte: Richalet e O’Donovan (2009).

1. Definicao do setpoint: O processo comeca com a definicdo de um setpoint, que € o
objetivo ou o valor desejado para a variavel controlada (CV). Este € o alvo que o sistema

de controle tenta alcangar e manter.

2. Controlador recebe o sinal de setpoint: O controlador R recebe o setpoint como
referéncia e usa os modelos internos M, e M, para prever o comportamento futuro do
processo. O modelo M; simula a resposta do processo a mudancas na variavel
manipulada (MV), enquanto M, considera as perturbacdes externas que podem afetar o

processo.
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3. Célculo da variavel manipulada (MV*): O controlador, utilizando a légica do MPC e
0s modelos de previsdo, calcula a varidvel manipulada ideal MV*, que é a acdo de
controle que o sistema teoricamente deve aplicar para que a variavel controlada (CV)

atinja o setpoint.

4. Aplicacéo de restricbes a MV* : A varidvel manipulada calculada MV* pode precisar
ser ajustada por um limitador para garantir que ndo exceda os limites operacionais ou
de seguranca do processo. Isso resulta na variavel manipulada aplicada MV, que é a

acao de controle que realmente serd implementada no processo.

5. Acdo de controle no processo: A variavel manipulada MV é entdo enviada para o
modelo interno do regulador M; e para o processo P; afetando a variavel controlada CV

e tentando trazé-la para o valor desejado definido pelo setpoint.

6. Medicdo da variavel controlada e das perturbacfes: Enquanto isso, o sistema de
controle mede continuamente a variavel controlada CV e pode também medir as
perturbacdes conhecidas DV,,. As perturbacGes ndo medidas DVj,,,, por definicdo, ndo
sdo medidas diretamente, porém afetam diretamente o processo por meio do sinal

Spy - Ja a perturbacéo DV, afeta o processo por meio do sinal Spy,, .

7. Feedforward das Perturbaces: Se perturbacdes séo esperadas ou medidas, como DV,
um sinal de feedforward pode ser gerado e aplicado ao controlador para compensar essas
perturbacdes antes que elas afetem a variavel controlada.

8. Ajuste do controlador baseado nas medidas: Com base nas medicdes e nas previsdes
atualizadas dos modelos internos M; e M,, o controlador ajusta continuamente a
variavel manipulada MV para minimizar a diferenca entre o setpoint e a varidvel

controlada CV, levando em consideragéo as perturbagdes.

9. Resposta a perturbacgdes ndo medidas: Se houver perturbagdes ndo medidas afetando
0 processo, como Spy, .., 0 sistema de controle precisara ser robusto o suficiente para
lidar com essas incertezas e manter a variavel controlada o mais préximo possivel do

setpoint.

O processo de um MPC é iterativo e continuo, com o controlador fazendo ajustes em

tempo real com base nas informacGes que recebe e nas previsdes que faz. A eficidcia do MPC
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reside na sua capacidade de antecipar eventos futuros e tomar agdes preventivas para manter o
processo estavel e proximo ao seu objetivo desejado (Camacho e Bordon, 1995).

Ressalta-se que no presente trabalho tanto R quanto o bloco limitador serdo substituidos
por uma RNA.

As Subsecdes 3.1.1 e 3.1.2 contem fundamentos necessarios para o entendimento do
projeto do MPC.

3.1.1 Modelo em Espaco de Estado Aumentado

A fim de eliminar o erro do sistema de controle em regime permanente, € comum 0 Uso
de um modelo em espaco de estados aumentado. Para isso, se faz necessario incluir na Eq. (3.1)
um termo somador. Este termo somador pode ser incluido obtendo-se a diferenca para ambos
os lados da Eq. (1). Esta operacdo pode ser vista na Eq. (3.4):

Xm(k + 1) = %3, (k) = A (X (k) — X3 (k = 1)) + By (u(k) —u(k — 1)) (34)
e pode ser reescrita, COmo:
Axp, (k + 1) = A Axy, (k) + B, Au(k) (3.5)
onde Ax,,(k + 1) = x,,(k + 1) — x,,(k), Ax,, (k) = x,, (k) — %, (kK — 1) € Au(k) = u(k) —
u(k —1). Em que Ax,,(k + 1) é a variacdo do vetor de estado entre 0 nimero de amostra k +
1ek, Ax,,(k) é avariacdo do vetor de estado entre 0 nUmero de amostrak e k — 1, e Au(k) é
a variacao do sinal de controle entre 0 nimero de amostra k e k — 1.
De forma andloga, repetindo o procedimento de diferencas para a Eq. (3.3), obtém-se
y(k+1) —y(k) = C,Ax,, (kK + 1) (3.6)

Substituindo a Eq. (3.5) na Eq. (3.6), resulta

y(k+ 1) — y(k) = Cp(Andxy, (k) + Bpdu(k))
y(k +1) = CLApAxy, (k) + Cp B Au(k) + y(k) (3.7)
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A partir das Egs. (3.5) e (3.7) pode-se obter a equacdo em espaco de estados aumentada:

s 1=l Pl T+ Lo, auco oY
Ax, () (3.9)

y(0) = lom 11|

onde o,, =[00 ... 0] e x(k) = [Ax,(k) y(k)]'. As Egs. (3.8) e (3.9) serdo usadas no
projeto do MPC.

Para fins de escrita, as Egs. (3.8) e (3.9) serdo renomeadas conforme a seguir:

A=[Am om B=[Bm] C = [oy 1]
Cndym 1 CimBm

Em consequéncia, o modelo aumentado pode ser reescrito de acordo com as Eqgs. (3.10) e (3.11)
(Wang, 2009):

x(k + 1) = Ax(k) + BAu(k) (3.10)
y(k) = Cx(k) (3.11)

3.1.2 Controle Preditivo de Horizonte Recuado

No contexto do controle preditivo, uma vez que um modelo matematico é estabelecido,
0 proximo passo no desenvolvimento deste controlador consiste no calculo da saida predita do
processo com base nos sinais de controle futuros, que s&o tratados como variaveis que podem
ser ajustadas. Esta predicdo é realizada dentro de uma janela de otimizacdo especifica. O
sistema de controle preditivo tem como propdsito principal a minimizagdo do erro entre o set-
point e a saida do processo prevista. Ele emprega informagGes atualizadas do processo,
representadas pelo vetor de estado x(k;), e utiliza um modelo de espaco de estados para projetar
0 comportamento futuro da planta. A partir desse modelo, estabelece-se a trajetoria de controle
6tima por meio de uma série de incrementos de controle, denotada por AU = [Au(k;) Au(k; +
1) Au(k; +2) ... Au(k; + N, — 1)]T (Wang, 2009).
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Embora a trajetoria de controle étima seja computada levando em conta N, amostras
futuras, o controle preditivo aplica somente a primeira amostra, Au(k;), e desconsidera as
restantes na implementacdo. Esse processo é repetido a cada novo periodo de amostragem,
seguindo o principio de controle de horizonte recuado, onde o feedback é intrinseco ao design
do sistema de controle.

A lei de controle de MPC no contexto de restricdes rigidas € proposta como a

determinag¢ao do vetor de parametros AU que minimiza a funcdo custo J (Wang, 2009):

J = (Ry — Fx(k))' (Rs — Fx(k;)) — 2AUT®T(R, — Fx(ky)) + AUT(®T® + R)AU

(3.12)
sujeito as restricdes
AU, < AU < AU, g, (3.13)
Yiin < Fx(k;) + PAU < Yoy (3.14)
x(ki)min < x(ki) < x(ki) (3-15)

onde a funcdo de custo J apresentada na equacdo (3.12) representa o desvio entre 0 estado
desejado R, e o estado estimado Fx(k;), penalizando também as variacdes no vetor de controle
AU; F é uma matriz que relaciona os estados futuros com o estado inicial x(k;); @ é uma matriz
que relaciona as entradas futuras AU com os estados futuros; R é uma matriz diagonal , formada
como R = Twlnxn, €mquer,, =0 € usado como um parametro de sintonia para desejada
performance em malha fechada e I € a matriz identidade.

A minimizac&o de J resulta em uma lei de controle que ajusta os incrementos de controle
AU de modo a aproximar o sistema do setpoint R, considerando as restri¢cdes do problema. As
restricOes vistas nas equacdes (3.13), (3.14) e (3.15), limitam tanto o valor do controle AU,

quanto as saidas Fx(k;) e os estados x(k;):
A técnica de controle preditivo discreto de horizonte recuado e com restricdes é bem
conhecida no campo do MPC. Logo, para o desenvolvimento da formula¢do matematica deste

método, recomenda-se a leitura do livro de Wang (2009).

3.2 Rede Neural Feedforward
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A RNA feedforward, também conhecida como rede neural de multiplas camadas (MLP),
é uma das arquiteturas mais antigas e mais simples dentro do campo da IA, com raizes historicas
que remontam as primeiras tentativas de emular o comportamento de neurénios humanos
(Aggarwal, 2018). Ela foi proposta inicialmente como um modelo matematico inspirado no
cérebro humano, sendo capaz de aprender padr@es a partir de sinais de entrada (Haykin, 2009).

A estrutura de uma RNA feedforward atualmente pode ser descrita como um conjunto
de camadas interconectadas de neurénios artificiais, onde as conexfes seguem um fluxo
unidirecional, ou seja, 0s sinais percorrem da camada de entrada, passando pela(s) camada(s)
oculta(s), até chegar a camada de saida. Ndo ha realimentacdo entre os neurbnios, o que
caracteriza o nome "feedforward" (alimentagdo adiante). A Fig. 2 mostra uma rede feedforward

com duas camadas.

Figura 2: RNA feeedforward de duas camadas.

Camada oculta

Para a Fig. 2, a camada de entrada é representada pelos neurbnios x;, x5, ..., X,, que
correspondem as variaveis de entrada do sistema. No contexto do controle preditivo, as entradas
poderiam representar o vetor de erro do horizonte de predicdo. A camada oculta € composta por
maultiplos neurdnios interconectados que aplicam uma funcéo de ativacéo néo-linear, denotada
como o(-), com o objetivo de aprender padrdes dos sinais de entrada. Cada neurdnio nesta
camada recebe entradas ponderadas, calculadas pelas matrizes de pesos V7, e aplica uma fungéo
de ativacdo para gerar uma saida que sera transmitida para a proxima camada. Apds o
processamento pela camada oculta (ou camadas ocultas), as saidas da rede y,, y,, ..., Vi, S0
geradas na camada final (camada de saida). Neste trabalho, para o problema de emulacéo de

um MPC, essas saidas representardo os incrementos de controle calculados pela RNA.
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A equacdo matematica, em notacdo matricial, que descreve a RNA dada na Fig. 2 é
mostrada na Eq. (3.16)

y=aWTa(VTx +b,) + b,) (3.16)

Onde V refere-se a matriz de pesos da primeira camada, W a matriz de peso da segunda camada,
@ 0 vetor de funces de ativacao, b, e b,,, 0S vetores de bias da primeira e da segunda camada,
respectivamente.

O processo de treinamento desta rede consiste em ajustar os pesos VT e WT de forma
que a rede minimize o erro entre suas saidas preditas e os valores esperados. Isso € feito
utilizando um algoritmo de retropropagacéo, onde o erro calculado na saida é "propagado para
tras" pela rede, ajustando os pesos de cada camada, até que a rede aprenda a aproximar a funcao
desejada (Hecht-Nielsen, 1990; Haykin, 2009). Essa arquitetura, apesar de simples, tem sido
amplamente utilizada devido a sua capacidade de aproximacéo universal, ou seja, teoricamente,
uma rede feedforward com um nimero adequado de neur6nios pode aproximar qualquer funcéo
continua (Cybenko, 1989; Funahashi, 1989; Hecht-Nielsen, 1990; Hornik, 1991; Leshno et al.,
1993). Na pratica, as redes feedforward sdo eficazes em uma variedade de aplicacGes, como
previsdo de séries temporais, classificacdo, e, como no caso deste trabalho, emulacdo de
controladores avangados como o MPC.

Neste trabalho, a rede feedforward sera treinada por meio do algoritmo de Levenberg-
Marquardt, que é conhecido por ser eficiente para redes de tamanho moderado. Como descrito
no livro do Haykin (2009), este método € um compromisso entre 0 método de Newton e 0
método do gradiente descendente. Para uma compreensdo de como este método funciona,
recomenda-se a leitura de Haykin (2009).

3.3 Funcéo de Correlacao Cruzada

Para conhecer melhor o grau de relacionamento linear entre os sinais de entrada u, e
u,, e entre a entrada u, e saida y,, e entre a entrada u, e saida y;, a funcdo de correlagédo

cruzada dada pela equacgéo Eq. (3.17) sera aplicada

1 o
() == > fUgn+) (3.17)

k=—o00
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O resultado da FCC é normalmente dado entre -1 e 1, em que valores proximos de 1
mostram forte relacdo linear, ja valores proximos de -1 mostram forte relacdo linear inversa. O
eixo das abscissas, no calculo da FCC, é chamado de atraso de tempo e diz respeito a defasagem
no deslocamento entre o sinal movel e o fixo, dos sinais que se quer analisar (Isermann e
Minchhof, 2010).

Na prética, para que o resultado da FCC fique entre -1 e 1 se faz necessario realizar a

adimensionalizacao dos sinais. A adimensionalizacéo, para o calculo da FCC é dada da seguinte
__f

forma gaam = \/ZL;gzefadm T

3.4 Teste

No teste 0 desempenho do modelo identificado € avaliado para um conjunto de dados
diferente daquele usado para a estimacdo dos parametros. Isto pode ser possivel, por exemplo,
dividindo-se o conjunto de dados em trés partes: os primeiros 2/3 do total do nimero de
amostras é utilizado para a estimacdo de parametros, enquanto o 1/3 restante é usado para
avaliar a qualidade do modelo (Juditsky et al., 1995).

A Eqg. (3.18) mostra, em porcentagem, o quanto o modelo estimado se ajusta aos dados

experimentais de validacao:

(3.18)

N_ —ys
ajuste = <1 Zi=1lYie —y kl) X 100,

ZIIX=1|yk -l

onde yk (», ..., yn) € a saida medida, ysk (ysz, ..., ysn) € a saida do modelo estimado, e y é a
media do vetor yk. Para esta equacédo o valor de 100% corresponde a um ajuste perfeito.
Ressalta-se que no campo de identificagdo de sistemas dindmicos, o termo “teste” ¢é
chamado de “validag¢ao”, como pode ser visto no artigo de Ljung e Hjalmarsso (1995). Neste
trabalho, quando estiver sendo realizada a comparagdo visual e numérica entre as saidas y; e
v, geradas pelo MPC (ao injetar o incremento de controle na planta), e as saidas y; e y, geradas
pela RNA treinada para emular o MPC (ao injetar o incremento de controle na planta), o termo
validagdo sera usado com o0 mesmo contexto do termo teste. Este mesmo raciocinio sera

considerado para 0s sinais u; € u,.
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4 METODOLOGIA

As etapas realizadas para a substituicdo do MPC por uma RNA séo dadas no diagrama

da Figura 3, e sdo detalhas nas subsec¢des a seguir. Os resultados e discussdes serdo apresentados
no capitulo 5.

Figura 3: Etapas usadas para substituicdo de um MPC por uma RNA.

Simulacéo da Planta com o MPC

Armazenamento e Pre-processamento dos Dados

Selecéo do Modelo de Rede Neural e

Treinamento e Validac&o do Modelo

Simulagdo com Modelo de Rede Neural

Comparagéo com o MPC Incremental

O Modslo
esta Bom?

4.1 Simulagéo da Planta com o MPC

O sistema da torre de destilagdo usado para simulacdo da planta com o MPC foi obtido
do trabalho de Alvarez et al. (2009), e é mostrado na Figura 4.
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Figura 4: Diagrama de instrumentacéo e tubulacdo de uma torre de destilacdo deisobutanizadora.
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Reator de alquilagdo
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@ (iC4)
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»

Fonte: Alvarez, et al. (2009) (adaptado).

e ——————

¥

O estudo considera uma coluna de destilacdo deisobutanizadora, usada na unidade de
alquilacdo da refinaria de petr6leo da PETROBRAS/Cubatdo. Essa coluna recebe uma
alimentacdo da unidade FCC, que inclui isobutano, 1-buteno, cis-2-buteno, trans-2-buteno, n-
butano e n-pentano. O produto do topo, composto principalmente por isobutano e butenos leves,
é direcionado ao reator de alquilagdo, enquanto a corrente do fundo, rica em n-butano e butenos

pesados, é armazenada para posterior processamento (Alvarez et al., 2009).

Para simulacéo deste processo Alvarez et al. (2009) consideraram um modelo de fungéo
de transferéncia simplificado, derivado de um modelo experimental mais complexo. Este
modelo captura a relagdo entre as entradas e saidas do sistema. No presente trabalho, para
controlar este sistema serdo consideradas as entradas u; e u, as quais referem-se,
respectivamente, a taxa de fluxo de vapor no refervedor (ton/h) e a taxa de fluxo de refluxo
(m3/d). Ja as saidas y, e y, serdo consideradas como nivel de liquido no vaso superior (%) e

temperatura no prato 68 (°C), respectivamente.
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Para a simulagéo do sistema controlado por meio do MPC considerou-se as seguintes
caracteristica do processo e MPC:

Quadro 1: Pardmetros do processo e do MPC considerados para coleta de dados.

Caracteristica Valor

Periodo de amostragem 1 minuto

Tempo de experimento 3000 minutos

Horizonte de predigao 120 minutos

Horizonte de controle 3 minutos
Valores de regime permanente para u, 4,7 ton/h
Valores de regime permanente para u, 2,65m°/d
Valores de regime permanente para y, 47 %
Valores de regime permanente para y; 52,5°C

Restricoes nas saidas (y4) 42,5=y 1(k)=43,5%

Restricoes nas saidas (y;) 53,56=y 2(k)=54,5°C

Restrigcoes nas entradas (i)

0=u 1=10ton/h

Restrigoes nas entradas (u;)

0<su 210 m’/d

Restrigoes nos incrementos de controle (4u,)

3,0 ton/h

Restrigoes nos incrementos de controle (4us;) 3m’d

Ressalta-se que o periodo de amostragem de 1 minuto foi mantido do trabalho de
Alvarez et al. (2009). Como se trata de um sistema lento, este periodo de amostragem é
suficiente para uma representacdo adequada do comportamento dindmico do sistema. Com
relacdo as restricdes impostas ao MPC, elas permitem que o sistema opere dentro dos limites

desejados, assegurando a estabilidade e eficiéncia do processo de destilacéo.

Para avaliar a robustez e a capacidade de generalizagcdo da RNA no controle do sistema
de torre de destilacdo, foi necessario introduzir uma variedade de perturbacdes ndo medidas
durante a simulacdo. Essas perturbac6es foram inseridas para simular condi¢des de distarbios
gue o sistema pode enfrentar. Elas foram introduzidas em quinze instantes especificos ao longo
da simulagdo. Os momentos de aplicacdo das perturbacdes foram escolhidos para garantir uma
distribuicdo uniforme ao longo do tempo de simulacdo, enquanto as magnitudes das
perturbacdes foram variadas para simular diferentes intensidades de distarbios. A Tabela 1

apresenta os instantes e magnitudes das perturbagdes aplicadas.
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Tabela 1: Instantes de aplicacdo de perturbagdes.

Instantes Magnitude
50 -0,4
200 0,3
400 0,7
600 0,5
800 -0,8
1000 -0,5
1200 0,4
1400 -0,9
1600 0,2
1800 -0,2
2000 -0,3
2200 0,8
2400 0,6
2600 -0,6
2800 0,7

O resultado da simulacgéo, para uma janela de tempo de 450 minutos, para os sinais y;

e y, podem ser observados nas Figuras 5 (a) e (b).
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Figura 5: (a) Sinal de nivel no vaso superior. (b) Sinal de temperatura no prato 68.
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Observa-se que os sinais de saida permanecem obedecendo as restricGes impostas
mesmo apds o sistema ter sido submetido a sequéncia de perturbaces dada na Tabela 1. E
importante ressaltar que o cddigo implementado torna aleatoria a sequéncia de aplicacdo das
perturbacdes paramétricas a cada simulacdo. Logo, a ordem dos valores apresentados na Tabela
1, e consequentemente os resultados das Figuras 5 e 6, sofrerdo alteracdes a cada simulagéo,

porém os valores de magnitude sdo 0S mesmos.

A Figura 6 mostra uma janela de tempo de 450 minutos dos sinais de controle u; e u,.
Observa-se que os sinais de controle reagem as perturbacdes sofridas pelo sistema, na forma de

variacdo paramétrica, para compensar as altera¢fes sofridas nas variaveis controladas y; e y,.
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Figura 6: (a) Taxa de fluxo de vapor no refervedor (ton/h). (b) Taxa de fluxo de refluxo (m3/d).
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A Figura 7 mostra o resultado da funcdo custo para um tempo de experimento de trés
mil segundos. Observa-se que as variagbes na funcdo custo séo resultantes das perturbagdes
impostas na forma de variacdo paramétrica ao processo controlado. E importante notar que o
algoritmo de otimizacdo do MPC converge rapidamente e o sistema é controlado satisfazendo
todas as restrigdes. Espera-se que esse mesmo comportamento seja obtido por meio da rede

neural que sera usada para emulacdo do MPC.
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Figura 7: Resultado da funcédo custo para um tempo de 300 minutos.
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4.2 Armazenamento e Pré-Processamento dos Dados

Durante a simulacdo do processo controlado com o MPC, os sinais de erro e de
incremento de controle (Au(k)) sdo coletados. O vetor de erro, calculado como a diferenca
entre o vetor de setpoint (ysp) e as saidas previstas do modelo (F x,,), é construido empilhando
0s setpoints para cada passo do horizonte de predicéo (p), resultando em um vetor de dimenséo
p.m,, €m que n,, € 0 nimero de saidas do processo. Assim, a entrada da RNA ¢ o vetor de erro
calculado em cada passo de tempo, e, ao longo de todo o tempo de simulacdo, tera uma
dimensdo de N x p.n,. Onde N se refere ao nimero total de amostras obtido durante a

trinal
TS

simulacdo. Do ponto de vista teorico, este nimero de amostras é dado por , onde T

representa o periodo de amostragem e tg;,,; representa o tempo de simulagéo.

Para o presente trabalho sera considerado p = 120, Ty = 1 s € UM tf4; = 3000 s. Isto
resultara em um vetor de entrada da RNA de tamanho p . n,= 120 . 2 = 240. Assim, a RNA
que serd considerada tanto no treinamento quanto na simulacéo terd dimensdo de 1 x 240 a
cada periodo de amostragem, totalizando ao longo de toda a simulacdo uma dimensao de
3000 x 240.

Os sinais de incremento de controle Au(k) de saida que serdo usados no treinamento da
RNA, e posteriormente na simulagéo, sdo coletados a cada periodo de amostragem. Assim, a

dimensdo dos sinais de saida da RNA serd 3000 x 2.
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Durante a simulagdo do processo foram adquiridas 720 000 amostras relativas aos sinais
de entrada e 6000 amostras relativas aos sinais de saida. Estas amostras foram armazenadas do
seguinte modo:
entradas de treinamento

= [e;(1]k), e, (1|k), e1(2]k), e, (2]|k), ..., e (120]k),e,(120|k) ],para 1 < k < 3000;

Auy (1), Auy (2),, ..., Auy (3000) 17
Au, (1), Auy(2),), ..., Auy (3000)]

saidas de Treinamento =
Em seguida, foram separadas em 70% para treinamento, 15% para validagéo e 15% para teste.

E importante ressaltar que os sinais Au, (k) e Au, (k) sdo selecionados baseados no
conceito de horizonte recuado (Wang, 2009). Devido ao principio do controle de horizonte
recuado so se faz necessario tomar o primeiro elemento de Au, e de Au,, para cada instante k.

Quando o sistema comegca a operar a partir de condicdes iniciais nulas, ele experimenta
um transiente devido a resposta inicial aos valores de entrada e as condi¢des de contorno
impostas pelo controlador. Deste modo, o0 MPC ajusta as entradas para levar o sistema ao ponto
de operacdo desejado (4,7 ton/h e 2,65 m®/d para u; e u, e 47 % e 52,5 °C para y; € y,,
respectivamente) o que pode causar oscilagdes iniciais. Assim, como este comportamento s6
ocorre na partida no sistema, as amostras iniciais poderiam ser descartadas. No entanto, neste
trabalho, decidiu-se manter este comportamento inicial do MPC para a RNA, pois em situacdes
reais, no momento da partida do sistema, a RNA inevitavelmente serd submetida a esse tipo e
comportamento.

As janelas de dados usadas para treinamento, validacdo e teste da rede neural sdo
ilustradas de acordo com a ordem mencionada na Figura 8 para os sinais de saida.
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Figura 8: Separacgdo dos sinais de saida em subconjuntos para treinamento (janela vermelha),
validacdo (janela azul) e teste (janela verde) da rede neural.
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A Figura 9 ilustra as janelas de sinais de treinamento (vermelha), validacdo (azul) e teste (verde)

para os sinais de entrada da rede neural.
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Figura 9: Separacao dos sinais de entrada em subconjuntos para estimacéo (janela vermelha),
validacdo (janela azul) e teste (janela verde).
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A fim de conhecer melhor o grau de relacionamento linear entre os sinais de entrada de
entrada da planta u; e u,, e entre estes sinais com relagdo as saidas y; e y,, a funcdo de
correlacdo cruzada dada pela equagdo Eq. (22) foi aplicada. Os resultados obtidos sdo

apresentados na Figura 10.
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Figura 10: Resultado da FCC entre os sinais: (a) uq € uy; (b) u; e yq; (€) ug e y,; (d) u, e yq; e (e)
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Observa-se na Figura 10 que os sinais estdo fortemente relacionados de modo linear e de forma
direta entre si, e isto indica que qualquer um destes sinais pode ser obtido, de forma aproximada,

por meio de uma combinacdo linear com o outro sinal. Além disso, este € um indicativo que a
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RNA que serd treinada considerando o setpoint do sistema fixo, sera suficiente para substituir
0 MPC quando for realizada uma simula¢do do MPC com mudangas aleatorias no setpoint.

4.3 Simulacdo com Modelo de Rede Neural

A simulacéo do processo utilizando uma das RNAs como controlador serd conduzida
de duas maneiras: com o setpoint constante e com varia¢do do setpoint. Em ambos os casos, 0
modelo do processo ndo nominal estard sujeito tanto as entradas ndo medidas, conforme
discutido na secdo 4.1, quanto a desvios constantes no modelo do processo.

A Figura 11 apresenta o diagrama de fluxo do algoritmo implementado para a simulacéo
da rede neural feedforward que emula o controlador preditivo baseado em modelo (MPC). O
fluxo descreve as etapas seguidas durante a simulacdo do controle, partindo do momento em

gue o0 modelo da rede neural ¢é carregado até a aplicacdo do controle no sistema.

Figura 11. Diagrama de fluxo para simulagdo da RNA que substituiu 0 MPC.

[ Simulagdo da Rede Neural como Substituto do MPC ]

N

[ Utilizagdo do Modele Treinado: O modelo treinado da rede neural é carregado para simular o controle no lugar do MPC ]

N

[ Calculo do Sinal de Erro: Durante a simulagao, o sinal de erro € calculado da mesma forma que no treinamento, e serve como entrada para a rede neural ]

A4

[ Previsdo do Incremento de Controle: A rede neural prevé Auk com base no sinal de erro atual ]

[ Corregdo e Aplicacao do Controle: O sinal de controle gerado pela rede neural € ajustado e aplicado ao sistema. Os sinais de controle e saida gerados pela rede neural sao armazenados para comparacdo posterior ]

Inicialmente, a RNA previamente treinada para substituir o MPC, é carregada para
realizar o controle em tempo real (primeira etapa). O sinal de erro, calculado como a diferenca
entre 0 setpoint e a saida prevista ao longo do horizonte de predicéo, é entdo determinado e
utilizado como entrada da RNA, exatamente da mesma forma como foi utilizado no processo

de treinamento (segunda etapa).

Na sequéncia, a RNA calcula o incremento de controle com base no erro, que sera usado
para corrigir o comportamento do sistema (terceira etapa). Este incremento é entdo somado ao
controle anterior, e o controle ajustado é aplicado aos modelos simulados nominais e nédo

nominais (quarta etapa) da torre de destilagdo. Durante essa ultima etapa, tanto os sinais de



44

controle quanto as saidas geradas pela RNA sdo armazenados para anélise e comparacao
posterior com o MPC. E isso permite verificar a eficacia da RNA como substituta do

controlador original.
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5 RESULTADOS E DISCUSSAO

Neste capitulo, sdo apresentados e discutidos os resultados das simulagdes realizadas
com o controlador baseado em RNAs, emulando o MPC linear na forma incremental.

5.1 Emulacédo do MPC linear incremental via RNA Feedforward

A arquitetura implementada nesta secdo € uma RNA feedforward composta por uma
camada de entrada, uma camada oculta e uma camada de saida. Como abordado no capitulo 4,
a camada de entrada recebe um vetor de erro ao longo do horizonte de predigdo do controlador,
com dimensao definida pelo nimero de elementos no vetor de erro. A camada oculta contém
10 neur6nios, configurados com a funcdo de ativacdo tangente hiperbdlica, que mapeia 0s
valores para o intervalo [-1, 1]. A rede foi treinada utilizando o algoritmo de Levenberg-
Marquardt, com 70% dos dados alocados para treinamento, 15% para validacdo e 15% para
teste. O treinamento teve como objetivo mapear os sinais de erro ao longo do horizonte de
predicdo para os incrementos de controle correspondentes, permitindo que a rede reproduza o
comportamento do MPC.

A Figura 12 compara o resultado da simulagdo da emulagdo do MPC linear incremental
utilizando uma RNA feedforward com os resultados obtidos pelo MPC linear incremental como

controlador, considerando o setpoint constante para a saida y, (nivel no vaso).
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Figura 12: y; gerado pelo MPC versus y; gerado pela RNA feeedforward com o setpoint
constante. A7 -
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A Figura 13 mostra uma janela de tempo de cerca de 130 minutos do resultado
apresentado na Figura 12. Observa-se que a RNA feedforward emula de modo satisfatério o
comportamento do sistema controlado pelo MPC. Como dito anteriormente, a RNA foi iniciada
de modo aleat6rio e € capaz de se antecipar de um nimero de amostra (1 minuto) em relacdo a
saida dada pelo MPC. Isto ocorre, pois embora a RNA feedforward nao tenha memdoria temporal
explicita, ao alimentar a rede com um vetor de erros futuros preditos, ela implicitamente
aprende a realizar correcdes antecipadas. Esse € um comportamento similar ao de um
controlador preditivo. Ou seja, a antecipacdo da rede neural ndo é um resultado intrinseco da
arquitetura feedforward em si, mas da informacdo contida no vetor de erro ao longo do
horizonte de predicao.

Em seguida, realizou-se uma comparacao quantitativa entre os sinais apresentados na
Figura 12. Para garantir a coeréncia dessa comparacao, os sinais foram ajustados para estarem
em fase e as 20 primeiras amostras foram descartadas. Esse procedimento € necessario para
evitar que os valores do inicio da simulacdo, onde a RNA inicia com condi¢es iniciais distintas
das utilizadas pelo MPC, impactem negativamente o calculo. Ap0s o processamento, obteve-se
um ajuste de aproximadamente 95% entre os sinais de saida y,, evidenciando um impacto

similar entre ambos os controladores nesta saida do sistema.
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Figura 13: y; gerado pelo MPC versus y,; gerado pela RNA feeedforward com o setpoint

constante.
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A Figura 14 mostra o sinal de controle u; (vazao de vapor) e compara o resultado deste
sinal para a simulagdo da emulacdo do MPC linear incremental utilizando uma RNA
feedforward com os resultados obtidos pelo MPC linear incremental como controlador.

Figura 14: u, gerado pelo MPC versus u, gerado pela RNA feeedforward.
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A Figura 15 mostra uma janela de tempo de cerca de 220 minutos do resultado
apresentado na Figura 14. Observa-se que o sinal de controle produzido pela rede neural emula
de modo aproximado o resultado produzido pelo MPC. Devido as razfes ja discutidas para o
sinal de saida y;, o sinal de controle u, produzido pela RNA feedforward estd antecipado de

um numero de amostra em relacédo ao do MPC.

Figura 15: u, gerado pelo MPC versus u, gerado pela RNA feeedforward.
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Uma comparagdo quantitativa entre os sinais de controle u; gerados pela RNA e pelo
MPC foi realizada, utilizando os mesmaos critérios adotados para a saida y,. Assim, 0s sinais
foram postos em fase e as 20 primeiras amostras foram descartadas para evitar influéncias das
condigdes iniciais. Como resultado, obteve-se um ajuste de aproximadamente 99%,
demonstrando uma forte concordancia entre as agdes de controle calculadas pela RNA e pelo
MPC.

Resultados similares aos apresentados anteriormente, também foram obtidos para os
sinais de temperatura y, e de vazdo de refluxo u,. Os resultados da simulagéo para estes sinais,

considerando o setpoint constante, s&o mostrados na Figuras 16 (a) e (b).
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Figura 16: (a) y, gerado pelo MPC versus y, gerado pela RNA feeedforward considerando setpoint
constante. (b) u, gerado pelo MPC versus u, gerado pela RNA feeedforward.
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Seguindo os mesmaos critérios adotados nas comparacdes anteriores para 0s sinais y1 e
ul, realizou-se a analise quantitativa para os sinais y2 e u2. Os resultados mostram um ajuste
de aproximadamente 99% tanto para o sinal y2 quanto para o sinal u2, evidenciando uma forte

correspondéncia entre os valores produzidos pela RNA e pelo MPC.
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Na sequéncia deste estudo, a proxima simulag¢do consistiu na mudanca do setpoint do
MPC, de forma aleatoria, adotando uma seed para fins de comparacéo com a emulacdo do MPC
por meio da RNA. Para esta emulacéo, utilizou-se a RNA treinada para o caso sem mudanca de
setpoint. Os resultados nas saidas do sistema y; e y, para uma janela de tempo de cerca de 370

minutos sao apresentados na Figura 17.

Figura 17: (a) y, gerado pelo MPC versus y; gerado pela RNA feeedforward para uma mudanca
aleatdria de setpoint. (a) y, gerado pelo MPC versus y, gerado pela RNA feeedforward para uma
mudanca aleatéria de setpoint.
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Devido a forte relacdo linear entre os sinais de controle (u, e u,) e saida (y; e y,) da
planta, observa-se que a RNA que havia sido treinada sem levar em conta a varia¢ao do setpoint
entregou um resultado satisfatério mesmo considerando mudancas aleat6rias no setpoint. O uso
da equacdo do ajuste demonstra um ajuste de aproximadamente 97% entre os sinais de saida
y1, € de 95% entre os sinais de saida y,.

Os resultados para os sinais de controle u, e u,, para uma janela de tempo de cerca de
370 minutos, sdo mostrados na Figura 18. Para estes sinais, 0 uso da equacdo do ajuste
demonstra um ajuste de aproximadamente 98% entre os sinais de saida u;, e de 93% entre os

sinais de saida u,.



52

Figura 18: (a) u, gerado pelo MPC versus u,; gerado pela RNA feeedforward com o setpoint
aleatorio. (b) u, gerado pelo MPC versus u, gerado pela RNA feeedforward com o setpoint
aleatorio.
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5.2 Analise de Tempo de Execucao dos Controladores MPC e RNA

As Figuras 19 (a) e (b) mostram os resultados do tempo de execug¢éo do algoritmo de
otimizacao do controlador MPC e da fungéo de predi¢cdo da RNA para cada passo de simulagéo

considerando o setpoint constante. Observa-se que 0 tempo de execucdo da fungdo de predigéo
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da RNA ¢ inferior ao do algoritmo de otimizacdo do MPC. A fim de obter um valor médio
comparativo, cada codigo de simulacdo dos controladores foi executado cinco vezes. Em
seguida, calculou-se a média de tempo, para cada uma das cinco execugdes, a partir do tempo
médio gasto nos trés mil passos de simulacdo. Para 0 MPC, obteve-se um valor médio de
40,7334 ms, enquanto para a RNA, obteve-se um valor médio de 2,4640 ms. Este resultado
demonstra que a emulagdo do MPC via RNA é aproximadamente 16,5 vezes mais répida do

que a execucdo do algoritmo de otimizacao do MPC.

Figura 19: (a) Tempo de execucdo do algoritmo de otimizagdo do MPC. (b) Tempo de execugdo da

funcao de predicdo da RNA.
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Caélculos similares de tempo de execucdo foram realizados considerando a variacéo
aleatoria do setpoint. Para 0 MPC, foi obtido um tempo médio de execucdo de 47,7619 ms,
enquanto paraa RNA o valor médio foi de 2,3098 ms. Esse resultado demonstra que a emulagéo
do MPC por meio da RNA, mesmo com o setpoint variavel, praticamente nao sofreu alteracao
em relagéo ao caso de setpoint constante. Por outro lado, observa-se que a variagdo do setpoint
aumentou significativamente o tempo de execucdo do algoritmo de otimizagdo do MPC,

resultando em um acréscimo de cerca de 7 ms no tempo médio.
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6 CONCLUSAO

O controlador preditivo baseado em modelo (MPC), a cada instante de tempo, resolve
um problema de otimizag@o com o objetivo de minimizar uma funcdo custo que leva em conta
o0 erro ao longo de um horizonte de predicdo. Contudo, o tempo gasto para a solucdo desse
problema, seguido pela aplicacdo da correcdo, pode gerar uma laténcia indesejada no sistema
de controle. Tal questdo € particularmente critica em sistemas que apresentam dindmicas
rapidas e alta complexidade, nos quais 0 MPC pode ndo ser capaz de fornecer uma solugédo
dentro do tempo necessario.

A rede neural artificial (RNA) treinada neste trabalho, por outro lado, foi concebida para
imitar o MPC sem a necessidade de resolver problemas de otimizacdo a cada periodo de
amostragem. A rede aplica diretamente as corre¢cdes com base no vetor de erro ao longo do
horizonte de predicdo, tornando-a uma alternativa promissora em situacdes em que o MPC é
inviavel, especialmente devido as suas altas exigéncias computacionais. 1sso é especialmente
relevante em sistemas embarcados, como controladores logicos programéaveis (CLPs) e
microcontroladores, onde 0s recursos de processamento s&o limitados.

Apesar de o sistema analisado neste estudo ser de baixa complexidade - linear,
invariante no tempo e estavel - os resultados indicam que a substituicdo do MPC por uma RNA
tem grande potencial. Como visto no capitulo 2, a literatura ja sugere que RNAs podem ser
aplicadas com sucesso em sistemas ndo-lineares e variantes no tempo, abrindo caminho para
futuras investigaces mais abrangentes sobre o tema.

Inicialmente, a proposta deste trabalho incluia a exploracdo de diferentes arquiteturas
de inteligéncia artificial para emular o comportamento do MPC. Entretanto, como a rede
feedforward selecionada conseguiu alcancar os resultados esperados, optou-se por nao utilizar
outras arquiteturas.

Para trabalhos futuros, seria interessante explorar a eficacia de outras configuracdes de
IA, como redes neurais recorrentes ou com mecanismos de atengdo, ampliando o escopo da
emulacéo de MPCs.

Por fim, sugere-se a implementacdo desta rede neural em microcontroladores, CLPs ou
outros sistemas embarcados, com o objetivo de testar seu desempenho em cenarios mais
proximos de aplicacOes reais. Essa etapa permitird avaliar a viabilidade préatica da proposta em

termos de desempenho computacional e capacidade de controle.
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