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Resumo

BORGES, L. R. (2014). “Metodologia Baseada na Transformada de Anscombe para
Insercdo de Ruido Quéantico em Imagens Mamogréficas Digitais”. Trabalho de Concluséo de
Curso — Escola de Engenharia de Séo Carlos, Universidade de Sdo Paulo, 2014.

Um dos grandes desafios atuais na area de mamografia digital por raios X € a otimizacéo da
relacdo qualidade da imagem vs. doses de radiagdo. Sabe-se que uma reducdo nas doses de
radiacdo dos exames mamograficos atuais implicaria na geracdo de imagens com maior
quantidade de ruido quantico, o que comprometeria sua qualidade. Assim, para que o0s estudos
sobre a reducdo nas doses de radiacdo possam ser conduzidos € necessaria a aquisicao de imagens
clinicas, da mesma paciente, com diferentes niveis de exposi¢do. No entanto, isto é invidvel na
pratica, pois implicaria em sérios riscos a salde da paciente, além da possibilidade de inducdo do
cancer de mama pela exposi¢do excessiva a radiacdo ionizante. Uma solugdo nesse caso é a
geracdo de imagens clinicas com diferentes doses por meio de simulagdo. Nesse sentido, este
trabalho propde um novo método, baseado na transformada de Anscombe, para inser¢do de ruido
quantico em imagens mamograficas digitais pré-adquiridas com dosagem padrdo de radiag&o.
Com isso, pode-se simular diferentes niveis de reducdo das doses de radiagdo do exame
mamografico sem a necessidade de exposi¢do do paciente & novos niveis de radiagdo. Os
resultados mostraram que o método proposto gera imagens a partir de diferentes dosagens de

radiacdo, com a mesma qualidade que outros metodos propostos na literatura.

Palavras-chave: Transformada de Anscombe, Ruido Quéntico, Mamografia Digital,
Simulacdo, Reducdo de Dose, Inser¢do de Ruido.






Abstract

BORGES, L. R. (2014). “Method Based on the Anscombe Transformation for Inserting
Quantum Noise in Digital Mammography Images”. Bachelor Thesis — Sdo Carlos School of

Engineering, University of Sdo Paulo, 2014.

One of the challenges in the field of x-ray mammography is finding the optimal relation
between image quality vs. radiation dose. It is known that a reduction in the radiation dose implies
higher levels of quantum noise in the mammaographic image, which could compromise the image
quality. In order to conduct researches about the reduction in the radiation dose it is necessary the
use of clinical images, from the same patient, with different levels of radiation. However, it is
practically impossible to obtain such images in the real world, considering that it would imply
serious risks to the patient’s health, including the possibility of inducing breast cancer. One
possible solution for this problem is generating clinical images by simulation. In this sense, this
work proposes a new method, based on the Anscombe Transformation, which is capable of
inserting quantum noise into clinical mammograms acquired with the standard radiation dose.
Thus, it is possible to simulate different levels of radiation doses without exposing the patient to
new levels of radiation. The results showed that the method proposed in this work generates

images with the same quality as other methods found in the literature.

Keywords: Anscombe Transform, Quantum Noise, Digital Mammography, Simulation,

Dose Reduction, Noise Insertion.
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Capitulo 1

Introducéao

O cancer de mama é a causa mais comum de morte por cancer entre as mulheres (INCA). Em
2012, 1,7 milhdo de mulheres foram diagnosticadas com cancer de mama — ndmero que cresceu
20% em relacdo as estimativas de 2008 — deste montante, 20% dos casos resultaram em ébito —
mortalidade 14% maior se comparada aos dados de 2008 (WHO). Em 2014, estima-se o

surgimento de 57.120 novos casos no Brasil, resultando em 13.345 ébitos (INCA).

As causas para o surgimento do cancer de mama ainda sdo desconhecidas, e a forma mais
efetiva para aumento da taxa de sobrevivéncia entre os pacientes é a detecgdo precoce da doenga,
gue aumenta as chances de cura em até 30% (Veronesi, et al., 2005). Por este motivo, varios
paises adotam a politica de rastreamento da doenca — onde mulheres consideradas pertencentes ao

grupo de risco sdo orientadas a realizar a mamografia por raios X periodicamente.

Durante um exame de mamografia, a paciente é exposta a pequenas doses de radiacdo, o que
por muitos anos foi considerado inofensivo para a salde da paciente. Entretanto, estudos recentes
mostram que a rotina de rastreamento pode induzir novos casos de cancer de mama (Berrington,
2008) (Mattson, et al., 2000). As estatisticas mostram que a cada 100.000 mulheres que atendem a
programas de rastreamento, 86 novos casos de cancer serdo induzidos devido ao exame, e 11

deles resultardo em ébito (Yaffe, et al., 2011).

Em vista das recentes descobertas, esta se rediscutindo a dosagem de radiacao utilizada nos
exames de mamografia, principalmente devido ao grande nimero de mulheres que participam dos
programas de rastreamento do cancer de mama em todo o mundo. Com isso, tem-se estudado
também o efeito de uma possivel reducdo nas doses de radiagdo na qualidade da imagem
mamografica e no diagnostico médico. Sabe-se que a baixa contagem de fotons aumenta a
quantidade de ruido quéantico na imagem. lIsso afeta a relacdo sinal-ruido da imagem,
comprometendo a taxa de deteccdo de lesbes mamarias pelos radiologistas (Saunders, et al.,
2007), (Ruschin, et al., 2007). No entanto, ainda ndo se sabe ao certo qual a taxa de reducdo nas
doses que poderia ser aplicada na mamografia sem comprometer o diagnostico médico. Isso €
muito importante atualmente, pois se uma pequena reducdo nas doses de radiagcdo ndo
comprometer a qualidade do exame mamografico, ela deveria ser aplicada na pratica clinica, uma

vez que diminuiria os riscos de indugdo do cancer de mama nas pacientes radiografadas.

No entanto, estudos nesse sentido s6 podem ser concluidos a partir de analises, por médicos

radiologistas, de um conjunto muito grande de imagens mamograficas adquiridas com diferentes



doses de radiacdo. Além disso, é necessario que esse conjunto de imagens seja adquirido da
mesma paciente, para que se avalie com precisdo a influéncia do ruido quantico (e da reducéo da

dose) nas taxas de detec¢do do cancer de mama.

E exatamente neste contexto que esse trabalho de conclusdo de curso se insere. A aquisicio
de imagens mamograficas de uma mesma paciente com diferentes doses de radiacdo € invidvel na
pratica. Isso implicaria em submeter a paciente a uma quantidade muito elevada de radia¢do, o

que traria sérios riscos a satde da mesma.

Uma das soluges utilizadas por pesquisadores da area é a exposi¢do do paciente ao exame
com dose convencional (100%), seguido de uma série de exposi¢cbes com doses menores, na
proporcdo de Y% da dose anterior, sucessivamente: 50%, 25%, 12,5%, etc (Kalra, et al., 2002).

Assim, ao final das exposi¢Oes a soma das doses se mantém inferior a 200% do valor padréo.

Vaérios problemas estdo relacionados a abordagem descrita anteriormente. Um deles é a
necessidade da criacdo de um comité de ética para analise do caso e consideracdes a respeito do
procedimento em si. Além disso, a paciente deve aprovar a aquisi¢do de diversas imagens em um
mesmo exame mamografico, o que pode causar um grande desconforto a paciente devido a
necessidade da compressdo mamaria durante a exposi¢do radiografica. Outra dificuldade
encontrada é a discrepancia entre os valores de dose disponiveis ao radiologista no final desse
procedimento. Reducdes para 50%, 25% e 12,5% da dose inicial podem ndo ser aplicadas em
situagdes reais, , pois resultam em doses muito reduzidas e provavelmente degradam a imagem
final de modo acentuado, ndo sendo de grande utilidade para a validagdo desses estudos. Além
disso, ao final do procedimento os pacientes serdo expostos a doses de radiagdo que se aproximam

de 200% do indicado, aumentando ainda mais as chances de surgimento de cancer induzido.

Portanto, esse trabalho prop6e um método inédito para inser¢do de ruido quéantico em
imagens mamograficas digitais, com o objetivo de simular a redugdo nas doses de radiacdo em
exames mamograficos. O método parte de uma imagem mamogréfica adquirida com a dose
padrdo de radiacdo e calcula o quanto de ruido quéantico deve ser inserido nessa imagem para
simular a reducdo desejada. A inser¢do de ruido é feita apds a aplicagdo da transformada de
Anscombe (Anscombe, 1948), para garantir que o ruido da imagem simulada tenha as mesmas
caracteristicas do ruido encontrado na mamografia, ou seja, ndo-aditivo, com distribuicéo
aproximadamente Poisson e dependente da intensidade da imagem. Além disso, este trabalho
mostra um estudo detalhado de outro método proposto na literatura para insercdo de ruido
quantico em imagens radiograficas convencionais, (Bath, et al., 2005) e realiza uma adaptacdo
para sua utilizacdo em exames de mamografia digital. Os resultados obtidos com o método
tradicional proposto na literatura sdo comparados com os resultados do novo método proposto

neste trabalho.



1.1. Objetivos

Esse trabalho de conclusdo de curso tem como objetivo o estudo detalhado da metodologia
de simulacdo de reducdo de dose para sistemas radiograficos digitais proposta em (Bath, et al.,
2005). A partir deste estudo, serdo discutidos os resultados da aplicacdo deste método em exames
de mamografias digital, cujos valores de radiacdo sdo reduzidos quando comparados a outros

exames de raios X convencionais.

Além disso, é apresentado um novo método de insercdo de ruido quantico, capaz de simular
a reducdo de dose em equipamentos de mamografia digital. Este novo método baseia-se na
propriedade de estabilizacdo da variancia da transformada de Anscombe e tem como objetivo
principal manter a qualidade e fidelidade da imagem simulada com as imagens reais adquiridas
nas mesmas condi¢des. O método proposto oferece maior simplicidade de implementacdo que o
método original.

Para ambos os métodos é importante que a simulacdo da redugdo de dose produza imagens
com ruido cujo comportamento simule aquele encontrado em uma imagem real adquirida naguela

dose de radiacéo.

1.2. Formato do Trabalho

Este trabalho estd organizado em 5 capitulos, incluindo esta introducdo. A lista a seguir

apresenta os principais objetivos de cada um deles:

e Capitulo 1 — Introdugdo: apresenta nocdes sobre o conteudo deste trabalho, sua

importancia no cenério atual e a justificativa para seu desenvolvimento.

e Capitulo 2 — Introducdo tedrica: introduz os conceitos basicos da formacdo e
processamento de imagens digitais, além de apresentar conceitos fundamentais para o
entendimento das metodologias estudadas, como o ruido quantico, a densidade espectral

de ruido (NPS — Noise Power Spectrum) e a transformada de Anscombe.

e Capitulo 3 — Materiais e Métodos: descreve a base tedrica da metodologia tradicional e da
proposta neste trabalho, explica as métricas utilizadas para a analise dos resultados e

mostra as imagens utilizadas para a valida¢do do método.

e Capitulo 4 — Resultados: apresenta todos os resultados dos testes para ambos 0s métodos.



e Capitulo 5 — Discussdo e Conclusdes: analisa o significado dos valores obtidos na se¢édo
anterior, compara o0 desempenho dos métodos estudado e proposto e apresenta a
concluséo do trabalho, juntamente com sugestdes para trabalhos futuros.



Capitulo 2

Introducdo Teodrica

Nesta secdo serdo apresentados conceitos importantes para a compreensdo deste trabalho.
Conhecimentos especificos como o ruido quantico, NPS (Noise Power Spectrum) e Transformada

de Anscombe serdo rapidamente apresentados e explicados nos subitens a seguir.

2.1. Ruido Quéantico

Uma imagem pode ser definida como uma funcgéo bidimensional f(x,y), onde x e y séo
coordenadas espaciais em um plano e f(x,y) a amplitude ou nivel de intensidade luminosa da
imagem neste ponto. Em imagens digitais as coordenadas (x, y) e a fungdo de intensidade f(x, y)

assumem somente valores discretos (Gonzalez, et al., 2009).

Durante o processo de aquisi¢cdo de imagens sdo utilizados sensores capazes de realizar a
contagem do numero de fétons refletidos ou absorvidos por um objeto ou cena, gerando um mapa

de bits que pode ser reproduzido ou transmitido (Gonzalez, et al., 2009).

Assim como todo sistema real, sistemas de aquisicdo de imagens ndo s&o ideais, portanto o
processo de aquisicdo causa degradacdo na imagem resultante, além de inserir ruidos. A Figura 1
apresenta um esquematico do processo de formacdo de imagens, onde f(x,y) é a imagem real,
h(x,y) é a funcdo de degradacdo caracteristica do sistema de aquisicdo, n(x,y) € o ruido aditivo

e g(x,y) é aimagem resultante.

f(xy) Funcéo de
|::> degradacéo g(x.y)
h(x,y)

n(x.y)
Figura 1 - Esquematico do processo de aquisicdo de imagens.

Matematicamente, a imagem g(x,y) € descrita pela equacgdo (Gonzalez, et al., 2009):

g(x,y) = h(x,y) * f(x,y) + n(x,y), 2.1)

)

onde o operador ‘*’ indica convolugdo. A teoria de restauragdo de imagens tem como objetivo

desenvolver algoritmos capazes de recuperar o sinal f(x, y) a partir da observacéo g(x,y).

Na grande parte das aplicacdes, n(x,y) ¢ um ruido aditivo, independente do sinal. Este ruido
pode ser descrito através de diferentes distribui¢fes estatisticas conhecidas, como a gaussiana,

Rayleigh, Erlang, entre outras (Gonzalez, et al., 2009). No entanto, o presente trabalho tem como



objetivo simular o processo de aquisicdo de imagens com um modelo diferente de ruido, que é o
ruido dominante encontrado nas imagens obtidas por raios X, principalmente na mamografia, o

Ruido de Poisson.

O ruido quéntico, também conhecido como ruido Poisson ou ruido Shot, é um tipo de
incerteza relacionada aos processos de contagem de valores discretos e independentes, que segue
a distribuicdo de probabilidades de Poisson, descrita pela equacdo (2.2), onde A é o numero

esperado de fotons incidentes em um dado intervalo de tempo (Frank, 1967).

e_)“t(ﬂt)k (22)

Pr(N =k) = x

Este tipo de ruido é frequentemente encontrado em aplicacdes onde € necessaria a medicao
de quantidades de fotons de luz (ou raios X, nesse caso), gracas a independéncia do processo de
deteccdo de fotons a qual segue a distribuicdo de Poisson. Em um processo de aquisi¢do de
imagens, o sistema em questdo cria mapas de pixels através da contagem de fétons incidentes nos
sensores durante um determinado intervalo de tempo. No caso de imagens analdgicas, esta
contagem ¢é feita através de um componente fotossensivel que gera reagdes quimicas capazes de
guantificar os fétons incidentes advindos da imagem a ser fotografada. JA em imagens digitais,
uma matriz de sensores fotoelétricos realiza a contagem, convertendo fotons incidentes em cargas

elétricas, que sdo posteriormente contadas e mapeadas em niveis de intensidade.

Considerando a defini¢do da variancia para uma variavel aleatoria discreta, temos:
var(X) = E(X2) — (E(0)%, 2.3)

onde X é uma variavel aleatoria discreta, var(X) é a sua variancia e E(X) seu valor esperado.
Para uma distribuicdo de Poisson, sabe-se que o valor esperado E(X) € igual ao valor de

contagem A. Além disso, sabe-se que:
E(X?) = Yy e, x*Pr(X = x). (2.4)
A combinacédo das equacdes (2.2) e (2.4) resulta em:
EX?H)=22+2 (2.5)
Substituindo a equacéo (2.5) em (2.3):
var(X) =22+21—-22=21 (2.6)

Logo, diferentemente dos ruidos convencionais aditivos, o ruido quéntico é dependente do

sinal. Em regides com baixa contagem de fétons o ruido tera menor variancia, enquanto regides



com alta contagem apresentardo maior variancia. O impacto causado na qualidade da imagem
devido a dependéncia entre ruido e sinal é mais bem compreendido quando o SNR (Signal-to-
Noise Ratio) da imagem é analisado. Valores elevados de SNR significam uma imagem com
menos ruido relativo, enguanto valores reduzidos indicam ruido relativo elevado. A equacéo (2.7)
apresenta 0 SNR para uma imagem com contagem de fétons igual a A.

_ A
SNR—ﬁ—ﬁ (2.7)

Assim, apesar de regifes com baixa contagem de fotons apresentarem ruido com menor
variancia, o0 SNR nestas regifes serd menor, indicando que a quantidade de ruido em relagdo ao

sinal é mais elevada.

A Figura 2 ilustra o comportamento do ruido quantico em diferentes niveis de exposigéo e
apresenta a mesma imagem contaminada com ruido aditivo. Note que na Figura 2, a imagem (c)

possui maior quantidade de ruido na regido com maior contagem de fétons.

(b)

(d) (€)

Figura 2 — (a) Imagem sintética com trés niveis de cinza livre de ruidos. (b) Imagem contaminada com
ruido quéantico. (c) Mascara de ruido quantico dependente do sinal obtida pela subtragéo da imagem (a) de
(b). (d) Imagem contaminada com ruido aditivo. () Mascara de ruido aditivo independente do sinal obtida
pela subtracédo da imagem (a) de (d).



2.2. NPS — Noise Power Spectrum
2.2.1. Definicgdes

O NPS, do inglés Noise Power Spectrum, é definido como a varidncia de um sinal no
dominio de Fourier, portanto descrita em funcdo das componentes de frequéncia do sinal. Como
esta definicdo é valida para sinais continuos ou discretos, o0 NPS pode ser interpretado de
diferentes maneiras, de acordo com a area do conhecimento em que é aplicado. Neste trabalho ele
serd entendido como a quantizacdo da variancia local de uma imagem digital no dominio de
Fourier, ou seja, sera considerado como o espectro de poténcia do ruido de uma imagem (Dobbins
11, 2000).

Matematicamente, o NPS para um sinal de duas dimensoes é descrito pela seguinte equacao:

NPS(u,v) = limy,n, Moo (S ) M P (x,) — S yH? 28)

onde N, e N, sdo as dimensGes da janela utilizada para a analise, Ax e Ay sdo as dimensGes do

pixel da imagem nas diregdes X e y, respectivamente, S(x,y) € uma estrutura padrdo do sinal sem
componentes estocasticos e M é o nimero total de janelas utilizadas para o céalculo. No campo de
processamento de imagens S(x,y) é aproximadamente o valor médio dos pixels da janela

analisada.

2.2.2. Medicao experimental do NPS

Analisando a equacédo (2.8), pode-se notar que a componente M deve tender ao infinito
para que seja possivel realizar o calculo do NPS, impossibilitando que este seja obtido
analiticamente. Segundo (Dobbins 111, 2000), uma das maneiras de se obter o0 NPS de uma
imagem é através de procedimentos experimentais. Nesta sec¢do serdo descritos todos 0s passos
necessarios para a obtencdo do NPS de uma imagem radiografica adquirida em um equipamento
digital de raios X.

O primeiro passo para a medi¢do experimental do NPS é a aquisi¢do de uma série de
exposicOes de imagens homogéneas utilizando o equipamento de raios X a ser estudado. Uma vez
obtidas estas imagens, é necessario realizar a linearizagdo dos valores de pixel da imagem “crua”
(RAW). Essa imagem RAW mostra, pixel a pixel, o numero de fétons que cada detector recebeu.

Ela ¢ chamada de “crua” pois ainda ndo passou por nenhum tipo de processamento. O processo de



linearizacdo se resume a aplicar uma transformacao capaz de tornar o valor médio dos niveis de

cinza da imagem linearmente proporcional a dose na qual a imagem foi adquirida.

O proximo passo para a obtencdo do NPS é a escolha da regido de interesse da imagem. A
regidao de interesse é aquela que contém o objeto a ser analisado pelo médico ou especialista. Em
exames de mamografia por raios X, por exemplo, a regido de interesse normalmente esta

localizada onde se encontra a mama com todas as estruturas a serem estudadas.

Finalmente, divide-se a regido de interesse em janelas de tamanho conveniente e aplica-se

a equagcdo descrita em (2.8).

2.2.3. NNPS - Normalized Noise Power Spectrum

O procedimento descrito na se¢do 2.2.2 gera como resultado uma matriz de duas
dimens@es contendo o valor do espectro de poténcia do ruido da imagem. Em muitos trabalhos
esta matriz € denominada NPS-2D (Williams, et al., 1999) (Siewedsen, et al., 2002). Uma
dificuldade inerente a esse tipo de NPS é a sua interpretacdo. Apesar ser facilmente representéavel
em um plano tridimensional, sua interpretacdo neste plano ndo é trivial. Além disso, para que seja
possivel a comparacdo do NPS de diferentes sistemas radiograficos e diferentes doses €
necessario que haja algum tipo de normalizagcdo, uma vez que o valor médio do espectro
calculado sera proporcional ao valor médio dos pixels da imagem, que por sua vez varia

linearmente com a dose de radiacao.

Para evitar as dificuldades apresentadas acima faz-se uso do NNPS (Normalized Noise-
Power Spectrum) representado no plano bidimensional. A equacéo (2.9) apresenta a normalizagédo
aplicada (Dobbins 111, 2000).

NNPS(u,v) = 582, 2.9)

onde L é o Large Area Signal (em termos praticos, considera-se o0 valor médio da imagem para
um valor particular de exposicdo). A representacdo do NNPS no plano bidimensional é possivel

de ser realizado de diferentes maneiras. Neste trabalho foi utilizado o NNPS-1D horizontal.

A Figura 3 apresenta 0 NNPS para dois ruidos conhecidos. O ruido gaussiano branco
possui como caracteristica particular valores aproximadamente constantes de NNPS para as
diferentes bandas de frequéncia, consequentemente o NNPS deste tipo de ruido serd uma reta
aproximadamente paralela ao eixo das abscissas. JA o ruido violeta, assim como a onda

eletromagnética da cor violeta, possui componentes mais significativas nas bandas de alta
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frequéncia. O NNPS deste tipo de sinal é atenuado para valores de baixa frequéncia e mais

significativo em altas frequéncias.
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Figura 3 — NNPS para dois tipos de ruidos distintos: Branco e Violeta.

2.3. Transformada de Anscombe

A Transformada de Anscombe, nomeada assim pelo seu criador Francis Anscombe, é
uma transformacdo estabilizadora de variancia, que transforma a variancia de um processo de
contagem com distribuicdo de Poisson em uma distribuicdo aproximadamente gaussiana com

variancia unitéria. A definicdo matematica da transformada direta de Anscombe é (Anscombe,

1948):
f(z) =2 /z +2 (2.10)

Esta transformacdo é aplicada no campo de processamento digital de imagens, em
situacdes onde limitacbes no processo de aquisicdo tornam reduzida a quantidade de fétons
recebida pelos foto-sensores do equipamento radiogréafico, gerando ruido quantico com valores de
contagem (A) baixos. A aplicacdo da transformada de Anscombe na etapa de pré-processamento
possibilita o uso de filtros destinados ao tratamento do ruido aditivo. Apds o processamento da
imagem no dominio de Anscombe, aplica-se a transformada inversa (Anscombe, 1948) para

retornar ao dominio espacial:
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I(D) = (9)2 -1 2.11)

2

Analisando a equagéo (2.11) nota-se que a transformada inversa proposta por Anscombe

ndo coincide com a transformada algébrica inversa, que seria dada por:

ACHOE e

Este fato é consequéncia da nédo linearidade da transformada direta, que faz com que a sua
inversa algébrica adicione um viés ao resultado, tornando-o incorreto (Makitalo, et al., 2011).
Mesmo a transformada inversa apresentada em (2.11) possui viés para valores de contagem (A)
reduzidos, apresentando melhor comportamento para valores elevados. Assim, diz-se que a
transformada proposta por Anscombe é assintoticamente ndo enviesada (Anscombe, 1948). Como
imagens mamograficas possuem doses de radia¢do reduzidas, os valores de A sdo normalmente
baixos, fazendo com que um viés seja adicionado durante a aplicacdo da transformada inversa de
Anscombe. Em 2013 foi proposta uma nova versdo da transformada inversa de Anscombe
(Makitalo, et al., 2013), onde o autor estuda a familia de transformadas inversas de Anscombe
parametrizadas e encontra aquela com resultados mais proximos do esperado mesmo para valores

de A reduzidos.
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Capitulo 3

Materiais e Métodos

3.1. Reducao de dose — Método tradicional

Nesta secdo do trabalho sera apresentado o método tradicional de simulacdo de reducéo
de dose de radiacdo para sistemas de radiografia digital, proposto por (Bath, et al., 2005). Este
método se baseia na capacidade de descricdo do ruido pelo NPS da imagem, e leva em

consideragdo algumas suposic¢Oes que devem ser respeitadas.

A primeira delas é de que duas imagens contendo 0 mesmo NPS apresentardo as mesmas
propriedades de ruido, portanto é assumido que o NPS é suficiente para descrever o conteldo de
ruido de uma imagem. Tal afirmacéo s6 pode ser tomada como verdadeira caso seja considerada a
ergodicidade do sistema, ou seja, que as médias espaciais do sinal sdo equivalentes as suas médias
temporais (Bath, et al., 2005) (Walters, 2000).

A segunda suposicdo € de que a funcdo de transferéncia de modulacdo (MTF —
Modulation Transfer Function), assim como a eficiéncia de deteccdo quéntica (DQE — Detective
Quantum Efficiency), sdo invariantes as mudancas de dose de radiagdo do exame radiogréfico,
que pode ser controlado pelo tempo de exposicdo e pela corrente no tubo de raios X (Bath, et al.,
2005).

Finalmente, considera-se o sistema como linear, isto é, o valor médio da contagem dos
fétons é linearmente proporcional a quantidade de radiagdo utilizada. Apesar de muitas vezes 0s

sistemas radiogréficos ndo possuirem comportamento linear, é possivel realizar a sua linearizagéo.

Para melhor organizacdo desta secdo, ela sera dividida em 3 topicos. No primeiro deles, o
método é desenvolvido presumindo-se que a imagem a ser simulada € homogénea, com NPS
conhecido em ambas as doses: na simulada e na original. O segundo tdpico desconsidera a
hipétese de que o NPS é conhecido em ambas as doses. J& o terceiro topico desconsidera a Ultima

suposicao: a homogeneidade da imagem simulada.

3.1.1. Imagem Homogénea — NPS conhecido em ambas as doses

Nesta secdo considera-se que 0 NPS (Noise Power Spectrum) é conhecido na dose em que

a imagem original foi obtida e na dose que se pretende simular.
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Considere Im(x, y)orig COMo sendo a imagem coletada na dose original Dorig € Pmedio,orig
como o valor médio dos pixels nesta imagem. Como temos um sistema linear, o valor médio dos

pixels na imagem simulada sera:

— Dsim
Pmédio,sim = Pmédio,orig (Dorig . (31)

onde Dq;,, € a dose de radiacdo tedricamente aplicada na imagem que se deseja simular.

Ainda baseado na linearidade do sistema, define-se a imagem normalizada

Im(x,y) orignorm COMO:

Dsim
Im(x, Y)orig,norm = Im(x, Y)orig( > ) (3.2)

Dorig

O NPS, assim como a variancia, varia com o quadrado do valor do sinal. Assim, pode-se

encontrar o valor do NPS da imagem original normalizada (NPS(u, v)Imorigmrm) pela equacao:

2
Dsim
NPS(U; V)ImOrig,norm = NPS(U, V)Imorig (Dorig) , 3.3)

onde NPS(u, v)Imorig corresponde ao NPS da imagem original.

A imagem simulada, Im(x, y)sim, € dada por:

Im(X: Y)sim = Im(X: Y)orig,norm + Im(X' Y)ruido (3.4)

onde Im(X, ) uido € @ Mascara de ruido que devera ser adicionada a imagem original (adquirida
com a dose padréo de radiagdo), resultando na imagem desejada (simulando uma aquisicdo com

dose reduzida).

Como esta secdo trata de imagens homogéneas, a imagem original normalizada
(Imgrignorm) N@0 esta correlacionada com a mascara de ruido Imp;qo. L0go, 0 NPS do ruido

pode ser facilmente encontrado através da seguinte equacao:

2
= NPS(u,)p,,, — NPS(u,v)p, ., (D_m) (35)

Dorig

NPS(u,v)m

ruido

3.1.2. Imagem Homogénea — NPS ndo conhecido em ambas as doses

Nesta se¢do a suposicdo de que o NPS é conhecido nas doses original e simulada é

descartada. Considerando um sistema linear onde a dose ndo modifica a MTF do sistema, é
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possivel calcular o NPS em uma dose D, qualquer, NPS(u, v)p ,, @ partir do NPS em uma dose

D,. A expressdo a seguir apresenta esta relagao:

D,\ (DQE(uv)
NPS(U, V)Da = NPS(U, V)b (D_b) (])Q?u,v)];b) (36)

onde DQE(u,v)p, € DQE(u, v)p, sdo os DQEs do sistema de imagem medidos nas doses D, e

D, respectivamente.
Combinando as equacdes (3.5) e ( 3.6 ), temos:
NPS(U, V)Imruido =

Dsim) (_PQE(uv)p, _ (_Diim ) DQE(u.v)p, 3.7
(Da )<DQE(u,v)Dsim> NPS(u, v)p, (Doring DDy ) SQWp,, (37

onde Dg;,, € a dose de radiagdo para a imagem que se deseja simular, D,,;, € a dose da imagem
original, D, e D, sdo duas doses quaisquer, DQE (u,v)p,, DQE(w,v)p,, DQE(u,v)p,, €
DQE(u,v) Dyyig SA0 0S valores de eficiéncia de detecgdo quantica nas doses Dy, Dy, Dgim € Dorig,
respectivamente, NPS(u, v)p, e NPS(u,v)p, sdo os valores da densidade espectral de ruido nas

doses D, e D, respectivamente.

Para fins préaticos, pode-se considerar que o0 DQE de um sistema de imagem néo
dependente da dose. Assim, a equagéo ( 3.7 ) pode ser reescrita da seguinte forma:
DZ

—sim_ )NPS(u. V)b, (38)

Dsim
NPS(U, Vi, g = (D—l) NPS(u,v)p, — (Dngz

onde D; € uma dose proxima de Dg;n, cujo NPS € conhecido e D, uma dose proxima de Dgyig

cujo NPS também é conhecido.

3.1.3. Imagem Nao-Homogénea — NPS ndo conhecido em ambas as doses

Para que seja possivel a utilizacdo deste algoritmo para casos clinicos reais, uma Ultima
suposicdo deve ser desconsiderada: a homogeneidade da imagem. Uma das principais
caracteristicas que diferencia o ruido quéntico dos demais ruidos é que ele € correlacionado com o
sinal, isto é, a varidncia do ruido depende da intensidade da imagem, Assim, o valor da variancia

do ruido em regides de baixa dose é inferior ao de regibes com altas doses.

Considerando que o DQE é invariante as mudangas de dose, a variancia do ruido em cada

pixel da imagem sera proporcional ao seu valor de intensidade (veja eq. 2.3), que por sua vez é
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proporcional a dose. Sabe-se que essa variancia é proporcional ao quadrado do valor de
intensidade do pixel. Assim, a imagem com o ruido correlacionado pode ser obtida a partir da

seguinte expressao:

”"("Y)w) (3.9

Pmedio,sim

Im(x: y)ruido,corr = Im(x, Y)ruz'do\/<

Para criar a imagem de ruido, é necessario criar uma matriz de ruido branco, gaussiano,
com media nula e variancia igual a 1. Em seguida, aplica-se a transformada de Fourier nesta
imagem e realiza-se a modulagdo de fase através da sua multiplicacéo pela raiz quadrada do NPS
do ruido (obtido pela eq. 3.8). Ap6s a modulacdo do ruido, aplica-se a transformada inversa de
Fourier e, pela operacdo descrita na equacédo (3.9), o ruido obtido é correlacionado a imagem. Ao
final destes procedimentos temos a imagem de ruido que sera adicionada a imagem original

normalizada para gerar a imagem simulada.

Para auxiliar na compreensao da versdo final do método de simulacdo apresentado por
(Bath, et al., 2005) a Figura 4 apresenta um esquematico com todos 0s passos necessarios para a
simulacgdo da reducao de dose para uma imagem radiografica.

[ NPS ] |:> [ NPS do ruido simulado } |:> [ Mascara de ruido }

/ Imagens \ Imagem Original Mascara de ruido
Homogéneas 100% correlacionado
100% @ @
75% [ J
50% Imagem Normalizada > @
25%
12,5% @

K / [ Imagem Simulada ]

Figura 4 — Esquematico para compreensao do método proposto por (Bath, et al., 2005).

No esquemético da Figura 4 estdo todos o0s passos necessarios para a simulagdo da
imagem. O primeiro passo é a obtencdo das imagens homogéneas em diferentes doses. Em
seguida calcula-se o NPS de cada uma das imagens homogéneas. Pela equacéo (3.8) calcula-se o

NPS do ruido a ser simulado, em seguida a equacéo (3.9) faz sua correlagdo com a imagem
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original, resultando em uma imagem de ruido pronta para ser utilizada. O Ultimo passo para a
simulacdo é a normalizacdo do valor médio da imagem original, pela equacgdo (3.2). A soma da

imagem de ruido correlacionado com a imagem original normalizada resulta na imagem simulada.

3.2. Novo método proposto nesse trabalho

Neste trabalhno um novo método de simulacdo de reducdo de dose em mamografias
digitais é proposto. Essa nova metodologia baseia-se na transformada de Anscombe, conhecida
pela sua capacidade de transformar o ruido Poisson dependente do sinal em uma aproximacao do

ruido gaussiano aditivo (independente do sinal) com variancia unitéaria.

Para o desenvolvimento deste método, duas suposi¢des foram adotadas, da mesma forma
gue no trabalho de (Bath, et al., 2005). Primeiramente considera-se o sistema como linear, ou seja,
o valor médio dos pixels de uma imagem adquirida por este sistema é linearmente proporcional a
dose de radiagdo utilizada na sua formacdo. Embora muitas vezes os sistemas de raios X nédo

possuam comportamento linear, é possivel realizar a sua linearizag&o.

A segunda suposicao é de que o sistema insere na imagem adquirida, durante o processo
de formacéo, ruido aproximadamente branco, isto é, o ruido resultante do processo de formacéao
da imagem possui 0 mesmo comportamento em todas as bandas de frequéncia quando analisado

no dominio de Fourier.

Adotando as suposicOes apresentadas acima, considere uma imagem Im(x,y)orig
adquirida com a dose D,,;, de radiagdo. Gragas a linearidade do sistema, pode-se afirmar que
uma imagem Im(x,y)sp, adquirida com dose Dgjm (Dsim < Dorig) POssuira valor médio de

pixels dado por:

— Dsim
Pmédio,sim = Pmédio,orig (Dorig), (3.10)

onde pmedio,sim Sera 0 valor médio dos pixels na imagem simulada, pmgdio,orig € © Valor medio

dos pixels na imagem original, Dg;r, € Doig S0 as doses simulada e original, respectivamente.

Tomando a imagem I'm,,;4(x,y) como ponto de partida, a seguinte expressao normaliza

esta imagem para possuir valor médio psaio sim:

Dsim
Im(x, Y)orig,norm = Im(x, Y)orig (fﬁg) (3.11)
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Até este ponto, 0 método proposto é extremamente similar ao método apresentado na
secdo 3.1. Entretanto, a partir deste passo a metodologia proposta faz uma abordagem alternativa
para a insercdo de ruido, fazendo uso da transformada de Anscombe (AT — Anscombe

Transformation).

Uma vez calculada a imagem normalizada Im(x,y)orignorm, @ transformada de
Anscombe é aplicada a imagem, transportando-a para um dominio onde o ruido é aditivo,

gaussiano e independente do sinal.

Im(x: y)orig,norm,ans =A [Im(x' Y)orig,norm]v (3'12)

Apos a aplicacdo da transformada de Anscombe, é criada uma méascara de ruido branco
gaussiano com variancia unitaria (Im,.;q,). Diferentemente do método original, o método
proposto neste trabalho cria a mascara de ruido no dominio espacial, e ndo ha necessidade da sua
modulagdo ou correlacdo com a imagem original, pois sua adi¢do sera realizada no dominio de

Anscombe. A imagem simulada (Im(X, y)sin) N0 dominio de Anscombe sera dada por:

Im(x, y)sim,ans = Im(x, Y)orig,norm,ans + Im(X, ) ruido (3.13)

O ultimo passo do método ¢ a aplicacdo da transformada inversa de Anscombe. Neste

trabalho, foi considerada a transformada inversa exata proposta por (Makitalo, et al., 2013).
Im(x' Y)sim = ‘A_l[lm(x; }’)sim,ans] (3.14)

A Figura 5 apresentada a seguir contém um esquematico que sintetiza 0 método proposto

para insercao de ruido quantico e simulacéo da reducdo de dose na mamografia digital.

Imagem Original Transformada de ":C :: Transformada
[ Normalizada Anscombe Inversa de Ans.

Imagem Simulada

Imagem Original ‘ Ruido Gaussiano
100% (02=1,u=0)

Figura 5 — Esquematico para compreensdo do método proposto neste trabalho.

Note que nesse método ndo € necessaria a aquisi¢cdo de imagens homogéneas, uma vez
que 0s Unicos parametros de entrada sdo a imagem original e a porcentagem de reducdo desejada.
Assim, 0 método proposto parte apenas da imagem original, normalizando seu valor médio de
pixel. A inser¢do de ruido é realizada no dominio de Anscombe, sem a necessidade da modulag&o

da mascara de ruido nem mesmo o célculo de correlagdo com a imagem original.
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3.3. Meétricas de Qualidade e Similaridade

A proposta apresentada neste trabalho € validada a partir do célculo de diferentes métricas
de similaridade de imagens. O objetivo, nesse caso, € mostrar que imagens simuladas por ambos
0s métodos (o original e o proposto) sdo muito similares. Uma das métricas de similaridade
utilizada é o pico da relagdo sinal-ruido (PSNR — Peak Signal-to-Noise Ratio) (Wang, et al.,
2004). O PSNR ¢ derivado da medida do Erro Quadratico Médio (MSE — Mean Squared Error), e
representa uma medida objetiva de similaridade entre duas imagens. Apesar de possuir algumas
desvantagens, apontadas por (Wang, et al., 2009), é o indice padrdo de qualidade para
pesquisadores da area de processamento de imagens, mostrando o erro numérico pixel a pixel.
Assim, outra métrica que foi utilizada neste trabalho é o indice de Similaridade Estrutural (SSIM
— Structural Similarity Index) (Wang, et al., 2004). O SSIM fornece um indice de similaridade
entre duas imagens levando em conta aspectos biolégicos da visdo humana. A Gltima métrica de
similaridade utilizada nesse trabalho foi o calculo dos histogramas das imagens. Assim, 0
histograma das imagens originais e simuladas foram comparados e a distancia entre eles foi
calculada. Os métodos utilizados para validagdo da proposta sdo apresentados em detalhes a

sequir.

3.3.1. PSNR - Peak Signal-to-Noise Ratio

Para a melhor compreensdo do PSNR faz-se necessaria a explicacdo de outro indice de
qualidade muito importante, 0 MSE. Por mais de 50 anos o erro quadratico médio, do inglés
Mean Squared Error (MSE), foi a métrica de desempenho dominante no campo de processamento
de sinais (Wang, et al., 2009).

Ainda hoje o0 MSE é considerado um indice padrdo de qualidade e é amplamente utilizado
para medicdo da similaridade (ou fidelidade) entre dois sinais (Dabov, et al., 2006), (Deledalle, et
al., 2010), (Romualdo, et al., 2012). Supondo dois sinais finitos e discretos a e b, ambos com N

realizacBes, 0 MSE entre os sinais é dado por:
1
MSE(a,b) = - X (a; — b)?. (3.15)

Os motivos que levam tantos trabalhos a utilizarem esta métrica de qualidade sdo sua
simplicidade, baixo custo computacional e as propriedades de ndo negatividade (MSE (a, b) > 0),
identidade (MSE(a,b) =0 < a =0b), simetria (MSE(a,b) = MSE(a,b)) e desigualdade
triangular (MSE (a,c) < MSE(a,b) + MSE (b, ¢)). Na literatura de processamento de imagens, o

MSE é comumente expresso na forma PSNR. O PSNR nada mais é que uma normalizacdo do
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MSE para que seja possivel sua utilizacdo na comparacdo de imagens contendo diferentes faixas

de niveis de cinza.
2
PSNR(a,b) = 1010g10m, (3.16)

onde L é o valor maximo de intensidade da imagem. Como o PSNR pode assumir valores

extremamente elevados, normalmente sua representacao é feita na escala logaritmica de decibel.

Na grande parte dos trabalhos a interpretacdo dos valores de PSNR se da de maneira
direta, uma vez que as imagens comparadas geralmente sdo: uma imagem de referéncia, também
conhecida como ‘Ground Truth’ e uma imagem degradada que foi processada por algum
algoritmo que se deseja avaliar. A imagem de referéncia é a melhor aproximacédo possivel para a
imagem ideal sem ruidos, com as mesmas estruturas e detalhes presentes na imagem a ser
analisada. Assim, valores de PSNR elevados indicam alta fidelidade entre as imagens processada

e de referéncia, indicando que o processamento foi eficaz.

3.3.2. SSIM - Structural Similarity Index

Apesar de muito utilizados, os indices MSE e PSNR possuem a limitacdo de ndo levar em
consideracdo a relagdo entre pixels proximos e estrutura da imagem, além de ndo considerarem os
aspectos bioldgicos da visdo humana. Estes pontos serdo considerados em outra métrica de
fidelidade muito utilizada na &area de processamento de imagens, o indice de similaridade

estrutural (SSIM — Structural Similarity Index).

O SSIM baseia-se na suposi¢do de que os pixels de uma dada imagem possuem grande
dependéncia entre si, especialmente quando estes estdo espacialmente proximos e, portanto,
carregam informacgfes importantes sobre as estruturas que compdem a imagem como um todo
(Wang, et al., 2004).

Medidas de similaridade como o erro quadratico médio, ou MSE, sdo baseadas no calculo
de erros pontuais, com comparagdes ponto a ponto, ndo levando em consideracdo a dependéncia
entre pixels proximos e a presenca de estruturas na imagem. Como resultado deste tipo de
comparacdo, indices de similaridade convencionais para imagens extremamente distintas
retornam o mesmo valor que comparagGes onde, por exemplo, os pixels da imagem foram
deslocados de uma unidade de espago. A Figura 6 apresenta comparagfes nas quais 6 imagens
possuem o mesmo valor de MSE apesar de em alguns casos as imagens serem muito similares e

em outro muito distintas.
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(d) (e) )

Figura 6 — Comparacéo da imagem “Boat” com diferentes tipos de degrada¢ado, todas com exatamente o
mesmo valor de MSE=210. (a) Imagem Original. (b) Imagem com contraste equalizado, SSIM = 0,9168.
(c) Imagem com a média alterada, SSIM = 0,9900. (d) Compressdo JPEG, SSIM = 0,6949 Borramento,
SSIM = 0,7052. (f) Contaminagdo por ruido “Salt and Pepper”, SSIM = 0,7748. (Wang, et al., 2004)

Matematicamente, 0 SSIM entre duas imagens a e b € dada pela equagdo (3.17), onde p,
¢ a média de a, My é a média de b, o2 ¢ a variancia de a, c?, é a variancia de b, o, é a covariancia
entre a e b e ¢; e c, sAo variaveis estabilizadoras do denominador, com C; = (k;L)? e C, =
(k,L)2. L é o maior valor de intensidade da imagem (255 para imagens com 8 bits), k; e k, sdo
constantes pequenas, fixadas em 0,01 e 0,03, respectivamente, como sugerido pelo autor em
(Wang, et al., 2004).

_ (Quapp+C1)(20ap+C3)
SSIM(a, b) = (W24 h2eC ) (02427 1C2) (3.17)

Como em uma imagem os valores de média e variancia se alteram em diferentes regides,
o calculo do SSIM ¢ realizado sobre uma janela 8 x 8 que percorre toda a imagem. Assim, ao final
do procedimento o algoritmo ira retornar um valor de indice para cada janela percorrida. O valor

apresentado é a média dos indices calculados naquela imagem.
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3.3.3. Similaridade entre Histogramas

Um histograma é uma ferramenta grafica utilizada para representacdo e analise de
distribuicdes de dados. Em um histograma, o eixo das abscissas é composto por classes, ou bins,
gue sdo as grandezas discretas ou discretizadas a serem analisadas. Ja no eixo das ordenadas é

representada a frequéncia de observac¢des daquela grandeza.

Na éarea de processamento de imagens o histograma é amplamente utilizado, sendo
definido como a contagem do nimero de pixels para cada nivel discreto de intensidade. Em caso
de imagens em tons de cinza, cada intensidade ird representar um valor de cinza na escala. A

Figura 7 apresenta um exemplo de histograma.

1500 T T T T T

1000 ¢

a00 |

I:I 1 1
0 200 400 &00 adn 1000 1200

Figura 7 — Exemplo de histograma de uma imagem.

Em muitas aplicagdes o histograma € utilizado para a melhoria do contraste (Stark, 2000),
(Kim, et al., 2001) ou até mesmo para a escolha de constantes de limiarizacdo (Tobias, et al.,
2002). Entretanto neste trabalho os histogramas das imagens serdo utilizados para fins de
comparagdo. Para isso, foi utilizada a distancia correlacional entre dois vetores contendo os

histogramas de duas imagens.

A distancia correlacional, apresentada na equacdo (3.18), € amplamente utilizada no
campo da estatistica e da teoria de probabilidade e mede a dependéncia estatistica entre duas
variaveis. Seu valor ir& se aproximar de zero para histogramas semelhantes, enquanto histogramas
distintos irdo resultar em distancias proximas de um. Neste trabalho a distancia foi calculada

através do toolbox de andlise estatistica do MATLAB® .

(xs=X)YVe=V)!
do =1 — ( ) (3.18)
st VOes—%9) (Xs—%) 1 V=70 e —70)1

onde dg; € a distancia correlacional entre as matrizes X e Y, x, € y, sdo pontos de X e Y e X e y;

s&o os valores médios de x € y;.

 www.mathworks.com/help/stats/pdist2.html - Acessado em 11/06/2014
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3.4. Banco de Imagens

Para a fase de testes dos métodos apresentados foram utilizadas imagens homogéneas e de
phantom adquiridas com o mamdgrafo digital Selenia Dimensions (Hologic, Inc.). Para a
simulacdo do tecido mamario foi utilizado um phantom antropomdrfico modelo “Rachel”
Anthropomorfic Breast Phantom® (Gammex, Inc.), que possui componentes internos que simulam
0s tecidos e estruturais de interesse de uma mama real. J& as imagens homogéneas foram
adquiridas com o uso do bloco de acrilico homogéneo. O phantom antropomérfico “Rachel” € 0
bloco de acrilico utilizado nos testes sdo apresentados na Figura 8.

(@)

Figura 8 — (a) Phantom Antropomérfico “Rachel . (b) Bloco homogéneo.

(b)

Ambas as séries de imagens, homogéneas e de phantoms, foram adquiridas no mesmo
equipamento com o0s seguintes parametros de exposi¢ao: o valor da tenséo no tubo foi fixada para
todas as imagens em 31 kVp e o produto corrente no tubo x tempo de exposi¢do (mAs) foi
variado entre o valor padrdo para esse tipo de exame (160 mAs — 100% da dose normal) até 20
mAs (12.5% da dose). A Figura 9 mostra algumas imagens mamogréficas utilizadas nesse estudo.
Note a diferenga entre o ruido presente nas imagens adquiridas com menor dose em relagdo as

imagens obtidas com a dose padrdo de radiacao.

q q
. () . (d)

——— () — (D)

Figura 9 — (@) Imagem do phantom “Rachel” adquirido com 100% da dose. (b) Imagem do mesmo
phantom adquirido com 12,5% da dose. (c) Imagem homogénea obtida com 100% da dose. (d) Imagem
homogénea obtida com 12,5% da dose.

2 http://www.gammex.com/ - Acessado em 11/06/2014
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Capitulo 4

Resultados

Os resultados para a validacdo dos métodos de insercdo de ruido foram obtidos pelo
processamento de 2 amostras menores (512x512) extraidas de cada uma das imagens de phantom.
As amostras foram escolhidas de forma a facilitar a percepcao visual do ruido e evitar que os
indices de gqualidade sejam mascarados, por exemplo, pelo excesso de fundo preto presente em

algumas regifes da imagem. A Figura 10 mostra um exemplo das amostras utilizadas.

(b)

Figura 10 — (a) Amostra 1 e (b) Amostra 2 retirada das imagens de phantom adquiridas com 100% da dose.

A validacdo dos resultados obtidos nesse estudo foi conduzida a partir da comparagéo
entre duas imagens degradadas com ruido quéntico, uma delas obtida por simulagdo (por ambos
0s métodos descritos) e outra obtida experimentalmente no equipamento mamografico (real), em
diferentes doses de radiagdo. Desse modo as medidas dos parametros de similaridade (PSNR,
SSIM e histograma) foram obtidos por meio de uma comparacdo indireta das duas imagens, como

esquematizado na Figura 11.

O método de comparagdo indireta consiste em gerar uma imagem de referéncia, ou
‘Ground Truth’, a partir da filtragem do ruido de uma imagem adquirida com 100% da dose de
radiacdo. Isso foi feito a partir do uso do filtro da média 5 x 5 (Gonzalez, et al., 2009). Em
seguida, as imagens simulada e real sdo comparadas com essa referéncia, resultando em dois
valores de PSNR e SSIM. Estes valores serdo comparados entre si para avaliar se a simulagéo foi

capaz de gerar imagens similares as imagens reais.
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Full Dose
Filtrada

(‘Ground
Truth')

Imagem Imagem com
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Figura 11 — Esquematico para compreenséo da comparacdo indireta de imagens.

4.1. Imagens Homogéneas — calculo do NPS

O primeiro passo para a obtencdo de resultados foi a analise da linearidade do sistema de
imagem, que € um dos requisitos para a aplicagdo do método de insercdo de ruido proposto. Para
isso foram utilizadas 5 imagens homogéneas, adquiridas com valor fixo de 31 kVp e exposicdes
de 160 mAs, 120 mAs, 80 mAs, 40mAs e 20mAs, que representam, respectivamente, uma dose
relativa de 100%, 75%, 50%, 25% e 12,5%. Uma vez fixado o valor de 31 kVp, para a tensdo no
tubo de raios X, a dose de radiacdo fica dependente apenas da corrente do tubo e do tempo de
exposicdo (mAs). Se o sistema for linear, o numero de fotons de raios X que incide no detector de
imagem é diretamente proporcional ao valor de exposi¢do. Logo, se uma imagem foi adquirida
com 80 mAs, ela terda metade do numero de fétons (e metade da radiagdo) que uma imagem

adquirida com 160 mAs.

Para o estudo da linearidade do sistema de imagem, o grafico apresentado na Figura 12
foi criado, com os valores de exposi¢cdo no eixo das abscissas e 0s valores médios dos pixels da
imagem homogénea representados nas ordenadas. Para o equipamento estudado, 0s sensores
fotoelétricos possuem comportamento muito préximo de linear, com offset de 46 niveis de cinza,
ou seja, no caso de uma exposicao hipotética com 0 mAs de exposicdo 0s sensores contariam 46
fétons. Assim, a linearizagdo foi feita atraveés da subtracdo deste valor de todos os pixels das

imagens.
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Figura 12 — Gréfico média x Exposicdo para linearizacdo do sistema.

A proxima etapa da simulacdo foi o célculo do NNPS do sistema de imagens para cada
uma das doses de radiagdo na qual as imagens homogéneas foram adquiridas. Como ja foi
apresentado na segdo teorica deste trabalho, o0 NNPS é uma forma de representacdo do ruido
presente em uma imagem. Imagens com doses reduzidas possuem pixels com menores valores de
contagem, portanto sdo contaminadas por mais ruido quantico. Logo, espera-se que o valor do
NPS seja maior quanto menor for a dose de radiagdo utilizada na imagem. Na Figura 13 pode-se

observar que o comportamento esperado foi atingido.
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Figura 13 — Valores de NNPS do sistema de imagem utilizado nos testes experimentais calculados
para diferentes doses de radiacao.
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4.2. Reducéo de dose — Método original proposto por Bath et al.

Nessa secdo serdo apresentados os resultados da simulacéo obtidos com o uso do método
proposto por (Bath, et al., 2005) para inser¢do de ruido quéntico e simulacdo da reducdo da dose
de radiacdo, chamado aqui de Método 1. A primeira etapa para a simulacdo da reducdo de dose
foi linearizagdo das imagens utilizadas. Sendo assim, o valor de offset de 46 pixels, calculado a
partir do gréafico da Figura 12 foi subtraido de todas as imagens de phantom utilizadas para a

simulagéo.

Da mesma forma que as imagens homogéneas, as imagens do phantom antropomérfico
foram adquiridas com valor fixo de 31 kVp e exposi¢do variando de 160 mAs a 20 mAs. A
finalidade desta gama de exposi¢des é permitir a validacdo do método proposto gerando imagens
simuladas com doses inferiores (120, 80, 40 e 20 mAs) a partir da imagem real obtida com maior
dose (160 mAs). Uma vez geradas estas imagens, os recortes mostrados na Figura 10 (Amostras 1
e 2) foram extraidos de todas as imagens simuladas.

O proximo passo foi a criagdo da imagem de referéncia, apresentada na Figura 14. Esta
imagem foi criada a partir da imagem do phantom adquirida com maior dose disponivel (31 kVp e
160 mAs). A filtragem para diminuicdo do ruido foi feito com um filtro da média com méscara
5x5. A Figura 14 mostra a imagem filtrada utilizada como referéncia (a esquerda) e a imagem
original obtida com 100% da dose (a direita).

(a) (b)

Figura 14 —(a) Imagem de referéncia. (b) Imagem original.

A imagem original é designada assim pois foi o ponto de partida para todas as simula¢des

realizadas neste trabalho, uma vez que possibilita a validacdo em 4 reducdes distintas:
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De 31 kVp, 160 mAs para 31 kVp, 120 mAs — reducdo para 75% da dose;
De 31 kVp, 160 mAs para 31 kVp, 80 mAs — reducédo para 50% da dose;
De 31 kVp, 160 mAs para 31 kVp, 40 mAs — reducédo para 25% da dose;
De 31 kVp, 160 mAs para 31 kVp, 20 mAs — reducéo para 12,5% da dose.

Para que os dados possam ser apresentados de forma organizada esta secdo foi dividida

em subitens contendo todos os resultados das simulac@es para cada reducdo. Para padronizar a
nomenclatura utilizada nas proximas se¢des, as imagens resultantes da aplicacdo dos métodos de
simulacdo serdo chamadas de imagens simuladas. J& a imagem obtida em um processo de
aquisicdo real, contendo a mesma dose de radiacdo que a imagem simulada, serd denominada
imagem real. A Tabela 1 apresenta os indices de comparacdo entre a imagem de referéncia
(‘Ground Truth’) e a imagem original, obtida com maior dose (100% - 160 mAs).

Tabela 1: indices de similaridade entre a imagem de referéncia e a imagem original (100% da dose).

Antes da Simulacéo
Referéncia vs. Original
Amostra | PSNR (dB) | SSIM
1 33,86 0,937
2 34,90 0,952
Média 34,38 0,944

4.2.1. Reducéo para 75% da dose

A Figura 15 apresenta os resultados visuais da simulacéo para reducéo de 100% para 75%
da dose de radiacdo em ambas as amostras escolhidas. Como a reducéo de dose ndo € grande, ndo
é facil perceber visualmente a diferenca entre a imagem original, real e simulada. Por essa razdo a

analise dos indices de é importante.

(d) (€) (f)

Figura 15 — Método 1: reducdo para 75% da dose. (a) Amostra 1 — Imagem original. (b) Amostra 1 —
Imagem simulada. (c) Amostra 1 — Imagem Real. (d) Amostra 2 — Imagem original. (¢) Amostra 2 —
Imagem simulada. (f) Amostra 2 — Imagem Real.
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Os indices obtidos ap6s a simulacdo de reducdo para 75% da dose sdo apresentados na
Tabela 2.

Tabela 2: Método 1- métricas para 75% da dose.

Simulagéo Real Erro
Referéncia vs. Simulada Referéncia vs. Real Simulada vs. Real
Amostra PSNR (dB) SSIM PSNR (dB) SSIM | PSNR (dB) SSIM
1 19,55 0,92 21,28 0,915 7,50% 0,53%
2 20,83 0,93 22,52 0,935 7,81% 0,00%
Média 20,19 0,925 21,90 0,925 8,13% 0,55%

Os histogramas da imagem original, simulada e real sdo apresentados na Figura 16. A
média da distancia correlacional entre os histogramas passou de 0,79 na imagem original para

0,09 na imagem simulada, mostrando que apés a simulacdo os histogramas ficaram muito mais

similares.
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Figura 16 — Redugdo para 75% da dose com o Método 1: Histogramas.

4.2.2. Reducéo para 50% da dose

O resultado visual da reducdo para 50% da dose é apresentado na Figura 17. Neste nivel
de reducdo ja é possivel perceber a diferenca entre as imagens original e simulada, assim é

possivel avaliar a semelhanca entre a imagem real e a simulada.
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(d)* )

Figura 17 — Método 1: reducgdo para 50% da dose. (a) Amostra 1 — Imagem original. (b) Amostra 1 —
Imagem simulada. (c) Amostra 1 — Imagem Real. (d) Amostra 2 — Imagem original. () Amostra 2 —
Imagem simulada. (f) Amostra 2 — Imagem Real.

Os dados da simulagdo para 50% da dose sdo apresentados na Tabela 3. Nesta situagdo a
simulacdo fez com que o PSNR da imagem original fosse reduzido em 58% do seu valor inicial,
partindo de 34,38 dB na imagem original e chegando a 14,18 dB na imagem simulada, apés a
insercdo do ruido quantico.

Tabela 3: Método 1- métricas para 50% da dose.

Simulacéo Real Erro
Referéncia vs. Simulada Referéncia vs. Real Simulada vs. Real
Amostra PSNR (dB) SSIM PSNR (dB) SSIM PSNR SSIM
1 13,54 0,782 13,96 0,795 3,01% 1,64%
2 14,83 0,786 15,24 0,802 2,69% 2,00%
Média 14,18 0,784 14,60 0,798 2,88% 1,75%

Os histogramas antes e ap0s a simula¢do sdo apresentados na Figura 18. A media da
distancia entre os histogramas foi alterado de 0,96 antes da simulacdo para 0,07 apds o
processamento.
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Figura 19 — Método 1: redugdo para 25% da dose. (a) Amostra 1 — Imagem original. (b) Amostra 1 —
Imagem simulada. (c¢) Amostra 1 — Imagem Real. (d) Amostra 2 — Imagem original. () Amostra 2 —
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Figura 18 — Reducéo para 50% da dose: Histogramas.

4.2.3. Reducéo para 25% da dose

Imagem simulada. (f) Amostra 2 — Imagem Real.

As imagens utilizadas e resultantes da reducéo para 25% da dose sdo apresentadas na Figura
19.
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Os valores dos indices de similaridade calculados para essas imagens sdo apresentados na
Tabela 4.

Tabela 4: Método 1- métricas para 25% da dose.

Simulagéo Real Erro
Referéncia vs. Simulada Referéncia vs. Real Simulada vs. Real
Amostra PSNR (dB) [ SSIM PSNR (dB) SSIM PSNR SSIM
1 10,00 0,464 10,07 0,47 0,70% 1,28%
2 11,29 0,465 11,35 0,473 0,53% 1,69%
Média 10,65 0,465 10,71 0,471 0,56% 1,27%

Para este nivel de reducdo a diferenca entre os histogramas da imagem original e da
imagem real com 25% da dose é tdo grande que a média da distancia correlacional entre eles é 1.
No entanto apds a simulacdo este valor é reduzido para apenas 0,05. A Figura 20 contém 0s
histogramas antes e ap6s a aplicacdo do método.
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Figura 20 — Reducéo para 25% da dose com o0 Método 1: Histogramas.
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4.2.4. Reducéo para 12,5% da dose

Finalmente, a Figura 21 mostra os resultados visuais da reducéo para 12,5% da dose.

(©)

(d) ()

Figura 21 — Método 1: redu¢do para 12,5% da dose. (a) Amostra 1 — Imagem original. (b) Amostra 1 —
Imagem simulada. (c) Amostra 1 — Imagem Real. (d) Amostra 2 — Imagem original. (€) Amostra 2 —
Imagem simulada. (f) Amostra 2 — Imagem Real.

Esta simulacdo, cujos resultados sdo apresentados na Tabela 5, foi criada apenas para fins
ilustrativos, pois uma reducdo para 12,5% da dose convencional provavelmente ndo seria aplicada
na pratica clinica, pois o ruido da imagem é muito grande. Mesmo com esta reducéo o algoritmo
se comporta de maneira correta e apresenta uma imagem com indices que sdo muito proximo dos
esperados.

Tabela 5: Método 1- métricas para 12,5% da dose.

Simulacéo Real Erro
Referéncia vs. Simulada Referéncia vs. Real Simulada vs. Real
Amostra | PSNR (dB) | SSIM PSNR (dB) [ SSIM PSNR SSIM
1 8,66 0,243 8,66 0,242 0,00% 0,41%
2 9,94 0,244 9,94 0,243 0,00% 0,41%
Média 9,30 0,243 9,30 0,243 0,00% 0,00%

Na Figura 22 sdo apresentados os histogramas. A média da distancia entre os histogramas foi
alterada de 1 para 0,06.



Amostra 1 - Original {100% da dose)
1500

1000

a00

0
0 200 400 /OO 8O0 1000 1200

Contagem de Pixels

Amostra 1 - Simulada (12,5% da dose)

10000

4000

200 400 BOD 8OO 1000 1200
Cantagem de Pixels

Amostra 1 - Real (12,5% da dose)

[}

10000

4000

0
1] 200 400 /OO0 800 1000 1200

Contagem de Pixels

Amostra 2 - Original (100% da dose)
2000

1000

a
0 200 400 GO0 800 1000 1200

Cantagem de Fixels

Amostra 2 - Simulada (12,5% da dose)

10000

5000

a
1] 200 400 GO0 B800 1000 1200

Caontagem de Pixels

Amostra 2 - Real {12,5% da dose)

10000

5000

a
1] 200 400 GO0 B800 1000 1200

Cantagem de Fixels

Figura 22 — Redugdo para 12,5% da dose com o Método 1: Histogramas.
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4.3. Reducéo de dose — Método proposto nesse trabalho

Nessa secdo sdo apresentados os resultados de simulagdo da reducdo da dose utilizando o
método proposto nesse trabalho, chamado aqui de Método 2. Os procedimentos para testes
utilizados nesta se¢do sdo os mesmos que os utilizados para o método original. Como explicado
nas se¢des 3.1 e 3.2 os métodos original e proposto, partem da premissa da linearidade do sistema.
Além disso, as imagens utilizadas nesta secao sao as mesmas que as da secao anterior.

A Tabela 1 podera ser comparada as tabelas desta sec¢éo para fins de referéncia, uma vez que a
comparagdo entre a imagem original e a imagem de referéncia retornara os mesmos indices.
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4.3.1. Reducéo para 75% da dose

Na Figura 23 sdo apresentadas as imagens da simulagéo para 75% da dose.

(@)

(d) (€)

Figura 23 — Método 2: redugéo para 75% da dose. (a) Amostra 1 — Imagem original. (b) Amostra 1 —

Imagem simulada. (c) Amostra 1 — Imagem Real. (d) Amostra 2 — Imagem original. () Amostra 2 —
Imagem simulada. (f) Amostra 2 — Imagem Real.

Os indices da primeira simulagdo, apresentados na Tabela 6, mostram que o método proposto

nesse trabalho para insercdo de ruido quantico conseguiu gerar imagens mamograficas simuladas
muito similares as imagens reais.

Tabela 6: Método 2: métricas para 75% da dose.

Simulagéo Real Erro
Referéncia vs. Simulada Referéncia vs. Real Simulada vs. Real
Amostra | PSNR (dB) | SSIM PSNR (dB) [ SSIM PSNR SSIM
1 20,11 0,911 21,28 0,915 5,50% 0,44%
2 21,37 0,925 22,52 0,935 5,11% 1,07%
Média 20,74 0,918 21,9 0,925 5,30% 0,76%

A Figura 24 apresenta os histogramas das imagens obtidas com o novo método. A média das
distancias correlacionais entre os histogramas decresceu de 0,79 para 0,02 ap6s a simulagdo,
indicando que a imagem simulada possui 0s niveis de cinza adequados.



37

Amostra 1 - Original (100% da dose) [ Amostra 2 - Original (100% da dose)
1500 2000
1000
1000
400
o 0
] 200 400 GO0 g00 1000 1200 0 a00 1000 1400
Contagem de Pixels Contagern de Pixels
Amostra 1 - Simulada (75% da dose)| Amostra 2 - Simulada (75% da dose)
1500 3000
1000 2000
400 1000
o 0
a 200 400 GO0 g00 1000 1200 a a00 1000 1400
Contagem de Pixels Contagern de Pixels
Amostra 1 - Real (75% da dose) Amostra 2 - Real (75% da dose)
1500 3000
1000 2000
400 1000
] 0
a 200 400 BOO 800 1000 1200 a a00 1000 1500
Contagem de Pixels Contagern de Pixels

Figura 24 — Reducgdo para 75% da dose com o Método 2: Histogramas.

4.3.2. Reducéo para 50% da dose

As imagens da simulacdo para 50% da dose séo apresentadas na Figura 25.

%

(d)

Figura 25 — Método 2: reducdo para 50% da dose. (a) Amostra 1 — Imagem original. (b) Amostra 1 —
Imagem simulada. (c) Amostra 1 — Imagem Real. (d) Amostra 2 — Imagem original. (¢) Amostra 2 —
Imagem simulada. (f) Amostra 2 — Imagem Real.



38

Os dados das métricas de similaridade para a simulacdo de 50% da dose sdo apresentados na
Tabela 7.

Tabela 7: Método 2- métricas para 50% da dose.

Simulagéo Real Erro
Referéncia vs. Simulada Referéncia vs. Real Simulada vs. Real
Amostra PSNR (dB) SSIM PSNR (dB) SSIM PSNR SSIM
1 13,77 0,786 13,96 0,795 1,36% 1,13%
2 15,05 0,792 15,24 0,802 1,25% 1,25%
Média 14,41 0,789 14,6 0,798 1,30% 1,13%

Na Figura 26 encontram-se os histogramas das imagens. Para esta reducdo a média das
distancias correlacionais caiu de 0,96 antes da simulagdo para 0,01 apds.
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Figura 26 — Reducédo para 50% da dose: Histogramas.
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4.3.3. Reducéo para 25% da dose

(d) (e)

Figura 27 — Método 2: reducgdo para 25% da dose. (a) Amostra 1 — Imagem original. (b) Amostra 1 —
Imagem simulada. (c) Amostra 1 — Imagem Real. (d) Amostra 2 — Imagem original. (€) Amostra 2 —
Imagem simulada. (f) Amostra 2 — Imagem Real.

Os indices de similaridade calculados para as imagens com 25% de reducdo de dose sdo
mostrados na Tabela 8.

Tabela 8: Método 2- métricas para 25% da dose.

Simulagéo Real Erro
Referéncia vs. Simulada Referéncia vs. Real Simulada vs. Real
Amostra | PSNR (dB) | SSIM PSNR (dB) [ SSIM PSNR SSIM
1 10,11 0,477 10,07 0,47 0,40% 1,49%
2 11,39 0,479 11,35 0,473 0,35% 1,27%
Média 10,75 0,478 10,71 0,471 0,37% 1,49%

A Figura 28 a seguir apresenta os histogramas. Novamente a média das distancias
correlacionais ap6s a simulacdo foi de 0,01. Antes da simulacdo a distancia era de 1, indicando
que os histogramas eram muito distintos.
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Figura 28 — Reducgao para 25% da dose com o Método 2: Histogramas.

4.3.4. Reducéo para 12,5% da dose

Figura 29 — Método 2: redugdo para 12,5% da dose. (a) Amostra 1 — Imagem original. (b) Amostra 1 —
Imagem simulada. () Amostra 1 — Imagem Real. (d) Amostra 2 — Imagem original. () Amostra 2 —

@

Imagem simulada. (f) Amostra 2 — Imagem Real.

As imagens da simulagéo para 12,5% da dose s&o apresentadas na Figura 29.

(b)

(e) S

()
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Como ja mencionado na secao anterior, a reducéo para 12,5% da dose € realizada apenas para
fins ilustrativos, uma vez que em aplicacBes médicas convencionais é invidvel tamanha reducao
para as doses de radiacao.

Tabela 9: Método 2- métricas para 12,5% da dose.

Simulacéo

Real

Erro

Referéncia vs. Simulada

Referéncia vs. Real

Simulada vs. Real

Amostra PSNR (dB) SSIM PSNR (dB) SSIM PSNR SSIM
1 8,73 0,255 8,66 0,242 0,81% 5,37%

2 10,01 0,256 9,94 0,243 0,70% 5,35%
Média 9,37 0,255 9,30 0,243 0,75% 4,94%

A Figura 30 a seguir apresenta os histogramas da reducdo para 12,5% da dose. A média das

distancias correlacionais ap6s a simulagéo foi reduzida de 1 para 0,02.
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Figura 30 — Reducdo para 12,5% da dose com o Método 2: Histogramas.
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4.4. Método 1 vs. Método 2

Esta secdo apresenta a comparagdo de desempenho entre 0 método de (Bath, et al., 2005) e o
método proposto neste trabalho. A Tabela 10 apresenta as médias dos indices de similaridade para
cada valor de reducdo, juntamente com o seu erro. As Figuras 30 e 31 apresentam oS erros
relativos do PNSR e do SSIM, respectivamente, em forma de grafico de barras, para melhor

interpretacdo.

Tabela 10: Comparacdo entre os métodos — Erros de similaridade em relagdo a ima
Meétodo de Bath Metodo Proposto
PSNR SSIM PSNR SSIM
75% 7,80% 0,00% 5,30% 0,75%
50% 2,88% 1,75% 1,30% 1,13%
25% 0,56% 1,27% 0,40% 1,49%
12,50% 0,00% 0,00% 0,75% 4,94%
Média 2,80% 0,76% 1,93% 2,08%
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Figura 31 — Gréfico dos erros relativos do PSNR.

m Método de Bath
m Método Proposto

75% 50% 25%

Dose

12,50%

Figura 32 — Grafico dos erros relativos do SSIM.
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Ja a Tabela 11 mostra os valores da distancia correlacional entre os histogramas para cada um
dos métodos aplicados nos diferentes valores de redugdo.

Tabela 11: Comparacdo entre os métodos — Distancia correlacional entre histogramas.

Similaridade de Histograma
e Il
75% 0,09 0,02
50% 0,07 0,01
25% 0,05 0,01
12,5% 0,06 0,02
Média 0,07 0,02

Note que valores de distancia correlacional préximos de zero indicam maior similaridade entre
os histogramas, enquanto valores proximos de 1 indicam menor similaridade. A Figura 33
apresentada a seguir mostra o grafico de barras das distancias correlacionais entre histogramas.

Distancia Correlacional

0,1
0,09
0,08
0,07

0,06
0,05
0,04
0,03
0,02
0,01

0

75% 50% 25%

Dose

m Método de Bath
m Método Proposto

12,50%

Figura 33 — Graéfico das distancias correlacionais entre histogramas.
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Capitulo 5

Discussdo e Conclusoes

O presente trabalho teve como objetivo a andlise do comportamento de método para
simulacdo de reducdo de dose de radiacdo quando aplicada em mamaografias digitais por raios X,
além de propor uma abordagem alternativa por meio da Transformada de Anscombe.

Analisando as tabelas de indices de qualidade PSNR e de similaridade SSIM, é possivel
concluir que ambas as metodologias alcangaram alto nivel de confiabilidade, inserindo ruidos que
seguem fielmente o comportamento que seria obtido caso as imagens fossem adquiridas em um
processo real.

A partir da analise dos histogramas, pode-se perceber qual a extensdo das alteracdes na
distribuicdo dos tons de cinza da imagem causadas pelo uso dos métodos apresentados. Mais uma
vez os resultados obtidos foram muito proximos do ideal, o que pdde ser verificado através do uso
da distancia correlacional, que parametrizou a semelhanca entre os histogramas em uma medida
numérica, sendo mais facilmente interpretavel.

Uma vez analisados os métodos isoladamente, a Tabela 10 apresenta a comparacdo de
desempenho de cada um dos métodos para as redugdes estudadas em relacdo aos indices de
similaridade PSNR e SSIM.

Pela observacdo da Tabela 10, podemos concluir que ambos os métodos possuem resultados
muito similares. No caso do método proposto nesse trabalho, o desvio médio para os valores de
PSNR ficou em 1,93%, melhor que o desvio observado para o método original (Bath, et al.,
2005). Em relagdo ao SSIM, o método proposto nesse trabalho possui um erro médio de 2,08%,
maior que o erro observado para 0 método original, que foi de 0,76%.

Ja os valores de similaridade de histogramas, apresentados na Tabela 11, apresentaram
resultados similares para os dois métodos, com o método proposto resultando em histogramas
com distancias ligeiramente menores se comparadas as distancias dos histogramas do método
original. Apesar da pequena diferenca, ambos os métodos apresentaram resultados excelentes,
com a distancia correlacional sempre resultando em valores inferiores a 0,09 em uma escala de 0
al

Em termos praticos, a similaridade entre os resultados de desempenho representa vantagem
para 0 método proposto neste trabalho, uma vez que a sua implementacéo e interpretacdo séo
muito mais simples do que o método convencional. Muitas vezes a obtencdo do NPS se torna um
procedimento problematico, pois o equipamento deve estar disponivel por longo um periodo de
tempo para a aquisicdo das imagens homogéneas. Além disso, 0 gasto computacional com a
transformada de Fourier, tanto no calculo do NPS como no processo de criacdo do ruido, &€ muito
superior ao gasto para a transformada inversa de Anscombe que é utilizada somente uma vez.

Uma das limitacOes deste trabalho é a ndo generalizacdo do método proposto, uma vez que é
indicado para sistemas cuja insercdo de ruido possua 0 mesmo ganho em todas as bandas de
frequéncia, isto €, sistemas que insiram ruido branco na imagem original.
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Em trabalhos futuros deve-se propor a verificacdo do desempenho dos métodos para outras
classes de imagens radiograficas, além da generalizacdo da metodologia proposta para outros
tipos de sistemas com doses e ruidos distintos.
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