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Resumo

Este trabalho teve por objetivo a sintese do intermediario 4-bromoindolico 1,
derivado do triptofano, que podera ser empregado na sintese total do acido lisérgico
e derivados. Foram avaliadas 3 estratégias para a sintese deste intermediario. A
primeira estratégia consistiu no acoplamento cruzado entre carbonos eletrofilicos
catalisado por complexos de Ni, tendo como substratos os 3,4-dihaloindois e iodetos
derivados da L-serina. Os substratos inddlicos 1-acetil-3-iodo-4-bromoindol e 1-(terc-
butoxicarbonil)-3-iodo-4-bromoindol foram preparados a partir do bloco de
construcdo 2-metil-3-nitroanilina comercialmente disponivel, com os rendimentos
globais de 8% (5 etapas) e 32% (5 etapas). J4 os derivados da serina (R)-2-((terc-
butoxicarbonil)amino)-3-iodopropanoato de metila e (R)-benzil(1-((terc-
butildifenilsilil)oxi)-3-iodopropan-2-il)carbamato foram preparados a partir da L-serina
com rendimentos de 46% (3 etapas) e 36 % (5 etapas), respectivamente. A primeira
estratégia foi estudada e ndo foi possivel obter o produto de acoplamento,
observando-se apenas degradacdo parcial dos materiais de partida. A segunda
estratégia consistiu no emprego da reacdo de acoplamento cruzado de Negishi,
tendo como substratos os derivados iodados da L-serina previamente descritos e 1-
tosil-3-iodo-4-bromoindol, preparado em duas etapas a partir do 4-bromoindol. Esta
estratégia também ndo se mostrou bem sucedida, havendo apenas formacao de
produtos de acoplamento duplo. A Ultima estratégia baseou-se na reacdo de
abertura da aziridina terc-butil-2-(((terc-butildimetilsilil)oxi)metil)aziridina-1-
carboxilato, derivada da DL-serina, promovida pelo anion do 4-bromoindol. Com esta
estratégia foi possivel obter o intermediario desejado, com um rendimento de 55%

nesta etapa chave.
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1 Introducéao

1.1. Definigcédo de alcaloide

Ao longo dos anos, a definicdo de “alcaloide” foi alvo de debate, uma vez que,
desde 1819, véarias definicdes foram propostas por diversos pesquisadores®, como

apresentado na Figura 1.

Figura 1. Definicdes de “Alcaloide” desde 1819.

EV.Meisser (1 81@ EGuareschi (189@ E‘\ Stoll (1 95@ Eetellier (1982&
V. W W v

{t s {t it
@. Jacobsen (188@ EWinterstein (191@ E Karrer (195@ EUPAC (19953

Em 1995, a IUPAC sugeriu a seguinte definigdo para o termo “Alcaloide”: “Os
alcaloides sdo compostos béasicos nitrogenados (na maior parte heterociclicos) de
maior ocorréncia no reino vegetal (mas também existem de origem animal).
Aminoacidos, peptideos, nucleotideos, acidos nucleicos, amino aculcares e
antibiéticos ndo sdo normalmente classificados como alcaloides. Ainda existem
alguns compostos neutros relacionados biogeneticamente com alcaloides que
também s&o classificados como tal”?.

O isolamento de grande parte dos alcaloides é facilitado devido a este carater
basico, uma vez que se torna possivel a formacédo de sais sollveis em agua com

seu tratamento com acidos minerais®.
1.2. Classificacéo dos alcaloides

Até o presente momento mais de 10000 alcaloides foram isolados, fazendo
com que a tarefa de classifica-los ndo seja simples’. Os alcaloides s&o
costumeiramente classificados de acordo com a estrutura que contém o ou um dos
atomos de nitrogénio®, como mostra a Tabela 1. Porém, com a complexidade
estrutural de alguns alcaloides, surgiram algumas subdivisbes desta classificacao

geral.
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Tabela 1. Classificacdo de alguns tipos de alcaloides de acordo com a estrutura de seu heterociclico
nitrogenado.

Tipo de Alcaloide Esqueleto Exemplo
\,——/\ OH
Pirrolidinico N
N
Pirrolidina \

(+)-Preussina

Co
. N
Inddlico N

Indol
Piperidinico (Nj \
H OH T o
Piperidina (-)-Lobelina

Fonte: HESSE, M. Alkaloids: Nature’s curse or blessing, 2002.

Também existe a classificacdo de alcaloides de acordo com seu aminoéacido
precursor, que por vezes tem sua estrutura retida de maneira intacta ou pouco
modificada na estrutura final do alcaloide. Os principais aminoacidos envolvidos na
biossintese de alcaloides s&o: ornitina, lisina, acido nicotinico, triptofano, acido

antranilico e histidina®.

1.3. Alcaloides ergolinicos

Os alcaloides ergolinicos sdo compostos inddlicos, biossintetizados a partir do
L-triptofano, que apresentam um nucleo tetraciclico correlacionado estruturalmente a

ergolina®, como explicitado na Figura 2.
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Figura 2. Estrutura da ergolina - nucleo tetraciclico dos alcaloides ergolinicos.

Essa classe de alcaloides representa o0 maior grupo de metabdlitos

nitrogenados derivados de fungos. Mais de 80 tipos de alcaloides ergolinicos foram

isolados, sendo os fungos do género Claviceps a fonte principal destes*®.

Os alcaloides ergolinicos séo classificados em trés grupos, como mostra a

Tabela 2.
Tabela 2. Classificagdo dos alcaloides ergolinicos.
Tipo de alcaloide Caracteristica Caracteristica Exemplo
ergolinico estrutural medicinal representativo
Clavinas 6,8-dimetilergolinas Ndo te.”.‘ uso
medicinal
) Alta atividade
Acido Lisérgico e suas Ligacao amida — no farmacologia e
amidas maximo tripeptideos utilizados
medicinalmente
ergonovina
N o
1
Ergotamina e \(g
Ligacdo amida — derivados HN® ©
Ergopeptideos tetrapeptideos a semissintéticos 0

peptideos superiores

sdo empregados
medicinalmente

ergotamina

Fonte: American Journal of Pharmaceutical Education, v. 70, n. 5, Article 98, 2006.
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A partir do século XX os alcaloides ergolinicos demonstraram relevancia na
industria farmacéutica. Por terem como caracteristica a interagdo com diferentes
receptores do sistema nervoso central, esta classe de alcaloides, sejam o0s
representantes de ocorréncia natural ou seus derivados semissintéticos, sdo usados
extensamente na medicina moderna®>. Os alcaloides ergolinicos apresentam como
atividades biologicas: atividade uterotbnica (inducdo de parto e diminuicdo de
hemorragias)®, modulagdo da pressdo sanguinea, controle da secrecdo de
horménios hipofisarios, prevencdo de enxaqueca, atividades dopaminérgicas e
neurolépticas™”.

Dentre os alcaloides desta classe que sao utlizados hoje como
medicamentos, destacam-se: Ergonovina (Ergotrate, Eli Lilly and Co.), indicado para
estimulacdo da musculatura uterina; Diidroergotamina  (Migranal, Xcel
Pharmaceuticals), indicado para o tratamento de enxaqueca e outros tipos de dores
de cabeca; Bromocriptina (Parlodel, Sandoz Pharmaceuticals), indicado para o
tratamento da secrecdo descontrolada de horménios hipofiarios e para o tratamento
da doenca de Parkinson em estagios iniciais*”.

Devido a estas caracteristicas, a sintese de 4-halotriptofanos (com halogénio
= Br ou I) é de grande importancia visando seu uso como intermediario inicial na
sintese dos alcaloides ergolinicos. Entretanto, varios dos métodos descritos na
literatura apresentam limitacbes, especialmente quando se necessita de 4-
halotriptofanos enantiomericamente enriquecidos. Os procedimentos encontrados na

literatura para a sintese deste tipo de nucleo estéo detalhados na Tabela 3.

Tabela 3. Metodologias descritas para a sintese de derivados dos 4-bromo ou 4-iodotriptofanos.

N° Reacéo Referéncia
COOMe COOMe
Br Br _ Br J. Org.
\\ 3etapas NHCHO RNCI(PPhs)s, MeOH, NHCHO Chem., v.
1 E—— A\ . N\ 59, n. 16, p.
N N H,, (65 psi), 20°C, 48h \ 4418-4423,
H 86% H 1994
B COOMe COOMe
' =0 Br _— Br Tetrahedron
, \ 1etapa NHBoc RhCI(PPhg)s, MeOH, H, NHBoc | Letters, v.
N ” N > N\ 41, p. 6897-
839
Boc N % N 6900, 2000
Boc Boc
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Br . COOEt /" COOEt
= Me,C=CHMgBr Br Tetrahedron
5 etapas NO, - NO, , V. 67, p.
w N ZnCl, THF, 0°C, 2h \ 8515-8528,
2 N 90% N 2011
Ts
Ts
Ph,P,
COOMe 2—>\ COOMe Tetrahedron
Br Br N~ ~PPhy g, Letters, v.
1 et ~ "NHBoc [Rh(COD);IBF,, Boc “NHBoc 37,
\\ 1 etapa_ n. 52
N ': DMF, H, (5 atm), t.a., 2 dias N 9369_53'31'2
Ts N 95% .’I\_‘S 55% ee 1996
COOEt FOOEL
Br Br o Br 0 Organic
4 etapas HN [RN(S, S-Et-DuPhos)(COD)]OTf { HN Letters, v.
N—>O ': NMeBoc MeOH, H, (90 psi) N NMeBoc| 12, n. 9, p.
[N N 90% [ Boc 2162-2165,
Br r 8.5:1.0 dr 2010
J. Org.
Br Br —— Br 60, n. 6, p
+ etopa NHBoc [Rh(COD),]BF,, S,S-DIPAMP “NHBoc | 1486-1487,
,} — N MeOH, H, (4 atm), t.a., 4 dias \\ 1995 e Org.
N titati o Lett., v. 12,
Ts Ts quaniiiative Ts 94%ee No. 11
p. 2610-
2613, 2010
B COOMe
r Br J. Org.
COOMe EtAICIy, CH,Cl, NHAc Chem., v.
>+ ta,16h N 78 p. 7727
H NHAG 8% N 7734, 2013
H
Br COOH COOH
Br i Br .,
\ 1 etapa NHAG Aspergilius acylase,‘ ‘NH, Eur. J. Org.
B —
N b CoCly, NaH,PO,, pH =7, D Chem., n. 6,
49% 53,
COOH
Br Br 2
_ _ _ ‘NH Org. Lett., v.
L-serina, Triptofano sintase, N 2 16, p. 2622-
S o 2625, 2014
N KH,POy,, pH =7, 37°C, 2 dias N 99% ee
H 3% H
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Ph
CO,Me CO,t-Bu N=

| Br
5 et (CTF* 0,1 eq), 50% KOH | it J. 1.
10 ,\T etapas N\ 4+ Ph\fN (0.1 eq), 50% KOHaq) { CO,tBu Chem., V.
H N Ph  PhMe-CHCl, (7:3), 0°C, 20h, N 72, p. 8115-

Boc 8 N 8118, 2007

99% ee

Br 1. MeMgBr (3M in Et,0),

A Et,0, 1,5h, t.a. Tetrahedron
> , V.71, n.
t N 5 Boon.  OTBS 23, p. 3833-
D>/ 3837, 2015
6h, t.a.

66%

Obs: CTF =

Observando a Tabela 3, nota-se que os métodos de 1 e 2 baseiam-se na
hidrogenacdo de um intermediario 4-bromodeidrotriptofano, resultando portanto em
produtos racémicos®’. J4 o método n® 3 consiste em uma reacdo de adicdo de
Michael em um 4-bromodeidrotriptofano, também resultando em um produto
racémico®. As metodologias 4, 5 e 6, por outro lado, permitem acesso a produtos
enantiomericamente enriquecidos via reacdo de hidrogenacdo assimétrica®*?.
Porém, estas fazem uso de catalisadores de rddio e fosfinas quirais como ligantes,
ambos de custo elevado, tornando seu emprego em reacOes de larga escala
dificultado.

A metodologia 7, baseia-se um uma reacéo de adicdo de Michael catalisada
por &cido de Lewis, porém resulta em uma mistura racémica’®. As metodologias 8 e
9, também d&o acesso a 4-bromotriptofanos enantiomericamente enriquecidos, via

catdlise enzimatica**°.

Entretanto, o produto da metodologia 8 tem etapa de
purificag@o problematica, necessitando de fase estacionéria de alto custo, sendo que

o produto puro somente pode ser obtidos em purificacdes em pequena escala'®. Ja a
16



metodologia 9 exibe um rendimento muito baixo, inviabilizando sua utilizacdo™. A
metodologia 10 baseia-se numa reacao de alquilagéo catalisada por um catalisador

I**. Apesar de ser uma metodologia eficiente, este

de transferéncia de fase quira
catalisador também apresenta alto custo. A metodologia 11, que consiste em uma
reacdo de abertura de aziridina quiral, € a alternativa mais simples para a obtencéo
de 4-bromotriptofanos, ja que esta ndo necessita de reagentes caros e pode ser
realizada em escala multigrama sem que haja decréscimo no rendimento®’.

Vale ressaltar que em um trabalho de sintese total € muito vantajoso e
interessante que o0s intermediarios iniciais da sintese possam ser obtidos em
grandes quantidades sem que seja necessario o uso de reagentes de alto custo,
uma vez que serdo necessarias varias transformacdes até a obtencdo do produto

final e, portanto, havera o consumo de grande quantidade desses.

1.4. Acido Lisérgico

O acido lisérgico € um membro dos alcaloides ergolinicos. Sua estrutura esta

representada na Figura 3.

Figura 3. Estrutura do &cido D-(+)-lisérgico.

(+)-Acido Lisérgico

O &cido lisérgico foi isolado do fungo Claviceps purpurea, tendo sua estrutura
caraterizada em 1949. ApOs sua caracterizacdo, varios foram conduzidos com o
objetivo de sintetizar seus derivados, visando 0s usos destes no combate a diversas
doencas®>*8, A biossintese do acido lisérgico também foi investigada, uma vez que
sua elucidacéo poderia permitir a elaboracdo de rotas sintéticas biomiméticas.

Devido as atividades farmacoldgicas anteriormente citadas, varios grupos de
pesquisa desenvolveram sinteses totais do acido lisérgico, utilizando estratégias
diversas, desde 1956 até 2017. Atualmente, sdo 13 sinteses totais descritas na

literatura®®°,
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Devido a importancia e gama de aplicacbes dos alcaloides ergolinicos, em
especial do acido lisérgico, propde-se a sintese de um intermediario indolico 1 que
podera ser empregado na sintese do esqueleto tetraciclico e posteriormente na

sintese total do acido lisérgico e derivados, como apresenta o Esquema 1.

Esquema 1. Intermediario inddlico 1 proposto.

O
HO
OGP, \_ N-goc
Br e H
NHGP, = B .

N 1 N\

N

v N

= GP .

Y =HouGP (+)-Acido Lisérgico

Vale ressaltar que o intermediario inddlico-piperidinico 2 (Esquema 2), sem a
presenca do halogénio na posicéo 4 do nucleo indol e similar ao apresentado acima,
ja foi sintetizado por nosso grupo via metodologia inédita de construcdo do anel D%
Essa metodologia baseia-se na quimica das diazocetonas «,B-insaturadas,

plenamente estudas em nosso grupo®*3*.

Esquema 2. Intermediario indélico-piperidinico sintetizado por nosso grupo.

(0]
NHBoc ©/ N2
\ L
N x
éoc Reacéao de Horner-

Wadsworth-Emmons

A\
N
Boc

p—

ITIH

Boc

0]

N
N,

Diazocetona insaturada

_— >
Insergéo N-H
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2 Objetivos

Avaliar 3 rotas que se baseiam no acoplamento entre derivados da serina e
um nucleo indélico halogenado para realizar a construgcdo do intermediario indélico
bromado 1. As estratégias para a realizacdo destes acoplamentos tém como
principios: a reacdo de acoplamento cruzado entre carbonos eletrofilicos (A), reacao
de acoplamento de Negishi (B) e reacdo de abertura de aziridina (C), como
apresentado no Esquema 3.

Esquema 3. Andlise retrossintética para a sintese do intermediério 1.

Br |

\, 4 |7 > otBDPS

= OMe
N NHCbz 4

ou |
A/ Ne NHBoc 5
OGP, 3
Br | O
B
NHGP, \, 4 1207 otBDPS IZn/\‘)kOMe
N NHCbz ou NHBoc
6 7
1 C GP 3

Y = Hou GP \ Br
NBoc
C@ s
N TBSO 9
H 8

)

Br

<Z__
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3 Resultados e discusséo

A primeira estratégia estudada foi a rota A (esquema 3, vide objetivos), que
envolve o acoplamento cruzado entre carbonos eletrofilicos (XEC - cross
electrophile coupling) empregando-se complexos de Ni, uma vez que esta
metodologia apresenta um maior grau de ineditismo que as outras duas rotas>>>°.

Esta metodologia foi e estd sendo estudada em detalhes por WEIX e seu
grupo®2%. O mecanismo, apresentado na Figura 4, proposto apds diversos estudos
cinéticos, estd baseado na diferenca de reatividade entre haletos de arila e haletos
de alquila frente a adicdo oxidativa ao catalisador de niquel e na distinta propenséo

a formacéo de intermediarios radicalares®®,

Figura 4. Mecanismo proposto para a reagédo XEC entre haletos de alquila e haletos de arila.

Mnl, N ’Nl
Mn
h—I
N ’Nl“ -| Polar
N|“ |
‘CH.R
RHC -
Rachcal
NNt CHR
er (N N|”"|
Ph-CH,R

Adaptado de: Journal of American Chemical Society, v. 135, p. 16192-16197, 2013.

Como apresentado na Figura 4, o ciclo catalitico se inicia com a reducdo do

#* para Ni° pela acéo do agente redutor (neste caso o Mn®). Em seguida, ocorre a
adicdo oxidativa do haleto de arila ao complexo de Ni°, seguida pela insercao do
radical Csp® previamente formado em outro centro de niquel. Por fim, ocorre a
eliminacdo redutiva, formando a ligagdo Csp®-Csp® do produto e regenerando em
sequéncia o catalisador de Ni**, que pode ser novamente reduzido a Ni° iniciando

um novo ciclo catalitico®®
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As razbes que garantem a seletividade na reacdo s&o: maior facilidade de
adicdo oxidativa das ligagBes Csp,-X frente ao niquel e a maior de tendéncia de
formacdo de radicais de carbonos sp® em comparacdo a radicais Csp? (mais
instaveis)*°.

Para os primeiros testes frente as condicdes de acoplamento, foram
sintetizados o indol 14 e o iodeto derivado da L-serina 5. O grupo de protegao acetil
foi o escolhido para o 3-iodo-4-bromoindol, pois ele foi empregado por Weix et al no
acoplamento entre o N-acetil-5-bromoindol e iodoctano nas condigbes que foram
empregadas no presente trabalho*>.

Para a sintese do indol 14, utilizou-se a rota sintética descrita no Esquema 4,
partindo-se de 2-metil-3-nitroanilina, obtendo-se um rendimento global de 8%. Até a

formacado do composto 8, foi utilizado procedimento empregado por Nicolaou et al*.

Esquema 4. Rota sintética proposta para construcéo do indol 14.

NH, 1) HBr 48%, refluxo Br \N_<0Me Br /3
CH;  2)NaNO,, 0°C CHs /" ome XN
3) CuBr, 100°C, DMF. pirrolidina,
NO, 20 min NO, 110°C, 5h NO, 12
10 82% 1 89%

AcOH (80%),
zZn®, 85°C, 4h | 58%

Br
Br Br

Ac,0, Et;N, DMAP (cat),

|
N 1,2-DCE, 8h, t.a. \ - KOH, I, A\
< - ’ )
N 20 % (n3o otimizado)
N DMF, 1,5h, t.a. H
14 O)/\ (2 etapas) 1 H 8

A primeira reacdo envolveu a formacgéo do sal de diazénio no grupo amina da
2-metil-3-nitroanilina e seu deslocamento para a formacdo da ligacdo Csp?-Br, via
reacdo de Sandmeyer, com rendimento de 82%. As duas reacgbes seguintes do
esquema 4, levando a formagdo do composto 8, sdo conhecidas como sintese de
indois de Leimgruber—Batcho, e tem seu mecanismo apresentado na Figura 5. Na
primeira, a reacdo de formacdo da enamina 12 a partir de 11, tem como forcas

motrizes a formacgdo da ligacdo dupla conjugada com o anel aromético e as saidas
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de moléculas de metanol e dimetilamina, que sdo gases na temperatura reacional,
deslocando o equilibrio para a formacao do produto em 89 % de rendimento.

Na reacdo seguinte, primeiramente ocorre a reducao do grupo nitro, gerando
um grupo amina. Na sequéncia, como a reacao se passa em meio acido, ocorre a
protonacdo do carbono da ligacdo dupla com maior densidade eletrdnica, devido a
conjugacdo com o nitrogénio, seguido do ataque do grupo amina recém-formado.
Apos protonacdo do anel pirrolidinico, ocorre a formacéo do iminio intermediario e a
saida de pirrolidina como molécula neutra. A remocéo de um préton do carbono 3 é
favorecida pela geracdo de aromaticidade, resultando no indol desejado 8 com um

rendimento de 58 %.

Figura 5. Mecanismo para a reacdo de formag¢&o do nudcleo inddlico.

Br “H
Reaggo 1: (LH
“H + MeoH |
@/Oe Br
MeQY - 110°C ® o N @
9 .09 Me0

>—N|\/|e2
MeG MeO — .

Br ® o Br

NMe, _NWe - OMe @Y{NM%
@ b NOKZOMQ

Br

;U
.’\?
69

Br
H H
N D . @ a9
ACOH80%
NH2

0,

Br 8 Br H ’/_\ . Br H
@, prototroplsmo
> | = ®y == N H G
N N/ NB
H H H
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Vale ressaltar que até a formagéo do 4-bromoindol 8 ndo foram necessarias
purificacbes dos produtos obtidos em nenhuma das etapas, sendo que oS mesmo
foram apenas extraidos das misturas reacionais e usados diretamente na reacao
seguinte, seguindo procedimento descrito por Nicolaou et al*.

Em seguida, o indol 8 foi submetido a uma reacéo de iodagéo do carbono C3
na presenca de base. O produto 13 foi entéo utilizado, sem purificacdo, na reagéo de
protecdo utilizando-se anidrido acético e DMAP catalitico**>. Em novas tentativas
de preparacdo do indol 14, foi notada a presenca de produtos de degradacdo mais
polares, via analise por CCD. Dessa forma, apds pesquisa bibliografica, foi tomado
conhecimento que 3-iodoindois ndo protegidos sdo instaveis e devem ser
imediatamente utilizados**. Como a reacédo de sintese de 13 e a reacédo de sintese
de 14 foram realizadas em dias diferentes, é provavel que tenha ocorrido
degradagéao do indol 13. Assim, o rendimento de 20% em duas etapas pode ser
provavelmente otimizado, utilizando-se o procedimento adaptado que foi empregado
para a sintese do indol 23.

A sintese do indol 14 pode ser confirmada pela analise do espectro de RMN-

'H do produto obtido, mostrado nas Figuras 6 e 7.

Figura 6. Expanséo 1 do espectro de RMN-'H (500 MHz, CDCl;) do composto 14.

2100
Br | 2000
(E3) H 500 500 1900
\\ H (/\) 1800
+1600
H (D )\CH3(E)‘ N ._U ‘ . . ‘ r'“ [ 500
8.540 fff:?p?m) 8.520 7490 7485 a [;’;rt‘?)ﬂ 7475 7470 [ 1400
A +1300
1200
F1100
+1000
+o00
800
B C +700
+600
D 1500
Fa00
+300
200
‘) \\!_7 +100
o
—_ . T .
3 o 38 S r-100

8.50 8.40 8.30 8.20 8.10 8.00 7.90 7.80 770 7.60 750 7.40 730 7.20
1 (ppm)
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Figura 7. Expanséo 2 do espectro de RMN-'H (500 MHz, CDCIls) do composto 14.

7500
7000
6500
6000
5500
5000
4500
(4000
3500
3000
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2000
1500
1000

500

500

2.97

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
2.647 2.644 2.641 2.638 2.635 2.632 2.629 2.626 2.623 2.620 2.617
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O duplo dubleto em 8,55 ppm (J = 8,4 Hz, J = 0,7 Hz) corresponde ao
hidrogénio D, que acopla com os hidrogénios C e B. O singleto em 7,68 ppm
corresponde ao hidrogénio A, que ndo acopla com nenhum outro hidrogénio devido
a sua distancia aos demais. O duplo dubleto em 7,50 ppm (J = 7,6 Hz, J = 0,9 Hz)
esta relacionado com o hidrogénio B, que acopla com os hidrogénios C e D. O
tripleto em 7,22 ppm, corresponde ao hidrogénio C, que acopla com os hidrogénios
B e D com a mesma constante de acoplamento (°J = 8,2 Hz). Por fim, o singleto com
integral igual a 3 em 2,63 ppm corresponde a metila do grupo acetil.

O iodeto 5 derivado da serina, foi preparado a partir do aminoacido natural L-
serina em 46% de rendimento global, como mostra o Esquema 5.
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Esquema 5. Rota sintética utilizada para construcéo do iodeto 5, derivado da L-serina.

0] (0]
SOCI2, MeOH o (Et)sN, (Boc),0 P
HO OH ™ Jrom an > HO 0
40°C, 4 h THF, 5 h, t.a.
NH, Hy - Hel 17 NHBoc
15 97 % 62 %
16
I, PhsP,
imidazol 76%
DCM, 0°C
(0]
| o~
5 NHBoc

A primeira etapa consistiu na classica reacao de esterificacdo utilizando-se
cloreto de tionila, em rendimento quantitativo, gerando o composto 16**. Apés a
protecdo do grupo amina com Boc®, realizou-se uma reacdo do tipo Appel para
substituir o grupo hidroxila remanescente da L-serina por iodo, gerando 0 composto

5 em 76% de rendimento*®. O mecanismo para esta transformacao esta apresentado

na Figura 8.
Figura 8. Mecanismo para a reacéo do tipo Appel.
NP o
S) 7.
- JK/\ /\ [’» o /_ It
NHB ® N ®
ocC
PhP:” N < ~ |PhsP—I N 07 X0, PPh;
~ NHBoc

OO

A formacdo do composto 5 foi confirmada pela anélise do espectro de RMN-
'H, apresentado na Figura 9, e pela sua comparacdo com o espectro de RMN-'H do

composto 17 (Figura 10).
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Figura 9. Expansao do espectro de RMN-"H (500 MHz, CDCl5) de 5.
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Figura 10. Expanséo do espectro de RMN-"H (500 MHz, CDCl5) de 17.
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Analisando o espectro de 5, é possivel notar a presenca de dubleto em 5,35
ppm, correspondente ao hidrogénio E. O multipleto em 4,53 ppm corresponde ao
hidrogénio D, que acopla com o hidrogénio E e com os hidrogénios diastereotopicos
A e B. O singleto em 3,81 ppm, integrando para 3 hidrogénios, corresponde aos
hidrogénios C. A confirmacgéo da presenca do produto desejado, porém, provém do
multipleto correspondendo aos hidrogénios diastereotdpicos A e B. Observando as
Figuras 9 e 10, conclui-se que o sinal correspondente a estes foi deslocado de 3,94
ppm em 17 para 3,58 ppm em 5. Isso € explicado pela menor eletronegatividade do
iodo presente no produto, que blinda os hidrogénios A e B, fazendo com que estes
tenham menor deslocamento quimico quando comparado com o material de partida.

Com os substratos preparados, estes foram submetidos as condi¢cdes de

acoplamento. Os resultados obtidos estédo dispostos na Tabela 4.

Tabela 4. Resultados da primeira tentativa de acoplamento utilizando a rota A.

CO,Me
Br | Br

Nil, (11 mol %), ligante (5,5 mol %), NHBoc

14 O)\ 5

DMPU (1,5 mL), piridina (5,5 mol%),
redutor, tempo, temperatura

| COzMe
Ny \—< = N
N NHBoc N

18

¥

1eq 1eq.
Entrada Ligante Redutor Tempo /h T/°C Produtos Observados
OMe Br
~ Mn CO,Me N\
1 | OMe 14 60 @
= N
N | o (2 eq) :<NHBoc , Ac |
N~ 14 nao consumido totalmente
OMe Br
X Mn COZMe \
2 | oM 9 ta.
NS (2 eq) NHBoc | N
N~ 14 ndo consumido totalmente
OMe Br Br
~ Zn CO,Me A\ N\
3 | oMe 18 60 @ ©\/>
= N
N | = (2 eq) :<NHBoc , H , Ac
N~ 14 ndo consumido totalmente
Br |
X
CO,M N\
4 NG 3Mn 18 50 27e \
| N (3eq) NHBoc | H

14 nao consumido totalmente

*1,2 equivalentes de 5.
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Ap6s criteriosa anélise dos espectros de RMN-'H dos compostos isolados das
reagOes apresentadas na Tabela 4, concluiu-se que n&o foi obtido o produto de
acoplamento desejado em nenhuma das entradas. Observou-se que 0s substratos
nao se mostraram estaveis em nenhuma das condicbes de acoplamento utilizadas,
ja que o iodeto da serina 5 sofreu eliminag@o para gerar seu respectivo acrilato e o
grupo de protecdo acetil se mostrou I4bil nas condicbes reacionais. Tendo esses
resultados em vista, os substratos para a reacdo de acoplamento foram substituidos.

Com intuito de evitar a formacdo do acrilato com a eliminacdo do iodeto,
realizou-se a sintese do iodeto derivado da serina 4, em cinco etapas a partir da L-

serina, com um rendimento global de 36%, conforme apresenta o Esquema 6.

Esquema 6. Rota sintética utilizada para construc¢éo do iodeto 4, derivado da L-serina.

0 0 o
/\‘)k NaHCOs, CbzCl ﬁ)k SOCly,
HO OH ~ HO OH HO/\‘)J\O/
NH, H,O, 4h, t.a. NHCbz MeOH, 22h, t.a. | -~
15 19 70% (2 etapas) 20
TBDPSCI,
imidazol, o
DMF, 20h, | /27
t.a.
imidazol, I,, PPh LiBH, o
Imiaazol, |»,
TBDPSO 2 7% 7BDPSO” Y oM __(2Mem THF) BRSO o
NHCbz 45 yeno0, 5h, t.a. NHCbz  THF, 5h, ta. Shch
4 T z
71% 22 quantitativo 1

A primeira reacao tratou-se da reacdo de protecdo do nitrogénio da L-serina
com cloroformato de benzila*’. O produto protegido 19 foi utilizado sem purificagéo
na reacao de esterificacdo com cloreto de tionila e metanol, obtendo-se 20 com um
rendimento razoavel de 70 % em duas etapas*’. A protecéo da hidroxila de 20 foi
realizada com cloreto de tert-butildifenilsilano na presenca de imidazol, gerando 21
com 72 % de rendimento®’. A reducédo do éster metilico de 21 a &lcool foi realizada
utilizando-se solugcdo de LiBH; em THF, resultando em 22 com rendimento
quantitativo®”. Por fim, o &lcool 22 foi convertido no seu respectivo iodeto 4 com 71
% de rendimento, via reacao de tipo Appel®®.

Este derivado da serina 4 ainda tem a vantagem, em relacdo a 5, de resultar

em um produto de acoplamento que ja conteria o centro estereogénico que, nas

28



condicdes da rota sintética proposta, resultaria na mesma configuracédo absoluta que
0 centro estereogénico presente nos alcaloides ergolinicos.
Ja para o caso do indol, o grupo de protecao escolhido foi o Boc, sendo que o

respectivo indol 23 foi preparado conforme apresenta o Esquema 7.

Esquema 7. Rota sintética utilizada para construcéo do indol protegido com Boc.

id Br | Br
Boc,0, DMAP,
N DMF, 1,5h, t.a N DCM, 5h, t.a. N
Y o H 759 Boc
8 13 5 % (2 etapas) 23

Para a sintese do indol 23, houve modificagdo no procedimento de
preparacdo quando comparado a preparacdo de 8, uma vez que ja se conhecia a
instabilidade de 3-iodoindois desprotegidos. Portanto, este foi imediatamente
utilizado na reacao de protecao, sem purificacao.

Nota-se que nas condi¢des otimizadas de preparacao do 3-iodo-4-bromoindol
N-protegido houve um significante aumento de rendimento, quando se compara o
rendimento para formacéo de 23 (75% em 2 etapas) e 14 (20 % de rendimento em 2
etapas).

Com os substratos preparados, estes foram entdo submetidos as condi¢cdes

da reacdo de acoplamento. Os resultados obtidos estéo dispostos na Tabela 5.
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Tabela 5. Resultados da segunda tentativa de acoplamento utilizando a rota A.

Br |
@f\g + I/\:/\OTBDPS Nily (11 mol %), ligante (5,5 mol %),
N NHCbz DMPU (1,5 mL), piridina (5,5 mol%),
Boc 4 redutor, tempo, temperatura
1eq. 23 1eq.
Entrada Ligante Redutor Tempo/h T/°C Produtos Observados
OMe 20h O>:o Br I
N Mn ata. TBDPSO N
| N N 25 \
1 _ OMe entao,
NTNS (2 eq) 2ah 94% N
N / ) 1
a 40°C 23 ndo consumido totalmente
OMe O>:O Br
N M TBDPSO N
| 25 N
2 _ OMe 22 60 H
NS (2 eq) 87% N
N / ) 1

23 nao consumido totalmente

Como apresentado na Tabela 5, ndo se obteve o produto de acoplamento
desejado. Ao invés do produto de acoplamento, o que se obteve, em altos
rendimentos foi a oxazolidinona 25, produto de ciclizacao de 4.

Para se verificar se o composto 23 ndo estava participando na reacdo de

formacdo de 25, realizou-se a reagdo na auséncia de 23, como apresentado no

Esquema 8.
Esquema 8. Reacgédo descrita na Tabela 5 na auséncia de 23.
O
I/\./\OTBDPS Nil, (11 mol %), 4,4'-dimetoxi-bipiridina (11 mol %), /EO
lilHCb > TBDPSO N
z 4 DMPU (0,5 mL), piridina (5,5 mol %), H 25
Mn (2 eq), 22h, 60°C quantitativo

Observando o Esquema 8, conclui-se que o indol 23 nao participa da reacao
paralela de formacao da oxazolidinona 25.
Até este momento, nenhuma tentativa de acoplamento com a rota A havia

empregado 0os mesmos substratos em iguais condigcbes que as empregadas por
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I*> ou Liu et al *°. Para tanto, foi repetida a reacdo entre iodoanisol e um

Weix et a
iodeto similar a 5, porém contendo um éster terc-butilico ao invés de metilico, nas
mesmas condices experimentais que as empregadas por Liu et al*°. Entretanto,
nao se observou a formacao do produto de acoplamento nem consumo de nenhum
dos materiais de partida decorrido o tempo descrito no artigo®®.

Como a rota A ndo se mostrou promissora, os estudos foram voltados para a
rota B, que tem por principio a reacdo de acoplamento de Negishi. O mecanismo
geral desta reacdo, para um haleto de arila e um haleto de alquila, € apresentado na

Figura 11.

Figura 11. Mecanismo geral para a reacdo de acoplamento cruzado de Negishi.

L
eliminacéo adicéo
redutiva oxidativa
| L X, X =1,Brou
QP(I}(II)—L Qpé(”)_x Cl (menos comum)
L L = grupo alquila

transmetalagcag
X—=Zn— —Zn—

A reacado se inicia com a adicdo oxidativa do haleto de arila a espécie de
palddio (0), formando um intermediario tetracoordenado. Em seguida, ocorre a
transmetalagcdo do organozinco, transferindo o grupo R; (alquila, no presente
trabalho) para o paladio*®. A Ultima etapa do ciclo catalitico envolve a eliminagéo
redutiva, formando a ligacéo Csp?Csp? e regenerando o catalisador de Pd°.

Yokoyama et al conduziram um estudo visando o acoplamento de nucleos
inddlicos halogenados na posicdo 3 com espécies organozinco derivados da serina,
porém sem explorar o substratos inddlicos com iodo ou bromo na posicdo 4 do
nucleo inddlico®. Com o intuito de avaliar a reprodutibilidade deste método, uma vez
gue esta é a metodologia envolvendo acoplamento de Negishi que mais se
assemelha a rota B, decidiu-se reproduzir uma das reacfes descritas no artigo. Para

tanto, foi sintetizado o substrato 3-iodo-1-tosilindol, de acordo com o Esquema 9.
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Esquema 9. Sintese do 3-iodo-N-tosilindol.

1. l,, KOH, DMF, 1h, t.a.
Co T
H 2. NaH, TsCIl, DMF, 2,5 h, t.a. N

Ts
26 80 % (2 etapas) 27

O substrato 27 foi entdo submetido as condi¢cdes de acoplamento de Negishi,
de acordo com o Esquema 10.

Esquema 10. Reacéo teste de acoplamento cruzado de Negishi.

CO,Me
o)

1, DBE, Zn, TMSCI, DMF
- NHBoc
[ OMe
' N\
NHBoc 5 2. , Pd(OAC), (2,5 mol%)
13 eq. ) SPHOS (5 mol %), 35°C, 3 h N 28
N

27 T8 42 %
1eq.

Conclui-se que a reacdao foi reproduzida com sucesso, ja que o rendimento
reportado no artigo para esta reacgéo foi 40%. Como, neste artigo, é salientado que o
grupo de protecdo no nitrogénio do 3-haloindol que gera menos subprodutos € o

grupo tosil, foi preparado o substrato 29, como apresentado no Esquema 11.

Esquema 11. Sintese do indol 29.

Br Br |
1. 15, KOH, DMF, 1h, t.a.
> A\
N 2.NaH, TsCl, DMF, 2,5 h, t.a. N
H Ts
8 56 % (2 etapas) 29

O Esquema 12 apresenta os resultados obtidos com a reacdo de Negishi
utilizando os substratos 5 e 29.

Esquema 12. Primeira tentativa com a reacéo de acoplamento de Negishi (rota B).

®) CO,Me MeO,C COMe
1. DBE, Zn, TMSCI, DMF Br
| OMe S > NHBoc BocHN NHBoc
NHBoc r
Y b Pd(OACc), (5 mol%) N " A\
1,3 eq. \\ SPHOS (10 mol %), N 30 N3
o Ts
y, 3°c.3h Ts
5o 1S 0% 14 %
1eq.
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Como apresentado no Esquema 12, ao invés do produto de acoplamento com
1 equivalente de 5, obteve-se o produto de acoplamento com 2 equivalentes de 5.
Apesar de a reatividade da ligacdo Csp?-l usualmente ser maior que da ligagéo
Csp®-Br frente a adigéo oxidativa ao centro de Pd°*® esta diferenca ndo se mostrou
suficiente ao ponto de se observar quimiosseletividade para o substrato nas
condi¢des reacionais.

Imaginou-se que, utilizando o iodeto derivado da serina 4, que contém grupos
protetores mais volumosos, poder-se-ia impedir ou limitar o acoplamento de um
segundo equivalente deste reagente na posicdo 4 do nucleo inddlico, devido ao
impedimento que poderia ser gerado pelo derivado da serina ligado ao carbono 3 do
nacleo inddlico. Os resultados obtidos para as reacfes de acoplamento, baseando-

se nessa hipoétese e utilizando-se os substratos 29 e 4 estéo dispostos na Tabela 6.

Tabela 6. Resultados obtidos com a segunda tentativa de acoplamento utilizando a rota B.

OTBDPS OTBDPS
I” > 0TBDPS 1. DBE, Zn, TMSCI, DMF Br
NHCbz
4 Br | \
2. , Pd(OAc), (5 mol %), ¥S
Y SPHOS (10 mol%), 32
N temperatura, tempo
29 Ts
1 eq.

Equivalentes Tempo Temperatura Rendimento Rendimento

de 4 Ih /°C de 32 de 33 Observagges

Entrada

29 ndo
1 1,0 3 t.a. 0 Tracos consumido,
reducédo de 4

29 nédo
totalmente
2% 1,0 22 t.a. 0 0 consumido,
reducéo de 4, 4-
bromotosilindol

29 ndo
totalmente
3 1,15 24 t.a. 0 0 consumido,
reducéo de 4, 4-
bromotosilindol

29 nédo
4 1,15 24 60 0 15 % consumido,
reducédo de 4

*Solucdo do organozinco de 4, adicionado lentamente durante 5h.
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Inicialmente, utilizando-se as condi¢cbes da entrada 1, praticamente nao foi
observado consumo dos materiais de partida. Com o intuito de favorecer a
ocorréncia da reacdo, aumentou-se o tempo de reacdo de 3 h para 22 h (entrada 2).
De maneira similar, ndo foram observados produtos de acoplamento. Assim, na
entrada 3, aumentou-se o tempo de reacdo em 2 h e a quantidade de 4, porém a
reacdo se comportou de maneira similar a entrada anterior. Na entrada 4, porém,
realizando-se a reacdo a temperatura de 60°C por 24 h, foi possivel observar o
acontecimento da reacdo, porém resultando na formagdo de um produto de
acoplamento com dois equivalentes de 4, em 15% de rendimento, de maneira similar
ao observado no Esquema 12.

N&o sendo possivel se obter a seletividade necessaria com a rota B, foram
iniciados os estudos referentes a rota C. Para estes estudos foi empregada a
(x)-serina, pois no grupo o aluno de doutorado Edson Emilio Garambel Vilca ja havia
acumulado uma grande quantidade da aziridina enantiomericamente enriquecida,
sintetizada a partir da L-serina. Os compostos racémicos sintetizados nesse trabalho
serdo posteriormente utilizados como padrdo racémico para andlise por HPLC com
coluna quiral.

A rota C baseia-se na reagao de abertura da aziridina 9, derivada da ()-
serina, promovida pelo anion de magnésio gerado in situ a partir da desprotonoacéo
do 4-bromoindol com brometo de metil magnésio, como descrito por Tokuyama et
al*’. O substrato 9 foi preparado de acordo com o Esquema 13.

Esquema 13. Sintese da aziridina 36.

0 1. SOCly, MeOH, t.a., 24h
2. E3N, Boc,O, DCM, t.a., 28 h
HO OH - TBSO/\(\OH
NH2 3 TBSC|, Imldazol, DMF, ta., 6 h . NHBoc
4. LiBH4 (2M em THF), THF, t.a., overnight
(+) 34 () 35

97% (4 etapas)

PPhs, DIAD,
THF: MeCN (9:1) | 579,
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A série de transformacdes consistiu na sequéncia de 4 reacdes: reagcdo de
esterificacdo utilizando-se cloreto de tionila e metanol, reacdo de protecdo do
nitrogénio com grupo Boc, protecdo da hidroxila com TBS e redugcdo do éster
metilico & alcool com LiBH,4 *’. Ap6s essa sequéncia de reacdes, obteve-se o alcool
35 com 97% de rendimento em 4 etapas. Em seguida, este &lcool foi entdo
submetido as condices da reacdo de Mitsunobu intramolecuar®® para fornecer a
aziridina 9, em 57% de rendimento. O mecanismo para esta transformacdo esta

apresentado na Figura 12.

Figura 12. Mecanismo da reacéo de Mitsunobu intramolecular para a formag&o da aziridina 36.

3 -

e

o M

OTBS
NHBoc © 0
PhP /\% N= Phsp\ N 0 «N NH
0 O
0—<
o)
4< o — o 4< +
OTBS
: - Ph3PO Ph.P/
UNBoc 3@\0MOTBS
HN—-NH /Proch@er : NHBoc
NCHOyPr

0]

/J\o

OTBS

NBoc 36

A comprovacao da formagéo da aziridina 9 foi obtida analisando-se o espectro
de RMN-'H da mesma, apresentado nas Figuras 13 e 14.

Analisando as Figuras 13 e 14, é possivel notar a presenca de dois duplos
dubletos em 3,80 e 3,63 ppm, correspondentes aos hidrogénios (a) e (b), que séo
diastereotépicos e acoplam entre si com um constante 2J = 11,4 Hz, e acoplam com
o hidrogénio (c) com uma constante 3J = 4,7 Hz. O multipleto em 2,56 ppm
corresponde ao hidrogénio (c), que acopla com os hidrogénios diasterotopicos (a),
(b), (d) e (e). J& os dubletos em 2,26 e 2,07 ppm correspondem aos hidrogénios (d)
e (e), que acoplam com constantes diferentes com o hidrogénio (c). Por fim, os
singletos em 1,45 (9H), 0,90 (9H), 0,08 (3H) e 0,07 (3H) ppm correspondem aos

hidrogénios (f), (g), (h) e (i), respectivamente, confirmando a presenca do produto 9.
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Figura 13. Expansao 1 do espectro de RMN-'H (500 MHz, CDCl;) de 9.
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Figura 14. Expanséo 2 do espectro de RMN-1H (500 MHz, CDClI3) de 9.
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Em seguida, promoveu-se reacdo de abertura da aziridina 9, bem como
reacOes de protecdo do nitrogénio inddlico com grupo tosil e desprotecdo do grupo

TBS, como apresentado no Esquema 14.

Esquema 14. Reacédo de abertura de da aziridina 9 e reac8es de protecado/desprotecao

subsequentes.
OTBS OTBS
Br . Br Br
1. MeMgBI’ (3M n Etzo), NHBoc TsCl, NaOH aq., NHBoc
A\ Et,0, 1,5h, t.a. _ N n-BuyNHSO, (ca=) N
N 2.BocN OTBS N DCM. t.a., 30 min N 37
8 H 9 H 36 81% Ts
7h, t.a.
55% TBAF (1M em THF),| o,
THF, ta., 2 h °
OH
Br
NHBoc
A\
N 38
Ts

Como explicitado no Esquema 14, a rota C foi a que propiciou a obtencao do
composto 36, derivado do triptofano, objetivo deste projeto. Vale ressaltar que esta
reacdo, além de ndo fazer uso de reagentes de alto custo, pode ser realizada em
condi¢bes multigrama, o0 que € muito vantajoso considerando as caracteristicas de

uma sintese total.
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4 Conclusbes

ApGs avaliagdo da rota A, concluiu-se que esta ndo se mostrou efetiva, ndo
sendo possivel a obtencéo do intermediario 1, sendo observado apenas degradacéo
parcial dos materiais de partida durante as tentativas de acoplamento. Os substratos
indo6licos 14 e 23 foram preparados a partir do bloco de construcdo 2-metil-3-
nitroanilina, com os rendimentos globais de 8% (5 etapas) e 32% (5 etapas). Ja os
derivados da serina 5 e 4 foram preparados a partir da L-serina com rendimentos de
46% (3 etapas) e 36 % (5 etapas), respectivamente.

A segunda estratégia (acoplamento cruzado de Negishi) também n&o permitiu
acesso ao intermediario 1, sendo obtidos apenas os produtos 31 e 33 (de
acoplamento duplo). Os substratos empregados nesta reacdo foram os derivados
iodados da L-serina previamente descritos e o indol 29, preparado a partir do 4-
bromoindol com 56% de rendimento (2 etapas).

Por fim, avaliou-se a rota C na qual o intermediario 4-bromo indélico 36,
objetivo deste trabalho, foi obtido através da reacdo de abertura da aziridina 9
promovida pelo 4-bromoindol (8), com 55% de rendimento. Os substratos 9 e 8
foram preparados a partir do bloco de construgdo 2-metil-3-nitroanilina (42%, 3
etapas) e do aminoacido (*)-serina (55%, 5 etapas), respectivamente, ambos

comercialmente disponiveis.
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5 Parte experimental

Os reagentes foram adquiridos de fonte comercial e utilizados sem
purificacao.

Os solventes foram previamente purificados e secos por refluxo/destilacao
utilizando o agente dessecante apropriado de acordo com o solvente utilizado, de
acordo com procedimentos descritos na literatura.

As vidrarias foram secas sob alto-vacuo e aquecimento utilizando-se pistola
de ar quente, e resfriadas sob atmosfera de argénio.

As analises de CCD foram realizadas em folhas cromatograficas com silica
gel 60A F254 suportada em placa de aluminio (com revelador para UV e espessura
de 0,2 mm). A visualizacdo dos compostos foi obtida utilizando-se os seguintes
reveladores: Lampada de UV (254 nm), solucdo de p-anisaldeido, solucdo de
permanganato de potassio em KOH aquoso e solucao de vanilina.

A purificagdo dos produtos foi realizada por técnicas de recristalizagéo,
extracdo e cromatografia em coluna. Na purificacdo dos compostos realizada por
cromatografia de adsorcdo em coluna (cromatografia flash) utilizou-se silica gel 230-
400 mesh 60A (Aldrich).

As anélises de Ressonancia Magnética Nuclear (RMN) de 'H e '*C foram
realizadas nos equipamentos Espectrdmetro de Ressonancia Magnética Nuclear
Agilent Technoligies - 400/54 Premium Shielded (400MHz) e Espectrbmetro de
Ressonancia Magnética Nuclear Agilent Technoligies - 500/54 Premium Shielded
(500 MHz). Os dados foram tratados utilizando o software MestreNova 6.0.2-5475.

As andlises no infravermelho foram realizadas no Espectrémetro FT-IR
ALPHA 11-Bruker, com janela ZnSe. As amostras foram depositadas como peliculas
finas por deposicdo de uma solucdo e deixando-se o0 solvente evaporar. Os
espectros foram analisados no proprio software do fabricante e as figuras obtidas
exportadas como PDF.

5.1. 4-bromoindol (8)
Br

C@
N
H
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Uma suspensao de 2-metil-3-nitroanilina (2,282 g, 15 mmol, 1,0 eq) em agua
(22 mL) foi aquecida a refluxo e uma solucdo aquosa de HBr 48% (9 mL) foi
adicionada durante 5 minutos. Apés 20 minutos em refluxo, esta solucao foi resfriada
a 0°C e a ela foi adicionada uma solucédo de NaNO; (1,035 g, 15 mmol, 1,0 eq) em
agua (6 mL), gota a gota, sem permitir que a temperatura interna da mistura
reacional ultrapassasse 5°C. A solugao alaranjada resultante foi agitada por mais 15
minutos entre 0-5°C. Em seguida, foi adicionada a mistura reacional, gota a gota,
uma solucédo de CuBr (2,797 g, 19,5 mmol, 1,3 eq) e HBr 48 % aquoso (6 mL) em
agua (15 mL). Apo6s o término da adicdo, a solucao resultante foi entdo aquecida a
100°C por 20 minutos. Em seguida, apoOs resfriamento a temperatura ambiente,
foram adicionados 29 mL de agua e a fase aquosa foi extraida com éter etilico (3 X
15 mL). As fases organicas combinadas foram entdo lavadas com solucdo de
NH,OH 3 N (4 X 12 mL), secas com MgSO, e concentradas, resultando em 11
(2,693 g, 12,4 mmol, 83 % de rendimento) como um solido alaranjado. Este material
foi entdo dissolvido em DMF (15 mL), e a esta solugcdo foram adicionados N-N-
dimetilformamida dimetil acetal (4,94 mL, 37,2 mmol, 3,0 eq) e pirrolidina (1,03 mL,
12,4 mmol, 1,0 eq). Esta solucéo foi entdo aquecida a 110°C por 5 horas. Apés este
tempo, a mistura reacional foi resfriada a temperatura ambiente e a ela foram
adicionados 30 mL de agua. A fase aquosa foi entdo extraida com éter etilico (3 X
20 mL). As fases organicas combinadas foram entdo lavadas com agua (2 X 30 mL),
secas com MgSO, e concentradas resultando na enamina 12 (3,298 g, 11,1 mmol,
89% de rendimento) como um liquido vermelho viscoso. Parte deste material bruto
(1,935 g, 6,5 mmol, 1,0 eq) foi, em seguida, dissolvido em AcOH 80% aquoso (34
mL), essa mistura aquecida a 75 °C e tratada com zinco granular (3,8318 g, 20-30
mesh, 58,5 mmol, 9,0 eq). Esta suspensao resultante foi entdo aquecida a 85°C por
4 horas. Apds esse tempo, foram adicionados 30 mL de agua e a fase aquosa foi
extraida com Et,O (3 X 25 mL). As fases organicas combinadas foram entdo lavadas
com NaHCOj; saturado (3 X 25 mL), secas com MgSO, e concentradas. Este
residuo resultante foi entédo purificado por cromatografia em coluna flash (silica gel,
AcOEt/Hexano, 5%—50%), resultando em 8 (0,733 g, 3,74 mmol, 58% de
rendimento) como um liquido verde.
CCD: Rt =0,52 (25% AcOEt/Hexano);
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RMN 'H (500 MHz, CDCl3): & (ppm) = 8,30 (1H, s); 7,36-7,31 (m, 2H), 7,23-7,20 (m,
1H): 7,04 (1H, t, J = 7,9 Hz); 6,60 (1H, m).

RMN *C (125 MHz, CDCls) & (ppm) = 136,0; 128,6; 124,7; 122,9; 122,7; 114,7;
110,2; 102,9.

IV Vmax (puro, cm™): 3418, 1611, 1563, 1502, 1477, 1332, 1268, 1177, 1142, 1044,
909, 890, 745.

5.2. 1l-acetil-4-bromoindol (14)

A uma solucdo de KOH (566 mg, 10,1 mmol, 4,0 eq) em DMF (10 mL) e 4-
bromoindol (495 mg, 2,52 mmol, 1,0 eq) a temperatura ambiente, foi adicionada gota
a gota uma solugéo de I, (640 mg, 2,52 mmol, 1,0 eq) em DMF (8 mL).

Apbs 1,5 horas, a mistura reacional foi vertida em uma solugédo aquosa gelada
de NaHSO3; 3% (200 mL) contendo 4 mL de solucdo de NH,OH concentrado. Esta
solucéo foi entdo filtrada e o composto retido no papel de filtro (3-iodo-4-bromoindol)
foi dissolvido em AcOEt, seco com MgSO,, concentrado e utilizado na reacéo de
protecdo sem purificacéo.

No dia seguinte, trietilamina (527 uL, 3,78 mmol, 1,5 eq), anidrido acético (953
pL, 10,08 mmol, 4,0 eq) e DMAP (61,6 mg, 0,504 mmol, 0,2 eq) foram adicionados a
uma solugcdo em agitagdo de 3-iodo-4-bromoindol 13 sintetizado na etapa anterior
em 1,2-DCE. Esta solucéo foi agitada por 8h a temperatura ambiente.

Passado esse tempo a mistura reacional foi resfriada a temperatura ambiente,
diluida com AcOEt (30 mL), lavada com solucéo saturada de NH4Cl (15 mL) e a fase
aquosa extraida com AcOEt (3 X 25 mL). As fases organicas combinadas foram
secas com MgSO, e concentradas a vacuo. O residuo foi entdo purificado por
cromatografia em coluna flash (silica gel, AcOEt/Hexano, 5%—25%), resultando em
14 (180 mg, 0,49 mmol, 20% de rendimento em duas etapas) como um soélido
branco.

CCD: R;=0,62 (25% AcOEt/Hexano).
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RMN H (500 MHz, CDCls): & (ppm) = 8,55 (1H, dd, J = 8,4 Hz, J = 0,7 Hz); 7,68
(1H, s); 7,50 (1H, dd, J = 7,6 Hz, J = 0,9 Hz), 7,22 (1H, t, J = 8,2 Hz); 2,65 (3H, s).
RMN C (100 MHz, CDCls) & (ppm) = 167,4; 135,8; 132,7; 129,3; 126,7; 126,5;
116,0; 115,2; 63,2; 24,0.

IV Vimax (puro, cm™): 1688, 1632, 1595, 1561, 1529, 1467, 1415, 1380, 1353, 1329,
1297, 1265, 1228, 1182, 1164, 1125, 1045, 966, 917, 826, 767, 730, 701, 663, 608.

5.3. Hidrocloreto de (S)-2-amino-3-hidroxipropanoato de metila (16)

0
HO o~
NHz - Hcl

A uma solucdo de L-serina (211 mg, 2 mmol, 1 eq) em metanol (2,0 mL) a
0°C, foi adicionado gota a gota SOCI, destilado (0,5 mL, 6,8 mmol, 3,4 eq). Em
seguida, a solucao foi aquecida a 40°C por 4h.

ApoOs esse tempo o solvente foi removido em evaporador rotatério e Et,O foi
adicionado. Essa mistura foi entdo deixada no congelador por 1h e filtrada
resultando em 16 (300 mg, 1,93 mmol, 97% de rendimento) como um soélido branco,
que foi utilizado na préxima etapa sem purificacdo adicional.

CCD: R;= 0,43 (50% MeOH/ACOEY).

5.4. (S)-2-((terc-butoxicarbonil)amino)-3-hidroxipropanoato de metila (17)

)
-

HO 0

NHBoc

Em um baldo de fundo redondo em atmosfera de argbnio contendo 16 (0,276

g, 1,77 mmol, 1,0 eq) e THF anidro (6 mL), foram adicionados trietilamina (0,540 mL,

3,89 mmol, 2,2 eq) e Boc,O (0,41 mL, 1,77 mmol, 1,0 eq) durante 20 minutos a 0°C.

Em seguida, a reacdo foi agitada por 5 horas a temperatura ambiente. Decorrido

esse tempo a mistura reacional foi diluida com Et,O (12 mL). Esta solucao foi entdo

lavada com solugbes de aquosas de HCI 3% (7,5 mL), NaHCO3 5% (7,5 mL) e NaCl

saturado (7,5 mL). A fase organica foi entdo seca com MgSO, e concentrada

resultando em 17 (0,239 g, 1,09 mmol, 62 % de rendimento) como um solido branco
que foi utilizado na proxima etapa sem necessidade de purificagdo.

CCD: R;= 0,79 (50% MeOH/ACOEt).
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RMN *H (500 MHz, CDCls): & (ppm) = 5,45 (1H, s); 4,40 (1H, s); 3,94 (2H, m), 3,80
(3H, s); 3,58 (2H, m); 2,33 (1H, m); 1,47 (9H, s).

5.5. (R)-2-((terc-butoxicarbonil)amino)-3-iodopropanoato de metila (5)
0
| o~
NHBoc

A uma solucédo de trifenilfosfina (0,357 g, 1,36 mmol, 1,25 eq) e imidazol

(0,0927 g, 1,36 mmol, 1,25 eq) em diclorometano (7 mL) foi adicionado 1, (0,345 g,

1,36 mmol, 1,25 eq) a 0°C. Apds a completa dissolucdo do I,, a temperatura da

mistura reacional foi elevada a temperatura ambiente por 10 min e novamente

resfriada a 0°C. Em seguida 17 (0,239 g, 1,09 mmol, 1,0 eq) foi adicionado a mistura

e esta foi agitada por 3,5h a 0°C. Apos este tempo a mistura reacional foi lavada

com solucdo saturada de tiossulfato de sodio, extraida com AcOEt, lavada com

brine. As fases organicas combinadas foram entdo secas com MgSO, e

concentradas. O residuo foi purificado por cromatografia em coluna flash (silica gel,

AcOEt/Hexano, 10%—30%), resultando em 5 (0,272 g, 0,828 mmol, 76% de

rendimento) como um solido amarelado.

CCD: Rf=0,43 (15% AcOEt/Hexano);

RMN *H (500 MHz, CDCls): & (ppm) = 5.35 (1H, br); 4,53 (1H, m); 3,81 (3H, s); 3,58

(1H, m); 1,47 (9H, s).

RMN *3C (100 MHz, CDCls) & (ppm) = 170,0; 154,8; 80,47; 53,7; 53,0; 28,3; 7,8.

IV Vmax (puro, cm™): 3370, 2978, 1749, 1715, 1500, 1366, 1346, 1297, 1249, 1211,

1121, 1065, 1003, 908, 856, 830, 775.

5.6. (S)-2-(((benziloxi)carbonil)amino)-3-hidroxipropanoato de metila (20)

@)
-

HO 0

NHCbz

Cloroformato de benzila (6,51 mL, 97% em massa, 45,6 mmol, 1,2 eq) foi
adicionado a uma solugao de L-serina (4,00 g, 38,0 mmol) em 95 mL de solugéo
aquosa de NaHCOs; (7,994 g, 95,0 mmol, 2,5 eq). A mistura foi agitada
vigorosamente por 4 h a temperatura ambiente. Ap0s esse tempo, a solucédo foi

acidificada com HCI concentrado (pH = 3) e extraida com acetato de etila (3 x 50

43



mL). As fases organicas combinadas foram secas com sulfato de magnésio e
concentradas no evaporador rotatério resultando em 19 como um soélido branco, o
qual foi todo utilizado na reacao de esterificacdo sem purificacdo adicional.

A uma solucao da (L)-serina protegida 19 em MeOH (60 mL), resfriada a 0°C,
foi adicionado cloreto de tionila (4,27 mL, 58 mmol, 1,53 eq.) gota a gota. Apés a
adicdo, a suspensédo foi mantida sob agitacdo a temperatura ambiente por 22h.
Decorrido esse tempo, concentrou-se a mistura reacional, adicionou-se éter etilico
(40 mL) e 4gua (40 mL), e extraiu-se a fase aquosa com éter etilico (2 X 40 mL). As
fases organicas combinadas foram secas com MgSO,4 e depois concentradas no
evaporador rotatério. O produto 20 foi obtido como um 6leo amarelo (6,710 g, 26,5
mmol, 70% de rendimento em duas etapas) e utilizado na préxima reacdo sem
purificacao.
CCD: Rf= 0,79 (AcOEt);
RMN *H (500 MHz, CDCls): & (ppm) = 7,39-7,30 (5H, m); 5,70 (1H, d, J = 7,5Hz);
5,13 (2H, s); 4,45 (1H, m); 4,02-3,92 (2H, m); 3,79 (3H, s)
RMN *C (100 MHz, CDCls): & (ppm) = 171,1; 156,3; 136,1; 128,5; 128,5; 128,1;
67,2; 63,1; 56,1, 52,7.
IV Vimax (puro, cm™): 3367, 3034, 2954, 2889, 1698, 1518, 1455, 1438, 1341, 1207,
1056, 1027, 975, 912, 775, 737, 696.

5.7. (S)-2-(((benziloxi)carbonil)amino)-3-((terc-
butildifenilsilil)oxi)propanoato de metila (21)

)
-

TBDPSO 0

NHCbz

Em uma solucédo do éster bruto 20 (1,482 g, 5,8 mmol, 1,0 eq) em DMF (6

mL), foi adicionado imidazol (1,182 g; 17,4 mmol, 3,0 eq). Resfriou-se a mistura
reacional a 0°C e foi adicionado cloreto de terc-butildifenilsilil (2,03 mL, 7,6 mmol, 1,3
eq) e deixou-se reagir por 20h a temperatura ambiente. A mistura reacional foi entéo
adicionada agua, a fase aquosa foi extraida com Et,O (3 X 40 mL). As fracdes
organicas combinadas foram lavadas com solu¢cdo de NaHCOj3; saturada (15 mL) e
brine (15mL), secas com MgSO, e concentradas no evaporador rotatorio. O residuo

foi entdo purificado por cromatografia em coluna flash (silica gel, AcOEt/Hexano,
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2%—30%), resultando em 21 (2,059 g, 4,2 mmol, 72% de rendimento) como um
6leo incolor.

CCD: Rt = 0,56 (20% AcOEt/Hexano);

RMN *H (500 MHz, CDCls): d (ppm) = 7.,61-7,57 (4H, m), 7,45-7,31 (11H, m), 5.58
(1H, d, J = 8.6), 5.05 (2H, s), 4.41-4.36 (1H, m), 4.08-4.00 (1H, m), 3.85-3.81 (1H,
m), 3.67 (3H, s), 0.95 (9H, s).

RMN *3C (125 MHz, CDCl3) & (ppm) = 170,8; 155,9; 136,3; 135,5; 135,5; 132,8;
132,7; 129,9; 129,9; 128,5; 128,2; 128,1; 127,8; 127,8; 67,0; 64,5; 55,9; 52,4; 26,7,
19,2.

IV Vmax (puro, Cm'l): 3442, 3347, 3070, 3033, 2953, 2932, 2888, 2857, 1723, 1503,
1428, 1342, 1292, 1251, 1204, 1107, 1063, 982, 882, 736, 698, 613.

5.8. (R)-benzil(1-((terc-butildifenilsilil)oxi)-3-hidroxipropan-2-il)carbamato
(22)

TBDPSO/\‘/\OH
NHCbz

A uma solucao de LiBH; em THF (4,65 mL, 2,0 M, 9,3 mmol, 3,0 eq), a 0°C,
adicionou-se uma solucédo do éster 21 (1,518 g, 3,1 mmol, 1,0 eq) em THF (7,3 mL).
A reacdo permaneceu sob agitacdo a temperatura ambiente por 6 horas. Em
seguida, resfriou-se a mistura reacional a 0°C e adicionou-se AcOEt (10 mL) e 4gua
(10 mL). A fase aquosa foi extraida com AcOEt (3 X 15 mL), e, em seguida, as fases
organicas combinadas foram lavadas com brine (3 X 30 mL) e secas com MgSQO,. O
produto 22 (1,417 g, 3,1 mmol, quantitativo) foi obtido como um soélido branco e
utilizado sem purificagéo.

CCD: Rf= 0,26 (20% AcOEt/Hexano);

RMN *H (500 MHz, CDCls): & (ppm) = 7,65-7,60 (4H, m); 7,45-7,27 (11H, m); 5,32
(1H, br); 5,08 (2H, s); 3,87-3,66 (5H, m); 1,05 (9H, s).

RMN *3C (125 MHz, CDCl3) & (ppm) = 156,4; 136,4; 135,5; 135,5; 134,8; 132,7;
130,0; 130,0; 129,6; 128,5; 128,1; 128,0; 127,9; 66,8; 63,9; 63,2; 53,4; 26,9, 19,2.

IV Vmax (puro, cm™): 3438, 3338, 3070, 2955, 2931, 2884, 2857, 1702, 1509, 1471,
1427, 1341, 1309, 1218, 1112, 1060, 823, 740, 700, 613.
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5.9. (S)-benzil(1-((terc-butildifenilsilil)oxi)-3-iodopropan-2-il)carbamato (4)

TBDPSO/Y\I
NHCbz

A uma solucdo em agitacdo de 22 (600 mg, 1,30 mmol, 1,0 eq) em tolueno
(15 mL) foram adicionados imidazol (194,0 mg, 2,85 mmol, 2,2 eq), I, (786,8 mg,
3,10 mmol, 2,4 eq) e trifenilfosfina (676,7 mg, 2,58 mmol, 2,0 eq). Esta solucédo foi
mantida em agitacao a temperatura ambiente por 5 horas.

Em seguida, adicionou-se a mistura reacional solugdo aquosa de tiossulfato
de sddio 10 % (8 mL) e solucdo aquosa saturada de NH,CI (6 mL). A fase aquosa foi
extraida com Et,O (3 X 25 mL). As fases organicas combinadas foram, em seguida,
lavadas com solucao de tiossulfato de sodio 10 % (10 mL), brine (10 mL) e secas
com MgSO,. O residuo foi entdo purificado por cromatografia em coluna flash (silica
gel, AcOEt/Hexano, 0%—20%), resultando em 5 (529 mg, 0,92 mmol, 71% de
rendimento) como um sdlido branco.

CCD: R = 0,60 (20% AcOEt/Hexano);

RMN *H (500 MHz, CDCls): & (ppm) 7,66-7,62 (4H, m); 7,46-7,30 (11H, m); 5,09 (2H,
s); 5,03 (1H, d, J = 8,8 Hz); 3,85 (1H, dd, J = 10,0 Hz, J = 3,9 Hz); 3,75 (1H, m); 3,63
(1H, dd, J =10, Hz, J = 5,5 Hz); 3,48 (1H, m); 3,42 (1H, m); 1,06 (9H, s).

RMN *C (125 MHz, CDCls) & (ppm) = 155,5; 136,2; 135,5; 135,5; 132,8; 132,7;
129,9; 129,9; 128,5; 128,2; 127,8; 127,8; 127,7; 66,9; 64,4; 52,3; 26,9, 19,3; 8,09.

IV Vmax (puro, cm™): 3412, 3327, 3070, 3047, 3033, 2957, 2930, 2891, 2857, 1721,
1709, 1500, 1471, 1427, 1325, 1304, 1261, 1225, 1193, 1112, 1008, 823, 740, 700,
613.

5.10. 1-(terc-butoxicarbonil)-3-iodo-4-bromoindol (23)

o,

Boc
A uma solugcéo de KOH (118 mg, 2,1 mmol, 4,0 eq) em DMF (4 mL) e 4-
bromoindol (103 mg, 0,53 mmol, 1,0 eq) a temperatura ambiente, foi adicionada gota
a gota uma solugéo de I, (134 mg, 0,53 mmol, 1,0 eq) em DMF (2 mL).
Ap6s 1,5 horas, a mistura reacional foi vertida em uma solugédo aquosa gelada
de NaHSO3; 3% (200 mL) contendo 4 mL de NH4OH concentrado. Esta solucéo foi

entdo rapidamente filtrada e o composto retido no funil de placa porosa (3-iodo-4-
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bromoindol) foi dissolvido em AcOEt, seco com MgSO,, concentrado e utilizado
imediatamente na reagéo de protecéo.

Em sequéncia, Boc,O (127 mg, 0,58 mmol, 1,1 eq) foi adicionado a uma
solucdo de DMAP (1,3 mg, 0,011 mmol, 0,02 eq) e de 3-iodo-4-bromoindol
sintetizado na etapa anterior em DCM (6 mL). Esta solucao foi agitada a temperatura
ambiente por 5 horas.

Passado esse tempo, foi adicionado a mistura reacional HCI 1 N aquoso (15
mL), AcOEt (10 mL), e a fase aquosa extraida com AcOEt (3 X 10 mL). As fases
organicas combinadas foram secas com MgSO, e concentradas a vacuo. O produto
23 (167,0 mg, 0,40 mmol, 75 % em 2 etapas) foi obtido como um 6leo vermelho e
utilizado sem purificacao.

CCD: R =0,85 (25% AcOEt/Hexano);

RMN 'H (500 MHz, CDCls): & (ppm) = 8,26 (1H, d, J = 8,3 Hz); 7,81 (1H, s); 7,43
(1H, dd,J=7,8 Hz, J=0,8 Hz), 7,16 (1H, t, J = 8,1 Hz); 1,53 (9H, s).

RMN *C (125 MHz, CDCls) & (ppm) = 148,1; 135,7; 133,3; 128,3; 126,5; 125,7;
115,2; 114,7; 85,2; 61,1; 28,1.

IV Vmax (puro, cm™): 1743, 1597, 1558, 1523, 1470, 1412, 1359, 1337, 1276, 1259,
1244,1181, 1153, 1134, 1072, 1054, 933, 847, 804, 774, 735.

5.11. Procedimento geral para as reacfes de acoplamento descritas nas
Tabelas 4 e 5.

Nil> (3,75 mg, 0,12 mmol, 0,11 eq), ligante (0,006 mmol, 0,055 eq), indol 14 ou

23 (0,11 mmol, 1,0 eq) e derivado da serina 5 ou 4 (0,11 mmol, 1,0 eq) foram
adicionados a um vial de 5 mL fechado com um septo de borracha e atmosfera de
argonio foi entdo estabelecida. Em seguida, foi adicionado DMPU (1,5 mL) e piridina
(1 pL). A esta solugao foi entdo adicionado o agente redutor (Zn ou Mn, 0,22 mmol, 2
eq) e a reacdo foi entdo aquecida a determinada temperatura por determinado
tempo. ApOGs este tempo a mistura reacional foi entdo diretamente inserida na coluna
e purificada por cromatografia em coluna flash utilizando misturas de AcOEt/Hexano

como eluente.
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5.12. 3-iodo-1-tosil-indol (27)
|

Cr
Ts

A uma solucdo de KOH (539 mg, 9,6 mmol, 4,0 eq) e indol (277 mg, 2,4
mmol, 1,0 eq) em DMF (5 mL) a temperatura ambiente, foi adicionada gota a gota
uma solugéo de 1, (609 mg, 2,4 mmol, 1,0 eq) em DMF (3 mL).

Apbs 2 horas, a mistura reacional foi vertida em uma solucdo aquosa gelada
de NaHSO3 (3%, 200 mL) contendo 4 mL de NH4OH concentrado. Esta solugéo foi
entdo rapidamente filtrada e o composto retido no funil de placa porosa (3-iodoindol)
foi dissolvido em AcOEt, seco com MgSQO,, concentrado e utilizado imediatamente
na reacao de protecao.

Hidreto de so6dio (60% em Oleo mineral, 144 mg, 3,6 mmol, 1,5 eq) foi
adicionado a uma solucdo do bruto da reacdo anterior em DMF (6,0 mL) a 0°C e
essa solucdo foi agitada a esta temperatura por 30 min. A esta mistura, foi
adicionado cloreto de p-toluenossulfonila (496 mg, 2,6 mmol, 1,1 eq) e a reagao foi
agitada a temperatura ambiente por 2,5h.

ApoOs este tempo foi adicionada agua, e a fase aquosa extraida com AcOEt (3
x 30 mL). As fases organicas combinadas foram lavadas com brine (2 x 20 mL),
secas com MgSO, e concentradas a vacuo. O residuo foi entdo purificado por
cromatografia em coluna flash (silica gel, AcOEt/Hexano, 0%—20%), resultando em
27 (752 mg, 80 % em 2 etapas) como um sélido laranja.

CCD: Rt =0,60 (15% AcOEt/Hexano);

RMN *H (400 MHz, CDCls): & (ppm) = 7.98 — 7.93 (m, 1H), 7.80 — 7.74 (m, 2H), 7.69
(s, 1H), 7.39 — 7.34 (m, 2H), 7.33 — 7.28 (m, 1H), 7.23 (m, 2H), 2.34 (s, 3H).

IV Vmax (puro, cm™): 1594, 1576, 1518, 1492, 1441, 1369, 1305, 1294, 1266, 1188,
1171, 1125, 1109, 1088, 1023, 1014, 922, 813, 797, 754, 743, 702, 688, 656.

5.13. (S)-2-((tert-butoxicarbonil)amino)-3-(1-tosil-indol-3-il)propanoato  de

metila (28)
COzMe
NHBoc
A\
N
Ts



1,2-Dibromoetano (7 pL, 0,08 mmol, 0,4 eq) foi a adicionado a uma
suspensao de zinco (p6, 102 mg, 1,56 mmol, 7,8 eq) em DMF (0,5 mL), e esta
mistura foi agitada a 50°C por 30 min sob atmosfera de argdnio. Essa mistura foi
resfriada a temperatura ambiente, a ela foi adicionado cloreto de trimetilsilano (2 L,
0,0156 mmol, 0,078 eq) e continuou-se a agitacdo por mais 30 min a temperatura
ambiente. O composto 5 (85,6 mg, 0.26 mmol, 1,3 eq) em DMF (0,5 mL) foi
adicionado a mistura reacional e esta foi entdo agitada a temperatura ambiente por 2
horas. Passado este tempo, a agitacdo foi cessada para decantacdo do zinco. A
solugcéao sobrenadante foi entdo transferida para um vial contendo 27 (79,4 mg, 0,20
mmol, 1,0 eq), Pd(OAc), (1,12 mg, 0.005 mmol, 0,025 eq), e S-PHOS (4,11 mg, 0.01
mmol, 0,05 eq). A mistura reacional foi entdo agitada a 35°C por 3h. Decorrido este
tempo, a reacéao foi vertida em agua (10 mL) e a fase aquosa extraida com AcOEt (2
x 50 mL). As fases orgénicas combinadas foram lavadas com brine (2 x 20 mL),
secas com MgSO, e concentradas a vacuo. O residuo foi entdo purificado por
cromatografia em coluna flash (silica gel, AcCOEt/Hexano, 5%—40%), resultando em
28 (51,4 mg, 42% de rendimento) como um 6leo vermelho.
CCD: Rf=0,54 (25% AcOEt/Hexano);
RMN *H (400 MHz, CDCls): & (ppm) = 7,95 (d, J = 8,3 Hz, 1H), 7,72 (d, J = 8,4 Hz,
2H), 7,45 (d, J = 7,7 Hz, 1H), 7,36 (s, 1H), 7,33 - 7,27 (m, 1H), 7,22 (m, 3H), 5,09 (d,
J = 7,5 Hz, 1H), 4,63 (m, 1H), 3,63 (s, 3H), 3,20 (m, 2H), 2,32 (s, 3H), 1,45 (s, 9H).
IV Vmax (puro, cm™): 3392, 2977, 2953, 2930, 1743, 1709, 1597, 1497, 1447, 1365,
1278, 1251, 1213, 1169, 1121, 1084, 1060, 1019, 976, 858, 813, 798, 760, 745, 703,
669.

5.14. 4-bromo-3-iodo-1-tosilindol (29)
Br |

N
Ts

A uma solucdo de KOH (240 mg, 4,28 mmol, 4,0 eq) e 4-bromoindol (211 mg,
1,07 mmol, 1,0 eq) em DMF (8 mL) a temperatura ambiente, foi adicionada gota a
gota uma solugéo de I, (272 mg, 1,07 mmol, 1,0 eq) em DMF (6 mL).

Apoés 1 hora, a mistura reacional foi vertida em uma solucdo aquosa gelada
de NaHSO3; 3% (100 mL) contendo 2 mL de NH4OH concentrado. Esta solucéo foi
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entdo rapidamente filtrada e o composto retido no funil de placa porosa (3-iodo-4-
bromoindol) foi dissolvido em AcOEt, seco com MgSO,, concentrado e utilizado
imediatamente na reacao de protecao.

Hidreto de sodio (60% em Oleo mineral, 55,6 mg, 1,39 mmol, 1,3 eq) foi
adicionado a uma solucao do bruto da reacdo anterior em DMF (6,0 mL) a 0°C e
essa solugdo foi agitada a esta temperatura por 30 min. A esta mistura, foi
adicionado cloreto de p-toluenossulfonila (224 mg, 1,18 mmol, 1,1 eq) e a reacao foi
agitada a temperatura ambiente por 2,5h.

Apés este tempo foi adicionada agua, e a fase aquosa extraida com AcOEt (3
x 30 mL). As fases orgénicas combinadas foram lavadas com brine (2 x 20 mL),
secas com MgSO, e concentradas a vacuo. O residuo foi entdo purificado por
cromatografia em coluna flash (silica gel, AcOEt/Hexano, 0%—20%), resultando em
29 (288 mg, 0,61 mmol, 56% em 2 etapas) como um solido branco.

CCD: Rf=0,75 (25% AcOEt/Hexano);

RMN *H (500 MHz, CDCls): & (ppm) = 8,00 (d, J = 8,3 Hz, 1H), 7,81 (s, 1H), 7,75 (d,
J =8,4 Hz, 2H), 7,41 (d, J = 7,5 Hz, 1H), 7,24 (d, J = 8,2 Hz, 2H), 7,14 (t, J = 8,1 Hz,
1H), 2,34 (s, 3H).

RMN *3C (126 MHz, CDCl3) & (ppm) = 145,8, 134,8, 134,5, 132,8, 130,1, 128,9,
127,0, 126,9, 126,0, 115,6, 112,9, 62,5, 21,6.

IV Vmax (puro, cm™): 1595, 1556, 1465, 1407, 1372, 1230, 1178, 1161, 1089, 1032,
921, 773, 688.

5.15. Procedimento geral para as reacdes de acoplamento de Negishi
descritas na Tabela 6.

1,2-Dibromoetano (3,5 pL, 0,04 mmol, 0,4 eq) foi a adicionado a uma
suspensao de zinco (p6, 51,0 mg, 0,78 mmol, 7,8 eq) em DMF (0,5 mL), e esta
mistura foi agitada a 50°C por 30 min sob atmosfera de argdnio. Essa mistura foi
resfriada a temperatura ambiente, a ela foi adicionado cloreto de trimetilsilano (2 L,
0,0078 mmol, 0,078 eq) e continuou-se a agitacdo por mais 30 min a temperatura
ambiente. O composto 5 (65,9 mg, 0,115 mmol, 1,15 eq) em DMF (0,5 mL) foi
adicionado a mistura reacional e esta foi entdo agitada a temperatura ambiente por 2
horas. Passado este tempo, a agitacdo foi cessada para decantagcdo do zinco. A
solucdo sobrenadante foi entdo transferida para um vial contendo 29 (47,6 mg, 0,10
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mmol, 1,0 eq), Pd(OAc); (1,12 mg, 0.005 mmol, 0,05 eq), e S-PHOS (4,11 mg, 0,01
mmol, 0,10 eq). A mistura reacional foi entdo agitada a 60°C por 24h. Decorrido este
tempo, a reacéao foi vertida em agua (10 mL) e a fase aquosa extraida com AcOEt (2
x 50 mL). As fases organicas combinadas foram lavadas com brine (2 x 20 mL),
secas com MgSO, e concentradas a vacuo. O residuo foi entdo purificado por

cromatografia em coluna flash.

5.16. (x)-terc-butil-(1-((terc-butildimetilsilil)oxi)-3-hidroxipropan-2-
il)carbamato (35)

TBSO/\/\OH
NHBoc

A uma solucéo de DL-serina (3,00 g, 28,5 mmol, 1,0 eq) em metanol (35 mL) a
0°C foi adicionado gota a gota SOCI, destilado (5,2 mL, 72 mmol, 2,5 eq). Em
seguida, a mistura foi agitada a temperatura ambiente por 24h. Apos esse tempo o
solvente foi removido em evaporador rotatdrio e o sélido branco resultante utilizado
na proxima etapa sem purificacdo. A este bruto foi adicionado 64 mL de DCM,
seguido de uma solucao de trietilamina (7,96 mL, 57 mmol, 2,0 eq) e Boc,0 (6,54
mL, 28,5 mmol, 1,0 eq) em 20 mL de DCM. Em seguida, a reacao foi agitada por 28
horas a temperatura ambiente. Decorrido este tempo foi esta solucéo foi vertida em
agua (20 mL), e a fase aquosa extraida com DCM (3 x 80 mL). As fases organicas
combinadas foram secas com MgSO, e concentradas a vacuo. O 6leo incolor obtido
foi utilizado na proxima etapa sem purificacdo. O éster bruto obtido na etapa anterior
foi dissolvido em DMF (25 mL), e a esta solucéo foi adicionado imidazol (5,82 g, 85,5
mmol, 3,0 eq). Resfriou-se a mistura reacional a 0°C e foi adicionado cloreto de terc-
butildimetilsilil (5,58 g, 37,0 mmol, 1,3 eq) e deixou-se reagir por 6h a temperatura
ambiente. A mistura reacional foi entdo adicionada agua, a fase aquosa foi extraida
com Et,O (3 X 80 mL). As fragBes organicas combinadas foram lavadas com solucao
saturada de NaHCOg3 (25 mL) e brine (25 mL), secas com MgSO, e concentradas no
evaporador rotatorio resultando em um o6leo incolor. O residuo foi entdo dissolvido
em THF (35 mL) e a esta solucéo foi adicionada uma solucdo de LiBH; em THF
(29,0 mL, 2,0 M, 38 mmol, 1,3 eq) a 0°C. Em seguida, a reacdo permaneceu sob
agitacdo a temperatura ambiente por 18 horas. Decorrido este tempo, resfriou-se a
mistura reacional a 0°C e adicionou-se AcOEt (30 mL) e agua (30 mL). A fase

aguosa foi extraida com AcOEt (3 X 30 mL), e, em seguida, as fases organicas
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combinadas foram lavadas com brine (3 X 30 mL) e secas com MgSQO,. O residuo foi
entdo purificado por cromatografia em coluna flash (silica gel, AcOEt/Hexano,
5%—25%), resultando em 35 (8,49 g, 27,8 mmol, 97 % de rendimento em 4 etapas)
como um oOleo incolor.

CCD: Rf=0,60 (25% AcOEt/Hexano);

RMN *H (500 MHz, CDCl3): & (ppm) = 5,14 (br s, 1H), 3,89 — 3,74 (m, 3H), 3,72 —
3,60 (m, 2H), 1,45 (s, 9H), 0,90 (s, 9H), 0,07 (s, 6H).

RMN *3C (101 MHz, CDCls) & (ppm) = 156,0, 79,5, 64,0, 63,6, 52,6, 28,3, 25,8, 18,2,
-5,6.

IV Vmax (puro, cm™): 3347, 2954, 2930, 2884, 2856, 1691, 1500, 1471, 1391, 1366,
1314, 1251, 1169, 1089, 1052, 1026, 833, 776, 689.

5.17. (%)-terc-butil-2-(((terc-butildimetilsilil)oxi)metil)aziridina-1-carboxilato

(9)

OoTBS

-

N
Boc

A uma solucéo de PhsP (4,982 g, 19,0 mmol,1,5 eq) em THF-MeCN (9:1, 189
mL) foi adicionado gota a gota DIAD (3,74 mL, 19,0 mmol, 1,5 eq) a 0 °C. Apés 15
min de agitacdo, uma solucao de 35 (3,868 g, 12,7 mmol, 1,0 eq) em THF (25 mL)
foi adicionada a essa solucdo, gota a gota, durante 15 min. A mistura reacional foi
aguecida a temperatura ambiente e agitada por 24 horas. Decorrido este tempo os
componentes volateis foram evaporados e residuo foi entdo purificado por
cromatografia em coluna flash (silica gel, AcOEt/Hexano, 2%—10%), resultando em
9 (2,074 g, 57 % de rendimento) como um 6leo incolor.
CCD: Rt =0,54 (5% AcOEt/Hexano);
RMN *H (500 MHz, CDCls): & (ppm) = 3,80 (dd, J = 11,4, 4,7 Hz, 1H), 3,63 (dd, J =
11,4, 4,9 Hz, 1H), 2,56 (m, 1H), 2,26 (d, J = 6,0 Hz, 1H), 2,07 (d, J = 3,7 Hz, 1H),
1,45 (s, 9H), 0,90 (s, 9H), 0,08 (s, 3H), 0,07 (s, 3H).
RMN *3C (126 MHz, CDCls) & (ppm) = 162,1, 81,0, 63,4, 38,4, 29,2, 27,9, 25,9, 18,3,
-5,30.
IV Vmax (puro, cm™): 2955, 2930, 2897, 2887, 2858, 1721, 1472, 1463, 1392, 1367,
1304, 1253, 1219, 1160, 1094, 836, 777.
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5.18. (¥)-terc-butil(1-(4-bromo-1H-indol-3-il)-3-((terc-
butildimetilsilil)oxi)propan-2-il)carbamato (36)

OTBS
Br
NHBoc
N
N
H

Em um baldo de fundo redondo de 25 mL previamente flambado foi
adicionado 8 (442 mg, 2,2 mmol, 1,0 eq) e éter seco (8 mL) sob atmosfera de
argonio. A esta solucao foi adicionado MeMgBr (3,0 M em éter, 0,90 mL, 2,9 mmol,
1,3 eq) a temperatura ambiente. Observou-se intenso borbulhamento. Apds esta
mistura ser agitada a temperatura ambiente por 1,5 h, foi adicionado 9 (1,047 g, 3,6
mmol, 1,7 eq) em éter seco (3 mL). A mistura reacional foi entdo agitada a
temperatura ambiente por 7 h. Decorrido este tempo, a reacéo foi terminada com a
adicao de solucao aquosa saturada de NH4ClI (5 mL). A fase aquosa foi extraida com
éter (3 x 20 mL) e as fragcbes organicas combinadas foram lavadas com brine (25
mL), secas com MgSO, e concentradas. O residuo foi entdo purificado por
cromatografia em coluna flash (silica gel, AcOEt/Hexano, 15%—30%), resultando
em 36 (591 mg, 1,2 mmol, 55 % de rendimento) como um 6leo vermelho.

CCD: R = 0,54 (25% AcOEt/Hexano);

RMN *H (500 MHz, CDCl3): & (ppm) = 8,38 (s, 1H), 7,35 - 7,18 (m, 2H), 7,09 (s, 1H),
6,97 (t, J = 7,8 Hz, 1H), 4,85 (d, J = 7,4 Hz, 1H), 4,07 (m, 1H), 3,70 (m, 2H), 3,30 (m,
2H), 1,34 e 0,99 (s, 9H), 0,93 (s, 9H), 0,07 (s, 6H).

RMN *C (101 MHz, CDCls) & (ppm) = 155,7, 137,6, 125,8, 124,2, 123,9, 122,5,
114,3, 113,6, 110,5, 78,9, 64,8, 53,1, 28,3, 28,1, 26,0, 18,3, -5,35, -5,40.

IV Vmax (puro, cm™): 3426, 3305, 2953, 2928, 2857, 1688, 1503, 1471, 1425, 1391,
1365, 1334, 1251, 1169, 1111, 1086, 1060, 1042, 833, 773, 736.

5.19. (x)-terc-butil(1-(4-bromo-1-tosilindol-3-il)-3-((terc-
butildimetilsilil)oxi)propan-2-il)carbamato (37)

OTBS
Br
NHBoc
A\
N
Ts
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A um baldo de fundo redondo de 50 mL foram adicionados 36 (570 mg, 1,2
mmol, 1,0 eq), BusN.HSO, (67,9 mg, 0,2 mmol, 0,14 eq) e CH,Cl, (10 mL). A esta
solucdo foi adicionada uma solugcdo de aquosa de NaOH 50% (0,61 mL) a
temperatura ambiente. Apdés agitacdo por 5 minutos, foi adicionado a mistura
reacional TsCl (458 mg, 2,4 mmol, 2,0 eq). Em seguida, a reacdo foi agitada a
temperatura ambiente por 45 min. Decorrido este tempo a reagéo foi vertida em
agua, a fase aquosa extraida com éter (3 x 25 mL). As fracdes organicas
combinadas foram lavadas com brine (10 mL), secas com MgSO,4 e concentradas. O
residuo foi entdo purificado por cromatografia em coluna flash (silica gel,
AcOEt/Hexano, 5%—25%), resultando em 37 (608 mg, 0,95 mmol, 81 % de
rendimento) como um solido amarelo palido.

CCD: Rt =0,45 (10% AcOEt/Hexano);

RMN *H (400 MHz, CDCls): & (ppm) = 7,93 (d, J = 8,3 Hz, 1H), 7,73 (d, J = 8,3 Hz,
2H), 7,48 (s, 1H), 7,36 (dd, J = 7,8, 0,7 Hz, 1H), 7,22 (d, J = 8,1 Hz, 2H), 7,09 (t, J =
8,1 Hz, 1H), 4,77 (d, J = 8,2 Hz, 1H), 4,11-4,00 (m, 1H), 3,69 (m, 2H), 3,23 (m, 1H),
3,17 - 3,03 (m, 1H), 2,34 (s, 3H), 1,36 e 1,05 (s, 9H), 0,93 (s, 9H), 0,07 (s, 6H).

RMN **C (101 MHz, CDCls) d (ppm) = 155,3 , 145,0, 136,4, 135,0, 129,9, 129,0,
127,8, 126,8, 125,8, 125,2, 122,5, 119,7, 114,5, 112,8, 79,2, 64,6, 52,0, 28,3, 25,9,
21,5, 18,3,-5,42, -5,47.

IV Vmax (puro, cm™): 3410, 2954, 2929, 2857, 1705, 1367, 1250, 1173, 1120, 1103,
985, 936, 776, 670.

5.20. (x)-terc-butil(1-(4-bromo-1-tosil-indol-3-il)-3-hidroxipropan-2-
il)carbamato (38)

OH
Br
NHBoc
A\
N
Ts

A um baldo de fundo redondo de 50 mL foram adicionados 37 (587 mg, 0,92
mmol, 1,0 eq) e THF seco (5 mL). Em seguida, foi adicionado a esta solugdo TBAF
(1,0 M em THF, 2,03 mL, 2,03 mmol, 2,2 eq) a temperatura ambiente. A reacao foi
agitada a esta temperatura por 2 h. Decorrido este tempo foi adicionado a mistura

reacional uma solu¢do saturada de NaHCO3 nq. Em seguida, a fase aquosa foi
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extraida com AcOEt (3 x 25 mL), as fracdes organicas combinadas foram lavadas
com brine (15 mL), secas com MgSO, e concentradas. O residuo foi entédo purificado
por cromatografia em coluna flash (silica gel, AcOEt/Hexano, 40%—60%),
resultando em 38 (460 mg, 0,88 mmol, 96 % de rendimento) como um soélido branco.
CCD: Rf=0,47 (50% AcOEt/Hexano);

RMN *H (400 MHz, CDCls): & (ppm) = 7,97 — 7,92 (dd, J = 8,3, 0,8 Hz, 1H), 7,76 —
7,70 (m, 2H), 7,49 (s, 1H), 7,37 (dd, J = 7,8, 0,8 Hz, 1H), 7,23 (m, 2H), 7,11 (t, J =
8,1 Hz, 1H), 4,80 (m, 1H), 3,97 (m, 1H), 3,79 (dd, J = 11,1, 3,4 Hz, 1H), 3,28 (dd, J =
14,9, 5,5 Hz, 1H), 3,09 (m, 1H), 2,34 (s, 3H), 1,40 (s, 9H).

RMN *3C (100 MHz, CDCls) & (ppm) = 156,2, 145,2, 136,4, 134,8, 130,0, 128,7,
127,9, 126,8, 126,1, 125,4, 119,2, 114,3, 112,9, 79,9, 65,1, 53,5, 28,2, 27,6, 21,6.

IV Vmax (puro, cm™): 3404, 2977, 2930, 2873, 1689, 1597, 1554, 1512, 1455, 1412,
1367, 1306, 1293, 1247, 1172, 1131, 1088, 1053, 984, 812, 775, 741, 703, 671, 616.
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Figura 15. Espectro de RMN-'H (500 MHz, CDCI3) do composto 8.
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Figura 16. Espectro de RMN-"*C (125 MHz, CDCl3) do composto 8.
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Figura 17. Espectro no IV de 8.
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Figura 18. RMN-'H (500 MHz, CDCI3) do composto 14.
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Figura 19. RMN-"*C (125 MHz, CDCl;) do composto 14.
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Figura 20. Espectro no IV de 14.
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Figura 21. RMN-'H (500 MHz, CDCl3) do composto 17.
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Figura 22. RMN-"H (500 MHz, CDCl3) do composto 5.
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Figura 23. RMN-"*C (100 MHz, CDCl;) do composto 5.
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Figura 24. Espectro no IV de 5.
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Figura 25. RMN-'H (500 MHz, CDCI3) do composto 20.
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Figura 26. RMN-"3C (100 MHz, CDCl;) do composto 20.
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Figura 27. Espectro no IV de 20.
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Figura 28. RMN-'H (500 MHz, CDCI3) do composto 21.
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Figura 29. RMN-"*C (125 MHz, CDCl;) do composto 21.
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Figura 30. Espectro no IV de 21.
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Figura 31. RMN-'H (500 MHz, CDCI3) do composto 22.
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Figura 32. RMN-"*C (125 MHz, CDCI;) do composto 22.
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Figura 33. Espectro no IV de 22.
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Figura 34. RMN-"H (500 MHz, CDCl;) do composto 4.
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Figura 35. RMN-"*C (125 MHz, CDCl;) do composto 4.
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Figura 36. Espectro no IV de 4.
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Figura 37. RMN-'H (500 MHz, CDCI3) do composto 23.
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Figura 38. RMN-"*C (125 MHz, CDCl;) do composto 23.

60'82— 4
ET 19— —
E
91'58
0LPIT _
61'S1T7
14521~
05921/~ —
reaet’
8ZEET— - —
L9GET
0 E‘:m
= T
~z A LF |
— © £0'8T——
®)
— [9p]
(1] T

84

70

80

90

100

110

120

130

140

150

160

f1 (ppm)



Figura 39

. Espectro no IV de 23.
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Figura 40. RMN-'H (400 MHz, CDCl3) do composto 27.
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Figura 41. Espectro no IV de 27.
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Figura 42. RMN-"H (400 MHz, CDCls) do composto 28.
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Figura 43. Espectro no IV de 28.
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Figura 44. RMN-'H (500 MHz, CDCI3) do composto 29.

05

00T

0ST

D0E

0S5z

00E

0SE

00t

DSt

00S

0SS

(wdd) 1)
SF

0'0 <0 0T o1 0z a7 e 3 0y o' c'c 0'9 c'o 02 s 0'g c'g
1 1 L 1 1 L 1 L L L 1 L 1 1 L | | L
N SN O
& Br8R88
ik LT i T
T - N
(wdd) 14
7L e o7 gz U8 e
] I | 1 1 ] ] L ] ] _I_U
DI
0O
e
00T /S,
O N
00Z- \

90



Figura 45. RMN-"*C (126 MHz, CDCl;) do composto 29.
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Figura 46. Espectro no IV de 29.
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Figura 47. RMN-"H (500 MHz, CDCl;) do composto 35.
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Figura 48. RMN-"*C (101 MHz, CDCl;) do composto 35.
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Figura 49

. Espectro no IV de 35.
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Figura 50. RMN-"H (500 MHz, CDCl;) do composto 9.
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Figura 51. RMN-13C (126 MHz, CDCI3) do composto 9.
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Figura 52. Espectro no IV de 9.
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Figura 53. RMN-"H (500 MHz, CDCl;) do composto 36.
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Figura 54. RMN-"3C (101 MHz, CDCl;) do composto 36.
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Figura 55. Espectro no IV de 36.
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Figura 56. RMN-'H (400 MHz, CDCI3) do composto 37.
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Figura 57. RMN-"3C (101 MHz, CDCl;) do composto 37.
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Figura 58. Espectro no IV de 37.
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Figura 59. RMN-'H (400 MHz, CDCl;) do composto 38.
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Figura 60. RMN-"3C (100 MHz, CDCl;) do composto 38.
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Figura 61. Espectro no IV de 38.
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