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Resumo

ANDREAUS, L. Teoria Algébrica dos Números e Introdução à Teoria dos Corpos de Classes.
2021. 222 p. Monografia – Bacharelado em Matemática – Instituto de Matemática e Estat́ıstica,
Universidade de São Paulo, São Paulo, Brasil.
Nesse trabalho, nós estudamos as bases da Teoria Algébrica dos Números, a área da matemática
que estuda os anéis de inteiros algébricos. Nós estudamos a demonstração de resultados como o
Teorema da Finitude do Número de Classes, a Identidade Fundamental, o Teorema das Unidades
de Dirichlet e o Teorema de Kronecker-Weber, e abordamos assuntos como domı́nios de Dedekind,
valorações e números p-ádicos. Além disso, mostramos como aplicar a teoria em alguns exemplos
concretos, e damos uma breve introdução à Teoria dos Corpos de Classes.
Palavras-chave: Teoria dos Números, Teoria Algébrica dos Números, Teoria Algébrica dos
Números e Introdução à Teoria dos Corpos de Classes
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Abstract

ANDREAUS, L. Algebraic Number Theory and a Introduction to Class Field Theory. 2021.
222 p. Monografia – Bacharelado em Matemática – Instituto de Matemática e Estat́ıstica, Uni-
versidade de São Paulo, São Paulo, Brazil.
In this work, we study the basis of Algebraic Number Theory, the area of mathematics that studies
the rings of algebraic integers. We studied the demonstration of results such as the Theorem of
the Finiteness of the Class Number, the Fundamental Identity, Dirichlet’s Unit Theorem and
Kronecker-Weber Theorem, and we adress subjects such as Dedekind domains, valuations and
p-adic numbers. Furthermore, we show how to apply the theory in concrete examples, and we
give a brief introduction to Class Field Theory.
Keywords: Number Theory, Algebraic Number Theory, Algebraic Number Theory and a Intro-
duction to Class Field Theory
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Notações

|X| Cardinalidade do conjunto X

X t Y União disjunta dos conjuntos X e Y

N Conjunto dos números naturais: {0, 1, 2, . . .}

N∗ Conjunto dos números naturais sem o 0: {1, 2, . . .}

Z Anel dos números inteiros: {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

Q Corpo dos números racionais

R Corpo dos números reais

C Corpo dos números complexos

Q Corpo dos números algébricos

OC Anel dos inteiros algébricos

OK Anel de inteiros algébricos do corpo K

Fq Corpo finito de q elementos

Zp Anel dos inteiros p-ádicos

Z(p) Localização de Z pelo ideal primo pZ

Qp Corpo dos números p-ádicos

D Conjunto dos inteiros livres de quadrados e diferentes de 0 e 1

A[x1, . . . ,xn] Anel de polinômios do anel A em n variáveis

A[γ1, . . . , γn] Menor anel que contém A e todos os elementos γ1, . . . , γn

K(x1, . . . ,xn) Corpo de funções racionais do corpo K em n variáveis

K(γ1, . . . , γn) Menor corpo que contém K e todos os elementos γ1, . . . , γn

AJxK Anel das séries formais sobre o anel A

K((x)) Corpo das séries de Laurent sobre o corpo K

Q(A) Corpo de frações do domı́nio A

A× Grupo de unidades do anel A

S−1A Localização do anel A pelo conjunto multiplicativo S ⊆ A
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2 NOTAÇÕES

Ap Localização do anel A por S = A \ p, onde p é ideal primo de A

A
B Fecho integral de A no anel B

X ⊕ Y Soma direta das estruturas X e Y

X + Y Soma de X e Y dentro de uma estrutura maior

X/Y Quociente da estrutura X por Y ou indicação de extensão de anéis

X × Y Produto direto externo das estruturas X e Y

G�H Produto direto interno dos subgrupos G e H

X ⊗Z Y Produto tensorial das Z-estruturas X e Y

δij Função delta de Kronecker

(aij) Matriz com entradas aij

Id Matriz identidade

detB Determinante da(o) matriz/operador B

TrB Traço da(o) matriz/operador B

AdjB Matriz adjunta da matriz B

(nk) n escolhe k(m
n

)
Śımbolo de Legendre/Jacobi de m e n

bxc Piso (parte inteira) de x

dxe Teto de x

aCA a é ideal do anel A

xA Ideal de A gerado por x

xM Submódulo de M gerado por x

〈x1, . . . ,xn〉 Subgrupo/ideal gerado por x1, . . . ,xn

N CG N é subgrupo normal do grupo G

m | n m divide n (em determinado anel)

HomA(M ,N) Conjunto dos homomorfismos de A-módulos/álgebras ϕ : M → N

EndA(M) Conjunto dos endomorfismos de A-módulos/álgebras ϕ : M →M

id Operador de identidade

f ′ Derivada da função f∫
f(x) dx Integral da função f

∂ f Grau do polinômio f
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dimK V Dimensão de V como K-espaço vetorial

[X : Y ] Dimensão de uma extensão de corpos ou ı́ndice de subgrupo

Gal(L/K) Grupo de Galois da extensão L/K

Pα,K Polinômio minimal de α sobre o corpo K

Fb,B/A Polinômio caracteŕıstico de b em relação à extensão B/A

TrB/A Traço da extensão B/A

NB/A Norma da extensão B/A

∆(f) Discriminante do polinômio f

∆L/K(α1, . . . ,αn) Discriminante da n-upla (α1, . . . ,αn) em relação à extensão L/K

A | a O ideal A está sobre a

dR/A Ideal discriminante de R/A

dK Discriminante do corpo K

W (A) Grupo de torção do anel A

Wn(A) Grupo das ráızes n-ésimas da unidade do anel A

Pn(A) Grupo das ráızes primitivas n-ésimas da unidade do anel A

ϕ(n) Função de Euler aplicada em n

ζn Raiz primitiva n-ésima da unidade

Φn n-ésimo polinômio ciclotômico

Z(G) Centro do grupo G

M (A) Conjunto dos A-submódulos não-nulos de Q(A)

I(A) Conjunto dos ideais fracionários de A

J (A) Conjunto dos ideais não-nulos de A

P(A) Conjunto dos ideais primos não-nulos de A

P (A) Conjunto dos ideais fracionários principais de A

J(A) Conjunto dos ideais fracionários inverśıveis de A ou ideal de Jacobson de A

Pic(A) Grupo de Picard de A

C `(A) Grupo de classes de ideais de A

hA Número de classes do ideal A

hK Número de classes de OK

(A : M) Quociente do A-submódulo M

M | N O ideal fracionário M divide o ideal fracionário N
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Ov Anel de valoração da valoração v

U (n) n-ésimo grupo de unidades

N(a) Norma do ideal a

µK Cota de Minkowski do corpo K

e(P | p) = eP Índice de ramificação de P

f(P | p) = fP Grau de inércia de P

g(P | p) = gp Número de decomposição de p

RQ(n) Conjunto dos reśıduos quadráticos módulo n

χK Caráter quadrático do corpo quadrático K

GP ou GP(L/K) Grupo de decomposição do ideal primo P

ZP ou ZP(L/K) Corpo de decomposição do ideal primo P

IP ou IP(L/K) Grupo de inércia do ideal primo P

TP ou TP(L/K) Corpo de inércia do ideal primo P

RiP ou RiP(L/K) i-ésimo grupo de ramificação do ideal primo P

V i
P ou V i

P(L/K) i-ésimo corpo de ramificação do ideal primo P

〈x, y〉 Produto interno dos vetores x e y

‖x‖ Norma do vetor x

Br(x) Bola de centro x e raio r

Br Bola de centro 0 e raio r

vol(S) Volume do conjunto/reticulado S

KR Espaço de Minkowski do corpo K

Ã Normalização de A

Div(A) Grupo dos divisores de A

`A(M) Comprimento do A-módulo M

P(A) Grupo dos divisores principais

CH1(A) Grupo de Chow de A

K̂ Completamento de um corpo com valor absoluto K

vp Valoração p-ádica

|·|p Valor absoluto p-ádico

lim←−
n

A/ pn Limite projetivo dos A/ pn
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|·|∞ Valor absoluto usual de Q

e(L | K) ou e(w | v) Índice de ramificação da extensão de corpos com valoração (L,w)/(K, v)

Kv Completamento de (K, v)

f(L | K) ou f(w | v) Grau de inércia da extensão de corpos com valoração (L,w)/(K, v)

Kp Completamento de (K, vp)

Gw ou Gw(L/K) Grupo de decomposição de w | v

Zw ou Zw(L/K) Corpo de decomposição de w | v

Iw ou Iw(L/K) Grupo de inércia de w | v

Tw ou Tw(L/K) Corpo de inércia de w | v

Rw ou Rw(L/K) Grupo de ramificação de w | v

Vw ou Vw(L/K) Corpo de ramificação de w | v

Gw ou Gw(L/K) Grupo de decomposição de w | v

Kv Henselianização de (K, v)

Knr Extensão não-ramificada maximal do corpo K

Ks Fecho separável do corpo K

ordα(f) Ordem de f no ponto α ∈ C

AK Anel de adèles de K

IK Grupo de Idèles de K

CK Grupo de classes de idèles de K

A1
K Subgrupo dos elementos de IK com norma 1

CK1 A1
K /K×

σP ou
(L/K

P

)
Elemento de Frobenius de P

Frobp Classe de Frobenius de p

σp ou
(L/K

p

)
Elemento de Frobenius de p

(L/K
·

)
Mapa de Artin



Introdução

A Teoria dos Números é o ramo da matemática que estuda os números inteiros e suas proprie-
dades. Um dos principais interesses de estudo dessa área são as equações diofantinas. Uma
equação diofantina é simplesmente uma equação polinomial em que só interessam as soluções
inteiras. Enquanto não há grande dificuldade em resolver um sistema linear de equações diofan-
tinas, problemas começam a surgir quando aparecem equações de graus maiores. Consideremos
os seguintes exemplos:

Fixado n inteiro positivo, a equação diofantina x2 − y2 = n não oferece grandes dificuldades,
pois podemos fatorar o lado esquerdo para obter (x − y)(x + y) = n. Utilizando o Teorema
Fundamental da Aritmética, conseguimos encontrar todas as formas de escrever n como produto
de dois inteiros. Assim, podemos achar todas as soluções (x, y) ∈ Z2 dessa equação diofantina,
resolvendo um número finito de sistemas lineares de duas equações. Esse exemplo nos mostra que
fatorar pode ajudar muito na resolução de equações diofantinas.

Alterando apenas um pouco essa equação, já aparecem dificuldades: a equação diofantina
x2 + y2 = n é bem mais dif́ıcil de lidar, pois não conseguimos fatorar o lado esquerdo em Z. No
entanto, o lado esquerdo se fatora em Z[i]: x2 + y2 = (x+ iy)(x− iy). Assim, nada mais natural
do que estudar esse anel maior, e torcer para que ele seja “bem-comportado” que nem o anel Z.
De fato, como veremos, esse anel é um domı́nio euclidiano. O anel Z[i] é chamado de anel dos
inteiros de Gauss, ou ainda de anel dos inteiros gaussianos, e ocupa dentro do corpo Q(i)
um papel parecido com o de Z dentro de Q.

O exemplo acima nos mostra que, para o estudo de equações diofantinas, convém estudar
anéis maiores que Z, os chamados anéis de inteiros algébricos. O estudo da estrutura desses
anéis, isto é, de seus ideais, grupos de unidades, etc., é o principal tema de interesse da Teoria
Algébrica dos Números.

Infelizmente, nem tudo são flores: há anéis de inteiros algébricos como Z[
√
−5] que não são

nem sequer um domı́nio de fatoração única. Podemos tentar corrigir isso olhando para os ideais
desses anéis, ao invés de seus elementos. De fato, há um teorema de unicidade da fatoração
de ideais em um tipo especial de domı́nio chamado domı́nio de Dedekind, o que é o caso de
Z[
√
−5] e, na verdade, de qualquer anel de inteiros algébricos!

O objetivo deste trabalho é dar ao leitor uma introdução às bases da Teoria Algébrica dos
Números, começando desde a definição de extensão integral, no Caṕıtulo 1, até a demonstração
do importante Teorema de Kronecker-Weber, no Caṕıtulo 11. Esse teorema e as estratégias
utilizadas em sua demonstração motivam o estudo de “coisas locais” para provar “coisas globais”,
o Prinćıpio Local-Global. Esse é o prinćıpio básico que rege a chamada Teoria dos Corpos
de Classes, à qual damos uma breve introdução no Caṕıtulo 12.

Para uma boa compreensão deste trabalho, é indicado ao leitor um conhecimento básico de
álgebra linear, álgebra comutativa, teoria dos grupos e teoria de Galois, ao longo de todo o texto.
Além disso, em alguns caṕıtulos são utilizados resultados básicos de análise, topologia, espaços
métricos e teoria de integração.

A próxima página traz um resumo dos assuntos abordados em cada um dos 12 caṕıtulos que
compõem esse texto:
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NOTAÇÕES 7

• O Caṕıtulo 1 trata de extensões de anéis, e é mais técnico, apresentando diversos resultados
que serão úteis em todo o texto.

• No Caṕıtulo 2, são definidos os nossos principais objetos de estudo, os anéis de inteiros
algébricos, e são demonstradas suas propriedades básicas. Além disso, são estudados com
mais detalhes os anéis de inteiros algébricos de corpos quadráticos e ciclotômicos.

• O Caṕıtulo 3, novamente mais técnico, trata dos domı́nios de Dedekind e dos domı́nios
de valoração discreta, dois tipos importantes de domı́nios com propriedades muito boas:
a fatoração única de ideais no caso dos domı́nios de Dedekind, e a existência de uma
valoração discreta, no caso dos domı́nios de valoração discreta.

• O Caṕıtulo 4 estuda como se comportam as extensões de domı́nios de Dedekind. Mais
especificamente, estuda como um ideal primo se decompõe nessa extensão. Como veremos,
essa decomposição está sujeita a uma regra ŕıgida, a identidade fundamental, e pode
ser determinada explicitamente em extensões monogêneas. Nesse caṕıtulo, mostraremos
ainda a finitude do número de classes, que em certo sentido diz que um anel de inteiros
algébricos está “perto” de ser um domı́nio de ideais principais.

• O Caṕıtulo 5 traz exemplos práticos dos resultados obtidos no Caṕıtulo 4 para corpos
quadráticos e ciclotômicos. Como caminho para estudar corpos quadráticos, ele também
aborda a famosa Lei da Reciprocidade Quadrática.

• O Caṕıtulo 6 estuda as extensões galoisianas de domı́nios de Dedekind. Nele, mostra-se que
toda extensão desse tipo pode ser quebrada em extensões mais simples de serem estudadas.

• No Caṕıtulo 7, mostra-se a importância do método geométrico, que se utiliza de técnicas
de integração para obter resultados de Teoria Algébrica dos Números. Nele, demonstra-se
o Teorema das Unidades de Dirichlet. Além disso, obtêm-se a cota de Minkowski,
que facilita o cálculo do número de classes.

• O Caṕıtulo 8 trata das ordens, um tipo de anel que não se comporta tão bem quanto os
anéis de inteiros algébricos mas também é importante na prática.

• No Caṕıtulo 9, são definidos os conceitos de valor absoluto, valoração e completa-
mento, e demonstradas suas propriedades básicas. Além disso, são estudados os números
p-ádicos. Esse caṕıtulo em certo sentido demarca o começo da “Parte 2” do trabalho.

• O Caṕıtulo 10 estuda como valores absolutos e valorações podem ser estendidos em extensões
algébricas. Nele, mostra-se a unicidade dessas extensões para corpos completos e corpos
henselianos, além do Teorema da Extensão que diz o que ocorre em extensões finitas.
Nesse caṕıtulo também são estudadas as ramificações em extensões de corpos henselianos,
que são em certo sentido uma medida de quão bem uma extensão se comporta.

• O Caṕıtulo 11 é focado na demonstração do importante Teorema de Kronecker-Weber,
que diz que toda extensão abeliana de Q está contida em uma extensão ciclotômica. Tão
importante quanto esse teorema é a técnica utilizada em demonstração: provar algo dif́ıcil
e “global” separando em coisas mais fáceis e “locais”.

• No Caṕıtulo 12, é feita uma breve introdução à Teoria dos Corpos de Classes, que
estuda os corpos globais e os corpos locais, e possui diversas consequências em Teoria
dos Números.

Este trabalho utilizou como principais referências os livros [1] e [2]. Além disso, [3] foi bastante
utilizado, especialmente a partir do Caṕıtulo 9. O Caṕıtulo 11 teve como base [3], [7], [8] e [9],
e o Caṕıtulo 12 teve como base [11]. Além disso, [4], [5], [6], [10], [12], [13], [14], [15], [16], [17] e
[18] foram usados como referências auxiliares.



Caṕıtulo 1

Extensões de Anéis

Nesse caṕıtulo, iremos apresentar os conceitos básicos e enunciar e provar os resultados básicos
de extensões de anéis, construindo o maquinário que será aplicado aos anéis de inteiros algébricos
no próximo caṕıtulo. Ao longo de todo o trabalho, a palavra anel sempre se referirá a um anel
comutativo com unidade, a menos que especificado o contrário. Além disso, dados A um anel, M
um A-módulo, p(x) = a0 + a1x+ · · ·+ anx

n ∈ A[x] e ϕ ∈ EndA(M), definimos p(ϕ) ∈ EndA(M)
por p(ϕ)(m) := a0m + a1ϕ(m) + · · · + anϕ

n(m), onde ϕi denota a composição de ϕ consigo
mesmo i vezes.

1.1. Alguns Resultados sobre Módulos
Começamos provando um importante resultado que generaliza o Teorema de Cayley-Hamilton
para módulos finitamente gerados:

Teorema 1.1 (Teorema de Cayley-Hamilton Generalizado). Sejam A um anel, M um A-módulo
finitamente gerado, aCA e ϕ : M →M um homomorfismo de A-módulos tal que ϕ(M) ⊆ aM .

Então existe um polinômio mônico

χ(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 ∈ A[x] com a0, a1, . . . , an−1 ∈ a,

tal que

χ(ϕ) = ϕn + an−1ϕ
n−1 + · · ·+ a1ϕ+ a0 id ∈ EndA(M)

é o homomorfismo nulo.

A ideia da prova deste teorema é que podemos enxergar M como um A[x] módulo a partir do
endomorfismo ϕ:

Lema 1.2. Sejam A um anel, M um A-módulo e ϕ ∈ EndA(M). Então M é um A[x]-módulo
com ação dada por p(x) ·m = p(ϕ)(m), para todos p(x) ∈ A[x], m ∈M .

A demonstração desse lema é um exerćıcio simples.

Demonstração (do Teorema de Cayley-Hamilton Generalizado): Seja {m1, . . . ,mn} um conjunto
de geradores de M . Então é fácil ver que esses elementos também geram aM , utilizando apenas
coeficientes em a. Assim, para 1 ≤ i ≤ n, podemos escrever

ϕ(mi) = ai1m1 + · · ·+ ainmn, para ai1, . . . , ain ∈ a.

8
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Agora, pelo Lema 1.2, podemos ver M como um A[x]-módulo com ação p(x) ·m = p(ϕ)(m).
Desse modo, ϕ(mi) = x ·mi, e a equação acima equivale a x ·mi = ai1m1 + · · ·+ ainmn, ou ainda

n∑
j=1

(x · δij − aij)mj = 0,

onde δij é o Delta de Kronecker. Mas isso significa que
x− a11 −a12 −a13 . . . −a1n
−a21 x− a22 −a23 . . . −a2n
−a31 −a32 x− a33 . . . −a3n

...
...

... . . . ...
−an1 −an2 −an3 . . . x− ann




m1
m2
m3
...
mn

 =


0
0
0
...
0

 .

Chamemos de B = (x · δij − aij) ∈Mn(A[x]) a matriz n× n acima. Multiplicando a equação
acima à esquerda pela matriz adjunta de B, temos:

(AdjB) ·B ·


m1
m2
...
mn

 =


0
0
...
0

 ⇒ (detB) · Id ·


m1
m2
...
mn

 =


0
0
...
0



⇒


(detB) ·m1
(detB) ·m2

...
(detB) ·mn

 =


0
0
...
0

 .

Assim, para 1 ≤ i ≤ n, (detB)(ϕ)(mi) = (detB) ·mi = 0, de modo que (detB)(ϕ) se anula
em todos os geradores mi de M . Logo (detB)(ϕ) é o homomorfismo nulo. Além disso, detB é
um polinômio mônico. Portanto, basta tomarmos χ = detB, e temos o resultado desejado.

Corolário 1.3. Sejam A um anel, M um A-módulo finitamente gerado e aCA com aM = M .
Então existe a ∈ a tal que am = m para todo m ∈M .

Demonstração. Nessas condições, podemos aplicar o Teorema 1.1 para ϕ = id. Desse modo,
garantimos a existência de a0, a1, . . . , an−1 ∈ a tais que a0 id+a1 id+ · · ·+ an−1 idn−1 + idn = 0.
Ou seja, (a0 +a1 + · · ·+an−1 + 1)m = 0 para todom ∈M . Tomando a = −a0−a1−· · ·−an−1 ∈
a, vemos que am = m para todo m ∈M , como queŕıamos.

Lembremos que a interseção de todos os ideais maximais de um anel A é um ideal J(A),
chamado de ideal de Jacobson de A. Além disso, lembremos que dado x ∈ A nós temos a
equivalência x ∈ J(A) ⇐⇒ 1− ax ∈ A× para todo a ∈ A.

Como corolário do corolário acima, nós obtemos o Lema de Nakayama para anéis comutativos:

Lema 1.4 (Lema de Nakayama). Sejam A um anel e aCA. Então são equivalentes:

(i) a ⊆ J(R).

(ii) Para todo A-módulo finitamente gerado M , aM =M ⇒M = 0.

(iii) Para todos A-módulos N ⊆M tais que M/N é finitamente gerado,

M = aM +N ⇒ N =M .
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Demonstração. (i) ⇒ (ii): Pelo Corolário 1.3, se aM = M existe a ∈ a tal que am = m para
todo m ∈M . Mas então (1− a)m = 0. Como a ∈ a ⊆ J(A), 1− a ∈ A× e portanto m = 0 para
todo m ∈M , ou seja, M = 0.

(ii) ⇒ (iii): Nós temos a(M/N) = (aM + N)/N = M/N , por hipótese. Aplicando (ii),
conclúımos que M/N = 0, ou seja, N =M .

(iii)⇒ (i): Se a 6⊆ J(A), então existe um ideal maximal mCA tal que a 6⊆ m. Sendo m maximal,
temos a+m = A, o que é o mesmo que dizer que aA+m = A. Como m ( A, mostramos que
nesse caso não vale (iii).

1.2. Extensões de Anéis
Nessa seção, começamos estudando propriamente as extensões de anéis. Como veremos, o tipo
mais importante de extensão de anéis para nós serão as extensões integrais.

Definição (Extensão de Anéis/Extensão Finita). Dizemos que o anel B é uma extensão do
anel A se A for um subanel de B. Indicaremos essa extensão por B/A. Dizemos que B é uma
extensão finita de A se B for finitamente gerado como A-módulo.

Começamos listando dois resultados técnicos que nos serão úteis. Suas demonstrações são
diretas, e portanto são omitidas aqui.

Proposição 1.5. Sejam A um domı́nio, K = Q(A) e L/K uma extensão algébrica de corpos.
Se B ⊆ L e B/A é uma extensão de anéis, então temos (A \ {0})−1B = Q(B).

Proposição 1.6. Sejam A um domı́nio, K = Q(A) e M um A-módulo. Então {m1, . . . ,mr} ⊆M
é LI sobre A se e só se {m1/1, . . . ,mr/1} ⊆MK for LI sobre K, onde1 MK := (A \ {0})−1M .

Em particular, se L for uma extensão de K, os elementos α1, . . . ,αr ∈ L serão LI sobre A se
e só se eles forem LI sobre K.

A finitude de uma extensão de anéis é uma propriedade transitiva, como mostra o lema abaixo:

Lema 1.7. Se C/B e B/A forem extensões finitas de anéis, então C/A também será finita.

Demonstração. (i) Pelas hipóteses, temos:

C = Bγ1 + · · ·+Bγm, para alguns γ1, . . . , γm ∈ C, e
B = Aβ1 + · · ·+Aβn, para alguns β1, . . . ,βn ∈ B.

Afirmamos que C =
∑m
i=1

∑n
j=1Aγiβj . De fato, a inclusão (⊇) é clara. Por outro lado, dado

c ∈ C, temos c = ∑m
i=1 biγi, para alguns b1, . . . , bm ∈ B. Agora, cada bi pode ser escrito como

bi =
∑n
j=1 aijβj , para alguns ai1, . . . , ain ∈ A. Então:

c =
m∑
i=1

biγi =
m∑
i=1

n∑
j=1

aijγiβj ,

o que mostra a outra inclusão. Assim, C é finitamente gerado como A-módulo, e portanto a
extensão C/A é finita.

1A notação MK normalmente é usada para denotar o K-espaço M ⊗A K, obtido de M por extensão
por escalares. Mas M ⊗AK ∼= (A \ {0})−1M , o que justifica a notação utilizada.
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Definamos agora o que é uma extensão integral, que é uma espécie de generalização de uma
extensão algébrica para o caso de anéis comutativos:

Definição (Elemento Integral/Extensão Integral). Sejam B/A uma extensão de anéis e β ∈ B.
Dizemos que β é integral sobre A se β satisfizer um polinômio mônico com coeficientes em A.

A extensão de anéis B/A será chamada de uma extensão integral se todo elemento de B
for integral sobre A. Nesse caso, dizemos também que B é integral sobre A.

Sejam B/A uma extensão de anéis e β ∈ B integral sobre A. Então β é raiz de um polinômio
mônico f(x) ∈ A[x]. Assim, existem a0, a1, . . . , an−1 ∈ A tais que

a0 + a1β + · · ·+ an−1β
n−1 + βn = 0⇒ βn = −a0 − a1β − · · · − an−1β

n−1.

A partir dessa relação, é fácil ver por indução que A[β] = A+Aβ + · · ·+Aβn−1, e portanto que
a extensão A[β]/A é finita. Assim:

Lema 1.8. Sejam B/A uma extensão de anéis e β ∈ B integral sobre A. Então A[β]/A é uma
extensão finita.

Com isso, conseguimos caracterizar as extensões finitas de A como sendo exatamente as ex-
tensões integrais finitamente geradas como A-álgebras:

Teorema 1.9. Seja B/A uma extensão de anéis. Então B/A será uma extensão finita se e só
se tivermos B = A[β1, . . . ,βn], para β1, . . . ,βn ∈ B integrais sobre A. Nesse caso, B será uma
extensão integral de A.

Demonstração. (⇒) Suponhamos que B/A seja uma extensão finita. Então

B = Aβ1 + · · ·+Aβn, para alguns β1, . . . βn ∈ B.

Como B é um anel, é claro que B = A[β1, . . . ,βn]. Seja β ∈ B qualquer. Consideremos a
função ϕ : B → B dada por ϕ(x) = βx. Então ϕ é um homomorfismo de A-módulos, e aplicando
o Teorema de Cayley-Hamilton generalizado para M = B, a = A e ϕ como acima nós garantimos
a existência de um polinômio χ(x) ∈ A[x] mônico tal que χ(ϕ) = 0. Escrevendo

χ(x) = a0 + a1x+ · · ·+ am−1x
m−1 + xm, com a0, a1, . . . , am−1 ∈ A,

temos que para todo b ∈ B vale χ(ϕ)(b) = 0. Em particular, χ(ϕ)(1) = 0, ou seja:

a0 + a1ϕ(1) + · · ·+ am−1ϕ
m−1(1) + ϕm(1) = 0

⇒ a0 + a1β + · · ·+ am−1β
m−1 + βm = 0.

Assim, χ(β) = 0, logo β é integral sobre A. Isso mostra que todo elemento de B é integral sobre
A. Em particular, β1, . . . ,βn são integrais sobre A, e como B = A[β1, . . . ,βn] obtemos o resultado
desejado.

(⇐) Suponhamos B = A[β1, . . . ,βn], onde β1, . . . ,βn ∈ B são integrais sobre A. Provaremos
por indução em n que B é extensão finita de A. Para n = 1 o resultado vale pelo Lema 1.8.
Suponhamos então o resultado válido para k− 1 ≥ 1, e provemos que ele também vale para k.

Notemos que A[β1, . . . ,βk] = A[β1, . . . ,βk−1][βk] é extensão finita de A[β1, . . . ,βk−1] pelo
Lema 1.8, já que βk é integral sobre A e portanto também é integral sobre A[β1, . . . ,βk−1] ⊇ A.
Pela hipótese de indução, A[β1, . . . ,βk−1]/A também é uma extensão finita. Assim, pelo Lema
1.7, a extensão A[β1, . . . ,βk]/A é finita, provando o que queŕıamos.

Como corolário desse teorema, conclúımos que a integrabilidade de extensões também é uma
propriedade transitiva:
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Lema 1.10. Se A ⊆ B ⊆ C, então C/A é uma extensão integral de anéis se e só se C/B e B/A
forem extensões integrais de anéis.

Demonstração. (⇒) É clara.

(⇐) Suponhamos que C/B e B/A sejam integrais. Seja α ∈ C. Então α satisfaz um polinômio
mônico com coeficientes em B, ou seja:

b0 + b1α+ · · ·+ bn−1α
n−1 + αn = 0, para alguns b0, b1, . . . , bn−1 ∈ B.

Assim, α é integral sobre A[b0, . . . , bn−1], logo pelo Teorema 1.9 o anel A[b0, . . . , bn−1,α] é
integral sobre A[b0, . . . , bn−1], e portanto a extensão A[b0, . . . , bn−1,α]/A[b0, . . . , bn−1] é finita.
Mas também por esse teorema, A[b0, . . . , bn−1] é extensão finita de A, já que por hipótese todo
elemento de B é integral sobre A.

Conclúımos do Lema 1.7 que a extensão A[b0, . . . , bn−1,α]/A é finita, e novamente do Teorema
1.9 conclúımos que α é integral sobre A. Sendo α ∈ C qualquer, provamos que C/A é integral.

Uma propriedade importante da integrabilidade de extensões, especialmente em Teoria de
Galois, é que ela se mantém sobre um homomorfismo de anéis. Sua demonstração é direta, sendo
portanto omitida aqui.

Proposição 1.11. Seja B uma extensão integral de A. Se T é um anel qualquer e σ : B → T é
um homomorfismo de anéis, então σ(B) é integral sobre σ(A).

Uma noção muito importante é a de fecho integral, que pode ser pensada como um análogo
à definição de fecho algébrico para extensões de anéis.

Definição (Fecho Integral). Seja B uma extensão de A. Então o fecho integral da extensão
B/A, denotado por AB, é definido por:

A
B := {β ∈ B : β é integral sobre A}.

O fecho integral de uma extensão é sempre um anel, como mostra o corolário abaixo:

Corolário 1.12. Se B é uma extensão de A, AB é um subanel de B que contém A. Além disso,
todo subanel R ⊇ A de B que é um A-módulo finitamente gerado está contido em A

B.

Demonstração. É claro que A ⊆ AB ⊆ B. Em particular, 0, 1,−1 ∈ AB. Assim, para vermos que
A
B é um anel basta mostrarmos que se α,β ∈ AB então α+β,αβ ∈ AB. Mas α+β,αβ ∈ A[α,β].

Como α e β são integrais sobre A, A[α,β]/A é integral pelo Teorema 1.9, logo α+ β e αβ são
integrais sobre A, e portanto estão em A

B, como gostaŕıamos.
Se R ⊆ B é um A-módulo finitamente gerado, então R/A é finito, logo pelo Teorema 1.9 a

extensão R/A é integral, ou seja, R ⊆ AB.

Esse resultado nos permite concluir, na verdade, que AB é a união de todos os A-submódulos
de B finitamente gerados.

Definição (Extensão Integralmente Fechada/Domı́nio Integralmente Fechado). Seja B/A uma
extensão de anéis. Dizemos que A é integralmente fechado sobre B se A

B
= A. Nesse

caso, ainda dizemos que a extensão B/A é integralmente fechada. Se A for um domı́nio
integralmente fechado sobre seu corpo de frações Q(A), dizemos que A é integralmente fechado,
ou ainda normal.

O corolário abaixo mostra que o nome fecho integral “faz sentido”: ele de fato se comporta
como um fecho.
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Corolário 1.13. Sejam A ⊆ R ⊆ B anéis. Então A
B ⊆ R

B. Além disso, A ⊆ A
B
= A

B
B

. Ou
seja, AB é integralmente fechado em B.

Demonstração. A única afirmação não-trivial é que AB
B

= A
B. Como a inclusão (⊇) é clara,

basta mostrarmos que AB
B

⊆ A
B. Se β ∈ A

B
B

, então A
B
[β]/AB é extensão integral. Como

A
B/A também é extensão integral, temos pelo Lema 1.10 que AB [β]/A é integral. Logo β é

integral sobre A, ou seja, β ∈ AB. Assim, AB
B

= A
B, como gostaŕıamos.

Um resultado simples, porém importante, é que todo domı́nio de fatoração única é integral-
mente fechado:

Teorema 1.14. Seja A um domı́nio de fatoração única. Então A é integralmente fechado.

Demonstração. Seja r/s ∈ Q(A) integral sobre A, com r, s ∈ A \ {0}. Como A é um DFU,
podemos supor r e s primos entre si. Então temos:

a0 + a1

(
r

s

)
+ · · ·+ an−1

(
r

s

)n−1
+

(
r

s

)n
= 0, para alguns a0, a1, . . . , an−1 ∈ A.

Multiplicando por sn, obtemos:

a0s
n + a1rs

n−1 + · · ·+ an−1r
n−1s+ rn = 0.

Então s | rn. Como r e s são primos entre si, devemos ter s ∈ A×, e portanto r/s ∈ A. Assim,
todo elemento de Q(A) integral sobre A é um elemento de A.

O fecho integral “comuta” com localizações:

Proposição 1.15. Seja B/A uma extensão de anéis, e seja S um subconjunto multiplicativo de
A. Então S−1A

S−1B
= S−1A

B. Em particular, B/A integral implica em S−1B/S−1A integral,
e B/A integralmente fechada implica em S−1B/S−1A integralmente fechada.

Demonstração. Podemos supor que 0 6∈ S. Senão, teŕıamos S−1A = S−1B = 0 e os resultados
seriam triviais.

(⊆) Seja x ∈ S−1A
S−1B. Escrevamos x = b/s, onde b ∈ B e s ∈ S. Como x satisfaz um

polinômio mônico em (S−1A)[x],

xn +
an−1
sn−1

xn−1 + · · ·+ a1
s1
x+

a0
s0

= 0, para alguns a0, . . . , an−1 ∈ A, s0, . . . , sn−1 ∈ S.

Então temos

bn

sn
+
an−1b

n−1

sn−1sn−1 + · · ·+ a1b

s1s
+
a0
s0

= 0.

Multiplicando por sns0s1 · · · sn−1, obtemos uma equação da forma

cnb
n + cn−1b

n−1 + · · ·+ c1b+ c0
1 = 0, onde c0, . . . , cn−1, cn ∈ A, cn = s0s1 · · · sn−1 ∈ S.

Então existe t ∈ S tal que

tcnb
n + tcn−1b

n−1 + · · ·+ tc1b+ tc0 = 0.

Para cada 0 ≤ i ≤ n, chamemos di = tci. Notemos que dn ∈ S, e que vale

dnb
n + dn−1b

n−1 + · · ·+ d1b+ d0 = 0.
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Multiplicando agora por dn−1
n :

(dnb)
n + dn−1(dnb)

n−1 + dn−2dn(dnb)
n−2 + · · ·+ d1d

n−2
n (dnb) + d0d

n−1
n = 0.

Denotemos y := dnb ∈ B. Então, pela equação acima:

yn + dn−1y
n−1 + dn−2dny

n−2 + · · ·+ d1d
n−2
n y+ d0d

n−1
n = 0,

portanto y ∈ AB. Assim, x = b/s = y/(dns) ∈ S−1A
B.

(⊇) Seja x ∈ S−1A
B. Então x = b/s, onde b ∈ AB, s ∈ S. Sabemos que temos

bn + an−1b
n−1 + · · ·+ a1b+ a0 = 0, para alguns a0, . . . , an−1 ∈ A.

Então, dividindo por sn:(
b

s

)n
+
an−1
s

(
b

s

)n−1
+ · · ·+ a1

sn−1

(
b

s

)
+
a0
sn

= 0,

ou seja,

xn +
an−1
s

xn−1 + · · ·+ a1
sn−1x+

a0
sn

= 0,

mostrando que x ∈ S−1A
S−1B.

Assim, temos S−1A
S−1B

= S−1A
B, como queŕıamos. As observações finais seguem direta-

mente desse resultado.

Se L/K for uma extensão de corpos, é fácil ver que o fecho integral KL coincide com o fecho
algébrico de K em L (o subcorpo de L dos elementos que são algébricos sobre K). Consideremos
agora um domı́nio A com corpo de frações K = Q(A), e uma extensão de corpos L/K. Então
temos uma relação entre o fecho integral AL e o fecho algébrico KL:

Teorema 1.16. Sejam A um domı́nio, K = Q(A) e L um corpo que é extensão de K. Então:

Q(A
L
) = (A \ {0})−1A

L
= K

L.

Em particular, temos Q(AL) = L se e só se L/K for uma extensão algébrica.

A demonstração desse resultado é direta, utilizando argumentos semelhantes aos da proposição
anterior.

Sendo A um anel, K = Q(A) e L/K extensão de corpos, parece razoável que, dado um
elemento α ∈ AL, o polinômio minimal Pα,K(x) ∈ K[x] esteja em A[x]. Porém, isso nem sempre
é verdade:

Exemplo 1.17. Seja A um domı́nio que não é integralmente fechado, e consideremos a extensão
Q(A)/A. Então existe α ∈ Q(A) \ A que é integral sobre A. Assim, f(α) = 0 para algum
f(x) ∈ A[x] mônico. É claro que f tem grau maior ou igual a 2, caso contrário teŕıamos α ∈ A.
Por outro lado, o polinômio minimal de α em Q(A) é x− α 6∈ A[x].

O exemplo acima mostra que uma condição necessária para garantirmos que a implicação
α ∈ A

L ⇒ Pα,K(x) ∈ A[x] seja verdadeira é que A seja integralmente fechado. De fato, essa
condição é também suficiente:

Teorema 1.18. Seja B/A uma extensão de domı́nios.

(a) Se f , g ∈ B[x] forem dois polinômios mônicos tais que fg ∈ AB [x], então f , g ∈ AB [x].
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(b) Sejam A um anel, K = Q(A) e L/K uma extensão de corpos. Então, para todo γ ∈ AL,
temos Pγ,K ∈ A

K
[x]. Em particular, se A for integralmente fechado, temos Pγ,K ∈ A[x].

Demonstração. (a) Seja Ω um fecho algébrico de Q(B). Então f e g se fatoram linearmente
em Ω[x], digamos f(x) = (x− α1) · · · (x− αm) e g(x) = (x− β1) · · · (x− βn), onde temos
α1, . . . ,αm,β1, . . . ,βn ∈ Ω. Desse modo:

fg(x) = (x− α1) · · · (x− αm)(x− β1) · · · (x− βn) ∈ A
B
[x].

Como α1, . . . ,αm,β1, . . . ,βn são ráızes do polinômio mônico fg ∈ AB [x], vemos que esses
elementos são integrais sobre AB, e portanto são também integrais sobre A, já que a extensão
A
B/A é integral. Assim, esses números pertencem a AΩ, e portanto

f(x) = (x− α1) · · · (x− αm) ∈ (A
Ω ∩B)[x] = A

B
[x], e

g(x) = (x− β1) · · · (x− βn) ∈ (A
Ω ∩B)[x] = A

B
[x].

(b) Como γ ∈ AL, temos f(γ) = 0 para algum f ∈ A[x] mônico. Sabemos que Pγ,K | f em
K[x], logo existe g ∈ K[x] tal que f = gPγ,K . Como f e Pγ,K são mônicos, g também deve
ser mônico, e como f ∈ A[x] ⊆ AK [x] segue do item (a) que Pγ,K ∈ A

K
[x].

1.3. Álgebras Étale, Traço e Norma
Nesta seção, estudaremos as álgebras étale. A noção de álgebra étale generaliza a de uma extensão
finita e separável de corpos, e tem a vantagem de ser “fechada por mudança de base”. Dada uma
extensão de corpos K ′/K e um K-espaço vetorial V , podemos considerar o K ′-espaço V ⊗K K ′,
dado por extensão de escalares. Mesmo se V for um corpo, é posśıvel que V ⊗K K ′ não seja um
corpo. Mas como veremos, se V for uma K-álgebra étale, V ⊗K K ′ será uma K ′-álgebra étale de
mesma dimensão.

Também definiremos noções importantes de extensões de corpos, as noções de polinômio ca-
racteŕıstico, traço e norma, e provaremos suas propriedades básicas.

Definição (Álgebra Étale). Seja K um corpo. Uma álgebra étale sobre K é uma K-álgebra L
que é isomorfa a um produto direto finito de extensões finitas e separáveis de corpos com base
em K. Isto é, existem extensões finitas e separáveis L1, . . . ,Lm de K tais que L ∼= L1 × · · · ×Lm
como uma K-álgebra. A dimensão dimK L de uma K-álgebra étale L é igual à sua dimensão
como um K-espaço.

Note que se L ∼= L1 × · · · × Lm então dimK L = dimK L1 + · · ·+ dimK Lm, de modo que a
dimensão de uma álgebra étale é sempre finita.

Exemplo 1.19. Se K for um corpo separavelmente fechado, toda álgebra étale sobre K é isomorfa
a Kn para algum n inteiro positivo.

Veremos agora que as álgebras étale de fato são “fechadas por mudança de base”, e mais do
que isso, que a mudança de base preserva dimensões:

Proposição 1.20. Seja L uma K-álgebra étale, e seja K ′/K uma extensão de corpos qualquer.
Então L⊗K K ′ é uma K ′-álgebra étale e nós temos dimK′(L⊗K K ′) = dimLK.
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Demonstração. Suponhamos L ∼=
∏m
i=1 Li. Cada Li/K é uma extensão finita e separável, e

portanto Li = K(αi) para algum αi ∈ Li. Chamando de fi(x) ∈ K[x] o polinômio minimal de αi
sobre K, temos fi(x) irredut́ıvel e separável. Suponhamos que a fatoração de fi em irredut́ıveis
de K ′[x] seja fi = fi1 · · · firi . Esses irredut́ıveis são distintos dois a dois, pela separabilidade de
fi. Assim, pelo Teorema Chinês dos Restos, temos um isomorfismo de K ′-álgebras:

Li ⊗K K ′ ∼=
K[x]

〈fi(x)〉
⊗K K ′ ∼=

K ′[x]

〈fi(x)〉
∼=

ri∏
j=1

K ′[x]

〈fij(x)〉
.

Desse modo, nós temos:

L⊗K K ′ ∼=
(
m∏
i=1

Li

)
⊗K K ′ ∼=

m∏
i=1

(Li ⊗K K ′) ∼=
m∏
i=1

ri∏
j=1

K ′[x]

〈fij(x)〉
,

o que mostra que L⊗K K ′ é uma álgebra étale, de dimensão
m∑
i=1

ri∑
j=1

∂ fij =
m∑
i=1

∂ fi =
m∑
i=1

dimK Li = dimK L,

como queŕıamos.

Como corolário da demonstração da proposição acima nós temos, no caso de L/K ser uma
extensão separável de corpos:

Corolário 1.21. Seja L ∼= K[x]/〈f(x)〉 uma extensão finita e separável de um corpo K, definida
por um polinômio separável irredut́ıvel f(x) ∈ K[x]. Seja K ′/K uma extensão de corpos qualquer,
e seja f(x) = f1(x) · · · fr(x) a fatoração de f em polinômios irredut́ıveis de K ′[x]. Então nós
temos um isomorfismo canônico de K ′-álgebras étale

L⊗K K ′ ∼=
r∏
j=1

K ′[x]

〈fj(x)〉
.

No caso em que o corpo para o qual estendemos escalares é separavelmente fechado, temos
uma fórmula para calcular essa extensão:

Proposição 1.22. Sejam K um corpo, L uma K-álgebra étale e Ω uma extensão de K separa-
velmente fechada. Então temos um isomorfismo de Ω-álgebras étale:

L⊗K Ω ∼=
∏

σ∈HomK (L,Ω)

Ω,

dado por β ⊗ 1 7→ (σ(β)), para todo β ∈ L, onde aqui HomK(L, Ω) denota os homomorfismos de
K-álgebras entre L e Ω.

Demonstração. Sendo L ∼=
∏m
i=1 Li, nós temos HomK(L, Ω) ∼=

∏m
i=1 HomK(Li, Ω). Como temos

que L⊗K Ω ∼=
∏m
i=1(Li ⊗K Ω), podemos supor sem perda de generalidade que L é um corpo,

e portanto uma extensão finita e separável de K. Então temos L ∼= K[x]/〈f(x)〉, para algum
polinômio irredut́ıvel e separável f(x) ∈ K[x].

Como Ω é separavelmente fechado, f se decompõe em fatores lineares de Ω[x], digamos f(x) =
(x−α1) · · · (x−αn), com α1, . . . ,αn ∈ Ω distintos dois a dois. Dado σ ∈ HomK(K[x]/〈f(x)〉, Ω),
temos f(σ(x)) = σ(f(x)) = 0. Assim, σ(x) = αj para algum 1 ≤ j ≤ n. Note que isso determina
completamente σ. Reciprocamente, para cada 1 ≤ j ≤ n a avaliação K[x]→ Ω dada por x 7→ αj
se anula em 〈f(x)〉, e portanto induz um homomorfismo σj : K[x]/〈f(x)〉 → Ω, dado por x 7→ αj .
Logo HomK(K[x]/〈f(x)〉, Ω) = {σ1, . . . ,σn}.
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Temos então uma sequência de isomorfismos canônicos de Ω-álgebras:

K[x]

〈f(x)〉
⊗K Ω ∼=

Ω[x]

〈f(x)〉
∼=

n∏
j=1

Ω[x]

〈x− αj〉
∼=

n∏
j=1

Ω,

e é fácil verificar que os isomorfismos acima levam x⊗ 1 7→ (α1, . . . ,αn) = (σ1(x), . . . ,σn(x)).
Sendo este um isomorfismo de álgebras, vemos que para todo p(x) ∈ K[x] nós temos

p(x)⊗ 1 7→ (p(σ1(x)), . . . , p(σn(x))) = (σ1(p(x)), . . . ,σn(p(x))).

Via L ∼= K[x]/〈f(x)〉, obtemos um isomorfismo L⊗K Ω →
∏n
j=1 Ω =

∏
σ∈HomK (L,Ω) Ω entre

Ω-álgebras que satisfaz β ⊗ 1 7→ (σ(β)) para todo β ∈ L, como queŕıamos.

Exemplo 1.23. Consideremos a extensão de corpos Q(i)/ Q. Os únicos homomorfismos de
corpos Q(i) → C são a identidade e a conjugação complexa. Assim, pela proposição acima,
vemos que Q(i)⊗Q C ∼= C×C, com isomorfismo dado por (a+ bi)⊗ 1 7→ (a+ bi, a− bi).

Nosso próximo objetivo é definir os conceitos de polinômio caracteŕıstico, traço e norma para
álgebras étale. A definição, de fato, se generaliza para extensões livres de anéis de posto finito:

Definição (Polinômio Caracteŕıstico, Traço e Norma). Sejam A um anel e B uma extensão de
A que é uma A-álgebra livre de posto finito. Dado b ∈ B qualquer, definimos o polinômio
caracteŕıstico Fb,B/A(x) ∈ A[x], a norma NB/A(b) ∈ A e o traço TrB/A(b) ∈ A como sendo
respectivamente o polinômio caracteŕıstico, o determinante e o traço do operador Tb : B → B de
multiplicação por b. Estando claros B e A, denotaremos apenas Fb(x), N(b) e Tr(b).

Temos as seguintes propriedades básicas:

Proposição 1.24. Seja A um anel e seja B/A uma extensão livre de posto finito n.

(a) TrB/A : B → A é um homomorfismo de A-módulos e NB/A : B → A é multiplicativa, e
induz um homomorfismo de grupos NB/A : B× → A×. Assim, dados b1, b2 ∈ B e a ∈ A,
temos Tr(ab1 + b2) = aTr(b1) + Tr(b2) e N(b1b2) = N(b1)N(b2).

(b) Seja b ∈ B qualquer. Então ∂ Fb = n, e escrevendo Fb(x) = a0 +a1x+ · · ·+an−1x
n−1 +xn,

com a0, a1, . . . , an−1 ∈ A, temos Tr(b) = −an−1 e N(b) = (−1)na0.

(c) Seja a ∈ A qualquer. Então Tr(a) = na e N(a) = an.

(d) Seja C/A outra extensão livre de posto finito. Então B × C/A também é uma extensão
livre de posto finito, e dado α = (b, c) ∈ B ×C qualquer nós temos:

Fα,B×C/A(x) = Fb,B/A(x) · Fc,C/A(x),
NB×C/A(α) = NB/A(b) ·NC/A(c),
TrB×C/A(α) = TrB/A(b) + TrC/A(c).

Demonstração. (a) Dados b1, b2 ∈ B e a ∈ A, temos Tab1+b2 = aTb1 + Tb2 , e tomando traços
obtemos Tr(ab1 + b2) = aTr(b1) + Tr(b2), mostrando a linearidade do traço. Temos ainda
Tb1b2 = Tb1Tb2 , e portanto tomando o determinante obtemos N(b1b2) = N(b1)N(b2). Logo
a norma é multiplicativa. Assim, se u ∈ B×, N(u)N(u−1) = N(1) = 1n = 1 pelo item (c),
de modo que N(u) ∈ A×.

(b) Segue diretamente das definições de polinômio caracteŕıstico, traço e norma e de resultados
da álgebra linear.
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(c) Seja {β1, . . . ,βn} uma base de B/A. Como a ∈ A, a matriz de multiplicação por a nessa
base é uma matriz diagonal com todas as entradas a. Assim, é claro que seu traço é na e
seu determinante é an, de onde obtemos o que queŕıamos.

(d) Sejam {β1, . . . ,βm} e {γ1, . . . , γn} bases de B e C como A-módulos, respectivamente. Então
(β1, 0), . . . , (βm, 0), (0, γ1), . . . , (0, γn) formam uma base de B ×C como A-módulo. A ma-
triz de Tα em relação a essa base é uma matriz por blocos diagonal 2× 2, sendo um bloco
correspondente a Tb : B → B e o outro a Tc : C → C. Com isso, é fácil ver que valem as
igualdades desejadas.

O polinômio caracteŕıstico, a norma e o traço se comportam bem com extensão de escalares:

Proposição 1.25. Seja B/A uma extensão livre de posto finito n, e seja ϕ : A→ A′ um homo-
morfismo de anéis. Então o A′-módulo B′ = B ⊗A A′ é livre de posto n, e para todo b ∈ B nós
temos:

Fb⊗1,A′/B′(x) = ϕ(Fb,B/A(x)),
NB′/A′(b⊗ 1) = ϕ(NB/A(b)),
TrB′/A′(b⊗ 1) = ϕ(TrB/A(b)).

Demonstração. Seja {β1, . . . ,βn} uma base de B/A. Então {β1 ⊗ 1, . . . ,βn ⊗ 1} é uma base de
B′/A′. Seja b ∈ B qualquer, e seja M = (mij) ∈ Mn×n(A) a matriz de Tb na base {β1, . . . ,βn}.
Assim, para 1 ≤ j ≤ n temos βjb =

∑n
i=1mijβi. Agora:

(βj ⊗ 1)(b⊗ 1) = βjb⊗ 1 =

(
n∑
i=1

mijβi

)
⊗ 1 =

n∑
i=1

ϕ(mij)(βi ⊗ 1).

Isso mostra que a matriz de Tb⊗1 na base {β1 ⊗ 1, . . . ,βn ⊗ 1} é M ′ = (ϕ(mij)) ∈ Mn×n(A′).
Assim:

Fb⊗1,B′/A′(x) = det(x Id−M ′) = det(x Id−ϕ(M)) = ϕ(det(x Id−M)) = ϕ(Fb,B/A(x)),
NB′/A′(b⊗ 1) = detM ′ = detϕ(M) = ϕ(detM) = ϕ(NB/A(b)),
TrB′/A′(b⊗ 1) = TrM ′ = Trϕ(M) = ϕ(TrM) = ϕ(TrB/A(b)).

Voltando ao caso de álgebras étale, nós temos:

Teorema 1.26. Seja K um corpo com fecho separável Ω, e seja L uma K-álgebra étale. Então
para todo α ∈ L nós temos:

Fα,L/K(x) =
∏

σ∈HomK (L,Ω)

(x− σ(α)),

NL/K(α) =
∏

σ∈HomK (L,Ω)

σ(α),

TrL/K(α) =
∑

σ∈HomK (L,Ω)

σ(α).
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Demonstração. Seja n = dimK L, e sejam σ1, . . . ,σn os elementos de HomK(L, Ω). Então, pelas
Proposições 1.22, 1.24 e 1.25, nós temos:

Fα,L/K(x) = Fα⊗1,L⊗KΩ/Ω(x) = F(σ1(α),...,σn(α)),Ωn/Ω(x) =
n∏
j=1

(x− σj(α)),

NL/K(α) = N(L⊗KΩ)/Ω(α⊗ 1) = NΩn/Ω(σ1(α), . . . ,σn(α)) =
n∏
j=1

σj(α)

TrL/K(α) = Tr(L⊗KΩ)/Ω(α⊗ 1) = TrΩn/Ω(σ1(α), . . . ,σn(α)) =
n∑
j=1

σj(α),

uma vez que o polinômio caracteŕıstico, a norma e o traço são preservados por extensão de escalares
(1.25), L⊗K Ω ∼= Ωn por um isomorfismo de Ω-álgebras que leva α⊗ 1 em (σ1(α), . . . ,σn(α))
(1.22), o polinômio caracteŕıstico, a norma e o traço se comportam bem com produtos (1.24 item
(d)) e cada σj(α) possui polinômio caracteŕıstico, norma e traço em relação à extensão Ω/Ω
iguais a x− σj(α), σj(α) e σj(α), respectivamente.

Consideremos agora o caso em que L/K é uma extensão finita de corpos. Nesse caso, a cada
α ∈ L nós podemos associar, além do seu polinômio caracteŕıstico Fα(x) ∈ K[x], seu polinômio
minimal Pα(x) ∈ K[x]. Esses polinômios são relacionados da seguinte forma:

Proposição 1.27. Seja L/K uma extensão finita de corpos de grau n, e seja α ∈ L. Sendo
m = [L : K(α)], nós temos Fα,L/K(x) = Pα,K(x)m. Em particular, Fα,L/K(α) = 0. Além disso,
escrevendo

Pα,K(x) = a0 + a1x+ · · ·+ a`−1x
`−1 ∈ K[x],

temos NL/K(α) = (−1)nam0 e TrM/K(α) = −ma`−1.

Demonstração. Seja ` = [K(α) : K]. Então 1,α, . . . ,α`−1 formam uma base de K(α)/K. Seja
{β1, . . . ,βm} uma base de L/K(α). Então sabemos que os m` = n elementos

β1,β1α, . . . ,β1α
`−1,β2,β2α, . . . ,β2α

`−1, . . . ,βm,βmα, . . . ,βmα`−1

formam uma base da extensão L/K. É fácil ver que a matriz de multiplicação por α com
relação a essa base pode ser vista como uma matriz diagonal m×m em blocos de tamanho `× `,
sendo todos os blocos da diagonal iguais à matriz companheira de Pα. Com isso, é fácil ver que
Fα(x) = Pα(x)m, como queŕıamos. Agora, notemos que o coeficiente independente de Fα(x) é
am0 , de modo que pela Proposição 1.24 nós temos N(α) = (−1)nam0 . Além disso, o coeficiente de
xn−1 é ma`−1, de modo que pela mesma proposição nós temos Tr(α) = −ma`−1.

Para obter informações sobre extensões de corpos a partir do que fizemos para álgebras étale,
notemos que, sendo L/K uma extensão finita de corpos e Ω um fecho separável de K, o conjunto
HomK(L, Ω) dos homomorfismos de K-álgebras de L em Ω nada mais é do que o conjunto das
K-imersões de L em Ω. Assim, no caso de L/K ser separável, nós obtemos como consequência
direta do Teorema 1.26 o seguinte resultado, que permite calcular o polinômio caracteŕıstico, o
traço e a norma de um elemento de L a partir de seus conjugados:

Corolário 1.28. Seja L/K uma extensão finita e separável de corpos de grau n, e seja Ω um
fecho separável de K que contém L. Sejam σ1, . . . ,σn : L→ Ω todas as K-imersões de L em Ω.



20 CAPÍTULO 1. EXTENSÕES DE ANÉIS

Então para todo α ∈ L nós temos:

Fα,L/K(x) =
n∏
j=1

(x− σj(α));

NL/K(α) =
n∏
j=1

σj(α);

TrL/K(α) =
n∑
j=1

σj(α).

O traço e a norma em extensões de corpos também têm propriedades transitivas:

Proposição 1.29. Seja M/L/K uma torre de extensões finitas de corpos. Então:

NM/K = NL/K ◦NM/L,
TrM/K = TrL/K ◦TrM/L .

Demonstração. Sejam m = [M : L] e n = [L : K]. Fixemos bases {α1, . . . ,αn} de L/K e
{β1, . . . ,βm} de M/L. Então os elementos

α1β1,α2β1, . . . ,αnβ1, . . . ,α1βm,α2βm, . . . ,αnβm

formam uma base de M/K. Seja γ ∈ M . Comecemos considerando o caso em que γ ∈ L.
Nesse caso, a matriz de multiplicação por γ em M nessa base é uma matriz m×m por blocos de
tamanho n× n, diagonal e cujos blocos na diagonal são todos iguais à matriz A de multiplicação
por γ em L com relação à base {α1, . . . ,αn}. Assim:

NM/K(γ) = (detA)m = (NL/K(γ))
m = NL/K(γ

m) = NL/K(NM/L(γ)), e
TrM/K(γ) = m(TrA) = mTrL/K(γ) = TrL/K(mγ) = TrL/K(TrM/L(γ)),

pelo item (c) da Proposição 1.24. Suponhamos agora que M = L(γ). Nesse caso, podemos tomar
βj = γj−1, para 1 ≤ j ≤ m. Assim, temos uma base de M/K formada pelos elementos

α1,α2, . . . ,αn, . . . ,α1γ,α2γ, . . . ,αnγ, . . . ,α1γ
m−1,α2γ

m−1, . . . ,αnγm−1.

Notemos que a matriz de multiplicação por γ nessa base é igual a uma matriz m×m por blocos
de tamanho n× n da forma: 

0 0 · · · 0 −A0
Id 0 · · · 0 −A1
0 Id · · · 0 −A2
...

... . . . ...
...

0 0 · · · Id −Am−1

 ,

cujo determinante é (−1)mn detA0 e cujo traço é −TrAm−1. Denotemos

Pγ,L(x) = c0 + c1x+ · · ·+ cm−1x
m−1 + xm ∈ L[x].

Então γm = −c0 − c1γ − · · · − cm−1γ
m−1, e vemos que cada matriz Ai é igual à matriz do ope-

rador Tci : L → L com relação à base {α1, . . . ,αn} de L/K. Desse modo, detA0 = NL/K(c0)
e TrAm−1 = TrL/K(cm−1). Além disso, pela Proposição 1.27 nós temos TrM/L(γ) = −cm−1 e
NM/L(γ) = (−1)mc0. Portanto:

NM/K(γ) = (−1)mn detA0 = (−1)mnNL/K(c0) = NL/K((−1)mc0) = NL/K(NM/L(γ)), e
TrM/K(γ) = −TrAm−1 = −TrL/K(cm−1) = TrL/K(−cm−1) = TrL/K(TrM/L(γ)).
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Finalmente, consideremos o caso geral, isto é, γ ∈ M qualquer. Nesse caso, pelos resultados já
demonstrados, nós temos:

NM/K(γ) = NL(γ)/K(NM/L(γ)(γ)) = NL(γ)/K(γ
[M :L(γ)]) = NL(γ)/K(γ)

[M :L(γ)]

= NL/K(NL(γ)/L(γ))
[M :L(γ)]

= NL/K(NL(γ)/L(γ
[M :L(γ)]))

= NL/K(NM/L(γ)).

Assim, NM/K = NL/K ◦NM/L. Similarmente, temos:

TrM/K(γ) = TrL(γ)/K(TrM/L(γ)(γ)) = TrL(γ)/K([M : L(γ)]γ) = [M : L(γ)]TrL(γ)/K(γ)
= [M : L(γ)]TrL/K(TrL(γ)/L(γ))
= TrL/K(TrL(γ)/L([M : L(γ)]γ))
= TrL/K(TrM/L(γ)).

Assim, TrM/K = TrL/K ◦TrM/L. Isso conclui a demonstração.

Devido ao Teorema 1.18, nós conseguimos obter diversas informações sobre o polinômio ca-
racteŕıstico, o polinômio minimal, o traço e a norma de elementos em uma extensão integral de
um domı́nio integralmente fechado:

Corolário 1.30. Sejam A um domı́nio integralmente fechado, K = Q(A), L uma extensão finita
de K de grau n e B um subanel de AL que contém A. Então, para todo γ ∈ B, temos:

(a) Pγ,K ∈ A[x], Fγ,L/K ∈ A[x], NL/K(γ) ∈ A e TrL/K(γ) ∈ A.

(b) NL/K(γ) é um múltiplo de γ em B.

(c) γ ∈ B× se e só se NL/K(γ) ∈ A×.

(d) Se NL/K(γ) for irredut́ıvel em A, então γ será irredut́ıvel em B.

(e) Se α,β ∈ B forem associados em B, então NL/K(α) e NL/K(β) serão associados em A.

Demonstração. Se γ = 0, os resultados são óbvios. Suponhamos então γ 6= 0, e seja n = [L : K].

(a) Temos que Pγ ∈ A[x] pelo Teorema 1.18. Pela Proposição 1.27, Fγ é uma potência de Pγ ,
e portanto esse polinômio também está em A[x] pelo Teorema 1.18. Consequentemente, a
norma e o traço de γ estão em A, já que são, a menos de sinal, coeficientes de Fγ .

(b) Temos Fγ(γ) = 0. Escrevamos Fγ(x) = a0 +a1x+ · · ·+an−1x
n−1 +xn, onde a0, . . . , an−1 ∈

A. Então 0 = Fγ(γ) = a0 + a1γ + · · ·+ an−1γ
n−1 + γn, o que mostra que γ | a0 em B.

Mas a0 = (−1)nN(γ), logo γ | N(γ) em B, como gostaŕıamos.

(c) Pelo item (b), γ | N(γ) em B, assim N(γ) ∈ A× ⇒ γ ∈ B×. Por outro lado, se γ ∈ B×,
então γ−1 ∈ B, e γγ−1 = 1 ⇒ N(γ)N(γ−1) = N(1) = 1n = 1. Como N(γ),N(γ−1) ∈ A
pelo item (a), conclúımos que N(γ) ∈ A×.

(d) Se γ for redut́ıvel em B, teremos γ = αβ, para alguns α,β ∈ B \ B×, e então temos
N(γ) = N(α)N(β). Pelo item (c), conclúımos que N(α),N(β) ∈ A \A×, o que mostra
que N(γ) não será irredut́ıvel em A nesse caso.

(e) Sendo α e β associados em B, existe u ∈ B× tal que α = uβ. Então N(α) = N(u)N(β).
Pelo item (c), N(u) ∈ A×, e portanto N(α) e N(β) são associados em A, como desejávamos.
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1.4. Discriminante e Base Integral
Outra noção importante no estudo de extensões finitas de corpos é a de discriminante:

Definição (Discriminante de uma n-upla). Seja L/K uma extensão finita de grau n. Dados
α1, . . . ,αn ∈ L, o discriminante da n-upla (α1, . . . ,αn) é definido por:

∆L/K(α1, . . . ,αn) = det(TrL/K(αiαj)) ∈ K.

Quando a extensão L/K estiver clara, indicaremos o discriminante de α1, . . . ,αn simplesmente
por ∆(α1, . . . ,αn).

O discriminante se comporta bem por transformações lineares:

Proposição 1.31. Sejam α1, . . . ,αn, γ1, . . . , γn ∈ L, e suponhamos que, para 1 ≤ i ≤ n, nós
tenhamos γi =

∑n
j=1 cijαj , onde ci1, . . . , cin ∈ K. Então

∆L/K(γ1, . . . , γn) = (det(cij))2∆L/K(α1, . . . ,αn).

Em particular, se α1, . . . ,αn formarem uma base de L/K e se T : Ln → Ln for um operador
K-linear, teremos:

∆L/K(T (α1, . . . ,αn)) = (detT )2∆L/K(α1, . . . ,αn).

Demonstração. Notemos que, para 1 ≤ i, j ≤ n, temos

γiγj =

(
n∑
r=1

cirαr

)(
n∑
s=1

cjsαs

)
=

n∑
r=1

n∑
s=1

circjsαrαs.

Tomando o traço, obtemos Tr(γiγj) =
∑n
r=1

∑n
s=1 circjs Tr(αrαs). Desse modo, temos a

igualdade de matrizes (Tr(γiγj)) = (cij)(Tr(αiαj))(cij)ᵀ. Tomando o determinante, obtemos a
igualdade desejada.

Consideremos a partir de agora L/K separável. Então temos exatamente n K-imersões de
L, e podemos escrever o traço de um elemento em função dessas imersões. Denotaremos por
σ1, . . . ,σn tais imersões. Essas imersões também podem ser usadas no cálculo do discriminante:

Proposição 1.32. Sejam α1, . . . ,αn ∈ L quaisquer. Então ∆L/K(α1, . . . ,αn) = (det(σi(αj)))2.

Demonstração. Sabemos que, para 1 ≤ i, j ≤ n, vale

Tr(αiαj) =
n∑
r=1

σr(αiαj) =
n∑
r=1

σr(αi)σr(αj).

Então temos a igualdade de matrizes (Tr(αiαj)) = (σi(αj))ᵀ(σi(αj)). Tomando o determinante,
obtemos a igualdade desejada.

A partir disso podemos também, fixado um elemento α ∈ L, associar o discriminante da n-upla
(1,α, . . . ,αn−1) com o discriminante de seu polinômio caracteŕıstico. Lembremos da definição de
discriminante de um polinômio:

Definição (Discriminante de um Polinômio). Seja f(x) ∈ K[x] um polinômio mônico de grau
n, e sejam α1, . . . ,αn as n ráızes de f num fecho algébrico Ω, contadas com as respectivas
multiplicidades. Então o discriminante de f , denotado por ∆(f), é definido como sendo:

∆(f) :=
∏

1≤i<j≤n
(αi − αj)2.
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Proposição 1.33. Seja α ∈ L qualquer. Então temos:

∆L/K(1,α, . . . ,αn−1) =
∏

1≤i<j≤n
(σj(α)− σi(α))2 = ∆(Fα,L/K)

= (−1)(
n
2)NL/K(F

′
α,L/K(α)),

onde F ′α,L/K denota a derivada formal do polinômio Fα,L/K .

Demonstração. Pela proposição acima, temos

∆(1,α, . . . ,αn−1) = (det(σi(αj−1)))2 = (det(σi(α)j−1))2.

Mas a matriz (σi(α)j−1) é uma matriz de Vandermonde, logo seu determinante é

det(σi(α)j−1) =
∏

1≤i<j≤n
(σj(α)− σi(α)).

Disto segue a primeira igualdade. Por outro lado, a igualdade∏
1≤i<j≤n

(σj(α)− σi(α))2 = ∆(Fα)

segue diretamente da definição do discriminante de um polinômio e do fato de que Fα(x) =∏n
i=1(x− σj(α)). Finalmente, mostremos a última igualdade. Pela regra de Leibniz, temos

F ′α(x) =
n∑
j=1

(x− σ1(α)) · · · ̂(x− σj(α)) · · · (x− σn(α)).

Assim, para 1 ≤ i ≤ n nós temos:

F ′α(σi(α)) =
n∑
j=1

(σi(α)− σ1(α)) · · · ̂(σi(α)− σj(α)) · · · (σi(α)− σn(α))

= (σi(α)− σ1(α)) · · · ̂(σi(α)− σi(α)) · · · (σi(α)− σn(α)).

Desse modo:

N(F ′α(α)) =
n∏
i=1

σi(F
′
α(α)) =

n∏
i=1

F ′α(σi(α))

=
n∏
i=1

[(σi(α)− σ1(α)) · · · ̂(σi(α)− σi(α)) · · · (σi(α)− σn(α))]

=
∏

1≤i<j≤n
(−1)1+2+···+(n−1)(σi(α)− σj(α))2

=
∏

1≤i<j≤n
(−1)(

n
2)(σi(α)− σj(α))2

= (−1)(
n
2)∆(Fα).

Finalmente, obtemos que ∆(Fα) = (−1)(
n
2)N(F ′α(α)), como queŕıamos.

Com o resultado acima, conseguimos mostrar que o discriminante é uma espécie de “determi-
nante” no sentido de que ele determina se uma n-upla de L forma uma base da extensão L/K:

Teorema 1.34. Sejam β1, . . . ,βn ∈ L. Então ∆L/K(β1, . . . ,βn) 6= 0 se e só se {β1, . . . ,βn} for
uma base de L/K.
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Demonstração. Tomemos α ∈ L elemento primitivo da extensão L/K. Como cada K-imersão de
L é determinada inteiramente por α, temos σ1(α), . . . ,σn(α) distintos dois a dois. Isso mostra,
pela proposição acima, que ∆(1,α, . . . ,αn−1) 6= 0. Como {1,α, . . . ,αn−1} é uma base de L/K,
existe uma única transformação K-linear T : Ln → Ln tal que T (1,α, . . . ,αn−1) = (β1, . . . ,βn),
e {β1, . . . ,βn} será uma base de L/K se e só se detT 6= 0. Pela Proposição 1.31, temos

∆(β1, . . . ,βn) = (detT )2∆(1,α, . . . ,αn−1),

de onde segue o resultado desejado.

Nosso objetivo agora é associar uma base {β1, . . . ,βn} de L/K a uma base dual {β′1, . . . ,β′n},
que satisfaça Tr(βiβ′j) = δij , para todos 1 ≤ i, j ≤ n. Isso será uma consequência do seguinte
lema:

Lema 1.35. Seja {β1, . . . ,βn} uma base de L/K. Para quaisquer c1, . . . , cn ∈ K, existe um único
α ∈ L que satisfaz TrL/K(βiα) = ci, para todo 1 ≤ i ≤ n.

Demonstração. Seja α =
n∑
j=1

ajβj , onde a1, . . . , an ∈ K. Então, para 1 ≤ i ≤ n, temos:

βiα =
n∑
j=1

ajβiβj ⇒ Tr(βiα) =
n∑
j=1

aj Tr(βiβj).

Assim, procuramos a1, . . . , an ∈ K tais que
Tr(β2

1) Tr(β1β2) . . . Tr(β1βn)
Tr(β2β1) Tr(β2

2) . . . Tr(β2βn)
...

... . . . ...
Tr(βnβ1) Tr(βnβ2) . . . Tr(β2

n)



a1
a2
...
an

 =


c1
c2
...
cn

 .

Como det(Tr(βiβj)) = ∆(β1, . . . ,βn) 6= 0 pelo Teorema 1.34, o sistema acima tem uma única
solução (a1, . . . , an) ∈ Kn, o que mostra que existe um único α ∈ L satisfazendo as condições do
enunciado.

Teorema 1.36. Seja {β1, . . . ,βn} uma base de L/K. Então existe uma única base {β′1, . . . ,β′n}
de L/K tal que, para todos 1 ≤ i, j ≤ n, valha Tr(βiβ′j) = δij. Além disso, para todo α ∈ L
temos:

α =
n∑
j=1

TrL/K(βjα)β
′
j .

A base {β′1, . . . ,β′n} é chamada de base dual da base {β1, . . . ,βn}.

Demonstração. A existência e a unicidade dos elementos β′1, . . . ,β′n ∈ L seguem do lema acima.
Seja agora α =

n∑
j=1

ajβ
′
j , onde a1, . . . , an ∈ K. Então, para 1 ≤ i ≤ n, temos:

Tr(βiα) =
n∑
j=1

aj Tr(βiβ′j) =
n∑
j=1

ajδij = ai.

Assim, α =
∑n
j=1 Tr(βjα)β′j . Em particular, se α = 0, temos a1 = a2 = · · · = an = 0, logo

{β′1, . . . ,β′n} é um conjunto LI e portanto uma base de L/K. Portanto, todo α ∈ L pode ser
escrito na forma acima.
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Suponhamos a partir de agora que A seja um domı́nio integralmente fechado com corpo de
frações K = Q(A) e que L seja uma extensão finita e separável de K de grau n. Chamemos
B = A

L. Se {γ1, . . . , γn} for uma base de L/K, então é claro que para todo d ∈ A \ {0} o
conjunto {dγ1, . . . , dγn} é também uma base de L/K. Pelo Teorema 1.16, L = (A \ {0})−1B.
Assim, podemos tomar d de forma que cada dγi esteja em B. Isso mostra que podemos escolher
uma base {β1, . . . ,βn} de L/K com β1, . . . ,βn ∈ B.

Teorema 1.37. Suponhamos que β1, . . . ,βn ∈ B formem uma base de L/K, e que {β′1, . . . ,β′n}
seja sua base dual. Então B está entre dois A-módulos livres de posto n:

Aβ1 + · · ·+Aβn ⊆ B ⊆ Aβ′1 + · · ·+Aβ′n.

Em particular, se A for um anel noetheriano então B será um A-módulo finitamente gerado, e
portanto um anel noetheriano.

Demonstração. {β1, . . . ,βn} e {β′1, . . . ,β′n} são conjuntos LI sobre K = Q(A), logo também são
LI sobre A pela Proposição 1.6. Isso mostra que os módulos indicados são de fato A-módulos
livres de posto n.

Como cada βi ∈ B, é claro que Aβ1 + · · ·+Aβn ⊆ B. Por outro lado, se α ∈ B nós temos,
para 1 ≤ j ≤ n, βjα ∈ B. Então, pelo item (a) do Corolário 1.30, temos Tr(βjα) ∈ A. Assim, pelo
teorema acima, α =

∑n
j=1 Tr(βjα)β′j ∈ Aβ′1 + · · ·+Aβ′n, mostrando as desigualdades desejadas.

Suponhamos agora A noetheriano. Então Aβ′1 + · · ·+Aβ′n, sendo finitamente gerado, é um
A-módulo noetheriano. Sendo B um A-submódulo desse módulo, vemos que B também é um
A-módulo noetheriano. Como os ideais de B são A-submódulos, é fácil ver que B é um anel
noetheriano.

No caso em que A é um DIP, podemos concluir de fato que B é um A-módulo livre de posto
n. Para isso, recordemos alguns resultados de módulos livres sobre domı́nios de ideais principais,
cujas demonstrações podem ser encontradas na Seção I.5 de [1]:

Teorema 1.38. Sejam A um DIP, M um A-módulo livre de posto n e M ′ um submódulo de M .
Então:

(a) M ′ é um A-módulo livre de posto q ≤ n.

(b) Existem uma base {β1, . . . ,βn} de M e elementos a1, . . . , aq ∈ A tais que a1 | a2 | · · · | aq e
{a1β1, . . . , aqβq} é uma base de M ′. Além disso, temos um isomorfismo de A-módulos:

M/M ′ ∼= A/(a1A)× · · · ×A/(aqA)×A× · · · ×A︸ ︷︷ ︸
n−q vezes

.

Com esse teorema em mãos, nós obtemos:

Teorema 1.39. Sejam A um DIP, K = Q(A), L uma extensão separável de K de grau n e
B = A

L. Então B é um A-módulo livre de posto n. Uma base qualquer da extensão B/A é
chamada de base integral da extensão B/A.

Além disso, para um anel intermediário A ⊆ R ⊆ L são equivalentes:

(i) R ⊆ B.

(ii) R é um A-módulo livre de posto q ≤ n.

(iii) R é um A-módulo finitamente gerado.

Nesse caso, q = n se e somente se L = Q(R).
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Demonstração. Pelo Teorema 1.37, B está entre dois A-módulos livres de posto n, e portanto
deve ser um A-módulo livre de posto n pelo teorema acima. (i)⇒ (ii) segue diretamente do fato
de B ser um A-módulo livre de posto n e do teorema acima, (ii) ⇒ (iii) é óbvia e (iii) ⇒ (i)
segue diretamente do Corolário 1.12. Provemos agora que q = n se e só se L = Q(R):

(⇒): Suponhamos q = n. Então existem r1, . . . , rn ∈ R linearmente independentes sobre A.
Mas isso equivale a r1, . . . , rn ∈ R ⊆ L serem linearmente independentes sobre Q(A) = K, e
como [L : K] = n vemos que Kr1 + · · ·+Krn = L. Como A ⊆ R e K = Q(A), conclúımos que
L = Q(R).

(⇐): Suponhamos L = Q(R). Notemos que (A \ {0})−1R é um anel intermediário da extensão
L/K, e portanto é um corpo. Como Q(R) = L, vemos que L = (A \ {0})−1R. Seja γ um ele-
mento primitivo da extensão L/K, ou seja, L = K(γ). Como L = (A \ {0})−1R, existem r ∈ R
e s ∈ A \ {0} tais que γ = r/s. Então é claro que L = K(r). Desse modo, 1, r, r2, . . . , rn−1 são
elementos linearmente independentes sobre K, e portanto sobre A. Isso prova que q ≥ n. Mas
q ≤ n, logo q = n.

Voltemos a considerar o caso em que A é apenas um domı́nio integralmente fechado (não
necessariamente um DIP). Conseguimos mais algumas informações acerca do discriminante:

Proposição 1.40. Para quaisquer α1, . . . ,αn ∈ B, temos ∆L/K(α1, . . . ,αn) ∈ A.

Demonstração. Segue diretamente da definição do discriminante de uma n-upla e do Corolário
1.30 que ∆L/K(α1, . . . ,αn) = det(TrL/K(αiαj)) ∈ A.

Proposição 1.41. Suponhamos que β1, . . . ,βn ∈ B formem uma base de L/K, e denotemos
d := ∆(β1, . . . ,βn) ∈ A. Então dB ⊆ Aβ1 + · · ·+Aβn.

Demonstração. Isso é equivalente a termos B ⊆ Ad−1β1 + · · · + Ad−1βn. Pelo Teorema 1.37,
sabemos que B ⊆ Aβ′1 + · · ·+Aβ′n. Assim, basta mostrarmos que vale:

Aβ′1 + · · ·+Aβ′n ⊆ Ad−1β1 + · · ·+Ad−1βn.

Seja 1 ≤ k ≤ n. Note que definimos β′k =
∑n
j=1 ajβj , de modo que tenhamos

Tr(β2
1) Tr(β1β2) . . . Tr(β1βn)

Tr(β2β1) Tr(β2
2) . . . Tr(β2βn)

...
... . . . ...

Tr(βnβ1) Tr(βnβ2) . . . Tr(β2
n)



a1
a2
...
an

 = ek.

Assim, pela regra de Kramer, cada coeficiente a` de β′k é dado por um elemento de A quocientado
por det(Tr(βiβj)) = d. Então cada coeficiente de β′k está em d−1A, e portanto

β′k ∈ Ad−1β1 + · · ·+Ad−1βn.

Com isso, conclúımos a demonstração.

A Proposição 1.40 nos garante que a definição a seguir faz sentido:

Definição (Ideal Discriminante). Seja R um anel tal que A ⊆ R ⊆ B. Então o ideal discrimi-
nante de R/A, denotado dR/A, é o ideal de A gerado pelos elementos da forma ∆L/K(α1, . . . ,αn),
onde α1, . . . ,αn percorrem todos os elementos de R.

Proposição 1.42. Seja R um anel tal que A ⊆ R ⊆ B, e suponhamos que R seja um A-módulo
livre com base β1, . . . ,βn. Então:
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(a) dR/A é um ideal principal, gerado por ∆L/K(β1, . . . ,βn).

Além disso, para quaisquer elementos α1, . . . ,αn ∈ R, temos:

(b) ∆L/K(α1, . . . ,αn) = a2∆L/K(β1, . . . ,βn), para algum a ∈ A.

(c) {α1, . . . ,αn} será uma base de R como A-módulo se e só se a ∈ A×.

Demonstração. Escrevamos, para cada i, αi =
n∑
j=1

aijβj , com cada aij ∈ A. Então pela Proposição

1.31 temos ∆L/K(α1, . . . ,αn) = a2∆L/K(β1, . . . ,βn), para a = det(aij) ∈ A. Isso prova (a) e (b).
Para provar (c), notemos que α1, . . . ,αn será uma base de R se e só se a matriz (aij) for inverśıvel,
ou seja, se e só se a ∈ A×.

Um exemplo importante da proposição acima é o caso em que R = A[β], para algum β ∈ B
elemento primitivo da extensão L/K. Com efeito:

Proposição 1.43. Para qualquer β ∈ B, as seguintes condições são equivalentes:

(i) L = K(β).

(ii) 1,β, . . . ,βn−1 formam uma base do A-módulo A[β].

Nesse caso, dA[β]/A é gerado pelo elemento ∆L/K(1,β, . . . ,βn−1).

Demonstração. (i) ⇒ (ii): Suponhamos que L = K(β). Temos 1,β, . . . ,βn−1 LI sobre K, e
portanto também sobre A pela Proposição 1.6. Além disso, é claro que esses elementos geram
A[β], provando essa implicação.

(ii) ⇒ (i): Suponhamos que 1,β, . . . ,βn−1 formem uma base do A-módulo A[β]. Sendo es-
ses elementos linearmente independentes sobre A, eles também o são sobre K, pela Proposição
1.6. Como eles formam um conjunto de n = [L : K] elementos, eles formam uma base de L/K,
e portanto L = K(β), como desejado.

A última afirmação segue da proposição acima.

1.5. Extensões de Ideais
Nesta seção, vemos como podemos associar os ideais do anel maior e do anel menor em uma
extensão de anéis. Começamos com a definição a seguir:

Definição (Restrição de Ideais/Extensão de Ideais/Ideal sobre o Outro). Seja B/A uma extensão
de anéis.

• Se ACB, dizemos que A∩ACA é a restrição de A ao anel A.

• Se aCA, dizemos que aB CB é a extensão de a ao anel B.

• Dizemos que um ideal ACB está sobre a se a = A∩A, ou seja, se a for a restrição de A
a A, e denotamos A | a.

Proposição 1.44. (a) Se ACB for um ideal próprio de B, então sua restrição A∩A será um
ideal próprio de A.

(b) Se PCB for um ideal primo, então sua restrição P∩ACA será um ideal primo.
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(c) Se ACB for um ideal sobre aCA, então a inclusão canônica A ↪−→ B induz uma inclusão
A/a ↪−→ B/A, dada por x+ a 7→ x+A.

Demonstração. (a) Se ACB for um ideal próprio, então 1 6∈ A ⇒ 1 6∈ A ∩A, mostrando que
A∩A é um ideal próprio de A.

(b) Pelo item (a), P ∩A será um ideal próprio de A. Suponhamos agora que x, y ∈ A sejam
tais que xy ∈ P ∩A. Então, como P é primo, x ∈ P ou y ∈ P, e portanto x ∈ P ∩A ou
y ∈ P∩A. Isso prova que P∩A é um ideal primo de A.

(c) Essa função está bem-definida e é injetora, pois dados x, y ∈ A quaisquer nós temos:

x+A = y+A ⇐⇒ x− y ∈ A ⇐⇒ x− y ∈ A∩A = a ⇐⇒ x+ a = y+ a.

Finalmente, essa função é claramente um homomorfismo.

Observação 1.45. A inclusão A/a ↪−→ B/A do item (c) dessa proposição nos permite ver A/a
como um subanel de B/A (ou o que é o mesmo, ver B/A como uma extensão de A/a). Faremos
isso diretamente daqui para a frente, e nos referiremos à inclusão A/a ↪−→ B/A como a inclusão
canônica de A/a em B/A.

Um problema das aplicações de extensão e restrição de ideais é que elas não necessariamente
são inversas uma da outra. Obviamente, (A ∩A)B ⊆ AB = A, e aB ∩A ⊇ a, mas as inclusões
contrárias podem não valer. Assim, não é tão simples o problema de, dado um ideal aC A,
encontrarmos ACB que esteja sobre A. Esse ideal pode nem existir!

Denotemos o conjunto dos ideais de A por I e o conjunto dos ideais de B por J . Então as
operações de extensão e restrição de ideais nos dão duas funções ε : I → J e ρ : J → I , que
como já vimos podem não ser inversas uma da outra. No entanto, temos as seguintes propriedades,
cujas demonstrações são diretas:

Proposição 1.46. As funções ε e ρ satisfazem as seguintes propriedades (onde temos a, b ∈
I ,A,B ∈J quaisquer:

(a) ε e ρ preservam inclusões, isto é, se a ⊆ b então εa ⊆ εb, e se A ⊆ B então ρA ⊆ ρB.

(b) ε(a+ b) = εa+ εb.

(c) ε(ab) = εa · εb.

(d) ρ(A∩B) = ρA∩ ρB.

(e) ρ(
√
A) =

√
ρA.

(f) ρεa ⊇ a, e vale a igualdade se e só se a estiver na imagem de ρ.

(g) ερA ⊆ A, e vale a igualdade se e só se A estiver na imagem de ε.

(h) ερε = ε e ρερ = ρ.

(i) ε será injetora se e só ρε = idI , se e só se ρ for sobrejetora.

(j) ρ será injetora se e só ερ = idJ , se e só se ε for sobrejetora.

(k) ε e ρ induzem aplicações bijetoras, inversas entre si, entre os conjuntos ρ(J ) e ε(I ).

(l) Se a e b forem ideais coprimos, suas extensões εa e εb também serão ideais coprimos.
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Será importante para nós estudar as propriedades de ε e ρ no caso em que A é um domı́nio
e que B = S−1A, para algum conjunto multiplicativo S ⊆ A \ {0}. Se tivermos S = A \ {0},
B = Q(A) é seu corpo de frações, e temos J = {0,B}. Assim, é claro que ε é sobrejetora e ρ é
injetora. No caso geral, vale o seguinte:

Proposição 1.47. (a) Para todo aCA nós temos a ·S−1A = S−1a. Em particular, a ·S−1A =
S−1A se e só se a∩ S 6= ∅.

(b) ε é sempre sobrejetora e ρ é sempre injetora nesse caso, e temos ερ = idJ . Em particular,
para todo AC S−1A nós temos (A∩A) · S−1A = A.

Demonstração. (a) É claro.

(b) Pelo item (j) da proposição acima, basta mostrar que ε é sobrejetora. Mas isso é verdade,
já que pela teoria de localização todo ideal de S−1A é da forma S−1a = a · S−1A = ε(a),
para algum aCA.

Sendo A um domı́nio, o mapa de localização A → S−1A é uma inclusão. Sabemos da teoria
de localização que existe uma bijeção entre os ideais primos de A que não intersectam S e os
ideais primos de S−1A. Mostraremos que nesse caso ε e ρ são bijeções entre esses conjuntos. O
fato de ε ser uma bijeção não é uma novidade, dado que a proposição que acabamos de mostrar
nos diz que εa = S−1a e essa é justamente a correspondência dada pela teoria de localização. O
mais interessante é o fato da restrição ρ ser sua inversa:

Teorema 1.48. (a) Seja PC S−1A primo. Então P ∩ A é um ideal primo de A que não
intersecta S, e nós temos (P∩A) · S−1A = P.

(b) Seja p um ideal primo de A que não intersecta S. Então p ·S−1A = S−1 p é um ideal primo
de S−1A, e (p ·S−1A) ∩A = (S−1 p) ∩A = p.

(c) As aplicações ε e ρ induzem aplicações bijetoras, inversas entre si, entre o conjunto dos
ideais primos de A que não intersectam S e o conjunto dos ideais primos de S−1A.

Demonstração. (a) É claro que P ∩ S = ∅, caso contrário teŕıamos 1 ∈ P ⇒ P = S−1A.
Assim, P∩ACA é primo que não intersecta S. A última igualdade segue do item (b) da
proposição anterior.

(b) Pela teoria de localização sabemos que S−1 p é um ideal primo de S−1A. Assim, basta
mostrarmos que (S−1 p) ∩A = p. A igualdade (⊇) é clara. Para a igualdade contrária,
tomemos x ∈ (S−1 p) ∩A. Então x = p/s, para p ∈ p e s ∈ S, e sx = p ∈ p. Como p é
primo e s 6∈ p, devemos ter x ∈ p, como desejado.

(c) Segue diretamente dos itens anteriores.

Dado um ideal aCA podemos considerar o homomorfismo canônico A/a→ S−1A/S−1a dado
por x+ a 7→ x+S−1a. O núcleo desse homomorfismo é igual ao conjunto {x+ a : x ∈ (S−1a)∩A},
e portanto ele será uma inclusão se e só se valer (S−1a) ∩A = a, ou seja, se e só se S−1a | a.

Corolário 1.49. Se pCA for um primo que não intersecta S, então o homomorfismo canônico
A/ p→ S−1A/S−1 p será uma inclusão. Se p for um ideal maximal, esse homomorfismo será um
isomorfismo, e portanto A/ p ∼= S−1A/S−1 p.
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Demonstração. Esse homomorfismo é uma inclusão porque para p primo que não intersecta S
nós temos (S−1 p)∩A = p pelo Teorema 1.48. Suponhamos agora p maximal, e seja a/s ∈ S−1A
qualquer. Queremos mostrar que a/s+ S−1 p está na imagem do homomorfismo. Nós temos
sA+ p = A. Em particular, a = sx+ p para alguns x ∈ A, p ∈ p, e assim em S−1A temos
a/s = x+ p/s ⇒ a/s+ S−1 p = x+ S−1 p, que está na imagem desse homomorfismo, como
queŕıamos.

O seguinte resultado, envolvendo localização, não precisa de nenhuma hipótese sobre a ex-
tensão B/A.

Proposição 1.50. Sejam B/A uma extensão de anéis, S um conjunto multiplicativo de A e pCA
um primo que não intersecta S. Então os ideais primos de B sobre p estão em bijeção com os
ideais primos de S−1B sobre o ideal primo S−1 pCS−1A. Nessa bijeção, um ideal PCB sobre p
é levado em S−1P.

Em particular, isso ocorre se S = A \ p, de modo que os ideais primos de B sobre p estão em
bijeção com os ideais primos de Bp sobre pp, bijeção esta dada por P 7→ Pp.

Demonstração. Seja PCB sobre p. Então S−1P ∩ S−1A = S−1(P ∩A) = S−1p. Além disso,
S−1P é um ideal primo de S−1B, pois P é um ideal primo de B que não intersecta S.

Por outro lado, se um ideal primo QC S−1B estiver sobre S−1p, então Q = S−1P para um
ideal primo P de B que não intersecta S. Nós temos S−1(P ∩ A) = S−1P ∩ S−1A = S−1p.
Como p e P ∩A são primos de A que não intersectam S, a bijeção entre os ideais primos de A
que não intersectam S e os ideais primos de S−1A nos permite concluir que p = P∩A.

Essa proposição é especialmente útil para reduzir o problema de provar que uma propriedade
vale para todos os ideais primos de um anel para provar que ela vale apenas para os ideais maximais
desse anel. Outra utilidade interessante é conseguir reduzir o problema inicial para um anel local.

Com esse resultado em mãos podemos mostrar que, dado pCA primo, a existência de um
ideal primo de B sobre p é equivalente à existência de um ideal qualquer sobre p. Lembremos que
ρε p = p é equivalente a p estar na imagem de ρ. Comecemos com o seguinte lema:

Lema 1.51. Sejam a, pCA ideais de A que não intersectam S, onde p é primo. Suponhamos que
S−1a ⊆ S−1 p. Então a ⊆ p.

Demonstração. Seja a ∈ a qualquer. Então a/1 ∈ S−1a ⊆ S−1 p, e portanto a/1 = p/s para
alguns p ∈ p, s ∈ S. Isso significa que existe t ∈ S com ast = pt ∈ p. Como p é primo e s, t 6∈ p,
conclúımos que a ∈ p. Desse modo, a ⊆ p, como queŕıamos.

Teorema 1.52. Seja B/A uma extensão de anéis e seja pCA primo. Então existe um primo
PCB sobre p se e só se pB ∩A = p.

Demonstração. Observemos que a implicação (⇒) é imediata, já que isso implica que p = ρP.
Assim, provemos a implicação (⇐). Suponhamos que pB ∩A = p, e localizemos por S = A \ p.
Pela Proposição 1.50, basta mostrarmos que existe um ideal primo de Bp sobre pp. Como vale a
igualdade pB ∩A = p, temos pB ∩ S = ∅, e portanto sua localização (pB)p é um ideal próprio
de Bp. Tomemos um ideal maximal de Bp que contém o ideal (pB)p. Ele é da forma Pp, para
algum PCB primo que não intersecta S. Provemos que P | p. Como P ∩ S = ∅ e S = A \ p,
nós temos P ∩ A ⊆ p. Como (pB)p ⊆ Pp, o Lema 1.51 nos garante que pB ⊆ P, e assim
p = pB ∩A ⊆ P ∩A. Provamos assim que P ∩A = p, e assim P é um ideal primo de B sobre
p.

No caso em que B/A é uma extensão integral de domı́nios, nós podemos obter mais in-
formações:
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Teorema 1.53. Seja B/A uma extensão integral de domı́nios. Então:

(a) Se ACB for um ideal não-nulo de B, A∩A será um ideal não-nulo de A.

(b) Se ACB e aCA forem tais que A | a, então B/A será uma extensão integral de A/a.

(c) B× ∩A = A×.

(d) B será um corpo se e só se A for um corpo.

(e) Um ideal primo P de B será um ideal maximal de B se e só se P∩A for um ideal maximal
de A. Em particular, se todo ideal primo não-nulo de A for maximal, todo ideal primo
não-nulo de B também será maximal.

Demonstração. (a) Suponhamos A 6= 0, e tomemos α ∈ A não-nulo. Como B/A é integral,
temos a0 + a1α+ · · ·+ an−1α

n−1 + αn = 0, para alguns a0, . . . , an−1 ∈ A. Podemos supor
sem perda de generalidade a0 6= 0, pois B é um domı́nio. Assim, nós temos a0 ∈ αB ⊆ A,
e portanto a0 ∈ A∩A é não-nulo.

(b) Consideremos a projeção canônica π : B → B/A. Como B é integral sobre A, pela Pro-
posição 1.11 o anel B/A é integral sobre π(A). Notemos agora que π(A) é igual a A/a, com
a identificação da Observação 1.45. Então B/A é integral sobre A/a, como gostaŕıamos.

(c) É claro que A× ⊆ B× ∩A. Seja agora u ∈ B× ∩A. Como B/A é integral, u−1 é integral
sobre A, e assim a0 + a1/u+ · · ·+ an−1/un−1 + 1/un = 0, para alguns a0, . . . , an−1 ∈ A.
Multiplicando essa equação por un−1, obtemos:

a0u
n−1 + a1u

n−2 + · · ·+ an−1 + u−1 = 0⇒ u−1 = −an−1 − . . .− a0u
n−1 ∈ A.

Assim, o inverso de u está em A, o que mostra que u ∈ A×. Conclúımos que B× ∩A ⊆ A×,
e portanto A× = B× ∩A.

(d) Se B for um corpo, B× = B \ {0} ⇒ A× = B× ∩A = B \ {0} ∩A = A \ {0}, pelo item
(c). Logo A é um corpo. Se A for um corpo, os únicos ideais de A serão 0 e A. Se ACB
for não-nulo, então pelo item (a) o ideal A∩ACA será não-nulo, de modo que A∩A = A.
Mas então 1 ∈ A⇒ A = B. Logo os únicos ideais de B são 0 e B, e portanto B é um corpo.

(e) Seja PCB primo. Pelo item (b), o domı́nio B/P é integral sobre A/(P∩A). Assim, pelo
item (d), B/P será um corpo se e só se A/(P∩A) for um corpo. Ou seja, P será um ideal
maximal de B se e só se P∩A for um ideal maximal de A.

Com a hipótese de B/A ser uma extensão integral de domı́nios, nós podemos garantir que todo
ideal primo de A possui um primo de B sobre ele, resultado clássico conhecido como lying-over.
Ele será uma consequência direta do seguinte teorema:

Teorema 1.54. Sejam B/A uma extensão integral de domı́nios e pCA primo. Então:

(a) Para todo ideal ACB tal que A∩A ⊆ p, existe um ideal primo PCB sobre p com A ⊆ P.

(b) Os ideais primos PCB sobre p são os elementos maximais do conjunto {ACB : A∩A ⊆ p}.

Demonstração. (a) Seja S = A \ p, e consideremos ACB com A∩A ⊆ p. Então A∩S = ∅, e
portanto Ap é um ideal próprio de Bp. Podemos tomar um ideal maximal de Bp que contém
Ap. Ele é da forma Pp, para algum ideal primo PCB. Como B/A é integral, Bp/Ap

também é integral pela Proposição 1.15. Assim, pelo item (e) do Teorema 1.53, Pp ∩Ap

é um ideal maximal de Ap. Mas Ap é um anel local com anel maximal pp, e portanto
Pp ∩ Ap = pp. Desse modo, Pp é um ideal primo sobre pp, e pela Proposição 1.50 nós
conclúımos que P é um ideal primo sobre p. Finalmente, temos Ap ⊆ Pp ⇒ A ⊆ P, pelo
Lema 1.51. Assim, P é o ideal primo desejado.
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(b) Pelo item (a), se ACB for tal que A∩A ⊆ p, então existirá PCB primo com A ⊆ P e
P∩A = p. Isso mostra que todos os elementos maximais desse conjunto são ideais primos
sobre p.
Provaremos agora que todo primo PCB sobre P é um elemento maximal desse conjunto.
Para isso, suponhamos que ACB seja tal que A∩A ⊆ p e P ⊆ A. Queremos mostrar que
A = P. Seja QCB primo sobre p com A ⊆ Q. Então P ⊆ A ⊆ Q. Localizando em relação
a p, temos que Pp e Qp são ambos ideais primos de Bp sobre pp, pela Proposição 1.50, com
Pp ⊆ Qp. Mas pelo item (e) do Teorema 1.53, Pp e Qp são ambos maximais. Isso implica
que Pp = Qp, e portanto em P = Q pelo Lema 1.51. Então P ⊆ A ⊆ Q = P ⇒ A = P,
como desejado.

Aplicando o item (a) do teorema acima para A = 0, obtemos imediatamente:

Corolário 1.55. (Lying Over) Sejam B/A uma extensão integral de domı́nios e pCA primo.
Então existe um ideal primo PCB sobre p.

Por lying-over, todo primo pCA está na imagem de ρ, e portanto em particular vale a igualdade
pB ∩A = p. Notemos que se ACB está sobre p, então A ⊇ ερA = ε p = pB. Isso, juntamente
com o Teorema 1.54, nos dá:

Corolário 1.56. Sejam B/A uma extensão integral de domı́nios e pCA primo. Então o conjunto
dos ideais de B sobre p tem como elemento minimal o ideal pB e como elementos maximais os
ideais primos de B sobre p.



Caṕıtulo 2

Inteiros Algébricos

Nesse caṕıtulo, definiremos o principal objeto de estudo da Teoria Algébrica dos Números: os
chamados anéis de inteiros algébricos. Iremos utilizar os resultados do Caṕıtulo 1 para deduzir
propriedades importantes desses anéis. Também estudaremos com mais profundidade dois tipos
especiais de anéis de inteiros algébricos: os associados a corpos quadráticos e ciclotômicos.

2.1. Definição e Propriedades
Denotemos por Q ⊆ C o fecho algébrico Q

C de Q em C, e por OC o fecho integral Z
C de Z em

C. Então OC é um subanel de Q, e de fato é igual ao fecho integral de Z em Q.

Definição (Número Algébrico/Inteiro Algébrico). Chamamos de número algébrico um ele-
mento de Q, e de inteiro algébrico um elemento de OC.

Assim como temos a inclusão Z ⊆ Q dos números inteiros nos números racionais, podemos
associar a cada extensão finita K ⊆ C de Q um “anel de inteiros” OK ⊆ K, de forma que essa
inclusão tenha propriedades parecidas com a inclusão de Z em Q:

Definição (Corpo de Números Algébricos/Anel de Inteiros Algébricos). Dizemos que um sub-
corpo K ⊆ C é um corpo de números algébricos, ou simplesmente um corpo de números,
se ele for uma extensão finita de Q. Nesse caso, o subanel OK := Z

K ⊆ K é chamado de anel
de inteiros algébricos de K.

Observação 2.1. Notemos que OK = K ∩OC, e portanto os elementos de OK são exatamente
os inteiros algébricos que estão em K, justificando a nomenclatura “anel de inteiros algébricos de
K”.

Como a inclusão OK ⊆ K deve generalizar a inclusão Z ⊆ Q, esperamos que valha OQ = Z.
Isso de fato é verdade, pois Z é integralmente fechado pelo Teorema 1.14. Como nós podemos
falar em um “anel de inteiros” para cada extensão finita de Q, é comum na literatura se referir a
um elemento de Z como um inteiro racional.

Muitos resultados do Caṕıtulo 1 têm uma consequência imediata sobre inteiros algébricos.
Como todo corpo de números algébricos é uma extensão algébrica de Q, o Teorema 1.16 nos dá:

Teorema 2.2. Seja K um corpo de números algébricos. Então Q(OK) = (Z \{0})−1OK = K.

Como Z é integralmente fechado, o Corolário 1.30 nos permite concluir:

Corolário 2.3. Sejam K um corpo de números algébricos e R um subanel de OK . Então, se
γ ∈ R, temos:

33
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(a) Pγ,Q ∈ Z[x], Fγ,K/ Q ∈ Z[x], NK/ Q(γ) ∈ Z e TrK/ Q(γ) ∈ Z.

(b) NK/ Q(γ) é um múltiplo de γ em R.

(c) γ ∈ R× se e só se |NK/ Q(γ)| = 1.

(d) Se |NK/ Q(γ)| for um número primo, então γ será irredut́ıvel em R.

(e) Se α,β ∈ R forem associados em R, então NK/ Q(α) = ±NK/ Q(β).

Podemos ainda aplicar o Teorema 1.39 para o DIP Z. Com isso, obtemos o famoso Teorema
da Base Integral:

Teorema 2.4. Seja K um corpo de números algébricos com [K : Q] = n. Então:

1. (Teorema da Base Integral) OK é um Z-módulo livre de posto n. Uma base qualquer da
extensão OK/ Z é chamada de base integral de OK , ou ainda de base integral do corpo
K.

2. Para qualquer subanel R de K, são equivalentes:

(i) R ⊆ OK .

(ii) R é um Z-módulo livre de posto q ≤ n.

(iii) R é um Z-módulo finitamente gerado.

Nesse caso, q = n se e somente se K = Q(R). Se isso ocorrer, dizemos que R é uma de
K.

Observação 2.5. Em geral, achar bases integrais explicitamente não é um problema simples.
Nós faremos isso em alguns casos particulares, como para corpos quadráticos e ciclotômicos.

Estudemos agora como ficam os resultados associados ao discriminante para anéis de inteiros
algébricos. Devido à Proposição 1.40, temos:

Proposição 2.6. Seja K um corpo de números algébricos com [K : Q] = n. Para quaisquer
α1, . . . ,αn ∈ OK , temos ∆L/K(α1, . . . ,αn) ∈ Z.

Seja R uma ordem de K. Então podemos aplicar a Proposição 1.42 para concluir que os
discriminantes de duas bases de R como Z-módulo diferem pelo quadrado de uma unidade de Z.
Mas Z× = {−1, 1}, e (−1)2 = 12 = 1. Portanto, todas as bases de R como Z-módulo possuem o
mesmo discriminante. Então obtemos:

Teorema 2.7. Seja K um corpo de números com [K : Q] = n e seja R uma ordem de K.
Então existe dK(R) ∈ Z tal que, para toda base {β1, . . . ,βn} de R como Z-módulo, nós tenhamos
∆K/ Q(β1, . . . ,βn) = dK(R). Além disso, dR/ Z = dK(R)Z, e para todos α1, . . . ,αn ∈ R nós
temos ∆K/ Q(α1, . . . ,αn) = a2dK(R) para algum a ∈ Z.

Em particular, existe dK ∈ Z, chamado de discriminante do corpo K, que é igual ao
discriminante de toda base integral de OK , e dOK/ Z = dK Z.

O resultado acima pode ser usado para encontrar bases integrais: basta acharmos β1, . . . ,βn em
OK tais que ∆(β1, . . . ,βn) 6= 0 seja mı́nimo em módulo. Note em particular que se encontrarmos
β1, . . . ,βn ∈ OK tais que ∆(β1, . . . ,βn) seja livre de quadrados então β1, . . . ,βn formarão uma
base integral de OK .
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Exemplo 2.8. Consideremos K = Q(β), onde β é uma raiz do polinômio irredut́ıvel P (x) =
x3 + x2 − 2x+ 8. Provaremos que {1,β, 4β−1} formam uma base integral de OK . Denotemos
α := 4β−1. Observemos que x3P (1/x) = 8x3 − 2x2 + x+ 1. Assim:

8(β−1)3 − 2(β−1)2 + β−1 + 1 = 0.

Desse modo:

0 = 8(α/4)3 − 2(α/4)2 + (α/4) + 1 =
α3 − 2α2 + 4α+ 16

16 ⇒ α3 − 2α2 + 4α+ 16 = 0.

Isso prova que 4β−1 = α ∈ OK . Calculemos agora ∆(1,β, 4β−1). Sabemos que {1,β,β2} forma
uma base de K/ Q. Notemos que

β3 + β2 − 2β + 8 = 0⇒ β2 + β − 2 + 8β−1 = 0⇒ 4β−1 = −1
2β

2 − 1
2β + 1.

De forma similar, encontramos 16β−2 = 1
2β

2 − 5
2β − 1. Com isso, analisando as matrizes de

multiplicação na base {1,β,β2}, nós obtemos:

Tr(β) = −1, Tr(β2) = 5, Tr(4β−1) = 1, Tr(16β−2) = −3.

Assim:

∆(1,β, 4β−1) = det

 Tr(1 · 1) Tr(1 · β) Tr(1 · 4β−1)
Tr(β · 1) Tr(β · β) Tr(β · 4β−1)

Tr(4β−1 · 1) Tr(4β−1 · β) Tr(4β−1 · 4β−1)


= det

 Tr(1) Tr(β) Tr(4β−1)
Tr(β) Tr(β2) Tr(4)

Tr(4β−1) Tr(4) Tr(16β−2)


= det

 3 −1 1
−1 5 12
1 12 −3


= −503.

Note que −503 é um número primo. Em particular, é livre de quadrados. Assim, conclúımos que
{1,β, 4β−1} é de fato uma base integral de OK , e dK = −503.

Um critério útil para construir bases integrais de um corpo a partir de bases integrais de
corpos mais simples é o seguinte teorema, que será utilizado para encontrar bases integrais de
corpos ciclotômicos:
Teorema 2.9. Sejam K,L extensões galoisianas finitas de Q de graus m e n respectivamente,
tais que K ∩ L = Q. Sejam ainda {α1, . . . ,αm} e {β1, . . . ,βn} bases integrais de K e de L,
respectivamente. Suponhamos que dK e dL sejam primos entre si. Então o conjunto

B := {αiβj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

é uma base integral de KL, e dKL = dnKd
m
L .

Demonstração. Como K/ Q e L/ Q são galoisianas, a extensão KL/ Q também é galoisiana, e
como K ∩L = Q nós temos Gal(KL/ Q) ∼= Gal(K/ Q)×Gal(L/ Q). Em particular, [KL : Q] =
mn. Desse modo, temos o seguinte diagrama:

KL

K L

K ∩L = Q

n
m

m
n
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Como os αi’s geram K como Q-espaço e os βj ’s geram L como Q-espaço, é fácil ver que
o conjunto B dos produtos αiβj gera KL como Q-espaço. Como |B| = mn = [KL : Q], nós
conclúımos que B é uma base da extensão KL/ Q.

É claro que OK ,OL ⊆ OKL. Assim, cada αi e cada βj estão em OKL, de modo que todos os
elementos de B estão em OKL. Dessa forma, para provarmos que B é base integral de KL, basta
mostrarmos que esse conjunto gera OKL como Z-módulo.

Seja γ ∈ OKL. Podemos escrever unicamente γ =
∑m
i=1

∑n
j=1 aijαiβj , com cada aij ∈ Q.

Mostraremos que cada aij ∈ Z, o que nos dará o resultado desejado. Definindo, para 1 ≤ j ≤ n,
θj :=

∑m
i=1 aijαi ∈ K, nós temos γ =

∑n
j=1 θjβj . Denotemos Gal(KL/K) = {σ1, . . . ,σn} e

Gal(KL/L) = {τ1, . . . , τm}. Então é fácil verificar que valem a igualdades:

Gal(KL/ Q) = {σkτ` : 1 ≤ k ≤ n, 1 ≤ ` ≤ m}, e Gal(L/ Q) = {σ1|L, . . . ,σn|L}

Assim, definindo T := (σi(βj)) ∈Mn(L), a Proposição 1.32 nos garante que

(detT )2 = ∆(β1, . . . ,βn) = dL.

Consideremos ainda os vetores a := (σ1(γ), . . . ,σn(γ)) ∈ (KL)n e b := (θ1, . . . , θn) ∈ Kn. Então

Tb =


σ1(β1) σ1(β2) · · · σ1(βn)
σ2(β1) σ2(β2) · · · σ2(βn)

...
... . . . ...

σn(β1) σn(β2) · · · σn(βn)



θ1
θ2
...
θn

 =


∑n
j=1 σ1(βj)θj∑n
j=1 σ2(βj)θj

...∑n
j=1 σn(βj)θj

 =


σ1
(∑n

j=1 βjθj
)

σ2
(∑n

j=1 βjθj
)

...
σn
(∑n

j=1 βjθj
)

 = a,

uma vez que os σi fixam os θj ’s. Desse modo, (adjT )a = (adjT )Tb = (detT )b. Agora, adjT
é uma matriz com entradas em OL, já que cada βj ∈ OL, e portanto cada σi(βj) ∈ OL (esse
elemento satisfaz o mesmo polinômio mônico que βj , já que os σi fixam Q). Do mesmo modo, as
entradas de a estão em OKL. Assim, (detT )b = (adjT )a tem entradas em OKL. Como T tem
entradas em OL, detT ∈ OL. Logo dLb = (detT )[(detT )b] tem entradas em OKL. Mas dL ∈ Z

e b ∈ Kn, de modo que dLb ∈ K. Então dLb tem entradas em OKL ∩K = OK .
Isso prova que, para 1 ≤ j ≤ n, o elemento dLθj =

∑m
i=1(dLaij)αi está em OK . Como

α1, . . . ,αm formam uma base integral de OK , isso significa que cada dLaij ∈ Z. De forma
análoga, se prova que cada dKaij ∈ Z. Como dK e dL são primos entre si, existem r, s ∈ Z tais que
dKr+ dLs = 1. Desse modo, aij = dKaijr+ dLaijs ∈ A. Isso prova que γ =

∑m
i=1

∑n
j=1 aijαiβj

está no Z-módulo gerado por B, e conclúımos que B é base integral de KL, como desejado.
Calculemos agora o discriminante dessa base integral. Como

Gal(KL/ Q) = {σkτ` : 1 ≤ k ≤ n, 1 ≤ ` ≤ m},

a Proposição 1.32 nos diz que esse discriminante é o quadrado do determinante da matriz de
tamanho mn×mn dada por M̃ := (σkτ`(αiβj)) = (σk(βj) · τ`(αi)). Note que podemos trocar a
ordem dos elementos da base integral e das imersões, pois isso altera apenas o sinal do determinante
da matriz obtida, e quando elevado ao quadrado esse sinal desaparece. Desse modo, consideremos
a matriz M obtida ordenando a base integral e as imersões na seguinte ordem:

α1β1,α2β1, . . . ,αmβ1,α1β2,α2β2, . . . ,αmβ2, . . . ,α1βn,α2βn, . . . ,αmβn, e
σ1τ1,σ1τ2, . . . ,σ1τm,σ2τ1,σ2τ2, . . . ,σ2τm, . . . ,σnτ1,σnτ2, . . . ,σnτm.

A matriz M pode ser pensada como uma matriz n× n por blocos de tamanho m×m. Vendo
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desse jeito, temos M = (Mij), de modo que para cada 1 ≤ i, j ≤ n tenhamos

Mij =


σiτ1(α1βj) σiτ1(α2βj) · · · σiτ1(αmβj)
σiτ2(α1βj) σiτ2(α2βj) · · · σiτ2(αmβj)

...
... . . . ...

σiτm(α1βj) σiτm(α2βj) · · · σiτm(αmβj)



=


σi(βj) · τ1(α1) σi(βj) · τ1(α2) · · · σi(βj) · τ1(αm)
σi(βj) · τ2(α1) σi(βj) · τ2(α2) · · · σi(βj) · τ2(αm)

...
... . . . ...

σi(βj) · τm(α1) σi(βj) · τm(α2) · · · σi(βj) · τm(αm)



= σi(βj) ·


τ1(α1) τ1(α2) · · · τ1(αm)
τ2(α1) τ2(α2) · · · τ2(αm)

...
... . . . ...

τm(α1) τm(α2) · · · τm(αm)


Chamemos de P a matriz m×m dada por (τi(αj)). Então a conta acima nos mostra que vale
Mij = σi(βj) · P , e assim:

M =


M11 M12 · · · M1n
M21 M22 · · · M2n

...
... . . . ...

Mn1 Mn2 · · · Mnn



=


σ1(β1) · P σ1(β2) · P · · · σ1(βn) · P
σ2(β1) · P σ2(β2) · P · · · σ2(βn) · P

...
... . . . ...

σn(β1) · P σn(β2) · P · · · σn(βn) · P



=


σ1(β1) · Id σ1(β2) · Id · · · σ1(βn) · Id
σ2(β1) · Id σ2(β2) · Id · · · σ2(βn) · Id

...
... . . . ...

σn(β1) · Id σn(β2) · Id · · · σn(βn) · Id

 ·

P 0 · · · 0
0 P · · · 0
...

... . . . ...
0 0 · · · P

 ,

onde Id denota a matriz identidade m×m. Chamemos as matrizes acima de C e D respectiva-
mente. Assim, M = CD, e detM = detC · detD. Abrindo a expressão para o determinante de
uma matriz, nós podemos encontrar que detC = (detQ)m e detD = (detP )n, onde Q = (σi(βj))
é uma matriz n× n. Agora, a Proposição 1.32 nos diz que (detP )2 = dK e (detQ)2 = dL. Fi-
nalmente, conclúımos que o discriminante da base integral B é:

(detM)2 = (detC)2 · (detD)2 = (detQ)2m · (detP )2n = dnKd
m
L .

Consideremos agora um Z-submódulo qualquer M ⊆ OK de posto n. Como OK é livre, sa-
bemos que M é livre pelo Teorema 1.38. Argumentando do mesmo modo que nas demonstrações
das Proposições 1.42 e 2.7, vemos que existe dK(M) ∈ Z que é igual ao discriminante de qual-
quer base de M . Pela Proposição 1.42, existe um inteiro positivo kM tal que dK(M) = k2

MdK .
Chamamos kM de ı́ndice de M . A justificativa para essa nomenclatura é dada pelo resultado
abaixo:

Teorema 2.10. Sejam K um corpo de números e M ⊆ OK um Z-submódulo de posto n. Então
kM é igual ao ı́ndice (OK : M), onde consideramos OK e M como grupos aditivos. Em particular,
esse ı́ndice é finito.
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Demonstração. Seja {β1, . . . ,βn} uma base integral de K. Como M ⊆ OK é um Z-módulo de
posto n, pelo Teorema 1.38 vemos que existem a1, . . . , an ∈ N tais que {a1β1, . . . , anβn} é uma
base de M . Assim, k2

MdK = dK(M) = ∆(a1β1, . . . , anβn). Mas pela Proposição 1.31 nós temos:

∆(a1β1, . . . , anβn) = (a1 · · · an)2∆(β1, . . . ,βn) = (a1 · · · an)2dK .

Assim, conclúımos que kM = |a1 · · · an|. Por outro lado, pelo Teorema 1.38, nós temos um
isomorfismo de grupos abelianos:

OK/M ∼= Z /(a1 Z)× · · · ×Z /(an Z),

de modo que (OK : M) = |OK/M | = |a1| · · · |an| = |a1 · · · an| = kM , como queŕıamos.

Esse resultado se aplica em particular para as ordens de K. Entre essas ordens estão os anéis
da forma R = Z[α], onde α ∈ OK é um elemento primitivo da extensão K/ Q (veja a Proposição
1.43). Chamamos esses anéis de ordens principais de K. Eles possuem Z-base formada pelos
elementos 1,α,α2, . . . ,αn−1. Nesse caso, denotaremos também kZ[α] por kα, e o chamaremos de
ı́ndice de α.

Em geral, as ordens principais de K são subanéis próprios de OK . Ainda assim, esses anéis
são “suficientemente grandes” no sentido de que conseguimos achar representantes de classes de
ideais maximais pertencentes a eles. Mais especificamente:

Corolário 2.11. Sejam α ∈ OK um elemento primitivo da extensão K/ Q e pCOK maximal tal
que kα 6∈ p. Então, para todo γ ∈ OK , existe γ′ ∈ Z[α] tal que γ′ ≡ γ (mod p).

Demonstração. Como p é maximal, p+kαOK = OK . Mas pelo Teorema de Lagrange temos
kαOK ⊆ Z[α]. Assim, temos p+Z[α] = OK , o que conclui a demonstração.

O Teorema 2.10 também se aplica para os ideais não-nulos de OK . De fato, seja {β1, . . . ,βn}
uma base integral de OK . Dado um ideal não-nulo aCOK , tomando a ∈ a não-nulo nós vemos
que {aβ1, . . . , aβn} ⊆ a é um conjunto linearmente independente sobre Z. Assim, a tem posto n.
Pelo Teorema 2.10, |OK/a| = (OK : a) = ka é finito. Nós denotamos esse inteiro positivo por
N(a), e o chamamos de norma de a. Isso define uma função N : {Ideais de OK} →N∗, chamada
de norma de ideais, que será estudada com mais detalhes no Caṕıtulo 4. Notemos ainda que
N(a)2dK = dK(a).

Como todo ideal primo não-nulo de Z é maximal, segue do Teorema 1.53:

Teorema 2.12. Seja K um corpo de números algébricos. Então todo ideal primo não-nulo de
OK é maximal.

Terminamos a seção observando que, como consequência da transitividade da integrabilidade
de extensões, vemos que se K,L forem corpos de números com K ⊆ L então OK

L
= OL.

2.2. Corpos Quadráticos
Os corpos de números algébricos mais simples são os corpos quadráticos:

Definição (Corpo Quadrático). Dizemos que um corpo de números algébricos K é um corpo
quadrático se [K : Q] = 2.

Notemos que se K for um corpo quadrático então todo α ∈ K \Q será um elemento primitivo
dessa extensão. É fácil mostrar que todo corpo quadrático é da forma Q(

√
d), onde d ∈ Z \{0, 1}

é livre de quadrados. De fato, vale o seguinte:
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Teorema 2.13. Seja D = {d ∈ Z \{0, 1} | d é livre de quadrados}, e seja L2 o conjunto dos
corpos quadráticos. Então f : D → L2 dado por d 7→ Q(

√
d) é uma bijeção. Mais do que isso, se

d1 e d2 pertencerem a D, então Q(
√
d1) ∼= Q(

√
d2) ⇐⇒ d1 = d2.

Se K = Q(
√
d) é uma extensão quadrática com d ∈ D, então {1,

√
d} é uma base dessa

extensão. Seja α = a+ b
√
d ∈ K qualquer. Então:

α · 1 = a+ b
√
d,

α ·
√
d = bd+ a

√
d.

Dessa forma, a matriz de multiplicação por α nessa base é

Mα =

[
a bd
b a

]
.

Então, em relação à extensão K/ Q:

Fα(x) = det(x Id−Mα) = det
(
x− a −bd
−b x− a

)
= x2 − 2ax+ (a2 − db2).

Assim, Tr(a+ b
√
d) = 2a e N(a+ b

√
d) = a2 − db2. Note que se d < 0 então sempre vale

N(a+ b
√
d) ≥ 0, com igualdade se e só se a = b = 0. Nosso objetivo agora é determinar, para

K = Q(
√
d), o anel OK . Comecemos com o seguinte lema:

Lema 2.14. Seja K = Q(
√
d), com d ∈ D. Então

OK =

{
m

2 +
n

2
√
d : m,n ∈ Z, m2 − dn2 ≡ 0 (mod 4)

}
.

Demonstração. (⊆) Seja α = a+ b
√
d ∈ OK , onde a, b ∈ Q. Então, pelo Corolário 2.3, nós temos

Fα(x) ∈ Z[x]. Como já vimos, Fα(x) = x2 − 2ax+ (a2 − db2). Disso tiramos que 2a ∈ Z e que
a2− db2 ∈ Z. Seja r = a2− db2. Dessa forma, 4a2− 4db2 = 4r, ou seja, d(2b)2 = (2a)2− 4r ∈ Z,
pois 2a, r ∈ Z. Podemos escrever 2b = p/q, com p, q ∈ Z, q 6= 0, primos entre si. Então
d(2b)2 ∈ Z ⇒ q2 | dp2 ⇒ q2 | d, já que mdc(p, q) = 1. Como d é livre de quadrados, conclúımos
que q = ±1, de modo que 2b é inteiro. Portanto, m := 2a e n := 2b são números inteiros, e como
vimos temos m2 − dn2 = 4r ≡ 0 (mod 4). Isso mostra que α = m

2 + n
2
√
d está no conjunto da

direita do enunciado.

(⊇) Seja α = m
2 + n

2
√
d, onde m,n ∈ Z satisfazem m2 − dn2 ≡ 0 (mod 4). Então

Fα(x) = x2 −mx+ m2 − dn2

4

Como m2 − dn2 ≡ 0 (mod 4), temos Fα(x) ∈ Z[x], e como Fα(α) = 0, temos α ∈ OK .

Podemos agora determinar OK :

Teorema 2.15. Seja K = Q(
√
d), com d ∈ D. Então:

(a) Se d ≡ 2, 3 (mod 4), então OK = Z[
√
d] tem base integral {1,

√
d} e discriminante dK = 4d.

(b) Se d ≡ 1 (mod 4), então OK = Z

[
1+
√
d

2

]
tem base integral

{
1, 1+

√
d

2

}
e discriminante

dK = d.
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Demonstração. (a) É imediato verificar que os elementos 1 e
√
d estão em OK , utilizando o

lema anterior. Assim, Z+Z ·
√
d ⊆ OK . Seja agora α ∈ OK . Então, pelo lema anterior,

α =
m

2 +
n

2
√
d ∈ OK , com m2 − dn2 ≡ 0 (mod 4).

Se d ≡ 2 (mod 4), então m2 ≡ 0 (mod 2), e assim m é par. Logo 4 | dn2, e como d é livre
de quadrados temos 2 | n. Isso mostra que n também é par, e assim

α =
m

2 +
n

2
√
d ∈ Z+Z ·

√
d.

Se d ≡ 3 (mod 4), então m2 + n2 ≡ 0 (mod 4). Como o quadrado de um ı́mpar deixa resto
1 na divisão por 4, a única possibilidade é termos m ≡ n ≡ 0 (mod 2). Assim:

α =
m

2 +
n

2
√
d ∈ Z+Z ·

√
d.

Logo, em ambos os casos, temos OK = Z+Z ·
√
d. Isso mostra que {1,

√
d} é base integral

de OK , e portanto:

dK = ∆(1,
√
d) = det

(
Tr(1) Tr(

√
d)

Tr(
√
d) Tr(d)

)
= det

(
2 0
0 2d

)
= 4d.

(b) É imediato verificar que os elementos 1 e 1+
√
d

2 estão em OK , utilizando o lema anterior.

Assim, Z+Z ·1+
√
d

2 ⊆ OK . Seja agora α ∈ OK . Então, pelo lema anterior,

α =
m

2 +
n

2
√
d ∈ OK , com m2 − dn2 ≡ 0 (mod 4).

Como d ≡ 1 (mod 4), temos m2 ≡ n2 (mod 4). Logo m e n possuem a mesma paridade, e
podemos escrever m = 2k+ n, com k ∈ Z. Assim:

α =
2k+ n

2 +
n

2
√
d = k+ n

(1 +
√
d

2

)
∈ Z+Z ·1 +

√
d

2 .

Logo temos OK = Z+Z ·1+
√
d

2 . Isso mostra que
{

1, 1+
√
d

2

}
é base integral de OK , e

portanto:

dK = ∆
(

1, 1 +
√
d

2

)
= det

 Tr(1) Tr
(

1+
√
d

2

)
Tr
(

1+
√
d

2

)
Tr
(

1+d+2
√
d

4

)


= det
(

2 1
1 1+d

2

)
= d.

Observação 2.16. Note que podemos encontrar todas as bases integrais de OK usando o discri-
minante: Se α,β ∈ OK , então {α,β} será uma base de OK se e só se ∆(α,β) = 4d, se d ≡ 2 ou
3 (mod 4), e se e só se ∆(α,β) = d, se d ≡ 1 (mod 4).

Esse resultado nos permite exibir exemplos de domı́nios que não são integralmente fechados:



2.2. CORPOS QUADRÁTICOS 41

Exemplo 2.17. O domı́nio Z[
√
d], para d ∈ D congruente a 1 módulo 4, não é integralmente

fechado. De fato, é claro que seu corpo de frações é K = Q(
√
d), e que, como Z[

√
d]/ Z é uma

extensão integral:

Z[
√
d]
K

= OK = Z

[1 +
√
d

2

]
) Z[

√
d].

Em particular, Z[
√
d] não é um DFU. De fato, este mesmo argumento funciona para mostrar que

qualquer ordem própria de um corpo de números algébricos não é integralmente fechada.

É interessante se perguntar quando OK é um DFU, um DIP ou um domı́nio euclidiano, para
podermos deduzir propriedades mais profundas desse anel. Às vezes, OK não é nem mesmo um
DFU:

Exemplo 2.18. Sendo K = Q(
√
−5), o anel OK = Z[

√
−5] não é um DFU. De fato, temos que

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

são duas fatorações distintas de 6 nesse anel. Temos N(2) = 4, N(3) = 9, e N(1 +
√
−5) =

N(1−
√
−5) = 6. Assim, pelos itens (c) e (e) do corolário 2.3, os elementos 2, 3, 1 +

√
−5 e

1−
√
−5 não são unidades em OK , e 2 e 3 não são associados a 1+

√
−5 nem a 1−

√
−5. Assim,

basta provarmos que esses quatro elementos são irredut́ıveis em OK . Se algum desses elementos
não fosse irredut́ıvel, então garantiŕıamos a existência de um elemento em OK com norma ±2 ou
±3, o que é imposśıvel, pois não existem a, b ∈ Z tais que N(a+ b

√
−5) = a2 + 5b2 seja igual a

±2 ou ±3. Assim, OK não é um DFU.

Analisemos agora a questão de OK ser um domı́nio euclidiano. O melhor candidato à “função
grau” é a norma absoluta |NK/ Q|, pois já sabemos de antemão que essa é uma função com valores
naturais que é multiplicativa e que só se anula em 0.

Teorema 2.19. Seja K = Q(
√
d), com d ∈ D.

(a) As seguintes condições são equivalentes:

(i) OK é euclidiano em relação à norma absoluta.
(ii) Para qualquer λ ∈ K, existe q ∈ OK tal que |NK/ Q(λ− q)| < 1.

(iii) Para quaisquer r, s ∈ Q, existem m,n ∈ Z tais que:{
|(r−m)2 − d(s− n)2| < 1, se d ≡ 2, 3 (mod 4);∣∣(r−m+ s−n

2 )2 − d( s−n2 )2∣∣ < 1, se d ≡ 1 (mod 4).

(b) OK é euclidiano com a norma absoluta se d ∈ {−11,−7,−3,−2,−1, 2, 3, 5, 13}, e isso não
acontece para nenhum outro valor negativo de d ∈ D.

Demonstração. (a) (i)⇒(ii): Suponhamos que valha (i). Seja λ ∈ K qualquer. Pelo Teorema
2.2, temos L = Q(OK), logo λ = a/b para alguns a, b ∈ OK , b 6= 0. Por hipótese, existem
q, r ∈ OK tais que a = bq+ r e |N(r)| < |N(b)|. Assim:

|N(λ− q)| =
∣∣∣∣N(ab − q

)∣∣∣∣ = ∣∣∣∣N(rb
)∣∣∣∣ = |N(r)|

|N(b)|
< 1,

provando (ii).

(ii)⇒(i) Suponhamos que valha (ii). Sejam a, b ∈ OK quaisquer, b 6= 0. Então existe



42 CAPÍTULO 2. INTEIROS ALGÉBRICOS

q ∈ OK tal que |N(a/b− q)| < 1. Chamemos r := a− bq ∈ OK . Assim, a = bq + r e
temos: ∣∣∣∣N(ab − q

)∣∣∣∣ < 1⇒
∣∣∣∣N(rb

)∣∣∣∣ < 1⇒ |N(r)|
|N(b)|

< 1⇒ |N(r)| < |N(b)|,

provando (i).
(ii) ⇐⇒ (iii): Basta, se d ≡ 2, 3 (mod 4), tomar λ = r + s

√
d ∈ K e q = m+ n

√
d ∈ OK ,

e notar que a desigualdade em (iii) equivale a termos |N(λ− q)| < 1. Da mesma forma, se
d ≡ 1 (mod 4), basta tomar λ = r+ s

(
1+
√
d

2

)
∈ K e q = m+ n

(
1+
√
d

2

)
∈ OK e notar que

a desigualdade em (iii) equivale a termos |N(λ− q)| < 1.

(b) Provaremos que para esses valores de d vale (iii), e que para qualquer outro valor negativo
de d ∈ D não vale (iii):

Caso 1: d < 0. Chamemos ` = −d > 0. Como observado anteriormente, nesse caso a
norma é sempre não-negativa, então podemos ignorar os valores absolutos em (iii).

Caso 1.1: d ≡ 2, 3 (mod 4). Suponhamos ` < 3. Sejam r, s ∈ Q. Então existem intei-
ros m,n ∈ Z tais que |r−m| ≤ 1/2 e |s− n| ≤ 1/2. Então:

(r−m)2 + `(s− n)2 <

(1
2

)2
+ 3

(1
2

)2
= 1,

logo vale (iii). Assim, se d ∈ {−2,−1}, OK é domı́nio euclidiano. Se ` ≥ 5, tomemos
r = s = 1/2. Então, para quaisquer m,n ∈ Z, temos |r −m| ≥ 1/2 e |s− n| ≥ 1/2.
Assim:

(r−m)2 + `(s− n)2 ≥
(1

2

)2
+ 5

(1
2

)2
=

3
2 > 1,

mostrando que nesse caso não vale (iii), e assim OK não é domı́nio euclidiano.

Caso 1.2: d ≡ 1 (mod 4). Suponhamos ` ≤ 11. Sejam r, s ∈ Q. Então existe um in-
teiro n tal que |s− n| ≤ 1/2. Queremos agora achar m ∈ Z tal que∣∣∣∣r−m+

s− n
2

∣∣∣∣ ≤ 1/2,

ou seja,

−1
2 ≤ r−m+

s− n
2 ≤ 1

2 ⇐⇒ r+
s− n− 1

2 ≤ m ≤ r+ s− n+ 1
2 .

Como a diferença entre os números nos extremos da última desigualdade é de 1, podemos
tomar m como sendo um número inteiro no intervalo correspondente. Para esses valores de
m e n, temos:(

r−m+
s− n

2

)2
+ `

(
s− n

2

)2
≤
(1

2

)2
+ 11

(1
4

)2
=

15
16 < 1,

logo vale (iii). Assim, se d ∈ {−11,−7,−3}, OK é domı́nio euclidiano. Se ` ≥ 15, tomemos
r = s = 1/2. Sejam m,n ∈ Z. Se n 6∈ {0, 1}, então s− n > 1, e portanto

`

(
s− n

2

)2
> 15

(1
2

)2
=

15
4 > 1,
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o que já mostra que não temos a desigualdade de (iii). Se n = 0 ou n = 1, então é claro
que os valores de m que minimizam

∣∣r−m+ s−n
2
∣∣ são m = 1 e m = 0, respectivamente.

De qualquer forma, vemos que
∣∣r−m+ s−n

2
∣∣ ≥ 1

4 . Assim:(
r−m+

s− n
2

)2
+ `(s− n)2 ≥

(1
4

)2
+ 15

(1
4

)2
= 1,

mostrando que nesse caso não vale (iii), e OK não é domı́nio euclidiano.

Caso 2: d > 0:

Caso 2.1: d ∈ {2, 3}. Dados r, s ∈ Q, sejam m,n ∈ Z tais que |r−m| ≤ 1/2 e |s−n| ≤ 1/2.
Assim, como d > 0:∣∣∣(r−m)2 − d(s− n)2

∣∣∣ ≤ max
{
(r−m)2, d(s− n)2

}
.

Mas

(r−m)2 ≤
(1

2

)2
=

1
4 e d(s− n)2 ≤ 3

(1
2

)2
=

3
4,

portanto vale (iii), e OK é domı́nio euclidiano.

Caso 2.2: d ∈ {5, 13}. Dados r, s ∈ Q, sejam m,n ∈ Z tais que
∣∣r−m+ s−n

2
∣∣ ≤ 1/2

e |s− n| ≤ 1/2 (podemos achar tais inteiros procedendo como no Caso 1.2). Como d > 0:∣∣∣∣∣
(
r−m+

s− n
2

)2
− d

(
s− n

2

)2
∣∣∣∣∣ ≤ max

{(
r−m+

s− n
2

)2
, d
(
s− n

2

)2}
.

Mas (
r−m+

s− n
2

)2
≤
(1

2

)2
=

1
4 e d

(
s− n

2

)2
≤ 13

(1
4

)2
=

13
16,

portanto vale (iii), e OK é domı́nio euclidiano.

Observação 2.20. Pode-se provar que, se d ∈ {6, 7, 11, 17, 19, 21, 29, 33, 37, 41, 57, 73}, então
OK também é euclidiano com relação à norma absoluta, e esses valores, junto com os do teorema
acima, são os únicos valores de d ∈ D tais que isso acontece (veja [18]).

Podemos ainda nos perguntar para que valores de d o anel OK será um DIP ou um DFU. De
fato, veremos mais adiante que OK será um DIP se e só se for um DFU, e isso não vale apenas
para corpos quadráticos, mas para anéis de inteiros algébricos em geral.

Pelo item (c) do Corolário 2.3, um elemento u ∈ OK será uma unidade se e só se N(u) = ±1.
Sabemos que todo elemento de OK é da forma a+ b

√
d com a, b ∈ Z, se d ≡ 2, 3 (mod 4), e é

da forma a+ b
(

1+
√
d

2

)
, se d ≡ 1 (mod 4). No caso em que d < 0, vemos que a norma “cresce

rapidamente” em função de a e de b. Com isso, é fácil caracterizarmos os elementos inverśıveis de
OK , para obter:

Teorema 2.21. Seja K = Q(
√
d), com d ∈ D e d < 0.

(a) Se d = −1, então O×K = {1, i,−i,−1} é gerado por i.

(b) Se d = −3, então O×K = {1, ζ, ζ2, ζ3 = −1, ζ4, ζ5} é gerado por ζ = 1+
√
−3

2 , uma raiz sexta
primitiva da unidade.



44 CAPÍTULO 2. INTEIROS ALGÉBRICOS

(c) Se d 6∈ {−1,−3}, então O×K = {1,−1}.

A determinação dos grupos de unidades dos corpos quadráticos com d > 0 será feita na Seção
7.5.

Exemplo 2.22. Com os resultados acima, podemos dar uma boa caracterização do anel Z[i] dos
inteiros de Gauss. Sabemos que os inverśıveis desse anel são os elementos ±1,±i. Além disso,
sendo Z[i] um domı́nio euclidiano, ele é um DFU, e portanto as noções de irredut́ıvel e primo
coincidem. Afirmamos que os irredut́ıveis/primos desse anel, a menos de associados, são:

• Os primos de N congruentes a 3 módulo 4;

• 1 + i;

• Os elementos da forma a± bi, com 1 ≤ a < b naturais tais que a2 + b2 é um primo de N

congruente a 1 módulo 4.

Além disso, na lista acima não existem dois elementos associados entre si, e para cada primo
p ∈ Z congruente a 1 módulo 4 os naturais a e b são únicos.

Para mostrar isso, seja x+ yi ∈ Z[i] primo. Então x+ yi | N(x+ yi) = x2 + y2. Assim,
x+ yi divide algum primo p ∈N que aparece na fatoração de x2 + y2. Disso conclúımos que para
encontrarmos os primos de Z[i] basta encontrarmos os primos de Z[i] que dividem um primo de
N.

• Se p = 2: Notemos que 2 = −i(1+ i)2, e N(1+ i) = 2, provando que 1+ i é o único primo
em Z[i] que divide 2 a menos de associados.

• Se p deixa resto 3 na divisão por 4: Temos x+ yi | p⇒ N(x+ yi) = x2 + y2 | N(p) = p2.
Sendo x+ yi primo, devemos ter N(x+ yi) = p ou N(x+ yi) = p2. Mas x2 + y2 não pode
deixar resto 3 na divisão por 4, assim N(x+ yi) = p2 = N(p). Escrevamos p = (x+ yi)γ
para algum γ ∈ Z[i]. Então N(p) = N(x+ yi)N(γ)⇒ N(γ) = 1⇒ γ ∈ Z[i]×. Isso prova
que x+ yi é associado de p, e assim p é primo de Z[i].

• Se p deixa resto 1 na divisão por 4: provemos que p não é primo. Para isso, notemos que,
utilizando o Teorema de Wilson:

p | (p− 1)! + 1 =

(
1 · · · p− 1

2

)((
−p− 1

2

)
· · · (−1)

)
= (−1)(p−1)/2

((
p− 1

2

)
!
)2

+ 1

=

((
p− 1

2

)
!
)2

+ 1.

Chamemos w =
(
p−1

2

)
!. Então p - w+ i e p - w− i, mas p | w2 + 1 = (w+ i)(w− i). Isso

prova que p não é primo, e portanto existe a+ bi primo não associado a p tal que a+ bi | p.
Multiplicando por algum dos inverśıveis ±1,±i se necessário, podemos supor 1 ≤ a < b.

Assim como no item anterior, conclúımos que a2 + b2 | p2. Como a+ bi não é associado
a p, nós devemos ter a2 + b2 = p, e assim p = (a+ bi)(a− bi). Sendo N(a− bi) = p,
vemos que a− bi também é um primo de Z[i]. É fácil ver, simplesmente multiplicando
pelos inverśıveis de Z[i], que a+ bi e a− bi não são associados. Isso termina a prova da
nossa afirmação.
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2.3. Corpos ciclotômicos
Outro tipo importante de corpo de números é aquele gerado por uma raiz da unidade. Comecemos
relembrando algumas definições e enunciando alguns resultados básicos sem demonstração:

Definição (Raiz da Unidade/Extensão Ciclotômica/Corpo Ciclotômico). Seja K um corpo. Di-
zemos que um elemento ζ de um fecho algébrico de K é uma raiz da unidade se ζn = 1 para
algum n inteiro positivo. Se n for o menor inteiro positivo tal que isso ocorra, dizemos que ζ é
uma raiz primitiva n-ésima da unidade.

Uma extensão ciclotômica de K é um corpo da forma K(ζ), onde ζ é uma raiz da unidade,
e dizemos que um corpo é um corpo ciclotômico se ele for da forma Q(ζ) para alguma raiz da
unidade ζ ∈ C.

Denotemos por W (K), Wn(K) e Pn(K) os conjuntos das ráızes da unidade em K, das ráızes
n-ésima da unidade em K e das ráızes n-ésimas primitivas da unidade em K, respectivamente.
O conjunto W (K) também é chamado de grupo de torção de K, já que esse é o subgrupo dos
elementos de ordem finita de K×. Note que temos as inclusões Pn(K) ⊆Wn(K) ⊆W (K) ⊆ K×.
Uma propriedade conhecida da teoria dos grupos abelianos finitos é que se G for um grupo
abeliano finito então existe um elemento γ em G de ordem mmc(ordem(g) : g ∈ G). Utilizando
isso, podemos obter:

Proposição 2.23. Todo subgrupo finito G de K× é ćıclico e igual a Wm(K), sendo m = |G|.

Nós temos ainda a seguinte equivalência:

Proposição 2.24. Seja p a caracteŕıstica de K. Então são equivalentes:

(i) |Wn(K)| = n.

(ii) Pn(K) 6= ∅.

(iii) p - n e xn − 1 se fatora em fatores lineares de K[x].

Nesse caso, Pd(K) 6= ∅ para todo d | n, e1 Wn(K) =
⊔
d|n Pd(K).

Suponhamos que ζ ∈ K seja uma raiz primitiva n-ésima da unidade. Então é claro que
Wn(K) = 〈ζ〉 é isomorfo ao grupo aditivo Z /nZ, com isomorfismo k + nZ 7→ ζk. Como os
geradores de Z /nZ são as ϕ(n) classes dos inteiros primos com n, vemos que Wn(K) tem ϕ(n)
geradores, da forma ζk para 1 ≤ k ≤ n e mdc(k,n) = 1. Assim, |Pn(K)| = ϕ(n). Sendo
Wn(K) =

⊔
d|n Pd(K), conclúımos que

n = |Wn(K)| =
∑
d|n
|Pd| =

∑
d|n

ϕ(d).

Assim, obtemos um famoso resultado da Teoria Elementar dos Números. Associemos a cada
k ∈ Z o endomorfismo de Wn(K) dado por ν 7→ νk. Esse endomorfismo só depende da classe
de k módulo n, e será um automorfismo se e só se mdc(k,n) = 1. Isso define um isomorfismo
(Z /nZ)× → Aut(Wn(K)), como é fácil verificar.

Dados K um corpo e n ≥ 1, supondo que a caracteŕıstica de K não divida n sempre existirá
uma raiz primitiva n-ésima da unidade ζ num fecho algébrico de K. Então a extensão K(ζ)/K
é “bem-comportada”:

1A notação
⊔
λ∈Λ Cλ indica uma união disjunta. Isto é, indica que os conjuntos Cλ são disjuntos dois

a dois.
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Teorema 2.25. Seja K um corpo e seja n um inteiro positivo não diviśıvel pela caracteŕıstica de
K. Seja L = K(ζ), onde ζ é uma raiz primitiva n-ésima da unidade num fecho algébrico de K.
Então L/K é uma extensão galoisiana, e Gal(L/K) é canonicamente isomorfo a um subgrupo
de (Z /nZ)×. Em particular, Gal(L/K) é abeliano de ordem divisora de ϕ(n).

Demonstração. L é extensão galoisiana de K, pois é o corpo de decomposição do polinômio
xn − 1, que é separável já que a caracteŕıstica de K não divide n pela Proposição 2.24. Dado
um automorfismo σ ∈ Gal(L/K), é fácil ver que σ(ζ) também é raiz primitiva n-ésima da
unidade, de modo que σ|Wn(K) ∈ Aut(Wn(K)). Como todo automorfismo de Gal(L/K) está
totalmente determinado pela imagem de ζ, temos uma inclusão Gal(L/K)→ Aut(Wn(K)) dada
por σ 7→ σ|Wn(K). Mas como já vimos Aut(Wn(K)) é canonicamente isomorfo a (Z /nZ)×,
mostrando que Gal(L/K) é canonicamente isomorfo a um subgrupo de (Z /nZ)×.

No caso K = Q, obtemos um resultado ainda melhor:

Teorema 2.26. Seja ζ ∈ C uma raiz primitiva n-ésima da unidade. Então K = Q(ζ) é
uma extensão galoisiana de Q, com Gal(K/ Q) canonicamente isomorfo a (Z /nZ)×. As-
sim, Gal(K/ Q) é abeliano de ordem ϕ(n). Além disso, o polinômio minimal Pζ,Q é igual a
Φn(x) :=

∏
η∈Pn(C)(x− η).

Demonstração. Provaremos que se p é um primo que não divide n e se θ é uma raiz primitiva
n-ésima da unidade, então θ e θp possuem o mesmo polinômio minimal. Com esse resultado,
podemos mostrar que para todo k primo com n o polinômio minimal de ζk será Pζ,Q. Com
efeito, seja k = p1p2 · · · pm para p1, p2, . . . , pm primos. Como mdc(k,n) = 1, nenhum desses
primos divide n. Aplicando esse resultado a ζ e p1, conclúımos que o polinômio minimal de ζp1

é Pζ,Q. Aplicando novamente esse resultado a ζp1 e p2, conclúımos que o polinômio minimal
de (ζp1)p2 = ζp1p2 é Pζ,Q. Continuando dessa forma, conclúımos que o polinômio minimal de
ζk = ζp1···pm é Pζ,Q.

Desse modo, Pζ,Q será o polinômio minimal dos ϕ(n) números da forma ζk com mdc(k,n) = 1,
isto é, as ϕ(n) ráızes primitivas n-ésimas da unidade. Então ϕ(n) ≤ ∂ Pζ,Q = [L : Q] ≤ ϕ(n) pelo
teorema anterior, e assim Pζ,Q = [K : Q] = ϕ(n). Desse modo, as ráızes de Pζ,Q são exatamente
as ráızes primitivas n-ésimas da unidade, o que mostra que Pζ,Q(x) = Φn(x) =

∏
η∈Pn(C)(x− η).

Mostremos então que vale o resultado desejado. Se esse não fosse o caso, então θ e θp teriam
polinômio minimais distintos, digamos P e Q respectivamente. Como θ e θp são ráızes de xn− 1,
eles são inteiros algébricos, e portanto P ,Q ∈ Z[x]. Desse modo, xn − 1 = P (x)Q(x)f(x), para
algum f ∈ Z[x]. Notemos que θ é raiz de Q(xp), e portanto temos Q(xp) = P (x)g(x) para
algum g ∈ Z[x]. Passando a Fp[x], nós temos xn − 1 = P (x)Q(x)f(x) e P (x)g(x) = Q(xp) =
Q(x)p. Essa última igualdade nos diz que P e Q possuem um fator comum D ∈ Fp[x]. Mas
então D

2 | xn − 1 um absurdo já que xn − 1 é separável em Fp[x] (pois p - n). Isso conclui a
demonstração.

Definição (n-ésimo Corpo Ciclotômico/Polinômio Ciclotômico). Definimos o n-ésimo corpo
ciclotômico como sendo Q(ζ), onde ζ ∈ C é uma raiz primitiva n-ésima da unidade. Além disso,
chamamos o polinômio Φn(x) ∈ Z[x], minimal de ζ, de n-ésimo polinômio ciclotômico.

As igualdades Wn(C) =
⊔
d|n Pd(C) e Φn(x) =

∏
η∈Pn(C)(x− η) nos dão diretamente:

Corolário 2.27. Para todo n inteiro positivo, nós temos xn − 1 =
∏
d|n Φd(x).

Esse corolário nos dá um método prático para calcular Φn por recorrência, utilizando a igual-
dade Φn(x) = (xn − 1)/∏d|n, d<n Φd(x). É claro que Φ1(x) = x− 1. Assim, para cada número
primo p, temos Φp(x) = (xp− 1)/Φ1(x) = (xp− 1)/(x− 1) = xp−1 + · · ·+x+ 1. Isso mostra em
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particular que esses polinômios são irredut́ıveis, fato conhecido e usualmente demonstrado pelo
critério de Eisenstein. Mais geralmente, é fácil determinar explicitamente Φpr(x), para r ≥ 1:

xp
r − 1 = Φ1(x)Φp(x) · · ·Φpr−1(x)Φpr (x) = (xp

r−1 − 1)Φpr (x)

⇒ Φpr(x) =
xp

r − 1
xpr−1 − 1

= x(p−1)pr−1
+ · · ·+ x2pr−1

+ xp
r−1

+ 1.

Consideremos agora o corpo Q(ζ), para ζ raiz primitiva n-ésima da unidade, e procuremos
calcular o polinômio caracteŕıstico, o traço e a norma de um elemento qualquer desse corpo.
Observemos que 1, ζ, . . . , ζϕ(n)−1 formam uma base da extensão Q(ζ)/ Q, e portanto um elemento
genérico de Q(ζ) se escreve como γ = a0 + a1ζ + · · ·+ aϕ(n)ζ

ϕ(n)−1, para a0, a1, . . . , aϕ(n) ∈ Q.
Sabemos que o grupo de Galois de Q(ζ)/ Q é composto pelos automorfismos ζ 7→ ζk, onde
1 ≤ k ≤ n e mdc(k,n) = 1. Sendo assim, os conjugados de γ são os elementos da forma

a0 + a1ζ
k + · · ·+ aϕ(n)ζ

(ϕ(n)−1)k, para 1 ≤ k ≤ n e mdc(k,n) = 1.

Portanto, o polinômio caracteŕıstico de γ é dado por

Fγ(x) =
∏

1≤k≤n
mdc(k,n)=1

(x− (a0 + a1ζ
k + · · ·+ aϕ(n)ζ

(ϕ(n)−1)k)).

Além disso, o traço de γ é

Tr(γ) =
∑

1≤k≤n
mdc(k,n)=1

(a0 + a1ζ
k + · · ·+ aϕ(n)ζ

(ϕ(n)−1)k)

e a norma de γ é

N(γ) =
∏

1≤k≤n
mdc(k,n)=1

(a0 + a1ζ
k + · · ·+ aϕ(n)ζ

(ϕ(n)−1)k).

Observe que Tr(γ) e N(γ) são polinômio simétricos nas ráızes primitivas da unidade, e portanto
podem ser determinados como polinômios nos coeficientes de Φn.

Mostraremos que o anel de inteiros algébricos de um corpo ciclotômico K = Q(ζ) tem base
integral {1, ζ, . . . , ζϕ(n)−1}. Note que basta provarmos que

OK = Z[ζ] = Z+Z ·ζ + · · ·+ Z ·ζϕ(n)−1.

Entretanto, postergaremos essa demonstração para a Seção 5.3, pois necessitamos de um ma-
quinário maior. Por ora, mostraremos apenas alguns fatos que nos serão úteis mais adiante.

Consideremos p primo ı́mpar, ζ ∈ C uma raiz primitiva p-ésima da unidade e K = Q(ζ).
Estudemos K e OK . Nesse caso, temos p − 1 ráızes primitivas p-ésimas da unidade, a saber
ζ, ζ2, . . . , ζp−1, e como visto acima temos Φp(x) = xp−1 + · · ·+ x+ 1. Existem exatamente p− 1
automorfismos σ1, . . . ,σp−1 : K → K, com σj(ζ) = ζj para 1 ≤ j ≤ p− 1 (note que σ1 = idK).
Começamos com o seguinte resultado:

Lema 2.28. Os elementos ζ − 1, . . . , ζp−1 − 1 são ráızes do polinômio

ψp := xp−1 +

(
p

p− 1

)
xp−2 + · · ·+

(
p

2

)
x+

(
p

1

)
∈ Z[x],

que é irredut́ıvel em Q[x].
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Demonstração. Basta notar que

Φp(x+ 1) = (x+ 1)p − 1
(x+ 1)− 1 =

∑p
j=1 (

p
j)x

j

x
=

p∑
j=1

(
p

j

)
xj−1 = ψp(x).

Assim, é claro que ζ − 1, . . . , ζp−1 − 1 são ráızes de ψp. A irredutibilidade de ψp segue da irredu-
tibilidade de Φp.

Como cada ζj , ζj − 1 são elementos primitivos de K/ Q, seus polinômios caracteŕısticos coin-
cidem com seus minimais, isto é, com Φp e com ψp respectivamente. Como sabemos Φp e ψp
explicitamente, é fácil calcular a norma e o traço desses elementos. Para 1 ≤ j ≤ p− 1 nós temos:

Tr(ζj) = −1; Tr(ζj − 1) = −p; Tr(1− ζj) = p;
N(ζj) = 1; N(ζj − 1) = p; N(1− ζj) = p. (2.1)

Note que de fato N(ζ) = 1 vale para ζ raiz n-ésima da unidade para n qualquer, já que
ζn = 1. A partir dessas equações nós conseguimos calcular o discriminante do que mostraremos
futuramente ser a base integral de uma extensão ciclotômica de grau potência de primo:

Proposição 2.29. Sejam p ∈ Z primo, r ≥ 1 inteiro e ζ ∈ C uma raiz primitiva pr-ésima da
unidade. Consideremos o corpo ciclotômico K = Q(ζ). Suponhamos ainda que r ≥ 2 caso p = 2,
pois senão K = Q. Então:

∆K/ Q(1, ζ, . . . , ζϕ(pr)−1) = (−1)
ϕ(pr )

2 pp
(r−1)(rp−r−1).

Demonstração. Notemos que como ζ é elemento primitivo da extensão K/ Q, temos Fζ = Pζ =

Φpr . Como vimos, vale a igualdade xpr − 1 = (xp
r−1 − 1)Φpr (x). Assim, derivando os dois lados

dessa equação obtemos

prxp
r−1 = pr−1xp

r−1−1Φpr(x) + (xp
r−1 − 1)Φ′pr(x).

Avaliando em ζ, obtemos:

prζp
r−1 = (ζp

r−1 − 1)Φ′pr(ζ)⇒ Φ′pr(ζ) =
prζ−1

ζpr−1 − 1
=
prζ−1

ξ − 1 ,

onde ξ := ζp
r−1 é uma raiz primitiva p-ésima da unidade. Consideremos primeiramente o caso p

ı́mpar. Aplicando NK/ Q, obtemos:

NK/ Q(Φ′pr(ζ)) =
NK/ Q(p

rζ−1)

NK/ Q(ξ − 1) =
prϕ(p

r) ·NK/ Q(ζ)
−1

NQ(ξ)/ Q(NK/ Q(ξ)(ξ − 1))

=
prϕ(p

r) · 1
NQ(ξ)/ Q((ξ − 1)ϕ(pr)/ϕ(p))

=
prϕ(p

r)

pϕ(p
r)/ϕ(p)

= pr(p−1)pr−1−pr−1

= pp
r−1(rp−r−1),

onde utilizamos (2.1) e as propriedades da norma. Sendo assim, pela Proposição 1.33 nós temos:

∆(1, ζ, . . . , ζϕ(pr)−1) = (−1)(
ϕ(pr )

2 )NK/ Q(Φ′pr(ζ))

= (−1)
ϕ(pr )

2 pp
r−1(rp−r−1),
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já que ϕ(pr) é par, e portanto a paridade de (ϕ(p
r)

2 ) é a mesma de ϕ(pr)/2.
Consideremos agora p = 2. Nesse caso, r ≥ 2 e ξ é uma raiz primitiva 2-ésima da unidade, ou

seja, ξ = −1. Assim, nós temos:

NK/ Q(Φ′2r(ζ)) =
NK/ Q(2rζ−1)

NK/ Q(−2) =
2rϕ(2r) ·NK/ Q(ζ)

−1

(−2)ϕ(2r)

=
2rϕ(2r) · 1
(−2)ϕ(2r)

= (−1)ϕ(2r)2(r−1)ϕ(2r)

= 22r−1(r−1),

por (2.1), pelas propriedades da norma e observando que ϕ(2r) é par. Sendo assim, pela Pro-
posição 1.33, nós temos:

∆(1, ζ, . . . , ζϕ(2r)−1) = (−1)(
ϕ(2r )

2 )NK/ Q(Φ′2r (ζ))

= (−1)
ϕ(2r )

2 22r−1(r−1).

Note que essa expressão é a desejada substituindo p = 2.

Outro fato importante é a relação entre diferentes corpos ciclotômicos:
Proposição 2.30. Sejam m,n > 1 inteiros positivos primos entre si, e sejam ζm, ζn, ζmn ∈ C

ráızes primitivas m-ésima, n-ésima e mn-ésima da unidade, respectivamente. Então valem as
igualdades Q(ζm)Q(ζn) = Q(ζmn) e Q(ζm) ∩Q(ζn) = Q.

Q(ζm)Q(ζn) = Q(ζmn)

Q(ζm) Q(ζn)

Q(ζm) ∩Q(ζn) = Q

ϕ(n)

ϕ(m)

ϕ(m) ϕ(n)

Além disso, se denotarmos por ξ1, . . . , ξϕ(m) as ráızes m-ésimas primitivas da unidade e por
η1, . . . , ηϕ(n) as ráızes n-ésimas primitivas da unidade, então o conjunto das ráızes mn-ésimas da
unidade é igual a {ξiηj : 1 ≤ i ≤ ϕ(m), 1 ≤ j ≤ ϕ(n)}. Em particular:

Φmn(x) =
ϕ(m)∏
i=1

ϕ(n)∏
j=1

(x− ξiηj).

Demonstração. Consideremos o grupo multiplicativo C×. Como ζm tem ordem m, ζn tem ordem
n e mdc(m,n) = 1, um resultado conhecido da teoria de grupos abelianos nos diz que ζ ′ := ζmζn
tem ordem mmc(m,n) = mn. Consequentemente, Q(ζ ′) = Q(ζmn), já que ζ ′ é uma potência
inteira de ζ e vice-versa. Assim, basta mostrarmos que Q(ζm)Q(ζn) = Q(ζ ′), o que é claro.
Podemos agora concluir que Q(ζm) ∩Q(ζn) = Q, já que essa é a condição para valer

Gal(Q(ζm)Q(ζn)/ Q) ∼= Gal(Q(ζm)/ Q)×Gal(Q(ζn)/ Q),

que sabemos ser verdade já que (Z /mnZ)× ∼= (Z /mZ)× × (Z /nZ)×.
Para a segunda afirmação, como já vimos o produto de uma raiz primitiva m-ésima da unidade

com uma raiz primitivan-ésima da unidade é uma raiz primitiva mn-ésima da unidade. Assim,
cada ξiηj é uma raiz primitiva mn-ésima da unidade, e é um exerćıcio simples verificar que esses
produtos são distintos dois a dois. Como ϕ(m)ϕ(n) = ϕ(mn), o conjunto dos ξiηj está contido
em Pmn(C) e tem o mesmo número de elementos que esse conjunto. Assim, os dois conjuntos
coincidem. A expressão para Φmn(x) é então imediata.
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Estudemos agora extensões ciclotômicas em corpos de caracteŕıstica p > 0. Devido à Pro-
posição 2.24, dado n inteiro positivo só podem existir ráızes primitivas n-ésimas da unidade em
alguma extensão de um corpo de caracteŕıstica p se p - n. Se esse for o caso, tais ráızes da unidade
sempre existirão. No caso de corpos finitos, nós temos uma caracterização para suas extensões
ciclotômicas:

Teorema 2.31. Sejam p ∈N um primo, q = pr e n um inteiro positivo tal que p - n. Chamemos
de fq a ordem de q no grupo multiplicativo (Z /nZ)×. Então existem ráızes primitivas n-ésimas
da unidade em Fqfq , e essa é a menor extensão de Fq tal que isso ocorre. Em particular, sendo ζ
uma raiz primitiva n-ésima da unidade, temos Fq[ζ] = Fqfq , e portanto o polinômio minimal de
ζ em Fq tem grau fq.

Demonstração. Pela Proposição 2.24, para garantirmos a existência de uma (e portanto de todas)
raiz primitiva da unidade em uma extensão Fqm de Fq, é necessário e suficiente que xn − 1 se
fatore em fatores lineares de Fqm [x], ou seja, que o corpo de decomposição de xn− 1 esteja contido
em Fqm [x]. Assim, basta mostrarmos que Fqfq é o corpo de decomposição de xn − 1 sobre Fq.

Comecemos notando que esse corpo de decomposição será da forma Fqk , para algum inteiro
positivo k. Como F×

qk
é um grupo multiplicativo de ordem qk − 1, temos ζqk−1 = 1. Mas uma

vez que a ordem de ζ nesse grupo é n, nós obtemos n | qk − 1. Isso significa que fq | k. Assim,
qfq − 1 | qk − 1, e xqfq−1 − 1 | xqk−1 − 1. Como Fqfq é corpo de decomposição de xqfq−1 − 1 e Fqk

é corpo de decomposição de xqk−1 − 1, conclúımos que Fqfq ⊆ Fqk .
Por outro lado, como n | qfq − 1, temos xn− 1 | xqfq−1− 1, e portanto o corpo de decomposição

de xn− 1 está contido no corpo de decomposição de xqfq−1− 1. Mas o corpo de decomposição de
xn − 1 é Fqk , e o corpo de decomposição de xqfq−1 − 1 é Fqfq . Assim, Fqk ⊆ Fqfq .

Conclúımos que o corpo de decomposição de xn − 1 sobre Fq é Fqfq . Portanto, essa é a
menor extensão de Fq que possui ráızes primitivas n-ésimas da unidade, pela Proposição 2.24.
Finalmente, dada uma raiz primitiva n-ésima da unidade ζ ∈ Fqfq , por essa mesma proposição
vale a igualdade xn − 1 = (x− 1)(x− ζ) · · · (x− ζn−1) em Fqfq [x]. Portanto, Fqfq = Fp[ζ]. Em
particular, o polinômio irredut́ıvel de ζ sobre Fq tem grau fq.

2.4. Algumas Aplicações
Nessa seção, mostraremos duas aplicações interessantes do estudo de corpos quadráticos e ci-
clotômicos. Um problema clássico de Teoria dos Números é o das ternas pitagóricas: encontrar
as soluções inteiras da equação x2 + y2 = z2. Esse problema pode ser resolvido sem utilizar in-
teiros algébricos, mas possui uma solução em certo sentido “mais natural” que se utiliza do anel
dos inteiros de Gauss. Lembre que esse anel é um domı́nio euclidiano. Seja d = mdc(x, y), e
escrevamos x = da e y = db. Então x2 + y2 = z2 ⇒ d | z, e podemos escrever z = dc. Assim,
nossa equação se torna a2 + b2 = c2, e vale mdc(a, b) = 1.

Observemos agora que temos a fatoração a2 + b2 = (a+ bi)(a− bi) em Z[i], de modo que
(a + bi)(a − bi) = c2 é um quadrado perfeito. Encontremos os primos π ∈ Z[i] que podem
dividir ambos a + bi e a− bi. Um tal primo deve também dividir (a + bi) + (a− bi) = 2a e
(a+ bi)− (a− bi) = 2bi. Assim, π | 2a e π | 2b. Como a, b são primos entre si em Z, conclúımos
que π | 2, e portanto a única possibilidade é termos π = 1 + i. Mas isso não pode acontecer! De
fato, se esse fosse o caso então

1 + i | a+ bi⇒ 2 = N(1 + i) | N(a+ bi) = a2 + b2,

logo concluiŕıamos que a e b são ambos ı́mpares já que mdc(a, b) = 1. Mas então nós teŕıamos
que c2 = a2 + b2 ≡ 2 (mod 4), um absurdo! Isso mostra que a+ bi e a− bi são primos entre si
em Z[i].
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Como (a + bi)(a − bi) é um quadrado perfeito e a + bi é primo com a − bi, nós devemos
ter a+ bi = uα2 para alguns u ∈ Z[i]×, α ∈ Z[i]. Escrevamos α = m+ ni, para m,n ∈ Z, e
lembremos que Z[i]× = {−1, 1,−i, i}. Abrindo a expressão a+ bi = u(m+ni)2, nós encontramos:

(a, b) =


(m2 − n2, 2mn), se u = 1;
(n2 −m2,−2mn), se u = −1;
(−2mn,m2 − n2), se u = i;
(2mn,n2 −m2), se u = −i.

Notemos que, em qualquer caso, encontramos c2 = a2 + b2 = (m2−n2)2 + (2mn)2 = (m2 +n2)2,
de modo que obtemos c = ±(m2 +n2). Observemos que, a menos da ordem de a e de b e dos sinais
de a, b, c, todas as soluções de a2 + b2 = c2 são da forma (m2−n2, 2mn,m2 +n2), para m ≥ n ≥ 0
inteiros. A partir disso, conclúımos que todas as soluções da equação inicial x2 + y2 = z2 são, a
menos de ordem e sinais, da forma (x, y, z) = (d(m2 − n2), 2dmn, d(m2 + n2)), para m ≥ n ≥ 0
inteiros e d ≥ 0 inteiro.

Mostraremos agora uma aplicação do estudo de corpos ciclotômicos: o Pequeno Teorema de
Wedderburn:

Teorema 2.32 (Pequeno Teorema de Wedderburn). Seja A um domı́nio finito. Então A é um
corpo2.

Demonstração. Dado a ∈ A não-nulo, consideremos a função La : A→ A dada por La(x) = ax e
a função Ra : A→ A dada por Ra(x) = xa. Então, como A é domı́nio, essas funções são injetoras.
Sendo A finito, essas funções são bijeções. Assim, existem `, r ∈ A tais que `a = ar = 1. Mas
desse modo ` = `(ar) = (`a)r = r, e portanto a é inverśıvel. Como a ∈ A não-nulo é qualquer,
provamos que A é um anel de divisão.

Assim, basta mostrarmos que todo anel de divisão finito A é um corpo. Faremos isso por
indução na cardinalidade de A. Comecemos observando que A é simples, e portanto o seu centro
Z(A) é um corpo. Se |A| for um primo, então A = Z(A) é um corpo, pois como (Z(A),+) é
um subgrupo de (A,+) vemos que |Z(A)| divide |A|, e |Z(A)| ≥ 2 já que 0, 1 ∈ Z(A). Assim,
|Z(A)| = |A| e temos a igualdade desejada.

Suponhamos então por indução que a ordem de A não é prima, e que todo anel com divisão de
ordem menor que |A| é um corpo. Em particular, todo subanel próprio não-nulo de A é um corpo.
Chamemos p := |Z(A)|. Então A é um espaço vetorial sobre Z(A) com uma certa dimensão n ≥ 1,
de modo que |A| = pn. Queremos mostrar que n = 1, pois então concluiremos que A = Z(A) é
um corpo.

Para cada a ∈ A \ Z(A), o seu centralizador Za := {z ∈ A : za = az} é um anel tal que
Z(A) ⊆ Za ( A. Assim, por hipótese Za é um corpo. Notemos que então A é um espaço vetorial
sobre Za e Za é um espaço vetorial sobre Z(A). Dessa forma, devemos ter |Za| = pda para algum
da divisor próprio de n.

Consideremos a ação do grupo multiplicativo A× sobre si mesmo, dada pela multiplicação
de A. O centro dessa ação é Z(A)×, e o estabilizador de cada elemento a ∈ A× é Z×a . Seja
{a1, . . . , ak} um conjunto de representantes das órbitas não-triviais. Então a equação de classes
nos dá:

|A×| = |Z(A)×|+
k∑
j=1

[A× : Z×aj ]⇒ pn − 1 = p− 1 +
k∑
j=1

pn − 1
pdaj − 1

.

Agora, lembremos que vale xn − 1 =
∏
d|n Φd(x), e que sendo 1 ≤ j ≤ k temos xdaj − 1 =∏

m|daj
Φm(x). Como m | daj ⇒ m | n e m 6= n, é fácil ver que Φn(x) | xn−1

x
daj−1

em Z[x]. Desse

2Nesse enunciado, consideramos que a prinćıpio A não precisaria ser comutativo.
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modo, Φn(p) | pn−1
p
daj−1

. Como também Φn(p) | pn − 1, conclúımos a partir da equação de classes
que Φn(p) | p− 1. Em particular, |Φn(p)| ≤ p− 1.

Sejam agora ζ1, . . . , ζϕ(n) as ráızes primitivas n-ésimas da unidade. Então

Φn(p) =
ϕ(n)∏
j=1

(p− ζj)⇒ |Φn(p)| =

∣∣∣∣∣∣
ϕ(n)∏
j=1

(p− ζj)

∣∣∣∣∣∣ =
ϕ(n)∏
j=1
|p− ζj |.

Para cada 1 ≤ j ≤ ϕ(n) temos |p− ζj | ≥ |p| − |ζj | = p− 1 ≥ 1, e se a igualdade valer então
p e ζj são colineares, ou seja, ζj ∈ R. Mas nesse caso ζj = ±1, e portanto ζj = 1 já que
|p− (−1)| = p+ 1 > p− 1 = |p| − |−1|. Desse modo, se n > 1 então temos |p− ζj | > p− 1 ≥ 1
para todo j, e assim

|Φn(p)| =
ϕ(n)∏
j=1
|p− ζj | > (p− 1)ϕ(n) ≥ p− 1,

absurdo! Conclúımos que n = 1, e que portanto A = Z(A) é um corpo, como desejado.

Existem diversas outras aplicações do estudo de corpos quadráticos e ciclotômicos na ma-
temática. O conjunto Z[i] também pode ser utilizado, por exemplo, para provar o Teorema dos
Dois Quadrados, que determina quais números inteiros positivos se escrevem como soma de dois
quadrados perfeitos. Os corpos ciclotômicos, por sua vez, possuem uma importância histórica na
resolução de casos particulares do Último Teorema de Fermat. Além disso, um estudo mais deta-
lhado dos polinômios ciclotômicos nos permite solucionar de forma elementar um caso particular
do famoso Teorema de Dirichlet sobre progressões aritméticas.

Teorema 2.33 (Teorema de Dirichlet sobre Progressões Aritméticas). Sejam a e n inteiros po-
sitivos primos entre si. Então existem infinitos primos da forma nk + a, para k variando nos
naturais. Equivalentemente, existem infinitos primos congruentes a a módulo n.

Esse teorema se demonstra utilizando métodos da Teoria Anaĺıtica dos Números. Entretanto,
utilizando polinômios ciclotômicos pode-se demonstrar o caso em que a = 1, isto é:

Teorema 2.34 (Caso particular do Teorema de Dirichlet). Seja n > 1 um inteiro positivo. Então
existem infinitos primos p tais que p ≡ 1 (mod n).

Uma demonstração desse resultado se encontra em [13].



Caṕıtulo 3

Domı́nios de Dedekind e de
Valoração Discreta

Como vimos, nem todo anel de inteiros algébricos é um DFU, como por exemplo Z[
√
−5]. Apesar

disso, como veremos neste caṕıtulo, todo anel de inteiros algébricos ainda possui propriedades
muito boas. A saber, ele é um domı́nio de Dedekind, isto é, ainda que não haja a unicidade da
fatoração para os elementos de OK , vale um teorema de unicidade da fatoração para objetos um
pouco diferentes: os ideais de OK . Com isso, vale a pena um estudarmos mais detalhadamente
esse importante tipo de anel. Também estudaremos os domı́nios de valoração discreta, que
são tipos especiais de DIP’s. Como veremos, a cada domı́nio de valoração discreta nós podemos
associar uma valoração discreta, uma função que possui diversas propriedades boas.

3.1. A Fatoração Única de Ideais
Definição (Domı́nio de Dedekind). Seja A um domı́nio. Então A é chamado de domı́nio de
Dedekind se for integralmente fechado, noetheriano e se todo ideal primo não-nulo de A for
maximal.

O seguinte teorema diz que a propriedade de um anel ser um domı́nio de Dedekind é preservada
em certos tipos de extensão:

Teorema 3.1. Sejam A um domı́nio de Dedekind, K = Q(A) e L uma extensão finita e separável
de K. Então B := A

L é um domı́nio de Dedekind.

Demonstração. Temos Q(B) = L, pelo Teorema 1.16. Além disso, BL
= B, pelo Corolário 1.13.

Logo B é integralmente fechado. Além disso, B é noetheriano pelo Teorema 1.37. Finalmente,
todo ideal primo não-nulo de B é maximal, pelo item (e) do Teorema 1.53.

É claro que Z é um domı́nio de Dedekind. Assim, o teorema acima nos dá diretamente
o seguinte resultado, que mostra a importância de estudar domı́nios de Dedekind em Teoria
Algébrica dos Números:

Teorema 3.2. Seja K um corpo de números algébricos. Então OK é um domı́nio de Dedekind.

Sejam A um domı́nio qualquer e K = Q(A) seu corpo de frações. Então podemos ver K como
A-módulo com a multiplicação de K. Dados dois A-submódulos M ,N ⊆ K, podemos definir os
submódulos M +N e M ∩N de K da maneira usual. Como temos uma multiplicação em K,
podemos definir também o produto MN , como sendo o submódulo formado pelas somas finitas
de elementos da forma mn com m ∈M e n ∈ N . Essas operações são bem-comportadas, pois elas
são associativas e comutativas, e além disso é fácil ver que temos, para M ,N ,P ⊆ K submódulos:

53
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• M(N + P ) =MN +MP ;

• (M ∩N)(M +N) ⊆MN ;

• M(N ∩ P ) ⊆MN ∩MP ;

• M ∩ (N + P ) ⊇ (M ∩N) + (M ∩ P );

• M + (N ∩ P ) ⊆ (M +N) ∩ (M + P ).

Dessa forma, esses submódulos se comportam como ideais.

Definição (Ideal Fracionário). Dizemos que um submódulo não-nulo M ⊆ K é um ideal fra-
cionário de A se existir d ∈ A \ {0} tal que dM ⊆ A.

Nesse caso, é fácil ver que dM será um ideal aCA, de modo que M = d−1a é a “fração” de um
ideal de A por um elemento não-nulo de A. Notemos que os ideais de A coincidem com os ideais
fracionários contidos em A. É importante também notar que todo submódulo não-nulo finitamente
gerado de K é um ideal fracionário, pois basta escolher d de forma a “limpar os denominadores”
de todos os geradores desse submódulo. Reciprocamente, num domı́nio noetheriano todo ideal
fracionário M é finitamente gerado, pois se dM CA então dM é finitamente gerado. Assim:

Proposição 3.3. Todo A-submódulo não-nulo finitamente gerado M ⊆ K é um ideal fracionário
de A. Além disso, se A for um domı́nio noetheriano, um submódulo não-nulo M ⊆ K de A será
um ideal fracionário de A se e somente se for um A-módulo finitamente gerado.

Notação. Indicaremos o conjunto dos A-submódulos não-nulos de K por M (A), o conjunto dos
ideais fracionários de A por I(A), o conjunto dos ideais não-nulos de A por J (A) e o conjunto dos
ideais primos não-nulos de A por P(A). Quando A estiver claro, denotaremos apenas M , I, J
e P.

É fácil mostrar que o conjunto I é fechado por soma, interseção e produto.

Definição (Ideal Inverśıvel). Dizemos que M ∈ M é inverśıvel se existir N ∈ M tal que
MN = A. Nesse caso, dizemos que N é o inverso de M .

Com a operação de multiplicação, M se torna um monoide, com identidade A. Assim, se
M ∈M for inverśıvel, seu inverso será único, e será denotado M−1. Notemos ainda que I é um
submonoide de M .

Os submódulos gerados por um único elemento não-nulo sempre são fracionários inverśıveis:

Proposição 3.4. Seja x ∈ K \ {0}. Então o submódulo xA ⊆ K é um ideal fracionário de A.
Além disso, dado y ∈ K \ {0}, temos (xA)(yA) = xyA. Em particular, xA é inverśıvel, com
inverso x−1A.

Demonstração. É claro que (xA)(yA) = xyA, de onde segue também a última afirmação. Cha-
mando x = r/s, onde r, s ∈ A, s 6= 0, temos sx = r ∈ A, e portanto sxA ⊆ A. Isso mostra que
xA é um ideal fracionário de A.

Essa proposição mostra que a seguinte definição faz sentido:

Definição (Ideal Fracionário Principal). Chamaremos um ideal fracionário de A de principal se
ele for da forma xA, para x ∈ K \ {0}.

O conjunto dos ideais fracionários principais de A forma um grupo, que será denotado por
P (A). Quando A estiver claro, denotaremos P (A) apenas por P .

Nós temos uma caracterização melhor para o inverso de um módulo, utilizando o chamado
quociente de um submódulo:
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Definição (Quociente de um Submódulo). Dado M ⊆ K submódulo, definimos o quociente de
M como sendo (A : M) := {x ∈ K | xM ⊆ A}.

É fácil ver que (A : M) também é um submódulo de K, e que ele satisfaz (A : M)M ⊆ A.
Além disso, dado um ideal aCA, temos claramente A ⊆ (A : a), e (A : 0) = K.

Proposição 3.5. Seja M ∈M . Então:

(a) (A : M) é um ideal fracionário de A;

(b) Se M for um ideal fracionário de A, então (A : M) 6= 0;

(c) Se A 6= K, então (A : K) = 0, e K não é um ideal fracionário de A.

Demonstração. (a) Seja c/d ∈ M não-nulo, com c, d ∈ A. Então c = d(c/d) ∈ M ∩A \ {0}.
Observemos agora que c(A : M) ⊆M(A : M) ⊆ A, e portanto (A : M) é ideal fracionário.

(b) Seja d ∈ A \ {0} tal que dM ⊆ A. Então d ∈ (A : M), mostrando que (A : M) 6= 0.

(c) Suponhamos A 6= K. Seja c/d ∈ (A : K), com c, d ∈ A. Então (c/d)K ⊆ A. Se c 6= 0,
isso significa que K ⊆ (d/c)A. Mas d/c = (c/d)(d2/c2) ∈ (c/d)K ⊆ A, e portanto temos
K ⊆ (d/c)A ⊆ A, um absurdo! Assim, temos c = 0, e c/d = 0. Ou seja, (A : K) = 0. Do
item (b), conclúımos que K não é ideal fracionário.

A proposição acima nos diz, em particular, que I também é fechado para o quociente.

Proposição 3.6. Seja M ∈M inverśıvel. Então M é um A-módulo finitamente gerado, M−1 =
(A : M) e ambos M e M−1 são ideais fracionários. Além disso, xM−1 CA para todo x ∈M .

Demonstração. Como M−1M = A, temos M−1 ⊆ (A : M). Por outro lado,

(A : M) = (A : M)A = (A : M)MM−1 ⊆ AM−1 =M−1.

Dessa forma, M−1 = (A : M). Pela Proposição 3.5 já sabemos que (A : M) é ideal fracionário.
Mostremos agora que M é finitamente gerado. Como (A : M)M = 1, nós podemos escrever
1 = y1z1 + · · ·+ ymzm, para alguns y1, . . . , ym ∈ (A : M) e z1, . . . , zm ∈ M . Afirmamos que
M = Az1 + · · ·+Azm. De fato, dado x ∈M qualquer, temos:

x = (xy1)z1 + · · ·+ (xym)zm ∈ Az1 + · · ·+Azm,

pois pela definição de (A : M) temos xy1, . . . ,xym ∈ A. Sendo M finitamente gerado, temos M
ideal fracionário. Por fim, basta notar que, dado x ∈M , temos xM−1 ⊆MM−1 = A.

Chamemos de J(A) o conjunto dos ideais fracionários inverśıveis de A. Quando A estiver
claro pelo contexto, denotaremos J(A) apenas por J . Pelo resultado acima, nós temos J ⊆ I.
Notemos que J munido da multiplicação forma um grupo abeliano, e é o maior grupo contido nos
monoides I e M . Notemos ainda que P ⊆ J .

Para o que segue, precisaremos de alguns resultados gerais sobre ideais primos e sobre anéis
noetherianos:

Proposição 3.7. Sejam a1, . . . , ar C A e pCA primo. Suponhamos que p ⊇ a1 · · · ar. Então
temos p ⊇ aj para algum 1 ≤ j ≤ r.

Demonstração. Provaremos a contrapositiva: se p 6⊇ aj para 1 ≤ j ≤ r, então podemos escolher
aj ∈ aj \ p. Mas então a1 · · · ar ∈ a1 · · · ar \ p, já que p é primo, mostrando que p 6⊇ a1 · · · ar.
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Teorema 3.8. Seja A um anel noetheriano. Então para todo ideal aCA existem ideais primos
p1, . . . , pnCA tais que

p1 p2 · · · pn ⊆ a ⊆ p1 ∩ p2 ∩ · · · ∩ pn .

Demonstração. É claro que A e os ideais primos de A possuem essa propriedade (basta tomar
n = 0 e n = 1 respectivamente). Seja Ω o conjunto dos ideais de A que não possuem a propriedade
acima. Queremos mostrar que Ω = ∅. Suponhamos por absurdo que esse não seja o caso. Como A
é noetheriano, existe b ∈ Ω maximal. Sabemos que b é um ideal próprio e não-primo de A. Assim,
existem x, y ∈ A \ b tais que xy ∈ b. Como b ( b+ xA e b ( b+ yA, segue da maximalidade de
b que existem ideais primos p1, . . . , pr, q1, . . . , qsCA tais que

p1 p2 · · · pr ⊆ b+ xA ⊆ p1 ∩ p2 ∩ · · · ∩ pr e
q1q2 · · · qs ⊆ b+ yA ⊆ q1 ∩ q2 ∩ · · · ∩ qs.

Desse modo:

p1 p2 · · · pr q1q2 · · · qs ⊆ (b+ xA)(b+ yA) ⊆ b

⊆ (b+ xA) ∩ (b+ yA)

⊆ p1 ∩ p2 ∩ · · · ∩ pr ∩q1 ∩ q2 ∩ · · · ∩ qs,

mostrando que b 6∈ Ω, um absurdo! Assim, Ω = ∅, como queŕıamos.

Como consequência desse resultado, nós temos:

Corolário 3.9. Seja A um anel noetheriano. Então todo ideal não-nulo aCA contém o produto
de um número finito de ideais primos não-nulos.

Demonstração. Pelo teorema anterior, existem primos p1, . . . , pnCA com

p1 p2 · · · pn ⊆ a ⊆ p1 ∩ p2 ∩ · · · ∩ pn .

Como a é não-nulo, a segunda inclusão nos mostra que nenhum desses primos é nulo, e assim
temos o resultado desejado.

Lema 3.10. Seja A um domı́nio noetheriano tal que todos os ideais primos não-nulos de A sejam
maximais. Então para todo p ∈P nós temos A ( (A : p).

Demonstração. Já sabemos que A ⊆ (A : p). Assim, devemos achar um elemento de (A : p) fora
de A. Para isso, tomemos d ∈ p \{0} qualquer. Pelo Corolário 3.9 existem p1, . . . , prCP tais que

p1 p2 · · · pr ⊆ dA ⊆ p .

Podemos supor que r é mı́nimo. Como p contém o produto p1 · · · pr, p deve conter algum dos
ideais p1, . . . , pr por 3.7. Suponhamos sem perda de generalidade que p ⊇ p1. Sendo p1 maximal,
temos p = p1. Pela minimalidade de r, nós temos p2 · · · pr 6⊆ dA, de modo que existe um elemento
c ∈ p2 · · · pr tal que c/d 6∈ A. Por outro lado,

c p ⊆ p1 p2 · · · pr ⊆ dA⇒ (c/d) p ⊆ A⇒ c/d ∈ (A : p).

Então c/d é o elemento procurado, completando a demonstração.

Com os resultados acima em mãos, podemos demonstrar:

Teorema 3.11. Seja A um domı́nio de Dedekind. Então:

(a) Todo p ∈P é inverśıvel.
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(b) Todo ideal não-nulo de A é produto de ideais primos de A. Consequentemente, todo ideal
não-nulo de A é inverśıvel.

(c) Todo ideal fracionário não-nulo de A é inverśıvel. Desse modo, I é um grupo, ou seja,
J = I.

Demonstração. (a) Devido à Proposição 3.6, queremos mostrar que (A : p) p = A. Mas temos
p ⊆ (A : p) pCA, então sendo p maximal basta mostrarmos que p 6= (A : p) p. Suponhamos
por absurdo que p = (A : p) p, e tomemos c ∈ (A : p). Isso significa que c p ⊆ p. Desse
modo, para todo inteiro positivo m nós temos:

cm p ⊆ cm−1 p ⊆ · · · ⊆ c p ⊆ p ⊆ A.

Logo A[c] p ⊆ A. Fixemos d ∈ p \{0}. Então 0 6= A[c]d ⊆ A, mostrando que A[c] é um
ideal fracionário de A. Como A é noetheriano, conclúımos da Proposição 3.3 que A[c] é
um A-módulo finitamente gerado, de onde vemos que A[c]/A é uma extensão integral, pelo
Teorema 1.9. Em particular, c ∈ AK = A. Ou seja, (A : p) ⊆ A, um absurdo pelo Lema
3.10.

(b) Para cada m ∈ N, definamos Jm como sendo o conjunto dos ideais não-nulos de A que
contêm um produto de m elementos de P. Dessa forma, {A} = J0 ⊆J1 ⊆J2 ⊆ · · · , e⋃∞
n=0 Jn = J , onde essa última igualdade segue do Corolário 3.9. Provaremos por indução

em n que todo ideal em Jn é produto de elementos de P. Como a afirmação é óbvia para
n = 0 (basta tomar o produto vazio), suponhamos que a afirmação valha para n = r− 1,
com r ≥ 1, e tomemos a ∈ Jr \ {A}. Pela definição de Jr, existem p1, . . . , pr ∈ P tais
que a ⊇ p1 · · · pr. Tomemos mCA maximal com m ⊇ a. Então m ⊇ p1 · · · pr, e como m
é primo temos por 3.7 que m ⊇ pi para algum 1 ≤ i ≤ r. Sem perda de generalidade,
suponhamos m ⊇ p1. Como p1 é maximal, temos m = p1. Sendo m inverśıvel por (a),
podemos multiplicar a cadeia de continências p1 · · · pr ⊆ a ⊆ m por m−1, para concluir que

p2 · · · pr ⊆ m−1a ⊆ m−1m = A.

Então m−1a ∈ Jr−1, e por hipótese existem q1, . . . , qs ∈ P tais que m−1a = q1 · · · qs.
Multiplicando por m, chegamos em a = mq1 · · · qs, provando que a é produto de elementos
de P. Notemos ainda que, como todo ideal primo não-nulo de A é inverśıvel, a também o
é, com a−1 = m−1q−1

1 · · · q−1
s . Assim, por indução, provamos que todo ideal não-nulo de A

é produto de ideais primos não-nulos de A, e também é inverśıvel.

(c) Se M ∈ I, existe d ∈ A \ {0} tal que a := dM CA. Então M = d−1a. Por (b), a é inverśıvel,
logo M também o é, com inversa M−1 = da−1.

O item (b) do teorema acima afirma que todo ideal não-nulo aC A admite uma fatoração
em ideais primos não-nulos de A. Juntando os primos que aparecem mais de uma vez nessa
fatoração, encontramos a fatoração de a como a = pk1

1 · · · pkrr , onde k1, . . . , kr são inteiros positivos
e p1, . . . , pr ∈ P são distintos dois a dois. Entretanto, o maquinário poderoso que ganhamos ao
trabalhar com domı́nios de Dedekind não se baseia apenas na existência dessa fatoração, mas sim
na sua unicidade:

Teorema 3.12 (Fatoração Única de Ideais em Domı́nios de Dedekind). Seja A um domı́nio de
Dedekind. Então I é um grupo, e:

(a) Todo ideal a ∈J se escreve de modo único (a menos de ordem) na forma

a =
n∏
i=1

pkii , com p1, . . . , pn ∈P distintos dois a dois, e k1, . . . , kn ∈N∗ .
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(b) Todo ideal fracionário M ∈ I se escreve de modo único (a menos de ordem) na forma

M =
n∏
i=1

pkii , com p1, . . . , pn ∈P distintos dois a dois, e k1, . . . , kn ∈ Z \{0}.

Demonstração. Notemos que (a) segue do teorema anterior e de (b). Assim, basta provar (b).
Seja portanto M ∈ I, e tomemos d ∈ A \ {0} tal que dM CA. Desse modo, M = d−1(dM) =
(dA)−1 · dM . Pelo Teorema 3.11, existem q1, . . . , qm, qm+1, . . . , qn ∈P tais que dA = q1 · · · qm e
dM = qm+1 · · · qn. Assim, nós temos

M = (dA)−1 · dM = q−1
1 · · · q

−1
m qm+1 · · · qn,

o que nos mostra a existência da fatoração de um ideal fracionário (basta juntar/cortar os primos
que aparecem mais de uma vez). Assim, resta demonstrar a unicidade da fatoração. Para isso,
suponhamos que tenhamos duas fatorações para M :

M =
k∏
j=1

p
mj
j =

k∏
j=1

p
nj
j ,

com p1, . . . , pk primos distintos e m1, . . . ,mk,n1, . . . ,nk ∈ Z (aqui, permitimos que os expoentes
sejam nulos, para que tenhamos o mesmo conjunto de primos de ambos os lados). Queremos
mostrar que (m1, . . . ,mk) = (n1, . . . ,nk). Para isso, notemos que a igualdade acima implica que
vale ∏

1≤j≤k
mj>nj

p
mj−nj
j =

∏
1≤j≤k
mj<nj

p
nj−mj
j .

Notemos que nos dois produtórios acima todos os primos aparecem com expoentes positivos.
Suponhamos por absurdo que (m1, . . . ,mk) 6= (n1, . . . ,nk). Então pelo menos um dos produtórios
acima é não-vazio, e portanto ambos os produtórios acima o são, já que senão teŕıamos uma
igualdade entre A e um ideal próprio de A. Sem perda de generalidade, consideremos m1 > n1.
Assim, p1 aparece no lado esquerdo da igualdade acima. Isso implica que o produtório do lado
direito está contido em p1, e por 3.7 algum primo pi que aparece com expoente positivo no
produtório da direita está contido em p1. Temos i 6= 1, pois um mesmo primo não pode aparecer
nos dois produtórios acima. Assim, p1 6= pi. Mas pi é maximal, logo p1 = pi, absurdo! Isso
termina a demonstração do teorema.

Observação 3.13. Nós utilizaremos também a notação M =
∏

p p
νp para indicar a fatoração

de M em ideais primos de A. Nessa notação, subentende-se que p varia entre os ideais primos
não-nulos de A e que cada νp ∈ Z. Note que esse será na verdade um produto finito, ou seja,
temos νp 6= 0 apenas para um número finito de ideais primos não-nulos pCA.

O que esse resultado nos diz na prática é que os ideais fracionários de um domı́nio de Dedekind
têm um comportamento multiplicativo muito parecido com o do corpo de frações de um DFU:
temos multiplicação, inverso e fatoração única. Na verdade, podemos pensar no grupo dos ideais
fracionários de um domı́nio de Dedekind A como uma extensão da estrutura multiplicativa de A,
com um elemento x ∈ A identificado com o ideal principal xA. Notemos que o elemento neutro A
corresponde ao elemento neutro 1. Essa “extensão” não é bem uma extensão, dado que elementos
associados geram o mesmo ideal. Porém, isso na verdade é bom, pois elementos associados de A
são essencialmente “a mesma coisa”, e dessa forma conseguimos um teorema de fatoração única
mais limpo (num DFU, os primos são únicos a menos de associados).

Essa semelhança de ideais fracionários com DFU’s nos sugere que possamos definir divisibili-
dade nesse conjunto:
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Definição (Divisibilidade em I). Sejam M ,N ∈ I. Então dizemos que M divide N , ou ainda
que N é um múltiplo de M , se N = aM para algum a ∈J . Denotamos M | N .

A divisibilidade, como esperado, se comporta bem, e nos dá uma relação mais estreita ainda
entre ideais fracionários e DFU’s:

Corolário 3.14. Seja A um domı́nio de Dedekind, e sejam M = pk1
1 · · · pkrr ,N = p`11 · · · p`rr , onde

nós temos p1, . . . , pr ∈P, k1, . . . , kr, `1, . . . , `r ∈ Z. Então:

(a) MN = pk1+`1
1 · · · pkr+`rr .

(b) M ⊇ N ⇐⇒ M | N ⇐⇒ k1 ≤ `1, . . . , kr ≤ `r.

(c) mdc(M ,N) :=M +N = pm1
1 · · · pmrr , onde para 1 ≤ j ≤ r temos mj = min{kj , `j}.

(d) mmc(M ,N) :=M ∩N = pn1
1 · · · pnrr , onde para 1 ≤ j ≤ r temos nj = max{kj , `j}.

(e) Seja P ∈ I qualquer. Então valem as igualdades:

(i) (M ∩N)(M +N) =MN , ou seja, mdc(M ,N)mmc(M ,N) =MN .
(ii) M(N + P ) =MN +MP , ou seja, M ·mdc(N ,P ) = mdc(MN ,MP ).

(iii) M(N ∩ P ) =MN ∩MP , ou seja, M ·mmc(N ,P ) = mmc(MN ,MP ).
(iv) M ∩ (N + P ) = (M ∩N) + (M ∩ P ), ou seja,

mmc(M ,mdc(N ,P )) = mdc(mmc(M ,N),mmc(M ,P )).
(v) M + (N ∩ P ) = (M +N) ∩ (M + P ), ou seja,

mdc(M ,mmc(N ,P )) = mmc(mdc(M ,N),mdc(M ,P )).

Demonstração. (a) É óbvio.

(b) É claro que valem as implicações k1 ≤ `1, . . . , kr ≤ `r ⇒M | N ⇒M ⊇ N . Notemos agora
que M ⊇ N ⇒ A ⊇ NM−1. Assim, NM−1 CA, e temos N = (NM−1)M ⇒ M | N .
Suponhamos por fim que valha M | N . Então existe aCA com N = aM . A implicação
restante segue do fato de que todos os expoentes da fatoração prima de a são não-negativos
e do item (a).

(c) Devido à fatoração única e ao item (b), pm1
1 · · · pmrr é o menor ideal fracionário que contém

ambos M e N . Mas M +N também possui essa propriedade, de onde tiramos a igualdade
desejada.

(d) Devido à fatoração única e ao item (b), pn1
1 · · · pnrr é o maior ideal fracionário contido em

ambos M e N . Mas M ∩N também possui essa propriedade, de onde tiramos a igualdade
desejada.

(e) (i) Segue dos itens anteriores e da igualdade min(m,n) + max(m,n) = m+ n.
(ii) Segue dos itens anteriores e da igualdade m ·max(n, p) = max(mn,mp). Notemos no

entanto que essa igualdade de ideais fracionários vale para todo domı́nio A, e assim
pode ser conclúıda diretamente.

(iii) Segue dos itens anteriores e da igualdade m ·min(n, p) = min(mn,mp).
(iv) Segue dos itens anteriores e da igualdade min(m, max(n, p)) = max(min(m,n), min(m, p)).
(v) Segue dos itens anteriores e da igualdade max(m, min(n, p)) = min(max(m,n), max(m, p)).

Como consequência do item (b) desse corolário, nós obtemos:
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Corolário 3.15. Seja A um domı́nio de Dedekind. Então:

(a) Para todo a ∈J , o conjunto dos ideais de A que contêm a é finito.

(b) Para todo a ∈J , os ideais ap, onde p percorre P, são os elementos maximais do conjunto
dos ideais de A que estão estritamente contidos em a.

(c) Sejam a ∈J e p ∈P. Então a/(pa) é um A/p-espaço vetorial de dimensão 1.

Demonstração. Os itens (a) e (b) seguem imediatamente do resultado acima. Provemos (c). O
anel a/(pa) é um A/p espaço vetorial, pois é claro que p anula esse A-módulo. Do item (b), vemos
que a/(pa) 6= 0 é simples como A-módulo, e portanto também é simples como A/ p-espaço.

Ainda temos o seguinte teorema, que nos diz que os DIP’s são exatamente os DFU’s que são
domı́nios de Dedekind:

Teorema 3.16. Seja A um domı́nio. Então as seguintes condições são equivalentes:

(i) A é um DIP.

(ii) A é um DFU e um domı́nio de Dedekind.

Demonstração. (i)⇒ (ii): Seja A um DIP. Então é claro que A também é um DFU, e em parti-
cular é integralmente fechado pelo Teorema 1.14. Além disso, como todo ideal de A é principal é
claro que A é noetheriano e todo ideal primo não-nulo de A é maximal.

(ii)⇒ (i): Suponhamos que A seja um DFU e um domı́nio de Dedekind. Como todo ideal de A
é produto de primos, basta mostrar que todo p ∈ P é principal. Para ver isso, seja a ∈ p \{0}
qualquer. Sendo A um DFU, podemos escrever a = z1 · · · zr onde z1, . . . , zr ∈ A são irredut́ıveis.
Sendo p primo, existe 1 ≤ j ≤ r com zj ∈ p, e portanto zjA ⊆ p. Mas como A é um DFU, o
ideal zjA é primo, e portanto maximal. Assim, zjA ⊆ p⇒ zjA = p, mostrando que p é principal,
como desejado.

Esse teorema nos permite afirmar, como hav́ıamos comentado, que DIP’s e DFU’s são a mesma
coisa quando tratamos de um anel de inteiros algébricos:

Teorema 3.17. Seja K um corpo de números algébricos. Então OK será um DIP se e só se for
um DFU.

Pelo que vimos, num domı́nio de Dedekind A o monoide I(A) é um grupo. Note que utilizamos
todas as hipóteses que caracterizam um domı́nio de Dedekind na demonstração do Teorema 3.11.
Assim, pode-se perguntar se o fato de I(A) ser um grupo implica em A ser um domı́nio de
Dedekind. Isso de fato ocorre:

Teorema 3.18. Seja A um domı́nio. Então as seguintes condições são equivalentes:

(i) A é um domı́nio de Dedekind.

(ii) I é um grupo.

Demonstração. Já provamos que (i) ⇒ (ii). Provemos que (ii) ⇒ (i). Devemos verificar que A
é noetheriano, integralmente fechado e que todo elemento de P é maximal:

• Seja aCA. Se a = 0, é óbvio que a é finitamente gerado. Suponhamos a 6= 0. Então a
é inverśıvel, e portanto finitamente gerado pela Proposição 3.6. Assim, todo ideal de A é
finitamente gerado, mostrando que A é noetheriano.
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• Seja c ∈ AK . Então A[c] é finitamente gerado, e portanto é um ideal fracionário de A. É
fácil ver que A[c]A[c] = A[c], e sendo A[c] inverśıvel conclúımos que A[c] = A. Ou seja,
c ∈ A.

• Seja p ∈ P, e tomemos aC A tal que p ( a. Queremos mostrar que a = A. Fixemos
a ∈ a \ p. Se r ∈ a−1 p, então ar ∈ aa−1 p = p. Como p é primo, conclúımos que r ∈ p.
Ou seja, a−1 p ⊆ p ⇒ a−1 ⊆ A. Mas A ⊆ a−1, logo A = a−1 ⇒ a = A, como queŕıamos.
Assim, p é maximal.

Então A é domı́nio de Dedekind, como desejávamos.

3.2. Propriedades dos Domı́nios de Dedekind
Pelo Teorema 3.12, se A for um domı́nio de Dedekind então o grupo dos ideais fracionários
principais P = P (A) é um subgrupo do grupo I = I(A). Assim, podemos considerar o grupo
quociente C `(A) := I/P , que é chamado de grupo de classes de ideais de A. Quando A
estiver claro, denotaremos esse grupo simplesmente por C `. Além disso, denotaremos a classe
de um elemento M ∈ I por MP ou por [M ]. O nome “grupo de classes de ideais” é devido ao
seguinte resultado:

Proposição 3.19. Dados M ,N ∈ I, temos MP = NP se e só se existirem c, d ∈ A \ {0} tais
que cM = dN . Além disso, a função π : J → C ` dada por a 7→ aP é sobrejetora. Ou seja, toda
classe de C ` é a classe de algum ideal de A.

Demonstração. Dados dois ideais fracionários M ,N ∈ I, temos MP = NP ⇐⇒ M−1N ∈ P .
Isso, por sua vez, acontecerá se e só se existir um x ∈ K \ {0} tal que M−1N = xA. Escrevendo
x = c/d, com c, d ∈ A \ {0}, obtemos M−1N = (c/d)A ⇐⇒ cM = dN . Seja agora MP ∈ C `
qualquer, com M ∈ I. Então existe r ∈ A \ {0} tal que rM ∈J . Mas r ·M = 1 · (rM), logo pelo
que provamos acima temos MP = (rM)P = π(rM) ∈ im π, mostrando que π é sobrejetora.

Definição (Número de Classes). O número cardinal |C `| é chamado de o número de classes de
A, e será denotado por hA. Se A = OK for o anel de inteiros algébricos de um corpo de números
K, denotamos hOK simplesmente por hK , e também o chamamos de número de classes de K.

Temos imediatamente o seguinte corolário:

Corolário 3.20. Um domı́nio de Dedekind A será um DIP se e só se o grupo C ` for trivial, ou
seja, se e só se hA = 1.

No próximo caṕıtulo, nós demostraremos o Teorema da Finitude do Número de Classes,
que afirma que para todo corpo de números K o número hK é finito.

Pelo que vimos, dado um domı́nio A teremos J(A) = I(A) se e só se A for um domı́nio
de Dedekind. Entretanto, mesmo se A não for um domı́nio de Dedekind, os conjuntos J(A) e
P (A) ⊆ J(A) são grupos abelianos, e portanto podemos considerar o quociente J(A)/P (A):

Definição (Grupo de Picard). Dado um domı́nio A qualquer, definimos seu grupo de Picard
Pic(A) como sendo o grupo abeliano dado pelo quociente Pic(A) := J(A)/P (A).

Denotaremos Pic(A) apenas por Pic se A estiver claro. É claro que se A for um domı́nio de
Dedekind o grupo de Picard Pic(A) coincidirá com o grupo de classes C `(A).

Como já vimos, todo ideal fracionário de um domı́nio noetheriano é finitamente gerado. No
caso de domı́nios de Dedekind, podemos melhorar isso, para garantir que todo ideal fracionário é
gerado como A-módulo por dois elementos, podendo um deles ser previamente fixado. Comecemos
com o seguinte teorema:
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Teorema 3.21. Seja A um domı́nio de Dedekind. Então para todos M ∈ I e b ∈ J existe
x ∈M tal que os ideais xM−1 e b são coprimos.

Demonstração. Seja b = pk1
1 · · · pkrr a fatoração prima de b. Se r = 0, b = A e a afirmação é óbvia.

Suponhamos então r ≥ 1. Como bCA, temos k1, . . . , kr > 0. Queremos escolher x de modo que
xM−1 e b sejam coprimos. Pelo Corolário 3.14, isso significa que os primos que aparecem na
fatoração de xM−1 e de b devem ser todos distintos. Ou seja, queremos achar x ∈ M de modo
que xM−1 6⊆ pj para todo 1 ≤ j ≤ r.

Definamos, para 1 ≤ j ≤ r, Mj := p1 · · · pj−1 pj+1 · · · prM . Notemos que pjMj (Mj . Assim,
podemos escolher xj ∈Mj \ pjMj . É claro que xj ∈ piM para i 6= j. Por outro lado, xj 6∈ pjM .
De fato, se tivéssemos xj ∈ pjM , então teŕıamos xjM−1 ⊆ p1 ∩ · · · ∩ pr = p1 · · · pr, onde a última
igualdade segue do fato dos ideais p1, . . . , pr serem coprimos. Assim, podeŕıamos concluir que
xj ∈ p1 · · · prM = pjMj , um absurdo!

Definamos x := x1 + x2 + · · · + xr ∈ M . Afirmamos que x satisfaz a condição desejada.
Suponhamos por absurdo que xM−1 ⊆ pj para algum 1 ≤ j ≤ r, e sem perda de generalidade
tomemos j = r. Então x ∈ prM , e portanto xr = x− x1 − · · · − xr−1 ∈ prM , um absurdo,
concluindo a demonstração.

Finalmente, podemos aplicar esse teorema para mostrar o que queŕıamos:

Corolário 3.22. Sejam A um domı́nio de Dedekind, M ∈ I e y ∈M \ {0}. Então existe x ∈M
tal que M = xA+ yA.

Demonstração. Temos yM−1 CA. Assim, pelo teorema acima, existe um elemento x ∈ M tal
que xM−1 + yM−1 = A. Mas isso equivale a termos xA+ yA =M .

Outro resultado importante é que todo domı́nio de Dedekind com um número finito de ideais
primos é um DIP:

Teorema 3.23. Seja A um domı́nio de Dedekind com um número finito de ideais primos. Então
A é um DIP.

Demonstração. Como todo ideal de A é produto de ideais primos, basta mostrar que todo ideal
primo de A é principal. Sejam p1, . . . , pn os ideais primos de A. Provaremos que p1 é principal. O
resto segue analogamente. Sabemos que p2

1 ( p1. Assim, podemos tomar r1 ∈ p1 \ p2
1. Os ideais

p2
1, p2, . . . , pn são coprimos dois a dois, e portanto podemos aplicar o Teorema Chinês dos Restos

para encontrar r ∈ A tal que r ≡ r1 (mod p2
1) e r ≡ 1 (mod pj) para 2 ≤ j ≤ n. Desse modo, r é

tal que r 6∈ p2
1 e r 6∈ pj para 2 ≤ j ≤ n, e portanto na fatoração prima de rA o primo p1 aparece

com expoente no máximo 1, e os primos p2, . . . , pn não aparecem. Disso conclúımos que rA ⊇ p1.
Como a outra inclusão segue diretamente de r ∈ p1, conclúımos que p1 = rA é principal, como
desejado.

Terminaremos a seção vendo como domı́nios de Dedekind se comportam com localizações:

Proposição 3.24. Sejam A um domı́nio de Dedekind e S um conjunto multiplicativo de A. Então
S−1A é um domı́nio de Dedekind. Além disso, o mapa I(A) → I(S−1A) dado por M 7→ S−1M
é um homomorfismo sobrejetor de grupos abelianos, e seu núcleo consiste dos ideais fracionários
M ∈ I(A) tais que M ∩ S 6= ∅ e M−1 ∩ S 6= ∅. Esse mapa induz um homomorfismo sobrejetor
C `(A)→ C `(S−1A) dado por [M ] 7→ [S−1M ].

Demonstração. Sendo a localização de um domı́nio noetheriano, S−1A também é um domı́nio
noetheriano. Como A é integralmente fechado, segue da Proposição 1.15 que S−1A também é
integralmente fechado. Finalmente, um ideal primo de S−1A é da forma S−1 p para algum pCA
primo que não intersecta S. Como p é maximal em A, pela correspondência da localização vemos
que S−1 p é maximal em S−1A. Isso mostra que S−1A é domı́nio de Dedekind.
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O fato da função indicada ser um homomorfismo de grupos equivale a termos, para todos
M ,N ∈ I, a igualdade S−1(MN) = (S−1M)(S−1N), que se verifica diretamente. Para mostrar
que esse homomorfismo é sobrejetor, seja N ∈ I(S−1A) qualquer. Então existe x ∈ S−1A \ {0}
tal que xN C S−1A. Dessa forma, existe aCA tal que xN = S−1a. Portanto, nós vemos que
N = x−1S−1a = S−1(x−1a) está na imagem do homomorfismo acima, já que x−1a ∈ I(A).

Falta mostrar que o núcleo desse homomorfismo é o conjunto dos ideais fracionários M de
A tais que M ∩ S 6= ∅ e M−1 ∩ S 6= ∅. Suponhamos primeiramente que M ∩ S 6= ∅ e que
M−1 ∩ S 6= ∅. Tomemos s ∈ M ∩ S e x ∈ M−1 ∩ S. Sendo r/t ∈ S−1A qualquer, temos
r/t = (rs)/(ts) ∈ S−1M . Assim, S−1A ⊆ S−1M . Sendo agora m/s ∈ S−1M qualquer, temos
m/s = (mx)/(sx) ∈ S−1A, mostrando que S−1M ⊆ S−1A. Assim, S−1A = S−1M , e M está no
núcleo desse homomorfismo.

Reciprocamente, suponhamos que M está nesse núcleo, ou seja, que S−1M = S−1A. Então
1 ∈ S−1M , e podemos escrever 1 = m/s para m ∈ M e s ∈ S. Mas isso significa que m = s, e
esse é um elemento de M ∩S. Além disso, notemos que a condição S−1M ⊆ S−1A. é equivalente
a S−1A ⊆ S−1M−1, e da mesma forma conclúımos que M−1 ∩ S 6= ∅, como queŕıamos.

Para ver que esse homomorfismo induz um homomorfismo C `(A) → C `(S−1A) dado por
[M ] 7→ [S−1M ], mostremos que se [M1] = [M2] então [S−1M1] = [S−1M2]. Como [M1] = [M2],
existe x ∈ Q(A) tal que xM1 = M2. Localizando, vemos que x(S−1M1) = S−1M2, o que
mostra que [S−1M1] = [S−1M2]. Assim, essa função está bem-definida, e o fato dela ser um
homomorfismo sobrejetor segue do mapa I(A)→ I(S−1A) o ser.

O seguinte resultado generaliza o Teorema 1.48 e o Corolário 1.49 para potências de primos:

Teorema 3.25. Sejam A um domı́nio de Dedekind, S um conjunto multiplicativo de A e pCA
um ideal primo não-nulo que não intersecta S. Então:

(a) Para todo n inteiro positivo temos S−1 pn ∩A = pn.

(b) Para todo n inteiro positivo o homomorfismo canônico A/ pn → S−1A/S−1 pn dado por
x+ pn 7→ x+ S−1 pn é um isomorfismo, e portanto nós temos A/ pn ∼= S−1A/S−1 pn.

Demonstração. (a) É claro que pn ⊆ S−1 pn ∩A. Para a inclusão contrária, seja a ∈ S−1 pn ∩A.
Então a = x/s, para alguns elementos x ∈ pn e s ∈ S, e nós temos sa = x ∈ pn. Assim,
pn | (sa)A = (sA)(aA). Como s 6∈ p, temos p - sA, e portanto pn | aA ⇒ a ∈ pn, o que
prova que S−1 pn ∩A ⊆ pn, como queŕıamos.

(b) Comecemos observando que, para todo s ∈ A \ p, nós temos sA+ p = A pela maximalidade
de p. Sendo sA coprimo com p, é fácil ver que sA também é coprimo com pn, e portanto
sA + pn = A. Mostremos que o homomorfismo canônico definido acima é de fato um
isomorfismo:

• Essa função está bem-definida: Sejam x, y ∈ A tais que x + pn = y + pn. Então
x− y ∈ pn ⊆ S−1 pn, e portanto x+ S−1 pn = y+ S−1 pn.

• Essa função é um homomorfismo: É claro.

• Essa função é injetora: Seja x ∈ A tal que x ∈ S−1 pn. Então, pelo item (a), temos
x ∈ pn, o que mostra a injetividade desse homomorfismo.

• Essa função é sobrejetora: Seja y ∈ S−1A qualquer. Então temos y = a/s, para
alguns a ∈ A, s ∈ S. Como A = sA+ pn, existem p ∈ pn e x ∈ A tais que a = sx+ p,
de modo que y = a/s = x+ p/s ⇒ y + S−1 pn = x+ S−1 pn, mostrando que esse
homomorfismo é de fato sobrejetor.
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3.3. Domı́nios de Valoração Discreta
Os domı́nios de valoração discreta são, em certo sentido, os domı́nios mais simples depois dos
corpos:

Definição (Domı́nio de Valoração Discreta). Um domı́nioA é chamado de domı́nio de valoração
discreta (abreviamos DVD) se for um DIP local, e se seu único ideal maximal for não-nulo.

Sendo A um DVD com único ideal maximal p 6= 0, podemos escolher um gerador π do ideal
principal p. Como os ideais maximais em um DIP são exatamente aqueles que são gerados por
um elemento irredut́ıvel, vemos que π é o único elemento irredut́ıvel de A a menos de associados.
Nós chamamos π (ou qualquer um de seus associados) de normalizador de A. Desse modo, todo
elemento não-nulo de A se escreve de modo único como uπn, onde u ∈ A× = A \ p e n ∈ N. A
partir disso, é fácil ver que de fato todo elemento não-nulo de K := Q(A) se escreve de modo
único como uπn, onde u ∈ A× e n ∈ Z. Assim, dado x ∈ K \ {0}, existe um único n ∈ Z para
o qual xA = pn. A partir disso, podemos definir uma função sobrejetora v : K → Z∪{∞}, que
chamamos de valoração de A, dada por:

v(x) =

{
n, se x 6= 0 e xA = pn;
∞, se x = 0.

Podemos ainda denotar essa valoração por vA, para especificar o domı́nio de valoração discreta
com o qual começamos. Estendamos a soma de Z e a ordem de Z para o conjunto Z∪{∞}
definindo, para todo n ∈ Z, n+∞ =∞+ n =∞ e ∞ > n.

Dado x ∈ K qualquer, chamaremos v(x) de valoração de x. Dados x, y ∈ K quaisquer, escre-
vamos x = u1π

v(x) e y = u2π
v(y), com u1,u2 ∈ A×. Então nós temos xy = u1u2π

v(x)+v(y), o que
nos dá a relação v(xy) = v(x) + v(y). Suponhamos agora que v(x) ≤ v(y), sem perda de genera-
lidade. Então x+ y = u1π

v(x) + u2π
v(y) = (u1 + u2π

v(y)−v(x))πv(x). Como u1 + u2π
v(y)−v(x) ∈ A,

nós conclúımos que v(x+ y) ≥ v(x). Isso nos dá a relação v(x+ y) ≥ min{v(x), v(y)}.
Nós definimos, de forma geral, uma valoração (exponencial) discreta como uma função

que tenha propriedades como as acima:

Definição (Valoração (Exponencial) Discreta). Seja K um corpo. Uma valoração (exponen-
cial) discreta de K é uma função sobrejetora v : K → Z∪{∞} que verifica:

(i) v(x) =∞ ⇐⇒ x = 0;

(ii) v(xy) = v(x) + v(y) (assim, v : K× → Z é um morfismo de grupos);

(iii) (Propriedade não-arquimediana) v(x+ y) ≥ min{v(x), v(y)}.

Toda valoração discreta tem as seguintes propriedades básicas, que decorrem diretamente da
definição acima:

Lema 3.26. Seja v : K → Z∪{∞} uma valoração discreta. Então:

(a) v(±1) = 0, e v(−x) = v(x) para todo x ∈ K.

(b) v(x/y) = v(x)− v(y), para todos x, y ∈ K com y 6= 0. Em particular, v(y−1) = −v(y).

(c) v(x) 6= v(y)⇒ v(x+ y) = min{v(x), v(y)}.

(d) v(x1 + · · ·+ xn) = min{v(x1), . . . , v(xn)}, se v(xi) 6= v(xj) para todos 1 ≤ i < j ≤ n.

(e) Se x1 + · · ·+ xn = 0 com n ≥ 2, então existem 1 ≤ i < j ≤ n com v(xi) = v(xj).
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Demonstração. (a) Como v(1) = v(1 · 1) = v(1) + v(1), temos v(1) = 0. Além disso, temos
0 = v(1) = v((−1) · (−1)) = v(−1) + v(−1) = 2v(−1), e portanto v(−1) = 0. Finalmente,
dado x ∈ K qualquer, temos v(−x) = v(x · (−1)) = v(x) + v(−1) = v(x).

(b) Temos v(x) = v(y · (x/y)) = v(y)+ v(x/y), de onde conclúımos que v(x/y) = v(x)− v(y).
Note que podemos subtrair v(y), pois y 6= 0⇒ v(y) ∈ Z.

(c) Suponhamos sem perda de generalidade que v(x) < v(y). Então queremos mostrar que
v(x+ y) = v(x). Nós sabemos que v(x+ y) ≥ v(x). Assim, é suficiente mostrarmos que
v(x+ y) ≤ v(x). Notemos que v(x) ≥ min{v(x+ y), v(−y)} = min{v(x+ y), v(y)}. Como
v(x) < v(y), conclúımos que devemos ter v(x) ≥ v(x+ y), e assim v(x+ y) = v(x).

(d) Segue facilmente por indução a partir do item anterior.

(e) Suponhamos sem perda de generalidade que v(x1) ≤ v(x2) ≤ · · · ≤ v(xn). Se todas
essas desigualdades fossem estritas, então pelo item acima nós podeŕıamos concluir que
v(x1) = v(0) =∞⇒ x1 = 0. Mas então v(x2) > v(x1) =∞, um absurdo!

Da mesma forma que partindo de um domı́nio de valoração discreta nós conseguimos construir
uma valoração discreta associada a ele, partindo de uma valoração discreta nós conseguimos
construir um domı́nio de valoração discreta associado a ela:

Proposição 3.27. (a) Seja v : K → Z∪{∞} uma valoração discreta. Então o conjunto

Ov := {a ∈ K : v(a) ≥ 0}

é um domı́nio de valoração discreta, com único ideal maximal

pv := {a ∈ K : v(a) > 0} = {a ∈ K : v(a) ≥ 1}.

(b) As operações A 7→ vA e v 7→ Ov são inversas uma da outra, isto é, vOv = v e OvA = A.
Assim, temos uma bijeção entre os domı́nios de valoração discreta e as valorações discretas.

Demonstração. (a) Dados a, b ∈ Ov, nós temos v(a + b) ≥ min{v(a), v(b)} ≥ 0 e v(ab) =
v(a) + v(b) ≥ 0, o que mostra que a+ b, ab ∈ Ov. Além disso, como vimos temos v(0) =∞
e v(±1) = 0, de modo que 0,±1 ∈ Ov. Isso prova que Ov é um anel. Agora, dados a, b ∈ pv
e x ∈ Ov, temos v(a+ b) ≥ min{v(a), v(b)} > 0 e v(ax) = v(a) + v(x) > 0, de modo que
a+ b, ax ∈ pv. Isso prova que pv é um ideal de Ov. Como v é sobrejetora, existe π ∈ K
com v(π) = 1. Assim, π ∈ pv \{0}, o que mostra que pv 6= 0.
Observemos agora que O×v é o conjunto dos elementos u ∈ K tais que v(u) ≥ 0 e v(u−1) ≥ 0.
Como v(u−1) = −v(u), vemos que isso ocorre se e só se v(u) = 0. Assim, nós temos
O×v = {a ∈ K : v(a) = 0}. Mas então O×v = Ov \ pv, o que mostra que Ov é anel local com
único ideal maximal pv.
Falta mostrar que Ov é um DIP. Para isso, seja aCOv um ideal não-nulo. Então existe
a ∈ a \ {0} tal que v|a : a → N∪{∞} assume seu mı́nimo em a. Seja b ∈ a \ {0} qualquer.
Pela escolha de a, temos v(b) ≥ v(a). Assim:

v(aπv(b)−v(a)b−1) = v(a) + (v(b)− v(a))v(π) + v(b−1) = v(a) + v(b)− v(a)− v(b) = 0,

de modo que u := aπv(b)−v(a)b−1 ∈ O×v . Logo b = au−1πv(b)−v(a) ∈ aOv, provando que
a ⊆ aOv, e portanto que a = aOv. Conclúımos que Ov é um DIP, e assim um DVD.
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(b) Seja v : K → Z∪{∞} uma valoração discreta. Tomemos, como no item acima, π ∈ K tal
que v(π) = 1. Dado x ∈ K \ {0} qualquer, nós temos:

v(πv(x)x−1) = v(x)v(π) + v(x−1) = v(x)− v(x) = 0.

Assim, u := πv(x)x−1 ∈ O×v , de modo que x = u−1πv(x). Isso mostra tanto que vale
K = Q(Ov) quanto que vOv coincide com v em K×. Como v(0) =∞ = vOv (0), vemos que
v = vOv .
Reciprocamente, sejam A um DVD, K = Q(A) e π um normalizador de A. Então OvA é o
conjunto dos x ∈ K tais que vA(x) ≥ 0, onde vA(x) é tal que xA = πvA(x)A. Mas é claro
que

x ∈ A ⇐⇒ xA ⊆ A ⇐⇒ πvA(x)A ⊆ A ⇐⇒ πvA(x) ∈ A ⇐⇒ vA(x) ≥ 0

(lembre que π 6∈ A×). Assim, vemos que OvA = A, como queŕıamos.

Notemos que todos os ideais de um DVD A com ideal maximal p são da forma pn, para n ≥ 0.
Além disso, sendo v = vA, nós temos pn = {a ∈ K : v(a) ≥ n}. A partir desses ideais, nós
podemos definir:

Definição (Grupos de Unidades). Com as notações acima, definimos U (0) := A× e, para cada
n ≥ 1, U (n) := 1 + pn. Para cada n ∈N, nós chamamos U (n) de n-ésimo grupo de unidades,
e U (1) de grupo principal de unidades.

Os grupos de unidade possuem as seguintes propriedades:

Proposição 3.28. (a) Para todo n ∈ N, U (n) é um grupo multiplicativo. Além disso, temos
que U (0) ⊇ U (1) ⊇ U (2) ⊇ · · · .

(b) Para todo n ≥ 1, U (0)/U (n) é canonicamente isomorfo ao grupo multiplicativo (A/ pn)×.
Em particular, U (0)/U (1) é canonicamente isomorfo ao grupo multiplicativo (A/p)× do
corpo A/p.

(c) Para todo n ≥ 1, U (n)/U (n+1) é canonicamente isomorfo ao grupo aditivo do corpo A/ p.

Essa proposição segue diretamente do seguinte resultado mais geral:

Lema 3.29. Seja R um domı́nio local, com único ideal maximal m 6= 0. Então:

(a) Para todo i ≥ 1, Ui := 1 +mi = {1 + a : a ∈ mi} é um subgrupo do grupo U0 := R× das
unidades de R, e temos que U0 ⊇ U1 ⊇ U2 ⊇ · · · .

(b) Para todo i ≥ 1, U0/Ui é canonicamente isomorfo ao grupo multiplicativo (R/mi)×. Em
particular, U0/U1 é canonicamente isomorfo ao grupo multiplicativo (R/m)× do corpo
R/m.

(c) Para todo i ≥ 1, Ui/Ui+1 é canonicamente isomorfo ao grupo aditivo do R/m-espaço
mi/mi+1.

(d) Se R for um domı́nio de Dedekind, então para todo i ≥ 1 o grupo aditivo de mi/mi+1 será
isomorfo ao grupo aditivo do corpo R/m.

Demonstração. (a) Fixemos i ≥ 1. É fácil ver que 1 ∈ Ui e que Ui é fechado para a multi-
plicação. Mostremos agora que Ui também é fechado por inversão. Como R é local, temos
R× = R \ m, e portanto Ui = 1 + mi ⊆ R \ m = R× = U0. Assim, todo elemento de
Ui é inverśıvel. Seja u ∈ Ui qualquer. Então u−1 ≡ uu−1 = 1 (mod mi), mostrando que
u−1 ∈ 1 +mi = Ui. Isso prova que, para cada i ≥ 1, Ui é um subgrupo de U0. Finalmente,
as inclusões U1 ⊇ U2 ⊇ · · · são claras, já que m ⊇ m2 ⊇ · · · .
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(b) Consideremos o mapa U0/Ui → (R/mi)× dado por uUi 7→ u+ mi. É uma verificação
direta mostrar que essa função está bem-definida e é um isomorfismo de grupos.

(c) Consideremos o mapa Ui/Ui+1 → mi/mi+1 dado por uUi+1 7→ (u− 1) + mi+1. É uma
verificação direta mostrar que essa função está bem-definida e é um isomorfismo de grupos.

(d) Se R for um domı́nio de Dedekind, então mi/mi+1 é um R/m-espaço de dimensão 1, pelo
Corolário 3.15. Desse modo, mi/mi+1 ∼= R/m como R/m-espaços, e em particular como
grupos abelianos.

Outra propriedade importante de um DVD é que ele não admite anéis intermediários entre ele
e seu corpo de frações. De fato, seja A um DVD com K = Q(A), e suponhamos que A ( R ⊆ K.
Então existe x ∈ R \A, e ele é da forma x = uπv(x), onde u ∈ A× e π ∈ A é um normalizador.
Como x 6∈ A, vemos que v(x) < 0, de modo que π−1 = xu−1π−(v(x)+1) ∈ R. Assim, é claro que
R = K.

Os domı́nios de valoração discreta surgem naturalmente no estudo dos domı́nios de Dedekind,
devido ao seguinte resultado:

Teorema 3.30. Sejam A um domı́nio de Dedekind e pCA primo não-nulo. Então Ap é um
DVD, com único ideal maximal pp.

Demonstração. Sabemos que Ap é um anel local com único ideal maximal pp. Como todos os
primos de A são maximais, pp é de fato o único ideal primo de Ap. Pela Proposição 3.24, Ap é
um domı́nio de Dedekind. Finalmente, conclúımos do Teorema 3.23 que Ap é um DIP.

Assim, toda localização de um domı́nio de Dedekind por um ideal primo não-nulo é um DVD.
Vale também a volta para domı́nios noetherianos. Para demostrá-la, utilizaremos um resultado
da teoria de localização, cujo enunciado relembramos aqui:

Teorema 3.31. Seja A um domı́nio. Então para todo ideal aCA nós temos a =
⋂

m am =
⋂

p ap,
onde m percorre todos os ideais maximais de A e p percorre todos os ideais primos de A. Em
particular, A =

⋂
mAm =

⋂
pAp.

Com isso, podemos demonstrar:

Teorema 3.32. Seja A um domı́nio noetheriano. Então A é um domı́nio de Dedekind se e
somente se, para todos os ideais primos pCA não-nulos, as localizações Ap forem domı́nios de
valoração discreta.

Demonstração. (⇒): É consequência direta do Teorema 3.30.

(⇐): Suponhamos que A seja um domı́nio noetheriano tal que para todo pCA primo não-nulo nós
tenhamos Ap um DVD. Queremos mostrar que A é um domı́nio de Dedekind. Assim, queremos
mostrar que A é integralmente fechado e que todo ideal primo não-nulo de A é maximal. Se A
for um corpo, é claro que A será um domı́nio de Dedekind. Suponhamos então que A não seja
um corpo. Pelo Teorema 3.31, vale a igualdade:⋂

p6=0
Ap = A, (3.1)

já que A0 = Q(A) e assim pode ser ignorado na interseção. Denotemos K = Q(A). Então K

é o corpo de frações de todas as localizações de A. Seja x ∈ AK qualquer. Então em particular
x ∈ Ap

K para todo pCA primo não-nulo. Como Ap é um DVD por hipótese, vemos que Ap é
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integralmente fechado, e portanto Ap
K

= Ap. Assim, x ∈ Ap para todo pCA primo não-nulo, e
por (3.1) nós conclúımos que x ∈ A. Isso mostra que A é integralmente fechado.

Suponhamos agora que p ⊆ q sejam dois ideais primos não-nulos de A. Então pq ⊆ qq são
ideais primos não-nulos de Aq. Mas sendo Aq um DVD, vemos que seu único ideal primo não-nulo
é qq, e portanto pq = qq. Conclúımos portanto que p = pq ∩A = qq ∩A = q. Isso prova que todo
ideal primo não-nulo de A é maximal, o que termina a demonstração.

Dado um domı́nio de Dedekind A, para cada ideal primo não-nulo pCA nós temos um DVD
Ap. Associada a esse DVD nós temos a valoração discreta vp := vAp , chamada de valoração
p-ádica. As valorações p-ádicas se relacionam com a fatoração dos ideais fracionários principais
de A:

Proposição 3.33. Seja A um domı́nio de Dedekind com corpo de frações K = Q(A). Seja
x ∈ K×, e suponhamos que a fatoração de xA em ideais primos de A seja xA =

∏
p p

νp. Então,
para cada ideal primo não-nulo pCA, nós temos νp = vp(x). Ou seja, o expoente de p na fatoração
prima de xA é a valoração discreta vp(x).

Demonstração. Localizando a igualdade xA =
∏

q q
νq por p, nós obtemos xAp =

∏
q q

νq
p . Notemos

que qp = Ap para todo q 6= p, já que p é maximal. Assim, vale xAp = p
νp
p . Mas isso é exatamente

o mesmo que dizer que vp(x) = νp.

Consideremos agora, para p ∈ N primo, o ideal primo não-nulo pZCZ. Denotaremos a
localização ZpZ simplesmente por Z(p). Notemos que

Z(p) =

{
a

b
: a, b ∈ Z, p - b

}
.

Esse é um DVD, com único ideal maximal

pZ(p) =

{
a

b
: a, b ∈ Z, p | a, p - b

}
e grupo de unidades

Z×(p) =

{
a

b
: a, b ∈ Z, p - a, b

}
.

Denotamos sua valoração discreta associada por vp : Q→ Z∪{∞}. Ela é chamada de valoração
p-ádica de Q. É fácil ver pela proposição acima que vp pode ser calculada da seguinte forma:
dado x ∈ Q×, podemos escrevê-lo de modo único como x = pνa/b, onde p - a, b. Nós temos então
vp(x) = ν. As valorações p-ádicas são important́ıssimas em Teoria Algébrica dos Números, como
veremos mais adiante.



Caṕıtulo 4

Extensões de Domı́nios de Dedekind

Ao estendermos Z para um corpo de inteiros algébricos OK , alguns elementos primos de N

deixam de ser primos em OK , enquanto outros continuam primos. Como vimos no Exemplo 2.22,
os primos p ∈ N com p ≡ 3 (mod 4) continuam primos em Z[i], enquanto 2 e os primos p ∈ N

tais que p ≡ 1 (mod 4) se tornam elementos redut́ıveis nesse anel. É interessante notar também
que todos os primos p ≡ 1 (mod 4) se decompõe como produto de dois primos não-associados,
enquanto que 2 = −i(1 + i)2 é o único dos primos de N que não é livre de quadrados em Z[i].
Esse evento pode ser visto em termos de ideais: dado um ideal primo pZCZ, como pOK se
fatora em ideais primos do domı́nio de Dedekind OK?

4.1. Norma de ideais
Ao longo desta seção, K sempre denotará um corpo de números algébricos com [K : Q] = n.
Lembre que no Caṕıtulo 2 nós mostramos que a função N : {Ideais de OK} → N∗ dada por
N(a) = |OK/a| está bem-definida, e que satisfaz N(a)2dK = dK(a). Nosso objetivo nessa seção
é estudar um pouco melhor essa função, que será fundamental na demonstração do Teorema da
Finitude do Número de Classes. Ela generaliza a norma NK/ Q no seguinte sentido:

Teorema 4.1. (a) Todo ideal não-nulo a de OK é um Z-módulo livre de posto n, e para toda
base {α1, . . . ,αn} deste Z-módulo temos ∆K/ Q(α1, . . . ,αn) = N(a)2dK .

(b) Para todo α ∈ OK \ {0}, temos N(αOK) = |NK/ Q(α)|.

Demonstração. (a) Já foi demonstrado.

(b) Seja {β1, . . . ,βn} uma base integral de OK . Então {αβ1, . . . ,αβn} é claramente uma base
do ideal αOK como Z-módulo. Mas então, por (a) e pela Proposição 1.31:

N(αOK)2dK = ∆(αβ1, . . . ,αβn) = ∆(Tα(β1, . . . ,βn))
= (detTα)2∆(β1, . . . ,βn) = N(α)2dK .

Isso nos dá N(αOK) = |N(α)|, como desejado.

Todo ideal primo de OK está associado a um primo de N:

Teorema 4.2. Seja p um ideal primo não-nulo de OK . Então:

(a) p∩Z = pZ, onde p é o único número primo de N no ideal p.

(b) OK/p é uma extensão finita do corpo Fp, de grau [OK/p : Fp] ≤ n.

69
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Demonstração. (a) Sendo pCOK maximal, temos que p ∩Z é um ideal maximal de Z, pelo
item (e) do Teorema 1.53. Então temos p ∩Z = pZ, para algum primo p ∈ N. Assim, é
claro que p ∈ p, o que não ocorre para nenhum outro primo de N.

(b) Como p | pZ, temos a inclusão canônica Fp = Z /pZ ↪−→ OK/ p, de modo que podemos
ver OK/ p como extensão de Fp. Essa extensão tem grau no máximo [K : Q] = n. Em
particular, é finita.

Definição (Grau de Inércia). Nas notações do teorema acima, o número inteiro positivo dado
pelo grau [OK/p : Fp] é chamado o grau de inércia de p, que denotamos por fp.

A norma de ideais é multiplicativa:

Teorema 4.3. (a) Para todo ideal primo não-nulo p de OK temos N(p) = pfp, onde p é o
único número primo de N em p.

(b) Para quaisquer ideais não-nulos a, b de OK , temos N(ab) = N(a)N(b).

(c) N(a) = 1 se e só se a = OK .

Demonstração. (a) Pelo teorema acima, [OK/p : Fp] = fp. Assim, N(p) = |OK/p| = pfp .

(b) Sejam b um ideal não-nulo de OK e p um ideal primo não-nulo de OK . Então b/(bp) é um
OK/p-espaço vetorial de dimensão 1 pelo Corolário 3.15, e portanto tem |OK/p| = N(p)

elementos. Agora, OK/b ∼= OK/(bp)
b/(bp) . Assim: |OK/b| = |OK/(bp)|

|b/(bp)| ⇒ N(bp) = N(b)N(p).
Pelo Teorema 3.12, todo ideal não-nulo a de OK é da forma a = p1 · · · pm, onde p1, . . . , pm
são ideais primos não-nulos de OK . Então é fácil ver por indução em m que vale a igualdade
N(a) = N(p1) · · ·N(pm), de segue a multiplicatividade de N.

(c) Para todo ideal primo p, N(p) = pfp é um múltiplo de p, logo pela fórmula acima o único
jeito de termos N(a) = 1 é se m = 0, ou seja, se a = OK , e é claro que N(OK) = 1.

Com isso, podemos mostrar que a norma de ideais é mais similar ainda à norma de um
elemento:

Corolário 4.4. Seja a um ideal não-nulo de OK . Então:

(a) N(a) ∈ a. Equivalentemente, o ideal N(a)OK é um múltiplo de a.

(b) Se N(a) for um número primo, então a será um ideal primo.

(c) Se a for um múltiplo do ideal b e N(a) = N(b), então a = b.

Demonstração. (a) O grupo aditivo OK/a tem ordem N(a). Assim, N(a) · (1 + a) = a, o que
mostra que N(a) ∈ a.

(b) Escrevamos a = p1 · · · pm, onde p1, . . . , pm são ideais primos não-nulos de OK . Então, como
vimos, N(a) = N(p1) · · ·N(pm) = p

f (p1)
1 · · · pf (pm)

m , onde p1, . . . , pm ∈N são primos. Então
é claro que N(a) só pode ser prima se m = 1, e nesse caso a é um ideal primo de OK .

(c) Se a for um múltiplo de b, então existe c ideal não-nulo de OK tal que a = bc. Então temos
N(a) = N(b)N(c). Como N(a) = N(b), conclúımos que N(c) = 1, o que nos garante que
c = OK , e portanto a = b.
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O seguinte corolário será essencial na prova da finitude de hK :

Corolário 4.5. Para todo m inteiro positivo, existe somente um número finito de ideais não-nulos
a de OK tais que N(a) = m.

Demonstração. Pelo item (a) do corolário anterior, N(a) = m ⇒ a | mOK . Mas pelo item (a)
do Corolário 3.15, o conjunto dos ideais que dividem mOK é finito, o que prova o corolário.

A norma de ideais ainda pode ser usada para deduzir a identidade fundamental em sua
versão mais simples. Ela nos dá informações sobre como um primo de N se decompõe em ideais
primos de OK :

Corolário 4.6. Seja p ∈N um número primo tal que a fatoração de pOK em ideais primos seja
pOK = pe1

1 · · · p
eg
g . Denotemos ainda fpj = fj, para 1 ≤ j ≤ g. Então:

(a) p1 . . . , pg são os únicos ideais primos de OK que contêm p.

(b) (Identidade Fundamental)
g∑
j=1

ejfj = n.

Demonstração. (a) Dado um ideal primo p de OK , temos p ∈ p ⇐⇒ p | pOK , e pela unicidade
da fatoração obtemos o resultado desejado.

(b) Temos N(p) = pn, logo pelo item (b) do Teorema 4.1 temos N(pOK) = |N(p)| = pn.
Então:

pn = N(pOK) = N(p1)
e1 · · ·N(pg)

eg = (pf (p1))e1 · · · (pf (pg))eg = p
∑g

j=1 ejfj ,

e portanto
g∑
j=1

ejfj = n, como queŕıamos.

4.2. O Teorema da Finitude do Número de
Classes

Seja K um corpo de números. Denotaremos por J o conjunto de ideais não-nulos de OK e
por C ` o grupo de classes de ideais de OK . Com o maquinário que nós desenvolvemos, já é
posśıvel demonstrar o Teorema da Finitude do Número de Classes. Tudo o que falta são dois
lemas técnicos, um que relaciona ideais de J com classes de C ` e outro que garante que certo
conjunto de inteiros positivos é limitado superiormente, e que no fundo nada mais é do que uma
aplicação esperta do Prinćıpio da Casa dos Pombos. Definamos, para qualquer a ∈J , o número

t(a) := min{N(a)−1N(αOK) : α ∈ a \ {0}}.

Para qualquer α ∈ a \ {0}, temos que a | αOK . Logo, pela multiplicatividade da norma de
ideais, N(a) | N(αOK), o que mostra que t(a) é o mı́nimo de um conjunto de inteiros positivos,
sendo portanto bem-definido e um inteiro positivo. Além disso, pelo item (c) do Corolário 4.4
temos que t(a) = 1 se e só se a = αOK para algum α ∈ a \ {0}, ou seja, se e só se a for principal.
Por outro lado, dada uma classe B ∈ C `, definimos:

u(B) := min{N(b) : b ∈J ∩B}.

Pela Proposição 3.19, a interseção J ∩B é não-vazia, o que mostra que u(B) está bem-
definido. Note que u(B) é um inteiro positivo. Temos uma importante relação entre as duas
funções t e u:
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Lema 4.7. Sejam B ∈ C ` e a ∈J tais que a−1 ∈ B. Então u(B) = t(a). Em particular, temos

{t(a) : a ∈J } = {u(B) : B ∈ C `}.

Demonstração. Seja α ∈ a \ {0} tal que t(a) = N(a)−1N(αOK). Então αa−1 ∈ J ∩B, pela
Proposição 3.19 e usando que αa−1 ⊆ aa−1 = OK . Notemos que

(αa−1)a = αOK ⇒ N(αa−1)N(a) = N(αOK),

e portanto:

u(B) ≤ N(αa−1) = N(a)−1N(αOK) = t(a).

Por outro lado, seja b ∈ J ∩B tal que u(B) = N(b). Então, como a−1, b ∈ B, existe
β ∈ K \ {0} tal que βa−1 = b. Mas então βOK = ab ⊆ a. Disso tiramos que β ∈ a \ {0}. Além
disso,

N(βOK) = N(a)N(b) = N(a)u(B).

Logo:

t(a) ≤ N(a)−1N(βOK) = u(B).

Então de fato temos u(B) = t(a). Para a última afirmação basta notar, de um lado, que para
a ∈J temos t(a) = u([a−1]), e de outro que, se B ∈ C `, então existe um a ∈ B−1 ∩J . Assim,
a−1 ∈ B, e temos u(B) = t(a).

Ainda temos um último lema técnico a provar antes de chegarmos ao resultado desejado:

Lema 4.8. Existe uma constante C > 0 tal que t(a) ≤ C, para todo a ∈J .

Demonstração. Sejam σ1, . . . ,σn as imersões de K, e seja {β1, . . . ,βn} uma base integral de K.
Definamos

C :=
n∏
j=1

(
n∑
i=1
|σj(βi)|

)
.

Mostraremos que, para todo a ∈ J , temos t(a) ≤ C, o que terminará a demonstração.
Tomemos a ∈ J qualquer. Então existe k inteiro positivo tal que kn ≤ N(a) < (k + 1)n.
Definamos

L :=

{
n∑
i=1

diβi | d1, . . . , dn ∈ {0, . . . , k}
}

.

Notemos que |L | = (k+ 1)n > N(a), logo pelo Prinćıpio da Casa dos Pombos existem λ, ν ∈ L
distintos tais que λ+ a = ν + a. Então temos

λ− ν =
n∑
i=1

aiβi ∈ a, onde a1, . . . , an ∈ {−k, . . . , k}.

Assim:

|N(λ− ν)| =

∣∣∣∣∣∣
n∏
j=1

σj(λ− ν)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∏
j=1

σj

( n∑
i=1

aiβi

)∣∣∣∣∣∣ =
n∏
j=1

∣∣∣∣∣
n∑
i=1

aiσj(βi)

∣∣∣∣∣
≤

n∏
j=1

(
n∑
i=1
|ai||σj(βi)|

)
≤

n∏
j=1

(
n∑
i=1

k|σj(βi)|
)

= kn
n∏
j=1

(
n∑
i=1
|σj(βi)|

)
= knC ≤ N(a)C.
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Conclúımos finalmente do item (b) do Teorema 4.1 que

t(a) ≤ N(a)−1N((λ− ν)OK) = N(a)−1|N(λ− ν)| ≤ C.

Enfim, chegamos ao resultado que tanto almejávamos:

Teorema 4.9 (Finitude do Número de Classes). O número de classes hK é finito.

Demonstração. Pelo Lema 4.8, o conjunto {t(a) : a ∈J } é limitado superiormente por um C > 0.
Mas pelo Lema 4.7 esse conjunto é igual a {u(B) : B ∈ C `}, que portanto também é limitado por
C. Seja agora B ∈ C `. Então existe b ∈ B tal que N(b) ≤ C. Mas pelo Corolário 4.5, existe um
número finito m de ideais de J tais que N(b) ≤ C. Assim, B é a classe de um desses m ideais.
Isso mostra que C ` é finito, como desejávamos.

Um corolário direto deste teorema é:

Corolário 4.10. Para todo a ∈J , ahK é um ideal principal.

A demonstração que demos não é totalmente satisfatória para o cálculo efetivo de hK , pois
a constante C que encontramos no lema acima é muito grande. Como veremos mais adiante,
podemos diminuir essa constante para a chamada cota de Minkowski:

µK =

( 4
π

)r2 n!
nn

√
|dK |,

onde r2 é a metade do número de imersões σ de K tais que σ(K) 6⊆ R (pode-se mostrar que o
número de tais imersões é sempre par, ou seja, r2 é inteiro).

Com a cota de Minkowski em mãos, podemos determinar hK da seguinte forma: como vimos,
cada classe de ideais de K contém um ideal com norma no máximo µK . Mas existe um número
finito m de ideais não-nulos de OK com norma menor ou igual a µK . Nós podemos então deter-
minar quais são esses ideais e verificar quantas classes de ideais distintas eles nos fornecem. O
resultado encontrado será hK .

Exemplo 4.11. Como exemplo prático, vamos calcular o número de classes de alguns corpos
quadráticos. Sendo K = Q(

√
d), notemos que K possui duas imersões complexas se d < 0 e

nenhuma imersão complexa se d > 0. Assim, r2 = 1 se d < 0 e r2 = 0 se d > 0, e a cota de
Minkowski para K se torna:

µK =

{ 2
π

√
|dK |, se d < 0;

1
2
√
|dK |, se d > 0.

Como dK = 4d se d ≡ 2, 3 (mod 4) e dK = d se d ≡ 1 (mod 4), nós obtemos:

µK =



2
π

√
|4d| = 4

√
|d|
π , se d < 0 e d ≡ 2, 3 (mod 4);

2
√
|d|
π , se d < 0 e d ≡ 1 (mod 4);

1
2
√

4d =
√
d, se d > 0 e d ≡ 2, 3 (mod 4);

√
d

2 , se d > 0 e d ≡ 1 (mod 4).

Com isso, nós obtemos que µK < 2 ⇐⇒ d ∈ {−7,−3,−2,−1, 2, 3, 5, 13}. Assim, para esses
valores de d toda classe de ideais de K contém um ideal de norma menor que 2, ou seja, igual a
1. Mas sabemos que o único ideal de norma 1 em OK é OK ! Assim, nesse caso vemos que K é
um DIP. Observe que já hav́ıamos conclúıdo que esses corpos quadráticos eram DIP’s (de fato,
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domı́nios euclidianos) no Teorema 2.19. Note que também hav́ıamos conclúıdo nesse teorema que
para d = −11 t́ınhamos K = Q(

√
−11) um DIP, embora µK = 2

√
11
π
∼= 2, 11 > 2.

Utilizando a cota de Minkowski, a estratégia para verificar que OK = Z
[

1+
√
−11

2

]
é um DIP

é mostrar que todos os ideais de norma 2 em OK são principais. Lembremos que se N(a) = 2
então a | 2OK . Assim, basta analisarmos a fatoração prima de 2OK para encontrarmos os ideais
de norma 2. Como veremos na Seção 5.2, temos um método para encontrarmos essa fatoração
prima. Aplicando este método, vemos que o ideal 2OK é primo. Assim, não existe nenhum ideal
de norma 2 em OK , e conclúımos que OK é um DIP.

De forma mais geral, o método de olhar para a fatoração prima de 2OK funcionará se tivermos
2 ≤ µK < 3 ⇐⇒ d ∈ {−19,−15,−11,−5, 6, 7, 17, 21, 29, 33}. Pela identidade fundamental, nós
temos duas opções para a fatoração de 2OK em corpos quadráticos: ou 2OK é um ideal primo
ou 2OK = p1 p2 para p1, p2 COK primos (que podem ser distintos ou não). Para os valores de d
indicados acima, se 2OK for primo então OK será um DIP (foi o que ocorreu para d = −11).

Supondo agora que 2OK = p1 p2, vemos que p1 e p2 serão os únicos ideais de OK com norma
2. Desse modo, temos C ` = {[1], [p1], [p2]}. Assim, hK ≤ 3. A outra forma de termos hK = 1
é se os ideais p1 e p2 forem ambos principais. Também é interessante observar que se p1 = p2,
então sabemos que hK ≤ 2. Faremos agora uma análise mais detalhada para determinar hK para
d ∈ {−19,−15,−11,−5, 6, 7, 17, 21, 29, 33}, utilizando os resultados da Seção 5.2:

• Como −19,−11, 21, 29 ≡ 5 (mod 8), vemos que 2OK é primo para esses valores de d.
Assim, nesses casos OK é um DIP.

• Como 2 | 6 e −5, 7 ≡ 3 (mod 4), vemos que nesse caso 2OK é o quadrado de um ideal
primo p de OK . De fato, nós temos:

2OK =


(2OK + (

√
−5− 1)OK)2, se d = −5;

(2OK +
√

6OK)2, se d = 6;
(2OK + (

√
7− 1)OK)2, se d = 7.

Assim, nesses casos temos hK = 1 ou hK = 2, sendo que hK = 1 se p for principal
e hK = 2 se p não for principal. Da multiplicidade da norma de ideais e do fato de
que N(2OK) = |N(2)| = 4, nós vemos que N(p) = 2 em qualquer um dos três casos.
Lembremos que p é principal se e só se t(p) = 1, isto é, se e só se existir α ∈ p não-nulo tal
que |N(α)| = N(p) = 2. Assim, basta encontrarmos os elementos de OK de norma ±2 e
verificar se eles estão em p. Escrevendo α = a+ b

√
d com a, b ∈ Z, temos N(α) = a2−db2.

Para d = −5, buscamos a, b ∈ Z tais que a2 + 5b2 = ±2. Mas é fácil ver que tais elementos
não existem! Assim, conclúımos que p não é principal, e portanto hK = 2 nesse caso (note
que podeŕıamos também concluir isso do fato de que Z[

√
−5] não é um DFU, como já

hav́ıamos visto).
Para d = 6, buscamos a, b ∈ Z tais que a2 − 6b2 = ±2. Vemos que (a, b) = (2, 1) é uma
solução, e que α = 2 +

√
6 ∈ 2OK +

√
6OK = p. Assim, p é principal e temos hK = 1.

Desse modo, OK é um DIP nesse caso.
Para d = 7, buscamos a, b ∈ Z tais que a2 − 7b2 = ±2. Vemos que (a, b) = (3, 1) é uma
solução, e que α = 3+

√
7 = 4+ (

√
7− 1) ∈ 2OK + (

√
7− 1)OK = p. Assim, p é principal

e temos hK = 1. Desse modo, OK é um DIP nesse caso.

• Como −15, 17, 33 ≡ 1 (mod 8), vemos que nesse caso 2OK = p1 p2 para p1, p2 COK primos
distintos. De fato, nós temos:

2OK =


(
2OK +

√
−15+1

2 OK
)
·
(
2OK +

√
−15−1

2 OK
)

, se d = −15;(
2OK +

√
17+1
2 OK

)
·
(
2OK +

√
17−1
2 OK

)
, se d = 17;(

2OK +
√

33+1
2 OK

)
·
(
2OK +

√
33−1
2 OK

)
, se d = 33.
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Da multiplicidade da norma de ideais e do fato de que N(2OK) = 4, nós vemos que N(p1) =
N(p2) = 2 em qualquer um dos três casos. Como p1 p2 = 2OK é um ideal principal, nós
temos [p1][p2] = [1], de onde se vê facilmente que p1 será um ideal principal se e só se
p2 o for. Como no caso anterior, p1 ser principal equivale à existência de α ∈ p1 não-
nulo com |N(α)| = 2. Escrevendo α = a+ b

(
1+
√
d

2

)
com a, b ∈ Z, nós temos N(α) =

a2 + ab+ b2 · 1−d
4 .

Para d = −15, buscamos a, b ∈ Z tais que a2 + ab + 4b2 = ±2. Mas é fácil ver que
tais elementos não existem! Assim, conclúımos que p1, e portanto p2, não são principais.
Devemos agora determinar se hK = 2 ou se hK = 3, isto é, se [p1] = [p2] ou se [p1] 6= [p2].
Como [p2] = [p1]

−1, nós temos [p1] = [p2] ⇐⇒ [p1]
2 = [1]. Desse modo, o problema se

resume a determinar se p2
1 é um ideal principal de OK . Chamando β := 1+

√
−15

2 , nós temos
p1 = 2OK + βOK , e portanto p2

1 = 4OK + 2βOK + β2OK . Como β2 = β − 4, temos então
p2

1 = 4OK + 2βOK + (β− 4)OK . É claro que 4OK + (β− 4)OK = 4OK + βOK , e portanto
p2

1 = 4OK + 2βOK + βOK = 4OK + βOK .
Como N(p2

1) = 22 = 4, buscamos agora por a, b ∈ Z tais que a2 + ab+ 4b2 = ±4. Vemos
que (a, b) = (0, 1) é uma solução, e que α = β ∈ p2

1. Assim, p2
1 = βOK é principal, o que

mostra que [p1] = [p2]. Conclúımos que hK = 2.
Para d = 17, buscamos a, b ∈ Z tais que a2 + ab− 4b2 = ±2. Vemos que (a, b) = (1, 1)
é uma solução, e que α = 1 + 1+

√
17

2 = 2 +
√

17−1
2 ∈ 2OK +

√
17−1
2 OK = p2. Assim, p2 é

principal, e portanto p1 também o é. Conclúımos que hK = 1, de modo que OK é um DIP
nesse caso.
Para d = 33, buscamos a, b ∈ Z tais que a2 + ab− 8b2 = ±2. Vemos que (a, b) = (2, 1)
é uma solução, e que α = 2 + 1+

√
33

2 ∈ 2OK +
√

33+1
2 OK = p1. Assim, p1 é principal, e

portanto p2 também o é. Conclúımos que hK = 1, de modo que OK é um DIP nesse caso.

Assim, vemos que hK = 1 para d = −19,−11, 6, 7, 17, 21, 29, 33 e hK = 2 para d = −15,−5.

Para finalizar a seção, mostraremos como a teoria que desenvolvemos pode ser utilizada para
resolver uma equação diofantina concreta:

Exemplo 4.12. Na introdução, falamos sobre como a Teoria Algébrica dos Números aparece
naturalmente no estudo das equações diofantinas. Caso o anel de inteiros algébricos necessário
para resolver uma equação diofantina não seja um DFU, entretanto, não está claro como devemos
prosseguir. Como já vimos, Z[

√
−5] não é um DFU. No entanto, veremos como resolver a

equação diofantina y3 = x2 + 5 utilizando este anel. Este exemplo se encontra em [5]. Como
vimos no exemplo acima, hK = 2 para K = Q(

√
−5). Além disso, pelo item (c) do Teorema

2.21, Z[
√
−5]× = {1,−1}.

Consideremos a equação diofantina y3 = x2 + 5. Se x fosse ı́mpar, nós obteŕıamos que y3 ≡
1 + 5 = 6 (mod 8), o que não é posśıvel. Logo x é par, e portanto y é ı́mpar. Se y ≡ 0 (mod 5),
então x2 ≡ 0 (mod 5), logo x ≡ 0 (mod 5). Mas então 5 ≡ x2 + 5 = y3 ≡ 0 (mod 25), absurdo!
Logo y 6≡ 0 (mod 5).

Em Z[
√
−5], temos y3 = (x+

√
−5)(x−

√
−5). Denotemos a := 〈x+

√
−5〉 e b := 〈x−√

−5〉. Então temos a igualdade de ideais 〈y〉3 = 〈x+
√
−5〉〈x−

√
−5〉 = ab. Suponhamos que

exista um ideal primo não-nulo pCOK que divide a e b. Então p 3 (x+
√
−5)− (x−

√
−5) =

2
√
−5. Assim, p divide 〈2

√
−5〉 = 〈2〉〈

√
−5〉. É simples verificar1 que 〈2〉 = 〈2,

√
−5− 1〉2, e pela

multiplicatividade da norma de ideais e pelo Teorema 4.1 temos

N(〈2,
√
−5− 1〉)2 = N(〈2〉) = |N(2)| = |22| = 4⇒ N(〈2,

√
−5− 1〉) = 2,

que é um número primo, logo pelo item (b) do Corolário 4.4 o ideal 〈2,
√
−5− 1〉 é primo.

1Alternativamente, podemos utilizar os resultados da Seção 5.2 no que segue.
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Além disso, N(〈
√
−5〉) = |N(

√
−5)| = 5, logo pelo mesmo corolário o ideal 〈

√
−5〉 é primo.

Assim, temos a fatoração em ideais primos:

〈2
√
−5〉 = 〈2,

√
−5− 1〉2〈

√
−5〉.

Logo p = 〈2,
√
−5− 1〉 ou p = 〈

√
−5〉. Se p = 〈2,

√
−5− 1〉, então

p | 〈y〉 ⇒ 2 = N(p) | N(〈y〉) = |N(y)| = y2.

Mas y é ı́mpar, absurdo! Se p = 〈
√
−5〉, temos

p | 〈y〉 ⇒ 5 = N(p) | N(〈y〉) = |N(y)| = y2.

Mas y não é múltiplo de 5, absurdo! Isso mostra que os ideais a e b são primos entre si. Assim,
como 〈y〉3 = ab, existem ideais c e d de Z[

√
−5] tais que a = c3 e b = d3. Pelo Corolário 4.10,

[c2] = [1], logo como a é principal:

a = c3 ⇒ [1] = [a] = [c]3 = [c]2[c] = [1][c] = [c].

Isso mostra que c é principal. Então existem a, b ∈ Z tais que c = 〈a+ b
√
−5〉, ou seja,

〈x+
√
−5〉 = a = c3 = 〈a+ b

√
−5〉3.

Assim, os elementos x+
√
−5 e (a+ b

√
−5)3 são associados. Como Z[

√
−5]× = {1,−1}, temos:

x+
√
−5 = ±(a+ b

√
−5)3 = ±((a3 − 15ab2) + (3a2b− 5b3)

√
−5).

Então

±1 = 3a2b− 5b3 = b(3a2 − 5b2)⇒ |b| = |3a2 − 5b2| = 1.

Assim, b = ±1, e devemos ter:

3a2 − 5 = ±1⇒ 3a2 = 6 ou 3a2 = 4,

o que é imposśıvel. Portanto, a equação y3 = x2 + 5 não tem soluções inteiras.

4.3. Extensões de Ideais Primos em Domı́nios
de Dedekind

Seja A um domı́nio de Dedekind com corpo de frações K = Q(A). Seja L uma extensão finita
e separável de K de grau n, e seja B = A

L. Então B também é um domı́nio de Dedekind, pelo
Teorema 3.1. Fixemos um ideal primo não-nulo pCA. Então pBCB admite uma fatoração única
em ideais primos de B, digamos pB = Pe1

1 · · ·P
eg
g . Essa fatoração se relaciona diretamente com

os ideais que estão sobre p. De fato:

Proposição 4.13. Nas condições acima, nós temos:

(a) g ≥ 1.

(b) P1, . . . ,Pg são exatamente os ideais primos sobre p.

(c) O conjunto dos ideais de B sobre p é igual ao conjunto de divisores de pB diferentes de B.
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Demonstração. (a) Como essa extensão é integral, pelo Corolário 1.56 temos pB ∩A = p. Se
g = 0, então pB = B. Assim, p = pB ∩A = B ∩A = A, um absurdo! Isso mostra que
g ≥ 1.

(b) Segue diretamente de (a) e (c).

(c) Seja ACB um ideal sobre p. Pelo Corolário 1.56, nós temos A ⊇ pB, o que implica em
A | pB pelo Corolário 3.14. Suponhamos agora que ACB seja um divisor de pB diferente
de B. Então, pelo Corolário 3.14, temos A ⊇ pB, e portanto A ) A∩A ⊇ pB ∩A = p.
Como p é maximal, temos A∩A = p, como desejado.

Notemos que, dado ACB sobre um ideal primo pCA, o anel quociente B/A pode ser con-
siderado tanto como A-módulo quanto como A/ p-espaço, já que pB ⊆ A ⇒ p anula B/A. O
A/ p-espaço B/A tem sempre dimensão finita:

Proposição 4.14. Para todo ideal ACB sobre p, B/A é um A/ p-espaço vetorial de dimensão
finita.

Demonstração. B é um A-módulo finitamente gerado pelo Teorema 1.37. Assim, é claro que B/A
é finitamente gerado sobre A/ p, sendo portanto um A/ p-espaço de dimensão finita.

Definição (Número de Decomposição/Índice de Ramificação/Grau de Inércia). Seja pCA primo.
Definimos o número de decomposição g de p em B (ou em K) como sendo igual à quantidade
de primos de B sobre p. Sendo P | p primo, podemos denotar ainda g = g(P | p) = gp.

Para cada PCB primo não-nulo, definimos o ı́ndice de ramificação de P como o maior
inteiro e(P | p) tal que Pe divide pB. Também denotamos e(P | p) = eP, se p estiver claro.

Além disso, se P | p, definimos o grau de inércia f(P | p) de P como sendo o inteiro
positivo [B/P : A/ p]. Se P não estiver sobre p, definiremos f(P | p) = 0. Também denotamos
f(P | p) = fP, se p estiver claro.

Notemos que, das definições acima, nós temos pB =
∏

PPeP =
∏

P|pP
eP , onde P varia entre

os primos não-nulos de B. O ı́ndice de ramificação e o grau de inércia são multiplicativos:

Proposição 4.15. Sejam C/B e B/A extensões integrais de domı́nios de Dedekind, e sejam
pCA, P′ C B e PC C primos não-nulos. Então temos e(P | p) = e(P | P′) · e(P′ | p) e
f(P | p) = f(P | P′) · f(P′ | p).

Demonstração. Podemos supor que P | P′ e P′ | p, pois caso contrário ambas as igualdades se
reduzirão a 0 = 0. A multiplicatividade do grau de inércia segue da multiplicatividade dos graus
de extensão de corpos: [C/P : A/ p] = [C/P : B/P′][B/P′ : A/ p]. Para a multiplicatividade
do ı́ndice de ramificação, escrevamos pB = P′e(P

′|p) A′, para P′ - A′, e P′C = Pe(P|P′) A, para
P - A. Então nós temos:

pC = (pB)C = (P′e(P
′|p) A′)C = (P′C)e(P

′|p)(A′C) = Pe(P|P′)e(P′|p) Ae(P
′|p)(A′C).

Agora, P - A, e como P′ - A′ vemos que P′C e A′C são coprimos devido ao item (l) da Proposição
1.46. Mas P | P′C, o que mostra que P - A′C. Portanto, ambos A e A′C não são múltiplos de
P, e conclúımos que e(P | p) = e(P | P′)e(P′ | p), como queŕıamos.

Nosso próximo objetivo é mostrar que vale a identidade fundamental, uma generalização da
identidade fundamental vista na Seção 4.1. A identidade fundamental no caso mais geral afirma
que, para todo primo não-nulo pCA, temos ∑P|p ePfP = n = [L : K]. Naquele caso particular,
utilizamos propriedades da norma de ideais para obter o resultado desejado. Aqui, adotaremos
outra estratégia. Comecemos mostrando que o grau de inércia, o ı́ndice de ramificação e o número
de decomposição são invariantes por localização:
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Proposição 4.16. Sejam S um conjunto multiplicativo de A e pCA um ideal primo não-nulo
que não intersecta S. Então, sendo pB = Pe1

1 · · ·P
eg
g a fatoração prima de pB em B, temos:

(S−1 p) · S−1B = S−1(pB) = (S−1P1)
e1 · · · (S−1Pg)

eg .

Em particular, dado P | p primo, g(P | p) = g(S−1P | S−1 p) e e(P | p) = e(S−1P | S−1 p).
Além disso, dado P | p, temos B/P ∼= S−1B/S−1P canonicamente, e esse isomorfismo restrito
a A/ p induz um isomorfismo A/ p ∼= S−1A/S−1 p. Em particular, f(P | p) = f(S−1P | S−1 p).

Demonstração. A primeira parte segue diretamente da Proposição 3.24, enquanto a segunda parte
segue diretamente do Corolário 1.49, já que PCB é maximal.

Finalmente, provemos a identidade fundamental:

Teorema 4.17. (Identidade Fundamental) Sejam A um domı́nio de Dedekind, K = Q(A), L
uma extensão finita e separável de K de grau n e B = A

L. Seja pCA um primo não-nulo e
sejam P1, . . . ,Pg os ideais primos de B sobre p. Então temos:

g∑
j=1

e(Pj | p)f(Pj | p) = dimA/ pB/(pB) = n.

Demonstração. Denotemos, para 1 ≤ j ≤ g, ej := e(Pj | p) e fj := f(Pj | p). Então sabemos que
pB = Pe1

1 · · ·P
eg
g é a fatoração prima de pB em B. A prova de que ∑g

j=1 ejfj = dimA/ pB/(pB)
é parecida com a do Teorema 4.3: seja ACB tal que A | pB, e seja 1 ≤ j ≤ g tal que o ideal
APj CB esteja sobre p. Notemos que A/APj é um B/Pj-espaço vetorial de dimensão 1, devido
ao Corolário 3.15. Desse modo, como B/Pj é um A/ p-espaço de dimensão fj , A/APj também
é um A/ p-espaço vetorial de dimensão fj . Agora, B/A ∼= (B/APj)/(A/APj), e portanto

dimA/ pB/APj = dimA/ pB/A+ dimA/ pA/APj = dimA/ pB/A+fj .

Finalmente, vemos que para obter dimA/ pB/ pB basta começar com A = B e repetir esse
processo ej vezes para cada Pj , para 1 ≤ j ≤ g, para obter:

dimA/ pB/ pB = dimA/ pB/(Pe1
1 · · ·P

eg−1
g ) + fg

= dimA/ pB/(Pe1
1 · · ·P

eg−2
g ) + 2fg

= · · ·
= dimA/ pB/(Pe1

1 · · ·P
eg−1
g−1 ) + egfg

= · · ·
= dimA/ pB/P1 + (e1 − 1)f1 + · · ·+ egfg

= e1f1 + · · ·+ egfg

=
g∑
j=1

ejfj .

Provaremos agora que dimA/ pB/ pB = n. Nós sabemos que B = A
L tem posto n, pelo

Teorema 1.39. Observe que não necessariamente B é um A-módulo livre, pois A pode não ser um
DIP. Assumiremos inicialmente que B seja um A-módulo livre, com uma base {β1, . . . ,βn}. Seja
π : B → B/ pB a projeção canônica. Então é claro que πβ1, . . . ,πβn geram B/ pB como A/ p-
espaço. Mostraremos que esses elementos também são linearmente independentes, o que provará
que dimA/ pB/ pB = n. Suponhamos que a1, . . . , an ∈ A sejam tais que ∑n

j=1 πaj · πβj =
0. Isso significa que ∑n

j=1 ajβj ∈ pB, e portanto temos ∑n
j=1 ajβj =

∑m
k=1 pkbk, para alguns
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p1, . . . , pm ∈ p e b1, . . . , bm ∈ B. Como β1, . . . ,βn geram B nós podemos, para 1 ≤ k ≤ m,
escrever bk =

∑n
j=1 ckjβj , onde cada ckj ∈ A. Desse modo:

n∑
j=1

ajβj =
m∑
k=1

pkbk =
m∑
k=1

pk

 n∑
j=1

ckjβj

 =
n∑
j=1

(
m∑
k=1

pkckj

)
βj .

Como o conjunto {β1, . . . ,βn} é linearmente independente, conclúımos que para 1 ≤ j ≤ n nós
temos aj =

∑m
k=1 pkckj ∈ p, e portanto cada πaj = 0, mostrando a independência linear dos πβj .

Suponhamos agora que B não seja necessariamente um A-módulo livre. Localizemos por
S = A \ p. Então K = Q(Ap), L = Q(Bp) e Ap

L
= (A

L
)p = Bp. Pelo Teorema 3.30, o anel Ap é

um DIP, e portanto Bp é um Ap-módulo livre pelo Teorema 1.39. Assim, podemos aplicar o que
acabamos de provar ao ideal (pB)p. Finalmente:

n = dimAp/ pp
Bp/(pB)p =

g((Pj)p|pp)∑
j=1

ej((Pj)p | pp)f((Pj)p | pp) =
g∑
j=1

ejfj ,

onde na última igualdade utilizamos a proposição acima.

A partir da identidade fundamental, conseguimos dividir a decomposição de um ideal primo
de A em primos de B em alguns casos especiais:

Definição (Tipos de Decomposição). Seja pCA primo. Então dizemos que p é:

• Decomposto em L (ou B) quando g ≥ 2, e não-decomposto em L (ou B) quando g = 1.

• Ramificado em L (ou B) quando existir um primo P | p tal que e(P | p) > 1 ou quando
a extensão (B/P)/(A/ p) for inseparável.

• Totalmente decomposto em L (ou B) quando g = n, ou seja, e(P | p) = f(P | p) = 1
para todo ideal primo P | p. Nesse caso, a decomposição de pB é da forma P1 · · ·Pn.

• Totalmente inerte em L (ou B) quando f(P | p) = n para algum primo P | p. Nesse
caso, g = 1 e e(P | p) = 1, e portanto pB = P é o único ideal de B sobre p.

• Totalmente ramificado em L (ou B) quando e(P | p) = n para algum primo P | p.
Nesse caso, g = 1 e f(P | p) = 1, e portanto pB = Pn.

Além disso, dizemos que uma extensão de corpos L/K é ramificada se existir algum primo pCA
ramificado em B, e dizemos que L/K é não-ramificada caso contrário.

No caso em que A = Z, B = OL e p = pZ, para p ∈ N primo, diremos simplesmente que p
é decomposto, ramificado, etc. para indicar que o ideal pZ é decomposto, ramificado, etc.

Observação 4.18. Notemos que caso n = 2, pela identidade fundamental, todo pCA será to-
talmente decomposto, totalmente inerte ou totalmente ramificado. Além disso, observemos que
B/P sempre será uma extensão separável de A/ p se A/ p for perfeito, como é o caso se A for
um corpo de números algébricos (já que nessas condições vale que |A/ p| = N(p) <∞).

Exemplo 4.19. Na extensão Z[i]/ Z, os primos p ∈ N totalmente decompostos em Z[i] são
aqueles com p ≡ 1 (mod 4), os primos totalmente inertes são aqueles com p ≡ 3 (mod 4) e o
único primo totalmente ramificado é 2.

Outra convenção que utilizaremos é a de chamar um primo pCA de “primo de K”, e um
primo PCB de “primo de L”.
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4.4. Fatorando Ideais Primos
Sejam A um domı́nio de Dedekind com corpo de frações K = Q(A). Seja L uma extensão finita
e separável de K de grau n, e seja B = A

L. Nessa seção mostraremos que, dado um ideal pCA
coprimo com um certo ideal de A, nós temos uma fórmula para calcular a fatoração de pB em
ideais primos de B. Em particular, caso B seja monogêneo sobre A, ou seja, se B = A[γ] para
algum γ ∈ B, então essa fórmula valerá para todos os ideais de A. Começamos com a seguinte
definição:

Definição (Condutor). Dados dois anéis R ⊆ S, nós chamamos de condutor de R em S o
conjunto f := {x ∈ R : xS ⊆ R}.

É fácil ver da definição acima que o condutor f de R em S é o maior ideal de S contido em
R, e que esse é também um ideal de R. Além disso, notemos que f = S se e somente se 1 ∈ f, ou
seja, se e só se S ⊆ R ⇐⇒ R = S. Assim, se R ( S então f é um ideal próprio de S.

Similarmente à definição de ordem que demos para um anel de inteiros algébricos, temos:

Definição (Ordem de uma Extensão de Anéis). Um anel R com A ⊆ R ⊆ B é chamado de
ordem de L/K se R contiver uma base {r1, . . . , rn} da extensão L/K, ou equivalentemente se
R for um A-módulo de posto n ou se Q(R) = L. Uma ordem R será chamada de principal se
for da forma R = A[γ], para algum γ ∈ B.

Proposição 4.20. Seja R uma ordem da extensão L/K. Consideremos o condutor f de R em
B. Então f 6= 0.

Demonstração. Sabemos que B é um A-módulo finitamente gerado. Sejam b1, . . . , bm ∈ B para
os quais B = Ab1 + · · ·+ Abm. Por hipótese, existem r1, . . . , rn ∈ R que formam uma base da
extensão L/K. Assim nós podemos escrever, para 1 ≤ i ≤ m, bi =

∑n
j=1

aij
sij
· rj , onde cada aij ∈ A

e cada sij ∈ A \ {0}. Chamemos s :=
∏m
i=1

∏n
j=1 sij . Então s 6= 0 e s “limpa os denominadores”

de todos os bi, isto é, para todo 1 ≤ i ≤ m vemos que sbi é uma combinação linear dos rj ’s com
coeficientes em A, e portanto sbi ∈ R. Como todo elemento de B é combinação linear dos bi’s
com coeficientes em A, conclúımos que sB ⊆ R.

Com isso, nós conseguimos obter a fórmula desejada para a fatoração de um ideal primo de
A em B.

Teorema 4.21. Seja γ ∈ B um elemento primitivo da extensão L/K, e consideremos o condutor
f de A[γ] em B. Seja pCA um ideal primo tal que os ideais pB e f sejam primos entre si, isto
é, pB + f = B. Denotemos P = Pγ,K , e sejam P1, . . . ,Pg ∈ A[x] polinômios mônicos tais que
P = P

e1
1 · · ·P

eg
g seja a fatoração prima de P em (A/ p)[x]. Então a fatoração de pB em ideais

primos distintos de B é Pe1
1 · · ·P

eg
g , onde para 1 ≤ j ≤ g temos Pj = pB + Pj(γ)B. Assim,

e(Pj | p) = ej. Além disso, para 1 ≤ j ≤ g temos f(Pj | p) = ∂ Pj.

Demonstração. A ideia da demonstração é a seguinte cadeia de isomorfismos de anéis:

B

pB
∼=

A[γ]

pA[γ]
∼=

A[x]

〈P (x)〉+ pA[x]
∼=

(A/ p)[x]

〈P (x)〉
∼=

g∏
j=1

(A/ p)[x]

〈P j(x)〉ej
.

• B
pB
∼= A[γ]

pA[γ] é um isomorfismo, dado por a+ pB ←[ a+ pA[γ]: Por hipótese, sabemos que
pB + f = B, e como f ⊆ A[γ], nós temos pB + A[γ] = B, de modo que a restrição da
projeção canônica B → B/ pB a A[γ] é sobrejetora. O núcleo dessa restrição é pB ∩A[γ].
Então basta provarmos que pB ∩ A[γ] = pA[γ]. A inclusão (⊇) é clara. Para a outra
inclusão, notemos que, como f e pB são coprimos, podemos escrever f = Q1 · · ·Qm onde
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Q1, . . . ,Qm são primos que não dividem pB, e portanto não estão sobre p. Sejam q1 :=
Q1 ∩A, . . . , qm := Qm ∩A. Então q1, . . . , qm são ideais primos de A diferentes de p. Notemos
agora que

f∩A = (Q1 · · ·Qm) ∩A ⊇ (Q1 ∩A) · · · (Qm ∩A) = q1 · · · qm .

Então f ∩A é um produto de ideais primos de A distintos de p, e portanto f ∩A é primo
com p, ou seja, p+(f∩A) = A. Em particular, 1 ∈ p+f. Desse modo:

pB ∩A[γ] ⊆ (p+f)(pB ∩A[γ]) = p(pB ∩A[γ]) + f(pB ∩A[γ])
⊆ pA[γ] + pBf

= pA[γ] + p f

⊆ pA[γ] + pA[γ]

= pA[γ],

mostrando a outra inclusão. Assim, temos o primeiro isomorfismo desejado.

• A[γ]
pA[γ]

∼= A[x]
〈P (x)〉+pA[x] é um isomorfismo, dado por

f(γ) + pA[γ]←[ f(x) + (〈P (x)〉+ pA[x]).

A verificação de que essa função é um isomorfismo é direta.

• A[x]
〈P (x)〉+pA[x]

∼= (A/ p)[x]

P (x)
é um isomorfismo, dado por

f(x) + (〈P (x)〉+ pA[x]) 7→ f(x) + 〈P (x)〉.

A verificação de que essa função é um isomorfismo é direta.

• (A/ p)[x]

〈P (x)〉
∼=
∏g
j=1

(A/ p)[x]

〈P j(x)〉ej
é um isomorfismo, dado por

f(x) + 〈P (x)〉 7→ (f(x) + 〈P 1(x)〉e1 , . . . , f(x) + 〈P g(x)〉eg ).

Esse isomorfismo segue diretamente do Teorema Chinês dos Restos.

Denotemos R := (A/ p)[x]

〈P (x)〉 e, para 1 ≤ j ≤ g, Rj := (A/ p)[x]

〈P j(x)〉ej
. Observemos que, para 1 ≤ j ≤ g,

os ideais primos de Rj correspondem aos ideais primos de (A/ p)[x] que contêm 〈P j(x)〉ej , pelo
Teorema da Correspondência. Como A/ p é um corpo, (A/ p)[x] é um DIP, assim é fácil ver que
o único ideal primo de (A/ p)[x] que contém 〈P j(x)〉ej é 〈P j(x)〉. Essa análise nos mostra que o
único ideal primo de Rj é P̂j := 〈P j(x)〉/〈P j(x)〉ej .

Assim, o anel produto R1 × · · · × Rg possui exatamente g ideais primos, a saber os ideais
P̃1, . . . , P̃g, onde para 1 ≤ j ≤ g nós temos:

P̃j := R1 × · · · ×Rj−1 × P̂j ×Rj+1 × · · · ×Rg.

Notemos que, dado um elemento f(x) + 〈P (x)〉 ∈ R qualquer, a imagem desse elemento em
R1 × · · · ×Rg estará em P̃j se e só se f(x) + 〈P j(x)〉ej ∈ P̂j , isto é, se e só se f(x) ∈ 〈P j(x)〉.
Isso nos diz que o ideal primo de R correspondente a P̃j é o ideal P′j := 〈P j(x)〉/〈P (x)〉. Assim,
o anel R tem exatamente g ideais primos não-nulos, a saber P′1 := 〈P 1(x)〉/〈P (x)〉, . . . ,P′g :=
〈P g(x)〉/〈P (x)〉.

Consideremos agora f(x) + 〈P (x)〉 ∈ R. Ele é levado no elemento f(x) + (〈P (x)〉+ pA[x]) ∈
A[x]

〈P (x)〉+pA[x] , que por sua vez é levado em f(γ) + pA[γ] ∈ A[γ]
pA[γ] , que é levado em f(γ) + pB ∈ B

pB .
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Com isso, é fácil ver que cada ideal primo P′j de R é levado no ideal primo Pj(γ)A[γ]/ pB de
B
pB . Isso mostra que o anel B

pB tem exatamente g ideais primos não-nulos, a saber:

P1 := P1(γ)A[γ]/ pB, . . . ,Pg := Pg(γ)A[γ]/ pB.

Podemos utilizar o Teorema da Correspondência para concluir que os ideais primos de B que
contêm pB são exatamente os g ideais dados pelas pré-imagens dos Pj ’s pela projeção canônica
B → B/ pB:

P1 := P1(γ)A[γ] + pB, . . . ,Pg := Pg(γ)A[γ] + pB.

Afirmamos que, para 1 ≤ j ≤ g, nós temos Pj = pB + Pj(γ)B. A inclusão (⊆) é clara.
Seja agora p+ Pj(γ)b qualquer, com p ∈ pB e b ∈ B. Como pB +A[γ] = B, existem q ∈ pB,
a ∈ A[γ] tais que b = q+ a. Assim:

p+ Pj(γ)b = p+ Pj(γ)(q+ a) = (p+ Pj(γ)q) + Pj(γ)a ∈ pB + Pj(γ)A[γ],

mostrando a inclusão inversa. Assim, o que fizemos até agora nos permite concluir que os ideais
primos de B que contêm (e portanto que dividem) pB são exatamente os g ideais:

P1 := pB + P1(γ)B, . . . ,Pg := pB + Pg(γ)B.

Notemos agora que P̃e1
1 · · · P̃

eg
g = 0 em R1× · · ·×Rg, logo a partir dos isomorfismos indicados

vemos que P
e1
1 · · ·P

eg
g = 0 em B

pB , ou seja, que Pe1
1 · · ·P

eg
g ⊆ pB. Assim, temos ej ≤ e(Pj | p),

para todo 1 ≤ j ≤ g. Notemos agora que, para 1 ≤ j ≤ g, nós temos um isomorfismo de
A/ p-espaços B

Pj
∼= B/ pB

Pj/ pB . Como o isomorfismo B
pB
∼= (A/ p)[x]

〈P (x)〉 leva Pj = Pj/ pB em P′j =

〈P j(x)〉/〈P (x)〉, nós temos:

B

Pj

∼=
B/ pB

Pj/ pB
∼=

(A/ p)[x]/〈P (x)〉
〈P j(x)〉/〈P (x)〉

∼=
(A/ p)[x]

〈P j(x)〉
.

Como P j(x) é um polinômio irredut́ıvel de (A/ p)[x] temos que (A/ p)[x]/〈P j(x)〉 é uma extensão
de grau ∂ P j = ∂ Pj de A/ p. Isso mostra que [B/Pj : A/ p] = ∂ Pj , isto é, f(Pj | p) = ∂ Pj .
Agora, pela identidade fundamental:

n =
g∑
j=1

e(Pj | p) f(Pj | p) ≥
g∑
j=1

ej ∂ Pj = ∂ P = n.

Com isso, conclúımos por fim que e(Pj | p) = ej para todo 1 ≤ j ≤ n, o que termina a
demonstração.

Um caso particular importante é quando B é monogêneo sobre A:

Teorema 4.22. Suponhamos que exista γ ∈ B tal que B = A[γ]. Seja pCA primo não-nulo.
Denotemos P = Pγ,K , e sejam P1, . . . ,Pg ∈ A[x] polinômios mônicos tais que P = P

e1
1 · · ·P

eg
g

seja a fatoração prima de P em (A/ p)[x]. Então a fatoração de pB em ideais primos distintos
de B é Pe1

1 · · ·P
eg
g , onde para 1 ≤ j ≤ g temos Pj = pB+Pj(γ)B. Assim, e(Pj | p) = ej. Além

disso, para 1 ≤ j ≤ g, f(Pj | p) = ∂ Pj.

Como consequência direta desse resultado, nós temos:

Corolário 4.23. Supondo B = A[γ]:

(a) p será totalmente decomposto em L se e só se P se fatorar em (A/ p)[x] em fatores lineares
distintos x− aj ∈ (A/ p)[x], para 1 ≤ j ≤ n. Nesse caso, pB = P1 · · ·Pn, com cada Pj

igual a pB + (β − aj)B.
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(b) p será totalmente inerte em L se e só se P for irredut́ıvel em (A/ p)[x]. Nesse caso, pBCB
é primo.

(c) p será totalmente ramificado em L se e só se tivermos P = (x− a)n para algum a ∈ A/ p.
Nesse caso, pB = (pB + (β − a)B)n, e pB + (β − a)B é o único ideal primo de B sobre
p.

Nesse contexto, temos um critério simples para verificar se um ideal primo é ramificado:

Corolário 4.24. Supondo B = A[γ], as seguintes condições são equivalentes:

(i) p é ramificado em L.

(ii) O polinômio P ∈ (A/ p)[x] é inseparável.

(iii) ∆(P ) ∈ p.

(iv) p | dB/A

Em particular, se A = Z, B = OL e p = pZ, isso equivale a p | dL.

Demonstração. (i) ⇐⇒ (ii): Seja P = P
e1
1 · · ·P

eg
g a fatoração prima de P em irredut́ıveis de

(A/ p)[x]. O polinômio P é inseparável se e só se para algum 1 ≤ j ≤ g tivermos ej > 1 ou P j
inseparável, o que equivale a termos p ramificado em L devido ao Teorema 4.22 (note que pela
demonstração que fizemos a extensão (B/P)/(A/ p) é isomorfa a (A/ p)[x]

〈P j(x)〉
/(A/ p)).

(ii) ⇐⇒ (iii): Como o discriminante de um polinômio de grau n é um polinômio simétrico
com coeficientes inteiros nas suas ráızes, existe D ∈ Z[x1, . . . ,xn] tal que:

∆(c0 + c1x+ · · ·+ cn−1x
n−1 + xn) = D(c0, . . . , cn−1),

para todos c0, . . . , cn−1 em algum corpo. Sejam a1, . . . , an ∈ A tais que

P (x) = a0 + a1x+ · · ·+ an−1x
n−1 + xn.

Então nós temos que P (x) = (a0 + p) + (a1 + p)x+ · · ·+ (an−1 + p)xn−1 + xn, e portanto

∆(P ) = D(a0 + p, . . . , an−1 + p) = D(a0, . . . , an−1) + p = ∆(P ) + p,

mostrando que ∆(P ) = 0 ⇐⇒ ∆(P ) ∈ p. Como ∆(P ) = 0 equivale a P ser separável, temos a
equivalência desejada.

(iii) ⇐⇒ (iv): Devido às proposições 1.43 e 1.33, temos dB/A = ∆(1, γ, . . . , γn−1)A = ∆(P )A.
Sendo assim, ∆(P ) ∈ p ⇐⇒ dB/A ⊆ p ⇐⇒ p | dB/A.

Finalmente, para o caso particular basta notar que dOL/ Z = dL Z pelo Teorema 2.7.

No caso em que B não é monogênico sobre A nós podemos, utilizando localização, obter
resultados semelhantes aos anteriores se nos restringirmos aos ideais primos não-nulos pCA tais
que ∆(P ) 6∈ p:

Corolário 4.25. Sejam γ ∈ B elemento primitivo da extensão L/K e P = Pγ,K . Então, se
pCA primo não-nulo for tal que ∆(P ) 6∈ p, nós temos:

(a) 1, γ, . . . , γn−1 formam uma base do Ap-módulo Bp.

(b) p não é ramificado em L.
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(c) P ∈ (A/ p)[x] é separável.

(d) Sejam P1, . . . ,Pg ∈ A[x] irredut́ıveis mônicos tais que P = P 1 · · ·P g. Então valem as
afirmações (a) e (b) do Teorema 4.22 com e1 = · · · = eg = 1.

Demonstração. (a) Nós temos Bp = Ap
L devido à Proposição 1.15. Pelo Teorema 3.30, Ap é

um DIP, e portanto por 1.39 Bp é um Ap-módulo livre de posto n. Seja {β1, . . . ,βn} uma
base de Bp como Ap-módulo. Seja M ∈Mn(Ap) a matriz que satisfaz

M ·


β1
β2
...
βn

 =


1
γ
...

γn−1


Essa matriz existe já que β1, . . . ,βn formam uma base de Bp e 1, γ, . . . , γn−1 ∈ Bp. Então
nós temos ∆(P ) = ∆(1, γ, . . . , γn−1) = (detM)2∆(β1, . . . ,βn), devido às proposições 1.31
e 1.33. Mas ∆(P ) ∈ A \ p ⊆ Ap \ pp = A×p . Assim, a igualdade acima nos diz que temos
detM ∈ A×p . Segue da Proposição 1.42 que 1, γ, . . . , γn−1 formam uma base de Bp como
Ap-módulo, como desejávamos.

Observemos que como L = K(γ) e Bp = Ap[γ] pelo que acabamos de mostrar, podemos
aplicar os resultados anteriores dessa seção.

(b) Como vimos, ∆(P ) 6∈ pp. Desse modo, o Corolário 4.24 nos diz que pp não é ramificado em
Bp. Mas isso significa que p não é ramificado em B, pela Proposição 4.16.

(c) Também pelo Corolário 4.24, podemos concluir que o polinômio induzido por P no corpo
(Ap/ pp)[x] é separável. Mas Ap/ pp é canonicamente isomorfo a A/ p, devido ao Corolário
1.49. Desse modo, P ∈ (A/ p)[x] é separável.

(d) Com a identificação (A/ p)[x] = (Ap/ pp)[x], o Teorema 4.22 nos diz que a fatoração de
ppBp em ideais primos de Bp é Qe1

1 · · ·Q
eg
g , onde para 1 ≤ j ≤ g temos Qj = ppBp +

Pj(γ)Bp, de modo que e(Qj | pp) = ej , e que além disso f(Qj | pp) = ∂ Pj .

Seja pB = P`1
1 · · ·P`r

r a fatoração prima de pB em B. Pela Proposição 4.16, temos então

(P1)
`1
p · · · (Pr)

`r
p = ppBp = Qe1

1 · · ·Q
eg
g .

Por unicidade, conclúımos que r = g e que os ideais primos e expoentes que aparecem são
iguais a menos de ordenação. Assim, podemos supor que Qj = (Pj)p e que `j = ej , para
1 ≤ j ≤ g. Isso já nos garante que e(Pj | p) = ej , e que f(Pj | p) = f(Qj | pp) = ∂ Pj .
Agora, nós temos (Pj)p = ppBp + Pj(γ)Bp = (pB + Pj(γ)B)p. Assim:

Pj = (Pj)p ∩B = (pB + Pj(γ)B)p ∩B.

Provaremos que se ACB é tal que pB ⊆ A, então Ap ∩B = A. Por um lado, é claro que
Ap ∩B ⊇ A. Seja agora x ∈ Ap ∩B. Então x = y/s, para alguns y ∈ A, s ∈ A \ p. Sendo
pCA maximal, temos p+sA = A, e portanto existem p ∈ p e a ∈ A tais que 1 = p+ sa.
Desse modo:

x = (p+ sa)x = px+ sax = px+ ya ∈ pB +A = A .

Portanto, Ap ∩B = A. Em particular, tomando A = pB + Pj(γ)B, nós conclúımos que
Pj = (pB + Pj(γ)B)p ∩B = pB + Pj(γ)B, como queŕıamos.
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Os primos não-nulos pCA tais que ∆(Pγ,K) ∈ p podem não ser os mesmos para diferentes
escolhas de γ. Assim, para cada escolha de γ temos um conjunto Cγ de primos não-nulos de A que
contêm o elemento ∆(Pγ,K). Pelo corolário acima, é claro que o conjunto dos primos ramificados
de A está contido na interseção de todos os Cγ . Uma observação importante é que cada Cγ é
finito, pois:

p ∈ Cγ ⇐⇒ ∆(Pγ,K) ∈ p ⇐⇒ p | ∆(Pγ,K)A = dA[γ]/A,

e ∆(Pγ,K)A tem um número finito de divisores pelo Corolário 3.15. Em particular, conclúımos
que o número de ideais primos não-nulos de A que se ramificam em L é finito.

Corolário 4.26. Existe apenas um número finito de ideais primos não-nulos pCA que se rami-
ficam em L. Cada p deste tipo divide dA[γ]/A, para todo γ elemento primitivo de L/K.

De fato, utilizando técnicas mais avançadas, pode-se mostrar uma condição necessária e sufi-
ciente para um ideal primo não-nulo pCA se ramificar em L:

Teorema 4.27. Seja pCA primo não-nulo, e suponhamos que para todo P | p a extensão
(B/P)/(A/ p) seja separável. Então p é ramificado em L se e só se p | dB/A.

Em particular, dados p ∈N e um corpo de números algébricos L, p será ramificado em L se
e só se p | dL.

Para uma demonstração desse fato, veja por exemplo a Seção III.2 de [2] ou o Caṕıtulo 12
de [3]. Estudemos agora os ideais totalmente ramificados da extensão B/A. Quando B/A era
uma extensão gerada por um elemento, nós t́ınhamos o item (c) do Corolário 4.23 para nos dar
informações. No entanto, um ideal primo p totalmente ramificado satisfaz ∆(Pγ,K) ∈ p para
todo γ elemento primitivo de L/K, de modo que não podemos adotar a mesma estratégia que
utilizamos nos últimos resultados. O que fazemos nesse caso é mostrar a seguinte generalização
do critério de Eisenstein:

Teorema 4.28. Sejam pCA primo e suponhamos que L = K(γ) para um elemento γ ∈ B raiz de
um polinômio mônico P (x) = a0 +a1x+ · · ·+am−1x

m−1 +xm ∈ A[x] tal que a0, a1, . . . , am−1 ∈ p
e a0 6∈ p2. Então P é irredut́ıvel em K[x] (note que isso significa que P = Pγ,K), m = [L : K] = n
e pB = Pn, onde P = pB+ γB é um ideal primo de B. Em particular, p é totalmente ramificado
em L.

Demonstração. Sejam PCB primo sobre p e e = e(P | p). Por hipótese, a0A = p a, para algum
aCB tal que p - a. Sendo p e a coprimos, pelo item (l) da Proposição 1.46 temos pB e aB
coprimos. Em particular, P - aB, de modo que o ideal a0B = (p a)B = (pB)(aB) se escreve
como a0B = PeA para ACB tal que P - A. Notemos que

γm = −a0 − a1γ − · · · − am−1γ
m−1 ∈ pB ⊆ P.

Assim, γm ∈ P⇒ γ ∈ P, já que P é primo. Mais do que isso, notemos que para 1 ≤ m ≤ n− 1
temos ai ∈ p ⊆ Pe, de modo que

a0 = −γm − a1γ − · · · − am−1γ
m−1 ∈ −γm −Pe+1.

Como Pe+1 - a0B, temos a0 6∈ Pe+1, e portanto γm 6∈ Pe+1. Disso e do fato de que γm ∈ Pm

conclúımos que m ≤ e. Por outro lado, Pγ,K | P em K[x] ⇒ n = [L : K] = ∂ Pγ,K ≤ ∂ P = m.
Mas da identidade fundamental nós sabemos que e ≤ n. Assim, m ≤ e ≤ n ≤ m, de forma
que m = n = e. Isso mostra que ∂ P = ∂ Pγ,K = n, e então P = Pγ,K é irredut́ıvel. Também
conclúımos da identidade fundamental que a fatoração de pB em primos de B é pB = Pn.

Resta provarmos que P = pB + γB. Observemos que Pn = pB ⊆ pB + γB. Além disso,
como p ⊆ P e γ ∈ P, nós temos pB + γB ⊆ P. Desse modo, pB + γB = Pj para algum
1 ≤ j ≤ n. Suponhamos por absurdo j ≥ 2. Então γ ∈ Pj ⇒ γn ∈ Pjn ⊆ Pn+1, um absurdo
como já hav́ıamos visto. Logo pB + γB = P, terminando a demonstração.
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O teorema acima nos dá uma condição suficiente para garantirmos que um ideal primo pCA é
totalmente ramificado em B. Mostraremos também que essa condição é necessária. Nós sabemos
que Ap é um DVD com único ideal maximal pp. Supondo que p seja totalmente ramificado em B,
Bp também será um DVD. De fato, seja P | p primo. Então pB = Pn. Todo primo de Bp é da
forma Qp, para QCB primo não-nulo com Q∩(A \ p) = ∅. Assim, Q∩A ⊆ p é primo não-nulo,
e como A é domı́nio de Dedekind conclúımos que Q∩A = p. Logo Q | p⇒ Q = P. Desse modo,
Bp é de fato um DVD, com único ideal maximal Pp. Notemos ainda que ppBp = Pn

p .

Teorema 4.29. Nas condições acima, seja π ∈ Bp um normalizador. Denotemos por v a va-
loração associada ao DVD Ap e por w a valoração associada ao DVD Bp. Então:

(a) Sejam a0, a1, . . . , an−1 ∈ K quaisquer, não todos nulos. Definamos α :=
∑n−1
i=0 aiπ

i ∈ L.
Então w(α) = min{n · v(ai) + i : 0 ≤ i ≤ n− 1}. Em particular, α 6= 0.

(b) L = K(π).

(c) 1,π,π2, · · · ,πn−1 formam uma base do Ap-módulo Bp. Em particular, Bp = Ap[π].

(d) Pπ,K(x) = c0 + c1x+ · · ·+ cn−1x
n−1 + xn, onde c0, c1, . . . , cn−1 ∈ pp e c0 6∈ p2

p.

Demonstração. (a) Comecemos observando que para 0 ≤ i ≤ n− 1 qualquer, nós temos:

(aiπ
i)Bp = (aiBp)(π

iBp) = ((aiAp)Bp) · πiBp

= (p
v(ai)
p Bp) · πiBp = (ppBp)

v(ai) · πiBp

= (Pn
p )
v(ai) · πiBp = P

n·v(ai)
p · πiBp

= (πBp)
n·v(ai) · πiBp = πn·v(ai)+iBp.

Assim, w(aiπi) = n · v(ai) + i, para 0 ≤ i ≤ n− 1. É fácil ver que esses valores são distintos
dois a dois, e portanto pelo item (d) do Lema 3.26 nós conclúımos que:

w(α) = w

(
n−1∑
i=0

aiπ
i

)
= min{w(aiπi) : 0 ≤ i ≤ n− 1}

= min{n · v(ai) + i : 0 ≤ i ≤ n− 1},

como queŕıamos. Em particular, α 6= 0.

(b) Uma vez que {1,π,π2, . . . ,πn−1} tem n elementos e [L : K] = n, basta mostrar que esse
conjunto é linearmente independente. Mas isso segue do “em particular” do item (a)!

(c) Por (b), todo elemento α de L/K se escreve de modo único como α =
∑n−1
i=0 aiπ

i, para
alguns a0, . . . , an−1 ∈ K. Desse modo, queremos mostrar que se α ∈ Bp então a0, . . . , an−1 ∈
Ap. Assim, suponhamos que α ∈ Bp. Logo w(α) ≥ 0. Por (a), nós temos a igualdade
w(α) = min{n · v(ai) + i : 0 ≤ i ≤ n− 1}. Isso mostra que, para 0 ≤ i ≤ n− 1,

n · v(ai) + i ≥ 0⇒ v(ai) ≥ −
i

n
> −1⇒ v(ai) ≥ 0.

Mas isso significa que ai ∈ Ap, como gostaŕıamos.

(d) Seja Pπ,K(x) = c0 + c1x+ · · ·+ cn−1x
n−1 + xn ∈ K[x]. Como Pπ,K(π) = 0, nós temos

πn = −
n−1∑
i=0

ciπ
i ⇒ min{n · v(ci) + i : 0 ≤ i ≤ n− 1} = n,

devido ao item (a). Assim, para 0 ≤ i ≤ n− 1, temos v(ci) ≥ (n− i)/n > 0 ⇒ v(ci) ≥ 1,
o que mostra que ci ∈ pp. Notemos ainda que, para 1 ≤ i ≤ n− 1, n · v(ci) + i > n · 1 = n.
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Logo para o mı́nimo acima ser n ele deve ocorrer para i = 0. Ou seja, n · v(c0) = n, e
conclúımos que v(c0) = 1⇒ c0 6∈ p2

p, como desejado.

Como consequência direta do teorema acima, nós temos a rećıproca do Teorema 4.28:

Corolário 4.30. Se pCA é primo totalmente ramificado em B e PCB é o único ideal primo
de B sobre p, então existe γ ∈ B tal que L = K(γ) e γ é raiz de um polinômio P (x) =
a0 + a1x+ · · ·+ an−1x

n−1 + xn ∈ A[x] tal que a0, a1, . . . , an−1 ∈ p e a0 6∈ p2.

Demonstração. Seja π um gerador do ideal Pp CBp. Então o teorema acima nos diz que L =
K(π), que {1,π, . . . ,πn−1} é base do Ap-módulo Bp e que Pπ,K = c0 + c1x+ · · ·+ cn−1x

n−1 + xn

é tal que c0, . . . , cn−1 ∈ pp e c0 6∈ p2
p. Como π ∈ Pp, nós temos π = γ/s para alguns γ ∈ P e

s ∈ A \ p. Então γ ∈ B é tal que L = K(γ).
Agora, como cada c0, . . . , cn−1 ∈ pp, nós podemos escrever, para 0 ≤ i ≤ n− 1, ci = bi/si

para alguns bi ∈ p e si ∈ A \ p. Como c0 6∈ p2
p, nós devemos ter b0 6∈ p2. Assim:

0 = c0 + c1π+ · · ·+ cn−1π
n−1 + πn =

b0
s0

+
b1
s1

γ

s
+ · · ·+ bn−1

sn−1

(
γ

s

)n−1
+

(
γ

s

)n
=

a0 + a1γ + · · ·+ an−1γ
n−1 + γn

sns0s1 · · · sn−1

⇒ a0 + a1γ + · · ·+ an−1γ
n−1 + γn = 0,

onde para 0 ≤ i ≤ n− 1 definimos ai := bis
n−is0 · · · ŝi · · · sn−1 ∈ A. Para 0 ≤ i ≤ n− 1 nós

temos bi ∈ p, logo ai ∈ p. Além disso, como p é primo, sns1 · · · sn−1 6∈ p, e portanto a0B =
(b0B)(sns1 · · · sn−1B) não é múltiplo de p2, já que p2 - b0B e p - sns1 · · · sn−1B. Finalmente,
basta tomar P (x) := a0 + a1x+ · · ·+ an−1x

n−1 + xn ∈ A[x].



Caṕıtulo 5

Decomposição em Corpos
Quadráticos e Ciclotômicos

Nesse caṕıtulo, aplicaremos os resultados do caṕıtulo anterior para estudar como os ideais primos
de Z se fatoram em ideais primos de corpos quadráticos e ciclotômicos. Para estudarmos as
extensões de corpos quadráticos, provaremos a famosa Lei de Reciprocidade Quadrática.

5.1. A Lei de Reciprocidade Quadrática
Seja d ∈ D congruente a 2 ou 3 módulo 4, e K = Q(

√
d). Então OK = Z[

√
d]. O polinômio

minimal de
√
d em relação a Q é P (x) := P√d,Q(x) = x2 − d. Assim, pelo Teorema 4.22,

para estudarmos como um número primo p ∈ N se decompõe em OK devemos analisar como o
polinômio x2 − d se fatora em Fp[x]. Sendo esse um polinômio de segundo grau, temos apenas
duas opções: ou esse polinômio possui uma raiz em Fp ou então ele é irredut́ıvel. Mas a existência
de uma raiz desse polinômio em Fp equivale a dizer que existe uma raiz quadrada de d em Fp, isto
é, que existe a ∈ Z tal que a2 ≡ d (mod p). A existência ou não de tal a ∈ Z é o que abordaremos
nessa seção.

É interessante notar que os resultados provados aqui possuem enunciados elementares, apa-
recendo naturalmente em Teoria Elementar dos Números no estudo de congruências quadráticas.
De fato, embora a Lei de Reciprocidade Quadrática seja demonstrada aqui utilizando inteiros
algébricos, ela possui demonstrações elementares (veja por exemplo os livros [1] ou [5]). Essa
discussão motiva a seguinte definição:
Definição (Reśıduo Quadrático). Seja n um inteiro positivo. Dizemos que um inteiro a ∈ Z (ou
sua classe a ∈ Z /nZ) é um reśıduo quadrático módulo n (ou em Z /nZ) se existir r ∈ Z tal
que r2 ≡ a (mod n) (equivalentemente, se existir r ∈ Z /nZ tal que r2 = a).

Denotaremos o conjunto de reśıduos quadráticos módulo n por RQ(n). Note que podemos ver
RQ(n) tanto como um subconjunto de Z quanto de Z /nZ, dependendo da definição de reśıduo
quadrático utilizada. A forma de enxergarmos RQ(n) ficará clara pelo contexto. A seguinte
notação é bastante útil:
Definição (Śımbolo de Legendre). Denotemos por P o conjunto dos números primos ı́mpares em
Z. O śımbolo de Legendre é uma função

( ·
·

)
: Z×P → {−1, 0, 1}, com (a, p) 7→

(
a

p

)
, de

modo que, dados p ∈ Z um primo ı́mpar e a ∈ Z qualquer, nós tenhamos:

(
a

p

)
=


0, se p | a;
1, se p - a e a ∈ RQ(p);
−1, se p - a e a 6∈ RQ(p).

88
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Assim, nosso problema inicial se reduz a conseguir calcular os śımbolos de Legendre para
quaisquer (a, p) ∈ Z×P. O critério de Euler nos ajudará nessa tarefa:

Proposição 5.1. (a) Seja p um primo ı́mpar, e seja g um gerador do grupo multiplicativo F×p .
Então o conjunto de reśıduos quadráticos de Fp é dado por

RQ(p) = {0} ∪ {g2k : 0 ≤ k ≤ (p− 3)/2}.

Em particular, |RQ(p)| = (p+ 1)/2.

(b) (Critério de Euler) Se (a, p) ∈ Z×P, então
(
a

p

)
≡ a(p−1)/2 (mod p).

Demonstração. (a) Segue facilmente por teoria de grupos abelianos.

(b) Se p | a, essa igualdade é clara. Suponhamos que p - a. Então temos a = gm para
0 ≤ m ≤ p− 2. Assim, a(p−1)/2 = gm(p−1)/2. Se m for par, m(p− 1)/2 ≡ 0 (mod p− 1),
e nesse caso a(p−1)/2 = g0 = 1. Se m for ı́mpar, m(p− 1)/2 ≡ (p− 1)/2 (mod p− 1), e
nesse caso a(p−1)/2 = g(p−1)/2 = −1 (note que g(p−1)/2 é uma raiz de x2 − 1 diferente de 1,
e esse polinômio se fatora como (x+ 1)(x− 1), de onde g(p−1)/2 = −1).
Utilizando o item (a) e o que acabamos de mostrar, conclúımos que se a for reśıduo
quadrático então m é par, e portanto a(p−1)/2 ≡ 1 =

(
a

p

)
(mod p), e que se a não for

reśıduo quadrático então m é ı́mpar, e portanto a(p−1)/2 ≡ −1 =

(
a

p

)
(mod p).

O śımbolo de Legendre possui as seguintes propriedades:

Proposição 5.2. Seja p um primo ı́mpar e sejam a, b ∈ Z quaisquer. Então:

(a) Se a ≡ b (mod p), então
(
a

p

)
=

(
b

p

)
.

(b) Se p - a, então
(
a2

p

)
= 1.

(c)
(−1
p

)
= (−1)(p−1)/2. Desse modo, −1 ∈ RQ(p) ⇐⇒ p ≡ 1 (mod 4).

(d)
(
ab

p

)
=

(
a

p

)(
b

p

)
. Desse modo, o śımbolo de Legendre induz um homomorfismo de grupos

multiplicativos F×p → {−1, 1} dado por a 7→
(
a

p

)
.

Demonstração. Os itens (a) e (b) são imediatos da definição.

(c) Pelo Critério de Euler,
(−1
p

)
deixa resto (−1)(p−1)/2 módulo p. Mas como

(−1
p

)
= ±1,

temos que vale a igualdade já que p > 2. Assim:

−1 ∈ RQ(p) ⇐⇒
(−1
p

)
= 1 ⇐⇒ (−1)(p−1)/2 = 1 ⇐⇒ p ≡ 1 (mod 4).

(d) Se p | a ou p | b, o resultado é óbvio. Suponhamos então que p - a, b. Pelo Critério de Euler,(
ab

p

)
≡ (ab)(p−1)/2 = a(p−1)/2 · b(p−1)/2 ≡

(
a

p

)(
b

p

)
(mod p).

Mas como
(
ab

p

)
= ±1 e

(
a

p

)(
b

p

)
= ±1, deve valer a igualdade desejada já que p > 2.
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Finalmente, provemos a famosa Lei de Reciprocidade Quadrática:

Teorema 5.3 (Lei de Reciprocidade Quadrática). Sejam p, q primos ı́mpares distintos. Então:

(a)
(
p

q

)(
q

p

)
= (−1)

p−1
2 ·

q−1
2 . Isto é:

• Se p ≡ 1 (mod 4) ou q ≡ 1 (mod 4), então p ∈ RQ(q) ⇐⇒ q ∈ RQ(p).
• Se p ≡ q ≡ 3 (mod 4), então p ∈ RQ(q) ⇐⇒ q 6∈ RQ(p).

(b)
(2
p

)
= (−1)

p2−1
8 . Isto é, 2 ∈ RQ(p) ⇐⇒ p ≡ ±1 (mod 8).

Demonstração. (a) Seja ζ ∈ C uma raiz primitiva p-ésima da unidade. Consideremos a soma
de Gauss1 S :=

∑
a∈Fp

(
a

p

)
ζa ∈ Z[ζ]. Então S2 = (−1)

p−1
2 p. De fato:

S2 =

∑
a∈Fp

(
a

p

)
ζa

2

=
∑

a,b∈Fp

(
a

p

)(
b

p

)
ζa+b =

∑
n∈Fp

∑
a∈F×p

(
a

p

)(
n− a
p

)
ζn

=
∑
n∈Fp

ζn
∑
a∈F×p

(
a(n− a)

p

)
=
∑
n∈Fp

ζn
∑
a∈F×p

(
a2

p

)(
a−1n− 1

p

)

=
∑
n∈Fp

ζn
∑
a∈F×p

(
a−1n− 1

p

)
.

Assim, para determinar S2 basta calcular a soma ∑a∈F×p

(
a−1n− 1

p

)
para cada n ∈ Fp.

Para n = 0, todas as parcelas dessa soma são
(−1
p

)
, de modo que essa soma é igual a

(p− 1)
(−1
p

)
= (−1)

p−1
2 (p− 1) pelo Critério de Euler. Para n ∈ F×p , vemos que quando a

varia o número a−1n percorre todo F×p . Então nesse caso:

∑
a∈F×p

(
a−1n− 1

p

)
=

∑
a∈F×p

(
a− 1
p

)
=
∑
a∈Fp

(
a

p

)
−
(−1
p

)
= −

(−1
p

)
= −(−1)

p−1
2 ,

já que temos exatamente (p−1)/2 reśıduos quadráticos e (p−1)/2 reśıduos não-quadráticos
em F×p pelo item (a) da Proposição 5.1, e portanto a soma ∑a∈Fp

(
a

p

)
, formada por uma

parcela igual a 0, (p− 1)/2 parcelas iguais a 1 e (p− 1)/2 parcelas iguais a −1, é igual a
0. Assim:

S2 =
∑
n∈Fp

ζn
∑
a∈F×p

(
a−1n− 1

p

)
= (−1)

p−1
2 (p− 1)−

p−1∑
n=1

ζn(−1)
p−1

2

= (−1)
p−1

2 (p− 1)− (−1)
p−1

2

p−1∑
n=1

ζn

= (−1)
p−1

2 (p− 1)− (−1)
p−1

2 (−1)
= (−1)

p−1
2 p,

1Aqui, por simplicidade de notação, identificaremos Fp com seu conjunto de representantes {0, 1, . . . , p−
1} ⊆ Z.



5.1. A LEI DE RECIPROCIDADE QUADRÁTICA 91

como desejávamos. Calculemos agora Sq−1 no anel A := Z[ζ]/(qZ[ζ]). Observemos que
como S2 = ±p e mdc(p, q) = 1, temos que p ∈ F×q ⊆ A×, e portanto S ∈ A×. Como A é
um anel de caracteŕıstica q, nós temos:

S
q
=

∑
a∈Fp

(
a

p

)
ζ
a

q =
∑
a∈Fp

(
a

p

)q
ζ
aq

=
∑
a∈Fp

(
a

p

)
ζ
aq

=
∑
a∈Fp

(
q

p

)(
aq

p

)
ζ
aq

=

(
q

p

)
S,

uma vez que quando a percorre Fp, aq também percorre Fp. Como S ∈ A×, conclúımos que
S
q−1

=

(
q

p

)
em A. Com as identidades S2 = (−1)

p−1
2 p e Sq−1

=

(
q

p

)
, já temos tudo o

que precisamos para provar a igualdade desejada. Basta notar que, pelo Critério de Euler:

(
(−1)

p−1
2 p

q

)
≡
(
(−1)

p−1
2 p
) q−1

2
= (S2)

q−1
2 = Sq−1 ≡

(
q

p

)
(mod qA).

Mas por outro lado,
(
(−1)

p−1
2 p

q

)
= (−1)

p−1
2 ·

q−1
2

(
p

q

)
, e portanto

(−1)
p−1

2 ·
q−1

2

(
p

q

)
≡
(
q

p

)
(mod qA)⇒ (−1)

p−1
2 ·

q−1
2

(
p

q

)
=

(
q

p

)
,

já que ambos esses valores são ±1 e q > 2. Finalmente, essa última igualdade é equivalente
à igualdade desejada (basta multiplicar por

(
p

q

)
= ±1 de ambos os lados).

(b) Seja ζ ∈ C uma raiz oitava primitiva da unidade, e denotemos ω := ζ + ζ−1. Então ω2 = 2.
De fato:

ω2 = (ζ + ζ−1)2 = ζ2 + ζ−2 + 2ζζ−1 = ζ2 + ζ6 + 2 = ζ2(1 + ζ4) + 2 = 2,

Assim, pelo Critério de Euler:(2
p

)
≡ 2

p−1
2 ≡ ωp−1 (mod pZ[ζ]).

Logo basta calcularmos ωp−1. Como mdc(2, p) = 1, temos 2 ∈ F×p ⊆ (Z[ζ]/pZ[ζ])×.
Como ω2 = 2, temos ω ∈ (Z[ζ]/pZ[ζ])×. Agora:

ωp = (ζ + ζ
−1

)p = ζ
p
+ ζ
−p

=

{
ζ + ζ

−1
= ω, se p ≡ 1 (mod 8);

ζ
3
+ ζ

5
= ζ

4
ω = −ω, se p ≡ ±3 (mod 8).

Note que então temos ωp = (−1)
p2−1

8 ω, para todo primo ı́mpar p, e como ω ∈ (Z[ζ]/pZ[ζ])×

temos ωp−1 = (−1)
p2−1

8 . Assim,
(2
p

)
≡ ωp−1 ≡ (−1)

p2−1
8 (mod pZ[ζ]). Como tanto(2

p

)
quando (−1)

p2−1
8 estão em {−1, 1} e p > 2, conclúımos que

(2
p

)
= (−1)

p2−1
8 , como

queŕıamos.

Observação 5.4. O uso de ráızes da unidade na prova acima parece totalmente “arbitrário”, ou
mesmo “mágico”. Para justificar um pouco o surgimento desses elementos, podemos pensar na
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principal ideia da demonstração acima, que é simplesmente calcular
(
p

q

)
(mod q) utilizando o

Critério de Euler. Em Z[
√
p], nós temos:(
p

q

)
≡ p

q−1
2 ≡ √pq−1 (mod qZ[

√
p]).

Com isso, basta calcularmos √p q−1 ∈ Z[
√
p]/(qZ[

√
p]). Para isso, buscamos uma expressão

expĺıcita para √p, isto é, procuramos determinar uma raiz quadrada de p numa extensão de Fq,
e como vimos isso é posśıvel através das somas de Gauss.

Exemplo 5.5. A partir da Lei de Reciprocidade Quadrática, podemos calcular śımbolos de Le-
gendre por meio da fatoração. Por exemplo, digamos que queremos determinar se 2021 é reśıduo
quadrático módulo o número primo 5003. Para isso, computamos

(2021
5003

)
da seguinte forma:

(2021
5003

)
=

(43 · 47
5003

)
=

( 43
5003

)( 47
5003

)
=

(
−
(5003

43

))(
−
(5003

47

))
=

(15
43

)(21
47

)
=

( 3
43

)( 5
43

)( 3
47

)( 7
47

)
=

(
−
(43

3

))(43
5

)(
−
(47

3

))(
−
(47

7

))
= −

(1
3

)(3
5

)(2
3

)(5
7

)
= −

(2
3

)(5
3

)(7
5

)
= −(−1)

(2
3

)(2
5

)
= (−1)(−1) = 1,

onde usamos repetidas vezes a Lei de Reciprocidade Quadrática e a multiplicatividade do śımbolo
de Legendre. Assim, 2021 é reśıduo quadrático módulo 5003.

Podemos estender o śımbolo de Legendre para todo inteiro positivo ı́mpar, por fatoração. Isso
definirá o chamado śımbolo de Jacobi:

Definição (Śımbolo de Jacobi). Seja n um inteiro positivo ı́mpar, e seja n = pα1
1 · · · p

αk
k a sua

fatoração prima. Dado a ∈ Z qualquer, definimos o śımbolo de Jacobi
(
a

n

)
como sendo:

(
a

n

)
:=
(
a

p1

)α1

· · ·
(
a

pk

)αk
=

k∏
j=1

(
a

pj

)αj
.

Observe que com essa definição nós temos
(
a

1

)
= 1 para todo a ∈ Z.

Note que para n primo os śımbolos de Legendre e Jacobi coincidem. Assim, não temos pro-
blema em usar a mesma notação para os dois śımbolos. Utilizando as propriedades que conhecemos
do śımbolo de Legendre, conseguimos deduzir propriedades similares do śımbolo de Jacobi:

Teorema 5.6 (Propriedades do Śımbolo de Jacobi). Sejam m,n inteiros positivos ı́mpares e a, b
inteiros quaisquer. Então nós temos:
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(a) Se a ≡ b (mod n), então
(
a

n

)
=

(
b

n

)
.

(b)
(
a

n

)
= 0 se mdc(a,n) > 1 e

(
a

n

)
= ±1 se mdc(a,n) = 1.

(c)
(
ab

n

)
=

(
a

n

)(
b

n

)
. Em particular,

(
a2

n

)
∈ {0, 1}.

(d)
(
a

mn

)
=

(
a

m

)(
a

n

)
. Em particular,

(
a

n2

)
∈ {0, 1}.

(e)
(−1
n

)
= (−1)n−1

2 .

(f)
(
m

n

)
= (−1)m−1

2 ·
n−1

2

(
n

m

)
.

(g)
( 2
n

)
= (−1)n

2−1
8 .

As igualdades (c) e (d) são chamadas de multiplicatividade do śımbolo de Legendre, a igualdade
(e) é chamada de Critério de Euler para o śımbolo de Jacobi, e as igualdades (f) e (g) são
chamadas de Lei de Reciprocidade Quadrática para o śımbolo de Jacobi.

Demonstração. Nos itens abaixo, denotaremos por n = pα1
1 · · · p

αk
k e por m = qβ1

1 · · · qβrr . Notemos
ainda que todos os itens são fáceis de verificar caso m = 1 ou n = 1. Assim, suponhamos m,n 6= 1.
Os itens (a), (b), (c) e (d) seguem facilmente da definição. Provemos (e), (f) e (g):

(e) Pela multiplicatividade e pelo Critério de Euler para o śımbolo de Legendre:

(−1
n

)
=

k∏
j=1

(−1
pj

)αj
=

k∏
j=1

(−1)αj ·
pj−1

2 = (−1)
∑k

j=1 αj ·
pj−1

2 .

Assim, basta mostrarmos que ∑k
j=1 αj ·

pj−1
2 ≡ n−1

2 (mod 2). Isso por sua vez segue
facilmente por indução em α1 + · · · + αn do seguinte fato: dados u, v ı́mpares, temos
uv−1

2 ≡ u−1
2 + v−1

2 (mod 2). Para verificar esse fato, basta notarmos que:

uv− 1
2 ≡ u− 1

2 +
v− 1

2 (mod 2) ⇐⇒ uv− 1 ≡ (u− 1) + (v− 1) (mod 4)

⇐⇒ uv− u− v+ 1 ≡ 0 (mod 4)
⇐⇒ (u− 1)(v− 1) ≡ 0 (mod 4),

o que é verdade já que u e v são ı́mpares.

(f) Se mdc(m,n) > 1, então pelo item (b) temos
(
m

n

)
=

(
n

m

)
= 0, e temos a igualdade

desejada. Suponhamos então mdc(m,n) = 1. Assim, para 1 ≤ i ≤ k e 1 ≤ j ≤ r temos
pi 6= qj .
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Pela multiplicatividade e pela Lei de Reciprocidade Quadrática para o śımbolo de Legendre:

(
m

n

)(
n

m

)
=

k∏
i=1

(
m

pi

)αi r∏
j=1

(
n

qj

)βj

=

 k∏
i=1

r∏
j=1

(
qj
pi

)αiβj r∏
j=1

k∏
i=1

(
pi
qj

)αiβj
=

k∏
i=1

r∏
j=1

((
qj
pi

)(
pi
qj

))αiβj

=
k∏
i=1

r∏
j=1

(−1)αiβj ·
pi−1

2 ·
qj−1

2

= (−1)
∑k

i=1

∑r

j=1 αiβj
pi−1

2 ·
qj−1

2 .

Assim, basta mostrarmos que ∑k
i=1

∑r
j=1 αiβj ·

pi−1
2 · qj−1

2 ≡ m−1
2 · n−1

2 (mod 2). Mas nós
temos:

k∑
i=1

r∑
j=1

αiβj ·
pi − 1

2 · qj − 1
2 =

(
k∑
i=1

αi ·
pi − 1

2

) r∑
j=1

βj ·
qj − 1

2


≡ n− 1

2 · m− 1
2 (mod 2),

pelo fato que demonstramos no item (e).

(g) Pela multiplicatividade e pela Lei de Reciprocidade Quadrática para o śımbolo de Legendre:

( 2
n

)
=

k∏
j=1

( 2
pj

)αj
=

k∏
j=1

(−1)αj ·
p2
j
−1
8 = (−1)

∑k

j=1 αj ·
p2
j
−1
8 .

Assim, basta provarmos que ∑k
j=1 αj ·

p2
j−1
8 ≡ n2−1

8 (mod 2). Isso por sua vez segue
facilmente por indução em α1 + · · · + αn do seguinte fato: dados u, v ı́mpares, temos
(uv)2−1

8 ≡ u2−1
8 + v2−1

8 (mod 2). Para verificar esse fato, basta notarmos que:

(uv)2 − 1
8 ≡ u2 − 1

8 +
v2 − 1

8 (mod 2) ⇐⇒ u2v2 − 1 ≡ (u2 − 1) + (v2 − 1) (mod 16)

⇐⇒ u2v2 − u2 − v2 + 1 ≡ 0 (mod 16)
⇐⇒ (u2 − 1)(v2 − 1) ≡ 0 (mod 16),

o que é verdade já que u e v são ı́mpares, e portanto u2 − 1, v2 − 1 ≡ 0 (mod 4).

Também nos será útil estender a Lei de Reciprocidade Quadrática acima para inteiros nega-
tivos:

Proposição 5.7. Sejam m ∈N e c ∈ Z ı́mpares e primos entre si. Então:(
c

m

)
= (−1)

m−1
2 ·

c−1
2

(
m

|c|

)
.
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Demonstração. Se c for positivo, a igualdade acima é simplesmente a Lei de Reciprocidade
Quadrática para o śımbolo de Jacobi. Suponhamos então c < 0. Assim, |c| = −c. Pelo Critério
de Euler e pela Lei de Reciprocidade Quadrática para o śımbolo de Jacobi:(

c

m

)
=

(−1
m

)(−c
m

)
= (−1)

m−1
2 (−1)

m−1
2 ·
−c−1

2

(
m

−c

)
= (−1)

m−1
2 (1+−c−1

2 )
(
m

|c|

)
= (−1)

m−1
2 ·

1−c
2

(
m

|c|

)
= (−1)

m−1
2 ·

c−1
2

(
m

|c|

)
.

Todo quadrado perfeito a2 satisfaz
(
a2

c

)
∈ {0, 1}, para todo c inteiro positivo ı́mpar. Mais

interessante é que a rećıproca também vale:
Proposição 5.8. Seja n inteiro positivo tal que para todo c inteiro positivo ı́mpar tenhamos(
n

c

)
∈ {0, 1}. Então n é um quadrado perfeito.

Demonstração. Provaremos a contrapositiva. Isto é, se n não for um quadrado perfeito, acharemos
um ı́mpar positivo c tal que

(
n

c

)
= −1. Seja n = 2αpα1

1 · · · p
αk
k a fatoração prima de n, onde

α ≥ 0 e α1, . . . ,αk > 0. Podemos supor ser perda de generalidade que α1 é ı́mpar. Pelo Teorema
Chinês dos Restos, existe um inteiro positivo c que satisfaz o sistema de congruências:

c ≡ 1 (mod 8);
c ≡ r (mod p1)

c ≡ 1 (mod pj), 2 ≤ j ≤ k.
para um r ∈ Z que não seja reśıduo quadrático módulo p1. Note que as congruências acima
já garantem c ı́mpar. Pela multiplicatividade do śımbolo de Jacobi e pela Lei de Reciprocidade
Quadrática, nós temos:(

n

c

)
=

(2αpα1
1 pα2

2 · · · p
αk
k

c

)
=

(2
c

)α(p1
c

)α1(p2
c

)α2

· · ·
(
pk
c

)αk
.

Como c ≡ 1 (mod 8), temos
(2
c

)
= 1. Além disso, como c ≡ 1 (mod 4), para 1 ≤ j ≤ k nós

temos
(
pj
c

)
=

(
c

pj

)
. Assim:(

n

c

)
=

(2
c

)α(p1
c

)α1(p2
c

)α2

· · ·
(
pk
c

)αk
=

(
c

p1

)α1( c

p2

)α2

· · ·
(
c

pk

)αk
=

(
c

p1

)( 1
p2

)α2

· · ·
( 1
pk

)αk
=

(
r

p1

)
= −1,

Assim, achamos o c desejado, concluindo a demonstração.
Observação 5.9. Utilizando o Teorema de Dirichlet sobre progressões aritméticas, a mesma
demonstração acima mostra um resultado mais forte: que se n é inteiro positivo tal que para todo
p primo tenhamos n reśıduo quadrático módulo p, então n é um quadrado perfeito. Isso ocorre
porque podemos escolher c primo satisfazendo as congruências desejadas.
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5.2. Decomposição em Corpos Quadráticos
Seja p ∈ N primo, e consideremos um polinômio de segundo grau ax2 + bx+ c ∈ Fp[x]. Essa
equação terá soluções em Fp se e só se b2 − 4ac for um quadrado em Fp, ou seja, se e só se(
b2 − 4ac

p

)
∈ {0, 1}. Sabendo calcular os śımbolos de Legendre, conseguimos estudar a decom-

posição de ideais primos em um corpo quadrático K = Q(
√
d), com d ∈ D. Pelo Teorema 4.22,

a fatoração de um ideal primo pZCZ em OK depende da fatoração do polinômio minimal de δ,
onde δ =

√
d se d ≡ 2, 3 (mod 4) e δ = 1+

√
d

2 se d ≡ 1 (mod 4).
Consideremos inicialmente d ≡ 2, 3 (mod 4). Nesse caso, o polinômio minimal a se considerar

é P (x) := P√d,Q(x) = x2 − d. Seja p ∈N um primo ı́mpar. Então P (x) = x2 − d possui raiz em
Fp se e só se d for reśıduo quadrático módulo p.

• Se
(
d

p

)
= −1, então P (x) é irredut́ıvel, e nesse caso pOK é um ideal primo de OK . Isto é,

p é totalmente inerte.

• Se
(
d

p

)
= 1, então P (x) possui duas ráızes r e −r em Fp. Desse modo, P se fatora como

P (x) = (x− r)(x+ r), e portanto a fatoração de pOK em ideais primos de OK é:

pOK = (pOK + (
√
d− r)OK) · (pOK + (

√
d+ r)OK).

Nesse caso, p é totalmente decomposto.

• Se
(
d

p

)
= 0, isto é, se p | d, então P (x) = x2. Desse modo, a fatoração de pOK em ideais

primos de OK é pOK = (pOK +
√
dOK)2. Nesse caso, p é totalmente ramificado.

Falta analisarmos o que ocorre para p = 2. Nesse caso, P (x) =

{
x2, se d for par;
x2 − 1, se d for ı́mpar.

Note que x2 − 1 = (x− 1)2. Assim, se d for par a fatoração de 2OK em ideais primos de OK
é 2OK = (2OK +

√
dOK)2, e se d for ı́mpar a fatoração de 2OK em ideais primos de OK é

2OK = (2OK + (
√
d− 1)OK)2. Em qualquer caso, 2 é totalmente ramificado.

Consideremos agora d ≡ 1 (mod 4). Nesse caso, o polinômio minimal a se considerar é
P (x) := P(1+

√
d)/2,Q(x) = x2 − x+ 1−d

4 , como é fácil verificar. Seja p ∈ N um primo ı́mpar.
O discriminante dessa equação é (−1)2 − 4 · 1 ·

(
1−d

4

)
= 1 + (d− 1) = d. Assim, como no caso

anterior, basta analisarmos
(
d

p

)
. Comecemos observando que em Fp temos 1/2 = (p+ 1)/2.

• Se
(
d

p

)
= −1, então P (x) é irredut́ıvel, e nesse caso pOK é um ideal primo de OK . Isto é,

p é totalmente inerte.

• Se
(
d

p

)
= 1, então P (x) possui duas ráızes 1+r

2 e 1−r
2 em Fp, onde r2 = d. Desse modo:

P (x) =
(
x− 1+r

2

) (
x− 1−r

2

)
=

(
x− (1+r)(p+1)

2

)(
x− (1−r)(p+1)

2

)
,

e a fatoração de pOK em ideais primos de OK é:

pOK =
(
pOK +

(
1+
√
d

2 − (1+r)(p+1)
2

)
OK

)
·
(
pOK +

(
1+
√
d

2 − (1−r)(p+1)
2

)
OK

)
(note que é necessário substituir 1/2 por (p+ 1)/2, pois (1+ r)/2 não está necessariamente
em Z). Nesse caso, p é totalmente decomposto.
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• Se
(
d

p

)
= 0, isto é, se p | d, então P (x) possui raiz dupla 1/2. Desse modo:

P (x) =
(
x− 1

2

)
=
(
x− p+1

2

)
,

e a fatoração de pOK em ideais primos de OK é

pOK =
(
pOK +

(
1+
√
d

2 − p+1
2

)
OK

)2
=
(
pOK +

√
d−p
2 OK

)2
.

Nesse caso, p é totalmente ramificado.

Falta analisarmos o que ocorre para p = 2. Nesse caso, P (x) =
{
x2 − x, se d ≡ 1 (mod 8);
x2 + x+ 1, se d ≡ 5 (mod 8).

Observemos que x2 − x = x(x− 1) e x2 + x+ 1 é irredut́ıvel em F2[x], pois não tem ráızes em
F2. Assim, se d ≡ 1 (mod 8) a fatoração de 2OK em ideais primos de OK é

2OK =
(
2OK + 1+

√
d

2 · OK
)
·
(
2OK +

(
1+
√
d

2 − 1
)
· OK

)
=

(
2OK +

√
d+1
2 · OK

)
·
(
2OK +

√
d−1
2 · OK

)
,

e se d ≡ 5 (mod 8) o ideal 2OK é primo. Desse modo, se d ≡ 1 (mod 8) o ideal 2OK é totalmente
decomposto, e se d ≡ 5 (mod 8) o ideal 2OK é totalmente inerte.

Observe que em ambos os casos o número de ideais ramificados (que nesse caso equivalem aos
ideais totalmente ramificados) é finito, já que apenas um número finito de primos divide d. Isso
é um caso particular do Corolário 4.26. Além disso, pelo Corolário 4.24, p ser ramificado em OK

equivale a p dividir dK . Como dK =

{
4d, se d ≡ 2, 3 (mod 4);
d, se d ≡ 1 (mod 4).

isso equivale a dizer que p | d

ou p = 2 e d ≡ 3 (mod 4). A análise que fizemos acima da decomposição dos ideais primos em
OK mostra que de fato esses são os únicos casos em que pOK é ramificado. Essa análise, de fato,
nos diz que o tipo de decomposição de um primo p ∈N em OK se dá da seguinte forma:

Proposição 5.10. Sejam d ∈ D, K = Q(
√
d) e p ∈N primo. Então:

(a) p é totalmente ramificado em OK se e somente se p | d ou se p = 2 e d ≡ 3 (mod 4).

(b) p é totalmente decomposto em OK se e somente se p for ı́mpar e
(
d

p

)
= 1 ou se p = 2 e

d ≡ 1 (mod 8).

(c) p é totalmente inerte em OK se e somente se p for ı́mpar e
(
d

p

)
= −1 ou se p = 2 e

d ≡ 5 (mod 8).

Exemplo 5.11. O resultado acima aplicado para d = −1 nos permite reobter a caracterização
dos tipos de decomposição em Z[i]. Para isso notemos que pelo resultado acima, dado p ∈ N

primo, temos:

• p é totalmente ramificado em Z[i] se e somente se p = 2.

• p é totalmente decomposto em Z[i] se e somente se p for ı́mpar e
(−1
p

)
= 1.

• p é totalmente inerte em Z[i] se e somente se p for ı́mpar e
(−1
p

)
= −1.

Mas pelo Critério de Euler,
(−1
p

)
= (−1)

p−1
2 , e portanto −1 é reśıduo quadrático módulo p se e

somente se p ≡ 1 (mod 4). Isso nos dá a caracterização que t́ınhamos anteriormente.
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O exemplo acima nos mostra que para verificarmos se −1 é reśıduo quadrático módulo p basta
analisarmos o resto de p na divisão por 4. Com a Lei de Reciprocidade Quadrática em mãos,
conseguimos mostrar que vale um mesmo tipo de critério em geral. Mais explicitamente, que o
tipo de decomposição de um primo p em OK depende unicamente do resto de p na divisão por
|dK |.

Para ver isso, escrevamos d = 2md′, com m ∈ {0, 1} e d′ ı́mpar (lembre que d é livre de
quadrados). Seja c ∈ Z ı́mpar e primo com dK . Então, pela Lei de Reciprocidade Quadrática,
nós temos: (

d

c

)
=

(2md′
c

)
=

(2
c

)m(d′
c

)
= (−1)

c2−1
8 m(−1)

c−1
2 ·

d′−1
2

(
c

|d′|

)
. (5.1)

Essa equação nos garante que
(
d

c

)
só depende do resto de c módulo |dK |. De fato:

• Se d ≡ 1 (mod 4), então m = 0 e d′ = d. Assim, a equação (5.1) se torna simplesmente(
d

c

)
=

(
c

|d|

)
, já que (d− 1)/2 é par. Logo

(
d

c

)
=

(
c

|d|

)
só depende do resto da divisão

de c por |d| = |dK |.

• Se d ≡ 2 (mod 4), então m = 1. Assim, a equação (5.1) se torna(
d

c

)
= (−1)

c2−1
8 + c−1

2 ·
d′−1

2

(
c

|d′|

)
.

Note que essa expressão depende apenas de c (mod 8) e c (mod |d′|). Ou seja, pelo Teo-
rema Chinês dos Restos depende apenas de c (mod 8|d′|). Mas 8|d′| = |4d| = |dK |, como
queŕıamos.

• Se d ≡ 3 (mod 4), então m = 0 e d′ = d. Assim, a equação (5.1) se torna simplesmente(
d

c

)
= (−1) c−1

2

(
c

|d|

)
, já que (d− 1)/2 é ı́mpar. Note que essa expressão depende apenas

de c (mod 4) e c (mod |d|). Assim, pelo Teorema Chinês dos Restos, depende apenas de
c (mod 4|d|). Mas 4|d| = |4d| = |dK |, como queŕıamos.

Assim, mostramos que
(
d

c

)
só depende do resto de c módulo |dK |. Tomando c primo que não

divide d nós obtemos a afirmação desejada de que o tipo de decomposição de um primo p em OK
depende unicamente do resto de p na divisão por |dK |.

Na verdade, podemos obter um pouco mais do que isso. Baseado na conta acima, chamemos
SK := {c ∈ Z : mdc(dK , c) = 1}, e consideremos χK : SK → {−1, 1} dado por

χK(c) =



(
c

|d|

)
, se d ≡ 1 (mod 4);

(−1) c
2−1
8 + c−1

2 ·
d′−1

2

(
c

|d′|

)
, se d ≡ 2 (mod 4);

(−1) c−1
2

(
c

|d|

)
, se d ≡ 3 (mod 4).

Observe que se c for ı́mpar, χK(c) nada mais é do que
(
d

c

)
, devido à conta que fizemos acima,

e que c só pode ser par se d ≡ 1 (mod 4), pois caso contrário 2 | dK . A função χK possui as
seguinte propriedades:

Teorema 5.12. (a) χK não depende da classe de c módulo |dK |, ou seja, se b, c ∈ SK são tais
que b ≡ c (mod |dK |) então χK(b) = χK(c).
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(b) χK é um homomorfismo sobrejetor de semigrupos multiplicativos.

(c) Dado p ∈ SK primo, temos que d ∈ RQ(p) ⇐⇒ χK(p) = 1. Assim, p é decomposto se e
só se χK(p) = 1, e p é inerte se e só se χK(p) = −1.

Demonstração. (a) Segue diretamente pela análise que já fizemos acima. Note que o fato de c
poder ser par não interfere nessa análise.

(b) Sejam a, b ∈ SK . Se d ≡ 2, 3 (mod 4), já sabemos que χK(a) =
(
d

a

)
e χK(b) =

(
d

b

)
, e por-

tanto χK(ab) =
(
d

ab

)
=

(
d

a

)(
d

b

)
= χK(a)χK(b). (podeŕıamos também ter feito a conta

direta). Se d ≡ 1 (mod 4), nós temos χK(ab) =
(
ab

|d|

)
=

(
a

|d|

)(
b

|d|

)
= χK(a)χK(b).

Falta mostrarmos que χK é sobrejetor. Em todos os casos, χK(1) = 1, de modo que basta
verificar que −1 está na imagem de χK . Se isso não ocorresse, então em particular para
todo c inteiro positivo ı́mpar nós teŕıamos

(
d

c

)
∈ {0, 1}. Mas como vimos na Proposição

5.8, isso implicaria que d é um quadrado perfeito, um absurdo já que d ∈ D. Isso mostra
que χK é sobrejetora.

(c) Para p ı́mpar, isso segue diretamente do fato de que χK(p) =
(
d

p

)
e da Proposição 5.10.

Para o caso p = 2, devemos ter d ≡ 1 (mod 4), e assim χK(2) =
( 2
|d|

)
= (−1) d

2−1
8 . Assim,

χK(2) = 1 se d ≡ 1 (mod 8) e χK(2) = −1 se d ≡ 5 (mod 8). O resultado desejado segue
então da Proposição 5.10.

O homomorfismo χK é chamado de caráter quadrático de K. Podemos estender χK a um
homomorfismo sobrejetor de semigrupos multiplicativos χK : Z→ {−1, 0, 1} definindo χK(c) = 0
se c ∈ Z \SK . Com isso:

Corolário 5.13. Para qualquer número primo p ∈N, nós temos:

χK(p) =


1 se e somente se p for decomposto em K;
−1 se e somente se p for inerte em K;

0 se e somente se p for ramificado em K.

Devido ao Teorema de Dirichlet sobre progressões aritméticas, sabemos que para todo corpo
quadrático K temos um número infinito de primos decompostos e um número infinito de primos
inertes, já que χK é sobrejetor.

Exemplo 5.14. Seja K = Q(
√
−3). Chamamos o anel de inteiros algébricos OK = Z

[
1+
√
−3

2

]
de anel dos inteiros de Eisenstein. Com os resultados acima, conseguimos determinar ra-
pidamente quais primos de N são decompostos, inertes e ramificados nesse anel. Nesse caso,
dK = d = −3, e dado c ∈ SK temos χK(c) =

(
c

3

)
. Mas

(0
3

)
= 0,

(1
3

)
= 1 e

(2
3

)
= −1,

como é fácil verificar. Assim, os primos decompostos em OK são os da forma 3k+ 1, os primos
inertes são os da forma 3k + 2 e os primos ramificados são aqueles da forma 3k (ou seja, 3 é o
único primo ramificado nesse anel).
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5.3. Decomposição em Corpos Ciclotômicos
Sejam n um inteiro positivo, ζ ∈ C uma raiz primitiva n-ésima da unidade e K = Q(ζ). Nessa
seção, estudaremos a decomposição de ideais primos de Z em K. De fato, obteremos um resultado
parecido com o da seção passada. Mais especificamente, mostraremos que o tipo de decomposição
de um primo em K depende unicamente de sua classe de congruência módulo n, assim como no
caso de corpos quadráticos dependia de sua classe módulo |dK |.

Primeiro, provaremos que OK = Z+Z ζ + · · ·+Z ζϕ(n)−1 = Z[ζ], como hav́ıamos prometido
no Caṕıtulo 2. Assim, {1, ζ, . . . , ζϕ(n)−1} será uma base integral de OK . Comecemos com o
seguinte lema:

Lema 5.15. Sejam p um número primo e r um inteiro positivo. Sejam ζ uma raiz primitiva pr-
ésima da unidade e K = Q(ζ). Então o ideal principal (1− ζ)OK COK é primo, e a fatoração
de pOK em ideais primos de OK é pOK = ((1− ζ)OK)ϕ(p

r). Em particular, p é totalmente
ramificado em K, e portanto OK/(1− ζ)OK = Fp, com as devidas identificações.

Demonstração. Como já vimos, o polinômio minimal de ζ sobre Q é2

∏
g∈(Z /pr Z)×

(x− ζg) = Φpr(x) = x(p−1)pr−1
+ · · ·+ x2pr−1

+ xp
r−1

+ 1.

Avaliando em 1, obtemos portanto ∏g∈(Z /pr Z)×(1− ζg) = p. Para cada g ∈ (Z /pr Z)×, defina-
mos

εg :=
1− ζg
1− ζ = 1 + ζ + · · ·+ ζg−1.

Então εg ∈ Z[ζ] ⊆ OK é um inteiro algébrico. Temos εg ∈ O×K . De fato, sendo g′ ∈ (Z /pr Z)×

tal que gg′ ≡ 1 (mod pr), nós temos:

ε−1
g =

1− ζ
1− ζg =

1− (ζg)g
′

1− ζg = 1 + ζg + · · ·+ ζg(g
′−1) ∈ Z[ζ] ⊆ OK ,

como queŕıamos. Sendo assim:

p =
∏

g∈(Z /pr Z)×

(1− ζg) =
∏

g∈(Z /pr Z)×

[εg(1− ζ)] = ε(1− ζ)ϕ(pr),

onde ε :=
∏
g∈(Z /pr Z)× εg ∈ O×K . Isso mostra que pOK = ((1− ζ)OK)ϕ(p

r). Mas uma vez que
[K : Q] = ϕ(pr), vemos pela identidade fundamental que (1− ζ)OK é ideal primo. Logo p é
totalmente ramificado, de modo que f(1−ζ)OK = 1, isto é, [OK/(1− ζ)OK : Fp] = 1. Mas isso
significa que OK/(1− ζ)OK = Fp.

Com esse lema em mãos, conseguimos finalmente determinar OK :

Teorema 5.16. Sejam n um inteiro positivo, ζ ∈ C uma raiz primitiva n-ésima da unidade e
K = Q(ζ). Então OK = Z+Z ζ + · · ·+ Z ζϕ(n)−1 = Z[ζ]. Assim, OK possui base integral
{1, ζ, . . . , ζϕ(n)−1}. Além disso, se n = pr1

1 · · · p
rk
k for a fatoração prima de n em Z, então:

dK = (−1)
kϕ(n)

2
nϕ(n)∏k

j=1 p
ϕ(n)/(pj−1)
j

.

2Identificando Z /pr Z como seu conjunto de representantes {0, 1, . . . , pr − 1} ⊆ Z por simplicidade.
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Demonstração. Comecemos provando esse resultado para n = pr, onde p é um primo e r é um
inteiro positivo (r ≥ 2 se tivermos p = 2). Então, pela Proposição 2.29, temos:

∆(1, ζ, . . . , ζpr − 1) = (−1)
ϕ(pr )

2 ps,

para s := pr−1(rp− r− 1). Pela Proposição 1.41, sabemos então que

psOK ⊆ Z[ζ] ⊆ OK . (5.2)

Pelo lema anterior, nós temos OK/(1− ζ)OK = Fp. Na identificação que fizemos, isso significa
que toda classe de congruência módulo (1− ζ)OK possui um inteiro, ou seja, que (1− ζ)OK +Z =
OK , e com maior razão (1− ζ)OK + Z[ζ] = OK .

Multiplicando essa igualdade por 1− ζ, obtemos:

(1− ζ)2OK + (1− ζ)Z[ζ] = (1− ζ)OK .

Substituindo (1− ζ)OK pela expressão à esquerda na equação inicial, obtemos:

OK = (1− ζ)OK + Z = (1− ζ)2OK + (1− ζ)Z[ζ] + Z,

e com maior razão OK = (1− ζ)2OK + Z[ζ]. Provemos por indução que para todo t ≥ 1 temos
OK = (1− ζ)tOK + Z[ζ]. Já fizemos os casos base. Suponhamos então que essa igualdade valha
para certo t ≥ 1. Multiplicando a igualdade OK = (1− ζ)OK + Z[ζ] por (1− ζ)t, obtemos:

(1− ζ)tOK = (1− ζ)t+1OK + (1− ζ)t Z[ζ].

Desse modo,

OK = (1− ζ)tOK + Z[ζ] = (1− ζ)t+1OK + (1− ζ)t Z[ζ] + Z[ζ],

e com maior razão OK = (1− ζ)t+1OK + Z[ζ], concluindo a indução.
Façamos agora t = sϕ(pr). Assim:

OK = (1− ζ)sϕ(pr)OK + Z[ζ] = [(1− ζ)OK ]sϕ(p
r) + Z[ζ] = (pOK)s + Z[ζ] = psOK + Z[ζ],

pelo lema acima. Mas juntando (5.2) com a igualdade acima temos então:

OK = psOK + Z[ζ] = Z[ζ],

como desejado. Assim, provamos o teorema para as potências de primos.
Consideremos agora o caso geral, e seja n = pr1

1 · · · p
rk
k a fatoração prima de n. Então para

1 ≤ j ≤ k o número ζj := ζn/p
rj
j é uma raiz primitiva p

rj
j -ésima da unidade. Pela Proposição

2.30, nós temos Q(ζ) = Q(ζ1) · · ·Q(ζk), e para 1 ≤ i ≤ k nós temos

(Q(ζ1) · · ·Q(ζi−1)) ∩Q(ζi) = Q .

A ideia é aplicarmos o Teorema 2.9 várias vezes. Pelo que acabamos de provar, para 1 ≤ i ≤ k

os elementos 1, ζi, . . . , ζ
ϕ(p

ri
i )−1

i formam uma base integral de Q(ζi). Além disso, a Proposição
2.29 nos diz que ∆(1, ζi, . . . , ζ

ϕ(p
ri
i )−1

i ) é a menos de sinal uma potência de pi. Desse modo, os
k discriminantes obtidos são todos primos entre si. Logo estamos nas condições de aplicar 2.9
repetidamente, e obtemos que uma base integral de Q(ζ) é dada por

{ζj11 · · · ζ
jr
k : 0 ≤ ji ≤ ri − 1 para 1 ≤ i ≤ k}.

Mas cada um desses elementos é uma potência de ζ. Assim, conclúımos que OK ⊆ Z[ζ] e portanto
OK = Z[ζ] = Z+Z ζ + · · ·+ Z ζϕ(n)−1, o que mostra que {1, ζ, . . . , ζϕ(n)−1} é base integral de
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OK . Determinemos agora dK . Para isso, faremos indução no número k de fatores primos distintos
na fatoração de n. Para k = 1, n = pr1

1 é uma potência de primo, e temos:

(−1)
kϕ(n)

2 · nϕ(n)∏k
j=1 p

ϕ(n)/(pj−1)
j

= (−1)
ϕ(n)

2 · nϕ(n)

p
ϕ(n)/(p1−1)
1

= (−1)
ϕ(p

r1
1 )

2 · p
r1ϕ(p

r1
1 )

1

p
ϕ(p

r1
1 )/(p1−1)

1

= (−1)
ϕ(p

r1
1 )

2 · p
r1(p1−1)pr1−1

1
1

p
(p1−1)pr1−1

1 /(p1−1)
1

= (−1)
ϕ(p

r1
1 )

2 · p
r1(p1−1)pr1−1

1
1

p
p
r1−1
1

1

= (−1)
ϕ(p

r1
1 )

2 · pp
r1−1
1 (r1p1−r1−1)

1 = dK ,

pela Proposição 2.29. Suponhamos agora que a igualdade desejada valha para produtos de até
k− 1 primos, e provemos que vale para n = pr1

1 · · · p
rk
k . Sabemos que o resultado vale em particular

para a := pr1
1 · · · p

rk−1
k−1 e para b = prkk . Sejam α e β ráızes primitivas a-ésima e b-ésima da

unidade, respectivamente. Como a e b são primos entre si, a Proposição 2.30 nos garante que
Q(ζ) = Q(αβ) = Q(α)Q(β) e que Q(α) ∩Q(β) = Q. Aplicando o Teorema 2.9 a esses dois
corpos, temos então (lembremos que ϕ(a)ϕ(b) = ϕ(ab) = ϕ(n)):

dK = d
ϕ(b)
Q(α) · d

ϕ(a)
Q(β)

=

(−1)
(k−1)ϕ(a)

2 · aϕ(a)∏k−1
j=1 p

ϕ(a)/(pj−1)
j

ϕ(b) ·
(−1)

ϕ(b)
2 · bϕ(b)

p
ϕ(b)/(pk−1)
k

ϕ(a)

= (−1)
kϕ(a)ϕ(b)

2 · (ab)ϕ(a)ϕ(b)∏k
j=1 p

ϕ(a)ϕ(b)/(pj−1)
j

= (−1)
kϕ(n)

2 · nϕ(n)∏k
j=1 p

ϕ(n)/(pj−1)
j

,

como desejado.

O teorema acima mostra que o anel de inteiros algébricos de um corpo ciclotômico K = Q(ζ)
é monogêneo. Isso nos permite aplicar o Teorema 4.22 para estudarmos as decomposições dos
primos de N em OK = Z[ζ].

Teorema 5.17. Sejam n > 1 inteiro, ζ ∈ C uma raiz primitiva n-ésima da unidade e K = Q(ζ).
Seja n =

∏
p p

νp a fatoração prima de n, onde p varia entre os primos positivos (note que νp = 0
para os primos que não dividem n, de forma que esse produtório na verdade é finito). Para cada
primo p ∈ N definamos fp como sendo a ordem de p no grupo multiplicativo (Z /(n/pνp)Z)×.
Então em OK o ideal pOK tem fatoração da forma pOK = (P1 · · ·Pg)ϕ(p

νp ), onde P1, . . . ,Pg

são ideais primos distintos de OK , todos com grau de inércia fp. Note que sabendo fp podemos
determinar g pela identidade fundamental, uma vez que devemos ter ϕ(pνp)fpg = ϕ(n).

Demonstração. Pelo Teorema 4.22, basta mostrarmos que a fatoração prima do polinômio ci-
clotômico Φn ∈ Fp[x] é da forma Φn = (P 1 · · ·P g)ϕ(p

νp ), com cada P j ∈ Fp[x] irredut́ıvel de
grau fp. Chamemos m := n/pνp . Sejam ξ1, . . . , ξϕ(m) as ráızes primitivas m-ésimas da unidade e
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η1, . . . , ηϕ(pνp ) as ráızes primitivas pνp-ésimas da unidade. Então, pela Proposição 2.30, em OK [x]
vale a fatoração:

Φn(x) =
ϕ(m)∏
i=1

ϕ(pνp )∏
j=1

(x− ξiηj).

Notemos agora que em Fp[x] temos xpνp − 1 = (x− 1)pνp . Se PCOK for um primo sobre p, em
(OK/P)[x] temos a fatoração

xp
νp − 1 = (x− 1)

ϕ(pνp )∏
j=1

(x− ηj).

Mas sendo OK/P uma extensão de Fp, a fatoração obtida anteriormente também vale. Por
unicidade, conclúımos que cada ηj ≡ 1 (mod P). Mas então, em (OK/P)[x], nós temos:

Φn(x) =
ϕ(m)∏
i=1

ϕ(pνp )∏
j=1

(x− ξi · ηj) =
ϕ(m)∏
i=1

ϕ(pνp )∏
j=1

(x− ξi) = Φm(x)
ϕ(pνp ).

Assim, basta mostrarmos que Φm(x) se fatora em Fp[x] como P 1(x) · · ·P g(x), onde cada P j
possui grau fp. Notemos que por definição fp é o menor inteiro positivo tal que pfp ≡ 1 (mod m).
Como p - m, o polinômio xm − 1 ∈ Fp[x] é separável, e portanto Φm também o é. Assim, a
fatoração de Φm em Fp[x] é da forma P 1 · · ·P g, onde os P j ’s são irredut́ıveis dois a dois distintos.

Resta apenas mostrar que cada um desses polinômios tem grau fp. Todas as ráızes de Φm são
da forma ξ, para ξ ∈ K uma raiz primitiva m-ésima da unidade. Como xm − 1 ∈ (OK/P)[x] é
separável, suas ráızes 1, ξ, ξ2, . . . , ξm−1 ∈ OK/P são duas a duas distintas. Como ξm = ξm = 1,
conclúımos que ξ é uma raiz primitiva m-ésima da unidade em OK/P, e portanto pelo Teorema
2.31 temos Fp[ξ] = Fpfp . Assim, o polinômio minimal de ξ sobre Fp[x] tem grau fp. Isso conclui
a demonstração, uma vez que cada P j é o polinômio minimal de uma raiz de Φm.

Para fins práticos, sempre podemos supor n ı́mpar ou múltiplo de 4. De fato, se n = 2m
para algum m ı́mpar, então os corpos ciclotômicos associados a n e a m coincidem. Isto é,
Q(ζ) = Q(ζ2). De fato, por um lado é claro que Q(ζ2) ⊆ Q(ζ). Mas

[Q(ζ) : Q] = ϕ(n) = ϕ(2m) = ϕ(2)ϕ(m) = ϕ(m) = [Q(ζ2) : Q],

de forma que temos a igualdade desejada. Como consequência direta do teorema acima, obtemos:

Corolário 5.18. Suponhamos que n seja ı́mpar ou múltiplo de 4, e seja p ∈N primo.

(a) p será ramificado em Q(ζ) se e só se p | n.

(b) p será totalmente decomposto em Q(ζ) se e só se p ≡ 1 (mod n). Logo, todo corpo ci-
clotômico possui um número infinito de ideais primos totalmente decompostos.

(c) p será totalmente inerte em Q(ζ) se e só se p for um gerador do grupo multiplicativo
(Z /nZ)×.

(d) p será totalmente ramificado em Q(ζ) se e só se n = pνp.

Demonstração. (a) p será ramificado em Q(ζ) se e só se ϕ(pνp) ≥ 2. Mas isso acontecerá se e
só se pνp 6= 1, pνp 6= 2. Isto é, se e somente se p | n e p for ı́mpar ou se p = 2 e 4 | n. Como
estamos supondo n ı́mpar ou múltiplo de 4, obtemos o resultado desejado.
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(b) Um número primo p ∈ Z será totalmente decomposto em Q(ζ) se e só se g = ϕ(n). Pelo
teorema acima, isso ocorre se e só se fp = ϕ(pνp) = 1 ⇐⇒ p - n. Assim, fp é a ordem de
p em (Z /nZ)×. Conclúımos que p será totalmente decomposto se e só se fp = 1, ou seja,
se e só se p = 1 ⇐⇒ p ≡ 1 (mod n). A última observação segue do Teorema de Dirichlet
sobre progressões aritméticas.

(c) Pelo teorema acima, um número primo p ∈ Z será totalmente inerte se e só se fp = ϕ(n).
Nesse caso, ϕ(pνp) = 1⇒ p - n. Sendo assim, fp é a ordem de p em (Z /nZ)×. Como esse
grupo tem ϕ(n) elementos, teremos fp = ϕ(n) se e só se p for um gerador desse grupo.

(d) Pelo teorema acima, um número primo p ∈ Z será totalmente ramificado se e só se tivermos
ϕ(pνp) = ϕ(n). Mas sendo m := n/pνp , temos p - m, e portanto ϕ(n) = ϕ(m)ϕ(pνp).
Assim, a igualdade ϕ(pνp) = ϕ(n) é equivalente a ϕ(m) = 1, ou seja, a m = 1 ou m = 2.
Como n é ı́mpar ou múltiplo de 4, conclúımos que n = pνp .

Observação 5.19. Podemos também encontrar os primos p ramificados em Q(ζ) diretamente a
partir do Corolário 4.24. Além disso, os itens (c) e (d) nos dão exemplos de anéis de inteiros
algébricos nos quais não existem primos de Z totalmente inertes ou totalmente ramificados. De
fato, se Z /nZ não for um grupo ćıclico, então nenhum primo é totalmente inerte em Q(ζ)3, e
se n não for uma potência de primo então nenhum primo será totalmente ramificado em Q(ζ).

Suponhamos n ı́mpar ou múltiplo de 4. O corolário acima nos sugere que o tipo de decom-
posição de um primo p em Q(ζ) depende apenas do resto deixado por p na divisão por n. Nos
itens (b) e (c) por exemplo, vimos que o fato de p ser totalmente decomposto ou totalmente inerte
dependem apenas da classe de congruência de p módulo n. Se p | n, então p é o único primo que
deixa resto p na divisão por n. Mais interessante é analisar o que ocorre quando p - n.

Observemos que pelo Teorema 5.17 o tipo de decomposição de um primo p depende somente
de fp e de ϕ(pνp). Mas ϕ(pνp) = 1, e portanto o tipo de decomposição de p depende somente de
fp, que é a ordem de p em (Z /nZ)×. Assim, o tipo de decomposição de p depende somente do
resto da divisão de p por n.

3E é um resultado conhecido de Teoria Elementar dos Números que (Z /nZ)× será ćıclico se e só se
n = 1, n = 4, n = pk ou n = 2pk, para p primo ı́mpar. Veja por exemplo o Caṕıtulo 4 de [12].



Caṕıtulo 6

Extensões Galoisianas

No caṕıtulo anterior, vimos como utilizar os resultados do Caṕıtulo 4 para estudarmos os corpos
quadráticos e ciclotômicos, cujos anéis de inteiros algébricos são extensões geradas por um único
elemento. Mas as extensões quadráticas e ciclotômicas são particularmente especiais: todas elas
são extensões galoisianas. Mais do que isso, abelianas. Neste caṕıtulo iremos estudar extensões
galoisianas de domı́nios de Dedekind.

6.1. Resultados Básicos e o Grupo de Decom-
posição

Sejam A um domı́nio de Dedekind, K = Q(A) seu corpo de frações, L/K uma extensão galoisiana
finita de grau n com grupo de Galois G = Gal(L/K) e B = A

L. Começamos observando que
para cada automorfismo σ ∈ G nós temos σ(B) = B, pois se α ∈ B for raiz de um polinômio
mônico em A[x] então σ(α) será raiz desse mesmo polinômio. É fácil também observar que G
age no conjunto dos ideais de B, e que essa ação se comporta bem com a multiplicação: dados
A,BCB e σ ∈ G, temos σ(AB) = σ(A)σ(B). Dado PCB primo, uma verificação direta nos
mostra que σP também é um ideal primo de B, de modo que G também age no conjunto dos
ideais primos de B. A proposição abaixo nos diz quais são as órbitas dessa ação:

Proposição 6.1. Sejam pCA primo e PCB primo sobre p. Então, para todo σ ∈ G, o ideal
primo σPC B está sobre p. Além disso, dado QCB primo sobre p, existe um automorfismo
τ ∈ G tal que τP = Q. Dessa forma, as órbitas da ação de G sobre os ideais primos de B são
exatamente os conjuntos da forma {PCB primo : P | p}, para p variando entre os ideais primos
de A.

Demonstração. Dado σ ∈ G qualquer, como σ fixa K nós temos σP∩A = P∩A = p, mostrando
que σP é um ideal primo sobre p. Seja agora QCB sobre p. Suponhamos por absurdo que
Q 6= σP para todo σ ∈ G. Então Q e os σP são coprimos dois a dois, pela maximalidade
desses ideais, e portanto podemos aplicar o Teorema Chinês dos Restos para encontrar x ∈ B
com x ≡ 0 (mod Q) e x ≡ 1 (mod σP) para todo σ ∈ G.

Como A é integralmente fechado, temos N(x) ∈ A pelo Corolário 1.30. Pelo mesmo corolário,
x divide N(x) em B, logo x ∈ Q⇒ N(x) ∈ Q. Consequentemente, N(x) ∈ A∩Q = p. Por outro
lado, para todo σ ∈ G, x 6∈ σP. Consequentemente, nenhum dos σx pertence a P (se σx ∈ P,
teŕıamos x ∈ σ−1P). Sendo P primo, temos então N(x) =

∏
σ∈G σx 6∈ P, um absurdo já que

N(x) ∈ p. Dessa contradição conclúımos que existe σ ∈ G tal que Q = σP.

Para estudarmos melhor a extensão L/K, a “quebraremos” em extensões mais simples. Co-
mecemos com as seguintes definições:
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Definição (Grupo de Decomposição/Corpo de Decomposição). Seja P C B um ideal primo.
Definimos seu grupo de decomposição GP = GP(L/K) ≤ G como sendo o estabilizador de P
pela ação de G, isto é, GP := {σ ∈ G : σP = P}. Definimos ainda o seu corpo de decomposição
ZP = ZP(L/K) ⊆ L como o corpo fixo por GP.

Fixado P, denotaremos BZ := A
ZP = B ∩ ZP e PZ := P ∩BZ CBZ . Note que PZ é um

ideal primo. Algumas consequências diretas da definição acima são:

Proposição 6.2. Seja PCB um ideal primo. Então:

(a) Dado σ ∈ G, temos GσP = σGPσ
−1.

(b) Dado σ ∈ G, temos ZσP = σZP.

(c) As seguintes condições são equivalentes:

(i) GP é um subgrupo normal de G.
(ii) ZP/K é uma extensão de Galois.

(iii) Todos os ideais primos sobre P∩A possuem o mesmo grupo de decomposição.
(iv) Todos os ideais primos sobre P∩A possuem o mesmo corpo de decomposição.

(d) Se K ⊆ E ⊆ L, então GP(L/E) = GP ∩Gal(L/E), e ZP(L/E) = ZP(L/K) ·E.

Demonstração. (a) Dado τ ∈ G, nós temos;

τ ∈ GσP ⇐⇒ τσP = σP ⇐⇒ σ−1τσP = P ⇐⇒ σ−1τσ ∈ GP ⇐⇒ τ ∈ σGPσ
−1.

(b) Dado x ∈ L, pelo item (a) nós temos:

x ∈ ZσP ⇐⇒ ∀ ρ ∈ GσP, ρx = x ⇐⇒ ∀ τ ∈ GP, στσ−1x = x

⇐⇒ ∀ τ ∈ GP, τσ−1x = σ−1x

⇐⇒ σ−1x ∈ ZP

⇐⇒ x ∈ σZP.

(c) As equivalências (i) ⇐⇒ (ii) e (iii) ⇐⇒ (iv) seguem da teoria de Galois, enquanto
(i) ⇐⇒ (iii) segue de (a) e da Proposição 6.1.

(d) Um elemento de Gal(L/E) pertence a GP(L/E) se e somente se ele fixa P, ou seja, se e
só se está em GP. Isso nos dá a igualdade desejada. A segunda igualdade segue então da
teoria de Galois.

Notemos que, pelo Teorema da Órbita e do Estabilizador, a órbita de um primo P tem [G : GP]
elementos. Então, pela Proposição 6.1, o número de ideais primos de B sobre p é igual a [G : GP].
De fato nós temos:

Proposição 6.3. Se pCA é um primo qualquer, e PCB é um primo sobre p, então:

(a) O número de ideais primos de L sobre p é igual a [G : GP].

(b) p é totalmente decomposto em L ⇐⇒ GP = 1 ⇐⇒ ZP = L.

(c) p é não-decomposto em L ⇐⇒ GP = G ⇐⇒ ZP = K.

Demonstração. (a) Feito acima.
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(b) p será totalmente decomposto em L se e só se o número de ideais primos de L sobre p for
igual a n. Mas por (a) isso ocorrerá se e só se [G : GP] = n ⇐⇒ GP = 1 ⇐⇒ ZP = L.

(c) p será não-decomposto em L se e só se o número de ideais primos de L sobre p for igual a
1. Mas por (a) isso ocorrerá se e só se [G : GP] = 1 ⇐⇒ GP = G ⇐⇒ ZP = K.

A análise que fizemos acima aplicada à extensão galoisiana L/ZP nos diz que o número de
ideais primos de B sobre PZ é igual a [Gal(L/ZP) : GP] = [GP : GP] = 1. Isto é, P é o único
ideal primo de B sobre PZ . Esse é o menor corpo base para o qual isso ocorre:

Proposição 6.4. O corpo ZP é o menor corpo intermediário E da extensão L/K para o qual P
é o único ideal primo de B sobre o primo P ∩E CA

E. Equivalentemente, ZP é o menor corpo
intermediário E da extensão L/K para o qual P∩E é não-decomposto em L.

Demonstração. Se P for o único ideal primo de B sobre P ∩ E, teremos σP = P para todo
automorfismo σ ∈ Gal(L/E), pela Proposição 6.1. Então todo elemento de Gal(L/E) fixa P, ou
seja, Gal(L/E) ⊆ GP. Aplicando a correspondência de Galois, vemos que isso é equivalente a
termos ZP ⊆ E, demonstrando o resultado desejado.

Uma das caracteŕısticas principais das extensões galoisianas é que todos os ı́ndices de rami-
ficação e todos os graus de inércia dos primos sobre p coincidem:

Proposição 6.5. Seja pCA primo não-nulo.

(a) A fatoração de pB em primos de B é da forma pB = (P1 · · ·Pg)e, onde P1, . . . ,Pg são
primos distintos. Em particular, o ı́ndice de ramificação de todo primo P | p é igual a e.

(b) Sejam P,QCB primos sobre p. Então B/P ∼= B/Q por um isomorfismo de anéis que
fixa A/ p. Em particular, temos fP = fQ. Assim, os graus de inércia de todos os ideais
primos P | p coincidem e são iguais a um certo f .

Demonstração. (a) Seja pB = Pe1
1 · · ·P

eg
g a fatoração prima de pB. Para 2 ≤ j ≤ g, seja

σj ∈ G tal que σjP1 = Pj (tal σj existe pela Proposição 6.1). Desse modo:

pB = Pe1
1 · · ·P

eg
g ⇒ σj(pB) = (σjP1)

e1 · · · (σjPg)
eg .

Mas como σj(p) = p e σj(B) = B, temos σj(pB) = pB. Assim, temos duas fatorações
de pB como produto de ideais primos distintos. Em Pe1

1 · · ·P
eg
g , o primo Pj aparece com

expoente ej , e em (σjP1)e1 · · · (σjPg)eg o primo Pj = σjP1 aparece com expoente e1.
Logo, pela unicidade da fatoração conclúımos que ej = e1. Como 2 ≤ j ≤ g é qualquer,
vale o resultado desejado.

(b) Por 6.1, existe σ ∈ G tal que Q = σP. Consideremos σ : B/P→ B/Q dada por x+P 7→
σ(x) +Q. Essa é uma função bem-definida e injetora. De fato, dados x, y ∈ B nós temos

σ(x) +Q = σ(y) +Q ⇐⇒ σ(x− y) ∈ Q ⇐⇒ x− y ∈ σ−1(Q) = P ⇐⇒ x+P = y+P,

como desejado. Falta ver que σ é sobrejetora. Mas isso é claro, pois σ : P → Q = σP é
sobrejetora. Isso mostra que σ é uma bijeção. É fácil ver que essa função é um homomor-
fismo, e portanto um isomorfismo. Finalmente, como σ fixa A, σ fixa A/ p. O que fizemos
mostra que B/P ∼= B/Q são corpos isomorfos por um automorfismo que fixa A/ p. Assim,
é claro que [B/P : A/ p] = [B/Q : A/ p]. Mas isso é exatamente dizer que fP = fQ.

Com isso, nós conseguimos o seguinte importante resultado:
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Teorema 6.6. (Identidade Fundamental para Extensões Galoisianas) Seja pCA primo. Então
os ı́ndices de ramificação e os graus de inércia de todos os primos de B sobre p coincidem. Assim,
existem inteiros positivos e, f tais que a fatoração de pB é da forma pB = (P1 · · ·Pg)e, onde
cada Pj tem grau de inércia f . Sendo assim, a identidade fundamental nesse caso se torna
n = efg. Ademais, se P | p então PZ é não-decomposto em L, e valem as igualdades

e(P | PZ) = e, f(P | PZ) = f , g(P | PZ) = 1, e(PZ | p) = f(PZ | p) = 1.

Sendo assim, BZ/PZ = A/ p e o primo PZ é não-decomposto na extensão L/ZP. Além disso,
se a extensão ZP/K for normal (e portanto galoisiana) vale g(PZ | p) = g, de forma que p será
totalmente decomposto em ZP.

Demonstração. Só falta verificarmos as últimas igualdades. Notemos que g(P | PZ) = 1 se-
gue direto da Proposição 6.4. Pela identidade fundamental, efg = n. Notemos que, pelas
multiplicatividades do ı́ndice de ramificação e do grau de inércia (Proposição 4.15), nós te-
mos e = e(P | PZ) · e(PZ | p) e f = f(P | PZ) · f(PZ | p). Assim, basta provarmos que
e(P | PZ) = e e que f(P | PZ) = f . Para isso, aplicamos a identidade fundamental à extensão
galoisiana L/ZP. Notemos que |GP| = |G|/[G : GP] = n/g = ef . Assim:

ef = |GP| = [L : ZP] = e(P | PZ) · f(P | PZ) · g(P | PZ) = e(P | PZ) · f(P | PZ) ≤ ef .

Como e(P | PZ) ≤ e e f(P | PZ) ≤ f , devemos ter e(P | PZ) = e e f(P | PZ) = f , como
queŕıamos. Finalmente, se ZP/K for galoisiana, então a identidade fundamental da decomposição
de p em ZP se torna g = [ZP : K] = e(PZ | p) · f(PZ | p) · g(PZ | p) = g(PZ | p). Assim,
g(PZ | p) = g, concluindo a demonstração.

Observação 6.7. Note que uma identidade fundamental da forma n = efg ocorreu nas extensões
quadráticas e ciclotômicas. Esses são casos particulares desse resultado. O seguinte diagrama,
que sintetiza várias das informações obtidas acima, deve estar sempre em mente ao trabalharmos
com extensões galoisianas de domı́nios de Dedekind:

PCB L = Q(B) 1

PZ CBZ ZP = Q(BZ) GP

pCA K = Q(A) G

ef ef ef

g g g

Quando L/K for uma extensão abeliana, o Teorema 6.6 nos garante que p se decompõe
totalmente em ZP. Na verdade, vale o seguinte:

Proposição 6.8. Suponhamos L/K abeliana. Sejam p um primo de K e P | p um primo de L.
Então ZP é o maior subcorpo da extensão L/K no qual p é totalmente decomposto.

Demonstração. Seja F um subcorpo de L/K no qual p é totalmente decomposto. Queremos
mostrar que F ⊆ ZP. Pela correspondência de Galois, isso equivale a provar que GP ⊆ Gal(L/F ).
Seja então σ ∈ GP. Como σP = P, o primo P ∩ F de F fica fixo por σ, e assim temos
σ|F ∈ GP∩F (F/K). Mas p é totalmente decomposto em F , logo pela Proposição 6.3, nós temos
GP∩F (F/K) = 1. Ou seja, σ|F = idF ⇒ σ ∈ Gal(L/F ). Sendo σ ∈ GP qualquer, conclúımos
que GP ⊆ Gal(L/F ), como desejávamos.
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Seja σ ∈ GP. Consideremos a função σ : B/P→ B/P dada por σ(x+P) = σ(x)+P. Então
é fácil verificar que σ está bem-definida e é um automorfismo de B/P que fixa A/ p, de modo que1

σ ∈ Gal((B/P)/(A/ p)). Assim, temos um homomorfismo de gruposGP → Gal((B/P)/(A/ p))
dado por σ 7→ σ. Nós denotamos GP := Gal((B/P)/(A/ p)).

6.2. O Grupo de Inércia
A partir de agora até o final deste caṕıtulo, iremos assumir que a extensão (B/P)/(A/ p) é
separável. Note que isso sempre ocorrerá numa extensão de corpos de números, pois nesse caso
A/ p será um corpo finito, e portanto perfeito. Com isso, temos:

Proposição 6.9. B/P é uma extensão normal de A/p, logo galoisiana. Além disso, o mapa
canônico GP → GP dado por σ 7→ σ é um homomorfismo sobrejetor.

Demonstração. Comecemos mostrando que B/P é uma extensão normal de A/ p. Para isso, seja
α ∈ B/P qualquer. Provaremos que P := Pα,L/K ∈ (A/ p)[x] se decompõe em fatores lineares
em (A/ p)[x]. Como L/K é extensão de Galois, todas as ráızes α1 = α,α2, . . . ,αm estão em L.
Mas sendo P ∈ A[x] mônico, suas ráızes são integrais sobre A, e portanto estão na verdade em
B. Assim, P se escreve em B como P (x) = (x− α1) · · · (x− αm). Mas módulo P isso significa
que P (x) = (x−α1) · · · (x−αm), como queŕıamos, e conclúımos que B/P é extensão normal de
A/ p.

Voltemo-nos agora para a segunda afirmação. Primeiramente, notemos que podemos nos
reduzir ao caso em que P é o único ideal de B sobre p. De fato, se esse não fosse o caso nós
podeŕıamos “subir o corpo base” de K para ZP, já que GP(L/ZP) = GP e BZ/PZ = A/ p.
Assim, suponhamos que esse seja o caso. Então vale GP = G.

Como L/K é uma extensão finita, (B/P)/(A/ p) também o é. Como essa extensão é se-
parável, existe θ ∈ B/P tal que B/P = (A/ p)(θ). Consideremos τ ∈ GP qualquer. O automor-
fismo τ é completamente determinado pela imagem de θ. Sendo P := Pθ,K , temos P (θ) = 0, logo
P (τ (θ)) = τ (P (θ)) = 0, e assim τ (θ) deverá ser uma raiz de P , e portanto da forma β para β
raiz de P (lembre que P se fatora em fatores lineares de B[x]). Mas como P é irredut́ıvel, existe
σ ∈ G = GP tal que σθ = β. Dessa forma, σ(θ) = β = τ (θ). Isso mostra que τ = σ, concluindo
a demonstração.

Observação 6.10. Mesmo que (B/P)/(A/ p) não seja separável, é posśıvel concluir que essa
extensão é normal e que o mapa GP → GP é sobrejetor. Veja por exemplo a Proposição (9.4) de
[2].

Definição (Grupo de Inércia/Corpo de Inércia). O núcleo IP = IP(L/K) C GP do mapa
canônico GP → GP é chamado de grupo de inércia de P, e seu corpo fixo TP = TP(L/K) é
chamado de corpo de inércia de P.

Em geral, denotaremos BT := A
TP = B ∩ TP e PT := P ∩BT CBT . Note que PT é um

ideal primo de TP. Note que temos a cadeia de corpos K ⊆ ZP ⊆ TP ⊆ L e a cadeia de grupos
1 ≤ IP ≤ GP ≤ G. Além disso, pela definição de IP e pelo fato do mapa canônico GP → GP

ser sobrejetor, nós temos a sequência exata 1 −→ IP −→ GP −→ GP −→ 1. Como consequência
disso, GP

∼= GP/IP. A seguinte proposição reúne as propriedades básicas envolvendo o grupo e
o corpo de inércia:

Proposição 6.11. (a) Seja σ ∈ G qualquer. Então IσP = σIPσ
−1, e TσP = σTP.

1A extensão (B/P)/(A/ p) não precisa ser galoisiana. Aqui entendemos o grupo de Galois no sentido
estendido: dada uma extensão λ/κ, denotamos por Gal(λ/κ) o grupo dos automorfismos de λ que fixam
κ.
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(b) A extensão L/TP é galoisiana com grupo de Galois IP e a extensão TP/ZP é galoisiana
com Gal(TP/ZP) ∼= GP/IP ∼= GP.

(c) B/P = BT/PT .

(d) Valem as igualdades:

e = [L : TP] = |IP|;
f = [TP : ZP] = (GP : IP) = |GP| = [B/P : A/ p];

e(P | PT ) = e, f(P | PT ) = 1, g(P | PT ) = 1;
e(PT | PZ) = 1, f(PT | PZ) = f , g(PT | PZ) = 1.

Assim, PT é totalmente ramificado em L, PZ é totalmente inerte em TP e, se ZP/K for
extensão normal, p será totalmente decomposto em ZP.

Demonstração. (a) Seja τ ∈ IσP. Note que σ−1τσ ∈ σ−1GσPσ = σ−1(σGPσ
−1)σ = GP, pela

Proposição 6.2. Além disso, como τ ∈ IσP, para todo b ∈ B nós temos:

τ (σb) ≡ σb (mod σP)⇒ (σ−1τσ)b ≡ b (mod P).

Dessa forma, σ−1τσ ∈ IP ⇒ τ ∈ σIPσ−1. Isso prova que IσP ⊆ σIPσ−1.
Para a volta, basta observar que pelo que acabamos de provar, temos:

σIPσ
−1 = σIσ−1(σP)σ

−1 ⊆ σ(σ−1IσPσ)σ
−1 = IσP.

A última afirmação se prova analogamente ao item (b) da Proposição 6.2.

(b) Segue da teoria de Galois e das observações acima da proposição.

(c) A extensão (B/P)/(BT/PT ) é galoisiana. Assim, basta provar que todo automorfismo
de B/P que fixa BT/PT é a identidade de B/P. Seja então τ um tal automorfismo.
Aplicando a Proposição 6.9 à extensão L/TP, que tem grupo de Galois IP, garantimos a
existência de um σ ∈ IP tal que τ = σ. Mas σ ∈ IP ⇒ σ = idB/P. Assim, provamos que
B/P = BT/PT .

(d) Como (B/P)/(A/ p) é separável, temos:

f = [B/P : A/ p] = |GP| =
|GP|
|IP|

= (GP : IP) = [TP : ZP].

Assim:

e =
n

fg
=

[L : K]

[TP : ZP][ZP : K]
=

[L : K]

[TP : K]
= [L : TP] = |IP|.

Observemos agora que g(P | PT ) = g(PT | PZ) = 1, pois nós temos g(P | PZ) = 1. Por
(c), temos f(P | PT ) = 1. A identidade fundamental aplicada à decomposição de PT em
L nos dá então:

e(P | PT ) =
[L : TP]

f(P | PT ) · g(P | PT )
=

[L : TP]
1 · 1 = [L : TP] = e.

Como B/P = BT/PT e BZ/PZ = A/ p:

f(PT | PZ) = [BT/PT : BZ/PZ ] = [B/P : A/ p] = f .
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Finalmente, aplicando a identidade fundamental à decomposição de PZ em TP:

e(PT | PZ) =
[TP : ZP]

f(PT | PZ) · g(PT | PZ)
=

f

f · 1 = 1,

enquanto o caso em que ZP/K é normal foi feito no Teorema 6.6.

Observação 6.12. Os seguintes diagramas sintetizam os resultados dessa proposição:
PCB L = Q(B) 1

PT CBT TP = Q(BT ) IP

PZ CBZ ZP = Q(BZ) GP

pCA K = Q(A) G

e e e

f f f

g g g

B/P = BT/PT

A/ p = BZ/PZ

f

Assim, conseguimos “quebrar” a extensão L/K em extensões melhores. Dessa proposição
ainda podemos obter:

Corolário 6.13. (a) São equivalentes:

(i) IP = 1.

(ii) TP = L.

(iii) p é não-ramificado em L.

Nesse caso, GP
∼= GP.

(b) São equivalentes:

(i) IP = G.

(ii) TP = K.

(iii) p é totalmente ramificado em L.

Nesse caso, GP = 1.

Demonstração. (a) A equivalência (i) ⇐⇒ (ii) segue da teoria de Galois. Como para todo
primo Q | p de B temos B/Q ∼= B/P por um isomorfismo que fixa A/ p, vemos que a
extensão (B/Q)/(A/ p) é separável. Assim, p ser não-ramificado em L equivale a termos
e = 1. Como e = |IP|, obtemos a equivalência (i) ⇐⇒ (iii).

(b) A equivalência (i) ⇐⇒ (ii) segue da teoria de Galois, e (i) ⇐⇒ (iii) segue de e = |IP|,
já que p ser totalmente ramificado em L equivale a e = n.

Lembremos que ZP é o menor corpo intermediário E de L/K com a propriedade de que P é
o único ideal primo de L sobre P∩E. O corpo TP possui também uma caracterização minimal:

Proposição 6.14. Seja E um corpo intermediário da extensão L/ZP. Sejam BE := A
E
= B ∩E

e PE := P∩BE CBE. Então B/P = BE/PE se e só se TP ⊆ E.
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Demonstração. Notemos que BE/PE = B/P equivale a Gal((B/P)/(BE/PE)) = 1. Chame-
mos ϕ : GP → GP o mapa canônico. Aplicando a Proposição 6.9, isso é equivalente a termos
ϕ(Gal(L/E)) = 1. Ou seja, a Gal(L/E) ⊆ kerϕ = IP. Pela teoria de Galois, isso é equivalente
a E ⊇ TP, como queŕıamos.

Esse corpo possui ainda uma caracterização maximal, que nos será útil mais adiante:

Proposição 6.15. Seja E um corpo intermediário da extensão L/K. Então e(PE | p) = 1 se e
só se E ⊆ TP.

Demonstração. Notemos que e(PT | p) = e(PT | PZ) · e(PZ | p) = 1 · 1 = 1, pelo Teorema 6.6
e pela Proposição 6.11. Se E ⊆ TP, então e(PE | p) ≤ e(PT | p) = 1, e portanto nós temos
e(PE | p) = 1.

Suponhamos então que e(PE | p) = 1. Nesse caso, e(P | PE) = e, o que significa que
vale [L : TP(L/E)] = e. Mas é fácil ver que IP(L/E) = Gal(L/E) ∩ IP, e portanto pela
correspondência de Galois nós temos TP(L/E) = E · TP. Ou seja, [L : E · TP] = e = [L : TP], de
onde conclúımos que E · TP = TP. Isso mostra que E ⊆ TP, como queŕıamos.

6.3. Os Grupos de Ramificação
Na seção anterior, mostramos que podemos dividir a extensão L/K em três extensões especiais:
L/TP, TP/ZP e ZP/K. A extensão L/TP é a parte totalmente ramificada de L/K, isto é,
PT CBT é totalmente ramificado em L. Nosso próximo objetivo é separar L/TP em extensões
mais simples ainda. Comecemos notando que o grupo de inércia IP pode ser caracterizado como
o conjunto:

{σ ∈ GP : ∀ b ∈ B, σb ≡ b (mod P)}.

Definição (Grupos de Ramificação). Para cada i ∈N, definimos o i-ésimo grupo de ramificação
de P sobre K como sendo o conjunto:

RiP = RiP(L/K) := {σ ∈ GP : ∀ b ∈ B, σb ≡ b (mod Pi+1)}.

Note que podemos representar ainda RiP como

{σ ∈ G : ∀ b ∈ B,σb ≡ b (mod Pi+1)}.

De fato, para σ ∈ G \GP, existe b ∈ P tal que σb 6∈ P, e portanto σb− b 6∈ P nesse caso. A
primeira coisa a se mostrar é que os grupos de ramificação são realmente grupos. De fato, temos
o seguinte resultado, que nos dá as propriedades básicas dos grupos de ramificação:

Proposição 6.16. (a) Nós temos GP ⊇ IP = R0
P ⊇ R1

P ⊇ R2
P ⊇ · · · . Além disso, existe

m ∈N tal que RmP é o grupo trivial.

(b) Para todo i ∈N, RiP é um subgrupo normal de GP.

(c) Seja E um corpo intermediário da extensão L/K. Então, para todo i ∈ N, valem as
igualdades:

RiP(L/E) = RiP ∩GP(L/E) = RiP ∩Gal(L/E).

Em particular, IP(L/E) = IP ∩GP(L/E) = IP ∩Gal(L/E).

(d) Para todo i ∈N, RiP(L/TP) = RiP.
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Demonstração. (a) A cadeia de inclusões é clara. Como GP é um conjunto finito, essa cadeia
se estabiliza eventualmente. Assim, existe m ∈ N tal que RmP = ∩∞i=0R

i
P. Ou seja, para

todo automorfismo σ ∈ RmP e todo b ∈ B, temos σb ≡ b (mod Pi+1) para todo i ∈ N, de
modo que σb− b ∈ ⋂∞i=0 P

i+1 = {0}, e portanto σb = b. Isso vale para todo b ∈ B, de
forma que σ|B = idB ⇒ σ = idL, já que L = Q(B).

(b) Para ver que cada RiP é um subgrupo normal de GP, notemos que dado σ ∈ GP qualquer
nós temos σPi+1 = (σP)i+1 = Pi+1, de modo que podemos definir σ ∈ End(B/Pi+1) dado
por σ(b) = σb. Essa função possui inversa σ−1, de modo que σ ∈ Aut(B/Pi+1). Assim,
temos um homomorfismo de grupos GP → Aut(B/Pi+1) dado por σ 7→ σ, e é claro que o
núcleo desse homomorfismo é exatamente RiP, provando que esse conjunto é um subgrupo
normal de GP.

(c) Por definição, RiP(L/E) é o conjunto dos σ ∈ GP(L/E) que satisfazem σb ≡ b (mod Pi+1)

para todo b ∈ B, ou seja, o conjunto dos σ ∈ GP(L/E) tais que σ ∈ RiP. Isso mostra a
primeira igualdade. A segunda igualdade segue da mesma forma.

(d) Basta aplicar os itens (a) e (c) juntamente com a Proposição 6.11:

RiP(L/TP) = RiP ∩Gal(L/TP) = RiP ∩ IP = RiP.

O seguinte resultado nos diz como os grupos de decomposição, inércia e ramificação se com-
portam com localização. Na prática, ele nos diz que podemos trabalhar com a extensão de anéis
S−1B/S−1A e com os primos S−1P | S−1 p em vez de trabalharmos com B/A e com P | p.

Proposição 6.17. Seja S ⊆ A um conjunto multiplicativo. Então:

(a) GP = GS−1P.

(b) Para todo i ∈N, RiP = RiS−1P. Em particular, IP = IS−1P.

Demonstração. (a) (⊆): Seja σ ∈ GP. Então σP = P. Desse modo, como S ⊆ K é fixo por
σ, temos σ(S−1P) = S−1σP = S−1P, mostrando que σ ∈ GS−1P.

(⊇): Seja σ ∈ GS−1P. Então σ(S−1P) = S−1P. Assim:

σ(P) = σ(S−1P∩B) = σ(S−1P) ∩ σ(B) = S−1P∩B = P,

mostrando que σ ∈ GP.

(b) Como GP = GS−1P basta provarmos que, dado σ ∈ GP, a condição σb ≡ b (mod Pi+1)
para todo b ∈ B é equivalente à condição σb ≡ b (mod (S−1P)i+1) para todo b ∈ S−1B.
Suponhamos inicialmente que valha a primeira condição, e provemos a segunda. Tomemos
c ∈ S−1B qualquer. Então c = b/s para alguns b ∈ B e s ∈ S, e nós temos:

σc− c = σ

(
b

s

)
− b

s
=
σb− b
s
∈ S−1Pi+1 = (S−1P)i+1,

como queŕıamos. Reciprocamente, suponhamos que valha a segunda condição, e seja b ∈ B
qualquer. Então sabemos que σb− b ∈ (S−1P)i+1 = S−1Pi+1. Assim, como σ(B) = B,
nós obtemos σb− b ∈ B ∩ S−1Pi+1 = Pi+1, onde utilizamos o item (a) do Teorema 3.25.
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Se p for totalmente ramificado em L, temos uma forma mais simples de descrever os grupos
de ramificação. Nesse caso, como vimos logo antes do Teorema 4.29, Bp é um DVD com único
ideal maximal Pp.

Proposição 6.18. Suponhamos que p seja totalmente ramificado em L. Então G = GP = IP e,
para todo i ∈N:

RiP = {σ ∈ G : σπ− π ∈ Pi+1
p } = {σ ∈ G : w(σπ− π) ≥ i+ 1},

onde π é um normalizador qualquer de Bp e w : L→ Z∪{∞} é a valoração de Bp.

Demonstração. Por hipótese, e = n, f = g = 1. Desse modo, (G : GP) = (GP : IP) = 1,
de onde obtemos G = GP = IP. Vejamos então que valem as igualdades sobre os grupos de
ramificação. Por um lado, se σ ∈ RiP, então pela proposição anterior vemos que σ ∈ RiPp

, e
portanto σπ − π ∈ Pi+1

p . Assim, vale a inclusão (⊆). Provemos (⊇). Seja σ ∈ G tal que
σπ− π ∈ Pi+1

p . Como RiP = RiPp
, basta mostrarmos que σ ∈ RiPp

.
Seja b ∈ Bp qualquer. Pelo item (c) do Teorema 4.29, podemos escrever b = ∑n−1

j=0 bjπ
j , para

alguns a0, . . . , an−1 ∈ Ap. Desse modo:

σb− b = σ

n−1∑
j=0

ajπ
j

− n−1∑
j=0

ajπ
j =

n−1∑
j=0

aj((σπ)
j − πj).

Como σπ − π ∈ Pi+1
p e para cada j temos σπ − π | (σπ)j − πj , vemos que σb − b ∈ Pi+1

p ,
mostrando a inclusão inversa.

Nós mostraremos a existência de certos homomorfismos ψi saindo de RiP com núcleo Ri+1
P ,

que nos permitirão tirar informações importantes sobre os grupos de ramificação.

Teorema 6.19. Suponhamos que p seja totalmente ramificado em L. Seja π um normalizador
de Bp, e sejam U (0),U (1), . . . os grupos de unidades de Bp. Então para todo i ∈ N a aplicação
ψi : RiP → U (i)/U (i+1) dada por σ 7→ σπ

π
·U (i+1) é um homomorfismo de grupos com núcleo Ri+1

P ,
que não depende da escolha de π. Assim, o homomorfismo induzido ψi : RiP/Ri+1

P
∼= U (i)/U (i+1)

é um isomorfismo de grupos.

Demonstração. Fixemos i ∈ N. Dado σ ∈ RiP, nós temos que σπ − π ∈ Pi+1
p , pela proposição

acima. Em particular, σπ ≡ π ≡ 0 (mod Pp). Assim, temos σπ ∈ Pp = πBp, e faz sentido
falarmos na divisão σπ

π . Chamando agora y := σπ
π , vemos que

yπ = σπ ≡ π (mod Pi+1
p )⇒ π(y− 1) ≡ 0 (mod Pi+1

p ).

Assim, como πBp = Pp, conclúımos que y − 1 ∈ Pi
p ⇒ y ∈ 1 +Pi

p = U (i). Isso mostra que ψi
está bem-definida. Observemos agora que, dado σ ∈ RiP, temos σu− u ∈ Pi+1

p para todo u ∈ Bp.
Em particular, se u ∈ B×p , multiplicando por u−1 nós obtemos que σu

u − 1 ∈ Pi+1
p , e portanto

σu
u ∈ U

(i+1). Para ver que ψi é um homomorfismo de grupos, sejam σ, τ ∈ RiP quaisquer. Então
queremos mostrar que στπ

π ·U
(i+1) =

(
σπ
π ·U

(i+1)
)
·
(
τπ
π ·U

(i+1)
)
= (σπ)(τπ)

π2 ·U (i+1). Chamemos
u := τπ

π . Então u ∈ U (i) ⊆ B×p , e portanto σu
u ∈ U

(i+1). Agora:

(σπ)(τπ)

π2 · σu
u

=
(σπ)(τπ)

π2 ·
σ
(
τπ
π

)
τπ
π

=
(σπ)(τπ)

π2
π · στπ
(σπ)(τπ)

=
στπ

π
.

Logo ψi é homomorfismo de grupos. Calculemos agora seu núcleo. Nós temos

ψi(σ) = 0 ⇐⇒ σπ

π
∈ U (i+1) ⇐⇒ σπ

π
≡ 1 (mod Pi+1

p )

⇐⇒ σπ− π
π

≡ 0 (mod Pi+1
p ).
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Como πBp = Pp, é fácil ver que isso ocorre se e só se σπ ≡ π (mod Pi+2
p ) ⇐⇒ σ ∈ Ri+1

P , devido
à Proposição 6.18. Assim, kerψi = Ri+1

P , como desejávamos. Finalmente, vejamos que ψi não
depende do gerador π de Pp. Seja π′ outro gerador desse ideal. Então temos π′ = uπ para algum
u ∈ B×p . Assim, dado σ ∈ RiP qualquer, temos:

σπ′

π′
=
σ(uπ)

uπ
=

(σu)(σπ)

uπ
=
σπ

π
· σu
u

.

Como u ∈ B×p ⇒ σu
u ∈ U

(i+1), temos σπ′

π′ ·U
(i+1) = σπ

π ·U
(i+1), como queŕıamos.

Localizando em relação ao primo PT CBT ao invés de p, podemos eliminar a hipótese de que
p é totalmente ramificado em L. Como sabemos que PT é totalmente ramificado em L, vemos
que BPT é um DVD com único ideal maximal PPT . Assim, temos a seguinte versão mais geral
do teorema acima:

Corolário 6.20. Seja π um normalizador de BPT , e sejam U (0),U (1), . . . os grupos de unidades
de Bp. Então para todo i ∈ N a aplicação ψi : RiP → U (i)/U (i+1) dada por σ 7→ σπ

π
· U (i+1)

é um homomorfismo de grupos com núcleo Ri+1
P , que não depende da escolha de π. Assim, o

homomorfismo induzido ψi : RiP/Ri+1
P
∼= U (i)/U (i+1).

Demonstração. Aplicando o teorema acima para a extensão L/TP, conclúımos que a aplicação
ψi : RiP(L/TP) → U (i)/U (i+1) dada por σ 7→ σπ

π
· U (i+1) é um homomorfismo de grupos com

núcleo Ri+1
P (L/TP), que não depende do gerador π. Mas pelo item (d) da Proposição 6.16, temos

RiP(L/TP) = RiP e Ri+1
P (L/TP) = Ri+1

P , concluindo a demonstração.

Como consequência direta desse corolário, obtemos:

Corolário 6.21. (a) O grupo IP/R1
P é canonicamente isomorfo a um subgrupo do grupo mul-

tiplicativo (B/P)×.

(b) Para todo i ≥ 1, o grupo RiP/Ri+1
P é canonicamente isomorfo a um subgrupo do grupo

aditivo de B/P.

Demonstração. Pelo corolário acima, nós temos um isomorfismo canônicoRiP/Ri+1
P
∼= U (i)/U (i+1),

para todo i ≥ 0. Aplicando agora o Lema 3.29 ao DVD BPT , obtemos isomorfismos canônicos
entre U (0)/U (1) e (BPT /PPT )

× e entre U (i)/U (i+1) e o grupo aditivo BPT /PPT . Mas BPT /PPT

é canonicamente isomorfo a B/P, pelo Teorema 3.25, o que nos dá os resultados desejados.

Isso nos permite obter informações interessantes sobre os grupos de ramificação. Lembremos
que todo subgrupo finito do grupo multiplicativo de um corpo é ćıclico, com ordem não diviśıvel
pela caracteŕıstica do corpo. Além disso, seja L um corpo qualquer. Se L tiver caracteŕıstica
0, então é claro que o seu único subgrupo aditivo finito é o trivial. Suponhamos então que a
caracteŕıstica de L seja p > 0. Como todo elemento não-nulo de L tem ordem (aditiva) p nesse
caso, vemos da caracterização dos grupos abelianos finitos que todo subgrupo aditivo finito de L
deve ser um p-grupo elementar, isto é, um grupo da forma Z /pZ× · · · ×Z /pZ. Com essas
observações, temos:

Corolário 6.22. (a) Se B/P tiver caracteŕıstica 0, então IP será um grupo ćıclico e R1
P será

o grupo trivial.

(b) Se B/P tiver caracteŕıstica p > 0, então IP/R1
P será um grupo ćıclico de ordem não

diviśıvel por p, e para todo i ≥ 1, RiP/Ri+1
P e RiP serão p-grupos elementares. Além disso,

R1
P será o único p-subgrupo de Sylow de IP.
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Demonstração. (a) Se B/P tiver caracteŕıstica 0, então pelas observações acima vemos que
IP/R1

P será um grupo ćıclico e que RiP/Ri+1
P = 1 para todo i ≥ 1. Assim, R1

P = R2
P = · · · .

Como temos RmP = 1 para algum m ∈ N, vemos então que R1
P = 1. Desse modo, vemos

que IP = IP/R1
P é ćıclico.

(b) Se B/P tiver caracteŕıstica p > 0, então pelas observações acima vemos que IP/R1
P será

um grupo ćıclico de ordem não diviśıvel por p e que, para todo i ≥ 1, RiP/Ri+1
P será um

p-grupo elementar. Seja m ∈N tal que RmP = 1. Então, para cada 1 ≤ i ≤ m, temos:

|RiP| =
∣∣∣∣∣ R

i
P

Ri+1
P

∣∣∣∣∣ ·
∣∣∣∣∣R

i+1
P

Ri+2
P

∣∣∣∣∣ · · ·
∣∣∣∣∣R

m−1
P

RmP

∣∣∣∣∣.
Assim, |RiP| é uma potência de p, sendo portanto um p-grupo, como desejado. Finalmente,
como IP/R1

P possui ordem não diviśıvel por p e R1
P é um p-grupo, vemos que R1

P é de fato
um p-subgrupo de Sylow de IP. Ele é o único p-subgrupo de Sylow de IP, pois sabemos que
R1

PC IP e que todos os p-subgrupos de Sylow de IP são conjugados, pelo Segundo Teorema
de Sylow.

Vamos trabalhar agora com os corpos fixos pelos grupos de ramificação:

Definição ( Corpos de Ramificação). Para cada i ∈N, definimos o i-ésimo corpo de ramificação
de P sobre K como sendo o corpo V i

P ⊆ L fixo pelo grupo RiP.

Então, pela correspondência de Galois, é claro que TP = V 0
P ⊆ V 1

P ⊆ V 2
P ⊆ · · · , e que existe

m ∈N tal que V m
P = L. Além disso, da teoria de Galois, da Proposição 6.16 e do Corolário 6.22,

obtemos imediatamente:

Corolário 6.23. (a) No caso em que B/P tem caracteŕıstica 0, temos V 1
P = V 2

P = · · · = L.

(b) No caso em que B/P tem caracteŕıstica p > 0, para todo i ≥ 1 a extensão L/V i
P é finita

galoisiana e Gal(L/V i
P) = RiP é um p-grupo. Além disso, para todo i ≥ 1, V i+1

P /V i
P é

finita galoisiana e Gal(V i+1
P /V i

P)
∼= RiP/Ri+1

P é p-elementar. A extensão V 1
P/TP também

é finita galoisiana, e Gal(V 1
P/TP) ∼= IP/R1

P é ćıclico de ordem não diviśıvel por p.

(c) Para todo i ∈N, V i
P/GP é finita galoisiana.

Assim, como ZP e TP, o corpo V 1
P pode ser caracterizado por uma propriedade minimal, caso

B/P tenha caracteŕıstica positiva:

Teorema 6.24. Suponhamos que B/P tenha caracteŕıstica p > 0, e seja E um corpo com
TP ⊆ E ⊆ L. Então V 1

P ⊆ E se e só se e(P | PE) for uma potência de p.

Demonstração. Como PT é totalmente ramificado em L, PE também o é. Assim, nós temos
[L : E] = e(P | PE), de modo que e(P | PE) será uma potência de p se e só se Gal(L/E) for
um p-grupo. Mas isso ocorrerá se e só se Gal(L/E) ⊆ R1

P = Gal(L/V 1
P), que é o único p-Sylow

de IP = Gal(L/TP). Finalmente, essa última continência equivale a V 1
P ⊆ E.

Para tratarmos simultaneamente dos casos em que B/P tem caracteŕıstica 0 ou positiva,
convém introduzir a seguinte notação:

Definição (Expoente Caracteŕıstico). Seja L um corpo. Então o expoente caracteŕıstico p
de L é definido como 1, se L tiver caracteŕıstica 0, e como a caracteŕıstica de L , se esta for
positiva.
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Seja p o expoente caracteŕıstico de B/P. Então e = e(P | p) se escreve de modo único como
e = ptẽ, onde t ∈N e mdc(p, ẽ) = 1 (note que ẽ = e caso p = 1). DenotemosBV := A

V 1
P = B∩V 1

P

e PV := P∩BV CBV . Então:

Corolário 6.25. (a) [L : V 1
P] = e(P | PV ) = pt.

(b) [V 1
P : TP] = e(PV | PT ) = ẽ, e Gal(V 1

P/TP) é canonicamente isomorfo ao grupo Wẽ(B/P).

Demonstração. Sabemos que R1
P = Gal(L/V 1

P) é o p-subgrupo de Sylow de IP = Gal(L/TP), que
tem cardinalidade e = ptẽ. Assim, temos |R1

P| = pt, de onde [L : V 1
P] = pt. Além disso, da mesma

forma que na demonstração do teorema acima, vemos que PV é totalmente ramificado em L, e
portanto e(P | PV ) = [L : V 1

P] = pt. Disso, segue facilmente que [V 1
P : TP] = e(PV | PT ) = ẽ.

Finalmente, sabemos que Gal(V 1
P/TP) tem cardinalidade ẽ e é canonicamente isomorfo a um

subgrupo finito do grupo multiplicativo (B/P)×. Assim, esse subgrupo deve ser Wẽ(B/P).

Nós podemos refinar ainda mais o diagrama da Observação 6.12, para obter:
PCB L = Q(B) 1

PV CBV V 1
P = Q(BV ) R1

P Gal(V 1
P/IP) ∼= IP/R1

P
∼= Wẽ(B/P)

PT CBT TP = Q(BT ) IP B/P = BT/PT

PZ CBZ ZP = Q(BZ) GP A/ p = BZ/PZ

pCA K = Q(A) G

pt pt pt

ẽ ẽ ẽ

f f f

g g g

Assim, dividimos a ramificação entre T 1
P e L em duas etapas. De TP a V 1

P ocorre a ramificação
mansa, ou seja, com mdc(p, e(PV | PT )) = 1, enquanto que de V 1

P a L ocorre a ramificação
selvagem, ou seja, com e(P | PV ) igual a uma potência de p. Note que podemos ainda separar a
ramificação selvagem no estudo dos p-grupos elementares R1

P/R2
P, R2

P/R3
P, . . . ,Rm−1

P /RmP , onde
m ∈ N é o menor inteiro para o qual RmP = 1. É claro que se a caracteŕıstica de L for 0, não
ocorrerá ramificação selvagem. Terminaremos estudando a solubilidade dos grupos IP e GP:

Teorema 6.26. (a) IP é um grupo solúvel.

(b) Se GP for um grupo solúvel, então GP também o será.

Demonstração. (a) Basta notar que temos a série normal 1 = RmP CRm−1
P C · · ·CR1

P C IP, e
que cada RiP/Ri+1

P é abeliano. De fato, IP/R1
P é ćıclico, e para i ≥ 1 temos RiP/Ri+1

P igual
a um produto finito de grupos ćıclicos de ordem p.

(b) Nós temos GP
∼= GP/IP. Assim, se GP for um grupo solúvel, como IP também é solúvel

por (a) vemos que GP será solúvel.

Como consequência imediata desse teorema, temos o seguinte interessante corolário:

Corolário 6.27. (a) A extensão L/TP é solúvel por radicais.

(b) Se GP for solúvel, então a extensão L/ZP será solúvel por radicais.



Caṕıtulo 7

O Método Geométrico e o Teorema
das Unidades

Até agora, todos os resultados que obtivemos vieram de métodos puramente algébricos. Para
conseguirmos mais resultados, precisaremos lançar mão de métodos geométricos, que estudare-
mos nesse caṕıtulo. Além de conseguirmos uma cota melhor para o número de classes de um
anel de inteiros algébricos, também obteremos resultados novos, como o Teorema das Unidades
de Dirichlet. Esses resultados serão consequências do chamado Teorema de Minkowski sobre
reticulados.

Como motivação, consideremos o corpo quadrático K = Q(
√
−3). Então OK é um Z-módulo

livre de posto 2, com base
{

1, 1+
√
−3

2

}
. Desse modo, podemos identificar OK com o conjunto

dos pontos no plano cartesiano que são combinações inteiras dos vetores (1, 0) e (1/2,
√
−3/2),

formando um reticulado:

Nós já utilizamos a ideia de reticulado implicitamente, no Teorema 2.19. De fato, o ponto
“mais próximo” de OK a um ponto de K nada mais é do que o ponto do reticulado mais próximo
do ponto em questão. Isso já nos mostra um pouco de como a intuição geométrica pode nos ser
útil.
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7.1. Reticulados, Malhas e o Teorema de Min-
kowski

Seja V um R-espaço vetorial de dimensão n, com uma base distinguida {e1, . . . , en}. Podemos
então definir um produto interno e uma norma em V com relação a essa base: dados dois vetores
x = ξ1e1 + · · ·+ ξnen e y = η1e1 + · · ·+ ηnen, definimos:

〈x, y〉 := ξ1η1 + · · ·+ ξnηn, e ‖x‖ :=
√
〈x,x〉 =

√
ξ2

1 + · · ·+ ξ2
n.

Com isso, V se torna um espaço normado. Dados v ∈ V e ρ > 0 quaiquer, denotaremos por
Bρ(v) := {x ∈ V : ‖x− v‖ ≤ ρ} a bola de centro v e raio ρ. Além disso, denotaremos a bola
de centro 0 e raio ρ simplesmente por Bρ. Note que a topologia induzida por essa norma é a
topologia euclidiana, já que todas as normas em Rn são equivalentes.

Dados v1, . . . , vm ∈ V quaisquer, consideramos os conjuntos

Γ := Z v1 + · · ·+ Z vm =

{
m∑
i=1

aivi : a1, . . . , am ∈ Z

}
, e

Φ :=

{
m∑
i=1

ρivi : 0 ≤ ρ1, . . . , ρm < 1
}

.

Definição (Reticulado). Com as notações acima, dizemos que Φ é o paraleleṕıpedo gerado
pelos vetores v1, . . . , vm. Além disso, dizemos que Γ é um reticulado de V se v1, . . . , vm forem
linearmente independentes sobre R. Nesse caso, chamamos v1, . . . , vm de uma base de reticu-
lado associada a Γ, e de Φ a malha fundamental associada a essa base. Note que para isso
ocorrer devemos ter m ≤ n. Caso m = n, então Γ e v1, . . . , vm serão chamados de um reticu-
lado completo e de uma base de reticulado completa, respectivamente. Chamamos ainda
de malha de Γ associada à base v1, . . . , vm um conjunto da forma γ + Φ, para γ ∈ Γ qualquer.

Observação 7.1. Se Γ for um reticulado com base {v1, . . . , vm} e malha fundamental com relação
a essa base Φ, é fácil ver da decomposição de um r ∈ R como r = brc+ (r− brc) que nós temos
Γ + Φ = R v1 + · · ·+ R vm. Em particular, Γ será completo se e só se Γ + Φ = V .

Exemplo 7.2. A malha fundamental no reticulado de Z
[

1+
√
−3

2

]
é o paralelogramo verde indicado

abaixo:
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O Teorema de Minkowski, que provaremos no final dessa seção, é um resultado que nos diz
que todo subconjunto “suficientemente grande” de V que satisfaz determinadas condições contém
um ponto não-nulo de um reticulado Γ, e pode ser pensado como uma espécie de “Prinćıpio da
Casa dos Pombos cont́ınuo”. Ele melhora (por muito) a cota encontrada para o número de classes
de um corpo de números, que achamos utilizando o Prinćıpio da Casa dos Pombos.

A prinćıpio, a definição de um reticulado aparenta ser diretamente atrelada a uma base.
O surpreendente é que temos uma caracterização para os reticulados de V que independe de
acharmos uma base:

Proposição 7.3. Um subconjunto Γ ⊆ V será um reticulado de V se e somente se for um
subgrupo aditivo discreto de V (na topologia euclidiana).

Demonstração. (⇒): Suponhamos que Γ seja um reticulado de V , e que v1, . . . , vm seja uma base
para esse reticulado. Sendo Γ = Z v1 + · · · + Z vm, é claro que Γ é um grupo aditivo. Para
ver que Γ é discreto, estendemos o conjunto linearmente independente {v1, . . . , vm} a uma base
{v1, . . . , vn} de V . Isso estende o reticulado Γ ao reticulado Γ′ := Z v1 + · · ·+ Z vn. Então basta
mostrar que Γ′ é discreto. Seja γ ∈ Γ′ qualquer. Então temos γ = a1v1 + · · ·+ anvn para certos
a1, . . . , an ∈ Z. Consideremos o conjunto

S := {x1v1 + · · ·+ xnvn : |xi − ai| < 1, para todo 1 ≤ i ≤ n}.

Então esse conjunto é aberto de V e claramente S ∩ Γ′ = {γ}, provando que Γ′ é discreto.

(⇐): Suponhamos que Γ seja um subgrupo aditivo discreto de V . Seja {u1, . . . ,um} um sis-
tema maximal de elementos de Γ linearmente independentes sobre R. Eles formam a base do
reticulado Γ′ := Zu1 + · · ·+ Zum ⊆ Γ. Seja Φ a malha fundamental de Γ′ com respeito a essa
base. Então temos (Γ ∩Φ) + Γ′ = Γ:

(⊆): Segue do fato de que Γ ∩Φ, Γ′ ⊆ Γ e que Γ é um grupo aditivo.

(⊇): Seja γ ∈ Γ qualquer. Então, pela maximalidade de {u1, . . . ,um}, existem r1, . . . , rm ∈ R

tais que γ = r1u1 + · · · + rmum. Note então que γ =
∑m
i=1bricui +

∑m
i=1(ri − bric)ui, e te-

mos ∑m
i=1bricui ∈ Γ′ ⊆ Γ e ∑m

i=1(ri − bric)ui = γ −
∑m
i=1bricui ∈ Γ ∩ Φ, mostrando que

γ ∈ (Γ ∩Φ) + Γ′.

Essa igualdade nos diz que todo elemento do grupo aditivo Γ/Γ′ está na classe de algum ele-
mento de Γ ∩Φ. Agora, como Γ é discreto e Φ é limitado na topologia euclidiana, temos Γ ∩Φ
finito. Assim, Γ/Γ′ é um grupo finito. Seja q := |Γ/Γ′|. Então, por Lagrange, qΓ ⊆ Γ′, de forma
que

Γ ⊆ q−1Γ′ = Z ·
(
q−1u1

)
+ · · ·+ Z ·

(
q−1um

)
.

Assim, Γ é um Z-submódulo de um Z-módulo livre de posto m, e pelo Teorema 1.38 conclúımos
que Γ é um Z-módulo livre de posto menor ou igual a m. De fato, seu posto é exatamente m, como
vemos pelas inclusões Γ′ ⊆ Γ ⊆ q−1Γ′. Segue ainda dessas inclusões que os R-espaços gerados por
Γ e por Γ′ coincidem, e têm dimensão m já que u1, . . . ,um são linearmente independentes sobre
R. Seja v1, . . . , vm uma Z-base de Γ. Então R v1 + · · ·+ R vm tem dimensão m, de onde tiramos
que {v1, . . . , vm} é um conjunto linearmente independente sobre R. Assim, conclúımos finalmente
que Γ é um reticulado de V .

No caso de um reticulado completo, vemos que intuitivamente a reunião de todas as suas
malhas cobre todo V (veja, por exemplo, o reticulado de Z

[
1+
√
−3

2

]
mostrado acima). De fato,

temos a seguinte importante caracterização dos reticulados completos:
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Teorema 7.4. Seja Γ um reticulado em V . As seguintes condições são equivalentes:

(i) Γ é um reticulado completo de V .

(ii) Existe um subconjunto limitado C de V tal que V =
⋃
γ∈Γ(γ +C).

Nesse caso temos, em particular, que V =
⊔
γ∈Γ(γ+ Φ), sendo Φ a malha fundamental associada

a uma base qualquer de Γ.

Demonstração. (i) ⇒ (ii): Seja {v1, . . . , vn} uma base de Γ, e seja Φ a malha fundamental
associada a essa base. Afirmamos que V =

⊔
γ∈Γ(γ + Φ). Como Φ é limitado, isso provará (ii).

Como V tem dimensão n, vemos que {v1, . . . , vn} é uma base de V . Seja v ∈ V qualquer. Então
v = r1v1 + · · ·+ rnvn, para alguns r1, . . . , rn ∈ R. Assim:

v =
n∑
i=1
bricvi +

n∑
i=1

(ri − bric)vi ∈
⋃
γ∈Γ

(γ + Φ).

Isso prova que ⋃γ∈Γ(γ + Φ) = V . Falta mostrar que essa união é disjunta. Suponhamos que
α,β ∈ Γ sejam tais que (α + Φ) ∩ (β + Φ) 6= ∅. Então existem elementos z,w ∈ Φ tais que
α+ z = β +w ⇒ α− β = w− z. Nós temos w = r1v1 + · · ·+ rnvn e z = s1v1 + · · ·+ snvn, para
alguns 0 ≤ ri, si < 1. Assim:

α− β = w− z = (r1 − s1)v1 + · · ·+ (rn − sn)vn.

Note que −1 < ri − si < 1, para 1 ≤ i ≤ n. Mas todas as coordenadas de α− β ∈ Γ na base
{v1, . . . , vn} são inteiras, e portanto ri − si = 0 para todo i. Isso prova que α− β = 0⇒ α = β.
Desse modo, a união V =

⋃
γ∈Γ(γ + Φ) é disjunta, como queŕıamos.

(ii) ⇒ (i): Suponhamos que exista C ⊆ V limitado tal que V =
⋃
γ∈Γ(γ + C). Seja V ′ o

R-subespaço de V gerado por Γ. Então queremos provar que V ′ = V . Seja v ∈ V qualquer.
Como V =

⋃
γ∈Γ(γ+C), para todo inteiro positivo n conseguimos encontrar γn ∈ Γ e cn ∈ C tais

que nv = γn + cn. Para todo n inteiro positivo temos v = (γn + cn)/n, logo

v = lim
n→∞

γn + cn
n

= lim
n→∞

γn
n

+ lim
n→∞

cn
n

= lim
n→∞

γn
n

,

uma vez que C é limitado e portanto limn→∞ cn/n = 0. Finalmente, notemos que para todo n
inteiro positivo temos γn/n ∈ V ′, e que V ′ é fechado em V já que é um subespaço finitamente
gerado de V . Assim, v = limn→∞ γn/n ∈ V ′, como queŕıamos. Isso mostra que V ′ = V , e
portanto Γ é reticulado completo.

Sendo V ∼= Rn com “base canônica” {e1, . . . , en}, podemos considerar uma medida de Le-
besgue em V da mesma forma que fazemos em Rn. Chamaremos a medida de Lebesgue de um
conjunto C ⊆ V de volume desse conjunto, e o denotaremos por vol(C).

Proposição 7.5. Sejam v1, . . . , vn ∈ V , e seja Φv o paraleleṕıpedo gerado por esses vetores.
Então:

(a) vol(Φv) = |det(v1, . . . , vn)|.

(b) {v1, . . . , vn} ⊆ V formará a base de um reticulado completo em V se e só se tivermos
det(v1, . . . , vn) 6= 0, se e só se tivermos vol(Φv) 6= 0.

(c) Seja T : V n → V n um operador linear, e suponhamos T (v1, . . . , vn) = (w1, . . . ,wn). Então,
sendo Φw o paraleleṕıpedo gerado por w1, . . . ,wn, temos vol(Φw) = |detT | · vol(Φv).
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(d) Para todas as bases de um reticulado completo Γ, os volumes de suas malhas fundamentais
associadas coincidem, e são iguais a um número real positivo.

Demonstração. Os itens (a), (b) e (c) seguem facilmente de álgebra linear e da teoria de inte-
gração. Provemos (d). Seja {v1, . . . , vn} uma base de Γ, com malha fundamental Φv, e tome-
mos {w1, . . . ,wn} ⊆ V qualquer. Então existe um único operador linear T : V n → V n tal que
T (v1, . . . , vn) = (w1, . . . ,wn). Sabemos que {w1, . . . ,wn} será uma base do Z-módulo Γ se e
somente se detT ∈ Z× = {−1, 1}. Desse modo, para qualquer base {w1, . . . ,wn} de Γ, temos
vol(Φw) = |detT | · vol(Φv) = vol(Φv). Finalmente, vol(Φv) 6= 0 pelo item (b), e vol(Φv) < ∞
já que esse é o determinante de uma matriz n× n.

Definição (Volume de um Reticulado). Dado um reticulado Γ de V , definimos o seu volume
vol(Γ) como sendo o volume de qualquer uma de suas malhas fundamentais.

Observação 7.6. É claro que o volume de qualquer malha de Γ também será vol(Γ), já que toda
malha de Γ é uma translação da malha fundamental de Γ.

Já vimos que as malhas de um reticulado completo Γ são todas disjuntas. Mais geralmente,
dado um subconjunto C ⊆ V , intuitivamente os conjuntos γ +C só poderão ser disjuntos dois a
dois se C for “suficientemente pequeno”. Com a noção de volume, nós podemos formalizar essa
intuição:

Teorema 7.7. Seja C ⊆ V tal que vol(C) esteja definido e seja V um reticulado completo. Se
os conjuntos γ +C, para γ ∈ Γ, forem disjuntos dois a dois, então vol(C) ≤ vol(Γ).

Demonstração. Seja Φ uma malha fundamental de Γ. Então, pelo Teorema 7.4, temos V =⊔
γ∈Γ(γ + Φ). Assim, C =

⊔
γ∈Γ(C ∩ (γ + Φ)). Agora, é fácil ver que para todo γ ∈ Γ nós temos:

C ∩ (γ + Φ) = ((−γ +C) ∩Φ) + γ.

Pela hipótese do enunciado, temos os conjuntos −γ +C disjuntos dois a dois para γ variando em
Γ, de modo que temos a união disjunta ⊔γ∈Γ(−γ +C) ∩Φ. Finalmente:

vol(C) =
∑
γ∈Γ

vol(C ∩ (γ + Φ)) =
∑
γ∈Γ

vol((−γ +C) ∩Φ)

= vol

⊔
γ∈Γ

(−γ +C) ∩Φ

 ≤ vol(Φ) = vol(Γ),

como queŕıamos.

Antes de enunciarmos o Teorema de Minkowski, precisamos de mais uma definição:

Definição (Conjunto Simétrico). Um subconjunto C ⊆ V é chamado de simétrico (em relação
à origem) se c ∈ C ⇒ −c ∈ C.

Teorema 7.8 (Teorema de Minkowski). Seja C ⊆ V simétrico e convexo tal que vol(C) esteja
bem-definido, e seja Γ ⊆ V um reticulado completo. Suponhamos ainda que vol(C) > 2n vol(Γ).
Então C ∩ (Γ \ {0}) 6= ∅.

Demonstração. Aplicando o Teorema de Mudança de Variáveis, é fácil ver que temos a igualdade
vol(C/2) = vol(C)/2n > vol(Γ). Dessa forma, aplicando o teorema acima conclúımos que existem
γ1, γ2 ∈ Γ distintos tais que (γ1 + C/2) ∩ (γ2 + C/2) 6= ∅. Assim, existem c1, c2 ∈ C tais que
γ1 + c1/2 = γ2 + c2/2. Mas então:

γ1 − γ2 =
c2
2 −

c1
2 =

c2
2 +

−c1
2 ∈ C,

uma vez que c1 ∈ C ⇒ −c1 ∈ C (pois C é simétrico) e que c2,−c1 ∈ C ⇒ c2/2 + (−c1)/2 ∈ C
(pois C é convexo). Assim, γ1 − γ2 ∈ C ∩ (Γ \ {0}), provando o teorema.
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Observação 7.9. A cota dada pelo Teorema de Minkowski é a melhor posśıvel. De fato, seja Γ
um reticulado completo com base {v1, . . . , vn}, e seja Φ a malha fundamental associada a essa
base. Consideremos o conjunto

C :=

{
n∑
i=1

ρivi : − 1 < ρi < 1
}

.

Então é claro que C ∩ Γ = {0}. Também é fácil ver que C é simétrico, convexo e que nós
temos vol(C) = 2n vol(Φ) (a região C é a união de 2n regiões congruentes a Φ, uma em cada
semiespaço).

7.2. Algumas Aplicações do Teorema de Min-
kowski

Nesta seção, mostraremos como algumas aplicações espertas do Teorema de Minkowski nos per-
mitem resolver facilmente alguns problemas clássicos de Teoria dos Números. Lembremos que, no
Caṕıtulo 2, mostramos que todo primo em N congruente a 1 módulo 4 se escrevia como soma de
dois quadrados. Também podemos chegar nesse resultado utilizando o Teorema de Minkowski:

Seja p ∈N primo com p ≡ 1 (mod 4). Então sabemos que −1 é reśıduo quadrático módulo p, e
portanto existe r ∈ Z tal que p | r2 + 1. Consideremos V = R2 e Γ = Z ·(1, r) +Z ·(0, p). Assim,

Γ é um reticulado completo com base {(1, r), (0, p)}, e volume det
(

1 r
0 p

)
= p. Notemos agora

que B√3p/2 ⊆ R2 é simétrico, convexo e tem volume 3pπ/2 > 4p = 22 vol(Γ). Portanto, podemos
aplicar o Teorema de Minkowski para concluir que existe (x, y) ∈ Γ \ {0} tal que x2 + y2 ≤ 3p/2.
Como (x, y) ∈ Γ, temos y ≡ rx (mod p). Assim:

x2 + y2 ≡ x2 + r2x2 = x2(1 + r2) ≡ 0 (mod p).

Como 0 < x2 + y2 ≤ 3p/2 e x2 + y2 ≡ 0 (mod p), a única opção é termos x2 + y2 = p.

Outra aplicação interessante do Teorema de Minkowski é o conhecido Teorema dos Quatro Qua-
drados:

Teorema 7.10 (Teorema dos Quatro Quadrados). Todo número natural n pode ser escrito como
a soma de quatro quadrados perfeitos. Isto é, existem a, b, c, d ∈ Z tais que n = a2 + b2 + c2 + d2.

Demonstração. É claro que 0 e 1 podem ser escritos como somas de quatro quadrados. Comecemos
notando que sem,n ∈N puderem ser escritos como somas de quatro quadrados, então seu produto
também será. De fato, se m = a2 + b2 + c2 + d2 e n = x2 + y2 + z2 +w2, então:

mn = (a2 + b2 + c2 + d2)(x2 + y2 + z2 +w2)

= (ax− by− cz − dw)2 + (ay+ bx+ cw− dz)2

+(az − bw+ cx+ dy)2 + (aw+ bz − cy+ dx)2,

como se pode verificar diretamente1. Devido a essa observação, basta mostrarmos que todo
número primo pode ser escrito como a soma de quatro quadrados. Como 2 = 12 + 12 + 02 + 02 é
soma de quatro quadrados, basta provar a afirmação para os primos ı́mpares. Assim, seja p ∈N

1Na verdade, essa identidade não é nada arbitrária: ela surge naturalmente do fato de que a norma dos
quatérnios é multiplicativa.
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um primo ı́mpar qualquer. Dados 0 ≤ k < ` ≤ (p− 1)/2, é claro que p - (k− `)(k+ `) = k2− `2.
Assim, os conjuntos

A := {r2 + pZ : 0 ≤ r ≤ (p− 1)/2} e
B := {(−s2 − 1) + pZ : 0 ≤ s ≤ (p− 1)/2}

possuem ambos (p + 1)/2 elementos. Como Fp possui p elementos, devemos ter A ∩ B 6= ∅,
de modo que existem 0 ≤ u, v ≤ (p − 1)/2 inteiros tais que u2 ≡ −v2 − 1 (mod p), ou seja,
u2 + v2 + 1 ≡ 0 (mod p). Consideremos V = R4 e Γ o reticulado completo com base formada
pelos vetores (1, 0,u, v), (0, 1, v,−u), (0, 0, p, 0) e (0, 0, 0, p). Note que o volume de Γ é igual a

det


1 0 u v
0 1 v −u
0 0 p 0
0 0 0 p

 = p2.

Lembremos que, dado r > 0, temos vol(Br) = π2r4/2. Procuramos achar r de modo que
possamos aplicar o Teorema de Minkowski, isto é, tal que π2r4/2 > 24 vol(Γ) = 16p2. Note que
essa desigualdade equivale a r2 > 4

√
2

π p ∼= 1, 8006p. Assim, podemos escolher r =
√

19p/10.
Aplicando o Teorema de Minkowski, encontramos um ponto (a, b, c, d) ∈ Γ \ {0} tal que

0 < a2 + b2 + c2 + d2 ≤ r2 = 19p/10 < 2p.

Notemos agora que, como (a, b, c, d) ∈ Γ, temos c ≡ au+ bv (mod p) e d ≡ av − bu (mod p), de
forma que

a2 + b2 + c2 + d2 ≡ a2 + b2 + (au+ bv)2 + (av− bu)2

= a2 + b2 + a2u2 + b2v2 + a2v2 + b2u2

= (a2 + b2)(u2 + v2 + 1) ≡ 0 (mod p).

Sendo assim, devemos ter a2 + b2 + c2 + d2 = p, concluindo a demonstração.

7.3. Inteiros Algébricos e Reticulados
Nessa seção, veremos como enxergar um anel de inteiros algébricos como um reticulado dentro de
um espaço vetorial chamado espaço de Minkowski. Com essa identificação, poderemos aplicar
os resultados que obtivemos na Seção 7.1 para conseguir informações sobre o anel em questão.
Seja K um corpo de números algébricos com [K : Q] = n. Então sabemos que existem n imersões
de K em C. Podemos dividir estas entre aquelas cuja imagem está contida em R e aquelas cuja
imagem não está contida em R:

Definição ( Imersões Reais/Complexas). Seja τ : K → C uma imersão de K. Então dizemos que
τ é uma imersão real de K se τ (K) ⊆ R e que τ é uma imersão complexa de K se τ (K) 6⊆ R.

A primeira coisa a se observar é que as imersões complexas de K estão pareadas. Chamemos
de F : C → C o automorfismo dado por conjugação complexa. Note que F 2 = id, e que o corpo
fixo por F é R (de fato, F é o único automorfismo não-trivial de Gal(C / R)). Dada uma imersão
τ : K → C tal que τ (K) 6⊆ R, vemos que τ := Fτ : K → C é uma imersão diferente de τ e tal
que τ (K) 6⊆ R. Além disso, τ = τ . Isso mostra que podemos particionar o conjunto das imersões
complexas de K em pares. Disso conclúımos:

Proposição 7.11. Seja K um corpo de números algébricos. Então o conjunto das imersões
complexas de K se particiona em pares da forma {τ , τ}, onde τ é a composição de τ com a
conjugação complexa. Em particular, existe um número par de imersões complexas de K.
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Assim, a cada corpo de números algébricos podemos associar a sua assinatura:

Definição (Assinatura). Seja K um corpo de números algébricos. Seja r1 o número de imersões
reais e r2 metade do número de imersões complexas de K. Então a assinatura de K é o par
(r1, r2).

Observação 7.12. Note que, devido à proposição acima, r1 e r2 são números inteiros, e que
temos n = r1 + 2r2.

A assinatura de K pode ser obtida analisando a fatoração em R[x] do polinômio minimal de
um elemento primitivo α ∈ K da extensão K/ Q. De fato, suponhamos que

Pα,Q(x) = (x− α1) · · · (x− αr1)Q1(x) · · ·Qr2(x)

seja essa fatoração, com α1, . . . ,αr1 ∈ R e Q1, . . . ,Qr2 ∈ R[x] polinômios irredut́ıveis de grau 2.
Sejam, para 1 ≤ i ≤ r2, βi e βi ∈ C \R as ráızes de Qi(x). Como α ∈ K é elemento primitivo,
todas as imersões de K são determinadas pela sua imagem, que deve ser uma raiz de seu polinômio
minimal. Então as n imersões de K em C são σ1, . . . ,σr1 , τ1, τ1, . . . , τr2 , τ r2 , onde para 1 ≤ i ≤ r1
temos σi : K → Q(αi) dado por α 7→ αi e para 1 ≤ i ≤ r2 temos τi : K → Q(βi) dado por α 7→ βi
e τ i : K → Q(βi) dado por α 7→ βi. Dessa forma, vemos que a assinatura de K é (r1, r2).

Definição (Espaço de Minkowski). Seja K um corpo de números algébricos com assinatura
(r1, r2). Então o espaço de Minkowski de K é o R-espaço vetorial KR := Rr1 ×Cr2 . Nós
representamos um ponto genérico de KR por (a1, . . . , ar1 ; z1, . . . , zr2).

Observação 7.13. A notação KR não é arbitrária. De fato, pode-se mostrar que existe um
isomorfismo natural KR

∼= K ⊗Q R.

Note que o espaço de Minkowski de um corpo de números algébricos depende apenas de sua
assinatura. Além disso, observe que dimQ K = n ⇒ dimR KR = r1 + 2r2 = n. Assim, podemos
munir KR com o produto interno usual de Rn (para isso identificamos cada número complexo
z com o par ordenado (Re(z), Im(z))). Com isso, KR se torna um espaço vetorial euclidiano, e
podemos considerar uma norma e uma medida de Lebesgue nesse espaço.

Daqui até o fim deste caṕıtulo, denotaremos as imersões reais deK por σ1, . . . ,σr1 e as imersões
complexas de K por τ1, τ1, . . . , τr2 , τ r2 . Também denotaremos σr1+2j−1 := τj e σr1+2j := τ j para
1 ≤ j ≤ r2, de modo que as n imersões de K sejam σ1, . . . ,σn.

O mapa χ : K → KR dado por χ(a) = (σ1(a), . . . ,σr1(a); τ1(a), . . . , τr2(a)) é um homomor-
fismo injetor de Q-espaços. Em particular, um homomorfismo de Z-módulos. Chamamos χ de
imersão canônica de K. O fato que será fundamental para nós é que χ leva bases da extensão
K/ Q em bases de reticulados completos de KR, cujo volume sabemos calcular:

Teorema 7.14. Seja {α1, . . . ,αn} uma base da extensão K/ Q. Então o conjunto

Γα := χ(Zα1 + · · ·+ Zαn)

é um reticulado completo de KR, com base {χα1, . . . ,χαn} e volume

vol(Γα) = 2−r2
√
|∆K/ Q(α1, . . . ,αn)|.

Demonstração. Sendo χ um homomorfismo de Z-módulos, temos

Γα = χ(Zα1 + · · ·+ Zαn) = Zχ(α1) + · · ·+ Zχ(αn).

Assim, pela Proposição 7.5 vemos que χ(α1), . . . ,χ(αn) formarão a base de um reticulado com-
pleto se e só se det(χ(α1), . . . ,χ(αn)) 6= 0, e que nesse caso o volume desse reticulado será igual
ao módulo desse determinante. Desse modo, a demonstração estará completa se mostrarmos que



126 CAPÍTULO 7. O MÉTODO GEOMÉTRICO E O TEOREMA DAS UNIDADES

o determinante em questão é em módulo igual a 2−r2
√
|∆K/ Q(α1, . . . ,αn)|, pois como α1, . . . ,αn

formam uma base da extensão K/ Q temos ∆K/ Q(α1, . . . ,αn) 6= 0.
Queremos calcular o determinante da seguinte matriz:

M :=


σ1(α1) · · · σr1(α1) Re(τ1(α1)) Im(τ1(α1)) · · · Re(τr2(α1)) Im(τr2(α1))
σ1(α2) · · · σr1(α2) Re(τ1(α2)) Im(τ1(α2)) · · · Re(τr2(α2)) Im(τr2(α2))

... . . . ...
...

... . . . ...
...

σ1(αn) · · · σr1(αn) Re(τ1(αn)) Im(τ1(αn)) · · · Re(τr2(αn)) Im(τr2(αn))

 .

Denotemos as colunas de M , da esquerda para a direita, por M1, . . . ,Mn. Para 1 ≤ k ≤ r2,
realizaremos uma sequência de operações elementares nas colunas Mr1+2k−1 e Mr1+2k, como
indicado abaixo:

1. Mr1+2k 7→ i ·Mr1+2k;

2. Mr1+2k−1 7→Mr1+2k−1 +Mr1+2k;

3. Mr1+2k 7→ 2 ·Mr1+2k;

4. Mr1+2k 7→Mr1+2k −Mr1+2k−1;

5. Mr1+2k 7→ (−1) ·Mr1+2k.

Observe que os passos 2 e 4 não alteram o determinante da matriz, enquanto os passos 1, 3 e
5 multiplicam esse determinante por i, 2 e −1 respectivamente. Assim, após esses cinco passos
o determinante da matriz é multiplicado por −2i. Como realizamos essa sequência de operações
elementares r2 vezes, o determinante da matriz N obtida ao final de todo o procedimento é
detN = (−2i)r2 detM ⇒ |detN | = 2r2 |detM |. Finalmente, é fácil ver que

N =


σ1(α1) · · · σr1(α1) τ1(α1) τ1(α1) · · · τr2(α1) τ r2(α1)
σ1(α2) · · · σr1(α2) τ1(α2) τ1(α2) · · · τr2(α2) τ r2(α2)

... . . . ...
...

... . . . ...
...

σ1(αn) · · · σr1(αn) τ1(αn) τ1(αn) · · · τr2(αn) τ r2(αn)

 .

Pela Proposição 1.32, temos então que (detN)2 = ∆K/ Q(α1, . . . ,αn), e portanto

|detN | =
√
|∆K/ Q(α1, . . . ,αn)| ⇒ |detM | = 2−r2 detN = 2−r2

√
|∆K/ Q(α1, . . . ,αn)|,

como queŕıamos demonstrar.

Corolário 7.15. Seja M ⊆ K um Z-submódulo livre de posto n. Então χM é um reticulado
completo de KR. Além disso, se M ⊆ OK então vol(χM ) = 2−r2kM

√
|dK |. Em particular,

χOK é um reticulado completo de KR com volume 2−r2
√
|dK |, e dado aCOK não-nulo, χa é um

reticulado completo de KR com volume vol(χa) = 2−r2 N(a)
√
|dK |.

Demonstração. Seja {α1, . . . ,αn} uma base de M . Então, pelo teorema acima, χM é um reticu-
lado completo de KR com base {χα1, . . . ,χαn} e volume

vol(χM ) = 2−r2
√
|∆K/ Q(α1, . . . ,αn)| = 2−r2

√
|k2
MdK | = 2−r2kM

√
|dK |.

O corolário acima, juntamente com o Teorema de Minkowski, nos fornece um critério poderoso
para encontrarmos elementos “pequenos” de ideais de OK :
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Teorema 7.16. Seja aCOK não-nulo, e sejam a1, . . . , ar1 , b1, . . . , br2 > 0 tais que

a1 · · · ar1b
2
1 · · · b2r2 >

( 2
π

)r2

N(a)
√
|dK |.

Então existe α ∈ a \ {0} tal que |σiα| < ai para todo 1 ≤ i ≤ r1 e |τiα| = |τ iα| < bi, para todo
1 ≤ i ≤ r2.

Demonstração. Consideremos o conjunto

C := {(x1, . . . ,xr1 ; y1, . . . , yr2) ∈ KR : |x1| < a1, . . . , |xr1 | < ar1 , |y1| < b1, . . . , |yr2 | < br2}.

Essa região é claramente simétrica e convexa. Notemos que C é o produto dos r1 segmentos
{xi ∈ R : − ai < xi < ai} e dos r2 discos Dbi := {yi ∈ C : |yi| < bi}. Desse modo, pelo Teorema
de Fubini, o volume de C é dado por

vol(C) =
∫ a1

−a1
· · ·
∫ ar1

−ar1

∫
Db1

· · ·
∫
Dbr2

dx1 · · · dxr1 dy1 · · · dyr2

=

(∫ a1

−a1
dx1

)
· · ·
(∫ ar1

−ar1

dxr1

)(∫
Db1

dy1

)
· · ·
(∫

Dbr2

dyr2

)
= (2a1) · · · (2ar1)(πb

2
1) · · · (πb2r2)

= 2r1πr2a1 · · · ar1b
2
1 · · · b2r2

> 2n ·
(

2−r2 N(a)
√
|dK |

)
= 2n vol(χa).

Desse modo, pelo Teorema de Minkowski, existe v ∈ C ∩χa não-nulo. Seja α ∈ a tal que v = χα.
Então α 6= 0 e, como χα = (σ1(α), . . . ,σr1(α); τ1(α), . . . , τr2(α)) ∈ C, obtemos as desigualdades
desejadas.

Utilizando o teorema acima, conseguimos melhorar a cota do Lema 4.8. Lembremos que para
cada ideal não-nulo aCOK nós definimos t(a) := min{N(a)−1 N(αOK) : α ∈ a \ {0}}. Então
queremos achar uma constante M > 0 tal que, para todo aCOK não-nulo, tenhamos t(a) ≤M .
Notemos que t(a) ≤M se e só se existir α ∈ a não-nulo tal que

N(a)−1 N(αOK) ≤M ⇐⇒ |N(α)| ≤M N(a).

Desejamos encontrar o menor M posśıvel, para que o cálculo do número de classes hK seja
eficiente. Lembremos que N(α) =

∏
σ∈HomQ(K,C) σ(α), de forma que o lema acima se mostra

particularmente útil. Dado t > 0 tal que tn >
(

2
π

)r2
N(a)

√
|dK |, aplicando o teorema acima para

a1 = · · · = ar1 = b1 = · · · = br2 = t nós encontramos αt ∈ a \ {0} tal que |σ(αt)| < t para toda
imersão σ de K. Assim, αt ∈ a \ {0} é tal que |N(αt)| < tn. Como tn >

(
2
π

)r2
N(a)

√
|dK | é

qualquer, conclúımos que para todo ε > 0 existe αε ∈ a \ {0} tal que

|N(αε)| <
( 2
π

)r2

N(a)
√
|dK |+ ε =

(( 2
π

)r2 √
|dK |+

ε

N(a)

)
N(a)

⇒ t(a) ≤
( 2
π

)r2 √
|dK |+

ε

N(a)
.

Como isso vale para todo ε > 0, conclúımos que t(a) ≤
(

2
π

)r2 √|dK |. Essa já é uma melhora
significativa na constante do Lema 4.8. Podemos melhorá-la ainda mais, com uma utilização
esperta do Teorema de Minkowski juntamente com a desigualdade das médias:
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Teorema 7.17 (Cota de Minkowski). Para todo aCOK não-nulo, temos t(a) ≤ µK , onde

µK :=
( 4
π

)r2 n!
nn

√
|dK |.

Equivalentemente, para todo aCOK não-nulo, existe α ∈ a não-nulo tal que |N(α)| ≤ µK N(a).

Note que, como 2n/2n!
nn ≤ 1 para todo n ≥ 2, essa cota é de fato melhor do que a encontrada

acima. A ideia para obtê-la é a seguinte: dado α ∈ K, nós temos:

|N(α)| =
r1∏
i=1
|σi(α)|

r2∏
j=1
|τj(α)||τ j(α)| =

r1∏
i=1
|σi(α)|

r2∏
j=1
|τj(α)|2

≤
( 1
n

r1∑
i=1
|σi(α)|+

2
n

r2∑
j=1
|τj(α)|

)n
=

(∑r1
i=1|σi(α)|+ 2∑r2

j=1|τj(α)|
)n

nn
,

onde utilizamos a desigualdade entre as médias aritmética e geométrica. Assim, é interessante
minimizarmos a expressão ∑r1

i=1|σi(α)|+ 2∑r2
j=1|τj(α)| para algum elemento não-nulo do ideal a.

Então, devido ao Teorema de Minkowski, faz sentido considerarmos para cada t > 0 o conjunto:
Ct := {(x1, . . . ,xr1 ; y1, . . . , yr2) ∈ KR : |x1|+ · · ·+ |xr1 |+ 2|y1|+ · · ·+ 2|yr2 | < t}. (7.1)

Essa região é claramente simétrica, e uma verificação direta nos mostra que ela também é convexa.
Logo podemos aplicar o Teorema de Minkowski a Ct e ao reticulado χa. Para isso, precisamos
calcular vol(Ct). Esse é o conteúdo do lema abaixo:
Lema 7.18. Sejam i, j ∈N e t > 0. Definimos

Ci,jt := {(x1, . . . ,xi; y1, . . . , yj) ∈ Ri×Cj : |x1|+ · · ·+ |xi|+ 2|y1|+ · · ·+ 2|yj | < t}.

Então vol(Ci,jt ) = 2i−jπjti+2j

(i+2j)! .

Demonstração. A demonstração será por indução dupla em i e j. Note que temos
C1,0
t = {x ∈ R : |x| < t} = (−t, t),

e portanto vol(C1,0
t ) = 2t. Observemos ainda que, para todo i ∈N, nós temos:

Ci+1,0
t = {(x1, . . . ,xi+1) ∈ Ri+1 : |x1|+ · · ·+ |xi+1| < t)}

= {((x1, . . . ,xi),xi+1) ∈ Ri×R : xi+1 ∈ (−t, t), (x1, . . . ,xi) ∈ Ci,0t−|xi+1|}.
Desse modo, pelo Teorema de Fubini:

vol(Ci+1,0
t ) =

∫
Ci+1,0
t

dµ =
∫ t

−t

∫
Ci,0
t−|xi+1|

dµ dxi+1 =
∫ t

−t
vol(Ci,0t−|xi+1|) dxi+1

= 2
∫ t

0
vol(Ci,0t−xi+1) dxi+1,

uma vez que vol(Ci,0t−|xi+1|) é claramente uma função par de xi+1. Com isso, mostraremos por
indução em i que vol(Ci,0t ) = 2iti

i! . Como 21t1/1! = 2t, temos a base de indução. Finalmente,
supondo a fórmula válida para i, nós temos:

vol(Ci+1,0
t ) = 2

∫ t

0
vol(Ci,0t−xi+1) dxi+1 = 2

∫ t

0

2i(t− xi+1)i

i!
dxi+1

=
2i+1

i!

∫ t

0
(t− xi+1)

i dxi+1 =
2i+1

i!

∫ 0

t
yi (−dy)

=
2i+1

i!

∫ t

0
yi dy =

2i+1

i!

[
yi+1

i+ 1

]t
0

=
2i+1

i!
· t

i+1

i+ 1 =
2i+1ti+1

(i+ 1)! ,
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mostrando a validade da fórmula para i+ 1. Fixemos agora i ∈N. Observemos que, para j ∈N

qualquer, o conjunto Ci,j+1
t é igual a

{(x1, . . . ,xi; y1, . . . , yj+1) ∈ (Ri×Cj)×C : yj+1 ∈ Dt/2, (x1, . . . ,xi; y1, . . . , yj) ∈ Ci,jt−2|yj+1|},

onde Dt/2 := {z ∈ C : |z| < t/2}. Desse modo, pelo Teorema de Fubini:

vol(Ci,j+1
t ) =

∫
Ci,j+1
t

dµ =
∫
Dt/2

∫
Ci,j
t−2|yj+1|

dµ dyj+1 =
∫
Dt/2

vol(Ci,jt−2|yj+1|) dyj+1

=
∫ t/2

0

∫ 2π

0
vol(Ci,jt−2r)r dθ dr = 2π

∫ t/2

0
vol(Ci,jt−2r)r dr,

onde utilizamos mudança de coordenadas cartesianas para polares. Com isso, podemos mostrar
por indução em j que vol(Ci,jt ) = 2i−jπjti+2j

(i+2j)! , o que concluirá a demonstração. Para j = 0, essa
fórmula se torna vol(Ci,0t ) = 2iti

i! , que já mostramos ser verdadeira. Suponhamos então que a
fórmula valha para j, e a provemos para j + 1. Nós temos:

vol(Ci,j+1
t ) = 2π

∫ t/2

0
vol(Ci,jt−2r)r dr = 2π

∫ t/2

0

2i−jπj(t− 2r)i+2j

(i+ 2j)! r dr

=
2i−j+1πj+1

(i+ 2j)!

∫ t/2

0
(t− 2r)i+2jr dr.

Fazendo u = t− 2r, temos r = (t− u)/2 e dr = −du/2. Assim:
∫ t

0
(t− 2r)i+2jr dr =

∫ 0

t
ui+2j t− u

2

(
−1

2

)
du

=
1
4

∫ t

0
(tui+2j − ui+2j+1) du

=
1
4

[
tui+2j+1

i+ 2j + 1 −
ui+2j+2

i+ 2j + 2

]t
0

=
1
4

(
ti+2j+2

i+ 2j + 1 −
ti+2j+2

i+ 2j + 2

)

=

( 1
i+ 2j + 1 −

1
1 + 2j + 2

)
ti+2(j+1)

4

=
ti+2(j+1)

4(i+ 2j + 1)(1 + 2j + 2) .

Finalmente, obtemos:

vol(Ci,j+1
t ) =

2i−j+1πj+1

(i+ 2j)!

∫ t/2

0
(t− 2r)i+2jr dr =

2i−j+1πj+1

(i+ 2j)! ·
ti+2(j+1)

4(i+ 2j + 1)(1 + 2j + 2)

=
2i−(j+1)πj+1ti+2(j+1)

(i+ 2(j + 1))! ,

concluindo a indução.

Demonstração (do Teorema 7.17): Fixemos aCOK não-nulo. Para cada t > 0, definimos Ct
como em (7.1). Então Ct é simétrico, convexo e pelo lema acima seu volume é vol(Ct) =
2r1−r2πr2 tn

n! . Para podermos aplicar o Teorema de Minkowski a Ct e ao reticulado completo χa,
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devemos ter:

vol(Ct) > 2n vol(χa) ⇐⇒ 2r1−r2πr2tn

n!
> 2n2−r2 N(a)

√
|dK |

⇐⇒ tn > 2n−r1π−r2n!N(a)
√
|dK |

=

( 4
π

)r2

n!N(a)
√
|dK |.

Para cada t > 0 satisfazendo essa condição, pelo Teorema de Minkowski existe um elemento
não-nulo v ∈ Ct ∩ χa. Sendo αt ∈ a tal que χαt = v, temos αt 6= 0 e

r1∑
i=1
|σi(αt)|+ 2

r2∑
j=1
|τj(αt)| < t.

Dessa forma, pela desigualdade que hav́ıamos visto, |N(αt)| < tn/nn. Assim, αt ∈ a \ {0} é tal
que |N(αt)| < tn/nn. Como tn >

(
4
π

)r2
n!N(a)

√
|dK | é qualquer, conclúımos que para todo

ε > 0 existe αε ∈ a \ {0} tal que

|N(αε)| <
( 4
π

)r2 n!
nn

N(a)
√
|dK |+

ε

nn
=

(( 4
π

)r2 n!
nn

√
|dK |+

ε

nnN(a)

)
N(a)

⇒ t(a) ≤
( 4
π

)r2 n!
nn

√
|dK |+

ε

nnN(a)
.

Como isso vale para todo ε > 0, conclúımos que t(a) ≤
(

4
π

)r2 n!
nn

√
|dK |, como queŕıamos.

Como consequência da cota de Minkowski, também conseguimos estimativas sobre o discrimi-
nante dK :

Teorema 7.19. Para todo corpo de números algébricos K de grau n ≥ 2, temos:

|dK | ≥
(
π

4

)n
· n

2n

(n!)2 ≥
π

3 ·
(3π

4

)n−1
.

Em particular, para todo corpo de números algébricos K 6= Q nós temos |dK | > 2.

Demonstração. Seja aCK não-nulo. Então pelo Teorema 7.17 existe α ∈ a \ {0} tal que

|N(α)| ≤ µK N(a) ⇐⇒ N(αOK)N(a)−1 ≤ µK ⇐⇒ N(αa−1) ≤ µK .

Assim, b := αa−1 COK é tal que N(b) ≤ µK , isto é:

N(b) ≤
( 4
π

)r2 n!
nn

√
|dK | ≤

( 4
π

)n/2 n!
nn

√
|dK |

⇒ |dK | ≥
(
π

4

)n n2n

(n!)2 N(b)2 ≥
(
π

4

)n n2n

(n!)2 ,

já que N(b) ≥ 1. Para provarmos a segunda desigualdade, notemos que(
π

4

)n
· n

2n

(n!)2 ≥
π

3 ·
(3π

4

)n−1
⇐⇒ n2n

4(n!)2 ≥ 3n−2 ⇐⇒ n2n ≥ 4 · 3n−2(n!)2.

Provaremos essa desigualdade por indução em n. Para n = 2, ela equivale à desigualdade

22·2 ≥ 4 · 32−2(2!)2 ⇐⇒ 16 ≥ 16,
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que é verdadeira. Supondo agora essa desigualdade válida para n ≥ 2, temos:

4 · 3n−1((n+ 1)!)2 = (4 · 3n−2(n!)2) · 3 · (n+ 1)2 ≤ n2n · 3 · (n+ 1)2.

Queremos mostrar que

(n+ 1)2n+2 ≥ n2n · 3 · (n+ 1)2 ⇐⇒
(
n+ 1
n

)2n
≥ 3 ⇐⇒

(
1 + 1

n

)2n
≥ 3.

Mas essa última desigualdade segue diretamente da desigualdade de Bernoulli, concluindo a
indução. Finalmente, para ver que |dK | > 2 para todo corpo de números algébricos K 6= Q,
basta notarmos que para n ≥ 2 nós temos

|dK | ≥
π

3 ·
(3π

4

)n−1
≥ π

3 ·
3π
4 =

π2

4 > 2.

Observação 7.20. Note que o teorema acima também mostra que o número

min{|dK | : K é corpo de números algébricos com [K : Q] = n}

cresce exponencialmente em função de n. Por exemplo, todo corpo de números algébricos de grau
3 tem o módulo de seu discriminante maior ou igual a(

π

4

)3
· 32·3

(3!)2
∼= 9, 81,

e portanto maior ou igual a 10.

Utilizando o Teorema 7.19 juntamente com o Teorema 4.27, nós podemos concluir que toda
extensão da forma K/ Q, onde K 6= Q é um corpo de números algébricos, é ramificada, isto é,
existe algum primo p ∈ N que se ramifica em K. De fato, o Teorema 7.19 nos diz que |dK | > 2.
Assim, existe um primo p ∈N tal que p | dK , e conclúımos pelo Teorema 4.27 que esse primo se
ramifica em K. Desse modo, obtemos:

Teorema 7.21. Para todo corpo de números algébricos K 6= Q, a extensão K/ Q é ramificada.

7.4. O Teorema das Unidades de Dirichlet
Nessa seção, iremos utilizar métodos geométricos para deduzir o conhecido Teorema das Unidades
de Dirichlet, que afirma que o grupo de unidades de um anel de inteiros algébricos OK é o produto
direto do grupo de torção de OK por um número finito de grupos ćıclicos infinitos.

Seja KR = Rr1 ×Cr2 como definido na seção anterior. Esse R-espaço possui uma base
canônica e1, . . . , en, sendo:

e1 = (1, 0, . . . , 0; 0, . . . , 0), . . . , er1 = (0, . . . , 0, 1; 0, . . . , 0),
er1+1 = (0, . . . , 0; 1, 0, . . . , 0), er1+2 = (0, . . . , 0; i, 0, . . . , 0), . . .
en−1 = (0, . . . , 0; 0, . . . , 0, 1), en = (0, . . . , 0; 0, . . . , 0, i).

Também denotaremos fj := er1+2j−1 e gj := er1+2j , para 1 ≤ j ≤ r2. Note que os fj são os
elementos em que aparece uma coordenada complexa 1, e que os gj são os elementos em que
aparece uma coordenada complexa i. Podemos definir uma norma N : KR → R dada por

N(a1, . . . , ar1 ; z1, . . . , zr2) = a1 · · · ar1 |z1|2 · · · |zr2 |2.
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Proposição 7.22. N é um homomorfismo multiplicativo e satisfaz N ◦ χ = NK/ Q.
Demonstração. Como a multiplicação em KR é dada termo a termo, é claro que N é homomor-
fismo multiplicativo. Agora, basta notarmos que, dado a ∈ K, nós temos:

(N ◦ χ)(a) = N(σ1(a), . . . ,σr1(a); τ1(a), . . . , τr2(a)) =
r1∏
i=1

σi(a)
r2∏
j=1
|τj(a)|2

=
r1∏
i=1

σi(a)
r2∏
j=1

(τj(a)τ j(a)) =
∏

σ∈HomQ(K,C)

σ(a) = NK/ Q(a).

Essa norma será útil para comparar os volumes de dois reticulados completos cujas bases
distinguem por um fator de c ∈ KR. Mais especificamente:
Proposição 7.23. Seja c ∈ KR, e sejam ρjk, 1 ≤ j, k ≤ n tais que cej =

∑n
k=1 ρjkek, para todo

1 ≤ j ≤ n.

(a) Nós temos N(c) = det(ρjk).

(b) Sejam v1, . . . , vn ∈ KR quaisquer, e sejam w1, . . . ,wn os vetores obtidos dos vj’s por multi-
plicação por c, isto é, wj = cvj para 1 ≤ j ≤ n. Então, sendo Φv e Φw os paraleleṕıpedos
gerados por v1, . . . , vn e w1, . . . ,wn, respectivamente, temos:

vol(Φw) = |N(c)| · vol(Φv).

Demonstração. (a) Escrevamos c = (a1, . . . , ar1 ; b1 + ic1, . . . , br2 + icr2), onde os aj ’s, bj ’s e cj ’s
são números reais. Então é fácil ver que para 1 ≤ j ≤ r1 nós temos cej = ajej e que para
1 ≤ j ≤ r2 nós temos cfj = bjfj + cjgj e cgj = −cjfj + bjgj . Desse modo, a matriz (ρjk) é
igual a 

a1 · · · 0 0 0 · · · 0 0
... . . . ...

...
... . . . ...

...
0 · · · ar1 0 0 · · · 0 0
0 · · · 0 b1 c1 · · · 0 0
0 · · · 0 −c1 b1 · · · 0 0
... . . . ...

...
... . . . ...

...
0 · · · 0 0 0 · · · br2 cr2

0 · · · 0 0 0 · · · −cr2 br2


.

Essa é uma matriz de blocos, com determinante

a1 · · · ar1(b
2
1 + c2

1) · · · (b2r2 + c2
r2) = a1 · · · ar1 |b1 + ic1|2 · · · |br2 + icr2 |2 = N(c),

como queŕıamos.

(b) Escrevamos, para 1 ≤ j ≤ n, vj =
∑n
h=1 εjheh, onde cada εjh ∈ R. Então nós temos, para

1 ≤ j ≤ n:

wj = cvj = c ·
n∑
h=1

εjheh =
n∑
h=1

εjhceh =
n∑
h=1

n∑
k=1

εjhρhkek =
n∑
k=1

(
n∑
h=1

εjhρhk

)
ek.

Assim, pela Proposição 7.5 e pelo item (a), nós temos:

vol(Φw) =

∣∣∣∣∣det
(

n∑
h=1

εjhρhk

)∣∣∣∣∣ = |det(εjk)| · |det(ρjk)| = vol(Φv) · |N(c)|,

como desejávamos.
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É claro que K×R = (R×)r1 × (C×)r2 e que, dado c ∈ KR, N(c) 6= 0 ⇐⇒ c ∈ K×R . Assim,
como consequência direta da proposição acima, nós temos:

Corolário 7.24. Seja c ∈ KR, e suponhamos que v1, . . . , vn ∈ KR formem a base de um reticulado
completo Γ. Então cv1, . . . , cvn geram o Z-módulo cΓ := {cz : z ∈ Γ}. Além disso, cΓ será um
reticulado completo de KR se e somente se c ∈ K×R , e nesse caso vol(cΓ) = |N(c)| · vol(Γ).

Na demonstração do Teorema das Unidades de Dirichlet, utilizaremos a chamada teoria multi-
plicativa de Minkowski. Note que a restrição da imersão canônica a K× nos dá um homomorfismo
de grupos multiplicativos χ : K× → K×R . Para trabalharmos com reticulados, precisamos transfor-
mar esses grupos multiplicativos em grupos aditivos. Podemos fazer isso por meio do logaritmo!
Mais especificamente, definimos homomorfismos de grupos µ1, . . . ,µr1 , θ1, . . . , θr2 : K×R → R do
grupo multiplicativo K×R para o grupo aditivo R, dados por:

µj(a1, . . . , ar1 ; z1, . . . , zr2) = log|aj |, para 1 ≤ j ≤ r1;
θj(a1, . . . , ar1 ; z1, . . . , zr2) = log|zj |2, para 1 ≤ j ≤ r2.

Nós ainda denotamos µr1+j := θj , para 1 ≤ j ≤ r2. É claro que os µj e os θj são todos sobrejetores.
Nós definimos µ : K×R → Rr1+r2 dado por

µc = (µ1c, . . . ,µr1+r2c) = (µ1c, . . . ,µr1c, θ1c, . . . , θr2c).

Note que, escrevendo c = (a1, . . . , ar1 ; z1, . . . , zr2), nós temos:

µc = (log|a1|, . . . , log|ar1 |, log|z1|2, . . . , log|zr2 |2).

Segue da sobrejetividade dos µj e dos θj que µ também é sobrejetor. Definamos ainda o
homomorfismo λ := µ ◦ χ : K× → Rr1+r2 , e para 1 ≤ j ≤ r1 + r2, os homomorfismos λj :=
µj ◦χ : K× → R. O homomorfismo λ é chamado de representação logaŕıtmica de K×, e dado
a ∈ K× é fácil ver que temos

λa = (λ1a, . . . ,λr1+r2a) = (log|σ1(a)|, . . . , log|σr1(a)|, log|τ1(a)|2, . . . , log|τr2(a)|2).

Definamos Tr : Rr1+r2 → R dado pela soma das coordenadas:

Tr(x1, . . . ,xr1+r2) = x1 + · · ·+ xr1+r2 .

É claro que essa é uma transformação R-linear. O núcleo de Tr é o hiperplano

H := ker Tr = {(x1, . . . ,xr1+r2) ∈ Rr1+r2 : x1 + · · ·+ xr1+r2 = 0}.

Notemos que H é um R-espaço de dimensão r1 + r2 − 1, que se torna um espaço vetorial
euclidiano com a topologia induzida de Rr1+r2 .

Proposição 7.25. Nós temos Tr ◦µ = log(|·|) ◦N .

Demonstração. Seja c = (a1, . . . , ar1 ; z1, . . . , zr2) ∈ KR qualquer. Então

(Tr ◦µ)(c) = Tr(log|a1|, . . . , log|ar1 |, log|z1|2, . . . , log|zr2 |2)
= log|a1|+ · · ·+ log|ar1 |+ log|z1|2 + · · ·+ log|zr2 |2

= log(|a1| · · · |ar1 ||z1|2 · · · |zr2 |2)
= log(|a1 · · · ar1 |z1|2 · · · |zr2 |2|)
= (log(|·|) ◦N)(c),

concluindo a demonstração.
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Devido às proposições 7.22 e 7.25, nós temos o seguinte diagrama comutativo:

K× K×R Rr1+r2

Q× R× R

χ

NK/ Q

λ

N

µ

Tr

log(|·|)

Calculemos agora kerµ e µ−1(H):

Proposição 7.26. (a) O núcleo de µ é dado por

kerµ = {(a1, . . . , ar1 ; z1, . . . , zr2) ∈ K×R : |a1| = · · · = |ar1 | = |z1| = · · · = |zr2 | = 1}.

(b) µ−1(H) = {c ∈ K×R : N(c) = ±1}.

Demonstração. (a) Dado c = (a1, . . . , ar1 ; z1, . . . , zr2) ∈ KR, nós temos:

c ∈ kerµ ⇐⇒ 0 = µc = (log|a1|, . . . , log|ar1 |, log|z1|2, . . . , log|zr2 |2)
⇐⇒ log|a1| = · · · = log|ar1 | = log|z1| = · · · = log|zr2 | = 0
⇐⇒ |a1| = · · · = |ar1 | = |z1| = · · · = |zr2 | = 1,

provando a afirmação desejada.

(b) Dado c ∈ KR, nós temos:

c ∈ µ−1(H) ⇐⇒ µ(c) ∈ H = ker Tr ⇐⇒ Tr(µ(c)) = 0
⇐⇒ log(|N(c)|) = 0 ⇐⇒ |N(c)| = 1,

onde utilizamos a proposição acima. Isso prova a afirmação desejada.

Mostraremos agora algumas propriedades sobre o subgrupo de torção de um corpo de números
K. Lembremos que o subgrupo de torção de K é o subgrupo W (K) ⊆ K× dos elementos de ordem
finita de K×, que é o grupo das ráızes da unidade de K. Como toda raiz da unidade de K é raiz
de um polinômio da forma xm − 1, vemos que W (K) ⊆ OK . Provaremos que W (K) é finito e se
caracteriza como o conjunto dos elementos de OK tais que todas as suas imagens pelas imersões
de K têm módulo 1. Começamos com o seguinte resultado:

Teorema 7.27. Seja k ≥ 0 qualquer. Então o conjunto {α ∈ OK : |σ1α| ≤ k, . . . , |σnα| ≤ k} é
finito.

Demonstração. Consideremos o conjunto

C := {(a1, . . . , ar1 ; z1, . . . , zr2) ∈ KR : |a1| ≤ k, . . . , |ar1 | ≤ k, |z1| ≤ k, . . . , |zr2 | ≤ k}.

Então é claro que C é um subconjunto limitado de KR. Como χOK é um reticulado de KR, esse
é um subconjunto discreto de KR, e portanto C ∩ χOK é finito. Assim, existe um número finito
de α ∈ OK tais que |σ1α| ≤ k, . . . , |σr1α| ≤ k, |τ1α| ≤ k, . . . , |τr2α| ≤ k. Finalmente, como para
1 ≤ j ≤ r2 temos |τ jα| = |τjα|, vemos que existe um número finito de α ∈ OK tais que |σjα| ≤ k
para todo 1 ≤ j ≤ n, como queŕıamos.
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Lembremos que, dado m inteiro positivo, denotamos por Wm(K) o conjunto das ráızes m-
ésimas da unidade em K. A partir do teorema acima, conseguimos o seguinte:

Teorema 7.28. Nós temos W (K) = {α ∈ OK : |σ1α| = · · · = |σnα| = 1}. Em particular, W (K)
é finito, e portanto temos W (K) = Wm(K) para algum m inteiro positivo. Logo W (K) é ćıclico.

Demonstração. Denotaremos o conjunto da direita por S. Mostremos que W (K) = S:

(⊆): Dado α ∈ W (K), como já observamos acima temos α ∈ OK . Sabemos que existe m
inteiro positivo tal que αm = 1. Assim, para todo 1 ≤ j ≤ n, nós temos (σjα)m = 1. Em
particular, |σjα| = 1. Isso prova que α ∈ S.

(⊇): Note que S é um conjunto finito pelo teorema acima. Seja α ∈ S. Então α ∈ OK é
tal que |σ1α| = · · · = |σnα| = 1. Vemos então que, para todo inteiro positivo k, nós temos
αk ∈ OK e |σ1α

k| = · · · = |σnαk| = 1. Ou seja, αk ∈ S para todo inteiro positivo k. Mas
sendo S finito, vemos que existem k1 > k2 > 0 tais que αk1 = αk2 ⇒ αk1−k2 = 1, mostrando que
α ∈W (K).

Assim, provamos que W (K) = S. Como observamos acima, S é finito, e portanto W (K)
também o é. Dessa forma, pela Proposição 2.23, vemos que existe um inteiro positivo m tal
que W (K) = Wm(K), que é ćıclico.

Com isso, conseguimos demonstrar:

Proposição 7.29. (a) kerλ = {α ∈ K× : |σ1(α)| = · · · = |σn(α)| = 1}. Assim, nós temos
OK ∩ kerλ = W (K).

(b) λ−1(H) = {α ∈ K× : NK/ Q(α) = ±1}. Assim, nós temos λ−1(H) ∩OK = O×K .

Demonstração. (a) Dado α ∈ K× qualquer, nós temos:

α ∈ kerλ ⇐⇒ 0 = λα = µχα ⇐⇒ χα ∈ kerµ.

Pela Proposição 7.26, isso ocorre se e só se tivermos

|σ1(α)| = · · · = |σr1(α)| = |τ1(α)| = · · · = |τr2(α)| = 1
⇐⇒ |σ1(α)| = · · · = |σn(α)| = 1.

Finalmente, se α ∈ OK , então pelo Teorema 7.28 vemos que isso equivale a α ∈W (K).

(b) Dado α ∈ K× qualquer, nós temos:

α ∈ λ−1(H) ⇐⇒ λα ∈ H ⇐⇒ µχα ∈ H ⇐⇒ χα ∈ µ−1(H).

Pela Proposição 7.26, isso ocorre se e só se N(χα) = ±1. Como N ◦ χ = NK/ Q, isso
equivale a NK/ Q(α) = ±1. Finalmente, a última afirmação segue de termos a igualdade
O×K = {α ∈ OK : NK/ Q(α) = ±1}, que é válida devido ao Corolário 2.3.

Uma consequência da proposição acima é que para qualquer subanel A ⊆ OK nós temos
A× ⊆ O×K ⊆ λ−1(H). Assim, λ(A×) ⊆ H. De fato, podemos mostrar o seguinte importante
resultado:

Teorema 7.30. Para qualquer subanel A ⊆ OK , λ(A×) é um reticulado em H.
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Demonstração. Sendo λ homomorfismo de grupos, é claro que λ(A×) é subgrupo aditivo de H.
Basta então mostrar que λ(A×) é um subconjunto discreto de H. É claro que isso equivale a
mostrar que λ(A×) é discreto em Rr1+r2 , o que por sua vez equivale a mostrar que a interseção de
λ(A×) com qualquer conjunto limitado de Rr1+r2 é finita. Então é claro que é suficiente provar
que para todo t ≥ 1 a interseção λ(A×) ∩Ct é finita, onde Ct é o paraleleṕıpedo:

Ct := {(a1, . . . , ar1 , b1, . . . , br2) ∈ Rr1+r2 : |a1| ≤ t, . . . , |ar1 | ≤ t, |b1| ≤ 2t, . . . , |br2 | ≤ 2t},

uma vez que os conjuntos Ct para t ≥ 1 cobrem Rr1+r2 . Notemos que, dado α ∈ A×, nós temos:

λ(α) ∈ Ct ⇐⇒ |log|σ1(α)||, . . . , |log|σr1(α)|| ≤ t, |log|τ1(α)|2|, . . . , |log|τr2(α)|2| ≤ 2t
⇐⇒ e−t ≤ |σ1(α)|, . . . , |σr1(α)|, |τ1(α)|, . . . , |τr2(α)| ≤ et

=⇒ |σ1(α)|, . . . , |σn(α)| ≤ et.

Aplicando o Teorema 7.27 para k = et, conclúımos que existe apenas um número finito de elemen-
tos α ∈ A× ⊆ OK satisfazendo essas desigualdades. Isso prova que λ(A×)∩Ct é finito, concluindo
a demonstração.

Nós mostraremos agora que se A ⊆ OK for uma ordem de K então λ(A×) será de fato um
reticulado completo em H. Para isso, precisaremos de dois lemas:

Lema 7.31. Seja C ⊆ µ−1(H) limitado em KR. Então o subconjunto µC ⊆ H é limitado em
Rr1+r2 (e portanto em H).

Demonstração. Como C é limitado em KR, existe algum t ≥ 1 para o qual C ⊆ St, onde St é a
região:

St := {(a1, . . . , ar1 ; z1, . . . , zr2) ∈ KR : |a1| ≤ t, . . . , |ar1 | ≤ t, |z1|2 ≤ t, . . . , |zr2 |2 ≤ t}.

Dado c = (a1, . . . , ar1 ; z1, . . . , zr2) ∈ C, nós temos:

µc = (µ1c, . . . ,µr1+r2c) = (log|a1|, . . . , log|ar1 |, log|z1|2, . . . , log|zr2 |2).

Assim, basta provarmos que existe T > 0 tal que, para todo c ∈ C e para todo 1 ≤ j ≤ r1 + r2,
tenhamos |µjc| ≤ T . Notemos que, como c ∈ St, nós temos µjc ≤ log t para todo 1 ≤ j ≤ r1 + r2.
Agora, como µc ∈ H, nós temos Tr(µc) = 0, ou seja, µ1c+ · · ·+ µr1+r2c = 0. Dessa forma, µjc
também é limitado por baixo:

µjc = −µ1c− · · · − µj−1c− µj+1c− · · · − µr1+r2c ≥ −(r1 + r2 − 1) log t.

Assim, para todo 1 ≤ j ≤ r1 + r2, nós temos:

−(r1 + r2 − 1) log t ≤ µjc ≤ log t⇒ |µjc| ≤ (r1 + r2) log t.

Dessa forma, basta tomarmos T = (r1 + r2) log t.

Lema 7.32. Sejam C ⊆ KR limitado e v ∈ KR qualquer. Então v ·C é um conjunto limitado.

Demonstração. Como C é limitado, existe t > 0 tal que

C ⊆ {(x1, . . . ,xr1 ; y1, . . . , yr2) ∈ KR : |x1| ≤ t, . . . , |xr1 | ≤ t, |y1| ≤ t, . . . , |yr2 | ≤ t}.

Escrevendo v = (a1, . . . , ar1 ; z1, . . . , zr2), vemos que para todo c = (x1, . . . ,xr1 ; y1, . . . , yr2) ∈ C
nós temos vc = (a1x1, . . . , ar1xr1 ; z1y1, . . . , zr2yr2). Note que |a1x1| ≤ |a1|t, . . . , |ar1xr1 | ≤ |ar1 |t,
|z1y1| ≤ |z1|t, . . . , |zr2yr2 | ≤ |zr2 |t. Assim, v ·C está contido no conjunto

{(v1, . . . , vr1 ;w1, . . . ,wr2) ∈ KR : |v1| ≤ |a1|t, . . . , |vr1 | ≤ |ar1 |t, |w1| ≤ |z1|t, . . . , |wr2 | ≤ |zr2 |t},

que é limitado. Logo v ·C é limitado.
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Também precisaremos do seguinte resultado, que diz que para cada k ∈N o número de classes
de elementos associados que têm como norma absoluta k é finito:

Teorema 7.33. Sejam A um subanel de K que é um Z-módulo finitamente gerado e k ∈ N.
Então existem apenas finitas classes de elementos associados A× · α1, . . . ,A× · αm em A tais que
|NK/ Q(αj)| = k, para todo 1 ≤ j ≤ m.

Demonstração. Afirmamos que se α,β ∈ A são tais que |N(α)| = |N(β)| = k e α ≡ β (mod kA),
então α e β são associados. Sabemos que α | N(α) = ±k e β | N(β) = ±k em A. Assim, α e
β dividem k em A, logo existem x, y ∈ A tais que αx = βy = k. Agora, como α ≡ β (mod kA),
existe a ∈ A tal que α− β = ka. Desse modo:

α = β + ka = β + βya = β(1 + ya), e
β = α− ka = α− αxa = α(1− xa).

Desse modo, conclúımos que α e β são associados, justificando nossa afirmação. Com isso, basta
mostrar que existe um número finito de classes de congruência módulo kA. Sejam γ1, . . . , γr ∈ A
tais que A = Z γ1 + · · ·+ Z γr. Então é fácil ver que todo α ∈ A está na classe de congruência
módulo kA de algum elemento d1γ1 + · · ·+ drγr com 0 ≤ dj < k para todo 1 ≤ j ≤ r. Como
existem no máximo kr de tais elementos, conclúımos que o número de classes de congruência
módulo kA é finito, terminando a demonstração.

Teorema 7.34. Seja A uma ordem de K. Então λ(A×) é um reticulado completo em H.

Demonstração. Pelo Teorema 7.30, λ(A×) é um reticulado em H. Assim, resta mostrarmos que
λ(A×) é um reticulado completo. Pelo Teorema 7.4, basta provarmos que existe um subconjunto
limitado S ⊆ H tal que H =

⋃
u∈A×(λ(u) + S). É suficiente encontrarmos B ⊆ µ−1(H) limitado

em Rr1+r2 tal que µ−1(H) =
⋃
u∈A× χ(u) ·B, pois como µ é sobrejetora nós teremos então:

H = µ(µ−1(H)) = µ

 ⋃
u∈A×

χ(u) ·B

 =
⋃

u∈A×
µ(χ(u) ·B) =

⋃
u∈A×

(λ(u) + µB).

Como pelo Lema 7.31 µB é limitado em H, podemos tomar S = µB. Assim, encontremos um tal
conjunto B. Pelo Corolário 7.15, sabemos que χA é um reticulado completo em KR. Tomemos
t > n

√
vol(χA), e definamos C ⊆ KR como sendo o cubo:

C :=


n∑
j=1

γjej : − t ≤ γj ≤ t, para todo 1 ≤ j ≤ n

.

É claro que C é limitado, simétrico, convexo e que vol(C) = (2t)n. Para todo c ∈ C, nós temos
|N(c)| ≤ 2r2tn. De fato, dado c = ∑n

j=1 γjej ∈ C:

|N(c)| = |γ1| · · · |γr1 ||γr1+1 + iγr1+2|2 · · · |γn−1 + iγn|2

= |γ1| · · · |γr1 |(γ2
r1+1 + γ2

r1+2) · · · (γ2
n−1 + γ2

n)

≤ t · · · t︸ ︷︷ ︸
r1 vezes

(t2 + t2) · · · (t2 + t2)︸ ︷︷ ︸
r2 vezes

= 2r2tr1+2r2 = 2r2tn.

Pelo Teorema 7.33, existem α1, . . . ,αr ∈ A não-nulos tais que todo α ∈ A não-nulo satisfazendo
|NK/ Q(α)| ≤ 2r2tn seja associado a algum αj para 1 ≤ j ≤ r. Definamos

B := µ−1(H) ∩
r⋃
j=1

(χαj)
−1 ·C.
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Como C é limitado, cada (χαj)−1 · C é limitado pelo Lema 7.32. Assim, é claro que B é
limitado. Desse modo, a prova estará completa se mostrarmos que ⋃u∈A× χ(u) ·B = µ−1(H):

(⊆): Sejam u ∈ A× e b ∈ B quaisquer. Queremos mostrar que χ(u)b ∈ µ−1(H). Pela Proposição
7.26, nós temos N(b) = ±1, e portanto N(χ(u)b) = N(χ(u))N(b) = NK/ Q(u)N(b) = ±1, logo
também pela Proposição 7.26 nós conclúımos que χ(u)b ∈ µ−1(H), como queŕıamos.

(⊇): Seja v ∈ µ−1(H) qualquer. Então pelas proposições 7.23 e 7.26 nós vemos que v · χA é
um reticulado completo em KR com volume vol(v · χA) = |N(v)| vol(χA) = vol(χA). Assim, C
é simétrico, convexo e

vol(C) = 2ntn > 2n vol(χA) = 2n vol(v · χA).

Portanto, pelo Teorema de Minkowski, C ∩ (v ·χA) \{0} 6= ∅, e conclúımos que existe um elemento
c = vχα ∈ C para algum α ∈ A não-nulo. Notemos que

N(c) = N(vχα) = N(v)N(χα) = ±NK/ Q(α).

Assim, como c ∈ C, temos |NK/ Q(α)| = |N(c)| ≤ 2r2tn. Com isso, sabemos que existem
1 ≤ j ≤ r e u ∈ A× tais que αj = αu. Disso obtemos χαj = χα · χu ⇒ (χα)−1 = χu(χαj)−1.
Assim, v = (χα)−1 · c = χu(χαj)−1c. Além disso, nós temos:

±1 = N(v) = N(χu(χαj)
−1c) = N(χu)N((χαj)

−1c) = NK/ Q(u)N((χαj)
−1c)

= ±N((χαj)
−1c),

logo pela Proposição 7.26 nós conclúımos que (χαj)−1c ∈ µ−1(H). Desse modo, (χαj)−1c ∈ B, e
portanto

v = χu(χαj)
−1c ∈

⋃
ε∈A×

χ(ε) ·B.

Conclúımos que ⋃u∈A× χ(u) ·B = µ−1(H), e então λ(A×) é um reticulado completo em H,
como queŕıamos demonstrar.

Como corolário desse resultado, nós obtemos o Teorema das Unidades de Dirichlet:

Teorema 7.35 (Teorema das Unidades de Dirichlet). Seja K um corpo de números algébricos com
[K : Q] = n e assinatura (r1, r2), e seja A uma ordem de K. Então existem ε1, . . . , εr1+r2−1 ∈ A×
tais que A× seja o produto direto W (A)� 〈ε1〉 � · · · � 〈εr1+r2−1〉 do grupo ćıclico finito W (A) e
dos grupos multiplicativos ćıclicos infinitos gerados por ε1, . . . , εr1+r2−1. Em resumo, A× é um
subgrupo finitamente gerado de K×, de posto r1 + r2 − 1 e com grupo de torção ćıclico.

Demonstração. Denotemos r := r1 + r2−1. Pelo teorema acima, λ(A×) é um reticulado completo
em H, e portanto existem ε1, . . . , εr ∈ A× tais que λε1, . . . ,λεr formem uma base desse reticulado.
Seja u ∈ A× qualquer. Então existem únicos k1, . . . , kr ∈ Z tais que

λu = k1λε1 + · · ·+ krλεr = λ(εk1
1 · · · ε

kr
r ),

já que λ é homomorfismo entre o grupo multiplicativo K× e o grupo aditivo Rr1+r2 . Desse modo,
λ(uε−k1

1 · · · ε−krr ) = 0, e assim uε−k1
1 · · · ε−krr ∈ kerλ∩A = W (K) ∩A = W (A), pela Proposição

7.29. Logo existe w ∈ W (A) tal que uε−k1
1 · · · ε−krr = w ⇒ u = wεk1

1 · · · εkrr . Isso prova que
A× = W (A) · 〈ε1〉 · · · 〈εr〉. Para vermos que esse produto é direto, basta mostrarmos que se
w ∈ W (A) e k1, . . . , kr ∈ Z são tais que wεk1

1 · · · εkrr = 1, então w = 1 e k1 = · · · = kr = 0.
Aplicando λ de ambos os lados, nós obtemos:

λ(wεk1
1 · · · ε

kr
r ) = λ(1) ⇒ λ(w) + k1λ(ε1) + · · ·+ krλ(εr) = 0

⇒ k1λ(ε1) + · · ·+ krλ(εr) = 0
⇒ k1 = · · · = kr = 0,
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já que 1,w ∈ W (A) ⊆ kerλ e λ(ε1), . . . ,λ(εr) são linearmente independentes. Assim, temos
1 = wε0

1 · · · ε0
r = w, e portanto esse produto é de fato direto. Note que isso nos diz em particular

que ε1, . . . , εr 6∈ W (A), e portanto os grupos ćıclicos 〈ε1〉, . . . , 〈εr〉 são de fato infinitos. Final-
mente, como W (K) é ćıclico finito pelo Teorema 7.28, vemos que W (A) ⊆ W (K) também o é,
provando o teorema.

Definição ((Sistema de) Unidades Fundamentais). Nós dizemos que uma r1 + r2 − 1-upla de
unidades ε1, . . . , εr1+r2−1 de uma ordem A de K é um sistema de unidades fundamentais
de A se ela satisfizer a condição do teorema acima, e chamamos seus elementos de unidades
fundamentais de A. Caso A = OK , chamaremos ainda esse sistema de sistema de unidades
fundamentais de K, e seus elementos de unidades fundamentais de K.

Observemos que r1 + r2 − 1 = 0 só pode ocorrer se (r1, r2) = (1, 0), caso em que K = Q, ou
se (r1, r2) = (0, 1), caso em que K = Q(

√
d) é um corpo quadrático complexo, isto é, com d < 0.

Esses são os únicos casos em que todas as unidades são ráızes da unidade.

7.5. O Grupo das Unidades de um Corpo Quadrático
Nessa seção, estudaremos um exemplo particular do Teorema das Unidades de Dirichlet, o caso
em que K é um corpo quadrático. Nós determinaremos a estrutura do grupo das unidades de
suas ordens, e veremos como isso se relaciona com um tipo de equação diofantina: as chamadas
equações de Pell.

Nós denotaremos, para d ∈ D, Kd := Q(
√
d). Seu anel de inteiros algébricos é Z[δd], onde

δd =
√
d se d ≡ 2, 3 (mod 4) e δd = 1+

√
d

2 se d ≡ 1 (mod 4). Para cada n inteiro positivo,
definimos Ad,n := Z[nδd]. É claro que Ad,n ⊆ OKd = Ad,1 é uma ordem de Kd, e que dados
dois inteiros positivos n,n′ nós temos Ad,n ⊆ Ad,n′ ⇐⇒ n′ | n. Segue da Proposição 1.31 que
∆K/ Q(1,nδd) = n2∆K/ Q(1, δd) = n2dKd . Desse modo, pelo Teorema 2.10, (OKd : Ad,n) = n.
Mostraremos agora que todo subanel de OKd diferente de Z é igual a algum dos anéis Ad,n:

Teorema 7.36. O conjunto Ad dos subanéis A de OKd tais que A 6= Z está em correspondência
biuńıvoca com o conjunto N∗, por meio das aplicações n 7→ Ad,n, A 7→ (OKd : A).

Demonstração. Nós sabemos que (OKd : Ad,n) = n e que a aplicação n 7→ Ad,n é injetora. Assim,
basta mostrar que essa aplicação é também sobrejetora. Seja A 6= Z um subanel de OKd . Então
todo elemento de A é da forma a+ bδd, com a, b ∈ Z. Seja n ∈N∗ minimal tal que c+ nδd ∈ A
para algum c ∈ Z (tal n existe já que A 6= Z). Mostraremos que A = Ad,n, ou seja, que
A = Z[nδd]. Como c+ nδd ∈ A, temos nδd ∈ A, e assim é claro que Z[nδd] ⊆ A. Para mostrar a
outra inclusão, seja a+ bδd ∈ A qualquer, com a, b ∈ Z. Então existem q, r ∈ Z, 0 ≤ r < n, tais
que b = qn+ r. Assim:

A 3 (a+ bδd)− q(c+ nδd) = (a− qc) + (b− qn)δd = (a− qc) + rδd.

Pela minimalidade de n, conclúımos que r = 0, e assim a+ bδd = a+ qnδd ∈ Z[nδd], mostrando
que A ⊆ Z[nδd]. Então provamos que A = Ad,n, concluindo a demonstração.

Lembremos que A×d,n = {x ∈ Ad,n : NKd/ Q(x) = ±1} = O×Kd ∩Ad,n. Será às vezes conveniente
separarmos os elementos de norma 1 daqueles de norma −1. Assim, definimos:

U0(Ad,n) := {x ∈ Ad,n : NKd/ Q(x) = 1}, U1(Ad,n) := {x ∈ Ad,n : NKd/ Q(x) = −1}.

Então é claro que A×d,n = U0(Ad,n) tU1(Ad,n).

Proposição 7.37. Sejam n um inteiro positivo, d ∈ D e e ∈ {0, 1}. Então:
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(a) Dados a, b ∈ Z, temos que a+ bn
√
d ∈ Ue(Ad,n) se e só se (a, b) for solução da equação

x2 − n2dy2 = (−1)e.

(b) Se d ≡ 1 (mod 4), então a + bnδd ∈ Ue(Ad,n) se e só se (a, b) for solução da equação
x2 + nxy+ n2 · 1−d

4 y2 = (−1)e.

Demonstração. (a) Nós temos N(a+ bn
√
d) = a2 − n2db2. Assim, é claro que nós teremos

a+ bn
√
d ∈ Ue(Ad,n) ⇐⇒ a2 − n2db2 = (−1)e.

(b) Nós temos N(a + bnδd) = a2 + nab + n2 · 1−d
4 b2, logo do mesmo modo que em (a) nós

conclúımos o resultado desejado.

Temos a seguinte generalização do Teorema 2.21 para os anéis Ad,n, que se prova facilmente:

Teorema 7.38. (a) A×−1,1 = O×K−1
= {1, i,−i,−1}.

(b) A×−3,1 = O×K−3
= {1, ζ, ζ2, ζ3, ζ4, ζ5}, onde ζ = 1+

√
−3

2 é uma raiz sexta da unidade.

(c) A×d,n = {1,−1} se d < 0 e (d,n) 6= (−1, 1), (−3, 1).

Assim, o caso interessante ocorre quando d > 0. Nesse caso, as duas imersões de Kd são a
identidade e a conjugação

√
d 7→ −

√
d. Note que ambas são imersões reais. Assim, r1 = 2 e

r2 = 0, de modo que r1 + r2 − 1 = 1. Pelo Teorema das Unidades, conclúımos que para toda
ordem A de Kd existe uma unidade ε ∈ A× para a qual A× = W (A) � 〈ε〉 = {1,−1} � 〈ε〉.
Ou seja, A× = {±εj : j ∈ Z}. Notemos que podemos trocar ε por qualquer um dos elementos
±ε, ±ε−1, e que exatamente um deles é maior que 1. Assim, podemos supor sem perda de
generalidade que ε > 1, e chamamos tal ε de unidade fundamental de A. Nós denotaremos
V (A) := A× ∩ [1,+∞). Note que então V (A) = {εj : j ∈ N∗}. Assim, ε é o menor elemento do
conjunto V (A).

Para fins práticos, é importante determinar ε. Começamos com o seguinte resultado, que nos
diz que todo elemento de V (Ad,n), para d > 0, tem coeficientes positivos na base {1,nδd}:

Proposição 7.39. Sejam d ∈ D com d > 0 e n ∈N∗. Então nós temos:

V (Ad,n) ⊆ {a+ bnδd : a, b ∈ Z, a > 0, b > 0},

exceto no caso (d,n) = (5, 1), no qual a condição a > 0 deve ser substitúıda por a ≥ 0.

Demonstração. Seja η = a+ bnδd ∈ V (Ad,n) qualquer, com a, b ∈ Z. Então a+ bnδd > 1 e
|N(a+ bnδd)| = 1. Seja σ : Q(

√
d) → Q(

√
d) dado por

√
d 7→ −

√
d. Se d ≡ 2, 3 (mod 4), temos

δd =
√
d 7→ −

√
d, e se d ≡ 1 (mod 4), temos δd = 1+

√
d

2 7→ 1−
√
d

2 . Note que, em qualquer caso,
δd − σ(δd) > 0 e σ(δd) < 0. Além disso, para d 6= 5, temos σ(δd) < −1.

Observemos agora que

1 = |N(η)| = |η · ση| ⇒ |ση| = 1
η
< 1⇒ |a+ bnσ(δd)| < 1.

De a+ bnδd > 1 e a+ bnσ(δd) < 1 nós conclúımos que

(a+ bnδd)− (a+ bnσ(δd)) > 0⇒ bn(δd − σ(δd)) > 0⇒ b > 0,

pois como já vimos δd − σ(δd) > 0. Agora, como σ(δd) < 0 e b ≥ 1, nós temos:

−1 < a+ bnσ(δd) ≤ a− n|σ(δd)| ⇒ a > n|σ(δd)| − 1.
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Para d 6= 5, temos então a > n · 1− 1 = n− 1 ≥ 0, como queŕıamos. Suponhamos agora d = 5.
Nesse caso, temos σ(δd) = 1−

√
5

2 , e assim

a > n ·
√

5− 1
2 − 1 ≥

√
5− 1
2 − 1 =

√
5− 3
2 > −1⇒ a ≥ 0,

e caso n ≥ 2:

a > 2 ·
√

5− 1
2 − 1 =

√
5− 2 > 0,

como queŕıamos.

Nós podemos ainda separar V (Ad,n) entre os elementos que têm norma 1 ou −1, definindo
V0(Ad,n) := V (Ad,n) ∩ U0(Ad,n) e V1(Ad,n) := V (Ad,n) ∩ U1(Ad,n). É claro que nós temos
V (Ad,n) = V0(Ad,n) t V1(Ad,n). Podemos caracterizar esses dois conjuntos da seguinte forma:

Teorema 7.40. Sejam d ∈ D com d > 0, n ∈N∗ e e ∈ {0, 1}.

(a) Se d ≡ 2, 3 (mod 4), temos:

Ve(Ad,n) = {a+ bn
√
d : a, b ∈N∗, a2 − n2db2 = (−1)e}.

(b) Se d ≡ 1 (mod 4), temos:

Ve(Ad,n) =

{
a+ bnδd : a ∈N, b ∈N∗, a2 + nab+ n2 · 1− d4 · b2 = (−1)e

}
=

{
a

2 +
b

2 · n
√
d : a, b ∈N∗, a2 − n2db2 = 4(−1)e

}
.

Demonstração. O item (a) e a primeira igualdade do item (b) seguem das proposições 7.37 e 7.39
e do fato de que, para a ∈N e b ∈N∗, nós temos a+ bnδd > 1 (note que sempre temos δd > 1).
Mostremos a segunda igualdade de (b):

(⊆): Sejam a ∈N, b ∈N∗ tais que a2 + nab+ n2 · 1−d
4 · b

2 = (−1)e. Notemos que

a+ bnδd = a+ bn · 1 +
√
d

2 =
2a+ bn

2 +
b

2 · n
√
d.

Chamemos ã := 2a+ bn ∈N∗. Então a+ bnδd =
ã
2 + b

2 · n
√
d. Notemos que a = ã−bn

2 . Assim:

(−1)e = a2 + nab+ n2 · 1− d4 · b2 =

(
ã− bn

2

)2
+ n

(
ã− bn

2

)
b+ n2 · 1− d4 · b2

=
ã2 − 2ãbn+ n2b2

4 +
ãbn− n2b2

2 + n2 · 1− d4 · b2

=
ã2 − 2ãbn+ n2b2 + 2ãbn− 2n2b2 + (1− d)n2b2

4

=
ã2 − n2db2

4 .

Desse modo, ã2 − n2db2 = 4(−1)e, provando esta inclusão.

(⊇): Sejam a, b ∈ N∗ tais que a2 − n2db2 = 4(−1)e. Avaliando essa equação módulo 4, ob-
temos a2 − (bn)2 ≡ 0 (mod 4), de onde é fácil ver que devemos ter 2 | a − bn. Além disso,
notemos que

−4 ≤ a2 − n2db2 < a2 − (bn)2 = (a− bn)(a+ bn)⇒ a− bn > − 4
a+ bn

≥ −4
2 = −2,
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e de 2 | a − bn conclúımos que a − bn ≥ 0. Definamos ã := a−bn
2 ∈ N. Então nós temos

a = 2ã+ bn, de modo que

a

2 +
b

2 · n
√
d =

2ã+ bn

2 +
bn

2 ·
√
d = ã+ bn · 1 +

√
d

2 = ã+ bnδd.

Além disso, obtemos que ã2 + nãb + n2 · 1−d
4 · b

2 = (−1)e (é basicamente a mesma conta da
inclusão (⊆), lida de trás para frente), o que prova essa inclusão.

Com as caracterizações dadas acima para Ve(Ad,n), conseguimos o seguinte resultado, que será
bastante útil para calcular ε:

Corolário 7.41. Sejam η1, η2 ∈ V (Ad,n). Escrevamos, para j = 1, 2:

ηj =

{
aj + bjn

√
d, se d ≡ 2, 3 (mod 4);

aj
2 +

bj
2 · n ·

√
d, se d ≡ 1 (mod 4).

onde aj , bj ∈ N∗ (sabemos que essas representações para η1 e η2 existem pelo teorema acima).
Então η1 ≤ η2 ⇒ b1 ≤ b2.

Demonstração. Nós provaremos a contrapositiva, ou seja, que b1 > b2 ⇒ η1 > η2. Suponhamos
então b1 > b2. Denotemos q = 1, se d ≡ 2, 3 (mod 4), e q = 4, se d ≡ 1 (mod 4). Então nós
sabemos pelo teorema acima que a2

j − n2db2j = ±q, para j = 1, 2, e portanto

a2
j + q ≥ n2db2j ≥ a2

j − q, para j = 1, 2.

Sendo b1 > b2, nós temos então:

a2
1 + q ≥ n2db21 ≥ n2d(b2 + 1)2 > n2db22 + 2d ≥ a2

2 − q+ 2d > a2
2 + q,

já que d > q. Disso obtemos que a1 > a2. Assim, sendo a1 > a2 e b1 > b2, é claro que η1 > η2,
como queŕıamos demonstrar.

Como consequência disso, nós temos o seguinte critério com o qual podemos determinar a
unidade fundamental de Ad,n algoritmicamente:

Teorema 7.42. Sejam d ∈ D com d > 0 e n ∈N∗. Então:

(a) Se d ≡ 2, 3 (mod 4), seja b0 o menor inteiro positivo b para o qual n2db2 + 1 ou n2db2 − 1
seja um quadrado perfeito positivo. Então, sendo a0 ∈ N∗ a raiz quadrada desse quadrado
perfeito, temos que a unidade fundamental ε de Ad,n é ε = a0 + b0n

√
d.

(b) Se d ≡ 1 (mod 4), seja b0 o menor inteiro positivo b para o qual n2db2 + 4 ou n2db2 − 4
seja um quadrado perfeito positivo. Então, sendo a0 ∈ N∗ a raiz quadrada desse quadrado
perfeito, temos que a unidade fundamental ε de Ad,n é ε = a0

2 + b0
2 · n
√
d.

Demonstração. Nós provaremos o item (a). A prova de (b) é análoga.
Sejam ã, b̃ ∈ Q tais que ε = ã+ b̃n

√
d. Então pelo Teorema 7.40 nós vemos que ã, b̃ ∈ N∗

e ã2 − n2db̃2 = ±1. Assim, n2db̃2 + 1 ou n2db̃2 − 1 é um quadrado perfeito positivo. Sendo
assim, o conjunto dos inteiros positivos b para os quais n2db2 + 1 ou n2db2 − 1 é um quadrado
perfeito positivo é não-vazio, e portanto b0 está bem-definido. O inteiro positivo a0 também está
bem-definido, pois apenas um entre n2db20 + 1 e n2db20 − 1 é um quadrado perfeito.

Chamemos ε0 := a0 + b0n
√
d. Como a0, b0 ∈N∗ e a2

0−n2db20 = ±1, vemos pelo Teorema 7.40
que ε0 ∈ V (Ad,n), e portanto ε ≤ ε0. Pelo corolário acima, conclúımos então que b̃ ≤ b0. Assim,
pela minimalidade de b0, vemos que b̃ = b0, e pela unicidade de a0 conclúımos que ã = a0. Logo
ε = ε0 = a0 + b0n

√
d, como queŕıamos.
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Exemplo 7.43. Vejamos como calcular as unidades fundamentais de A2,2 = Z[2
√

2] e de
A17,1 = Z

[
1+
√

17
2

]
= OQ(

√
17) utilizando o teorema acima.

Para A2,2, temos d = n = 2. Note que d ≡ 2 (mod 4). Assim, devemos encontrar o menor
inteiro positivo b para o qual 22 · 2 · b2± 1 = 8b2± 1 seja um quadrado perfeito. Note que b = 1 já
satisfaz, pois 8 · 12 + 1 = 9 = 32. Assim, b0 = 1 e a0 = 3. Conclúımos que a unidade fundamental
de A2,2 é a0 + b0 · 2

√
2 = 3 + 2

√
2.

Para A17,1, temos n = 1 e d = 17 ≡ 1 (mod 4). Assim, devemos encontrar o menor inteiro
positivo b para o qual 12 · 17 · b2 ± 4 = 17b2 ± 4 seja um quadrado perfeito. Para b = 1, temos
17 · 12± 4 = 13 ou 21, nenhum deles um quadrado perfeito. Já para b = 2, temos 17 · 22± 4 = 64
ou 72. Como 64 = 82, temos então b0 = 2 e a0 = 8. Conclúımos que a unidade fundamental de
A17,1 é a0

2 + b0
2 ·
√

17 = 4 +
√

17.

É interessante ainda observar que a partir da unidade fundamental εd de OKd = Ad,1 nós
podemos encontrar a unidade fundamental εd,n de Ad,n, para n > 1, como sendo a menor potência
inteira positiva de εd que pertence a Ad,n, isto é, εd,n = εk0

d onde k0 ∈N∗ é mı́nimo com εk0
d ∈ Ad,n.

Isso segue da igualdade V (Ad,n) = V (OKd) ∩Ad,n.

Observação 7.44. Existe um algoritmo ainda melhor que o descrito acima para calcular a uni-
dade fundamental de Ad,n. Ele se baseia na determinação da fração cont́ınua de n

√
d, um

método da Teoria Anaĺıtica dos Números. Veja por exemplo o Caṕıtulo 3 e a Seção 4.4 de [5].

Dada uma ordem A de OKd com unidade fundamental ε, nós já vimos que A× = {±εj : j ∈ Z}.
Notemos que, pela multiplicatividade da norma, e pelo fato de que N(1) = N(−1) = 1 para
extensões quadráticas, para todo j ∈ Z nós temos N(±εj) = N(ε)j . Como N(ε) = ±1, nós
obtemos o seguinte resultado:

Proposição 7.45. Seja A uma ordem de OKd com unidade fundamental ε.

(a) Se ε tiver norma 1, então:

V0(A) = {εj : j ∈N∗} = V (A), V1(A) = ∅.
U0(A) = {±εj : j ∈ Z} = A×, U1(A) = ∅.

(b) Se ε tiver norma −1, então:

V0(A) = {ε2j : j ∈N∗}, V1(A) = {ε2j+1 : j ∈N}.
U0(A) = {±ε2j : j ∈ Z}, U1(A) = {±ε2j+1 : j ∈ Z}.

Observação 7.46. Notemos que se a unidade fundamental εd de OKd tiver norma 1, então o
mesmo ocorrerá com a unidade fundamental de qualquer ordem A de Kd (já que essa é uma
potência de εd).

Mostraremos agora como os resultados sobre as unidades dessas ordens servirão para resolver
as chamadas equações de Pell:

Definição (Equação de Pell). Dado k ∈ N que não é um quadrado perfeito, chamamos de
equação de Pell para k a equação diofantina x2− ky2 = 1. Chamaremos ainda de equação de
Pell generalizada para k qualquer equação diofantina da forma x2 − ky2 = c, onde c ∈ Z \{0}.

Dado k ∈N qualquer, podemos escrevê-lo de forma única como k = n2d, onde d ∈N é livre
de quadrados e n ∈N. Se k = n2 for um quadrado perfeito, então a equação x2−ky2 = 1 se torna
1 = x2 − (ny)2 = (x− ny)(x+ ny), e é fácil ver que as únicas soluções dessa equação diofantina
são (x, y) = (±1, 0). Assim, o caso interessante é quando k não é um quadrado perfeito, que é
justamente o caso em que temos uma equação de Pell.
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Supondo que k não seja um quadrado perfeito, temos d ∈ D. Assim, observemos que a equação
de Pell x2− ky2 = 1 equivale a (x− yn

√
d)(x+ yn

√
d) = 1 na ordem Ad,n. Note que isso significa

que N(x+ yn
√
d) = 1, e portanto x+ yn

√
d ∈ U0(Ad,n).

Reciprocamente, suponhamos que x, y ∈ Z sejam tais que x + yn
√
d ∈ U0(Ad,n). Então

x2 − ky2 = x2 − n2dy2 = N(x+ yn
√
d) = 1. Ou seja, vemos que as soluções (x, y) ∈ Z2 da

equação de Pell x2 − ky2 = 1 estão em bijeção com U0(Ad,n), que sabemos determinar a partir
de εd,n pela Proposição 7.45. Em particular, sabemos que existem infinitas soluções para essa
equação diofantina.

De fato, a mesma análise feita acima nos mostra que as soluções (x, y) ∈ Z2 da equação de
Pell generalizada x2 − ky2 = −1 estão em bijeção com U1(Ad,n). Note que, dependendo se a
norma de ε for −1 ou 1, essa equação terá infinitas soluções ou então nenhuma. Desse modo, nós
obtemos:

Teorema 7.47. Seja k ∈N que não é um quadrado perfeito, e sejam n ∈N∗, d ∈ D com d > 0
tais que k = n2d. Então:

(a) Os pares (x, y) ∈ Z2 que são soluções da equação de Pell x2 − ky2 = 1 são os pares para
os quais x+ yn

√
d ∈ U0(Ad,n), isto é, para os quais:

• Existe j ∈ Z tal que x+ yn
√
d = εjd,n, se N(εd,n) = 1.

• Existe j ∈ Z tal que x+ yn
√
d = ε2j

d,n, se N(εd,n) = −1.

Em particular, a equação de Pell para k tem infinitas soluções.

(b) Os pares (x, y) ∈ Z2 que são soluções da equação de Pell generalizada x2 − ky2 = −1 são
os pares para os quais x+ yn

√
d ∈ U1(Ad,n), isto é:

• Se N(εd,n) = −1, então os (x, y) são os pares para os quais existe j ∈ Z tal que
x+ yn

√
d = ε2j+1

d,n .
• Se N(εd,n) = 1, então essa equação não possui solução.

Em particular, a equação de Pell generalizada para k e para c = −1 tem infinitas soluções
se N(εd,n) = −1, e nenhuma solução se N(εd,n) = 1.

Consideremos agora a equação de Pell generalizada x2 − ky2 = c, para c ∈ Z \{0} qualquer.
Então nós temos:

x+ y
√
k = c ⇐⇒ (x+ y

√
k)(x− y

√
k) = c ⇐⇒ N(x+ y

√
k) = c,

onde N é a norma da extensão Q[
√
k]. Assim, as soluções (x, y) dessa equação estão em bijeção

com os elementos de Z[
√
k] de norma c. Pelo Teorema 7.33, existem α1, . . . ,αm ∈ Z[

√
k] tais

que todo elemento de Z[
√
k] de norma ±c é associado a um dos α1, . . . ,αm. Observemos ainda

que Z[
√
k] é uma ordem de Q[

√
k], de modo que podemos aplicar os resultados dessa seção sobre

Z[
√
k]×. Em particular, vemos que esse grupo é infinito. Notemos que se x+ y

√
k tem norma

c e u ∈ Z[
√
k]×, então u(x+ y

√
k) tem norma ±c, sendo c se N(u) = 1 e −c se N(u) = −1.

Juntando tudo, nós temos:

Teorema 7.48. As soluções (x, y) ∈ Z2 da equação de Pell generalizada x2 − ky2 = c são os
pares (x, y) para os quais N(x+ y

√
k) = c. Essa equação possui ou nenhuma solução ou infinitas.

Caso tenha infinitas soluções, existe apenas um número finito de soluções não-associadas duas
a duas. Além disso, se a unidade fundamental de Z[

√
k] tiver norma −1, então a existência de

soluções da equação x2 − ky2 = c equivale à existência de soluções da equação x2 − ky2 = −c.



Caṕıtulo 8

Ordens

Seja K um corpo de números algébricos com [K : Q] = n. Muito do que fizemos até aqui se
baseou no estudo do anel de inteiros algébricos OK . Entretanto, existem outros subanéis de K
que são de nosso interesse, como as ordens de K (que estão contidas em OK) e as localizações de
OK (que contêm OK).

Como vimos na Seção 7.5, o estudo das ordens de um corpo de números pode ser útil, como
por exemplo para resolver equações diofantinas. Notemos porém que, para uma ordem A ( OK ,
nós não temos A integralmente fechada, já que Q(A) = K e AK = OK . Assim, as ordens próprias
de um corpo de números K não possuem propriedades tão boas como OK . Por exemplo, elas não
são um DFU. Por outro lado, das três propriedades que caracterizam um domı́nio de Dedekind,
as ordens próprias de OK só perdem a propriedade de serem integralmente fechadas:

Proposição 8.1. Seja A uma ordem de K. Então A é um domı́nio noetheriano e todo ideal
primo não-nulo de A é maximal.

Demonstração. Sendo A um Z-módulo livre finitamente gerado, é claro que A é noetheriano. Seja
agora pCA primo não-nulo. Como A contém uma base de K/ Q, é claro que p também contém
uma base dessa extensão, de modo que p é um Z-módulo de posto n. Esse módulo é livre, pelo
Teorema 1.38. Também por esse teorema, dada uma base {α1, . . . ,αn} de A nós conseguimos
inteiros não-nulos a1, . . . , an tais que o conjunto {a1α1, . . . , anαn} seja uma base de p, e portanto:

A/ p ∼= (Z /a1 Z)× · · · × (Z /an Z).

Em particular, A/ p é finito. Como p é primo, A/ p é um domı́nio finito, e portanto um corpo.
Isso mostra que p é maximal, como queŕıamos.

Em geral, nós temos a seguinte definição:

Definição (Anel de Dimensão 1). Dizemos que um anel A tem dimensão 1 se ele não for um
corpo e se todo ideal primo não-nulo de A for maximal.

Assim, as ordens de um corpo de números são domı́nios noetherianos de dimensão 1. As loca-
lizações de OK por um conjunto multiplicativo também são domı́nios noetherianos de dimensão
1. Enquanto as ordens de K não são mais integralmente fechadas, as localizações de OK não são
mais integrais sobre Z. Desse modo, para estudarmos esses dois importantes tipos de subanéis
de K, no que segue consideraremos A como sendo qualquer domı́nio noetheriano de dimensão 1
com Q(A) = K. Começamos mostrando a seguinte propriedade de finitude:

Lema 8.2. Seja aCA não-nulo. Então existe apenas um número finito de ideais primos não-
nulos pCA tais que p ⊇ a.
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Demonstração. Pelo Corolário 3.9, existem p1, . . . , pmCA primos não-nulos tais que a ⊇ p1 · · · pm.
Assim, se pCA for primo não-nulo tal que p ⊇ a, temos p ⊇ p1 · · · pm, e portanto pela Proposição
3.7 nós conclúımos que p ⊇ pj para 1 ≤ j ≤ m. Mas sendo pj maximal, temos p = pj . Assim,
apenas os primos p1, . . . , pm podem conter a, concluindo a demonstração.

Com isso, e utilizando um resultado sobre decomposição primária (veja por exemplo os
caṕıtulos 4 e 7 de [17]), conseguimos provar a seguinte versão do Teorema Chinês dos Restos:

Proposição 8.3. Seja aCA não-nulo. Então nós temos1:

A/a ∼=
⊕
p

Ap/ap =
⊕
p⊇a

Ap/ap,

com isomorfismo dado por x+ a 7→ (x+ ap). Assim, dados xp ∈ Ap, para cada p, conseguimos
achar x ∈ A tal que x ≡ xp (mod ap), para todo p (note que apenas um número finito dessas
congruências é não-trivial).

Demonstração. Se p 6⊇ a, então ap = Ap, e portanto Ap/ap é o anel trivial. Desse modo, vale a
última igualdade. Notemos ainda que existe apenas um número finito de primos tais que p ⊇ a,
pelo lema acima. Assim, esse último produto é finito. Provemos então que A/a ∼=

⊕
p⊇aAp/ap.

Pelo Teorema 3.31, nós temos a =
⋂

p ap. Assim:

a = A∩ a =
⋂
p

(A∩ ap) =
⋂
p⊇a

(A∩ ap),

pois como já vimos ap = Ap caso p 6⊇ a. Suponhamos agora que p ⊇ a. Afirmamos que p é o
único ideal primo que contém A∩ ap. De fato, seja a = q1 ∩ · · · ∩ qm uma decomposição primária
minimal de a, que sabemos existir já que A é noetheriano. Notemos que ap = (q1)p ∩ · · · ∩ (qm)p.
Dado q 6= 0 ideal primário, se q ⊆ p então √q ⊆ p. Como √q é um primo não-nulo, e portanto
maximal, de A, vemos que p =

√
q. Com isso, vemos que qp será um ideal próprio de Ap se e só

se q for p-primário. Como ap é um ideal próprio de Ap, pelo menos alguns dos qj ’s é p-primário, e
como essa decomposição é minimal exatamente um dos qj ’s é p-primário. Suponhamos sem perda
de generalidade que este seja q1. Então vemos que ap = (q1)p. Assim, A∩ ap = A∩ (q1)p.

Mostremos que A ∩ (q1)p = q1. A inclusão (⊇) é óbvia. Seja então x = q/s ∈ A ∩ (q1)p,
com q ∈ q1, s ∈ A \ p. Logo temos sx = q ∈ q1. Como s 6∈ p =

√
q1, devemos ter x ∈ q1, como

queŕıamos. Finalmente, justifiquemos nossa afirmação. Seja p′CA primo com p′ ⊇ A ∩ ap = q1.
Então p′ ⊇ √q1 = p, e pela maximalidade de p conclúımos que p′ = p. Isso prova que p é o único
primo de A que contém A∩ ap.

Assim, vemos que para p, q ⊇ a primos com p 6= q, os ideais A ∩ ap e A ∩ aq são coprimos, e
portanto estamos nas condições de aplicar o Teorema Chinês dos Restos para concluir que:

A/a = A/
⋂
p⊇a

(A∩ ap) ∼=
⊕
p⊇a

A/(A∩ ap) ∼=
⊕
p⊇a

Ap/ap,

onde a última congruência se demonstra de forma similar ao Corolário 1.49, observando que
(A ∩ ap)p = ap e que sA + (A ∩ ap) = A para todo s ∈ A \ p. Finalmente, notemos que os
isomorfismos acima nos dão x+ a 7→ (x+ (A∩ ap)) 7→ (x+ ap).

No caso em que A não é um domı́nio de Dedekind, o grupo dos ideais fracionários inverśıveis
J(A) não é todo I(A). Temos o seguinte critério para determinar os ideais fracionários inverśıveis
de A:

1Onde a soma direta abaixo indica que esse é um produto de anéis com apenas um número finito de
anéis não-triviais, e p varia entre os ideais primos não-nulos de A.
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Proposição 8.4. Seja M ∈ I(A). Então M é inverśıvel se e só se, para todo ideal primo p 6= 0
de A, o ideal fracionário Mp ∈ I(Ap) for principal.

Demonstração. (⇒): Suponhamos que M seja inverśıvel, e que N ∈ I(A) seja tal que MN = A.
Então existem a1, . . . , ar ∈ M , b1, . . . , br ∈ N tais que a1b1 + · · ·+ arbr = 1. Seja pCA primo
não-nulo. Como 1 6∈ pp, algum dos produtos a1b1, . . . , arbr não está em pp.

Suponhamos sem perda de generalidade que a1b1 6∈ pp. Então a1b1 ∈ Ap \ pp = A×p . Afir-
mamos que Mp = a1Ap. A inclusão (⊇) é óbvia. Para a outra inclusão, seja x ∈ Mp qualquer.
Notemos que xb1 ∈MpNp = Ap. Assim, nós temos x = a1xb1(a1b1)−1 ∈ a1Ap, como queŕıamos.

(⇐): Suponhamos que Mp seja principal para todo ideal primo p 6= 0 de A. Assim, para cada
p existe ap ∈ K× tal que Mp = apAp. Como ap ∈ Mp, limpando os denominadores dos ap’s
se necessário nós podemos assumir que ap ∈ M para todo p. Afirmamos que o ideal quociente
(A : M) = {x ∈ K : xM ⊆ A} é o inverso de M . É claro que (A : M)M CA. Suponhamos por
absurdo que esse seja um ideal próprio de A. Então existiria pCA maximal tal que (A : M)M ⊆ p.

Mostremos que isso não é posśıvel. Sabemos que M é finitamente gerado, e portanto existem
a1, . . . , am ∈ M tais que M = a1A+ · · ·+ amA. Como cada aj ∈ M ⊆ Mp = apAp, existem
bj ∈ A e sj ∈ A \ p tais que aj = apbj/sj . Assim, sjaj = apbj ∈ apA. Chamando s := s1 · · · sm,
temos s ∈ A \ p e saj ∈ apA para todo 1 ≤ j ≤ m. Assim, sa−1

p aj ∈ A para todo 1 ≤ j ≤ m.
Como a1, . . . , am geram M , vemos então que sa−1

p M ⊆ A, e portanto sa−1
p ∈ (A : M). Mas então

nós teŕıamos s = sa−1
p ap ∈ (A : M)M ⊆ p, um absurdo! Isso mostra que M(A : M) = A, e assim

M é inverśıvel, como queŕıamos.

Com os resultados acima, conseguimos uma interessante caracterização para o grupo de Picard
de A. Lembre que Pic(A) = J(A)/P (A), onde J(A) é o grupo dos ideais fracionários inverśıveis
de A e P (A) é o grupo dos ideais fracionários principais de A.

Proposição 8.5. A correspondência M 7→ (Mp) nos dá um isomorfismo J(A) ∼=
⊕

p P (Ap).
Assim, identificando P (A) com sua imagem na soma direta, Pic(A) ∼=

(⊕
p P (Ap)

)
/P (A).

Demonstração. Dado M ∈ J(A), pela proposição acima temos Mp ∈ P (Ap), para todo ideal
primo p 6= 0 de A. Notemos que Mp = Ap se e só se M ∩ (A \ p) 6= ∅ e M−1 ∩ (A \ p) 6= ∅ (a
demonstração é igual ao que fizemos na Proposição 3.24). Assim, Mp 6= Ap se e só se p ⊇M ∩A
ou se p ⊇M−1 ∩A. Mas M ∩A e M−1 ∩A são ideais não-nulos de A, e assim existe apenas um
número finito de tais primos pelo Lema 8.2. Isso mostra que Mp 6= Ap apenas para um número
finito de p’s, de modo que M 7→ (Mp) nos dá um homomorfismo de grupos J(A)→⊕

p P (Ap).
Esse homomorfismo é injetor. De fato, suponhamos que M ∈ J(A) satisfaça Mp = Ap para

todo p. Então M ⊆ Mp = Ap para todo p, e portanto M ⊆
⋂

pAp = A, onde utilizamos o
Teorema 3.31. Assim, M CA. Devemos ter M = A. Caso contrário, haveria um ideal maximal
p com M ⊆ p, e nesse caso teŕıamos Mp 6= Ap, um absurdo! Isso prova a injetividade desse
homomorfismo.

Provemos agora que essa função é sobrejetora. Sendo essa função um homomorfismo, basta
mostrarmos que, fixados um primo não-nulo pCA e ap CAp um ideal principal não-nulo, o ele-
mento (Mq) ∈

⊕
p P (Ap) com Mp = ap e Mq = Aq para q 6= p está na sua imagem. Mostraremos

que (Mq) é a imagem de A∩ apCA. É fácil ver que (A∩ ap)p = ap. Assim, basta mostrarmos que
para q 6= p nós temos (A∩ ap)q = Aq. Mas isso segue do fato de que p é o único ideal primo que
contém A∩ ap, que provamos durante a demonstração da Proposição 8.3. Assim, A∩ ap 7→ (Mq),
como queŕıamos, mostrando a sobrejetividade. Logo temos de fato um isomorfismo.

Consideremos agora a normalização de um domı́nio noetheriano de dimensão 1:

Definição (Normalização). Seja A um domı́nio noetheriano de dimensão 1. Então nós definimos
a sua normalização Ã como sendo seu fecho integral em K = Q(A), ou seja, Ã := A

K .
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A normalização de um domı́nio noetheriano de dimensão 1 sempre será um domı́nio de Dede-
kind, como veremos. Entretanto, isso não é óbvio, pois embora seja claro que Ã seja integralmente
fechado e de dimensão 1, nem sempre Ã será um A-módulo finitamente gerado. Entretanto, vale
a seguinte afirmação um pouco mais fraca, que nos será suficiente:

Lema 8.6. Seja A um domı́nio noetheriano de dimensão 1 e seja Ã sua normalização. Então,
para cada ideal aCA não-nulo, o quociente Ã/aÃ é um A-módulo finitamente gerado.

Demonstração. Seja aCA não-nulo, e fixemos a ∈ a não-nulo. Então nós temos Ã/aÃ ∼= Ã/aÃ
aÃ/aÃ .

Assim, Ã/aÃ é um quociente de Ã/aÃ, e portanto basta provarmos que Ã/aÃ é um A-módulo
finitamente gerado. Comecemos observando que, como aA é um ideal não-nulo, o anel A/aA
tem dimensão 02. Sendo um anel noetheriano de dimensão 0, conclúımos que A/aA é um anel
artiniano. Com isso, vemos que a cadeia descendente de ideais de A,

aÃ∩A+ aA ⊇ a2Ã∩A+ aA ⊇ · · · ⊇ amÃ∩A+ aA ⊇ · · ·

se estabiliza. Assim, existe um inteiro positivo n tal que amÃ∩A+ aA = anÃ∩A+ aA, para todo
m ≥ n. Afirmamos que Ã ⊆ a−nA+ aÃ. Se provarmos isso, teremos então que Ã

aÃ
⊆ a−nA+aÃ

aÃ
.

Esse último anel é um A-módulo gerado por a−n+ aÃ, e portanto é noetheriano, já que A o é. Em
particular, seu submódulo Ã/aÃ é finitamente gerado sobre A, como gostaŕıamos de demonstrar.

Mostremos então que Ã ⊆ a−nA+ aÃ. Seja β ∈ Ã qualquer. Como Ã ⊆ K = Q(A), existem
b, c ∈ A, c 6= 0, tais que β = b/c. Pelo mesmo argumento acima, vemos que A/cA é artiniano.
Assim, denotando a := a+ cA, vemos que a cadeia descendente de ideais de A/cA

〈a〉 ⊇ 〈a2〉 ⊇ · · · ⊇ 〈am〉 ⊇ · · ·

se estabiliza. Logo existe um inteiro positivo h tal que 〈ah〉 = 〈ah+1〉. Consequentemente, existe
x ∈ A tal que ah ≡ xah+1 (mod cA), isto é, (1− xa)ah ∈ cA. Desse modo, nós temos:

β =
b

c
=
b

c
(1− xa) + βxa =

b

ah
(1− xa)ah

c
+ βxa ∈ a−hA+ aÃ.

Portanto, existe um inteiro positivo k mı́nimo para o qual β ∈ a−kA+ aÃ. Assim, basta
mostrarmos que k ≤ n, pois então teremos β ∈ a−kA+ aÃ ⊆ a−nA+ aÃ, concluindo a demons-
tração. Suponhamos por absurdo que k > n. Como β ∈ a−kA+ aÃ, existem u ∈ A, ũ ∈ Ã tais
que β = a−ku+ aũ. Logo:

u = ak(β − aũ) ∈ akÃ∩A ⊆ akÃ∩A+ aA = ak+1Ã∩A+ aA,

já que k > n. Então existem u′ ∈ A e ũ′ ∈ Ã tais que u = ak+1ũ′ + au′. Desse modo:

β = a−ku+ aũ = a−k(ak+1ũ′ + au′) + aũ = a−(k−1)u′ + a(ũ+ ũ′) ∈ a−(k−1)A+ aÃ,

um absurdo pela minimalidade de k. Assim, k ≤ n, concluindo a demonstração.

Com esse lema, nós conseguimos provar uma generalização do Teorema 3.1, que vale para
domı́nios não necessariamente de Dedekind e extensões de corpos não necessariamente separáveis:

Teorema 8.7 (Krull-Akizuki). Seja A um domı́nio noetheriano de dimensão 1 com corpo de
frações K = Q(A). Seja L uma extensão finita de K e seja B = A

L. Então B é um domı́nio de
Dedekind. Em particular, a normalização Ã = A

K de A é um domı́nio de Dedekind.
2Isto é, todo ideal primo desse anel é maximal.
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Demonstração. Provamos que B é integralmente fechado e tem dimensão 1 do mesmo modo que
no Teorema 3.1. Assim, basta provarmos que B é noetheriano. Note que não podemos mais
aplicar o Teorema 1.37, pois A não é necessariamente integralmente fechado. No lugar desse
teorema, utilizaremos o lema acima.

Pelo Teorema 1.16, temos Q(B) = L. Assim, existem β1, . . . ,βn ∈ B que formam uma base
da extensão L/K. O anel B0 := A[β1, . . . ,βn] é um A-módulo finitamente gerado, e portanto é
noetheriano já que A o é. Como a extensão B0/A é integral, podemos utilizar o Teorema 1.53
para concluir que B0 tem dimensão 1. Notemos ainda que BL

0 = B. Assim, B é a normalização
de B0, e podemos nos restringir ao caso em que L = K e B = Ã é a normalização de A.

Queremos mostrar que todo ideal A de Ã é finitamente gerado. Pelo Teorema 1.53, nós temos
A∩A 6= 0. Escolhamos a ∈ A∩A não-nulo. Pelo lema acima, vemos que Ã/aÃ é um A-módulo
finitamente gerado, logo noetheriano. Assim, seu submódulo A/aÃ também é um A-módulo
finitamente gerado. Desse modo, existem α1, . . . ,αm ∈ A tais que α1 + aÃ, . . . ,αm+ aÃ ∈ A/aÃ
geram A/aÃ como A-módulo. Afirmamos que α1, . . . ,αm, a geram A como Ã-módulo. De fato,
seja x ∈ A qualquer. Então existem c1, . . . , cm ∈ A tais que

x+ aÃ = c1(α1 + aÃ) + · · ·+ cm(αm + aÃ) = (c1α1 + · · ·+ cmαm) + aÃ.

Assim, existe c ∈ Ã tal que x = c1α1 + · · ·+ cmαm + ca, como queŕıamos. Isso mostra que Ã é
noetheriano, concluindo a demonstração.

Observe que essa demonstração seria bastante simplificada se tivéssemos suposto que Ã é
um A-módulo finitamente gerado. Para o que se segue, de fato, nós assumiremos essa hipótese,
que evitará casos patológicos. Note que, se A for uma ordem de um corpo de números K, isso
ocorrerá. De fato, nesse caso Ã = OK , e qualquer base integral de OK também é uma base de
OK como A-módulo. Com essa hipótese extra, nós conseguimos comparar os grupos de unidades
e de Picard de A e de sua normalização:

Proposição 8.8. Existe uma sequência exata canônica

1→ A× → Ã× →
⊕
p

Ã×p /A×p → Pic(A)→ Pic(Ã)→ 1,

onde Ãp = A
K
p é a normalização de Ap, ou equivalentemente a localização de Ã por A \ p (lembre

que localização comuta com fecho integral).

Demonstração. A ideia é usar as sequências exatas:

1 → P (A)→ J(A)→ Pic(A)→ 1, e
1 → P (Ã)→ J(Ã)→ Pic(Ã)→ 1.

Observemos que, dado R domı́nio qualquer com K = Q(R), temos P (R) ∼= K×/R×. Esse
isomorfismo é induzido pelo homomorfismo K× → P (R) dado por x 7→ xR. Desse modo, nós
obtemos as sequências exatas:

1 → K×/A× → J(A)→ Pic(A)→ 1, e
1 → K×/Ã× → J(Ã)→ Pic(Ã)→ 1.

Notemos ainda que, pelas observações acima e pela Proposição 8.5, nós temos:

J(A) ∼=
⊕
p

P (Ap) ∼=
⊕
p

K×/A×p .

Calculemos agora J(Ã). Pela Proposição 8.5, nós temos J(Ã) ∼=
⊕

p̃ P (Ap̃), onde p̃ varia entre os
primos não-nulos de Ã. Dado um primo não-nulo pCA qualquer, como Ã é domı́nio de Dedekind
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vemos que existe um número finito de primos sobre p (a saber, os fatores primos de p Ã). Da
mesma forma, para cada pCA primo não-nulo, vemos que existe um número finito de primos de
Ãp sobre cada ideal primo de Ap. Mas o único primo não-nulo de Ap é pp, de modo que Ãp possui
um número finito de primos. Assim, pelo Teorema 3.23, Ãp é um DIP. Note que os ideais primos
não-nulos de Ãp são os ideais da forma p̃p, para p̃ ideal primo não-nulo de Ã tal que p̃ ∩A ⊆ p.
Como p̃∩A é um primo não-nulo de A, e portanto um ideal maximal, devemos ter p̃∩A = p. Ou
seja, os ideais primos não-nulos de Ãp são os ideais da forma p̃p para p̃ sobre p.

Assim, pela Proposição 8.5, nós temos:

P (Ãp) = J(Ãp) ∼=
⊕
p̃|p

P ((Ãp)p̃p) =
⊕
p̃|p

P (Ãp̃),

onde a última igualdade segue de (Ãp)p̃p = Ãp̃, que é fácil de verificar. Observemos agora que
cada primo p̃ de Ã está sobre exatamente um primo p de A. Desse modo:

J(Ã) ∼=
⊕
p̃

P (Ãp̃) =
⊕
p

⊕
p̃|p

P (Ãp̃) ∼=
⊕
p

P (Ãp) ∼=
⊕
p

K×/Ã×p .

Com isso, nós temos sequências exatas

1 → K×/A× →
⊕
p

K×/A×p → Pic(A)→ 1, e

1 → K×/Ã× →
⊕
p

K×/Ã×p → Pic(Ã)→ 1.

Consideremos o homomorfismo α : K×/A× → K×/Ã× dado por xA× 7→ xÃ×. É fácil ver
que α está bem-definido, é sobrejetor e kerα = Ã×/A×. Da mesma forma, podemos definir
β :

⊕
pK
×/A×p →

⊕
pK
×/Ã×p dado por (xpA×p ) 7→ (xpÃ×p ). Então β está bem-definido, é

sobrejetor e kerβ =
⊕

p Ã
×
p /A×p . Podemos ainda definir γ : Pic(A) → Pic(Ã) por [M ] 7→ [MÃ].

Com isso, nós temos o seguinte diagrama comutativo:

1 K×/A×
⊕

pK
×/A×p Pic(A) 1

1 K×/Ã×
⊕

pK
×/Ã×p Pic(Ã) 1

α β γ

Aplicando o Lema da Serpente a esse diagrama, obtemos então uma sequência exata canônica

1→ kerα→ kerβ → ker γ → cokerα→ cokerβ → coker γ → 1.

Como α e β são sobrejetores, vemos que γ também deve ser sobrejetor, e assim nós temos a
sequência exata:

1→ Ã×/A× →
⊕
p

Ã×p /A×p → ker γ → 1.

Como o homomorfismo Ã×/A× →
⊕

p Ã
×
p /A×p é induzido por um homomorfismo Ã× →⊕

p Ã
×
p /A×p ,

podemos expandir essa sequência exata para a sequência exata:

1→ A× → Ã× →
⊕
p

Ã×p /A×p → ker γ → 1.

Consideremos agora a composição ⊕p Ã
×
p /A×p → ker γ ↪−→ Pic(A). Essa função possui o mesmo

núcleo de ⊕p Ã
×
p /A×p → ker γ, e possui imagem ker γ, que é igual ao núcleo da função sobrejetora

Pic(A) γ→ Pic(Ã). Desse modo, obtemos a sequência exata:

1→ A× → Ã× →
⊕
p

Ã×p /A×p → Pic(A)→ Pic(Ã)→ 1,

como queŕıamos.
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Definição (Ideal Primo Regular). Um ideal primo pCA não-nulo é chamado de regular se Ap

for integralmente fechado, ou equivalentemente se Ap for um DVD.

Observemos que, para os ideais primos regulares p, nós temos Ãp = Ap, e assim os somandos
Ã×p /A×p que aparecem na proposição acima são triviais para esses primos. Afirmamos que existe
apenas um número finito de ideais primos não-regulares, e que eles são exatamente os divisores
do condutor f := {a ∈ A : aÃ ⊆ A} de A em Ã. Lembremos que f é o maior ideal de Ã contido em
A. Como estamos supondo que Ã é finitamente gerado como A-módulo, existem ã1, . . . , ãm ∈ Ã
que geram Ã como A-módulo. Uma vez que K = Q(A), podemos escrever, para 1 ≤ j ≤ m,
ãj = aj/bj , para aj , bj ∈ A, bj 6= 0. Chamando b := b1 · · · bm, vemos então que bãj ∈ A para todo
1 ≤ j ≤ m, e portanto bÃ ⊆ A. Assim, b ∈ f. Como b 6= 0, temos que f 6= 0.

Proposição 8.9. Dado pCA primo não-nulo, nós temos p - f (isto é, p 6⊇ f) se e só se p for
regular. Se esse for o caso, então p̃ := p Ã é um ideal primo de Ã e Ap = Ãp̃.

Demonstração. (⇒): Suponhamos que p - f, isto é, p 6⊇ f. Então existe t ∈ f \ p. Assim,
tÃ ⊆ A ⇒ Ã ⊆ 1

tA ⊆ Ap. Com isso, podemos definir p̃ := pp ∩Ã. Então p̃ é um ideal primo
de Ã e p̃ ∩A = pp ∩A ⊇ p. Como p é maximal, temos então p = p̃ ∩A. Desse modo, Ap ⊆ Ãp̃.
Mostremos que vale também a inclusão reversa. Dado a/s ∈ Ãp̃, com a ∈ Ã e s ∈ Ã \ p̃, nós
temos ta ∈ A e ts ∈ A \ p, de modo que a/s = ta/(ts) ∈ Ap. Isso prova que Ap = Ãp̃.

Como Ã é domı́nio de Dedekind, vemos então que Ap = Ãp̃ é um DVD, o que prova que p
é regular. Podemos ainda mostrar que p̃ = p Ã. Se q̃C Ã for um ideal primo não-nulo sobre p,
então Ãp̃ = Ap ⊆ Ãq̃. Como o único primo não-nulo de Ãp̃ é p̃p̃, nós temos p̃p̃ = q̃q̃ ∩ Ãp̃. Assim:

q̃ = q̃q̃ ∩ Ã = p̃p̃ ∩ Ã = p̃.

Isso mostra que o único primo na fatoração de p Ã é p̃. Assim, existe e inteiro positivo tal que
p Ã = p̃e. Agora, observemos que no domı́nio de Dedekind Ap nós temos:

pp = pAp = (p Ã)Ap = p̃eAp = p̃ep = pep,

onde a última igualdade segue de p̃p = (pp ∩Ã)p = pp. Assim, pela fatoração única nós conclúımos
que e = 1, e portanto pÃ = p̃.

(⇐): Suponhamos que p seja um primo regular. Então Ap é integralmente fechado. Como
A ⊆ Ap, temos então Ã = A

K ⊆ Ap. Sejam ã1, . . . , ãm geradores de Ã como A-módulo. Como
Ã ⊆ Ap, podemos escrever, para 1 ≤ j ≤ m, ãj = aj/sj , para alguns aj ∈ A, sj ∈ A \ p. Chame-
mos s := s1 · · · sm ∈ A \ p. Então sãj ∈ A para todo 1 ≤ j ≤ m. Como os ãj ’s geram Ã, vemos
que sÃ ⊆ A, de modo que s ∈ f. Assim, s ∈ f \ p, o que prova que p 6⊇ f, ou seja, p - f.

Podemos agora obter uma descrição mais simples para a soma direta ⊕p Ã
×
p /A×p que aparece

na Proposição 8.8:

Proposição 8.10.
⊕

p Ã
×
p /A×p ∼= (Ã/f)×/(A/f)×.

Demonstração. A ideia é utilizar o Teorema Chinês dos Restos 8.3 e uma estratégia parecida com
a que adotamos na Proposição 8.8. Por um lado, aplicando 8.3 ao ideal fCA, nós obtemos:

A/f ∼=
⊕
p

Ap/fp. (8.1)

Aplicando agora esse resultado ao ideal fC Ã, nós obtemos:

Ã/f ∼=
⊕
p̃

Ãp̃/fp̃ =
⊕
p

⊕
p̃|p

Ãp̃/fp̃.
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Dado agora pCA primo não-nulo qualquer, como já vimos na demonstração da Proposição 8.8 os
ideais primos não-nulos de Ãp são os ideais da forma p̃p para p̃C Ã sobre p. Notemos ainda que,
como f é um ideal de Ã contido em A, nós temos fÃp = fp. Desse modo, aplicando 8.3 ao ideal
fp = fÃp C Ãp, nós obtemos:

Ãp/fp ∼=
⊕
p̃|p

(Ãp)p̃p/(fp)p̃p =
⊕
p̃|p

Ãp̃/fp̃,

onde a última igualdade segue de (Ãp)p̃p = Ãp̃ e (fp)p̃p = fp̃, como é fácil verificar. Desse modo:

Ã/f ∼=
⊕
p

⊕
p̃|p

Ãp̃/fp̃ ∼=
⊕
p

Ãp/fp. (8.2)

Observando que o isomorfismo de (8.1) é dado pela restrição do isomorfismo de (8.2), restringindo
esses isomorfismos aos grupos de unidades (Ã/f)× e (A/f)× e quocientando nós obtemos:

(Ã/f)×/(A/f)× ∼=
⊕
p

(Ãp/fp)×/(Ap/fp)×. (8.3)

Para p regular, nós temos Ãp = Ap, e portanto (Ãp/fp)×/(Ap/fp)× = 1. Consideremos então
o caso p não-regular, isto é, p ⊇ f. Nós temos um homomorfismo ϕ : Ã×p → (Ãp/fp)×/(Ap/fp)×

dado por x 7→ (x+ fp)(Ap/fp)×. Esse homomorfismo é sobrejetor. De fato, seja

(ε+ fp)(Ap/fp)× ∈ (Ãp/fp)×/(Ap/fp)×

qualquer, para ε ∈ Ãp. Então ε+ fp é uma unidade de Ãp/fp, de modo que ε+ fp não está em
nenhum ideal maximal de Ãp/fp. Um ideal maximal de Ãp é da forma p̃p, para p̃C Ã maximal
sobre p. Como f ⊆ p ⊆ p̃, temos fp ⊆ p̃p, e portanto p̃p/fp é um ideal maximal de Ãp/fp. Isso
significa que ε+ p 6∈ p̃p/fp, e portanto ε 6∈ p̃p. Assim, ε é um elemento de Ãp que não está contido
em nenhum ideal maximal de Ãp, o que mostra que ε ∈ Ã×p . Logo (ε+ fp)(Ap/fp)× = ϕ(ε),
mostrando que ϕ é sobrejetor.

Notemos agora que, dado x ∈ Ãp, temos x ∈ kerϕ ⇐⇒ x+ fp ∈ (Ap/fp)×. Como fp ⊆ pp e pp
é o único ideal maximal de Ap, vemos que x+ fp ∈ (Ap/fp)× ⇐⇒ x ∈ A×p . Assim, kerϕ = A×p .
Desse modo, pelo Teorema do Isomorfismo:

(Ãp/fp)×/(Ap/fp)× = imϕ ∼= Ã×p / kerϕ = Ã×p /A×p .

É claro que esse isomorfismo vale também para os primos regulares, pois nesse caso ambos os
lados do isomorfismo acima são os grupos triviais. Desse modo, a partir de (8.3) nós obtemos:

(Ã/f)×/(A/f)× ∼=
⊕
p

(Ãp/fp)×/(Ap/fp)× ∼=
⊕
p

Ã×p /A×p ,

concluindo a demonstração.

Como consequência direta das Proposições 8.8 e 8.10, nós obtemos:

Teorema 8.11. Sejam A um domı́nio noetheriano de dimensão 1 e Ã sua normalização. Então
existe uma sequência exata canônica

1→ A× → Ã× → (Ã/f)×/(A/f)× → Pic(A)→ Pic(Ã)→ 1,

onde f é o condutor de A em Ã.

No caso em que A é uma ordem de um corpo de números K, o teorema acima nos dá a
sequência exata

1→ A× → O×K → (OK/f)×/(A/f)× → Pic(A)→ C `(OK)→ 1.

Isso nos dá:
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Teorema 8.12. Seja K um corpo de números, e seja A uma ordem de K. Então os grupos
O×K/A× e Pic(A) são finitos, e vale a relação

|Pic(A)| = hK

(O×K : A×)
|(OK/f)×|
|(A/f)×|

.

Além disso, A× é um Z-módulo livre de mesmo posto3 de O×K .

Demonstração. Como fCOK , temos |OK/f| = N(f) <∞. Assim, os grupos (OK/f)× e (A/f)×

são finitos. Além disso, como o morfismo Pic(A) → C `(OK) é sobrejetor, C `(OK) é finito
e o núcleo desse morfismo é a imagem do morfismo saindo do grupo finito (OK/f)×/(A/f)×,
vemos que Pic(A) é finito. Desse modo, os únicos grupos possivelmente infinitos que aparecem
na sequência exata acima são A× e O×K , de onde obtemos que A× e O×K possuem o mesmo posto.
A partir da sequência exata acima, nós podemos ainda obter uma sequência exata:

1→ O×K/A× α→ (OK/f)×/(A/f)× β→ Pic(A) γ→ C `(OK)→ 1.

Disso obtemos também a finitude de O×K/A×. Finalmente, vamos encontrar uma relação entre os
tamanhos desses grupos. Essa sequência exata nos dá

C `(OK) = im γ ∼= Pic(A)/ ker γ = Pic(A)/ im β,

e também

im β ∼=
(OK/f)×/(A/f)×

kerβ =
(OK/f)×/(A/f)×

imα
.

Assim:

|Pic(A)| = |C `(OK)||im β| = hK
|(OK/f)×/(A/f)×|

|imα|
=

hK

(O×K : A×)
|(OK/f)×|
|(A/f)×|

.

A definição do grupo de Picard Pic(A) de um domı́nio A qualquer nos restringe apenas ao
estudo dos ideais fracionários inverśıveis de A. No caso em que A é noetheriano mas não é um
domı́nio de Dedekind, existe pelo menos um ideal primo não inverśıvel de A, pois caso contrário
mostraŕıamos que I(A) = J(A) do mesmo modo que nos itens (b) e (c) do Teorema 3.11. Assim,
quando nos restringimos a Pic(A) = J(A)/P (A), estamos ignorando alguns ideais primos de A.
No caso em que A é um domı́nio noetheriano de dimensão 1, é posśıvel construir outro grupo a
partir de A, o chamado grupo de classes de divisores, ou grupo de Chow de A, que leva em
conta todos os ideais primos de A, e tem sua construção baseada numa reintrodução artificial da
fatoração única. Terminaremos este caṕıtulo com a definição desse importante grupo.

Começamos definindo o grupo dos divisores de A como sendo o grupo abeliano livre
Div(A) :=

⊕
p Z p que tem como base o conjunto dos ideais primos não-nulos de A. Assim,

cada elemento de Div(A) é uma soma formal D =
∑

p np p, onde apenas um número finito dos co-
eficientes np’s é não-nulo. Os elementos de Div(A) são chamados de divisores, ou 0-ciclos, de A.
Notemos que quando A é um domı́nio de Dedekind nós temos I(A) ∼= Div(A), e a cada elemento
f ∈ K× nós podemos associar um elemento div(f) ∈ Div(A) dado por div(f) :=

∑
p vp(f) p.

Note que os coeficientes de div(f) nada mais são do que os expoentes da fatoração prima de fA,
pela Proposição 3.33. Desse modo, obtemos um homomorfismo div : K× → Div(A).

No caso geral em que A é um domı́nio noetheriano de dimensão 1, podem existir primos pCA
não-nulos para os quais Ap não é um DVD, de modo que não temos uma valoração associada a

3Note que já hav́ıamos conclúıdo essa parte a partir do Teorema das Unidades de Dirichlet, e que esse
posto é de fato r1 + r2 − 1.
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esses anéis. Mesmo assim, podemos definir um homomorfismo ordp : K× → Z que generaliza uma
valoração. Para definir esse homomorfismo, daremos uma outra interpretação para a valoração
v : K× → Z de um DVD B com único ideal maximal m. Sabemos que, dado x ∈ B não-nulo, v(x) é
o inteiro positivo caracterizado pela expressão xB = mv(x). Como todo ideal de B é uma potência
não-negativa de m, vemos que os únicos ideais de B que contêm xB são B,m,m2, . . . ,mv(x) = xB,
e que temos a cadeia

B ) m ) m2 ⊇ · · · ⊇ mv(x) = xB.

Isso significa que o comprimento do B-módulo B/xB é `B(B/xB) = v(x). Dado agora um
elemento a = x/y ∈ K× qualquer, com x, y ∈ B, y 6= 0, nós temos:

v(a) = v(x/y) = v(x)− v(y) = `B(B/xB)− `B(B/yB).

No caso em que B é apenas um domı́nio noetheriano de dimensão 1 nós podemos definir
uma função ord : A \ {0} → N∗ dada por ord(x) = `B(B/xB). Note que essa função está bem-
definida. De fato, B/xB é um anel noetheriano de dimensão 0, e portanto também artiniano. Isso
nos diz que B/xB é noetheriano e artiniano também como B-módulo, sendo assim um B-módulo
de comprimento finito.

Afirmamos que ord é homomorfismo de semigrupos, isto é, que ord(xy) = ord(x) + ord(y).
Isso equivale a mostrar a igualdade

`B(B/(xy)B) = `B(B/xB) + `B(B/yB).

Mas isso segue dos isomorfismos de B-módulos B/xB ∼= B/xyB
xB/xyB e xB/xyB ∼= B/yB. Sendo

ord um homomorfismo de semigrupos de A \ {0} em N∗, é fácil ver que essa função admite como
extensão um homomorfismo de grupos bem-definido ord : K× → Z dado por

ord(x/y) := ord(x)− ord(y) = `B(B/xB)− `B(B/yB).

Para cada pCA primo não-nulo, podemos assim considerar um homomorfismo de grupos
ordp : K× → Z, onde ordp é o homomorfismo associado ao domı́nio Ap. Com isso, nós con-
seguimos definir div : K× → Div(A) dado por div(f) :=

∑
p ordp(f) p. Como cada ordp é um

homomorfismo, vemos que div também é um homomorfismo.
Os elementos de Div(A) da forma div(f) para algum f ∈ K× são chamados de divisores

principais. O conjunto im div formado por eles é um subgrupo P(A) de Div(A), chamado
o grupo dos divisores principais. Dizemos que dois divisores D,D′ ∈ Div(A) são racio-
nalmente equivalentes se eles diferirem por um elemento de P(A), ou seja, se D + P(A) =
D′ +P(A) em Div(A)/P(A).

Definição (Grupo de Classes de Divisores/Grupo de Chow). Definimos o grupo de classes de
divisores de A, ou ainda o grupo de Chow de A, como CH1(A) := Div(A)/P(A).

Nós temos um homomorfismo canônico div : Pic(A) → CH1(A) que relaciona o grupo de
Picard e o grupo de Chow de A. Dado M ∈ J(A), pela Proposição 8.4 para todo primo não-nulo
pCA existe ap ∈ K× tal que Mp = apAp. Com isso, podemos definir div : J(A) → Div(A) dado
por div(M) :=

∑
p(− ordp(ap)) p. Essa função é um homomorfismo que leva ideais fracionários

principais em divisores principais, e portanto induz um homomorfismo div : Pic(A) → CH1(A).
Por fim, é claro que nós temos:

Proposição 8.13. Se A for um domı́nio de Dedekind, div : Pic(A)→ CH1(A) é um isomorfismo.



Caṕıtulo 9

Valores Absolutos e Completamentos

Neste caṕıtulo, estudaremos corpos munidos de um valor absoluto. Mostraremos que, assim
como na construção de R a partir de Q, a partir de um corpo K com um valor absoluto |·| nós
podemos construir o seu completamento K̂. Como um caso particular, nós construiremos os
corpos de números p-ádicos, que provêm das valorações p-ádicas, e que como veremos possuem
um papel fundamental na resolução de equações diofantinas.

9.1. Valores Absolutos
Definição (Valor Absoluto). Um valor absoluto ou valoração multiplicativa num corpo K
é uma função |·| : K → R+ que satisfaz as propriedades:

(i) |x| = 0 ⇐⇒ x = 0;

(ii) |xy| = |x||y|, para todos x, y ∈ K;

(iii) |x+ y| ≤ |x|+ |y|. Essa propriedade é chamada de desigualdade triangular.

Além disso, chamaremos um valor absoluto de não-arquimediano se |n| for limitado para
todo n ∈ N, isto é, se existir C > 0 tal que |n| < C para todo n ∈ N (aqui, reconhecemos N

com sua imagem pelo morfismo canônico Z → K). Caso contrário, ele será chamado de valor
absoluto arquimediano.

Dado um valor absoluto |·| em K qualquer, observemos que |1| = |1 · 1| = |1|2 ⇒ |1| = 1. Do
mesmo modo, é fácil ver que toda raiz da unidade em K tem valor absoluto 1. Notemos ainda
que se K tiver caracteŕıstica positiva a imagem de Z pelo morfismo canônico Z→ K será finita,
de modo que todo valor absoluto nesse corpo será não-arquimediano. Assim, a distinção entre os
conceitos de valor absoluto arquimediano e não-arquimediano só é interessante no caso em que K
tem caracteŕıstica 0.

Para todo corpo K, nós temos o valor absoluto trivial dado por |0| = 0 e |x| = 1 para todo
x 6= 0. Na sequência, desconsideraremos esse valor absoluto. Assim, por valor absoluto entender-
se-á valor absoluto não-trivial. A partir de um valor absoluto |·| : K → R+ nós conseguimos
definir uma métrica em K com distância dada por d(x, y) = |x− y|. Em particular, esse valor
absoluto define um topologia em K.

Definição (Valores Absolutos Equivalentes). Dizemos que dois valores absolutos em K são equi-
valentes se eles definirem a mesma topologia em K.

Sendo |·| um valor absoluto em K e s um real positivo, suponhamos que a função |·|s : K → R+

defina um valor absoluto em K (isso equivale a essa função satisfazer a desigualdade triangular).

155
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Dados x ∈ K e r > 0 quaisquer, denotando por Br(x) a bola de centro x e raio r na métrica
definida por |·| e por B′r(x) a bola de centro x e raio r na métrica definida por |·|s, vemos que
valem as igualdades B′r(x) = Br1/s(x) e Br(x) = B′rs(x), o que mostra que os valores absolutos
|·| e |·|s são equivalentes. Na verdade, dois valores absolutos em K serão equivalentes se e somente
se um for uma potência real positiva do outro:

Proposição 9.1. Sejam |·|1 e |·|2 valores absolutos em K. Então são equivalentes:

(i) |·|1 e |·|2 são equivalentes.

(ii) Para todo x ∈ K, nós temos |x|1 < 1⇒ |x|2 < 1.

(iii) Existe um número real s > 0 tal que |·|1 = |·|s2.

Demonstração. A implicação (iii)⇒ (i) foi demonstrada acima. Provemos (i)⇒ (ii)⇒ (iii):

(i) ⇒ (ii): Suponhamos que |·|1 e |·|2 sejam equivalentes. Comecemos observando que para
um valor absoluto |·| : K → R+ qualquer vale que |x| < 1 ⇐⇒ limn→∞ x

n = 0, onde o limite
é tomado na métrica induzida por |·|. Sendo |·|1 e |·|2 equivalentes, as sequências convergentes
a 0 nas duas métricas induzidas coincidem, de modo que devemos ter |x|1 < 1 ⇐⇒ |x|2 < 1,
provando (ii).

(ii) ⇒ (iii): Suponhamos (ii), e tomemos y ∈ K tal que |y|1 > 1. Esse valor sempre existe.
De fato, como |·|1 não é o valor absoluto trivial, existe ỹ 6= 0 com |ỹ|1 6= 1. Se |ỹ|1 > 1, basta
tomarmos y = ỹ. Se por outro lado |ỹ|1 < 1, então basta tomarmos y = ỹ−1. Seja agora x ∈ K
não-nulo qualquer. Então existe algum α ∈ R tal que |x|1 = |y|α1 . Tomemos uma sequência
decrescente de racionais (mi/ni), com mi,ni ∈ Z, que converge a α. Então para todo i ∈N nós
temos:

|x|1 = |y|α1 < |y|
mi/ni
1 ⇒

∣∣∣∣ xniymi

∣∣∣∣
1
< 1⇒

∣∣∣∣ xniymi

∣∣∣∣
2
< 1⇒ |x|2 < |y|mi/ni2 .

Como isso vale para todo i e mi/ni → α, nós conclúımos que |x|2 ≤ |y|α2 . Tomando agora uma
sequência crescente de racionais (ci/di), com ci, di ∈ Z, que converge a α, nós obtemos de forma
análoga que |x|2 > |y|ci/di2 para todo i ∈ N, e portanto |x|2 ≥ |y|α2 . Assim, obtemos |x|2 = |y|α2 .
Seja s ∈ R tal que |y|1 = |y|s2. Notemos que s > 0, pois |y|1 > 1⇒ |y|2 > 1 (para essa implicação,
basta notarmos que |y−1|1 < 1). Desse modo, para todo x ∈ K não-nulo, vale:

|x|1 = |y|α1 = (|y|s2)α = (|y|α2 )s = |x|s2.

Como essa igualdade claramente vale também para x = 0, conclúımos que |·|1 = |·|s2.

A partir da proposição acima, nós podemos demonstrar o análogo ao Teorema Chinês dos
Restos para valores absolutos:

Teorema 9.2 (Teorema da Aproximação). Sejam |·|1, . . . , |·|n valores absolutos em um corpo K
dois a dois não-equivalentes, e sejam a1, . . . , an ∈ K. Então para todo ε > 0 existe x ∈ K tal que
|x− ai|i < ε, para todo 1 ≤ i ≤ n.

Demonstração. Se a1 = · · · = an = 0, basta tomarmos x = 0. Suponhamos então que pelo
menos algum dos aj ’s seja não-nulo. Nós provaremos por indução em n que existe z ∈ K tal que
|z|1 > 1 e |z|j < 1, para todo 2 ≤ j ≤ n. Para n = 2, como |·|1 e |·|2 não são equivalentes nós
conseguimos encontrar α ∈ K tal que |α|1 < 1 e |α|2 ≥ 1 e β ∈ K tal que |β|1 ≥ 1 e |β|2 < 1.
Notemos que α 6= 0 já que |α|2 ≥ 1. Tomando z = β/α, nós vemos que |z|1 = |β|1/|α|1 > 1 e
|z|2 = |β|2/|α|2 < 1, de modo que z satisfaz as condições desejadas.
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Suponhamos agora por indução que exista z̃ ∈ K tal que |z̃|1 > 1 e |z̃|j < 1 para todo
2 ≤ j ≤ n− 1, e tomemos y ∈ K tal que |y|1 > 1 e |y|n < 1. Se |z̃|n ≤ 1, então para todo m ∈N

nós temos |z̃my|1 > 1 e |z̃my|n < 1. Além disso, como |z̃|j < 1 para 2 ≤ j ≤ n− 1, podemos
tomar m suficientemente grande de modo que para todo 2 ≤ j ≤ n− 1 nós tenhamos |z̃my|j < 1.
Com isso, z = z̃my satisfaz |z|1 > 1 e |z|j < 1 para todo 2 ≤ j ≤ n.

Suponhamos então que |z̃|n > 1. Nesse caso, notemos que a sequência (z̃m/(1+ z̃m)) converge
a 1 com respeito a |·|1 e |·|n e converge a 0 com respeito a |·|j para 2 ≤ j ≤ n− 1 (observe que essa
sequência está bem-definida, pois como |z̃|1 > 1 vemos que z̃ não é uma raiz da unidade). Desse
modo, podemos tomar m suficientemente grande de modo que tenhamos |z̃my/(1 + z̃m)|1 > 1
e |z̃my/(1 + z̃m)|j < 1 para todo 2 ≤ j ≤ n. Assim, basta tomarmos z = z̃my/(1 + z̃m). Isso
conclui a indução.

Seja então z ∈ K tal que |z|1 > 1 e |z|j < 1 para todo 2 ≤ j ≤ n. A sequência (zm/(1+ zm))
converge a 1 com respeito a |·|1 e a 0 com respeito a |·|j para 2 ≤ j ≤ n. Desse modo, tomando
m grande, vemos que para todo δ1 > 0 é posśıvel encontrarmos um elemento z1 ∈ K tal que
|z1 − 1|1 < δ e |z1|j < δ para todo 2 ≤ j ≤ n.

De forma análoga, dado δ > 0 qualquer nós podemos achar para todo 1 ≤ i ≤ n um elemento
zi ∈ K tal que |zi − 1|i < δ e |zi|j < δ para todo 1 ≤ j ≤ n com j 6= i. Finalmente, tomemos
x = a1z1 + · · ·+ anzn. Então para todo 1 ≤ i ≤ n nós temos:

|x− ai|i = |a1z1 + · · ·+ ai−1zi−1 + ai(zi − 1) + ai+1zi+1 + · · ·+ anzn|i
≤ |a1|i|z1|i + · · ·+ |ai−1|i|zi−1|i + |ai|i|zi − 1|i + |ai+1|i|zi+1|i + · · ·+ |an|i|zn|i
< |a1|iδ + · · ·+ |ai−1|iδ + |ai|iδ + |ai+1|iδ + · · ·+ |an|iδ
= (|a1|i + · · ·+ |an|i)δ.

Dado ε > 0 qualquer, tomando δ > 0 de modo que δ < (|a1|i+ · · ·+ |an|i)−1ε para todo 1 ≤ i ≤ n,
nós obtemos |x− ai|i < ε para todo 1 ≤ i ≤ n, como desejávamos.

Mostraremos agora que um valor absoluto é não-arquimediano se e somente se satisfizer uma
versão mais forte da desigualdade triangular:

Proposição 9.3. Um valor absoluto |·| em K é não-arquimediano se e somente se ele satisfizer
a desigualdade ultramétrica, isto é, se valer a desigualdade:

|x+ y| ≤ max{|x|, |y|}, para todos x, y ∈ K.

Além disso, nesse caso temos |n| ≤ 1 para todo n ∈N.

Demonstração. (⇐): Suponhamos que |·| satisfaça a desigualdade ultramétrica. Então é fácil
ver por indução que vale |x1 + · · ·+ xn| ≤ max{|x1|, . . . , |xn|}, para todos x1, . . . ,xn ∈ K. Em
particular, para todo n ∈ N nós temos |n| = |1 + · · ·+ 1| ≤ max{|1|, . . . , |1|} = 1, o que mostra
que |·| é não-arquimediano.

(⇒): Suponhamos que |·| seja um valor absoluto não-arquimediano. Então existe C > 0 tal
que |n| < C para todo n ∈ N. Dado k inteiro positivo qualquer, nós temos |nk| = |n|k. Desse
modo, devemos ter |n| ≤ 1 para todo n ∈ N. Sejam x, y ∈ K quaisquer, e suponhamos sem
perda de generalidade que |x| ≥ |y|. Então queremos mostrar que |x+ y| ≤ |x|. Fixado n inteiro
positivo, nós temos:

|x+ y|n = |(x+ y)n| =

∣∣∣∣∣∣
n∑
j=0

(
n

j

)
xjyn−j

∣∣∣∣∣∣ ≤
n∑
j=0

∣∣∣∣∣
(
n

j

)∣∣∣∣∣|x|j |y|n−j ≤
n∑
j=0
|x|n ≤ (n+ 1)|x|n.

Desse modo, para todo inteiro positivo n nós temos |x+ y| ≤ (n+ 1)1/n|x|. Fazendo n → ∞,
conclúımos que |x+ y| ≤ |x|, como desejado. Assim, |·| satisfaz a desigualdade ultramétrica.
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Observação 9.4. Notemos que se |·| satisfizer a desigualdade ultramétrica, então nós temos
|x| 6= |y| ⇒ |x+ y| = max{|x|, |y|}. De fato, suponhamos que |x| > |y|. Então, pela desigualdade
ultramétrica, |x+ y| ≤ |x|. Por outro lado, |−y| = |y|, assim:

|x| = |(x+ y)− y| ≤ max{|x+ y|, |−y|} = max{|x+ y|, |y|}.

Mas como |x| > |y|, devemos ter |x| ≤ |x+ y|, de forma que |x+ y| = |x|, como desejado.

Dados um corpo K com um valor absoluto não-arquimediano |·| e q > 1 real, podemos
definir v : K → R∪{∞} dado por v(x) = − logq|x|, onde usamos a convenção logq 0 = −∞.
É fácil verificar que essa função satisfaz as seguintes propriedades ((iii) segue da desigualdade
ultramétrica):

(i) v(x) =∞ ⇐⇒ x = 0;

(ii) v(xy) = v(x) + v(y);

(iii) (Propriedade não-arquimediana) v(x+ y) ≥ min{v(x), v(y)}.

Definição (Valoração (Exponencial)/Grupo de Valores). Uma função v : K → R∪{∞} é cha-
mada de valoração (exponencial) se ela satisfizer as três propriedades acima. Além disso,
chamamos v(K×) ⊆ R de grupo de valores de v. Notemos que v(K×) é um subgrupo aditivo
de R.

Notemos que toda valoração discreta é uma valoração. Notemos ainda que toda valoração
satisfaz as propriedades dadas pelo Lema 3.26 (de fato, na prova desse lema não utilizamos o fato
da valoração ser discreta).

Assim, vemos que a cada valor absoluto não-arquimediano de K nós podemos associar uma
valoração. É fácil ver que o caminho inverso também é posśıvel. Isto é, dada uma valoração
v : K → R∪{∞}, podemos definir um valor absoluto não-arquimediano |·|v em K dado pela
expressão |x|v = q−v(x), onde q > 1 é um real fixado e definimos q−∞ = 0. Com isso, conseguimos
definir os valores absolutos p-ádicos:

Definição. [Valor Absoluto p-ádico/Métrica p-ádica] Seja p ∈ N um número primo. Definimos
o valor absoluto p-ádico em Q como sendo a função |·|p : Q → R+ dada por |x|p = p−vp(x).
Definimos ainda o valor absoluto ∞-ádico em Q como sendo o valor absoluto usual de Q,
e o denotamos |·|∞. A partir do valor absoluto p-ádico, nós conseguimos definir uma métrica
p-ádica em Q, com distância dada por dp(x, y) = |x− y|p. Note que d∞ é a distância euclidiana.

Para p primo, os valores absolutos p-ádicos são todos não-arquimedianos, já que todo número
natural tem valor absoluto no máximo 1. Por outro lado, para p = ∞ nós obtemos um valor
absoluto arquimediano, já que limn→∞|n|∞ =∞.

A partir de agora, nós sempre excluiremos a valoração trivial, dada por v(x) = 0 para x 6= 0
e v(0) =∞. Assim, por valoração se entenderá valoração não-trivial. Também temos uma noção
de equivalência de valorações:

Definição (Valorações Equivalentes). Duas valorações v1 e v2 em um corpo K se dizem equiva-
lentes se existir um real s > 0 tal que v1 = sv2.

Note que todos os valores absolutos associados a uma valoração v serão equivalentes, e que
duas valorações serão equivalentes se e somente se seus valores absolutos associados o forem,
devido à Proposição 9.1. Como uma consequência direta do Teorema da Aproximação para
valores absolutos, temos um Teorema da Aproximação para valorações:

Teorema 9.5 (Teorema da Aproximação). Sejam v1, . . . , vn valorações em um corpo K duas a
duas não-equivalentes, e sejam a1, . . . , an ∈ K. Então para todo C > 0 existe x ∈ K tal que
vi(x− ai) > C, para todo 1 ≤ i ≤ n.
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É fácil ver pela definição acima que as valorações p-ádicas, para p ∈ N primo, são duas a
duas não-equivalentes. Assim, para p primo os valores absolutos p-ádicos são dois a dois não-
equivalentes. Como |·|∞ é arquimediano, vemos que o valor absoluto ∞-ádico também não é
equivalentes aos demais. De fato, esses são os únicos valores absolutos de Q a menos de equi-
valência:

Proposição 9.6. Todo valor absoluto de Q é equivalente a um único valor absoluto p-ádico, para
p ∈N primo ou p =∞.

Demonstração. Vimos acima que os valores absolutos p-ádicos são dois a dois não-equivalentes
em Q. Assim, basta mostrarmos que todo valor absoluto |·| : Q → R+ é equivalente a algum
valor absoluto p-ádico |·|p. Suponhamos inicialmente que |·| seja não-arquimediano. Então pela
Proposição 9.3 temos |n| ≤ 1 para todo n ∈ Z. Assim, utilizando a desigualdade ultramétrica é
fácil ver que o conjunto a := {a ∈ Z : |a| < 1} é um ideal próprio de Z. Como todo elemento
de Q× se escreve como um produto finito de potências inteiras de números primos e |·| não é o
valor absoluto trivial, conclúımos que deve haver p ∈ N primo para o qual |p| < 1. Desse modo,
a ⊇ pZ. Mas pZ é maximal, e assim conclúımos que a = pZ. Isso prova que |q| = 1 para todo
primo q 6= p. Em particular, |u| = 1 para todo u ∈ Z×(p).

Chamemos s := − logp(|p|) > 0. Assim, |p| = p−s. Todo x ∈ Q× se escreve de modo único
como x = pvp(x)u, para u ∈ Z×(p). Então nós temos:

|x| = |pvp(x)u| = |p|vp(x) = (p−s)vp(x) = (p−vp(x))s = |x|sp.

Como essa igualdade vale também para x = 0, conclúımos que |·| = |·|sp, provando que |·| é equi-
valente a |·|p.

Suponhamos agora que |·| seja um valor absoluto arquimediano. Então existe um inteiro po-
sitivo n > 1 tal que |n| > 1. Sejam m > 1 e k ≥ 1 inteiros. Escrevendo nk na base m,
nós obtemos nk = a0 + a1m+ · · ·+ arm

r, para alguns inteiros 0 ≤ aj ≤ m− 1. Notemos que
mr ≤ nk ⇒ r ≤ k logn/ logm. Além disso, para 0 ≤ j ≤ r nós temos pela desigualdade triangular
que |aj | = |1 + · · ·+ 1| ≤ aj |1| = aj < m. Assim:

|n|k = |nk| =

∣∣∣∣∣∣
r∑
j=0

ajm
j

∣∣∣∣∣∣ ≤
r∑
j=0
|ar||m|j <

r∑
j=0

m|m|j

≤ m(r+ 1)max{1, |m|r}
≤ m(1 + k logn/ logm)max{1, |m|k logn/ logm}.

Tomando a raiz k-ésima dos dois lados, nós conclúımos que para todo inteiro positivo k vale a
desigualdade:

|n| ≤ (m(1 + k logn/ logm))1/k max{1, |m|logn/ logm}.

Fazendo k →∞, nós conclúımos que |n| ≤ max{1, |m|logn/ logm}. Como |n| > 1, temos então que
|n| ≤ |m|logn/ logm ⇒ |n|1/ logn ≤ |m|1/ logm. Notemos ainda que, como logn/ logm > 0, temos:

1 < |n| ≤ |m|logn/ logm ⇒ |m| > 1,

Assim, podemos repetir o argumento trocando as posições de m e de n, para concluirmos que
|m|1/ logm ≤ |n|1/ logn, e portanto vale a igualdade |m|1/ logm = |n|1/ logn, para todo inteiro
positivo m. Definamos s := log

(
|n|1/ logn

)
> 0, de modo que es = |n|1/ logn. Afirmamos que

|x| = |x|s∞, para todo x ∈ Q. Comecemos observando que isso vale para x ∈ Z. De fato, para
x = 0 ou x = ±1, isso é claro. Suponhamos então x = ±m, onde m > 1 é um inteiro. Logo:

|x| = |m| =
(
|n|1/ logn

)logm
= (es)logm = (elogm)s = ms = |x|s∞.



160 CAPÍTULO 9. VALORES ABSOLUTOS E COMPLETAMENTOS

Mostremos agora que isso vale para todo x ∈ Q. Podemos escrever x = a/b, para a, b ∈ Z e
b 6= 0. Então |x| = |a|/|b| = |a|s∞/|b|s∞ = |a/b|s∞ = |x|s∞, concluindo a demonstração.

Nós podemos definir valoração discreta de uma forma um pouco mais ampla, que dá sentido
ao adjetivo discreta:

Definição (Valoração Discreta). Uma valoração v : K → R∪{∞} é chamada de discreta se seu
grupo de valores v(K×) for um subconjunto discreto de R.

É fácil mostrar que todo subgrupo aditivo de R que também é discreto é da forma sZ, onde
s > 0 é o menor elemento positivo desse subgrupo. Desse modo, se v for uma valoração discreta,
teremos v(K×) = sZ para algum s > 0. Assim, a valoração ṽ := 1

sv também será uma valoração
discreta, equivalente a v, e tal que ṽ(K×) = Z. Então ṽ : K → Z∪{∞} é uma valoração
discreta no sentido da Seção 3.3, e nesse contexto mais geral é chamada de valoração discreta
normalizada.

Assim como nós associamos uma valoração discreta (normalizada) a um DVD, vemos que é
posśıvel associar uma valoração a um certo anel. De fato, as três condições que definem uma
valoração implicam imediatamente no seguinte:

Proposição 9.7. Seja v : K → R∪{∞} uma valoração e seja |·|v um valor absoluto relacionado
a v. Então o conjunto

A := {x ∈ K : v(x) ≥ 0} = {x ∈ K : |x|v ≤ 1}

é um subanel de K, que é local com grupo de unidades

A× := {x ∈ K : v(x) = 0} = {x ∈ K : |x|v = 1}

e único ideal maximal

p = {x ∈ K : v(x) > 0} = {x ∈ K : |x|v < 1}.

O anel A é um domı́nio com corpo de frações K e com a propriedade de que para todo x ∈ K×
nós temos x ∈ A ou x−1 ∈ A.

As últimas duas linhas da proposição acima nos dizem que o anel A é o que chamamos de um
domı́nio de valoração:

Definição (Domı́nio de Valoração). Um domı́nio A é chamado de domı́nio de valoração, ou
ainda anel de valoração, se para todo elemento não-nulo x de seu corpo de frações nós tivermos
x ∈ A ou x−1 ∈ A.

O seguinte resultado nos diz um pouco sobre a estrutura dos domı́nios de valoração:

Proposição 9.8. Seja A um domı́nio com corpo de frações K = Q(A). Então são equivalentes:

(i) A é um domı́nio de valoração.

(ii) Os ideais de A são totalmente ordenados por inclusão.

(iii) Os ideais principais de A são totalmente ordenados por inclusão.

Além disso, nesse caso A é local e integralmente fechado.
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Demonstração. (i)⇒ (ii): Sejam a, bCA ideais quaisquer. Suponhamos por absurdo que a 6⊆ b
e b 6⊆ a. Tomemos a ∈ a \ b e b ∈ b \ a. Então como A é domı́nio de valoração vemos que a/b ∈ A
ou b/a ∈ A. Mas se x = a/b ∈ A então a = xb ∈ b, e se y = b/a ∈ A então b = ya ∈ a, um
absurdo! Conclúımos que a ⊆ b ou b ⊆ a, como desejávamos. Em particular, dados dois ideais
maximais de A, um está contido no outro. Assim, A possui apenas um ideal maximal, logo é local.

(ii)⇒ (iii): É óbvio.

(iii)⇒ (i): Suponhamos que os ideais principais de A sejam totalmente ordenados por inclusão.
Isso significa que os elementos de A são totalmente ordenados por divisibilidade. Isto é, dados
a, b ∈ A quaisquer temos a | b ou b | a. Seja x ∈ K qualquer. Então podemos escrever x = a/b,
para alguns a, b ∈ A, b 6= 0. Então a | b ou b | a. Se b | a, então x = a/b ∈ A. Se a | b, então
x−1 = b/a ∈ A. Isso mostra que A é um domı́nio de valoração.

Mostremos agora que todo domı́nio de valoração A é integralmente fechado. Seja x ∈ AK . Então
existem elementos a0, a1, . . . , an−1 ∈ A tais que a0 + a1x+ · · ·+ an−1x

n−1 + xn = 0. Suponhamos
por absurdo que x 6∈ A. Então x−1 ∈ A, de modo que

x = −a0(x
−1)n−1 − a1(x

−1)n−2 − · · · − an−1 ∈ A,

um absurdo! Conclúımos que x ∈ A, e portanto A é integralmente fechado.

É interessante observar que a correspondência v 7→ Kv entre o conjunto das valorações de K
e o conjunto dos domı́nios de valoração de K é injetora a menos de equivalências:

Proposição 9.9. Sejam v e w valorações de K, com domı́nios de valoração Av e Aw, respecti-
vamente. Então Av = Aw se e somente se v for equivalente a w.

Demonstração. Se v for equivalente a w, temos v(x) ≥ 0 ⇐⇒ w(x) ≥ 0, o que mostra que
Av = Aw. Suponhamos, por outro lado, que Av = Aw. Então em particular os ideais maximais
desses dois anéis são iguais, de modo que v(x) > 0 ⇐⇒ w(x) > 0. Em termos de valores
absolutos, isso significa que |x|v < 1 ⇐⇒ |x|w < 1, o que significa que esses dois valores
absolutos são equivalentes pela Proposição 9.1. Isso mostra que v e w são equivalentes.

Terminemos a seção com uma análise da topologia de um corpo K munido de uma valoração
discreta normalizada v. Sejam |·|v = q−v um valor absoluto associado, A o DVD associado e p o
único ideal maximal desse DVD. Então todos os ideais fracionários não-nulos de A são da forma

pn = {x ∈ A : v(x) ≥ n} = {x ∈ A : |x|v ≤ q−n},

para n ∈ Z. A última caracterização acima nos mostra que os pn’s são conjuntos fechados na
topologia induzida. Mas sendo v uma valoração discreta, nós temos

pn = {x ∈ A : v(x) > n− 1} = {x ∈ A : |x|v < q−(n−1)}.

Assim, esses conjuntos também são abertos nessa topologia. Em particular, A é aberto e fechado
em K. Na verdade, como a imagem de |·|v é {0, . . . , q−2, q−1, 1, q, q2, . . .}, vemos que os pn nos
dão todas as bolas abertas (e fechadas) com centro em 0. É claro que, dado a ∈ K qualquer, nós
temos:

a+ pn = {x ∈ A : |x− a|v ≤ q−n} = {x ∈ A : |x− a|v < q−(n−1)},

de modo que essas são as bolas abertas (e fechadas) com centro em a. Assim, para todo a ∈ K, o
conjunto {a+ pn : n ∈N} é um sistema fundamental de vizinhanças de a na topologia induzida por
|·|v. Em particular, {pn : n ∈N} é um sistema fundamental de vizinhanças de 0, e {U (n) : n ∈N}
é um sistema fundamental de vizinhanças de 1.
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9.2. Completamentos
Para indicar que temos um corpo K munido de um valor absoluto |·|, denotaremos (K, |·|).
Similarmente, indicaremos um corpo munido de uma valoração v por (K, v). Finalmente, de-
notamos (K, v, |·|) quando quisermos indicar que um corpo está munido de um valor absoluto
não-arquimediano |·| que induz uma valoração v. Começamos com a seguinte definição, análoga
ao caso de espaços vetoriais normados:

Definição (Corpo Completo). Um corpo (K, |·|) é dito completo se toda sequência de Cauchy
em K convergir com relação a1 |·|.

Procedendo do mesmo modo que na construção dos reais, nós podemos construir, a partir de
um corpo com valor absoluto (K, |·|), um corpo com valor absoluto completo (K̂, |·|), chamado
completamento de K com respeito a |·|, de modo que K seja um subcorpo de K̂, que o valor
absoluto de K̂ estenda o valor absoluto de K e que K seja denso em K̂ com a topologia induzida
por |·|.

Começamos considerando o anel R das sequências de Cauchy em K, e o ideal mCR das
sequências de Cauchy em K que convergem a 0. Esse ideal é maximal. De fato, tomemos
x = (xn) ∈ R \m qualquer. Queremos mostrar que R = m+xR. Como x é sequência de Cauchy
que não converge a 0, nenhuma subsequência de x pode convergir a 0. Assim, existem δ > 0 e
n0 ∈N tais que |xn| > δ para todo n > n0.

Seja agora y = (yn) ∈ R qualquer. Definimos z = (zn) ∈ R por zn = 0 para n < n0 e
zn = x−1

n yn para todo n > n0. Como para n > n0 temos |xn| limitado inferiormente, é fácil ver
que z é uma sequência de Cauchy. Agora, vemos que y − xz = (y1, y2, . . . , yn0 , 0, 0, . . . ) ∈ m, e
portanto y ∈ m+xR. Isso prova que m é maximal.

Definimos K̂ := R/m. Então K̂ é um corpo, e podemos ver K como um subcorpo de K̂
por meio da inclusão a 7→ (a, a, a, . . . ) + m. Nós estendemos o valor absoluto |·| de K a um
valor absoluto |·| de K̂ definindo |(xn) +m| := limn→∞|xn|. Para ver que essa função está bem-
definida, comecemos observando que vale ||xm| − |xn|| ≤ |xm − xn|, o que mostra que (|xn|) é
uma sequência de Cauchy de números reais, e portanto converge. Seja agora (yn) ∈ R tal que
(xn)+m = (yn)+m. Então temos (xn− yn) ∈ m, de modo que |xn− yn| → 0⇒ ||xn|− |yn|| → 0,
o que prova que limn→∞|yn| = limn→∞|xn|.

Estando bem-definido, é fácil verificar que |·| é de fato um valor absoluto em K̂ que estende o
valor absoluto de K. Essa extensão será arquimediana se e somente se o valor absoluto de K o for,
já que a identificação de N dentro de K é a mesma que dentro de K̂. Além disso, a completude
de K̂ se mostra da mesma forma que a completude de R, e o fato de K ser denso em K̂ se mostra
da mesma forma que o fato de Q ser denso em R.

Finalmente, o completamento (K̂, |·|) é único a menos de isomorfismo. De fato, seja (K ′, |·|′)
um corpo com valor absoluto completo que possui (K, |·|) como subcorpo denso. Então pode-
se mostrar que a função σ : K̂ → K ′, que para toda sequência (an) em K leva limn→∞ an com
respeito a |·| em limn→∞ an com respeito a |·|′, é um isomorfismo de corpos que preserva os valores
absolutos, isto é, tal que para todo x ∈ K̂ tenhamos |x| = |σx|′.

Os exemplos mais conhecidos de corpos completos são R e C. Ambos são completos em relação
a um valor absoluto arquimediano. O interessante é que eles são os únicos corpos completos por
um valor absoluto arquimediano, a menos de isomorfismo. De fato, denotando por |·|∞ o valor
absoluto de R ou C, nós temos:

Teorema 9.10 (Teorema de Ostrowski). Seja K um corpo que é completo com respeito a um
valor absoluto arquimediano |·|. Então existe um isomorfismo σ de K em R ou C, satisfazendo
|x| = |σx|s∞, para todo x ∈ K, onde s ∈ (0, 1] é fixado.

1Isto é, na métrica induzida por |·|.
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Demonstração. Como já vimos, apenas corpos com caracteŕıstica 0 possuem valores absolutos
arquimedianos. Assim, Q é um subcorpo de K. Desse modo, pela Proposição 9.6, a restrição do
valor absoluto de K a Q é da forma |·|s∞, para algum s > 0. Logo |·|1/s = |·|∞ em Q. Sem perda
de generalidade, troquemos |·| por |·|1/s. Então vale |·| = |·|∞ em Q.

Seja Q̂ o fecho de Q em K com respeito a |·|. Então (Q̂, |·|) é um completamento de (Q, |·|) =
(Q, |·|∞). Mas (R, |·|∞) também é um completamento desse corpo, e portanto pela unicidade
do completamento vemos que existe um isomorfismo de corpos σ : R → Q̂ que preserva valores
absolutos. Assim, podemos supor sem perda de generalidade que R é subcorpo de K.

Nessas condições, iremos mostrar que K = R ou K ∼= C. Para isso, basta mostrar que a
extensão K/ R é algébrica. De fato, mostraremos que todo elemento ξ ∈ K é raiz de um polinômio
de segundo grau com coeficientes em R. Para isso, consideremos a função cont́ınua f : C → R

dada por f(z) = |ξ2 − (z + z)ξ + zz|. Notemos que para todo z ∈ C temos z + z, zz ∈ R ⊆ K,
de modo que f está bem-definida. Desse modo:

f(z) = |ξ2 − (z + z)ξ + zz| ≥ |zz| − |(z + z)ξ| − |ξ2| = |zz|∞ − |z + z|∞|ξ| − |ξ|2.

Escrevendo z = a+ bi para a, b ∈ R, nós obtemos |zz|∞ = a2 + b2 e |z+ z| = 2|a|∞. Observando
que |z|∞ =

√
a2 + b2, vemos que quando |z|∞ →∞ nós temos:

f(z) ≥ (a2 + b2)− 2|a|∞|ξ| − |ξ|2 →∞.

Isso mostra que f assume um valor mı́nimo m, e além disso que o conjunto S := f−1(m) ⊆ C

é limitado. Sendo a pré-imagem de um ponto por uma função cont́ınua, vemos que S também é
fechado. Assim, S é compacto. Sendo S compacto, existe z0 ∈ S tal que |z0|∞ ≥ |z|∞ para todo
z ∈ S. Nós mostraremos que m = 0, pois então iremos concluir que ξ2 − (z0 + z0)ξ + z0z0 = 0,
de modo que ξ será a raiz de um polinômio de segundo grau com coeficientes em R. Suponhamos
por absurdo que m > 0. Fixemos 0 < ε < m, e consideremos o polinômio

g(x) = x2 − (z0 + z0)x+ z0z0 + ε ∈ R[x].

Como o polinômio x2 − (z0 + z0)x+ z0z0 = (x− z0)(x− z0) não possui ráızes reais, nós temos
x2 − (z0 + z0)x+ z0z0 > 0 para todo x ∈ R. Assim, é claro que g(x) > 0 para todo x ∈ R, de
modo que g(x) possui duas ráızes não-reais z1 e z1. Temos z1z1 = z0z0 + ε, logo |z1|∞ > |z0|∞,
e portanto z1 6∈ S. Assim, f(z1) > m. Fixado n inteiro positivo, consideremos o polinômio

G(x) = (g(x)− ε)n − (−ε)n ∈ R[x],

e sejam α1, . . . ,α2n ∈ C suas ráızes, contadas com multiplicidade. É claro que α1, . . . ,α2n também
são as ráızes de G, em alguma ordem. Portanto:

G(x) =
2n∏
i=1

(x− αi) =
2n∏
i=1

(x− αi)

⇒ G(x)2 =
2n∏
i=1

(x− αi) ·
2n∏
i=1

(x− αi) =
2n∏
i=1

(x2 − (αi + αi)x+ αiαi).

Como g(z1) = 0, vemos que G(z1) = 0. Suponhamos sem perda de generalidade que z1 = α1.
Assim:

|G(ξ)2| =
2n∏
i=1
|ξ2 − (αi + αi)ξ + αiαi)| =

2n∏
i=1

f(αi) ≥ f(α1)m
2n−1 = f(z1)m

2n−1.

Por outro lado, como g(x)− ε = x2 − (z0 + z0)x+ z0z0, nós temos:

|G(ξ)| = |(g(ξ)− ε)n − (−ε)n| ≤ |ξ2 − (z0 + z0)ξ + z0z0|n + |εn|
= f(z0)

n + εn = mn + εn.
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Desse modo, obtemos:

f(z1)m
2n−1 ≤ |G(ξ)2| = |G(ξ)|2 ≤ (mn + εn)2 ⇒ f(z1)

m
≤ (mn + εn)2

m2n =

(
1 +

(
ε

m

)n)2
.

Essa desigualdade vale para todo inteiro positivo n. Finalmente, fazendo n→∞, nós conclúımos
que f(z1)/m ≤ 1⇒ f(z1) ≤ m, um absurdo! Logo m = 0, e ξ é raiz de um polinômio de segundo
grau com coeficientes em R. Assim, K = R ou K ∼= C.

Traduzindo o que fizemos até aqui para o corpo com valor absoluto (K, |·|) inicial (lembre
que identificamos K com um corpo que contém R e que consideramos |·|1/s ao invés de |·|), nós
conclúımos que existe um isomorfismo σ de K em R ou C satisfazendo |x| = |σx|s∞, onde s > 0.
Falta apenas mostrar que s ≤ 1. Para isso, mostraremos que para s > 1 a função |·|s∞ não satisfaz
a desigualdade triangular em R, e portanto também não em C. Para isso, basta notarmos que
1s + 1s = 2 < 2s = (1 + 1)s, o que conclui a demonstração.

O teorema acima mostra que podemos restringir nosso estudo de completamentos aos valores
absolutos não-arquimedianos. Na prática, muitas vezes é melhor trabalharmos com as valorações
associadas a esses valores absolutos. Assim, seja (K, v, |·|) um corpo, e consideremos seu comple-
tamento (K̂, |·|). Suponhamos que q > 1 seja tal que |·| = q−v. Nós podemos estender v a uma
valoração v̂ em K̂ definindo, para cada x ∈ K̂, v̂(x) = − logq|x|. Assim, vale a relação |·| = q−v̂

em K̂. Note que pela definição que demos para v̂ e pela definição da extensão |·|, para todo x ∈ K̂
e toda sequência (xn) de elementos de K que converge a x nós temos v̂(x) = limn→∞ v(xn).
Como (xn) → x, temos (x− xn) → 0 ⇒ |x− xn| → 0. Assim, se x 6= 0 existe n0 ∈ N tal que
n ≥ n0 ⇒ |x− xn| < |x|, o que mostra que v̂(x) < v̂(x− xn). Desse modo, como v̂ é valoração
que estende v, para todo n ≥ n0 nós temos:

v(xn) = v̂(xn) = v̂(x− (x− xn)) = min{v̂(x), v̂(x− xn)} = v̂(x).
Assim, vemos que a sequência (v(xn)) é de fato eventualmente constante. Isso nos mostra que
v̂(K̂) = v(K). Assim, nós provamos:
Proposição 9.11. Sejam (K, v, |·|) um corpo e (K̂, |·|, v̂) seu completamento. Então os grupos de
valores de v e de v̂ são iguais, isto é, v(K) = v̂(K̂). Em particular, se v for discreta, v̂ também
será discreta, e se v for discreta normalizada, v̂ também será discreta normalizada.

A métrica induzida por uma valoração possui propriedades bem singulares:
Proposição 9.12. Seja (K, v, |·|) um corpo. Então:

(a) Uma sequência (xn) em K converge a um x ∈ K se e somente se limn→∞ v(x− xn) =∞,
e é de Cauchy se e somente se m,n→∞⇒ v(xm − xn)→∞.

(b) Uma sequência (xn) em K é de Cauchy se e somente limn→∞(xn+1 − xn) = 0. Em
particular, uma sequência de somas parciais

(∑n−1
j=0 xj

)
é de Cauchy se e somente se

limn→∞ xn = 0.

(c) Se K for completo, uma sequência (xn) em K converge se e só se limn→∞(xn+1− xn) = 0.
Em particular, uma série

∑∞
n=0 xn converge se e só se tivermos limn→∞ xn = 0.

Demonstração. (a) Basta notar que xn → x ⇐⇒ |x− xn| → 0 ⇐⇒ v(x− xn) → ∞. A
afirmação sobre sequências de Cauchy se prova do mesmo modo.

(b) É claro que se (xn) for de Cauchy então limn→∞(xn+1 − xn) = 0. Reciprocamente, supo-
nhamos que valha essa última condição. Então para todo C > 0 existe n0 ∈N tal que para
todo n ≥ n0 tenhamos v(xn+1 − xn) > C. Mas então, para todos m > n ≥ n0:

v(xm − xn) = v((xm − xm−1) + (xm−1 − xm−2) + · · ·+ (xn+1 − xn))
≥ min{xm − xm−1,xm−1 − xm−2, . . . ,xn+1 − xn} > C.

Assim, m,n→∞⇒ v(xm − xn)→∞, de modo que (xn) é sequência de Cauchy.
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(c) Segue imediatamente do item anterior.

Também temos uma relação entre os anéis de valoração de um corpo e de seu completamento.
Para isso, usaremos a notação (K, v, |·|,A, p,κ) para indicar que K é um corpo com valoração
v, valor absoluto associado |·| e domı́nio de valoração associado A, com único ideal maximal p e
corpo de reśıduos κ = A/ p. Eventualmente, omitiremos algumas dessas informações, por exemplo
escrevendo (K, v, |·|) ou então (K, v,A, p,κ).

Proposição 9.13. Sejam (K, v, |·|,A, p,κ) um corpo e (K̂, |·|, v̂, Â, p̂, κ̂) seu completamento.
Então:

(a) A = Â∩K, e Â é o fecho de A em K̂ com relação a |·|.

(b) p = p̂∩K = p̂∩A. Assim, p̂ | p. Além disso, p̂ é o fecho de p em K̂ com relação a |·|.
Se v for discreta, teremos ainda pn = p̂n ∩K = p̂n ∩A para todo inteiro positivo n, de
modo que p̂n | pn nesse caso, e além disso p̂n será o fecho de pn em K̂ com relação a |·|.

(c) Nós temos um isomorfismo de corpos residuais κ ∼= κ̂, dado por a+ p 7→ a+ p̂. Além disso,
se v for discreta, então para todo n inteiro positivo nós temos um isomorfismo de anéis
A/ pn ∼= Â/p̂n, dado por a+ pn 7→ a+ p̂n.

Demonstração. (a) Nós temos

A = {x ∈ K : v(x) ≥ 0} = {x ∈ K : v̂(x) ≥ 0} = Â∩K.

Mostremos agora que Â é o fecho de A em K̂. Denotemos por A esse fecho. Seja x ∈ A.
Então existe uma sequência de Cauchy (xn) em A com x = limn→∞ xn. Em particular,
v̂(x) = limn→∞ v(xn) ≥ 0. Isso mostra que x ∈ Â, e portanto A ⊆ Â.
Reciprocamente, seja x ∈ Â. Se x = 0, é claro que x ∈ A. Assim, suponhamos x 6= 0.
Como K é denso em K̂, existe uma sequência (xn) em K com x = limn→∞ xn. Sabemos
que limn→∞ v(xn) = v̂(x). Como já observamos, existe n0 ∈ N tal que v(xn) = v̂(x) ≥ 0
para todo n ≥ n0. Assim, para todo n ≥ n0, temos xn ∈ A, de modo que x é limite de uma
sequência de elementos de A. Isso prova que Â ⊆ A, e portanto Â = A, como queŕıamos.

(b) Nós temos

p = {x ∈ K : v(x) > 0} = {x ∈ K : v̂(x) > 0} = p̂∩K = p̂∩A.

Suponhamos agora que v seja discreta, sem perda de generalidade normalizada. Nesse caso,
v̂ também será discreta normalizada, logo para todo n inteiro positivo nós temos:

pn = {x ∈ K : v(x) ≥ n} = {x ∈ K : v̂(x) ≥ n} = p̂n ∩K = p̂n ∩A.

As afirmações sobre os fechos se demonstram da mesma forma que no item (a).

(c) Como A ⊆ Â e p̂ | p, a função κ→ κ̂ dada por a+ p 7→ a+ p̂ é um homomorfismo injetor.
Mostremos sua sobrejetividade. Seja x ∈ Â qualquer. Como Â é o fecho de A em K̂, existe
a ∈ A tal que |x− a| < 1, o que equivale a v̂(x− a) > 0. Isso significa que x− a ∈ p̂, logo
x+ p̂ = a+ p̂. Isso mostra que o homomorfismo em questão é sobrejetor, e portanto um
isomorfismo.
Suponhamos agora que v seja discreta, e seja n um inteiro positivo. Como p̂n | pn, a função
A/ pn → Â/p̂n dada por a + pn 7→ a + p̂n. é um homomorfismo injetor. Como Â é o
fecho de A em K̂, existe a ∈ A tal que v̂(x− a) ≥ n. Isso significa que x− a ∈ p̂n, logo
x+ p̂n = a+ p̂n. Isso mostra que o homomorfismo em questão é sobrejetor, e portanto um
isomorfismo.
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O teorema acima nos diz que podemos identificar κ com κ̂, e mais geralmente A/ pn com
Â/p̂n caso v seja discreta. É o que faremos de agora em diante. Assim, dado a ∈ Â, denotaremos
a (mod p) para indicar a (mod p̂), e caso v for discreta denotaremos a (mod pn) para indicar
a (mod p̂n).

Mostraremos agora que, se v for discreta, nós conseguimos representar todo elemento de K̂
de forma única como uma “série de Laurent” no normalizador de A, com coeficientes em certo
conjunto:

Proposição 9.14. Sejam (K, v,A, p) um corpo e (K̂, v̂, Â, p̂) seu completamento. Suponhamos
que v seja uma valoração discreta normalizada, e seja π um normalizador de A. Então:

(a) π também é um normalizador de Â, e p Â = p̂.

(b) Toda série da forma
∑∞
n=0 cjπ

j, onde cada cj ∈ A, converge em Â.

(c) Seja S ⊆ A um sistema completo de representantes de A/ p tal que 0 ∈ S. Então todo
x ∈ K̂× admite representação única como uma série convergente x = πm

∑∞
j=0 ajπ

j, onde
aj ∈ S para todo j ∈N, a0 6= 0 e m ∈ Z. Além disso, v̂(x) = m.

Demonstração. (a) Temos v(π) = 1, logo v̂(π) = v(π) = 1, de onde vemos que π também é
um normalizador de Â. Assim, p Â = (πA)Â = πÂ = p̂.

(b) A convergência dessa série em K̂ equivale a termos limn→∞ cnπ
n = 0, pela Proposição 9.12.

Mas v̂(cnπn) ≥ v̂(πn) = n, de modo que limn→∞ cnπ
n = 0 por essa mesma proposição.

Assim, essa série converge. Finalmente, pela Proposição 9.13 essa série converge para um
elemento de Â, já que é um limite de elementos de A.

(c) Seja x ∈ K̂ qualquer. Como π é o normalizador de Â, podemos escrever de modo único
x = πmu, onde m = v̂(x) e u ∈ Â×. Como Â/p̂ ∼= A/ p, existe um único a0 ∈ S tal que
u ≡ a0 (mod p̂). Note que a0 6= 0, já que u 6∈ p̂. Então podemos escrever u = a0 + b1π,
para algum b1 ∈ Â. Seja a1 ∈ S único tal que b1 ≡ a1 (mod p̂). Então existe b2 ∈ Â tal que
b1 = a1 + b2π, e portanto u = a0 + (a1 + b2π)π = a0 + a1π+ b2π

2.
Continuando dessa forma, suponhamos que encontramos a0, a1, . . . , an−1 ∈ Â e bn ∈ Â
tais que u = a0 + a1π + · · ·+ an−1π

n−1 + bnπ
n. Então existe um único an ∈ S tal que

bn ≡ an (mod p̂). Sendo bn+1 ∈ Â tal que bn = an + bn+1π, nós temos:

u = a0 + a1π+ · · ·+ an−1π
n−1 + (an + bn+1π)π

n

= a0 + a1π+ · · ·+ an−1π
n−1 + anπ

n + bn+1π
n+1.

Desse modo, obtemos uma sequência de somas parciais (sn) =
(∑n−1

j=0 ajπ
j
)
. Como para

cada n ∈N temos v̂(u− sn) = v̂(bnπn) ≥ n, vemos que limn→∞ v̂(u− sn) =∞, e portanto
limn→∞ sn = u. Conclúımos que u =

∑∞
j=0 ajπ

j . Assim, nós obtemos a representação
x = πm

∑∞
j=0 ajπ

j , onde aj ∈ S para todo j ∈N, a0 6= 0 e m = v̂(x) ∈ Z.
Para mostrar a unicidade, suponhamos que x = π`

∑∞
j=0 bjπ

j , para ` ∈ Z, bj ∈ S para todo
j ∈ N e b0 6= 0. Como para todo n ≥ 0 temos v̂

(∑n−1
j=0 bjπ

j
)
= 0 já que b0 6∈ p̂, temos

v̂
(∑∞

j=0 bjπ
j
)
= limn→∞ v̂

(∑n−1
j=0 bjπ

j
)
= 0. Assim, vemos que v̂(x) = `. Como v̂(x) = m,

vemos que ` = m, e portanto nós temos ∑∞j=0 ajπ
j =

∑∞
j=0 bjπ

j ⇒
∑∞
j=0(aj − bj)πj = 0.

Então v̂
(∑∞

j=0(aj − bj)πj
)
= ∞. Se tivéssemos aj 6= bj para algum j ∈N, é fácil ver que

valeria v̂
(∑∞

j=0(aj − bj)πj
)
= min{j ∈ N : aj 6= bj} < ∞, um absurdo! Conclúımos que

aj = bj para todo j ∈N, mostrando a unicidade.
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Nós podemos ainda dar uma outra caracterização para Â, por meio de limites projeti-
vos. Para isso, continuaremos na hipótese de v ser discreta normalizada. Consideremos o anel∏∞
n=1A/ pn. Dizemos que uma sequência (xn (mod pn)) nesse anel é coerente se para todos

m < n nós tivermos xn ≡ xm (mod pm). Assim, podemos considerar o subanel definido por

lim←−
n

A/ pn :=

{
x ∈

∞∏
n=1

A/ pn : x é coerente
}

.

Ele é chamado de limite projetivo dos A/ pn. Com isso, nós temos o seguinte resultado:

Proposição 9.15. O mapa canônico Â → lim←−
n

A/ pn dado por a 7→ (a (mod pn)) é um isomor-

fismo de anéis.

Demonstração. Essa mapa é claramente um homomorfismo de anéis, com núcleo ⋂n≥1 p̂
n = 0.

Logo esse homomorfismo é injetor. Para mostrar que também é sobrejetor, sejam π um normali-
zador de A e S ⊆ A um representante de classes de A/ p com 0 ∈ S. Consideremos um elemento
x = (xn (mod pn)) ∈ lim←−

n

A/ pn qualquer. É fácil mostrar por indução em n que existe uma única

sequência (an) de elementos de S com x = (xn (mod pn)) =
(∑n−1

j=0 ajπ
j (mod pn)

)
. Notemos

agora que, pela proposição acima,
(∑n−1

j=0 ajπ
j
)

converge a um elemento a ∈ Â. Finalmente, basta
observar que x = (xn (mod pn)) = (a (mod pn)) é a imagem de a pelo homomorfismo acima,
que portanto é sobrejetor. Assim, esse mapa é um isomorfismo de anéis.

9.3. Os números p-ádicos
Nessa seção, definiremos os números p-ádicos a partir do que fizemos nas seções anteriores. A
Proposição 9.6 nos diz que todo valor absoluto de Q é da forma |·|p, para p ∈N primo ou p =∞.
O completamento de (Q, |·|∞) é (R, |·|∞), e também podemos denotar R = Q∞. Os corpos
p-ádicos surgem como o completamento de Q com relação aos seus outros valores absolutos:

Definição (Corpo dos Números p-ádicos/Anel dos Inteiros p-ádicos). Seja p ∈ N um primo.
Chamamos de corpo dos números p-ádicos o completamento do corpo (Q, vp, |·|p, Z(p)), e o
denotamos por (Qp, vp, |·|p, Zp). Seu domı́nio de valoração discreta Zp é chamado de anel de
inteiros p-ádicos. Chamamos os elementos de Qp de números p-ádicos, e os elementos de Zp

de inteiros p-ádicos.

Observe que de fato Zp é um DVD, devido à Proposição 9.11. Nós também chamaremos as
extensões de |·|p e vp a Qp de valor absoluto p-ádico e valoração p-ádica, respectivamente. Do
mesmo modo, a métrica induzida por essas extensões também será chamada de métrica p-ádica.

Teorema 9.16. Seja p ∈N um primo. Então:

(a) O único ideal maximal de Zp é pZp. Equivalentemente, p é um normalizador de Zp.

(b) Zp é o fecho de Z em Qp com relação a |·|p.

(c) Nós temos um isomorfismo canônico de anéis Z /pn Z ∼= Zp /pn Zp para todo inteiro po-
sitivo n, dado por a (mod pn) 7→ a (mod pn Zp). Em particular, Zp /pZp

∼= Fp.
Assim, dado x ∈ Zp qualquer, podemos denotar a (mod pn) para indicar a (mod pn Zp).

(d) Toda série da forma
∑∞
n=0 cjp

j, onde cada cj ∈ Z, converge em Zp.
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(e) Todo x ∈ Q×p admite representação única como uma série convergente x = pm
∑∞
j=0 ajp

j,
onde aj ∈ {0, 1, . . . , p− 1} para todo j ∈N, a0 6= 0 e m ∈ Z. Além disso, vp(x) = m.

(f) O mapa canônico Zp → lim←−
n

Z /pn Z dado por a 7→ (a (mod pn)) é um isomorfismo de

anéis.

(g) Seja ZJxK :=
{∑∞

j=0 ajx
j : aj ∈ Z

}
o anel das séries formais com coeficientes em Z. Então

ZJxK/〈x− p〉 ∼= Zp, com isomorfismo dado por
∑∞
j=0 ajx

j + 〈x− p〉 7→
∑∞
j=0 ajp

j.

Demonstração. (a) Segue diretamente de vp(p) = 1.

(b) Chamemos o fecho de Z em Qp de Ẑ. Pela Proposição 9.13, sabemos que Zp é o fecho de
Z(p) com relação a |·|. Assim, basta mostrarmos que Z(p) ⊆ Ẑ. Para isso, seja x ∈ Z(p)

qualquer. Pelo Teorema 3.25, para todo inteiro positivo n temos Z /pn Z ∼= Z(p) /pn Z(p)

por meio de a (mod pn) 7→ a (mod pn Z(p)). Assim, conseguimos encontrar a ∈ Z tal que
a ≡ x (mod pn Z(p)), de modo que vp(a− x) ≥ n. Como n é um inteiro positivo qualquer,
conclúımos que podemos aproximar x tão bem quanto quisermos por inteiros, mostrando o
resultado desejado.

(c) Basta compor os isomorfismos canônicos Z /pn Z ∼= Z(p) /pn Z(p) e Z(p) /pn Z(p), dados
pelo Teorema 3.25 e pela Proposição 9.13, respectivamente.

(d) Segue do item (b) da Proposição 9.14

(e) Segue do item (c) da Proposição 9.14, juntamente com o fato de que 0, 1, . . . , p− 1 formam
um sistema completo de representantes módulo Zp /pZp devido a (c).

(f) Segue diretamente da Proposição 9.15 e do isomorfismo canônico Z /pn Z ∼= Z(p) /pn Z(p)

dado pelo Teorema 3.25

(g) Consideremos o homomorfismo ZJxK → Zp dado por ∑∞j=0 ajx
j 7→

∑∞
j=0 ajp

j . Pelo item
(e), esse homomorfismo é sobrejetor. Para concluir a demonstração, mostraremos que o
núcleo desse homomorfismo é 〈x − p〉. Se g(x) ∈ ZJxK, então (x − p)g(x) é levado em
(p− p)g(p) = 0, de modo que 〈x− p〉 está contido no núcleo desse homomorfismo.
Seja agora f(x) =

∑∞
j=0 ajx

j ∈ Z[x] tal que f(p) =
∑∞
j=0 ajp

j = 0. Queremos mostrar
que f(x) ∈ 〈x− p〉. Assim, queremos mostrar que existem b0, b1, . . . ∈ Z para os quais
tenhamos

f(x) =
∞∑
j=0

ajx
j = (x− p)

∞∑
j=0

bjx
j =

∞∑
j=0

(bj−1 − pbj)xj ,

onde definimos b−1 = 0. Desse modo, queremos encontrar inteiros bj ’s tais que aj =
bj−1 − pbj , para todo j ∈ N. Note que essas equações nos permitem obter os bj ’s por
recorrência. Nós temos b0 = −a0/p, e bj = (bj−1 − aj)/p, para todo inteiro positivo
j. Definindo os bj ’s desse modo, valerá a igualdade f(x) = (x − p)

∑∞
j=0 bjx

j . Falta
mostrar que temos bj ∈ Z, para todo j ∈ N. Mas é fácil mostrar por indução que nós
temos bn = − 1

pn
∑n−1
j=0 ajp

j . Analisando a igualdade f(p) = 0 módulo pn para cada inteiro
positivo n, obtemos ∑n−1

j=0 ajp
j ≡ 0 (mod pn), de onde vemos que bj ∈ Z. Assim, provamos

que f(x) ∈ 〈x− p〉, concluindo a demonstração.

Os itens (e) (f) e (g) do teorema acima nos dão outras caracterizações famosas dos inteiros
p-ádicos. De fato, é posśıvel definir o anel dos inteiros p-ádicos como o conjunto das séries formais∑∞
j=0 ajp

j , onde cada aj ∈ {0, 1, . . . , p− 1}, e então provar suas propriedades. Desse ponto de
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vista, os inteiros p-ádicos generalizam a representação em base p. A partir dessa caracterização
de Zp, é fácil calcularmos a sua cardinalidade: |Zp| = |pN| = 2ℵ0 . Assim, Zp, e portanto também
Qp, possuem a mesma cardinalidade dos reais.

Se x ∈ Zp se escreve como x =
∑∞
j=0 ajp

j , com cada aj ∈ {0, 1, . . . , p− 1}, nós chamamos
essa série de expansão p-ádica de x. Note que a expansão p-ádica de um inteiro positivo é
simplesmente sua representação em base p. Para calcularmos a expansão p-ádica de um x ∈ Zp

qualquer, notemos que para todo inteiro positivo n devemos ter x ≡ ∑n−1
j=0 ajp

j (mod pn). Por
outro lado, dado a ∈ Z qualquer, é fácil mostrar que existem únicos a0, . . . , an−1 ∈ {0, 1, . . . , p−1}
tais que a ≡ ∑n−1

j=0 ajp
j (mod pn). Assim, para calcularmos a expansão p-ádica de um elemento

de Zp basta conhecermos seus restos módulo potências de p.

Exemplo 9.17. Calculemos as expansões p-ádicas de −1 e de 1/(1− p):

• Nós temos, para todo inteiro positivo n, pn − 1 = (p− 1) + (p− 1)p+ · · ·+ (p− 1)pn−1.
Assim, −1 ≡ (p− 1) + (p− 1)p+ · · ·+ (p− 1)pn−1 (mod pn). Isso mostra que a expansão
p-ádica de −1 é −1 =

∑∞
j=0(p− 1)pj.

• Nós temos, para todo inteiro positivo n, 1−pn
1−p = 1 + p+ · · ·+ pn−1. Sendo assim:

1
1− p =

1 + p+ · · ·+ pn−1

1− pn ≡ 1 + p+ · · ·+ pn−1 (mod pn).

Isso mostra que a expansão p-ádica de 1/(1− p) é 1/(1− p) = ∑∞
j=0 p

j. Note que isso se
assemelha muito à igualdade 1/(1− x) = ∑∞

j=0 x
j, que vale nos anéis de séries formais, ou

ainda à fórmula da soma de uma PG. De fato, essa é uma PG em Zp já que |p|p = p−1 < 1.
Uma das vantagens de construirmos Qp por meio de completamentos é justamente dar um
sentido que não seja puramente formal a uma série dessa forma.

O que fizemos nos dá uma famı́lia de infinitos completamentos de Q (que são todos os comple-
tamentos posśıveis): Q2, Q3, Q5, . . . , Q∞ = R. Esses corpos são dois a dois não-isomorfos, como
veremos mais adiante. Os diferentes valores absolutos p-ádicos se relacionam do seguinte modo:

Proposição 9.18 (Fórmula do Produto). Para todo número racional x 6= 0, vale a relação∏
p|x|p = 1, onde p varia entre os números primos de N e ∞.

Demonstração. Note que podemos escrever x = x
|x|∞ ·

∏
p primo p

vp(x) (observe que x/|x|∞ é o sinal
de x). Desse modo:

1 =
1
|x|∞

·
∏

p primo
pvp(x) = |x|−1

∞
∏

p primo
|x|−1

p ⇒
∏
p

|x|p = 1.

Terminaremos essa seção vendo a importância dos números p-ádicos para a resolução de
equações diofantinas. Para isso, consideremos um polinômio F (x1, . . . ,xn) ∈ Z[x1, . . . ,xn].
Estamos interessados em resolver a equação diofantina F (x1, . . . ,xn) = 0. Notemos que a
existência de uma solução para essa equação implica na existência de uma solução para a equação
F (x1, . . . ,xn) ≡ 0 (mod pν), para todo primo p ∈N e todo inteiro positivo ν. Com os inteiros p-
ádicos, nós conseguimos “trocar” a existência de uma solução para todas as infinitas congruências
F (x1, . . . ,xn) ≡ 0 (mod pν) pela existência de solução de uma única equação nos inteiros p-ádicos:

Proposição 9.19. Seja F (x1, . . . ,xn) um polinômio com coeficientes inteiros, e seja p ∈ N um
primo fixado. A congruência F (x1, . . . ,xn) ≡ 0 (mod pν) possui solução para todo inteiro positivo
ν se, e somente se, a equação F (x1, . . . ,xn) = 0 possuir solução nos inteiros p-ádicos.
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Demonstração. (⇐): Suponhamos que existam f1, . . . , fn ∈ Zp tais que F (f1, . . . , fn) = 0. Ava-
liando módulo pν para cada inteiro positivo ν, nós obtemos:

F (f1, . . . , fn) ≡ 0 (mod pν)⇒ F (f1 (mod pν), . . . , fn (mod pν)) ≡ 0 (mod pν),

o que mostra que a equação F (x1, . . . ,xn) ≡ 0 (mod pν) possui solução.

(⇒): Aqui, identificaremos Zp com o limite projetivo lim←−
n

Z /pν Z.

Suponhamos que para todo inteiro positivo ν a congruência F (x1, . . . ,xn) ≡ 0 (mod pν) pos-
sua uma solução (fν1 (mod pν), . . . , fνn (mod pν)). Se (fν1 (mod pν)), . . . , (fνn (mod pν)) fossem
todas sequências coerentes, definindo fj := (fνj (mod pν)) ∈ Zp para 1 ≤ j ≤ n nós con-
cluiŕıamos que F (f1, . . . , fn) ≡ 0 (mod pν) para todo inteiro positivo ν, o que implicaria que
F (f1, . . . , fn) = 0. Assim, obteŕıamos uma solução para F (x1, . . . ,xn) em Zp, como desejado.

Porém, nem sempre as sequências indicadas são coerentes. O que faremos é extrair sub-
sequências coerentes dessas sequências. Como N∗ é infinito e Z /pZ é finito, existem g1

1 ∈ Z e
um subconjunto infinito A1

1 ⊆ N∗ tal que fν1 ≡ g1
1 (mod p) para todo ν ∈ A1

1. Da mesma forma,
como A1

1 é infinito e Z /pZ é finito, existem g1
2 ∈ Z e um subconjunto infinito A1

2 ⊆ A1
1 tais que

fν2 ≡ g1
2 (mod p) para todo ν ∈ A1

2. Continuando desse modo, nós obtemos um conjunto infinito

A1 := A1
n ⊆ A1

n−1 ⊆ · · · ⊆ A1
1 ⊆N∗

e inteiros g1
1, . . . , g1

n tais que para todo ν ∈ A1 tenhamos fν1 ≡ g1
1 (mod p), . . . , fνn ≡ g1

n (mod p).
Notemos que, fixado ν ∈ A1, nós temos F (g1

1, . . . , g1
n) ≡ F (fν1 , . . . , fνn ) (mod p). Mas como ν ≥ 1

e F (fν1 , . . . , fνn ) ≡ 0 (mod pν) por hipótese, conclúımos que

F (g1
1, . . . , g1

n) ≡ F (fν1 , . . . , fνn ) ≡ 0 (mod p).

Façamos agora um processo parecido. Como Z /p2 Z é finito, nós podemos obter um conjunto
infinito

A2 := A2
n ⊆ A2

n−1 ⊆ · · · ⊆ A2
1 ⊆ A1

e inteiros g2
1, . . . , g2

n tais que para todo ν ∈ A2 tenhamos fν1 ≡ g2
1 (mod p2), . . . , fνn ≡ g2

n (mod p2).
Notemos que, fixado ν ∈ A2 com ν ≥ 2, nós temos F (g2

1, . . . , g2
n) ≡ F (fν1 , . . . , fνn ) ≡ 0 (mod p2),

já que ν ≥ 2. Continuando esse processo, para cada inteiro positivo k nós podemos obter um
conjunto infinito

Ak := Akn ⊆ Akn−1 ⊆ · · · ⊆ Ak1 ⊆ Ak−1

e inteiros gk1 , . . . , gkn tais que para todo ν ∈ Ak tenhamos fν1 ≡ gk1 (mod pk), . . . , fνn ≡ gkn (mod pk).
Como Ak é infinito, fixando ν ≥ k nesse conjunto nós obtemos

F (gk1 , . . . , gkn) ≡ F (fν1 , . . . , fνn ) ≡ 0 (mod pk).

Com isso, nós obtemos sequências (gk1 ), . . . , (gkn) de inteiros de modo que F (gk1 , . . . , gkn) ≡ 0 (mod pk)
para todo inteiro positivo k. Afirmamos que essas sequências induzem sequências coerentes
(gk1 (mod pk)), . . . , (gkn (mod pk)). Fixemos 1 ≤ j ≤ n, e sejam k < ` inteiros positivos. Es-
colhemos ν ∈ A` qualquer. Então fνj ≡ g`j (mod p`), e como ν ∈ A` ⊆ Ak temos também
fνj ≡ gkj (mod pk). Desse modo, g`j ≡ fνj ≡ gkj (mod pk), como queŕıamos.

Com isso, podemos definir g1 := (gk1 (mod pk)) ∈ Zp, . . . , gn := (gk1 (mod pk)) ∈ Zp. Afirma-
mos que F (g1, . . . , gn) = 0. De fato, como soma e multiplicação em Zp são dadas coordenada a
coordenada, nós temos:

F (g1, . . . , gn) = (F (gk1 (mod pk), . . . , gkn (mod pk)))

= (F (gk1 , . . . , gkn) (mod pk))

= (0 (mod pk)) = 0.

Isso prova que a equação F (x1, . . . ,xn) = 0 tem solução em Zp, como queŕıamos.



Caṕıtulo 10

Extensões de Valores Absolutos

Nosso objetivo neste caṕıtulo é estudar as extensões algébricas L/K de um corpo com valor
absoluto (K, |·|), e como podemos estender o valor absoluto de K para L.

10.1. O Lema de Hensel
O caso em que mais podemos tirar informações é quando (K, |·|) é completo. Se |·| for arqui-
mediano, então o Teorema de Ostrowski nos garante que K ∼= R ou K ∼= C. Suponhamos
então que |·| seja não-arquimediano. Nesse caso, temos uma valoração v associada. Denotaremos
(K, v, |·|,A, p,κ). Nesse contexto, aparece o Lema de Hensel. Como veremos, além de ser
fundamental no estudo de extensões de valorações esse resultado é importante por si só, tendo
aplicações diretas no estudo da estrutura de Zp e na resolução de congruências módulo potências
de primos.

Definição (Conteúdo/Polinômio Primitivo). Seja f(x) = a0 + a1x+ · · ·+ anx
n ∈ A[x]. Defi-

nimos o conteúdo de f como sendo |f | := max{|a0|, . . . , |an|}. O polinômio f é chamado de
primitivo se |f | = 1. Note que isso é equivalente a dizer que algum dos coeficientes a0, . . . , an
não está em p. Denotaremos ainda f 6≡ 0 (mod p).

Com essa definição, conseguimos enunciar o Lema de Hensel:

Teorema 10.1 (Lema de Hensel). Seja (K, v, |·|,A, p,κ) um corpo completo. Suponhamos que um
polinômio primitivo f ∈ A[x] admita módulo p uma fatoração f ≡ gh (mod p), onde g,h ∈ κ[x]
são coprimos. Então f admite uma fatoração f = gh em polinômios g,h ∈ A[x] tais que ∂ g = ∂ g,
g ≡ g (mod p) e h ≡ h (mod p).

Demonstração. Indiquemos por f ∈ κ[x] o polinômio induzido por f . Sendo f primitivo, vemos
que f 6= 0. Como f = g h, vemos que ∂ f = ∂ g + ∂ h⇒ ∂ h = ∂ f − ∂ g ≤ ∂ f − ∂ g. Chamemos
d := ∂ f e m := ∂ g. Então d−m ≥ ∂ h. Assim, conseguimos achar polinômios g0(x),h0(x) ∈ A[x]
com g = g0 (mod p) e h = h0 (mod p) tais que ∂ g0 = ∂ g = m e ∂ h0 = ∂ h ≤ d−m. Como
g e h são coprimos em κ[x], conseguimos ainda encontrar polinômios a(x), b(x) ∈ A[x] tais que
ag0 + bh0 ≡ 1 (mod p).

Notemos que f − g0h0 ∈ p[x] e ag0 + bh0 − 1 ∈ p[x]. Entre todos os coeficientes desses dois
polinômios, escolhemos π com maior valor absoluto posśıvel, ou equivalentemente com menor
valoração posśıvel. Como π ∈ p, temos v(π) > 0. Sendo c qualquer outro coeficiente desses
polinômios, vemos que v(π) ≤ v(c) ⇒ v(c/π) ≥ 0. Assim, c/π ∈ A. Isso mostra que π divide
todos os coeficientes desses dois polinômios. Ou seja, f ≡ g0h0 (mod π) e ag0 + bh0 ≡ 1 (mod π).

Nosso objetivo é definir sequências (pn) e (qn) de polinômios em A[x] satisfazendo ∂ pn < m e
∂ qn ≤ d−m para todo inteiro positivo n, de modo que, para todo inteiro positivo n, definindo os
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polinômios gn−1 := g0 + p1π+ · · ·+ pn−1π
n−1 e hn−1 := h0 + q1π+ · · ·+ qn−1π

n−1, nós tenhamos
f ≡ gn−1hn−1 (mod πn). O caso n = 1 foi visto acima.

Suponhamos por indução que p1, . . . , pn−1 e q1, . . . , qn−1 já tenham sido determinados, de
modo que f ≡ gn−1hn−1 (mod πn). Notemos que, uma vez determinados pn e qn,nós teremos
gn = gn−1 + pnπ

n e hn = hn−1 + qnπ
n. Assim, queremos que valha a congruência

f ≡ gnhn = (gn−1 + pnπ
n)(hn−1 + qnπ

n)

≡ gn−1hn−1 + πn(gn−1qn + pnhn−1) (mod πn+1)

⇐⇒ f − gn−1hn−1 ≡ πn(gn−1qn + pnhn−1) (mod πn+1).

Seja fn := π−n(f − gn−1hn−1) ∈ A[x]. Então a última congruência acima equivale à congruência
gn−1qn + pnhn−1 ≡ fn (mod π). Como gn−1 ≡ g0 (mod π) e hn−1 ≡ h0 (mod π), isso por sua vez
equivale a g0qn + h0pn ≡ fn (mod π). Como ag0 + bh0 ≡ 1 (mod π), temos:

g0(afn) + h0(bfn) ≡ fn (mod π).

Nós gostaŕıamos de definir qn = afn e pn = bfn, mas os graus desses polinômios podem ser grandes
demais. Para resolver o problema, dividamos bfn por g0. Assim, encontramos q, pn ∈ K[x], com
∂ pn < ∂ g0 = m, tais que bfn = qg0 + pn. Como g0 ≡ g (mod p) e ∂ g0 = ∂ g, o coeficiente ĺıder
de g0 não está em p, e portanto está em A \ p = A×. Sendo esse coeficiente ĺıder inverśıvel, vemos
que q(x), pn(x) ∈ A[x]. Assim, multiplicando a igualdade acima por h0(x) e somando g0afn de
ambos os lados, nós obtemos:

g0afn + h0bfn = g0afn + h0qg0 + h0pn ⇒ fn ≡ g0(afn + h0q) + h0pn (mod π).

Como fn = π−n(f − gn−1hn−1), ∂ f = d e ∂(gn−1hn−1) = ∂(gn−1)+ ∂(hn−1) ≤ m+(d−m) = d,
temos ∂ fn ≤ d. Além disso, ∂ g0 = m e ∂ h0pn < (d−m) +m = d. Desse modo, como nós
temos a congruência fn ≡ g0(afn + h0q) + h0pn (mod π), vemos que ignorando os coeficientes de
afn + h0q que são múltiplos de π nós obtemos um polinômio qn ∈ A[x] com ∂ qn ≤ d−m. Com
isso, nós temos fn ≡ g0qn + h0pn (mod π), e encontramos pn e qn que satisfazem as condições
desejadas.

Então conseguimos as sequências (pn) e (qn), e a partir delas as sequências (gn) e (hn). Note
que pelas definições de gn e de hn e pelas condições nos graus dos pj ’s e qj ’s nós temos ∂ gn = m
e ∂ hn ≤ d−m, para todo n ∈N. Escrevamos agora g0 e os pj ’s por extenso, digamos:

g0(x) = γ0
0 + γ0

1x+ · · ·+ γ0
m−1x

m−1 + γmx
m, e

pj(x) = γj0 + γj1x+ · · ·+ γjm−1x
m−1, para todo j ≥ 1.

Assim, para todo n ∈N, nós temos:

gn = g0 + p1π+ · · ·+ pnπ
n = γmx

m +
m−1∑
i=0

 n∑
j=0

γji π
j

xi.
Para 0 ≤ i ≤ m− 1 os coeficientes de xi nos gn’s formam uma série

(∑n
j=0 γ

j
i π

j
)
. Como v(π) > 0,

temos v(πj) = jv(π) para todo j ∈N, logo v(πj)→∞⇒ πj → 0. Desse modo, é fácil ver que a
série dos coeficientes de xi converge para um γi :=

∑∞
j=0 γ

j
i π

j ∈ A. Obtemos então um polinômio
g(x) := γ0 + γ1x+ · · ·+ γnx

n que é, em certo sentido, o limite dos polinômios gn(x).
Do mesmo modo, obtemos um polinômio h(x) ∈ A[x], de grau no máximo d−m, que é o

“limite” dos polinômios hn(x). Observemos que, para todo n ∈N, nós temos g ≡ gn−1 (mod πn)
e h ≡ hn−1 (mod πn). Assim, para todo n ≥ 1, nós temos gh ≡ gn−1hn−1 ≡ f (mod πn). Ou
seja, os coeficientes de gh e de f coincidem módulo πn para todo inteiro positivo n.

Logo os coeficientes de f − gh estão todos em ⋂
n≥1 π

nA. Afirmamos que essa interseção é 0.
Seja α ∈ ⋂n≥1 π

nA qualquer. Então, para todo n ≥ 1, temos α ∈ πnA⇒ v(α) ≥ v(πn) = nv(π).
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Como nv(π) → ∞, temos v(α) = ∞ ⇒ α = 0, como queŕıamos. Assim, todos os coeficientes de
f − gh são 0, ou seja, f = gh. Finalmente, como π ∈ p, conclúımos que g ≡ g0 ≡ g0 (mod p) e
h ≡ h0 ≡ h0 (mod p), provando o resultado desejado.

O Lema de Hensel, por vezes, também é conhecido como Lema do Levantamento de Hensel.
Isso é devido a uma aplicação desse lema para “levantar” uma raiz em κ para uma raiz em A,
ou ainda “levantar” uma solução de uma congruência módulo p para soluções dessa congruência
módulo potências de p. De fato, nós temos os seguintes corolários, que também são conhecidos
como Lema de Hensel:

Corolário 10.2 (Lema de Hensel). Seja (K,A, p,κ) um corpo completo. Sejam f ∈ A[x] um
polinômio e f = f (mod p) ∈ κ[x]. Suponhamos que a ∈ κ satisfaça f(a) = 0 e f ′(a) 6= 0. Então
existe um único a ∈ A tal que a = a (mod p) e f(a) = 0.

Demonstração. Como f(a) = 0 e f
′
(a) 6= 0, vemos que a é uma raiz simples de f . Assim,

f(x) = (x− a)h(x), onde h ∈ κ[x] e x− a - h(x). Podemos então aplicar o Lema de Hensel
para concluir que existem a ∈ A e h(x) ∈ A[x] tais que f(x) = (x− a)h(x), a (mod p) = a e
h (mod p) = h. Assim, f(a) = 0 e vemos que a satisfaz todas as condições desejadas.

Finalmente, para mostrar a unicidade de a, suponhamos que exista b 6= a em A com f(b) = 0
e b ≡ a (mod p). Então devemos ter h(b) = 0, e portanto h(a) ≡ h(b) ≡ 0 (mod p), um absurdo
já que x− a - h(x).

Corolário 10.3 (Lema de Hensel). Seja p ∈N um primo.

(a) Seja f ∈ Zp[x], e suponhamos que a ∈ Zp satisfaça f(a) ≡ 0 (mod p) e f ′(a) 6≡ 0 (mod p).
Então existe um único α ∈ Zp tal que f(α) = 0 e α ≡ a (mod p).

(b) Seja f ∈ Z[x], e suponhamos que a ∈ Z satisfaça f(a) ≡ 0 (mod p) e f ′(a) 6≡ 0 (mod p).
Então, para todo inteiro positivo n, existe αn ∈ Z tal que f(α) ≡ 0 (mod pn) e tenhamos
αn ≡ a (mod p).

Demonstração. (a) Segue facilmente do corolário acima.

(b) Seja α ∈ Zp tal que f(α) = 0 em Zp e α ≡ a (mod p), que existe pelo item (a). Para cada n
inteiro positivo, seja αn ∈ Z tal que αn ≡ α (mod pn). Então f(αn) ≡ f(α) = 0 (mod pn)
e αn ≡ α ≡ a (mod p), mostrando existência.

Exemplo 10.4. Sejam p ∈N um primo, n um inteiro positivo e a ∈ Z. Procuramos determinar
se existem ráızes n-ésimas de a em Qp, ou seja, ráızes do polinômio xn − a em Qp. Comecemos
observando que, se α ∈ Qp for tal que αn = a, então |α|p = n

√
|a|p ≤ 1, e portanto α ∈ Zp. Se

existir uma raiz n-ésima α ∈ Zp de a, então αn = a, e analisando módulo p conclúımos que a
é potência n-ésima em Fp. Supondo p - a,n, a rećıproca também vale. De fato, suponhamos que
xn ≡ a (mod p) admita uma solução r. Em particular, p - r. Notemos que (xn)′ = nxn−1, e
nrn−1 6≡ 0 (mod p). Assim, estamos nas condições de aplicar o Lema de Hensel para concluir que
existe um único α ∈ Zp tal que αn = a e α ≡ r (mod p).

Conclúımos que, se p - a,n então as ráızes n-ésimas de a em Zp estão em bijeção com as
ráızes n-ésimas de a em Fp. Em particular, a possuirá raiz n-ésima em Zp se e somente se a
possuir raiz n-ésima em Fp.

Como um caso particular do exemplo acima, consideremos o problema de determinar todas
as ráızes da unidade em Qp. Pelo visto acima, basta encontrarmos as ráızes em Zp do polinômio
xn − 1, para n inteiro positivo. Comecemos considerando n = p − 1. Notemos que todos os
elementos não-nulos de Fp são ráızes de xp−1− 1. Assim, pelo exemplo acima, conclúımos que Zp
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possui todas as p− 1 ráızes (p− 1)-ésimas da unidade, e que estas juntamente com o 0 formam
um sistema completo de representantes do corpo residual de Zp que é fechado por multiplicação.
Afirmamos que na verdade nós temos:

Proposição 10.5. Seja p ∈ N primo. Então o corpo p-ádico Qp possui todas as ráızes (p− 1)-
ésimas da unidade, e estas são todas as ráızes da unidade em Qp, exceto no caso p = 2 onde
também temos a raiz da unidade −1.

Demonstração. Seja n um inteiro positivo. Suponhamos inicialmente que p - n. Então pelo
Lema de Hensel vemos que as ráızes n-ésimas da unidade estão em bijeção com as soluções de
xn = 1 em Fp. Como F×p é ćıclico de ordem p− 1, é fácil ver que o número de tais soluções é
igual a mdc(n, p− 1). Assim, existirá uma raiz primitiva n-ésima da unidade se e somente se
n = mdc(n, p− 1), ou seja, se e só se n | p− 1. Note que caso n | p− 1, toda raiz n-ésima da
unidade também é uma raiz (p− 1)-ésima, então não obtemos ráızes novas além das p− 1 que já
tinhamos.

Falta considerar o caso p | n. Nesse caso, não podemos aplicar o Lema de Hensel, mas pode-
mos aplicar um levantamento de ráızes módulo potências de p também nesse caso. Comecemos
considerando o caso p > 2. Mostraremos que não existem ráızes p-ésimas primitivas da unidade
em Zp, e portanto também não poderão existir ráızes n-ésimas primitivas da unidade em Zp.

Para isso, suponhamos que α ∈ Zp seja tal que αp = 1. Pelo Pequeno Teorema de Fermat,
α ≡ αp = 1 (mod p). Então podemos escrever α = pβ+ 1, para β ∈ Zp. Mostraremos que β = 0.
Para isso, notemos que para todo k inteiro positivo nós temos:

1 = αp = (pβ + 1)p ≡ ppβp + 1 (mod pk)⇒ ppβp ≡ 0 (mod pk)⇒ βp ≡ 0 (mod pk−p).

Como k é qualquer, vemos que βp ∈ ⋂t≥0 p
t Zp = {0} ⇒ β = 0. Assim, α = 1 é a única raiz

p-ésima da unidade em Zp, como queŕıamos.
Suponhamos agora p = 2. Então x2 − 1 = (x + 1)(x − 1) possui ráızes 1 e −1 em Q2.

Como 2 | n, podemos escrever n = 2νm, para ν = v2(n) e m inteiro positivo ı́mpar. Então
αn = 1 ⇒ (α2ν )m = 1 ⇒ α2ν = 1, já que a única raiz m-ésima da unidade em Z2 é 1. Isso
mostra que não existem ráızes primitivas n-ésimas da unidade para m > 1. Para concluirmos a
demonstração, basta mostrarmos que não existe raiz primitiva quarta da unidade em Z2.

Suponhamos que α seja uma raiz primitiva quarta da unidade em Z2. Então α4 = 1, e
assim (α2 − 1)(α2 + 1) = 0. Como α é raiz primitiva quarta, temos α2 + 1 = 0. Em particular,
α2 + 1 ≡ 0 (mod 4), um absurdo já que −1 não é reśıduo quadrático módulo 4.

Assim, só existem ráızes primitivas n-ésimas da unidade em Qp para n | p− 1 e, caso p = 2,
para n = 2, o que conclui a demonstração.

Com o resultado acima, conseguimos ainda mostrar que os corpos p-ádicos são dois a dois
não-isomorfos, como hav́ıamos prometido:

Proposição 10.6. Os corpos p-ádicos são dois a dois não-isomorfos. Isto é, dados p 6= q primos
ou ∞, temos Qp 6∼= Qq.

Demonstração. Pelo resultado acima, existem exatamente 2 ráızes da unidade em Q2, p− 1 ráızes
da unidade em Qp, para p primo ı́mpar, e 2 ráızes da unidade em Q∞ = R. Com isso, vemos
que os únicos corpos p-ádicos que poderiam ser isomorfos entre si são Q2, Q3 e Q∞ = R. Como
2 não é reśıduo quadrático módulo 3, vemos que x2 − 2 não possui raiz em Q3, e como 3 não é
reśıduo quadrático módulo 4, vemos que x2 − 3 não possui raiz em Q2. Como esses polinômios
claramente possuem soluções em R, vemos que R 6∼= Q2, Q3. Finalmente, para ver que Q2 e Q3 não
são isomorfos, consideremos o polinômio x2− 10. Como 10 ≡ 1 (mod 3) é reśıduo quadrático, pelo
Lema de Hensel vemos que esse polinômio tem raiz em Q3. Por outro lado, como 10 ≡ 2 (mod 4)
não é reśıduo quadrático, vemos que esse polinômio não tem raiz em Q2, mostrando portanto que
Q2 6∼= Q3.
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Outra importante consequência do Lema de Hensel é a seguinte:

Corolário 10.7. Seja (K, |·|,A,κ) um corpo com valor absoluto não-arquimediano completo.
Então, para todo polinômio irredut́ıvel f(x) = a0 + a1x+ · · ·+ anx

n ∈ K[x] tal que a0an 6= 0,
nós temos |f | = max{|a0|, |an|}. Em particular, se an = 1 e a0 ∈ A então f ∈ A[x].

Demonstração. É fácil ver que existe c ∈ K tal que |cf | = 1. Em particular, cf ∈ A[x].
Desse modo, podemos supor sem perda de generalidade que f ∈ A[x] é tal que |f | = 1.
Seja 0 ≤ r ≤ n mı́nimo tal que |ar| = 1, ou equivalentemente r mı́nimo tal que ar 6∈ p.
Então f(x) ≡ xr(ar + ar+1x+ · · ·+ anx

n−r) (mod p). Se tivéssemos max{|a0|, |an|} < 1, então
teŕıamos 0 < r < n, e f se fatoraria em κ[x] em dois polinômios xr e ar + ar+1x+ · · ·+ anx

n−r

primos entre si. Portanto, pelo Lema de Hensel, f se fatoraria não-trivialmente em A[x], um
absurdo! Isso conclui a demonstração.

10.2. Extensões de Corpos Completos
Nessa seção, mostraremos que toda extensão algébrica L de um corpo completo (K, |·|) admite
uma única extensão de |·|, e que se L/K for finita nós teremos uma fórmula para essa extensão e
L também será completo. Comecemos definindo a noção de norma em um espaço vetorial sobre
um corpo com valor absoluto, que generaliza a definição para espaços vetoriais normados sobre R

e C:

Definição (Norma/Espaço Normado/Normas Equivalentes). Seja V um K-espaço vetorial. Uma
norma em V é uma função ‖·‖ : V → R+ que satisfaz:

(i) Dado v ∈ V , ‖v‖ = 0 ⇐⇒ v = 0;

(ii) Dados a ∈ K, v ∈ V , temos ‖av‖ = |a|‖v‖;

(iii) (Desigualdade Triangular) Dados v,w ∈ V , temos ‖v+w‖ ≤ ‖v‖+ ‖w‖.

Um K-espaço V munido de uma norma ‖·‖ é chamado de espaço (vetorial) normado, e
denotado (V , ‖·‖). Note que uma norma ‖·‖ em V induz uma métrica em V com distância dada
por d(x, y) := ‖x− y‖, e portanto também induz uma topologia em V . Duas normas em V são
ditas equivalentes se elas induzirem a mesma topologia em V .

Note que, dado n inteiro positivo, podemos definir no espaço vetorial Kn a norma do
máximo, dada por ‖(a1, . . . , an)‖ = max{|a1|, . . . , |an|}. Observe ainda que, dado um K-espaço
V de dimensão n, fixada uma base {v1, . . . , vn} de V nós temos um isomorfismo ϕ : Kn → V
dado por (a1, . . . , an) 7→ a1v1 + · · ·+ anvn. Por meio desse isomorfismo, nós podemos transferir
a norma do máximo de Kn para V , definindo a norma do máximo em V associada a v1, . . . , vn
de modo que valha a relação ‖ϕ(·)‖ = ϕ(‖·‖), isto é, ‖a1v1 + · · ·+ anvn‖ := max{|a1|, . . . , |an|}.
É claro que ϕ : (Kn, ‖·‖)→ (V , ‖·‖) é um homeomorfismo.

A seguinte proposição generaliza resultados clássicos sobre espaços vetoriais normados de
dimensão finita sobre R ou C:

Proposição 10.8. Seja (K, |·|) um corpo completo.

(a) Seja n um inteiro positivo. Então (Kn, ‖·‖) é completo, onde ‖·‖ é a norma do máximo.

(b) Seja (V , |·|) um K-espaço vetorial normado de dimensão finita n. Então, para toda base
{v1, . . . , vn} ∈ V , a norma do máximo ‖·‖ associada a v1, . . . , vn é equivalente à norma |·|
de V .
Assim, o isomorfismo (Kn, ‖·‖)→ (V , |·|) dado por (a1, . . . , an) 7→ a1v1 + · · ·+ anvn é um
homeomorfismo e (V , |·|) é completo.
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Demonstração. (a) Seja ((ak1, . . . , akn)) uma sequência de Cauchy em (Kn, ‖·‖). Como a norma
em Kn é a do máximo, isso significa que (akj ) é uma sequência de Cauchy em (K, |·|) para
todo 1 ≤ j ≤ k. Como (K, |·|) é completo, vemos que para 1 ≤ j ≤ n temos akj → aj ∈ K.
Assim, é fácil ver que (ak1, . . . , akn)→ (a1, . . . , an) ∈ Kn. Isso prova que Kn é completo.

(b) Comecemos observando que, se mostrarmos que |·| é equivalente a ‖·‖, então podemos
concluir que o mapa (Kn, |·|) → (V , |·|) dado por (a1, . . . , an) 7→ a1v1 + · · ·+ anvn é um
homeomorfismo, pois ele é a composição do homeomorfismo (Kn, ‖·‖) → (V , ‖·‖) dado
por (a1, . . . , an) 7→ a1v1 + · · ·+ anvn com a identidade id : (V , ‖·‖) → (V , |·|), que é um
homeomorfismo já que ‖·‖ e |·| são equivalentes. Note que isso mostra que (V , |·|) é completo,
pelo item (a).

Provaremos a equivalência dessas normas por indução em n. Comecemos considerando o
caso n = 1. Seja v ∈ V não-nulo e ‖·‖ a norma do máximo correspondente à base {v}.
Seja |·| uma norma qualquer em V . Dado x ∈ V qualquer, podemos escrever x de modo
único como x = av, para a ∈ K. Então |x| = |a||v| = ‖x‖|v|. Assim, ‖·‖ e |·| diferem
por uma constante multiplicativa, de modo que induzem a mesma topologia, e portanto são
equivalentes.

Suponhamos por indução que valham as afirmações do enunciado para n− 1, e seja (V , |·|)
um espaço vetorial sobre K de dimensão finita n. Sejam v1, . . . , vn ∈ V elementos que
formam uma base e ‖·‖ a norma do máximo correspondente. Para provarmos que |·| é
equivalente a ‖·‖, basta mostrarmos que existem constantes ρ, ρ′ > 0 tais que:

ρ‖x‖ ≤ |x| ≤ ρ′‖x‖, para todo x ∈ V .

Dado x ∈ V qualquer, podemos escrever x = a1v1 + · · ·+ anvn para a1, . . . , an ∈ K. Assim:

|x| = |a1v1 + · · ·+ anvn| ≤ |a1||v1|+ · · ·+ |an||vn| ≤ (|v1|+ · · ·+ |vn|)|x|.

Logo podemos tomar ρ′ = |v1| + · · · + |vn|. Para cada 1 ≤ i ≤ n, seja Vi ⊆ V o su-
bespaço (n− 1)-dimensional Vi := Kv1 + · · ·+Kvi−1 +Kvi+1 + · · ·+Kvn. Pela hipótese
de indução, cada Vi é completo com respeito à restrição de |·|. Assim, Vi é um subconjunto
fechado de V com relação a |·|, e portanto vi + Vi também o é. Como 0 6∈ ⋃ni=1(vi + Vi) e
{0} é compacto, existe uma vizinhança de 0 disjunta de ⋃ni=1(vi + Vi). Dessa forma, existe
ρ > 0 tal que |wi| ≥ ρ, para todos 1 ≤ i ≤ n e wi ∈ vi + Vi.

Afirmamos que ρ satisfaz a condição desejada. Para isso, seja x ∈ V qualquer. Podemos
escrever x = a1v1 + · · ·+anvn, para a1, . . . , an ∈ K. Suponhamos que 1 ≤ r ≤ n seja tal que
|ar| = max{|a1|, . . . , |an|} = ‖x‖. Então a−1

r x = a−1
r a1v1 + · · ·+ vr+ · · ·+ a−1

r vn ∈ vr+Vr,
de modo que |a−1

r x| ≥ ρ. Logo |x| ≥ ρ|ar| = ρ‖x‖, como queŕıamos. Assim, ‖·‖ e |·| são
equivalentes, concluindo a demonstração.

Finalmente, nós conseguimos obter o seguinte resultado sobre extensões de valores absolutos:

Teorema 10.9. Seja (K, |·|) um corpo com valor absoluto completo, e seja L uma extensão
algébrica de K. Então |·| admite uma única extensão a um valor absoluto de L. Além disso, se
[L : K] = n <∞, então essa extensão é dada por |α| = n

√
|NL/K(α)| e L é completo com relação

a esse valor absoluto.
No caso de |·| ser não-arquimediano, temos ainda que o anel de valoração associado a |·| em

L é igual ao fecho integral em L do anel de valoração de K (mesmo no caso de uma extensão
algébrica infinita).
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Demonstração. Se |·| for um valor absoluto arquimediano, então pelo Teorema de Ostrowski temos
K = R ou C. Como a única extensão algébrica não-trivial de R é C e C é algebricamente fechado,
basta considerar o caso em que K = R e queremos estender seu valor absoluto usual |·|∞ para C.
Como todos os valores absolutos de C são da forma |·|s∞ para s ∈ (0, 1], o único valor absoluto
de C que estende |·|∞ é o valor absoluto usual |·|∞ de C. Finalmente, notemos que dado z ∈ C,
temos NC / R(z) = zz = |z|2∞, de modo que vale a fórmula indicada.

Consideremos agora o caso |·| não-arquimediano. Suponhamos inicialmente [L : K] = n <∞.
Comecemos mostrando a existência de uma extensão de |·| a L. Para isso, mostraremos que vale:

B = {α ∈ L : NL/K(α) ∈ A}, (10.1)

onde A é o anel de valoração de K e B := A
L. Como A é integralmente fechado pela Proposição

9.8, a continência (⊇) segue do Corolário 1.30. Para a outra continência, seja α ∈ L× tal que
NL/K(α) ∈ A. Seja

Pα,K(x) = a0 + a1x+ · · ·+ ad−1x
d−1 + xd ∈ K[x]

o polinômio minimal de α sobre K. Então temos NL/K(α) = ±am0 , para m = [L : K(α)]. Como
|NL/K(α)| ≤ 1, temos |a0| ≤ 1, e portanto pelo Corolário 10.7 nós conclúımos que Pα,K(x) ∈ A[x],
e portanto α ∈ B. Consideremos então a função |·| : L→ R+ dada por |α| = n

√
|NL/K(α)|. Para

a ∈ K, temos NL/K(a) = an, de modo que |·| é uma função que estende nosso valor absoluto
original. Mostremos que esse é um valor absoluto em L:

• |α| = 0 ⇐⇒ NL/K(α) = 0 ⇐⇒ α = 0;

• Dados α,β ∈ L quaisquer, |αβ| = n

√
|NL/K(αβ)| = n

√
|NL/K(α)| n

√
|NL/K(β)| = |α||β|;

• Mostraremos que a desigualdade ultramétrica segue da implicação |x| ≤ 1 ⇒ |x+ 1| ≤ 1,
para todo x ∈ L. Suponhamos que valha essa implicação, e sejam α,β ∈ L quaisquer.
Suponhamos sem perda de generalidade que |α| ≤ |β|, e que β 6= 0. Queremos mostrar
que |α + β| ≤ |β|. Dividindo por |β|, isso equivale a

∣∣∣αβ + 1
∣∣∣ ≤ 1. Como |α/β| ≤ 1, a

desigualdade ultramétrica segue então da nossa implicação tomando x = α/β.
Provemos então que vale |x| ≤ 1 ⇒ |x+ 1| ≤ 1, para todo x ∈ L. Mas dado y ∈ L, temos
|y| ≤ 1 ⇐⇒ |NL/K(y)| ≤ 1 ⇐⇒ NL/K(y) ∈ A ⇐⇒ y ∈ B, onde a última equivalência
segue de (10.1). Assim, a implicação |x| ≤ 1⇒ |x+ 1| ≤ 1 equivale a x ∈ B ⇒ x+ 1 ∈ B,
que é claramente verdadeira.

Assim, |·| como definido acima é de fato um valor absoluto em L que estende o valor absoluto
inicial de K. Notemos ainda que B é o anel de valoração associado. De fato:

B = {α ∈ L : NL/K(α) ∈ A} = {α ∈ L : |NL/K(α)| ≤ 1} =

{
α ∈ L : n

√
|NL/K(α)| ≤ 1

}
= {α ∈ L : |α| ≤ 1}.

Mostraremos agora unicidade. Seja |·|′ outra extensão de |·|, e seja B′ seu anel de valoração.
Chamaremos o único ideal maximal de B de P e o único ideal maximal de B′ de P′. Pro-
varemos que B ⊆ B′. Suponhamos por absurdo que exista α ∈ B \ B′. Então nós temos
|α|′ > 1⇒ |α−1|′ < 1⇒ α−1 ∈ P′. Seja Pα,K(x) = a0 + a1x+ · · ·+ ad−1x

d−1 + xd ∈ A[x]. Logo:

a0 + a1α+ · · ·+ ad−1α
d−1 + αd = 0⇒ 1 = −a0(α

−1)d − a1(α
−1)d−1 − · · · − ad−1α

−1 ∈ P′,

um absurdo! Assim, B ⊆ B′. Com isso, obtemos que |α| ≤ 1 ⇒ |α|′ ≤ 1 para todo α ∈ L. Isso
significa que os valores absolutos |·| e |·|′ são equivalentes, pois caso contrário pela demonstração
do Teorema da Aproximação nós conseguiŕıamos encontrar α ∈ L tal que |α| < 1 e |α|′ > 1.
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Sendo equivalentes, |·|′ = |·|s para algum s > 0. Mas como ambos os valores absolutos coincidem
em K, vemos que |·|′ = |·|, como queŕıamos. A completude de L segue então imediatamente da
Proposição 10.8, já que L é um K-espaço vetorial de dimensão n e |·| : L→ R+ é uma norma.

Consideremos agora o caso em que L é uma extensão algébrica qualquer de K. Para não
confundir a notação, denotaremos o valor absoluto de K por |·|K , e para cada extensão finita M
de K denotaremos por |·|M o único valor absoluto em M que estende |·|K .

Nesse caso nós definimos, para α ∈ L qualquer, |α| = [K(α):K]

√
|NK(α):K(α)| = |α|K(α). É claro

que |α| = 0 ⇐⇒ α = 0. Mostremos agora as outras duas propriedades de um valor absoluto.
Sejam α,β ∈ L quaisquer. Notemos que a restrição de |·|K(α,β) a K(α) coincide com |·|K(α),
pela unicidade que já provamos. Assim, |α| = |α|K(α) = |α|K(α,β). Da mesma forma, vemos que
|β| = |β|K(α,β), |α+ β| = |α+ β|K(α,β) e |αβ| = |αβ|K(α,β). Finalmente, como |·|K(α,β) é valor
absoluto, nós temos:

|αβ| = |αβ|K(α,β) = |α|K(α,β)|β|K(α,β) = |α||β|, e
|α+ β| = |α+ β|K(α,β) ≤ |α|K(α,β) + |β|K(α,β) = |α|+ |β|,

provando que |·| é valor absoluto em L, que claramente estende |·|K . Sua unicidade segue imedi-
atamente das unicidades para as extensões finitas. Falta apenas mostrar que o anel de valoração
B associado a |·| é igual a AL:

(⊆): Seja α ∈ B. Então |α|K(α) = |α| ≤ 1, o que mostra que α está no anel de valoração
associado a |·|K(α), que é AK(α) pelo que vimos. Assim, α ∈ AK(α) ⊆ AL.

(⊇): Seja α ∈ A
L. Então α ∈ A

K(α). Como A
K(α) é o anel de valoração associado a |·|K(α),

temos |α|K(α) ≤ 1. Mas então |α| = |α|K(α) ≤ 1⇒ α ∈ B.

Como consequência direta desse resultado, nós temos também um resultado sobre extensões
de valorações:

Corolário 10.10. Seja (K, v) um corpo completo, e seja L uma extensão algébrica de K. Então v
admite uma única extensão a uma valoração w em L. Além disso, se tivermos [L : K] = n <∞,
então L será completo com relação a essa extensão, que é dada explicitamente pela expressão
w(α) = 1

nv(NL/K(α)). Em particular, nesse caso w será discreta se e somente se v o for.

Terminaremos essa seção estudando um pouco do que ocorre no caso em que (K, v) não é
necessariamente completo (veremos mais sobre isso nas próximas seções). Consideremos o caso
em que L/K é uma extensão finita de grau n e w é uma valoração de L que estende v. Sejam κ e
λ os corpos residuais de L e K, respectivamente. Então v(K×) ⊆ w(L×) são grupos aditivos de
R, e κ ⊆ λ com a inclusão canônica.

Definição (́Indice de Ramificação/Grau de Inércia). Nas condições acima, nós definimos o ı́ndice
de ramificação da extensão (L,w)/(K, v) como sendo e(L | K) = e(w | v) := (w(L×) : v(K×)),
e o grau de inércia da extensão (L,w)/(K, v) como sendo f(L | K) = f(w | v) := [λ : κ].

No caso de w, e portanto também v, serem discretas, essa noção de ı́ndice de ramificação
se relaciona com a outra definição de ı́ndice de ramificação. Para ver isso, sejam A o DVD de
K, p seu único ideal maximal e π seu normalizador. Sejam ainda B o DVD de L, P seu único
ideal maximal e Π seu normalizador. Então v(K×) = v(π)Z e w(L×) = w(Π)Z, de modo que
e(w | v) = (w(Π)Z : v(π)Z). Assim, v(π) = e(w | v)w(Π). Sejam e ∈ Z e u ∈ B× tais que
π = uΠe. Então nós temos v(π) = ew(Π), de onde conclúımos que e = e(w | v). Agora, como
p = πA e P = ΠB, nós temos:

pB = πB = ΠeB = (ΠB)e = Pe.



10.2. EXTENSÕES DE CORPOS COMPLETOS 179

Ou seja, o ı́ndice de ramificação e(w | v) coincide com o ı́ndice de ramificação e(P | p).
A prinćıpio, não sabemos se o ı́ndice de ramificação e e o grau de inércia f de (L,w)/(K, v)

são cardinais finitos no caso geral. Mostraremos que isso é verdade e, mais do que isso, que temos
ef ≤ n = [L : K]. Comecemos mostrando a finitude do grau de inércia:

Proposição 10.11. Seja (L,w)/(K, v) uma extensão finita de corpos com valoração de dimensão
n. Então o grau de inércia de (L,w)/(K, v) é menor ou igual a [L : K], isto é, f(w | v) ≤ n.

Demonstração. Denotemos (K, v, |·|,A, p,κ) e (L,w, |·|,B,P,λ). Nós mostraremos que dados
x1, . . . ,xn ∈ λ linearmente independentes sobre κ, teremos x1, . . . ,xn ∈ B linearmente indepen-
dentes sobre K, de modo que devemos ter [λ : κ] ≤ [L : K] = n. Para isso, suponhamos que
λ1, . . . ,λn ∈ K sejam tais que λ1x1 + · · · + λnxn = 0. Suponhamos por absurdo que algum
λj 6= 0. Assim, podemos supor sem perda de generalidade que λ1 6= 0 possui valor absoluto
máximo entre os λj ’s. Dividindo por λ1, obtemos a relação

x1 + µ2x2 + · · ·+ µnxn = 0,

onde µj := λj/λ1 para 2 ≤ j ≤ n. Notemos que |µj | ≤ 1 para todo 2 ≤ j ≤ n, de modo que
cada µj ∈ A. Analisando módulo P, obtemos x1 + µ2x2 + · · ·+ µnxn = 0, de onde obtemos
uma relação não-trivial entre x1, . . . ,xn ∈ λ com coeficientes em κ, um absurdo! Isso conclui a
demonstração.

Com isso, conseguimos mostrar também a finitude do ı́ndice de ramificação de (L,w)/(K, v)
e a relação entre e(w | v) e f(w | v):

Proposição 10.12. Seja (L,w)/(K, v) uma extensão finita de corpos com valoração de dimensão
n. Denotemos e = e(w | v) e f = f(w | v). Então temos ef ≤ n = [L : K]. Em particular, e é
finito.

Demonstração. Denotemos (K, v,A, p,κ) e (L,w,B,P,λ). Pela Proposição 10.11, f é finito.
Sejam ω1, . . . ,ωf ∈ B representantes de uma base da extensão λ/κ. Seja {πj : 0 ≤ j < e} ⊆ L×

tal que {w(πj) : 0 ≤ j < e} ⊆ R forme um conjunto de representantes das classes laterais de
w(L×)/v(K×). Nós mostraremos que os elementos da forma ωjπi, para 1 ≤ j ≤ f e 0 ≤ i < e,
são linearmente independentes sobre K, o que nos dará a desigualdade desejada. Fixemos para
isso 0 ≤ r < e inteiro positivo, e mostremos que {ωjπi : 1 ≤ j ≤ f , 0 ≤ i ≤ r} é LI sobre K.

Sejam aij ∈ K tais que ∑r
i=0

∑f
j=1 aijωjπi = 0, e suponhamos por absurdo que nem todos

os aij ’s sejam nulos. Consideremos, para 0 ≤ i ≤ r, si :=
∑f
j=1 aijωj . Como nem todos os aij ’s

são nulos e ω1, . . . ,ωf são linearmente independentes sobre K pela demonstração da Proposição
10.11, vemos que nem todos os si’s são nulos.

Afirmamos que quando si 6= 0 temos w(si) ∈ v(K×). De fato, suponhamos que valha
si =

∑f
j=1 aijωj 6= 0, e seja ait o coeficiente de menor valoração entre ai1, . . . , aif . Então cha-

mando bij := aij/ait, nós temos si/ait =
∑f
j=1 bijωj , temos cada bij ∈ A e bit = 1. Notemos que

si/ait 6∈ P, pois caso contrário teŕıamos ∑f
j=1 bijωj = 0, um absurdo pela independência linear

de ω1, . . . ,ωn. Assim, si/ait ∈ B \P, de modo que

w(si/ait) = 0⇒ w(si) = w(ait) = v(ait) ∈ v(K×).

Observemos agora que ∑r
i=0 siπi = 0, logo pelo Lema 3.26 vemos que existem 0 ≤ i < j ≤ r tais

que w(siπi) = w(sjπj). Desse modo:

w(si) +w(πi) = w(sj) +w(πj)⇒ w(πi) = w(πj) +w(sj)−w(si) ∈ w(πj) + v(K×).

Assim, w(πi) + v(K×) = w(πj) + v(K×), um absurdo, pois w(πi) e w(πj) por hipótese represen-
tam classes diferentes de w(L×)/v(K×). Assim, para todo 0 ≤ r < e inteiro positivo o conjunto
indicado é linearmente independente sobre K, de modo que (r + 1)f ≤ [L : K] = n. Disso
conclúımos que e é finito e ef ≤ n, como queŕıamos.
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No caso em K é completo e v é uma valoração discreta, vale de fato a identidade funda-
mental:

Proposição 10.13. Seja (L,w)/(K, v) uma extensão finita de corpos com valoração de dimensão
n. Denotemos e = e(w | v) e f = f(w | v). Suponhamos que K seja completo e que v seja uma
valoração discreta. Então vale a identidade fundamental ef = n = [L : K].

Demonstração. Notemos que v discreta implica em w discreta, devido ao Corolário 10.10. Utili-
zemos as mesmas notações da demonstração da proposição acima. Nesse caso, como v é discreta,
podemos tomar πi = Πi, para 0 ≤ i ≤ e− 1, onde Π é o normalizador do DVD B. Então nós
temos o A-módulo livre

M :=
e−1∑
i=0

f∑
j=1

AωjΠi ⊆ B.

Pelo Teorema 10.9, temos B = A
L, e como A é um DVD vemos que B é um A-módulo livre de

posto n = [L : K]. Assim, a demonstração estará completa se mostrarmos que B = M é um
A-módulo livre de posto ef , e de quebra ainda mostraremos como achar uma base de B como
A-módulo. Para isso, seja N :=

∑f
j=1Aωj . Então M =

∑e−1
i=0 ΠiN . Como as classes de ω1, . . . ,ωf

geram B/P = B/(ΠB) como um A/ p-módulo, vemos que B = N + ΠB. Assim:

B = N + ΠB = N + Π(N + ΠB) = N + ΠN + Π2B

= N + ΠN + Π2(N + ΠB) = N + ΠN + Π2N + Π3B

= · · ·
= N + ΠN + · · ·+ Πe−1N + ΠeB

= M + ΠeB =M + (ΠB)e =M + pB.

Então B =M + pB, e queremos concluir que M = B. Para isso, notemos que

B =M + pB = M + p(M + pB) =M + pM + p2B =M + p2B

= M + p(M + p2B) =M + pM + p3B =M + p3B

= · · ·
= M + pk B,

para todo inteiro positivo k. Como {pk B : k ∈N∗} é um sistema fundamental de vizinhanças de
0 em B, conclúımos que M é um subconjunto denso de B. Consideremos agora

M ′ :=
e−1∑
i=0

f∑
j=1

KωjΠi.

Então M ⊆M ′ ⊆ L e M ′ é um K-espaço de dimensão ef , de onde conclúımos da Proposição 10.8
que M ′ é completo, e portanto fechado em L (é aqui que utilizamos a hipótese de K ser completo).
Como A é fechado em K, é fácil ver que M é fechado em M ′, e portanto M é fechado em L, logo
também é fechado em B. Sendo M denso em B, conclúımos que M = B, como queŕıamos.

10.3. Extensões Finitas
Nessa seção, mudaremos por praticidade a notação que utilizamos até então. Denotaremos por
v tanto uma valoração não-arquimediana, que é o tipo de valoração que consideramos até então,
quanto uma valoração arquimediana, que é obtida como v = − logq|·| para algum valor absoluto



10.3. EXTENSÕES FINITAS 181

|·| arquimediano. Note que isso significa que v poderá não satisfazer mais a propriedade não-
arquimediana v(x+ y) ≥ min{v(x), v(y)}.

Indicaremos ainda por |·|v o valor absoluto associado a v, e sendo (K, v) um corpo com
valoração, indicaremos por (Kv, v) o seu completamento. Fixado um fecho algébrico Kv de Kv,
como (Kv, v) é completo sabemos pelo Teorema 10.9 que v se estende a uma única valoração
v de Kv, com a qual (Kv, v) se torna um corpo com valoração. Notemos que Kv é um corpo
algebricamente fechado que contém K.

Seja L/K uma extensão algébrica qualquer. Então existe uma imersão τ : L ↪−→ Kv que fixa
K. Notemos que τL se torna um corpo com valoração com a restrição de v, e essa valoração
estende v. Assim, (L, v ◦ τ ) é um corpo com valoração e w := v ◦ τ estende v. Em termos de
valores absolutos, temos |x|w = |τx|v para todo x ∈ L. Assim, (L, |·|w) é um corpo com valor
absoluto e |·|w estende |·|v.

Com isso, é fácil ver que τ : (L, |·|w) → (Kv, |·|v) é uma função cont́ınua que fixa (K, |·|v).
Suponhamos agora que L/K seja finita. Consideremos o completamento Lw de L. Então podemos
estender τ para uma imersão τ : Lw → Kv dada por limn→∞ xn 7→ limn→∞ τxn, onde (xn) é uma
sequência de Cauchy em L com respeito a |·|w, o limite da esquerda é tomado com respeito a |·|w
e o limite da direita é tomado com respeito a |·|v (note que τ preserva sequências de Cauchy, já
que é uma função cont́ınua). Observemos que τ : Lw → Kv também é cont́ınua, e que τ fixa Kv,
onde vemos Kv ⊆ Lw da forma canônica.

Como vimos, cada imersão τ : L→ Kv que fixa K nos dá uma extensão w := v ◦ τ de v a L.
Para cada automorfismo1 σ ∈ Gal(Kv/Kv), podemos considerar τ ′ : L→ Kv dado por τ ′ := σ ◦ τ .
Então τ ′ também é uma imersão de L em Kv que fixa K, e dizemos que τ ′ e τ são imersões
conjugadas sobre Kv.

Nosso objetivo é mostrar que toda valoração w de L que estende v é da forma w = v ◦ τ ,
para alguma imersão τ : L ↪−→ Kv. Para mostrarmos isso, seja w uma valoração qualquer de L
que estende v. Então podemos ver Lw como extensão de Kv de forma canônica. Essa extensão é
finita:

Proposição 10.14. Com as condições acima, suponhamos que L = Kα1 + · · · + Kαn, com
α1, . . . ,αn ∈ L linearmente independentes sobre K. Então Lw = Kvα1 + · · ·+Kvαn. Assim,
[Lw : Kv] ≤ [L : K]. Além disso, Lw = LKv.

Demonstração. Como Kv ⊆ Lw e L ⊆ Lw, a inclusão Kvα1 + · · ·+Kvαn ⊆ Lw é clara. Para
mostrar a inclusão contrária, notemos que L = Kα1 + · · ·+Kαn ⊆ Kvα1 + · · ·+Kvαn. Ob-
servemos agora que Kvα1 + · · · +Kvαn é completo pela Proposição 10.8, já que é um espaço
vetorial de dimensão finita sobre Kv. Sendo esse um espaço completo que contém L, vemos que
Lw ⊆ Kvα1 + · · ·+Kvαn, e portanto vale a igualdade Lw = Kvα1 + · · ·+Kvαn, como queŕıamos.

Mostremos agora que Lw = LKv. É claro que LKv ⊆ Lw. Para a inclusão contrária, notemos
que LKv é um Kv-espaço de dimensão finita, logo é completo pela Proposição 10.8, e como
L ⊆ LKv nós conclúımos que Lw ⊆ LKv.

Assim, temos o seguinte diagrama:

Lw

L Kv

K

finito

finito

Note que (Lw,w) é uma extensão de (Kv, v). Na verdade, sendo Lw/Kv finita, vemos pelo
Teorema 10.9 que w é a única extensão de v a Lw. Mais do que isso, sendo n = [L : K], esse

1Aqui, Gal(Kv/Kv) denota o grupo dos automorfismos de Kv que fixam Kv.



182 CAPÍTULO 10. EXTENSÕES DE VALORES ABSOLUTOS

teorema nos dá a fórmula |x|w = n

√
|NLw/Kv (x)|v. O diagrama acima nos mostra a passagem de

uma extensão finita L/K para uma extensão finita Lw/Kv, e representa o importante Prinćıpio
Local-Global, que busca relacionar informações sobre objetos e seus completamentos. O motivo
para esta nomenclatura vem do fato de que a localização de um corpo global é um corpo local.
Esses são dois conceitos importantes da Teoria dos Corpos de Classes, como veremos brevemente
no Caṕıtulo 12. O que fizemos acima nos permite demonstrar o seguinte resultado:

Teorema 10.15. (Teorema da Extensão) Seja L/K uma extensão finita de corpos e seja v uma
valoração de K. Então:

(a) Toda extensão w da valoração v a L é da forma w = v ◦ τ para alguma imersão τ : L→ Kv

que fixa K. Em particular, toda extensão de uma valoração discreta é discreta.

(b) Duas extensões v ◦ τ e v ◦ τ ′ serão iguais se e só se τ e τ ′ forem conjugadas sobre Kv.

Demonstração. (a) Seja w uma valoração de L que estende v, e consideremos sua extensão
canônica w a Lw. Seja τ : L→ Kv uma imersão que fixa K qualquer. Então, como vimos,
essa imersão se estende a uma imersão τ : Lw → Kv que fixa Kv. Agora, v ◦ τ é uma
extensão de v a Lw. Como w também é uma extensão de v a Lw, vemos pela unicidade do
Teorema 10.9 que w = v ◦ τ em Lw. Restringindo essas valorações a L, obtemos o resultado
desejado.

(b) Suponhamos que τ e τ ′ sejam conjugadas, isto é, τ ′ = σ ◦ τ para um certo σ ∈ Gal(Kv/Kv).
Notemos que v ◦ σ é uma valoração de Kv que estende a valoração v de Kv. Mas, pela
unicidade do Teorema 10.9, v é a única tal valoração, de modo que v = v ◦ σ. Isso mostra
que v ◦ τ ′ = v ◦ σ ◦ τ = v ◦ τ , como queŕıamos.
Reciprocamente, suponhamos que τ , τ ′ : L → Kv sejam imersões que fixam K tais que
v ◦ τ = v ◦ τ ′. Então σ : τL→ τ ′L dado por σ := τ ′ ◦ τ−1 é um isomorfismo de corpos que
fixa K. Como v ◦σ = v ◦ τ ′ ◦ τ−1 = v ◦ τ ◦ τ−1 = v, é fácil ver que σ é uma função cont́ınua.
Afirmamos que conseguimos estender σ a um isomorfismo σ : τL ·Kv → τ ′L ·Kv que fixa
Kv. Para ver isso, comecemos observando que τL é denso em τL ·Kv ⊆ Kv, uma vez
que K ⊆ τL é denso em Kv. Assim, todo elemento x ∈ τL ·Kv pode ser escrito como
x = limn→∞ τxn, onde cada xn ∈ L. Notemos agora que a sequência (τ ′xn) = (στxn)
converge a um elemento σx := limn→∞ στxn = limn→∞ τ

′xn ∈ τ ′L ·Kv, uma vez que σ é
cont́ınua e τ ′L ·Kv é completo já que é extensão finita de Kv.
É fácil ver que σ : τL ·Kv → τ ′L ·Kv está bem-definida (isto é, não depende da sequência
(xn) escolhida) e é um isomorfismo de corpos que fixa Kv. Assim, podemos estender σ a um
automorfismo σ : Kv → Kv que fixa Kv, isto é, a σ ∈ Gal(Kv/Kv). Desse modo, obtemos
que τ ′ = σ ◦ τ é conjugada a τ , como queŕıamos.

Como um caso concreto desse teorema, consideremos L = K(α), onde α ∈ L é raiz de um
polinômio irredut́ıvel f(x) ∈ K[x]. Nesse caso, as imersões de L em Kv são da forma τ : L→ Kv

dadas por τ (α) = β, onde β ∈ Kv é uma raiz de f(x). Suponhamos que a decomposição de f(x)
em fatores irredut́ıveis de Kv[x] seja f(x) = f1(x)m1 · · · fr(x)mr . Então duas imersões τ e τ ′ de
L em Kv serão conjugadas sobre Kv se e só se as ráızes τ (α) e τ ′(α) de f(x) forem conjugadas
sobre Kv, isto é, se forem ráızes do mesmo polinômio irredut́ıvel fj(x). Assim, como consequência
do Teorema da Extensão, nós obtemos:

Proposição 10.16. Suponhamos que L = K(α), onde α ∈ L é raiz de um polinômio irredut́ıvel
f(x) ∈ K[x], e seja v uma valoração de K. Então as valorações w1, . . . ,wr de L que estendem w
estão em bijeção com os fatores irredut́ıveis f1, . . . , fr da decomposição f(x) = f1(x)m1 · · · fr(x)mr
de f(x) em polinômios irredut́ıveis de Kv[x]. Para obter wj explicitamente, para 1 ≤ j ≤ r,
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fixamos αj ∈ Kv raiz de fj(x), e tomamos τ : L → Kv dada por τ (α) = αj. Então wj = v ◦ τj.
Além disso, τj : L→ Kv se estende a um isomorfismo τj : Lwj → Kv(αj).

Dada uma extensão finita L/K, usaremos a notação w | v para indicar que w é uma extensão de
v a L. Note que para cada w | v nós temos um homomorfismo de Kv-álgebras ϕw : L⊗K Kv → Lw
dado por a⊗ b 7→ ab. Assim, obtemos um homomorfismo de Kv-álgebras ϕ : L⊗K Kv →

∏
w|v Lw

dado por a⊗ b 7→ (ab). Se L/K for separável, esse homomorfismo será de fato um isomorfismo:

Proposição 10.17. Com as condições acima, se L/K for separável então L⊗K Kv
∼=
∏
w|v Lw

como Kv-álgebras étale, com isomorfismo dado por ϕ.

Demonstração. Seja α ∈ L tal que L = K(α), e seja f(x) ∈ K[x] o polinômio minimal de α. Pela
proposição acima, os fatores primos de f(x) em Kv[x] estão em correspondência com as valorações
w | v. Como essa extensão é separável, temos f(x) =

∏
w|v fw(x), onde cada fw(x) ∈ Kv[x] é

irredut́ıvel. Desse modo, temos L⊗K Kv
∼=
∏
w|v

Kv [x]
〈fw(x)〉 , pelo Corolário 1.21, com isomorfismo

dado por g(α)⊗ b 7→ (g(x)b (mod fw)).
Fixemos w | v. Notemos que Kv [x]

〈fw(x)〉 é o corpo de decomposição de fw sobre Kv, de modo que
também pela proposição acima podemos concluir que Kv [x]

〈fw(x)〉
∼= Lw, com isomorfismo dado por

h(x) (mod fw) 7→ h(αw), onde αw ∈ Kv é uma raiz de fw.
Desse modo, temos um isomorfismo de Kv-álgebras L⊗K Kv

∼=
∏
w|v Lw, que é dado por

g(α) ⊗ b 7→ (g(αw)b). Finalmente, basta notarmos que estamos identificando todos os αw’s
com α, de modo que nosso isomorfismo é g(α) ⊗ b 7→ (g(α)b). Mas isso é exatamente o que
queŕıamos!

Como corolário, nós obtemos várias relações entre a extensão L/K e as extensões Lw/Kv:

Corolário 10.18. Com as condições acima, se L/K for separável então nós temos a igualdade
[L : K] =

∑
w|v[Lw : Kv]. Além disso, para todo α ∈ L nós temos:

NL/K(α) =
∏
w|v

NLw/Kv (α) e TrL/K(α) =
∑
w|v

TrLw/Kv (α).

Demonstração. Segue imediatamente do resultado acima, juntamente com as Proposições 1.20 e
1.24

Seja κ o corpo de reśıduos de K. Para cada w | v, denotaremos por λw o corpo de reśıduos
de Lw, por ew = (w(L×) : v(K×)) o ı́ndice de ramificação de (L,w)/(K, v) e por fw = [λw : κ]
o grau de inércia de (L,w)/(K, v). Então nós obtemos a identidade fundamental da teoria
de valorações:

Proposição 10.19. Com as condições acima:

(a) Dado w | v, o ı́ndice de ramificação de Lw/Kv é ew, e o grau de inércia de Lw/Kv é fw.
Assim, [Lw : Kv] = ewfw.

(b) (Identidade Fundamental) Se v for discreta e L/K for separável, então nós temos a igual-
dade

∑
w|v ewfw = [L : K].

Demonstração. (a) Sabemos que v(K×) = v(K×v ) e que o corpo de reśıduos de K×v é isomorfo
a κ. Além disso, para cada w | v temos w(L×) = w(L×w) e o corpo de reśıduos de L×w é
isomorfo a λw. Com isso, o ı́ndice de ramificação e o grau de inércia da extensão Lw/Kv são
iguais a ew e fw, e a identidade fundamental para corpos completos nos dá [Lw : Kv] = ewfw.
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(b) Pelo corolário acima, temos [L : K] =
∑
w|v[Lw : Kv], de onde pelo item (a) nós obtemos

[L : K] =
∑
w|v ewfw, como queŕıamos.

Suponhamos agora que A seja um domı́nio de Dedekind com corpo de frações K = Q(A), L
seja uma extensão finita e separável de grau n de K e B = A

L. Dado x ∈ K× qualquer, temos
xA =

∏
p p

vp(x), e assim:

xB = (xA)B =
∏
p

pvp(x)B =
∏
p

(pB)vp(x) =
∏
p

∏
P|p

PePvp(x).

Isso mostra que, dado pCA primo não-nulo e P | p, nós temos vP(x) = ePvp(x). Assim, 1
eP
vP

é uma valoração de L que estende vp. De fato, o teorema abaixo nos diz que as valorações dessa
forma nos dão todas as extensões de vp a L. Denotemos por Kp o completamento de (K, vp) e
por LP o completamento de (L, vP).
Teorema 10.20. Seja pCA primo não-nulo. Então o mapa P 7→ 1

eP
vP nos dá uma bijeção

entre o conjunto dos primos de B sobre p e o conjunto das valorações de L que estendem vp. Em
particular, nós temos L⊗K Kp

∼=
∏

P|p LP, e portanto valem as fórmulas:

[L : K] =
∑
P|p

ePfP, NL/K(α) =
∏
P|p

NLP/Kp
(α) e TrL/K(α) =

∑
P|p

TrLP/Kp
(α)

Demonstração. É claro que, para P | p e Q | p distintos, nós temos vP e vQ não-equivalentes.
Assim, basta provarmos que toda valoração de L que estende vp é da forma 1

eP
vP para algum

P | p. Seja w | v. Então w é discreta, pelo Teorema da Extensão. Chamemos de W o seu DVD
correspondente, e de m o único ideal maximal de W .

Como w|K = vp, nós temos A ⊆ W e m∩A = p. Como W é um DVD, ele é integralmente
fechado em L, e portanto B = A

L ⊆ W
L
= W . Chamemos P := m∩B CB. Como m | p, vemos

que P | p. Como B \P ⊆ W \m = W×, vemos que BP ⊆ W . Assim, BP ⊆ W ⊆ L = Q(BP).
Como não existem anéis intermediários entre um DVD e seu corpo de frações, vemos que W = BP,
e portanto w e vP são equivalentes, pela Proposição 9.9. Como w|K = v, é claro que w = 1

eP
vP,

como queŕıamos.
Observação 10.21. Note que a fórmula [L : K] =

∑
P|p ePfP é exatamente a identidade funda-

mental clássica. Assim, nós a reobtemos no contexto de valorações.

Pela Proposição 9.6, todas as valorações não-arquimedianas de Q são, a menos de equivalência,
as p-ádicas, para p primo. Desse modo, devido ao teorema acima, nós temos:
Teorema 10.22. Seja K um corpo de números algébricos. Então toda valoração não-arquimediana
de K é, a menos de equivalência, da forma vp, onde pCOK é um primo não-nulo.

Demonstração. Seja v uma valoração não-arquimediana de K. Então ela é a extensão da valoração
v|Q de Q, que deve ser equivalente a vp para algum p ∈ N primo. Assim, pelo teorema acima, v
deve ser equivalente a vp para pCOK sobre p, o que conclui a demonstração.

10.4. Extensões Galoisianas
Suponhamos que L/K seja uma extensão finita galoisiana, com grupo de Galois G = Gal(L/K),
e que v seja uma valoração de K. Dados w | v e σ ∈ G quaisquer, vemos que w ◦ σ | v. Assim,
G age nas valorações de L que estendem v. Todas as valorações w | v são de fato conjugadas por
essa ação. Note que esse resultado é do mesmo estilo da Proposição 6.1. Na demonstração dela,
utilizamos o Teorema Chinês dos Restos. Desse modo, não é surpresa que utilizaremos o Teorema
da Aproximação para demonstrar esse resultado:
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Proposição 10.23. O grupo G age transitivamente no conjunto Wv das extensões w | v, isto é,
quaisquer duas extensões de v a L são conjugadas por essa ação.

Demonstração. Sejam w | v e w′ | v. Suponhamos por absurdo que w e w′ estejam em órbitas
diferentes por essa ação. Então as órbitas {w ◦ σ : σ ∈ G} e {w′ ◦ σ : σ ∈ G} de w e de w′ por essa
ação são disjuntas. Isso significa que os conjuntos {|σ(·)|w} e {|σ(·)|w′} são disjuntos, e portanto
os valores absolutos de um conjunto e de outro são não-equivalentes, já que todos estendem |·|v.

Desse modo, pelo Teorema da Aproximação existe x ∈ L tal que |σx|w < 1 e |σx|w′ > 1, para
todo σ ∈ G. Então por um lado obteŕıamos |NL/K(x)|v =

∏
σ∈G|σ(x)|w < 1, e por outro lado

obteŕıamos |NL/K(x)|v =
∏
σ∈G|σ(x)|w′ > 1, um absurdo!

Da mesma forma que o resultado acima lembra a Proposição 6.1, como veremos ao longo
desta seção nós traçaremos um paralelo com o Caṕıtulo 6. No caso de v ser não-arquimediana,
denotaremos (K, v, |·|v,A, p,κ), e para cada w | v, (L,w, |·|w,Bw,Pw,λw).

É fácil ver que Bw◦σ = σ−1Bw e Pw◦σ = σ−1Pw, para todo σ ∈ G. Com isso, vemos que
σ : Bw◦σ → Bw induz um isomorfismo λw◦σ ∼= λw que fixa κ. Assim, [λw◦σ : κ] = [λw : κ], ou
seja, fw◦σ = fw. Temos também (w ◦ σ)(L×) = w(L×), o que mostra que ew◦σ = ew. Logo pela
proposição acima e pela identidade fundamental nós conclúımos:

Proposição 10.24. Se L/K for uma extensão finita galoisiana e v for não-arquimediana, todo
w | v possui o mesmo ı́ndice de ramificação e o mesmo grau de inércia. Chamemos esse ı́ndice de
ramificação comum de e, esse grau de inércia comum de f e de g := |Wv| o número de valorações
de L que estendem v. Então caso v for discreta temos a identidade fundamental efg = [L : K].

A notação e, f , g definida acima será padrão.

Definição (Grupo de Decomposição/Corpo de Decomposição). O grupo de decomposição de
w | v é definido por Gw = Gw(L/K) := {σ ∈ G : w ◦ σ = w}. Assim, Gw é o estabilizador de
w pela ação de G. Seu corpo fixo é chamado de corpo de decomposição de w sobre K, e é
denotado por Zw = Zw(L/K) := {x ∈ L : σx = x para todo σ ∈ Gw}.

Como G age transitivamente em Wv, vemos que g = (G : Gw), para todo w ∈ Wv. O grupo
de decomposição de w consiste precisamente dos automorfismos de L que fixam K e que são
cont́ınuos em relação a w:

Proposição 10.25. Gw é o conjunto dos σ ∈ G tais que σ é cont́ınuo com relação a w (isto é,
com relação a |·|w).

Demonstração. Se σ ∈ Gw, então w ◦ σ = w, e portanto |σ(x)|w = |x|w para todo x ∈ L.
Com isso, como σ é automorfismo é fácil ver que σ é cont́ınuo com relação a w nesse caso.
Reciprocamente, suponhamos que σ ∈ G seja cont́ınuo com relação a w. Dado x ∈ L qualquer tal
que |x|w < 1, temos que (xn) → 0, e pela continuidade de σ temos (σ(x)n) → 0. Isso equivale a
|σ(x)|w < 1. Ou seja, |x|w < 1⇒ |σx|w < 1. Isso significa que |·|w e |σ(·)|w são valores absolutos
equivalentes. Assim, w ◦ σ e w são valorações equivalentes, e portanto iguais já que ambas são
extensões de v. Isso prova que w ◦ σ = w, e portanto σ ∈ Gw, como queŕıamos.

No caso em que v é uma valoração não-arquimediana, nós conseguimos ainda definir seu grupo
de inércia e seu grupo de ramificação:

Definição ( Grupos/Corpos de Inércia/Ramificação). O grupo de inércia de w | v é definido
por:

Iw = Iw(L/K) := {σ ∈ Gw : σx ≡ x (mod Pw), para todo x ∈ Bw}
= {σ ∈ Gw : w(σx− x) > 0, para todo x ∈ Bw}.
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Seu corpo fixo é chamado de corpo de inércia de w sobre K, e é denotado:

Tw = Tw(L/K) := {x ∈ L : σx = x, para todo σ ∈ Iw}.

O grupo de ramificação de w | v é definido por:

Rw = Rw(L/K) :=
{
σ ∈ Gw :

σx

x
≡ 1 (mod Pw), para todo x ∈ L×

}
=

{
σ ∈ Gw : w

(
σx

x
− 1

)
> 0, para todo x ∈ L×

}
.

Seu corpo fixo é chamado de corpo de ramificação de w sobre K, e é denotado:

Vw = Vw(L/K) = {x ∈ L : σx = x, para todo x ∈ Rw}.

Observação 10.26. Notemos que se σ ∈ Gw, então de w ◦ σ = w nós conseguimos obter que
σBw = Bw e que σx/x ∈ Bw para todo x ∈ L×, de modo que as definições acima fazem sentido.

Nós temos então as continências G ⊇ Gw ⊇ Iw ⊇ Rw, e portanto K ⊆ Zw ⊆ Tw ⊆ Vw.
Suponhamos agora que L/K e L′/K ′ sejam extensões de Galois finitas, e que tenhamos um
diagrama comutativo:

L L′

K K ′

τ

τ

Esse diagrama induz um homomorfismo τ∗ : Gal(L′/K ′)→ Gal(L/K) dado por τ∗(σ′) = τ−1σ′τ .
Para ver que essa função está bem-definida, devemos verificar que σ′τL ⊆ τL, para podermos
aplicar τ−1. Mas isso é verdade porque τL/τK é extensão normal, uma vez que L/K o é.

Suponhamos agora que w′ seja uma valoração de L′, e denotemos v′ := w′|K′ , w := w′ ◦ τ e
v := w|K . Então é claro que v′, w e v são valorações de K ′, L e K, respectivamente, e que temos
w′ | v′ e w | v.

Proposição 10.27. Com as notações acima, τ∗ : Gal(L′/K ′) → Gal(L/K) induz um homo-
morfismo Gw′(L

′/K ′) → Gw(L/K). Além disso, se v for não-arquimediana, τ∗ induz também
homomorfismos Iw′(L′/K ′)→ Iw(L/K) e Rw′(L′/K ′)→ Rw(L/K).

Demonstração. Suponhamos que σ′ ∈ Gw′(L′/K ′). Então w′ ◦ σ′ = w′. Como w = w′ ◦ τ , temos
w′ = w ◦ τ−1 em τL. Seja x ∈ L qualquer. Então como já vimos σ′τ (x) ∈ τL, e portanto:

w ◦ τ∗(σ′) = w ◦ τ−1σ′τ (x) = w′ ◦ σ′τ (x) = w′ ◦ τ (x) = w(x).

Isso mostra que τ∗(σ′) ∈ Gw(L/K), como queŕıamos. Consideremos agora v (e portanto v′,w
e w′) não-arquimediana. Suponhamos que σ′ ∈ Iw′(L′/K ′). Sendo B o anel de valoração de L,
queremos mostrar que para todo x ∈ B temos w(τ∗(σ′)x− x) > 0. Como w = w′ ◦ τ , é fácil ver
que τx pertence ao DVD de L′. Desse modo:

w(τ∗(σ′)x− x) = w(τ−1σ′τx− x) = w(τ−1(σ′τx− τx)) = w′(σ′τx− τx) > 0,

onde na última desigualdade utilizamos que σ′ ∈ Iw′(L′/K ′). Isso prova que τ∗(σ′) ∈ Iw(L/K).
Suponhamos agora que σ′ ∈ Rw′(L′/K ′). Dado x ∈ L× qualquer, temos τx ∈ L′×, e portanto:

w

(
τ∗(σ′)x

x
− 1

)
= w

(
τ−1σ′τx

x
− 1

)
= w

(
τ−1

(
σ′τx

τx
− 1

))
= w′

(
σ′τx

τx
− 1

)
> 0,

onde na última desigualdade utilizamos que σ′ ∈ Rw′(L′/K ′). Isso prova que τ∗(σ′) ∈ Rw(L/K).
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É claro que se τ for um isomorfismo então os homomorfismos τ∗ dados acima também serão
isomorfismos, com inversa dada por (τ−1)∗. Como casos particulares disso, nós obtemos:

Proposição 10.28. (a) Seja L/K uma extensão finita galoisiana com grupo de Galois G, e
sejam w | v valorações. Então para todo τ ∈ G nós temos:

Gw◦τ = τ−1Gwτ , Iw◦τ = τ−1Iwτ , e Rw◦τ = τ−1Rwτ ,
Zw◦τ = τ−1Zw, Iw◦τ = τ−1Iw, e Vw◦τ = τ−1Vw.

(b) Seja L/K uma extensão galoisiana e sejam w | v valorações. Então para todo corpo inter-
mediário K ⊆M ⊆ L, nós temos:

Gw(L/M) = Gw(L/K) ∩Gal(L/M);
Iw(L/M) = Iw(L/K) ∩Gal(L/M );
Rw(L/M) = Rw(L/K) ∩Gal(L/M).

Demonstração. (a) Consideremos o diagrama

L L

K K

τ

τ

Então τ∗ : G → G é um automorfismo, e pela proposição acima ele induz isomorfismos
Gw → Gw◦τ , Iw → Iw◦τ e Rw → Rw◦τ , dados por σ 7→ τ−1στ . Mas isso justifica as
igualdades desejadas entre os grupos, e as igualdades entre os corpos saem facilmente destas.

(b) Consideremos o diagrama

L L

K M

Nesse caso, τ∗ é a inclusão Gal(L/M) ↪−→ Gal(L/K). Com isso, a proposição acima nos dá
as igualdades desejadas.

Suponhamos agora L/K finita galoisiana com grupo de Galois G e w | v. Consideremos o
seguinte diagrama:

Lw

L Kv

K

Pela Proposição 10.14, Lw = LKv, e assim é claro que Lw/Kv também é uma extensão
galoisiana. Dado σ ∈ Gw(L/K), pela Proposição 10.25 temos σ cont́ınuo com respeito a w.
Sendo assim, vemos que σ se estende a um único automorfismo cont́ınuo σ̂ ∈ Gal(Lw/Kv), que
é dado por σ̂x := limk→∞ σ(xk), onde (xk) é uma sequência em L com limk→∞ xk = x (aqui
usamos de fato que σ é uniformemente cont́ınuo).

Assim, temos um homomorfismo de grupos ϕ : Gw(L/K)→ Gal(Lw/Kv) dado por ϕ(σ) = σ̂.
Se σ̂ = idLw , então σ = σ̂|L = idL, de modo que ϕ é injetor. Por outro lado, seja τ ∈ Gal(Lw/Kv)
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qualquer. Note que Gal(Lw/Kv) = Gw(Lw/Kv), já que w é a única extensão de v a Lw. Então
w ◦ τ = w em Lw, de modo que σ := τ |L ∈ Gw(L/K). Sendo τ cont́ınuo com respeito a w e
L denso em Lw, vemos que τ = σ̂. Isso prova que ϕ é de fato um isomorfismo, cuja inversa é a
restrição.

Com a hipótese de v ser não-arquimediana, é fácil ainda mostrar que valem as igualdades
ϕ(Iw(L/K)) = Iw(Lw/Kv) e ϕ(Rw(L/K)) = Rw(Lw/Kv), de modo que temos os isomorfismos
Iw(L/K) ∼= Iw(Lw/Kv) e Rw(L/K) ∼= Rw(Lw/Kv) nesse caso. Juntando tudo, obtemos:
Proposição 10.29. Sejam L/K uma extensão finita galoisiana e w | v. Então Lw/Kv também
é uma extensão finita galoisiana, e temos Gal(Lw/Kv) = Gw(Lw/Kv) ∼= Gw(L/K), onde esse
isomorfismo é induzido pela extensão ϕ : Gal(L/K)→ Gal(Lw/Kv) descrita acima, cuja inversa
é a restrição τ 7→ τ |L. Além disso, se v for não-arquimediana, ϕ também induzirá os isomorfismos
Iw(Lw/Kv) ∼= Iw(L/K) e Rw(Lw/Kv) ∼= Rw(L/K).

O corpo de decomposição Zw possui as seguintes propriedades:
Proposição 10.30. Sejam L/K uma extensão finita galoisiana e w | v.

(a) A restrição wZ de w ao corpo de decomposição Zw admite extensão única a L.

(b) Se v for não-arquimediana discreta, Zw = L ∩Kv, onde essa interseção é tomada dentro
de Lw.

(c) Se v for não-arquimediana discreta, wZ terá o mesmo corpo de reśıduos e o mesmo grupo
de valores que v.

Demonstração. (a) O grupo de Galois de L/Zw é Gw, pela correspondência de Galois. Assim,
pela Proposição 10.23, toda extensão de wZ é da forma w ◦ σ, para σ ∈ Gw. Mas como
σ ∈ Gw, temos w ◦ σ = w, o que mostra que w é a única extensão de wZ a L.

(b) (⊆): Seja x ∈ Zw qualquer. Então é claro que x ∈ L. Como σx = x para todo σ ∈ Gw,
identificando Gw com Gal(Lw/Kv) vemos que x ∈ Kv. Assim, temos x ∈ L∩Kv.

(⊇): Seja x ∈ L ∩Kv. Consideremos σ ∈ Gw qualquer, e seja σ̂ sua extensão a Lw.
Então, como σ̂ ∈ Gal(Lw/Kv), temos σ̂x = x, e portanto σx = x. Isso prova que x ∈ Zw.

(c) Segue do fato de que a extensão de v a Kv tem mesmo corpo de reśıduos e grupo de valores
de v, e de K ⊆ Zw ⊆ Kv.

Se supusermos que K é completo2 e que v é discreta, w será a única extensão de v a L e
teremos Bw = AL. Nesse caso, podemos aplicar vários resultados do Caṕıtulo 6, já que temos a
extensão de DVD’s Bw/A. Sendo w | v único, por simplicidade denotemos Bw = B, Pw = P e
λw = λ. Então é fácil ver que temos Gw = GP = G, Iw = IP e Rw = R1

P. Desse modo, obtemos
o familiar diagrama:

PCB L = Q(B) 1

PV CBV Vw = Q(BV ) Rw Gal(Vw/Tw) ∼= Iw/Rw ∼= Wẽ(λ)

PT CBT Tw = Q(BT ) Iw λ = BT/PT

pCA K = Q(A) G κ

pt pt pt

ẽ ẽ ẽ

f f f

2A mesma argumentação a seguir funciona para corpos henselianos. Veja mais sobre isso na próxima
seção.
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onde p é o expoente caracteŕıstico de λ, e = ptẽ e p - ẽ. Assim, podemos aplicar todos os
resultados que obtivemos no Caṕıtulo 6 a essa configuração.

10.5. Corpos Henselianos
Nessa seção, voltaremos a considerar como valorações apenas as valorações não-arquimedianas.
Seja K um corpo qualquer, munido com um valor absoluto |·|, e seja L uma extensão algébrica de
K. Queremos estudar quais são as extensões do valor absoluto de K para um valor absoluto de L.
No caso de K ser completo com respeito a |·|, o Teorema 10.9 nos garante que uma tal extensão
existe, é única e sabemos a sua expressão. Analisando atentamente a demonstração do caso |·|
não-arquimediano, vemos que para mostrar existência e unicidade dessa extensão utilizamos a
hipótese de K ser completo apenas uma vez: precisamos dessa hipótese para podermos aplicar o
Corolário 10.7, que por sua vez segue do Lema de Hensel (10.1). Isso nos sugere definir:

Definição (Corpo Henseliano). Um corpo henseliano é um corpo K, munido de uma valoração
v, cujo anel de valoração A satisfaz o Lema de Hensel (10.1). Dizemos ainda que v é uma
valoração henseliana e que A é um anel de valoração henseliano.

É claro que todo corpo com valoração completo é henseliano, e que em todo corpo henseliano
vale o Corolário 10.7. Com isso, valerão também o Teorema 10.9 e o Corolário 10.10, na seguinte
versão:

Teorema 10.31. Seja (K, v, |·|,A) um corpo henseliano, e seja L uma extensão algébrica de K.
Então |·| admite uma única extensão a um valor absoluto |·| de L, v admite uma única extensão
a uma valoração v̂ de L e o anel de valoração associado a v̂ é AL.

Além disso, se [L : K] = n < ∞, então essas extensões são dadas por |α| = n

√
|NL/K(α)|

e v̂(α) = 1
nv(NL/K(α)). Em particular, a valoração estendida será discreta se e somente se a

valoração de K o for.

Para construir um exemplo de um corpo henseliano que não é completo, comecemos con-
siderando (K, v,A, p) um corpo com valoração qualquer, e (K̂, v̂, Â, p̂) o seu completamento.
Consideremos Kv o fecho separável de K em K̂. Então Kv é um corpo com valoração dada pela
restrição de v̂.

Definição (Henselianização). O corpo (Kv, v̂,Av, pv) é chamado de henselianização do corpo
(K, v,A, p).

Como o nome sugere, a henselianização Kv de um corpo (K, v) qualquer é um corpo hen-
seliano. Nós provaremos isso no caso particular em que Kv é algebricamente fechado em K.
Começaremos mostrando uma versão do Lema de Gauss para um corpo com valor absoluto não-
arquimediano:

Lema 10.32 (Lema de Gauss não-arquimediano). Seja (K, |·|) um corpo com valor absoluto
não-arquimediano, e seja A seu anel de valoração.

(a) O conteúdo é multiplicativo, isto é, dados f , g ∈ A[x] quaisquer nós temos |fg| = |f ||g|.

(b) Seja f ∈ A[x] primitivo, e suponhamos que f = gh com g,h ∈ K[x]. Então existe c ∈ K×
tal que cg, c−1h ∈ A[x], de modo que f = (cg)(c−1h) é uma fatoração de f em polinômios
primitivos de A[x].
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Demonstração. (a) Escrevamos f(x) = a0 + a1x+ · · ·+ amx
m e g(x) = b0 + b1x+ · · ·+ bnx

n.
Suponhamos que 0 ≤ i ≤ m e 0 ≤ j ≤ n sejam mı́nimos de modo que |ai| = |f | e
|bj | = |g|. Então o coeficiente de xi+j em fg é a soma de elementos da forma arbs com
r + s = i + j. Uma dessas parcelas é aibj , que satisfaz |aibj | = |ai||bj | = |f ||g|, e as
demais parcelas possuem r < i ou s < j, de modo que pela maximalidade de |ai| e |bj |
e pelas minimalidades de i e j nós temos |arbs| = |ar||bs| < |ai||bj | = |f ||g|. Assim, pela
desigualdade ultramétrica vemos que o coeficiente de xi+j em fg tem valor absoluto |f ||g|,
de onde |fg| ≥ |f ||g|.
Por outro lado, todos os coeficientes de fg são somas de parcelas da forma arbs, que satis-
fazem |arbs| = |ar||bs| ≤ |f ||g|. Assim, pela desigualdade ultramétrica, os coeficientes de
fg possuem valor absoluto no máximo |f ||g|, de onde obtemos |fg| ≤ |f ||g|. Desse modo,
temos |fg| = |f ||g|, como queŕıamos.

(b) Como f é primitivo, temos 1 = |f | = |gh| = |g||h|, onde utilizamos o item (a). Seja c ∈ K×
tal que |c| = |h| (podemos tomar c como sendo um dos coeficientes de maior valor absoluto
de h, por exemplo). Então |c−1h| = |c|−1|h| = 1, e |cg| = |c||g| = |c||h|−1 = 1. Assim, c−1h
e cg são primitivos. Em particular, cg, c−1h ∈ A[x].

Proposição 10.33. Com as notações acima, suponhamos que Kv seja algebricamente fechado
em K̂. Então Kv é um corpo henseliano. Em particular, isso ocorrerá se K tiver caracteŕıstica
0, já que nesse caso Kv será o fecho algébrico de K em K̂.

Demonstração. Seja f(x) ∈ Av[x] primitivo, e seja f(x) ∈ (Av/ pv)[x] seu polinômio induzido.
Suponhamos que existam g(x),h(x) ∈ (Av/ pv)[x] primos entre si tais que f = gh. É claro que
K̂ também é o completamento de Kv. Assim, pela Proposição 9.13 nós temos Av/ pv ∼= Â/p̂ com
as inclusões canônicas. Desse modo, podemos ver a fatoração f = gh em (Â/p̂)[x]. Com isso,
como K̂ é henseliano, existem g(x),h(x) ∈ Â[x] tais que f = gh, os polinômios induzidos por g
e h no corpo residual são g e h respectivamente e ∂ g = ∂ g.

Como gh = f ∈ A[x], vemos pelo Teorema 1.18 que g,h ∈ AK̂ [x]. Como estamos supondo que
Kv é algebricamente fechado em K̂, nós temos g,h ∈ Kv[x]. Multiplicando g e h por constantes
adequadas, podemos pelo Lema de Gauss não-arquimediano supor que g,h ∈ Av[x] e satisfazem
as mesmas condições (multiplicando também g e h por constantes se necessário). Assim, vemos
que o Lema de Hensel se aplica para Kv, mostrando que Kv é henseliano, como queŕıamos.

Vale observar que Kv é “muito menor” que o completamento K̂: a extensão Kv/K é sempre
algébrica, enquanto que se pode mostrar que K̂/K nunca será algébrica se K não for completo,
isto é, se K 6= K̂. Pela unicidade da extensão de uma valoração dada pelo Teorema 10.31 e pela
Proposição 10.19, vemos que a identidade fundamental para extensões finitas de corpos henselianos
se torna:

Proposição 10.34. Seja (K, v) um corpo henseliano, e seja (L,w) uma extensão finita de (K, v)
de grau n. Suponhamos que v seja discreta e que L/K seja separável. Denotemos e = e(w | v) e
f = f(w | v). Então vale a identidade fundamental ef = n = [L : K].

É interessante que vale a volta do Teorema 10.31: um corpo com valor absoluto (K, v) será
henseliano se e somente se toda extensão algébrica de K admitir única extensão de v. Para
isso, estudaremos o chamado poĺıgono de Newton, um método que nos permite relacionar as
valorações das ráızes de um polinômio com as valorações dos coeficientes desse polinômio.

Definição (Envoltória Convexa Inferior). Seja S = {p1 = (x1, y1), . . . , pn = (xn, yn)} um con-
junto finito de pontos de R2, com x1 < · · · < xn. Nós definimos a envoltória convexa inferior
de S como sendo “a menor poligonal convexa que está abaixo de todos os pontos de S”. Formal-
mente, a envoltória convexa é a poligonal definida da seguinte forma:
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• Seu primeiro segmento liga p1 a pi2 , onde i2 é o maior 1 < i ≤ n tal que todos os pontos de
S estão no semiplano superior fechado determinado pela reta que liga p1 a pi.

• Seu segundo segmento liga pi2 a pi3 , onde i3 é o maior i2 < i ≤ n tal que todos os pontos
de S estão no semiplano superior fechado determinado pela reta que liga pi1 a pi2 .

...

• Seu último segmento liga pir a pn.

Assim, a envoltória convexa inferior de S é dada por p1pi2pi3 · · · pirpn.

Exemplo 10.35. Na figura abaixo, a poligonal em vermelho é a envoltória convexa inferior do
conjunto de pontos azuis. Ela é formada por 5 segmentos (note que há um ponto sobre a poligonal
que não é um vértice).

Note que a envoltória convexa inferior de um conjunto de pontos é formada por segmentos
com inclinação estritamente crescente, da esquerda para a direita.

Definição (Poĺıgono de Newton). Seja (K, v) um corpo com valoração, e consideremos um po-
linômio f(x) = a0 + a1x + · · · + anx

n ∈ K[x] com a0, an 6= 0. A cada monômio aix
i com

ai 6= 0 nós associamos o ponto (i, v(ai)) ∈ R2. Assim, nós temos um conjunto de pontos
Sf := {(i, v(ai)) : 0 ≤ i ≤ n, ai 6= 0}. O poĺıgono de Newton do polinômio f(x) é defi-
nido como sendo a envoltória convexa inferior do conjunto de pontos Sf .

Exemplo 10.36. Consideremos o polinômio:

f(x) = x8 − 18x6 + 54x5 + 3x4 − 81x3 − 36x2 + 162x− 1215 ∈ Q3[x].

O poĺıgono de Newton de f é a poligonal vermelha da figura abaixo:



192 CAPÍTULO 10. EXTENSÕES DE VALORES ABSOLUTOS

Proposição 10.37. Seja (K, v) um corpo, e seja f(x) = a0 + a1x+ · · ·+ anx
n ∈ K[x] um po-

linômio com a0, an 6= 0. Seja L o corpo de decomposição de f , e suponhamos que v se estenda
a uma valoração w de L. Suponhamos que (r, v(ar)) e (s, v(as)), com r < s, sejam dois pontos
consecutivos do poĺıgono de Newton de f , e seja −m a inclinação do segmento que os liga. Então
f possui exatamente s− r ráızes (contadas com multiplicidade) com valoração m.

Demonstração. Comecemos observando que dividir por an apenas faz o poĺıgono de Newton de
f se deslocar verticalmente, uma vez que v(ai/an) = v(ai)− v(an) para todo 0 ≤ i ≤ n. Assim,
podemos assumir sem perda de generalidade que an = 1. Sejam m1 < m2 < · · · < mt+1 as
valorações assumidas pelas ráızes de f em L. Numeraremos as ráızes de L por α1, . . . ,αn (com
multiplicidade), de modo que tenhamos:

w(α1) = · · · = w(αs1) = m1;
w(αs1+1) = · · · = w(αs2) = m2;

...
w(αst+1) = · · · = w(αn) = mt+1.

Vendo os coeficientes de f como funções simétricas nas ráızes α1, . . . ,αn e utilizando a propriedade
não-arquimediana, nós obtemos:

v(an) = v(1) = 0;
v(an−1) ≥ min{w(αi) : 1 ≤ i ≤ n} = m1;
v(an−2) ≥ min{w(αiαj) : 1 ≤ i < j ≤ n} = 2m1;

...
v(an−s1) = min{w(αi1 · · ·αis1

) : i1 < · · · < is1} = s1m1,

onde a primeira igualdade da última linha segue do fato de que αi1 · · ·αis1
é o único termo na

expressão de an−s1 que tem valoração s1m1 (em todos os outros termos aparece uma raiz com
valoração maior que m1).

Notemos que as expressões acima implicam que, para todo n− s1 ≤ i ≤ n, o ponto (i, v(ai))
está acima da reta que liga (n− s1, v(an−s1)) = (n− s1, s1m1) e (n, v(an)) = (n, 0), cuja in-
clinação é 0−s1m1

n−(n−s1)
= −s1m1

s1
= −m1. Procedendo analogamente, nós obtemos:

v(an−s1−1) ≥ min{w(αi1 · · ·αis1+1) : i1 < · · · < is1+1} = s1m1 +m2;
v(an−s1−2) ≥ min{w(αi1 · · ·αis1+2) : i1 < · · · < is1+2} = s1m1 + 2m2;

...
v(an−s2) = min{w(αi1 · · ·αis2

) : i1 < · · · < is2} = s1m1 + (s2 − s1)m2,

e assim por diante. Como v(an−s1−1) ≥ s1m1 +m2 > (s1 + 1)m1, é fácil ver que (n− s1, s1m1)
está abaixo da reta que liga (n− s1 − 1, v(an−s1−1)) a (n, 0). Com isso, conclúımos que o último
segmento do poĺıgono de Newton de f é o segmento ligando (n− s1, s1m1) a (n, 0). Pelas ex-
pressões acima, para todo n− s2 ≤ i ≤ n− s1, o ponto (i, v(ai)) está acima da reta que liga
(n− s2, v(an−s2)) = (n− s2, s1m1 + (s2 − s1)m2) e (n− s1, s1m1), cuja inclinação é

s1m1 − (s1m1 + (s2 − s1)m2)

(n− s1)− (n− s2)
=
−(s2 − s1)m2

s2 − s1
= −m2.

Continuando do mesmo modo, nós conclúımos que os vértices do poĺıgono de Newton são, da
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direita para a esquerda:

(n, 0);
(n− s1, s1m1);
(n− s2, s1m1 + (s2 − s1)m2);

...
(n− sj , s1m1 + (s2 − s1)m2 + · · ·+ (sj − sj−1)mj);

...
(0, s1m1 + (s2 − s1)m2 + · · ·+ (n− st)mt+1),

e a inclinação de um segmento genérico dessa poligonal é:

(s1m1 + · · ·+ (sj − sj−1)mj)− (s1m1 + · · ·+ (sj+1 − sj)mj+1)

(n− sj)− (n− sj+1)
=

(sj − sj+1)mj+1
sj+1 − sj

= −mj+1.

Ou seja, da direita para a esquerda os segmentos do poĺıgono de Newton têm inclinações iguais a
−m1, −m2, . . . ,−mt+1, e as distâncias horizontais entre seus vértices, também da direita para a
esquerda, são iguais a s1, s2 − s1, . . . , st − st−1,n− st. Note que isso é exatamente o que queŕıamos
mostrar!

Exemplo 10.38. Consideremos o polinômio f(x) do Exemplo 10.36. Pela proposição acima, no
corpo de decomposição de f esse polinômio possui duas ráızes com valoração 3/2, duas ráızes com
valoração 1/2 e quatro ráızes com valoração 1/4.

Notemos que, pela proposição acima, um polinômio f(x) ∈ K[x] se fatora em L[x] como
f(x) = an

∏r
j=1 fj(x), onde para 1 ≤ j ≤ r temos:

fj(x) :=
∏

α raiz de f (x)
w(α)=mj

(x− α),

onde m1 < · · · < mr são as valorações das ráızes de f em L e o produto acima considera multi-
plicidades. Observemos que cada fj(x) corresponde ao (r − j + 1)-ésimo segmento do poĺıgono
de Newton, da esquerda para a direita. Em particular, o poĺıgono de Newton de f será formado
por um único segmento se e somente se todas as ráızes de f tiverem a mesma valoração em L. O
curioso é que, se a extensão de v a L for única, a fatoração para f dada acima será na verdade
uma fatoração em K[x]:

Proposição 10.39. Com as notações acima, se w for a única extensão de v a uma valoração
no corpo de decomposição L de f , então a fatoração f(x) = an

∏r
j=1 fj(x) é uma fatoração em

K[x], ou seja, f1(x), . . . , fr(x) ∈ K[x].

Demonstração. Nós podemos assumir sem perda de generalidade que an = 1. Assim, nós temos
a fatoração f(x) =

∏r
j=1 fj(x). Consideremos primeiramente o caso f irredut́ıvel sobre K[x].

Nesse caso, dadas duas ráızes α,β ∈ L de f , sabemos que existe σ ∈ Gal(L/K) tal que β = σα.
Notemos que w ◦ σ também é uma valoração de L que estende v. Logo, por unicidade, temos
que w ◦ σ = w. Portanto w(β) = w(σα) = w(α). Desse modo, mostramos que todas as
ráızes de f possuem mesma valoração, e portanto r = 1 e nós temos simplesmente a igualdade
f1(x) = f(x) ∈ K[x].

A demonstração do caso geral será por indução em ∂ f = n. Para n = 1, não temos nada a
provar. Seja então n ≥ 2, e suponhamos que o resultado seja válido para todos os polinômios de
grau menor que n. Fixemos uma raiz α ∈ L de f , e seja p := Pα,K ∈ K[x] seu polinômio minimal
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sobre K. Definamos g(x) := f(x)/p(x) ∈ K[x]. Como p é irredut́ıvel em K[x], vemos que todas
as ráızes de p possuem a mesma valoração, sem perda de generalidade m1. Então p divide f1 em
L[x]. Chamemos g1(x) := f1(x)/p(x) ∈ L[x]. Então nós temos:

g(x) =
f(x)

p(x)
=

∏r
j=1 fj(x)

p(x)
= g1(x)

r∏
j=2

fj(x).

Notemos que essa fatoração de g(x) é exatamente a dada pelo poĺıgono de Newton, uma vez que
as ráızes de g1, f2, . . . , fr possuem valorações m1,m2, . . . ,mr respectivamente. Finalmente, como
∂ g < ∂ f = n, conclúımos pela hipótese de indução que g1, f2, . . . , fr ∈ K[x]. Disso tiramos que
f1 = g1p ∈ K[x] também. Ou seja, f1, . . . , fr ∈ K[x], como desejado.

Em particular, se f for irredut́ıvel em K[x] vemos que o poĺıgono de Newton de f con-
sistirá de um único segmento, que liga os pontos (0, v(a0)) e (n, v(an)). Assim, para todo
0 ≤ i ≤ n, o ponto (ai, v(ai)) está acima desse segmento ou sobre ele, de onde nós conclúımos
que v(ai) ≥ min{v(a0), v(an)}. Em termos do valor absoluto |·| associado a v, isso significa que
|ai| ≤ max{|a0|, |an|}. Com isso, nós temos:

Corolário 10.40. Seja (K, |·|) um corpo com valor absoluto não-arquimediano. Seja ainda
f(x) = a0 + a1x+ · · ·+ anx

n ∈ K[x] um polinômio irredut́ıvel. Suponhamos que |·| admita uma
extensão única a um valor absoluto do corpo de decomposição de f . Então |f | = max{|a0|, |an|}.

Note que obtivemos um resultado do mesmo tipo que o Corolário 10.7. Estamos na verdade
fazendo o caminho inverso do que fizemos nas seções 10.1 e 10.2. Nelas, supondo um corpo com-
pleto, mostramos o Lema de Hensel, provamos a partir disso o Corolário 10.7 e então mostramos a
existência e a unicidade de uma extensão. Aqui, supondo a existência e a unicidade de uma certa
extensão, mostramos o Corolário 10.40. De fato, supondo a existência e a unicidade de todas as
extensões algébricas, conseguimos voltar mais ainda e deduzir o Lema de Hensel:

Teorema 10.41. Um corpo com valor absoluto não-arquimediano (K, |·|) é henseliano se e so-
mente se o valor absoluto |·| de K admitir extensão única a qualquer extensão algébrica de K.
Além disso, nesse caso, chamando de κ o corpo residual de K, vale a seguinte afirmação: dado
um polinômio f(x) = a0 + a1x+ · · ·+ anx

n ∈ A[x] primitivo e irredut́ıvel com a0, an 6= 0, temos
duas opções para o polinômio induzido f(x) ∈ κ[x]:

• f(x) é um polinômio constante não-nulo, ou

• ∂ f = ∂ f e f(x) = aϕ(x)m, onde a ∈ κ× é uma constante, ϕ(x) ∈ κ[x] é irredut́ıvel
mônico e m é um inteiro positivo.

Demonstração. Denotemos (K, v, |·|,A, p,κ). A ida da primeira parte desse teorema segue do
Teorema 10.31. Provemos portanto a volta. Suponhamos que |·| admita extensão única a qualquer
extensão algébrica de K. Começaremos provando a última afirmação do enunciado. Consideremos
f(x) = a0 + a1x+ · · ·+ anx

n ∈ A[x] primitivo e irredut́ıvel, com a0, an 6= 0, e seja f(x) ∈ κ[x]
seu polinômio induzido.

Como |·| possui única extensão ao corpo de decomposição de f , o fato de f ser irredut́ıvel
implica que seu poĺıgono de Newton é um único segmento, que liga (0, v(a0)) a (n, v(an)). Apli-
cando o Corolário 10.40, conclúımos que |f | = max{|a0|, |an|}. Sendo f primitivo, temos |f | = 1,
logo |a0| = 1 ou |an| = 1, isto é, v(a0) = 0 ou v(an) = 0.

Se v(an) > 0, então v(a0) = 0, e o poĺıgono de Newton de f é o segmento não-horizontal que
liga (0, 0) a (n, v(an)). Mas note que isso significa que v(ai) > 0 para todo 1 ≤ i ≤ n. Desse
modo, nesse caso temos f(x) = a0 constante não-nulo.

Suponhamos então v(an) = 0. Assim, an 6∈ p, de modo que an 6= 0 e nós temos ∂ f = ∂ f . Seja
L o corpo de decomposição de f sobre K. Então (L, |·|,B,P,λ) é um corpo com valor absoluto,
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onde |·| é a única extensão a L do valor absoluto de K. Notemos que, para todo σ ∈ Gal(L/K),
|σ(·)| : L→ R+ é um valor absoluto de L que estende o valor absoluto de K. Assim, pela unicidade
da extensão temos |σ(·)| = |·|.

Dado α ∈ B, temos |α| ≤ 1, e portanto |σ(α)| = |α| ≤ 1, o que mostra que σα ∈ B, onde
σ ∈ Gal(L/K) é qualquer. Portanto, σB ⊆ B. Da mesma forma, σ−1B ⊆ B ⇒ B ⊆ σB, o
que prova que temos σB = B para todo σ ∈ Gal(L/K). Procedendo analogamente, conclúımos
que σP = P para todo σ ∈ Gal(L/K). Assim, cada automorfismo σ ∈ Gal(L/K) induz um
automorfismo σ ∈ Gal(λ/κ) dado por σ(x) = σ(x).

Afirmamos que todas as ráızes de f estão em B. Para isso, sejam α1, . . . ,αn ∈ L as ráızes
de f , contadas com multiplicidade. Como f é irredut́ıvel, todas as suas ráızes são conjugadas.
Assim, para 1 ≤ i ≤ n existe σi ∈ Gal(L/K) tal que σi(α1) = αi. Desse modo, como σB = B
para todo σ ∈ Gal(L/K), basta mostrarmos que α1 ∈ B. Supondo por absurdo que α1 6∈ B,
temos |α1| > 1, e portanto |αi| = |σi(α1)| = |α1| > 1 para todo 1 ≤ i ≤ n. Desse modo:

|a0| =
∣∣∣∣∣
n∏
i=1

αi

∣∣∣∣∣ =
n∏
i=1
|αi| > 1,

um absurdo já que a0 ∈ A ⇒ |a0| ≤ 1. Conclúımos que α1 ∈ B, e assim α1, . . . ,αn ∈ B. Agora,
para todo 1 ≤ i ≤ n nós temos σi(α1) = αi, o que mostra que todas as ráızes de f são conjugadas
por automorfismos de Gal(λ/κ). Assim, f = aϕ(x)m, onde a ∈ κ×, ϕ é o polinômio minimal de
α1 em κ[x] e m é um inteiro positivo, provando a última afirmação.

Seja agora f(x) ∈ A[x] um polinômio primitivo qualquer, e seja f(x) = f1(x) · · · fr(x) sua fa-
toração em irredut́ıveis de K[x]. Pelo Lema de Gauss não-arquimediano, multiplicando f1, . . . , fr
por constantes adequadas nós podemos supor que f1, . . . , fr ∈ A[x] são primitivos. Assim, em
κ[x] nós temos a fatoração f(x) = f1(x) · · · f r(x). Como cada fj é irredut́ıvel, pelo que vimos
nós temos f j ou constante não-nulo ou então ∂ f j = ∂ fj e f j é a potência de um polinômio
irredut́ıvel em κ[x], a menos de constante.

Mostraremos que vale o Lema de Hensel para f . Assim, suponhamos que f = g h para alguns
g,h ∈ κ[x] primos entre si. Como cada f j é ou constante não-nulo ou potência de irredut́ıvel
a menos de constante, isso significa que existem uma partição I t J = {1, 2, . . . , r} e elementos
a, b ∈ κ× tais que g = a

∏
i∈I f i, h = b

∏
j∈J f j e ∂ f i = ∂ fi para todo i ∈ I. Notemos que, como

f = gh, nós temos ab = 1, ou seja, b = a−1.
Seja a ∈ A \ p = A× tal que a = a (mod p). Então a−1 ∈ A. Note ainda que temos

b = a−1 = a−1 (mod p). Definamos finalmente g := a
∏
i∈I fi e h := a−1∏

j∈J fj . Então é claro
que g,h ∈ A[x] são tais que gh = f , g e h são os polinômios induzidos por g e h em κ[x],
respectivamente, e ∂ g = ∑

i∈I ∂ fi =
∑
i∈I ∂ f i = ∂ g. Isso prova que vale o Lema de Hensel para

f , como queŕıamos.

Como consequência imediata desse teorema, nós temos:

Corolário 10.42. Seja (K, v) um corpo henseliano, e seja (L,w) uma extensão algébrica de K.
Então (L,w) também é corpo henseliano.

Demonstração. Segue imediatamente da caracterização de corpos henselianos por unicidade de
extensão, uma vez que toda extensão algébrica de (L,w) também é uma extensão algébrica de
(K, v).

Em particular, o fecho algébrico (K, v) de um corpo henseliano (K, v) é henseliano. Também
é fácil ver que o corpo de reśıduos de K é um fecho algébrico do corpo de reśıduos de K. Juntando
tudo, nós temos o seguinte resultado:

Proposição 10.43. Seja (K, v,A, p,κ) um corpo henseliano. Então existe uma única extensão
de v a uma valoração v de seu fecho algébrico K, que torna K um corpo henseliano (K, v,A, p,κ).
Além disso, κ é um fecho algébrico de κ.
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10.6. Ramificações
Nessa seção, estudaremos os tipos de ramificações que ocorrem em extensões de corpos com
valoração (não-arquimediana). Em certo sentido, a ramificação de uma extensão mede o quão
bem se comporta a extensão de corpos de reśıduos correspondente: quanto menos ramificação
ocorre, mais bem-comportada é essa extensão. Comecemos definindo o que significa uma não-
ramificação, o caso mais bem-comportado:

Definição (Extensão Finita Não-Ramificada). Seja (L,w,λ)/(K, v,κ) uma extensão finita de
corpos henselianos. Dizemos que essa extensão é não-ramificada se a extensão λ/κ for separável
e se [L : K] = [λ : κ].

Note que numa extensão de corpos henselianos (L,w,λ)/(K, v,κ), se v for discreta temos a
identidade fundamental ef = [L : K], onde e e f são o ı́ndice de ramificação e o grau de inércia
de L/K, respectivamente. Como f = [λ : κ], a igualdade [L : K] = [λ : κ] é equivalente a
f = [L : K], e portanto a e = 1 pela identidade fundamental. Assim, L/K será finita não-
ramificada se e só se λ/κ for separável e e = 1, o que justifica a nomenclatura não-ramificada.

Proposição 10.44. Seja (K, v,A, p,κ) um corpo henseliano.

(a) Seja (L,w,B,P,λ) uma extensão finita não-ramificada de K. Então existe α ∈ B tal que
L = K(α) e λ = κ(α). Além disso, sendo f(x) = Pα,K ∈ A[x] o polinômio minimal de α
sobre K e f(x) = f(x) (mod p) ∈ κ[x], temos que f é o polinômio minimal de α sobre κ
e é separável.

(b) Seja L′/K uma extensão finita de corpos com valoração, e suponhamos que L seja um corpo
com K ⊆ L ⊆ L′. Então L′/K será finita não-ramificada se e somente se as extensões
intermediárias L′/L e L/K forem ambas finitas não-ramificadas.

(c) Sejam L/K e K ′/K extensões de corpos com valoração dentro de um fecho algébrico K/K,
e suponhamos que L/K seja finita não-ramificada. Então LK ′/K ′ também é finita não-
ramificada.

(d) Sejam L/K e K ′/K extensões de corpos com valoração dentro de um fecho algébrico K/K,
e suponhamos que L/K e K ′/K sejam ambas finitas não-ramificadas. Então LK ′/K
também é finita não-ramificada. Desse modo, o compositum de duas extensões finitas não-
ramificadas também é uma extensão finita não-ramificada.

Demonstração. (a) Como λ/κ é separável, existe α ∈ λ tal que λ = κ(α), onde α ∈ B.
Seja n := [L : K] = [λ : κ]. Então 1,α, . . . ,αn−1 formam uma base de λ/κ, de modo
que pela demonstração da Proposição 10.11 vemos que 1,α, . . . ,αn−1 ∈ B são linearmente
independentes sobre K, e portanto formam uma base de L/K. Assim, L = K(α). Notemos
que f(x) = Pα,K(x) está de fato em A[x], pois B = A

L pelo Teorema 10.31. Como
∂ f = ∂ f = n = [κ(α) : κ] e f(α) = 0, vemos que ∂ f é o polinômio irredut́ıvel de α sobre
κ. Como a extensão λ/κ é separável, vemos que α é separável.

(b) Denotemos (L,λ) e (L′,λ′).

(⇒): Suponhamos que L′/K seja finita não-ramificada. Sabemos que λ′/κ é separável
e que [λ′ : κ] = [L′ : K]. Como λ′/λ e λ/κ são subextensões da extensão separável λ′/κ,
vemos que ambas extensões são separáveis. Além disso, pela Proposição 10.11, nós temos
[λ′ : λ] ≤ [L′ : L] e [λ : κ] ≤ [L : K]. Assim:

[λ′ : κ] = [λ′ : λ][λ : κ] ≤ [L′ : L][L : K] = [L′ : K] = [λ′ : κ].
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Desse modo, todas as desigualdades acima são igualdades, e portanto [λ′ : λ] = [L′ : L] e
[λ : κ] = [L : K]. Isso prova que L′/L e L/K são finitas não-ramificadas.

(⇐): Suponhamos que L′/L e L/K sejam ambas finitas não-ramificadas. Então λ′/λ
e λ/κ são separáveis, e valem as igualdades [λ′ : λ] = [L′ : L] e [λ : κ] = [L : K].
Conclúımos que λ′/κ é também separável, e temos:

[λ′ : κ] = [λ′ : λ][λ : κ] = [L′ : L][L : K] = [L′ : K],

mostrando que L′/K é finita não-ramificada.

(c) Denotemos (L,B,P,λ), (K ′,A′, p′,κ′) e (LK ′,B′,P′,λ′). Então sabemos que λ/κ é se-
parável e [L : K] = [λ : κ]. Como [LK ′ : K ′] ≤ [L : K], a extensão [LK ′ : K ′] é finita.
Assim, basta mostrarmos que λ′/κ′ é separável e [LK ′ : K ′] = [λ′ : κ′].
Seja α ∈ B tal que L = K(α) e λ = κ(α), que sabemos existir por (a). Sejam ainda
f(x) := Pα,K(x) ∈ A[x] e f(x) := f(x) (mod p). Desse modo, LK ′ = K ′(α). Seja
g(x) := Pα,K′(x) ∈ K ′[x]. Como α ∈ B′ = A′

LK′ , vemos que de fato temos g(x) ∈ A′[x].
Definamos g(x) := g(x) (mod p′) ∈ κ′[x]. Como g(x) = Pα,K′(x) e f(x) = Pα,K(x), vemos
que g | f em A′[x], e portanto g | f em κ′[x]. Assim, g é separável. Se g fosse redut́ıvel em
κ′[x], seus dois fatores seriam coprimos devido à separabilidade de g, e portanto pelo Lema
de Hensel em K ′ nós concluiŕıamos que g seria redut́ıvel em A′[x], um absurdo! Logo g é
irredut́ıvel em κ′[x], e portanto g(x) = Pα,κ′ . Então:

[λ′ : κ′] ≤ [LK ′ : K ′] = ∂ g = ∂ g = [κ′(α) : κ′] ≤ [λ′ : κ′].

Assim, todas as desigualdades acima são igualdades, de modo que [LK ′ : K ′] = [λ′ : κ′] e
[κ′(α) : κ′] = [λ′ : κ′]. Agora, como κ′(α) ⊆ λ′, a igualdade de graus acima nos diz que
λ′ = κ′(α) é extensão separável de κ′, já que o polinômio minimal g de α sobre κ′ o é. Isso
prova que LK ′/K ′ é extensão finita não-ramificada.

(d) Devido ao item (c), sabemos que LK ′/K ′ é finita não-ramificada. Como K ′/K também
é finita não-ramificada, vemos pelo item (b) que LK ′/K é finita não-ramificada, como
queŕıamos.

Para podermos definir uma extensão infinita não-ramificada de corpos henselianos, nós preci-
samos do seguinte resultado:

Lema 10.45. Seja K um corpo henseliano, e seja L uma extensão finita de K. Então são
equivalentes:

(i) L/K é não-ramificada.

(ii) Toda subextensão de L/K é não-ramificada.

(iii) L é uma união de subextensões não-ramificadas de L/K.

(iv) L é um compositum de subextensões não-ramificadas de L/K.

Demonstração. (i)⇒ (ii): Segue da proposição acima.

(ii)⇒ (iii): É claro, já que L é a união de todas as suas subextensões.

(iii) ⇒ (iv): Suponhamos que L =
⋃
λ∈Λ Lλ, onde cada Lλ/K é extensão finita não-ramificada.

Então é claro que L =
∏
λ∈Λ Lλ é o compositum de todas essas extensões.
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(iv) ⇒ (i): Suponhamos que L =
∏
λ∈Λ Lλ seja o compositum dos Lλ, e que cada Lλ/K seja

uma extensão finita não-ramificada. Como L/K é finita, vemos que L é de fato o compositum
de um número finito dos Lλ’s, digamos L =

∏n
j=1 Lj . Aplicando sucessivamente o item (d) da

proposição acima, vemos que L é extensão finita não-ramificada de K, como queŕıamos.

Com isso, nós temos:

Proposição 10.46. Seja K um corpo henseliano, e seja L uma extensão algébrica de K. Então
são equivalentes:

(i) Toda subextensão finita de L/K é não-ramificada.

(ii) L é uma união de subextensões finitas não-ramificadas de L/K.

(iii) L é um compositum de subextensões finitas não-ramificadas de L/K.

Demonstração. (i)⇒ (ii): Segue do fato de L ser a união de todas as suas subextensões finitas.

(ii) ⇒ (iii): Suponhamos que L =
⋃
λ∈Λ Lλ, onde cada Lλ é uma subextensão finita não-

ramificada de L/K. Então basta notar que temos L =
∏
λ Lλ.

(iii)⇒ (i): Suponhamos que L =
∏
λ Lλ, onde cada Lλ é uma subextensão finita não-ramificada

de L/K. Seja M uma subextensão finita qualquer de L/K. Então M ⊆
∏
λ Lλ, e como M/K

é extensão finita vemos que M está contido no compositum de um número finito dos Lλ’s, diga-
mos M ⊆

∏n
j=1 Lj . Aplicando (iv) ⇒ (i) e (i) ⇒ (ii) do lema acima, conclúımos que M/K é

extensão finita não-ramificada. Assim, toda subextensão finita de L/K é não-ramificada, como
queŕıamos.

Definição (Extensão Não-Ramificada/Ramificada). Seja (K, v) um corpo henseliano e seja (L,w)
uma extensão algébrica de K. Dizemos que a extensão L/K é não-ramificada se ela satisfazer
alguma das três condições equivalentes da proposição acima. Caso contrário, dizemos que essa
extensão é ramificada.

Observe que, se L/K for extensão finita, então essa definição coincide com a anterior, devido
ao Lema 10.45. Notemos ainda que se L/K for extensão não-ramificada de corpos henselianos, e
se λ e κ forem os corpos residuais de L e de K, respectivamente, então λ/κ será uma extensão
separável, já que todas as suas subextensões finitas são separáveis.

Nós temos a seguinte versão mais geral da Proposição 10.44:

Proposição 10.47. Seja (K, v) um corpo henseliano.

(a) Seja L′/K uma extensão algébrica não-ramificada, e suponhamos que L seja um corpo com
K ⊆ L ⊆ L′. Então as extensões intermediárias L′/L e L/K são ambas não-ramificadas.

(b) Sejam L/K e K ′/K extensões de corpos dentro de um fecho algébrico K/K, e suponhamos
que L/K seja não-ramificada. Então LK ′/K ′ também é não-ramificada.

(c) Sejam L/K e K ′/K extensões de corpos dentro de um fecho algébrico K/K, e suponhamos
que L/K e K ′/K sejam ambas não-ramificadas. Então LK ′/K também é não-ramificada.
Desse modo, o compositum de duas extensões não-ramificadas também é uma extensão
não-ramificada.

(d) Sejam Lλ/K extensões de corpos dentro de um fecho algébrico K/K, e suponhamos que
Lλ/K seja não-ramificada para todo λ ∈ Λ. Então o compositum L =

∏
λ∈Λ Lλ é uma

extensão não-ramificada de K.
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Demonstração. (b) Como L/K é não-ramificada, temos L =
∏
λ∈Λ Lλ, onde cada Lλ é uma

subextensão finita não-ramificada de K. Então nós temos LK ′ = ∏
λ∈Λ LλK

′, e pela Pro-
posição 10.44 nós temos cada LλK ′/K ′ finita não-ramificada. Assim, LK ′ é o compositum
de subextensões finitas não-ramificadas de LK ′/K ′, de onde conclúımos que LK ′/K ′ é
extensão não-ramificada.

(a) Toda subextensão finita de L/K também é subextensão finita de L′/K, e portanto é não-
ramificada. Disso conclúımos que L/K é não-ramificada. Para ver que L′/L também é
não-ramificada, basta aplicar o item (b) para as extensões L′/K e L/K, observando que
L′ = L′L.

(c) Como L/K e K ′/K são não-ramificadas, podemos escrever L =
∏
i∈I Li e K ′ = ∏

j∈J K
′
j ,

onde cada Li/K é subextensão finita não-ramificada de L/K, e cada K ′j/K é subextensão
finita não-ramificada de K ′/K. Notemos então que cada LiK

′
j/K é subextensão finita

não-ramificada de LK ′/K, pela Proposição 10.44, e que temos LK ′ = ∏
i∈I
∏
j∈J LiK

′
j , de

modo que LK ′/K é extensão não-ramificada.

(d) Basta mostrarmos que toda subextensão finita de L/K é não-ramificada. Mas toda tal
subextensão também é uma subextensão finita do compositum de um número finito de
Lλ’s, que já sabemos ser uma extensão não-ramificada de K. Assim, toda subextensão
finita de L/K é não-ramificada, e conclúımos que L/K é não-ramificada.

A proposição acima nos mostra que existe uma subextensão não-ramificada maximal de L/K:

Definição (Subextensão Não-Ramificada Maximal). Seja L/K uma extensão algébrica de corpos
henselianos. Então o compositum T de todas as subextensões não-ramificadas de L/K é chamada
de subextensão não-ramificada maximal de L/K. No caso em que L = K é um fecho
algébrico de K, denotamos T por Knr, e o chamamos de extensão não-ramificada maximal.

Note que T/K é subextensão não-ramificada de L/K e toda subextensão não-ramificada de
L/K está contida em T , o que justifica a nomenclatura. Essa subextensão tem as seguintes
propriedades:

Proposição 10.48. Seja (L,w,B,P,λ)/(K, v,A, p,κ) uma extensão algébrica de corpos hense-
lianos, e seja (T ,w,As, ps,λs) a sua subextensão não-ramificada maximal. Então λs é o fecho
separável de κ em λ, e w(T×) = v(K×).

Em particular, o corpo de reśıduos de Knr é o fecho separável κs de κ, e w((Krn)×) = v(K×).

Demonstração. Chamemos de λsep o fecho separável de κ em λ. Como T/K é não-ramificada,
temos λs ⊆ λsep. Seja agora α ∈ λsep. Seja f(x) := Pα,κ(x) ∈ κ[x], e seja f(x) ∈ A[x] tal que
f(α) = 0 e f = f (mod p). Como f é irredut́ıvel em κ[x], temos f irredut́ıvel em A[x]. Além
disso, como x− α divide f e f é separável, vemos pelo Lema de Hensel em L que existe α ∈ B
tal que α = α (mod P). Assim, f é o polinômio minimal de α sobre K, e nós temos:

[K(α) : K] = ∂ f = ∂ f = [κ(α) : κ].

Desse modo, κ(α)/κ é uma extensão separável e [K(α) : K] = [κ(α) : κ]. Disso poderemos
concluir que K(α)/K é uma extensão não-ramificada, se mostrarmos que o corpo de reśıduos κ′

de K(α) é igual a κ(α). Como α ∈ B ∩K(α) = A
K(α), vemos que α ∈ κ′, e portanto κ(α) ⊆ κ′.

Por outro lado, temos:

[κ′ : κ] ≤ [K(α) : K] = [κ(α) : κ],

o que mostra que devemos ter κ′ = κ(α), como queŕıamos. Portanto, a extensão K(α)/K é
não-ramificada, como queŕıamos, e K(α) ⊆ T . Assim, α ∈ λs. Isso mostra que λsep ⊆ λs, e
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provamos que λs = λsep.

Mostremos agora que w(T×) = v(K×). Como T é a união de suas subextensões finitas, basta
provarmos que w(M×) = v(K×) para toda subextensão finita não-ramificada (M ,w,λM ) de
L/K. Mas nós temos:

[M : K] ≥ (w(M×) : v(K×))[λM : κ] = (w(M×) : v(K×))[M : K],

de onde obtemos (w(M×) : v(K×)) = 1, ou seja, w(M×) = v(K×), como queŕıamos.
Finalmente, a afirmação sobre o corpo de reśıduos de Knr segue da Proposição 10.43.

Seja m ∈ N não diviśıvel pela caracteŕıstica do corpo de reśıduos κ de K. Então sabemos
que o polinômio xm − 1 ∈ κ[x] é separável, e portanto se decompõe em fatores lineares em κs[x].
Aplicando o Lema de Hensel a Knr, vemos que xm − 1 ∈ K[x] se decompõe em fatores lineares
em Knr[x], e portanto Knr contém todas as ráızes m-ésimas da unidade.

A subextensão não-ramificada maximal se comporta bem com interseções:

Proposição 10.49. Seja M/L/K uma torre algébrica de corpos henselianos, e seja T a subex-
tensão não-ramificada maximal de M/K. Então a subextensão não-ramificada maximal de L/K
é T ∩L. Em particular, a subextensão não-ramificada maximal de L/K é Knr ∩L.

Demonstração. Chamemos de U a subextensão não-ramificada maximal de L/K. Como a ex-
tensão (T ∩ L)/K é uma subextensão da extensão não-ramificada T/K, essa extensão é não-
ramificada, e portanto T ∩ L ⊆ U . Por outro lado, é claro que U ⊆ L, e como essa é uma
subextensão não-ramificada de M/K temos U ⊆ T , o que nos dá U ⊆ T ∩ L. Assim, vale a
igualdade desejada.

Estudemos agora as extensões ramificadas. Existem dois tipos de ramificação: a ramificação
mansa, que é melhor comportada, e a ramificação selvagem, que é pior comportada:

Definição (Extensão Mansamente/Selvagemente/Totalmente Ramificada). Consideremos uma
extensão algébrica ramificada de corpos henselianos (L,w,λ)/(K, v,κ). Seja T a sua subextensão
não-ramificada maximal e seja p o expoente caracteŕıstico de κ. Se L/K for finita, dizemos que
a extensão L/K é mansamente ramificada se λ/κ for uma extensão separável e se tivermos
mdc([L : T ], p) = 1. No caso geral, dizemos que L/K é mansamente ramificada se λ/κ for
uma extensão separável e se toda subextensão finita de L/T tiver grau primo com p.

Se L/K não for mansamente ramificada, dizemos que L/K é selvagemente ramificada.
Além disso, dizemos que L/K é totalmente ramificada se T = K.

Suponhamos v discreta, L/K finita e λ/κ separável. Nesse caso, como já vimos, L/K será
não-ramificada se e só se e = 1. Notemos que [T : K] = [λs : κ] = [λ : κ] = f . Assim,
[L : T ] = [L : K]/f = e. Ou seja, nesse caso L/K será mansamente ramificada se e só se e > 1
e p - e, e será selvagemente ramificada se e só se e > 1 e p | e. De todo modo, temos o seguinte
diagrama:

L λ

T λs = λ

K κ

e 1

f f

Observemos ainda que, nessas condições, L/K será totalmente ramificada se e só se T = K,
e portanto se e só se f = 1.
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É posśıvel mostrar que o compositum de extensões mansamente ramificadas também é uma
extensão mansamente ramificada (veja por exemplo a Seção II.7 de [2]). Assim, dada uma ex-
tensão L/K de corpos henselianos, sempre existe uma subextensão mansamente ramificada
maximal V de L/K.

No caso em que L/K é uma extensão finita galoisiana, a valoração é discreta e λ/κ é finita,
podemos mostrar que a subextensão não-ramificada maximal de L/K é igual ao seu corpo de
inércia:

Proposição 10.50. Seja (L,w,B,P,λ)/(K, v,A, p,κ) uma extensão finita galoisiana de corpos
henselianos, e suponhamos que v seja discreta e que λ/κ seja separável. Então Tw é a subextensão
não-ramificada maximal de L/K.

Demonstração. Nós temos o seguinte diagrama:
PCB L = Q(B) 1

PV CBV Vw = Q(BV ) Rw

PT CBT Tw = Q(BT ) Iw λ = BT/PT

pCA K = Q(A) G κ

pt pt pt

ẽ ẽ ẽ

f f f

Seja T a subextensão não-ramificada maximal de L/K. Nós temos:

[BT/PT : κ] = [λ : κ] = f = [Tw : K].

Assim, Tw/K é extensão não-ramificada, de modo que Tw ⊆ T . Como [Tw : K] = f = [T : K],
conclúımos que Tw = T , como queŕıamos.

Similarmente, pode-se mostrar que nesse caso a subextensão não-ramificada maximal de L/K
é o corpo de ramificação Vw (veja por exemplo a Seção II.9 de [2]).



Caṕıtulo 11

O Teorema de Kronecker-Weber

Nosso objetivo nesse caṕıtulo é provar o importante Teorema de Kronecker-Weber:

Teorema 11.1 (Teorema de Kronecker-Weber). Toda extensão finita abeliana de Q está contida
em uma extensão ciclotômica. Isto é, se K/ Q for uma extensão finita galoisiana com Gal(K/ Q)
abeliano, então existe uma raiz da unidade ζ ∈ C tal que K ⊆ Q(ζ).

Para demonstrarmos esse teorema, aplicaremos o chamado Prinćıpio Local-Global, que nos
permite obter resultados sobre Q olhando para cada corpo p-ádico Qp e depois “juntando tudo”.
Assim, provaremos o Teorema de Kronecker-Weber utilizando o Teorema de Kronecker-Weber
Local:

Teorema 11.2 (Teorema de Kronecker-Weber Local). Seja p um primo. Toda extensão finita e
abeliana de Qp está contida em uma extensão ciclotômica. Isto é, se K/ Qp for uma extensão
finita galoisiana com Gal(K/ Qp) abeliano, então existe uma raiz da unidade ζ ∈ Qp tal que
K ⊆ Qp(ζ).

Nós provaremos esse teorema local dividindo no caso de extensões não-ramificadas, mansa-
mente ramificadas e selvagemente ramificadas.

Nesse caṕıtulo, utilizaremos a notação ζn para indicar uma raiz primitiva n-ésima da unidade.

11.1. O Caso Local
Para provarmos o Teorema de Kronecker-Weber Local, podemos nos restringir às extensões ćıclicas
de grau potência de primo. Para ver isso, comecemos com o seguinte lema:

Lema 11.3. Seja L/K uma extensão finita galoisiana, e suponhamos que G1,G2 sejam grupos
tais que Gal(L/K) ∼= G1 ×G2. Então L = L1L2, onde L1,L2 são extensões finitas galoisianas
de K, com L1 ∩L2 = K, Gal(L1/K) ∼= G1 e Gal(L2/K) ∼= G2.

Demonstração. Sem perda de generalidade, reconheçamos G1 e G2 com suas identificações den-
tro de Gal(L/K). Então Gal(L/K) = G1 �G2. Definimos L1 e L2 como os corpos fixos de
G2 e G1, respectivamente. Desse modo, Gal(L/L1) = G2 e Gal(L/L2) = G1. Como nós te-
mos Gal(L/K) = G1 �G2, G1,G2 C Gal(L/K). Assim, L1/K e L2/K são extensões finitas
galoisianas, com Gal(L1/K) ∼= Gal(L/K)/G2 ∼= G1 e Gal(L2/K) ∼= Gal(L/K)/G1 ∼= G2.

Além disso, o corpo fixo de Gal(L/K) = G1G2 é L1 ∩L2, de modo que L1 ∩L2 = K, e L1L2
é o corpo fixo de G1 ∩G2 = 1, de modo que L1L2 = L.

Com isso, conseguimos a redução desejada:

202
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Proposição 11.4. Seja p um primo. Suponhamos que toda extensão finita ćıclica K de Qp com
grau potência de primo esteja contida em uma extensão ciclotômica. Então vale o Teorema de
Kronecker-Weber Local para p.

Demonstração. Seja K uma extensão finita abeliana qualquer de Qp. Então, pelo Teorema de
Classificação dos Grupos Abelianos Finitos, nós temos:

Gal(K/ Qp) ∼= Z /pk1
1 Z× · · · ×Z /pkrr Z,

para p1, . . . , pr primos e k1, . . . , kr inteiros positivos. Aplicando várias vezes o lema acima,
conclúımos que K = K1 · · ·Kr, onde K1, . . . ,Kr são extensões finitas galoisianas de Qp com
Gal(Kj/ Qp) ∼= Z /pkjj Z, para todo 1 ≤ j ≤ r. Por hipótese, nós temos Kj ⊆ Qp(ζnj ), para
algum inteiro positivo nj . Tomemos n := n1 · · ·nr. Então:

K = K1 · · ·Kr ⊆ Qp(ζn1) · · ·Qp(ζnr ) ⊆ Qp(ζn),

concluindo a demonstração.

A partir de agora, fixemos um número primo p. Pelo resultado acima, para demonstrar
o Teorema de Kronecker-Weber Local para p basta estudarmos as extensões finitas galoisianas
K/ Qp com Gal(K/ Qp) ∼= Z /`r Z, onde ` ∈ N é um primo e r é um inteiro positivo. Como
veremos, convém dividir o nosso estudo nos casos ` 6= p e ` = p. O primeiro caso é mais simples,
enquanto o segundo requer um cuidado maior.

Nessa seção, estudaremos como as extensões de corpos sobre Qp se comportam em termos de
ramificação, e também como são as extensões ciclotômicas sobre Qp. Ao longo dessa seção, L/K
sempre denotará uma extensão finita de corpos, onde ambos (L, |·|p,B,P,λ) e (K, |·|p,A, p,κ)
são extensões finitas de Qp. Observemos em particular que κ é um corpo finito de caracteŕıstica p,
digamos κ = Fq, onde q é uma potência de p. Sendo κ finito, vemos que λ/κ é sempre separável.
Assim, podemos ignorar essa condição quando tratarmos do tipo de ramificação.

Denotaremos por e e por f o ı́ndice de ramificação e o grau de inércia de L/K, respectivamente.
Observemos que vale a identidade fundamental ef = [L : K], já que essa é uma extensão finita
de corpos completos com uma valoração discreta.

Proposição 11.5. Suponhamos que L/K seja uma extensão finita não-ramificada. Então existe
uma raiz n-ésima da unidade ζ ∈ Qp, com n ∈N primo com p, tal que L = K(ζ).

Em particular, toda extensão finita não-ramificada de Qp é ciclotômica.

Demonstração. Como L/K é não-ramificada, temos [L : K] = [λ : κ]. Sendo κ = Fq, temos
λ = κ(ζ), onde ζ ∈ λ é uma raiz n-ésima da unidade, e n = qk − 1 para algum k inteiro
positivo. Em particular, p - n. Como ζ ∈ λ é raiz do polinômio separável xn − 1 ∈ Fp[x], vemos
pelo Lema de Hensel que existe ζ ∈ L tal que ζn = 1 e ζ (mod p) = ζ. Agora, notemos que
[K(ζ) : K] ≥ [κ(ζ) : κ] pela demonstração da Proposição 10.11, e assim:

[L : K] ≥ [K(ζ) : K] ≥ [κ(ζ) : κ] = [λ : κ] = [L : K].

Então todas as desigualdades acima são igualdades, e vemos que L = K(ζ), como queŕıamos.

Note que o resultado acima resolve o Teorema de Kronecker-Weber Local para o caso de
extensões não-ramificadas. Além disso, a “volta” desse resultado também vale:

Proposição 11.6. Suponhamos que L = K(ζ), onde ζ é uma raiz primitiva n-ésima da unidade,
para p - n. Então temos:

(a) A extensão L/K é não-ramificada de grau f , onde f é o menor número natural tal que
qf ≡ 1 (mod n), isto é, f é a ordem de q em (Z /nZ)×.
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(b) As extensões L/K e λ/κ são galoisianas e seus grupos de Galois são canonicamente iso-
morfos. Além disso, Gal(L/K) é gerado pelo automorfismo ζ 7→ ζq.

(c) B = A[ζ].

Demonstração. (a) Seja P (x) := Pζ,K(x). Então P (x) := P (x) (mod p) ∈ κ[x] é igual ao
polinômio minimal de ζ sobre κ. De fato, P (x) é separável, pois divide o polinômio separável
xn − 1 ∈ κ[x]. Desse modo, pelo Lema de Hensel, P é irredut́ıvel, pois caso contrário P
seria redut́ıvel. Assim:

[L : K] = [K(ζ) : K] ≥ [κ(ζ) : κ] = ∂ P = ∂ P = [L : K].

Conclúımos então que [κ(ζ) : κ] = [L : K] ≥ [λ : κ] ≥ [κ(ζ) : κ]. Assim, κ(ζ) = λ e a
extensão L/K é não-ramificada. Para calcularmos o grau dessa extensão, devemos deter-
minar o grau de κ(ζ)/κ, ou seja, de Fq(ζ)/ Fq. Mas o grau dessa extensão é exatamente a
ordem de q em (Z /nZ)×, devido ao Teorema 2.31.

(b) Sendo geradas por ráızes da unidade, é claro que L/K e λ/κ são ambas galoisianas. Con-
sideremos agora Gal(L/K)→ Gal(λ/κ) dado por σ 7→ σ, onde σ(ζ) = σ(ζ). O fato desse
homomorfismo ser uma bijeção segue de os conjugados de ζ serem as classes dos conjugados
de ζ. Finalmente, como κ = Fq, sabemos que Gal(λ/κ) é gerado por ζ 7→ ζ

q, de onde
vemos que Gal(L/K) é gerado por ζ 7→ ζq.

(c) Dado b ∈ B qualquer, como λ = κ(ζ) temos b = a0 + a1ζ + · · ·+ af−1ζ
f−1, para alguns

a0, . . . , af−1 ∈ A. Assim, b = a0 + a1ζ + · · ·+ af−1ζ
f−1 + p para algum p ∈ P. Isso prova

que B = A[ζ] +P. Como L/K é não-ramificado, temos e = 1, e portanto pB = P. Assim,
B = A[ζ] + pB. Como B = A

L é um A-módulo finitamente gerado, conclúımos pelo Lema
de Nakayama que B = A[ζ].

Suponhamos agora que L/K seja uma extensão ramificada. Como a caracteŕıstica de κ é p,
essa extensão será mansamente ramificada se tivermos mdc(e, p) = 1 e selvagemente ramificada
se tivermos mdc(e, p) > 1. Comecemos estudando as ramificações mansas:

Proposição 11.7. Seja L/K uma extensão finita totalmente ramificada mansa. Então existem
π ∈ K um normalizador e α ∈ L uma raiz e-ésima de π tais que L = K(α). Além disso, nesse
caso α é um normalizador de L.

Demonstração. Tomemos π0 ∈ K e β ∈ L normalizadores. Então temos βe = uπ0, para algum
u ∈ B×. Como L/K é uma extensão totalmente ramificada, temos f = 1⇒ λ = κ. Assim, existe
u0 ∈ A× tal que u ≡ u0 (mod P). Então u = u0 + x, para algum x ∈ P. Chamemos π := u0π0.
Então é claro que π também é um normalizador de K, e nós temos:

βe = uπ0 = (u0 + x)π0 = u0π0 + xπ0 = π+ xπ0 ⇒ |βe − π|p = |xπ0|p < |π0|p = |π|p.

Consideremos o polinômio f(x) = xe − π ∈ A[x], e sejam α1, . . . ,αe suas ráızes em Qp. Notemos
que αej = π ⇒ |αj |p = e

√
|π|p, para todo 1 ≤ j ≤ e. Agora:
e∏
j=1
|β − αj |p = |f(β)|p = |βe − π|p < |π|p.

Assim, devemos ter |β − αj |p < e

√
|π|p = |α1|p para algum 1 ≤ j ≤ e. Suponhamos sem perda

de generalidade que isso valha para j = 1. Observemos ainda que, para todo 2 ≤ j ≤ e, temos
|α1 − αj |p ≤ max{|α1|p, |αj |p} = |α1|p. Agora:

e∏
j=2
|α1 − αj |p = |f ′(α1)| = |eαe−1

1 |p = |α1|e−1
p ,
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uma vez que p - e. Desse modo, devemos ter |α1 − αj |p = |α1|p, para todo 2 ≤ j ≤ e. Seja
agora (M , |·|) o fecho normal, e portanto galoisiano, da extensão L(α1)/L, e seja σ ∈ Gal(M/L)
qualquer. Como |σ(·)|p é um valor absoluto de M , pela unicidade do Teorema 10.9 temos que
|σ(·)|p = |·|p. Assim:

|β − σ(α1)|p = |σ(β − α1)|p = |β − α1|p < |α1|p.

Mas então, para todo 2 ≤ j ≤ e, temos:

|α1 − σ(α1)|p ≤ max{|α1 − β|p, |β − σ(α1)|p} < |α1|p = |α1 − αj |p,

o que mostra que σ(α1) 6= αj . Como σ(α1) é raiz de f , conclúımos que σ(α1) = α1. Mas
isso vale para todo σ ∈ Gal(M/L), o que significa que α1 ∈ L. Aplicando agora o critério de
Eisenstein a f(x) = xe − π, ou equivalentemente observando que seu poĺıgono de Newton é um
único segmento, vemos que f é irredut́ıvel sobre K, e portanto [K(α1) : K] = e = [L : K]. Isso
mostra que L = K(α1). Tomemos α := α1. Finalmente, notemos que |α|ep = |π|p = |π0|p = |β|ep,
e portanto |α|p = |β|p, o que mostra que α é um normalizador de L.

Para demonstrarmos o Teorema de Kronecker-Weber no caso ramificado, precisamos estudar
o comportamento das extensões ciclotômicas sobre Qp geradas por ráızes pm-ésimas da unidade.

Proposição 11.8. Seja ζ uma raiz primitiva pm-ésima da unidade, para m inteiro positivo.
Então temos:

(a) Qp(ζ)/ Qp é uma extensão totalmente ramificada de grau ϕ(pm) = (p− 1)pm−1.

(b) Gal(Qp(ζ)/ Qp) é canonicamente isomorfo a (Z /pm Z)×.

(c) 1− ζ é um normalizador de Qp[ζ], e NQp(ζ)/ Qp
(1− ζ) = p.

(d) Zp[ζ] é o DVD de Qp(ζ).

Demonstração. Seja ξ := ζp
m−1 . Então ξ é uma raiz primitiva p-ésima da unidade, e portanto

temos 1 + ξ + · · ·+ ξp−1 = 0. Assim, temos 1 + ζp
m−1

+ · · ·+ ζ(p−1)pm−1
= 0. Denotemos

ϕ(x) := x(p−1)pm−1
+ · · ·+ xp

m−1
+ 1.

Então ϕ(ζ) = 0. Notemos que ζ − 1 é raiz de ϕ(x+ 1). Mas nós temos:

ϕ(x) =
(xp

m−1
)p − 1

xpm−1 − 1
=

xp
m − 1

xpm−1 − 1
≡ (x− 1)pm

(x− 1)pm−1 = (x− 1)(p−1)pm−1
(mod p).

Desse modo, ϕ(x+ 1) ≡ x(p−1)pm−1
(mod p) e o coeficiente independente desse polinômio é igual

a ϕ(0 + 1) = ϕ(1) = p. Assim, pelo Critério de Eisenstein, vemos que ϕ(x+ 1) é irredut́ıvel em
Qp[x], e portanto ϕ(x) também o é. Isso prova que Qp(ζ)/ Qp tem grau (p− 1)pm−1 = ϕ(pm).

Pelo Teorema 2.25, Gal(Qp(ζ)/ Qp) é canonicamente isomorfo a um subgrupo de (Z /pm Z)×.
Como Gal(Qp(ζ)/ Qp) e (Z /pm Z)× têm ambos ordem ϕ(pm), conclúımos que esse é um iso-
morfismo. Notemos agora que:

N(1− ζ) =
∏

σ∈Gal(Qp(ζ)/ Qp)

σ(1− ζ) =
∏

σ∈Gal(Qp(ζ)/ Qp)

(1− σ(ζ)) = ϕ(1) = p.

Chamemos de w a valoração estendida de vp em Qp(ζ). Então:

w(1− ζ) = 1
ϕ(pm)

vp(N(1− ζ)) = 1
ϕ(pm)

vp(p) =
1

ϕ(pm)
.
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Isso mostra que e ≥ ϕ(pm), e portanto pela identidade fundamental devemos ter e = ϕ(pm) e
f = 1. Isso prova que Qp(ζ)/ Qp é totalmente ramificada. Como 1/e é o menor valor positivo
assumido por w, e w(1− ζ) = 1/e, vemos que 1− ζ é um normalizador de Qp(ζ).

Finalmente, notemos que pela demonstração da Proposição 10.13, utilizando o fato de que
f = 1 e tomando ω1 := 1 e Π := 1− ζ, nós obtemos que o DVD de Qp(ζ) é Zp[1− ζ] = Zp[ζ],
como queŕıamos.

Precisaremos ainda do seguinte lema:

Lema 11.9. Temos Qp((−p)1/(p−1)) = Qp(ζp), onde (−p)1/(p−1) denota uma raiz (p− 1)-ésima
qualquer de −p.

Demonstração. Se p = 2, então ambos os corpos indicados são Qp, de modo que o resultado é
óbvio. Suponhamos então p > 2. Nesse caso, como já vimos, ζp 6∈ Qp, uma vez que as únicas
ráızes da unidade de Qp são as (p− 1)-ésimas. Notemos que todas as ráızes (p− 1)-ésimas de
−p geram o mesmo corpo sobre Qp, já que uma difere de outra por uma raiz primitiva (p− 1)-
ésima da unidade, e todas essas ráızes estão em Qp. Assim, basta provarmos isso para uma raiz
(p− 1)-ésima qualquer de −p.

Denotemos ϕ(x) = xp−1 + · · ·+x+ 1 e ψ(x) = ϕ(x+ 1). Então, como vimos na demonstração
do teorema anterior, esses são polinômios irredut́ıveis, e 1− ζp é normalizador de Qp(ζp). Notemos
que

ψ(x) = xp−1 +

(
p

p− 1

)
xp−2 + · · ·+

(
p

1

)
x+ p.

Como e = ϕ(p) = p− 1, temos (1− ζp)p−1 = tp para algum t ∈ Zp[ζp]×. Assim, (1− ζp)p−1

divide p em Zp[ζp], de modo que:

(ζp − 1)p−1 +

(
p

p− 1

)
(ζp − 1)p−2 + · · ·+

(
p

1

)
(ζp − 1) + p

≡ (ζp − 1)p−1 + p (mod (1− ζp)p).

Logo:

0 = ψ(ζp − 1) ≡ (ζp − 1)p−1 + p = (t+ 1)p (mod (1− ζp)p)⇒ t+ 1 ≡ 0 (mod 1− ζp).

Dessa forma, u := −t ≡ 1 (mod 1− ζp). Notemos que u = (1−ζp)p−1

−p ∈ Zp[ζp]×. Consideremos
agora o polinômio f(x) = xp−1 − u ∈ Qp(ζp)[x]. Então f(1) = 1 − u ≡ 0 (mod 1 − ζp), e
f ′(1) = p− 1 6≡ 0 (mod 1− ζp). Pelo Lema de Hensel, conclúımos que existe u1 ∈ Zp[ζp] tal que
f(u1) = 0, isto é, up−1

1 = u. Com isso:

−p = (1− ζp)p−1

u
=

(1− ζp)p−1

up−1
1

=

(1− ζp
u1

)p−1
⇒ (−p)1/(p−1) =

1− ζp
u1

∈ Qp .

Isso prova que Qp((−p)1/(p−1)) ⊆ Qp(ζp). Por outro lado, xp−1 + p ∈ Qp[x] é um polinômio
irredut́ıvel pelo critério de Eisenstein, de modo que Qp((−p)1/(p−1))/ Qp é uma extensão de grau
p− 1, assim como Qp(ζp). Isso prova que Qp((−p)1/(p−1)) = Qp(ζp).

Com isso, podemos demonstrar o Teorema de Kronecker-Weber Local para extensões mansa-
mente ramificadas. Isso em particular demonstrará o teorema para extensões ćıclicas de grau `r

com ` 6= p.

Proposição 11.10. Seja K/ Qp uma extensão finita abeliana mansamente ramificada. Então
existe uma raiz da unidade ζ ∈ Qp tal que K ⊆ Qp(ζ). Em particular, isso ocorre caso nós
tenhamos Gal(K/ Qp) ∼= Z /`r Z, onde ` 6= p é um primo e r é um inteiro positivo.
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Demonstração. Seja T/ Qp a subextensão não-ramificada maximal de K/ Qp. Então pela Pro-
posição 11.5 existe um inteiro positivo n não diviśıvel por p tal que T = Qp(ζn). Chamemos de
e e de f o ı́ndice de ramificação e o grau de inércia de K/ Qp, respectivamente. Então K/T é
uma extensão totalmente ramificada de ı́ndice e, de modo que pela Proposição 11.7 existe um
normalizador π ∈ K tal que K = T (π1/e).

Como T/ Qp é uma extensão não-ramificada, temos π = −up para alguma unidade u no
DVD de T . Consideremos agora o polinômio xe − u. Como u é unidade, o polinômio induzido
xe− u no corpo de reśıduos de T é separável, já que p - e, e portanto aplicando o Lema de Hensel
em Tnr nós encontramos u1/e ∈ Tnr raiz desse polinômio. Então a extensão T (u1/e)/T é finita
não-ramificada. Assim, pela Proposição 11.5 existe m inteiro positivo não diviśıvel por p tal que

T (u1/e) = T (ζm) = Qp(ζm, ζn) ⊆ Qp(ζmn).

Seja M o compositum de K e de Qp(ζmn). Como K/ Qp e Qp(ζmn)/ Qp são extensões galoisianas,
M/ Qp também é extensão galoisiana, com Gal(M/ Qp) ↪−→ Gal(K/ Qp)×Gal(Qp(ζmn)/ Qp).
Assim, a extensão M/ Qp é abeliana. Observemos agora que π1/e,u1/e ∈M , e portanto nós temos
(−p)1/e := π1/e/u1/e ∈M . Assim, Qp((−p)1/e) ⊆M . Sendo uma subextensão de M/ Qp, vemos
que Qp((−p)1/e)/ Qp é uma extensão abeliana.

M

Qp(ζmn) Qp((−p)1/e)

T (u1/e) K = T (π1/e) Qp(ζe)

T = Qp(ζn)

Qp

Sendo uma extensão de Galois, todas as ráızes e-ésimas de −p estão em Qp((−p)1/e), digamos
r1 = (−p)1/e, . . . , re. Note que essas ráızes são todas distintas, pois como p - e o polinômio xe+ p
é separável. Assim, 1, r1/r2, . . . , r1/re ∈ Qp((−p)1/e) são todas as e ráızes e-ésimas da unidade.
Isso prova que ζe ∈ Qp((−p)1/e). Notemos agora que a extensão Qp((−p)1/e) é totalmente
ramificada. De fato, isso segue do Teorema 4.28, uma vez que (−p)1/e é raiz de xe + p = 0, que
satisfaz o Critério de Eisenstein.

Como Qp(ζe)/ Qp é subextensão de Qp((−p)1/e)/ Qp, ela é totalmente ramificada. Mas p - e,
e portanto pela Proposição 11.6 a única forma disso ocorrer é se essa for a extensão trivial, ou seja,
ζe ∈ Qp. Pela Proposição 10.5, devemos ter e | p− 1 ou e = 2 e p = 2. Como p - e, conclúımos
que e | p− 1. Desse modo, Qp((−p)1/e) ⊆ Qp((−p)1/(p−1)) = Qp(ζp), pelo lema acima. Assim:

K = T (π1/e) ⊆ T (u1/e, (−p)1/e) ⊆ Qp(ζmn, ζp) = Qp(ζmnp),

como desejado.
Suponhamos agora Gal(K/ Qp) ∼= Z /`r Z. Seja T a subextensão não-ramificada maximal

de K/ Qp. Então K/T é uma extensão de grau que divide `r, e portanto mdc([K : T ], p) = 1.
Isso prova que K/ Qp é uma extensão mansamente ramificada, como gostaŕıamos.
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Assim, resta mostrarmos o Teorema de Kronecker-Weber Local para extensões K/ Qp tais que
Gal(K/ Qp) ∼= Z /pr Z, para algum inteiro positivo r. Para tratarmos desse caso, utilizaremos
sem demonstração o seguinte resultado:

Lema 11.11. Seja p > 2 um primo. Então não existem extensões de Qp com grupo de Galois
isomorfo a (Z /pZ)3. Além disso, não existem extensões de Q2 com grupo de Galois isomorfo a
(Z /2 Z)4 ou (Z /4 Z)3.

Esse resultado se demonstra utilizando resultados básicos da chamada Teoria de Kummer.
Para uma demonstração desse fato, veja por exemplo o Caṕıtulo 20 de [3] ou o Caṕıtulo 14 de [8].
Nós também utilizaremos resultados elementares sobre os grupos de unidades de Z /nZ para n
inteiro positivo, que podem ser encontrados no Caṕıtulo 4 de [12].

Finalmente, conseguimos concluir a demonstração do Teorema de Kronecker-Weber Local,
tratando do caso de uma extensão K/ Qp com Gal(K/ Qp) ∼= Z /pr Z.

Teorema 11.12. Seja K/ Qp uma extensão ćıclica de grau pr, para r inteiro positivo. Então
K ⊆ Qp(ζn), para algum inteiro positivo n.

Demonstração. Suponhamos inicialmente p 6= 2. Comecemos considerando as extensões ci-
clotômicas Qp(ζppr−1) e Qp(ζpr+1) de Qp. Pela Proposição 11.6, a extensão Qp(ζppr−1)/ Qp é
ćıclica não-ramificada de grau pr, e pela Proposição 11.8 a extensão Qp(ζpr+1)/ Qp é totalmente
ramificada de grau ϕ(pr) = (p− 1)pr, com grupo de Galois isomorfo a:

(Z /pr+1 Z)× ∼= Z /(p− 1)pr Z ∼= Z /pr Z×Z /(p− 1)Z .

Assim, Qp(ζppr−1) e o subcorpo de Qp(ζpr+1) fixo pelo subgrupo de (Z /pr+1 Z)× isomorfo a
Z /pr Z são ambas extensões ćıclicas de Qp de grau pr. Definamos n := (pp

r − 1)pr+1.
Mostraremos agora que Qp(ζn) = Qp(ζppr−1)Qp(ζpr+1) e Qp(ζppr−1) ∩Qp(ζpr+1) = Qp. A

primeira igualdade é clara. Para a segunda, basta notar que Qp(ζppr−1) ∩Qp(ζpr+1) é ao mesmo
tempo uma extensão não-ramificada e totalmente ramificada de Qp, e portanto deve ser igual a
Qp. Com isso:

Gal(Qp(ζn)/ Qp) ∼= Gal(Qp(ζppr−1)/ Qp)×Gal(Qp(ζpr+1)/ Qp)

∼= Z /pr Z×(Z /pr+1 Z)×

∼= Z /pr Z×Z /pr Z×Z /(p− 1)Z .

Afirmamos que K ⊆ Qp(ζn). De fato, suponhamos por absurdo que K 6⊆ Qp(ζn). Então
K(ζn) = K Qp(ζn) é uma extensão de Galois de Qp, cujo grupo de Galois é um subgrupo de
Gal(K/ Qp) ×Gal(Qp(ζn)/ Qp) = (Z /pr Z)3 ×Z /(p− 1)Z. Em particular, essa é uma ex-
tensão abeliana. Além disso, como (Z /pr Z)3 e Z /(p− 1)Z têm ordens primas entre si, é fácil
ver que devemos ter Gal(K(ζn)/ Qp) = G×H, para G ≤ (Z /pr Z)3 e H ≤ Z /(p− 1)Z.

Notemos que Gal(K(ζn)/ Qp(ζn)) é canonicamente isomorfo a um subgrupo de K/ Qp, e
portanto isomorfo a Z /ps Z para algum 1 ≤ s ≤ r (note que s > 0, pois K 6⊆ Qp(ζn)). Além
disso, note que esse grupo está contido em G, uma vez que H contém apenas elementos de ordem
não diviśıvel por p. Agora:

Gal(K(ζn)/ Qp)

Gal(K(ζn)/ Qp(ζn))
∼= Gal(Qp(ζn)/ Qp)

⇒ G×H
Z /ps Z

∼= (Z /pr Z)2 ×Z /(p− 1)Z

⇒ G

Z /ps Z
×H ∼= (Z /pr Z)2 ×Z /(p− 1)Z .
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Como H possui apenas elementos de ordem não diviśıvel por p, H deve ser levado por esse
isomorfismo num subgrupo de Z /(p − 1)Z. Da mesma forma, G

Z /ps Z
deve ser levado num

subgrupo de (Z /pr Z)2. Isso mostra que devemos ter G
Z /ps Z

∼= (Z /pr Z)2 e H ∼= Z /(p− 1)Z.
Sejam x, y ∈ G tais que x e y geram (Z /pr Z)2, e seja z ∈ G um gerador de Z /ps Z.

Então x e y devem ter ordem múltipla de pr, e portanto essa ordem deve ser exatamente pr,
uma vez que G ≤ (Z /pr Z)3. Notemos que todo elemento de G

Z /ps Z
se escreve como ax+ by,

onde nós temos 0 ≤ a, b < pr inteiros. Como isso nos dá (pr)2 elementos, e essa é exatamente
a ordem de G

Z /ps Z
∼= (Z /pr Z)2, vemos que todos esses elementos são distintos. Isso prova que

〈x, y〉 ∩ 〈z〉 = 0. Notemos ainda que G = 〈x, y〉〈z〉, uma vez que G
〈z〉 = 〈x, y〉. Sendo G abeliano,

〈x, y〉, 〈z〉CG, e nós conclúımos que G = 〈x, y〉 � 〈z〉. Assim:

G ∼= 〈x, y〉 × 〈z〉 ∼= (Z /pr Z)2 ×Z /ps Z .

Finalmente, nós obtemos:

Gal(K(ζn)/ Qp) = G×H ∼= (Z /pr Z)2 ×Z /ps Z×Z /(p− 1)Z .

Em particular, Gal(K(ζn)/ Qp) possui um subgrupo isomorfo a (Z /pZ)3. Sendo K(ζn)/ Qp

uma extensão abeliana, vemos que existe um subgrupo L dessa extensão com grupo de Galois
Gal(L/ Qp) ∼= (Z /pZ)3, um absurdo pelo lema acima! Conclúımos que K ⊆ Qp(ζn), como
desejávamos.

Suponhamos agora p = 2. Então, pela Proposição 11.6, a extensão Q2(ζ22r−1)/ Q2 é ćıclica
não-ramificada de grau 2r, e pela Proposição 11.8 a extensão Q2(ζ2r+2)/ Q2 é totalmente ramifi-
cada de grau 2r+1, com grupo de Galois isomorfo a (Z /2r+2 Z)×. Definindo n := (22r − 1)2r+2,
vemos do mesmo modo que no caso anterior que Q2(ζn) é o compositum dessas duas extensões e
que Q2 é a interseção delas, de modo que

Gal(Q2(ζn)/ Q2) ∼= Gal(Q2(ζ22r−1)/ Q2)×Gal(Q2(ζ2r+2)/ Q2)
∼= Z /2r Z×(Z /2r+2 Z)×

∼= Z /2r Z×Z /2r Z×Z /2 Z .

Afirmamos que K ⊆ Q2(ζn). De fato, suponhamos por absurdo que K 6⊆ Q2(ζn). Então
K(ζn) = K Q2(ζn) é uma extensão de Galois de Q2, cujo grupo de Galois é um subgrupo do
grupo Gal(K/ Q2)×Gal(Q2(ζn)/ Q2) ∼= (Z /2r Z)3 ×Z /2 Z. De forma análoga ao caso ante-
rior, vemos que Gal(K(ζn)/ Q2(ζn)) ∼= Z /2s Z para algum 1 ≤ s ≤ r. Agora:

Gal(K(ζn)/ Q2)

Gal(K(ζn)/ Q2(ζn))
∼= Gal(Q2(ζn)/ Q2)

⇒ Gal(K(ζn)/ Q2)

Z /2s Z
∼= (Z /2r Z)2 ×Z /2 Z .

Sejam x, y, z ∈ Gal(K(ζn)/ Q2) tais que Gal(K(ζn)/ Q2)
Z /2s Z

= 〈x, y, z〉, onde o isomorfismo acima leva
〈x〉 no primeiro fator Z /2r Z, 〈y〉 no segundo fator Z /2r Z e 〈z〉 em Z /2 Z. Então x e y possuem
ordens múltiplas de 2r, e portanto iguais a 2r já que Gal(K(ζn)/ Q2) ≤ (Z /2r Z)3 ×Z /2 Z.
Seja ainda w um gerador de Z /2s Z. Então Gal(K(ζn)/ Q2) = 〈x, y, z,w〉.

Afirmamos que Gal(K(ζn)/ Q2) = 〈x〉 � 〈y〉 � 〈z,w〉. Comecemos mostrando que nós temos
〈x, y〉 ∩ 〈z,w〉 = 0. Note que o isomorfismo acima leva 〈x, y〉 em 〈x, y〉, e ambos 〈x, y〉 e 〈x, y〉
têm (2r)2 elementos. Sejam 0 ≤ a, b < 2r inteiros. Suponhamos que ax + by ∈ 〈z,w〉, com
0 ≤ a, b < 2r. Então ax+ by é levado pelo isomorfismo acima em 0× 0×Z /2 Z. Mas isso é um
absurdo, pois então 〈x, y〉 teria menos de (2r)2 elementos.

Agora, 〈x〉 ∩ 〈y〉 = 0, pois argumentando de forma similar veŕıamos que 〈x, y〉 teria menos de
(2r)2 elementos. Assim, Gal(K(ζn)/ Q2) = 〈x〉 � 〈y〉 � 〈z,w〉 ∼= (Z /2r Z)2 × 〈z,w〉. Notemos
que 〈z,w〉 tem ordem 2s+1, uma vez que w tem ordem 2s e z tem ordem 2 em Gal(K(ζn)/ Q2)

〈w〉 .
Temos dois casos:
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• 〈z,w〉 é ćıclico: nesse caso, Gal(K(ζn)/ Q2) ∼= (Z /2r Z)2 ×Z /2s+1 Z. Como esse é
um subgrupo de (Z /2r Z)3 × Z /2 Z, conclúımos que r ≥ s + 1 ≥ 2, de modo que
Gal(K(ζn)/ Q2) possui um subgrupo isomorfo a (Z /4 Z)3. Assim, existe um subcorpo
L de K(ζn) com Gal(L/ Q2) ∼= (Z /4 Z)3, um absurdo pelo lema acima!

• 〈z,w〉 não é ćıclico: nesse caso, como a ordem de w é 2s e 〈z,w〉 tem ordem 2s+1, devemos ter
〈z,w〉 ∼= Z /2s Z×Z /2 Z, e portanto Gal(K(ζn)/ Q2) ∼= (Z /2r Z)2×Z /2s Z×Z /2 Z.
Em particular, esse grupo possui um subgrupo isomorfo a (Z /2 Z)4. Assim, existe um
subcorpo L de K(ζn) com Gal(L/ Q2) ∼= (Z /2 Z)4, um absurdo pelo lema acima!

Esses absurdos nos mostram que K ⊆ Q2(ζn), concluindo a demonstração.

11.2. O Caso Global
Finalmente, mostremos que o caso local implica o caso global. Ou seja, que como o Teorema
de Kronecker-Weber Local vale para todo primo p, então também vale o Teorema de Kronecker-
Weber. Comecemos com dois lemas:

Lema 11.13. Seja L/K uma extensão galoisiana, onde L e K são extensões finitas galoisianas
de Qp, para p primo. Sejam IL e IK os grupos de inércia de L/ Qp e K/ Qp, respectivamente.
Então temos um homomorfismo sobrejetor IL → IK .

Demonstração. Seja T a subextensão não-ramificada maximal de L/ Qp. Então a subextensão
não-ramificada maximal de K/ Qp é T ∩K, pela Proposição 10.49. Também sabemos que os
grupos de inércia de L/ Qp e K/ Qp são isomorfos a Gal(T/ Qp) e a Gal((T ∩K)/ Qp), respec-
tivamente, pela Proposição 10.50. Desse modo, o resultado segue do fato do homomorfismo de
restrição Gal(T/ Qp)→ Gal((T ∩K)/ Qp) ser sobrejetor.

Lema 11.14. Seja n um inteiro positivo. Então o grupo de inércia da extensão Qp(ζn)/ Qp é
isomorfo a (Z /pvp(n) Z)×.

Demonstração. Seja e := vp(n). Então podemos escrever n = pem, onde p - m. Pela Pro-
posição 11.6, a extensão Qp(ζm)/ Qp é não-ramificada. Isso significa em particular que p é um
normalizador de Qp(ζm). Com isso, podemos reproduzir a demonstração da Proposição 11.8
substituindo Qp por Qp(ζm), para concluir que a extensão Qp(ζm)(ζpe)/ Qp(ζm) é totalmente
ramificada com grupo de Galois isomorfo a (Z /pe Z)×. Mas Qp(ζm)(ζpe) = Qp(ζn). Assim, a
extensão Qp(ζn)/ Qp(ζm) é totalmente ramificada e Gal(Qp(ζn)/ Qp(ζm)) ∼= (Z /pe Z)×.

Desse modo, pela Proposição 10.50, teremos o resultado desejado se mostrarmos que Qp(ζm)
é a subextensão não-ramificada maximal de Qp(ζn)/ Qp. Seja T essa subextensão não-ramificada
maximal. Como Qp(ζm)/ Qp é não-ramificada, temos T ⊇ Qp(ζm). Além disso, T/ Qp(ζm) é
extensão não-ramificada, pelo item (b) da Proposição 10.44.

Sendo Qp(ζn)/ Qp(ζm) uma extensão totalmente ramificada, é fácil ver pela Proposição 10.49
que a subextensão T/ Qp(ζm) também é totalmente ramificada. Desse modo, T/ Qp(ζm) é uma
extensão ao mesmo tempo não-ramificada e totalmente ramificada, de onde T = Qp(ζm), con-
cluindo a demonstração.

Demonstração. (Do Teorema de Kronecker-Weber) Seja K/ Q uma extensão finita abeliana qual-
quer. Para cada primo p ∈N que se ramifica em K, tomemos pCOK primo sobre p. Então, pela
Proposição 10.29, Gal(Kp/ Qp) ∼= Gp(K/ Q) ⊆ Gal(K/ Q). Em particular, a extensão Kp/ Qp

é finita abeliana. Assim, pelo Teorema de Kronecker-Weber Local nós conclúımos que existe
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um inteiro positivo np para o qual Kp ⊆ Qp(ζnp). Denotemos, para cada um desses primos p,
ep := vp(np), e definamos:

n :=
∏

p ramifica em K

pep .

Esse produto é finito, pelo Corolário 4.26. Mostraremos que K ⊆ Q(ζn), o que concluirá a
demonstração. Para isso, mostraremos que K(ζn) = Q(ζn). Seja L := K(ζn). Observe que
L = K Q(ζn), e portanto Gal(L/ Q) é isomorfo a um subgrupo de Gal(K/ Q)×Gal(Q(ζn)/ Q).
Em particular, a extensão L/ Q é finita abeliana. Para cada p | p escolhido, fixemos um primo
PCOL sobre p. Então de forma análoga ao que fizemos acima podemos concluir que a extensão
LP/ Qp é finita abeliana, já que LP = Kp(ζn) = Kp Qp(ζn).

Denotemos IP(L/ Q) := Ip, e chamemos de Tp o seu corpo fixo. Pela Proposição 10.29, nós
temos Ip ∼= ILP

, onde ILP
é o grupo de inércia da extensão LP/ Qp. Note que:

LP = Kp(ζn) ⊆ Qp(ζnp , ζn) = Qp(ζmmc(np,n)) = Qp(ζpepn′),

onde n′ é um inteiro positivo com p - n′. Assim, Qp(ζn) ⊆ LP ⊆ Qp(ζpepn′). Denotemos por
IQp(ζn)

e por IQp(ζpepn′ )
os grupos de inércia de Qp(ζn)/ Qp e de Qp(ζpepn′)/ Qp, respectivamente.

Pelo Lema 11.14, ambos os grupos IQp(ζn)
e IQp(ζpepn′ )

são isomorfos a (Z /pep Z)×. Agora, pelo
Lema 11.13 temos uma sequência de homomorfismos sobrejetores IQp(ζpepn′ )

→ ILP
→ IQp(ζn)

,
de onde conclúımos que ILP

∼= (Z /pep Z)×. Desse modo, Ip ∼= ILP
∼= (Z /pep Z)×. Seja I o

subgrupo de Gal(L/ Q) gerado por ⋃p|n Ip. Como Gal(L/ Q) é abeliano, ∏p|n Ip é um grupo que
contém ⋃

p|n Ip, e portanto:

|I| ≤
∏
p|n
|Ip| =

∏
p|n
|(Z /pep Z)×| =

∏
p|n
ϕ(pep) = n = [Q(ζn) : Q]. (11.1)

Seja M o corpo fixo de I. Fixado p | n, nós sabemos que toda a ramificação de p na extensão
L/ Q ocorre em L/Tp. Assim, p não se ramifica em Tp. Agora, Ip ⊆ I ⇒M ⊆ Tp, de modo que p
também não se ramifica em M . Fixemos agora p - n. Provaremos que p também não se ramifica
em M . Para isso, basta ver que p não se ramifica em L, já que M ⊆ L.

Seja PCOL primo sobre p qualquer. Queremos mostrar que e(P | p) = 1. Sabemos que p
não se ramifica em K, já que p - n. Isso também nos diz que p não se ramifica em Q(ζn), pelo
Teorema 5.17. Assim, e(P ∩K | p) = e(P ∩Q(ζn)) = 1, e portanto pela Proposição 6.15 nós
conclúımos que TP ⊇ K e TP ⊇ Q(ζn). Ou seja, TP ⊇ K Q(ζn) = L, o que mostra que TP = L.
Desse modo, IP = 1, e temos e(P | p) = |IP| = 1, como queŕıamos.

Essa análise nos mostra que todo primo p ∈ N é não-ramificado em M , e portanto pelo
Teorema 7.21 obtemos M = Q. Assim, I = Gal(L/ Q), e (11.1) nos dá:

[L : Q] = |Gal(L/ Q)| ≤ [Q(ζn) : Q],

e como Q(ζn) ⊆ L nós obtemos L = Q(ζn), concluindo a demonstração.



Caṕıtulo 12

Introdução à Teoria dos Corpos de
Classes

No caṕıtulo anterior, vimos como pode ser útil estudar “coisas locais” (isto é, completamentos)
para concluir “coisas globais”. Chamamos essa ideia de Prinćıpio Local-Global. O desenvol-
vimento desse prinćıpio é o que chamamos de Teoria dos Corpos de Classes. Nesse caṕıtulo,
faremos uma breve introdução dessa importante teoria, que é uma sequência natural do que
v́ınhamos estudando. Os resultados aqui enunciados podem ser encontrados em [2], [3], [11] e
[15].

O principal objetivo da Teoria dos Corpos de Classes é estudar a relação entre as extensões
de corpos globais e de corpos locais com a aritmética desses corpos.

12.1. Um Pouco de Geometria Algébrica
Consideremos o anel de funções C[t]. Os seus ideais primos não-nulos são os ideais da forma
〈t−α〉, para α ∈ C. Assim, esses ideais podem ser identificados com os pontos de C. Dado α ∈ C

qualquer, podemos considerar a avaliação em α como sendo o homomorfismo C[t]→ C dado por
f(t) 7→ f(α). Em termos de ideais, podemos considerar para cada ideal primo não-nulo pCC[t]
a avaliação em p como sendo o homomorfismo C[t]→ C[t]/ p dado por f(t) 7→ f(t) (mod p).

Podemos generalizar essa ideia para um domı́nio de Dedekind A qualquer. Dado um primo
não-nulo pCA, definimos a avaliação em p como sendo o homomorfismo A → A/ p dado por
a 7→ a(p) := a (mod p). Desse ponto de vista, enxergamos os elementos de A como sendo funções
nos ideais primos não-nulos de A, que assumem valores nos corpos de reśıduos de A.

Consideremos agora o corpo de funções C(t) = Q(C[t]). Para cada f(t) ∈ C(t) e cada
ponto α ∈ C, podemos representar f como uma série de Laurent em C((t− α)). Podemos ainda
considerar a ordem de f em α como sendo:

ordα(f) :=


m, se α for um zero de ordem m de f ;
−m, se α for um polo de ordem m de f ;

0, caso contrário.

Nós podemos ainda acrescentar a C o ponto no infinito. Nesse caso, dado f(t) ∈ C(t)
podemos considerar sua série de Laurent no infinito como sendo sua expansão em C((1/t)),
e sua ordem no infinito como sendo ord∞(f) := − ∂ f . É fácil ver que as ordens nos diferentes
pontos de C se relacionam pela expressão ∑α∈C∪{∞} ordα(f) = 0.

Essas expansões em séries de Laurent possuem uma generalização para domı́nios de Dedekind
em geral. Sejam A um domı́nio de Dedekind e K = Q(A). Seja pCA primo não-nulo. Então para
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cada a ∈ A nós podemos considerar a expansão de a como uma série de Laurent no completamento
Kp, devido à Proposição 9.14. Além disso, as valorações p-ádicas vp em K generalizam as ordens
ordα de C(t). Já a fórmula ∑α∈C∪{∞} ordα(f) = 0 corresponde em Z à Fórmula do Produto
(Proposição 9.18), que nos diz que para todo x ∈ Q× temos ∏p|x|p = 1, onde p varia entre os
primos de N e ∞. De fato, temos uma generalização dessa fórmula para corpos globais.

12.2. Corpos Globais e Locais
Os dois principais conceitos em Teoria dos Corpos de Classes são os de corpos globais e de
corpos locais:

Definição (Corpo Global/ Corpo Local). Um corpo K é chamado de corpo global se ele for
uma extensão finita de Q (isto é, um corpo de números algébricos) ou de Fq(t), para q potência
de primo (nesse caso, chamamos K de corpo de funções global).

Um corpo com valoração (L, v) é chamado de corpo local se ele for localmente compacto em
relação à topologia induzida por |·|v := e−v.

A definição de corpo global é resultado da analogia entre domı́nios de Dedekind e corpos de
funções vista acima. De fato, embora o interesse da Teoria Algébrica dos Números a prinćıpio
seja apenas nos corpos de números algébricos, muitos resultados envolvendo os corpos de funções
globais se traduzem em resultados sobre corpos de números algébricos (e vice-versa). De fato,
em geral é mais fácil estudar corpos de funções, de modo que é comum a estratégia de primeiro
estudar um problema sobre corpos de funções e então buscar desenvolver técnicas análogas sobre
corpos de números. Essa estratégia é abordada em [16].

É claro que R e C são corpos locais. Pode-se mostrar que todo corpo local é completo.
Como os únicos corpos arquimedianos completos são R e C, falta determinarmos os corpos locais
não-arquimedianos. Temos a seguinte caracterização:

Proposição 12.1. Seja (L, v) um corpo com valoração discreta. Então esse corpo será local se
e só se ele for completo e se seu corpo de reśıduos associado for finito.

Nesse caso, denotamos a cardinalidade de seu corpo de reśıduos por q, e sendo A seu domı́nio
de valoração discreta e pCA seu único ideal maximal, denotamos sua valoração por vp. O va-
lor absoluto associado a vp que consideramos nessa situação é |·|p dado por |x|p := q−vp(x) (ou
seja, nesse caso temos uma escolha canônica para a base de exponenciação). Temos ainda como
caracterizar mais precisamente os corpos locais:

Teorema 12.2. Seja (L, v) um corpo local. Se v for arquimediana, então temos L ∼= R ou L ∼= C.
Se v for não-arquimediana, então L é isomorfo a uma extensão finita de Qp ou de Fq((t)), onde
p ∈N é primo e q ∈N é potência de primo.

Seja agora K um corpo de números algébricos. Então, pelo Teorema 10.22, toda valoração
não-arquimediana de K é a menos de equivalência uma valoração p-ádica para um ideal primo
não-nulo pCOK . Assim, todo completamento de K é da forma Kp. Note que Kp é completo com
relação a uma valoração discreta (a extensão de vp) e seu corpo de reśıduos associado é isomorfo
a (OK)p/ pp

∼= OK/ p, pela Proposição 9.13 e pelo Teorema 3.25. Mas |OK/ p| = N(p) < ∞.
Assim, Kp é corpo local. Suponhamos agora que v seja uma valoração arquimediana de K. Nesse
caso, sabemos pelo Teorema de Ostrowski que seu completamento é isomorfo a R ou C, que
são locais. Isso prova que todo completamento de um corpo de números algébricos é um corpo
local. De forma similar, pode-se determinar quais são as valorações dos corpos da forma Fq(t),
e utilizando o Teorema da Extensão pode-se mostrar que todo completamento de um corpo de
funções global é um corpo local. Conclúımos:
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Proposição 12.3. Seja K um corpo global e v uma valoração de K. Então o completamento Kv

de K com relação a v é um corpo local.

Isso dá sentido às nossas definições de corpo local e corpo global: para estudarmos os corpos
globais por meio do Prinćıpio Local-Global, nós devemos estudar seus completamentos, que são
corpos locais. Na verdade, vale também a volta: todo corpo local é o completamento de algum
corpo global com relação a um certo valor absoluto.

12.3. Lugares
Completando Q, nós obtemos os corpos Q2, Q3, . . . , Q∞. Note que esses completamentos estão
em bijeção com as classes de equivalência de valores absolutos em Q. Do mesmo modo, dado um
corpo global K, seus completamentos estão em bijeção com as classes de equivalência de valores
absolutos em K.

Definição (Lugar). Um lugar (também chamado de primo) de um corpo global K é uma classe
de equivalência de valores absolutos de K. Se essa classe for composta de valores absolutos não-
arquimedianos, ela é chamada de lugar (ou primo) finito, e se for composta de valores absolutos
arquimedianos ela é chamada de lugar (ou primo) infinito.

Seja K um corpo de números algébricos. Então cada lugar finito de K é a classe de equivalência
de algum |·|p para pCOK primo não-nulo, pelo Teorema 10.22. A classe de |·|p pode ser denotada
por p, o que justifica a nomenclatura primo. Os lugares infinitos, por sua vez, correspondem às
imersões τ : K → C, devido ao Teorema da Extensão. Dizemos que um lugar infinito é um lugar
(ou primo) real se τ (K) ⊆ R e é um lugar (ou primo) complexo se τ (K) 6⊆ R.

Sendo p um lugar infinito associado à imersão τ : K → C, nós definimos o valor absoluto
|·|p : K → R por |x|p = |τx|∞, onde |·|∞ : C→ R é o valor absoluto usual.

Por meio de lugares, nós conseguimos generalizar a Fórmula do Produto para um corpo de
números algébricos K qualquer. De fato, é posśıvel mostrar que para todo x ∈ K× nós temos∏

p|x|p = 1, para p variando entre os lugares de K (onde na verdade esse produto é finito, pois
pode-se mostrar que |x|p 6= 1 para apenas um número finito de lugares p).

12.4. Adèles e Idèles
A um corpo global K estão associados vários corpos locais: para cada lugar v de K temos
o completamento Kv. É desejável que consigamos trabalhar com todos esses completamentos
simultaneamente, por exemplo para conseguirmos aplicar o Prinćıpio Local-Global. Uma forma
natural de fazer isso seria considerar o anel ∏vKv, onde v varia entre todos os lugares de K. Um
problema que surge é que esse produto não é localmente compacto, embora cada Kv o seja. Para
corrigir isso, nós consideramos o anel de adèles AK de K como sendo:

AK :=

{
(av) ∈

∏
v

Kv : av ∈ Ov para quase todo lugar finito v
}

,

onde Ov é o DVD associado a Kv (note que esse anel só está bem-definido se v for um lugar
finito) e “para quase todo” significa “para todo, exceto por um número finito”. Os elementos de
AK são chamados de adèles. Note que temos uma imersão canônica de anéis K ↪−→ AK dada
por x 7→ (x). Assim, conseguimos ver K como subanel de AK . Os elementos de K são chamados
de adèles principais. É posśıvel colocar uma topologia em AK de modo que esse conjunto se
torne um anel topológico localmente compacto. Além disso, K é um subconjunto discreto de AK

e AK /K é um grupo topológico compacto.
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Podemos ainda definir o grupo de idèles IK de K como sendo:

IK :=

{
(av) ∈

∏
v

K×v : av ∈ O×v para quase todo lugar finito v
}

.

É fácil ver que o grupo de idèles é igual ao grupo das unidades A×K do anel de adèles. Seus
elementos são chamados de idèles. Além disso, temos uma imersão canônica de grupos K× ↪−→ IK
dada por x 7→ (x). Assim, conseguimos ver K× como subgrupo de IK . Os elementos de K× são
chamados de idèles principais. Podemos definir uma topologia em IK que torna esse conjunto
um grupo topológico localmente compacto. Essa topologia não é a topologia induzida por AK .

Definimos ainda o grupo de classes de idèles como sendo o quociente CK := IK/K×.
Esse grupo topológico não é compacto. Para corrigir isso, definimos uma norma em AK . Então,
chamando de A1

K o subgrupo de IK de elementos de norma 1, temos K× discreto em A1
K e

C1
K := A1

K /K× compacto.
A compacidade de C1

K nos permite reobter o Teorema da Finitude do Número de Classes.
De fato, pode-se mostrar que existe um homomorfismo sobrejetor cont́ınuo C1

K → C `(OK), onde
C `(OK) é visto com a topologia discreta. Como a imagem de um conjunto compacto por uma
função cont́ınua é compacta, o grupo C `(OK) é compacto e discreto, e portanto finito.

Utilizando a teoria de adèles e idèles, também consegue-se uma outra demonstração do Teo-
rema das Unidades de Dirichlet. Assim, a linguagem de adèles e idèles é útil tanto para a obtenção
de novos resultados quanto para um entendimento mais profundo de resultados já provados.

12.5. Leis de Decomposição e Reciprocidade
No Caṕıtulo 5, nós estudamos a decomposição de ideais primos em corpos quadráticos e ci-
clotômicos. Como nós vimos, a decomposição de um primo p ∈ N em um corpo K dessa forma
obedece a uma lei de decomposição: ela depende apenas da classe de congruência de p módulo
um certo inteiro positivo N , que por sua vez depende somente de K. Assim, é natural tentarmos
encontrar uma generalização dessa lei para um corpo de números algébricos qualquer.

Infelizmente, essa generalização não existe1, mas vale para extensões abelianas. De fato, vale
o seguinte: se K for um corpo de números algébricos, então existirá um inteiro positivo N de
modo que o tipo de decomposição de um primo p ∈N em K dependa somente de p (mod N) se
e só se K/ Q for uma extensão abeliana.

Na verdade vale algo ainda mais forte: uma extensão finita abeliana de Q está completamente
determinada pela sua lei de decomposição. Por exemplo, suponhamos que K/ Q seja um corpo
de números algébricos, e que um primo p ∈ N se decomponha completamente em K se e só se
p ≡ 1 (mod 4). Então é posśıvel mostrar que K = Q(i).

A existência de uma lei de decomposição para as extensões abelianas de Q segue de uma análise
do que ocorre para os subcorpos dos corpos ciclotômicos e do Teorema de Kronecker-Weber. Seja
N um inteiro positivo, e consideremos o corpo ciclotômico Q(ζN ). A teoria de Galois nos dá uma
correspondência entre os subcorpos de Q(ζN ) e os subgrupos de Gal(Q(ζN )/ Q) ∼= (Z /N Z)×.
O interessante é que, dado um subcorpo K ⊆ Q(ζN ), a lei de decomposição em K está associada
à identificação de Gal(Q(ζN )/K) dentro de (Z /N Z)×. De fato, temos o seguinte resultado, que
generaliza o Teorema 5.17:

Teorema 12.4. Sejam N um inteiro positivo, K um subcorpo de Q(ζN ) e H o subgrupo de
(Z /N Z)× correspondente a K. Então, dado um primo p ∈N que não divide N , temos:

(a) p não se ramifica em K.
1Na verdade, existe mas não é tão forte. A Teoria dos Corpos de Classes não-abeliana vem se desenvol-

vendo bastante nos últimos anos.
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(b) Seja f a ordem de (p (mod N))H em (Z /N Z)×/H, isto é, o menor inteiro positivo tal
que pf (mod N) ∈ H. Então p se decompõe em OK como um produto de [K : Q]/f ideais
primos distintos.
Em particular, p será totalmente decomposto em K se e só se p (mod N) ∈ H.

Além disso, também temos uma versão mais forte do Teorema de Kronecker-Weber:

Teorema 12.5 (Teorema de Kronecker-Weber Forte). Seja K um corpo de números algébricos.

(a) K/ Q será uma extensão abeliana se e só se existir um inteiro positivo N tal que K ⊆
Q(ζN ).

(b) Seja N um inteiro positivo. Então K ⊆ Q(ζN ) se e só se o fato de um primo p ∈ N ser
completamente decomposto em K depender somente de p (mod N).

(c) Suponhamos que K/ Q seja uma extensão abeliana, e que N seja o menor inteiro positivo
para o qual K ⊆ Q(ζN ). Então um número primo p ∈N será ramificado em K se e só se
p | N .

A Teoria dos Corpos de Classes também possui generalizações para extensões abelianas de cor-
pos de números. Por exemplo, consideremos a extensão abeliana Q(ζ3, 3√2)/ Q(ζ3). Verifica-se
que o tipo de decomposição de um ideal primo de Q(ζ3) em Q(ζ3, 3√2) depende unicamente
de seu “resto” módulo 6OQ(ζ3). Algo curioso envolvendo essa extensão é a torre de corpos
Q(ζ3, 3√2)/ Q(ζ3)/ Q. Ambas as extensões Q(ζ3)/ Q e Q(ζ3, 3√2)/ Q(ζ3) são abelianas. As-
sim, temos uma lei de decomposição para primos de Q em Q(ζ3) e para primos de Q(ζ3) em
Q(ζ3, 3√2). Entretanto, não temos uma lei de decomposição para primos de Q em Q(ζ3, 3√2), já
que a extensão Q(ζ3, 3√2)/ Q não é abeliana.

A Teoria dos Corpos de Classes também se interessa pela seguinte questão: dado um polinômio
f(x) ∈ Z[x], determinar quais são os primos p ∈ N para os quais existe n ∈ Z tal que p | f(n).
Por simplicidade, diremos que se isso ocorrer então p | f . Consideremos por exemplo o polinômio
f(x) = x2 + 1. Então sabemos que p | f se e só se p = 2 ou

(−1
p

)
= 1, o que como já vimos

ocorre se e só se p ≡ 1 (mod 4). O objetivo é tentar generalizar isso para uma lei na forma:
“dado um polinômio f(x) ∈ Z[x], existe um inteiro positivo N de modo que o fato de um primo
p ∈ N dividir f dependa apenas de p (mod N)”. Em alguns casos, existe tal N . Por exemplo,
para f(x) = x4 + x3 + x2 + x+ 1 temos N = 5, e para f(x) = x3 + x2 − 2x− 1 temos N = 7.
Entretanto, para f(x) = x3 − 2 não existe um tal N .

A Teoria dos Corpos de Classes ainda se preocupa com uma terceira pergunta: dado um
polinômio f(x1, . . . ,xk) ∈ Z[x1, . . . ,xk], quais são os números primos p ∈ N que se escrevem
na forma p = f(n1, . . . ,nk), para alguns n1, . . . ,nk ∈ Z? Um exemplo disso é determinar quais
primos se escrevem na forma x2 + y2. Como já vimos no estudo de Z[i], isso ocorre se e só se p = 2
ou se p ≡ 1 (mod 4). Dessa vez, buscamos uma lei da forma: “dado f(x1, . . . ,xk) ∈ Z[x1, . . . ,xk],
existe um inteiro positivo N de modo que o fato de p ∈ N estar na imagem de f : Zk → Z

dependa apenas de p (mod N)”. Novamente, existem generalizações mas não para qualquer f .
Por exemplo, para f(x, y) = x2 + 5y2 temos N = 20, e para f(x, y) = x2 + 6y2 temos N = 24,
mas para f(x, y) = x2 + 26y2 não existe um tal N .

Lembre que a lei de decomposição para corpos quadráticos foi obtida por meio da Lei de
Reciprocidade Quadrática. Da mesma forma que temos a Lei de Reciprocidade Quadrática,
podem ser demonstradas outras leis de reciprocidade, como a Lei de Reciprocidade Cúbica e
a Lei de Reciprocidade Quártica, que podem ser utilizadas para resolver casos particulares das
perguntas acima. Todas essas leis aparecem como casos particulares da Lei de Reciprocidade
de Artin, um dos principais resultados da Teoria dos Corpos de Classes. Para entendermos essa
lei, comecemos definindo os elementos de Frobenius.
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Sejam A um domı́nio de Dedekind, K = Q(A), L uma extensão finita galoisiana de K com
grupo de Galois G e B = A

L. Suponhamos que, para todo primo não-nulo pCA, tenhamos
|A/ p| <∞. Note que isso sempre ocorre se K for um corpo global. Para todo pCA primo não-
nulo, denotaremos Fp := A/ p, e para todo PCB primo não-nulo nós denotaremos FP := B/P.

Dados P | p primos não-nulos quaisquer, sabemos que FP é uma extensão finita de Fp.
Como A/ p é finito, sabemos da Teoria de Galois que a extensão (B/P)/(A/ p) é galoisiana, e
que Gal(FP / Fp) é um grupo ćıclico de ordem fP gerado pelo automorfismo de Frobenius
x 7→ x|Fp|. Lembre que temos a sequência exata:

1 −→ IP −→ GP
πP−→ Gal(FP / Fp) −→ 1

onde πP é dado por σ 7→ σ. Suponhamos agora que p não se ramifique em L. Então nós temos
|IP| = eP = 1 ⇒ IP = 1. Assim, vemos que GP

∼= Gal(FP / Fp) por meio do isomorfismo πP.
Desse modo, GP é ćıclico, gerado pela imagem do automorfismo de Frobenius por π−1

P . Denotamos
esse gerador por σP, e o chamamos de elemento de Frobenius de P. É fácil ver que esse é o
único automorfismo σ ∈ G tal que σ(x) ≡ x|Fp| (mod P) para todo x ∈ B.

Dado um outro primo P′ | p, sabemos que P′ = τP para algum τ ∈ G. Disso é fácil ver
que σP′ = τσPτ

−1. Ou seja, todos os elementos de Frobenius de primos sobre p são conjugados.
Assim, vemos que o conjunto dos elementos de Frobenius de primos sobre p é igual à classe de
conjugação de σP em G. Esse conjunto é chamado de classe de Frobenius de p, e é denotado
Frobp.

Nós diremos que um primo não-nulo PCB é não-ramificado se P ∩A for não-ramificado
em L. Nós definimos o śımbolo de Artin como a função {Primos Não-Ramificados de L} → G

dada por P 7→ σP. Nós denotamos ainda
(
L/K
P

)
:= σP. Suponhamos agora que L/K seja

uma extensão abeliana. Nesse caso, todos os elementos de Frobenius de primos sobre um pCK
coincidem, e Frobp possui um único elemento. Assim, podemos falar no elemento de Frobenius

de p, que pode ser denotado por σp, Frobp ou ainda
(
L/K
p

)
. Nesse contexto, vemos o śımbolo

de Artin como uma função {Primos não-ramificados de K} → G.
Observemos ainda que, sendo σ o elemento de Frobenius de p, nós temos σ(x) ≡ x|Fp| (mod P)

para todo primo P | p e para todo x ∈ B. Como p é não-ramificado, sua fatoração em B é da
forma pB = P1 · · ·Pg, e pelas congruências acima nós vemos que σ(x) ≡ x|Fp| (mod pB), para
todo x ∈ B. Denotaremos σ(x) ≡ x|Fp| (mod p).

A ideia é tentar estender o śımbolo de Artin para obter um homomorfismo I(A)→ G, mas isso
não é simples porque πP não é um isomorfismo para P ramificado. Para contornar o problema nós
consideramos, para cada conjunto S de ideais primos não-nulos de A, o subgrupo abeliano livre
ISA de I(A) gerado pelos primos que não estão em S. Tomemos S como o conjunto (finito) dos
primos ramificados em L. Então nós definimos o mapa de Artin como sendo o homomorfismo(
L/K
·

)
: ISA → G dado por

m∏
i=1

peii 7→
m∏
i=1

(
L/K
pi

)ei
. Podemos ainda denotar o mapa de Artin

como ψSL/K : ISA → G.

Exemplo 12.6. Suponhamos K = Q e L = Q(
√
d), para algum d ∈ D. Então nós temos

Gal(L/K) ∼= {id, τ}, onde τ (
√
d) = −

√
d. Seja p ∈ N primo que não se ramifica em L.

Como já vimos, isso significa que p - dL. Nós temos |Z /pZ| = p. Assim, o śımbolo de Artin
de p é o automorfismo σ que satisfaz σ(x) ≡ xp (mod p), para todo x ∈ OL. Em particular,
nós temos σ(

√
d) ≡ (

√
d)p (mod p). Note que σ(

√
d) = ±

√
d. Suponhamos p ı́mpar. Assim,

para determinar σ, basta determinar (
√
d)p−1 (mod p). Se (

√
d)p−1 ≡ 1 (mod p), então σ = id,

e se (
√
d)p−1 ≡ −1 (mod p), então σ = τ (note que, como p > 2, temos 1 6≡ −1 (mod p)).

Observemos agora que (
√
d)p−1 = d(p−1)/2. Assim, basta determinarmos se d(p−1)/2 deixa resto 1

ou −1 módulo p. Mas pelo critério de Euler temos d(p−1)/2 ≡
(
d

p

)
(mod p). Assim, reconhecendo
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Gal(L/K) com o grupo {1,−1}, nós conclúımos que
(
L/K
pZ

)
=

(
d

p

)
. Isso mostra que, em certo

sentido, o mapa de Artin generaliza o śımbolo de Legendre.
Suponhamos agora p = 2. Nesse caso, como 2 - dL, vemos que d ≡ 1 (mod 4). Assim, o

śımbolo de Artin satisfaz σ
(

1+
√
d

2

)
≡
(

1+
√
d

2

)2
= 1+d+2

√
d

4 (mod 2). Note que temos:

σ = id ⇐⇒ 1 +
√
d

2 ≡ 1 + d+ 2
√
d

4 (mod 2) ⇐⇒ 2 + 2
√
d ≡ 1 + d+ 2

√
d (mod 8)

⇐⇒ d ≡ 1 (mod 8).

Assim,
(
L/K
2 Z

)
= 1, se d ≡ 1 (mod 8), e

(
L/K
2 Z

)
= −1, se d ≡ 5 (mod 8).

Um dos principais resultados de Teoria dos Corpos de Classes é a sobrejetividade do mapa
de Artin. Devido a isso, nós obtemos um isomorfismo Gal(L/K) ∼= ISA/ kerψSL/K . A Lei de
Reciprocidade de Artin nos diz ainda mais:

Seja L/K uma extensão finita galoisiana de corpos globais, não necessariamente abeliana.
Denotemos por CK e por CL os corpos de classes de idèles de K e de L, respectivamente. A
norma NL/K induz um homomorfismo NL/K := CL → CK . A Lei de Reciprocidade de Artin
afirma que existe um isomorfismo canônico de grupos θ : CK/NL/K(CL) → Gal(L/K)ab, onde
Gal(L/K)ab denota a abelianização do grupo de Galois Gal(L/K).

Embora não pareça a prinćıpio, em geral temos mais informações sobre o grupo CK/NL/K(CL)
do que sobre Gal(L/K). Assim, essa lei nos ajuda a entender melhor Gal(L/K), especialmente
no caso L/K abeliano, quando temos Gal(L/K) ∼= CK/NL/K(CL). Mais especificamente, esse
isomorfismo nos dá uma correspondência (que inverte a ordem de continência) entre as extensões
abelianas finitas de K dentro de um fecho algébrico fixado e os subgrupos abertos de CK . Por
meio dele, conseguimos de fato classificar as extensões abelianas finitas de corpos globais. Ou seja,
a Teoria dos Corpos de Classes funciona como uma espécie de Teoria de Galois para extensões
abelianas finitas de corpos globais!
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[15] WEIL, André. Basic Number Theory, 3rd Ed. Springer-Verlag, New York-Berlin, 1974.

[16] ROSEN, Michael. Number theory in function fields. Springer-Verlag, New York, 2002.

[17] ATIYAH, Michael F.; MACDONALD, Ian G. Introduction to commutative algebra. Addison-
Wesley Publishing Co., Reading, Mass.-London-Don Mills, 1969.

[18] BARNES, E.S.; Swinnerton-Dyer, H.P.F. The inhomogeneous minima of binary quadratic
forms (I). Acta Mathematika 87 (1952), 259-323.

219

https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_full_notes.pdf
https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_full_notes.pdf
http://websites.math.leidenuniv.nl/algebra/ant.pdf
https://wstein.org/129-05/final_papers/Nizameddin_Ordulu.pdf
http://math.uchicago.edu/~may/REU2018/REUPapers/Sim.pdf
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Monogêneo sobre Outro, 80

Assinatura, 125
Automorfismo de Frobenius, 217
Avaliação em um Ponto, 212

Base
de Reticulado, 119
de Reticulado Completa, 119
Integral, 34
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Conteúdo, 171
Corpo
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Reticulado, 119

Completo, 119

Soma de Gauss, 90
Subextensão

Mansamente Ramificada Maximal, 201
Não-Ramificada Maximal, 199
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