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Resumo

ANDREAUS, L. Teoria Algébrica dos Nimeros e Introdugao a Teoria dos Corpos de Classes.
2021. 222 p. Monografia — Bacharelado em Matematica — Instituto de Matemaética e Estatistica,
Universidade de Sdo Paulo, Sdo Paulo, Brasil.

Nesse trabalho, nés estudamos as bases da Teoria Algébrica dos Ntimeros, a area da matematica
que estuda os anéis de inteiros algébricos. Nos estudamos a demonstracdo de resultados como o
Teorema da Finitude do Ntumero de Classes, a Identidade Fundamental, o Teorema das Unidades
de Dirichlet e o Teorema de Kronecker-Weber, e abordamos assuntos como dominios de Dedekind,
valoragbes e nimeros p-adicos. Além disso, mostramos como aplicar a teoria em alguns exemplos
concretos, e damos uma breve introdugao a Teoria dos Corpos de Classes.

Palavras-chave: Teoria dos Numeros, Teoria Algébrica dos Numeros, Teoria Algébrica dos
Numeros e Introducao a Teoria dos Corpos de Classes
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Abstract

ANDREAUS, L. Algebraic Number Theory and a Introduction to Class Field Theory. 2021.
222 p. Monografia — Bacharelado em Matemaética — Instituto de Matematica e Estatistica, Uni-
versidade de Sao Paulo, Sao Paulo, Brazil.

In this work, we study the basis of Algebraic Number Theory, the area of mathematics that studies
the rings of algebraic integers. We studied the demonstration of results such as the Theorem of
the Finiteness of the Class Number, the Fundamental Identity, Dirichlet’s Unit Theorem and
Kronecker-Weber Theorem, and we adress subjects such as Dedekind domains, valuations and
p-adic numbers. Furthermore, we show how to apply the theory in concrete examples, and we
give a brief introduction to Class Field Theory.

Keywords: Number Theory, Algebraic Number Theory, Algebraic Number Theory and a Intro-
duction to Class Field Theory
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Introducao

A Teoria dos Numeros é o ramo da matematica que estuda os nimeros inteiros e suas proprie-
dades. Um dos principais interesses de estudo dessa area sao as equagdes diofantinas. Uma
equagao diofantina é simplesmente uma equagdo polinomial em que sé interessam as solucoes
inteiras. Enquanto ndo hé grande dificuldade em resolver um sistema linear de equacdes diofan-
tinas, problemas comeg¢am a surgir quando aparecem equacdes de graus maiores. Consideremos
os seguintes exemplos:

Fixado n inteiro positivo, a equacao diofantina 2> — y? = n nao oferece grandes dificuldades,
pois podemos fatorar o lado esquerdo para obter (z —y)(x +y) = n. Utilizando o Teorema
Fundamental da Aritmética, conseguimos encontrar todas as formas de escrever n como produto
de dois inteiros. Assim, podemos achar todas as solugoes (z,y) € Z? dessa equacdo diofantina,
resolvendo um ntmero finito de sistemas lineares de duas equagdes. Esse exemplo nos mostra que
fatorar pode ajudar muito na resolucdo de equacoes diofantinas.

Alterando apenas um pouco essa equagao, ja aparecem dificuldades: a equacdo diofantina
22 + %> = n é bem mais dificil de lidar, pois ndo conseguimos fatorar o lado esquerdo em Z. No
entanto, o lado esquerdo se fatora em Z[i|: 2%+ y? = (x +iy)(z — iy). Assim, nada mais natural
do que estudar esse anel maior, e torcer para que ele seja “bem-comportado” que nem o anel Z.
De fato, como veremos, esse anel é um dominio euclidiano. O anel Z[i] é chamado de anel dos
inteiros de Gauss, ou ainda de anel dos inteiros gaussianos, e ocupa dentro do corpo Q(%)
um papel parecido com o de Z dentro de Q.

O exemplo acima nos mostra que, para o estudo de equacdes diofantinas, convém estudar
anéis maiores que Z, os chamados anéis de inteiros algébricos. O estudo da estrutura desses
anéis, isto é, de seus ideais, grupos de unidades, etc., é o principal tema de interesse da Teoria
Algébrica dos Niimeros.

Infelizmente, nem tudo sdo flores: ha anéis de inteiros algébricos como Z[v/—5] que nio sdo
nem sequer um dominio de fatoragdo Unica. Podemos tentar corrigir isso olhando para os ideais
desses anéis, ao invés de seus elementos. De fato, hd um teorema de unicidade da fatoracdo
de ideais em um tipo especial de dominio chamado dominio de Dedekind, o que é o caso de
Z[\/-5] e, na verdade, de qualquer anel de inteiros algébricos!

O objetivo deste trabalho é dar ao leitor uma introdugdo as bases da Teoria Algébrica dos
Numeros, comecando desde a definicdo de extensao integral, no Capitulo 1, até a demonstragao
do importante Teorema de Kronecker-Weber, no Capitulo 11. Esse teorema e as estratégias
utilizadas em sua demonstracao motivam o estudo de “coisas locais” para provar “coisas globais”,
o Principio Local-Global. Esse é o principio basico que rege a chamada Teoria dos Corpos
de Classes, a qual damos uma breve introducao no Capitulo 12.

Para uma boa compreensao deste trabalho, é indicado ao leitor um conhecimento basico de
algebra linear, dlgebra comutativa, teoria dos grupos e teoria de Galois, ao longo de todo o texto.
Além disso, em alguns capitulos sdo utilizados resultados basicos de andlise, topologia, espacos
métricos e teoria de integracao.

A proxima pagina traz um resumo dos assuntos abordados em cada um dos 12 capitulos que
compoem esse texto:



NOTACOES 7

e O Capitulo 1 trata de extensoes de anéis, e é mais técnico, apresentando diversos resultados
que serao uteis em todo o texto.

e No Capitulo 2, sdo definidos os nossos principais objetos de estudo, os anéis de inteiros
algébricos, e sio demonstradas suas propriedades bésicas. Além disso, sdo estudados com
mais detalhes os anéis de inteiros algébricos de corpos quadraticos e ciclotomicos.

e O Capitulo 3, novamente mais técnico, trata dos dominios de Dedekind e dos dominios
de valoragao discreta, dois tipos importantes de dominios com propriedades muito boas:
a fatoracdo dnica de ideais no caso dos dominios de Dedekind, e a existéncia de uma
valoracao discreta, no caso dos dominios de valoracao discreta.

e O Capitulo 4 estuda como se comportam as extensoes de dominios de Dedekind. Mais
especificamente, estuda como um ideal primo se decompde nessa extensdo. Como veremos,
essa decomposicao estd sujeita a uma regra rigida, a identidade fundamental, e pode
ser determinada explicitamente em extensdes monogéneas. Nesse capitulo, mostraremos
ainda a finitude do ntimero de classes, que em certo sentido diz que um anel de inteiros
algébricos estd “perto” de ser um dominio de ideais principais.

¢ O Capitulo 5 traz exemplos praticos dos resultados obtidos no Capitulo 4 para corpos
quadraticos e ciclotomicos. Como caminho para estudar corpos quadraticos, ele também
aborda a famosa Lei da Reciprocidade Quadratica.

e O Capitulo 6 estuda as extensoes galoisianas de dominios de Dedekind. Nele, mostra-se que
toda extensao desse tipo pode ser quebrada em extensdes mais simples de serem estudadas.

e No Capitulo 7, mostra-se a importancia do método geométrico, que se utiliza de técnicas
de integracdo para obter resultados de Teoria Algébrica dos Numeros. Nele, demonstra-se
o Teorema das Unidades de Dirichlet. Além disso, obtém-se a cota de Minkowski,
que facilita o célculo do ntimero de classes.

e O Capitulo 8 trata das ordens, um tipo de anel que ndo se comporta tdo bem quanto os
anéis de inteiros algébricos mas também é importante na pratica.

e No Capitulo 9, sdo definidos os conceitos de valor absoluto, valoragdo e completa-
mento, e demonstradas suas propriedades béasicas. Além disso, sdo estudados os nimeros
p-adicos. Esse capitulo em certo sentido demarca o comeco da “Parte 2” do trabalho.

¢ O Capitulo 10 estuda como valores absolutos e valoragoes podem ser estendidos em extensoes
algébricas. Nele, mostra-se a unicidade dessas extensbes para corpos completos e corpos
henselianos, além do Teorema da Extensao que diz o que ocorre em extensoes finitas.
Nesse capitulo também sao estudadas as ramificagées em extensoes de corpos henselianos,
que sdo em certo sentido uma medida de quao bem uma extensdo se comporta.

e O Capitulo 11 é focado na demonstracao do importante Teorema de Kronecker-Weber,
que diz que toda extensao abeliana de Q esta contida em uma extensdo ciclotémica. Téao
importante quanto esse teorema é a técnica utilizada em demonstracdo: provar algo dificil
e “global” separando em coisas mais faceis e “locais”.

e No Capitulo 12, é feita uma breve introducdo a Teoria dos Corpos de Classes, que
estuda os corpos globais e os corpos locais, e possui diversas consequéncias em Teoria
dos Numeros.

Este trabalho utilizou como principais referéncias os livros [1] e [2]. Além disso, [3] foi bastante
utilizado, especialmente a partir do Capitulo 9. O Capitulo 11 teve como base [3], [7], [8] e [9],
e o Capitulo 12 teve como base [11]. Além disso, [4], [5], [6], [10], [12], [13], [14], [15], [16], [17] e
[18] foram usados como referéncias auxiliares.



Capitulo 1

Extensoes de Anéis

Nesse capitulo, iremos apresentar os conceitos basicos e enunciar e provar os resultados basicos
de extensoes de anéis, construindo o maquinério que seréd aplicado aos anéis de inteiros algébricos
no préximo capitulo. Ao longo de todo o trabalho, a palavra anel sempre se referird a um anel
comutativo com unidade, a menos que especificado o contrario. Além disso, dados A um anel, M
um A-médulo, p(x) = ag+ a1z + - - - + apz™ € Alz] e p € End (M), definimos p(¢) € Enda (M)
por p(p)(m) = apm + a1pp(m) + - -+ + app™(m), onde ' denota a composicio de ¢ consigo
mesmo ¢ vezes.

1.1. Alguns Resultados sobre Mddulos

Comegamos provando um importante resultado que generaliza o Teorema de Cayley-Hamilton
para moédulos finitamente gerados:

Teorema 1.1 (Teorema de Cayley-Hamilton Generalizado). Sejam A um anel, M um A-mddulo
finitamente gerado, a << A e o : M — M um homomorfismo de A-mddulos tal que (M) C aM.
Entdo existe um polinémio monico

x(x) = 2" +ap_12" ' + -+ a1z +ag € Alx] com ag,a1,...,a,1 € q,
tal que
X(9) = " + an_1¢™ ' + -+ arp + agid € Enda (M)
€ 0 homomorfismo nulo.

A ideia da prova deste teorema é que podemos enxergar M como um A[z] médulo a partir do
endomorfismo :

Lema 1.2. Sejam A um anel, M um A-mddulo e ¢ € Enda(M). Entao M é um Alz]-mddulo
com agdo dada por p(z)-m = p(¢)(m), para todos p(x) € Alz], m € M.

A demonstracado desse lema é um exercicio simples.

Demonstracao (do Teorema de Cayley-Hamilton Generalizado): Seja {m1,..., my} um conjunto
de geradores de M. Entao é facil ver que esses elementos também geram aM, utilizando apenas
coeficientes em a. Assim, para 1 < i < n, podemos escrever

e(m;) = apmy + -+ + ajpmy, para a;1,. .., a4y, € a.

8



1.1. ALGUNS RESULTADOS SOBRE MODULOS 9

Agora, pelo Lema 1.2, podemos ver M como um A[z]-médulo com acao p(x) - m = p(p)(m).
Desse modo, ¢(m;) = x-m;, e a equagdo acima equivale a x - m; = a;ymq + - - - + a;pmy, ou ainda

n
> (@ bij —ai)m; =0,
j=1

onde d;; ¢ o Delta de Kronecker. Mas isso significa que

r —ail —ai2 —ais e —0a1n mq 0
—an1 r — a2 —a93 N —Qao2n mo 0
—asy —azo T —asy ... —asn mg| — |0
—an1 —ap2 —Gp3 ... T —Qpn| |Mn 0

Chamemos de B = (x - §;; — a;;) € M, (Alz]) a matriz n x n acima. Multiplicando a equagio
acima a esquerda pela matriz adjunta de B, temos:

mi 0 ma 0
mo 0 mo 0
(AjB)-B-| . | =|.| = (detB)-1d-| . | =
(det B) - mq 0
(det B) © Mo 0
= . =

(det B) - my, 0
Assim, para 1 <i < n, (det B)(¢)(m;) = (det B) - m; = 0, de modo que (det B)(¢p) se anula
em todos os geradores m; de M. Logo (det B)(¢) é o homomorfismo nulo. Além disso, det B é

um polinémio moénico. Portanto, basta tomarmos y = det B, e temos o resultado desejado. [

Corolario 1.3. Sejam A um anel, M um A-mddulo finitamente gerado e a <1 A com aM = M.
Entdo existe a € a tal que am = m para todo m € M.

Demonstragdo. Nessas condi¢oes, podemos aplicar o Teorema 1.1 para ¢ = id. Desse modo,

garantimos a existéncia de ag, a1, ...,an—1 € a tais que agid +a1id+ - + ap_1id* 1 +1id™® = 0.
Ouseja, (ap+a1+---+an—1+1)m = 0 para todom € M. Tomandoa = —ag—a; —- - —ap_1 €
a, vemos que am = m para todo m € M, como queriamos. ]

Lembremos que a intersecdo de todos os ideais maximais de um anel A é um ideal J(A),
chamado de ideal de Jacobson de A. Além disso, lembremos que dado z € A nds temos a
equivaléncia ¢ € J(A) <= 1—ax € A* para todo a € A.

Como corolario do corolario acima, nés obtemos o Lema de Nakayama para anéis comutativos:

Lema 1.4 (Lema de Nakayama). Sejam A um anel e a < A. Entdo sdo equivalentes:
(i) a C J(R).
(ii) Para todo A-mdédulo finitamente gerado M, aM = M = M = 0.
(iii) Para todos A-mddulos N C M tais que M /N € finitamente gerado,

M=aM+N=N=M.
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Demonstragao. (i) = (ii): Pelo Corolério 1.3, se aM = M existe a € a tal que am = m para
todo m € M. Mas entdo (1 —a)m =0. Como a € a C J(A),1—a € A* e portanto m = 0 para
todo m € M, ou seja, M = 0.

(i¢) = (i14): Nos temos a(M/N) = (aM + N)/N = M/N, por hipétese. Aplicando (i),
concluimos que M /N = 0, ou seja, N = M.

(i73) = (i): Se a € J(A), entdo existe um ideal maximal m <A tal que a  m. Sendo m maximal,
temos a+m = A, o que é o mesmo que dizer que aA +m = A. Como m C A, mostramos que
nesse caso nao vale (7ii). O

1.2. Extensoes de Anéis

Nessa secao, comegamos estudando propriamente as extensées de anéis. Como veremos, o tipo
mais importante de extensdao de anéis para nds serdo as extensoes integrais.

Defini¢do (Extensdo de Anéis/Extensao Finita). Dizemos que o anel B é uma extensado do
anel A se A for um subanel de B. Indicaremos essa extensdo por B/A. Dizemos que B é uma
extensao finita de A se B for finitamente gerado como A-modulo.

Comecamos listando dois resultados técnicos que nos serao tuteis. Suas demonstraces sao
diretas, e portanto sdo omitidas aqui.

Proposigdo 1.5. Sejam A um dominio, K = Q(A) e L/K uma extensio algébrica de corpos.
Se BC L e B/A é uma extensio de anéis, entio temos (A\ {0})~'B = Q(B).

Proposigao 1.6. Sejam A um dominio, K = Q(A) e M um A-mddulo. Entio{m,...,m,} C M
é LI sobre A se e s6 se {m1/1,...,m,/1} C Mg for LI sobre K, onde' My = (A\ {0})"* M.

Em particular, se L for uma extensdo de K, os elementos aq,...,qa, € L serdo LI sobre A se
e so se eles forem LI sobre K.

A finitude de uma extensao de anéis é uma propriedade transitiva, como mostra o lema abaixo:
Lema 1.7. Se C/B e B/ A forem extensdes finitas de anéis, entdo C'/ A também serd finita.
Demonstragao. (i) Pelas hipdteses, temos:

C = Bvy+:--+4+ Bym, paraalguns v1,...,vm € C, €
B = ABi+---+ AB,, para alguns 34,...,05, € B.

Afirmamos que C' = 371" 377 | Avy;3;. De fato, a inclusdo (2) é clara. Por outro lado, dado
c € C, temos ¢ = Y i, by, para alguns by,...,b,, € B. Agora, cada b; pode ser escrito como
b, = 2?21 a;jf3;, para alguns a1, ..., a;, € A. Entao:

m m n
c=Y b= aivibi,
i=1 i=1j=1

0 que mostra a outra inclusdo. Assim, C é finitamente gerado como A-méddulo, e portanto a
extensao C'/ A é finita. O

1A notacdo My normalmente é usada para denotar o K-espaco M ® 4 K, obtido de M por extensao
por escalares. Mas M ® 4 K = (A\ {0})~'M, o que justifica a notacio utilizada.
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Definamos agora o que é uma extensao integral, que é uma espécie de generalizagdo de uma
extensao algébrica para o caso de anéis comutativos:

Definicao (Elemento Integral/Extensao Integral). Sejam B/A uma extensdo de anéis e § € B.
Dizemos que S é integral sobre A se § satisfizer um polinémio moénico com coeficientes em A.

A extensdo de anéis B/ A serd chamada de uma extensao integral se todo elemento de B
for integral sobre A. Nesse caso, dizemos também que B é integral sobre A.

Sejam B/ A uma extensao de anéis e 8 € B integral sobre A. Entao 8 é raiz de um polinémio
monico f(z) € Alx]. Assim, existem ag,a,...,a,—1 € A tais que

agtarB+-Fan 1PN =0= "= —ap—af— —an1f"

A partir dessa relagdo, é facil ver por indugdo que A[3] = A+ AB+---+ AB""L, e portanto que
a extensao A[3]/A é finita. Assim:

Lema 1.8. Sejam B/A uma extensio de anéis e 8 € B integral sobre A. Entao A[B]/A é uma
extensdo finita.

Com isso, conseguimos caracterizar as extensoes finitas de A como sendo exatamente as ex-
tensdes integrais finitamente geradas como A-algebras:

Teorema 1.9. Seja B/ A uma extensdo de anéis. Entdo B/ A serd uma extensdo finita se e s
se tivermos B = A[p,...,Bn], para B1,...,Bn € B integrais sobre A. Nesse caso, B serd uma
extensao integral de A.

Demonstragao. (=) Suponhamos que B/ A seja uma extensao finita. Entao
B=AB+- -+ AB,, para alguns S1,...05, € B.

Como B é um anel, é claro que B = A[f34,...,5,]. Seja 8 € B qualquer. Consideremos a
fungdo ¢: B — B dada por ¢(z) = fz. Entao ¢ é um homomorfismo de A-mddulos, e aplicando
0 Teorema de Cayley-Hamilton generalizado para M = B, a = A e ¢ como acima nds garantimos
a existéncia de um polindmio x(x) € A[x] monico tal que x(¢) = 0. Escrevendo

x(@) =ao+aiz+--+ap_12™ 1 + 2™ com ag,ai,...,an_1 € A,
temos que para todo b € B vale x(¢)(b) = 0. Em particular, x(¢)(1) = 0, ou seja:

ao+ a1p(1) + -+ am-19™ (1) + (1) = 0
= ag+arf+-+am 1"+ ™ =0.

Assim, x(8) = 0, logo 8 é integral sobre A. Isso mostra que todo elemento de B é integral sobre

A. Em particular, 31, ..., 8, sdo integrais sobre A, e como B = A[31,..., 3,] obtemos o resultado
desejado.
(<) Suponhamos B = A[B1, ..., [,], onde Bi,..., B, € B sao integrais sobre A. Provaremos

por inducdo em n que B é extensdo finita de A. Para n = 1 o resultado vale pelo Lema 1.8.
Suponhamos entdo o resultado valido para kK —1 > 1, e provemos que ele também vale para k.
Notemos que A[B1,...,B8:] = A[B1,--.,Bk-1][Bk] é extensao finita de A[S3i,...,Bk_1] pelo
Lema 1.8, j& que [ é integral sobre A e portanto também é integral sobre A[f1, ..., Bk_1] 2 A.
Pela hip6tese de indugao, A[SBi,...,Bk—1]/A também é uma extensao finita. Assim, pelo Lema
1.7, a extensdo A[f1, ..., Bk]/ A é finita, provando o que queriamos. O

Como corolario desse teorema, concluimos que a integrabilidade de extensoes também é uma
propriedade transitiva:
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Lema 1.10. Se A C B C C, entdo C/A € uma extensdo integral de anéis se e sé se C/B e B/ A
forem extensdes integrais de anéis.

Demonstragdo. (=) E clara.

(<) Suponhamos que C'/B e B/ A sejam integrais. Seja o € C. Entéo « satisfaz um polindémio
monico com coeficientes em B, ou seja:

bo+bia+---+bp_1a" ' +a™ =0, para alguns by, by, ...,bp_1 € B.

Assim, « é integral sobre Alby,...,b,—1], logo pelo Teorema 1.9 o anel Albg,...,b,—1,0a] é
integral sobre Alb,...,b,—1], e portanto a extensdao Albo,...,bn—1,a]/Albo,...,by—1] é finita.
Mas também por esse teorema, Albg,...,b,—1] é extensdo finita de A, j& que por hip6tese todo
elemento de B é integral sobre A.

Concluimos do Lema 1.7 que a extensao Alby, ..., b,—1,a]/ A é finita, e novamente do Teorema
1.9 concluimos que « é integral sobre A. Sendo « € C qualquer, provamos que C'/ A é integral. [

Uma propriedade importante da integrabilidade de extensdes, especialmente em Teoria de
Galois, é que ela se mantém sobre um homomorfismo de anéis. Sua demonstragao ¢é direta, sendo
portanto omitida aqui.

-

Proposicao 1.11. Seja B uma extensdo integral de A. Se T é um anel qualquer e 0: B — T ¢
um homomorfismo de anéis, entio o(B) € integral sobre o(A).

Uma nocao muito importante é a de fecho integral, que pode ser pensada como um analogo
a definicao de fecho algébrico para extensoes de anéis.

Definigao (Fecho Integral). Seja B uma extensdo de A. Entdo o fecho integral da extensao
B/ A, denotado por ZB, ¢ definido por:

—B ;.
A" = {p € B: ( ¢é integral sobre A}.
O fecho integral de uma extenséo é sempre um anel, como mostra o corolario abaixo:

Corolario 1.12. Se B ¢ uma extensdo de A, A% ¢ um subanel de B que contém A. Além disso,
todo subanel R O A de B que é um A-mdédulo finitamente gerado estd contido em A5,

Demonstracao. E claro que A C AP C B. Em particular, 0,1, -1 € av. Assim, para vermos que
AP 6 um anel basta mostrarmos quese a, 8 € A7 entdo a +B,ap8 € A% Masa +8,ap8 € Ala, B].
Como « e 3 sdo integrais sobre A, Ala, ]/ A é integral pelo Teorema 1.9, logo a + 3 e af3 sdo
integrais sobre A, e portanto estdo em A, como gostariamos.

Se R C B é um A-médulo finitamente gerado, entdo R/ A é finito, logo pelo Teorema 1.9 a
extensdo R/ A é integral, ou seja, R C A%, O

. . —B , on ,
Esse resultado nos permite concluir, na verdade, que A~ é a unido de todos os A-submédulos
de B finitamente gerados.

Defini¢do (Extensao Integralmente Fechada/Dominio Integralmente Fechado). Seja B/A uma
extensdo de anéis. Dizemos que A é integralmente fechado sobre B se A% = A, Nesse
caso, ainda dizemos que a extensdo B/A é integralmente fechada. Se A for um dominio
integralmente fechado sobre seu corpo de fragoes Q(A), dizemos que A é integralmente fechado,
ou ainda normal.

O corolario abaixo mostra que o nome fecho integral “faz sentido”: ele de fato se comporta
como um fecho.
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B

jB.Ou

Corolario 1.13. Sejam A C R C B anéis. Entdo ZB - EB. Além disso, A C ZB =A
seja, AP ¢ integralmente fechado em B.

—=B
~ .. ~ ~ o , —B —B . ~ ,
Demonstragdo. A tnica afirmagdo nao-trivial é que A~ = A~. Como a inclusdo (2) é clara,

- —B - . —B —B ~ .
basta mostrarmos que A CA”. Sepe A" ,entao A [B]/A” é extensao integral. Como

AP /A também é extensao integral, temos pelo Lema 1.10 que AP [B]/A é integral. Logo 3 é
B

. . —B .  —B —B .
integral sobre A, ou seja, § € A~. Assim, A~ = A", como gostariamos. O

Um resultado simples, porém importante, é que todo dominio de fatoracdo unica é integral-
mente fechado:

Teorema 1.14. Seja A um dominio de fatora¢do unica. Entdo A € integralmente fechado.
Demonstragdo. Seja r/s € Q(A) integral sobre A, com r,s € A\ {0}. Como A é um DFU,

podemos supor r e s primos entre si. Entao temos:

r r\"! r\"
ap + ay () + -+ ap—1 () + () = 0, para alguns ag, ai,...,a,_1 € A.
s s s
Multiplicando por s™, obtemos:
ags™ +arrs" 4 a1 s " = 0.

Entao s | . Como 7 e s sdo primos entre si, devemos ter s € A*, e portanto r/s € A. Assim,
todo elemento de Q(A) integral sobre A é um elemento de A. O

O fecho integral “comuta” com localizaces:

Proposicao 1.15. Seja B/ A uma extensdo de anéis, e seja S um subconjunto multiplicativo de

<1 _
A. FEntao S_lAS B S—14%. Em particular, B/ A integral implica em S™'B/S™1A integral,
e B/ A integralmente fechada implica em S™'B/S™'A integralmente fechada.

Demonstragdo. Podemos supor que 0 ¢ S. Sendo, terfamos S™'A = S7!B = 0 e os resultados
seriam triviais. .

(C) Seja z € 514" . Escrevamos z = b/s, onde b € B es € S. Como z satisfaz um
polinémio ménico em (S~1A)|[x],

Ap—1 _ al Q
e M et e R SS =0, para alguns ag,...,a,-1 € A,S0,...,8,-1 € S.
Sp—1 S1 S0
Entao temos
b a _1bn_1 arb ag
—+ 4+ —+—==0

sn Sp—18"
Multiplicando por s™sgsq - - - S,—1, obtemos uma equacao da forma

cpb™ + Cnflbn_l 4+ Feb+c
1

=0, onde cg,...,ch_1,¢n € A,cp = 8081+ Sp_1 € S.
Entéao existe t € S tal que

tenb™ + ten_ 10" 4 - terb + teg = 0.
Para cada 0 < ¢ < n, chamemos d; = t¢;. Notemos que d,, € S, e que vale

dpb™ +dp 10" 4+ dib+dy = 0.
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Multiplicando agora por d”~':
(dnb)"™ + dn—1(dnb)" ™" + dp—2dp (dnb)" 2 + -+ + dydl > (dnb) + dodpp " = 0.
Denotemos y := d,b € B. Entao, pela equacdo acima:
Yt dpy 1y dyodyy 4 dd Ry 4 dpd™ T = 0,

portanto y € AP, Assim, x = b/s = y/(dns) € 1758
(D) Seja x € S‘lzB. Entdo x = b/s, onde b € ZB, s € §. Sabemos que temos

B+ ap 10" L4+ +arb+ag =0, para alguns ag,...,a,_1 € A.

Entéo, dividindo por s™:
b\"™ o1 D\ b
(O o) e ()
s s \s s s s

ai ap
r+— =0,
Sn—l gn

ou seja,

(e
s

o5 'B

mostrando que x € S™1A )

. =5 'B _1—>B , ~ . .
Assim, temos S—1A = S71A”, como queriamos. As observacoes finais seguem direta-
mente desse resultado. O

Se L/ K for uma extensao de corpos, é ficil ver que o fecho integral &Y coincide com o fecho
algébrico de K em L (o subcorpo de L dos elementos que sao algébricos sobre K). Consideremos
agora um dominio A com corpo de fragdes K = Q(A), e uma extensdo de corpos L/K. Entao

temos uma relacao entre o fecho integral A% ¢ o fecho algébrico i

Teorema 1.16. Sejam A um dominio, K = Q(A) e L um corpo que é extensio de K. Entdo:
Q(A") = (A\{o}) A" =K.
Em particular, temos Q(ZL) =L se e s6 se L/ K for uma extensdo algébrica.

A demonstragao desse resultado é direta, utilizando argumentos semelhantes aos da proposicao
anterior.

Sendo A um anel, K = Q(A) e L/K extensao de corpos, parece razoavel que, dado um
elemento a € A", o polinémio minimal P, k(z) € K|x] esteja em Alz]. Porém, isso nem sempre
é verdade:

Exemplo 1.17. Seja A um dominio que néao é integralmente fechado, e consideremos a extensdo
Q(A)/A. Entao existe a € Q(A)\ A que € integral sobre A. Assim, f(a) = 0 para algum
f(z) € Alz] monico. E claro que [ tem grau maior ou igual a 2, caso contrdrio teriamos o € A.
Por outro lado, o polinomio minimal de o em Q(A) é v —« & Alz].

O exemplo acima mostra que uma condicdo necessaria para garantirmos que a implicagdo

acdA = P, k(xz) € Alx] seja verdadeira é que A seja integralmente fechado. De fato, essa
condicao é também suficiente:

Teorema 1.18. Seja B/ A uma extensdo de dominios.

(a) Se f,g € Blz] forem dois polinomios monicos tais que fg € A [x], entdo f,g € a° [x].
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(b) Sejam A um anel, K = Q(A) e L/K uma extensao de corpos. Entdo, para todo v € ZL,
temos Py i € ar [x]. Em particular, se A for integralmente fechado, temos Py i € Alz].

Demonstragao.  (a) Seja Q) um fecho algébrico de Q(B). Entao f e g se fatoram linearmente
em Q[z], digamos f(z) = (z —a1) - (. — ) e g(x) = (. — p1) -+ - (¥ — Br), onde temos
a1y, 0, B1, ..., Bn € Q. Desse modo:

fo(z) = (@ —a1) - (2 —am)(x—B1) - (- B,) € A" [x].

Como ai,...,0Qm,B1,..., s sdo raizes do polindmio monico fg € AP [x], vemos que esses
elementos sao integrais sobre ZB, e portanto sdo também integrais sobre A, ja que a extensao
—B , . . , —Q

A" /A é integral. Assim, esses niimeros pertencem a A ', e portanto

—0 —B

fl) = (@—a1) - (z—om) € (A NB)lx] = A7]

—0 —B

g(z) = (z=p1)-(x—pp) € (A NB)[a] =A7]

x], e

(b) Como v € A", temos f(v) = 0 para algum f € A[z] ménico. Sabemos que P, i | f em
Klz], logo existe g € K[z] tal que f = gP, k. Como f e P, x sdo monicos, g também deve

ser mdnico, e como f € Afz] C ax [z] segue do item (a) que Py g € a* [x].
O

1.3. Algebras Etale, Traco e Norma

Nesta secao, estudaremos as dlgebras étale. A nocao de algebra étale generaliza a de uma extensao
finita e separavel de corpos, e tem a vantagem de ser “fechada por mudanca de base”. Dada uma
extensao de corpos K’/ K e um K-espaco vetorial V', podemos considerar o K'-espaco V @k K,
dado por extensao de escalares. Mesmo se V' for um corpo, é possivel que V ® g K’ nao seja um
corpo. Mas como veremos, se V for uma K-algebra étale, V @ K’ ser4d uma K'-algebra étale de
mesma dimensao.

Também definiremos nog¢oes importantes de extensoes de corpos, as nogoes de polinémio ca-
racteristico, traco e norma, e provaremos suas propriedades basicas.

Definicao (Algebra Etale). Seja K um corpo. Uma algebra étale sobre K é uma K-algebra L
que ¢ isomorfa a um produto direto finito de extensoes finitas e separdveis de corpos com base
em K. Isto é, existem extensoes finitas e separaveis Li,..., L, de K taisque L 2 Ly X -+ X L,,
como uma K-algebra. A dimensido dimg L. de uma K-dlgebra étale L é igual a sua dimensao
como um K-espago.

Note que se L = Ly x --- X Ly, entdo dimg L = dimg L1 + --- + dimg L,,, de modo que a
dimensao de uma algebra étale é sempre finita.

Exemplo 1.19. Se K for um corpo separavelmente fechado, toda dlgebra étale sobre K ¢é isomorfa
a K™ para algum n inteiro positivo.

Veremos agora que as algebras étale de fato sdo “fechadas por mudanca de base”, e mais do
que isso, que a mudanga de base preserva dimensdes:

Proposicao 1.20. Seja L uma K-dlgebra étale, e seja K'/ K uma extensdo de corpos qualquer.
Entio L @k K' é uma K'-dlgebra étale e nés temos dimg/ (L @ K') = dimy K.
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Demonstragao. Suponhamos L = [, L;. Cada L;/K é uma extensao finita e separavel, e
portanto L; = K («;) para algum «; € L;. Chamando de f;(z) € K[z] o polindmio minimal de «;
sobre K, temos f;(x) irredutivel e separdvel. Suponhamos que a fatoragao de f; em irredutiveis
de K'[z] seja fi = fi1--- fir,- Esses irredutiveis sao distintos dois a dois, pela separabilidade de
fi. Assim, pelo Teorema Chinés dos Restos, temos um isomorfismo de K’-4lgebras:

K'lz] 7 K'la]
(filz)) Jljl (fij(x))

Lok K' = @ K' =

Desse modo, nés temos:

Lok K = (ﬁL> o &= [ (Lon &) = [ 1] <JI‘2/([;:])>’
bl =1 i=1j=1 \*

o que mostra que L @ K’ é uma &4lgebra étale, de dimensao
m T m m
YD 0fi; =) 0fi =) dimg L; = dimg L,
i=1j=1 i=1 i=1
como queriamos. O

Como corolario da demonstragdo da proposi¢ao acima nds temos, no caso de L/K ser uma
extensao separavel de corpos:

Corolario 1.21. Seja L = K[z]/(f(x)) uma extensdo finita e separdvel de um corpo K, definida
por um polinomio separdvel irredutivel f(x) € K[x]. Seja K'/K wma extensio de corpos qualquer,
e seja f(x) = fi(x) - fr(x) a fatoragio de f em polinémios irredutiveis de K'|x|. Entdo nds
temos um isomorfismo canonico de K'-dlgebras étale

T !
K'[x]
Leog K' = )
75
No caso em que o corpo para o qual estendemos escalares é separavelmente fechado, temos
uma féormula para calcular essa extensao:

Proposicao 1.22. Sejam K um corpo, L uma K-dlgebra étale e Q) uma extensdo de K separa-
velmente fechada. Entdao temos um isomorfismo de Q)-dlgebras étale:

L XK 0= H Q,
oc€Homg (L,Q)

dado por B ® 1+ (c(B)), para todo 8 € L, onde aqui Homg (L, Q)) denota os homomorfismos de
K-dlgebras entre L e ().

Demonstragao. Sendo L = [ L;, nés temos Homg (L, Q) = [, Homg (L;, Q). Como temos
que Lok Q = [, (L; @k Q), podemos supor sem perda de generalidade que L é um corpo,
e portanto uma extensao finita e separdvel de K. Entdo temos L = Klz|/(f(x)), para algum
polindmio irredutivel e separdvel f(z) € K|[z].

Como Q) é separavelmente fechado, f se decompde em fatores lineares de Q[x], digamos f(z) =
(x—aq) - (z—ay),comai,...,q, € Qdistintos dois a dois. Dado o € Homg (K [z]/(f(z)),Q)),
temos f(o(Z)) = o(f(T)) = 0. Assim, o(T) = «; para algum 1 < j < n. Note que isso determina
completamente 0. Reciprocamente, para cada 1 < j < n a avaliagdo K [z] — Q) dada por = — «;
se anula em (f(x)), e portanto induz um homomorfismo o;: K[z]/(f(z)) — Q, dado por T — «;.
Logo Homg (K[z]/{f(x)),Q) = {o1,...,0n}.
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Temos entdo uma sequéncia de isomorfismos canonicos de ()-dlgebras:

(f(2))

e é facil verificar que os isomorfismos acima levam T® 1 — (aq,...,ap) = (01(T),...,0n(T)).
Sendo este um isomorfismo de dlgebras, vemos que para todo p(x) € K|[z]| nés temos

p(@)®@ 1= (p(o1(7)), ..., p(on(7))) = (01(p(Z)), - .., on(p(T)))-

Via L = K[z]/(f(x)), obtemos um isomorfismo L ®x QO — [[7-1 Q = [l ctomy(1,0) Q2 entre
O-4lgebras que satisfaz f ® 1 — (o(f3)) para todo § € L, como queriamos. O

Exemplo 1.23. Consideremos a extensao de corpos Q(i)/ Q. Os dnicos homomorfismos de
corpos Q(i) — C sdo a identidade e a conjugacao complexa. Assim, pela proposi¢io acima,
vemos que Q(i) ®g C = C x C, com isomorfismo dado por (a+bi) ® 1 — (a+ bi,a — bi).

Nosso proximo objetivo é definir os conceitos de polinémio caracteristico, traco e norma para
algebras étale. A definicao, de fato, se generaliza para extensdes livres de anéis de posto finito:

Definigao (Polinomio Caracteristico, Trago e Norma). Sejam A um anel e B uma extensao de
A que é uma A-algebra livre de posto finito. Dado b € B qualquer, definimos o polinédmio
caracteristico F}, g/ 4(z) € Alz], a norma Np,4(b) € A e o trago Tr,4(b) € A como sendo
respectivamente o polinémio caracteristico, o determinante e o trago do operador T: B — B de
multiplicagdo por b. Estando claros B e A, denotaremos apenas Fy(z), N(b) e Tr(b).

Temos as seguintes propriedades béasicas:
Proposicao 1.24. Seja A um anel e seja B/ A uma extensdo livre de posto finito n.

(a) Trga: B — A é um homomorfismo de A-mddulos e Ngsa: B — A é multiplicativa, e
induz um homomorfismo de grupos Ng,4: B* — A*. Assim, dados bi,by € B ea € A,
temos Tr(aby + be) = aTr(by) + Tr(ba) e N(biba) = N(b1)N(b2).

(b) Sejab € B qualquer. Entdo 0 F, = n, e escrevendo Fy(x) = agp+ a1z + -+ ap_12" 1 + 27,
com ag,ai, . ..,an—1 € A, temos Tr(b) = —an—1 e N(b) = (—1)"aqg.

(c) Seja a € A qualquer. Entio Tr(a) = na e N(a) = a™.

(d) Seja C/A outra extensdio livre de posto finito. Entao B x C'/A também é uma extensao
livre de posto finito, e dado o = (b,¢) € B x C qualquer nds temos:

Fopsxcjalz) = Fypjalz)-F.o/a(z),
Npxcya(e) = Npya(b)-Neya(e),
Trpxc/ala) = Trpya(b) + Treyalc).

Demonstragao.  (a) Dados by,ba € B e a € A, temos Tup, 44, = aTy, + Tj,, € tomando tracos
obtemos Tr(ab; + b2) = a Tr(by) + Tr(b2), mostrando a linearidade do trago. Temos ainda
To,b, = Tp, Tp,, € portanto tomando o determinante obtemos N (b1b2) = N(by)N(bs). Logo
a norma ¢ multiplicativa. Assim, se u € BX, N(u)N(u~!) = N(1) = 1" = 1 pelo item (c),
de modo que N(u) € A*.

(b) Segue diretamente das defini¢oes de polindémio caracteristico, trago e norma e de resultados
da algebra linear.
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(c) Seja {f1,...,0n} uma base de B/ A. Como a € A, a matriz de multiplicagdo por a nessa
base é uma matriz diagonal com todas as entradas a. Assim, é claro que seu traco é na e
seu determinante é a”, de onde obtemos o que queriamos.

(d) Sejam {f1,...,8m}e{1,...,m} bases de B e C como A-mé6dulos, respectivamente. Entao
(81,0),...,(Bm,0),(0,71),...,(0,7y) formam uma base de B x C' como A-mddulo. A ma-
triz de T, em relacdo a essa base é uma matriz por blocos diagonal 2 x 2, sendo um bloco
correspondente a T: B — B e o outro a T,: C' — C. Com isso, é facil ver que valem as
igualdades desejadas.

O

O polinémio caracteristico, a norma e o trago se comportam bem com extensdo de escalares:

Proposicao 1.25. Seja B/ A uma extensdo livre de posto finito n, e seja ¢: A — A’ um homo-
morfismo de anéis. Entdo o A'-médulo B = B®y A’ € livre de posto n, e para todo b € B nds
temos:

Fograp(x) = @(Fypya(r)),
Npya(b®1) = o(Npsa(d)),
Trpa(b®1) = @(Trp,a(b)).

Demonstracao. Seja {f1,...,[n} uma base de B/ A. Entao {f; ®1,...,5, ® 1} é uma base de
B'/A'. Seja b € B qualquer, e seja M = (m;j) € Myxn(A) a matriz de T}, na base {51, .., Bn}-
Assim, para 1 < j < n temos ;b = > ;" m;;3;. Agora:

Bie)bel)=pb1e1l= <zn:ml]61> ®1= zn:%f?(mij)(ﬁi®1)-

i=1 =1

Isso mostra que a matriz de Tpg na base {1 ®1,...,5, ® 1} é M’ = (p(mij)) € Mpxn(A').
Assim:

Fygrpya(e) = det(zld—M') = det(zId —p(M)) = p(det(z1d —M)) = o(F} pa(z)),
Npya(b®l) = detM' =detp(M) = p(det M) = p(Np,a(b)),
Trpya(b®1) = TrM' =Tro(M) = (Tt M) = ¢(Trp,a(b)).

Voltando ao caso de algebras étale, nds temos:

Teorema 1.26. Seja K um corpo com fecho separdvel (), e seja L uma K-dlgebra étale. Entdo
para todo o € L nés temos:

Fa,L/K(x) = H ([IZ—O’(CV)),

oc€Homg (L,Q)

Np/k(a) = I ole),

oc€Homg (L,Q)

Try k() = > o(a).

oc€Homg (L,Q))
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Demonstragdo. Seja n = dimg L, e sejam o7, ...,0, os elementos de Homg (L, Q)). Entao, pelas
Proposigoes 1.22; 1.24 e 1.25, nés temos:

For/k(®) = Faglrex0/0() = Foy (), on(@)ara@) = [[ (@ —0;(a)),
j=1
Ni/k(@) = Nigeayala®1) = Naowgloi(a),...,on(a)) =[] oj(e)
j=1
Trp k() = Tr(L®KQ)/Q(a ®1) =Tran/a(o1(a),...,on(@)) = Z o;(a),
j=1

uma vez que o polinémio caracteristico, a norma e o traco sao preservados por extensao de escalares
(1.25), Lok Q = O por um isomorfismo de Q-algebras que leva a ® 1 em (o1(a),...,on(@))
(1.22), o polinémio caracteristico, a norma e o trago se comportam bem com produtos (1.24 item
(d)) e cada o;(a) possui polinémio caracteristico, norma e traco em relagdo a extensao ()/Q)
iguais a x — 0j(a), oj(a) e 0j(a), respectivamente. O

Consideremos agora o caso em que L/ K é uma extenséo finita de corpos. Nesse caso, a cada
a € L nés podemos associar, além do seu polindmio caracteristico F,(z) € K|[z], seu polindmio
minimal P, (z) € K|[z]. Esses polindmios sdo relacionados da seguinte forma:

Proposicao 1.27. Seja L/K uma extensdo finita de corpos de grau n, e seja o € L. Sendo
m = [L: K(«)], nds temos F, 1,/ (x) = Pa,x(x)™. Em particular, F, 1,k (o) = 0. Além disso,
escrevendo

P, k(z) =ao+az+---+ ar_1zt7 € K|x],
temos N/ (a) = (=1)"ay" e Trpr i (o) = —may—q.

Demonstracdo. Seja £ = [K(a) : K]. Entdao 1,q,...,a/" ! formam uma base de K(a)/K. Seja
{B1,...,Bm} uma base de L/ K (). Entao sabemos que os mf¢ = n elementos

/—1 /—1 /—1
517/61047'”7/81a 7ﬁ27/82a7"'752a 7"‘75m7/8ma7---7ﬁm04

formam uma base da extensdo L/K. E facil ver que a matriz de multiplicagdo por a com
relacdo a essa base pode ser vista como uma matriz diagonal m x m em blocos de tamanho ¢ x £,
sendo todos os blocos da diagonal iguais a matriz companheira de P,. Com isso, é facil ver que
F,(z) = P,(z)™, como querfamos. Agora, notemos que o coeficiente independente de F,(z) é
al', de modo que pela Proposigao 1.24 nés temos N(«) = (—1)"af*. Além disso, o coeficiente de

2"~1 é may_1, de modo que pela mesma proposicio nés temos Tr(a) = —may_1. O

Para obter informacoes sobre extensoes de corpos a partir do que fizemos para dlgebras étale,
notemos que, sendo L/ K uma extensdo finita de corpos e () um fecho separavel de K, o conjunto
Homy (L, Q) dos homomorfismos de K-dlgebras de L em () nada mais é do que o conjunto das
K-imersoes de L em (). Assim, no caso de L/K ser separdvel, nds obtemos como consequéncia
direta do Teorema 1.26 o seguinte resultado, que permite calcular o polinémio caracteristico, o
traco e a norma de um elemento de L a partir de seus conjugados:

Corolario 1.28. Seja L/ K uma extensdo finita e separdvel de corpos de grau n, e seja ) um
fecho separdvel de K que contém L. Sejam o1,...,0n: L — Q) todas as K-imersées de L em ).
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Entdo para todo oo € L nés temos:

Farsi@) = [[(=oy(a))
Np/g(a) = ﬁ%‘(a%
Tre) = 3 oi(a)

<.
I
—

O trago e a norma em extensoes de corpos também tém propriedades transitivas:
Proposicdo 1.29. Seja M /L/K wma torre de extensoes finitas de corpos. Entdo:
Nyyxk = NpjxoNwmyr,
TrM/K = TrL/K OTI‘M/L .

Demonstragdo. Sejam m = [M : L] e n = [L : K|. Fixemos bases {a1,...,a,} de L/K e
{B1,.-.,Bm} de M /L. Entao os elementos

alﬁl,agﬁl, .. .,Oznﬁl, .. .,Ozlﬁm,agﬁm, e ,Oén,@m

formam uma base de M /K. Seja v € M. Comecemos considerando o caso em que v € L.
Nesse caso, a matriz de multiplicagdo por v em M nessa base é uma matriz m x m por blocos de
tamanho n x n, diagonal e cujos blocos na diagonal sdo todos iguais & matriz A de multiplicacio

por v em L com relagdo a base {a1,...,a,}. Assim:
Ny (v) = (det A)™ = (N (7)™ = Ny (V") = Noy(Nayn(7)), e
Tryyx(v) = m(TrA) =mTrp e (y) = Tro g (my) = Trp e (Teayn(v))

pelo item (¢) da Proposi¢ao 1.24. Suponhamos agora que M = L(7). Nesse caso, podemos tomar
Bj = —1 para 1 < j < m. Assim, temos uma base de M /K formada pelos elementos

m—1 m—1 m—1
A1, 02y .oy Oy oo, Q17,275 0o, ARy ey LY , Q7Y gy QY .

Notemos que a matriz de multiplicagdo por « nessa base é igual a uma matriz m X m por blocos
de tamanho n x n da forma:

0 O 0 -4

Id 0 0 -4

0 Id 0 —As ||
0 O Id —An,—

cujo determinante é (—1)™"det Ay e cujo trago é — Tr A,;,_1. Denotemos

P,r(z)=cot+ciz+ -+ cp1z™ t + 2™ € Liz).

Entao 7™ = —cp — 17 — -+ — cm—17"™"1, e vemos que cada matriz A; é igual & matriz do ope-
rador T,,: L — L com relacdo a base {aq,...,an} de L/K. Desse modo, det Ay = N,k (co)
e TrA,,—1 = Trp /g (cm—1). Além disso, pela Proposi¢ao 1.27 nés temos Trys (7)) = —c¢m—1 €
Nar/p(y) = (—1)"¢p. Portanto:

Nuyx(y) = (=1)™"det Ag = (=1)""Np K (co) = Np/k((=1)"co) = Np/x(Narsr (7)), e

Tray/g(y) = —TrAma=—Trp/g(cm1) = Trp g (—cm-1) = Trp ke (Trar/n(v))-
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Finalmente, consideremos o caso geral, isto é, v € M qualquer. Nesse caso, pelos resultados ja
demonstrados, nés temos:

[MiL(V)]) M:L(7)]

Nuyr(v) = Niogye(Nayne) () = NL( )k (Y = Np(y)x()!
= Npyg(Npp () MEO

= Np/r(Nigy) s (yREEO])

= NL/K(NM/L 7))

Assim, Ny g = Ny © Nps/r. Similarmente, temos:

Try/x(y) = TrL(v)/K(TrM/L(w) () = TrL(v)/K([M :L(y)]y) = [M : L(v)] TrL(y)/K('V)
= [M:L(y)] Trr/x(Trrey,n(v)
= Trr/x(Trp([M: L(7)]7))
= Trp/r(Trar/o(7))-

Assim, Trys /¢ = Trp /i 0 Trpy /1. Isso conclui a demonstragao. O

Devido ao Teorema 1.18, nés conseguimos obter diversas informacdes sobre o polinémio ca-
racteristico, o polinébmio minimal, o trago e a norma de elementos em uma extensdo integral de
um dominio integralmente fechado:

Corolario 1.30. Sejam A um dominio integralmente fechado, K = Q(A), L uma extensao finita

de K de graun e B um subanel de A* que contém A. Entdo, para todo v € B, temos:

(a) Pyg € Alz], F, 1)k € Alz], Nk (y) € A e Trp () € A

(b) Np/k(v) é um mailtiplo de v em B.

(c) v € B* se e sése Npji(y) € A*.

(d) Se Np,k () for irredutivel em A, entdo vy serd irredutivel em B.

(e) Se a, B € B forem associados em B, entao N, (a) e Np/k(B) serdo associados em A.
Demonstragao. Se v = 0, os resultados sdo 6bvios. Suponhamos entao v # 0, e seja n = [L : K].

(a) Temos que P, € Alx] pelo Teorema 1.18. Pela Proposicdo 1.27, F, é uma poténcia de P,
e portanto esse polindmio também estd em A[z] pelo Teorema 1.18. Consequentemente, a
norma e o trago de v estdo em A, j4 que sdo, a menos de sinal, coeficientes de F.

(b) Temos F, () = 0. Escrevamos F,(z) = ap+ a1z + -+ ap—12" 1 + 2", onde ag, . .. ,an_1 €
A. Entdo 0 = Fy(y) = ao+ a1y +---+ an—17""' + 4", 0 que mostra que 7 | ag em B.
Mas ag = (—1)"N(v), logo v | N(v) em B, como gostariamos.

(c) Pelo item (b), v | N(v) em B, assim N(vy) € A* = v € B*. Por outro lado, se v € B*,
entio 7' € B,eyy l =1= N(y)N(y!)=N(1) =1" = 1. Como N(y),N(yv 1) € A
pelo item (a), concluimos que N(v) € A*.

(d) Se « for redutivel em B, teremos v = «f}, para alguns «,3 € B\ B*, e entdo temos
N(v) = N(a)N(B). Pelo item (c), concluimos que N(a), N(8) € A\ AX, o que mostra
que N () néo serd irredutivel em A nesse caso.

(e) Sendo « e 8 associados em B, existe u € B* tal que o = uf. Entdao N(«a) = N(u)N(p).
Pelo item (¢), N(u) € A, e portanto N («) e N () sdo associados em A, como desejavamos.

O]
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1.4. Discriminante e Base Integral

Outra nocdo importante no estudo de extensdes finitas de corpos é a de discriminante:

Definigdo (Discriminante de uma n-upla). Seja L/K uma extensao finita de grau n. Dados
ai,...,an € L, o discriminante da n-upla (aq, ..., a,) é definido por:

Apji(at, ... an) = det(Tr k(iaj)) € K.

Quando a extensdo L/K estiver clara, indicaremos o discriminante de aq, ..., a, simplesmente
por Alaq,...,ap).

O discriminante se comporta bem por transformagoes lineares:

Proposicao 1.31. Sejam aq,...,an,71,...,7 € L, e suponhamos que, para 1 < i < n, nds
tenhamos v; = Zglzl cijag, onde ¢, ..., cin € K. Entao

AL/K(’)/l, e ,’yn) = (det(cij))QAL/K(al, e ,Oén).

Em particular, se ay,...,a, formarem uma base de L/K e se T: L™ — L™ for um operador
K-linear, teremos:

AL/K(T(OQ, e ,an)) = (detT)ZAL/K(Oq, e ,an).

Demonstrag¢do. Notemos que, para 1 < 1,5 < n, temos

n n n n
Yy, = (Z cww) (Z stas> =3 > circjsopas.
r=1 s=1

r=1s=1
Tomando o traco, obtemos Tr(v;v;) = Y.r—; > sq CirCjs Tr(ayas). Desse modo, temos a
igualdade de matrizes (Tr(viv;)) = (cij)(Tr(es05))(cij)T. Tomando o determinante, obtemos a
igualdade desejada. O

Consideremos a partir de agora L/K separdvel. Entdo temos exatamente n K-imersoes de
L, e podemos escrever o traco de um elemento em funcado dessas imersées. Denotaremos por
o1,...,0p tais imersoes. Essas imersoes também podem ser usadas no calculo do discriminante:

Proposigdo 1.32. Sejam az,...,a, € L quaisquer. Entio Ap (o, ..., a,) = (det(o;(j)))%

Demonstracao. Sabemos que, para 1 <14,7 < n, vale

n n

Tr(oioyj) = ZW(%‘O@‘) = ZUr(ai)Ur(O‘j)-

r=1 r=1

Entdo temos a igualdade de matrizes (Tr(a;0a;)) = (04(e;))T(0i(ej)). Tomando o determinante,
obtemos a igualdade desejada. O

A partir disso podemos também, fixado um elemento o € L, associar o discriminante da n-upla
(1,a,...,a" 1)

discriminante de um polinémio:

com o discriminante de seu polindémio caracteristico. Lembremos da definicdo de

Definig¢ao (Discriminante de um Polinémio). Seja f(z) € K[z] um polindmio ménico de grau
n, € sejam aq,...,q, as n raizes de f num fecho algébrico (), contadas com as respectivas
multiplicidades. Entao o discriminante de f, denotado por A(f), é definido como sendo:

Af)= I (ai—ay)?

1<i<j<n
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Proposicao 1.33. Seja o € L qualquer. Entdo temos:

= H (0j(a) = oi(a))? = AFor/K)

1<i<j<n

= (-D)EINLk(FL L k(@)

AL/K(I,a,...,a”_l)

onde F(;’L/K denota a derivada formal do polinomio Fy 1,k .
Demonstragcdo. Pela proposi¢ao acima, temos
Al a,...,a" 1) = (det(o;(a?™1)))? = (det(o;(a)’~1))2.
Mas a matriz (o;(«)’~!) é uma matriz de Vandermonde, logo seu determinante é

det(oi(a)’ ™) =[] (0j(e) = 0i(a)).

1<i<j<n

Disto segue a primeira igualdade. Por outro lado, a igualdade

[T (oj(a) —0i(a))® = A(Fa)

1<i<j<n

segue diretamente da definicio do discriminante de um polindmio e do fato de que F,(z) =
[T (z — 0j(«)). Finalmente, mostremos a tltima igualdade. Pela regra de Leibniz, temos

—

Fiz) =3 (2 —o1(a)) (2 —oy(a) - (z — on(a).

—_

<

Assim, para 1 < i < n nds temos:

—

(@) —o1(@)) - (0i(@) —oj(a)) -~ (ai(a) — on(a))

M=
£}

Foloi(a)) =

Il
—

—

(@) (oi(@) —oi(@)) - (oi(@) = on(a)).

Il
—~ .

oi(a)

[
2

Desse modo:

5!

=
311
2

I
=

7 (FA(@) = [ Flor(a)

@
I
—

—

(@) —o1(@)) - (oi(@) —oi(@)) - (0i(@) = on(a))]
= [ )"0 Y(0i(a) —0j(a))

[
—
S

s
I
—_

n

(-1 (04(a) - 7;())?

Il
.
A
— 2
.
A
3

1<i<j<n
= (-1)Ba(r).
Finalmente, obtemos que A(F,) = (—1)(3>N(Fo’é(a)), como querfamos. O

Com o resultado acima, conseguimos mostrar que o discriminante é uma espécie de “determi-
nante” no sentido de que ele determina se uma n-upla de L forma uma base da extensdo L/ K:

Teorema 1.34. Sejam (i,...,0, € L. Entao Ap x(B1,--.,0n) # 0 se e sé se {p1,...,0n} for
uma base de L/ K.
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Demonstragdgo. Tomemos a € L elemento primitivo da extensdo L/ K. Como cada K-imersao de

L é determinada inteiramente por «, temos o1(«),...,o,(«) distintos dois a dois. Isso mostra,
pela proposicdo acima, que A(1,a,...,a" 1) # 0. Como {1,a,...,a" '} é uma base de L/K,
existe uma tinica transformacio K-linear T: L™ — L™ tal que T(1,c,...,a" ) = (B1,..., Bn),

e {f1,...,0n} serd uma base de L/ K se e s6 se det T # 0. Pela Proposigao 1.31, temos
ABy,...,Bn) = (detT)*A(1,c,...,a" 1),
de onde segue o resultado desejado. O

Nosso objetivo agora é associar uma base {f31,...,8,} de L/ K a uma base dual {f1,...,,},
que satisfaca Tr(ﬁiﬁ;) = 05, para todos 1 < 4,7 < n. Isso serd uma consequéncia do seguinte
lema:

Lema 1.35. Seja {f1,...,0n} uma base de L/ K. Para quaisquer ci,...,c, € K, existe um inico
a € L que satisfaz Trp /i (Bic) = ¢, para todo 1 < i <n.

n
Demonstragdo. Seja o = ) a;3;, onde ay,...,a, € K. Entao, para 1 <17 < n, temos:
j=1

Bia = Z ajﬂiﬁj = Tr(ﬁia) = Z a; Tr(ﬁiﬁj).

j=1 J=1
Assim, procuramos aq, ..., a, € K tais que

TI‘(,B%) Tr(ﬁlﬂg) v Tr(,Blﬁn) al C1

Tr(B2f1)  Te(B3) ... Tr(B2fn)| |az e

Tr(B.B1) Tr(BuB2) ... Tr(B2) an Cn
Como det(Tr(5;6;)) = A(S1, - ., Bn) # 0 pelo Teorema 1.34, o sistema acima tem uma unica
solugdo (aq,...,a,) € K™, o que mostra que existe um tnico a € L satisfazendo as condigoes do
enunciado. 0

Teorema 1.36. Seja {51,...,0n} uma base de L/ K. Entio existe uma unica base {B1,..., 5}
de L/K tal que, para todos 1 < i,j < n, valha Tv(3;8};) = 0;5. Além disso, para todo o € L
temos:

o= Z TrL/K(Bja)Bé"
j=1

A base {B1,...,08,} é chamada de base dual da base {f1,..., [ n}

Demonstragdao. A existéncia e a unicidade dos elementos ], ..., 3, € L seguem do lema acima.

n
Seja agora oo = Y, a]ﬂ;, onde ai,...,a, € K. Entao, para 1 < i < n, temos:
j=1

TI"(,&OZ) = Zaj TI“(,Bzﬁé) = Zajéij = Qj;.
j=1 J=1

Assim, a = Y7 Tr(Bja) ;. Em particular, se a = 0, temos a1 = ag = --- = a, = 0, logo
{B4,...,5,} é um conjunto LI e portanto uma base de L/K. Portanto, todo o € L pode ser
escrito na forma acima. O
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Suponhamos a partir de agora que A seja um dominio integralmente fechado com corpo de
fragoes K = Q(A) e que L seja uma extensdo finita e separdvel de K de grau n. Chamemos
B = A", Se {71,-..,9m} for uma base de L/K, entdo é claro que para todo d € A\ {0} o
conjunto {dv1,...,dv,} é também uma base de L/K. Pelo Teorema 1.16, L = (A\ {0})"!B.
Assim, podemos tomar d de forma que cada dv; esteja em B. Isso mostra que podemos escolher
uma base {f1,...,8,} de L/K com py,...,53, € B.

Teorema 1.37. Suponhamos que B1,...,03, € B formem uma base de L/ K, e que {3],...,0.}
seja sua base dual. Entao B estd entre dois A-mddulos livres de posto n:

ABi+-+AB, CBCAB + -+ AB),.

Em particular, se A for um anel noetheriano entio B serd um A-mddulo finitamente gerado, e
portanto um anel noetheriano.

Demonstragdo. {B1,...,8n} e {B1,...,B,} sao conjuntos LI sobre K = Q(A), logo também sao
LI sobre A pela Proposi¢ao 1.6. Isso mostra que os médulos indicados sdo de fato A-mddulos
livres de posto n.

Como cada ; € B, é claro que ApB1 + --- + AB, € B. Por outro lado, se a € B nds temos,
para 1 < j <n, Bja € B. Entao, pelo item (a) do Corolario 1.30, temos Tr(8;a) € A. Assim, pelo
teorema acima, o = >, Tr(B;a)B8; € Ay + -+ + AB,,, mostrando as desigualdades desejadas.

Suponhamos agora A noetheriano. Entao AjS] + --- + AB), sendo finitamente gerado, é um
A-médulo noetheriano. Sendo B um A-submdédulo desse médulo, vemos que B também é um
A-moédulo noetheriano. Como os ideais de B sdao A-submoddulos, é facil ver que B é um anel
noetheriano. O

No caso em que A é um DIP, podemos concluir de fato que B é um A-mddulo livre de posto
n. Para isso, recordemos alguns resultados de médulos livres sobre dominios de ideais principais,
cujas demonstragoes podem ser encontradas na Secao 1.5 de [1]:

Teorema 1.38. Sejam A um DIP, M um A-mddulo livre de posto n e M’ um submddulo de M.
Entao:

(a) M' é um A-mdédulo livre de posto ¢ < n.

(b) Existem uma base {f1,...,B,} de M e elementos a,...,aq € A tais que ay |az | --- | aq €
{a1p1,...,aqB8q} € uma base de M'. Além disso, temos um isomorfismo de A-mddulos:

M/M =2 A/(a1A) x - x A/ (agA) x Ax - x A.
S —

n—q vezes

Com esse teorema em maos, nés obtemos:

Teorema 1.39. Sejam A um DIP, K = Q(A), L uma extensio separdvel de K de grau n e

B = A". Entio B ¢ um A-médulo livre de posto n. Uma base qualquer da extensio B/ A é
chamada de base integral da extensao B/ A.
Além disso, para um anel intermedidrio A C R C L sdo equivalentes:

(i) RC B.
(ii) R é um A-mddulo livre de posto ¢ < n.
(i) R é um A-mddulo finitamente gerado.

Nesse caso, ¢ =n se e somente se L = Q(R).
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Demonstragdo. Pelo Teorema 1.37, B estd entre dois A-mddulos livres de posto n, e portanto
deve ser um A-mdédulo livre de posto n pelo teorema acima. (i) = (ii) segue diretamente do fato
de B ser um A-mdédulo livre de posto n e do teorema acima, (i1) = (iii) é ébvia e (iii) = (i)
segue diretamente do Coroldrio 1.12. Provemos agora que ¢ = n se e s6 se L = Q(R):

(=): Suponhamos ¢ = n. Entdo existem rq,...,7, € R linearmente independentes sobre A.
Mas isso equivale a r1,...,r, € R C L serem linearmente independentes sobre Q(A) = K, e
como [L : K] = n vemos que Kry +--++ Kr, = L. Como A C Re K = Q(A), concluimos que

L=Q(R).

(«<): Suponhamos L = Q(R). Notemos que (A\ {0})"'R é um anel intermedidrio da extensdo
L/K, e portanto é um corpo. Como Q(R) = L, vemos que L = (A\ {0})7'R. Seja v um ele-
mento primitivo da extensdo L/ K, ou seja, L = K(v). Como L = (A\ {0})7'R, existem r € R
e s € A\ {0} tais que v = r/s. Entdo é claro que L = K(r). Desse modo, 1,7,72,...,7" 1 sio
elementos linearmente independentes sobre K, e portanto sobre A. Isso prova que ¢ > n. Mas
q < n, logo ¢ =n. ]

Voltemos a considerar o caso em que A é apenas um dominio integralmente fechado (nao
necessariamente um DIP). Conseguimos mais algumas informagoes acerca do discriminante:

Proposigao 1.40. Para quaisquer ay,...,a, € B, temos Ap /i (aq,...,ap) € A.

Demonstragdo. Segue diretamente da defini¢gdo do discriminante de uma n-upla e do Corolério
1.30 que Ap i (a1, ..., 0n) = det(Trp k(i) € A. O

Proposicdo 1.41. Suponhamos que Bi1,...,5, € B formem uma base de L/K, e denotemos
d:=Ap1,...,0n) € A. Entdo dB C APy + -+ ABy.

Demonstracao. Isso é equivalente a termos B C Ad '3y +--- 4+ Ad~'5,. Pelo Teorema 1.37,
sabemos que B C AB} + --- + AB],. Assim, basta mostrarmos que vale:

ABy + -+ ABL CAd1B + -+ Ad 1B,

Seja 1 < k < n. Note que definimos /), = Z?Zl a;f3;j, de modo que tenhamos

Te(87)  Te(BiB2) ... Tr(Bifn)] [ar
Tr(Bef1)  Tr(B2) ... Tr(BeBn)| |a2

= eg.

S

n

Te(BuB) Te(BuBs) ... Tr(2)

Assim, pela regra de Kramer, cada coeficiente a; de ), é dado por um elemento de A quocientado
por det(Tr(8;3;)) = d. Entdo cada coeficiente de 3}, estd em d~1 A, e portanto

By € Ad'Br+ -+ Ad™' By
Com isso, concluimos a demonstracao. O
A Proposicao 1.40 nos garante que a definicdo a seguir faz sentido:

Definicao (Ideal Discriminante). Seja R um anel tal que A C R C B. Entao o ideal discrimi-
nante de R/ A, denotado g, 4, é o ideal de A gerado pelos elementos da forma Ay /g (o, ..., ap),
onde a1, ..., q, percorrem todos os elementos de R.

Proposicao 1.42. Seja R um anel tal que A C R C B, e suponhamos que R seja um A-mddulo
livre com base B1,. .., By. Entdo:
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(a) D4 € um ideal principal, gerado por Ar (B, .., Bn)-
Além disso, para quaisquer elementos aq,...,a, € R, temos:
(b) Apjk(a,...,an) =a*Arx(B1, ..., Bn), para algum a € A.

(c) {ai,...,an} serd uma base de R como A-mdédulo se e s6 se a € A*.

n
Demonstrag¢do. Escrevamos, para cada i, a; = Z a;jfj, com cada a;; € A. Entao pela Proposicao

j
1.31 temos Ap /i (a1, ..., an) = a®Ar k(B1,- .., Bn), para a = det(a;;) € A. Isso prova (a) e (b).
Para provar (c), notemos que aq, . . ., ay, serd uma base de R se e s6 se a matriz (a;;) for inversivel,
ou seja, se e s6 se a € A*. O

Um exemplo importante da proposi¢do acima ¢é o caso em que R = A[f], para algum (3 € B
elemento primitivo da extensdo L/ K. Com efeito:

Proposicao 1.43. Para qualquer 5 € B, as sequintes condi¢des sdo equivalentes:
(i) L =K(B).
(ii) 1,83,...,8" ! formam uma base do A-médulo A[f].

Nesse caso, 0 4(53),4 € gerado pelo elemento ApLk(1,0,... , 871,

Demonstragdo. (i) = (ii): Suponhamos que L = K(3). Temos 1,8,...,3" ! LI sobre K, e
portanto também sobre A pela Proposi¢do 1.6. Além disso, é claro que esses elementos geram
A|B], provando essa implicagao.

(i1) = (i): Suponhamos que 1,8,...,3" ! formem uma base do A-médulo A[S]. Sendo es-
ses elementos linearmente independentes sobre A, eles também o sdo sobre K, pela Proposicao
1.6. Como eles formam um conjunto de n = [L : K] elementos, eles formam uma base de L/ K,
e portanto L = K (3), como desejado.

A ultima afirmacao segue da proposi¢do acima. O

1.5. Extensoes de Ideais

Nesta secao, vemos como podemos associar os ideais do anel maior e do anel menor em uma
extensao de anéis. Comegamos com a defini¢do a seguir:

Definig¢ao (Restrigao de Ideais/Extensao de Ideais/Ideal sobre o Outro). Seja B/ A uma extensao
de anéis.

e Se A< B, dizemos que AN A < A é a restrigdo de 2 ao anel A.
e Se a< A, dizemos que aB < B é a extensdo de a ao anel B.

e Dizemos que um ideal 2 <1 B estd sobre a se a = AN A, ou seja, se a for a restricdo de
a A, e denotamos 2 | a.

Proposicao 1.44. (a) Se A < B for um ideal proprio de B, entdo sua restricao AN A serd um
ideal proprio de A.

(b) Se B < B for um ideal primo, entao sua restricio PN A <A serd um ideal primo.
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(c) Se A<B for um ideal sobre a 1 A, entdo a inclusio canonica A — B induz uma inclusao
A/a— B/, dada por x +ar— x + 2.

Demonstragao.  (a) Se 2A<1B for um ideal préprio, entdo 1 ¢ A = 1 ¢ AN A, mostrando que
ANA é um ideal préprio de A.

(b) Pelo item (a), PN A serd um ideal proprio de A. Suponhamos agora que =,y € A sejam
tais que xy € PN A. Entdo, como P é primo, x € P ou y € P, e portanto x € PN A ou
y € BN A. Isso prova que BN A é um ideal primo de A.

(c) Essa funcdo estd bem-definida e é injetora, pois dados z,y € A quaisquer nés temos:
r+A=y4+A <= v—yecA <= r—ycANA=a < z+a=y+a.

Finalmente, essa fungao é claramente um homomorfismo.

O

Observagao 1.45. A inclusio A/a — B/ 2 do item (c) dessa proposi¢iao nos permite ver A/a
como um subanel de B/ 2L (ou o que é o mesmo, ver B/ 2 como uma extensio de A/a). Faremos
isso diretamente daqui para a frente, e nos referiremos a inclusaéo A/a < B/ 2 como a inclus@o
canénica de A/a em B/ .

Um problema das aplicacbes de extensao e restricao de ideais é que elas ndo necessariamente
sdo inversas uma da outra. Obviamente, (AN A)B C AB = A, e aBN A D a, mas as inclusoes
contrarias podem néo valer. Assim, ndo é tdo simples o problema de, dado um ideal a <1 A,
encontrarmos 24 <1 B que esteja sobre (. Esse ideal pode nem existir!

Denotemos o conjunto dos ideais de A por .# e o conjunto dos ideais de B por _#. Entdo as
operacoes de extensao e restricdo de ideais nos dao duas fungoes ¢: & — Z e p: 7 — 7, que
como ja vimos podem nao ser inversas uma da outra. No entanto, temos as seguintes propriedades,
cujas demonstracoes sao diretas:

Proposicao 1.46. As funcoes € e p satisfazem as seguintes propriedades (onde temos a,b €
J,U,B8 € ¢ quaisquer:

(a) € e p preservam inclusdes, isto €, se a C b entdo ca C eb, e se A C B entio pA C pB.
(b) e(a+b) =ca+cb.

(c) e(ab) = ca-eb.

(d) p(A

(e) p(VA) = v/p2L.

(f) pea 2 a, e vale a igualdade se e sé se a estiver na imagem de p.

B) = pANpB.

(9) epA C A, e vale a igualdade se e sé se A estiver na imagem de €.

(h) epe = ¢ e pep = p.

(i) € serd injetora se e s6 pe =id z, se e sé se p for sobrejetora.

(j) p serd injetora se e s6 ep = id 7, se e s6 se € for sobrejetora.

(k) € e p induzem aplicagies bijetoras, inversas entre si, entre os conjuntos p(_7) e (7).

(1) Se a e b forem ideais coprimos, suas extensées ea e eb também serdo ideais coprimos.
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Serd importante para nds estudar as propriedades de € e p no caso em que A é um dominio
e que B = S7'A, para algum conjunto multiplicativo S C A\ {0}. Se tivermos S = A\ {0},
B = Q(A) é seu corpo de fragoes, e temos ¢ = {0, B}. Assim, é claro que ¢ ¢ sobrejetora e p é
injetora. No caso geral, vale o seguinte:

Proposigdo 1.47. (a) Para todo a<1 A nés temos a-S—1A = S~ta. Em particular, a-S™1A =
S™1A se e s6seanS # 0.

(b) € é sempre sobrejetora e p é sempre injetora nesse caso, e temos ep = id y. Em particular,
para todo A <1 S~LA nds temos (AN A)-S71A =2l

Demonstracio. (a) E claro.

(b) Pelo item (j) da proposi¢ao acima, basta mostrar que € é sobrejetora. Mas isso é verdade,
j4 que pela teoria de localizacdo todo ideal de S~'A ¢ da forma S~la = a-S714 = £(a),
para algum a <1 A.

O

Sendo A um dominio, o mapa de localizacio A — S~'A é uma inclusdo. Sabemos da teoria
de localizagdo que existe uma bijecdo entre os ideais primos de A que nédo intersectam S e os
ideais primos de S™'A. Mostraremos que nesse caso € e p sao bijecdes entre esses conjuntos. O
fato de € ser uma bijecdo ndo é uma novidade, dado que a proposi¢do que acabamos de mostrar
nos diz que ea = S~ la e essa é justamente a correspondéncia dada pela teoria de localizacdo. O
mais interessante é o fato da restrigdo p ser sua inversa:

Teorema 1.48. (a) Seja P <1 S~LA primo. Entio BN A é um ideal primo de A que ndo
intersecta S, e nds temos (PN A)-S™1A =p.

(b) Seja p um ideal primo de A que ndo intersecta S. Entdo p-S™'A = S~1p é um ideal primo
de ST1A, e (p-STTA)NA=(S7tp)NA=rp.

(c) As aplicagoes € e p induzem aplicagdes bijetoras, inversas entre si, entre o conjunto dos
ideais primos de A que ndo intersectam S e o conjunto dos ideais primos de ST'A.

Demonstragio.  (a) E claro que NS = 0, caso contrario terfamos 1 € P = P = S LA.
Assim, PN A < A é primo que nao intersecta S. A tltima igualdade segue do item (b) da
proposicao anterior.

(b) Pela teoria de localizacdo sabemos que S™!'p é um ideal primo de S™'A. Assim, basta
mostrarmos que (S~1p)N A = p. A igualdade (D) é clara. Para a igualdade contréria,
tomemos x € (S~!p)NA. Entdo z = p/s,parapcEpesc S, esr=p¢cp Comopé
primo e s ¢ p, devemos ter x € p, como desejado.

(c) Segue diretamente dos itens anteriores.
O

Dado um ideal a <t A podemos considerar o homomorfismo canénico A/a — S~1A/S 1 a dado
por z+a + z+ S~ ta. O nicleo desse homomorfismo é igual ao conjunto {z +a: z € (S~ta)N A},
e portanto ele serd uma inclusio se e s6 se valer (S~1a) N A = a, ou seja, se e s6 se S~'a | a.

Corolario 1.49. Se p <A for um primo que ndo intersecta S, entdo o homomorfismo canénico
A/p — S7YA/S™ p serd uma inclusido. Se p for um ideal mazimal, esse homomorfismo serd wm
isomorfismo, e portanto A/ p = ST1A/S1p.
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Demonstragdo. Esse homomorfismo é uma inclusdo porque para p primo que nao intersecta S
nés temos (S~!1p)N A = p pelo Teorema 1.48. Suponhamos agora p maximal, e seja a/s € S~1A
qualquer. Queremos mostrar que a/s 4+ S~!'p estd na imagem do homomorfismo. Nés temos
sA+p = A. Em particular, a = sx + p para alguns € A, p € p, e assim em S~'A temos
a/s = x+p/s = a/s+S"'p = x4+ S~ p, que estd na imagem desse homomorfismo, como
queriamos. O

O seguinte resultado, envolvendo localizacdo, nao precisa de nenhuma hipdtese sobre a ex-
tensao B/ A.

Proposicao 1.50. Sejam B/ A uma extensdo de anéis, S um conjunto multiplicativo de A ep 1A
um primo que nao intersecta S. Entdo os ideais primos de B sobre p estdo em bijecdo com os
ideais primos de S~ B sobre o ideal primo S™'p 1S A. Nessa bijecio, um ideal B <1 B sobre p
é levado em S™1P.

Em particular, isso ocorre se S = A\ p, de modo que os ideais primos de B sobre p estao em
bijecao com os ideais primos de By sobre p,, bijecao esta dada por P — Py.

Demonstragdo. Seja B <1 B sobre p. Entdo S~IPNS~1A = S~1(PnA) = S~ tp. Além disso,
S~ ¢é um ideal primo de S™!B, pois B é um ideal primo de B que nio intersecta S.

Por outro lado, se um ideal primo Q <1 S™'B estiver sobre S~!p, entdo Q = S~ para um
ideal primo ¥ de B que ndo intersecta S. Nés temos S~H(PNA) = STIPNS~1A = S 1p.
Como p e PN A sdo primos de A que ndo intersectam S, a bijecdo entre os ideais primos de A
que ndo intersectam S e os ideais primos de S~!'A nos permite concluir que p = PN A. O

Essa proposigdo é especialmente til para reduzir o problema de provar que uma propriedade
vale para todos os ideais primos de um anel para provar que ela vale apenas para os ideais maximais
desse anel. Outra utilidade interessante é conseguir reduzir o problema inicial para um anel local.

Com esse resultado em maos podemos mostrar que, dado p <A primo, a existéncia de um
ideal primo de B sobre p é equivalente a existéncia de um ideal qualquer sobre p. Lembremos que
pep = p é equivalente a p estar na imagem de p. Comecemos com o seguinte lema:

Lema 1.51. Sejam a,p <A ideais de A que ndo intersectam S, onde p é primo. Suponhamos que
S™la C S~'p. Entdo a Cp.

Demonstragdo. Seja a € a qualquer. Entdo a/1 € S~'a € S~!p, e portanto a/1 = p/s para
alguns p € p, s € S. Isso significa que existe t € S com ast = pt € p. Como p é primo e s,t & p,
concluimos que a € p. Desse modo, a C p, como queriamos. O

Teorema 1.52. Seja B/ A uma extensdo de anéis e seja p <\ A primo. FEntdo existe um primo
P <IB sobrep se e s6 se pPBNA=p.

Demonstragao. Observemos que a implicagdo (=) é imediata, j& que isso implica que p = pB.
Assim, provemos a implica¢do (<). Suponhamos que p BN A = p, e localizemos por S = A\ p.
Pela Proposi¢ao 1.50, basta mostrarmos que existe um ideal primo de By sobre p,. Como vale a
igualdade p BN A = p, temos p BN S = (), e portanto sua localizagdo (p B), ¢ um ideal préprio
de Bp. Tomemos um ideal maximal de By que contém o ideal (p B),. Ele é da forma 9B, para
algum ‘P < B primo que ndo intersecta S. Provemos que P | p. Como PNS =0e S = A\p,
nés temos PN A C p. Como (pB), € Py, o Lema 1.51 nos garante que pB C P, e assim
p=pBNACPNA. Provamos assim que PN A = p, e assim P é um ideal primo de B sobre
p. O

No caso em que B/A é uma extensdo integral de dominios, nés podemos obter mais in-
formacgdes:
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Teorema 1.53. Seja B/ A uma extensdo integral de dominios. Entdo:

(a)
(b)
(c)
(d)
(¢)

Se A B for um ideal nao-nulo de B, ANA serd um ideal ndo-nulo de A.

Se A<B e a<A forem tais que 2 | a, entao B/ 2 serd uma extensdo integral de A/a.
B*NA=A*.

B serd um corpo se e s6 se A for um corpo.

Um ideal primo P de B serd um ideal maximal de B se e s6 se PN A for um ideal mazimal
de A. Em particular, se todo ideal primo nao-nulo de A for maximal, todo ideal primo
nao-nulo de B também serd mazimal.

Demonstragdo.  (a) Suponhamos 20 # 0, e tomemos a € 2 nao-nulo. Como B/A é integral,

temos ag + aja+ - - + ap_1a" ! + " = 0, para alguns ag, .. .,a,—1 € A. Podemos supor
sem perda de generalidade ag # 0, pois B é um dominio. Assim, nds temos ag € aB C 2,
e portanto ag € ANA é nao-nulo.

Consideremos a projecio canoénica w: B — B/2l. Como B é integral sobre A, pela Pro-
posigdo 1.11 o anel B /2l é integral sobre m(A). Notemos agora que 7(A) é igual a A/a, com
a identificacido da Observagao 1.45. Entao B/ 2 é integral sobre A/a, como gostarfamos.

E claro que AX C BXN A. Seja agora u € B*NA. Como B/A é integral, u=! é integral
sobre A, e assim ag +a1/u+ -+ ap_1 /w1 +1/u” = 0, para alguns ag,...,an_1 € A.
Multiplicando essa equacdo por u™ !, obtemos:

au” P+ a4 tap i tu =020 = —ap 1 — ... —agu™ ! € A.

Assim, o inverso de u estd em A, o que mostra que u € A*. Concluimos que B*NA C A%,
e portanto A* = B* N A.

Se B for um corpo, B* = B\ {0} = A* = B*NA = B\{0}nNA = A\{0}, pelo item
(¢). Logo A é um corpo. Se A for um corpo, os tnicos ideais de A serdo 0 e A. Se A <B
for ndo-nulo, entdo pelo item (a) o ideal ANA < A serd nao-nulo, de modo que ANA = A.
Mas entao 1 € 2 = A = B. Logo os tnicos ideais de B sdo 0 e B, e portanto B é um corpo.

Seja P <1 B primo. Pelo item (b), o dominio B/ é integral sobre A/ (PN A). Assim, pelo
item (d), B/ serd um corpo se e s6 se A/ (PN A) for um corpo. Ou seja, P serd um ideal

maximal de B se e s6 se P N A for um ideal maximal de A.
O

Com a hip6tese de B/ A ser uma extenséao integral de dominios, nés podemos garantir que todo
ideal primo de A possui um primo de B sobre ele, resultado classico conhecido como lying-over.
Ele serd uma consequéncia direta do seguinte teorema:

Teorema 1.54. Sejam B/ A uma extensao integral de dominios e p <A primo. Entdo:

(a)
(b)

Para todo ideal A <IB tal que ANA C p, existe um ideal primo P <1 B sobre p com A CB.

Os ideais primos P <1 B sobre p sio os elementos mazximais do conjunto {A<1B: ANA C p}.

Demonstracao. (a) Seja S = A\ p, e consideremos A <1B com ANA C p. Entdao ANS =0, e

portanto 2, ¢ um ideal préprio de By. Podemos tomar um ideal maximal de By que contém
2,. Ele é da forma By, para algum ideal primo B <1 B. Como B/A é integral, B,/ A,
também é integral pela Proposi¢ao 1.15. Assim, pelo item (e) do Teorema 1.53, P, N A,
¢ um ideal maximal de A,. Mas A, ¢ um anel local com anel maximal p,, e portanto
PBp N Ay = p,. Desse modo, P, é um ideal primo sobre p,, e pela Proposi¢ao 1.50 nds
concluimos que ‘B ¢ um ideal primo sobre p. Finalmente, temos 2, C B, = 2A C P, pelo
Lema 1.51. Assim, B € o ideal primo desejado.
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(b) Pelo item (a), se A <B for tal que ANA C p, entdo existird P < B primo com A C P e
PN A= p. Isso mostra que todos os elementos maximais desse conjunto sao ideais primos
sobre p.

Provaremos agora que todo primo P < B sobre 3 é um elemento maximal desse conjunto.
Para isso, suponhamos que 2 <1B seja tal que ANA C p e P C A. Queremos mostrar que
20 = P. Seja Q < B primo sobre p com A C Q. Entao P C A C Q. Localizando em relagio
a p, temos que P, e O, sdo ambos ideais primos de By, sobre p,, pela Proposicao 1.50, com
PBp C Qp. Mas pelo item (e) do Teorema 1.53, B, e Q, sdo ambos maximais. Isso implica
que By = Qp, e portanto em P = Q pelo Lema 1.51. Entao PCAC Q =P = A =P,
como desejado.

O

Aplicando o item (a) do teorema acima para 2 = 0, obtemos imediatamente:

Corolario 1.55. (Lying Over) Sejam B/A uma extensao integral de dominios e p <{A primo.
Entao existe um ideal primo B < B sobre p.

Por lying-over, todo primo p </A esta na imagem de p, e portanto em particular vale a igualdade
p BN A =p. Notemos que se 2 <1B esta sobre p, entdo A D ep = e¢p = p B. Isso, juntamente
com o Teorema 1.54, nos da:

Corolério 1.56. Sejam B/ A uma extensdo integral de dominios e p <\A primo. Entdo o conjunto
dos ideais de B sobre p tem como elemento minimal o ideal p B e como elementos maximais 0s
ideats primos de B sobre p.



Capitulo 2

Inteiros Algébricos

Nesse capitulo, definiremos o principal objeto de estudo da Teoria Algébrica dos Numeros: os
chamados anéis de inteiros algébricos. Iremos utilizar os resultados do Capitulo 1 para deduzir
propriedades importantes desses anéis. Também estudaremos com mais profundidade dois tipos
especiais de anéis de inteiros algébricos: os associados a corpos quadréticos e ciclotémicos.

2.1. Definicao e Propriedades

Denotemos por Q C C o fecho algébrico @C de Q em C, e por Oc o fecho integral ZE de Z em
C. Entao O¢ é um subanel de Q, e de fato é igual ao fecho integral de Z em Q.

Definicao (Ntmero Algébrico/Inteiro Algébrico). Chamamos de nimero algébrico um ele-
mento de Q, e de inteiro algébrico um elemento de Oc¢.

Assim como temos a inclusdo Z C QQ dos nimeros inteiros nos ntimeros racionais, podemos
associar a cada extensdo finita K C C de Q um “anel de inteiros” Ox C K, de forma que essa
inclusdo tenha propriedades parecidas com a inclusido de Z em Q:

Defini¢cdao (Corpo de Numeros Algébricos/Anel de Inteiros Algébricos). Dizemos que um sub-
corpo K C C é um corpo de niimeros algébricos, ou simplesmente um corpo de ntimeros,
se ele for uma. extensao finita de Q. Nesse caso, o subanel Ok = Vi C K é chamado de anel
de inteiros algébricos de K.

Observacao 2.1. Notemos que O = K N O¢, e portanto os elementos de Ok sdo exatamente
0s inteiros algébricos que estdo em K, justificando a nomenclatura “anel de inteiros algébricos de
K’

Como a inclusdao Ok C K deve generalizar a inclusao Z C Q, esperamos que valha Og = Z.
Isso de fato é verdade, pois Z é integralmente fechado pelo Teorema 1.14. Como nds podemos
falar em um “anel de inteiros” para cada extensao finita de QQ, é comum na literatura se referir a
um elemento de Z como um inteiro racional.

Muitos resultados do Capitulo 1 tém uma consequéncia imediata sobre inteiros algébricos.
Como todo corpo de niimeros algébricos é uma extensdo algébrica de Q, o Teorema 1.16 nos da:

Teorema 2.2. Seja K um corpo de mimeros algébricos. Entio Q(Ok) = (Z\{0})"'0x = K.
Como Z é integralmente fechado, o Corolario 1.30 nos permite concluir:

Corolario 2.3. Sejam K um corpo de numeros algébricos e R wm subanel de Og. FEntdo, se
v € R, temos:

33
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(a) Pyo € Z[z], Fyi/q € Z[z], Nk/g(v) € Z e Trg q(7) € Z.

(b) Nk,o(v) € um mailtiplo de v em R.

(¢c) v € R* se e s6 se |Nkg,q(7)] = 1.

(d) Se |Nk,q(7)| for um nimero primo, entdo v serd irredutivel em R.
(e) Se o, € R forem associados em R, entio Nk ,q(o) = Nk, q(5).

Podemos ainda aplicar o Teorema 1.39 para o DIP Z. Com isso, obtemos o famoso Teorema
da Base Integral:

Teorema 2.4. Seja K um corpo de nimeros algébricos com [K : Q] = n. Entdo:

1. (Teorema da Base Integral) O € um Z-mddulo livre de posto n. Uma base qualquer da
extensdo Ok / Z é chamada de base integral de O, ou ainda de base integral do corpo
K.

2. Para qualquer subanel R de K, sdo equivalentes:

(i) R C Og.
(ii) R é um Z-mddulo livre de posto g < n.

(1) R é um Z-mddulo finitamente gerado.

Nesse caso, ¢ = n se e somente se K = Q(R). Se isso ocorrer, dizemos que R é uma de
K.

Observacao 2.5. Em geral, achar bases integrais explicitamente ndo € um problema simples.
Nos faremos isso em alguns casos particulares, como para corpos quadrdticos e ciclotomicos.

Estudemos agora como ficam os resultados associados ao discriminante para anéis de inteiros
algébricos. Devido & Proposicao 1.40, temos:

Proposigdo 2.6. Seja K um corpo de nimeros algébricos com [K : Q] = n. Para quaisquer
at,...,an € Ok, temos Ap g (a1, ...,a,) € Z.

Seja R uma ordem de K. Entdo podemos aplicar a Proposi¢do 1.42 para concluir que os
discriminantes de duas bases de R como Z-moddulo diferem pelo quadrado de uma unidade de Z.
Mas Z* = {—1,1}, e (=1)? = 12 = 1. Portanto, todas as bases de R como Z-médulo possuem o
mesmo discriminante. Entdo obtemos:

Teorema 2.7. Seja K um corpo de nimeros com [K : Q] = n e seja R uma ordem de K.
FEntao existe di (R) € Z tal que, para toda base {B1,...,Bn} de R como Z-mddulo, nds tenhamos
Ak/o(B1,...,Pn) = dr(R). Além disso, 0z = dx(R)Z, e para todos ai,...,on € R nds
temos Ak /q(on, - .., an) = a*di (R) para algum a € Z.

Em particular, existe dx € Z., chamado de discriminante do corpo K, que € igual ao
discriminante de toda base integral de Ok, e o, )z = di Z.

O resultado acima pode ser usado para encontrar bases integrais: basta acharmos g1, ..., 8, em
Of tais que A(Bq, ..., Bn) # 0 seja minimo em mddulo. Note em particular que se encontrarmos
B1y-..,0n € Ok tais que A(B1, ..., B,) seja livre de quadrados entdo S, ..., 3, formardo uma

base integral de O
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Exemplo 2.8. Consideremos K = Q(f3), onde 8 é uma raiz do polinomio irredutivel P(z) =
23 + 2% — 22 + 8. Provaremos que {1,3,4371} formam uma base integral de Ok . Denotemos
o= 4p71. Observemos que 2°P(1/x) = 823 — 222 + 2 + 1. Assim:

88717 —2(871)* +B7 +1=0.
Desse modo:

a’ —2a2 +4a + 16 N
16

Isso prova que 43~ = a € Ok. Calculemos agora A(1,3,4371). Sabemos que {1, 3, 3*} forma
uma base de K/ Q. Notemos que

0=28(a/4)®—2(a/4)* + (a/4) +1 = o —2a% +4a+16 = 0.

ﬁ@+ﬁ—aﬁ+8=0¢ﬁ?+ﬁ—2+&rl:0$4ﬁ4:—%§—%6+1

De forma similar, encontramos 16372 = %52 — gﬁ — 1. Com isso, analisando as matrizes de
multiplica¢do na base {1, 3, 3%}, nés obtemos:

Te(B) = —1, Tr(8%) =5, Te(457") =1, Te(16372) = —3.
Assim:
Tr(1-1) Tr(1-B) Tr(1-4871)
AL, B,457Y) = det| Tx(8-1) Tr(B- B) Tr(B-4671)
Te(4571-1) Tr(467'-B) Tr(46~"-467)
Tr(1)  Tr(8) Tr(4871)
= det| Tr(B) Tr(B?) Tr(4)
Tr(4871) Tr(4) Tr(16872)
3 -1 1
= det|-1 5 12
1 12 -3

= -503.

Note que —503 € um ndmero primo. Em particular, € livre de quadrados. Assim, concluimos que
{1,,4871} é de fato uma base integral de O, e dg = —503.

Um critério 0til para construir bases integrais de um corpo a partir de bases integrais de
corpos mais simples é o seguinte teorema, que sera utilizado para encontrar bases integrais de
corpos ciclotomicos:

Teorema 2.9. Sejam K, L extensoes galoisianas finitas de Q de graus m e n respectivamente,

tais que KN L = Q. Sejam ainda {ay,...,am}t e {B1,...,0n} bases integrais de K e de L,

respectivamente. Suponhamos que di e dr, sejam primos entre si. Entdo o conjunto
B::{aiﬁj:lgigm, 1§]§n}

¢ uma base integral de KL, e diy = dydf.

Demonstragdo. Como K/ Q e L/ Q sao galoisianas, a extensao KL/ Q também é galoisiana, e
como K NL = Q nés temos Gal(KL/ Q) = Gal(K/ Q) x Gal(L/ Q). Em particular, [KL : Q] =
mn. Desse modo, temos o seguinte diagrama:

K/KLxL
e

KNL=Q
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Como os a;’s geram K como Q-espago e os 3;’s geram L como Q-espaco, é facil ver que
o conjunto B dos produtos «;3; gera KL como Q-espago. Como |B| = mn = [KL : Q], nés
concluimos que B é uma base da extensao KL/ Q.

E claro que Og,O0r, C Ogr. Assim, cada «; e cada 3; estdo em O, de modo que todos os
elementos de B estdo em Okyp. Dessa forma, para provarmos que B é base integral de KL, basta
mostrarmos que esse conjunto gera Ok como Z-mbdulo.

Seja v € Ogkpr. Podemos escrever unicamente v = Y i, 2?21 a;joi 5, com cada a;; € Q.
Mostraremos que cada a;; € Z, o que nos dara o resultado desejado. Definindo, para 1 < j < n,
0; = Yi" ao; € K, nés temos v = 37 0;8;. Denotemos Gal(KL/K) = {o1,...,00} e
Gal(KL/L) ={r,...,Tm}. Entdo é ficil verificar que valem a igualdades:

Gal(KL/ Q) ={oxm: 1<k <n, 1<f<m}, e Gal(L/ Q) = {o1|1,---,0nlL}
Assim, definindo T = (0;(3;)) € M, (L), a Proposi¢ao 1.32 nos garante que
(detT)? = A(B1,...,Bn) = dp.

Consideremos ainda os vetores a := (01(7),...,00(7)) € (KL)" e b:= (01,...,0,) € K". Entao

o] [ (S
25=102(8)05| |02 (=1 Bib

o1(B1) o1(B2) -+ o1(Bn)]| |0
o2(B1) o2(B2) -+ o2Bn)| |0

TN =

on(B1) ou(Bs) - on(tn)] |6

3

2j=1 U.n(/Bj)Hj on (Z?._l ﬁjej)

uma vez que os o; fixam os 6;’s. Desse modo, (adjT)a = (adjT)Th = (detT)b. Agora, adjT
¢ uma matriz com entradas em Op, ji que cada f; € Op, e portanto cada o;(3;) € Of (esse
elemento satisfaz 0 mesmo polindmio ménico que f;, ja que os o; fixam Q). Do mesmo modo, as
entradas de a estdo em Oky. Assim, (detT)b = (adjT)a tem entradas em Okp. Como T tem
entradas em Op, detT € Of. Logo dpb = (det T)[(det T')b] tem entradas em Ofp. Mas dy, € Z
ebe K", de modo que dr.b € K. Entdao dyb tem entradas em O N K = Og.

Isso prova que, para 1 < j < n, o elemento drf; = Y1 (dra;j)a; estd em Og. Como
ai,...,0p, formam uma base integral de O, isso significa que cada dra;; € Z. De forma
analoga, se prova que cada dga;; € Z. Como dk e dy, sao primos entre si, existem r, s € Z tais que
dgr+drs = 1. Desse modo, a;; = dia;jr + dra;js € A. Isso prova que v = Y " Z?:1 a;j0; B;
estd no Z-moédulo gerado por B, e concluimos que B é base integral de KL, como desejado.
Calculemos agora o discriminante dessa base integral. Como

Gal(KL/ Q) ={oxm: 1 <k <n, 1 <{<m},

a Proposicao 1.32 nos diz que esse discriminante é o quadrado do determinante da matriz de
tamanho mn x mn dada por M = (o7¢(ifB;)) = (ox(B;) - e()). Note que podemos trocar a
ordem dos elementos da base integral e das imersdes, pois isso altera apenas o sinal do determinante
da matriz obtida, e quando elevado ao quadrado esse sinal desaparece. Desse modo, consideremos
a matriz M obtida ordenando a base integral e as imersoes na seguinte ordem:

a181, 281, ..., amBr,ofe, B2, .. amfBa, . 01 Br, 2B, . B, €

01T1,0172y++..5,01Tm,027T1,0272,...,02Tmy.+-,0nT1,0nT2y...,0nTm.

A matriz M pode ser pensada como uma matriz n X n por blocos de tamanho m x m. Vendo
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desse jeito, temos M = (M;;), de modo que para cada 1 < i,j < n tenhamos

[oimi(a1B))  oimi(aeB;) -+ oim(amB;)

My = 0'@'72(.0415]‘) Uﬂ?(?@ﬁj) 0i72<(?ém5j)
(0iTm(01B;)  oimm(a2B)) -+ 0iTm(amB))
[0i(B;) - (1)  ai(By) -milaz) - 0i(By) - 71(cum)

_ 0i(Bj) (1) 0i(Bj) Tmelaa) - 0i(B)) - T2(m)
(7)) 0i(8) rmaz) < oi(By) - Tmlam)
Tlgalg TIEOQ; Tlgamg
_ gz(ﬁj) ] T2\ T2 'O£2 T2 am
Tm(@1) Tm(a2) -+ Tm(am)

Chamemos de P a matriz m x m dada por (7;(cj)). Entéo a conta acima nos mostra que vale
M;; = 0;(B;) - P, e assim:

My, Mg --- M,
My May -+ Moy,
M= : : :
_Mnl MnQ Mnn
[01(81)- P o1(B2)- P -+ o1(Bn)- P
|0a(8)-P o) P e oalBe)- P
00(B) P on(B2) P o on(Bn)-P
_0'1(61)'1(1 0‘1(52)'1(11 Ul(ﬁn)-ld P 0 0
B ag(ﬂl)'ld Ug(ﬁg)-Id Ug(ﬁn)-ld ‘ o P --- 0
_O'n(ﬁi)':[d Un(ﬂé)-ld an(ﬁ,;).ld () 0 p

onde Id denota a matriz identidade m x m. Chamemos as matrizes acima de C' e D respectiva-
mente. Assim, M = CD, e det M = det C' - det D. Abrindo a expressdo para o determinante de
uma matriz, nés podemos encontrar que det C' = (det Q)™ e det D = (det P)", onde Q = (0;(35))
é uma matriz n x n. Agora, a Proposicio 1.32 nos diz que (det P)? = dg e (det Q)? = dy. Fi-
nalmente, concluimos que o discriminante da base integral B é:

(det M)? = (det C)? - (det D)? = (det Q)*™ - (det P)*" = d%d™.
O

Consideremos agora um Z-submédulo qualquer M C Ok de posto n. Como Ok é livre, sa-
bemos que M é livre pelo Teorema 1.38. Argumentando do mesmo modo que nas demonstracoes
das Proposigoes 1.42 e 2.7, vemos que existe dg (M) € Z que é igual ao discriminante de qual-
quer base de M. Pela Proposigdo 1.42, existe um inteiro positivo kj; tal que dg (M) = k%JdK.
Chamamos kjs de indice de M. A justificativa para essa nomenclatura é dada pelo resultado
abaixo:

Teorema 2.10. Sejam K um corpo de numeros e M C O um Z.-submddulo de posto n. Entdo
ks € igual ao indice (Ok = M), onde consideramos Ok e M como grupos aditivos. Em particular,
esse indice € finito.
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Demonstracao. Seja {1, ..., Bn} uma base integral de K. Como M C Ok é um Z-mddulo de
posto n, pelo Teorema 1.38 vemos que existem ay,...,a, € N tais que {a151,...,a,0n} é uma
base de M. Assim, k3;dg = d (M) = A(a11, - .., anSB,). Mas pela Proposi¢io 1.31 nés temos:

A(alﬁl’ ceey an/Bn) = (al T an)2A(Blv cee 7571) = (al T an>2dK-

Assim, concluimos que kp; = |aj---a,|. Por outro lado, pelo Teorema 1.38, nés temos um
isomorfismo de grupos abelianos:

Ox/M=2Z /(a1 Z)X - xZ/(a,Z),
de modo que (O : M) = |Og /M| = |a1|- -+ |an| = |a1 - - an| = ks, como querfamos. O

Esse resultado se aplica em particular para as ordens de K. Entre essas ordens estdo os anéis
da forma R = Z[a], onde a € Ok é um elemento primitivo da extensao K/ Q (veja a Proposigao
1.43). Chamamos esses anéis de ordens principais de K. Eles possuem Z-base formada pelos
elementos 1,a, a?,...,a" 1. Nesse caso, denotaremos também kZ[a] por kq, e o chamaremos de
indice de a.

FEm geral, as ordens principais de K sdo subanéis proprios de O . Ainda assim, esses anéis
sdo “suficientemente grandes” no sentido de que conseguimos achar representantes de classes de
ideais maximais pertencentes a eles. Mais especificamente:

Corolario 2.11. Sejam a € O um elemento primitivo da extensio K/ Q e p <Ok mazimal tal
que ko & p. Entao, para todo v € Ok, existe v € Z|a] tal que v/ =~ (mod p).

Demonstragdo. Como p é maximal, p+k,Or = Ok. Mas pelo Teorema de Lagrange temos
koaOk C Z]a]. Assim, temos p+ Z[a] = Ok, o que conclui a demonstragao. O

O Teorema 2.10 também se aplica para os ideais ndo-nulos de O. De fato, seja {f1,...,5n}
uma base integral de Og. Dado um ideal ndo-nulo a <1 O, tomando a € a ndo-nulo nés vemos
que {afi,...,aB,} C a é um conjunto linearmente independente sobre Z. Assim, a tem posto n.
Pelo Teorema 2.10, |Ok/a| = (Ok : a) = kq é finito. Nés denotamos esse inteiro positivo por
N(a), e o chamamos de norma de a. Isso define uma fungao N: {Ideais de O} — IN*, chamada
de norma de ideais, que serd estudada com mais detalhes no Capitulo 4. Notemos ainda que
‘ﬁ(a)QdK = dK(a).

Como todo ideal primo ndo-nulo de Z é maximal, segue do Teorema 1.53:

Teorema 2.12. Seja K um corpo de numeros algébricos. Entdo todo ideal primo ndo-nulo de
Ok € mazimal.

Terminamos a se¢do observando que, como consequéncia da transitividade da integrabilidade
~ , - AL
de extensoes, vemos que se K, L forem corpos de ntimeros com K C L entdo O = Oj.

2.2. Corpos Quadraticos

Os corpos de ntmeros algébricos mais simples sdo os corpos quadraticos:

Defini¢ao (Corpo Quadratico). Dizemos que um corpo de nuimeros algébricos K é um corpo
quadratico se [K : Q] = 2.

Notemos que se K for um corpo quadratico entao todo a € K \ Q serd um elemento primitivo
dessa extensao. E ficil mostrar que todo corpo quadratico é da forma Q(\/&), onde d € Z\{0, 1}
é livre de quadrados. De fato, vale o seguinte:
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Teorema 2.13. Seja D = {d € Z\{0,1} | d € livre de quadrados}, e seja Lo o conjunto dos
corpos quadrdticos. Entdo f: D — Lo dado por d — Q(\/a) ¢ uma bijecdo. Mais do que isso, se
di e dy pertencerem a D, entdo Q(v/d1) = Q(V/dz) < di = ds.

Se K = Q(\/Zi) é uma extensdo quadratica com d € D, entao {1,\/&} é uma base dessa
extensdo. Seja a = a + bvd € K qualquer. Entéo:

a-1 = a+b\/g,
a-Vd = bd+aVd.

Dessa forma, a matriz de multiplicacdo por a nessa base é

a bd
wo=fy ¥

Entédo, em relacao a extensdo K/ Q:

—bd

Tr—a

Fo(z) = det(z1d —M,) = det <m_—ba ) = 2% — 2az + (a® — db?).

Assim, Tr(a + bvVd) = 2a e N(a+ bVd) = a> — db*>. Note que se d < 0 entdo sempre vale
N(a+ b\/&) > 0, com igualdade se e s6 se a = b = 0. Nosso objetivo agora é determinar, para
K = Q(V/d), o anel Of. Comecemos com o seguinte lema:

Lema 2.14. Seja K = Q(\/d), com d € D. Entio
O = {T;L + g\/;l m,n € Z, m?* —dn* = 0 (mod 4)}

Demonstracio. (C) Seja o = a+bv/d € Ok, onde a,b € Q. Entéio, pelo Corolario 2.3, nés temos
F,(z) € Z]z]. Como j4 vimos, F,(z) = 2% — 2az + (a? — db?). Disso tiramos que 2a € Z e que
a? —db* € Z. Sejar = a® — db?. Dessa forma, 4a® — 4db* = 4r, ou seja, d(2b)? = (2a)? —4r € Z,
pois 2a,r € Z. Podemos escrever 2b = p/q, com p,q € Z, q # 0, primos entre si. Entéo
d(20)? € Z = ¢* | dp* = ¢* | d, j4 que mdc(p,q) = 1. Como d é livre de quadrados, concluimos
que g = £1, de modo que 2b é inteiro. Portanto, m := 2a e n := 2b sdo ntmeros inteiros, e como
vimos temos m? —dn? = 4r = 0 (mod 4). Isso mostra que o = % + 5V d estd no conjunto da
direita do enunciado.

(2) Seja a = Z + 5V/d, onde m,n € Z satisfazem m? — dn* = 0 (mod 4). Entéo

m? — dn?

Fo(z) = 2* —mzx + 1

Como m? — dn? = 0 (mod 4), temos F,(x) € Z[z], e como F,(a) = 0, temos o € Of.

Podemos agora determinar Og:
Teorema 2.15. Seja K = Q(v/d), com d € D. Entdio:
(a) Sed =2,3 (mod 4), entdo Ox = Z[\/d] tem base integral {1,N/d} e discriminante dy = 4d.

(b) Se d = 1(mod 4), entio Ox = Z
dg = d.

# e discriminante

tem base integral {1, 137\/8}
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Demonstragio. (a) E imediato verificar que os elementos 1 e v/d estdo em O, utilizando o
lema anterior. Assim, Z + Z -v/d C Ok. Seja agora a € Ok. Entdo, pelo lema anterior,

a=%+g\/a€(’)1<, com m? — dn? = 0 (mod 4).

Se d = 2 (mod 4), entdo m? = 0 (mod 2), e assim m é par. Logo 4 | dn?, e como d é livre
de quadrados temos 2 | n. Isso mostra que n também é par, e assim

a:%—i-g\/gGZ-i-Z-\/g.

Se d = 3 (mod 4), entdo m? +n? = 0 (mod 4). Como o quadrado de um fmpar deixa resto
1 na divisdo por 4, a tnica possibilidade é termos m =n = 0 (mod 2). Assim:

a=%+g\/&ez+z.\/&.

Logo, em ambos os casos, temos Ox = Z + Z -\/d. Isso mostra que {1, \/&} ¢é base integral
de Ok, e portanto:

dg = A(1,Vd) = det <sz%) T;Eg{g)) = det (3 20d> = 4d.

161+T\/g

(b) E imediato verificar que os elementos estao em O, utilizando o lema anterior.

Assim, Z + Z -1+T‘/E C Og. Seja agora a € Ok . Entao, pelo lema anterior,

a=%+g\/g€(’)1<, com m? — dn? = 0 (mod 4).

Como d = 1 (mod 4), temos m? = n? (mod 4). Logo m e n possuem a mesma paridade, e
podemos escrever m = 2k +n, com k € Z. Assim:

o= 2k+"+gx/&:k+n<1+*/g) ez+z-1+\/g.

2 2 2

Logo temos O = Z+Z-1+T\/a. Isso mostra que {1, #} é base integral de Ok, e
portanto:

1
2 Tr (1+x/&> Tr (1+d+2\/&>

O]

Observacao 2.16. Note que podemos encontrar todas as bases integrais de O usando o discri-
minante: Se a, B € Ok, entdo {«a, B} serd uma base de Ok se e s6 se Ao, 3) = 4d, se d =2 ou
3 (mod 4), e se e s6 se A(a,3) =d, se d =1 (mod 4).

Esse resultado nos permite exibir exemplos de dominios que néo sdo integralmente fechados:
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Exemplo 2.17. O dominio Z[\/&], para d € D congruente a 1 modulo 4, ndo € integralmente
fechado. De fato, é claro que seu corpo de fragées é K = Q(\/d), e que, como Z[/d]|/ Z é uma
extensdo integral:

ZVd = 0xk=7 [1 2@ > 7|Vl

Em particular, Z[\/&] nao € um DFU. De fato, este mesmo argumento funciona para mostrar que
qualquer ordem propria de um corpo de numeros algébricos ndo € integralmente fechada.

E interessante se perguntar quando Og é um DFU, um DIP ou um dominio euclidiano, para
podermos deduzir propriedades mais profundas desse anel. As vezes, O nao é nem mesmo um
DFU:

Exemplo 2.18. Sendo K = Q(v/=5), 0 anel O = Z[\/—5] nio é um DFU. De fato, temos que
6=2-3=(1+v=5)(1—v=b)

sdo duas fatoracoes distintas de 6 nesse anel. Temos N(2) = 4, N(3) =9, e N(1++/=5) =
N(1—+/=5) = 6. Assim, pelos itens (c) e (e) do coroldrio 2.3, os elementos 2, 3, 1 + /=5 e
1 — /=5 ndo sdo unidades em Ok, e 2 e 3 ndo sio associados a 1 ++/—5 nem a 1 —+/—5. Assim,
basta provarmos que esses quatro elementos sdo irredutiveis em O . Se algum desses elementos
nao fosse irredutivel, entdo garantiriamos a existéncia de um elemento em O com norma £2 ou
+3, o que é impossivel, pois ndo existem a,b € Z tais que N(a + by/—5) = a® + 5b? seja igual a
+2 ou £3. Assim, Ok nao é um DFU.

Analisemos agora a questdo de Ok ser um dominio euclidiano. O melhor candidato a “funcéo
grau” é a norma absoluta | N, gl, pois ja sabemos de antemao que essa é uma funcao com valores
naturais que é multiplicativa e que s6 se anula em 0.

Teorema 2.19. Seja K = Q(v/d), com d € D.
(a) As seguintes condigdes sio equivalentes:

(i) Ok € euclidiano em rela¢do a norma absoluta.
(it) Para qualquer A € K, existe g € Ok tal que |[Nx,o(A—¢q)| < 1.
(7ii) Para quaisquer r,s € Q, existem m,n € Z tais que:
{|(r —-m)?—d(s—n)?| <1, sed=2,3(mod 4);
|(r—m+ 552)% —d(52)?| < 1, se d =1 (mod 4).

(b) Ok € euclidiano com a norma absoluta se d € {—11,—7,—-3,—2,—1,2,3,5,13}, e isso nao
acontece para nenhum outro valor negativo de d € D.

Demonstragao.  (a) (i)=(ii): Suponhamos que valha (i). Seja A € K qualquer. Pelo Teorema
2.2, temos L = Q(Ok), logo A = a/b para alguns a,b € Ok, b # 0. Por hipdtese, existem
q,7 € Ok tais que a = bg + 1 e [N(r)| < |N(b)|. Assim:

o=l = ¥ (5 =) = V(5)| = f <

provando (ii).

(ii)=-(i) Suponhamos que valha (ii). Sejam a,b € O quaisquer, b # 0. Entdo existe



42

CAPITULO 2. INTEIROS ALGEBRICOS

q € Ok tal que |[N(a/b—¢q)| < 1. Chamemos r := a—bq € Ok. Assim, a = bg+7r e
temos:

(5 <[ (5) 1= B 1= mer<ivon

provando (i).

(ii) <= (iii): Basta, se d = 2,3 (mod 4), tomar A\ = r +svVd € K e ¢ = m +nVd € O,
e notar que a desigualdade em (iii) equivale a termos |[N (A — ¢)| < 1. Da mesma forma, se
d =1 (mod 4), basta tomar A = r + s (H’\[) ceKeg=m+n (H\[) € Ok e notar que
a desigualdade em (iii) equivale a termos [N (XA —¢)| < 1.

Provaremos que para esses valores de d vale (iii), e que para qualquer outro valor negativo
de d € D nao vale (iii):

Caso 1: d < 0. Chamemos ¢ = —d > 0. Como observado anteriormente, nesse caso a
norma é sempre nao-negativa, entdo podemos ignorar os valores absolutos em (iii).

Caso 1.1: d = 2,3 (mod 4). Suponhamos ¢ < 3. Sejam r,s € Q. Entdo existem intei-
ros m,n € Z tais que |[r —m| <1/2 e |s—n| < 1/2. Entéo:

(r—m)? +£(s—n)*< (;)2 —1—3(;)2 =1,

logo vale (iii). Assim, se d € {—2,—1}, Ok é dominio euclidiano. Se ¢ > 5, tomemos
r = s = 1/2. Entdo, para quaisquer m,n € Z, temos |[r —m| > 1/2 e |s—n| > 1/2.

Assim:
1\? 1\?
rem stz (5) +5(3) =35>

mostrando que nesse caso nao vale (iii), e assim O nao é dominio euclidiano.

Caso 1.2: d = 1 (mod 4). Suponhamos ¢ < 11. Sejam r,s € Q. Entdo existe um in-
teiro n tal que |s —n| < 1/2. Queremos agora achar m € Z tal que

r—m—l—S;n‘ <1/2,

ou seja,

1 +s—n—1< < +s—n+1
<= r+—-<m<r4+ —————
2 — 2 2 -~ 2

1
5 =

Como a diferenga entre os niimeros nos extremos da ultima desigualdade é de 1, podemos
tomar m como sendo um ndmero inteiro no intervalo correspondente. Para esses valores de
m e n, temos:

2 2 2 2
s—n s—n 1 1 15
— l <|= 11{-)] =—=<1
(rome5) e(557) < (3) +1(3) =g <
logo vale (iii). Assim, se d € {—11,—-7,—3}, Ok ¢é dominio euclidiano. Se ¢ > 15, tomemos
r=s=1/2. Sejam m,n € Z. Se n ¢ {0,1}, entdo s —n > 1, e portanto

2 2
s—n 1 15
E( 5 ) >15<2> _Z>1’
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o que ja mostra que nao temos a desigualdade de (iii). Se n = 0 ou n = 1, entdo é claro
que os valores de m que minimizam |r —-m+ 55”‘ sao m = 1 e m = 0, respectivamente.
De qualquer forma, vemos que |r —m + 55%| >

Assim:

1
1

2 2 2
s—n 9 1 1
_ J— > —_ — e
(r m + 5 ) +/l(s—n) _(4) +15<4> 1,

mostrando que nesse caso nao vale (iii), e Ox nao é dominio euclidiano.

Caso 2: d > 0:

Caso 2.1: d € {2,3}. Dadosr,s € Q, sejamm,n € Ztaisque |[r—m|<1/2el|s—n|<1/2.
Assim, como d > 0:

‘(r—m)2 —d(s—n)Q‘ < max{(r—m)2,d(s—n)2}.
Mas
(r—m)? < <;>2 = i ed(s—n)?< 3(;)2 = 2,

portanto vale (iii), e Ok é dominio euclidiano.

Caso 2.2: d € {5,13}. Dados r,s € Q, sejam m,n € Z tais que ‘r—m+ 55"‘ < 1/2

e |s —n| < 1/2 (podemos achar tais inteiros procedendo como no Caso 1.2). Como d > 0:

o) () e 557 (5 )

r—m 5 5 <max<{|r—m 5 , 5 .
s—n\? 1\?2 1 s—mn\2 1\2 13
(rmm+57) < (3) =12(°7) =1(3) ~ 1

portanto vale (iii), e Ok é dominio euclidiano.

Mas

O]

Observacao 2.20. Pode-se provar que, se d € {6,7,11,17,19,21,29,33,37,41,57,73}, entao
Ok também € euclidiano com relacdo a norma absoluta, e esses valores, junto com os do teorema
acima, $do os unicos valores de d € D tais que isso acontece (veja [18]).

Podemos ainda nos perguntar para que valores de d o anel Ok serd um DIP ou um DFU. De
fato, veremos mais adiante que Ok serd um DIP se e s6 se for um DFU, e isso ndo vale apenas
para corpos quadraticos, mas para anéis de inteiros algébricos em geral.

Pelo item (c¢) do Corolario 2.3, um elemento u € O serd uma unidade se e s6 se N(u) = +1.
Sabemos que todo elemento de Ok é da forma a + bv/d com a,b € Z, se d = 2,3 (mod 4), e é
da forma a + b (HT\/Q» se d =1 (mod 4). No caso em que d < 0, vemos que a norma “cresce
rapidamente” em funcdo de a e de b. Com isso, é ficil caracterizarmos os elementos inversiveis de
Ok, para obter:

Teorema 2.21. Seja K = Q(v/d), com d €D e d < 0.

(a) Se d = —1, entao Of = {1,i,—i,—1} € gerado por i.

(b) Se d= -3, entdo O = {1,(, (% ¢3 = —1,¢4 (5} € gerado por ¢ = H‘Q/j?’, uma raiz sexta
primitiva da unidade.
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(c) Sed ¢ {—1,-3}, entio O = {1,—1}.

A determinagao dos grupos de unidades dos corpos quadraticos com d > 0 serd feita na Segéo
7.5.

Exemplo 2.22. Com os resultados acima, podemos dar uma boa caracterizagio do anel Z[i| dos
intetros de Gauss. Sabemos que os inversiveis desse anel sdo os elementos +1,+i. Além disso,
sendo Z[i] wm dominio euclidiano, ele é um DFU, e portanto as nogéoes de irredutivel e primo
coincidem. Afirmamos que os irredutiveis/primos desse anel, a menos de associados, sGo:

e Os primos de IN congruentes a 3 médulo 4;
o 1+71;

e Os elementos da forma a+bi, com 1 < a < b naturais tais que a® +b*> é um primo de N
congruente a 1 maodulo 4.

Além disso, na lista acima ndo existem dois elementos associados entre si, e para cada primo
p € Z congruente a 1 mddulo 4 os naturais a e b sGo unicos.

Para mostrar isso, seja x + yi € Z[i] primo. Entio x +yi | N(x +yi) = x? + y2. Assim,
x +yi divide algum primo p € N que aparece na fatoragdio de x> + y?. Disso concluimos que para
encontrarmos os primos de Z[i] basta encontrarmos os primos de Z[i| que dividem um primo de

IN.

e Sep=2: Notemos que 2 = —i(1+14)%, e N(1+1i) = 2, provando que 1 +1i é o wnico primo
em Z[i] que divide 2 a menos de associados.

e Sep deiza resto 3 na divisdo por 4: Temos x +yi | p = N(z +yi) = 22 +4? | N(p) = p*.
Sendo x + yi primo, devemos ter N(x +yi) = p ou N(x +yi) = p*. Mas 2> + y? ndo pode
deivar resto 3 na divisdo por 4, assim N(x +yi) = p*> = N(p). Escrevamos p = (x + yi)y
para algum vy € Z[i]. Entio N(p) = N(z+yi)N(y) = N(v) = 1=~ € Z[i]*. Isso prova
que x + yi € associado de p, e assim p € primo de Z][i].

e Se p deiza resto 1 na divisdo por 4: provemos que p ndo € primo. Para isso, notemos que,
utilizando o Teorema de Wilson:

plp-1)+1 = <1p;1> <(p;1>2...(1)>
_ (_1)(p—1)/2(<p;1)g) +1
- (7))

Chamemos w = (pT_l)!. Entiopfw+iepfw—i, masp|w?+1= (w+i)(w—1). Isso
prova que p ndo é primo, e portanto existe a+ bi primo ndo associado a p tal que a+ bi | p.
Multiplicando por algum dos inversiveis +1,+1 se necessdrio, podemos supor 1 < a < b.

Assim como no item anterior, concluimos que a®> + b* | p>. Como a + bi ndo é associado
a p, nés devemos ter a®> +b> = p, e assim p = (a+ bi)(a —bi). Sendo N(a —bi) = p,
vemos que a — bi também é um primo de Z[i]. E fdcil ver, simplesmente multiplicando
pelos inversiveis de Z[i], que a+ bi e a — bi ndo sio associados. Isso termina a prova da
nossa afirmacdo.
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2.3. Corpos ciclotomicos

Outro tipo importante de corpo de ntimeros é aquele gerado por uma raiz da unidade. Comecemos
relembrando algumas defini¢ées e enunciando alguns resultados basicos sem demonstragao:

Defini¢do (Raiz da Unidade/Extensao Ciclotémica/Corpo Ciclotémico). Seja K um corpo. Di-
zemos que um elemento ¢ de um fecho algébrico de K é uma raiz da unidade se (" = 1 para
algum n inteiro positivo. Se n for o menor inteiro positivo tal que isso ocorra, dizemos que ( é
uma raiz primitiva n-ésima da unidade.

Uma extensao ciclotémica de K é um corpo da forma K (¢), onde ¢ é uma raiz da unidade,
e dizemos que um corpo é um corpo ciclotomico se ele for da forma Q({) para alguma raiz da
unidade ¢ € C.

Denotemos por W(K), W, (K) e Z,(K) os conjuntos das raizes da unidade em K, das raizes
n-ésima da unidade em K e das raizes n-ésimas primitivas da unidade em K, respectivamente.
O conjunto W (K) também é chamado de grupo de torgao de K, ji que esse é o subgrupo dos
elementos de ordem finita de K*. Note que temos as inclusdes &, (K) C W, (K) C W(K) C K*.
Uma propriedade conhecida da teoria dos grupos abelianos finitos é que se G for um grupo
abeliano finito entdo existe um elemento v em G de ordem mmc(ordem(g): g € G). Utilizando
isso, podemos obter:

Proposigao 2.23. Todo subgrupo finito G de K* é ciclico e igual a W,,(K), sendo m = |G].
Nos temos ainda a seguinte equivaléncia:
Proposicao 2.24. Seja p a caracteristica de K. Entdo sdo equivalentes:
(1) [Wa(K)| = n.
(ii) P, (K) # 0.
(iii) ptn ex™—1 se fatora em fatores lineares de K |x].
Nesse caso, P4(K) # 0 para todo d | n, ' Wy, (K) = g, Pa(K).

Suponhamos que ¢ € K seja uma raiz primitiva n-ésima da unidade. Entao é claro que
W, (K) = (¢) é isomorfo ao grupo aditivo Z /nZ, com isomorfismo k +nZ + ¢¥. Como os
geradores de Z /nZ sao as ¢(n) classes dos inteiros primos com n, vemos que W,,(K) tem ¢(n)
geradores, da forma (¥ para 1 < k < n e mdc(k,n) = 1. Assim, |Z,(K)| = ¢(n). Sendo
Wi (K) = Ugpn Pa(K), concluimos que

n=|Wa(K)l = |24 = o(d).

dln dn

Assim, obtemos um famoso resultado da Teoria Elementar dos Numeros. Associemos a cada
k € Z o endomorfismo de W, (K) dado por v — v*. Esse endomorfismo s6 depende da classe
de k médulo n, e serd um automorfismo se e s6 se mdc(k,n) = 1. Isso define um isomorfismo
(Z /nZ)* — Aut(W,(K)), como é facil verificar.

Dados K um corpo e n > 1, supondo que a caracteristica de K néo divida n sempre existira
uma raiz primitiva n-ésima da unidade ¢ num fecho algébrico de K. Entédo a extensdo K(()/K
é “bem-comportada’:

LA notacdo | | xen Oy indica uma unido disjunta. Isto é, indica que os conjuntos C) sdo disjuntos dois
a dois.
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Teorema 2.25. Seja K um corpo e seja n um inteiro positivo nao divisivel pela caracteristica de
K. Seja L = K((), onde ¢ € uma raiz primitiva n-ésima da unidade num fecho algébrico de K.
Entio L/ K é uma extensio galoisiana, e Gal(L/K) € canonicamente isomorfo a um subgrupo
de (Z /nZ)*. Em particular, Gal(L/K) é abeliano de ordem divisora de ¢(n).

Demonstragdo. L é extensdo galoisiana de K, pois é o corpo de decomposi¢cdo do polinémio
" — 1, que é separavel ja que a caracteristica de K nao divide n pela Proposicao 2.24. Dado
um automorfismo o € Gal(L/K), é facil ver que o(¢) também é raiz primitiva n-ésima da
unidade, de modo que oy, (k) € Aut(W,(K)). Como todo automorfismo de Gal(L/K) esta
totalmente determinado pela imagem de ¢, temos uma inclusao Gal(L/K) — Aut(W,(K)) dada
por o — 0|y, (k). Mas como ja vimos Aut(W,(K)) é canonicamente isomorfo a (Z /n2Z)*,
mostrando que Gal(L/K') é canonicamente isomorfo a um subgrupo de (Z /nZ)*. O

No caso K = Q, obtemos um resultado ainda melhor:

Teorema 2.26. Seja ( € C uma raiz primitiva n-ésima da unidade. FEntio K = Q(¢) é
uma extensio galoisiana de Q, com Gal(K/Q) canonicamente isomorfo a (Z /nZ)*. As-
sim, Gal(K/ Q) € abeliano de ordem (n). Além disso, o polinémio minimal Prq € igual a

@, (z) = [lew, ) —n).

Demonstragdo. Provaremos que se p é um primo que ndo divide n e se # é uma raiz primitiva
n-ésima da unidade, entdo 6 e 6P possuem o mesmo polindmio minimal. Com esse resultado,
podemos mostrar que para todo k primo com n o polindmio minimal de ¢* sera Prg. Com
efeito, seja k = pipa---pm para p1,p2,...,Ppm primos. Como mdc(k,n) = 1, nenhum desses
primos divide n. Aplicando esse resultado a { e p1, concluimos que o polinémio minimal de (P
¢ Prq. Aplicando novamente esse resultado a (P* e py, concluimos que o polindmio minimal
de ((P1)P2 = (P72 ¢ P;q. Continuando dessa forma, concluimos que o polinémio minimal de
Ck = (PrPm ¢ Prg.

Desse modo, P g serd o polinémio minimal dos ¢(n) ntmeros da forma (¥ com mde(k,n) = 1,
isto é, as ¢(n) raizes primitivas n-ésimas da unidade. Entdao ¢(n) < 9P, g = [L: Q] < ¢(n) pelo
teorema anterior, e assim Pr g = [K : Q] = ¢(n). Desse modo, as raizes de Pr g sdo exatamente
as raizes primitivas n-ésimas da unidade, o que mostra que P g(z) = ®n(z) = [I,c, ) (z — )

Mostremos entao que vale o resultado desejado. Se esse nao fosse o caso, entdao 0 e 6P teriam
polinémio minimais distintos, digamos P e () respectivamente. Como 0 e 0P sdo raizes de ™ — 1,
eles sdo inteiros algébricos, e portanto P,Q € Z[z]. Desse modo, 2" —1 = P(z)Q(z) f(z), para
algum f € Z[z]. Notemos que 6 é raiz de Q(zP), e portanto temos Q(zP) = P(x)g(z) para
algum g € Z[z]. Passando a F,[z], nés temos 2" — 1 = P(x)Q(z) f(z) e P(z)g(z) = Q(aP) =
Q(z)P. Essa ultima igualdade nos diz que P e @ possuem um fator comum D € Fp[z]. Mas

entio D’ | 2" —1 um absurdo j& que 2™ — 1 é separdvel em IF,[z] (pois p { n). Isso conclui a
demonstracao. O

Definigdo (n-ésimo Corpo Ciclotémico/Polinémio Ciclotémico). Definimos o n-ésimo corpo
ciclotémico como sendo Q((), onde ¢ € C é uma raiz primitiva n-ésima da unidade. Além disso,
chamamos o polinémio @, (z) € Z[z], minimal de ¢, de n-ésimo polinémio ciclotdémico.

As igualdades Wy, (C) = g, Za(C) e @p(x) = [Ie 2, (c)(x —n) nos dao diretamente:

Corolério 2.27. Para todo n inteiro positivo, nés temos " — 1 = [y, Pa().

Esse corolario nos d& um método pratico para calcular ®,, por recorréncia, utilizando a igual-
dade @, (z) = (2" — 1)/ [1gn, 4<n Pa(z). E claro que ®;(z) =z — 1. Assim, para cada nimero
primo p, temos ®,(z) = (2P —1)/P1(x) = (2P —1)/(x—1) = 2P~1 + ... + 2+ 1. Isso mostra em
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particular que esses polindmios sao irredutiveis, fato conhecido e usualmente demonstrado pelo
critério de Eisenstein. Mais geralmente, ¢é facil determinar explicitamente ®,-(z), para r > 1:

=1 = Dy (2)Dy(z) - Dy (1) Dy (z) = (2
P —1

[ |

—1)®, ()

r—1

= Dy(z) = =P T T

Consideremos agora o corpo Q(¢), para ( raiz primitiva n-ésima da unidade, e procuremos
calcular o polinémio caracteristico, o trago e a norma de um elemento qualquer desse corpo.
Observemos que 1,¢, ..., #™~! formam uma base da extensio Q(¢)/ Q, e portanto um elemento
genérico de Q(() se escreve como v = ag+ a1+ -+ a@(n)CW(”)*l, para ag, a1, ..., ayn) € Q.
Sabemos que o grupo de Galois de Q(¢)/ Q é composto pelos automorfismos ¢ + (¥, onde
1 <k <nemdec(k,n) =1. Sendo assim, os conjugados de 7 sdo os elementos da forma

ag+arCF -+ aso(n)((“p(")_l)k, para 1 <k <ne mde(k,n) = 1.
Portanto, o polinémio caracteristico de v é dado por

F’Y(af) = H (.%‘— (a0—|—a1gk+...+atp(n)c(<p(n)—1)k))‘
1<k<n
mdc(k,n)=1

Além disso, o traco de v é

e a norma de y é

Observe que Tr(y) e N() sdo polindmio simétricos nas raizes primitivas da unidade, e portanto
podem ser determinados como polinémios nos coeficientes de P,,.

Mostraremos que o anel de inteiros algébricos de um corpo ciclotomico K = Q(¢) tem base
integral {1,¢,..., (9"(")*1}. Note que basta provarmos que

OK:Z[C] :Z+Z-C+...+Z.Cw(n)*1‘

Entretanto, postergaremos essa demonstragdo para a Secdo 5.3, pois necessitamos de um ma-
quinario maior. Por ora, mostraremos apenas alguns fatos que nos serao uteis mais adiante.

Consideremos p primo impar, ( € C uma raiz primitiva p-ésima da unidade e K = Q(().
Estudemos K e Of. Nesse caso, temos p — 1 raizes primitivas p-ésimas da unidade, a saber
¢,¢%...,¢P7Y e como visto acima temos Pp(z) = 2P~ 4 -+ + x + 1. Existem exatamente p — 1
automorfismos o1, ...,0p—1: K — K, com 0;({) = (7 para 1l < j < p—1 (note que o1 = idg).
Comegamos com o seguinte resultado:

Lema 2.28. Os elementos ¢ —1,...,(P~1 —1 sdo raizes do polinomio

e ([P e (B () ez

que € irredutivel em Qlz].
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Demonstrag¢do. Basta notar que

qDP('T + 1) = (1‘ ks 1)p = === <j)xj - Zp: (p)a:j—l - 7vz)p<$)'

(z+1)-1 x J

=1

Assim, é claro que ¢ —1,...,(P~t — 1 sdo raizes de Yp. A irredutibilidade de 1, segue da irredu-
tibilidade de ®,,. O

Como cada (7, ¢ — 1 sdo elementos primitivos de K/ Q, seus polinémios caracteristicos coin-
cidem com seus minimais, isto ¢, com ®, e com v, respectivamente. Como sabemos ®, e 1,
explicitamente, é facil calcular a norma e o trago desses elementos. Para 1 < j < p — 1 nés temos:

N(@)=1  N(-1)=p; NOA-¢)=p
Note que de fato N(¢) = 1 vale para ( raiz n-ésima da unidade para n qualquer, ji que

¢"™ = 1. A partir dessas equagdes nés conseguimos calcular o discriminante do que mostraremos
futuramente ser a base integral de uma extensao ciclotomica de grau poténcia de primo:

Proposicao 2.29. Sejam p € Z primo, v > 1 inteiro e ( € C uma raiz primitiva p"-ésima da
unidade. Consideremos o corpo ciclotomico K = Q((). Suponhamos ainda que r > 2 caso p = 2,
pois sendo K = Q. Entdo:

AK/Q(17 Cv e 7((,0(pr)71) = (_1)%pp(T71)(Tp*r71).

Demonstragao. Notemos que como ¢ é elemento primitivo da extensao K/ Q, temos Fy = Py =
r—1

®,r. Como vimos, vale a igualdade 27" — 1 = (2P" " — 1)@, (z). Assim, derivando os dois lados

dessa equagao obtemos

r—1

prar Tt = p T e (2) + (2P - 1)@ ().
Avaliando em (, obtemos:
r—1 r—1
ropt—1 __ prl_ / / _ pC _pC
p C - (C 1)q)pT(<) = q)pT(C) - Cpr—l 1 — 5_ 1 )

r—1 , . el o . . . .
onde ¢ == (P = é uma raiz primitiva p-ésima da unidade. Consideremos primeiramente o caso p
fmpar. Aplicando N, q, obtemos:

_ Ngsolp'¢h) p %) N sg(¢)~!
- Ngso(E-1) Now)/ N/ o) (€ —1))
pre®) g
No(e)/ (€ —1)e@)/ep)
preP)

Nk /o(®,(€))

pP®")/e(p)
pr(zv—l)pr‘l—pr‘1
=1 (rp—r—1)

P’ :

onde utilizamos (2.1) e as propriedades da norma. Sendo assim, pela Proposigao 1.33 nés temos:

AL C .oy = (1)) N o (@(0))

»(p") r=1(rp—r—1)

= () ,
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j& que @(p") é par, e portanto a paridade de (“D(gr)) é a mesma de p(p")/2.
Consideremos agora p = 2. Nesse caso, r > 2 e £ é uma raiz primitiva 2-ésima da unidade, ou
seja, £ = —1. Assim, nés temos:

) _ Ngso2¢t) 2% Ny o)t
Nk /o(P5r(C)) = Ni/o(=2) o (—2)¢2)
ore(27) .1

(—2)e2")
= (-1)¥ (27)9(r=1)e(2")
)

92" Lr—1

por (2.1), pelas propriedades da norma e observando que ¢(2") é par. Sendo assim, pela Pro-
posicao 1.33, nds temos:

Y __ »(2")
ALC P27 = ()T DN (@4 (€))
R )
Note que essa expressao é a desejada substituindo p = 2. O

Outro fato importante é a relacdo entre diferentes corpos ciclotémicos:

Proposicdo 2.30. Sejam m,n > 1 inteiros positivos primos entre si, e sejam Cm, CnyCmn € C
raizes primitivas m-ésima, n-ésima e mn-ésima da unidade, respectivamente. FEntdo valem as

igualdades Q(Cm) Q(Cn) = Q(Cmn) € Q(gm) ﬁQ({n) =Q.
Cn) = Cmn

/ \
\ /

Q(Gm Q(Gn)
Q(Gm) NQ(C) =
Além disso, se denotarmos por 1,2 &(m) as raizes m-ésimas primitivas da unidade e por
Ny -5 Tp(n) @S TalZES N-€simas primitivas da unidade, entao o conjunto das raizes mn-ésimas da

unidade é igual a {&n;: 1 <i<e@(m),1<j<ep(n)}. Em particular:

w(m) w(n)
z) =[] ] (=—&ny)-
i=1 j=1

Demonstragao. Consideremos o grupo multiplicativo C*. Como (,,, tem ordem m, ¢, tem ordem
n e mdc(m,n) = 1, um resultado conhecido da teoria de grupos abelianos nos diz que ¢’ := (¢,
tem ordem mmc(m,n) = mn. Consequentemente, Q(¢') = Q((mn), jd que ¢’ é uma poténcia
inteira de ¢ e vice-versa. Assim, basta mostrarmos que Q((y) Q(¢,) = Q(¢'), o que é claro.
Podemos agora concluir que Q(¢r) NQ(¢,) = Q, ja que essa é a condigao para valer

Gal(Q(¢m) Q(¢n)/ Q) = Gal(Q(¢m)/ Q) x Gal(Q(¢n)/ Q),

que sabemos ser verdade ja que (Z /mnZ)* = (Z /mZ)* x (Z /nZ)*

Para a segunda afirmacao, como ja vimos o produto de uma raiz primitiva m-ésima da unidade
com uma raiz primitivan-ésima da unidade é uma raiz primitiva mn-ésima da unidade. Assim,
cada &mn; ¢ uma raiz primitiva mn-ésima da unidade, e ¢ um exercicio simples verificar que esses
produtos sao distintos dois a dois. Como ¢(m)p(n) = ¢(mn), o conjunto dos &n; estd contido
em Z,,,(C) e tem o mesmo numero de elementos que esse conjunto. Assim, os dois conjuntos
coincidem. A expressao para ®@,,,(x) é entdo imediata. O
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Estudemos agora extensoes ciclotémicas em corpos de caracteristica p > 0. Devido a Pro-
posicao 2.24, dado n inteiro positivo s6 podem existir raizes primitivas n-ésimas da unidade em
alguma extensdo de um corpo de caracteristica p se p{ n. Se esse for o caso, tais raizes da unidade
sempre existirao. No caso de corpos finitos, ndés temos uma caracterizacdo para suas extensoes
ciclotomicas:

Teorema 2.31. Sejam p € N um primo, ¢ = p" e n um inteiro positivo tal que p{n. Chamemos
de fq a ordem de q no grupo multiplicativo (Z /nZ)*. Entao existem raizes primitivas n-ésimas
da unidade em ]quq, e essa € a menor extensao de IF, tal que isso ocorre. Em particular, sendo ¢
uma raiz primitiva n-ésima da unidade, temos Fy[C] = qufq, e portanto o polindomio minimal de
¢ em F, tem grau f,.

Demonstracao. Pela Proposicao 2.24, para garantirmos a existéncia de uma (e portanto de todas)
raiz primitiva da unidade em uma extensao F,» de IF;, é necessario e suficiente que 2" — 1 se
fatore em fatores lineares de Fym 2], ou seja, que o corpo de decomposicao de 2™ — 1 esteja contido
em Fm[x]. Assim, basta mostrarmos que F fa ¢ o corpo de decomposigao de =™ — 1 sobre [F,.
Comecemos notando que esse corpo de decomposicao serd da forma IF x, para algum inteiro

positivo k. Como IF;k é um grupo multiplicativo de ordem ¢* — 1, temos qu_l = 1. Mas uma
vez que a ordem de ¢ nesse grupo é n, nds obtemos n | q* — 1. Isso significa que fq | k. Assim,
¢i—1]¢"—1,e i | | 24"~1 — 1. Como FF s, ¢ corpo de decomposicio de 241 1 e Fx

. . k_ ,
é corpo de decomposicdo de z¢ —' — 1, concluimos que F Ja € Fk.

qfa—1

Por outro lado, como n | ¢f¢ — 1, temos 2™ — 1 | — 1, e portanto o corpo de decomposi¢ao

de ™ — 1 estéd contido no corpo de decomposicao de 29=1 _ 1, Mas o corpo de decomposicao de
z" —1 é Fk, e o corpo de decomposigao de g9l _1¢ ]quq. Assim, FF . C ]quq.

Concluimos que o corpo de decomposicao de " — 1 sobre IF, é F ,fa- Portanto, essa é a
menor extensao de IF, que possui raizes primitivas n-ésimas da unidade, pela Proposi¢ao 2.24.
Finalmente, dada uma raiz primitiva n-ésima da unidade ¢ € F o> PO €ssa mesma proposicao
vale a igualdade 2" — 1= (z —1)(z —¢)--- (x = (" !) em F s, [z]. Portanto, F s, = F,[(]. Em
particular, o polinomio irredutivel de ¢ sobre IF; tem grau f,. O

2.4. Algumas Aplicacoes

Nessa sec¢ao, mostraremos duas aplicacdes interessantes do estudo de corpos quadraticos e ci-
clotémicos. Um problema classico de Teoria dos Ntumeros é o das ternas pitagdricas: encontrar
as solugdes inteiras da equacdo x2 + y? = 22. Esse problema pode ser resolvido sem utilizar in-
teiros algébricos, mas possui uma solucdo em certo sentido “mais natural” que se utiliza do anel
dos inteiros de Gauss. Lembre que esse anel é um dominio euclidiano. Seja d = mdc(x,y), e
escrevamos x = da e y = db. Entdo 22 +y? = 22 = d | 2, e podemos escrever z = dc. Assim,
nossa equacdo se torna a® + b = 2, e vale mdc(a, b) = 1.

Observemos agora que temos a fatoragdo a? + b?> = (a + bi)(a — bi) em Z[i], de modo que
(a+ bi)(a —bi) = ¢ é um quadrado perfeito. Encontremos os primos 7 € Z[i] que podem
dividir ambos a 4 bi e a — bi. Um tal primo deve também dividir (a + bi) + (a — bi) = 2a e
(a+bi)— (a—bi) = 2bi. Assim, 7 | 2a e 7 | 2b. Como a, b sdo primos entre si em Z, concluimos
que 7 | 2, e portanto a unica possibilidade é termos m = 1 4 4. Mas isso nao pode acontecer! De
fato, se esse fosse o caso entdo

14+i|la+bi=2=N(1+1i)]|N(a+bi)=a®+b%

logo concluirfamos que a e b sdo ambos impares ji que mdc(a,b) = 1. Mas entdao nds teriamos
que  =a’+v¥ =2 (mod 4), um absurdo! Isso mostra que a + bi e a — bi sdo primos entre si
em Z[i].
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Como (a + bi)(a — bi) é um quadrado perfeito e a + bi é primo com a — bi, nés devemos
ter a + bi = ua? para alguns u € Z[i]*, a € ZJi]. Escrevamos o = m + ni, para m,n € Z, e
lembremos que Z[i|* = {—1,1,—i,i}. Abrindo a expressio a + bi = u(m + ni)?, nés encontramos:

(m? —n? 2mn), se u = 1;
(a,b) = (n? —m?2,—2mn), se u = —1;
’ (—2mn, m? —n?), se u = i
(2mn,n? —m?), se u = —i.

Notemos que, em qualquer caso, encontramos ¢ = a2 + b> = (m? —n?)%2 4+ (2mn)? = (m? +n?)?,
de modo que obtemos ¢ = +(m? 4+ n?). Observemos que, a menos da ordem de a e de b e dos sinais
de a, b, ¢, todas as solucdes de a? + b? = ¢? sdo da forma (m? —n2, 2mn, m? +n?), param >n >0
inteiros. A partir disso, concluimos que todas as solucdes da equacdo inicial z2 + % = 22 sdo, a
menos de ordem e sinais, da forma (z,y,2) = (d(m? —n?), 2dmn, d(m? 4+ n?)), para m > n > 0
inteiros e d > 0 inteiro.

Mostraremos agora uma aplicagdo do estudo de corpos ciclotémicos: o Pequeno Teorema de

Wedderburn:

Teorema 2.32 (Pequeno Teorema de Wedderburn). Seja A um dominio finito. Entao A é um
2
coTpo”.

Demonstragao. Dado a € A ndao-nulo, consideremos a fungdo L,: A — A dada por L,(z) = ax e
a fun¢ao R,: A — A dada por R,(z) = xa. Entdo, como A é dominio, essas fungoes sao injetoras.
Sendo A finito, essas fung¢oes sdo bijegoes. Assim, existem £,r € A tais que fa = ar = 1. Mas
desse modo ¢ = {(ar) = (fa)r = r, e portanto a é inversivel. Como a € A nao-nulo é qualquer,
provamos que A é um anel de divisao.

Assim, basta mostrarmos que todo anel de divisdo finito A é um corpo. Faremos isso por
induc¢do na cardinalidade de A. Comecemos observando que A é simples, e portanto o seu centro
Z(A) é um corpo. Se |A| for um primo, entdo A = Z(A) é um corpo, pois como (Z(A),+) é
um subgrupo de (4, +) vemos que |Z(A)| divide |A|, e |Z(A)| > 2 j4 que 0,1 € Z(A). Assim,
|Z(A)| = |A| e temos a igualdade desejada.

Suponhamos entdo por inducéo que a ordem de A nédo é prima, e que todo anel com divisdo de
ordem menor que |A| é um corpo. Em particular, todo subanel préprio ndo-nulo de A é um corpo.
Chamemos p := |Z(A)|. Entdao A é um espago vetorial sobre Z(A) com uma certa dimensao n > 1,
de modo que |A| = p". Queremos mostrar que n = 1, pois entdo concluiremos que A = Z(A) é
um corpo.

Para cada a € A\ Z(A), o seu centralizador Z, = {z € A: za = az} é um anel tal que
Z(A) C Z, C A. Assim, por hip6tese Z, é um corpo. Notemos que entdo A é um espago vetorial
sobre Z, e Z, é um espaco vetorial sobre Z(A). Dessa forma, devemos ter | Z,| = p?s para algum
d, divisor préprio de n.

Consideremos a agdo do grupo multiplicativo A* sobre si mesmo, dada pela multiplicagdo
de A. O centro dessa acao é Z(A)*, e o estabilizador de cada elemento a € A* é ZX. Seja

{ai,...,ar} um conjunto de representantes das 6rbitas nao-triviais. Entdo a equagdo de classes
nos da:
k n 1
A=+ 2 w1 =1 B
j=1P" =

Agora, lembremos que vale z'* — 1 = Hd‘n ®y(z), e que sendo 1 < j < k temos gl — 1 =
[Lnja,. Pm(z). Como m | do; = m | nem # n, é facil ver que &y () | gjzj_ll em Z[z]|. Desse
J T

ZNesse enunciado, consideramos que a principio A néio precisaria ser comutativo.
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modo, @, (p) | I;Z o Como também P, (p) | p" — 1, concluimos a partir da equagao de classes
p

que @, (p) | p— 1. Em particular, |®,(p)| <p-—1.
Sejam agora (1, ..., (y(n) as raizes primitivas n-ésimas da unidade. Entao

p(n) e(n) ®(n)
H p—C) = [ Pn(p H =G| =IIlp—¢l
j=1 j=1 j=1

Para cada 1 < j < ¢(n) temos [p— (| > |p| — || = p—1 > 1, e se a igualdade valer entéo
p e (j sao colineares, ou seja, (; € IR. Mas nesse caso (; = *1, e portanto (; = 1 ji que
lp—(=1) =p+1>p—1=|p|—|-1|. Desse modo, se n > 1 entdo temos [p—¢;| >p—1>1
para todo j, e assim

I—H\p Gl > (p—1)PM >p—1,

absurdo! Concluimos que n =1, e que portanto A = Z(A) é um corpo, como desejado. O

Existem diversas outras aplicagdoes do estudo de corpos quadraticos e ciclotémicos na ma-
tematica. O conjunto Z[i] também pode ser utilizado, por exemplo, para provar o Teorema dos
Dois Quadrados, que determina quais nimeros inteiros positivos se escrevem como soma de dois
quadrados perfeitos. Os corpos ciclotémicos, por sua vez, possuem uma importancia histérica na
resolucdo de casos particulares do Ultimo Teorema de Fermat. Além disso, um estudo mais deta-
lhado dos polindémios ciclotomicos nos permite solucionar de forma elementar um caso particular
do famoso Teorema de Dirichlet sobre progressoes aritméticas.

Teorema 2.33 (Teorema de Dirichlet sobre Progressoes Aritméticas). Sejam a e n inteiros po-
sitivos primos entre si. Entdo existem infinitos primos da forma nk + a, para k variando nos
naturais. FEquivalentemente, existem infinitos primos congruentes a a médulo n.

Esse teorema se demonstra utilizando métodos da Teoria Analitica dos Nimeros. Entretanto,
utilizando polinémios ciclotomicos pode-se demonstrar o caso em que a = 1, isto é:

Teorema 2.34 (Caso particular do Teorema de Dirichlet). Sejan > 1 um inteiro positivo. Entdo
existem infinitos primos p tais que p = 1 (mod n).

Uma demonstragao desse resultado se encontra em [13].



Capitulo 3

Dominios de Dedekind e de
Valoracao Discreta

Como vimos, nem todo anel de inteiros algébricos é um DFU, como por exemplo Z[/—5]. Apesar
disso, como veremos neste capitulo, todo anel de inteiros algébricos ainda possui propriedades
muito boas. A saber, ele é um dominio de Dedekind, isto é, ainda que ndo haja a unicidade da
fatoragdo para os elementos de Of, vale um teorema de unicidade da fatoragdo para objetos um
pouco diferentes: os ideais de Ok. Com isso, vale a pena um estudarmos mais detalhadamente
esse importante tipo de anel. Também estudaremos os dominios de valoragao discreta, que
sdo tipos especiais de DIP’s. Como veremos, a cada dominio de valoragao discreta nés podemos
associar uma valoragdo discreta, uma funcdo que possui diversas propriedades boas.

3.1. A Fatoracao Unica de Ideais

Definicao (Dominio de Dedekind). Seja A um dominio. Entdo A é chamado de dominio de
Dedekind se for integralmente fechado, noetheriano e se todo ideal primo n&o-nulo de A for
maximal.

O seguinte teorema diz que a propriedade de um anel ser um dominio de Dedekind é preservada
em certos tipos de extensao:

Teorema 3.1. Sejam A um dominio de Dedekind, K = Q(A) e L uma extensao finita e separdvel
de K. Entdo B = A" é um dominio de Dedekind.

Demonstragao. Temos Q(B) = L, pelo Teorema 1.16. Além disso, B = B, pelo Corolério 1.13.
Logo B ¢ integralmente fechado. Além disso, B é noetheriano pelo Teorema 1.37. Finalmente,
todo ideal primo nido-nulo de B é maximal, pelo item (e) do Teorema 1.53. ]

E claro que Z é um dominio de Dedekind. Assim, o teorema acima nos da diretamente
o seguinte resultado, que mostra a importancia de estudar dominios de Dedekind em Teoria
Algébrica dos Nimeros:

Teorema 3.2. Seja K um corpo de nimeros algébricos. Entio O € um dominio de Dedekind.

Sejam A um dominio qualquer e K = Q(A) seu corpo de fragoes. Entdo podemos ver K como
A-médulo com a multiplicagdo de K. Dados dois A-submédulos M, N C K, podemos definir os
submédulos M + N e M NN de K da maneira usual. Como temos uma multiplicagdo em K,
podemos definir também o produto M N, como sendo o submédulo formado pelas somas finitas
de elementos da forma mn com m € M en € N. Essas operagoes sdo bem-comportadas, pois elas
sao associativas e comutativas, e além disso é facil ver que temos, para M, N, P C K submédulos:

93
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e M(N+P)=MN + MP;

(MNN)(M+N)C MN;

e M(NNP)C MNNMP;

e MN(N+P)D(MNN)+ (MnP);,

e M+ (NNP)C(M+N)N(M+P).

Dessa forma, esses submddulos se comportam como ideais.

Definicao (Ideal Fraciondrio). Dizemos que um submédulo ndo-nulo M C K é um ideal fra-
cionario de A se existir d € A\ {0} tal que dM C A.

Nesse caso, é facil ver que dM serd um ideal a <1 A, de modo que M = d~'a é a “fracdo” de um
ideal de A por um elemento nao-nulo de A. Notemos que os ideais de A coincidem com os ideais
fraciondrios contidos em A. E importante também notar que todo submddulo nao-nulo finitamente
gerado de K é um ideal fracionario, pois basta escolher d de forma a “limpar os denominadores”
de todos os geradores desse submoédulo. Reciprocamente, num dominio noetheriano todo ideal
fracionario M é finitamente gerado, pois se dM <1 A entdo dM é finitamente gerado. Assim:

Proposicao 3.3. Todo A-submddulo ndo-nulo finitamente gerado M C K € um ideal fraciondrio
de A. Além disso, se A for um dominio noetheriano, um submddulo nao-nulo M C K de A serd
um ideal fraciondrio de A se e somente se for um A-mdodulo finitamente gerado.

Notagdo. Indicaremos o conjunto dos A-submddulos ndo-nulos de K por .#(A), o conjunto dos
ideais fracionarios de A por I(A), o conjunto dos ideais ndo-nulos de A por _# (A) e o conjunto dos
ideais primos nao-nulos de A por #(A). Quando A estiver claro, denotaremos apenas .#, 1, ¢

e &,
E f4cil mostrar que o conjunto I é fechado por soma, intersecao e produto.

Definicao (Ideal Inversivel). Dizemos que M € .# ¢é inversivel se existir N € . tal que
MN = A. Nesse caso, dizemos que N é o inverso de M.

Com a operacao de multiplicagdo, .# se torna um monoide, com identidade A. Assim, se
M € . for inversivel, seu inverso sera tinico, e serd denotado M ~!. Notemos ainda que I é um
submonoide de .Z .

Os submédulos gerados por um tinico elemento nao-nulo sempre sao fracionarios inversiveis:

Proposicao 3.4. Seja x € K\ {0}. Entdo o submddulo xA C K é um ideal fraciondrio de A.
Além disso, dado y € K \ {0}, temos (zA)(yA) = xzyA. Em particular, xA é inversivel, com
inverso x 1 A.

Demonstragio. E claro que (zA)(yA) = zyA, de onde segue também a tltima afirmacdo. Cha-
mando x = r/s, onde r,s € A, s # 0, temos sx = r € A, e portanto szA C A. Isso mostra que
xA é um ideal fracionario de A. O]

FEssa proposi¢do mostra que a seguinte defini¢do faz sentido:

Definicao (Ideal Fraciondrio Principal). Chamaremos um ideal fraciondrio de A de principal se
ele for da forma z A, para x € K \ {0}.

O conjunto dos ideais fraciondrios principais de A forma um grupo, que serda denotado por
P(A). Quando A estiver claro, denotaremos P(A) apenas por P.

Noé6s temos uma caracterizagdo melhor para o inverso de um modulo, utilizando o chamado
quociente de um submédulo:
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Definigao (Quociente de um Submédulo). Dado M C K submédulo, definimos o quociente de
M como sendo (A: M) ={zxe K|zM C A}.

E facil ver que (A : M) também é um submédulo de K, e que ele satisfaz (A : M)M C A.
Além disso, dado um ideal a <9 A, temos claramente A C (A:a), e (A:0) = K.

Proposicao 3.5. Seja M € 4. Entao:
(a) (A: M) € um ideal fraciondrio de A;
(b) Se M for um ideal fraciondrio de A, entio (A : M) # 0;
(c) Se A# K, entio (A: K) =0, e K ndo é um ideal fraciondrio de A.

Demonstragao.  (a) Seja ¢/d € M nao-nulo, com ¢,d € A. Entdao ¢ = d(¢/d) € M N A\ {0}.
Observemos agora que c(A: M) C M(A: M) C A, e portanto (A : M) é ideal fraciondrio.

(b) Seja d € A\ {0} tal que dM C A. Entéo d € (A: M), mostrando que (A : M) # 0.

(¢) Suponhamos A # K. Seja ¢/d € (A: K), com ¢,d € A. Entdo (¢/d)K C A. Se ¢ # 0,

isso significa que K C (d/c)A. Mas d/c = (c¢/d)(d*/c*) € (¢c/d)K C A, e portanto temos

K C (d/c)A C A, um absurdo! Assim, temos ¢ = 0, e ¢/d = 0. Ou seja, (A: K) = 0. Do
item (b), concluimos que K nao é ideal fraciondrio.

O

A proposicao acima nos diz, em particular, que I também é fechado para o quociente.

Proposicio 3.6. Seja M € .# inversivel. Entio M é um A-mddulo finitamente gerado, M~ =
(A: M) e ambos M e M~" sdo ideais fraciondrios. Além disso, tM~' <t A para todo x € M.

Demonstra¢io. Como MM = A, temos M~ C (A: M). Por outro lado,
(A:M)=(A:M)A=(A: M)MM C AM™ = M~

Dessa forma, M~! = (A : M). Pela Proposi¢io 3.5 j& sabemos que (A : M) é ideal fracionario.
Mostremos agora que M é finitamente gerado. Como (A : M)M = 1, nés podemos escrever
1 = y121 + -+ + Ym2m, para alguns yi,...,ym € (A : M) e 21,...,2, € M. Afirmamos que
M = Az + -+ Azy,. De fato, dado x € M qualquer, temos:

z=(xy1)z1+ -+ (@Ym)2m € Az1 + -+ Azp,

pois pela defini¢do de (A : M) temos zyi, ..., 2ym € A. Sendo M finitamente gerado, temos M
ideal fracionario. Por fim, basta notar que, dado = € M, temos zM "t C MM~ = A. O

Chamemos de J(A) o conjunto dos ideais fraciondrios inversiveis de A. Quando A estiver
claro pelo contexto, denotaremos J(A) apenas por J. Pelo resultado acima, nds temos J C I.
Notemos que J munido da multiplicagdo forma um grupo abeliano, e é o maior grupo contido nos
monoides I e .. Notemos ainda que P C J.

Para o que segue, precisaremos de alguns resultados gerais sobre ideais primos e sobre anéis
noetherianos:

Proposicao 3.7. Sejam ay,...,a. <A e p<lA primo. Suponhamos que p O aj---a.. Entdo
temos p 2 a; para algum 1 < j <.

Demonstragdo. Provaremos a contrapositiva: se p 2 a; para 1 < j < r, entdo podemos escolher
a; € a; \ p. Mas entdo a;---a, € a;---a, \ p, j& que p é primo, mostrando que p 2 a; ---a,. [
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Teorema 3.8. Seja A um anel noetheriano. Entdao para todo ideal a <1 A existem ideais primos
P1, ..., P, <A tais que

PP P, CalprNpaNe--Npy,.

Demonstracdo. E claro que A e os ideais primos de A possuem essa propriedade (basta tomar
n = 0 en = 1 respectivamente). Seja () o conjunto dos ideais de A que ndo possuem a propriedade
acima. Queremos mostrar que () = (). Suponhamos por absurdo que esse nao seja o caso. Como A
é noetheriano, existe b € () maximal. Sabemos que b é um ideal préprio e ndo-primo de A. Assim,
existem z,y € A\ b tais que zy € b. Como b C b+ x4 e b C b+ yA, segue da maximalidade de
b que existem ideais primos py,...,p,,q1,-..,qs < A tais que

pipe--p, © b+TACPH NpaN---Np,. e
qgig2---qs S b+yACqgiNgzN---Ngs.

Desse modo:

pibho-Ppraqige---qs S (b+xzA)(b+yA)Chb
C (b+zA)N(b+yA)
C prNpaN---Np.Ngr Ng2N--- Mg,
mostrando que b € O, um absurdo! Assim, () = (), como querfamos. O

Como consequéncia desse resultado, nés temos:

Corolario 3.9. Seja A um anel noetheriano. Entdo todo ideal ndo-nulo a << A contém o produto
de um ndmero finito de ideais primos ndao-nulos.

Demonstracdo. Pelo teorema anterior, existem primos pq,...,p, <A com

PP P, CalprNpyN---Mpy,.

Como a é ndo-nulo, a segunda inclusdo nos mostra que nenhum desses primos é nulo, e assim
temos o resultado desejado. O

Lema 3.10. Seja A um dominio noetheriano tal que todos os ideais primos nao-nulos de A sejam
mazimais. Entdo para todo p € & nds temos A C (A :p).

Demonstracao. J& sabemos que A C (A :p). Assim, devemos achar um elemento de (A : p) fora
de A. Para isso, tomemos d € p \{0} qualquer. Pelo Corolario 3.9 existem py, ..., p, <2 tais que

pip2--p, CdACY.

Podemos supor que r é minimo. Como p contém o produto p;---p,, p deve conter algum dos
ideais pq, ..., p, por 3.7. Suponhamos sem perda de generalidade que p 2O p;. Sendo p; maximal,
temos p = p;. Pela minimalidade de 7, nés temos py - - - p, € dA, de modo que existe um elemento
¢ Epy---p, tal que ¢/d & A. Por outro lado,

cpCpipyp, CdA= (¢/d)p CA=c/de (A:p).
Entéo ¢/d é o elemento procurado, completando a demonstragao. O
Com os resultados acima em méaos, podemos demonstrar:
Teorema 3.11. Seja A um dominio de Dedekind. Entdo:

(a) Todo p € & € inversivel.
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(b) Todo ideal nao-nulo de A é produto de ideais primos de A. Consequentemente, todo ideal

nao-nulo de A € inversivel.

(¢) Todo ideal fraciondrio ndo-nulo de A é inversivel. Desse modo, I é um grupo, ou seja,

J =1

Demonstragao.  (a) Devido & Proposigao 3.6, queremos mostrar que (A :p)p = A. Mas temos

(¢)

p C (A:p)p <A, entdo sendo p maximal basta mostrarmos que p # (A : p) p. Suponhamos
por absurdo que p = (A : p)p, e tomemos ¢ € (A : p). Isso significa que cp C p. Desse
modo, para todo inteiro positivo m nds temos:

MpCmtp - CepCpC A

Logo Alc]p C A. Fixemos d € p\{0}. Entdao 0 # Alc]d C A, mostrando que Alc| é um
ideal fraciondrio de A. Como A é noetheriano, concluimos da Proposi¢ao 3.3 que A[c] é
um A-médulo finitamente gerado, de onde vemos que A[c]/ A é uma extensao integral, pelo

Teorema 1.9. Em particular, ¢ € A% = A Oou seja, (A :p) C A, um absurdo pelo Lema
3.10.

Para cada m € IN, definamos _#,,, como sendo o conjunto dos ideais nao-nulos de A que
contém um produto de m elementos de . Dessa forma, {A} = #, C 71 C #C--- e
Unzo Zn = _#, onde essa tltima igualdade segue do Corolario 3.9. Provaremos por inducao
em n que todo ideal em _#, é produto de elementos de &?. Como a afirmacao ¢ ébvia para
n = 0 (basta tomar o produto vazio), suponhamos que a afirmacao valha para n = r — 1,
com r > 1, e tomemos a € _Z, \ {A}. Pela definicdo de _Z,, existem py,...,p, € & tais
que a O py---p,. Tomemos m <1 A maximal com m O a. Entdo m 2O p;---p,., e como m
é primo temos por 3.7 que m 2 p; para algum 1 < ¢ < r. Sem perda de generalidade,
suponhamos m 2 p;. Como p; é maximal, temos m = p;. Sendo m inversivel por (a),
podemos multiplicar a cadeia de continéncias p; - --p,, € a C m por m~ !, para concluir que

py--p, CmlaCmim = A

Entdo m~'a € Hr—1, e por hipétese existem qi,...,q, € & tais que mla = q1---qs.

Multiplicando por m, chegamos em a = mq; - - - 45, provando que a é produto de elementos
de . Notemos ainda que, como todo ideal primo nao-nulo de A é inversivel, a também o
é, com a~ ! = m_lql_1 ---q5 1. Assim, por inducdo, provamos que todo ideal ndo-nulo de A
é produto de ideais primos nao-nulos de A, e também é inversivel.

Se M € I, existe d € A\ {0} tal que a := dM <1 A. Entdo M = d~'a. Por (b), a é inversivel,
logo M também o é, com inversa M1 = da~ L.
O

O item (b) do teorema acima afirma que todo ideal ndo-nulo a <t A admite uma fatoragdo
em ideais primos ndo-nulos de A. Juntando os primos que aparecem mais de uma vez nessa
fatoragdo, encontramos a fatoragao de a como a = plfl -.-p¥r onde ki, ..., k, sdo inteiros positivos

€ pq,..

., € & sdo distintos dois a dois. Entretanto, o maquinédrio poderoso que ganhamos ao

trabalhar com dominios de Dedekind nao se baseia apenas na existéncia dessa fatoracdo, mas sim
na sua unicidade:

Teorema 3.12 (Fatoracdo Unica de Ideais em Dominios de Dedekind). Seja A um dominio de
Dedekind. Entdo I é wm grupo, e:

(a) Todo ideal a € ¢ se escreve de modo tinico (a menos de ordem) na forma

n
a= prﬂ com pi,...,pn € P distintos dois a dois, e ki,...,k, € N*.
i=1
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(b) Todo ideal fraciondrio M € I se escreve de modo unico (a menos de ordem) na forma

M= pri, com p1,...,pn € & distintos dois a dois, € ki,...,k, € Z\{0}.
i=1

Demonstragao. Notemos que (a) segue do teorema anterior e de (b). Assim, basta provar (b).
Seja portanto M € I, e tomemos d € A\ {0} tal que dM <1 A. Desse modo, M = d~'(dM) =
(dA)~t-dM. Pelo Teorema 3.11, existem qq, ..., Qp, Apsts-- > qn € P tais que dA =qy -+ -q,, e
dM = q,,.1---q,. Assim, nds temos

M: (dA)fldM:ql_lq;llqm+1q

n’

o que nos mostra a existéncia da fatoracdo de um ideal fracionario (basta juntar/cortar os primos
que aparecem mais de uma vez). Assim, resta demonstrar a unicidade da fatoragdo. Para isso,
suponhamos que tenhamos duas fatoracoes para M:

k k
M= I]»;" =1I»y,
j=1 1

j=

com Py, ...,p, primos distintos e mq, ..., mg,n,...,n; € Z (aqui, permitimos que os expoentes
sejam nulos, para que tenhamos o mesmo conjunto de primos de ambos os lados). Queremos
mostrar que (myq,...,my) = (n1,...,ng). Para isso, notemos que a igualdade acima implica que
vale

[T s = T1 o™

1<j<k 1<j<k

m;>n; mj;<nj;
Notemos que nos dois produtérios acima todos os primos aparecem com expoentes positivos.
Suponhamos por absurdo que (mq,...,mg) # (n1,...,n;). Entdo pelo menos um dos produtérios
acima é nao-vazio, e portanto ambos os produtérios acima o sdo, j4 que sendo teriamos uma
igualdade entre A e um ideal proprio de A. Sem perda de generalidade, consideremos mj; > nj.
Assim, p; aparece no lado esquerdo da igualdade acima. Isso implica que o produtério do lado
direito esta contido em p;, e por 3.7 algum primo p, que aparece com expoente positivo no
produtério da direita estd contido em p;. Temos i # 1, pois um mesmo primo nao pode aparecer
nos dois produtoérios acima. Assim, p; # p;. Mas p, é maximal, logo p; = p,, absurdo! Isso
termina a demonstracdo do teorema. O

Observagao 3.13. Nds utilizaremos também a notacio M = [[, p"* para indicar a fatoracio
de M em ideais primos de A. Nessa notac¢do, subentende-se que p varia entre os ideais primos
ndo-nulos de A e que cada v, € Z. Note que esse serd na verdade um produto finito, ou seja,
temos v, # 0 apenas para um nimero finito de ideais primos ndao-nulos p <A.

O que esse resultado nos diz na pratica é que os ideais fracionarios de um dominio de Dedekind
tém um comportamento multiplicativo muito parecido com o do corpo de fragbes de um DFU:
temos multiplicac¢do, inverso e fatoracdo tnica. Na verdade, podemos pensar no grupo dos ideais
fracionarios de um dominio de Dedekind A como uma extensdo da estrutura multiplicativa de A,
com um elemento x € A identificado com o ideal principal zA. Notemos que o elemento neutro A
corresponde ao elemento neutro 1. Essa “extensao” nao é bem uma extensao, dado que elementos
associados geram o mesmo ideal. Porém, isso na verdade é bom, pois elementos associados de A
sdo essencialmente “a mesma coisa”, e dessa forma conseguimos um teorema de fatoracdo tnica
mais limpo (num DFU, os primos sdo tnicos a menos de associados).

FEssa semelhanga de ideais fracionarios com DFU’s nos sugere que possamos definir divisibili-
dade nesse conjunto:
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Definigao (Divisibilidade em I). Sejam M, N € I. Entao dizemos que M divide N, ou ainda
que N é um muiltiplo de M, se N = aM para algum a € _#. Denotamos M | N.

A divisibilidade, como esperado, se comporta bem, e nos dd uma relacdo mais estreita ainda
entre ideais fracionarios e DFU’s:

Corolario 3.14. Seja A um dominio de Dedekind, e sejam M = p’fl cophr N = plf ooplr, onde
nos temos P1,...,pr € P k1, ... ke l1,..., 0. € Z. Entdo:

(a) MN:plf1+£1 57”4’67"
(b) MDON <— M’N — ki <Ml,... k. <U{,.
(¢) mdc(M,N) =M+ N =p{" ---p", onde para 1 < j <r temos m; = min{k;, {;}.

(d) mmc(M,N):=MNN =p*---pi, onde para 1 < j <r temos nj = max{k;,{;}.

r o

(e) Seja P € I qualquer. Entdo valem as igualdades:

(i) (MNN)(M+ N)=DMN, ou seja, mde(M, N)mmc(M,N) = MN.
(ii) M(N + P) = MN + MP, ou seja, M -mdc(N, P) = mdc(MN,MP).
(iii) M(NNP)=MNNMP, ou seja, M - mmc(N, P) = mmc(MN,MP).
(iv) MON(N+P)=(MNN)+ (MnNP), ou seja,

mmc(M,mde(N, P)) = mde(mme(M, N),mmc(M, P)).

(v) M+ (NNP)=(M+ N)n(M+ P), ou seja,

mdc(M, mme(N, P)) = mme(mde(M,N), mde(M, P)).

Demonstragio.  (a) E 6bvio.

(b) E claro que valem as implicacdes ki < f1,...,k, < {. = M | N = M D N. Notemos agora
que M DN = ADNM Assim, NM '<A, etemos N = (NM~Y)M = M | N.
Suponhamos por fim que valha M | N. Entao existe a << A com N = aM. A implicagao
restante segue do fato de que todos os expoentes da fatoragdo prima de a sdo nado-negativos
e do item (a).

(¢) Devido & fatoragao tnica e ao item (b), pi** -+ pr é o menor ideal fraciondrio que contém
ambos M e N. Mas M + N também possui essa propriedade, de onde tiramos a igualdade
desejada.

(d) Devido a fatoragao tnica e ao item (b), py* ---pP é o maior ideal fraciondrio contido em
ambos M e N. Mas M N N também possui essa propriedade, de onde tiramos a igualdade
desejada.

(e) (i) Segue dos itens anteriores e da igualdade min(m,n) + max(m,n) = m + n.

(ii) Segue dos itens anteriores e da igualdade m - max(n,p) = max(mn, mp). Notemos no
entanto que essa igualdade de ideais fracionarios vale para todo dominio A, e assim
pode ser concluida diretamente.

(iii) Segue dos itens anteriores e da igualdade m - min(n,p) = min(mn, mp).

(iv) Segue dos itens anteriores e da igualdade min(m, max(n, p)) = max(min(m,n), min(m,p)).

(v) Segue dos itens anteriores e da igualdade max(m, min(n, p)) = min(max(m, n), max(m,p)).

O]

Como consequéncia do item (b) desse coroldrio, nés obtemos:
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Corolario 3.15. Seja A um dominio de Dedekind. Entdo:
(a) Para todo a € 7, o conjunto dos ideais de A que contém a € finito.

(b) Para todo a € ¢, os ideais ap, onde p percorre &, sio os elementos mazximais do conjunto
dos ideais de A que estdo estritamente contidos em a.

(c) Sejam a€ 7 epe P. Entio a/(pa) é um A/p-espaco vetorial de dimensdo 1.

Demonstracgao. Os itens (a) e (b) seguem imediatamente do resultado acima. Provemos (¢). O
anel a/(pa) é um A/p espago vetorial, pois é claro que p anula esse A-mddulo. Do item (b), vemos
que a/(pa) # 0 é simples como A-médulo, e portanto também é simples como A/ p-espago. [

Ainda temos o seguinte teorema, que nos diz que os DIP’s sdo exatamente os DFU’s que sao
dominios de Dedekind:

Teorema 3.16. Seja A um dominio. Entdo as sequintes condigdes sdo equivalentes:
(i) A é um DIP.

(i) A é um DFU e um dominio de Dedekind.

Demonstragao. (i) = (ii): Seja A um DIP. Entao é claro que A também é um DFU, e em parti-
cular é integralmente fechado pelo Teorema 1.14. Além disso, como todo ideal de A é principal é
claro que A é noetheriano e todo ideal primo ndo-nulo de A é maximal.

(i) = (4): Suponhamos que A seja um DFU e um dominio de Dedekind. Como todo ideal de A
é produto de primos, basta mostrar que todo p € & é principal. Para ver isso, seja a € p\{0}
qualquer. Sendo A um DFU, podemos escrever a = 21 --- 2z, onde 21, ...,z € A sdo irredutiveis.
Sendo p primo, existe 1 < j < r com z; € p, e portanto z;A C p. Mas como A é um DFU, o
ideal z;A ¢ primo, e portanto maximal. Assim, z;A C p = 2;A = p, mostrando que p é principal,
como desejado. O

Esse teorema nos permite afirmar, como haviamos comentado, que DIP’s e DFU’s sdo a mesma
coisa quando tratamos de um anel de inteiros algébricos:

Teorema 3.17. Seja K um corpo de niumeros algébricos. Entdo Ok serd um DIP se e s6 se for
um DFU.

Pelo que vimos, num dominio de Dedekind A o monoide I(A) é um grupo. Note que utilizamos
todas as hipdteses que caracterizam um dominio de Dedekind na demonstracao do Teorema 3.11.
Assim, pode-se perguntar se o fato de I(A) ser um grupo implica em A ser um dominio de
Dedekind. Isso de fato ocorre:

Teorema 3.18. Seja A um dominio. Entdo as seguintes condi¢des sdo equivalentes:
(i) A é um dominio de Dedekind.
(i) I é um grupo.

Demonstragao. J& provamos que (i) = (i7). Provemos que (i) = (). Devemos verificar que A
é noetheriano, integralmente fechado e que todo elemento de &2 é maximal:

e Seja a<dA. Se a =0, ébbvio que a é finitamente gerado. Suponhamos a # 0. Entao a
¢é inversivel, e portanto finitamente gerado pela Proposicao 3.6. Assim, todo ideal de A é
finitamente gerado, mostrando que A é noetheriano.
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e Sejace A", Entao Alc] é finitamente gerado, e portanto ¢ um ideal fracionario de A. E
facil ver que Alc]Alc] = Alc], e sendo A[c] inversivel concluimos que A[c] = A. Ou seja,
ce A

e Sejap € &, e tomemos a <A tal que p C a. Queremos mostrar que a = A. Fixemos
ac€a\p. Ser € alp, entdo ar € aa~tp = p. Como p é primo, concluimos que r € p.
Ousecja, alpCp=>altCA Mas ACa ' logo A=a!= a= A, como queriamos.
Assim, p é maximal.

Entédo A é dominio de Dedekind, como desejavamos. O

3.2. Propriedades dos Dominios de Dedekind

Pelo Teorema 3.12, se A for um dominio de Dedekind entdo o grupo dos ideais fracionérios
principais P = P(A) é um subgrupo do grupo I = I(A). Assim, podemos considerar o grupo
quociente ¢4(A) := I/P, que é chamado de grupo de classes de ideais de A. Quando A
estiver claro, denotaremos esse grupo simplesmente por €¢. Além disso, denotaremos a classe
de um elemento M € I por M P ou por [M]. O nome “grupo de classes de ideais” é devido ao
seguinte resultado:

Proposicao 3.19. Dados M,N € I, temos MP = NP se e sé se existirem c¢,d € A\ {0} tais
que cM = dN. Além disso, a fungdo 7: ¢ — € dada por a — aP € sobrejetora. Ou seja, toda
classe de €L € a classe de algum ideal de A.

Demonstragdo. Dados dois ideais fracionarios M, N € I, temos MP = NP +—= M~'N ¢ P.
Isso, por sua vez, acontecerd se e s6 se existir um z € K \ {0} tal que M !N = zA. Escrevendo
x =c/d, com c,d € A\ {0}, obtemos M~'N = (¢/d)A <= c¢M = dN. Seja agora MP € €{
qualquer, com M € I. Entao existe r € A\ {0} tal que rM € #. Masr-M = 1-(rM), logo pelo
que provamos acima temos M P = (rM)P = n(rM) € im 7, mostrando que 7 é sobrejetora. [

Definigdo (Numero de Classes). O numero cardinal |¢¢| é chamado de o nimero de classes de
A, e serd denotado por hy. Se A = Ok for o anel de inteiros algébricos de um corpo de niimeros
K, denotamos hp, simplesmente por hg, e também o chamamos de niimero de classes de K.

Temos imediatamente o seguinte corolario:

Corolario 3.20. Um dominio de Dedekind A serd um DIP se e sé se o grupo € for trivial, ou
seja, se e so se hg = 1.

No proximo capitulo, nés demostraremos o Teorema da Finitude do Nimero de Classes,
que afirma que para todo corpo de ntimeros K o ntmero hg é finito.

Pelo que vimos, dado um dominio A teremos J(A) = I(A) se e s6 se A for um dominio
de Dedekind. Entretanto, mesmo se A nao for um dominio de Dedekind, os conjuntos J(A) e
P(A) C J(A) sao grupos abelianos, e portanto podemos considerar o quociente J(A)/P(A):

Defini¢do (Grupo de Picard). Dado um dominio A qualquer, definimos seu grupo de Picard
Pic(A4) como sendo o grupo abeliano dado pelo quociente Pic(A) := J(A)/P(A).

Denotaremos Pic(A) apenas por Pic se A estiver claro. E claro que se A for um dominio de
Dedekind o grupo de Picard Pic(A) coincidird com o grupo de classes €¢(A).

Como ja vimos, todo ideal fracionario de um dominio noetheriano é finitamente gerado. No
caso de dominios de Dedekind, podemos melhorar isso, para garantir que todo ideal fracionario é
gerado como A-médulo por dois elementos, podendo um deles ser previamente fixado. Comecemos
com o seguinte teorema:
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Teorema 3.21. Seja A um dominio de Dedekind. Entdo para todos M € I e b € 7 existe
x € M tal que os ideais tM ™' e b sdo coprimos.

Demonstracdo. Seja b = p’fl ---pkr a fatoragdo prima de b. Se r = 0, b = A e a afirmagao é 6bvia.
Suponhamos entao r > 1. Como b <1 A, temos ki,..., k. > 0. Queremos escolher z de modo que
xM~! e b sejam coprimos. Pelo Coroldrio 3.14, isso significa que os primos que aparecem na
fatoracdo de xM~! e de b devem ser todos distintos. Ou seja, queremos achar z € M de modo
que zM~1 ¢ p; para todo 1 < j <.

Definamos, para 1 < j <7, Mj :=py---p;_1 P11 P, M. Notemos que p; M; C M;. Assim,
podemos escolher z; € M; \ p; M. E claro que xj € p; M para i # j. Por outro lado, x; € p,; M.
De fato, se tivéssemos z; € p; M, entao teriamos z; M~ Cp N---Np, =p;-p,, onde a tltima

igualdade segue do fato dos ideais py,...,p, serem coprimos. Assim, poderiamos concluir que
Tj € py---p, M =p; M;, um absurdo!

Definamos = = z1 + 22+ ---+ 1z, € M. Afirmamos que x satisfaz a condi¢do desejada.
Suponhamos por absurdo que xM~! C p; para algum 1 < j < r, e sem perda de generalidade
tomemos j = r. Entdo x € p,. M, e portanto x, = x — 21 — - —x,_1 € p, M, um absurdo,
concluindo a demonstracéo. O

Finalmente, podemos aplicar esse teorema para mostrar o que queriamos:

Corolario 3.22. Sejam A um dominio de Dedekind, M € I ey € M\ {0}. Entao existe x € M
tal que M = x A+ yA.

Demonstragdo. Temos yM~' <1 A. Assim, pelo teorema acima, existe um elemento x € M tal
que M~ +yM~! = A. Mas isso equivale a termos xA + yA = M. O

Outro resultado importante é que todo dominio de Dedekind com um ntmero finito de ideais
primos é um DIP:

Teorema 3.23. Seja A um dominio de Dedekind com um niumero finito de ideais primos. Entdo
A é um DIP.

Demonstragdgo. Como todo ideal de A é produto de ideais primos, basta mostrar que todo ideal
primo de A é principal. Sejam p,,...,p,, os ideais primos de A. Provaremos que p; é principal. O
resto segue analogamente. Sabemos que p? C p;. Assim, podemos tomar r; € p; \ p?. Os ideais
p3,Pa, - -, P, sA0 coprimos dois a dois, e portanto podemos aplicar o Teorema Chinés dos Restos
para encontrar r € A tal que 7 = r1 (mod p7) e r =1 (mod p;) para 2 < j < n. Desse modo, r é
tal que r g p? er ¢ p; para 2 < j < n, e portanto na fatoragao prima de rA o primo p; aparece

com expoente no maximo 1, e os primos p,, ..., p,, ndo aparecem. Disso concluimos que rA D p;.
Como a outra inclusao segue diretamente de r € p;, concluimos que p; = rA é principal, como
desejado. O

Terminaremos a se¢do vendo como dominios de Dedekind se comportam com localizacoes:

Proposicao 3.24. Sejam A um dominio de Dedekind e S um conjunto multiplicativo de A. Entdo
S=YA é um dominio de Dedekind. Além disso, o mapa I(A) — I(S7tA) dado por M +— S~'M
€ um homomorfismo sobrejetor de grupos abelianos, e seu nicleo consiste dos ideais fraciondrios
M € I(A) tais que MNS # 0 e M~1NS # 0. Esse mapa induz um homomorfismo sobrejetor
CUA) — CUS™LA) dado por [M] — [S™1M].

Demonstragdo. Sendo a localizacdo de um dominio noetheriano, S™'A também é um dominio
noetheriano. Como A é integralmente fechado, segue da Proposicdo 1.15 que S™'A também é
integralmente fechado. Finalmente, um ideal primo de S~'A é da forma S~!p para algum p <A
primo que néo intersecta S. Como p é maximal em A, pela correspondéncia da localizagdo vemos
que S~!'p é maximal em STt A. Isso mostra que S~'A é dominio de Dedekind.
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O fato da funcdo indicada ser um homomorfismo de grupos equivale a termos, para todos
M, N € I, aigualdade ST} (MN) = (S7IM)(S™IN), que se verifica diretamente. Para mostrar
que esse homomorfismo é sobrejetor, seja N € I(S71A) qualquer. Entdo existe z € S~tA\ {0}
tal que N <1 S~1A. Dessa forma, existe a < A tal que zN = S~ 'a. Portanto, nés vemos que
N =2"1S7ta= S (2 ta) estd na imagem do homomorfismo acima, ji que x~ta € I(A).

Falta mostrar que o nicleo desse homomorfismo é o conjunto dos ideais fracionarios M de
A tais que MNS # 0 e M'NS # (. Suponhamos primeiramente que M NS # 0 e que
M—1NS # (. Tomemos s € MNS ex € M—'NS. Sendo r/t € S™'A qualquer, temos
r/t = (rs)/(ts) € ST'M. Assim, S~'A C S~!M. Sendo agora m/s € S™'M qualquer, temos
m/s = (mx)/(sz) € STLA, mostrando que S~IM C S71A. Assim, ST1A = S71M, e M estd no
ntcleo desse homomorfismo.

Reciprocamente, suponhamos que M est4 nesse nicleo, ou seja, que S™'M = S~'A. Entdo
1 € S7'M, e podemos escrever 1 = m/s param € M e s € S. Mas isso significa que m = s, e
esse é um elemento de M N S. Além disso, notemos que a condicido S™'M C S™1A. é equivalente
a S7'AC S7'M~! e da mesma forma concluimos que M~1 NS # (), como querfamos.

Para ver que esse homomorfismo induz um homomorfismo €¢(A4) — €¢(S~1A) dado por
[M] + [S~1M], mostremos que se [M;] = [M3] entdo [S~'M;] = [S™1Ms]. Como [M;] = [Ms],
existe # € Q(A) tal que xM; = M,. Localizando, vemos que z(S~'M;) = S~'Ms, o que
mostra que [STIM;] = [ST1Ms]. Assim, essa fungdo estd bem-definida, e o fato dela ser um
homomorfismo sobrejetor segue do mapa I(A) — I(S~1A) o ser. O

O seguinte resultado generaliza o Teorema 1.48 e o Corolario 1.49 para poténcias de primos:

Teorema 3.25. Sejam A um dominio de Dedekind, S um conjunto multiplicativo de A e p 1A
um ideal primo nao-nulo que ndo intersecta S. Entdo:

(a) Para todo n inteiro positivo temos S~1p" NA = p".

(b) Para todo n inteiro positivo o homomorfismo candnico A/ p" — S™YA/S~1p" dado por
THp" = x4+ ST p" é um isomorfismo, e portanto nés temos A/ p" = STLA/ ST pn.

Demonstragdo.  (a) E claro que p™ C S~ p" NA. Para a inclusio contréria, seja a € S~ p" NA.
Entdo a = x/s, para alguns elementos x € p™ e s € S, e nds temos sa = x € p". Assim,
p" | (sa)A = (sA)(ad). Como s & p, temos p { sA, e portanto p" | aA = a € p"™, 0 que
prova que S~ p?NA C p", como queriamos.

(b) Comecemos observando que, para todo s € A\ p, nds temos sA + p = A pela maximalidade
de p. Sendo sA coprimo com p, é facil ver que sA também é coprimo com p™, e portanto
sA+p™ = A. Mostremos que o homomorfismo candnico definido acima é de fato um
isomorfismo:

o Essa funcdo estd bem-definida: Sejam z,y € A tais que = + p™* = y + p”. Entao
r—yep’ C S p" e portanto x + S p” =y 4+ S pn.

e Essa funcao é um homomorfismo: E claro.

o Essa fungdo é injetora: Seja x € A tal que x € S~ p™. Entdo, pelo item (a), temos
x € p", 0 que mostra a injetividade desse homomorfismo.

« Essa funcdo é sobrejetora: Seja y € S™'A qualquer. Entdo temos y = a/s, para
alguns a € A, s € . Como A = sA + p", existem p € p" e x € A tais que a = sx + p,
de modo que y = a/s = x4+ p/s = y+ S p” = 2 + S~ p”, mostrando que esse
homomorfismo é de fato sobrejetor.

O]
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3.3. Dominios de Valoracao Discreta

Os dominios de valoracdo discreta sdo, em certo sentido, os dominios mais simples depois dos
Corpos:

Defini¢ao (Dominio de Valoragéo Discreta). Um dominio A é chamado de dominio de valoragao
discreta (abreviamos DVD) se for um DIP local, e se seu tnico ideal maximal for nao-nulo.

Sendo A um DVD com tnico ideal maximal p # 0, podemos escolher um gerador w do ideal
principal p. Como os ideais maximais em um DIP sdo exatamente aqueles que sdo gerados por
um elemento irredutivel, vemos que 7 é o Unico elemento irredutivel de A a menos de associados.
Nés chamamos 7 (ou qualquer um de seus associados) de normalizador de A. Desse modo, todo
elemento ndo-nulo de A se escreve de modo tnico como un™, onde u € A* = A\pen € N. A
partir disso, é facil ver que de fato todo elemento ndo-nulo de K := Q(A) se escreve de modo
unico como un”, onde u € A* en € Z. Assim, dado x € K \ {0}, existe um dnico n € Z para
o qual £A = p". A partir disso, podemos definir uma fungao sobrejetora v: K — ZU{oo}, que
chamamos de valoracado de A, dada por:

{n,sex #0exzA=p"
v(z) =

o0, se x = 0.

Podemos ainda denotar essa valoracao por v4, para especificar o dominio de valoragao discreta
com o qual comecamos. Estendamos a soma de Z e a ordem de Z para o conjunto Z U{oo}
definindo, para todon € Z, n+ 0o =00+ n =00 e 00 > n.

Dado 2 € K qualquer, chamaremos v(z) de valoragédo de x. Dados z,y € K quaisquer, escre-
vamos r = ulﬂ”(x) ey = uQﬂ”(y), com ui,us € A*. Entdo nés temos zy = U1UQ7TU(E)+U(y), 0 que
nos dé a rela¢do v(zy) = v(z) + v(y). Suponhamos agora que v(z) < v(y), sem perda de genera-
lidade. Entao z 4+ y = w1 4+ uor?® = (uy + ugﬂ”(y)*”(‘”))ﬂ v(@) | Como ug + ugr?@ -0 ¢ A,
n6s concluimos que v(z 4 y) > v(z). Isso nos dé a relagdo v(xz +y) > min{v(z),v(y)}.

Nés definimos, de forma geral, uma valoragdo (exponencial) discreta como uma fun¢ao
que tenha propriedades como as acima:

Definicao (Valoragao (Exponencial) Discreta). Seja K um corpo. Uma valoragio (exponen-
cial) discreta de K ¢é uma funcéo sobrejetora v: K — Z U{oo} que verifica:

(i) v(z) =00 <= z=0;
(i) v(zy) = v(z) +v(y) (assim, v: K* — Z é um morfismo de grupos);
(iii) (Propriedade nao-arquimediana) v(z + y) > min{v(z),v(y)}.

Toda valoragdo discreta tem as seguintes propriedades béasicas, que decorrem diretamente da
definicdo acima:

Lema 3.26. Seja v: K — Z U{oco} uma valoragio discreta. Entdo:
(a) v(£1) =0, e v(—z) = v(z) para todo z € K.
(b) v(z/
(¢) v(z) #v(y) = v(z+y) = min{v(z),v(y)}.
(

(d) v(z1+ -+ z,) =min{v(z1),...,v(zn)}, se v(x;) # v(x;) para todos 1 <i < j <mn.

z/y) = v(z) —v(y), para todos x,y € K com y # 0. Em particular, v(y™') = —v(y).

(e) Sexi+---+x, =0 comn>2, entao existem 1 <i < j<n comv(z;) =v(zx;).
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Demonstragdo. (a) Como v(1) = v(1-1) = v(1) + v(1), temos v(1) = 0. Além disso, temos
0=v(1) =v((-1)-(-1)) =v(-1)+v(-1) = 2v(—1), e portanto v(—1) = 0. Finalmente,
dado z € K qualquer, temos v( =v(z-(-1)) =v(z)+v(-1) =v(x).

(b) Temos v(z) =v(y-(z/y)) = v(y) +v(z/y), de onde concluimos que v(z/y) = v(x) —v(y).
Note que podemos subtrair v(y), pois y # 0 = v(y) € Z.

(¢) Suponhamos sem perda de generalidade que v(z) < v(y). Entdo queremos mostrar que
v(z+y) = v(z). Nos sabemos que v(x + y) > v(x). Assim, é suficiente mostrarmos que
v(z+y) <wv(z). Notemos que v(x) > min{v(z +y),v(—y)} = min{v(z +y),v(y)}. Como
v(z) < v(y), concluimos que devemos ter v(z) > v(x +y), e assim v(z +y) = v(x).

(d) Segue facilmente por inducao a partir do item anterior.

(e) Suponhamos sem perda de generalidade que v(z1) < v(zg) < -+ < v(xy,). Se todas
essas desigualdades fossem estritas, entdo pelo item acima nds poderiamos concluir que
v(z1) = v(0) = 0o = z1 = 0. Mas entdo v(z2) > v(z1) = oo, um absurdo!

O

Da mesma forma que partindo de um dominio de valoragao discreta nds conseguimos construir
uma valoracdo discreta associada a ele, partindo de uma valoracdo discreta nés conseguimos
construir um dominio de valoragao discreta associado a ela:

Proposicao 3.27. (a) Seja v: K — ZU{oco} uma valorac¢io discreta. Entdo o conjunto
Oy ={a€K:v(a) >0}
€ um dominio de valoracdo discreta, com unico ideal mazximal

p,={a€K:v(a) >0} ={a€ K:v(a) >1}.

(b) As operacies A — va e v — O, sdo inversas uma da outra, isto €, vo, = v e O,, = A.
Assim, temos uma bijecdo entre os dominios de valora¢do discreta e as valoragoes discretas.

Demonstragdo.  (a) Dados a,b € Oy, nds temos v(a +b) > min{v(a),v(b)} > 0 e v(ab) =
v(a)+v(b) > 0, o que mostra que a+ b, ab € O,. Além disso, como vimos temos v(0) = oo
e v(£1l) = 0, de modo que 0, £1 € O,,.. Isso prova que O, é um anel. Agora, dados a,b € p,,
ez € O, temos v(a+b) > min{v(a),v(b)} > 0 e v(ax) = v(a) +v(z) > 0, de modo que
a+ b,ax € p,. Isso prova que p, é um ideal de O,. Como v é sobrejetora, existe m € K
com v(mw) = 1. Assim, 7 € p, \{0}, o que mostra que p, # 0.

Observemos agora que O, é o conjunto dos elementos u € K tais que v(u) > 0ev(u~t) > 0.
Como v(u~t) = —v(u), vemos que isso ocorre se e s6 se v(u) = 0. Assim, nés temos
Of ={a € K:v(a) =0}. Mas entao O, = O, \ p,, 0 que mostra que O, é anel local com
Unico ideal maximal p,,.

Falta mostrar que O, é um DIP. Para isso, seja a <1 O, um ideal ndo-nulo. Entdo existe
a € a\ {0} tal que v|q: a = INU{oo} assume seu minimo em a. Seja b € a\ {0} qualquer.
Pela escolha de a, temos v(b) > v(a). Assim:

v(ar?@ @Dy = 4(a) + (v(b) —v(a))v(r) +v(b~Y) = v(a) + v(b) —v(a) — v(b) = 0,

de modo que u = ar?®-vlap=1 ¢ 0. Logo b = au v ®-v@) ¢ 4O, provando que
a C aQ,, e portanto que a = a@,. Concluimos que O, é um DIP, e assim um DVD.
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(b) Seja v: K — Z U{oco} uma valoragao discreta. Tomemos, como no item acima, 7 € K tal
que v(m) = 1. Dado z € K \ {0} qualquer, nés temos:

o(7"@ 1) = v(z)v(r) +v(z) = v(z) —v(z) = 0.

Assim, u = 7@zl € O), de modo que z = uw17v(®) | Tsso mostra tanto que vale
K = Q(0,) quanto que vp, coincide com v em K*. Como v(0) = oo = vp, (0), vemos que
v =100,.

Reciprocamente, sejam A um DVD, K = Q(A) e 7 um normalizador de A. Entdo O,, é o
conjunto dos = € K tais que va(z) > 0, onde va(z) é tal que zA = 7U4(*) A, Mas é claro
que

T€A <= ACA «— 74WACA = 1) c A —= vy(z) >0

(lembre que ™ ¢ A*). Assim, vemos que O,, = A, como queriamos.
O

Notemos que todos os ideais de um DVD A com ideal maximal p sdo da forma p™, paran > 0.
Além disso, sendo v = vy, nés temos p” = {a € K:v(a) > n}. A partir desses ideais, nos
podemos definir:

Definicao (Grupos de Unidades). Com as notagdes acima, definimos U (0) .= A% e, para cada
n>1, U =1+ p™. Para cada n € IN, nés chamamos U™ de n-ésimo grupo de unidades,
e UM de grupo principal de unidades.

Os grupos de unidade possuem as seguintes propriedades:

Proposicdo 3.28. (a) Para todo n € N, U™ ¢é um grupo multiplicativo. Além disso, temos
que UO DUuW opy@ ...,

(b) Para todo n > 1, U U™ ¢ canonicamente isomorfo ao grupo multiplicativo (A/pm)*.
Em particular, U /UM ¢ canonicamente isomorfo ao grupo multiplicativo (A/p)* do
corpo A/p.

(¢) Para todon > 1, U™ /U™t ¢ canonicamente isomorfo ao grupo aditivo do corpo A/ p.
Essa proposicao segue diretamente do seguinte resultado mais geral:
Lema 3.29. Seja R um dominio local, com unico ideal mazximal m # 0. Entdo:

(a) Para todoi > 1, U; :=1+m' = {1+a: a € m'} é um subgrupo do grupo Uy := R* das
unidades de R, e temos que Uy DU DUy D ---.

(b) Para todo i > 1, Uy/U; é canonicamente isomorfo ao grupo multiplicativo (R/ m*)*. Em
particular, Uy/Uy é canonicamente isomorfo ao grupo multiplicativo (R/m)* do corpo

R/m.

(¢) Para todo i > 1, U;/U;+1 é canonicamente isomorfo ao grupo aditivo do R/m-espacgo
mi/mi—i-l'
i+1

(d) Se R for um dominio de Dedekind, entio para todo i > 1 o grupo aditivo de m*/m**! serd

isomorfo ao grupo aditivo do corpo R/m.

Demonstragao.  (a) Fixemos i > 1. E fécil ver que 1 € U; e que U; é fechado para a multi-
plicacdo. Mostremos agora que U; também é fechado por inversdao. Como R ¢ local, temos
R* = R\m, e portanto U; = 1 +m’ C R\m = R* = Up. Assim, todo elemento de
U; é inversivel. Seja u € U; qualquer. Entdo v~ = wu™! = 1 (mod m?), mostrando que
u~t €14+ m’ = U;. Isso prova que, para cada i > 1, U; é um subgrupo de Uy. Finalmente,

as inclusées Uy 2 U O - -+ sdo claras, ja que m D m2D. ...
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(b) Consideremos o mapa Uy/U; — (R/mi)* dado por wU; — u+ m’. E uma verificagio
direta mostrar que essa funcao estd bem-definida e é um isomorfismo de grupos.

(¢) Consideremos o mapa U; /U1 — mi/m‘™! dado por uUii1 — (u—1) +m'™L. E uma
verificagao direta mostrar que essa funcao esta bem-definida e é um isomorfismo de grupos.

3

(d) Se R for um dominio de Dedekind, entdo m’/m’*! é um R/m-espaco de dimensédo 1, pelo
Corolario 3.15. Desse modo, m*/m‘*! = R/m como R/m-espacos, e em particular como
grupos abelianos.

O

Outra propriedade importante de um DVD é que ele ndo admite anéis intermediarios entre ele
e seu corpo de fragoes. De fato, seja A um DVD com K = Q(A), e suponhamos que A C R C K.
Entfo existe z € R\ 4, e ele é da forma z = un’®), onde u € AX e 7 € A é um normalizador.
Como = ¢ A, vemos que v(z) < 0, de modo que 77! = zuin~ @@+ ¢ R Assim, é claro que
R=K.

Os dominios de valoragao discreta surgem naturalmente no estudo dos dominios de Dedekind,
devido ao seguinte resultado:

Teorema 3.30. Sejam A um dominio de Dedekind e p <A primo nao-nulo. Entdo A, é um
DVD, com tnico ideal mazimal p,,.

Demonstragdo. Sabemos que Ap é um anel local com tnico ideal maximal p,. Como todos os
primos de A sdo maximais, p, ¢ de fato o tinico ideal primo de Ap. Pela Proposigao 3.24, Ay ¢
um dominio de Dedekind. Finalmente, concluimos do Teorema 3.23 que A, é um DIP. ]

Assim, toda localiza¢do de um dominio de Dedekind por um ideal primo néo-nulo é um DVD.
Vale também a volta para dominios noetherianos. Para demostra-la, utilizaremos um resultado
da teoria de localizagdo, cujo enunciado relembramos aqui:

Teorema 3.31. Seja A um dominio. Entao para todo ideal a <A A nds temos a =y am = (), Ay,
onde m percorre todos os ideais mazrimais de A e p percorre todos os ideais primos de A. Em

particular, A =Ny Am =, 4p-
Com isso, podemos demonstrar:

Teorema 3.32. Seja A um dominio noetheriano. FEntdo A é um dominio de Dedekind se e
somente se, para todos os ideais primos p <A ndo-nulos, as localizagoes Ay forem dominios de
valoracdo discreta.

Demonstragio. (=): E consequéncia direta do Teorema 3.30.

(«<): Suponhamos que A seja um dominio noetheriano tal que para todo p <A primo nao-nulo nés
tenhamos A, um DVD. Queremos mostrar que A é um dominio de Dedekind. Assim, queremos
mostrar que A é integralmente fechado e que todo ideal primo nao-nulo de A é maximal. Se A
for um corpo, é claro que A serd um dominio de Dedekind. Suponhamos entdo que A nao seja
um corpo. Pelo Teorema 3.31, vale a igualdade:

) 4y = 4, (3.1)
p#£0

jd que Ag = Q(A) e assim pode ser ignorado na interse¢do. Denotemos K = Q(A). Entao K
é o corpo de fracoes de todas as localizagoes de A. Seja x € Ar qualquer. Entao em particular
T € ATJK para todo p <A primo nao-nulo. Como A, ¢ um DVD por hipétese, vemos que A, ¢é
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integralmente fechado, e portanto /TpK = Ap. Assim, x € A, para todo p <A primo nao-nulo, e
por (3.1) nés concluimos que z € A. Isso mostra que A é integralmente fechado.

Suponhamos agora que p C q sejam dois ideais primos nao-nulos de A. Entdo p; C g sdo
ideais primos nao-nulos de A;. Mas sendo A; um DVD, vemos que seu tinico ideal primo nao-nulo
é qq, e portanto p; = q,. Concluimos portanto que p = p;NA = q,NA = q. Isso prova que todo
ideal primo nao-nulo de A é maximal, o que termina a demonstracao. O

Dado um dominio de Dedekind A, para cada ideal primo nao-nulo p <{A nés temos um DVD
Ap. Associada a esse DVD nos temos a valoragao discreta vy := va,, chamada de valoragéo
p-adica. As valoractes p-adicas se relacionam com a fatoracao dos ideais fraciondrios principais
de A:

Proposi¢ao 3.33. Seja A um dominio de Dedekind com corpo de fracoes K = Q(A). Seja
xz € K*, e suponhamos que a fatoracdo de xA em ideais primos de A seja vA = I, »™. Entao,
para cada ideal primo nao-nulo p <A, nds temos v, = vy(z). Ou seja, o expoente de p na fatoragdo
prima de A € a valoragio discreta vy(x).

Demonstragdo. Localizando a igualdade zA = []; 9" por p, nés obtemos z A4, =[] q;“. Notemos
que q, = A, para todo q # p, ja que p é maximal. Assim, vale x4, = pg". Mas isso é exatamente
o mesmo que dizer que vy () = . O

Consideremos agora, para p € IN primo, o ideal primo ndo-nulo pZ <1Z. Denotaremos a
localizagdo Z,,z simplesmente por Z,). Notemos que

a
Z(p) = {bia,bGZ, pjfb}

Esse é um DVD, com tinico ideal maximal

a

pZ(p):{b:a,bEZ,p\a,pr}

€ grupo de unidades
ZX = —.a b c Z Jf a b
(p) l . ) ) p 9 .

Denotamos sua valoracao discreta associada por v,: Q — ZU{oo}. Ela é chamada de valoracéo
p-adica de Q. E facil ver pela proposi¢do acima que v, pode ser calculada da seguinte forma:
dado z € Q*, podemos escrevé-lo de modo tnico como x = p”a/b, onde p 1 a,b. Nés temos entdo
vp(z) = v. As valoragoes p-ddicas sdo importantissimas em Teoria Algébrica dos Nimeros, como
veremos mais adiante.



Capitulo 4

Extensoes de Dominios de Dedekind

Ao estendermos Z para um corpo de inteiros algébricos Ok, alguns elementos primos de IN
deixam de ser primos em O, enquanto outros continuam primos. Como vimos no Exemplo 2.22,
os primos p € N com p = 3 (mod 4) continuam primos em Z[i], enquanto 2 e os primos p € N
tais que p = 1 (mod 4) se tornam elementos redutiveis nesse anel. E interessante notar também
que todos os primos p = 1 (mod 4) se decompde como produto de dois primos nao-associados,
enquanto que 2 = —i(1 +14)? é o tnico dos primos de IN que ndo é livre de quadrados em Z[i].
Esse evento pode ser visto em termos de ideais: dado um ideal primo pZ <1Z, como pOgk se
fatora em ideais primos do dominio de Dedekind Og?

4.1. Norma de ideais

Ao longo desta se¢ao, K sempre denotard um corpo de ntimeros algébricos com [K : Q] = n.
Lembre que no Capitulo 2 nés mostramos que a fungdo N: {Ideais de O} — IN* dada por
N(a) = |Ok /a| estd bem-definida, e que satisfaz M(a)?dx = di(a). Nosso objetivo nessa se¢io
é estudar um pouco melhor essa funcao, que serd fundamental na demonstracao do Teorema da
Finitude do Nimero de Classes. Ela generaliza a norma Nk, g no seguinte sentido:

Teorema 4.1. (a) Todo ideal nao-nulo a de O é um Z-mddulo livre de posto n, e para toda
base {1, ..., an} deste Z-médulo temos Agjq(a, ..., an) = N(a)?dg.

(b) Para todo o € Ok \ {0}, temos M(aOk) = |Nk,q(a)].
Demonstragao.  (a) Ja foi demonstrado.

(b) Seja {f1,..., n} uma base integral de Ok . Entao {af1,...,af,} é claramente uma base
do ideal Ok como Z-mdédulo. Mas entédo, por (a) e pela Proposigao 1.31:

N(aOk)*dx = Aapi,...,ab,) = AMTu(Bi,...,00))
= (detT,)*A(B1,...,Bn) = N(a)2dk.

Isso nos dd M(aOk) = |N(«)|, como desejado.

Todo ideal primo de Ok esta associado a um primo de IN:
Teorema 4.2. Seja p um ideal primo ndo-nulo de O . Entdo:
(a) pNZ =pZ, onde p € o unico nimero primo de IN no ideal p.

(b) Ok /p é uma extensao finita do corpo Fy, de grau [Ok /p : Fp| < n.

69
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Demonstragao.  (a) Sendo p < O maximal, temos que pNZ é um ideal maximal de Z, pelo
item (e) do Teorema 1.53. Entdo temos pNZ = pZ, para algum primo p € IN. Assim, é
claro que p € p, o que nao ocorre para nenhum outro primo de IN.

(b) Como p | pZ, temos a inclusdo canédnica F, = Z /pZ — Ok /p, de modo que podemos
ver Ok /p como extensao de F,. Essa extensdo tem grau no méximo [K : Q] = n. Em
particular, é finita.

O

Definigao (Grau de Inércia). Nas notagdes do teorema acima, o nimero inteiro positivo dado
pelo grau [Og /p : Fp] é chamado o grau de inércia de p, que denotamos por fp.

A norma de ideais é multiplicativa:

Teorema 4.3. (a) Para todo ideal primo nao-nulo p de O temos N(p) = pfv, onde p € o
unico numero primo de IN em p.

(b) Para quaisquer ideais nao-nulos a,b de Ok, temos 9(ab) = 9N(a) MN(b).
(c) N(a) =1 se e s6 se a = Ok.
Demonstracio.  (a) Pelo teorema acima, [Of /p : F,] = f,. Assim, N(p) = |Ox /p| = p'r.

(b) Sejam b um ideal ndo-nulo de Ok e p um ideal primo ndo-nulo de O . Entao b/(bp) é um
Of /p-espago vetorial de dimensdo 1 pelo Corolério 3.15, e portanto tem |Og /p| = 9(p)

elementos. Agora, Ok /b = O[f;(b(;f). Assim: |Ok/b| = W = MN(bp) = N(b) N(p).

Pelo Teorema 3.12, todo ideal nao-nulo a de Ok ¢ da forma a = pq - - - p,,, onde p1,...,Ppm
sdo ideais primos nao-nulos de Ok . Entao é ficil ver por inducdo em m que vale a igualdade

N(a) = N(p1) - N(pm ), de segue a multiplicatividade de N.

(¢) Para todo ideal primo p, N(p) = pfr é um multiplo de p, logo pela férmula acima o tnico
jeito de termos 9(a) =1 é se m = 0, ou seja, se a = Ok, e é claro que N(Of) = 1.
O

Com isso, podemos mostrar que a norma de ideais é mais similar ainda & norma de um
elemento:

Corolario 4.4. Seja a um ideal nao-nulo de Ok . Entdo:
(a) N(a) € a. Equivalentemente, o ideal N(a)Ok € um maltiplo de a.
(b) Se N(a) for um nidmero primo, entao a serd um ideal primo.
(¢) Se a for um mailtiplo do ideal b e M(a) = N(b), entdo a = b.

Demonstragao.  (a) O grupo aditivo Ok /a tem ordem (a). Assim, 9(a)- (1 +a) = a, 0 que
mostra que 91(a) € a.

(b) Escrevamos a = pj - - - P, onde pi, ..., Py, sdo ideais primos ndo-nulos de O . Entdo, como

vimos, M(a) = N(p1) - N(pm) = p{(pl) . -pﬁf"’”), onde p1,...,pm € N sido primos. Entao
é claro que 91(a) s6 pode ser prima se m = 1, e nesse caso a é um ideal primo de Ok.

(c¢) Se a for um multiplo de b, entao existe ¢ ideal ndo-nulo de O tal que a = bc. Entdo temos
N(a) = N(b) N(c). Como MN(a) = N(b), concluimos que N(¢) = 1, 0 que nos garante que

¢ = Ok, e portanto a = b.
O
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O seguinte corolario serd essencial na prova da finitude de hg:

Corolario 4.5. Para todo m inteiro positivo, existe somente um nimero finito de ideais nao-nulos
a de Ok tais que N(a) = m.

Demonstragdo. Pelo item (a) do coroldrio anterior, M(a) = m = a | mOk. Mas pelo item (a)
do Corolario 3.15, o conjunto dos ideais que dividem mOg é finito, o que prova o corolario. [

A norma de ideais ainda pode ser usada para deduzir a identidade fundamental em sua
versao mais simples. Ela nos da informagées sobre como um primo de IN se decompoe em ideais
primos de Ok:

Corolario 4.6. Seja p € IN um numero primo tal que a fatoracdo de pOk em ideais primos seja
pOx = pi' - -pg’. Denotemos ainda fp]. = fj, para 1 < j < g. Entdo:

(a) p1...,pg sGo os unicos ideais primos de Ok que contém p.
g
(b) (Identidade Fundamental) Y ejf; = n.
=1

Demonstragao.  (a) Dado um ideal primo p de Ok, temos p € p <= p | pOk, e pela unicidade
da fatoracdo obtemos o resultado desejado.

(b) Temos N(p) = p"™, logo pelo item (b) do Teorema 4.1 temos N(pOk) = |N(p)| = p™.
Entao:

P =N(pOx) = N(p1)™ - N(pg)ee = (pf P+ (pfPo)yes = plujr il

g
e portanto ) e;f; = n, como querfamos.
Jj=1

O

4.2. O Teorema da Finitude do Numero de
Classes

Seja K um corpo de ntimeros. Denotaremos por # o conjunto de ideais nao-nulos de Ok e
por €4 o grupo de classes de ideais de Og. Com o maquinario que nés desenvolvemos, ja é
possivel demonstrar o Teorema da Finitude do Numero de Classes. Tudo o que falta sdo dois
lemas técnicos, um que relaciona ideais de _# com classes de €/ e outro que garante que certo
conjunto de inteiros positivos é limitado superiormente, e que no fundo nada mais é do que uma
aplicagdo esperta do Principio da Casa dos Pombos. Definamos, para qualquer a € ¢, o niimero

t(a) == min{N(a) ' N(aOk): a € a\ {0} }.

Para qualquer a € a\ {0}, temos que a | aOg. Logo, pela multiplicatividade da norma de
ideais, N(a) | N(aOk), o que mostra que t(a) é o minimo de um conjunto de inteiros positivos,
sendo portanto bem-definido e um inteiro positivo. Além disso, pelo item (¢) do Coroldrio 4.4
temos que t(a) = 1 se e 86 se a = aOk para algum « € a\ {0}, ou seja, se e s6 se a for principal.
Por outro lado, dada uma classe 8 € €/, definimos:

uw(B) == min{N(b): b € # NB}.

Pela Proposicao 3.19, a intersecio _# N‘B ¢é ndo-vazia, o que mostra que u(B) estd bem-
definido. Note que u(B) é um inteiro positivo. Temos uma importante relagdo entre as duas
funcoes t e u:
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Lema 4.7. Sejam B € €l ea € _# tais que a~' € B. Entdo u(B) = t(a). Em particular, temos

{t(a):ae 7} ={u(B): B €}
Demonstragdo. Seja o € a\ {0} tal que t(a) = MN(a)1N(aOk). Entdo aa! € # NB, pela
Proposicao 3.19 e usando que aa™! C aa~! = Ok. Notemos que
(wa ™ Ha = a0k = N(aa™HN(a) = N(aOK),
e portanto:
u(B) < N(aa™) = N(a) 'N(aOk) = t(a).

Por outro lado, seja b € _# NB tal que u(B) = MN(b). Entdo, como a1 b € B, existe
B € K\ {0} tal que Ba~! = b. Mas entdo 3Ok = ab C a. Disso tiramos que 3 € a\ {0}. Além
disso,

N(BOK) = MN(a)IN(b) = N(a)u(B).
Logo:
a) < N(a) T N(BOK) = u(B).

(
Entdo de fato temos u(8) = t(a). Para a ultima afirmagdo basta notar, de um lado que para
a € _# temos t(a) = u([a"!]), e de outro que, se B € ¥, entdo existe um a € BN _F. Assim,
a~t € B, e temos u(B) = t(a). O

Ainda temos um ltimo lema técnico a provar antes de chegarmos ao resultado desejado:
Lema 4.8. Eziste uma constante C > 0 tal que t(a) < C, para todo a € 7.

Demonstragao. Sejam o1, ...,0, as imersoes de K, e seja {f31,..., 3y} uma base integral de K.
Definamos

:jﬁl (i\%‘(ﬁi)l) -

Mostraremos que, para todo a € _¢, temos t(a) < C, o que terminard a demonstragao.
Tomemos a € _# qualquer. Entdo existe k inteiro positivo tal que k" < M(a) < (k+1)".
Definamos

:{Zd,ﬂi|d1,...,dn€{0,...,k:}}.
i=1

Notemos que |.Z| = (k+1)" > 9N(a), logo pelo Principio da Casa dos Pombos existem \,v € &
distintos tais que A+ a = v 4 a. Entao temos

)\—V:Zai&Ea, onde ay,...,an € {—k,... , k}.
i=1

Assim:

n

11 Uj(zazﬂi)

=1 =1

ﬁ(g:lazuo] 5) ) ﬁ(ikr@ 5) )

J=1 Jj=1

= ]I <Z|aj Bi) ) E"C < N(a)C.

Jj=1

Il

=1

Za o;(Bi)

=1

H"J —v)

N = »)| =

n

.
<.

IN
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Concluimos finalmente do item (b) do Teorema 4.1 que

t(a) <N(a) N\ -v)O0k) =N(a) NN -v)| < C.

Enfim, chegamos ao resultado que tanto almejavamos:
Teorema 4.9 (Finitude do Nimero de Classes). O nimero de classes hi € finito.

Demonstra¢do. Pelo Lema 4.8, o conjunto {t(a): a € _#} ¢ limitado superiormente por um C' > 0.
Mas pelo Lema 4.7 esse conjunto é igual a {u(B): B € €¢}, que portanto também é limitado por
C'. Seja agora B € €¢. Entao existe b € B tal que 91(b) < C. Mas pelo Corolario 4.5, existe um
nimero finito m de ideais de ¢ tais que 91(b) < C. Assim, B ¢ a classe de um desses m ideais.
Isso mostra que %4 é finito, como desejavamos. O

Um corolario direto deste teorema é:
Corolario 4.10. Para todo a € ¢, a’x ¢ um ideal principal.

A demonstracdo que demos nao é totalmente satisfatéria para o cédlculo efetivo de hg, pois
a constante C' que encontramos no lema acima é muito grande. Como veremos mais adiante,
podemos diminuir essa constante para a chamada cota de Minkowski:

4\"2 n!
= — —_ d
123¢ <7T> nn \/’ K|7

onde r9 é a metade do nimero de imersoes o de K tais que o(K) € R (pode-se mostrar que o
ntmero de tais imersoes é sempre par, ou seja, ry é inteiro).

Com a cota de Minkowski em méaos, podemos determinar hx da seguinte forma: como vimos,
cada classe de ideais de K contém um ideal com norma no maximo pux. Mas existe um nimero
finito m de ideais ndo-nulos de Ox com norma menor ou igual a ux. Nés podemos entdo deter-
minar quais sdo esses ideais e verificar quantas classes de ideais distintas eles nos fornecem. O
resultado encontrado serd hg.

Exemplo 4.11. Como exemplo prdtico, vamos calcular o nimero de classes de alguns corpos
quadrdaticos. Sendo K = Q(\/g), notemos que K possui duas imersdes complexas se d < 0 e
nenhuma imersao complexa se d > 0. Assim, 1o =1 sed <0 ery =0 sed >0, e a cota de
Minkowski para K se torna:

{727 |dk|, se d < 0;
H =

Vldk], sed> 0.

Como dg = 4d se d =2,3 (mod 4) e dxg = d se d =1 (mod 4), nds obtemos:

4+/1d|

% |4d| = , sed <0 ed=2,3(mod 4);
2/]d]

P sed<0ed=1(mod 4);
$VAad = Vd, sed>0ed=2,3(mod 4);
@, sed>0ed=1(mod 4).
Com isso, nds obtemos que px < 2 <= d € {-7,-3,-2,—1,2,3,5,13}. Assim, para esses
valores de d toda classe de ideais de K contém um ideal de norma menor que 2, ou seja, igual a
1. Mas sabemos que o unico ideal de norma 1 em Ok é O ! Assim, nesse caso vemos que K é
um DIP. Observe que jd haviamos concluido que esses corpos quadrdticos eram DIP’s (de fato,
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dominios euclidianos) no Teorema 2.19. Note que também haviamos concluido nesse teorema que
para d = —11 tinhamos K = Q(+/—11) um DIP, embora pux = @ =~ 2,11 > 2.
Utilizando a cota de Minkowski, a estratégia para verificar que O = Z [Hi V{H} ¢ um DIP

é mostrar que todos os ideais de norma 2 em O sdo principais. Lembremos que se (a) = 2
entio a | 20k . Assim, basta analisarmos a fatoragio prima de 20k para encontrarmos os ideais
de norma 2. Como veremos na Se¢do 5.2, temos um método para encontrarmos essa fatorac¢do
prima. Aplicando este método, vemos que o ideal 20k € primo. Assim, ndo existe nenhum ideal
de norma 2 em Ok, e concluimos que O €é um DIP.

De forma mais geral, o método de olhar para a fatoracdo prima de 20 funcionard se tivermos
2<pug <3 < de{-19,—-15,—-11,-5,6,7,17,21,29,33}. Pela identidade fundamental, nos
temos duas opgoes para a fatoracdo de 20k em corpos quadrdticos: ou 20k € um ideal primo
ou 20K = p; Py para Py, py <Ok primos (que podem ser distintos ou nao). Para os valores de d
indicados acima, se 20k for primo entio O serd um DIP (foi o que ocorreu para d = —11).

Supondo agora que 20K = Py Py, VEMOS que Py € Py Serdo os unicos ideais de Ok com norma
2. Desse modo, temos €¢ = {[1], [p1], [pa]}. Assim, hx < 3. A outra forma de termos hx =1
€ se 0s ideais p; e py forem ambos principais. Também é interessante observar que se p; = Po,
entdo sabemos que hx < 2. Faremos agora uma andlise mais detalhada para determinar hyi para
d e {-19,—-15,—-11,-5,6,7,17,21,29, 33}, utilizando os resultados da Se¢dio 5.2:

e Como —19,—11,21,29 = 5 (mod 8), vemos que 20§ € primo para esses valores de d.
Assim, nesses casos Ok ¢ um DIP.

e Como 2|6 e —5,7=3(mod4), vemos que nesse caso 20§ é o quadrado de um ideal
primo p de Ok . De fato, nés temos:

(20K + (V=5—-1)0k)?, sed = —5;
20K = (20K+\/60K)25 se d = 6;
(20K + (VT —1)0k)?, sed=T1.

Assim, nesses casos temos hg = 1 ou hxy = 2, sendo que hxg = 1 se p for principal
e hg = 2 se p nao for principal. Da multiplicidade da norma de ideais e do fato de
que N(20k) = |N(2)| = 4, nds vemos que N(p) = 2 em qualquer um dos trés casos.
Lembremos que p € principal se e s6 se t(p) = 1, isto é, se e s6 se existir a € p nao-nulo tal
que [N ()| = MN(p) = 2. Assim, basta encontrarmos os elementos de O de norma 2 e
verificar se eles estdo em p. Escrevendo o = a+bv'd com a,b € Z, temos N(a) = a® — db?.

Para d = =5, buscamos a,b € Z tais que a® + 5b> = +2. Mas ¢ facil ver que tais elementos
nao existem! Assim, concluimos que p ndo é principal, e portanto hx = 2 nesse caso (note
que poderiamos também concluir isso do fato de que Z[/—5] nao é um DFU, como jd
haviamos visto).

Para d = 6, buscamos a,b € Z. tais que a*> — 6b> = £2. Vemos que (a,b) = (2,1) é uma
solugdo, e que o = 2+ 6 € 20k + V60K = p. Assim, p é principal e temos h = 1.
Desse modo, Ok € um DIP nesse caso.

Para d = 7, buscamos a,b € Z tais que a> — Tb?> = £2. Vemos que (a,b) = (3,1) é uma
solugdo, e que « = 3++/T7 =4+ (V7—1) € 20k + (V7T —1)Ox = p. Assim, p é principal

e temos hig = 1. Desse modo, Ok é um DIP nesse caso.

e Como —15,17,33 =1 (mod 8), vemos que nesse caso 20k = py py para py,py <Ok primos
distintos. De fato, nos temos:

20k + Y Ok ) - (20 + Y Ok ), se d = -15;

20K = (20K + YL O ) - (20K + V=L O ), se d = 17;
205 + YBHL O ) - (205 + ¥B=L Oy ), se d = 33,




4.2. O TEOREMA DA FINITUDE DO NUMERO DE CLASSES 75

Da multiplicidade da norma de ideais e do fato de que N(20k) = 4, nds vemos que N(p;) =
N(py) = 2 em qualquer um dos trés casos. Como pypy = 20k é um ideal principal, nos
temos [p1][ps] = [1], de onde se vé facilmente que p; serd um ideal principal se e sé se
py o for. Como no caso anterior, p; ser principal equivale d existéncia de o € p; ndo-
nulo com |N(«)| = 2. Escrevendo o = a+b (1+27\/8) com a,b € Z, nds temos N(a) =
a® + ab+ b% - 174,

Para d = —15, buscamos a,b € Z tais que a’® + ab+ 4b> = +£2. Mas é fdcil ver que
tais elementos ndo existem! Assim, concluimos que pq, e portanto p,, ndo sdo principais.
Devemos agora determinar se h = 2 ou se hx = 3, isto é, se [p;] = [pa] ou se [p1] # [pa].
Como [py] = [p1]7t, nds temos [p1] = [pa] <= [p1]> = [1]. Desse modo, o problema se
resume a determinar se p? é um ideal principal de O . Chamando 3 = HTW, nos temos
p; = 20k + BOf, e portanto p3 = 40k + 280k + 20k . Como % = B — 4, temos entdo
p? = 40K + 280K + (B —4)Ok. E claro que 40k + (8 —4)Ok = 40k + Ok, e portanto
p% =40k + 260k + O = 40k + Ok

Como N(p?) = 22 = 4, buscamos agora por a,b € Z tais que a® + ab + 4b> = £4. Vemos
que (a,b) = (0,1) é uma solucdo, e que a = 3 € p3. Assim, p? = BOk € principal, o que
mostra que [p] = [psy]. Concluimos que hx = 2.

Para d = 17, buscamos a,b € Z tais que a® + ab— 4b> = £2. Vemos que (a,b) = (1,1)
é uma solucdo, e que o = 1+1+T‘/ﬁ = 2+@ € 2(’)K+@0K =p,y. Assim, py €
principal, e portanto p; também o é. Concluimos que hix =1, de modo que O é um DIP
nesse caso.

Para d = 33, buscamos a,b € Z tais que a®> + ab— 8> = +2. Vemos que (a,b) = (2,1)
€ uma solugdo, e que o = 2+ Lﬁ € 20k + @ Ok = py. Assim, p; € principal, e
portanto py também o é. Concluimos que hix = 1, de modo que Ok é um DIP nesse caso.

Assim, vemos que hxg =1 para d = —19,—11,6,7,17,21,29,33 ¢ hx = 2 para d = —15, —5.

Para finalizar a secdo, mostraremos como a teoria que desenvolvemos pode ser utilizada para
resolver uma equacao diofantina concreta:

Exemplo 4.12. Na introducdo, falamos sobre como a Teoria Algébrica dos Niumeros aparece
naturalmente no estudo das equacdes diofantinas. Caso o anel de inteiros algébricos necessdrio
para resolver uma equacdo diofantina ndo seja um DFU, entretanto, ndo estd claro como devemos
prossequir. Como jd vimos, Z[v/—5] nio é um DFU. No entanto, veremos como resolver a
equacdo diofantina y> = x? + 5 utilizando este anel. Este exzemplo se encontra em [5]. Como
vimos no exemplo acima, hx = 2 para K = Q(v/=5). Além disso, pelo item (c) do Teorema
2.21, Z|\/=5]* = {1,-1}.

Consideremos a equacgdo diofantina y> = x> + 5. Se x fosse impar, nés obteriamos que y> =
145 =6 (mod 8), o que ndo é possivel. Logo x € par, e portanto y é impar. Se y =0 (mod 5),
entio 2 = 0 (mod 5), logo * = 0 (mod 5). Mas entio 5 = 2> +5 = y3 = 0 (mod 25), absurdo!
Logo y # 0 (mod 5).

Em Z[/=5], temos y* = (z ++v/=5)(z — V/=5). Denotemos a := (x ++/=5) e b :== (z —
V/=5). Entdo temos a igualdade de ideais (y)> = (x + /=5)(x —/=5) = ab. Suponhamos que
exista um ideal primo nao-nulo p I Ok que divide a e b. Entdo p > (x ++/—5) — (x — /=5) =
2v/—=5. Assim, p divide (2,/=5) = (2)(v/=5). E simples verificar' que (2) = (2,v/=5 —1)2, e pela

multiplicatividade da norma de ideais e pelo Teorema 4.1 temos
N((2,V=5-1)) =N((2)) = IN(2)| = 2| =4 = N((2.V-5-1)) =2,

que é um nimero primo, logo pelo item (b) do Coroldrio 4.4 o ideal (2,/—5— 1) é primo.

I Alternativamente, podemos utilizar os resultados da Secdo 5.2 no que segue.
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Além disso, M({~/—5)) = |[N(v/=5)| = 5, logo pelo mesmo coroldrio o ideal (/—5) é primo.
Assim, temos a fatoracdo em ideais primos:

(2V=5) = (2, V=5 - (V5.
Logop = (2,5/=5— 1) oup = (v/=5). Sep = (2,v/=5— 1), entio
plly)=2=90) Ny) =Ny =y
Mas y ¢é fmpar, absurdo! Se p = (\/=5), temos
ply)=5=90)Ny) =Ny =y

Mas y ndao é maltiplo de 5, absurdo! Isso mostra que os ideais a e b sdo primos entre si. Assim,
como {(y)3 = ab, existem ideais ¢ e 0 de Z[\/—5| tais que a = ¢3 e b = 3. Pelo Coroldrio 4.10,
[¢2] = [1], logo como a é principal:

a=c = [1] = [a] = [{]* = [2[e] = [1][¢] = [¢]

Isso mostra que ¢ € principal. Entdo existem a,b € Z tais que ¢ = (a + b\/=5), ou seja,

(x4++vV=5) =a=c = (a+b/=5)>
Assim, os elementos x + /=5 e (a + by/—=5)® sdo associados. Como Z[/—5]* = {1,—1}, temos:

z++v=5 = +(a+bv/=5)> = £((a® — 15ab?) + (3a*b — 5b°)v/=5).
Entao
+1 = 3a%b — 50> = b(3a® — 5b*) = |b] = |3a® — 5b*| = 1.

Assim, b = £1, e devemos ter:

3a> —5==41=3a®> =6 ou 3a® =4,

o que é impossivel. Portanto, a equacdo > = x> + 5 ndo tem solucdes inteiras.

4.3. Extensoes de Ideais Primos em Dominios
de Dedekind

Seja A um dominio de Dedekind com corpo de fragoes K = Q(A). Seja L uma extenséo finita

e separavel de K de grau n, e seja B = A", Entdo B também é um dominio de Dedekind, pelo
Teorema 3.1. Fixemos um ideal primo nao-nulo p <<A. Entao p B <1 B admite uma fatoracdo tinica
em ideais primos de B, digamos p B = P - ';‘ng . Essa fatoracao se relaciona diretamente com
os ideais que estdo sobre p. De fato:

Proposicao 4.13. Nas condi¢des acima, nds temos:
(a) g>1.
(b) Bi1,..., B, sdo exatamente os ideais primos sobre p.

(c) O conjunto dos ideais de B sobre p é igual ao conjunto de divisores de p B diferentes de B.
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Demonstragao.  (a) Como essa extensao é integral, pelo Coroldrio 1.56 temos p BN A = p. Se
g=20,entdo pB = B. Assim, p =pBNA=BNA= A, um absurdo! Isso mostra que
g=>1

(b) Segue diretamente de (a) e (c).

(c) Seja A <1B um ideal sobre p. Pelo Corolario 1.56, nés temos 20 O p B, o que implica em

2 | p B pelo Corolario 3.14. Suponhamos agora que 2 <IB seja um divisor de p B diferente

de B. Entao, pelo Corolario 3.14, temos 2 O p B, e portanto A D ANA D pBNA = p.
Como p é maximal, temos ANA = p, como desejado.

O

Notemos que, dado 24 <IB sobre um ideal primo p <1A, o anel quociente B/ 2l pode ser con-
siderado tanto como A-médulo quanto como A/ p-espago, ji que p B C 24 = p anula B/ 2A. O
A/ p-espaco B/ 2l tem sempre dimensao finita:

Proposicao 4.14. Para todo ideal A <IB sobre p, B/ 2 é um A/ p-espago vetorial de dimensdo
finita.

Demonstragdo. B é um A-médulo finitamente gerado pelo Teorema 1.37. Assim, é claro que B/ 24
é finitamente gerado sobre A/ p, sendo portanto um A/ p-espaco de dimensao finita. O

Defini¢do (Ntimero de Decomposicio/Indice de Ramificacao/Grau de Inércia). Seja p <<A primo.
Definimos o niimero de decomposigdo g de p em B (ou em K) como sendo igual a quantidade
de primos de B sobre p. Sendo P | p primo, podemos denotar ainda g = g(P | p) = g.
Para cada ¥ <t B primo nao-nulo, definimos o indice de ramificacdo de ¥ como o maior
inteiro e(P | p) tal que P divide p B. Também denotamos e(P | p) = ey, se p estiver claro.
Além disso, se P | p, definimos o grau de inércia f(P | p) de P como sendo o inteiro
positivo [B/9 : A/ p|. Se B néo estiver sobre p, definiremos f(P | p) = 0. Também denotamos

F(B | p) = fy, se p estiver claro.

Notemos que, das defini¢oes acima, nés temos p B = [[s B¥ = [y, B*, onde P varia entre
os primos nao-nulos de B. O indice de ramificacdo e o grau de inércia sdo multiplicativos:

Proposicao 4.15. Sejam C/B e B/A extensdes integrais de dominios de Dedekind, e sejam
p<A, P 9B e P <C primos nao-nulos. Entao temos e(P | p) = e(P | P')-e(P' | p) e
FBIp)=FBIP)-f(B | ).

Demonstragao. Podemos supor que P | B’ e P’ | p, pois caso contrario ambas as igualdades se
reduzirdo a 0 = 0. A multiplicatividade do grau de inércia segue da multiplicatividade dos graus
de extensdo de corpos: [C/P : A/p] = [C/P: B/Y|[B/P : A/p]. Para a multiplicatividade
do indice de ramificacéio, escrevamos p B = PF P’ para P’ 1A', e PC = PFF) A para
P 1 2A. Entao nds temos:

pC = (pB)C = (PFP) o) = (PC)FW) (A ) = peFF)eF ) 9eF W) (91 ),

Agora, P 1 A, e como P’ 1 A" vemos que P'C e A’ C sdo coprimos devido ao item (1) da Proposigao
1.46. Mas % | B'C, o que mostra que R 1 A’ C. Portanto, ambos A e A’ C' nao sdo miltiplos de
B, e concluimos que e(P | p) = e(P | P)e(P' | p), como queriamos. O

Nosso préximo objetivo é mostrar que vale a identidade fundamental, uma generalizacao da
identidade fundamental vista na Secao 4.1. A identidade fundamental no caso mais geral afirma
que, para todo primo nao-nulo p <A, temos Z‘B\P epfpp = n = [L: K]. Naquele caso particular,
utilizamos propriedades da norma de ideais para obter o resultado desejado. Aqui, adotaremos
outra estratégia. Comecemos mostrando que o grau de inércia, o indice de ramificacdo e o nimero
de decomposigdo sao invariantes por localizacao:
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Proposicdo 4.16. Sejam S um conjunto multiplicativo de A e p <{A um ideal primo ndo-nulo
que ndo intersecta S. Entdo, sendo p B =05 -+ By’ a fatoragdo prima de p B em B, temos:

(S7'p)-STIB=S5"M(pB) = (STIP1) - (STI,) "

Em particular, dado % | p primo, g(% | p) = g(S~UF | S~Lp) e e(P | p) = (SR | S~1p).
Além disso, dado B | p, temos B/P = S~'B/ SR canonicamente, e esse isomorfismo restrito
a A/ p induz um isomorfismo A/ p = S~LA/S L p. Em particular, f(B|p) = f(S7IP| S~ 1p).

Demonstra¢do. A primeira parte segue diretamente da Proposicao 3.24, enquanto a segunda parte
segue diretamente do Corolario 1.49, ja que P <1 B é maximal. O

Finalmente, provemos a identidade fundamental:

Teorema 4.17. (Identidade Fundamental) Sejam A um dommzo de Dedekind, K = Q(A), L

uma extensdo finita e separdvel de K de graun e B = ar, Seja p <AA um primo ndo-nulo e
sejam P, ..., Py 0s ideais primos de B sobre p. Entdo temos:

g
S e(B; | p)f(B; | p) =dimas, B/ (pB) = n.
7j=1

Demonstragao. Denotemos, para 1 < j < g, e; :=e(PB; | p) e fj == f(B; | p). Entdo sabemos que
p B =S -- Py’ é a fatoragdo prima de p B em B. A prova de que >I_iejfj=dimy,, B/(p B)
é parecida com a do Teorema 4.3: seja A <I1B tal que 2 | p B, e seja 1 < j < g tal que o ideal
2P, < B esteja sobre p. Notemos que 2 / A*B; é um B /P, -espaco vetorial de dimensdo 1, devido
ao Corolério 3.15. Desse modo, como B/B; ¢ um A/ p-espaco de dimensao f;, A / AP, também
¢ um A/ p-espago vetorial de dimensao f;. Agora, B/ A = (B/2APB;)/ (A /AB;), e portanto

dimA/p B/Q[‘,BJ = dimA/p B/Ql—l—dimA/le/Q[‘Bj = dirnA/)g B/Q(—f-f]

Finalmente, vemos que para obter dimy,, B/ p B basta comegar com 2 = B e repetir esse
processo e; vezes para cada B;, para 1 < j < g, para obter:

dimy,, B/pB = dima,, B/(BT B~ ') + fy
= dimy,, B/( Tl---iﬁgg‘Q)Jerg

= dima/, B/ (BT B) + e f

= dimA/pB/ml—F(@l—1)f1+"‘—|-€gfg
= eifi+-+egfy

g
= > efi
j=1

Provaremos agora que dimy,, B/ pB = n. N6s sabemos que B = A" tem posto n, pelo
Teorema 1.39. Observe que nao necessariamente B é um A-modulo livre, pois A pode ndo ser um
DIP. Assumiremos inicialmente que B seja um A-médulo livre, com uma base {f1,..., Sn}. Seja
m: B — B/p B a projecdo candnica. Entao é claro que nf1,..., 78, geram B/ p B como A/ p-
espago. Mostraremos que esses elementos também sao linearmente independentes, o que provara
que dimy,, B/pB = n. Suponhamos que ai,...,a, € A sejam tais que Z _ymaj - T3 =
0. Isso significa que Z?zl a;B; € p B, e portanto temos 2371 a;Bj = Yy pkbk, para alguns
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Ply---Pm € peby,...,b,, € B. Como fi,...,08, geram B nés podemos, para 1 < k < m,
escrever by = > ", ¢x;3;, onde cada cx; € A. Desse modo:

n m m n n m
> aiBi=> prb=>_ pk (Z ijﬁj) => (Z Pk%j) By
j=1 k=1 k=1 j=1 j=1 \k=1
Como o conjunto {fi,...,0,} é linearmente independente, concluimos que para 1 < j < n nds
temos a; = Y L piCrj € P, e portanto cada wa; = 0, mostrando a independéncia linear dos 7/3;.
Suponhamos agora que B ndo seja necessariamente um A-médulo livre. Localizemos por
S =A\p. Entdao K = Q(A4y), L=Q(B,) e ATJL = (XL)p = By. Pelo Teorema 3.30, o anel A, é
um DIP, e portanto B, é um Ay-médulo livre pelo Teorema 1.39. Assim, podemos aplicar o que
acabamos de provar ao ideal (p B),. Finalmente:

g((B5)plpp)

g
n=dimg, s, Bp/(pB)y = > e;((Bi)e | p) F((Bi)p | 9p) =D eify,
j=1 j=1
onde na ultima igualdade utilizamos a proposicao acima. O

A partir da identidade fundamental, conseguimos dividir a decomposi¢do de um ideal primo
de A em primos de B em alguns casos especiais:

Definigdo (Tipos de Decomposigao). Seja p <A primo. Entao dizemos que p é:
e Decomposto em L (ou B) quando g > 2, e ndo-decomposto em L (ou B) quando g = 1.

o Ramificado em L (ou B) quando existir um primo P | p tal que e( | p) > 1 ou quando
a extensao (B/B)/(A/ p) for inseparavel.

o Totalmente decomposto em L (ou B) quando g = n, ou seja, e(P | p) = f(P|p) =1
para todo ideal primo 3 | p. Nesse caso, a decomposi¢ao de p B é da forma Pj - - - P,

o Totalmente inerte em L (ou B) quando f( | p) = n para algum primo P | p. Nesse
caso, g =1ee(P|p) =1, e portanto p B =P é o tnico ideal de B sobre p.

o Totalmente ramificado em L (ou B) quando e(f | p) = n para algum primo P | p.
Nesse caso, g =1e f(P|p) =1, e portanto p B = P".

Além disso, dizemos que uma extensdo de corpos L/ K é ramificada se existir algum primo p <A
ramificado em B, e dizemos que L/ K é ndo-ramificada caso contrario.

No caso em que A =Z, B=0p e p = pZ, para p € IN primo, diremos simplesmente que p
é decomposto, ramificado, etc. para indicar que o ideal p Z é decomposto, ramificado, etc.

Observacao 4.18. Notemos que caso n = 2, pela identidade fundamental, todo p 1A serd to-
talmente decomposto, totalmente inerte ou totalmente ramificado. Além disso, observemos que
B/B sempre serd uma extensdo separdvel de A/ p se A/ p for perfeito, como é o caso se A for
um corpo de nimeros algébricos (jd que nessas condigéoes vale que |A/ p| = N(p) < 00).

Exemplo 4.19. Na extensio Z[i]/ Z, os primos p € N totalmente decompostos em Z[i| sio
aqueles com p = 1 (mod 4), os primos totalmente inertes sio aqueles com p = 3 (mod 4) e o
unico primo totalmente ramificado é 2.

Outra convengdo que utilizaremos é a de chamar um primo p <A de “primo de K”, e um
primo B <1 B de “primo de L.
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4.4. Fatorando Ideais Primos

Sejam A um dominio de Dedekind com corpo de fragdes K = Q(A). Seja L uma extensdo finita

e separavel de K de grau n, e seja B = A", Nessa secao mostraremos que, dado um ideal p <A
coprimo com um certo ideal de A, nds temos uma féormula para calcular a fatoragdo de p B em
ideais primos de B. Em particular, caso B seja monogéneo sobre A, ou seja, se B = Aly| para
algum v € B, entdo essa formula valerd para todos os ideais de A. Comegamos com a seguinte
definicao:

Defini¢do (Condutor). Dados dois anéis R C S, nés chamamos de condutor de R em S o
conjunto §:= {z € R: S C R}.

E facil ver da defini¢do acima que o condutor f de R em S é o maior ideal de S contido em
R, e que esse é também um ideal de R. Além disso, notemos que f = S se e somente se 1 € §, ou
seja, se eso se S C R <= R =.S5. Assim, se R C S entdo f é um ideal préprio de S.

Similarmente & definicdo de ordem que demos para um anel de inteiros algébricos, temos:

Defini¢do (Ordem de uma Extensdo de Anéis). Um anel R com A C R C B é chamado de
ordem de L/K se R contiver uma base {ry,...,r,} da extensdo L/K, ou equivalentemente se
R for um A-médulo de posto n ou se Q(R) = L. Uma ordem R serd chamada de principal se
for da forma R = A[v|, para algum v € B.

Proposicdo 4.20. Seja R uma ordem da extensio L/ K. Consideremos o condutor f de R em
B. Entao f # 0.

Demonstra¢do. Sabemos que B é um A-médulo finitamente gerado. Sejam bq,...,b, € B para
os quais B = Ab; + --- + Ab,,. Por hipétese, existem r1,...,r, € R que formam uma base da
?:1 % -1;, onde cada a;; € A
e cada s;; € A\ {0}. Chamemos s := [[/" [[}_; sij. Entdo s # 0 e s “limpa os denominadores”
de todos os b;, isto é, para todo 1 < ¢ < m vemos que sb; ¢ uma combinagao linear dos r;’s com
coeficientes em A, e portanto sb; € R. Como todo elemento de B é combinacdo linear dos b;’s

com coeficientes em A, concluimos que sB C R. O

extensao L/ K. Assim nds podemos escrever, para 1 <i <m, b; =

Com isso, nés conseguimos obter a formula desejada para a fatoracdo de um ideal primo de
Aem B.

Teorema 4.21. Seja v € B um elemento primitivo da extensdo L/ K, e consideremos o condutor
f de Alvy] em B. Seja p <A um ideal primo tal que os ideais p B e f sejam primos entre si, isto
é, pB+f = B. Denotemos P = P, i, e sejam P, ..., P, € Alz] polinémios monicos tais que
P=P-. -FZ“’ seja a fatoragdo prima de P em (A/p)[z]. Entdo a fatoracdo de p B em ideais
primos distintos de B é B5* -+ PBg?, onde para 1 < j < g temos P; = p B+ P;(y)B. Assim,
e(P; | p) = ej. Além disso, para 1 < j < g temos f(B; | p) = 0 P;.

Demonstragdo. A ideia da demonstragio é a seguinte cadeia de isomorfismos de anéis:
B Al

S Abl (/] (AR
bB pAD]  (P@)+pAl]  (P) k(i)

1%

B ~ Apl
pPB T pA[]
pB+f = B, e como f C A[y], nés temos p B + A[y] = B, de modo que a restri¢ao da
projecao candnica B — B/ p B a A[v] é sobrejetora. O nicleo dessa restri¢ao é p BN A[y].
Entao basta provarmos que p BN A[y] = p A[y]. A inclusdo (D) ¢é clara. Para a outra

inclusao, notemos que, como § e p B sd@o coprimos, podemos escrever f = Q1 - --Q,, onde

é um isomorfismo, dado por a4+ p B <+ a+ p Aly|: Por hipGtese, sabemos que
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9Q1,...,,, sdo primos que nao dividem p B, e portanto ndo estdo sobre p. Sejam q; =
0Q1NA,...,q,, = Q,NA. Entao qy,...,q,, sdo ideais primos de A diferentes de p. Notemos
agora que

FNA=(Q1 - Qn)NAD(Q1NA) - (QnNA) =q; -0y, -

Entao fN A é um produto de ideais primos de A distintos de p, e portanto f N A é primo
com p, ou seja, p+(fN A) = A. Em particular, 1 € p +f. Desse modo:

pBNA[] C (p+f)(p BN A[Y]) p(p BNA[]) +§(p BNA[Y])
C pAQ]+pBf

= pAQ[]+pf

C pAQR]+pAQ]

= pA[l,

mostrando a outra inclusdo. Assim, temos o primeiro isomorfismo desejado.

p‘ﬂfg] = 7 P(%Sﬂ Al ¢ um isomorfismo, dado por

FO) +pAl] < f(z) + ((P(2)) +p Alz]).

A verificacdo de que essa fungdo é um isomorfismo é direta.

( P(:c;)‘[fi e o (AF/(';))[QU} ¢ um isomorfismo, dado por

f(@) + (P(2)) +p Alz]) = f(z) + (P(2)).
A verificagdo de que essa funcdo é um isomorfismo é direta.

(A/p)lz] o o (A/p)a]
(Pla)) =1 (P (x))%

J(z) + (P(2)) = (f(z) + (P1(2))?, ..., f(2) + (Pg(2))).

é um isomorfismo, dado por

Esse isomorfismo segue diretamente do Teorema Chinés dos Restos.

. (A/p)[z] ; . (A/p)[] ;
Denotemos R := () e,paral < j <y, Rj:= AR Observemos que, pira 1<y <y,
os ideais primos de R; correspondem aos ideais primos de (A/ p)[z] que contém (P;(x))%, pelo

Teorema da Correspondéncia. Como A/ p é um corpo, (A/ p)[x] é um DIP, assim ¢é ficil ver que

o tnico ideal primo de (A/ p)[z] que contém (P;(x))% é (P;(x)). Essa andlise nos mostra que o
tinico ideal primo de R; é P, := (P;(x))/(P;(x))%.

Assim, o anel produto R; x --- x R, possui exatamente g ideais primos, a saber os ideais
Bi1,..., By, onde para 1 < j < g nds temos:

PBj=Ryx- X Rj_1 xPj x Rj1 X+ x Ry.

Notemos que, dado um elemento f(z) + (P(z)) € R qualquer, a imagem desse elemento em

Ry x -+ x R, estard em B, se e s6 se f(z) + (P;(x))% € Py, isto é, se e s6 se f(z) € (P;(z)).
Isso nos diz que o ideal primo de R correspondente a P; é o ideal P’ = (Pj(x))/(P(x)). Assim,

o anel R tem exatamente g ideais primos nao-nulos, a saber P} := (P1(z))/(P(x)),..., B, =
(Pg(x))/(P(x)). _ _
Consideremos agora f(z) + (P(z)) € R. Ele é levado no elemento f(z)+ ((P(z)) +p Alz]) €

%, que por sua vez é levado em f(v) +p A[y] € %, que é levado em f(v)+pB € p%.
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Com isso, é facil ver que cada ideal primo P} de R é levado no ideal primo Pj(y)A[y]/p B de

pEjB Isso mostra que o anel 5 tem exatamente g ideais primos nao-nulos, a saber:

Py = Pi(7)ANW]/pB,..., B, = Py(v)A[]/ p B.

Podemos utilizar o Teorema da Correspondéncia para concluir que os ideais primos de B que
contém p B sao exatamente os g ideais dados pelas pré-imagens dos J;’s pela proje¢ao canonica
B — B/pB:

P1 = Pi(v)AN] +pB,..., By = Py(v)A[y] +p B.

Afirmamos que, para 1 < j < g, nés temos B; = pB + P;j(y)B. A inclusio (C) é clara.
Seja agora p + Pj(v)b qualquer, com p € pB e b € B. Como p B+ A[y] = B, existem q € p B,
a € A[v] tais que b = ¢ + a. Assim:

p+Pi(v)b=p+Pi(v)(g+a) = (p+ Pi(v)q) + Pj(v)a € p B+ P;(v)Al],

mostrando a inclusdo inversa. Assim, o que fizemos até agora nos permite concluir que os ideais
primos de B que contém (e portanto que dividem) p B sdo exatamente os g ideais:

Tri=pB+Pi(7)B,.... By = p B+ Py(7)B

Notemos agora que ‘i?f ‘Iieg =0em Ry x --- X Ry, logo a partir dos isomorfismos indicados
vemos que Pj - - - ;g =0em p—B, ou seja, que P -+ Py’ C p B. Assim, temos e; < e(P; | p),

para todo 1 < 57 < g. Notemos agora que, para 1 < j < g, nés temos um isomorfismo de
B ~ B/pB . B ~ (A/p)[z
A/ p-espacos T, = T,/pB" Como o isomorfismo vB T ) I leva B; = B,/ pB em gp]

(Pj(z))/(P(x)), nés temos:
B B/pB  (A/9)a/(P@) L (A/9)l]
B Ri/pB o (Pi(@))/(P(x))  (Pj(x))

Como Pj(z) é um polinomio irredutivel de (A/ p)[z] temos que (A/ p)[z]/(P;(x)) é uma extensdo
de grau O P; = O P; de A/ p. Isso mostra que [B/B;: A/ p] = O P;, isto é, f(P; | p) = 0 P;.
Agora, pela identidade fundamental:

g
= e(B; 19) F(B; 1p) =D e, 0P =0P =n.

J=1 J=1

Com isso, concluimos por fim que e(‘}3j | p) = ej para todo 1 < j < n, o que termina a
demonstracao. O

Um caso particular importante é quando B é monogéneo sobre A:

Teorema 4.22. Suponhamos que exista v € B tal que B = Aly]. Seja p <A primo nao-nulo.
Denotemos P = Py i, e sejam Py, ..., P, € Alx] polindmios monicos tais que P = Pfl : --Pzg
seja a fatoragdo prima de P em (A/ p)[z]. Entdo a fatora¢io de p B em ideais primos distintos
de B é B - PBy?, onde para 1 < j < g temosP; = p B+ Pj(v)B. Assim, e(B; | p) =e;. Além

disso, para 1< j < g, f(%; | p) = O P
Como consequéncia direta desse resultado, nés temos:
Corolario 4.23. Supondo B = A[y]:

(a) p serd totalmente decomposto em L se e sé se P se fatorar em (A/ p)[x] em fatores lineares
distintos x —a; € (A/ p)[z], para 1 < j < n. Nesse caso, p B = Pi--- P, com cada P,
igual a p B+ (8 —a;)B.
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(b) p serd totalmente inerte em L se e s6 se P for irredutivel em (A/ p)[z]. Nesse caso, p B<\B
€ primo.

(c) p serd totalmente ramificado em L se e s6 se tivermos P = (x —a)™ para algum a € A/ p.
Nesse caso, pB = (pB+ (f—a)B)", epB+ (8 —a)B € o dnico ideal primo de B sobre
p.

Nesse contexto, temos um critério simples para verificar se um ideal primo é ramificado:
Corolario 4.24. Supondo B = Aly], as sequintes condi¢oes sao equivalentes:
(i) p é ramificado em L.
(ii) O polinomio P € (A/ p)[x] € insepardvel.
(iii) A(P) € p.
(iv) p|0p/a
Em particular, se A=27Z, B= 0 ep =pZ, isso equivale a p | dy,.

Demonstragio. (i) <= (ii): Seja P = Py --- Pzg a fatoracdo prima de P em irredutiveis de
(A/p)[z]. O polinémio P é insepardvel se e s6 se para algum 1 < j < g tivermos e¢; > 1 ou P;
inseparavel, o que equivale a termos p ramificado em L devido ao Teorema 4.22 (note que pela

demonstragdo que fizemos a extensdao (B/9B)/(A/ p) é isomorfa a (?ﬁ/v'zi[;g] /(A/p)).

(i) <= (ii1): Como o discriminante de um polindomio de grau n é um polindmio simétrico
com coeficientes inteiros nas suas raizes, existe D € Z[x1,...,x,] tal que:

Alco+crz+ -+ cp 12" 4+ 2™) = D(co, ..., cn 1),
para todos cg, ..., c,—1 em algum corpo. Sejam ay,...,a, € A tais que
P(z) =ag+ a1z +---+a, 12" + 2™
Entdo nés temos que P(z) = (ag+p) + (a1 +p)x + -+ + (an_1 +p)z" ! + 2", e portanto
A(P)=D(ap+p,...,an—1+p) = D(ag,...,an—1) +p = A(P) +p,

mostrando que A(P) =0 <= A(P) € p. Como A(P) = 0 equivale a P ser separdvel, temos a
equivaléncia desejada.

(iii) <= (iv): Devido as proposi¢des 1.43 e 1.33, temos 0,4 = A(1,7,...,7" 1A = A(P)A.
Sendo assim, A(P) €p <= 0p/a Cp < p|0p/a.

Finalmente, para o caso particular basta notar que 0o, yz = d, Z pelo Teorema 2.7. ]

No caso em que B nao é monogénico sobre A nés podemos, utilizando localizagdo, obter
resultados semelhantes aos anteriores se nos restringirmos aos ideais primos nao-nulos p </A tais

que A(P) ¢ p:

Corolério 4.25. Sejam v € B elemento primitivo da extensio L/K e P = P, k. FEntdo, se
p <A primo ndao-nulo for tal que A(P) & p, nds temos:

(a) 1,7,...,7"" ! formam uma base do Ap,-médulo B,.

(b) p ndo é ramificado em L.
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(c) P e (A/p)[x] é separdvel.

(d) Sejam Py,...,P, € Alz| irredutiveis monicos tais que P = P;-- -?g. Entdao valem as

Demonstragao.  (a) Nés temos B, = ATJL devido a Proposicao 1.15. Pelo Teorema 3.30, A, é

um DIP, e portanto por 1.39 By, é um Ay-mddulo livre de posto n. Seja {f1,...,H,} uma
base de By, como Ay-médulo. Seja M € M, (Ay) a matriz que satisfaz

B 1
v il
B gt
Essa matriz existe ja que S1,..., 3, formam uma base de By e 1,7,... A e B,. Entao

nés temos A(P) = A(1,7,...,7" 1) = (det M)?A(B4, ..., Bn), devido as proposicdes 1.31
e 1.33. Mas A(P) € A\p C Ay \p, = A). Assim, a igualdade acima nos diz que temos
det M € A;. Segue da Proposicdo 1.42 que 1,7,... , Y"1 formam uma base de By como
Ap-médulo, como desejadvamos.

Observemos que como L = K(v) e By = Ap[y] pelo que acabamos de mostrar, podemos
aplicar os resultados anteriores dessa secao.

(b)

()

(d)

Como vimos, A(P) ¢ py- Desse modo, o Coroldrio 4.24 nos diz que p, nao é ramificado em
By. Mas isso significa que p nao é ramificado em B, pela Proposicao 4.16.

Também pelo Corolario 4.24, podemos concluir que o polinémio induzido por P no corpo
(Ap/ pp)[m] é separdvel. Mas Ap/ p, é canonicamente isomorfo a A/ p, devido ao Coroldrio
1.49. Desse modo, P € (A/ p)[z] é separavel.

Com a identificacio (A/ p)[z] = (Ay/ p,)[z], 0 Teorema 4.22 nos diz que a fatoracao de
pp By em ideais primos de B, é Qf" - 0%, onde para 1 < j < g temos Q; = pp By +
Pj(v)By, de modo que e(Q; | p,) = ¢j, e que além disso f(Q; | p,) = 0 P;.

Seja p B = ‘Bfl .. .plr a fatoracdo prima de p B em B. Pela Proposicio 4.16, temos entdo

(ml)ﬁl'..(f‘pr)ﬁr =, Bp — QTI ...Qgg'

Por unicidade, concluimos que r = g e que os ideais primos e expoentes que aparecem sao
iguais a menos de ordenagdo. Assim, podemos supor que Q; = (B,), e que ¢; = ¢;, para
1 < j < g. Isso ja nos garante que e(B; | p) = ¢, e que f(B; | p) = f(Q; | p,) =0 F;.
Agora, n6s temos (B;)p = pp, By + P;j(7) By = (p B+ Pj(7)B),. Assim:

B; = (Bj)yNB = (pB+ Pj(y)B)yNB.

Provaremos que se A <1B ¢ tal que p B C 2, entdo 2, NB = 2. Por um lado, é claro que
2A,NB 2 A. Seja agora x € A, NB. Entdo x = y/s, para alguns y € A, s € A\ p. Sendo
p <lA maximal, temos p +sA = A, e portanto existem p € p e a € A tais que 1 = p + sa.
Desse modo:

r=(p+sa)r=pr+sax=pr+yacepB+A=2.

Portanto, A, NB = 2. Em particular, tomando 2 = p B + P;(v)B, nés concluimos que
B; = (pB+ Pj(v)B),NB =p B+ Pj(y)B, como queriamos.

O]
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Os primos nao-nulos p <A tais que A(P, k) € p podem nao ser os mesmos para diferentes
escolhas de . Assim, para cada escolha de v temos um conjunto C, de primos nao-nulos de A que
contém o elemento A(P, k). Pelo corolério acima, é claro que o conjunto dos primos ramificados
de A estd contido na interse¢ao de todos os C. Uma observacdo importante é que cada C, é
finito, pois:

pelCy <= APyk)€p <= p|APy k)A =044,

e A(Py,x)A tem um nimero finito de divisores pelo Corolério 3.15. Em particular, concluimos
que o numero de ideais primos nao-nulos de A que se ramificam em L é finito.

Corolario 4.26. FEziste apenas um numero finito de ideais primos nao-nulos p <A que se rami-
ficam em L. Cada p deste tipo divide 04[y)/ A DTG todo v elemento primitivo de L/ K.

De fato, utilizando técnicas mais avancadas, pode-se mostrar uma condi¢do necessaria e sufi-
ciente para um ideal primo ndo-nulo p <A se ramificar em L:

Teorema 4.27. Seja p <A primo ndo-nulo, e suponhamos que para todo B | p a extensdo
(B/B)/(A/p) seja separdvel. Entio p é ramificado em L se e sd se p | g, 4.

Em particular, dados p € N e um corpo de nimeros algébricos L, p serd ramificado em L se
e sésep|dr.

Para uma demonstracio desse fato, veja por exemplo a Segao II1.2 de [2] ou o Capitulo 12
de [3]. Estudemos agora os ideais totalmente ramificados da extensao B/A. Quando B/A era
uma extensao gerada por um elemento, nés tinhamos o item (¢) do Coroldrio 4.23 para nos dar
informagoes. No entanto, um ideal primo p totalmente ramificado satisfaz A(P, k) € p para
todo v elemento primitivo de L/ K, de modo que ndo podemos adotar a mesma estratégia que
utilizamos nos dltimos resultados. O que fazemos nesse caso é mostrar a seguinte generalizacao
do critério de Eisenstein:

Teorema 4.28. Sejam p <A primo e suponhamos que L = K (v) para um elemento vy € B raiz de
um polinémio moénico P(x) = ag+ a1z + -+ am_12™ 1+ 2™ € Alx] tal que ag, a1, ..., am-1 € P
eag € p%. Entdo P é irredutivel em K[z] (note que isso significa que P = Py g ), m=[L: K| =n
ep B =", ondeP =pB+~vB € um ideal primo de B. Em particular, p € totalmente ramificado
em L.

Demonstragao. Sejam B <1 B primo sobre p e e = e(*B | p). Por hipdtese, agA = p a, para algum
a < B tal que p { a. Sendo p e a coprimos, pelo item (I) da Proposigdo 1.46 temos p B e aB
coprimos. Em particular, B 1 aB, de modo que o ideal apB = (pa)B = (p B)(aB) se escreve
como agB = P2 para A B tal que P 1 2A. Notemos que

V" =—ag— a1y — - —am-1y™ " €pB CP.
Assim, 7™ € B = v € P, ja que P é primo. Mais do que isso, notemos que para 1 <m <n—1
temos a; € p C P¢, de modo que

ag = _,ym —ay— - — am_l,ym—l c _,ym _;/Be+1'
Como Pt { apB, temos ag € P!, e portanto v™ ¢ P!, Disso e do fato de que 4™ € L™
concluimos que m < e. Por outro lado, Pyx | Pem K[z] &= n=[L: K| =0P,x <9P =m.
Mas da identidade fundamental nés sabemos que e < n. Assim, m < e < n < m, de forma
que m = n = e. Isso mostra que O P = 0 P, x = n, e entdo P = P, i ¢ irredutivel. Também
concluimos da identidade fundamental que a fatoracdo de p B em primos de B é p B = L.
Resta provarmos que 8 = p B + vB. Observemos que B" = p B C p B+ ~vB. Além disso,
como p C P ey € P, nés temos p B +~vB C P. Desse modo, p B+ yB = P’ para algum
1 < j < n. Suponhamos por absurdo j > 2. Entdo v € P/ = " € P/" C P+, um absurdo
como ja haviamos visto. Logo p B 4+ vB = ‘B, terminando a demonstracao. O



86

CAPITULO 4. EXTENSOES DE DOMINIOS DE DEDEKIND

O teorema acima nos dé uma condigdo suficiente para garantirmos que um ideal primo p <A é
totalmente ramificado em B. Mostraremos também que essa condi¢do é necessaria. Nos sabemos
que Ap ¢ um DVD com tnico ideal maximal p,. Supondo que p seja totalmente ramificado em B,
By, também serd um DVD. De fato, seja ‘B | p primo. Entdo p B = P". Todo primo de By é da
forma Q,, para Q <B primo nao-nulo com QN(A\p) = 0. Assim, QNA C p é primo nao-nulo,
e como A é dominio de Dedekind concluimos que QNA = p. Logo Q | p = Q = P. Desse modo,
By, é de fato um DVD, com tnico ideal maximal J,. Notemos ainda que p, B, = By

Teorema 4.29. Nas condicoes acima, seja m € By um normalizador. Denotemos por v a va-
loracdo associada ao DVD Ay e por w a valorag¢do associada ao DVD By,. Entdo:

(a)

Sejam ag,ai,...,an—1 € K quaisquer, ndo todos nulos. Definamos o == Y /"~ 01 a;7 € L.
Entio w(a) = min{n-v(a;) +i: 0 <i <n-—1}. Em particular, o # 0.

(b) L =K(n).
(c) 1,7, 72,--- 7" L formam uma base do A,-médulo By. Em particular, By, = Ay[r].
(d) Pri(r)=co+crz+-++cp12" 1+ 2", onde co,c1,y...,cn1 € py eco & pg.

Demonstragao.  (a) Comecemos observando que para 0 < i < n — 1 qualquer, nés temos:

(@iﬁi)Bp )( zBp) ((aiAp)Bp) ‘Win
IJ ) ' By = (py B,)"*) . 1'B,
)@ B, =gy . 1B,
WBp)n v al . ,ﬂ_’LBp — 7rn~v(ai)+in.

(a:B
(pp
(
(

Assim, w(a;w) = n-v(a;) 414, para 0 < i < n— 1. B facil ver que esses valores sao distintos
dois a dois, e portanto pelo item (d) do Lema 3.26 nds concluimos que:

n—1
a) =w <Z ami> = min{w(a;7"): 0<i<n—1}
i=0
= min{n-v(a;)+i:0<i<n-—1},
como queriamos. Em particular, o # 0.

Uma vez que {1,7,72,..., 7" !} tem n elementos e [L : K| = n, basta mostrar que esse
conjunto é linearmente independente. Mas isso segue do “em particular” do item (a)!

Por (b), todo elemento o de L/K se escreve de modo tnico como o = ?:_01 a;7", para
alguns ag, ..., ap—1 € K. Desse modo, queremos mostrar que se o € By entao ag,...,a,-1 €
Ap. Assim, suponhamos que a € By. Logo w(a) > 0. Por (a), nés temos a igualdade
w(a) =min{n-v(a;) +i: 0 < i <n—1}. Isso mostra que, para 0 < i <n—1,

. )
n-v(a;)+i>0=v(a;) > ——>—-1=v(a;) > 0.
n
Mas isso significa que a; € Ay, como gostariamos.

Seja Pr g (z) =co+crz+ -+ cpo12" 1 + 2" € K[z]. Como Py k(7) = 0, nés temos

n—1
W”:—ZCiﬂ‘iémin{n-’U(Ci)—ki: Oﬁiﬁn—l} = n,
i=0
devido ao item (a). Assim, para 0 <i <n —1, temos v(¢;) > (n—1i)/n > 0= v(¢) >

1
0 que mostra que ¢; € p,,. Notemos ainda que, para 1 <i<n—1,n-v(¢)+i>n-1=n.
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Logo para o minimo acima ser n ele deve ocorrer para i = 0. Ou seja, n-v(cy) = n, e
concluimos que v(co) =1 = ¢o & p;, como desejado.

O
Como consequéncia direta do teorema acima, nos temos a reciproca do Teorema 4.28:

Corolario 4.30. Se p <A € primo totalmente ramificado em B e P <1 B é o unico ideal primo

de B sobre p, entdo existe v € B tal que L = K(v) e v € raiz de um polinomio P(z) =
ao+ a1z + -+ ap_12" L+ 2" € Alz] tal que ag,a1,...,an_1 €p e ag & p>.

Demonstragao. Seja m um gerador do ideal P, <t B,. Entdo o teorema acima nos diz que L =
K(r), que {1,7,..., 7!} é base do Ap-médulo By e que Pr ¢ = co+ 17+ -+ + cpga™ 1 + 2"

é tal que co,...,cn—1 € py e o & pg. Como 7 € By, nés temos m = /s para alguns v € P e
s€ A\p. Entdo v € B é tal que L = K(v).
Agora, como cada cp,...,cp,—1 € Py, n6s podemos escrever, para 0 < ¢ < n—1, ¢ = b;/ s;
para alguns b; € pe s; € A\ p. Como ¢y & pg, nés devemos ter by & p?. Assim:
n—1 n
O=cotarmt tepan™ g = 00T b (7) + <7>
S0 S1 S Sn—1 S S

ap+ary+ -+ ap_1y 4"
S™spS81*** Sp—1
= at+ay+- a1y H" =0,

onde para 0 < i < n — 1 definimos a; := bjs" s ---5;---Sp_1 € A. Para 0 < i < n—1 nés
temos b; € p, logo a; € p. Além disso, como p é primo, s"sy---s,_1 € p, e portanto agB =
(boB)(s"s1 - s,_1B) nao é miltiplo de p2, j4 que p> { boB e p { s"s1---s,_1B. Finalmente,
basta tomar P(x) :=ao +a1x + -+ ap_12"* + 2" € Alz]. O



Capitulo 5

Decomposicao em Corpos
Quadraticos e Ciclotomicos

Nesse capitulo, aplicaremos os resultados do capitulo anterior para estudar como os ideais primos
de Z se fatoram em ideais primos de corpos quadraticos e ciclotomicos. Para estudarmos as
extensoes de corpos quadraticos, provaremos a famosa Lei de Reciprocidade Quadratica.

5.1. A Lei de Reciprocidade Quadratica

Seja d € D congruente a 2 ou 3 médulo 4, e K = Q(v/d). Entdo Ox = Z[Vd]. O polinémio
minimal de v/d em relagio a Q é P(z) = Priola) = 72 —d. Assim, pelo Teorema 4.22,
para estudarmos como um numero primo p € IN se decompoe em Ok devemos analisar como o
polinémio z? — d se fatora em F,[z]. Sendo esse um polinémio de segundo grau, temos apenas
duas opg¢oes: ou esse polinomio possui uma raiz em IF,, ou entao ele ¢ irredutivel. Mas a existéncia
de uma raiz desse polindomio em [F,, equivale a dizer que existe uma raiz quadrada de d em [F,,, isto
é, que existe a € Z tal que a? = d (mod p). A existéncia ou nio de tal a € Z é o que abordaremos
nessa secao.

E interessante notar que os resultados provados aqui possuem enunciados elementares, apa-
recendo naturalmente em Teoria Elementar dos Ntimeros no estudo de congruéncias quadraticas.
De fato, embora a Lei de Reciprocidade Quadratica seja demonstrada aqui utilizando inteiros
algébricos, ela possui demonstragoes elementares (veja por exemplo os livros [1] ou [5]). Essa
discussao motiva a seguinte defini¢do:

Definicao (Residuo Quadrético). Seja n um inteiro positivo. Dizemos que um inteiro a € Z (ou
sua classe @ € Z /nZ) é um residuo quadréatico médulo n (ou em Z /n Z) se existir r € Z tal

que 2 = a (mod n) (equivalentemente, se existir 7 € Z /n Z tal que 72 = a).

Denotaremos o conjunto de residuos quadraticos médulo n por RQ(n). Note que podemos ver
RQ(n) tanto como um subconjunto de Z quanto de Z /n Z, dependendo da defini¢ao de residuo
quadratico utilizada. A forma de enxergarmos RQ(n) ficard clara pelo contexto. A seguinte
notagao é bastante util:

Definigao (Simbolo de Legendre). Denotemos por P o conjunto dos niimeros primos impares em

Z. O simbolo de Legendre é uma funcao <) : ZxP — {-1,0,1}, com (a,p) — (Z), de

modo que, dados p € Z um primo impar e a € Z qualquer, nés tenhamos:

0, sep|a;
(a> =< 1, septaeacRQ(p);
—1, sepfaeadgRQ(p)

88
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Assim, nosso problema inicial se reduz a conseguir calcular os simbolos de Legendre para
quaisquer (a,p) € Z xP. O critério de Euler nos ajudard nessa tarefa:

Proposicao 5.1. (a) Seja p um primo impar, e seja g um gerador do grupo multiplicativo IF;.
Entao o conjunto de residuos quadrdticos de IF, é dado por
RQ(p) = {0} U{g*: 0<k < (p—3)/2}.
Em particular, |[RQ(p)| = (p+1)/2.

(b) (Critério de Euler) Se (a,p) € Z xP, entdo (Z) = aP=1)/2 (mod p).

Demonstracao.  (a) Segue facilmente por teoria de grupos abelianos.

(b) Se p | a, essa igualdade é clara. Suponhamos que p t a. Entdo temos @ = g™ para
0<m<p—2. Assim, a?~1/2 = gn(r=1/2 Se m for par, m(p —1)/2 = 0 (mod p — 1),
e nesse caso a?~1/2 = g0 = 1. Se m for impar, m(p—1)/2 = (p—1)/2 (mod p— 1), e
nesse caso a?~1/2 = ¢glp=1)/2 = _T (note que gP=1/2 ¢ yma raiz de 22 — T diferente de 1,
e esse polindmio se fatora como (z 4 1)(z — 1), de onde gP~1/2 = _T),

Utilizando o item (a) e o que acabamos de mostrar, concluimos que se a for residuo
a
quadrético entdo m é par, e portanto aP~1/2 =1 = <> (mod p), e que se a nao for

a
residuo quadratico entdo m é impar, e portanto aP-1/2 = _1 = () (mod p).
p

O
O simbolo de Legendre possui as seguintes propriedades:

Proposicao 5.2. Seja p um primo impar e sejam a,b € Z quaisquer. Entdo:

(a) Se a=0b(mod p), entio (Z) = (b>

p
2
(b) Se pta, entdo (2) =1.

(c) (_pl) = (—1)(”_1)/2. Desse modo, —1 € RQ(p) <= p=1(mod 4).

b b
(d) (Z) = (a) (p) Desse modo, o simbolo de Legendre induz um homomorfismo de grupos

p
multiplicativos F; — {—1,1} dado por a — (a).
p
Demonstragao. Os itens (a) e (b) sdo imediatos da definigao.

-1 -1
(c) Pelo Critério de Euler, () deixa resto (—1)®~1/2 médulo p. Mas como <) = +1,
p

temos que vale a igualdade ja que p > 2. Assim:

_1eRQ(p) <‘p1> 1 e ()P 21— p=1 (mod 4).

(d) Sep|aoup|b,oresultado é 6bvio. Suponhamos entdao que p { a,b. Pelo Critério de Euler,

(“b> = (ab)P=1/2 = (=172 o172 = <“> <b> (mod p).

p b/ \p

b b
Mas como (CL) =+le (a) () = 41, deve valer a igualdade desejada ja que p > 2.
p P/ \p
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Finalmente, provemos a famosa Lei de Reciprocidade Quadratica:

Teorema 5.3 (Lei de Reciprocidade Quadratica). Sejam p,q primos impares distintos. Entdo:

(a) (5) (g) = (—1)%1% Isto é:

e Sep=1 (mod4) ouq=1 (mod 4), entdo p € RQ(q) < q € RQ(p).
e Sep=qg=3 (mod4), entao p € RQ(q) < q & RQ(p).

(b) (;) = (—1)#. Isto é, 2 € RQ(p) <= p==+1(mod 8).

Demonstragao. (a) Seja ¢ € C uma raiz primitiva p-ésima da unidade. Consideremos a soma

de Gauss' S:=3 (a)C“ € Z[(]. Entdo S? = (—1)pT_1p. De fato:
PA\p

o= (S (@)) - 5 O0)-

> TG

)

- pes (- se s ()0
~sew ()

nelf, aclFy

an—1

Assim, para determinar S? basta calcular a soma ZGE]FPX ) para cada n € [F),.

. -1
Para n = 0, todas as parcelas dessa soma sao < , de modo que essa soma é igual a
p

p—

-1
(p—1) () = (—1)T1 (p— 1) pelo Critério de Euler. Para n € IF, vemos que quando a
b

varia o ntimero a~'n percorre todo IF;. Entéo nesse caso:

555 ()-50-G) -G

X X
aGIFp aE]Fp

jé que temos exatamente (p — 1) /2 residuos quadraticos e (p — 1) /2 residuos nao-quadraticos
a

em IF; pelo item (a) da Proposi¢ao 5.1, e portanto a soma ZaEIFp (), formada por uma
p

parcela igual a 0, (p —1)/2 parcelas iguais a 1 e (p — 1)/2 parcelas iguais a —1, é igual a
0. Assim:

-1 —1 p—1 pt p—1
=Y () = (WTe-n- LT
n€lF, aE]F;f n=1

= ()T (-1 “zcn

p—1 p—1
= ()7 (p-1)—-(-1)=z (-1
p—1
= (_1) 2 p,
L Aqui, por simplicidade de notacéo, identificaremos F,, com seu conjunto de representantes {0,1,...,p—

1} C Z.
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como desejavamos. Calculemos agora S9! 10 anel A = Z[¢]/(¢Z][¢]). Observemos que
como S? = £p e mdc(p,q) = 1, temos que p € IF,* C A%, e portanto S € A*. Como A é
um anel de caracteristica g, nés temos:

- (20F) - @50

a€lF, acF,
- 5 O

uma vez que quando a percorre IF,, ag também percorre IF,. Como S € A, concluimos que

St = (q) em A. Com as identidades S? = (—1)%]9 e S = (q)) jé temos tudo o
p p
que precisamos para provar a igualdade desejada. Basta notar que, pelo Critério de Euler:
-1
(—1)"2p> N P (q)
D) =((-1)"=p =(8%)72 =87"= (=) (mod gA4).
(—2 (—1)5p) 7 = (s?) 1) (mod 44)

1N\
Mas por outro lado, (()2]9) =(-1)7= "= <p>, e portanto
q q

0959 (2) = (8) s+ 05 2) - (1)

j& que ambos esses valores sdo +£1 e ¢ > 2. Finalmente, essa tltima igualdade é equivalente

a igualdade desejada (basta multiplicar por <p) = +1 de ambos os lados).
q

Seja ¢ € C uma raiz oitava primitiva da unidade, e denotemos w = ¢ + ¢~!. Entdo w? = 2.
De fato:

W=+ =+ 2T =+ 2=+ ) +2=2,

Assim, pelo Critério de Euler:

(2> = 9% = 1 (mod pZ[(]).
p

Logo basta calcularmos @?~'. Como mdc(2,p) = 1, temos 2 € F; C (Z[¢]/pZ[(])*.
Como w? = 2, temos w € (Z[¢]/pZ[¢])*. Agora:

—p Z+Z‘1=w, se p =1 (mod 8);
T+ =Cw=—w, sep==3(mod 8).

2_
Note que entao temos w? = (—1) ple, para todo primo impar p, e comow € (Z[¢]/pZ[¢])*

2_ 2 2_
temos wP~1 = (—1)%1. Assim, (=) = WPl = (—1)% (mod pZ[¢]). Como tanto

21

2 2 2
() quando (—1)"s * estio em {-1,1} e p > 2, concluimos que <) = (=1)"%, como
p p

queriamos.

O]

Observacao 5.4. O uso de raizes da unidade na prova acima parece totalmente “arbitrdario”, ou
mesmo “mdgico”. Para justificar um pouco o surgimento desses elementos, podemos pensar na
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principal ideia da demonstracdo acima, que é simplesmente calcular (p) (mod q) utilizando o
q

Critério de Euler. Em Z[,/p|, nds temos:
py _ ot q—1
() =pz =./p" " (mod qZ[/p)).

. —=q-1 . .
Com isso, basta calcularmos \/p € Z[\/p)/(qZ[\/p]). Para isso, buscamos uma expressio
explicita para \/p, isto €, procuramos determinar uma raiz quadrada de p numa extensao de IF,
e como vimos isso € possivel através das somas de Gauss.

Exemplo 5.5. A partir da Lei de Reciprocidade Quadrdtica, podemos calcular simbolos de Le-
gendre por meio da fatoracdo. Por exemplo, digamos que queremos determinar se 2021 é residuo

da sequinte forma:

;)
5003

() (-(#)

quadrdtico mdédulo o nimero primo 5003. Para isso, computamos (

(2021) B (43-47) _ ( 43 )( 47 ) B
5003/  \ 5003 / \5003/)\5003/)

onde usamos repetidas vezes a Lei de Reciprocidade Quadrdtica e a multiplicatividade do simbolo
de Legendre. Assim, 2021 ¢é residuo quadrdtico mddulo 5003.

Podemos estender o simbolo de Legendre para todo inteiro positivo impar, por fatoracao. Isso
definird o chamado simbolo de Jacobi:

Definigdo (Simbolo de Jacobi). Seja n um inteiro positivo {mpar, e seja n = p{* -- -p,?’“ a sua

fatoragao prima. Dado a € Z qualquer, definimos o simbolo de Jacobi (a) como sendo:

©= () (@)=

7=1
a
Observe que com essa definicdo nds temos (1) = 1 para todo a € Z.

Note que para n primo os simbolos de Legendre e Jacobi coincidem. Assim, ndo temos pro-
blema em usar a mesma notacao para os dois simbolos. Utilizando as propriedades que conhecemos
do simbolo de Legendre, conseguimos deduzir propriedades similares do simbolo de Jacobi:

Teorema 5.6 (Propriedades do Simbolo de Jacobi). Sejam m,n inteiros positivos impares e a,b
inteiros quaisquer. Entdo nos temos:



(a)

(b)

(9)
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. (a b
Se a = b (mod n), entdo () = ()

(CL) =0 se mdc(a,n) >1 e (a) = 41 se mde(a,n) = 1.
n

n

2) = (2)(2) s (£) <t
)~ (2)(2) i, (2) 10

As igualdades (¢) e (d) sao chamadas de multiplicatividade do simbolo de Legendre, a igualdade
(e) é chamada de Critério de Euler para o simbolo de Jacobi, e as igualdades (f) e (g) sdo
chamadas de Lei de Reciprocidade Quadrdtica para o simbolo de Jacobi.

Demonstragdo. Nos itens abaixo, denotaremos por n = p{* - - - pp* e por m = ¢}

L...¢% . Notemos

ainda que todos os itens sao faceis de verificar caso m = 1 oun = 1. Assim, suponhamos m,n # 1.
Os itens (a), (b), (¢) e (d) seguem facilmente da defini¢ao. Provemos (e), (f) e (g):

()

Pela multiplicatividade e pelo Critério de Euler para o simbolo de Legendre:

_ ks 1Ny k _ & pi—1
<1> =11 (1) I | [ e e
n j=1 \Pi j=1
Assim, basta mostrarmos que Z§:1 a; - % = -1 (mod 2). Isso por sua vez segue

facilmente por indug¢do em «j + -+ + «, do seguinte fato: dados wu,v impares, temos

wel = uol 4 vl (mod 2). Para verificar esse fato, basta notarmos que:

-1 -1 -1
u1)2 Eu2 —|—U2 (mod 2) <= ww—-1=(u—1)+(v—1) (mod 4)
<— w—-—u—v+1=0(mod 4)

<— (u—1)(v—1) =0 (mod 4),

o que é verdade ja que u e v sdo impares.

Se mdc(m,n) > 1, entdo pelo item (b) temos (m> = (n> = 0, e temos a igualdade
n m

desejada. Suponhamos entdo mdc(m,n) = 1. Assim, para 1 <i < kel < j < r temos
pi 7 qj-
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Pela multiplicatividade e pela Lei de Reciprocidade Quadratica para o simbolo de Legendre:

(

n

Assim, basta mostrarmos que ¥ 12 j=1 il pl_l A

temos:

Z Z ;3 -

i=1j=1

m

I

n

m

)

pz_

==

@
[y

—
=
<
A~
[

.

pi

=
k)

-
<
(S

AH

(i

bi

—_

—_
<

&
I x>~
—_
Sl

<=
—_

.

—~

ol

pi
95

pi—l.q]‘

(1)

_1)Zf=1 Z;=1 @ifj =5

) I(G)
1)) (1)
)"

-1
2

p;—1 qul

-1

m—1
2 2

)

- 21 (mod 2). Mas nés

)

q; —

B

g — 1 k 1 r
A (2:% pi ) S
2 i=1 j=1
n—1 m-—1
= R — 2
5 5 (mod 2),

pelo fato que demonstramos no item (e).

2

n

(%)

Assim, basta provarmos que Z;?:
facilmente por inducdo em «g + ---

(uv

-1

k

11,

8
21 21 21
(uv)g Eu8 47 (mod 2) <—
— ¥ -
— (u® -

)=l

pi-1

2

,—1

— (-pZme

+ a;, do seguinte fato:

< (mod 2).

Pela multiplicatividade e pela Lei de Reciprocidade Quadratica para o simbolo de Legendre:

p2—1

. _J

e

Isso por sua vez segue

dados u,v impares, temos

2 2 .
= 8_1 + 2 8_1 (mod 2). Para verificar esse fato, basta notarmos que:

w?v? — 1= (u? = 1)+ (v® — 1) (mod 16)

u? —v% 4+ 1 =0 (mod 16)
1)(v? = 1) = 0 (mod 16),

o que é verdade j& que u e v sdo fmpares, e portanto u? — 1,9% — 1 = 0 (mod 4).

O]

Também nos sera ttil estender a Lei de Reciprocidade Quadrética acima para inteiros nega-

tivos:

Proposicao 5.7. Sejam m € IN e c € Z impares e primos entre si. Entao:

(

Cc

m

1 c—1

(-1

)

m

<

]

)
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Demonstracdo. Se ¢ for positivo, a igualdade acima é simplesmente a Lei de Reciprocidade
Quadratica para o simbolo de Jacobi. Suponhamos entdo ¢ < 0. Assim, |¢| = —c. Pelo Critério
de Euler e pela Lei de Reciprocidade Quadratica para o simbolo de Jacobi:

5)-G)E) - crer ()

O]

2
a

Todo quadrado perfeito a? satisfaz <) € {0, 1}, para todo ¢ inteiro positivo impar. Mais
c

interessante é que a reciproca também vale:

Proposicao 5.8. Seja n inteiro positivo tal que para todo c inteiro positivo impar tenhamos

(n) € {0,1}. Entdo n é um quadrado perfeito.
c

Demonstracao. Provaremos a contrapositiva. Isto é, se n nao for um quadrado perfeito, acharemos
n

um impar positivo ¢ tal que () = —1. Sejan = 297" .- pp* a fatoragdo prima de n, onde
c

a>0eai,...,ap > 0. Podemos supor ser perda de generalidade que «; é impar. Pelo Teorema

Chinés dos Restos, existe um inteiro positivo ¢ que satisfaz o sistema de congruéncias:
¢ =1 (mod 8);
¢ =r (mod p;)
c=1(mod p;), 2<j<k.
para um r € Z que nao seja residuo quadratico médulo p;. Note que as congruéncias acima

ja garantem c impar. Pela multiplicatividade do simbolo de Jacobi e pela Lei de Reciprocidade
Quadratica, nds temos:

()= (A=) - 2y () (2 ()

2
Como ¢ = 1 (mod 8), temos () = 1. Além disso, como ¢ = 1 (mod 4), para 1 < j < k nds
c

temos (pj> = (C) Assim:
C pj

(5) -

- =

- ()

Assim, achamos o ¢ desejado, concluindo a demonstracao. ]

Observacao 5.9. Utilizando o Teorema de Dirichlet sobre progressoes aritméticas, a mesma
demonstracdo acima mostra um resultado mais forte: que se n € inteiro positivo tal que para todo
p primo tenhamos n residuo quadrdtico médulo p, entdo n € um quadrado perfeito. Isso ocorre
porque podemos escolher ¢ primo satisfazendo as congruéncias desejadas.
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5.2. Decomposicao em Corpos Quadraticos

Seja p € N primo, e consideremos um polinémio de segundo grau az® + bz + ¢ € F,[z]. Essa
equacao tera solucoes em IF, se e sé se b? — 4ac for um quadrado em IF,, ou seja, se e s6 se

b —4
(ac) € {0,1}. Sabendo calcular os simbolos de Legendre, conseguimos estudar a decom-
p

posicao de ideais primos em um corpo quadratico K = Q(\/ZZ), com d € D. Pelo Teorema 4.22,
a fatoracdo de um ideal primo pZ <1 Z em O depende da fatoracdo do polindémio minimal de §,
onde § = Vdse d=2,3(mod 4) e § = # se d =1 (mod 4).

Consideremos inicialmente d = 2,3 (mod 4). Nesse caso, o polindémio minimal a se considerar
¢ P(z) =P o) = 2?2 —d. Seja p € N um primo fmpar. Entdo P(z) = 2% — d possui raiz em
IF, se e s6 se d for residuo quadratico médulo p.

d _
e Se () = —1, entdo P(z) é irredutivel, e nesse caso pOk é um ideal primo de O. Isto é,

p € totalmente inerte.

» Se (d> =1, entdo P(z) possui duas raizes 7 e —T em ). Desse modo, P se fatora como
\p
P(z) = (x —7)(x +7), e portanto a fatoragdo de pOk em ideais primos de O é:
POk = (pOk + (Vd—r)Ok) - (pOk + (Vd +r)Ok).

Nesse caso, p é totalmente decomposto.

d _
e Se () =0, isto é, se p | d, entdo P(x) = x2. Desse modo, a fatoracio de pO em ideais
p
primos de Ok é pOg = (pOk + \/&OK)Q. Nesse caso, p é totalmente ramificado.

Falta analisarmos o que ocorre para p = 2. Nesse caso, P(z) =

22, se d for par;

x? —1, se d for impar.
Note que 22 — T = (z —1)2. Assim, se d for par a fatoracdo de 20k em ideais primos de O
6 20K = (20K +VdOxk)?, e se d for fmpar a fatoracdo de 20y em ideais primos de Of é
20K = (20 + (Vd —1)Ok)?%. Em qualquer caso, 2 é totalmente ramificado.

Consideremos agora d = 1 (mod 4). Nesse caso, o polindmio minimal a se considerar é
P(z) = P(1+\/a)/27Q(x) = 22—z 4+ 17¢, como ¢ facil verificar. Seja p € N um primo fmpar.

O discriminante dessa equagio é (—1)2 —4-1- (%d) =14 (d—1) = d. Assim, como no caso

anterior, basta analisarmos () Comecemos observando que em F), temos 1/2 = (p+1)/2.
p

d _
e Se <> = —1, entdo P(z) é irredutivel, e nesse caso pOk é um ideal primo de O. Isto é,

p € totalmente inerte.

d _ - _
e Se <) =1, entdo P(z) possui duas raizes 1” e 15° em F), onde 72 = d. Desse modo:

p
P(a)=(r-57) (« - ) = <x _ <1+r>2<p+1)> (x _ (1_)2(,,+1)> 7

e a fatoracdo de pOk em ideais primos de Ok é:
pOr = (p(QK + (Hf (1+T)(p+1)> OK) (pOK n <1+\f (1—T)2(p+1)> OK)

(note que é necessério substituir 1/2 por (p+ 1) /2, pois (14 r)/2 nado estd necessariamente
em Z). Nesse caso, p é totalmente decomposto.
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d _
e Se () =0, isto é, se p | d, entdo P(x) possui raiz dupla 1/2. Desse modo:

p
- T 1
P(z) = (l’—%) = (x—%),
e a fatoracdo de pOk em ideais primos de Ok ¢
2 2
POk = (p(’) + (H‘[ p;rl) OK) = (p@K + 7\/8;)01()
Nesse caso, p é totalmente ramificado.

2?2 — 1z, se d =1 (mod 8);

22+ 2 +1, se d=5(mod 8).
Observemos que 72 —x = x(x — 1) e 22 + x + 1 é irredutivel em Fa[z], pois ndo tem raizes em
Fo. Assim, se d = 1 (mod 8) a fatoragao de 20k em ideais primos de O é

20 = (20[(—1—%'0[() (20 +(1+\[ )OK)
= (20[(4-@-0[()-(20](—{—\/;_ OK),

Falta analisarmos o que ocorre para p = 2. Nesse caso, P(r) = {

2

e se d =5 (mod 8) o ideal 20k é primo. Desse modo, se d = 1 (mod 8) o ideal 20 ¢é totalmente
decomposto, e se d =5 (mod 8) o ideal 20k é totalmente inerte.

Observe que em ambos os casos o numero de ideais ramificados (que nesse caso equivalem aos
ideais totalmente ramificados) é finito, j4 que apenas um ntmero finito de primos divide d. Isso
é um caso particular do Corolario 4.26. Além disso, pelo Corolario 4.24, p ser ramificado em Og
4d, se d = 2,3 (mod 4);
d, se d =1 (mod 4).
oup=2ed=3(mod4). A anilise que fizemos acima da decomposi¢ao dos ideais primos em
Ok mostra que de fato esses sdo os tunicos casos em que pOk é ramificado. Essa analise, de fato,
nos diz que o tipo de decomposi¢do de um primo p € IN em Ok se da da seguinte forma:

equivale a p dividir dg. Como dig = { isso equivale a dizer que p | d

Proposicao 5.10. Sejam d € D, K = Q(\/&) e p € N primo. Entdo:

(a) p é totalmente ramificado em Ok se e somente sep|d ou sep =2 ed=3(mod 4).

d
(b) p € totalmente decomposto em O se e somente se p for impar e () =lousep=2e
p

d =1 (mod 8).
(c) p é totalmente inerte em Ok se e somente se p for impar e <d) = —-lousep=2e
d =5 (mod 8). s
Exemplo 5.11. O resultado acima aplicado para d = —1 nos permite reobter a caracterizacdo

dos tipos de decomposi¢io em Z[i]. Para isso notemos que pelo resultado acima, dado p € N
primo, temos:

o p € totalmente ramificado em Z[i] se e somente se p = 2.
-1

o p € totalmente decomposto em Z[i] se e somente se p for impar e () =1.
p

; . . . -1
o p € totalmente inerte em Z[i] se e somente se p for impar e [ — ) = —1.
p

1 _
Mas pelo Critério de Fuler, () = (—1)%, e portanto —1 é residuo quadrdtico modulo p se e
p

somente se p =1 (mod 4). Isso nos dd a caracteriza¢io que tinhamos anteriormente.
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O exemplo acima nos mostra que para verificarmos se —1 ¢é residuo quadratico moédulo p basta
analisarmos o resto de p na divisdo por 4. Com a Lei de Reciprocidade Quadratica em maos,
conseguimos mostrar que vale um mesmo tipo de critério em geral. Mais explicitamente, que o
tipo de decomposicdo de um primo p em Ok depende unicamente do resto de p na divisdo por
ldk|.

Para ver isso, escrevamos d = 2™d’, com m € {0,1} e d’ impar (lembre que d é livre de
quadrados). Seja ¢ € Z impar e primo com d. Entdo, pela Lei de Reciprocidade Quadrética,

({) - (-t () w

d
Essa equacao nos garante que () s6 depende do resto de ¢ médulo |dg|. De fato:
c

nds temos:

e Sed=1(mod4), entdo m = 0 e d = d. Assim, a equagdo (5.1) se torna simplesmente

d d
(c) = <|Z), jd que (d —1)/2 é par. Logo (c) = (V‘c”) s6 depende do resto da divisao

de ¢ por |d| = |dk]|-

o Sed=2(mod 4), entdo m = 1. Assim, a equagdo (5.1) se torna

d Aoy do1 (¢
()=o),

Note que essa expressao depende apenas de ¢ (mod 8) e ¢ (mod |d'|). Ou seja, pelo Teo-
rema Chinés dos Restos depende apenas de ¢ (mod 8|d’|). Mas 8|d’| = |[4d| = |dk|, como
queriamos.

e Se d=3(mod4), entdo m = 0 e d = d. Assim, a equacao (5.1) se torna simplesmente

d e
() =(-1) 5 (|§/>, j& que (d—1)/2 é impar. Note que essa expressiao depende apenas

de ¢ (mod 4) e ¢ (mod |d|). Assim, pelo Teorema Chinés dos Restos, depende apenas de
¢ (mod 4|d|). Mas 4|d| = |4d| = |dk/|, como queriamos.

d
Assim, mostramos que () s6 depende do resto de ¢ médulo |di|. Tomando ¢ primo que nao
c

divide d nds obtemos a afirmacao desejada de que o tipo de decomposi¢do de um primo p em Ok
depende unicamente do resto de p na divisdo por |dg].

Na verdade, podemos obter um pouco mais do que isso. Baseado na conta acima, chamemos
Sk ={ce€Z: mdc(dg,c) =1}, e consideremos xx: Sk — {—1,1} dado por

(&), se d =1 (mod 4);

C27 Cc— /_
xk(c) = (—1)T1+Tl'% (WC/‘), se d =2 (mod 4);

(—1)651 <|fl)’ se d = 3 (mod 4).

d

Observe que se ¢ for impar, xx (¢) nada mais é do que (), devido & conta que fizemos acima,
c

e que ¢ s6 pode ser par se d = 1 (mod 4), pois caso contrario 2 | dix. A fungdo yx possui as

seguinte propriedades:

Teorema 5.12. (a) xx nao depende da classe de ¢ mddulo |dk|, ou seja, se b,c € Sk sao tais
que b = ¢ (mod |dk|) entao xk(b) = xk(c).
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(b) xK € um homomorfismo sobrejetor de semigrupos multiplicativos.

(¢) Dado p € Sk primo, temos que d € RQ(p) <= xx(p) = 1. Assim, p é decomposto se e
56 se xk(p) =1, e p € inerte se e s6 se xi(p) = —1.

Demonstragdo.  (a) Segue diretamente pela andlise que ji fizemos acima. Note que o fato de ¢
poder ser par ndo interfere nessa andlise.

(b) Sejam a,b € Sk. Sed = 2,3 (mod 4), j& sabemos que xx(a) = <Z> exk(b) = <d>, e por-

b
tanto x i (ab) = <(jb) = <Z> <Z) = xk(a)xk(b). (poderfamos também ter feito a conta
direta). Se d =1 (mod 4), nés temos xx (ab) = <|Cj;|) = (G,) <kfl!) = xx(a)xx (b).

Falta mostrarmos que xx é sobrejetor. Em todos os casos, xx (1) = 1, de modo que basta
verificar que —1 estd na imagem de xg. Se isso ndo ocorresse, entdo em particular para

todo ¢ inteiro positivo impar nés terfamos | — ) € {0,1}. Mas como vimos na Proposigao
c

5.8, isso implicaria que d é um quadrado perfeito, um absurdo ja que d € D. Isso mostra
que X g é sobrejetora.

d
(¢) Para p impar, isso segue diretamente do fato de que xx(p) = () e da Proposicao 5.10.
p

2
Para o caso p = 2, devemos ter d = 1 (mod 4), e assim g (2) = (é) = (—1)%. Assim,
Xk(2) =1sed=1 (mod 8) e xx(2) = —1sed=>5 (mod 8). O resultado desejado segue
entdao da Proposicao 5.10.
O homomorfismo yx é chamado de carater quadratico de K. Podemos estender xx a um
homomorfismo sobrejetor de semigrupos multiplicativos xx: Z — {—1,0,1} definindo xx (¢) =0
se ¢ € Z\Sk. Com isso:

Corolario 5.13. Para qualquer nimero primo p € IN, nds temos:

1 se e somente se p for decomposto em K;
XK(p) = ¢ —1 se e somente se p for inerte em K;

0 se e somente se p for ramificado em K.

Devido ao Teorema de Dirichlet sobre progressoes aritméticas, sabemos que para todo corpo
quadratico K temos um numero infinito de primos decompostos e um nimero infinito de primos
inertes, ja que x g € sobrejetor.

Exemplo 5.14. Seja K = Q(v/—3). Chamamos o anel de inteiros algébricos Ox = Z {@}
de anel dos inteiros de Eisenstein. Com os resultados acima, consequimos determinar ra-
pidamente quais primos de N sdo decompostos, inertes e ramificados nesse anel. Nesse caso,

1 2
dk = d = =3, e dado ¢ € Sk temos xi(c) = (g) Mas (g) = 0, (3> =1le (3> = —1,

como € fdacil verificar. Assim, os primos decompostos em Ok sdo os da forma 3k + 1, os primos
inertes sao os da forma 3k + 2 e os primos ramificados sio aqueles da forma 3k (ou seja, 3 € o
inico primo ramificado nesse anel).
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5.3. Decomposicao em Corpos Ciclotdmicos

Sejam n um inteiro positivo, ¢ € C uma raiz primitiva n-ésima da unidade e K = Q(¢). Nessa
secdo, estudaremos a decomposicao de ideais primos de Z em K. De fato, obteremos um resultado
parecido com o da secdo passada. Mais especificamente, mostraremos que o tipo de decomposicio
de um primo em K depende unicamente de sua classe de congruéncia médulo n, assim como no
caso de corpos quadréticos dependia de sua classe médulo |dg]|.

Primeiro, provaremos que Og = Z +Z( + -+ Z ¢#-1 = Z(], como haviamos prometido
no Capitulo 2. Assim, {1,(,... ,C‘P(”)_l} serd uma base integral de Or. Comecemos com o
seguinte lema:

Lema 5.15. Sejam p um nimero primo e r um inteiro positivo. Sejam ¢ wma raiz primitiva p"-
ésima da unidade e K = Q(({). Entdo o ideal principal (1 — ()OO <1 Ok € primo, e a fatoragdo
de pOy em ideais primos de O é pOrx = (1 —C)O)?W"). Em particular, p é totalmente
ramificado em K, e portanto Ok /(1 —()Ok = F,, com as devidas identificagies.

Demonstragdo. Como j& vimos, o polinémio minimal de ¢ sobre Q é”

r—1

[I (@—¢)=p(2)=a® 0P 4o g 42?41,
ge(Z /pm Z)*

Avaliando em 1, obtemos portanto [, (z /- 7)< (1 — ¢9) = p. Para cada g € (Z /p"Z)*, defina-
mos
1— 9

= =1 gil‘
Eg - +C+- -+ (¢

Entéo g4 € Z[¢] € Ok é um inteiro algébrico. Temos ¢, € O. De fato, sendo ¢’ € (Z /p" Z)*
tal que g¢’ =1 (mod p"), nés temos:

L 1-¢  1-(¢)Y

S =TT T 1o ST T e ZIG € O,

como queriamos. Sendo assim:

p= Il (-= I [e0-0l=0-0"",

g€(Z /p Z)* 9€(Z /pr Z)*

onde € = [[yc(z /pr 2)x €9 € Of- Isso mostra que pOx = ((1 - C)Ok)#®"). Mas uma vez que
[K : Q] = p(p"), vemos pela identidade fundamental que (1 — ¢)Of ¢ ideal primo. Logo p é
totalmente ramificado, de modo que f(1_cj0, = 1, isto é, [Ox /(1 —()Ok : Fy] = 1. Mas isso
significa que Ok /(1 — ()Ok = F,,. O

Com esse lema em maos, conseguimos finalmente determinar O

Teorema 5.16. Sejam n um inteiro positivo, ( € C uma raiz primitiva n-ésima da unidade e
K = Q(¢). Entio Ox = Z+ZC+ -+ 21 = Z[¢]. Assim, Ok possui base integral

{1,¢,..., C“"(”)_l}. Além disso, se n = pi'---p* for a fatoragio prima de n em Z, entdo:
kio(n) ne(n)
de = (1) T
j=1Pj

2Identificando Z /p" Z como seu conjunto de representantes {0,1,...,p" — 1} C Z por simplicidade.
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Demonstragdo. Comecemos provando esse resultado para n = p”, onde p é um primo e r é um
inteiro positivo (r > 2 se tivermos p = 2). Entéo, pela Proposi¢ao 2.29, temos:

AL, G .. P —1) = (—1) 2 p%,
para s = p”"_l(rp —r —1). Pela Proposicao 1.41, sabemos entao que
p°’Ox C Z[(] C Ok. (5.2)

Pelo lema anterior, nés temos Ok /(1 — ()Ok = F,. Na identificacdo que fizemos, isso significa
que toda classe de congruéncia médulo (1 — )OOk possui um inteiro, ou seja, que (1 —()Ox +Z =
Ok, e com maior razao (1 —¢)Ok + Z[(] = Ok.

Multiplicando essa igualdade por 1 — ¢, obtemos:

(1-0)*0k +(1-¢) Z[¢] = (1 - ()Ok.
Substituindo (1 — ¢)Ok pela expressao a esquerda na equagao inicial, obtemos:
Ok = (1-()0x +Z = (1-¢)*0Ox + (1 - ) Z[¢] + Z,

e com maior razdo Ok = (1 — )20k + Z[(]. Provemos por indugdo que para todo t > 1 temos
Ok = (1 =)0k + Z[(]. J4 fizemos os casos base. Suponhamos entdo que essa igualdade valha
para certo ¢t > 1. Multiplicando a igualdade Ok = (1 — )OOk + Z[¢] por (1 —¢)*, obtemos:

(1-0'0x = (1 -0k + (1 -0 Z[¢].
Desse modo,
Or = (1-¢)'0Ox +Z[(] = (1 - )"0k + (1 - ) Z[¢] + Z[¢],

e com maior razio Ox = (1 — ()" Ok + Z[(], concluindo a indugio.
Fagamos agora t = sp(p"). Assim:

Ok = (1= Q)¥P0x +Z[¢] = [(1 - QOx]*¥") + Z[(] = (pOk)* + Z[(] = p*Ox + Z[(],
pelo lema acima. Mas juntando (5.2) com a igualdade acima temos entéo:
Ok = p°Ox + Z[(] = Z[¢],

como desejado. Assim, provamos o teorema para as poténcias de primos.
1 . _.r Tk ~ . -
Consideremos agora o caso greral, e seja n = pi' ---p,* a fatoracao prima de n. Entdo para

. . g, . e e W . .
1 < j < k o ntimero ¢ = C"/ Pi" ¢ uma raiz primitiva p;’-ésima da unidade. Pela Proposi¢ao

2.30, nés temos Q(¢) = Q(¢1) - Q(¢k), e para 1 < i < k nds temos

(Q(¢1) - Q(G-1))NQ(¢) = Q.

A ideia ¢ aplicarmos o Teorema 2.9 vérias vezes. Pelo que acabamos de provar, para 1 <i < k
os elementos 1,(;, ... ,Cf (pif)=1 formam uma base integral de Q(¢;). Além disso, a Proposigao

-1y, . A
2.29 nos diz que A(1,¢;, ... ,Cf(pl ) ) é a menos de sinal uma poténcia de p;. Desse modo, os
k discriminantes obtidos sdo todos primos entre si. Logo estamos nas condigoes de aplicar 2.9
repetidamente, e obtemos que uma base integral de Q(¢) é dada por

{C{I"'CiriOéjiﬁn—lparalgigk},

Mas cada um desses elementos é uma poténcia de (. Assim, concluimos que Ok C Z[(] e portanto
Ok =Z[()=Z+Z(+ -+ Z ™M~ o que mostra que {1,¢,...,¢?™~11 ¢ base integral de
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Ok . Determinemos agora dy . Para isso, faremos inducao no niimero k de fatores primos distintos
na fatoracdo de n. Para k = 1, n = p}' é uma poténcia de primo, e temos:

(_1);@7@)' nen) _ (_1)@ . nen)
H?:l p;e(n)/(pj—l) psla(n)/(m—l)
_ Qp(p;) p?ljlso(p?)
pslo(pl )/ (p1—1)
e

= —1 2 . 1
(=1) (p1—1)pt "/ (p1—1)
1

ry o r(p=1pt
r1—1
Dy

Py

= (~1)"z ,pi’;lfl(hprmfl):dl(’

pela Proposicao 2.29. Suponhamos agora que a igualdade desejada valha para produtos de até
k —1 primos, e provemos que vale paran = pi* - - - p;*. Sabemos que o resultado vale em particular
para a = pi' -'-p;;’“__f e para b = p*. Sejam « e [ raizes primitivas a-ésima e b-ésima da
unidade, respectivamente. Como a e b sdo primos entre si, a Proposicdo 2.30 nos garante que

Q(¢) = Q(apf) = Q(a)Q(B) e que Q(a) NQ(B) = Q. Aplicando o Teorema 2.9 a esses dois
corpos, temos entao (lembremos que p(a)p(b) = p(ab) = ¢(n)):

dK — dé(b) 'dW(a)

(@) 7Q(B)
b a
<( 1)(k—1)s0(a) a®(@) a0 ( I)M be(®) el
= J— 2 . . — 2 - _— —
-1, ¢(a)/(p;—1) ©(b)/ (pr—1)
[zipy @ Pk
_ (_1)]“&((12)%(1)) . (ab)@(a)@(b)
H;;:l p@(a)w(b)/(prl)
ko(n) nen)
= (_]‘)T W/ (pi—1)°
;;zlp}o( )/ (p;—1)
como desejado. O

O teorema acima mostra que o anel de inteiros algébricos de um corpo ciclotémico K = Q(()
é monogéneo. Isso nos permite aplicar o Teorema 4.22 para estudarmos as decomposi¢des dos
primos de N em O = Z[(].

Teorema 5.17. Sejam n > 1 inteiro, ¢ € C uma raiz primitiva n-ésima da unidade e K = Q(().
Seja n =[], p" a fatoragio prima de n, onde p varia entre os primos positivos (note que vy, =0
para os primos que ndo dividem n, de forma que esse produtério na verdade € finito). Para cada
primo p € IN definamos f, como sendo a ordem de p no grupo multiplicativo (Z /(n/p"?) Z)*.
Entio em O o ideal pOx tem fatoracio da forma pOx = (P1---Py)?P™), onde Pi,..., P,
sao ideais primos distintos de O, todos com grau de inércia f,. Note que sabendo f, podemos
determinar g pela identidade fundamental, uma vez que devemos ter o(p*?) frg = ©(n).

Demonstracao. Pelo Teorema 4.22, basta mostrarmos que a fatoragdo prima do polinémio ci-
clotémico ®@,, € Fp[z] é da forma @, = (Py---P,)?P")  com cada P; € F,[z] irredutivel de
grau fp. Chamemos m = n/p"?. Sejam &, ... + € (m) @s raizes primitivas m-ésimas da unidade e
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M1, - -+ Np(pre) @S Taizes primitivas p*»-ésimas da unidade. Entdo, pela Proposicao 2.30, em O [x]
vale a fatoracao:

3

o( w(p”P

CD = 51773
7 7j=1

I
—

Notemos agora que em FF,[z] temos P —1 = (z — 1)P". Se P < Ok for um primo sobre p, em
(Ok /R)[z] temos a fatoragao

p(p'P
a:pup—l— z—1) H T —7;).

Mas sendo Ok /P uma extensdo de IF,, a fatoracdo obtida anteriormente também vale. Por
unicidade, concluimos que cada n; = 1 (mod ). Mas entdo, em (O /P)[z], nés temos:

w(m) p(pP) o @(m) p(p? .
i=1 j=1 i=1 j=1

Assim, basta mostrarmos que ®@,,(z) se fatora em Fp[z] como Pi(z)---Py(z), onde cada P,
possui grau f,. Notemos que por defini¢ao f, é o menor inteiro positivo tal que pfr =1 (mod m).
Como p t m, o polindmio 2™ — 1 € F,[z] é separavel, e portanto @, também o é. Assim, a
fatoragdo de @, em IF,[z] é da forma P --- Py, onde os P;’s sdo irredutiveis dois a dois distintos.

Resta apenas mostrar que cada um desses polinomios tem grau f,. Todas as raizes de @, sdo
da forma &, para ¢ € K uma raiz primitiva m-ésima da unidade. Como 2™ —1 € (Ok /B)[x] é
separavel, suas raizes 1, €, 22, .. ,Emfl € Ok /B sdo duas a duas distintas. Como Em =&m =1,
concluimos que & é uma raiz primitiva m-ésima da unidade em O /B, e portanto pelo Teorema
2.31 temos Fp[€] = Iprp. Assim, o polindmio minimal de £ sobre Fy[z] tem grau f,. Isso conclui

a demonstracao, uma vez que cada P; ¢ o polindmio minimal de uma raiz de ®,,. O

Para fins praticos, sempre podemos supor n impar ou multiplo de 4. De fato, se n = 2m
para algum m impar, entdo os corpos ciclotémicos associados a n e a m coincidem. Isto é,
Q(¢) = Q(¢?). De fato, por um lado é claro que Q(¢?) € Q(¢). Mas

[Q(Q) : Q] = ¢(n) = ¢(2m) = p(2)p(m) = (m) = [Q(¢*) : QJ,
de forma que temos a igualdade desejada. Como consequéncia direta do teorema acima, obtemos:
Corolario 5.18. Suponhamos que n seja impar ou maultiplo de 4, e seja p € IN primo.
(a) p serd ramificado em Q(C) se e s6 se p | n.

(b) p serd totalmente decomposto em Q(() se e sé se p = 1(mod n). Logo, todo corpo ci-
clotomico possui wm numero infinito de ideais primos totalmente decompostos.

(c) p serd totalmente inerte em Q(C) se e sé se D for um gerador do grupo multiplicativo
(Z /nZ)*

(d) p serd totalmente ramificado em Q(C) se e s6 se n = p*».

Demonstracao.  (a) p serd ramificado em Q(() se e s6 se o(p*?) > 2. Mas isso acontecerd se e
s6 se p» # 1,p"» # 2. Isto é, se e somente se p | n e p for impar ou se p =2 e 4 | n. Como
estamos supondo n impar ou miltiplo de 4, obtemos o resultado desejado.
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(b) Um ntimero primo p € Z seré totalmente decomposto em Q(¢) se e s6 se g = p(n). Pelo
teorema acima, isso ocorre se e s6 se f, = @(p'?) =1 <= p{n. Assim, f, é a ordem de
pem (Z /nZ)*. Concluimos que p serd totalmente decomposto se e s6 se f, = 1, ou seja,
seesdsep=1 <= p=1(modn). A dltima observagio segue do Teorema de Dirichlet
sobre progressoes aritméticas.

(c) Pelo teorema acima, um nimero primo p € Z serd totalmente inerte se e s6 se f, = ¢(n).
Nesse caso, ¢(p”?) =1 = ptn. Sendo assim, f, é a ordem de p em (Z /nZ)*. Como esse
grupo tem ¢(n) elementos, teremos f, = ¢(n) se e s6 se p for um gerador desse grupo.

(d) Pelo teorema acima, um ntimero primo p € Z sera totalmente ramificado se e s se tivermos
o(p”?) = p(n). Mas sendo m := n/p", temos p ¥ m, e portanto ¢(n) = @(m)p(p™?).
Assim, a igualdade p(p"?) = ¢(n) é equivalente a p(m) = 1, ou seja, a m = 1 ou m = 2.
Como n é impar ou multiplo de 4, concluimos que n = p*?.

O

Observacgao 5.19. Podemos também encontrar os primos p ramificados em Q(() diretamente a
partir do Coroldrio 4.2/. Além disso, os itens (¢) e (d) nos dao exemplos de anéis de inteiros
algébricos nos quais nao existem primos de Z. totalmente inertes ou totalmente ramificados. De
fato, se Z. /nZ. ndo for um grupo ciclico, entdo nenhum primo é totalmente inerte em Q(()?, e
se n nado for uma poténcia de primo entdo nenhum primo serd totalmente ramificado em Q(().

Suponhamos n impar ou miltiplo de 4. O corolario acima nos sugere que o tipo de decom-
posi¢gdo de um primo p em Q((¢) depende apenas do resto deixado por p na divisdo por n. Nos
itens (b) e (¢) por exemplo, vimos que o fato de p ser totalmente decomposto ou totalmente inerte
dependem apenas da classe de congruéncia de p médulo n. Se p | n, entdo p é o tnico primo que
deixa resto p na divisdo por n. Mais interessante é analisar o que ocorre quando p { n.

Observemos que pelo Teorema 5.17 o tipo de decomposi¢ao de um primo p depende somente
de fp e de p(p*?). Mas ¢(p*?) = 1, e portanto o tipo de decomposicao de p depende somente de
fps que é a ordem de p em (Z /nZ)*. Assim, o tipo de decomposigdo de p depende somente do
resto da divisao de p por n.

3E é um resultado conhecido de Teoria Elementar dos Ntimeros que (Z /nZ)* sera ciclico se e s6 se
n=1,n=4,n=7p" oun=2p* para p primo impar. Veja por exemplo o Capitulo 4 de [12].



Capitulo 6

Extensoes (Galoisianas

No capitulo anterior, vimos como utilizar os resultados do Capitulo 4 para estudarmos os corpos
quadraticos e ciclotomicos, cujos anéis de inteiros algébricos sdo extensodes geradas por um tnico
elemento. Mas as extensbes quadraticas e ciclotomicas sao particularmente especiais: todas elas
sao extensoes galoisianas. Mais do que isso, abelianas. Neste capitulo iremos estudar extensdes
galoisianas de dominios de Dedekind.

6.1. Resultados Basicos e o Grupo de Decom-
posicao

Sejam A um dominio de Dedekind, K = Q(A) seu corpo de fragoes, L/ K uma extensdo galoisiana

finita de grau n com grupo de Galois G = Gal(L/K) e B = A Comecgamos observando que
para cada automorfismo o € G nés temos o(B) = B, pois se a € B for raiz de um polinémio
ménico em A[z] entdo o(a) serd raiz desse mesmo polindmio. E ficil também observar que G
age no conjunto dos ideais de B, e que essa ag¢do se comporta bem com a multiplicagdo: dados
A, BB eoc e G, temos a(AB) = o(A)o(B). Dado P < B primo, uma verificacao direta nos
mostra que o também é um ideal primo de B, de modo que G também age no conjunto dos
ideais primos de B. A proposi¢io abaixo nos diz quais sdo as orbitas dessa acao:

Proposicao 6.1. Sejam p << A primo e P < B primo sobre p. Entdo, para todo o € G, o ideal
primo o3 < B estd sobre p. Além disso, dado Q<\B primo sobre p, existe um automorfismo
T € G tal que TR = Q. Dessa forma, as orbitas da acdo de G sobre os ideais primos de B sdo
exatamente os conjuntos da forma {B < B primo: B | p}, para p variando entre os ideais primos
de A.

Demonstragdgo. Dado o € G qualquer, como ¢ fixa K nés temos o3 N A = PN A = p, mostrando
que o é um ideal primo sobre p. Seja agora $Q <IB sobre p. Suponhamos por absurdo que
9 # 0P para todo o € G. Entdo 9Q e os o sdo coprimos dois a dois, pela maximalidade
desses ideais, e portanto podemos aplicar o Teorema Chinés dos Restos para encontrar z € B
com z =0 (mod Q) e z = 1 (mod o*R) para todo o € G.

Como A ¢ integralmente fechado, temos N (z) € A pelo Corolério 1.30. Pelo mesmo corolério,
x divide N (z) em B, logo z € Q = N(z) € Q. Consequentemente, N (z) € ANQ = p. Por outro
lado, para todo o € G, x ¢ o*3. Consequentemente, nenhum dos ox pertence a P (se oz € P,
terfamos = € o). Sendo P primo, temos entdo N(z) = [[ e or € B, um absurdo ji que
N(z) € p. Dessa contradi¢ao concluimos que existe o € G tal que Q = o*B. O

Para estudarmos melhor a extensdo L/K, a “quebraremos” em extensdes mais simples. Co-
mecemos com as seguintes definigoes:

105
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Defini¢do (Grupo de Decomposicao/Corpo de Decomposi¢ao). Seja P <t B um ideal primo.
Definimos seu grupo de decomposigao Gy = G(L/K) < G como sendo o estabilizador de P
pela acdo de G, isto é, G == {0 € G: 0P = P}. Definimos ainda o seu corpo de decomposigcao
Zyp = Zyp(L/K) C L como o corpo fixo por Gep.

Fixado 9, denotaremos By := A% = Bn Zy e Pz = PN Bz < By. Note que Pz é um
ideal primo. Algumas consequéncias diretas da definicdo acima sdo:

Proposicao 6.2. Seja P < B um ideal primo. Entdo:
(a) Dado o € G, temos Gy = 0Gpo™ .
(b) Dado o € G, temos Zyp = 0Zy.
(c) As sequintes condigdes sio equivalentes:

(i) G € um subgrupo normal de G.
(it) Zy/K € uma extensio de Galois.
(iii) Todos os ideais primos sobre PN A possuem o mesmo grupo de decomposicdo.

(iv) Todos os ideais primos sobre P N A possuem o mesmo corpo de decomposi¢do.
(d) Se K C EC L, entio Gp(L/E) = GpyNGal(L/E), e Zy(L/E) = Zp(L/K) - E.
Demonstracao.  (a) Dado 7 € G, nds temos;

TEGep < T0P =P o roP =P < o lroe Gp < 7¢€ UGng_l.

(b) Dado x € L, pelo item (a) nés temos:
V1 e Gy, ooz =1

ly=0"12

TEZyp & VpEGop, pr=2a
V7€ Gy, To
U_l.%'Gng

1eee

S O’Zq_‘g.
(c) As equivaléncias (i) <= (ii) e (iit) <= (iv) seguem da teoria de Galois, enquanto
(i) <= (iii) segue de (a) e da Proposigao 6.1.

(d) Um elemento de Gal(L/E) pertence a Go(L/FE) se e somente se ele fixa P, ou seja, se e
s6 se estd em Gwp. Isso nos da a igualdade desejada. A segunda igualdade segue entdo da
teoria de Galois.

O

Notemos que, pelo Teorema da Orbita e do Estabilizador, a érbita de um primo P8 tem [G : Gyp]
elementos. Entéo, pela Proposi¢ao 6.1, o nimero de ideais primos de B sobre p é igual a [G : Gg).
De fato nés temos:

Proposicido 6.3. Se p <A é um primo qualquer, e P << B € um primo sobre p, entdo:
(a) O nimero de ideais primos de L sobre p € igual a [G : Gyp].
(b) p ¢é totalmente decomposto em L <= Gy =1 < Zp = L.
(c) p € nao-decomposto em L <= Gy =G <= Zp =K.

Demonstragao.  (a) Feito acima.
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(b) p sera totalmente decomposto em L se e s6 se o numero de ideais primos de L sobre p for
igual a n. Mas por (a) isso ocorrerd se e s6 se [G: G|l =n <= Gp =1 < Zp = L.

(c) p serd nao-decomposto em L se e s6 se o nimero de ideais primos de L sobre p for igual a
1. Mas por (a) isso ocorrerd se e sé se [G: Gyl =1 <= Gp =G <= Zp =K.
O

A andlise que fizemos acima aplicada & extensdo galoisiana L/Zy nos diz que o ntimero de
ideais primos de B sobre Pz é igual a [Gal(L/Zy) : Gp] = [Gyp : Gp] = 1. Isto é, P ¢é o tnico
ideal primo de B sobre 3. Esse é o menor corpo base para o qual isso ocorre:

Proposigcdo 6.4. O corpo Zy é o menor corpo intermedidrio E da extensdo L/K para o qual B

€ 0 unico ideal primo de B sobre o primo ‘PN E A", Equivalentemente, Zy é o menor corpo
intermedidario E da extensio L/ K para o qual BN E € ndo-decomposto em L.

Demonstracdo. Se B for o tnico ideal primo de B sobre P N E, teremos oP = P para todo
automorfismo o € Gal(L/E), pela Proposi¢ao 6.1. Entao todo elemento de Gal(L/F) fixa %, ou
seja, Gal(L/FE) C Gyp. Aplicando a correspondéncia de Galois, vemos que isso é equivalente a
termos Zy C E, demonstrando o resultado desejado. O

Uma das caracteristicas principais das extensoes galoisianas é que todos os indices de rami-
ficagdo e todos os graus de inércia dos primos sobre p coincidem:

Proposicao 6.5. Seja p <A primo ndo-nulo.

(a) A fatoragdo de p B em primos de B é da forma p B = (P1---Py)¢, onde Pi,..., P,y sdo
primos distintos. Em particular, o indice de ramifica¢ao de todo primo B | p € igual a e.

(b) Sejam B, 0 <IB primos sobre p. Entio B/P = B/ Q por um isomorfismo de anéis que
fiza A/ p. Em particular, temos fp = fq. Assim, os graus de inércia de todos os ideais
primos P | p coincidem e sdo iguais a um certo f.

Demonstracio. (a) Seja p B = P --- P’ a fatoracdo prima de p B. Para 2 < j < g, seja
o; € G tal que 0By =B, (tal o, existe pela Proposicao 6.1). Desse modo:

pB =P Py = 0j(pB) = (0;PB1)" - (0Bg)“.

Mas como o;(p) = p e 0;(B) = B, temos o;(p B) = p B. Assim, temos duas fatoragoes
de p B como produto de ideais primos distintos. Em P{* - - By’, o primo B; aparece com
expoente e;, e em (0;P1) -+ (0;B4)% o primo P; = 0,;P; aparece com expoente e;.
Logo, pela unicidade da fatoragdo concluimos que e; = e;. Como 2 < j < g é qualquer,
vale o resultado desejado.

(b) Por 6.1, existe o € G tal que Q = o*3. Consideremos : B/B — B/ Q dada por z + P —
o(x) + Q. Essa é uma fungao bem-definida e injetora. De fato, dados =,y € B nds temos

o(z)+Q=0y)+Q <= o(z—y) e <= z-yco Q) =P <= z2+P=y+%,

como desejado. Falta ver que & é sobrejetora. Mas isso é claro, pois o: B — Q = 0P é
sobrejetora. Isso mostra que @ é uma bijecao. E facil ver que essa func¢do é um homomor-
fismo, e portanto um isomorfismo. Finalmente, como o fixa A, 7 fixa A/ p. O que fizemos
mostra que B/PB = B/ Q sdo corpos isomorfos por um automorfismo que fixa A/ p. Assim,
é claro que [B/B: A/ p] = [B/Q: A/ p]. Mas isso é exatamente dizer que fy = fq.

O

Com isso, nds conseguimos o seguinte importante resultado:
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Teorema 6.6. (Identidade Fundamental para Extensées Galoisianas) Seja p <A primo. Entdo
os indices de ramifica¢do e os graus de inércia de todos os primos de B sobre p coincidem. Assim,
existem inteiros positivos e, f tais que a fatora¢io de p B é da forma p B = (P1---P,y)¢, onde
cada B; tem grau de inércia f. Sendo assim, a identidade fundamental nesse caso se torna
n =efg. Ademais, se ‘B | p entdo Pz € ndao-decomposto em L, e valem as igualdades

e(PBBz)=e, fBIBz) =1, g(BIBz) =1, e(PBz|p)=f(Pz|p) =1

Sendo assim, Bz /Bz = A/ p e o primo Bz € nao-decomposto na extensdo L/ Zsy. Além disso,
se a extensio Zy/ K for normal (e portanto galoisiana) vale g(Bz | p) = g, de forma que p serd
totalmente decomposto em Zsy.

Demonstragao. S6 falta verificarmos as ultimas igualdades. Notemos que g(B | Pz) = 1 se-
gue direto da Proposicdo 6.4. Pela identidade fundamental, efg = n. Notemos que, pelas
multiplicatividades do indice de ramificagdo e do grau de inércia (Proposi¢do 4.15), nés te-
mos e =e(P | Pz)-e(Pz | p)ef=fB]|Pz) f(Pz | p). Assim, basta provarmos que
e(P | Pz) =eeque f(P|Pz) = f. Para isso, aplicamos a identidade fundamental & extensdo
galoisiana L/ Zy. Notemos que |Gyl = |G|/[G : Gyl =n/g = ef. Assim:

ef = |Gyl =[L:Zp]=e(PB[PBz) F(B[PBz) g(¥ | Bz) =e(PB|Bz) f(B|Pz) <ef.
Como e(B | Pz) < ee f(P | Pz) < f, devemos ter e(P | Pz) = ee f(P | Bz) = f, como

queriamos. Finalmente, se Zg/ K for galoisiana, entdo a identidade fundamental da decomposicao

de p em Zy se toma g = [Zp : K] = e(B7 | p)- f(B2 | B)-9(Bz | p) = g(Bz | p). Assim,
g(Bz | p) = g, concluindo a demonstragao. O

Observacao 6.7. Note que uma identidade fundamental da forman = efg ocorreu nas extensoes
quadrdticas e ciclotomicas. FEsses sao casos particulares desse resultado. O seguinte diagrama,
que sintetiza varias das informacoes obtidas acima, deve estar sempre em mente ao trabalharmos
com extensoes galoisianas de dominios de Dedekind:

PIB ——— L=Q(B) - 1
ef ef ef
s By s Ty = QL) Oy
g g‘ g‘
pA —— K=Q(A4) - G

Quando L/K for uma extensdo abeliana, o Teorema 6.6 nos garante que p se decompode
totalmente em Zy. Na verdade, vale o seguinte:

Proposicao 6.8. Suponhamos L/ K abeliana. Sejam p um primo de K e B | p um primo de L.
Entao Zy € o maior subcorpo da extensio L/ K no qual p é totalmente decomposto.

Demonstragdo. Seja F' um subcorpo de L/K no qual p é totalmente decomposto. Queremos
mostrar que F' C Zy. Pela correspondéncia de Galois, isso equivale a provar que Gog € Gal(L/F').
Seja entao o € Gyp. Como B = P, o primo ‘PN F de F fica fixo por o, e assim temos
olr € Gpnr(F/K). Mas p é totalmente decomposto em F, logo pela Proposi¢éo 6.3, nés temos
Gypnr(F/K) = 1. Ou seja, o|p = idp = 0 € Gal(L/F). Sendo o € Gy qualquer, concluimos
que Gog C Gal(L/F), como desejdvamos. O
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Seja o € Gy. Consideremos a fungéo o: B/P — B/P dada por 7(z +P) = o(x) +P. Entéao
é facil verificar que @ est4 bem-definida e é um automorfismo de B/ que fixa A/ p, de modo que'
o € Gal((B/%)/(A/p)). Assim, temos um homomorfismo de grupos G — Gal((B/B)/(A/ p))
dado por o — 7. Nés denotamos Gy == Gal((B/%)/(A/ p)).

6.2. O Grupo de Inércia

A partir de agora até o final deste capitulo, iremos assumir que a extensdo (B/Y)/(A/p) é
separavel. Note que isso sempre ocorrerd numa extensao de corpos de ntmeros, pois nesse caso
A/ p serd um corpo finito, e portanto perfeito. Com isso, temos:

Proposicdo 6.9. B/ é uma extensdo normal de A/p, logo galoisiana. Além disso, o mapa
canonico Gy — ésp dado por o +— @ € um homomorfismo sobrejetor.

Demonstragdgo. Comecemos mostrando que B/ é uma extensdao normal de A/ p. Para isso, seja
@ € B/P qualquer. Provaremos que P := P, 1,k € (A/p)[z] se decompde em fatores lineares
em (A/p)[z]. Como L/K é extensdao de Galois, todas as raizes a1 = «, g, ..., ay, estdo em L.
Mas sendo P € Alz] moénico, suas raizes sdo integrais sobre A, e portanto estdo na verdade em
B. Assim, P se escreve em B como P(x) = (x —aq) - (2 — ayy,). Mas médulo ‘B isso significa
que P(z) = (x —a@y) -+ (z — @), como querfamos, e concluimos que B/ é extensdo normal de
A/ p.

Voltemo-nos agora para a segunda afirmacdo. Primeiramente, notemos que podemos nos
reduzir ao caso em que P é o Unico ideal de B sobre p. De fato, se esse ndo fosse o caso nods
poderiamos “subir o corpo base” de K para Zy, ja que Gu(L/Zy) = Gyg e Bz/PBz = A/ p.
Assim, suponhamos que esse seja o caso. Entao vale Gy = G.

Como L/K é uma extensao finita, (B/9)/(A/p) também o é. Como essa extensdo é se-
pardvel, existe § € B/ tal que B/P = (A/ p)(f). Consideremos 7 € Gy qualquer. O automor-
fismo 7 é completamente determinado pela imagem de §. Sendo P := Py ¢, temos P(0) =0, logo
P(7(0)) = 7(P(A)) = 0, e assim 7(0) devera ser uma raiz de P, e portanto da forma 3 para 3
raiz de P (lembre que P se fatora em fatores lineares de B[z]). Mas como P é irredutivel, existe
o € G = Gy tal que 0 = 3. Dessa forma, 5(6) = 8 = 7(6). Isso mostra que 7 = &, concluindo
a demonstragao. 0

Observagao 6.10. Mesmo que (B/B)/(A/p) nao seja separdvel, é possivel concluir que essa

extensao € normal e que 0 mapa Gz — Gy € sobrejetor. Veja por exemplo a Proposicao (9.4) de
[2].

Defini¢do (Grupo de Inércia/Corpo de Inércia). O nicleo Iy = Ip(L/K) <t Gy do mapa
canbnico Gog — @43 é chamado de grupo de inércia de B, e seu corpo fixo Tiy = Typ(L/K) é
chamado de corpo de inércia de 3.

Em geral, denotaremos Bp = A™ — Bn Typ e Pr = PN Br < By. Note que Pr ¢ um
ideal primo de Ti. Note que temos a cadeia de corpos K C Zy C Ty C L e a cadeia de grupos
1 < Ip < Gy < G. Além disso, pela definicao de I e pelo fato do mapa candnico Gy — G
ser sobrejetor, nés temos a sequéncia exata 1 — Iy — G — éq} — 1. Como consequéncia
disso, Gop = G/ Ip. A seguinte proposicao retine as propriedades basicas envolvendo o grupo e
o corpo de inércia:

Proposicao 6.11. (a) Seja 0 € G qualquer. Entdo I,p = alma_l, e Ty = olip.

LA extensdo (B/9B)/(A/ p) nio precisa ser galoisiana. Aqui entendemos o grupo de Galois no sentido
estendido: dada uma extensdo A/, denotamos por Gal(A/x) o grupo dos automorfismos de A que fixam
K.
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b) A extensdo L/Ty é galoisiana com grupo de Galois Iy e a extensio Ty / Zsyy € galoisiana
B B P/ 4P
com Gal(Ty/Zy) = Gy /Iy = Gyp.

(c) B/ = Br/Pr.
(d) Valem as igualdades:

e [L: T = |Ipl;
f [Ty : Zp] = (Gy = Ip) = |G| = [B/B : A/ p];
e(PBIPBr) = e fBIPBr)=1, g(B[PBr) =1
e(Pr 1 Pz) = 1, f(Br|Bz) =f, 9(PBr |Fz) =1

Assim, Br € totalmente ramificado em L, Bz ¢é totalmente inerte em Ty e, se Zyp/K for
extensdo mnormal, p serd totalmente decomposto em Zgy.

Demonstragao.  (a) Seja 7 € I,p. Note que o lro € 0_1G0s430 = J_l(aGspa_l)a = G, pela
Proposicao 6.2. Além disso, como 7 € Iy, para todo b € B nés temos:
7(ob) = ob (mod o*B) = (67 70)b = b (mod P).

Dessa forma, o~ '70 € Iy=rT1¢€ quga_l. Isso prova que Iop C UquO'_l.

Para a volta, basta observar que pelo que acabamos de provar, temos:
olyo™t = 01071(0;;3)0_1 Co(o  ypo)o ™! = L.
A tltima afirmacao se prova analogamente ao item (b) da Proposigao 6.2.
(b) Segue da teoria de Galois e das observagoes acima da proposigao.

(c) A extensdo (B/9)/(Br/%Pr) é galoisiana. Assim, basta provar que todo automorfismo
de B/B que fixa By/Pr é a identidade de B/B. Seja entdo 7 um tal automorfismo.
Aplicando a Proposi¢ao 6.9 a extensao L/Tyg, que tem grupo de Galois Iy, garantimos a
existéncia de um o € Iy tal que 7 = 7. Mas 0 € Iy = 0 = idp . Assim, provamos que

B/ = Br/Pr.
(d) Como (B/B)/(A/p) é separavel, temos:

— G
f=1B/B:A/y] ZIG%BIZII;;,’:(GWLB) = [Ty : Zyg]-

Assim:

n [L: K] [L: K] o
6252 [Tq}:qu][qu:K] - [T‘B:K] :[L-T‘B]_’I‘Jis‘|'

Observemos agora que g(B | Pr) = g(Pr | Pz) = 1, pois nés temos g(P | Pz) = 1. Por
(c), temos f(P | Pr) = 1. A identidade fundamental aplicada & decomposi¢ao de Pr em
L nos da entao:

[L . Tf‘p] _ [L . Ts_p]
B Br) g(B | Br) 11

Como B/B = Br/Pre Bz /Py = A/p:

f(Br | Bz) = [Br/Pr: Bz/Pz| = [B/PB: A/ p] = f.

6(‘13!5]3T)=f( Z[L:qu]:e.
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Finalmente, aplicando a identidade fundamental a decomposicao de Bz em Tip:

_ [Ty : Zy] -
e(mﬂmZ)_f(‘ﬁTl‘l‘Z)’Q(‘BTl‘BZ) 1

enquanto o caso em que Zy/K é normal foi feito no Teorema 6.6.

L

Observacao 6.12. Os seguintes diagramas sintetizam os resultados dessa proposicao:
P<IB —— L=Q(B) --------- 1

Pr < By —— T = Q(Br) ------- Iy B/% = Br/Pr
f f f f

Bz <ABz —— Zy = Q(Bz) —---- Gy A/p=DBz/PBz
g g g
PAA s K = Q(A) e a

Assim, conseguimos “quebrar” a extensdo L/K em extensdes melhores. Dessa proposi¢ao

ainda podemos obter:

Corolario 6.13. (a) Sdo equivalentes:
(i) Ip = 1.
(i) Typ = L
(iii) p é ndo-ramificado em L.
Nesse caso, éq;; = Gp.
(b) Sao equivalentes:
(i) Iy = G.
(i) Ty = K.
(iii) p € totalmente ramificado em L.

Nesse caso, éq;; =1.

Demonstracao. (a) A equivaléncia (i) <= (i) segue da teoria de Galois. Como para todo
primo £ | p de B temos B/ Q = B/ por um isomorfismo que fixa A/ p, vemos que a
extensao (B/Q)/(A/ p) é separdvel. Assim, p ser ndo-ramificado em L equivale a termos
e = 1. Como e = |Iy|, obtemos a equivaléncia (i) <= ().

(b) A equivaléncia (i) <= (ii) segue da teoria de Galois, e (i) <= (1) segue de e = |Iy,

ja que p ser totalmente ramificado em L equivale a e = n.
O

Lembremos que Zyp é o menor corpo intermedidrio E de L/K com a propriedade de que B ¢é
o tnico ideal primo de L sobre BN E. O corpo Ty possui também uma caracteriza¢do minimal:

Proposigao 6.14. Seja E um corpo intermedidrio da extensio L/ Zy. Sejam Bp = A¥ = BnE
e Pr ="PNBg < Bg. Entio B/Y = Br/PE se e 56 se Tg C E.
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Demonstragao. Notemos que Bg/Br = B/P equivale a Gal((B/PB)/(Br/PBr)) = 1. Chame-
mos ¢: Gp — égp o mapa canoénico. Aplicando a Proposicdo 6.9, isso é equivalente a termos
¢(Gal(L/E)) = 1. Ou seja, a Gal(L/E) C ker p = Iy. Pela teoria de Galois, isso é equivalente
a F D Ty, como queriamos. O

Esse corpo possui ainda uma caracterizacdo maximal, que nos sera tutil mais adiante:

Proposigao 6.15. Seja E um corpo intermedidrio da extensio L/ K. Entio e(Pr | p) =1 se e
56 se B C Txy.

Demonstragao. Notemos que e(Pr | p) = e(Pr | Bz) -e(Pz | p) = 1-1 = 1, pelo Teorema 6.6
e pela Proposicao 6.11. Se E C Ty, entdo e(Pr | p) < e(Pr | p) = 1, e portanto nds temos

e(Be | p) =1

Suponhamos entdao que e(Pg | p) = 1. Nesse caso, e(B | Pr) = e, o que significa que
vale [L : Ty(L/FE)] = e. Mas ¢ facil ver que Ip(L/E) = Gal(L/FE) NIy, e portanto pela
correspondéncia de Galois nés temos Tig(L/E) = E - Tyg. Ouseja, [L: E-Tyg| = e = [L: Ty, de
onde concluimos que E - Tig = Tip. Isso mostra que £ C Tig, como queriamos. O

6.3. Os Grupos de Ramificacao

Na secao anterior, mostramos que podemos dividir a extensdo L/K em trés extensdes especiais:
L/ Ty, Tg/Zyp e Zp/K. A extensdo L/Ty é a parte totalmente ramificada de L/K, isto é,
P <1 By é totalmente ramificado em L. Nosso préximo objetivo é separar L/ Ty em extensoes
mais simples ainda. Comecemos notando que o grupo de inércia Iy pode ser caracterizado como
o conjunto:

{0 € Gp:Ybe B, ob=b(mod P)}.

Definigao (Grupos de Ramifica¢do). Para cada i € IN, definimos o i-ésimo grupo de ramificacéao
de B sobre K como sendo o conjunto:

Ry = Ripy(L/K) == {0 € Gy: Vb€ B, ob=b (mod P'*")}.
Note que podemos representar ainda R}p como
{oc € G:Vbe B,ob=b(mod L)}

De fato, para o € G\ Gy, existe b € P tal que ob € B, e portanto ob —b € P nesse caso. A
primeira coisa a se mostrar é que os grupos de ramificacdo sao realmente grupos. De fato, temos
o seguinte resultado, que nos da as propriedades bésicas dos grupos de ramificacio:

Proposigdo 6.16. (a) Nds temos Gy 2 Ip = R% D R‘IB D R‘Zﬁ D ... Além disso, existe
m € N tal que RZE € o grupo trivial.

(b) Para todo i € N, R‘ZIS ¢ um subgrupo normal de Gsy.

(¢c) Seja E um corpo intermedidrio da extensio L/K. FEntao, para todo i € IN, valem as
iqualdades:

Ry(L/E) = RyNGy(L/E) = RyNGal(L/E).
Em particular, Iy(L/E) = Iy N Gyp(L/E) = IyNGal(L/E).

(d) Para todo i € N, R%(L/qu) = R‘ZB
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Demonstragao.  (a) A cadeia de inclusoes é clara. Como Gy é um conjunto finito, essa cadeia
se estabiliza eventualmente. Assim, existe m € IN tal que Ry = ﬁ{’iORfR. Ou seja, para

todo automorfismo o € RZ;} e todo b € B, temos ob = b (mod P**!) para todo i € N, de

modo que ob—b € N2, P = {0}, e portanto b = b. Isso vale para todo b € B, de
forma que o|p = idp = o = idy, j4 que L = Q(B).

(b) Para ver que cada R%B ¢ um subgrupo normal de G, notemos que dado o € Gy qualquer
nés temos oPtt = (oP) = P! de modo que podemos definir @ € End(B/P+1) dado
por 5(b) = ob. Essa fungdo possui inversa o—1, de modo que & € Aut(B/P+!). Assim,
temos um homomorfismo de grupos Gy — Aut(B/ Pi+1) dado por o — 7, e é claro que o
ntcleo desse homomorfismo é exatamente R‘iﬁ’ provando que esse conjunto é um subgrupo
normal de Gsyp.

(c) Por definigio, Ry (L/E) ¢ o conjunto dos o € Gy (L/ E) que satisfazem b = b (mod P*1)
para todo b € B, ou seja, o conjunto dos ¢ € Gyp(L/E) tais que o € R’Zﬁ Isso mostra a
primeira igualdade. A segunda igualdade segue da mesma forma.

(d) Basta aplicar os itens (a) e (¢) juntamente com a Proposi¢ao 6.11:
R};p(L/Tm) = R‘ZB NGal(L/Ty) = R‘ZB Nlp = %
]

O seguinte resultado nos diz como os grupos de decomposigao, inércia e ramificagdo se com-
portam com localizagdo. Na pratica, ele nos diz que podemos trabalhar com a extensao de anéis
S~'B/S71A e com os primos STUP | S~ p em vez de trabalharmos com B/A e com % | p.

Proposicao 6.17. Seja S C A um conjunto multiplicativo. Entdo:
((l) qu = Gs—lm.
(b) Para todo i € N, R?B = Rg‘l‘ﬁ' Em particular, Iy = Ig-1q.

Demonstragcdo.  (a) (C): Seja o € Gyp. Entao o = P. Desse modo, como S C K é fixo por
o, temos o(ST'P) = S71oP = STIP, mostrando que o € Gg-1g.

(2): Seja 0 € Gg-19p. Entdo o(S™1P) = S~1P. Assim:
o(F) = o(SIPNB) = o(SP) No(B) = SIPN B =P,
mostrando que o € Gy.

(b) Como Gyp = Gg-15 basta provarmos que, dado o € Gy, a condigao ob = b (mod PH)
para todo b € B é equivalente & condicdo ob = b (mod (S~!)i™!) para todo b € S~!B.

Suponhamos inicialmente que valha a primeira condi¢do, e provemos a segunda. Tomemos
c € ST'B qualquer. Entdo ¢ = b/s para alguns b € B e s € S, e nés temos:

b b b—b - -
Ce— =0 <> _v_9c € §Tlpitl = (L)t
s s s
como queriamos. Reciprocamente, suponhamos que valha a segunda condicdo, e seja b € B
qualquer. Entdo sabemos que ob—b € (S™HR) = S=IpBiTL Assim, como o(B) = B,
nés obtemos ob—b € BN S~IPH = P+l onde utilizamos o item (a) do Teorema 3.25.
O
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Se p for totalmente ramificado em L, temos uma forma mais simples de descrever os grupos
de ramificagdo. Nesse caso, como vimos logo antes do Teorema 4.29, B, é um DVD com tnico
ideal maximal 3.

Proposicao 6.18. Suponhamos que p seja totalmente ramificado em L. Entio G = G = Iy e,
para todo i € IN:

R?g ={oeqG: mr—we‘ﬁéﬂ} ={oceG:wlor—m)>i+1},
onde ™ € um normalizador qualquer de By, e w: L — Z U{oo} € a valoragdo de By.

Demonstragdo. Por hipétese, e = n, f = g = 1. Desse modo, (G : Gyp) = (Gy : Iyp) = 1,
de onde obtemos G = Gg = Iyp. Vejamos entdo que valem as igualdades sobre os grupos de
ramificacdo. Por um lado, se o € wa entdo pela proposicdo anterior vemos que o € Réﬁp’ e
portanto om —m € Pyt Assim, vale a inclusdo (C). Provemos (2). Seja o € G tal que
om—TE ‘13;“. Como % = R‘ZB,,? basta mostrarmos que o € R?np.

Seja b € By qualquer. Pelo item (c¢) do Teorema 4.29, podemos escrever b = Z;-L;& bjwj , para
alguns ag, ...,a,—1 € Ap. Desse modo:

n—1 n—1 n—1
_ J o — ) J J
ob—b=0c > ajw’ | =Y a7’ = a;((ow) — ).
Como om — 7 € P, e para cada j temos or — 7 | (om)! — 7, vemos que ob—b € P,
mostrando a inclusao inversa. O

No6s mostraremos a existéncia de certos homomorfismos v; saindo de Ry com nucleo R}g L
que nos permitirdo tirar informagoes importantes sobre os grupos de ramificagio.

Teorema 6.19. Suponhamos que p seja totalmente ramificado em L. Seja m um normalizador

de By, e sejam vy, oos grupos de unidades de By,. Entdo para todo i € N a aplicagdo
;e R‘iB — U® /U dada por g > . UGt ¢ um homomorfismo de grupos com nicleo ngl,
T

que ndo depende da escolha de 7. Assim, o homomorfismo induzido ), R?"B/Rg'l ~ ) /it
€ um isomorfismo de grupos.

Demonstrag¢do. Fixemos ¢ € IN. Dado o € R‘iﬁ’ noés temos que om — T € ‘Bffl, pela proposicao

acima. Em particular, or = 7 = 0 (mod B,). Assim, temos or € P, = 7B, e faz sentido

falarmos na divisao 2&. Chamando agora y := %, vemos que

_ i1 _ i1

ym = om = (mod P,*') = m(y — 1) = 0 (mod P, ).
Assim, como mBy, = By, concluimos que y — 1 € iﬁg =yel+ ‘,Bf, = U@, TIsso mostra que v;
estd bem-definida. Observemos agora que, dado o € R‘iﬁ’ temos ou —u € ‘Bfﬁ'l para todo u € B.

X 1 i+1

Em particular, se u € B, multiplicando por ™" nés obtemos que %* —1 € Py, e portanto

p )
el (i+1) | Para ver que ¥; é um homomorfismo de grupos, sejam o, T € R}ﬁ quaisquer. Entao
queremos mostrar que 77 - Ulitl) = (% : U(”l)) . (% . U(”l)) = (m?r# - U6+ - Chamemos

u = TF. Entdo u € U C By, e portanto %% € U+, Agora:

(om)(rm) ou _ (om)(rm) o (ZF)  (om)(rm) w-otm _ oTm

s u 2 ™ a2 (om)(tm) o«

Logo ; é homomorfismo de grupos. Calculemos agora seu ntcleo. Nés temos

_ om i+1 om _ i+1
wi(a)_0<:>7eU( ) = — =1 (mod Fy*)

= 0 (mod ;).
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Como 7By, =By, ¢é facil ver que isso ocorre se e s6 se om = 7 (mod P;?) = o€ R?g“l, devido
a Proposicao 6.18. Assim, ker; = R?g 1 como desejadvamos. Finalmente, vejamos que t; néo
depende do gerador m de B;. Seja 7’ outro gerador desse ideal. Entdo temos n’ = um para algum
u € BpX. Assim, dado o € % qualquer, temos:

o’ o(ur) (ou)(omw) om ou

s s T ou
. , . . ;
Como u € By = %t € UG+ temos o . Uli+l) = ax . UG+ como querfamos. O

Localizando em relagdo ao primo Br < Br ao invés de p, podemos eliminar a hipotese de que
p é totalmente ramificado em L. Como sabemos que B € totalmente ramificado em L, vemos
que By, ¢ um DVD com tnico ideal maximal ‘By,.. Assim, temos a seguinte versdo mais geral
do teorema acima:

Corolario 6.20. Seja ™ um normalizador de By, e sejam vy, os grupos de unidades

de By. Entdo para todo i € IN a aplicagdo v;: R‘iﬁ — U@ /U dada por o — . Ui+l)
, ™

é um homomorfismo de grupos com nicleo ngl, que nao depende da escolha de m. Assim, o

homomorfismo induzido @z R?B/Rgl ~ (@) i+l

Demonstragao. Aplicando o teorema acima para a extensao L/Tsy, concluimos que a aplicagdo
P R;%(L/qu) — U@ /Ut dada por o — % - U6+1) ¢ ym homomorfismo de grupos com
ntcleo R?g Y(L/Ty), que nio depende do gerador 7. Mas pelo item (d) da Proposicdo 6.16, temos
R&(L/Tm) = Rﬁ3 e RFY(L/Ty) = R?ﬁ“, concluindo a demonstragao. O

Como consequéncia direta desse corolario, obtemos:

Corolario 6.21. (a) O grupo Im/R%3 € canonicamente isomorfo a um subgrupo do grupo mul-
tiplicativo (B /).

(b) Para todo i > 1, o grupo R%/Rgl € canonicamente isomorfo a um subgrupo do grupo
aditivo de B /8.

Demonstragdo. Pelo corolario acima, nés temos um isomorfismo canénico R%3 / R?g' L gl yplitl),
para todo i > 0. Aplicando agora o Lema 3.29 ao DVD Bgy,., obtemos isomorfismos canonicos
entre U®) /UM e (By, /Py, )* e entre U /U ¢ o grupo aditivo By, /Py, Mas By, /P,
é canonicamente isomorfo a B/, pelo Teorema 3.25, o que nos dé os resultados desejados. [

Isso nos permite obter informagoes interessantes sobre os grupos de ramificagdo. Lembremos
que todo subgrupo finito do grupo multiplicativo de um corpo é ciclico, com ordem nao divisivel
pela caracteristica do corpo. Além disso, seja £ um corpo qualquer. Se .Z tiver caracteristica
0, entdo é claro que o seu unico subgrupo aditivo finito é o trivial. Suponhamos entdo que a
caracteristica de .Z seja p > 0. Como todo elemento ndo-nulo de .Z tem ordem (aditiva) p nesse
caso, vemos da caracterizacdo dos grupos abelianos finitos que todo subgrupo aditivo finito de .Z
deve ser um p-grupo elementar, isto é, um grupo da forma Z /pZ x --- x Z /pZ.. Com essas
observacoes, temos:

Corolario 6.22. (a) Se B/B tiver caracteristica 0, entio Iy serd um grupo ciclico e R% serd
o grupo trivial.

b) Se B/ tiver caracteristica p > 0, entdo In/Ri, serd um grupo ciclico de ordem ndo
Ry
divisivel por p, e para todo i > 1, R%/ngl e % serdo p-grupos elementares. Além disso,
R%:g serd o tnico p-subgrupo de Sylow de Iy.
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Demonstracao.  (a) Se B/P tiver caracteristica 0, entdo pelas observagbes acima vemos que
qu/R%} serd um grupo ciclico e que R?'R/ngl = 1 para todo ¢ > 1. Assim, ng = R?p =
Como temos R?ﬁ = 1 para algum m € IN, vemos entdo que % = 1. Desse modo, vemos
que Ip = qu/R%3 é ciclico.

(b) Se B/*B tiver caracteristica p > 0, entao pelas observagoes acima vemos que I/ R%3 serd
um grupo ciclico de ordem nao divisivel por p e que, para todo ¢ > 1, R}B / R}g ! serd um
p-grupo elementar. Seja m € IN tal que Ryy = 1. Entao, para cada 1 <14 < m, temos:

Rz+1 Rm—l
’R‘B‘ _’ i1 ‘ T2 | mm
Ry~ | | Ry s

Assim, ‘R‘ZB| é uma poténcia de p, sendo portanto um p-grupo, como desejado. Finalmente,
como I/ R}p possui ordem nao divisivel por p e R}p é um p-grupo, vemos que R}ﬁ é de fato
um p-subgrupo de Sylow de Iyz. Ele é o tinico p-subgrupo de Sylow de Iy, pois sabemos que
Rﬁlﬁ < Iz e que todos os p-subgrupos de Sylow de Iz sao conjugados, pelo Segundo Teorema

de Sylow.
O

Vamos trabalhar agora com os corpos fixos pelos grupos de ramificagao:

Definigao ( Corpos de Ramificacdo). Para cada i € IN, definimos o i-ésimo corpo de ramificacao
de B sobre K como sendo o corpo Vgﬁ C L fixo pelo grupo %

Entéo, pela correspondéncia de Galois, é claro que Ty = Vgg - V;ﬁ - Vf C .-+, e que existe
m € IN tal que V(ﬁn = L. Além disso, da teoria de Galois, da Proposic¢ao 6.16 e do Corolario 6.22,
obtemos imediatamente:

Corolario 6.23. (a) No caso em que B/B tem caracteristica 0, temos V‘I? Vq:3 =-...=1L.

b) No caso em que B/B tem caracteristica p > 0, para todo i > 1 a extensdo L/VZ é finita

( q p p %
galoisiana e Gal(L/ng3 = % é um p-grupo. Além disso, para todo i > 1, HI/V;43 é
nita galoisiana e Gal erl/V >~ pio/RAT ¢ p-elementar. A extensio Vit /Ty também

B PUARY

¢ finita galoisiana, e Gal(Vm/qu) = qu/R%3 é ciclico de ordem ndo divisivel por p.

(¢) Para todo i € N, V%/qu é finita galoisiana.

Assim, como Zg e Tig, 0 corpo V;ﬁ pode ser caracterizado por uma propriedade minimal, caso
B /P tenha caracteristica positiva:

Teorema 6.24. Suponhamos que B/B tenha caracteristica p > 0, e seja E um corpo com
Ty C EC L. Entio Vq% C E se e sd see(B | Pg) for uma poténcia de p.

Demonstracdgo. Como PBr € totalmente ramificado em L, Pp também o é. Assim, nés temos
[L: E] =e(B | PBr), de modo que e(P | Pg) serd uma poténcia de p se e s6 se Gal(L/E) for
um p-grupo. Mas isso ocorrerd se e s6 se Gal(L/FE) C R% = Gal(L/Vq};), que é o tnico p-Sylow
de Iy = Gal(L/Ty). Finalmente, essa tltima continéncia equivale a Vq% CFE. O

Para tratarmos simultaneamente dos casos em que B/ tem caracteristica 0 ou positiva,
convém introduzir a seguinte notacgao:

Definicao (Expoente Caracteristico). Seja . um corpo. Entdo o expoente caracteristico p
de £ ¢é definido como 1, se .Z tiver caracteristica 0, e como a caracteristica de .Z, se esta for
positiva.
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Seja p o expoente caracteristico de B/B. Entao e = e( | p) se escreve de modo tnico como
—y1
e = p'é, onde t € N e mdc(p, &) = 1 (note que & = e caso p = 1). Denotemos By = A = BﬂVgIl;
e ;'BV = m N By < By. Entao:

Corolario 6.25. (a) [L: Vq%] =e(P | Bv) =p.
(b) [Vq% :Typ]l =e(Pv | Pr) =¢, ¢ Gal(Vq%/qu) é canonicamente isomorfo ao grupo Wz(B /).

Demonstragdo. Sabemos que % = Gal(L/ Vq%) ¢ o p-subgrupo de Sylow de Iy = Gal(L/Ty), que
tem cardinalidade e = p'é. Assim, temos \R%}] = p', de onde [L : V,ﬁ] = pt. Além disso, da mesma
forma que na demonstracdo do teorema acima, vemos que By é totalmente ramificado em L, e
portanto e(P | Py) = [L : Vq%] = p'. Disso, segue facilmente que [Vi : Tip] = e(Bv | Pr) = &
Finalmente, sabemos que Gal(Vgﬁ /Ty) tem cardinalidade € e é canonicamente isomorfo a um
subgrupo finito do grupo multiplicativo (B/)*. Assim, esse subgrupo deve ser Wz(B /). O

Nos podemos refinar ainda mais o diagrama da Observagao 6.12, para obter:

P<aIB s L=Q(B) - 1
P’ ' p'
Pv < By —— Vit = Q(By) - Ry Gal(Viy/Ip) = Iy/ Ry, = We(B/B)
Pr < Br —— Ty = Q(Br) - I B/ = Br/Pr
f ! f
Pz <Bz —— Zyp = Q(Bz) ------ Gyp A/py=DBz/Py
g g g
pdA e s K=Q(A) — G

Assim, dividimos a ramificacdo entre qu3 e L em duas etapas. De T a Vq% ocorre a ramificagao
mansa, ou seja, com mdc(p, e(Py | Pr)) = 1, enquanto que de Vgﬁ a L ocorre a ramificagao
selvagem, ou seja, com e(P | Py ) igual a uma poténcia de p. Note que podemos ainda separar a
ramificacdo selvagem no estudo dos p-grupos elementares Réj / R%, R% / R%, ce Rg_l / Ry, onde

m € IN é o menor inteiro para o qual Ry = 1. E claro que se a caracteristica de .Z for 0, ndo
ocorrerd ramificacao selvagem. Terminaremos estudando a solubilidade dos grupos I e Giyp:

Teorema 6.26. (a) Iy € um grupo solivel.
(b) Se Gy for um grupo solivel, entdo Gy também o serd.

Demonstragdo.  (a) Basta notar que temos a série normal 1 = Ry < Rfﬁfl << R;b <y, e
que cada R%/Rgl ¢ abeliano. De fato, Iy /R}n é ciclico, e para i > 1 temos R&/R}gl igual
a um produto finito de grupos ciclicos de ordem p.

(b) N6s temos Gy = Gy /Ip. Assim, se Gy for um grupo soltivel, como Iy também é solivel
por (a) vemos que Gy serd soltvel.
O

Como consequéncia imediata desse teorema, temos o seguinte interessante corolario:

Corolario 6.27. (a) A extensio L/Ty é solivel por radicais.

(b) Se Gy for solivel, entdo a extensdo L/ Zy serd solivel por radicais.



Capitulo 7

O Método Geométrico e o Teorema
das Unidades

Até agora, todos os resultados que obtivemos vieram de métodos puramente algébricos. Para
conseguirmos mais resultados, precisaremos langar mao de métodos geométricos, que estudare-
mos nesse capitulo. Além de conseguirmos uma cota melhor para o ntmero de classes de um
anel de inteiros algébricos, também obteremos resultados novos, como o Teorema das Unidades
de Dirichlet. Esses resultados serao consequéncias do chamado Teorema de Minkowski sobre
reticulados.

Como motivagdo, consideremos o corpo quadratico K = Q(v/—3). Entdao Ok é um Z-mdédulo

livre de posto 2, com base {1, 1+\2/53}. Desse modo, podemos identificar Og com o conjunto

dos pontos no plano cartesiano que sdo combinagdes inteiras dos vetores (1,0) e (1/2,v/—3/2),
formando um reticulado:

° L] L] ° L] ° L] L] L] °
4
° ° ° ° L L] L] L] ° L]
° ° e ° ° ° ° e e °
2
° ° ° ° q ° ° [} ° °
1++/-3
1
[ ] L] L] [ ] 2 L] [ ] L] L] °
1
4 =2 ] 0 1 2 4 5
[ ] L] L] ° ; L] L] ° L] L] [ )
[ ] [ ] L] ° L L] L[] L] L] L]
=2
[ ] ° L] [ ] L] L[] L] L] L[] [ ]
3

Nos ja utilizamos a ideia de reticulado implicitamente, no Teorema 2.19. De fato, o ponto
“mais proximo” de Ok a um ponto de K nada mais é do que o ponto do reticulado mais préximo
do ponto em questao. Isso ja nos mostra um pouco de como a intuicdo geométrica pode nos ser
atil.

118
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7.1. Reticulados, Malhas e o Teorema de Min-
kowski

Seja V' um IR-espago vetorial de dimensdo n, com uma base distinguida {ej,...,e,}. Podemos
entao definir um produto interno e uma norma em V' com relagdo a essa base: dados dois vetores
x=%&er+- -+ E&en ey =mer+ -+ Npen, definimos:

(2,9) = &+ G, @ [l2]l = [l ) = /@ 4+ €2

Com isso, V se torna um espaco normado. Dados v € V e p > 0 quaiquer, denotaremos por
B,(v) == {x € V: |z —v| < p} a bola de centro v e raio p. Além disso, denotaremos a bola
de centro 0 e raio p simplesmente por B,. Note que a topologia induzida por essa norma ¢é a
topologia euclidiana, ja que todas as normas em IR" sdo equivalentes.

Dados vy, ...,v, € V quaisquer, consideramos os conjuntos

' = Zvu+ ---+2Zv, = {Zaivi:al,...,amGZ}, e
i=1

b = {Zpivi:ogpl,...,pm<1}.

1=1

Defini¢do (Reticulado). Com as notagdes acima, dizemos que ® é o paralelepipedo gerado
pelos vetores vy,...,vy. Além disso, dizemos que I' é um reticulado de V se vy,...,v,, forem
linearmente independentes sobre IR. Nesse caso, chamamos vy, ..., v, de uma base de reticu-
lado associada a I', e de & a malha fundamental associada a essa base. Note que para isso
ocorrer devemos ter m < n. Caso m = n, entdo I' e vq,...,v,, serdo chamados de um reticu-
lado completo e de uma base de reticulado completa, respectivamente. Chamamos ainda
de malha de I' associada a base vy, ..., v, um conjunto da forma ~ + &, para v € I' qualquer.

Observagao 7.1. Se T for um reticulado com base {v1,...,vm} e malha fundamental com relagdo
a essa base @, é facil ver da decomposicao de um r € R como r = |r] 4+ (r— |r]) que nds temos
I'+®=Ruv+: -+ Ruo,. Em particular, T serd completo se e s6 se T +® =V.

=2

Exemplo 7.2. A malha fundamental no reticulado de Z. [ € o paralelogramo verde indicado

abaizro:
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O Teorema de Minkowski, que provaremos no final dessa se¢do, é um resultado que nos diz
que todo subconjunto “suficientemente grande” de V' que satisfaz determinadas condigdes contém
um ponto nao-nulo de um reticulado I', e pode ser pensado como uma espécie de “Principio da
Casa dos Pombos continuo”. Ele melhora (por muito) a cota encontrada para o niimero de classes
de um corpo de nimeros, que achamos utilizando o Principio da Casa dos Pombos.

A principio, a definicdo de um reticulado aparenta ser diretamente atrelada a uma base.
O surpreendente é que temos uma caracterizacdo para os reticulados de V que independe de
acharmos uma base:

Proposicao 7.3. Um subconjunto I C V sera um reticulado de V' se e somente se for um
subgrupo aditivo discreto de V' (na topologia euclidiana).

Demonstragdo. (=): Suponhamos que I seja um reticulado de V', e que vy, ..., v, seja uma base
para esse reticulado. Sendo I' = Zwvy + -+ 4+ Z vy, é claro que I' é um grupo aditivo. Para
ver que I' é discreto, estendemos o conjunto linearmente independente {vy,...,v,} a uma base

{v1,...,v,} de V. Isso estende o reticulado I' ao reticulado I" := Z vy + - - - + Z v,,. Entao basta
mostrar que I é discreto. Seja v € I’ qualquer. Entdao temos v = ajvy + - - - + anv, para certos
ai,...,ay € Z. Consideremos o conjunto

Si=A{r1v1+ -+ xpvn: |x; —a;] <1, para todo 1 <i < n}.

Entao esse conjunto é aberto de V' e claramente S NT" = {~}, provando que I" é discreto.

(<): Suponhamos que I' seja um subgrupo aditivo discreto de V. Seja {u1,...,u;} um sis-
tema maximal de elementos de I' linearmente independentes sobre R. Eles formam a base do
reticulado I" := Zuj; + -+ -+ Z u,, € T. Seja @ a malha fundamental de I” com respeito a essa
base. Entdo temos (TN®) + 1" =T:

(C): Segue do fato de que TN ®,I” C T e que I' é um grupo aditivo.

(2): Seja v € T qualquer. Entdo, pela maximalidade de {u1,...,un}, existem ry,...,r, € R
tais que v = rquy + -+ + rmuy,. Note entdo que v = Y70 (1 |ug + >0 (ri — 73] )ui, e te-
mos > tilriju; € TV C T e X (ri— |ri))wi = v— 2 riJu; € T N®, mostrando que
ve(TNd)+T.

Essa igualdade nos diz que todo elemento do grupo aditivo I'/T” estd na classe de algum ele-
mento de ' N ®. Agora, como I" é discreto e ® é limitado na topologia euclidiana, temos I' N P
finito. Assim, I'/T” é um grupo finito. Seja ¢ := |I'/I”|. Entéao, por Lagrange, ¢I' C I", de forma
que

Trcqg'rr=2z. (q_lul) +---+2Z- (q_lum> .

Assim, T' é um Z-submédulo de um Z-médulo livre de posto m, e pelo Teorema 1.38 concluimos
que I' é um Z-médulo livre de posto menor ou igual a m. De fato, seu posto é exatamente m, como
vemos pelas inclusoes I' C T C ¢~ 'T”. Segue ainda dessas inclusées que os R-espacos gerados por

I' e por I coincidem, e tém dimensao m j& que uq,...,u,, sao linearmente independentes sobre
R. Seja vy, ...,v, uma Z-base de I'. Entdo Rv; + -+ R v, tem dimensao m, de onde tiramos
que {v1,..., vy} é um conjunto linearmente independente sobre R. Assim, concluimos finalmente
que I' é um reticulado de V. O

No caso de um reticulado completo, vemos que intuitivamente a reunido de todas as suas
malhas cobre todo V' (veja, por exemplo, o reticulado de Z [HT V_?’} mostrado acima). De fato,
temos a seguinte importante caracterizagdo dos reticulados completos:
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Teorema 7.4. Seja I' um reticulado em V. As seguintes condi¢cdes sdo equivalentes:
(i) T é um reticulado completo de V.
(ii) Ewiste um subconjunto limitado C de V tal que V =, cr(v+C).

Nesse caso temos, em particular, que V = |_|ﬂ/€1—(’y + @), sendo ® a malha fundamental associada
a uma base qualquer de T'.

Demonstragao. (i) = (i1): Seja {v1,...,v,} uma base de T, e seja ® a malha fundamental
associada a essa base. Afirmamos que V = ||,cr(v+ ®). Como @ ¢é limitado, isso provard (ii).
Como V tem dimenséo n, vemos que {v1,...,v,} é uma base de V. Seja v € V qualquer. Entéao
v =7riv] + - - + rpvn, para alguns rq,...,r, € R. Assim:

v = En:LriJvi + En:(n — |ri])vi € U (v+ D).

i=1 j ~eT

Isso prova que e (v 4+ @) = V. Falta mostrar que essa uniao é disjunta. Suponhamos que
a,B € T sejam tais que (a«+®)N (8 + P) # 0. Entdo existem elementos z,w € P tais que
a+z=0+w=a—=w—z Nbéstemos w=riv;+ -+ 7,0n € 2 = 8101 + - - - + SpUp, para
alguns 0 < r;,s; < 1. Assim:

a—f=w—z=(r1—s1)v1+ -+ (rn — $p)vn.

Note que —1 < 7r; —s; < 1, para 1 < ¢ < n. Mas todas as coordenadas de o — 3 € I’ na base
{v1,...,v,} sdo inteiras, e portanto r; — s; = 0 para todo i. Isso prova que a — 3 =0 = a = .
Desse modo, a unido V = Uyer(’Y + @) ¢é disjunta, como querfamos.

(ii) = (i): Suponhamos que exista C' C V limitado tal que V' = U, cr(v+ C). Seja V' o
R-subespaco de V gerado por I'. Entdo queremos provar que V' = V. Seja v € V qualquer.
Como V' = U, er (v + C), para todo inteiro positivo n conseguimos encontrar v, € I' e ¢, € C tais
que nv = 7y, + ¢,. Para todo n inteiro positivo temos v = (v, + ¢, ) /n, logo

v = lim
n—00 n n—oo n n—oo n, n—oo n

uma vez que C é limitado e portanto lim, ,o ¢,/n = 0. Finalmente, notemos que para todo n
inteiro positivo temos v,/n € V', e que V' é fechado em V ji que é um subespaco finitamente
gerado de V. Assim, v = lim,_ o0 7n/n € V', como queriamos. Isso mostra que V' = V, e
portanto I' é reticulado completo. O

Sendo V' = R" com “base candnica” {ey,...,e,}, podemos considerar uma medida de Le-
besgue em V da mesma forma que fazemos em IR"™. Chamaremos a medida de Lebesgue de um
conjunto C' C V' de volume desse conjunto, e o denotaremos por vol(C).

Proposicao 7.5. Sejam vy,...,v, € V, e seja D, o paralelepipedo gerado por esses vetores.
Entao:

(a) vol(®,) = |det(vy, ..., vl

(b) {vi,...,vn} €V formard a base de um reticulado completo em V se e sé se tivermos
det(vy,...,v,) # 0, se e sd se tivermos vol(P,) # 0.

(c) SejaT: V™ = V™ um operador linear, e suponhamos T'(v1,...,v,) = (w1,...,wy). Entdo,
sendo @, o paralelepipedo gerado por wy, ..., wy, temos vol(®,,) = |det T| - vol(®,).
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(d) Para todas as bases de um reticulado completo T', os volumes de suas malhas fundamentais
associadas coincidem, e sao tguais a um numero real positivo.

Demonstragao. Os itens (a), (b) e (¢) seguem facilmente de dlgebra linear e da teoria de inte-
gragdo. Provemos (d). Seja {vi,...,v,} uma base de I', com malha fundamental ®,, e tome-
mos {wi,...,w,} € V qualquer. Entdo existe um tnico operador linear T: V" — V™ tal que
T(vi,...,vn) = (w1,...,wy,). Sabemos que {wi,...,w,} serd uma base do Z-mddulo T se e
somente se detT € Z* = {—1,1}. Desse modo, para qualquer base {w1,...,w,} de I', temos
vol(®,,) = |det T'| - vol(®,) = vol(P,). Finalmente, vol(P,) # 0 pelo item (b), e vol(P,) < oo

ja que esse é o determinante de uma matriz n X n. O

Definigao (Volume de um Reticulado). Dado um reticulado I' de V', definimos o seu volume
vol(T') como sendo o volume de qualquer uma de suas malhas fundamentais.

Observacao 7.6. E claro que o volume de qualquer malha de T também serd vol(T'), jd que toda
malha de I' € uma translacao da malha fundamental de T'.

Ja vimos que as malhas de um reticulado completo I' sdo todas disjuntas. Mais geralmente,
dado um subconjunto C' C V| intuitivamente os conjuntos v 4+ C' s6 poderao ser disjuntos dois a
dois se C for “suficientemente pequeno”. Com a nocéo de volume, nés podemos formalizar essa
intuicao:

Teorema 7.7. Seja C C V tal que vol(C) esteja definido e seja V' um reticulado completo. Se
0s conjuntos v+ C, para v € T, forem disjuntos dois a dois, entdo vol(C') < vol(T').

Demonstragdo. Seja & uma malha fundamental de I'. FEntao, pelo Teorema 7.4, temos V =
Ler(v+@). Assim, C =[], r(C'N(y+P)). Agora, é facil ver que para todo v € I' nés temos:

CN(y+P)=((—v+C)ND) +1.

Pela hipo6tese do enunciado, temos os conjuntos —y + C' disjuntos dois a dois para « variando em
I, de modo que temos a unido disjunta | ], cr(—v + C) N®. Finalmente:

vol(C) = > vol(CN(y+®)) =) vol((—y+C) N D)
vel ~vel

= vol <|_| (—y+C)N @) < vol(®) = vol(T),

yel

como queriamos. O
Antes de enunciarmos o Teorema de Minkowski, precisamos de mais uma defini¢ao:

Defini¢ao (Conjunto Simétrico). Um subconjunto C' C V' é chamado de simétrico (em relagio
a origem) sece C = —ce C.

Teorema 7.8 (Teorema de Minkowski). Seja C C V' simétrico e convezo tal que vol(C) esteja
bem-definido, e seja T C V um reticulado completo. Suponhamos ainda que vol(C) > 2™ vol(T).
Entao C N (T\{0}) # 0.

Demonstragdo. Aplicando o Teorema de Mudanca de Varidveis, é facil ver que temos a igualdade
vol(C/2) = vol(C) /2™ > vol(T'). Dessa forma, aplicando o teorema acima concluimos que existem
71,72 € T distintos tais que (71 +C/2) N (2 4+ C/2) # 0. Assim, existem c1,co € C tais que
Y1+ ¢1/2 =72+ co/2. Mas entdo:

2 ¢ cy  —C

_ - _ - = = L C
Y1 — 2 9 5 2+ 5 S O

uma vez que ¢; € C = —¢; € C (pois C é simétrico) e que ca,—c1 € C = ¢2/2+ (—1)/2 € C
(pois C' é convexo). Assim, 71 —v2 € CN (T'\ {0}), provando o teorema. O



7.2. ALGUMAS APLICACOES DO TEOREMA DE MINKOWSKI 123

Observacao 7.9. A cota dada pelo Teorema de Minkowski é a melhor possivel. De fato, seja T
um reticulado completo com base {vi,...,v,}, e seja @ a malha fundamental associada a essa
base. Consideremos o conjunto

C = {Zpivi: _1<pi< 1}

=1

Entio € claro que CNT = {0}. Também é fdcil ver que C' € simélrico, convero e que nds
temos vol(C) = 2" vol(®) (a regido C é a unido de 2" regides congruentes a ®, uma em cada
semiespaco).

7.2. Algumas Aplicacoes do Teorema de Min-
kowski

Nesta secdo, mostraremos como algumas aplicacoes espertas do Teorema de Minkowski nos per-
mitem resolver facilmente alguns problemas classicos de Teoria dos Niimeros. Lembremos que, no
Capitulo 2, mostramos que todo primo em IN congruente a 1 médulo 4 se escrevia como soma de
dois quadrados. Também podemos chegar nesse resultado utilizando o Teorema de Minkowski:
Seja p € IN primo com p = 1 (mod 4). Entao sabemos que —1 é residuo quadratico médulo p, e
portanto existe r € Z tal que p | r> + 1. Consideremos V =R?*eT = Z-(1,r) +Z-(0,p). Assim,
1
0 " = p. Notemos agora
que B Ny C IR? ¢ simétrico, convexo e tem volume 3pr /2 > 4p = 22 vol(T'). Portanto, podemos

I' é um reticulado completo com base {(1,r), (0,p)}, e volume det

aplicar o Teorema de Minkowski para concluir que existe (x,y) € T'\ {0} tal que 22 + y* < 3p/2.
Como (z,y) € T, temos y = rz (mod p). Assim:

2?4+ y? = 2% +r?2? = 22(1 +r?) =0 (mod p).
Como 0 < 22 +y% < 3p/2 e 22+ y? = 0 (mod p), a tinica op¢io é termos z2 + 32 = p.

Outra aplicacdo interessante do Teorema de Minkowski é o conhecido Teorema dos Quatro Qua-
drados:

Teorema 7.10 (Teorema dos Quatro Quadrados). Todo nimero natural n pode ser escrito como
a soma de quatro quadrados perfeitos. Isto é, existem a,b,c,d € Z tais que n = a® + b*> + ¢ + d>.

Demonstracao. E claro que 0 e 1 podem ser escritos como somas de quatro quadrados. Comecemos
notando que se m, n € IN puderem ser escritos como somas de quatro quadrados, entao seu produto
também serd. De fato, se m = a® + 0% + 2 + d? e n = 22 + % + 22 + w?, entdo:

mn = (a®+ 0>+ +d?)(2* + y* + 22 + w?)
= (ax —by —cz — dw)? + (ay + bz + cw — dz)?
+(az — bw + cx + dy)? + (aw + bz — cy + dx)?,
como se pode verificar diretamente'!. Devido a essa observacdo, basta mostrarmos que todo

nimero primo pode ser escrito como a soma de quatro quadrados. Como 2 = 12 412 4 0% 4 0% é
soma de quatro quadrados, basta provar a afirmagdo para os primos impares. Assim, seja p € IN

INa verdade, essa identidade nao é nada arbitraria: ela surge naturalmente do fato de que a norma dos
quatérnios é multiplicativa.
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um primo fmpar qualquer. Dados 0 < k < £ < (p—1)/2, é claro que p{ (k —£)(k +£) = k? — 2.
Assim, os conjuntos

A = {r2+pZ: 0<r<(p—-1)/2}e

B = {(-s*-1)+pZ:0<s<(p—1)/2}
possuem ambos (p + 1)/2 elementos. Como FF,, possui p elementos, devemos ter AN B # 0,
de modo que existem 0 < u,v < (p—1)/2 inteiros tais que u?> = —v? — 1 (mod p), ou seja,

u? +v2+1 = 0 (mod p). Consideremos V = R* e T o reticulado completo com base formada
pelos vetores (1,0,u,v), (0,1,v,—u), (0,0,p,0) e (0,0,0,p). Note que o volume de I é igual a

1 0 v w
01 v —u| o
det 00p 0|~ P
000
Lembremos que, dado r > 0, temos vol(B,) = w2r%/2. Procuramos achar r de modo que

possamos aplicar o Teorema de Minkowski, isto é, tal que 72r%/2 > 24vol(T') = 16p?. Note que

essa desigualdade equivale a % > ﬁrﬁ p =2 1,8006p. Assim, podemos escolher r = +/19p/10.
Aplicando o Teorema de Minkowski, encontramos um ponto (a,b,c,d) € T'\ {0} tal que

O0<a?+0*+E+d%<r?=19p/10 < 2p.

Notemos agora que, como (a,b,c¢,d) € T, temos ¢ = au + bv (mod p) e d = av — bu (mod p), de
forma que

A+ = a®+ 0+ (au+ )+ (av — bu)?
= @’ + b +a*u’ + %07 + a®v® + b’
= (a®+b*)(u*+v*+1) =0 (mod p).

Sendo assim, devemos ter a® + b? + ¢ + d? = p, concluindo a demonstracio. ]

7.3. Inteiros Algébricos e Reticulados

Nessa sec¢ao, veremos como enxergar um anel de inteiros algébricos como um reticulado dentro de
um espago vetorial chamado espago de Minkowski. Com essa identificagao, poderemos aplicar
os resultados que obtivemos na Se¢do 7.1 para conseguir informacdes sobre o anel em questao.
Seja K um corpo de ntmeros algébricos com [K : Q] = n. Entao sabemos que existem n imersoes
de K em C. Podemos dividir estas entre aquelas cuja imagem estd contida em R e aquelas cuja
imagem nao estd contida em IR:

Definig¢ao ( Imersoes Reais/Complexas). Seja 7: K — C uma imersao de K. Entdo dizemos que
7 é uma imersao real de K se 7(K) C R e que 7 ¢ uma imersdo complexa de K se 7(K) Z R.

A primeira coisa a se observar é que as imersoes complexas de K estdao pareadas. Chamemos
de F': C — C o automorfismo dado por conjugacio complexa. Note que F? = id, e que o corpo
fixo por F' é R (de fato, F' é o tinico automorfismo nao-trivial de Gal(C / R)). Dada uma imersao
7: K — C tal que 7(K) € R, vemos que 7 := Fr: K — C é uma imersao diferente de 7 e tal
que 7(K) € R. Além disso, T = 7. Isso mostra que podemos particionar o conjunto das imersoes
complexas de K em pares. Disso concluimos:

Proposicao 7.11. Seja K um corpo de numeros algébricos. FEntdo o conjunto das imersoes
compleras de K se particiona em pares da forma {T,7}, onde T é a composi¢cio de T com a
conjugacdo complexa. Em particular, existe um numero par de imersoes complexas de K.
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Assim, a cada corpo de ntimeros algébricos podemos associar a sua assinatura:

Definigao (Assinatura). Seja K um corpo de nimeros algébricos. Seja 71 o nimero de imersoes
reais e ro metade do niimero de imersées complexas de K. Entdo a assinatura de K é o par
(r1,72).

Observacao 7.12. Note que, devido d proposicdo acima, T1 e T9 SG0 numeros inteiros, e que
temos n = ry + 2rs.

A assinatura de K pode ser obtida analisando a fatora¢do em R[z]| do polindmio minimal de
um elemento primitivo a € K da extensao K/ Q. De fato, suponhamos que

Fag(r) = (z—a1) -+ (2 = ar )Qu(2) -+ Qry (7)

seja essa fatoragdo, com aq,...,a, € Re Q1,...,Qr € R[z] polindmios irredutiveis de grau 2.
Sejam, para 1 < i < 1o, B; e B; € C\R as raizes de Q;(z). Como o € K é elemento primitivo,
todas as imersoes de K sao determinadas pela sua imagem, que deve ser uma raiz de seu polinéomio
minimal. Entao as n imersoes de K em C S80 01,...,0p,, T1,T1,- -, Trys Try, O0de para 1 < i <7
temos 0;: K — Q(«;) dado por a — «; e para 1 < i <7y temos 7;: K — Q(;) dado por a — f3;
e7;: K — Q(B;) dado por a + 3;. Dessa forma, vemos que a assinatura de K é (r1,72).

Defini¢ao (Espago de Minkowski). Seja K um corpo de ntmeros algébricos com assinatura
(r1,72). Entdo o espago de Minkowski de K é o R-espago vetorial K := R x C™. Noés
representamos um ponto genérico de KR por (a1, ..., ap; 21,y 2ry)-

Observacao 7.13. A notacio KR ndo € arbitrdria. De fato, pode-se mostrar que existe um
isomorfismo natural Kr = K ®q R.

Note que o espaco de Minkowski de um corpo de niimeros algébricos depende apenas de sua
assinatura. Além disso, observe que dimg K = n = dimg KR = r1 + 272 = n. Assim, podemos
munir KR com o produto interno usual de R™ (para isso identificamos cada nimero complexo
z com o par ordenado (Re(z),Im(2))). Com isso, KR se torna um espago vetorial euclidiano, e
podemos considerar uma norma e uma medida de Lebesgue nesse espaco.

Daqui até o fim deste capitulo, denotaremos as imersoes reais de K por o1, ..., 0y, € as imersoes
complexas de K por 71,T1,...,Try, Tr,. Também denotaremos oy, y2;—1 := 7; € 0,425 := T; para
1 < j <rg, de modo que as n imersoes de K sejam o1q,...,0,.

O mapa x: K — KR dado por x(a) = (o1(a),...,0n(a);71(a),...,7,(a)) é um homomor-

fismo injetor de Q-espagos. Em particular, um homomorfismo de Z-moddulos. Chamamos y de
imersao candnica de K. O fato que serd fundamental para nds é que x leva bases da extensao
K/ Q em bases de reticulados completos de KR, cujo volume sabemos calcular:

Teorema 7.14. Seja {a1,...,a,} uma base da extensio K/ Q. Entdo o conjunto
To=x(Za1+-+Za,)

é um reticulado completo de KR, com base {xaa,...,xan} e volume

vol(Ty) = 2_T2\/|AK/Q(0¢1, cey )]
Demonstragdo. Sendo x um homomorfismo de Z-médulos, temos
To=x(Za1+ - +Zo,) =Zx(a1)+ -+ Zx(an).

Assim, pela Proposi¢ao 7.5 vemos que x(a1),...,x(a,) formardo a base de um reticulado com-
pleto se e 86 se det(x(a1),...,x(an)) # 0, e que nesse caso o volume desse reticulado serd igual
ao modulo desse determinante. Desse modo, a demonstracao estard completa se mostrarmos que
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o determinante em questao é em moédulo igual a 2772 \/]AK/Q(al, ..., ap)]|, pois como a, ..., ay

formam uma base da extensao K/ Q temos Ak, q(a1,...,an) # 0.
Queremos calcular o determinante da seguinte matriz:

o) - op(an) Re(ri(en)) Im(ri(en)) -+ Re(r,(ar)) Im(r,(ar1))
Mo o1(az) -+ op(az) Re(ri(az)) Im(mi(az)) -+ Re(ry(az)) Im(m,(az))

o) - onfan) Re(n(an) Im(r(an) - Re(ra(a) In(ry(an)
Denotemos as colunas de M, da esquerda para a direita, por Mq,...,M,. Para 1 < k < 719,

realizaremos uma sequéncia de operagdes elementares nas colunas M, yor—1 € My, 425, como
indicado abaixo:

1. Mr1+2k >0 Mr1+2k§

2. My yop—1 = My yop—1+ My 4ok;
3. My ok — 2 My, 1ok;

4. My o = My 1o — My 1op1;
5. My, yor = (=1) - My, o

Observe que os passos 2 e 4 ndo alteram o determinante da matriz, enquanto os passos 1,3 e
5 multiplicam esse determinante por ¢, 2 e —1 respectivamente. Assim, apds esses cinco passos
o determinante da matriz é multiplicado por —2:¢. Como realizamos essa sequéncia de operacoes
elementares ry vezes, o determinante da matriz N obtida ao final de todo o procedimento é
det N = (—2i)"2 det M = |det N| = 2"2|det M|. Finalmente, é facil ver que

orfar) oo on(ar) m(en) Ti(ar) - T(en) Tr(en)
N o1(ag) - 0r1§a2) 71(?42) Ti(a2) -0 Ty §a2) Tm(f@)
o1 (an) T Oy (an) 1 (an) T1 (an) Ty (O‘n) Try (an)

Pela Proposigdo 1.32, temos entdo que (det N)? = A, q(au,. .., an), e portanto

et N| = \/[Ax /(0. o) = |det M| = 2772 det N = 2772\ /|Agc /g lon, ..., am),
como queriamos demonstrar. ]

Corolario 7.15. Seja M C K um Z-submddulo livre de posto n. Entdo xM ¢ um reticulado
completo de Kr. Além disso, se M C Ok entio vol(xM) = 27"2kyr+/|dk|. Em particular,
XOx é um reticulado completo de Kr com volume 2772/|dk|, e dado a <A Ok ndo-nulo, xa é um
reticulado completo de Kr com volume vol(xa) = 27" N(a)/|dk|.

Demonstracao. Seja {ai,...,a,} uma base de M. Entao, pelo teorema acima, yM é um reticu-
lado completo de Kr com base {xai,...,xa,} e volume

vol(xM) = 272\ /|Age s (e, .., an)| = 272K pdic| = 27 2karldc].

d

O corolario acima, juntamente com o Teorema de Minkowski, nos fornece um critério poderoso
para encontrarmos elementos “pequenos” de ideais de O:
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Teorema 7.16. Seja a < Ok nao-nulo, e sejam ay,...,ar,b1,...,b, >0 tais que
2 2 2\"
ar e an bt b > (2] @)yl
Entao eziste a € a\ {0} tal que |o;a| < a; para todo 1 < i <1y e |mal = |Tia| < b, para todo
1 <e <.

Demonstragdo. Consideremos o conjunto

C:: {(xl)"'amTl;ylv"wy’l’Q) € K]R: |J"1‘ < ala"'u‘xrl‘ < a?"17|:1/1’ < blv"‘7|yr2‘ < brz}'

Essa regiao é claramente simétrica e convexa. Notemos que C' é o produto dos r; segmentos
{x; € R: —a; < x < a;} e dos rg discos Dy, := {y; € C: |y;| < b;}. Desse modo, pelo Teorema
de Fubini, o volume de C é dado por

VO](C) = /l/rl/ / d:EldeldyldyTQ
—ai —ar; Dbl Dbr2

_ (/_a; da:l) (/_aall dmm> </Db1 dy1> </Dbm dym)

(2a1) -+~ (2a,, ) (wb}) - - - (wb7,)
Pix"ay a2

> 2"-(2_”"291((1) |dK\):2”vol(Xa).

Desse modo, pelo Teorema de Minkowski, existe v € C'N xa ndo-nulo. Seja o € a tal que v = ya.
Entdo a # 0 e, como xya = (o1(a),...,00 (@);71(),..., 7, () € C, obtemos as desigualdades
desejadas. O

Utilizando o teorema acima, conseguimos melhorar a cota do Lema 4.8. Lembremos que para
cada ideal ndo-nulo a <1 Ok nés definimos t(a) := min{N(a) "' N(aOk): a € a\ {0}}. Entdo
queremos achar uma constante M > 0 tal que, para todo a << Ok nao-nulo, tenhamos t(a) < M.
Notemos que t(a) < M se e s6 se existir a € a ndo-nulo tal que

N(a) ' N(aOk) <M < |N(a)] < MN(a).

Desejamos encontrar o menor M possivel, para que o cdlculo do nimero de classes hx seja
eficiente. Lembremos que N(a) = [Iyetomg(k,c) 7(@), de forma que o lema acima se mostra

particularmente util. Dado ¢ > 0 tal que t" > (%)r2 N(a)+/|dk|, aplicando o teorema acima para

ap =--=ay, =b =---=b,, =1t nds encontramos a; € a\ {0} tal que |o(ay)| < t para toda
T

imersdao o de K. Assim, oy € a\ {0} é tal que [N(ay)| < t". Como t" > (%) 2‘ﬁ(ct) |dx

qualquer, concluimos que para todo £ > 0 existe a. € a\ {0} tal que

IN(02)] < (i) N(a)/Jdx| +2 = ((i) el + mia)) N(a)
= t(a) < (i)w VIdx | + %

T
Como isso vale para todo ¢ > 0, concluimos que ¢(a) < (%) ’ V/|dk|. Essa ja é uma melhora
significativa na constante do Lema 4.8. Podemos melhora-la ainda mais, com uma utilizacio
esperta do Teorema de Minkowski juntamente com a desigualdade das médias:

3

(S
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Teorema 7.17 (Cota de Minkowski). Para todo a < Ok nao-nulo, temos t(a) < ug, onde

4N\ n!
HK = (ﬂ) v |dk|.

Fquivalentemente, para todo a < Ok nao-nulo, existe o € a nao-nulo tal que |N(a)| < px MN(a).
Note que, como % < 1 para todo n > 2, essa cota é de fato melhor do que a encontrada
acima. A ideia para obté-la é a seguinte: dado o € K, nés temos:

T1 T1

¥l = e @il = T e
(Srilos@l + 257 m(a)l)
(22 S = = ,

onde utilizamos a desigualdade entre as médias aritmética e geométrica. Assim, é interessante
. . . ~ 1 X 79 . ~ .

minimizarmos a expressao Y_;L,|o;(a)| +2 3772, |7j ()| para algum elemento ndo-nulo do ideal a.

Entéo, devido ao Teorema de Minkowski, faz sentido considerarmos para cada ¢t > 0 o conjunto:

Cr = {($1,~-7$r1;y1,-..,yr2> € KRr: |1‘1’—|—~~'—|—‘$r1‘ +2|y1|+"'+2’y7“2| < t}' (71)

Essa regiao é claramente simétrica, e uma verificagao direta nos mostra que ela também é convexa.
Logo podemos aplicar o Teorema de Minkowski a C; e ao reticulado ya. Para isso, precisamos
calcular vol(C). Esse é o contetido do lema abaixo:

IA

Lema 7.18. Sejam ¢,j € N et > 0. Definimos
CHl = {(x1, .., wis 1y ) € REXCI: @y | 4 -+ |a| + 20w | + - + 2[y;] < £}
Entdo vol(C/7) = %
Demonstracdo. A demonstragao sera por inducdo dupla em i e j. Note que temos
O = {z e R: |z| <t} = (—t,1),
e portanto vol(C}?) = 2t. Observemos ainda que, para todo i € N, nés temos:
CHYO = (my,.. i) € RV o] + -+ |ziga] < 8)}
= {((x1,...,7),741) €E R"XR: 2441 € (—t,t), (x1,...,25) € C,” ‘%Hl}
Desse modo, pelo Teorema de Fubini:

. t
VOI(CZH’O):/CHIO _/ /Clo dudr, — /vol(ot“"x D dzin

t—lziyq]

= 2/ VOl t 90+1 d{L‘Z'_;_l,

uma vez que vol(C"°

t s |) é claramente uma funcio par de x;41. Com isso, mostraremos por

inducio em i que vol(C{°) = 22}51 Como 2't!/1! = 2t, temos a base de inducdo. Finalmente,
supondo a férmula valida para 7, nés temos:
t9i(t —
l(CH_l 0) = / Vol Ct Tii1 dl’Z.H = 2/ #dmﬂ_l
9i+1 ' 9i+l (0
= — (t —i11)" drip = — y' (—dy)
it Jo (AN

_ i+l /tyidyZQiH Tas t
it Jo it i1,

2z'+1 tz’+1 B 2i+1ti+1
it i+l (1)
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mostrando a validade da férmula para ¢ + 1. Fixemos agora ¢ € IN. Observemos que, para j € IN

qualquer, o conjunto C} Lt g igual a

{($1,...,$i;y1,...,yj+1)E(]Rixcj)XC:yj+1€Dt/2, (xlv"'awi;ylv"'vyj) t 2 }
|y i+1]7

onde Dy /o :={z € C: |z| < t/2}. Desse modo, pelo Teorema de Fubini:

VOIC’MH:/ d :/ / dd< :/ vol(C dy
(Cy ) Citt K Duja HaYj+1 Desa ( t72|yj+1\) Yj+1

G 2Iy

t/2 r2m t/2
- / / vol(CH, rd9dr:27r/ vol(C, )r dr,
0

onde utilizamos mudanca de coordenadas cartesianas para polares. Com isso, podemos mostrar

. ~ . i\ i~ i 23 ) ~ .
por indugao em j que vol(C;?) = 2(11722),, o que concluird a demonstracdo. Para j = 0, essa
214t

. i,0 gt . ~
férmula se torna vol(C;") = =7 que ja mostramos ser verdadeira. Suponhamos entao que a
férmula valha para j, e a provemos para j + 1. Nos temos:

rdr

o /t/2 2747]71.](]5 o .2r)i+2j
0 (i +27)!
gi—d+1 i+l

t/2 o
- (i—|—2j)'/ (¢ =20)" % d.
'Jo

i t/2
vol(Cp7Hh) = 277/ vol(Cl, Yrdr =
0

Fazendo u = t — 2r, temos r = (t —u)/2edr =—du/2. Assim:

t s 0 . t— 1
/ (t—2r) " ¥rdr = / uit LY (—) du
0 2 2

/ Fuit 2 gy

[ 2+l 242 ]t

1
4
1
4li+2j+1 i+2j+2],
1 [ 4i+25+2 Fi+25+2
B 4<Z+2j+1 z—|—2j+2>

1 ) ti+2(j+1)

z+23+1 1+2j+42 4

£iF2(5+1)

4i+2j+1)(14+25+2)

Finalmente, obtemos:

vol(CH ) = 2t /t/g(t )it gy — 2i—i+ i+l ' F+2(5+1)
t (i+2) Jo (i+2) 4(i+2+1)(1+2+2)
9i—(i+1) pi+1i+2(j+1)
(+2G+1)
concluindo a inducao. -

Demonstragao (do Teorema 7.17): Fixemos a <t O nao-nulo. Para cada ¢t > 0, definimos C;
como em (7.1). Entdo C; é simétrico, convexo e pelo lema acima seu volume é vol(Cy) =

T1—T T n . . . .
21#. Para podermos aplicar o Teorema de Minkowski a C; e ao reticulado completo ya,
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devemos ter:

Qri—T2or2n
vol(Cy) > 2" vol(xa) <— — 2272 N (a)/|dk|

<~ " >2"" a2 N(a)/|dk|

_ <j> n (a)y/ldic|.

Para cada t > 0 satisfazendo essa condigdo, pelo Teorema de Minkowski existe um elemento
nao-nulo v € Cy N xa. Sendo oy € a tal que yoy = v, temos oy # 0 e

T1 T2
Z|al-(at)] + 22’7}‘(&,5)‘ < t.
i=1 =1

Dessa forma, pela desigualdade que haviamos visto, [N (ay)| < t"/n™. Assim, a; € a\ {0} é tal
T

que |N(a)| < t"/n™. Como t" > (%) 2n!‘ﬂ(a)\/\dm é qualquer, concluimos que para todo

e > 0 existe a; € a\ {0} tal que

Nl < () moa i+ = ((5) il + gy ) @
+ s (2 i

’. 7‘2 7
Como isso vale para todo £ > 0, concluimos que t(a) < (%) 7%'1 |dk|, como querfamos. O

Como consequéncia da cota de Minkowski, também conseguimos estimativas sobre o discrimi-
nante dg:

Teorema 7.19. Para todo corpo de numeros algébricos K de grau n > 2, temos:

’d |> (71-)” n2n >E (37‘(’)”_1
Ki=\4) "n2=3 \1 '

Em particular, para todo corpo de nimeros algébricos K # Q nds temos |dg| > 2.

Demonstragao. Seja a <t K nao-nulo. Entéo pelo Teorema 7.17 existe a € a\ {0} tal que
IN(a)| < px N(a) <= N(aOk)N(a) ' < pux <= N(aa™) < uk.

Assim, b := aa~! <1 Ok é tal que MN(b) < ug, isto é:
51(b A\l 4\"? n! y
< (|- — < (=
()_<7T> nn\/lKL(ﬂ) V1]

iz (3) gz ()

ja que 91(b) > 1. Para provarmos a segunda desigualdade, notemos que

a\" nQn T 3 n—1 n2n
<) > = = 5 >3"? = n¥>4.3"2(n!)%
<4) ()2 =3 ( 4> A(nh)2 = = ()

Provaremos essa desigualdade por inducdo em n. Para n = 2, ela equivale a desigualdade

222 >4.3272(21)? = 16 > 16,
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que é verdadeira. Supondo agora essa desigualdade valida para n > 2, temos:
4-3" Y (n+ 1)) = (4-3"2(n)?)-3-(n+ 1) <n*"-3-(n+1)%

Queremos mostrar que

2n+2 2 2 n+1\*" 1\
(n+1) >n"-3-(n+1)° <~ >3 «— (1+—] =>3.
n n

Mas essa ultima desigualdade segue diretamente da desigualdade de Bernoulli, concluindo a
inducdo. Finalmente, para ver que |dx| > 2 para todo corpo de ntumeros algébricos K # Q,
basta notarmos que para n > 2 nds temos

7 (3n\"' 7w 3w w2
dg| > = | — > — = —>2
’K‘—3<4> 31 T 1
Observacao 7.20. Note que o teorema acima também mostra que o ndmero
min{|dg|: K é corpo de nimeros algébricos com [K : Q] = n}

cresce exponencialmente em funcdo de n. Por exemplo, todo corpo de nimeros algébricos de grau
3 tem o mddulo de seu discriminante maior ou igual a

T 3 32~3

e portanto maior ou tqual a 10.

Utilizando o Teorema 7.19 juntamente com o Teorema 4.27, nés podemos concluir que toda
extensdo da forma K/ Q, onde K # Q é um corpo de ntmeros algébricos, é ramificada, isto é,
existe algum primo p € IN que se ramifica em K. De fato, o Teorema 7.19 nos diz que |dx| > 2.
Assim, existe um primo p € IN tal que p | dg, e concluimos pelo Teorema 4.27 que esse primo se
ramifica em K. Desse modo, obtemos:

Teorema 7.21. Para todo corpo de nimeros algébricos K # Q, a extensio K/ Q é ramificada.

7.4. O Teorema das Unidades de Dirichlet

Nessa secdo, iremos utilizar métodos geométricos para deduzir o conhecido Teorema das Unidades
de Dirichlet, que afirma que o grupo de unidades de um anel de inteiros algébricos O é o produto
direto do grupo de tor¢do de Ok por um ntimero finito de grupos ciclicos infinitos.

Seja Kg = R xC" como definido na se¢do anterior. Esse IR-espaco possui uma base
candnica eq,...,e,, sendo:
er = (1,0,...,0;0,...,0),...,e;, = (0,...,0,1;0,...,0),
ert1 = (0,...,0;1,0,...,0),er,42 = (0,...,0;4,0,...,0),...
en-1 = (0,...,0;0,...,0,1),e, = (0,...,0;0,...,0,%).
Também denotaremos f; := e, y2j-1 € gj = €r,425, para 1 < j < ro. Note que os f; sdo os

elementos em que aparece uma coordenada complexa 1, e que os g; sao os elementos em que
aparece uma coordenada complexa i. Podemos definir uma norma N: Kr — R dada por

N1,y Uy 21, ey Zy) = 1 Gy |21)% - | 20|
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Proposigao 7.22. N é um homomorfismo multiplicativo e satisfaz N ox = Nk, q-.

Demonstracao. Como a multiplicacdo em KR é dada termo a termo, é claro que N é homomor-
fismo multiplicativo. Agora, basta notarmos que, dado a € K, nés temos:

(Nox)(@) = Nloa(@)....0m (@ m(@), . 70 0)) = [Loslo) [ 1)

T1

- Mo@e@n@= T o=l

=1 o€Homg(K,C)
O
Essa norma serd 1til para comparar os volumes de dois reticulados completos cujas bases
distinguem por um fator de ¢ € K. Mais especificamente:
Proposigcio 7.23. Seja c € KR, e sejam pji, 1 < j, k < n tais que cej = Y}y pjrek, para todo
1<j<n.
(a) Nés temos N(c) = det(pji).
(b) Sejam vi,...,v, € KR quaisquer, e sejam wi,...,w, o0s vetores obtidos dos v;’s por multi-

plicagdo por c, isto €, wj = cv; para 1 < j < n. Entao, sendo ®, e @y, os paralelepipedos
gerados por vi,...,V, € Wi,...,W,, Tespectivamente, temos:

vol(®,,) = |[N(c)| - vol(Dy).

Demonstragao.  (a) Escrevamos ¢ = (a1, ...,ar;b1 +ic1,..., by, +icy,), onde os aj’s, bj’s e ¢;’s
sao numeros reais. Entao ¢é facil ver que para 1 < j < 1 nés temos ce; = aje; e que para
1 < j <7y nbs temos cf; = b;fj +¢jgj e cgj = —c;j f; + bjg;. Desse modo, a matriz (p;i) é
igual a
ap -+ 0 o 0 --- 0 0
0 a, 0 0 --- 0 0
0 0 bl cT - 0 0
0 0 —C1 b1 cee 0 0
0 --- 0 0 0 - bp cn
0 --- 0 0 0 - —¢p by

Essa é uma matriz de blocos, com determinante
ap - ~ar1(b% —|—C%) e (b%2 +c§2) =aj--ap|by +i01]2 -+ |bp, +z'c702|2 = N(c),
como queriamos.
(b) Escrevamos, para 1 < j <n, v; = > j_; €;nen, onde cada e, € R. Entao nds temos, para

I<j<m

n n

n n n n
w; = Cvj; = C- Z EjhEh = Z EjhCER = Z Z EjhPhkEE = Z (Z Ethhk) €k-
h=1 h=1

h=1 h=1k=1 k=1

Assim, pela Proposi¢ao 7.5 e pelo item (a), nés temos:

n
det (Z 5thhk>

h=1

vol(®y,) = = |det(ejg)| - |[det(pjx)| = vol(Py) - [N (c)],

como desejavamos.



7.4. O TEOREMA DAS UNIDADES DE DIRICHLET 133

E claro que K = (R*)™ x (C*)™ e que, dado ¢ € Kg, N(c) # 0 < c € Kg. Assim,
como consequéncia direta da proposicao acima, nds temos:

Corolario 7.24. Seja c € KR, e suponhamos que v1,...,v, € KR formem a base de um reticulado
completo T'. Entao cvy,...,cv, geram o Z-mddulo ¢TI == {cz: z € T}. Além disso, cI' serd um
reticulado completo de KR se e somente se ¢ € Ky, e nesse caso vol(cI') = |[N(c)| - vol(T).

Na demonstragao do Teorema das Unidades de Dirichlet, utilizaremos a chamada teoria multi-
plicativa de Minkowski. Note que a restricdo da imersio canonica a K * nos d4 um homomorfismo
de grupos multiplicativos x: K* — Kp. Para trabalharmos com reticulados, precisamos transfor-
mar esses grupos multiplicativos em grupos aditivos. Podemos fazer isso por meio do logaritmo!
Mais especificamente, definimos homomorfismos de grupos pi,..., iy, 61,...,0,,: Kg — R do
grupo multiplicativo K} para o grupo aditivo R, dados por:

/’Lj(alv"'7a7’1;zlv"'727“2) = 10g|aj|7 para 1 S]S 13

0i(a1,...,am; 21, 2) = log|z;|?, para 1 <j <.

Nés ainda denotamos fi,, 5 = 0, para 1 < j < ro. E claro que os i e os 0 sdo todos sobrejetores.
Nés definimos p: K — R™*"2 dado por

pe = (¢, .oy fry410€) = (H1Cy ooy fry &, 01C, . .., Opy).
Note que, escrevendo ¢ = (a1,...,0p; 21, ., Zry ), NOs temos:
pe = (loglail,...,logla,, |, log|z1[?, . . ., log|zr,[?).

Segue da sobrejetividade dos p; e dos 0; que p também é sobrejetor. Definamos ainda o
homomorfismo A := poy: KX — R™"2 e para 1 < j < ry 4+ ry, os homomorfismos \; =
pjox: K* — R. O homomorfismo A é chamado de representacéo logaritmica de K, e dado
a € K* é facil ver que temos

Ao = (Ma, ..., A\yira) = (logloy(a)l,. .., log|o,, (a)|,log|r(a)?,. .., log|m, (a)]?).
Definamos Tr: R™%"2 — R dado pela soma das coordenadas:
Tr(@1, .oy Tryrg) = T1 4+ Ty g
E claro que essa é uma transformacio IR-linear. O nicleo de Tr é o hiperplano
H:=XkerTr = {(z1,...,Trj4rp) E R 21+ + 20 10y, = 0}

Notemos que H é um IR-espaco de dimensao r; 4+ ro — 1, que se torna um espaco vetorial
euclidiano com a topologia induzida de R "2,

Proposigdo 7.25. Nds temos Trou = log(|-|) o N.

Demonstragao. Seja ¢ = (a1,...,ap;21,...,2,) € KR qualquer. Entdo

(Trop)(c) = Tr(loglaal, ..., loglar, |, loglz1]?, .. ., log|zr,|?)
log|ai| + - - - + log|a,, | + log|z1|* + - - - + log|z., |2
log(la| -+ lar [|z1% -+ |2, [?)

log(lar -~ ary |21 - 20, °])

= (log(|-]) o N)(c),

concluindo a demonstracao. O
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Devido as proposigoes 7.22 e 7.25, nés temos o seguinte diagrama comutativo:

A

T

K* 2 Kx o Rt

lNK/Q [ J

Q* Rx sl
Calculemos agora ker pu e u~ ! (H):
Proposicao 7.26. (a) O nicleo de pu é dado por
kerpu = {(a1,...,ar;21,...,2r,) € Kg:lar| = =lap, | =|21| =+ = |2n,| = 1}
(b) w ' (H) ={ce Kg: N(c) = +1}.
Demonstragao. (a) Dado ¢ = (a1,...,a;,;21,-..,2r,) € KR, nds temos:
ceckerpy <= 0= pc= (loglai,...,logla, ]|, log|z1|% ..., log|zm|?)

< loglai| = --- =loglay, | = log|z1| = - -+ = log|z,| = 0
= a|=-=lan|=lal ==z =1,

provando a afirmacao desejada.
(b) Dado ¢ € KR, nds temos:

cep Y (H) <= plc)e H=kerTr < Tr(u(c)) =0
= log(|N(c)) =0 < |N(c)| =1,

onde utilizamos a proposicdo acima. Isso prova a afirmacao desejada.
O

Mostraremos agora algumas propriedades sobre o subgrupo de torcao de um corpo de niimeros
K. Lembremos que o subgrupo de tor¢ao de K é o subgrupo W (K) C K* dos elementos de ordem
finita de K™, que é o grupo das raizes da unidade de K. Como toda raiz da unidade de K é raiz
de um polindmio da forma 2™ — 1, vemos que W (K) C Ok. Provaremos que W (K) é finito e se
caracteriza como o conjunto dos elementos de Ok tais que todas as suas imagens pelas imersées
de K tém modulo 1. Comegamos com o seguinte resultado:

-

Teorema 7.27. Seja k > 0 qualquer. Entdo o conjunto {a € O : |o1a] < k..., |ona] < k} €
finito.

Demonstragdo. Consideremos o conjunto
C={(a1,. - ar 321,y 2ry) € Kr: |a1| < k..o ]arm | <k |21 < kyooo) |z, ] <k}

Entao é claro que C' é um subconjunto limitado de Kr. Como xyOg é um reticulado de KR, esse
é um subconjunto discreto de KR, e portanto C' N xOk é finito. Assim, existe um ntmero finito
de a € Ok tais que |o1a] < k,...,|opa| < k,|ma| <k,...,|7a| < k. Finalmente, como para
1 < j <y temos |Tja| = |7ja, vemos que existe um nimero finito de a € O tais que |oja| <k
para todo 1 < 5 < n, como queriamos. ]
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Lembremos que, dado m inteiro positivo, denotamos por W,,(K) o conjunto das rafzes m-
ésimas da unidade em K. A partir do teorema acima, conseguimos o seguinte:

Teorema 7.28. Nds temos W(K) = {a € Ok: |o1a| = -+ = |opa| = 1}. Em particular, W (K)
é finito, e portanto temos W(K) = Wy, (K) para algum m inteiro positivo. Logo W (K) é ciclico.

Demonstragao. Denotaremos o conjunto da direita por S. Mostremos que W(K) = S:

(C): Dado @ € W(K), como ji observamos acima temos o € O. Sabemos que existe m
inteiro positivo tal que o/ = 1. Assim, para todo 1 < j < n, nés temos (ojo)™ = 1. Em
particular, |o;a| = 1. Isso prova que o € S.

(2): Note que S é um conjunto finito pelo teorema acima. Seja @ € S. Entdo a € O é
tal que |01 = -++ = |op,a] = 1. Vemos entdo que, para todo inteiro positivo k, nds temos
af € Ok e |o1d¥| = --- = |0,0F] = 1. Ou seja, o € S para todo inteiro positivo k. Mas
sendo S finito, vemos que existem k; > ko > 0 tais que o' = a2 = oF1~%2 = 1, mostrando que

a e W(K).

Assim, provamos que W(K) = S. Como observamos acima, S é finito, e portanto W (K)
também o é. Dessa forma, pela Proposicao 2.23, vemos que existe um inteiro positivo m tal
que W(K) = W,,(K), que é ciclico. O

Com isso, conseguimos demonstrar:

Proposigao 7.29. (a) ker A = {a € K*: |o1(a)] = -+ = |op(a)| = 1}. Assim, nds temos
Og Nker\ = W(K).

(b)) N (H) ={a € K*: Ng,q(a) = £1}. Assim, nds temos A" (H) N Ok = OF.
Demonstragao. (a) Dado v € K* qualquer, nés temos:
ackerA <= 0=\ a=puxa < xoa € ker p.

Pela Proposi¢ado 7.26, isso ocorre se e s6 se tivermos

= =lon (o) =Inla)l = =|m(a) =1
— Jo(a)|=-=|on(a)] = 1.
Finalmente, se « € O, entao pelo Teorema 7.28 vemos que isso equivale a oo € W(K).

(b) Dado a € K* qualquer, nds temos:
ae XY H) <= M€ H < uxa € H < xacpu '(H).

Pela Proposicao 7.26, isso ocorre se e s6 se N(xa) = £1. Como N ox = Nk, q, isso
equivale a Ng,qg(a) = £1. Finalmente, a tltima afirmacdo segue de termos a igualdade
O ={a € Og: Nk, (o) = £1}, que é vélida devido ao Corolario 2.3.

O

Uma consequéncia da proposi¢do acima é que para qualquer subanel A C Ok nds temos
A* C OFf C XH(H). Assim, A(AX) C H. De fato, podemos mostrar o seguinte importante
resultado:

Teorema 7.30. Para qualquer subanel A C O, AN(A*) é um reticulado em H.
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Demonstragao. Sendo A homomorfismo de grupos, é claro que A\(A*) é subgrupo aditivo de H.
Basta entdo mostrar que A(A*) é um subconjunto discreto de H. E claro que isso equivale a
mostrar que A\(A*) é discreto em R 7”2, 0 que por sua vez equivale a mostrar que a intersecio de
A(A*) com qualquer conjunto limitado de R™ "2 é finita. Entdo é claro que é suficiente provar

que para todo t > 1 a intersecao A\(A*) N C; é finita, onde C; é o paralelepipedo:
Co={(ar,...,ar,b1,...,byy) ER™MT2 ay| <t |ap, | <t |b1] < 2¢,..., |bry| < 2t

uma vez que os conjuntos Cy para t > 1 cobrem R™ %2, Notemos que, dado o € AX, nés temos:

Ma)eCr = floglor(@)]].....[loglor, (a)[] < t,[loglra ()] ... loglry, ()] < 21
= et <o), lon (@), [ (a)l.....lrm(a)] < ¢
—  [01(@)]. ou(@)] < .

Aplicando o Teorema 7.27 para k = e, concluimos que existe apenas um nimero finito de elemen-
tos o € A* C Ok satisfazendo essas desigualdades. Isso prova que A(A*) N C; é finito, concluindo
a demonstragao. O

Né6s mostraremos agora que se A C Ok for uma ordem de K entdo A(A*) serd de fato um
reticulado completo em H. Para isso, precisaremos de dois lemas:

Lema 7.31. Seja C C p~'(H) limitado em Kgr. Entdo o subconjunto nC C H ¢é limitado em
R™*"2 (e portanto em H ).

Demonstragdo. Como C' ¢é limitado em KR, existe algum ¢ > 1 para o qual C C S;, onde S; é a
regiao:

Sy = {(a1,. .. ar; 215 2ry) € KR: |ar] <ty Jam | <t |21 <ty 20| <t}
Dado ¢ = (a1,...,ar,;21,--.,2r,) € C, nds temos:
pe = (e, ... e rpe) = (loglaal,. .. loglay, |, loglz1 %, . . log|zr, [?).

Assim, basta provarmos que existe T > 0 tal que, para todo ¢ € C e para todo 1 < j < ry + ro,
tenhamos |p;c| < T. Notemos que, como ¢ € S, nés temos pjc < logt para todo 1 < j <17y +1ro.
Agora, como pc € H, nés temos Tr(uc) = 0, ou seja, pic+ -+ + pip, 4r,¢ = 0. Dessa forma, p;c
também é limitado por baixo:

[jC = —[1C— = [j_1C — [j41C =+ — fp4pyC > — (11 + 72 — 1) log t.
Assim, para todo 1 < j < ry + ro, nés temos:
—(r14+re—1)logt < pjec <logt = |pjc| < (r1 +rz)logt.
Dessa forma, basta tomarmos T = (r; 4+ r2) log t. O
Lema 7.32. Sejam C C KR limitado e v € KR qualquer. Entdo v-C € um conjunto limitado.

Demonstragdo. Como C' é limitado, existe t > 0 tal que

CC{(®1, s @ry5Y1, - Ury) € KR |21 <ty |zey | <t |yt <ty ee |y | <t}
Escrevendo v = (a1,...,ar,; 21, -, 2r,), vemos que para todo ¢ = (z1,...,Zr Y1, Yry) € C
nés temos ve = (a1&1, ..., Ar Try5 21Y1, - - - 5 2ryYry ). Note que |a1z1| < |arlt,. .., |apzr | < |an]t,
lziy1] < |z1lt, ..., |2raUry | < |2p,|t. Assim, v - C esté contido no conjunto
{(v1, -y W1, ey wyy) € KR: 01| <aglt, ..o oe | < ap |t wr] < 210t - Jwey | < J2ny |t

que ¢é limitado. Logo v - C é limitado. O
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Também precisaremos do seguinte resultado, que diz que para cada k € IN o ntimero de classes
de elementos associados que tém como norma absoluta k é finito:

Teorema 7.33. Sejam A um subanel de K que é um Z-mdédulo finitamente gerado e k € IN.
Entdo existem apenas finitas classes de elementos associados A* - aq, ..., A* - amy em A tais que
INk /()| =k, para todo 1 < j < m.

Demonstragdo. Afirmamos que se «, 8 € A sao tais que |[N(a)| = [N(8)| = k e a = 3 (mod kA),
entdo o e 8 sao associados. Sabemos que o | N(a) = tk e 3| N(8) = £k em A. Assim, a e
B dividem k em A, logo existem z,y € A tais que ax = Sy = k. Agora, como a = 3 (mod kA),
existe a € A tal que o — f = ka. Desse modo:

o = B+ka=p+pBya=p(14+ya), e

B = a—ka=a—azxa=a(l—za).

Desse modo, concluimos que « e § sdo associados, justificando nossa afirmacdo. Com isso, basta
mostrar que existe um nimero finito de classes de congruéncia médulo kA. Sejam ~1,...,v. € A
tais que A = Z v, + -+ -+ Z~,. Entao é facil ver que todo o € A esta na classe de congruéncia
modulo £A de algum elemento diy; + -+ 4+ d,y, com 0 < d; < k para todo 1 < j < r. Como
existem no maximo k" de tais elementos, concluimos que o niimero de classes de congruéncia
modulo kA é finito, terminando a demonstracao. O

Teorema 7.34. Seja A uma ordem de K. Entao AN(A*) é um reticulado completo em H.

Demonstragao. Pelo Teorema 7.30, A(A*) é um reticulado em H. Assim, resta mostrarmos que
A(A*) é um reticulado completo. Pelo Teorema 7.4, basta provarmos que existe um subconjunto
limitado S C H tal que H = J,c 4x (\(u) + ). E suficiente encontrarmos B C p~*(H) limitado
em R™7"2 tal que =t (H) = Uyeax x(u) - B, pois como p é sobrejetora nés teremos entdo:

qu(u‘l(H))zu( U X(U)'B) = U ulx(w)-B)= |J (\u)+uB).

ueAx ueAX ueAx
Como pelo Lema 7.31 uB ¢é limitado em H, podemos tomar S = puB. Assim, encontremos um tal
conjunto B. Pelo Corolario 7.15, sabemos que xA é um reticulado completo em KR. Tomemos

t > {/vol(xA), e definamos C C KR como sendo o cubo:

n
C = {Z’yjej —tS’YJ St, paratodo 1 é‘7§n}
=1

E claro que C ¢ limitado, simétrico, convexo e que vol(C) = (2¢)". Para todo ¢ € C, nés temos
IN(c)| <2m2t". De fato, dado ¢ = 327, y;e; € C:

IN(e)| = |l v+ + Z"7/1"1—&-2|2 -1+ i’7n|2
Il e O+ 97 42) - (e + )

< teet (B2t (P21
——
T1 vezes ro vezes
— 27’2t7‘1+2’l"2 — 2r2tn.
Pelo Teorema 7.33, existem a1, ...,a, € A ndo-nulos tais que todo o € A nao-nulo satisfazendo

INk /()] < 272t" seja associado a algum o para 1 < j < r. Definamos

B:=pu ' (H)N

J

(xey) ' C.
1

r
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Como C é limitado, cada (xa;)~!-C é limitado pelo Lema 7.32. Assim, é claro que B é
limitado. Desse modo, a prova estarad completa se mostrarmos que e 4x x(u) - B = p~1(H):

(C): Sejam u € A* e b € B quaisquer. Queremos mostrar que x(u)b € u~!(H). Pela Proposicio
7.26, n6s temos N (b) = %1, e portanto N(x(u)b) = N(x(u))N(b) = Nk, q(u)N(b) = £1, logo
também pela Proposi¢io 7.26 nés concluimos que x(u)b € pu~(H), como querfamos.

(D): Seja v € u~'(H) qualquer. Entdo pelas proposicdes 7.23 e 7.26 nés vemos que v - YA é
um reticulado completo em KR com volume vol(v - xA) = |N(v)|vol(xA4) = vol(xA4). Assim, C
é simétrico, convexo e

vol(C) = 2"t" > 2" vol(xA) = 2" vol(v - xA).

Portanto, pelo Teorema de Minkowski, C'N (v-xA)\ {0} # 0, e concluimos que existe um elemento
¢ = vxa € C para algum « € A ndo-nulo. Notemos que

N(c) = N(vxa) = N(v)N(xa) = Nk, ().

Assim, como ¢ € C, temos |[Ng,q(a)] = [N(c)| < 2™¢". Com isso, sabemos que existem
1<j<rewuc A tais que a; = au. Disso obtemos xo; = xa - xu = (Xa)_l = Xu(xozj)_l.
Assim, v = (xa) ™! e = xu(xa;) te. Além disso, nés temos:

+1=N(v) = N(xu(xa;)~'ec) = N(xu)N((xe5)"'¢) = Ng/q(u)N((xa;)~"c)
= £N((xay)""o),
logo pela Proposigao 7.26 nés concluimos que (xa;) e € u=t(H). Desse modo, (xa;) 'c € B, e

portanto

V= XU on] “lee U X
e€AX

Concluimos que J,cax x(u) - B = p~}(H), e entdo A(A*) é um reticulado completo em H,
como queriamos demonstrar. O

Como corolario desse resultado, nés obtemos o Teorema das Unidades de Dirichlet:

Teorema 7.35 (Teorema das Unidades de Dirichlet). Seja K um corpo de niimeros algébricos com

[K : Q] = n e assinatura (r1,7r2), e seja A uma ordem de K. Entdo existem ey, ...,ep4ry—1 € A*
tais que A* seja o produto direto W(A) ® (1) ® -+ @ (epy4ry—1) do grupo ciclico finito W(A) e
dos grupos multiplicativos ciclicos infinitos gerados por €1,. .., 4ryo—1. Em resumo, A é um

subgrupo finitamente gerado de K*, de posto r1 +1ro — 1 e com grupo de tor¢cao ciclico.

Demonstragao. Denotemos r := ry +ry — 1. Pelo teorema acima, A\(A*) é um reticulado completo
em H, e portanto existem &1, ..., &, € A* tais que ey, ..., A&, formem uma base desse reticulado.
Seja u € A* qualquer. Entéo existem unicos ki, ..., k. € Z tais que

A= kidep + -+ kpde, = AW ghn),

T

jé que A é homomorfismo entre o grupo multiplicativo K> e o grupo aditivo R™ "2, Desse modo,
AMuer® - g7F) = 0, e assim ue; ™ - &% € ker AN A = W(K)N A= W(A), pela Proposicao

7.29. Logo existe w € W(A) tal que uey™ -+ ebr = w = u = wel ... &b, Isso prova que
A* = W(A) - (e1)---(g). Para vermos que esse produto é direto, basta mostrarmos que se
w e W(A) e ki,...,k, € Z sao tais que welfl---slﬁT =1l,entaiow =1ek; = --- =k, = 0.

Aplicando A de ambos os lados, nés obtemos:
Aweh - by = X1) = Aw)+kMe)+ -+ kA(g) =0
= k(e )—i—-u—l—kr)\(er) =0
— k1::k7"207
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jad que L,w € W(A) C ker A e A(e1),...,A(g,) sdo linearmente independentes. Assim, temos
1 =we?- &Y = w, e portanto esse produto é de fato direto. Note que isso nos diz em particular
que e1,...,&, € W(A), e portanto os grupos ciclicos (g1),...,(g,) sdo de fato infinitos. Final-
mente, como W (K) é ciclico finito pelo Teorema 7.28, vemos que W(A) C W(K) também o é,

provando o teorema. ]

Definicao ((Sistema de) Unidades Fundamentais). Nés dizemos que uma 71 + rg — l-upla de
unidades €1, ...,6r,4r,—1 de uma ordem A de K é um sistema de unidades fundamentais
de A se ela satisfizer a condicdo do teorema acima, e chamamos seus elementos de unidades
fundamentais de A. Caso A = Ok, chamaremos ainda esse sistema de sistema de unidades
fundamentais de K, e seus elementos de unidades fundamentais de K.

Observemos que 11 + 12 — 1 = 0 86 pode ocorrer se (r1,7r2) = (1,0), caso em que K = Q, ou
se (r1,m9) = (0,1), caso em que K = Q(+/d) é um corpo quadrético complexo, isto é, com d < 0.
Esses s@o os tnicos casos em que todas as unidades sdo raizes da unidade.

7.5. O Grupo das Unidades de um Corpo Quadratico

Nessa se¢do, estudaremos um exemplo particular do Teorema das Unidades de Dirichlet, o caso
em que K é um corpo quadratico. Nés determinaremos a estrutura do grupo das unidades de
suas ordens, e veremos como isso se relaciona com um tipo de equacao diofantina: as chamadas
equacoes de Pell.

N6s denotaremos, para d € D, K4 = Q(v/d). Seu anel de inteiros algébricos é Z[d,], onde
6g = Vd se d = 2,3 (mod 4) e §g = 1+T‘/E se d = 1 (mod 4). Para cada n inteiro positivo,
definimos Ag,, = Z[ndq]. E claro que Agn € Ok, = Ag1 é uma ordem de Ky, e que dados
dois inteiros positivos n,n' ndés temos Ay, C Az, <= n' | n. Segue da Proposicao 1.31 que
Ar;q(1,n8q) = n?Ak,q(1,04) = n’dk,. Desse modo, pelo Teorema 2.10, (O, : Agqpn) = n.
Mostraremos agora que todo subanel de O, diferente de Z ¢ igual a algum dos anéis Ag,:

Teorema 7.36. O conjunto 7y dos subanéis A de Ok, tais que A # Z estd em correspondéncia
biunivoca com o conjunto N*, por meio das aplicagées n — Agpn, A— (O, : A).

Demonstragdo. Nés sabemos que (O, @ Ag,) = n e que a aplicagdo n — Ag,, é injetora. Assim,
basta mostrar que essa aplicagdo é também sobrejetora. Seja A # Z um subanel de Og,. Entao
todo elemento de A é da forma a + bdg, com a,b € Z. Seja n € IN* minimal tal que c+ndg € A
para algum ¢ € Z (tal n existe ja que A # Z). Mostraremos que A = Ag,, ou seja, que
A = Z[nég]. Como ¢+ ndy € A, temos nd; € A, e assim é claro que Z[nd;] C A. Para mostrar a
outra inclusao, seja a + by € A qualquer, com a,b € Z. Entao existem ¢,r € Z, 0 < r < n, tais
que b = gqn + r. Assim:

A3 (a+bdg) —q(c+ndg) = (a—qc)+ (b—qn)dg = (a — qc) + rdg.

Pela minimalidade de n, concluimos que r = 0, e assim a + bdg = a + qndy € Z[ndy), mostrando
que A C Z[ndg). Entao provamos que A = A, concluindo a demonstracao. O

Lembremos que Aj = {r € Agn: Ng,/q(x) = £1} = O NAg,. Serd as vezes conveniente

separarmos os elementos de norma 1 daqueles de norma —1. Assim, definimos:
U()(Ad’n) = {l‘ € Ad’nt NKd/Q(x) = 1}, Ul(Ad,n) = {.CU S Ad,n: NKd/Q(x) = —1}.
Entéo é claro que A}, = Up(Agn) U UL (Agn)-

Proposicao 7.37. Sejam n um inteiro positivo, d € D e e € {0,1}. Entdo:
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(a) Dados a,b € Z, temos que a+ bnvd € U.(Aq,) se e s6 se (a,b) for solugio da equagio
2?2 —n?dy? = (—-1)°.

(b) Se d = 1(mod 4), entio a+bndg € Uc(Agn) se e s6 se (a,b) for solugio da equagdo
2?2 + nay +n? - 14y2 = (—1)°.

Demonstracio.  (a) Nés temos N(a + bnvd) = a®> —n?db>. Assim, é claro que nds teremos
a+bnvd € U(Aun) <= a®—n?db?* = (-1)°.

(b) Nés temos N(a + bndg) = a? + nab+ n? - 15262, logo do mesmo modo que em (a) nés
concluimos o resultado desejado.
O

Temos a seguinte generalizacao do Teorema 2.21 para os anéis A4, que se prova facilmente:
Teorema 7.38. (a) A%, = O = {1,i,—i,—1}.
(b)) A%, =0 , = {1,¢,¢%,¢3, ¢4, ¢%), onde ¢ = %ﬁ é uma raiz sexta da unidade.
(c) Ay, ={1,—-1} sed <0 e (d,n) # (-1,1),(=3,1).

Assim, o caso interessante ocorre quando d > 0. Nesse caso, as duas imersées de K  sdo a
identidade e a conjugacio v/d — —+v/d. Note que ambas sdo imersdes reais. Assim, 1 = 2 e
ro = 0, de modo que 71 +1r9 —1 = 1. Pelo Teorema das Unidades, concluimos que para toda
ordem A de K, existe uma unidade ¢ € A* para a qual A* = W(A)® (e) = {1,-1} © (¢).
Ou seja, AX = {£e7: j € Z}. Notemos que podemos trocar € por qualquer um dos elementos
+e, +e7 !, e que exatamente um deles é maior que 1. Assim, podemos supor sem perda de
generalidade que € > 1, e chamamos tal ¢ de unidade fundamental de A. Nés denotaremos
V(A) = AXN[1,+0). Note que entdo V(A4) = {e/: j € N*}. Assim, ¢ é o menor elemento do
conjunto V(A).

Para fins praticos, é importante determinar €. Comegamos com o seguinte resultado, que nos
diz que todo elemento de V(Ag,,), para d > 0, tem coeficientes positivos na base {1,ndq}:

Proposicao 7.39. Sejam d € D com d > 0 e n € IN*. Entdo nds temos:
V(Agn) C{a+bndg:a,beZ, a>0, b>0},
exceto no caso (d,n) = (5,1), no qual a condi¢ao a > 0 deve ser substituida por a > 0.

Demonstragao. Seja n = a+bndg € V(Aqy) qualquer, com a,b € Z. Entdo a +bndg > 1 e
IN(a+bndy)| = 1. Seja o: Q(vd) — Q(+/d) dado por vVd — —v/d. Se d = 2,3 (mod 4), temos
bg=Vd— —Vd, esed=1 (mod 4), temos §g = HT‘/Q — 1—7\/&. Note que, em qualquer caso,
dq—0(dq) >0 e o(dq) <0. Além disso, para d # 5, temos o(dg) < —1.

Observemos agora que

1=|N(n)|=n-on|=lon = 717 <1=la+bno(dy)| <1.
De a+bndg > 1 e a+bno(dg) < 1 nés concluimos que
(a+bndg) — (a+bno(d4)) > 0= bn(dg—0c(d4)) >0=0b>0,
pois como ja vimos 64 — o (d4) > 0. Agora, como o(dy) <0 e b > 1, nés temos:

—1 <a+bno(dq) <a—nlo(da)| = a>nlo(dq)| —1.
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Para d # 5, temos entdo a > n-1—1=n—1> 0, como queriamos. Suponhamos agora d = 5.

Nesse caso, temos o(dgq) = 1_2‘/5, e assim

1 1 _

a>n-\/S —12\/5 —1=\/S 3>—1:>a20,

2 2 2

e cason > 2:
5—1
a>2-f2 ~1=v5-2>0,

como queriamos. O

Nés podemos ainda separar V(Ag,) entre os elementos que tém norma 1 ou —1, definindo
Vo(Adn) = V(Aan) NUo(Aan) € Vi(Aan) = V(Aan) NUi(Agy). E claro que nés temos
V(Agn) = Vo(Agn) UVi(Agy). Podemos caracterizar esses dois conjuntos da seguinte forma:

Teorema 7.40. Sejam d € D com d >0, n € N* ee € {0,1}.
(a) Se d=2,3 (mod 4), temos:
Vo(Agp) = {a+bnVd: a,b € N*, a® —n2db* = (—1)°}.

(b) Sed=1(mod 4), temos:

1-d
Ve(Agpn) = {a+bn5d:a€]N, b e IN*, a2+nab+n2-4~b2:(—1)e}
a b * 2 2 712 e
= §+§n d: a,b e N*, a® —n°db* = 4(-1)°}.

Demonstragao. O item (a) e a primeira igualdade do item (b) seguem das proposi¢es 7.37 e 7.39
e do fato de que, para a € IN e b € IN*, nés temos a + bndg > 1 (note que sempre temos dg > 1).
Mostremos a segunda igualdade de (b):

(C): Sejam a € N, b € IN* tais que a® + nab + n?- %d -b% = (—1)°. Notemos que

1 2
a-+bndg=a-+bn- +\/§: a+bn+9‘n\/&

2 2 2
Chamemos @ := 2a + bn € IN*. Entdo a + bnd; = % + g -nv/d. Notemos que a = agb”. Assim:
1—d a—bn\?2 a—bn 1—d
—1)¢ = ¢2 2.2 7y — ( ) < ) 2.2 7 2
(-1)°*=a"+nab+n 1 b 5 +n 5 b+n 1 b
a* — 2abn +n?b*>  abn — n?b? 9 1—d
— : b2
4 Ty T
_a@? = 2abn 4 n®b? + 2abn — 2n%b? + (1 — d)n?b?
N 4
- a2 — n2db?
= —0

Desse modo, @2 — n?db?> = 4(—1)¢, provando esta inclusio.

(D): Sejam a,b € IN* tais que a? — n?db®> = 4(—1)°. Avaliando essa equagdo moédulo 4, ob-
temos a? — (bn)? = 0 (mod 4), de onde é facil ver que devemos ter 2 | a —bn. Além disso,
notemos que

4 4
>—7:—27
at+bn — 2

—4 < a®—n2dh? <a®— (bn)? = (a—bn)(a+bn) = a—bn > —
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e de 2 | a —bn concluimos que a —bn > 0. Definamos @ = 25 ¢ IN. Entdo nés temos

2
a = 2a + bn, de modo que

24+ b b 1 d
—+f nvd = a;n+§-\/&:a+bn. +2f:&—|—bn5d.
Além disso, obtemos que @* + nab+n?- 15242 = (—1)¢ (é basicamente a mesma conta da
inclusdo (C), lida de trds para frente), o que prova essa inclusdo. ]

Com as caracterizacoes dadas acima para V.(Agq,, ), conseguimos o seguinte resultado, que serd
bastante 1til para calcular e:

Corolério 7.41. Sejam ni,n2 € V(Aay). Escrevamos, para j = 1,2:

 faj+bnVd, sed=2,3(mod 4);
' %+%-n~ d, sed=1(mod 4).

onde aj,b; € IN* (sabemos que essas representacoes para m e 12 existem pelo teorema acima,).
Entao m < m = by < bs.

Demonstragdo. Nbés provaremos a contrapositiva, ou seja, que by > by = 11 > 12. Suponhamos
entdo by > by. Denotemos ¢ = 1, se d=23(mod4), eq=4,sed=1(mod4). Entdao nds
sabemos pelo teorema acima que a 2d62 +q, para j = 1,2, e portanto

a?—l—q > nzdb? > a? —q, para j = 1,2.
Sendo b1 > by, nds temos entao:
a3 +q > n*db? > n?d(by +1)% > n?db3 +2d > a3 — g+ 2d > a3 +q,

ja que d > q. Disso obtemos que a1 > ag. Assim, sendo a; > ag e by > bo, é claro que n; > 79,
como queriamos demonstrar. O

Como consequéncia disso, nés temos o seguinte critério com o qual podemos determinar a
unidade fundamental de Ag,, algoritmicamente:

Teorema 7.42. Sejam d € D com d >0 en € N*. Entao:

(a) Se d =2,3 (mod 4), seja by o menor inteiro positivo b para o qual n*db® + 1 ou n?db® — 1
seja um quadrado perfeito positivo. Entdo, sendo ag € IN* a raiz quadrada desse quadrado
perfeito, temos que a unidade fundamental € de Ag, €€ = ap + bonvd.

(b) Se d =1 (mod 4), seja by o menor inteiro positivo b para o qual n*db* + 4 ou n?db? —
seja um quadrado perfeito positivo. Entdo, sendo ag € IN* a raiz quadrada desse quadrado
perfeito, temos que a unidade fundamental € de Ag, é e = % + %0 -nVd.

Demonstragao. N6s provaremos o item (a). A prova de (b) é anéloga.

Sejam @,b € Q tais que € = d + bnv/d. Entdo pelo Teorema 7.40 nés vemos que @, b € IN*
e % —n2db* = +1. Assim, n?db® + 1 ou n2db? — 1 é um quadrado perfeito positivo. Sendo
assim, o conjunto dos inteiros positivos b para os quais n?db®> + 1 ou n?db®> — 1 é um quadrado
perfeito positivo é ndo-vazio, e portanto by estd bem-definido. O inteiro positivo ag também esta
bem-definido, pois apenas um entre n?db3 + 1 e n?db3 — 1 é um quadrado perfeito.

Chamemos ¢q := ag + bynv/d. Como ag, by € N* e a2 —n2db3 = £1, vemos pelo Teorema 7.40
que g9 € V(Agn), e portanto e < g. Pelo coroldrio acima, concluimos entdao que b < by. Assim,
pela minimalidade de by, vemos que b = by, e pela unicidade de ag concluimos que @ = ag. Logo
E=¢c9g=ag+ bon\/g, como queriamos. ]
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Exemplo 7.43. Vejamos como calcular as unidades fundamentais de Azo = Z[2V?2] e de
Airp =2 {H%m} = OQ(\E) utilizando o teorema acima.

Para Agp, temos d = n = 2. Note que d = 2 (mod 4). Assim, devemos encontrar o menor
inteiro positivo b para o qual 22 -2 -1 +1 = 8b*> + 1 seja um quadrado perfeito. Note que b =1 jd
satisfaz, pois 8 12 +1 =9 = 32. Assim, by = 1 e ag = 3. Concluimos que a unidade fundamental
de A272 éa0+b02\/§:3+2\/§

Para A7, temosn =1 ed =17 = 1 (mod 4). Assim, devemos encontrar o menor inteiro
positivo b para o qual 12-17-b%> £4 = 170> + 4 seja wm quadrado perfeito. Para b = 1, temos
17-124+4 = 13 ou 21, nenhum deles um quadrado perfeito. Jd para b = 2, temos 17-2? +4 = 64
ou 72. Como 64 = 82, temos entio by = 2 e ag = 8. Concluimos que a unidade fundamental de

Ar1 69+ % V1T =4+ VI1T.

E interessante ainda observar que a partir da unidade fundamental ¢4 de Ok, = Ag1 nds
podemos encontrar a unidade fundamental €4, de A4, para n > 1, como sendo a menor poténcia
inteira positiva de €4 que pertence a Ag ,,, isto é, 4, = 550 onde ky € IN* é minimo com 650 € Agp.
Isso segue da igualdade V(Ag,) = V(Ok,) N Adn.

Observacao 7.44. Existe um algoritmo ainda melhor que o descrito acima para calcular a uni-
dade fundamental de Aq,. Ele se baseia na determinacdo da fragdo continua de nvd, um
método da Teoria Analitica dos Niumeros. Veja por exemplo o Capitulo 3 e a Se¢do 4.4 de [5].

Dada uma ordem A de O, com unidade fundamental &, nés ji vimos que AX = {+e’: j € Z}.
Notemos que, pela multiplicatividade da norma, e pelo fato de que N(1) = N(—1) = 1 para
extensdes quadraticas, para todo j € Z nés temos N(+e/) = N(g)/. Como N(g) = +1, nds
obtemos o seguinte resultado:

Proposicao 7.45. Seja A uma ordem de Ok, com unidade fundamental .
(a) Se e tiver norma 1, entdo:

Vo(4) = {&:jeN"}=V(4), i(4) =0.
U()(A) = {:l:&‘j: j € Z} = AX, Ul(A) = 0.

(b) Se e tiver norma —1, entao:

Vo(A) = {e¥:jeN*}, i(A) = {¥!: j e N}
Uo(A) = {£e¥:jecZ}, U(A) = {x¥T: je 7).

Observacao 7.46. Notemos que se a unidade fundamental €4 de Ok, tiver norma 1, entdo o
mesmo ocorrerd com a unidade fundamental de qualquer ordem A de K4 (jd que essa é uma
poténcia de €g).

Mostraremos agora como os resultados sobre as unidades dessas ordens servirdo para resolver
as chamadas equacoes de Pell:

Definigdo (Equagdo de Pell). Dado £ € IN que ndo é um quadrado perfeito, chamamos de
equacio de Pell para k a equacdo diofantina 22 — ky? = 1. Chamaremos ainda de equacéo de
Pell generalizada para k qualquer equacio diofantina da forma x? — ky? = ¢, onde ¢ € Z \{0}.

Dado k € N qualquer, podemos escrevé-lo de forma tnica como k = n?d, onde d € IN é livre
de quadrados e n € IN. Se k = n? for um quadrado perfeito, entdo a equacdo 2 — ky? = 1 se torna
1 =22~ (ny)? = (z —ny)(z + ny), e é ficil ver que as tinicas solucdes dessa equacio diofantina
sdo (z,y) = (£1,0). Assim, o caso interessante é quando k ndo é um quadrado perfeito, que é
justamente o caso em que temos uma equacao de Pell.
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Supondo que k nao seja um quadrado perfeito, temos d € D. Assim, observemos que a equagao
de Pell 22 — ky? = 1 equivale a (z — ynv/d)(x + ynv/d) = 1 na ordem Ag,,. Note que isso significa
que N(x +ynv/d) = 1, e portanto = + ynv/d € Up(Ag,p).

Reciprocamente, suponhamos que x,y € Z sejam tais que z + ynyd € Uo(Agy). Entao
2 — ky? = 22 —n’dy®> = N(z +ynVd) = 1. Ou seja, vemos que as solucdes (z,y) € Z? da
equacio de Pell 22 — ky? = 1 estdo em bijecdo com Uo(Ag,n), que sabemos determinar a partir
de €4, pela Proposicao 7.45. Em particular, sabemos que existem infinitas solu¢des para essa
equacao diofantina.

De fato, a mesma anélise feita acima nos mostra que as solugoes (z,y) € Z? da equacio de
Pell generalizada z? — ky?> = —1 estdo em bijecdo com Uy (Agn). Note que, dependendo se a
norma de € for —1 ou 1, essa equacdo terd infinitas solu¢ées ou entdo nenhuma. Desse modo, nés
obtemos:

Teorema 7.47. Seja k € IN que nao é um quadrado perfeito, e sejamn € N*, d € D com d > 0
tais que k = n’d. Entdo:

(a) Os pares (z,y) € Z2 que sio solucées da equacio de Pell z° — ky®> = 1 sdo os pares para
0s quais x + ynvd € Uo(Agn), isto é, para os quais:

o Eziste j € Z tal que x +ynvd = gin, se N(eqn) = 1.
o Euiste j € Z tal que © +ynvd = 6§jn, se N(eqn) = —1.

Em particular, a equacdo de Pell para k tem infinitas solugdes.

(b) Os pares (x,y) € Z2 que sdo solugdes da equacio de Pell generalizada 2% — ky?* = —1 sdo

0s pares para os quais T +ynv'd € U1 (Aqgy), isto é:

o Se N(eqn) = —1, entdo os (x,y) sao os pares para os quais existe j € Z tal que
z+ynvd = 53{:1.

e Se N(edm) =1, entdo essa equacdo ndo possui soluc¢ao.

Em particular, a equacdo de Pell generalizada para k e para ¢ = —1 tem infinitas solugdes
se N(eqn) = —1, e nenhuma solugio se N(eqy) = 1.

Consideremos agora a equacio de Pell generalizada 2% — ky? = ¢, para ¢ € Z\{0} qualquer.
Entao nés temos:

e+ yVk=c = (z+yVk)(z—yVk) =c < N(z+yVk)=¢,

onde N é a norma da extensio Q[v/k]. Assim, as solucdes (z,y) dessa equacio estdo em bijecio
com os elementos de Z[vk] de norma c. Pelo Teorema 7.33, existem ar,...,a, € Z[Vk] tais
que todo elemento de Z[\/E] de norma +c é associado a um dos aq, ..., qy,. Observemos ainda
que Z[Vk] é uma ordem de Q[v/k], de modo que podemos aplicar os resultados dessa se¢do sobre
Z[\/E]X. Em particular, vemos que esse grupo é infinito. Notemos que se x + yv/k tem norma
ceu € Z[Vk|]*, entdao u(z + yvk) tem norma +¢, sendo ¢ se N(u) = 1 e —c se N(u) = —1.
Juntando tudo, nés temos:

Teorema 7.48. As solugies (z,y) € Z?% da equacio de Pell generalizada x> — ky®> = ¢ sdo o0s
pares (x,y) para os quais N(x + y\/E) = c¢. Fssa equac¢do possui ou nenhuma solucdo ou infinitas.
Caso tenha infinitas solucdes, existe apenas um numero finito de solugdes ndo-associadas duas
a duas. Além disso, se a unidade fundamental de Z[\k] tiver norma —1, entdo a existéncia de
solucées da equacdo x> — ky? = ¢ equivale & existéncia de solugées da equacio x° — ky®> = —c.



Capitulo 8

Ordens

Seja K um corpo de nimeros algébricos com [K : Q] = n. Muito do que fizemos até aqui se
baseou no estudo do anel de inteiros algébricos Ok . Entretanto, existem outros subanéis de K
que sdo de nosso interesse, como as ordens de K (que estdao contidas em Ok) e as localizagoes de
Ok (que contém Ok).

Como vimos na Secao 7.5, o estudo das ordens de um corpo de ntimeros pode ser 1til, como
por exemplo para resolver equagdes diofantinas. Notemos porém que, para uma ordem A C Oy,
nés nao temos A integralmente fechada, ja que Q(A) = K e A = O . Assim, as ordens proprias
de um corpo de nimeros K nao possuem propriedades tdo boas como Q. Por exemplo, elas nao
sdo um DFU. Por outro lado, das trés propriedades que caracterizam um dominio de Dedekind,
as ordens proéprias de Ok s6 perdem a propriedade de serem integralmente fechadas:

Proposicdo 8.1. Seja A uma ordem de K. FEntdo A é um dominio noetheriano e todo ideal
primo ndao-nulo de A é mazximal.

Demonstragdo. Sendo A um Z-mébdulo livre finitamente gerado, é claro que A é noetheriano. Seja
agora p <A primo ndo-nulo. Como A contém uma base de K/ Q, é claro que p também contém
uma base dessa extensao, de modo que p é um Z-médulo de posto n. Esse moédulo é livre, pelo
Teorema 1.38. Também por esse teorema, dada uma base {aq,...,a,} de A nds conseguimos
inteiros nao-nulos ay, ..., a, tais que o conjunto {ajayq,...,a,a,} seja uma base de p, e portanto:

A/p=(Z/Z)x - x(Z/anZ).

Em particular, A/ p é finito. Como p é primo, A/ p é um dominio finito, e portanto um corpo.
Isso mostra que p é maximal, como queriamos. O

Em geral, nés temos a seguinte definigao:

Defini¢do (Anel de Dimensao 1). Dizemos que um anel A tem dimensdo 1 se ele ndo for um
corpo e se todo ideal primo nao-nulo de A for maximal.

Assim, as ordens de um corpo de niimeros sdo dominios noetherianos de dimensao 1. As loca-
lizagbes de Ok por um conjunto multiplicativo também sdo dominios noetherianos de dimensao
1. Enquanto as ordens de K ndo sdo mais integralmente fechadas, as localizagoes de Ok nao sao
mais integrais sobre Z. Desse modo, para estudarmos esses dois importantes tipos de subanéis
de K, no que segue consideraremos A como sendo qualquer dominio noetheriano de dimensao 1
com Q(A) = K. Comegamos mostrando a seguinte propriedade de finitude:

Lema 8.2. Seja a << A ndo-nulo. Entdo existe apenas wm nimero finito de ideais primos ndo-
nulos p <A tais que p D a.

145
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Demonstracdo. Pelo Corolario 3.9, existem pq, ..., p,, <A primos ndo-nulos tais que a 2 p; - - - p,,,.
Assim, se p <IA for primo nao-nulo tal que p 2 a, temos p 2 p; - - - p,,, € portanto pela Proposicao
3.7 nés concluimos que p 2 p; para 1 < j < m. Mas sendo p; maximal, temos p = p;. Assim,
apenas os primos pq,...,J,, podem conter a, concluindo a demonstracgao. ]

Com isso, e utilizando um resultado sobre decomposicdo primaria (veja por exemplo os
capitulos 4 e 7 de [17]), conseguimos provar a seguinte versao do Teorema Chinés dos Restos:

Proposicio 8.3. Seja a << A ndo-nulo. Entio nés temos':

Ala= G}A,,/ap = @Ap/ap,
p

p2a

com isomorfismo dado por x + a — (x + ay). Assim, dados x, € Ay, para cada p, conseguimos
achar © € A tal que x = x, (mod ap), para todo p (note que apenas wm nimero finito dessas
congruéncias € nao-trivial).

Demonstragao. Se p 2 a, entdo a, = Ay, e portanto A,/a, é o anel trivial. Desse modo, vale a
ultima igualdade. Notemos ainda que existe apenas um nimero finito de primos tais que p 2D a,
pelo lema acima. Assim, esse dltimo produto ¢ finito. Provemos entdo que A/a = Py, Ap/ap.
Pelo Teorema 3.31, nés temos a = 1, a,. Assim:

a=Ana=()ANng) = ((ANay),

p poa

pois como ja vimos a, = A, caso p 2 a. Suponhamos agora que p O a. Afirmamos que p é o
tnico ideal primo que contém A Na,. De fato, seja a = q; N ---N g, uma decomposi¢do primdria
minimal de a, que sabemos existir ji que A é noetheriano. Notemos que a, = (q;)p N+~ N (4, )p-
Dado q # 0 ideal priméario, se q C p entdao /q C p. Como ,/q é um primo nao-nulo, e portanto
maximal, de A, vemos que p = /q. Com isso, vemos que q, serd um ideal préprio de Ay se e s6
se q for p-primario. Como ay, é um ideal proprio de Ay, pelo menos alguns dos q;’s ¢ p-primdrio, e
como essa decomposi¢ao é minimal exatamente um dos q;’s € p-primario. Suponhamos sem perda
de generalidade que este seja q;. Entdo vemos que a, = (q1)p. Assim, ANay, = AN (qq),.

Mostremos que AN (qy)p, = q;. A inclusdo (D) é ébvia. Seja entdo z = ¢/s € AN (qq)y,
com g € qq, s € A\ p. Logo temos sz = ¢ € q;. Como s € p = ,/q;, devemos ter x € q;, como
querfamos. Finalmente, justifiquemos nossa afirmacéo. Seja p’ <A primo com p’ D ANa, = q;.
Entao p’ O \/q; = p, e pela maximalidade de p concluimos que p’ = p. Isso prova que p é o tGnico
primo de A que contém AN ay.

Assim, vemos que para p,q 2 a primos com p # q, os ideais ANa, e ANay sdo coprimos, e
portanto estamos nas condigoes de aplicar o Teorema Chinés dos Restos para concluir que:

Ala=A/ ((ANa) 2P A/(ANa,) =P Ay/a,,

p2a p2a p2a

onde a tultima congruéncia se demonstra de forma similar ao Corolario 1.49, observando que
(ANnay), = ap e que sA+ (ANay) = A para todo s € A\ p. Finalmente, notemos que os
isomorfismos acima nos ddo x +a— (x + (ANay)) — (z+ay). O

No caso em que A nao é um dominio de Dedekind, o grupo dos ideais fracionarios inversiveis
J(A) nao é todo I(A). Temos o seguinte critério para determinar os ideais fraciondrios inversiveis
de A:

1Onde a soma direta abaixo indica que esse é um produto de anéis com apenas um ntmero finito de
anéis ndo-triviais, e p varia entre os ideais primos nao-nulos de A.
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Proposicao 8.4. Seja M € I(A). Entao M ¢ inversivel se e sé se, para todo ideal primo p # 0
de A, o ideal fraciondrio M, € 1(Ay) for principal.

Demonstragao. (=): Suponhamos que M seja inversivel, e que N € I(A) seja tal que MN = A.
Entéo existem aq,...,a, € M, by,...,b. € N tais que a1by + -+ a;b, = 1. Seja p <A primo
nao-nulo. Como 1 ¢ p,, algum dos produtos a1by,...,a,b, ndo esta em p,.

Suponhamos sem perda de generalidade que a1b1 & p,. Entdo aiby € Ay \p, = Ay Afir-
mamos que M, = a1 Ay. A inclusdo (D) é 6bvia. Para a outra incluséo, seja € M, qualquer.
Notemos que xb; € MyN, = A,. Assim, nds temos = = a1xb; (albl)*l € a1 Ay, como queriamos.

(«<): Suponhamos que M, seja principal para todo ideal primo p # 0 de A. Assim, para cada
p existe a, € K* tal que M, = ayA,. Como a, € M,, limpando os denominadores dos a’s
se necessdrio nés podemos assumir que a, € M para todo p. Afirmamos que o ideal quociente
(A: M) ={zeK:xM C A} é o inverso de M. E claro que (A : M)M <1 A. Suponhamos por
absurdo que esse seja um ideal préprio de A. Entéo existiria p <A maximal tal que (A : M )M C p.

Mostremos que isso ndo é possivel. Sabemos que M é finitamente gerado, e portanto existem
ai,...,a,m € M tais que M = a1A+---+a,nA. Como cada a; € M C M, = ayA,, existem
bj € Aesj € A\p tais que a; = aybj/s;. Assim, sja; = apb; € apA. Chamando s := s1 -+ 5p,
temos s € A\ p e sa; € apyA para todo 1 < j < m. Assim, sap_laj € A para todo 1 < j < m.

Como ay,...,an, geram M, vemos entdo que saglM C A, e portanto sagl € (A: M). Mas entao
nés terfamos s = sa, 'ay € (A: M)M C p, um absurdo! Isso mostra que M (A : M) = A, e assim
M ¢ inversivel, como queriamos. ]

Com os resultados acima, conseguimos uma interessante caracterizagdo para o grupo de Picard
de A. Lembre que Pic(A) = J(A)/P(A), onde J(A) é o grupo dos ideais fraciondrios inversiveis
de A e P(A) é o grupo dos ideais fracionérios principais de A.

Proposicdo 8.5. A correspondéncia M v+ (M,) nos dd um isomorfismo J(A) = @, P(4y).
Assim, identificando P(A) com sua imagem na soma direta, Pic(A) = (@p P(Ap)) /P(A).

Demonstrag¢do. Dado M € J(A), pela proposicao acima temos M, € P(A,), para todo ideal
primo p # 0 de A. Notemos que M, = A, se e s6 se M N(A\p) #0e M 'N(A\p) #0 (a
demonstragao é igual ao que fizemos na Proposicao 3.24). Assim, M, # A, seesésep D M NA
ousep D M 1NA Mas MNAe M~1N A sao ideais ndo-nulos de A, e assim existe apenas um
ntmero finito de tais primos pelo Lema 8.2. Isso mostra que M, # A, apenas para um nimero
finito de p’s, de modo que M + (M) nos d4 um homomorfismo de grupos J(A) — @, P(Ay).

Esse homomorfismo ¢ injetor. De fato, suponhamos que M € J(A) satisfaca M, = A, para
todo p. Entao M C M, = A, para todo p, e portanto M C (), Ay = A, onde utilizamos o
Teorema 3.31. Assim, M <1 A. Devemos ter M = A. Caso contrario, haveria um ideal maximal
p com M C p, e nesse caso teriamos M, # A,, um absurdo! Isso prova a injetividade desse
homomorfismo.

Provemos agora que essa funcao é sobrejetora. Sendo essa fun¢do um homomorfismo, basta
mostrarmos que, fixados um primo nao-nulo p <IA e ap, < Ay um ideal principal nao-nulo, o ele-
mento (M) € @, P(Ap) com M, = ay e My = Ay para q # p estd na sua imagem. Mostraremos

que (My) é a imagem de ANa, < A. E ficil ver que (ANap)p, = ap. Assim, basta mostrarmos que
para q 7 p nés temos (ANay), = Aq. Mas isso segue do fato de que p é o tnico ideal primo que
contém A Nay, que provamos durante a demonstracao da Proposicao 8.3. Assim, ANa, — (M),
como queriamos, mostrando a sobrejetividade. Logo temos de fato um isomorfismo. O

Consideremos agora a normalizagdo de um dominio noetheriano de dimensao 1:

Definigao (Normalizagdo). Seja A um dominio noetheriano de dimenséo 1. Entao nés definimos
a sua normalizacdo A como sendo seu fecho integral em K = Q(A), ou seja, A = ar.
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A normalizacdo de um dominio noetheriano de dimensao 1 sempre serd um dominio de Dede-
kind, como veremos. Entretanto, isso ndo é 6bvio, pois embora seja claro que A seja integralmente
fechado e de dimensao 1, nem sempre A serd um A-médulo finitamente gerado. Entretanto, vale
a seguinte afirmacdo um pouco mais fraca, que nos sera suficiente:

Lema 8.6. Seja A um dominio noetheriano de dimensdo 1 e seja A sua normalizacdo. Entdo,
para cada ideal a <1 A ndo-nulo, o quociente A/aA é um A-mddulo finitamente gerado.

A/a.{
5 ~ ~ N ~ - aA/aA’
Assim, A/aA é um quociente de A/aA, e portanto basta provarmos que A/aA é um A-mddulo
finitamente gerado. Comecemos observando que, como aA é um ideal ndo-nulo, o anel A/aA
tem dimensdao 0°. Sendo um anel noetheriano de dimensao 0, concluimos que A/aA é um anel
artiniano. Com isso, vemos que a cadeia descendente de ideais de A,

Demonstragdo. Seja a <I A nao-nulo, e fixemos a € a nao-nulo. Entdo nés temos A/aA =

aANA+aADd?ANA+aAD---DamANA+aAD---

se estabiliza. Assim, existe um inteiro positivo n tal que a ANA+aA = a"ANA +aA, para todo
m > n. Afirmamos que A C a " A + aA. Se provarmos isso, teremos entdo que % - %.
Esse tltimo anel é um A-médulo gerado por a™™ 4 a4, e portanto é noetheriano, ja que A 0 é. Em
particular, seu submédulo A/aA é finitamente gerado sobre A, como gostariamos de demonstrar.

Mostremos entdo que A C a " A + aA. Seja 3 € A qualquer. Como A C K = Q(A), existem
b,c € A, ¢ # 0, tais que § = b/c. Pelo mesmo argumento acima, vemos que A/cA é artiniano.

Assim, denotando @ := a + cA, vemos que a cadeia descendente de ideais de A/cA
@2@)2---2@"D---

se estabiliza. Logo existe um inteiro positivo h tal que (@") = (@"*!). Consequentemente, existe
r € A tal que a = za"*! (mod cA), isto é, (1 —za)a” € cA. Desse modo, nés temos:

(1 —za)a

b b b ~
Bzf:E(l—xa)vLBxa:a—h + Bra € a "A+ dA.

c

Portanto, existe um inteiro positivo & minimo para o qual € a *A + aA. Assim, basta
mostrarmos que k < n, pois entdo teremos 3 € a *A 4+ aA C a™"A + aA, concluindo a demons-
tracdo. Suponhamos por absurdo que k > n. Como 8 € a A + a4, existem u € A, @ € A tais
que = a *u + aii. Logo:

u=a"(f—at) cad*ANACa*ANA+aAd=ad""TANA+aA,

k15 + au’. Desse modo:

ja que k > n. Entao existem v/ € A e @' € A tais que u = a
B=aFu4aii=a """ +a)+aii=a "V +a(i+ @) ea FVA+dA,

um absurdo pela minimalidade de k. Assim, k < n, concluindo a demonstracao. O

Com esse lema, nés conseguimos provar uma generalizacdo do Teorema 3.1, que vale para
dominios nao necessariamente de Dedekind e extensoes de corpos ndo necessariamente separaveis:

Teorema 8.7 (Krull-Akizuki). Seja A um dominio noetheriano de dimensdo 1 com corpo de
fragoes K = Q(A). Seja L uma extensao finita de K e seja B = A%, Entdo B ¢ um dominio de
Dedekind. Em particular, a normalizacio A = A% de A ¢ um dominio de Dedekind.

2Tsto é, todo ideal primo desse anel é maximal.
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Demonstracao. Provamos que B ¢é integralmente fechado e tem dimensao 1 do mesmo modo que
no Teorema 3.1. Assim, basta provarmos que B é noetheriano. Note que ndo podemos mais
aplicar o Teorema 1.37, pois A nao é necessariamente integralmente fechado. No lugar desse
teorema, utilizaremos o lema acima.

Pelo Teorema 1.16, temos Q(B) = L. Assim, existem f,...,8, € B que formam uma base
da extensdao L/K. O anel By := A[fy,..., 3] é um A-médulo finitamente gerado, e portanto é
noetheriano ja que A o é. Como a extensdo By/A é integral, podemos utilizar o Teorema 1.53
para concluir que By tem dimensdo 1. Notemos ainda que By, = B. Assim, B é a normalizagdo
de By, e podemos nos restringir ao caso em que L = K e B = A é a normalizacio de A.

Queremos mostrar que todo ideal 2 de A é finitamente gerado. Pelo Teorema 1.53, nds temos
ANA # 0. Escolhamos a € ANA ndo-nulo. Pelo lema acima, vemos que A/aA é um A-médulo
finitamente gerado, logo noetheriano. Assim, seu submédulo 2 /aA também é um A-moédulo

finitamente gerado. Desse modo, existem o, . .., o, € U tais que aq +ad, ..., o +ad € A /adA
geram 2 /aA como A-médulo. Afirmamos que aq, ..., am,a geram A como A-moédulo. De fato,
seja x € A qualquer. Entdo existem cy, ..., ¢, € A tais que

r+aAd =ci(a; +ad) +- -+ cplam +al) = (crar + -+ + cpauy) + aA.

Assim, existe ¢ € A tal que x = ciaq1 + -+ - + ¢y, + ca, como queriamos. Isso mostra que A é
noetheriano, concluindo a demonstracao. O

Observe que essa demonstracio seria bastante simplificada se tivéssemos suposto que A é
um A-modulo finitamente gerado. Para o que se segue, de fato, ndés assumiremos essa hipotese,
que evitard casos patoldgicos. Note que, se A for uma ordem de um corpo de nimeros K, isso
ocorrera. De fato, nesse caso A = Ok, e qualquer base integral de Ok também é uma base de
Ok como A-médulo. Com essa hipdtese extra, nds conseguimos comparar os grupos de unidades
e de Picard de A e de sua normalizagio:

Proposicao 8.8. Eriste uma sequéncia exata canonica

1— A — A% — P AS /A — Pic(A) — Pic(4) — 1,
b

onde flp = Zf ¢ a normalizacdo de Ay, ou equivalentemente a localizagdo de A por A\ p (lembre

que localiza¢ao comuta com fecho integral).
Demonstracao. A ideia é usar as sequéncias exatas:

1 — P(A) — J(A) — Pic(A)
1 — P(A) —» J(A) — Pic(A)

—1, e
— 1.

Observemos que, dado R dominio qualquer com K = Q(R), temos P(R) = K*/R*. Esse
isomorfismo ¢ induzido pelo homomorfismo K* — P(R) dado por z — xR. Desse modo, nds
obtemos as sequéncias exatas:

1 - K*/A* = J(A) = Pic(4) = 1, e
1 — K*/A* = J(A4) — Pic(A) — 1.

Notemos ainda que, pelas observacoes acima e pela Proposi¢ao 8.5, nds temos:

J(A) =P P4, =P K /A
p p

Calculemos agora J(A). Pela Proposicao 8.5, nés temos J(A) = @5 P(A;), onde j varia entre os
primos nao-nulos de A. Dado um primo nao-nulo p <A qualquer, como A é dominio de Dedekind
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vemos que existe um ndimero finito de primos sobre p (a saber, os fatores primos de p A). Da
mesma forma, para cada p <{A primo ndo-nulo, vemos que existe um ntmero finito de primos de
Ap sobre cada ideal primo de A,. Mas o tinico primo néo—I}ulo de Ay ¢é p,, de modo que Ap possui
um ntmero finito de primos. Assim, pelo Teorema 3.23, A, ¢ um DIP. Note que os ideais primos
nao-nulos de flp sao os ideais da forma f,,, para p ideal primo nao-nulo de A tal que pNACp.
Como pN A é um primo nao-nulo de A, e portanto um ideal maximal, devemos ter pN A = p. Ou
seja, os ideais primos nao-nulos de Ap sao os ideais da forma p, para p sobre p.
Assim, pela Proposigéo 8.5, nds temos:

p\p Pl

onde a tultima igualdade segue de (zzlp)ﬁp = flﬁ, que é facil de verificar. Observemos agora que
cada primo § de A estd sobre exatamente um primo p de A. Desse modo:

A) =P PA) =PPPri)=PHPA,) =PK*/A}.
p Poplp P p
Com isso, nés temos sequéncias exatas
1 - K*/A* - PK*/AS = Pic(A) = 1, e
1 - K*X/A% > @KX/ZI; — Pic(4) = 1
p

Consideremos o homomorfismo a: K*/AX — K*/A* dado por zAX +— zA*. E facil ver
que o estd bem-definido, é sobrejetor e keraw = AX/A*. Da mesma forma, podemos definir
B: @y K*/AY — @, K*/AS dado por (z,A5) — (x,A)). Entdo § estd bem-definido, é
sobrejetor e ker § = @, A/ A Podemos ainda definir v: Pic(A) — Pic(4) por [M] — [MA].

Com isso, nés temos o seguinte diagrama comutativo:
I —— KX/AY —— @, K* /A —— Pic(4) —— 1
| I b
1 —— K*/AX —— @, K"/ A} —— Pic(d) — 1
Aplicando o Lema da Serpente a esse diagrama, obtemos entdo uma sequéncia exata candnica
1 — ker a — ker § — kery — coker a — coker 5 — cokery — 1.

Como « e [ sdo sobrejetores, vemos que v também deve ser sobrejetor, e assim nods temos a
sequéncia exata:

1— A/A - @PAS/AS = kery — 1.
p
Como o homomorfismo A% / A* — b, Apx /Ay é induzido por um homomorfismo A* - ®, flpx /Ay,
podemos expandir essa sequéncia exata para a sequéncia exata:
1— A — A% - (P AS/AS — kery — 1.
p

Consideremos agora a composi¢ao P, flpx /Ay — kery < Pic(A). Essa fungdo possui o mesmo
nucleo de P, flpx / ApX — ker~y, e possui imagem ker 7y, que é igual ao nicleo da fun¢ido sobrejetora

Pic(A) 2 Pic(A4). Desse modo, obtemos a sequéncia exata:

1— A — A% — P A/ AS — Pic(A) — Pic(4) — 1
b

como queriamos. ]
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Definicao (Ideal Primo Regular). Um ideal primo p <A ndo-nulo é chamado de regular se A,
for integralmente fechado, ou equivalentemente se A, for um DVD.

Observemos que, para os ideais primos regulares p, nés temos flp = Ay, e assim os somandos
flpx /Ay que aparecem na proposi¢do acima sdo triviais para esses primos. Afirmamos que existe
apenas um numero finito de ideais primos nao-regulares, e que eles sdo exatamente os divisores
do condutor f:= {a € A: aA C A} de A em A. Lembremos que § é o maior ideal de A contido em
A. Como estamos supondo que A é finitamente gerado como A-médulo, existem a1, ...,d4, € A
que geram A como A-médulo. Uma vez que K = Q(A), podemos escrever, para 1 < j < m,
a; = a;/bj, para a;,b; € A, b; # 0. Chamando b := by - - - by,, vemos entao que bd; € A para todo
1 < j <m, e portanto bA C A. Assim, b € f. Como b # 0, temos que f # 0.

Proposigao 8.9. Dado p <A primo ndo-nulo, nds temos p 1§ (isto é, p 2 ) se e sé se p for
reqular. Se esse for o caso, entio § :=p A é um ideal primo de A e Ay = flﬁ.

Demonstragao. (=): Suponhamos que p 1 f, isto é, p 2 f. Entdo existe ¢ € f\p. Assim,
tA c A= AC %A C Ay. Com isso, podemos definir  := p, NA. Entdao p é um ideal primo
de AepnA=p,NA D p. Como p ¢ maximal, temos entao p = pNA. Dess? modo, 14,3 C A;.
Mostremos que vale também a inclusao reversa. Dado a/s € Az, coma € Aes € A\p, nds
temos ta € A e ts € A\ p, de modo que a/s = ta/(ts) € Ap. Isso prova que A, = flﬁ.

Como A é dominio de Dedekind, vemos entdo que Ay = flf, é¢ um DVD, o que prova que p
é regular. Podemos ainda mostrar que § = p A. Se § <1 A for um ideal primo nao-nulo sobre p,
entao flﬁ = Ay, C A3. Como o tnico primo ndo-nulo de Aﬁ ¢ P, nds temos p5 = G5 N flﬁ. Assim:

i=d;NA=pNA=5.

Isso mostra que o tinico primo na fatoracdo de p A é p. Assim, existe e inteiro positivo tal que
p A = p°. Agora, observemos que no dominio de Dedekind A, nés temos:

Py =pAp = (pA)Ap = P4, = ﬁS = PS,
onde a tltima igualdade segue de p, = (pp NA) p = Py Assim, pela fatoragao tinica nés concluimos

que e = 1, e portanto pA = p.

(«<): Suponhamos que p seja um primo regular. Entdo A, é integralmente fechado. Como

A C A, temos entdo A = ar C Ay. Sejam @y, .. ., @y, geradores de A como A-médulo. Como
AC Ay, podemos escrever, para 1 < j < m, a; = a;/s;, para alguns a; € A, s; € A\p.~Chame—
mos s = s1---s;m € A\ p. Entdo sa; € A para todo 1 < j < m. Como os @;’s geram A, vemos
que sA C A, de modo que s € f. Assim, s € f\ p, o que prova que p 2 f, ou seja, p 1 f. O

Podemos agora obter uma descrigio mais simples para a soma direta P, flg /Ay que aparece
na Proposicao 8.8:

Proposicao 8.10. @, Ay /Ay = (A/f)*/(A/f)*.

Demonstragdo. A ideia é utilizar o Teorema Chinés dos Restos 8.3 e uma estratégia parecida com
a que adotamos na Proposi¢ao 8.8. Por um lado, aplicando 8.3 ao ideal f <1 A, nds obtemos:

AlF =P A /. (8.1)
p

Aplicando agora esse resultado ao ideal § <1 A, nés obtemos:

Al =P As/1 = DD A /55
;

P plp
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Dado agora p <tA primo nao-nulo qualquer, como j4 vimos na demonstracao da Proposi¢ao 8.8 os
ideais primos néo—nulos~ de flp sdo os ideais da forma~ p, para p < A sobre p. Notemos ainda que,
como f é um ideal de A contido em A, nés temos fA, = f,. Desse modo, aplicando 8.3 ao ideal
fo = A, < Ay, n6s obtemos:

A/t = D (Ap)s, / (o), = B A5/,
plp plp
onde a ultima igualdade segue de (flp)ﬁp =A45e (fo)s, = Fp» como é facil verificar. Desse modo:
A/i= DD A/1 = DA/ (82)
PoBlp p

Observando que o isomorfismo de (8.1) é dado pela restricao do isomorfismo de (8.2), restringindo
esses isomorfismos aos grupos de unidades (A/f)* e (A4/f)* e quocientando nés obtemos:

(A/1) /(A7) = D(Ap/50) / (Ap/Tp) " (8.3)

p

Para p regular, nés temos A, = Ay, e portanto (A,/f,)*/(Ap/fp)* = 1. Consideremos entdo
o caso p nao-regular, isto é, p 2 f. Nés temos um homomorfismo @: AX — (A, /f,)*/ (Ap/fp)*
dado por =+ (x + f,)(Ap/fp) ™. Esse homomorfismo é sobrejetor. De fato, seja

(e +Fo) (Ap/Fo)* € (Ap/Fp)* / (Ap/Fp)™

qualquer, para € € flp. Entao € + f, é uma unidade de flp/ fp, de modo que € + f, nao estd em
nenhum ideal maximal de flp /fp- Um ideal maximal de flp ¢ da forma p,, para p < {l maximal
sobre p. Como § C p C p, temos f, C Py, e portanto f,/f, é um ideal Hiaximal de A, /fp. Isso
significa que e +p & p,/fp, e portanto € € p,. Assim, € é um elemento de Ay que ndo estd contido
em nenhum ideal maximal de A, o que mostra que ¢ € AX. Logo (g4 f)(4p/fp)* = ¢(e),
mostrando que ¢ é sobrejetor.

Notemos agora que, dado z € flp, temos x € kerp <= z+f, € (4y/fp)*. Como f, C pp e Py
é o tinico ideal maximal de Ay, vemos que = + f, € (Ay/fy)* <= x € AS. Assim, kerp = A
Desse modo, pelo Teorema do Isomorfismo:

(Ap/fo) / (Ap /)" =imp = A/ kerp = AS /A

E claro que esse isomorfismo vale também para os primos regulares, pois nesse caso ambos os
lados do isomorfismo acima sdo os grupos triviais. Desse modo, a partir de (8.3) nds obtemos:

(A/5) 7 (A71) = D(Ap/10) /(A /) = DAY /A,
b p

concluindo a demonstragao. O
Como consequéncia direta das Proposicoes 8.8 e 8.10, nés obtemos:

Teorema 8.11. Sejam A um dominio noetheriano de dimensdo 1 e A sua normaliza¢do. Entdo
existe uma sequéncia exata canonica

1— A% — A% — (A/§)*/(A/§)™ — Pic(A) — Pic(4) — 1,
onde f é o condutor de A em A.

No caso em que A é uma ordem de um corpo de nimeros K, o teorema acima nos di a
sequéncia exata

1= A = O — (O /) /(A/§)* — Pic(A) — €L(Ok) — 1.

Isso nos da:
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Teorema 8.12. Seja K um corpo de numeros, e seja A uma ordem de K. FEntdo os grupos
O/ A* e Pic(A) sdo finitos, e vale a relagdo

hx  [(Ox/§)*|

PelDI= o 4 1am

Além disso, A* é um Z-mdédulo livre de mesmo posto® de Ox.

Demonstragao. Como f <1 Ok, temos |Ok /f| = N(f) < co. Assim, os grupos (Ox /§)* e (A/f)*
sdo finitos. Além disso, como o morfismo Pic(4) — €¢(Ok) é sobrejetor, €¢(Ok) é finito
e o nicleo desse morfismo é a imagem do morfismo saindo do grupo finito (Ox /f)*/(A/f)*,
vemos que Pic(A) é finito. Desse modo, os tinicos grupos possivelmente infinitos que aparecem
na sequéncia exata acima sdo A* e O, de onde obtemos que A* e O possuem o mesmo posto.
A partir da sequéncia exata acima, nés podemos ainda obter uma sequéncia exata:

1= 0L/ A 3 (O /D)) (A/D)* B Pic(A) 2 €0(0k) — 1.

Disso obtemos também a finitude de O/ A*. Finalmente, vamos encontrar uma rela¢ao entre os
tamanhos desses grupos. Essa sequéncia exata nos da

¢l(Ok) =im~y = Pic(A)/ kery = Pic(A)/ im 3,

e também

i g o O/ (A/D*_ (Ox /) /(AR

ker 3 ima

Assim:

Pic(A)| = |€¢(O impB|=nh = .

O]

A defini¢cao do grupo de Picard Pic(A) de um dominio A qualquer nos restringe apenas ao
estudo dos ideais fraciondarios inversiveis de A. No caso em que A é noetheriano mas nao é um
dominio de Dedekind, existe pelo menos um ideal primo nao inversivel de A, pois caso contrario
mostrariamos que I(A) = J(A) do mesmo modo que nos itens (b) e (¢) do Teorema 3.11. Assim,
quando nos restringimos a Pic(A) = J(A)/P(A), estamos ignorando alguns ideais primos de A.
No caso em que A é um dominio noetheriano de dimensao 1, é possivel construir outro grupo a
partir de A, o chamado grupo de classes de divisores, ou grupo de Chow de A, que leva em
conta todos os ideais primos de A, e tem sua construcao baseada numa reintroducao artificial da
fatoragao unica. Terminaremos este capitulo com a definicdo desse importante grupo.

Comegamos definindo o grupo dos divisores de A como sendo o grupo abeliano livre
Div(A) = @®, Zp que tem como base o conjunto dos ideais primos ndo-nulos de A. Assim,
cada elemento de Div(A) é uma soma formal D = >_p Np P, onde apenas um namero finito dos co-
eficientes np’s é ndo-nulo. Os elementos de Div(A) sdo chamados de divisores, ou 0-ciclos, de A.
Notemos que quando A é um dominio de Dedekind nés temos I(A) = Div(A), e a cada elemento
f € K* nés podemos associar um elemento div(f) € Div(A4) dado por div(f) = 32, vp(f) p-
Note que os coeficientes de div(f) nada mais sao do que os expoentes da fatora¢ao prima de fA,
pela Proposigao 3.33. Desse modo, obtemos um homomorfismo div: K* — Div(A).

No caso geral em que A é um dominio noetheriano de dimensao 1, podem existir primos p <{A
nao-nulos para os quais A, nao é um DVD, de modo que nao temos uma valoracao associada a

3Note que ja haviamos concluido essa parte a partir do Teorema das Unidades de Dirichlet, e que esse
posto é de fato r{ +ro — 1.
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esses anéis. Mesmo assim, podemos definir um homomorfismo ord,: K* — Z que generaliza uma
valoracao. Para definir esse homomorfismo, daremos uma outra interpretacdo para a valoracio
v: K* — Z de um DVD B com tnico ideal maximal m. Sabemos que, dado 2z € B nao-nulo, v(x) é
o inteiro positivo caracterizado pela expressao xB = m?(®@) . Como todo ideal de B é uma poténcia
nao-negativa de m, vemos que os tnicos ideais de B que contém zB sdo B,m,m?, ... ,m”(w) =B,
e que temos a cadeia

BQQOQQ---Qm”(I):xB.

Isso significa que o comprimento do B-médulo B/xB é {g(B/xB) = v(z). Dado agora um
elemento a = z/y € K* qualquer, com z,y € B, y # 0, nés temos:

v(a) = v(a/y) = v(z) — v(y) = (p(B/aB) — t5(B/yB).

No caso em que B é apenas um dominio noetheriano de dimensdo 1 nés podemos definir
uma fungdo ord: A\ {0} — IN* dada por ord(z) = ¢p(B/xzB). Note que essa fun¢ao estd bem-
definida. De fato, B/xB é um anel noetheriano de dimenséo 0, e portanto também artiniano. Isso
nos diz que B/xzB é noetheriano e artiniano também como B-médulo, sendo assim um B-médulo
de comprimento finito.

Afirmamos que ord é homomorfismo de semigrupos, isto é, que ord(zy) = ord(z) + ord(y).
Isso equivale a mostrar a igualdade

lp(B/(xy)B) = {p(B/xB) +{5(B/yB).

Mas isso segue dos isomorfismos de B-mddulos B/xB = 53/ /xgg”yBB e vB/xyB = B/yB. Sendo
ord um homomorfismo de semigrupos de A\ {0} em IN*, é facil ver que essa fungdo admite como

extensdo um homomorfismo de grupos bem-definido ord: K* — Z dado por
ord(z/y) = ord(x) —ord(y) = {p(B/xB) — {5(B/yB).

Para cada p <A primo néo-nulo, podemos assim considerar um homomorfismo de grupos
ordy: K* — Z, onde ordy, é o homomorfismo associado ao dominio A,. Com isso, nés con-
seguimos definir div: K* — Div(A) dado por div(f) := >, ordy(f)p. Como cada ord, é um
homomorfismo, vemos que div também é um homomorfismo.

Os elementos de Div(A) da forma div(f) para algum f € K* sao chamados de divisores
principais. O conjunto imdiv formado por eles é um subgrupo P(A) de Div(A), chamado
o grupo dos divisores principais. Dizemos que dois divisores D, D’ € Div(A) sdo racio-
nalmente equivalentes se eles diferirem por um elemento de P(A), ou seja, se D + P(A) =
D'+ P(A) em Div(A)/P(A).

Definigdo (Grupo de Classes de Divisores/Grupo de Chow). Definimos o grupo de classes de
divisores de A, ou ainda o grupo de Chow de A, como CH!(A) := Div(A4)/P(A).

Né6s temos um homomorfismo canénico div: Pic(4) — CH'(A) que relaciona o grupo de
Picard e o grupo de Chow de A. Dado M € J(A), pela Proposi¢ao 8.4 para todo primo nao-nulo
p <A existe ap € K* tal que M, = apA,. Com isso, podemos definir div: J(A) — Div(A) dado
por div(M) := 3>, (—ordp(ap)) p. Essa funcdo é um homomorfismo que leva ideais fracionarios
principais em divisores principais, e portanto induz um homomorfismo div: Pic(A4) — CH'(A).
Por fim, é claro que nés temos:

Proposicao 8.13. Se A for um dominio de Dedekind, div: Pic(A) — CH'(A) é um isomorfismo.



Capitulo 9

Valores Absolutos e Completamentos

Neste capitulo, estudaremos corpos munidos de um valor absoluto. Mostraremos que, assim
como na construgao de R a partir de Q, a partir de um corpo K com um valor absoluto |-| nds
podemos construir o seu completamento K. Como um caso particular, nés construiremos os
corpos de niimeros p-adicos, que provém das valoragoes p-adicas, e que como veremos possuem
um papel fundamental na resolucdo de equagoes diofantinas.

9.1. Valores Absolutos

Definigao (Valor Absoluto). Um valor absoluto ou valoracdo multiplicativa num corpo K
é uma funcao |-|: K — Ry que satisfaz as propriedades:

(i) || =0 <= z =0;
(ii) |2yl = |z[ly|, para todos z,y € K;
(iii) |x +y| < |z| + |y|. Essa propriedade é chamada de desigualdade triangular.

Além disso, chamaremos um valor absoluto de ndo-arquimediano se |n| for limitado para
todo n € IN, isto é, se existir C' > 0 tal que |n| < C para todo n € IN (aqui, reconhecemos IN
com sua imagem pelo morfismo canénico Z — K). Caso contrario, ele serd chamado de valor
absoluto arquimediano.

Dado um valor absoluto |-| em K qualquer, observemos que |1| = |[1-1| = |[1|?> = |1| = 1. Do
mesmo modo, é facil ver que toda raiz da unidade em K tem valor absoluto 1. Notemos ainda
que se K tiver caracteristica positiva a imagem de Z pelo morfismo canénico Z — K sera finita,
de modo que todo valor absoluto nesse corpo serd nao-arquimediano. Assim, a distin¢do entre os
conceitos de valor absoluto arquimediano e nao-arquimediano sé é interessante no caso em que K
tem caracteristica 0.

Para todo corpo K, nés temos o valor absoluto trivial dado por |0| = 0 e |x| = 1 para todo
x # 0. Na sequéncia, desconsideraremos esse valor absoluto. Assim, por valor absoluto entender-
se-4 valor absoluto nao-trivial. A partir de um valor absoluto |-|: K — Ry nds conseguimos
definir uma métrica em K com distancia dada por d(z,y) = |z — y|. Em particular, esse valor
absoluto define um topologia em K.

Definigao (Valores Absolutos Equivalentes). Dizemos que dois valores absolutos em K sao equi-
valentes se eles definirem a mesma topologia em K.

Sendo |-| um valor absoluto em K e s um real positivo, suponhamos que a funcao |-|*: K — R4
defina um valor absoluto em K (isso equivale a essa funcao satisfazer a desigualdade triangular).
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Dados z € K e r > 0 quaisquer, denotando por B,(x) a bola de centro = e raio 7 na métrica
definida por |-| e por Bl.(z) a bola de centro z e raio r na métrica definida por |-|*, vemos que
valem as igualdades Bl (z) = B,1/:(z) e By(z) = Bl:(z), o que mostra que os valores absolutos
|| e |-|® sdo equivalentes. Na verdade, dois valores absolutos em K serdao equivalentes se e somente

se um for uma poténcia real positiva do outro:
Proposicao 9.1. Sejam |-|1 e |-|2 valores absolutos em K. Entao sao equivalentes:
(i) |-l1 e |2 sdo equivalentes.
(ii) Para todo x € K, nds temos |z|1 <1 = |z|]a < 1.
(iii) Ewiste um numero real s > 0 tal que |-|1 = |-]5.

Demonstragao. A implicagdo (iii) = (i) foi demonstrada acima. Provemos (i) = (i) = (4i7):

(i) = (i7): Suponhamos que [|-|; e |-|2 sejam equivalentes. Comecemos observando que para
um valor absoluto |-|: K — R4 qualquer vale que |z| < 1 <= lim, o 2™ = 0, onde o limite
¢ tomado na métrica induzida por |-|. Sendo [-|1 e |-|2 equivalentes, as sequéncias convergentes
a 0 nas duas métricas induzidas coincidem, de modo que devemos ter |z|; < 1 <= |z]2 < 1,
provando (7).

(i) = (i4i): Suponhamos (ii), e tomemos y € K tal que |y|; > 1. Esse valor sempre existe.
De fato, como [-|; ndo é o valor absoluto trivial, existe § # 0 com |§|; # 1. Se |g|1 > 1, basta
tomarmos y = §. Se por outro lado |j|; < 1, entdo basta tomarmos y = §~!. Seja agora r € K
nao-nulo qualquer. Entéo existe algum a € R tal que |z|; = |y|{. Tomemos uma sequéncia
decrescente de racionais (m;/n;), com m;,n; € Z, que converge a «. Entdo para todo i € IN nés
temos:

"
ymi

m;/n;

<1=|z|2 <[yl
2

ols = 1olf < Il = |

<1=>‘
1

Como isso vale para todo i € m;/n; — «, nés concluimos que |z|2 < |y|§. Tomando agora uma
sequéncia crescente de racionais (¢;/d;), com ¢;,d; € Z, que converge a «, nés obtemos de forma
andloga que |z|y > |y|§"/di para todo i € IN, e portanto |z|s > |y|9. Assim, obtemos |z|s = |y|S.
Seja s € R tal que |y|1 = |y|3. Notemos que s > 0, pois |y|1 > 1 = |y|2 > 1 (para essa implicacao,

basta notarmos que |y~ !|; < 1). Desse modo, para todo z € K nio-nulo, vale:

lzh = [yli = (lyl2)* = (yl3)* = [«l5.
Como essa igualdade claramente vale também para x = 0, concluimos que |-|; = |-5. O

A partir da proposicdo acima, nés podemos demonstrar o analogo ao Teorema Chinés dos
Restos para valores absolutos:

Teorema 9.2 (Teorema da Aproximagao). Sejam |-|1,..., ||, valores absolutos em um corpo K
dots a dois ndo-equivalentes, e sejam ay,...,an € K. Entao para todo € > 0 existe x € K tal que
| — a;|; < e, para todo 1 < i <n.

Demonstracao. Se aq = --- = a, = 0, basta tomarmos x = 0. Suponhamos entdo que pelo
menos algum dos a;’s seja nao-nulo. Nés provaremos por indugao em n que existe z € K tal que
|z]1 > 1 e|z]; <1, para todo 2 < j < n. Para n = 2, como |-|; e |-|2 ndo s@o equivalentes nés
conseguimos encontrar o € K tal que |af; < le|afs > 1e € K tal que |51 > 1 e [B]2 < 1.
Notemos que a # 0 ja que |als > 1. Tomando z = §/a, nés vemos que |z|;1 = |B]1/|al1 > 1 e
|z]l2 = |Bl2/|al2 < 1, de modo que z satisfaz as condigoes desejadas.
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Suponhamos agora por inducdo que exista Z € K tal que |Z|; > 1 e |Z|; < 1 para todo
2<j<n-—1,etomemos y € K tal que |y[1 > 1e |y|, < 1. Se |Z|, <1, entdo para todo m € N
nos temos |2yl > 1 e [ZMy|, < 1. Além disso, como |Z|; < 1 para 2 < j < n— 1, podemos
tomar m suficientemente grande de modo que para todo 2 < j <n —1 nds tenhamos |Z"y|; < 1.
Com isso, z = 2™y satisfaz |z|; > 1 e |z|; < 1 para todo 2 < j < n.

Suponhamos entéo que |Z|,, > 1. Nesse caso, notemos que a sequéncia (£ /(1+ ™)) converge
a 1 com respeito a |-|1 e |-|, e converge a 0 com respeito a |-|; para 2 < j < n —1 (observe que essa
sequéncia estd bem-definida, pois como |Z|; > 1 vemos que Z ndo é uma raiz da unidade). Desse
modo, podemos tomar m suficientemente grande de modo que tenhamos [Z"y/(1+ ™) > 1
e |Z™y/(1+2™)]; < 1 para todo 2 < j < n. Assim, basta tomarmos z = Z"y/(1+ ™). Isso
conclui a inducao.

Seja entdo z € K tal que |z|; > 1 e |z|; < 1 para todo 2 < j < n. A sequéncia (2" /(1 + z™))
converge a 1 com respeito a |-|; € a 0 com respeito a |-|; para 2 < j < n. Desse modo, tomando
m grande, vemos que para todo d; > 0 é possivel encontrarmos um elemento z; € K tal que
|21 — 1|1 < d e |z1]; < 6 para todo 2 < j < n.

De forma anéloga, dado 6 > 0 qualquer nés podemos achar para todo 1 < ¢ < n um elemento
z € K tal que |z; —1]; < 0 e |z]; < 0 para todo 1 < j < n com j # i. Finalmente, tomemos
r=ai1z1 + -+ anz,. Entdo para todo 1 < i < n nds temos:

2 —aili = larz1+---+ai—1zi-1 +ai(zi — 1) + aiv12ip1 + -+ anzali

A

latlilz1]i + -+ |ai—1lilzim1]s + |aililzi — L|i + aielilzigii + - -+ |anlilznli
la1]id + -+ [ai—1]0 + |aili0 + |aip1|id + - - + |an |0
= (la1li +---+lanls)d.

N

Dado ¢ > 0 qualquer, tomando § > 0 de modo que § < (|az|; + - -+ |an|;) "te paratodo 1 < i < n,
nds obtemos |z — a;|; < € para todo 1 < ¢ < n, como desejavamos. O

Mostraremos agora que um valor absoluto é ndo-arquimediano se e somente se satisfizer uma
versao mais forte da desigualdade triangular:

Proposicao 9.3. Um valor absoluto |-| em K € nao-arquimediano se e somente se ele satisfizer
a desigualdade ultramétrica, isto é, se valer a desigualdade:

|z 4+ y| < max{|z|,|y|}, para todos z,y € K.
Além disso, nesse caso temos |n| < 1 para todo n € N.

Demonstragdo. (<): Suponhamos que |-| satisfaca a desigualdade ultramétrica. Entao é ficil
ver por inducgdo que vale |z1 + -+ + x,| < max{|z1|,...,|zs|}, para todos z1,...,2, € K. Em
particular, para todo n € IN nés temos |n| = |1+ --- + 1| < max{[1],...,|1|} = 1, o que mostra
que |-| é nao-arquimediano.

(=): Suponhamos que |-| seja um valor absoluto nao-arquimediano. Entdo existe C' > 0 tal
que |n| < C para todo n € N. Dado k inteiro positivo qualquer, nés temos |n*| = |n|*. Desse
modo, devemos ter |n| < 1 para todo n € IN. Sejam z,y € K quaisquer, e suponhamos sem
perda de generalidade que |z| > |y|. Entao queremos mostrar que |z + y| < |z|. Fixado n inteiro

positivo, nds temos:
n
J

Desse modo, para todo inteiro positivo n nés temos |z +y| < (n -+ 1)/?|z|. Fazendo n — oo,
concluimos que |z + y| < |z|, como desejado. Assim, |-| satisfaz a desigualdade ultramétrica. [

n
2 ly[" 7 <D Jaf* < (n+1)]al
=0

n n ) ) n
z4+y" =z +y)" =D ( .>x]y"‘] <)
j=0

j=0 \J
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Observagao 9.4. Notemos que se |-| satisfizer a desigualdade ultramétrica, entdo nds temos
|z| # |y| = |z +y| = max{|z|,|y|}. De fato, suponhamos que |x| > |y|. Entdo, pela desigualdade
ultramétrica, |x +y| < |z|. Por outro lado, |—y| = |y|, assim:

|z = [(z +y) —y| < max{[z +y|, |-y} = max{|z +y], [y[}-
Mas como |z| > |y|, devemos ter |z| < |x +y|, de forma que |x + y| = |z|, como desejado.

Dados um corpo K com um valor absoluto nao-arquimediano |-| e ¢ > 1 real, podemos
definir v: K — RU{oo} dado por v(z) = —log,|z|, onde usamos a convengao log,0 = —oo.
E facil verificar que essa fungdo satisfaz as seguintes propriedades ((i7i) segue da desigualdade
ultramétrica):

(i) v(z) =00 <= x=0;

(i) v(zy) = v(@) +v(y);
(iii) (Propriedade ndo-arquimediana) v(z + y) > min{v(z),v(y)}.

Definigdo (Valoragao (Exponencial)/Grupo de Valores). Uma fungdo v: K — RU{oco} é cha-
mada de valoragdo (exponencial) se ela satisfizer as trés propriedades acima. Além disso,
chamamos v(K*) C R de grupo de valores de v. Notemos que v(K*) é um subgrupo aditivo
de R.

Notemos que toda valoracao discreta é uma valoracdo. Notemos ainda que toda valoragao
satisfaz as propriedades dadas pelo Lema 3.26 (de fato, na prova desse lema nao utilizamos o fato
da valoragao ser discreta).

Assim, vemos que a cada valor absoluto nao-arquimediano de K nés podemos associar uma
valoracao. E facil ver que o caminho inverso também é possivel. Isto é, dada uma valoracao
v: K — RU{oco}, podemos definir um valor absoluto nao-arquimediano ||, em K dado pela
expressao ||, = q_”(‘”), onde ¢ > 1 é um real fixado e definimos ¢~ = 0. Com isso, conseguimos
definir os valores absolutos p-adicos:

Definig¢ao. [Valor Absoluto p-ddico/Métrica p-adical] Seja p € IN um ntimero primo. Definimos
o valor absoluto p-adico em Q como sendo a funcio |,: Q — R dada por |z|, = p~ (@),
Definimos ainda o valor absoluto oo-adico em QQ como sendo o valor absoluto usual de Q,
e o denotamos |-|s. A partir do valor absoluto p-adico, nds conseguimos definir uma métrica
p-adica em Q, com distancia dada por dp(x,y) = |z — y|,. Note que do é a distancia euclidiana.

Para p primo, os valores absolutos p-adicos sdo todos nao-arquimedianos, ja que todo niimero
natural tem valor absoluto no maximo 1. Por outro lado, para p = oo nés obtemos um valor
absoluto arquimediano, ja que lim, 0|70 = 00.

A partir de agora, nés sempre excluiremos a valoragao trivial, dada por v(z) = 0 para z # 0
e v(0) = oo. Assim, por valoragdo se entendera valora¢ao nao-trivial. Também temos uma nogao
de equivaléncia de valoragoes:

Definicao (Valoragoes Equivalentes). Duas valoragoes vy e vy em um corpo K se dizem equiva-
lentes se existir um real s > 0 tal que v; = svs.

Note que todos os valores absolutos associados a uma valoragdo v serdo equivalentes, e que
duas valoragdes serdo equivalentes se e somente se seus valores absolutos associados o forem,
devido & Proposicdo 9.1. Como uma consequéncia direta do Teorema da Aproximacdo para
valores absolutos, temos um Teorema da Aproximagao para valoracoes:

Teorema 9.5 (Teorema da Aproximacdo). Sejam vi,...,v, valoragoes em um corpo K duas a
duas nao-equivalentes, e sejam ai,...,a, € K. FEntdo para todo C > 0 existe x € K tal que
vi(z —a;) > C, para todo 1 <1i < n.
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E facil ver pela definicdo acima que as valoragoes p-adicas, para p € IN primo, sao duas a
duas ndo-equivalentes. Assim, para p primo os valores absolutos p-adicos sdo dois a dois nao-
equivalentes. Como |-|o € arquimediano, vemos que o valor absoluto co-ddico também nao é
equivalentes aos demais. De fato, esses sdo os tnicos valores absolutos de Q a menos de equi-
valéncia:

Proposicao 9.6. Todo valor absoluto de Q € equivalente a um unico valor absoluto p-ddico, para
p € N primo ou p = co.

Demonstragcao. Vimos acima que os valores absolutos p-adicos sdo dois a dois ndo-equivalentes
em Q. Assim, basta mostrarmos que todo valor absoluto |-|: Q — Ry é equivalente a algum
valor absoluto p-adico |-|,. Suponhamos inicialmente que |-| seja ndo-arquimediano. Entao pela
Proposigao 9.3 temos |n| < 1 para todo n € Z. Assim, utilizando a desigualdade ultramétrica é
facil ver que o conjunto a := {a € Z: |a] < 1} é um ideal préprio de Z. Como todo elemento
de Q* se escreve como um produto finito de poténcias inteiras de ntimeros primos e |-| ndo é o
valor absoluto trivial, concluimos que deve haver p € IN primo para o qual |p| < 1. Desse modo,
a D pZ. Mas pZ é maximal, e assim concluimos que a = pZ. Isso prova que |g| = 1 para todo

X

primo ¢ # p. Em particular, |u| = 1 para todo u € Z(p).

Chamemos s := —log,(|p|) > 0. Assim, |p| = p~°. Todo x € Q™ se escreve de modo tinico
X
(»

2] = [p*r@u| = [p|r®) = (p=*)@) = (p=or@))s = |z 5.

como x = p“P(x)u, para u € Z ) Entao nés temos:

Como essa igualdade vale também para x = 0, concluimos que |-| = |-, provando que || é equi-
valente a [-|,.

Suponhamos agora que |-| seja um valor absoluto arquimediano. Entdo existe um inteiro po-
sitivo n > 1 tal que |n| > 1. Sejam m > 1 e k > 1 inteiros. Escrevendo n* na base m,
nés obtemos nf = ag +aym+ - + arm”, para alguns inteiros 0 < a; < m — 1. Notemos que
m’ < nF = r < klogn/logm. Além disso, para 0 < j < r nds temos pela desigualdade triangular
que |aj| = |1+ +1] < aj|]l| = a; < m. Assim:

T T T
nf* = [0 =13 am?| <Y Jarllml < > mlm|
j=0 j=0 Jj=0

m(r + 1) max{1, |m|"}

<
< m(1+ klogn/logm) max{1, |m|klosn/legmy

Tomando a raiz k-ésima dos dois lados, nds concluimos que para todo inteiro positivo k vale a
desigualdade:

In| < (m(14 klogn/ log m))l/k max{1, |m\10g”/logm},

Fazendo k — 0o, n6s concluimos que |n| < max{1, |m[\°8™/1°¢™}  Como |n| > 1, temos entdo que
In| < [mllogn/logm — |p|l/1ogn < |mm|l/1g™ Notemos ainda que, como logn/ logm > 0, temos:

1< |n| < |mflosn/loem — | > 1,

Assim, podemos repetir o argumento trocando as posi¢oes de m e de n, para concluirmos que
|m|1/1eem < |p|l/lgn e portanto vale a igualdade |m|'/198™ = |p|t/18" para todo inteiro

|1/logn_

positivo m. Definamos s := log <|n]1/1°g”> > 0, de modo que e® = |n Afirmamos que

|z| = |x|%,, para todo x € Q. Comecemos observando que isso vale para x € Z. De fato, para
x =0 oux = %1, isso é claro. Suponhamos entdo x = +m, onde m > 1 é um inteiro. Logo:

2] = m| = (Jn]"/1&7) ™ = (&%)\o5™ = (™) = m = Ja2,.
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Mostremos agora que isso vale para todo x € Q. Podemos escrever z = a/b, para a,b € Z e
b # 0. Entao |z| = |a|/|b| = |a|i. /b5, = |a/blS, = |z|5,, concluindo a demonstragao. O

Noé6s podemos definir valoragao discreta de uma forma um pouco mais ampla, que da sentido
ao adjetivo discreta:

Definig¢ao (Valoracao Discreta). Uma valoragao v: K — RU{oco} é chamada de discreta se seu
grupo de valores v(K*) for um subconjunto discreto de R.

E f4cil mostrar que todo subgrupo aditivo de R que também é discreto é da forma s Z, onde
s > 0 é o menor elemento positivo desse subgrupo. Desse modo, se v for uma valoracio discreta,
teremos v(K*) = sZ para algum s > 0. Assim, a valoragdo 0 = %v também serd uma valoracao
discreta, equivalente a v, e tal que (K*) = Z. Entao 9: K — ZU{oc} é uma valoracao
discreta no sentido da Secdo 3.3, e nesse contexto mais geral é chamada de valoragao discreta
normalizada.

Assim como nés associamos uma valoragdo discreta (normalizada) a um DVD, vemos que é
possivel associar uma valoracdo a um certo anel. De fato, as trés condi¢bes que definem uma
valoragao implicam imediatamente no seguinte:

Proposicao 9.7. Seja v: K — RU{oo} uma valoragdo e seja ||, um valor absoluto relacionado
a v. Entdo o conjunto

A={reK:v(z) >0} ={z e K:|z|, <1}
¢ um subanel de K, que é local com grupo de unidades

A ={zeK:v(z)=0}={r e K: |z|, =1}
e unico ideal mazrimal

p={zeK:v(z)>0}={zreK: |z], <1}.

O anel A € um dominio com corpo de fracoes K e com a propriedade de que para todo x € K*
nds temos x € A ou 27! € A.

As 1ltimas duas linhas da proposi¢do acima nos dizem que o anel A é o que chamamos de um
dominio de valoracao:

Definicao (Dominio de Valoragdo). Um dominio A é chamado de dominio de valoragao, ou
ainda anel de valoracgao, se para todo elemento nao-nulo x de seu corpo de frages nés tivermos
rcAoux!cA

O seguinte resultado nos diz um pouco sobre a estrutura dos dominios de valoragao:
Proposigao 9.8. Seja A um dominio com corpo de fragies K = Q(A). Entdo sio equivalentes:
(i) A é um dominio de valoragdo.
(ii) Os ideais de A sdo totalmente ordenados por inclusdo.
(iii) Os ideais principais de A sao totalmente ordenados por inclusdo.

Além disso, nesse caso A € local e integralmente fechado.
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Demonstragdo. (i) = (ii): Sejam a,b <9 A ideais quaisquer. Suponhamos por absurdo que a Z b
eb Z a. Tomemosa € a\bebeb)\a Entdocomo A é dominio de valoracdo vemos que a/b € A
oub/a€e A Massex =a/be Aentdoa =2a2b e b,esey =0b/a € Aentdo b = ya € a, um
absurdo! Concluimos que a C b ou b C a, como desejavamos. Em particular, dados dois ideais
maximais de A, um esté contido no outro. Assim, A possui apenas um ideal maximal, logo é local.

(ii) = (i4): E Sbvio.

(#ii) = (4): Suponhamos que os ideais principais de A sejam totalmente ordenados por incluséo.
Isso significa que os elementos de A sdo totalmente ordenados por divisibilidade. Isto é, dados
a,b € A quaisquer temos a | b ou b | a. Seja x € K qualquer. Entdo podemos escrever x = a/b,
para alguns a,b € A, b# 0. Entdfoa |[boub|a. Seb | a, entdo x = a/b € A. Se a | b, entdo
27! =b/a € A. Isso mostra que A é um dominio de valoracio.

Mostremos agora que todo dominio de valoracdo A é integralmente fechado. Seja x € A", Entdo
existem elementos ag, a1, ...,a,_1 € A tais que ag + a1z + - - - + ap_12" "' + 2" = 0. Suponhamos
por absurdo que = ¢ A. Entdo 27! € A, de modo que

z=—ag(z™)" P —ay(a7H" 2~ —a, € A,
um absurdo! Concluimos que x € A, e portanto A é integralmente fechado. O

E interessante observar que a correspondéncia v — K, entre o conjunto das valoraces de K
e o conjunto dos dominios de valoracdo de K é injetora a menos de equivaléncias:

Proposicao 9.9. Sejam v e w valoragoes de K, com dominios de valoracio A, e Ay, respecti-
vamente. Entdo A, = Ay se e somente se v for equivalente a w.

Demonstragao. Se v for equivalente a w, temos v(z) > 0 <= w(z) > 0, o que mostra que
A, = Ay. Suponhamos, por outro lado, que A, = A,. Entdo em particular os ideais maximais
desses dois anéis sao iguais, de modo que v(z) > 0 <= w(z) > 0. Em termos de valores
absolutos, isso significa que |z|, < 1 <= |z|w, < 1, o que significa que esses dois valores
absolutos sao equivalentes pela Proposicao 9.1. Isso mostra que v e w sdo equivalentes. ]

Terminemos a secdo com uma analise da topologia de um corpo K munido de uma valoragao
discreta normalizada v. Sejam |-|, = ¢~¥ um valor absoluto associado, A o DVD associado e p o
unico ideal maximal desse DVD. Entao todos os ideais fracionarios nao-nulos de A sdo da forma

p'={zeA:v(z) >n} ={ze€A:|z], < ¢ "},

para n € Z. A 1ltima caracterizagdo acima nos mostra que os p™’s sdo conjuntos fechados na
topologia induzida. Mas sendo v uma valoracao discreta, nés temos

pt={zecA:v@)>n—1}={zecA:|z|, <qg "V}

Assim, esses conjuntos também sao abertos nessa topologia. Em particular, A é aberto e fechado
em K. Na verdade, como a imagem de |-|, é {0,...,¢72,¢7%,1,¢,¢% ...}, vemos que os p" nos
dao todas as bolas abertas (e fechadas) com centro em 0. E claro que, dado a € K qualquer, nds
temos:

a+p={zecA|lz—a,<q¢"}={zeA:|z—al, <qg "V}

de modo que essas sao as bolas abertas (e fechadas) com centro em a. Assim, para todo a € K, o
conjunto {a+p": n € IN} é um sistema fundamental de vizinhangas de a na topologia induzida por
|-|. Em particular, {p”: n € IN} é um sistema fundamental de vizinhancas de 0, e {U(™: n € N}
é um sistema fundamental de vizinhancas de 1.
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9.2. Completamentos

Para indicar que temos um corpo K munido de um valor absoluto |-|, denotaremos (K,|-|).
Similarmente, indicaremos um corpo munido de uma valora¢ao v por (K,v). Finalmente, de-
notamos (K,v,|-]) quando quisermos indicar que um corpo estd munido de um valor absoluto
nao-arquimediano |-| que induz uma valoracao v. Comecamos com a seguinte definigdo, andloga
ao caso de espacos vetoriais normados:

Definigao (Corpo Completo). Um corpo (K, |-|) é dito completo se toda sequéncia de Cauchy
em K convergir com relagio a' |-|.

Procedendo do mesmo modo que na construcao dos reais, nés podemos construir, a partir de
um corpo com valor absoluto (K, |-|), um corpo com valor absoluto completo (K, |-|), chamado
completamento de K com respeito a |-|, de modo que K seja um subcorpo de K, que o valor
absoluto de K estenda o valor absoluto de K e que K seja denso em K com a topologia induzida
por |-|.

Comegamos considerando o anel R das sequéncias de Cauchy em K, e o ideal m <R das
sequéncias de Cauchy em K que convergem a 0. Esse ideal é maximal. De fato, tomemos
x = (z,) € R\ m qualquer. Queremos mostrar que R = m+xzR. Como z é sequéncia de Cauchy
que nao converge a 0, nenhuma subsequéncia de z pode convergir a 0. Assim, existem 6 > 0 e
no € N tais que |z,| > 0 para todo n > ny.

Seja agora y = (yn) € R qualquer. Definimos z = (z,) € R por 2z, = 0 para n < ng e
Zn = T, 'y, para todo n > ng. Como para n > ng temos |z,| limitado inferiormente, é fcil ver
que z é uma sequéncia de Cauchy. Agora, vemos que y —xz = (y1,¥2,---,Yny,0,0,...) € m, e
portanto y € m+zR. Isso prova que m é maximal.

Definimos K := R/m. Entdao K é um corpo, e podemos ver K como um subcorpo de K
por meio da inclusdo a — (a,a,a,...)+ m. Noés estendemos o valor absoluto |-| de K a um
valor absoluto |-| de K definindo |(z,) 4+ m| := lim,_,o0|2,|. Para ver que essa funcio estd bem-
definida, comecemos observando que vale ||zy,| — |2,|| < |Zm — 2n|, 0 que mostra que (|z,]) é
uma sequéncia de Cauchy de niimeros reais, e portanto converge. Seja agora (y,) € R tal que
(zn) + m = (y,,) + m. Entao temos (z,, — y,) € m, de modo que |z, —yn| = 0 = ||zn| — |yn|| = 0,
0 que prova que limy,_o0|yn| = limy, o0 |Zn .

Estando bem-definido, é facil verificar que || é de fato um valor absoluto em K que estende o
valor absoluto de K. Essa extensdo sera arquimediana se e somente se o valor absoluto de K o for,
j4 que a identificacio de IN dentro de K é a mesma que dentro de K. Além disso, a completude
de K se mostra da mesma forma que a completude de R, e o fato de K ser denso em K se mostra
da mesma forma que o fato de Q ser denso em RR.

Finalmente, o completamento (K, |-|) é tinico a menos de isomorfismo. De fato, seja (K’,|-|)
um corpo com valor absoluto completo que possui (K, |-|) como subcorpo denso. Entao pode-
se mostrar que a funcdo o: K — K’, que para toda sequéncia (an) em K leva lim, oo a,, com
respeito a |-| em lim,,_,~ a, com respeito a |-|', é um isomorfismo de corpos que preserva os valores
absolutos, isto é, tal que para todo z € K tenhamos |z| = |ox|'.

Os exemplos mais conhecidos de corpos completos sao R e C. Ambos sd@o completos em relagéo
a um valor absoluto arquimediano. O interessante é que eles sdo os Unicos corpos completos por
um valor absoluto arquimediano, a menos de isomorfismo. De fato, denotando por || 0 valor
absoluto de R ou C, nés temos:

Teorema 9.10 (Teorema de Ostrowski). Seja K um corpo que é completo com respeito a um
valor absoluto arquimediano |-|. Entdo existe um isomorfismo o de K em R ou C, satisfazendo
|z| = |ox|,, para todo x € K, onde s € (0,1] é fizado.

sto é, na métrica induzida por |-|.
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Demonstragdo. Como ja vimos, apenas corpos com caracteristica 0 possuem valores absolutos
arquimedianos. Assim, Q é um subcorpo de K. Desse modo, pela Proposicdo 9.6, a restrigdo do
valor absoluto de K a Q ¢ da forma |-|3,, para algum s > 0. Logo |-|'/* = |-|c em Q. Sem perda
de generalidade, troquemos |-| por |-|'/¢. Entao vale |-| = |-|oc em Q.

Seja Q o fecho de Q em K com respeito a |-|. Entdo (Q, ||) é um completamento de (Q, |-|) =
(Q,]"|oc)- Mas (R, |-|so) também é um completamento desse corpo, e portanto pela unicidade
do completamento vemos que existe um isomorfismo de corpos o: R — Q que preserva valores
absolutos. Assim, podemos supor sem perda de generalidade que R é subcorpo de K.

Nessas condigoes, iremos mostrar que K = R ou K = C. Para isso, basta mostrar que a
extensdo K/ R é algébrica. De fato, mostraremos que todo elemento £ € K é raiz de um polinémio
de segundo grau com coeficientes em IR. Para isso, consideremos a fun¢ao continua f: C — R
dada por f(z) = |2 — (2 + Z)& + 2Z|. Notemos que para todo z € C temos z +%,2Z € R C K,
de modo que f estd bem-definida. Desse modo:

f(2) =162 = (2 +2)€ + 22| 2 |22] = |(2 + 2)€| = €%] = |2Z]o — |2 + Z|ool] = €.

Escrevendo z = a + bi para a,b € R, nés obtemos |2Z|s = a? +b? e |z + Z| = 2|a|so. Observando
que |z|oo = Va? + b2, vemos que quando |z|o — 00 nds temos:

f(z) = (a® +b) = 2|alo|é] — €]> = o0.

Isso mostra que f assume um valor minimo m, e além disso que o conjunto S = f~!(m) C C
é limitado. Sendo a pré-imagem de um ponto por uma fungdo continua, vemos que S também é
fechado. Assim, S é compacto. Sendo S compacto, existe zgp € S tal que 29|00 > |2|0o para todo
z € S. Nés mostraremos que m = 0, pois entdo iremos concluir que &2 — (2 + Zo)€ + 20Z0 = 0,
de modo que € serd a raiz de um polindmio de segundo grau com coeficientes em IR. Suponhamos
por absurdo que m > 0. Fixemos 0 < € < m, e consideremos o polinémio

g9(z) = 2° — (20 + 20)7 + 2020 + € € Rz].

Como o polindémio x? — (29 + Zo)x + 2020 = (x — 20)(z — Zp) ndo possui raizes reais, nés temos
22 — (20 + Z0)T + 20Z9 > 0 para todo z € R. Assim, é claro que g(x) > 0 para todo = € R, de
modo que g(z) possui duas raizes nao-reais 21 e z1. Temos 2121 = 2020 + €, 1080 |21]c0 > 2000,
e portanto z; € S. Assim, f(21) > m. Fixado n inteiro positivo, consideremos o polinémio

G(x) = (9(z) —&)" = (—€)" € Rlz],

e sejam aq, . . ., as, € C suas raizes, contadas com multiplicidade. E claro que @y, . .., @, também
sdo as raizes de G, em alguma ordem. Portanto:

G(z) = lin[(x—ai) = I:n[(x—ai)
Z_2n ;; 2n
= Gz)?* = U(x — ;) 1:[(33 —a;) = 1:[(332 — (i + @)z + ;).

Como g(z1) = 0, vemos que G(z1) = 0. Suponhamos sem perda de generalidade que z1 = ay.
Assim:

2n 2n

G(€)? = 1€ — (e + @))€ + )| = ] flew) > flar)m™ ™" = far)m* 7

i=1 =1
Por outro lado, como g(z) —& = 2?2 — (20 + Z0)z + 20Z0, nés temos:

GOl =1(9(©) —)" = (=) < 1€ = (20 +20)€ + 070" + |<")
= flz0)" " =m" 4 en
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Desse modo, obtemos:

2n—1 2 2 n ez f(1) _ (m"+en)? e\
Flam® ™ < |67 = 1GOF < (" +en? = D2 < BBl - (14 (2]
Essa desigualdade vale para todo inteiro positivo n. Finalmente, fazendo n — oo, nés concluimos
que f(z1)/m <1= f(z1) < m, um absurdo! Logo m = 0, e £ é raiz de um polindémio de segundo
grau com coeficientes em R. Assim, K =R ou K = C.

Traduzindo o que fizemos até aqui para o corpo com valor absoluto (K, |-|) inicial (lembre
que identificamos K com um corpo que contém R e que consideramos |-|'/* ao invés de |-|), nés
concluimos que existe um isomorfismo o de K em R ou C satisfazendo |z| = |ox|,, onde s > 0.
Falta apenas mostrar que s < 1. Para isso, mostraremos que para s > 1 a fungao |-|3, ndo satisfaz
a desigualdade triangular em IR, e portanto também nao em C. Para isso, basta notarmos que
1541 =2<2%= (1+1)% o que conclui a demonstragao. O

O teorema acima mostra que podemos restringir nosso estudo de completamentos aos valores
absolutos ndo-arquimedianos. Na pratica, muitas vezes é melhor trabalharmos com as valoracoes
associadas a esses valores absolutos. Assim, seja (K, v, |-|) um corpo, e consideremos seu comple-
tamento (K, |-|). Suponhamos que ¢ > 1 seja tal que |-| = ¢~¥. Nés podemos estender v a uma
valoragdo © em K definindo, para cada = € K, #(x) = — log,|z|. Assim, vale a relagdo |-| = ¢~°
em K. Note que pela definicio que demos para o e pela definicdo da extensio ||, para todo = € K
e toda sequéncia (z,) de elementos de K que converge a x nés temos #(z) = limy, oo v(zy).
Como (x,) — z, temos (x —x,) — 0 = |z —x,| — 0. Assim, se z # 0 existe ng € IN tal que
n > ny = |x—x,| < |z|, 0 que mostra que H(z) < d(xz — x,). Desse modo, como ¥ é valoragao
que estende v, para todo n > ng nés temos:

v(zy) = 0(xy) = 0(x — (z — ) = min{d(z), 0(x — z,)} = 0(x).

Assim, vemos que a sequéncia (v(zy)) é de fato eventualmente constante. Isso nos mostra que

A

d(K) = v(K). Assim, nés provamos:

Proposicio 9.11. Sejam (K, v, |-|) um corpo e (K, |-|,9) seu completamento. Entdo os grupos de
valores de v e de ¥ sdo iguais, isto é, v(K) = 9(K). Em particular, se v for discreta, © também
serd discreta, e se v for discreta mormalizada, © também serd discreta normalizada.

A métrica induzida por uma valoracio possui propriedades bem singulares:
Proposigdo 9.12. Seja (K,v,||) um corpo. Entio:
(a) Uma sequéncia (x,) em K converge a um x € K se e somente se limy, oo v(x — xp) = 00,

e é de Cauchy se e somente se m,n — 00 = v(Ty, — Tp) —> 00.

(b) Uma sequéncia (x,) em K ¢é de Cauchy se e somente limy,_oo(Tpi1 — 2n) = 0. Em
particular, uma sequéncia de somas parciais ( ;-L;& :L‘j> ¢ de Cauchy se e somente se
lim, oo z, = 0.

(c) Se K for completo, uma sequéncia (xy,) em K converge se e s6 se limy_o0(Tpn+1 — ) = 0.
Em particular, uma série Y ;> o x, converge se e so se tivermos lim, o n = 0.

Demonstragao.  (a) Basta notar que z,, - z <= |z —x,] > 0 < v(z—x,) = 0. A
afirmacédo sobre sequéncias de Cauchy se prova do mesmo modo.

(b) E claro que se (2y,) for de Cauchy entao lim,—oo(2nt1 — 2) = 0. Reciprocamente, supo-
nhamos que valha essa tltima condicdo. Entao para todo C > 0 existe ng € IN tal que para
todo n > ng tenhamos v(z,+1 — x,) > C. Mas entdo, para todos m > n > ng:

V(@ —2n) = 0((Tm —Tm-1) + (Tm-1 — Tm-2) + -+ + (Tnt1 — Tn))

> min{®y, — Tm-1,Tm-1— Tm—2, -, Tnt1 — Tn} > C.

Assim, m,n — 00 = v(zy — x,) — 00, de modo que (z,,) é sequéncia de Cauchy.
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(c) Segue imediatamente do item anterior.
O

Também temos uma relacio entre os anéis de valoracdao de um corpo e de seu completamento.
Para isso, usaremos a notacgao (K,v,|-|, A,p,x) para indicar que K é um corpo com valoragao
v, valor absoluto associado |-| e dominio de valoragao associado A, com tnico ideal maximal p e
corpo de residuos k = A/ p. Eventualmente, omitiremos algumas dessas informagoes, por exemplo
escrevendo (K, v,|-|) ou entdo (K, v, A, p, k).

S

Proposi¢io 9.13. Sejam (K,v,|-|,A,p,k) um corpo e (K,|-|,0,A,p,#) seu completamento.
Entao:

(a) A= ANK, e A éo fecho de A em K com relagio a |-|.

(b)) p=HNK =pNA. Assim, p | p. Além disso, p € o fecho de p em K com relagio a |-|.

Se v for discreta, teremos ainda p" = p" N K = p" N A para todo inteiro positivo n, de
modo que p" | p™ nesse caso, e além disso " serd o fecho de p" em K com relagdio a |-|.

(¢c) Nés temos um isomorfismo de corpos residuais k = &, dado por a+p+— a+§. Além disso,
se v for discreta, entdo para todo n inteiro positivo més temos um isomorfismo de anéis

A/ p™ = A/", dado por a+p™ — a+ H".
Demonstragao.  (a) Noés temos
A={zcK:v(z) >0 ={zcK:9(z) >0} =ANK.

Mostremos agora que A é o fecho de A em K. Denotemos por A esse fecho. Seja x € A.
Entdo existe uma sequéncia de Cauchy (z,) em A com x = lim,_o . Em particular,
0(x) = lim,—y00 v(2,,) > 0. Isso mostra que z € A, e portanto A C A.

Reciprocamente, seja © € A. Se z = 0, é claro que z € A. Assim, suponhamos x # 0.
Como K é denso em K , existe uma sequéncia (z,,) em K com z = lim, . &,. Sabemos
que lim, o v(x,) = 9(x). Como ja observamos, existe ng € N tal que v(z,) = 0(z) >0
para todo n > ng. Assim, para todo n > ng, temos x,, € A, de modo que z ¢é limite de uma
sequéncia de elementos de A. Isso prova que A C A, e portanto A = A, como querfamos.

(b) Nés temos
p={zeK:v(x)>0t={zeK:9(zx) >0} =pNK =HNA.

Suponhamos agora que v seja discreta, sem perda de generalidade normalizada. Nesse caso,
© também serd discreta normalizada, logo para todo n inteiro positivo nds temos:

p'={reK:v(z)>nt={xeK:0(x)>n}=p"NK =§"NA.
As afirmagdes sobre os fechos se demonstram da mesma forma que no item (a).

(¢c) Como AC Aep|p,afuncio k — & dada por a+ p — a + p é um homomorfismo injetor.
Mostremos sua sobrejetividade. Seja z € A qualquer. Como A é o fecho de A em K, existe
a € A tal que |[x —al < 1, o que equivale a ©(z — a) > 0. Isso significa que x —a € f, logo
T+ P = a+Pp. Isso mostra que o homomorfismo em questdo é sobrejetor, e portanto um
isomorfismo.

Suponhamos agora que v seja discreta, e seja n um inteiro positivo. Como p" | p", a funcédo
A/p™ — A/p™ dada por a + p" — a+ p". é um homomorfismo injetor. Como A é o
fecho de A em K, existe a € A tal que 0(x —a) > n. Isso significa que x —a € $", logo
z+p" = a—+p". Isso mostra que o homomorfismo em questao é sobrejetor, e portanto um
isomorfismo.

O]
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O teorema acima nos diz que podemos identificar k£ com &, e mais geralmente A/ p™ com

A/pr

caso v seja discreta. E o que faremos de agora em diante. Assim, dado a € A, denotaremos

a (mod p) para indicar a (mod §), e caso v for discreta denotaremos a (mod p™) para indicar
a (mod p").

Mostraremos agora que, se v for discreta, nés conseguimos representar todo elemento de K
de forma tnica como uma “série de Laurent” no normalizador de A, com coeficientes em certo
conjunto:

Proposicio 9.14. Sejam (K,v, A,p) um corpo e (K,0,A,$) seu completamento. Suponhamos
que v seja uma valoracdo discreta normalizada, e seja ™ um normalizador de A. Entdo:

(a) T também é um normalizador de A, e p A = §.

(b) Toda série da forma 5% c;jm?, onde cada c; € A, converge em A.

(c) Seja S C A um sistema completo de representantes de A/ p tal que 0 € S. Entao todo

x € K* admite representagio unica como uma série convergente x = m™ Z;‘;O aj7rj, onde
aj € S para todo j € N, ag #0 e m € Z. Além disso, d(z) = m.

Demonstracao.  (a) Temos v(w) = 1, logo 6(7) = v(w) = 1, de onde vemos que 7 também é
T

(b)

um normalizador de A. Assim, pA = (1A)A =74 = §.

A convergéncia dessa série em K equivale a termos lim,,_so ¢, = 0, pela Proposigéo 9.12.
Mas 0(c,7™) > 6(7™) = n, de modo que lim, o ¢, ™ = 0 por essa mesma pProposigao.
Assim, essa série converge. Finalmente, pela Proposicdao 9.13 essa série converge para um
elemento de A, j4 que é um limite de elementos de A.

Seja x € K qualquer. Como 7 é o normalizador de A, podemos escrever de modo tnico
x = 71™u, onde m = 0(z) e u € AX. Como A/p =2 A/p, existe um tinico ag € S tal que
u = ag (mod $). Note que ag # 0, j& que u € H. Entdo podemos escrever u = ag + by,
para algum b; € A. Seja a; € S tnico tal que by = a; (mod p). Entdo existe by € A tal que
b1 = a1 + bam, e portanto u = ag + (a1 + bem)T = ag + a7 + bom?.

Continuando dessa forma, suponhamos que encontramos ag,ai,...,0,—1 € Aeb, e A
tais que u = ag +a1m + - + ap_1 ™ 4+ b,7". Entdo existe um tnico a, € S tal que
b = a,, (mod §). Sendo b,y 1 € A tal que b, = a,, + bpy17, n6s temos:

u = agt+arm+ -t a1+ (an + by

= aytam+ -+ a7+ a,m" + byt

Desse modo, obtemos uma sequéncia de somas parciais (s,) = (Z;L;& a;m! ) Como para

cadan € N temos 9(u — sp,) = 9(b,7™) > n, vemos que lim,_,o 0(u — s,) = 00, e portanto
limy, 00 Sn = u. Concluimos que u = Z;”;O ajwj . Assim, nés obtemos a representagao
x =732 a7, onde a; € S para todo j € N, ag #0 e m = 0(x) € Z.

Para mostrar a unicidade, suponhamos que z = 7‘ E;”;O bj7rj ,para { € Z, b; € S para todo
j €N eby #0. Como para todo n > 0 temos o (Z;L:_& bjﬂ'j) = 0 j4 que by & P, temos
0 (Z;’io bjﬂ'j) = limy 00 D (Z}Z& bjwj) = 0. Assim, vemos que 0(z) = ¢£. Como 9(x) = m,
vemos que £ = m, e portanto nés temos 77 a;m) = Y22 bjm! = 372 (a; — bj)n! = 0.
Entao o (Z;-";O(aj — bj)ﬂj) = 00. Se tivéssemos a; # b; para algum j € IN, é ficil ver que
valeria 0 <E§”;O(a]~ - bj)wj) = min{j € N: a; # b;} < oo, um absurdo! Concluimos que

a; = bj para todo j € IN, mostrando a unicidade.
O
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No6s podemos ainda dar uma outra caracterizacdo para A, por meio de limites projeti-

vos. Para isso, continuaremos na hip6tese de v ser discreta normalizada. Consideremos o anel

o 1A/ p". Dizemos que uma sequéncia (z, (mod p™)) nesse anel é coerente se para todos
m < n nés tivermos x,, = x,, (mod p™). Assim, podemos considerar o subanel definido por

l'&nA/ pt = {x € H A/ptix é coerente}.

n=1
Ele é chamado de limite projetivo dos A/ p™. Com isso, nés temos o seguinte resultado:

Proposi¢iao 9.15. O mapa candnico A — Wm A/ p" dado por a (a (mod p™)) é um isomor-

n
fismo de anéis.

Demonstragao. Essa mapa é claramente um homomorfismo de anéis, com ntcleo (,,~; " = 0.

Logo esse homomorfismo é injetor. Para mostrar que também é sobrejetor, sejam 7 um normali-

zador de A e S C A um representante de classes de A/ p com 0 € S. Consideremos um elemento

x = (z, (mod p")) € @A / p" qualquer. E facil mostrar por indugiio em n que existe uma tnica
n

sequéncia (a,) de elementos de S com x = (z,, (mod p")) = ( ?;& a;jm (mod p")). Notemos

agora que, pela proposicao acima, ( ?:_& ajwj ) converge a um elemento a € A. Finalmente, basta

observar que z = (z, (mod p™)) = (a (mod p")) é a imagem de a pelo homomorfismo acima,
que portanto é sobrejetor. Assim, esse mapa é um isomorfismo de anéis. O

9.3. Os niimeros p-adicos

Nessa sec¢éo, definiremos os ntimeros p-adicos a partir do que fizemos nas se¢oes anteriores. A
Proposicao 9.6 nos diz que todo valor absoluto de Q é da forma ||, para p € IN primo ou p = oo.
O completamento de (Q,|]|x) é (R,||x), € também podemos denotar R = Q.. Os corpos
p-adicos surgem como o completamento de Q com relacdo aos seus outros valores absolutos:

Defini¢do (Corpo dos Numeros p-ddicos/Anel dos Inteiros p-ddicos). Seja p € IN um primo.
Chamamos de corpo dos ntmeros p-adicos o completamento do corpo (Q,vp, Hp,Z(p)), eo
denotamos por (Qp,vp, |"|ps Zp). Seu dominio de valoragao discreta Z, é chamado de anel de
inteiros p-adicos. Chamamos os elementos de Q,, de nlimeros p-adicos, e os elementos de Z,,
de inteiros p-adicos.

Observe que de fato Z, ¢ um DVD, devido a Proposi¢ao 9.11. Nés também chamaremos as
extensoes de |-|, e vp a Q,, de valor absoluto p-adico e valoragao p-adica, respectivamente. Do
mesmo modo, a métrica induzida por essas extensoes também sera chamada de métrica p-adica.

Teorema 9.16. Seja p € IN um primo. Entdo:
(a) O tnico ideal mazimal de Z,, é pZ,. Equivalentemente, p é um normalizador de Z,,.
(b) Z, € o fecho de Z. em Q,, com relagdo a |-|,.

(c) Nos temos um isomorfismo candénico de anéis Z /p"Z = Z, /p" Z, para todo inteiro po-
sitivo n, dado por a (mod p") — a (mod p" Z,). Em particular, Z, /pZ, = F,.

Assim, dado x € Z,, qualquer, podemos denotar a (mod p™) para indicar a (mod p" Z,).

(d) Toda série da forma 302 c;p’, onde cada c; € Z, converge em Z,.
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(e) Todo x € Q) admite representacdo nica como wma série convergente x = p™ > 520 a;p’,
onde a; € {0,1,...,p—1} para todo j € N, ag # 0 e m € Z. Além disso, vy(z) = m.

(f) O mapa canonico Z, — WmZ /p"Z dado por a (a (mod p™)) € um isomorfismo de
n
anéis.
(9) Seja Z[x] == {Z;’;O a;jx’: a;j € Z} o anel das séries formais com coeficientes em Z.. Entao
Z[z]/(x —p) = Z,p, com isomorfismo dado por Y52 aja’ 4 (x —p) = Y520 a;p’.

Demonstragao.  (a) Segue diretamente de v,(p) = 1.

(b) Chamemos o fecho de Z em Q,, de Z.. Pela Proposicao 9.13, sabemos que Z, é o fecho de
Z ) com relacao a ||. Assim, basta mostrarmos que Zgy < 7. Para isso, seja © € Z
qualquer. Pelo Teorema 3.25, para todo inteiro positivo n temos Z /p" Z = Z ) / P" Ly
por meio de a (mod p") + a (mod p" Z;). Assim, conseguimos encontrar a € Z tal que
a =z (mod p”Z(p)), de modo que vy(a — ) > n. Como n é um inteiro positivo qualquer,
concluimos que podemos aproximar z t&o bem quanto quisermos por inteiros, mostrando o
resultado desejado.

(c) Basta compor os isomorfismos candnicos Z /p" Z = Zyy /p"Zy e Zyy /D" Zy,), dados
pelo Teorema 3.25 e pela Proposicao 9.13, respectivamente.

(d) Segue do item (b) da Proposi¢ao 9.14

(e) Segue do item (c¢) da Proposi¢ao 9.14, juntamente com o fato de que 0, 1,...,p— 1 formam
um sistema completo de representantes médulo Z, /pZ,, devido a (c).

(f) Segue diretamente da Proposi¢do 9.15 e do isomorfismo canénico Z /p" Z = Zy) /" Z
dado pelo Teorema 3.25

(2) Consideremos o homomorfismo Z[z] — Z, dado por 3772, a;jxd 2720 ajp’. Pelo item
(e), esse homomorfismo é sobrejetor. Para concluir a demonstragdo, mostraremos que o
nicleo desse homomorfismo é (z —p). Se g(x) € Z[z], entdo (z —p)g(z) é levado em
(p—p)g(p) =0, de modo que (x — p) estd contido no niicleo desse homomorfismo.

Seja agora f(x) = > 32gaa’ € Z[x] tal que f(p) = > 52ga;p’ = 0. Queremos mostrar

que f(z) € (x —p). Assim, queremos mostrar que existem bg,by,... € Z para os quais
tenhamos
flz) =) aja? = (x—p) Y bja? = (bj1 —pbj)a’,
j=0 Jj=0 J=0
onde definimos b_; = 0. Desse modo, queremos encontrar inteiros b;’s tais que a; =
bj—1 — pb;, para todo j € IN. Note que essas equagdes nos permitem obter os b;’s por
recorréncia. Nés temos by = —ag/p, e bj = (bj—1 — a;)/p, para todo inteiro positivo

j. Definindo os b;’s desse modo, valerd a igualdade f(x) = (z —p) X 32,bjz/. Falta
mostrar que temos b; € Z, para todo j € IN. Mas ¢é facil mostrar por inducao que nds
temos b, = —% Z?:_& ajp’. Analisando a igualdade f(p) = 0 médulo p™ para cada inteiro
positivo n, obtemos Z?:_ol ajp’ =0 (mod p™), de onde vemos que b; € Z. Assim, provamos
que f(x) € (xz — p), concluindo a demonstragao.

O

Os itens (e) (f) e (g) do teorema acima nos ddo outras caracterizagoes famosas dos inteiros
p-adicos. De fato, é possivel definir o anel dos inteiros p-adicos como o conjunto das séries formais
Z;‘io a;jp’, onde cada a; € {0,1,...,p— 1}, e entdo provar suas propriedades. Desse ponto de
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vista, os inteiros p-adicos generalizam a representacdao em base p. A partir dessa caracterizacio

de Z,, é facil calcularmos a sua cardinalidade: |Z,| = |[pNN| = 2. Assim, Z,, e portanto também
Q,, possuem a mesma cardinalidade dos reais.
Se x € Z, se escreve como T = E]‘?’;O a;p’, com cada a; € {0,1,...,p— 1}, nés chamamos

essa série de expansao p-adica de x. Note que a expansao p-adica de um inteiro positivo é
simplesmente sua representacao em base p. Para calcularmos a expansao p-ddica de um x € Z,,

qualquer, notemos que para todo inteiro positivo n devemos ter x = ?:_(} ajp’ (mod p™). Por
outro lado, dado a € Z qualquer, é facil mostrar que existem tnicos ag, . ..,an,—1 € {0,1,...,p—1}
tais que a = ;‘:—(} ajp’ (mod p™). Assim, para calcularmos a expansio p-ddica de um elemento

de Z, basta conhecermos seus restos médulo poténcias de p.
Exemplo 9.17. Calculemos as expansoes p-ddicas de —1 e de 1/(1 —p):

e Nés temos, para todo inteiro positivon, p" —1 = (p—1)+(p—1)p+---+ (p—1)p" L.
Assim, —1=(p—1)+ (p—1)p+---+ (p—1)p" ! (mod p"). Isso mostra que a expansio
p-ddica de —1 é =1 =Y"24(p—1)p’.

e Nds temos, para todo inteiro positivo n, % =1+p+---+p" L. Sendo assim:

1 1+p+--Fp"!
1-p 1—pn

=14p+--+p" ! (mod p").

Isso mostra que a expansio p-ddica de 1/(1—p) é1/(1—p) = ]o-iopj. Note que isso se
assemelha muito d igualdade 1/(1 —z) = Z(;io 27, que vale nos anéis de séries formais, ou
ainda da férmula da soma de uma PG. De fato, essa é uma PG em Z,, jd que |p|, = pl < 1.
Uma das vantagens de construirmos Q,, por meio de completamentos é justamente dar um
sentido que ndo seja puramente formal a uma série dessa forma.

O que fizemos nos dé uma familia de infinitos completamentos de Q (que sao todos os comple-
tamentos possiveis): Qq, Q3,Qs5,...,Q. = R. Esses corpos sido dois a dois nao-isomorfos, como
veremos mais adiante. Os diferentes valores absolutos p-ddicos se relacionam do seguinte modo:

Proposicdao 9.18 (Férmula do Produto). Para todo nimero racional x # 0, vale a relagdo
Hp\x|p =1, onde p varia entre os numeros primos de IN e oco.

Demonstracio. Note que podemos escrever x = ﬁ 11 () (observe que =/ |x|c € 0 sinal
o0

U
p primop P
de ). Desse modo:

1

B 7] o0

1

I p@ =2l T 2l = Il = 1.
p

p primo p primo
O

Terminaremos essa se¢do vendo a importancia dos numeros p-adicos para a resolucao de
equagoes diofantinas. Para isso, consideremos um polindmio F(z1,...,2,) € Z[x1,...,Zy].
Estamos interessados em resolver a equagdo diofantina F(z1,...,2,) = 0. Notemos que a
existéncia de uma solucdo para essa equagao implica na existéncia de uma solugdo para a equacao
F(z1,...,2,) =0 (mod p”), para todo primo p € N e todo inteiro positivo v. Com os inteiros p-
adicos, nés conseguimos “trocar” a existéncia de uma solugdo para todas as infinitas congruéncias
F(z1,...,2,) =0 (mod p”) pela existéncia de solu¢ao de uma tinica equagio nos inteiros p-adicos:

Proposigao 9.19. Seja F(z1,...,x,) um polindmio com coeficientes inteiros, e seja p € N um
primo fizado. A congruéncia F(x1,...,x,) =0 (mod p¥) possui solu¢do para todo inteiro positivo
v se, e somente se, a equagio F(x1,...,x,) = 0 possuir solu¢do nos inteiros p-ddicos.
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Demonstragdo. (<): Suponhamos que existam fi,..., f, € Z, tais que F(fi,..., f,) = 0. Ava-
liando médulo p¥ para cada inteiro positivo v, nés obtemos:

F(f,---, fn) =0 (mod p*) = F(f1 (mod p¥),..., fn (mod p”)) = 0 (mod p*),

o que mostra que a equacao F(z1,...,2,) =0 (mod p”) possui solugio.

(=): Aqui, identificaremos Z,, com o limite projetivo im 7, /p’ Z.

n

Suponhamos que para todo inteiro positivo v a congruéncia F(z1,...,z,) =0 (mod p”) pos-
sua uma solugdo (f{ (mod p”),..., f¥ (mod p¥)). Se (f} (mod p¥)),...,(f¥ (mod p”)) fossem
todas sequéncias coerentes, definindo f; = (f} (mod p”)) € Z, para 1 < j < n nés con-
cluirfamos que F(f1,...,fn) = 0(mod p”) para todo inteiro positivo v, o que implicaria que
F(fi,..., fn) = 0. Assim, obteriamos uma solu¢do para F(z1,...,z,) em Z,, como desejado.

Porém, nem sempre as sequéncias indicadas sdo coerentes. O que faremos é extrair sub-
sequéncias coerentes dessas sequéncias. Como IN* é infinito e Z /pZ. é finito, existem g € Z e
um subconjunto infinito A1 C IN* tal que f¥ = g{ (mod p) para todo v € A}. Da mesma forma,
como A} é infinito e Z /pZ é finito, existem g} € Z e um subconjunto infinito A} C A} tais que
f¥ = g4 (mod p) para todo v € A}. Continuando desse modo, nés obtemos um conjunto infinito

A=Al c Al [ C...Cc Al CIN*

e inteiros gi,..., g} tais que para todo v € A! tenhamos f! = g1 (mod p),..., f¥ = g. (mod p).
Notemos que, fixado v € A, nés temos F(gi,...,gt) = F(fY,..., ) (mod p). Mas como v > 1
e F(fY,..., f¥) =0 (mod p”) por hip6tese, concluimos que

F(gi,...,g))=F(ff,..., ) =0 (mod p).

Facamos agora um processo parecido. Como Z /p?Z é finito, nés podemos obter um conjunto
infinito

A2 =A2C A% C...cAlcAl
e inteiros g%, ..., g2 tais que para todo v € A? tenhamos f/' = g7 (mod p?),..., f% = g2 (mod p 2).
Notemos que, fixado v € A% com v > 2, nés temos F(g?,...,92) = F(fY,..., f%) =0 (mod p?),

ja que v > 2. Continuando esse processo, para cada inteiro positivo k nés podemos obter um
conjunto infinito

AF = Ak Cc Ak C. o AF C AR

e inteiros gF, . .., g tais que para todo v € A tenhamos f¥ = gF (mod p¥), ..., f¥ = gk (mod p*).
Como A* ¢ infinito, fixando v > k nesse conjunto nés obtemos

F(g¥,....d")=F(fr,..., %) =0 (mod p*).
Com isso, nés obtemos sequéncias (g¥), ..., (¢¥) de inteiros de modo que F(g¥, ..., g¥) = 0 (mod p¥)
para todo inteiro positivo k. Afirmamos que essas sequéncias induzem sequéncias coerentes
(g¥ (mod p*)), ..., (gF (mod p¥)). Fixemos 1 < j < n, e sejam k < { inteiros positivos. Es-
colhemos v € A’ qualquer. Entéo I = gf (mod pg), e como v € AY C AF temos também
= gé? (mod p*). Desse modo, gi=fr = gf (mod p*), como queriamos.
Com isso, podemos definir g1 := (g} (mod p*)) € Z,,...,gn == (¢F (mod p*)) € Z,. Afirma-

mos que F(gi,...,gn) = 0. De fato, como soma e multiplicacdo em Z, sdo dadas coordenada a
coordenada, nds temos:
Fgi,--n0n) = (F(gt (modp ); -+ g (mod p¥)))
= (F(g),-.-,gy) (mod p))

= (0 (mod p")) = 0.

Isso prova que a equacdo F'(z1,...,2,) = 0 tem solucdo em Z,, como querfamos. ]



Capitulo 10

Extensoes de Valores Absolutos

Nosso objetivo neste capitulo é estudar as extensées algébricas L/K de um corpo com valor
absoluto (K, |-]), e como podemos estender o valor absoluto de K para L.

10.1. O Lema de Hensel

O caso em que mais podemos tirar informagoes é quando (K, ||) é completo. Se |-| for arqui-
mediano, entdo o Teorema de Ostrowski nos garante que K =2 R ou K =2 C. Suponhamos
entao que || seja ndo-arquimediano. Nesse caso, temos uma valoragdo v associada. Denotaremos
(K,v,]|,A,p,x). Nesse contexto, aparece o Lema de Hensel. Como veremos, além de ser
fundamental no estudo de extensbdes de valoragoes esse resultado é importante por si s, tendo
aplicagoes diretas no estudo da estrutura de Z, e na resolu¢ao de congruéncias moédulo poténcias
de primos.

Definigdo (Contetido/Polinémio Primitivo). Seja f(z) = ag + a1 + -+ + a,z™ € Alz]. Defi-
nimos o conteido de f como sendo |f| = max{|ag|,...,|an|}. O polinémio f é chamado de
primitivo se |f| = 1. Note que isso é equivalente a dizer que algum dos coeficientes ay, . .., ay,
nao estd em p. Denotaremos ainda f # 0 (mod p).

Com essa defini¢do, conseguimos enunciar o Lema de Hensel:

Teorema 10.1 (Lema de Hensel). Seja (K, v, ||, A,p, k) um corpo completo. Suponhamos que um
polinémio primitivo f € Alz| admita médulo p uma fatoracdo f = gh (mod p), onde g, h € k[z]
s@o coprimos. Entdo f admite uma fatoracdo f = gh em polinémios g, h € A|z] tais que d g = 07,
g=79 (mod p) e h="h (mod p).

Demonstragdo. Indiquemos por f € k[z] o polindémio induzido por f. Sendo f primitivo, vemos
que f #0. Como f =gh, vemos que d f =95+ 0h=0h=0f—-0g <9 f—0g. Chamemos
d:=0fem:=0g. Entdod—m > 0 h. Assim, conseguimos achar polinémios go(z), ho(z) € A[z]
com g = go (mod p) e h = hy (mod p) tais que dgo = dg =m e dhg = dh < d—m. Como
g e h sdo coprimos em k[z], conseguimos ainda encontrar polinémios a(z),b(x) € Alx] tais que
ago + bho = 1 (mod p).

Notemos que f — goho € p[z] e ago + bho — 1 € p[z]. Entre todos os coeficientes desses dois
polinémios, escolhemos 7 com maior valor absoluto possivel, ou equivalentemente com menor
valoragdo possivel. Como 7 € p, temos v(w) > 0. Sendo ¢ qualquer outro coeficiente desses
polin6émios, vemos que v(7) < v(c) = v(c¢/7) > 0. Assim, ¢/7 € A. Isso mostra que 7 divide
todos os coeficientes desses dois polindmios. Ou seja, f = goho (mod 7) e ago + bhg = 1 (mod 7).

Nosso objetivo ¢ definir sequéncias (p,,) e (gn,) de polindmios em A|z] satisfazendo dp, < m e
0 qn < d—m para todo inteiro positivo n, de modo que, para todo inteiro positivo n, definindo os

171
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1 nés tenhamos

polindmios gn—1 == go+ P17+ -+ Pp 17" L e hp_1 :=ho+ @4+ guoaT"”
f = gn—1hn—1 (mod ™). O caso n =1 foi visto acima.

Suponhamos por inducdo que pi,...,Pn—1 € q1,...,qn—1 j& tenham sido determinados, de
modo que f = gn—1hp—1 (mod 7). Notemos que, uma vez determinados p, e ¢,,n6s teremos

Gn = Gn-1 + pnm™ € hy = hp—1 + gu7". Assim, queremos que valha a congruéncia

f = gnhn = (gnfl +pn7rn)(hnfl + Qnﬂ-n)
= gnflhnfl + 7" (gnfl(In + pnhnfl) (HlOd ™
=  [f—gn-1hn—1 = 7I-n(gn—lQn +pnhn—1) (I’IlOd 7Tn+1>-

n+1>

Seja frn =7 "(f — gn—1hn—1) € Alz]. Entdo a tltima congruéncia acima equivale & congruéncia
9n—1Gn + Prhn—1 = fn (mod 7). Como g,_1 = go (mod 7) e h,,_1 = ho (mod 7), isso por sua vez
equivale a gogn, + hopn = frn (mod 7). Como agg + bhy =1 (mod 7), temos:

go(afn) +ho(bfn) = fr (mod 7).

Noés gostariamos de definir ¢,, = af, e p, = bf,, mas os graus desses polinémios podem ser grandes
demais. Para resolver o problema, dividamos bf,, por go. Assim, encontramos ¢, p, € K|[z|, com
dpn < 0go = m, tais que bf, = qgo + pn. Como gy =g (mod p) e d gy = 97, o coeficiente lider
de go ndo estd em p, e portanto estd em A\ p = A*. Sendo esse coeficiente lider inversivel, vemos
que q(z),pp(z) € A[z]. Assim, multiplicando a igualdade acima por ho(x) e somando goaf, de
ambos os lados, nés obtemos:

goafrn + hobfn = goafn + hoggo + hopn = fn = go(afn + hogq) + hopn (mod ).

Como f, = 7 "(f — gn-1hn-1), 0 f =d e dgn-1hn-1) = O(gn-1) + O(hpn-1) <m+ (d—m) =d,
temos 0 f,, < d. Além disso, dgo = m e dhop, < (d—m)+ m = d. Desse modo, como nés
temos a congruéncia f, = go(af, + hogq) + hopn (mod 7), vemos que ignorando os coeficientes de
afn + hog que sdo miltiplos de ™ nds obtemos um polindémio ¢, € Alz] com 9 ¢, < d—m. Com
isso, nés temos f, = gogn + hopn (mod 7), e encontramos p, e ¢, que satisfazem as condigdes
desejadas.

Entéao conseguimos as sequéncias (p,) e (¢n), e a partir delas as sequéncias (g,) e (hy,). Note
que pelas defini¢des de g, e de h,, e pelas condi¢oes nos graus dos p;’s e ¢;’s nés temos 0 g, = m
e Ohp, < d—m, para todo n € IN. Escrevamos agora gy e os p;’s por extenso, digamos:

go(z) = AWH+WNe+ a0 2™ ™, e
pj(z) = ’78 ozt +’yf;1,1xm*1, para todo j > 1.

Assim, para todo n € IN, nds temos:

m—1 n
gn = g0+ D1+ + P = ™ + Y (vawj) z'.
i=0 \j=0

Para 0 < i < m — 1 os coeficientes de z° nos g,’s formam uma série ( ?:0 vfﬂj). Como v(m) > 0,
temos v(7/) = ju(r) para todo j € N, logo v(7?) — 0o = 7/ — 0. Desse modo, é fcil ver que a
série dos coeficientes de z¢ converge para um ~y; = 720 ylml € A. Obtemos entdo um polindémio
g9(z) =9 +mx+ -+ 2™ que é, em certo sentido, o limite dos polindmios g, ().

Do mesmo modo, obtemos um polindémio h(x) € A[z], de grau no maximo d —m, que é o
“limite” dos polindmios hy,(x). Observemos que, para todo n € IN, nés temos g = g,—1 (mod 7™)
e h = hyp—1 (mod 7). Assim, para todo n > 1, nés temos gh = gn—1hp—1 = f (mod 7). Ou
seja, os coeficientes de gh e de f coincidem médulo 7™ para todo inteiro positivo n.

Logo os coeficientes de f — gh estao todos em (),,~; 7" A. Afirmamos que essa intersecao é 0.
Seja o € ,,>1 ™A qualquer. Entdo, para todo n > 1, temos o € m"A = v(a) > v(7") = nv ().
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Como nv(m) — oo, temos v(a) = 0o = a = 0, como querfamos. Assim, todos os coeficientes de
f —gh sdo 0, ou seja, f = gh. Finalmente, como 7 € p, concluimos que g = gy = g, (mod p) e
h = hg = hy (mod p), provando o resultado desejado. O

O Lema de Hensel, por vezes, também é conhecido como Lema do Levantamento de Hensel.
Isso é devido a uma aplicacdo desse lema para “levantar” uma raiz em k para uma raiz em A,
ou ainda “levantar” uma solucdo de uma congruéncia médulo p para solugdes dessa congruéncia
moédulo poténcias de p. De fato, ndés temos os seguintes corolarios, que também sdo conhecidos
como Lema de Hensel:

Corolario 10.2 (Lema de Hensel). Seja (K, A,p,k) um corpo completo. Sejam f € Alx] um
polinémio e f = f (mod p) € k[z]. Suponhamos que @ € k satisfaca f(@) =0 e f (@) # 0. Entdo
existe um unico a € A tal que @ = a (mod p) e f(a) = 0.

Demonstragdo. Como f(a) = 0 e ?/(E) # 0, vemos que @ é uma raiz simples de f. Assim,
f(z) = (x —a)h(z), onde h € k[x] e z —@ { h(z). Podemos entdo aplicar o Lema de Hensel
para concluir que existem a € A e h(z) € Alz] tais que f(z) = (x —a)h(z), a (mod p) =a e
h (mod p) = h. Assim, f(a) = 0 e vemos que a satisfaz todas as condigdes desejadas.
Finalmente, para mostrar a unicidade de a, suponhamos que exista b # a em A com f(b) =0
e b=a(mod p). Entao devemos ter h(b) = 0, e portanto h(a) = h(b) = 0 (mod p), um absurdo
ja que x —aft h(z). O

Corolario 10.3 (Lema de Hensel). Seja p € IN um primo.

(a) Seja f € Zy[x], e suponhamos que a € Z,, satisfaca f(a) =0 (mod p) e f'(a) # 0 (mod p).
Entio existe um dnico o € Zy tal que f(a) =0 e @ = a (mod p

(b) Seja f € Z[x], e suponhamos que a € Z satisfaga f(a) = 0 (mod p) e f'(a) # 0 (mod p).
Entado, para todo inteiro positivo n, existe ay, € Z tal que f(a) = 0 (mod p™) e tenhamos
ay = a (mod p).

Demonstragao.  (a) Segue facilmente do corolario acima.

(b) Sejaa € Z, tal que f(a) = 0em Z, e @ = a (mod p), que existe pelo item (a). Para cada n
inteiro positivo, seja a;,, € Z tal que a,, = o (mod p™). Entao f(ay,) = f(a) = 0 (mod p")
e a, = a = a (mod p), mostrando existéncia.

O]

Exemplo 10.4. Sejam p € N um primo, n um inteiro positivo e a € Z.. Procuramos determinar
se existem raizes n-ésimas de a em Q,,, ou seja, raizes do polinomio x"™ —a em Q,. Comecemos

observando que, se a € Q,, for tal que o™ = a, entdo |al, = {/lal, <1, e portanto o € Z,. Se
existir uma raiz n-ésima o € Z,, de a, entao o = a, e analisando moédulo p concluimos que @
é poténcia n-ésima em F,. Supondo p{ a,n, a reciproca também vale. De fato, suponhamos que
2" = a (mod p) admita uma solugio r. Em particular, p t . Notemos que (z™) = na" !, e
nr™ 1 £ 0 (mod p). Assim, estamos nas condigdes de aplicar o Lema de Hensel para concluir que
existe um unico o € Zy tal que &' = a e o = r (mod p).

Concluimos que, se p { a,n entio as raizes n-ésimas de a em Z, estao em bije¢io com as
raizes n-ésimas de a em IF,. Em particular, a possuird raiz n-ésima em Z, se e somente se a

possuir raiz n-ésima em Fp.

Como um caso particular do exemplo acima, consideremos o problema de determinar todas
as raizes da unidade em Q,,. Pelo visto acima, basta encontrarmos as raizes em Z, do polindmio
z" — 1, para n inteiro positivo. Comecemos considerando n = p — 1. Notemos que todos os
elementos nao-nulos de IF, sao raizes de 2P~1 — 1. Assim, pelo exemplo acima, concluimos que Z,
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possui todas as p — 1 raizes (p — 1)-ésimas da unidade, e que estas juntamente com o 0 formam
um sistema completo de representantes do corpo residual de Z,, que é fechado por multiplicacao.
Afirmamos que na verdade nés temos:

Proposic¢ao 10.5. Seja p € N primo. Entao o corpo p-ddico Q,, possui todas as raizes (p—1)-
ésimas da unidade, e estas sao todas as raizes da unidade em Q,, exceto no caso p = 2 onde
também temos a raiz da unidade —1.

Demonstragao. Seja n um inteiro positivo. Suponhamos inicialmente que p t n. Entdo pelo
Lema de Hensel vemos que as raizes n-ésimas da unidade estdo em bijecdo com as solucgoes de
2" =1 em IF,. Como ]F; é ciclico de ordem p — 1, é facil ver que o ntimero de tais solugoes é
igual a mdc(n,p —1). Assim, existird uma raiz primitiva n-ésima da unidade se e somente se
n = mdc(n,p — 1), ou seja, se e s6 se n | p— 1. Note que caso n | p— 1, toda raiz n-ésima da
unidade também é uma raiz (p — 1)-ésima, entdo nao obtemos raizes novas além das p — 1 que ja
tinhamos.

Falta considerar o caso p | n. Nesse caso, ndo podemos aplicar o Lema de Hensel, mas pode-
mos aplicar um levantamento de raizes moédulo poténcias de p também nesse caso. Comecemos
considerando o caso p > 2. Mostraremos que nao existem raizes p-ésimas primitivas da unidade
em Z,, e portanto também nao poderao existir raizes n-ésimas primitivas da unidade em Z,,.

Para isso, suponhamos que o € Z,, seja tal que a? = 1. Pelo Pequeno Teorema de Fermat,
a =aP =1 (mod p). Entdo podemos escrever o = pf8 + 1, para 8 € Z,. Mostraremos que 3 = 0.
Para isso, notemos que para todo k inteiro positivo nés temos:

1=0a” = (pB+1)? =pPBP +1 (mod p*) = p?P = 0 (mod p*) = AP = 0 (mod p*~P).

Como k é qualquer, vemos que (P € ﬂtzopt Z, = {0} = f = 0. Assim, @ = 1 é a tnica raiz
p-ésima da unidade em Z,,, como queriamos.

Suponhamos agora p = 2. Entdo 22 —1 = (z + 1)(z — 1) possui raizes 1 e —1 em Q.
Como 2 | n, podemos escrever n = 2Ym, para v = v3(n) e m inteiro positivo impar. Entao
a” =1= (a?)™ =1 = o¥ =1, j4 que a tnica raiz m-ésima da unidade em Zy é 1. Isso
mostra que nao existem raizes primitivas n-ésimas da unidade para m > 1. Para concluirmos a
demonstragao, basta mostrarmos que nao existe raiz primitiva quarta da unidade em Zs.

Suponhamos que « seja uma raiz primitiva quarta da unidade em Z,. Entdao o = 1, e
assim (a? —1)(a?+1) = 0. Como « é raiz primitiva quarta, temos o + 1 = 0. Em particular,
a?+1=0(mod 4), um absurdo j& que —1 ndo é residuo quadrético médulo 4.

Assim, s6 existem raizes primitivas n-ésimas da unidade em Q,, para n | p—1 e, caso p = 2,
para n = 2, o que conclui a demonstracao. ]

Com o resultado acima, conseguimos ainda mostrar que os corpos p-adicos sdo dois a dois
nao-isomorfos, como haviamos prometido:

Proposicdo 10.6. Os corpos p-ddicos sao dois a dois nao-isomorfos. Isto €, dados p # q primos
ou oo, temos Q, Z Q,.

Demonstragdo. Pelo resultado acima, existem exatamente 2 raizes da unidade em Qq, p — 1 raizes
da unidade em Q,, para p primo impar, e 2 raizes da unidade em Q,, = R. Com isso, vemos
que os tnicos corpos p-adicos que poderiam ser isomorfos entre si sdo Qq, Q3 ¢ Q,, = R. Como
2 nio é residuo quadrético médulo 3, vemos que 22 — 2 ndo possui raiz em Qs, e como 3 nio é
residuo quadratico médulo 4, vemos que x? — 3 ndo possui raiz em Q,. Como esses polindmios
claramente possuem solugoes em R, vemos que R 2 Q,, Q3. Finalmente, para ver que Q5 e Q3 nao
sdo isomorfos, consideremos o polinémio 22 — 10. Como 10 = 1 (mod 3) é residuo quadratico, pelo
Lema de Hensel vemos que esse polindmio tem raiz em Qs. Por outro lado, como 10 = 2 (mod 4)
nao é residuo quadratico, vemos que esse polinémio nao tem raiz em Q,, mostrando portanto que

Q; # Qs. O
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Outra importante consequéncia do Lema de Hensel é a seguinte:

Corolario 10.7. Seja (K,|-|,A,k) um corpo com wvalor absoluto ndo-arquimediano completo.
Entdo, para todo polinomio irredutivel f(x) = ag + a1z + -+ + apa™ € Klz| tal que apa, # 0,
nds temos | f| = max{|ag|, |an|}. Em particular, se a, =1 e ag € A entdo f € Alx].

Demonstragio. E facil ver que existe ¢ € K tal que |ef| = 1. Em particular, ¢f € Alz].
Desse modo, podemos supor sem perda de generalidade que f € A[z] é tal que |f| = 1.
Seja 0 < r < n minimo tal que |a,|] = 1, ou equivalentemente r minimo tal que a, & p.

Entéao f(z) = 2" (ar + aps12 4+ -+ apz™ ") (mod p). Se tivéssemos max{|ao|, |a,|} < 1, entdo
terfamos 0 < r < n, e ? se fatoraria em k[z] em dois polindmios =" e @, + Gry12 + -+ - + TG "
primos entre si. Portanto, pelo Lema de Hensel, f se fatoraria nao-trivialmente em A[z|, um
absurdo! Isso conclui a demonstragao. O

10.2. Extensoes de Corpos Completos

Nessa se¢ao, mostraremos que toda extensdo algébrica L de um corpo completo (K, |-|) admite
uma Unica extensao de |-|, e que se L/ K for finita nds teremos uma férmula para essa extensao e
L também serd completo. Comecemos definindo a no¢do de norma em um espago vetorial sobre
um corpo com valor absoluto, que generaliza a defini¢do para espacos vetoriais normados sobre R
e C:

Defini¢do (Norma/Espac¢o Normado/Normas Equivalentes). Seja V um K-espago vetorial. Uma
norma em V é uma fungao ||-||: V' — Ry que satisfaz:

(i) Dadov eV, ||v]| =0 <= v = 0;
(ii) Dados a € K, v € V, temos ||av|| = |a|||v];

(iii) (Desigualdade Triangular) Dados v,w € V, temos ||v + w|| < [Jv|| + ||w]|.

Um K-espago V munido de uma norma |-|| é chamado de espago (vetorial) normado, e
denotado (V,[-||). Note que uma norma ||-|| em V induz uma métrica em V' com distancia dada
por d(z,y) := ||z —y||, e portanto também induz uma topologia em V. Duas normas em V sao

ditas equivalentes se elas induzirem a mesma topologia em V.

Note que, dado n inteiro positivo, podemos definir no espago vetorial K™ a nmorma do
maximo, dada por ||(a1,...,a,)|| = max{|ai|,...,|a,|}. Observe ainda que, dado um K-espago
V' de dimensao n, fixada uma base {vi,...,v,} de V nés temos um isomorfismo ¢: K" — V
dado por (ai,...,a,) = ajv; + -+ + apv,. Por meio desse isomorfismo, nds podemos transferir
a norma do méximo de K™ para V, definindo a norma do maximo em V associada a v1,...,v,
de modo que valha a relagao ||o(-)|| = @(||]]), isto é, |a1vy + - - - + apvy|| == max{|a1], ..., |an|}.
E claro que ¢: (K™, |-||) = (V,|-]]) é um homeomorfismo.

A seguinte proposi¢do generaliza resultados cldssicos sobre espagos vetoriais normados de
dimensao finita sobre IR ou C:

Proposigdo 10.8. Seja (K, |-|) um corpo completo.
(a) Seja n um inteiro positivo. Entiao (K", |-||) é completo, onde ||-|| é a norma do mdzimo.

(b) Seja (V,||) um K-espago vetorial normado de dimensao finita n. Entdo, para toda base

{v1,...,0n} €V, a norma do mdzimo ||| associada a vi,...,v, é equivalente a norma |-|
de V.
Assim, o isomorfismo (K™, ||-||) = (V,]||]) dado por (a1,...,an) — ajv1 + -+ + apv, € um

homeomorfismo e (V,|-|) é completo.
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Demonstragio.  (a) Seja ((a¥,...,ak)) uma sequéncia de Cauchy em (K™, ||-||). Como a norma

» '
em K" é a do maximo, isso significa que (aé?
todo 1 < j < k. Como (K,|-|) é completo, vemos que para 1 < j < n temos af —aj € K.

Assim, é facil ver que (a¥,...,ak) — (a1,...,a,) € K™. Isso prova que K™ é completo.

) é uma sequéncia de Cauchy em (K, |-|) para

Comecemos observando que, se mostrarmos que |-| é equivalente a ||-||, entdo podemos
concluir que o mapa (K", |-|) — (V,|-]) dado por (ai,...,an) — a1v1 + -+ + apv, é um
homeomorfismo, pois ele é a composigio do homeomorfismo (K™, |-[]) — (V,|]|) dado
por (ai,...,an) v ajv; + -+ + ayv, com a identidade id: (V,|[|-]|) — (V,]:]), que é um
homeomorfismo ja que ||-|| e |-| sdo equivalentes. Note que isso mostra que (V,|-|) é completo,
pelo item (a).

Provaremos a equivaléncia dessas normas por indug¢do em n. Comecemos considerando o
caso n = 1. Seja v € V nao-nulo e ||-|| a norma do maximo correspondente a base {v}.
Seja |-| uma norma qualquer em V. Dado z € V qualquer, podemos escrever x de modo
unico como x = av, para a € K. Entao |z| = |a||v| = ||z]||v]. Assim, [|-|| e |-| diferem
por uma constante multiplicativa, de modo que induzem a mesma topologia, e portanto sao
equivalentes.

Suponhamos por indugao que valham as afirmagdes do enunciado para n — 1, e seja (V,|-|)

um espaco vetorial sobre K de dimensdo finita n. Sejam v1,...,v, € V elementos que
formam uma base e ||-|| a norma do méximo correspondente. Para provarmos que |-| é
equivalente a |||, basta mostrarmos que existem constantes p, p’ > 0 tais que:

pllall < || < p'lla]l, para todo z € V.
Dado x € V qualquer, podemos escrever x = ajv1 + - -+ + anv, para ai,...,a, € K. Assim:
2] = [arvy + -+ + anvn| < an|vi] 4 -+ + lan||va] < (Jor] 4+ + [on])|2]-

Logo podemos tomar p’ = |vi|+ -+ |v,|. Para cada 1 < i < n, seja V; C V o su-
bespago (n — 1)-dimensional V; := Kv; + -+ 4+ Kv;—1 + Kvi11 + - - - + Kvy,. Pela hipdtese
de indugao, cada V; é completo com respeito a restricao de |-|. Assim, V; é um subconjunto
fechado de V' com relagdo a ||, e portanto v; + V; também o é. Como 0 & U (v; +V;) e
{0} é compacto, existe uma vizinhanca de 0 disjunta de {J;-(v; + V;). Dessa forma, existe
p > 0 tal que |w;| > p, para todos 1 <i <new; €v;+ V.

Afirmamos que p satisfaz a condicdo desejada. Para isso, seja x € V qualquer. Podemos

escrever £ = ajvy + - - -+ apvy, paraay, ..., a, € K. Suponhamos que 1 < r < n seja tal que
lar| = max{|a1|,...,|an|} = ||z]|. Entdo a; lz = a tajvy + -+ v+ +a o, €0+ Vi
de modo que |a'z| > p. Logo |z| > pla.| = p||z||, como queriamos. Assim, ||| e |-| sdo

equivalentes, concluindo a demonstragao.

O]

Finalmente, nés conseguimos obter o seguinte resultado sobre extensoes de valores absolutos:

Teorema 10.9. Seja (K, |-|) um corpo com walor absoluto completo, e seja L uma extensio
algébrica de K. Entao || admite uma unica extensao a um valor absoluto de L. Além disso, se

[L: K] =n < oo, entdo essa extensdo é dada por |a| = {/|Np, k()| e L é completo com relagio
a esse valor absoluto.

No caso de || ser ndo-arquimediano, temos ainda que o anel de valoragdo associado a |-| em
L ¢é igual ao fecho integral em L do anel de valoragio de K (mesmo no caso de uma extensao
algébrica infinita).
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Demonstragao. Se |-| for um valor absoluto arquimediano, entao pelo Teorema de Ostrowski temos
K =R ou C. Como a tnica extensao algébrica ndo-trivial de R é C e C é algebricamente fechado,
basta considerar o caso em que K = IR e queremos estender seu valor absoluto usual |-|» para C.
Como todos os valores absolutos de C sdo da forma |-|5, para s € (0,1], o tnico valor absoluto
de C que estende |-|» é o valor absoluto usual |-|o de C. Finalmente, notemos que dado z € C,
temos N¢ /r(z) = 2Z = |2|%,, de modo que vale a férmula indicada.

Consideremos agora o caso |-| ndo-arquimediano. Suponhamos inicialmente [L : K| = n < oo.
Comecemos mostrando a existéncia de uma extensao de |-| a L. Para isso, mostraremos que vale:

B={a€eL: Ny /k(a) e A}, (10.1)

onde A é o anel de valoragiao de K e B := A%, Como A ¢ integralmente fechado pela Proposicao
9.8, a continéncia (2) segue do Coroldrio 1.30. Para a outra continéncia, seja o € L* tal que
Np/k(a) € A. Seja

Pyk(z)=ao+aiz+---+ ag_1x¥ 1+ 2 € K|[x]

o polindmio minimal de « sobre K. Entao temos Ny, i () = £af’, para m = [L : K(a)]. Como
INL/ k()] <1, temos |ag| < 1, e portanto pelo Coroldrio 10.7 nds concluimos que P, i (z) € Alz],
e portanto o € B. Consideremos entao a fungao |-|: L — R4 dada por |a| = {/|Np,k(a)|. Para

a € K, temos Ny, i(a) = a™, de modo que |-| é uma fun¢do que estende nosso valor absoluto
original. Mostremos que esse é um valor absoluto em L:

o |la| =0 < Np/k(a) =0 <= a=0;

» Dados a, 3 € L quaisquer, |aB| = {/|N/x (aB)| = {/|NL/xc ()| {/INL/x(8)] = [ol B;

o Mostraremos que a desigualdade ultramétrica segue da implicacdo |z| < 1 = |z + 1] < 1,
para todo x € L. Suponhamos que valha essa implicacdo, e sejam «,3 € L quaisquer.
Suponhamos sem perda de generalidade que |o| < |B], e que 5 # 0. Queremos mostrar
que |a+ 8| < |B]. Dividindo por |f|, isso equivale a ’%—1—1’ < 1. Como |a/B] <1, a
desigualdade ultramétrica segue entdo da nossa implicagdo tomando x = o/ S.

Provemos entao que vale |x| <1 = |x 4 1| < 1, para todo = € L. Mas dado y € L, temos
ly <1 <= |Np/k(y)| <1 <= Np,k(y) € A < y € B, onde a ultima equivaléncia
segue de (10.1). Assim, a implica¢do |z| <1 = |z+ 1] < lequivaleaz € B=xz+1 € B,
que é claramente verdadeira.

Assim, |-| como definido acima é de fato um valor absoluto em L que estende o valor absoluto
inicial de K. Notemos ainda que B é o anel de valoragao associado. De fato:

B={a€eL:Nyk(a)e A} ={a€L: |Npg(a)] <1} = {a € L: {/|Np/g(a)] < 1}
= {a€el:|af <1}

Mostraremos agora unicidade. Seja || outra extensao de |-|, e seja B’ seu anel de valoragao.
Chamaremos o tnico ideal maximal de B de 8 e o tinico ideal maximal de B’ de ¢’. Pro-
varemos que B C B’. Suponhamos por absurdo que exista a € B\ B’. Entdo nds temos
o >1= a7 <1=ateP. Seja Pox(z) =ao+arx+ -+ ag_127t + 2¢ € Alz]. Logo:

ap+aa+--+ag108 M +al=0=1=—ala ) —a(aH - —agy_ a7t e,

um absurdo! Assim, B C B’. Com isso, obtemos que |o| < 1 = |a|' < 1 para todo a € L. Isso
significa que os valores absolutos || e |-|" sdo equivalentes, pois caso contrario pela demonstragao
do Teorema da Aproximagdo nds conseguiriamos encontrar o € L tal que |a| < 1 e |a > 1.
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Sendo equivalentes, |-|" = |-|* para algum s > 0. Mas como ambos os valores absolutos coincidem
em K, vemos que |-|' = |-|, como querfamos. A completude de L segue entdo imediatamente da
Proposigao 10.8, ja que L é um K-espago vetorial de dimensao n e |-|: L — R é uma norma.
Consideremos agora o caso em que L é uma extensdo algébrica qualquer de K. Para nao
confundir a notagdo, denotaremos o valor absoluto de K por ||k, e para cada extensdo finita M

de K denotaremos por |-|ps o tnico valor absoluto em M que estende || k.

Nesse caso nés definimos, para a € L qualquer, |a| = KR[Ny ). ()] = |l g (q)- E claro
que |a| =0 <= « = 0. Mostremos agora as outras duas propriedades de um valor absoluto.
Sejam «, 3 € L quaisquer. Notemos que a restri¢do de |-[x(q,3) @ K () coincide com ||g(q),
pela unicidade que ji provamos. Assim, | = |a|g (o) = @]k (q,3)- Da mesma forma, vemos que
1Bl = 1Blk(a,p) o+ Bl = |la+ Bli(a,p) € laB| = [aBlk(a,p)- Finalmente, como |-|x(q,z) € valor
absoluto, nds temos:

laB] = |aBlkap = lalk(apBlr(,s = a8, e
la+ 8] = la+Blk@s < lalk(as + 18lk@s = lal + 18],

provando que |-| é valor absoluto em L, que claramente estende |-|x. Sua unicidade segue imedi-
atamente das unicidades para as extensoes finitas. Falta apenas mostrar que o anel de valoracio

. . —L
B associado a |-| é igual a A™:

(C): Seja @ € B. Entdo |alg,) = |a] < 1, o que mostra que a estd no anel de valoragio

() pelo que vimos. Assim, o € Ak c A"

associado a |-k (), que é a*
(2): Seja o € A%, Entio o € A5, Como A 4 o anel de valoragdo associado a |-k (q),
temos |a|g (o) < 1. Mas entdo |af = |a|g) <1=a € B. O

Como consequéncia direta desse resultado, nds temos também um resultado sobre extensoes
de valoragoes:

Corolario 10.10. Seja (K,v) um corpo completo, e seja L uma extensao algébrica de K. Entdo v
admite uma dnica extensao a uma valoragio w em L. Além disso, se tivermos [L: K] =n < oo,
entdo L serd completo com relacdo a essa extensdo, que € dada explicitamente pela expressdo
w(o) = 2o(Np, (). Em particular, nesse caso w serd discreta se e somente se v o for.

Terminaremos essa se¢ao estudando um pouco do que ocorre no caso em que (K,v) nao é
necessariamente completo (veremos mais sobre isso nas proximas segoes). Consideremos o caso
em que L/ K é uma extensio finita de grau n e w é uma valoracido de L que estende v. Sejam k e
A os corpos residuais de L e K, respectivamente. Entao v(K*) C w(L*) sdo grupos aditivos de
R, e kK C A com a inclusdao canonica.

Defini¢ao (indice de Ramifica¢do/Grau de Inércia). Nas condigoes acima, nés definimos o indice
de ramificagdo da extensao (L, w)/(K,v) comosendoe(L | K) =e(w | v) = (w(L*) : v(K*)),
e o grau de inércia da extensdo (L,w)/(K,v) como sendo f(L | K) = f(w | v) := [A: K].

No caso de w, e portanto também v, serem discretas, essa nocao de indice de ramificacao
se relaciona com a outra definicdo de indice de ramificagdo. Para ver isso, sejam A o DVD de
K, p seu tnico ideal maximal e m seu normalizador. Sejam ainda B o DVD de L, B seu tinico
ideal maximal e IT seu normalizador. Entdao v(K*) = v(7) Z e w(L*) = w(I1) Z, de modo que
e(w | v) = (wII)Z : v(r)Z). Assim, v(7) = e(w | v)w(Il). Sejam e € Z e u € B* tais que
7w = ull®. Entdo nés temos v(w) = ew(IT), de onde concluimos que e = e(w | v). Agora, como
p=7A e P =1IB, nés temos:

pB=7B=1II°B = (IIB)* = %*.
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Ou seja, o indice de ramificagao e(w | v) coincide com o indice de ramificagao e(P | p).

A principio, ndo sabemos se o indice de ramificagao e e o grau de inércia f de (L,w)/(K,v)
sao cardinais finitos no caso geral. Mostraremos que isso é verdade e, mais do que isso, que temos
ef <n=[L:K]. Comecemos mostrando a finitude do grau de inércia:

Proposigdo 10.11. Seja (L,w)/(K,v) uma extensdo finita de corpos com valoragio de dimensdo
n. Entdo o grau de inércia de (L,w)/(K,v) é menor ou igual a [L : K|, isto é, f(w | v) <n.

Demonstragao. Denotemos (K, v, |-|,A,p,k) e (L,w,|-|,B,B,\). Nobs mostraremos que dados

T1,...,Tn € A linearmente independentes sobre k, teremos x1,...,z, € B linearmente indepen-
dentes sobre K, de modo que devemos ter [\ : k] < [L : K] = n. Para isso, suponhamos que
A, ...y An € K sejam tais que Ajz1 + -+ + Apz, = 0. Suponhamos por absurdo que algum

Aj # 0. Assim, podemos supor sem perda de generalidade que A\; # 0 possui valor absoluto
méximo entre os A;’s. Dividindo por A1, obtemos a relagao

1+ pore + -+ ppry =0,

onde p; = A;j/A1 para 2 < j < n. Notemos que \,uj] < 1 para todo 2 < j < n, de modo que
cada pj € A. Analisando médulo B, obtemos Ty + fi,T2 + - - - + [, T, = 0, de onde obtemos
uma relacdo nao-trivial entre T1,...,T, € A com coeficientes em k, um absurdo! Isso conclui a
demonstracao. O

Com isso, conseguimos mostrar também a finitude do {ndice de ramificacao de (L,w)/(K,v)
e a relagdo entre e(w | v) e f(w | v):

Proposigao 10.12. Seja (L,w)/(K,v) uma extensdo finita de corpos com valoragdo de dimensao
n. Denotemos e = e(w |v) e f = f(w | v). Entdo temos ef <n = [L: K|. Em particular, e é
finito.

Demonstragdo. Denotemos (K,v, A,p,k) e (L,w, B, B, ). Pela Proposi¢do 10.11, f é finito.
Sejam wr, ..., ws € B representantes de uma base da extensao A\/k. Seja {m;: 0 < j < e} C L*
tal que {w(m;): 0 < j < e} € R forme um conjunto de representantes das classes laterais de
w(L*)/v(K*). Nés mostraremos que os elementos da forma w;m;, paral < j < fe0<i <e,
sao linearmente independentes sobre K, o que nos dard a desigualdade desejada. Fixemos para
isso 0 < r < e inteiro positivo, e mostremos que {w;m;: 1 < j < f, 0 <i <r} é LI sobre K.

Sejam a;; € K tais que Y ;_ Zj;l a;wjm; = 0, e suponhamos por absurdo que nem todos
o0s a;;’s sejam nulos. Consideremos, para 0 <7 < r, s; == Z;;l a;jw;. Como nem todos os a;j’s
sao nulos e wy,...,wy sdo linearmente independentes sobre K pela demonstracao da Proposicao
10.11, vemos que nem todos os s;’s sdo nulos.

Afirmamos que quando s; # 0 temos w(s;) € v(K*). De fato, suponhamos que valha
S = Zj;l a;jw; # 0, e seja a; o coeficiente de menor valoragdo entre a;i1,...,a;r. Entdo cha-

mando b;; = a;j/ai, nés temos s;/a;; = 25:1 bijw;, temos cada b;; € A e by = 1. Notemos que
s;/a; € B, pois caso contrario terfamos Z;.c:l Bz-jwj = 0, um absurdo pela independéncia linear

de wy,...,wy. Assim, s;/a; € B\ B, de modo que
w(si/ai) = 0= w(s;) = w(ay) = v(ai) € v(K™).

Observemos agora que ;g s;m = 0, logo pelo Lema 3.26 vemos que existem 0 < i < j < r tais
que w(s;m;) = w(sjm;). Desse modo:

w(si) +w(m) =w(s;) +w(mj) = w(m) =w(r;) +w(s;) —w(s;) € w(my) +v(K™).

Assim, w(m;) +v(K*) = w(m;) +v(K*), um absurdo, pois w(m;) e w(m;) por hipdtese represen-
tam classes diferentes de w(L*)/v(K™). Assim, para todo 0 < r < e inteiro positivo o conjunto
indicado é linearmente independente sobre K, de modo que (r+1)f < [L : K| = n. Disso
concluimos que e é finito e ef < n, como queriamos. ]
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No caso em K é completo e v é uma valoracao discreta, vale de fato a identidade funda-
mental:

Proposigdo 10.13. Seja (L,w)/(K,v) uma extensdo finita de corpos com valoragio de dimensdo
n. Denotemos e = e(w | v) e f = f(w | v). Suponhamos que K seja completo e que v seja uma
valoragdo discreta. Entdo vale a identidade fundamental ef =n = [L: K].

Demonstragdo. Notemos que v discreta implica em w discreta, devido ao Corolario 10.10. Utili-
zemos as mesmas notagoes da demonstracao da proposi¢do acima. Nesse caso, como v é discreta,
podemos tomar m; = IT¢, para 0 < i < e — 1, onde IT é o normalizador do DVD B. Entdo nés
temos o A-modulo livre

e—1 f
M =YY" Aw;IT' C B.
i=0 j=1

Pelo Teorema 10.9, temos B = ZL, e como A é um DVD vemos que B é um A-modulo livre de
posto n = [L : K|. Assim, a demonstragdo estard completa se mostrarmos que B = M é um
A-moédulo livre de posto ef, e de quebra ainda mostraremos como achar uma base de B como
A-médulo. Para isso, seja N := Z;-c:l Aw;. Entao M = Zf:_& IT'N. Como as classes de wy, ... Wy
geram B/B = B/(I1B) como um A/ p-médulo, vemos que B = N + I1B. Assim:

B=N+TIIB = N+II(N +T1IB) = N +IIN +1I*°B
= N +TIIN +IT1*(N +11B) = N +TIN +II*N +IT°B

= N+IIN +---+II°'N 4+ 1I°B
= M+II°B =M+ (IIB) = M +p B.

Entdao B = M + p B, e queremos concluir que M = B. Para isso, notemos que

B=M+pB = M+p(M+pB) =M+pM+p>’B=M+p’B
= M+p(M+p*B)=M+pM+p*B=M+p>B

M +p* B,

para todo inteiro positivo k. Como {p* B: k € N*} é um sistema fundamental de vizinhancas de
0 em B, concluimos que M é um subconjunto denso de B. Consideremos agora

e—1 f
M =" Kuwll

i=0 j=1

Entdao M C M’ C L e M’ é um K-espaco de dimensao ef, de onde concluimos da Proposicao 10.8
que M’ é completo, e portanto fechado em L (é aqui que utilizamos a hipdtese de K ser completo).
Como A é fechado em K, é facil ver que M é fechado em M’, e portanto M é fechado em L, logo
também é fechado em B. Sendo M denso em B, concluimos que M = B, como queriamos. O

10.3. Extensoes Finitas

Nessa secao, mudaremos por praticidade a notacdo que utilizamos até entdo. Denotaremos por
v tanto uma valoracdo nao-arquimediana, que é o tipo de valoracdo que consideramos até entéo,
quanto uma valoracdo arquimediana, que é obtida como v = — loqu para algum valor absoluto
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|| arquimediano. Note que isso significa que v poderd nao satisfazer mais a propriedade nao-
arquimediana v(z 4+ y) > min{v(z),v(y)}.

Indicaremos ainda por ||, o valor absoluto associado a v, e sendo (K,v) um corpo com
valoragdo, indicaremos por (K,,v) o seu completamento. Fixado um fecho algébrico K, de K,,
como (K,,v) é completo sabemos pelo Teorema 10.9 que v se estende a uma tnica valoragao
v de K, com a qual (K,,7) se torna um corpo com valoragao. Notemos que K, é um corpo
algebricamente fechado que contém K.

Seja L/K uma extensdo algébrica qualquer. Entdo existe uma imersido 7: L — K, que fixa
K. Notemos que 7L se torna um corpo com valoragdo com a restricio de v, e essa valoracao
estende v. Assim, (L,7o7) é um corpo com valora¢iao e w := v o7 estende v. Em termos de
valores absolutos, temos |z|, = |Tz|7 para todo x € L. Assim, (L,||,) é um corpo com valor
absoluto e |-, estende [-|,.

Com isso, é facil ver que 7: (L, ||w) = (Ky,|-|z) é uma fungdo continua que fixa (K, |-|,).
Suponhamos agora que L/ K seja finita. Consideremos o completamento L., de L. Entao podemos
estender 7 para uma imersdo 7: L, — K, dada por lim,,_ssc Z, + lim,_yo0 7y, onde () é uma
sequéncia de Cauchy em L com respeito a ||, 0 limite da esquerda é tomado com respeito a ||y,
e o limite da direita é tomado com respeito a || (note que T preserva sequéncias de Cauchy, ja
que é uma funcdo continua). Observemos que 7: L,, — K, também é continua, e que 7 fixa K,,
onde vemos K, C L,, da forma canonica.

Como vimos, cada imersio 7: L — K, que fixa K nos d4 uma extensdo w :=vo7 de v a L.
Para cada automorfismo' o € Gal(K,/K,), podemos considerar 7': L — K, dado por 7/ := goT.
Entdo 7' também é uma imersdo de L em K, que fixa K, e dizemos que 7/ e 7 sdo imersdes
conjugadas sobre K,,.

Nosso objetivo é mostrar que toda valoragdo w de L que estende v é da forma w = vorT,
para alguma imersdo 7: L — K,. Para mostrarmos isso, seja w uma valoracio qualquer de L
que estende v. Entdo podemos ver L,, como extensdo de K, de forma candnica. Essa extensao é
finita:

Proposicao 10.14. Com as condi¢des acima, suponhamos que L = Kag + -+ Ka,, com
ai, ..., € L linearmente independentes sobre K. FEntao L, = Kyo1 + -+ + Kyay,. Assim,
[Ly : Ky < [L:K|. Além disso, L, = LK,.

Demonstra¢do. Como K, C L,, e L C Ly, a inclusdo Kya1 + -+ + Kya,, C Ly, € clara. Para
mostrar a inclusdo contraria, notemos que L = Koy + -+ Ka,, € Kyaq + -+ + Kyap,. Ob-
servemos agora que K,a; + -+ 4+ Kya, é completo pela Proposicdo 10.8, ja& que é um espago
vetorial de dimensao finita sobre K,. Sendo esse um espago completo que contém L, vemos que
L, C Kyay + - -+ Kya,, e portanto vale a igualdade L,, = K,a1 + - - - + Ky, como queriamos.

Mostremos agora que L,, = LK,. E claro que LK, C L,,. Para a inclusdo contraria, notemos
que LK, é um K,-espaco de dimensao finita, logo é completo pela Proposicdo 10.8, e como
L C LK, n6s concluimos que L,, C LK,. O

Assim, temos o seguinte diagrama:

Note que (Ly,w) é uma extensao de (K,,v). Na verdade, sendo L,,/K, finita, vemos pelo
Teorema 10.9 que w ¢ a Unica extensdo de v a L,. Mais do que isso, sendo n = [L : K], esse

! Aqui, Gal(K,/K,) denota o grupo dos automorfismos de K, que fixam K,.
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teorema nos da a férmula |x|, = {/|Np, /K, (x)]y. O diagrama acima nos mostra a passagem de
uma, extensdo finita L/ K para uma extensdo finita L.,/ K,, e representa o importante Principio
Local-Global, que busca relacionar informagoes sobre objetos e seus completamentos. O motivo
para esta nomenclatura vem do fato de que a localizacdo de um corpo global é um corpo local.
Esses sao dois conceitos importantes da Teoria dos Corpos de Classes, como veremos brevemente
no Capitulo 12. O que fizemos acima nos permite demonstrar o seguinte resultado:

Teorema 10.15. (Teorema da Eztensdo) Seja L/ K uma extensdo finita de corpos e seja v uma
valorag¢do de K. Entdo:

(a) Toda extensio w da valoragdo v a L é da forma w = voT para alguma imersio 7: L — K,
que fira K. Em particular, toda extensdo de uma valoragdo discreta é discreta.

(b) Duas extensées ToT e Dot serdo iguais se e s6 se T e T forem conjugadas sobre K,.

Demonstragao.  (a) Seja w uma valoragao de L que estende v, e consideremos sua extensao
candnica w a L. Seja 7: L — K, uma imersio que fixa K qualquer. Entdo, como vimos,
essa imersdo se estende a uma imersdo 7: L, — K, que fixa K,. Agora, ToT é uma
extensao de v a L,,. Como w também é uma extensdo de v a L,,, vemos pela unicidade do
Teorema 10.9 que w = To T em L,,. Restringindo essas valoragoes a L, obtemos o resultado
desejado.

(b) Suponhamos que 7 e 7’ sejam conjugadas, isto é, 7/ = o o T para um certo o € Gal(K,/K,).
Notemos que 7o o é uma valoracio de K, que estende a valoracio v de K,. Mas, pela
unicidade do Teorema 10.9, T é a Unica tal valoracdo, de modo que ¥ = T o . Isso mostra
que v o 7' =ToooT=7"o T, cCOmMo queriamos.

Reciprocamente, suponhamos que 7,7’: L — K, sejam imersoes que fixam K tais que
Tor =Tor. Entdo o: 7L — 7L dado por ¢ := 7/ o 77! é um isomorfismo de corpos que

fixa K. ComoToo =To7 ot ! =Toror™ ! =7, é facil ver que ¢ é uma funcio continua.

Afirmamos que conseguimos estender o a um isomorfismo o: 7L - K, — 7'L - K, que fixa
K,. Para ver isso, comecemos observando que 7L é denso em 7L - K, C K,, uma vez
que K C 7L é denso em K,. Assim, todo elemento x € 7L - K, pode ser escrito como
x = limy, o0 Ty, onde cada z, € L. Notemos agora que a sequéncia (7'z,) = (o7x,)
converge a um elemento oz = lim,_so 072, = lim, oo 7’2, € 7L - K,, uma vez que o é
continua e 7L - K,, é completo ja que é extensao finita de K.

E facil ver que o: 7L- K, = 7'L - K, estd bem-definida (isto é, ndo depende da sequéncia
(zy,) escolhida) e é um isomorfismo de corpos que fixa K. Assim, podemos estender o a um
automorfismo o: K, — K, que fixa K,, isto é, a 0 € Gal(K,/K,). Desse modo, obtemos
que 7/ = 0o é conjugada a 7, como queriamos.

O]

Como um caso concreto desse teorema, consideremos L = K(«), onde a € L é raiz de um
polindmio irredutivel f(z) € K|[z]. Nesse caso, as imersdes de L em K, sao da forma 7: L — K,
dadas por 7(a) = 3, onde 3 € K, é uma raiz de f(z). Suponhamos que a decomposigio de f(z)
em fatores irredutiveis de K,[z] seja f(z) = fi(z)™ --- fr(2)™". Entao duas imersoes 7 e 7/ de
L em K, serdo conjugadas sobre K, se e s6 se as raizes 7(a) e 7/(a) de f(x) forem conjugadas
sobre K, isto é, se forem raizes do mesmo polinémio irredutivel f;(z). Assim, como consequéncia
do Teorema da Extensdo, nés obtemos:

Proposigao 10.16. Suponhamos que L = K(«), onde a € L € raiz de um polinomio irredutivel
f(z) € K[z], e seja v uma valoragdo de K. Entdo as valoragées wy, ..., w, de L que estendem w
estao em bije¢dao com os fatores irredutiveis fi,. .., fr da decomposicao f(x) = fi(x)™ - fr.(2)™r
de f(xz) em polinomios irredutiveis de K,[z]. Para obter wj explicitamente, para 1 < j < r,



10.3. EXTENSOES FINITAS 183

fizamos a; € K, raiz de f;(x), e tomamos 7: L — K, dada por 7(a) = «j. Entdo wj =voT;.
Além disso, Tj: L — K, se estende a um isomorfismo 7j: Luy; — Ky(oy).

Dada uma extensao finita L/ K, usaremos a nota¢ao w | v para indicar que w é uma extensao de
v a L. Note que para cada w | v nés temos um homomorfismo de K,-algebras ¢,,: L @ K, — Ly,
dado por a ® b — ab. Assim, obtemos um homomorfismo de K,-algebras ¢: L @k K, — Hw‘v
dado por a ® b — (ab). Se L/ K for separavel, esse homomorfismo sera de fato um isomorfismo:

Proposicao 10.17. Com as condi¢oes acima, se L/ K for separdvel entio L Qx K, =[]
como Ky-dlgebras étale, com isomorfismo dado por .

w\v

Demonstragdo. Seja a € L tal que L = K (), e seja f(z) € K[z] o polindmio minimal de a.. Pela
proposi¢ao acima, os fatores primos de f(z) em K,[z] estdo em correspondéncia com as valoragoes
w | v. Como essa extensdo é separdvel, temos f(x ) = [Lupp fw(®), onde cada fy,(z) € Kylz] é

irredutivel. Desse modo, temos L @k K, = Hw|v Kol %> pelo Corolédrio 1.21, com isomorfismo
dado por g(a) @b+ (g(x)b (mod fy)).
Fixemos w | v. Notemos que <ff”([g> é o corpo de decomposi¢ao de f,, sobre K,, de modo que

também pela proposi¢do acima podemos concluir que é(’”([z%) = L., com isomorfismo dado por

h(z) (mod f,) + h(ay), onde oy, € K, é uma raiz de f,.

Desse modo, temos um isomorfismo de K,-algebras L @ K, = Hw|v L., que é dado por
g(a) ®b — (g(ay)b). Finalmente, basta notarmos que estamos identificando todos os au,’s
com «, de modo que nosso isomorfismo é g(a) @b — (g(a)b). Mas isso é exatamente o que
queriamos! O

Como corolério, nés obtemos varias relagoes entre a extensao L/ K e as extensoes L,/ K,:

Corolario 10.18. Com as condi¢ées acima, se L/ K for separdvel entdo nds temos a igualdade
[L: K] =3[l : Ky]. Além disso, para todo a € L nés temos:

Npsk(e) = [[ News, (@) e Trpyg(a) = Trp, k(o

wlv wlv

Demonstragdo. Segue imediatamente do resultado acima, juntamente com as Proposigoes 1.20 e
1.24 O

Seja k o corpo de residuos de K. Para cada w | v, denotaremos por A\, o corpo de residuos
de Ly, por e, = (w(L*) : v(K*)) o indice de ramificacao de (L,w)/(K,v) e por fu, = [Ay : K]
o grau de inércia de (L,w)/(K,v). Entdo nés obtemos a identidade fundamental da teoria
de valoracgoes:

Proposicao 10.19. Com as condi¢des acima:

(a) Dado w | v, o indice de ramifica¢io de L.,/ K, € ey, € o grau de inércia de Ly, /K, € fu.
Assim, [Ly 0 K] = ey fu-

(b) (Identidade Fundamental) Se v for discreta e L/ K for separdvel, entdo nds temos a igual-

dade 3=,y €wfuw = [L : K].

Demonstragao.  (a) Sabemos que v(K*) = v(K)S) e que o corpo de residuos de K;© é isomorfo
a k. Além disso, para cada w | v temos w(L*) = w(L)) e o corpo de residuos de L} é
isomorfo a A\,,. Com isso, o indice de ramificacio e o grau de inércia da extensado L.,/ K, sao
iguais a e, € fy, € a identidade fundamental para corpos completos nos dé [Ly, : Ky] = €y fu-
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(b) Pelo coroldrio acima, temos [L : K| = 3
[L: K] =3y €wfuw, como querfamos.

wiv[Lw * K], de onde pelo item (a) nés obtemos

O]

Suponhamos agora que A seja um dominio de Dedekind com corpo de fragoes K = Q(A), L

seja uma extensao finita e separdvel de grau n de K e B = A" Dado r € K* qualquer, temos
rA=1], p? (@) e assim:

2B = (zA)B = [[p*@ B =[[(p B)*»® = [[ ] pe>>.
P P P Rlp

Isso mostra que, dado p <A primo ndo-nulo e P | p, nds temos vy (x) = egpvy(x). Assim, %’Uﬁp
¢ uma valoragao de L que estende vp. De fato, o teorema abaixo nos diz que as valoragoes dessa
forma nos déo todas as extensoes de v, a L. Denotemos por K, o completamento de (K,v,) e
por Ly o completamento de (L, vy).

Teorema 10.20. Seja p <A primo ndao-nulo. Entdo o mapa P — %Um nos dd uma bijecao
entre o conjunto dos primos de B sobre p e o conjunto das valoracoes de L que estendem vy. Em

particular, nds temos L @ Ky = [y, Ly, € portanto valem as formulas:

[L:K]=> epfp, Nojxl(e) =[] Noy/k,(a) e Trpyg(a) = Trp, k(@)
Blp Blp Blp

Demonstracgdo. E claro que, para P | p e Q | p distintos, nds temos vy e vg nao-equivalentes.
Assim, basta provarmos que toda valoragdo de L que estende v, ¢ da forma %Um para algum
B | p. Seja w | v. Entdo w é discreta, pelo Teorema da Extensdo. Chamemos de W o seu DVD
correspondente, e de m o tnico ideal maximal de W.

Como w|g = vy, n6s temos A C W e mNA = p. Como W é um DVD, ele é integralmente
fechado em L, e portanto B = Ar C W = W. Chamemos P :=mNB < B. Como m | p, vemos
que P | p. Como B\'P C W \m = WX, vemos que By C W. Assim, By C W C L = Q(By).
Como nao existem anéis intermedidrios entre um DVD e seu corpo de fracoes, vemos que W = By,
e portanto w e vy sdo equivalentes, pela Proposicao 9.9. Como w|x = v, é claro que w = %vm,
como queriamos. O

Observagao 10.21. Note que a féormula [L: K| = > opip ep Sy € exatamente a identidade funda-
mental cldassica. Assim, noés a reobtemos no contexto de valoragoes.

Pela Proposicao 9.6, todas as valoragoes ndo-arquimedianas de Q sdo, a menos de equivaléncia,
as p-adicas, para p primo. Desse modo, devido ao teorema acima, nds temos:

Teorema 10.22. Seja K um corpo de numeros algébricos. Entdo toda valoracdo ndo-arquimediana
de K €, a menos de equivaléncia, da forma vy, onde p <O € um primo ndao-nulo.

Demonstragdo. Seja v uma valoragdo ndo-arquimediana de K. Entdo ela é a extensao da valoracao
v|q de Q, que deve ser equivalente a v, para algum p € IN primo. Assim, pelo teorema acima, v
deve ser equivalente a v, para p <Ok sobre p, o que conclui a demonstracao. O

10.4. Extensoes (Galoisianas

Suponhamos que L/ K seja uma extenséo finita galoisiana, com grupo de Galois G = Gal(L/K),
e que v seja uma valoragdo de K. Dados w | v e 0 € G quaisquer, vemos que wo o | v. Assim,
G age nas valoragoes de L que estendem v. Todas as valoragoes w | v sdo de fato conjugadas por
essa acdo. Note que esse resultado é do mesmo estilo da Proposi¢ao 6.1. Na demonstracao dela,
utilizamos o Teorema Chinés dos Restos. Desse modo, nao é surpresa que utilizaremos o Teorema
da Aproximagao para demonstrar esse resultado:
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Proposicao 10.23. O grupo G age transitivamente no conjunto W, das extensoes w | v, isto €,
quaisquer duas extensdes de v a L sao conjugadas por essa ag¢do.

Demonstragao. Sejam w | v e w' | v. Suponhamos por absurdo que w e w’ estejam em Orbitas
diferentes por essa a¢do. Entéo as érbitas {woo: o € G} e {w' oo: 0 € G} de w e de w’' por essa
agao sao disjuntas. Isso significa que os conjuntos {|o(+)|w} € {|o()|w} s@o disjuntos, e portanto
os valores absolutos de um conjunto e de outro sdo nao-equivalentes, ja que todos estendem |-|,,.

Desse modo, pelo Teorema da Aproximagao existe 2 € L tal que oz, < 1 e |oz|, > 1, para
todo ¢ € G. Entao por um lado obteriamos |Ny,x(z)s = [Iyeqlo(z)lw < 1, e por outro lado
obterfamos |Npz, i (x)]y = [Iyeqlo(®)]w > 1, um absurdo! O

Da mesma forma que o resultado acima lembra a Proposicdo 6.1, como veremos ao longo
desta secdo nos tragaremos um paralelo com o Capitulo 6. No caso de v ser nao-arquimediana,
denotaremos (K, v, ||y, A,p, k), e para cada w | v, (L, w, ||, Buw, Puws \w)-

E facil ver que Byoy = 07 'B,, € Puwoor = U‘liﬁw, para todo o € G. Com isso, vemos que
0: Byos — By induz um isomorfismo Ayosr = Ay que fixa k. Assim, [Ayos @ K] = [Aw @ K], Ou
seja, fuwor = fw. Temos também (woo)(L*) = w(L*), o que mostra que eyor = €. Logo pela
proposi¢ao acima e pela identidade fundamental nés concluimos:

Proposicao 10.24. Se L/ K for uma extensdo finita galoisiana e v for ndo-arquimediana, todo
w | v possui 0 mesmo indice de ramificacio e o mesmo grau de inércia. Chamemos esse indice de
ramificagdo comum de e, esse grau de inércia comum de f e de g := |Wy| o nimero de valoragies
de L que estendem v. Entdo caso v for discreta temos a identidade fundamentalefg = [L : K].

A notagao e, f, g definida acima serd padrao.

Defini¢ao (Grupo de Decomposi¢ao/Corpo de Decomposi¢iao). O grupo de decomposicao de
w | v é definido por Gy, = Gy(L/K) = {0 € G: woo = w}. Assim, G,, é o estabilizador de
w pela acdo de G. Seu corpo fixo é chamado de corpo de decomposi¢ciao de w sobre K, e é
denotado por Z,, = Z,(L/K) = {x € L: oo = x para todo o € Gy, }.

Como G age transitivamente em W, vemos que g = (G : G,), para todo w € W,. O grupo
de decomposicao de w consiste precisamente dos automorfismos de L que fixam K e que sao
continuos em relagdo a w:

Proposicao 10.25. G, € o conjunto dos o € G tais que o é continuo com rela¢io a w (isto é,
com relagao a ||y ).

Demonstragdo. Se o € Gy, entdo woo = w, e portanto |o(z)|, = |z|, para todo z € L.
Com isso, como o é automorfismo é ficil ver que o é continuo com relagdo a w nesse caso.
Reciprocamente, suponhamos que o € G seja continuo com relagao a w. Dado z € L qualquer tal
que |z]y < 1, temos que (z") — 0, e pela continuidade de o temos (o (z)™) — 0. Isso equivale a
lo(z)|w < 1. Ou seja, |z], < 1= |ox|, < 1. Isso significa que ||, € |o(+)]w sdo valores absolutos
equivalentes. Assim, wo o e w sdo valoraces equivalentes, e portanto iguais ja que ambas sao
extensoes de v. Isso prova que w oo = w, e portanto o € (G,, como queriamos. O

No caso em que v é uma valoracdo nao-arquimediana, nés conseguimos ainda definir seu grupo
de inércia e seu grupo de ramificagao:

Definigao ( Grupos/Corpos de Inércia/Ramificacdo). O grupo de inércia de w | v é definido
por:

I,=I,(L/K) = {0€Gy:ox=x(mod P,), para todo z € By}
= {o0€Gy:w(ox—x) >0, para todo x € By, }.
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Seu corpo fixo é chamado de corpo de inércia de w sobre K, e é denotado:
Tw=Tw(L/K):={x € L: ox =z, para todo o € I, }.

O grupo de ramificagdo de w | v é definido por:
Ry, =Ry,(L/K) = {a €Gy: =1 (mod PB,,), para todo = € LX}
T

= {UGGw:w<m1> > 0, paratodoxGLX}.
T

Seu corpo fixo é chamado de corpo de ramificagdo de w sobre K, e é denotado:
Vw =Vuw(L/K)={x € L: ox = x, para todo = € Ry}

Observacao 10.26. Notemos que se 0 € Gy, entdo de woo = w nds conseguimos obter que
0By = By e que ox/x € By, para todo x € L*, de modo que as defini¢ées acima fazem sentido.

Nés temos entao as continéncias G 2 Gy, 2 I, 2 Ry, e portanto K C Z,, C T, C V.
Suponhamos agora que L/K e L'/K' sejam extensoes de Galois finitas, e que tenhamos um
diagrama comutativo:

L ——- I

] ]

K —"T5 K’

Esse diagrama induz um homomorfismo 7*: Gal(L'/K') — Gal(L/K) dado por 7*(¢') = 7710’7,
Para ver que essa funcao estd bem-definida, devemos verificar que o’7L C 7L, para podermos
aplicar 771, Mas isso é verdade porque 7L/7K é extensdo normal, uma vez que L/K o é.

Suponhamos agora que w’ seja uma valora¢ao de L', e denotemos v/ := w'|g/, w == w' o1 e
v = w|g. Entdo é claro que v/, w e v sdo valoragoes de K', L e K, respectivamente, e que temos
w' v ew|w.

Proposig¢do 10.27. Com as notagoes acima, 7: Gal(L'/K') — Gal(L/K) induz um homo-
morfismo Gy (L'/K') = Gy(L/K). Além disso, se v for ndo-arquimediana, 7* induz também
homomorfismos Ly (L'/K') — I,(L/K) e Ry(L'/K') = R,(L/K).

Demonstragao. Suponhamos que o’ € G (L'/K'). Entdo w' oo’ = w'. Como w = w' o7, temos

w' =wo7 ! em 7L. Seja x € L qualquer. Entdo como ja vimos o'7(x) € 7L, e portanto:

1

wot (o) =wor 'o'r(x) =w' od'r(z) = w o7(x) = w(x).

Isso mostra que 7*(0’) € Gy (L/K), como querfamos. Consideremos agora v (e portanto v, w
e w') ndo-arquimediana. Suponhamos que ¢’ € I,(L'/K'). Sendo B o anel de valoracao de L,
queremos mostrar que para todo z € B temos w(7*(¢’)z —x) > 0. Como w = w' o1, é facil ver
que Tz pertence ao DVD de L’. Desse modo:

1

w(t* (o) —z) = w(r to're —2) = w(r o'tz — 1)) = W (o'Tx — T2) > 0,

onde na tltima desigualdade utilizamos que o’ € I,/ (L'/K’). Isso prova que 7*(o’) € I,(L/ K).
Suponhamos agora que o’ € R,/ (L'/K'). Dado z € L™ qualquer, temos 72 € L'*, e portanto:

" <T*(0’)w - 1) W (T_l"'”’ _ 1) —w (T—l (",m _ 1)) = (”/m - 1) >0,
T T TX TL

onde na ultima desigualdade utilizamos que ¢’ € R,y (L'/K'). Isso prova que 7*(¢’) € Ry(L/K).
O
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E claro que se 7 for um isomorfismo entdo os homomorfismos 7* dados acima também serao
isomorfismos, com inversa dada por (77!)*. Como casos particulares disso, nés obtemos:

Proposicao 10.28. (a) Seja L/K uma extensio finita galoisiana com grupo de Galois G, e
sejam w | v valoragoes. Entdo para todo T € G nés temos:

—1 1 1
Guor = 7 GuT, Lyor =7 LyT, € Ryor =7 Ry,

—1 -1 -1
Zor T Zuw, Twor =7 Ly, € Vipor =7 V.

(b) Seja L/ K uma extensdo galoisiana e sejam w | v valorag¢des. Entao para todo corpo inter-
medidrio K C M C L, nds temos:

Guw(L/M) = Gu(L/K)NGal(L/M);
I,(L/M) = I,(L/K)NGal(L/M);
Ry(L/M) = Ry(L/K)NGal(L/M).

Demonstragao.  (a) Consideremos o diagrama

LT L

]

K" K

Entdo 7*: G — G é um automorfismo, e pela proposicdo acima ele induz isomorfismos

Gyv — Guor, Iy = Iyor € Ry — Ryor, dados por o +— 7~ lor. Mas isso justifica as

igualdades desejadas entre os grupos, e as igualdades entre os corpos saem facilmente destas.

(b) Consideremos o diagrama

—

N I~

i

Nesse caso, 7" é a inclusdao Gal(L/M) — Gal(L/K). Com isso, a proposi¢ao acima nos da
as igualdades desejadas.

—

O]

Suponhamos agora L/K finita galoisiana com grupo de Galois G e w | v. Consideremos o
seguinte diagrama:s:

Pela Proposicao 10.14, L,, = LK,, e assim é claro que L, /K, também é uma extensdo
galoisiana. Dado o € G (L/K), pela Proposicao 10.25 temos o continuo com respeito a w.
Sendo assim, vemos que o se estende a um tinico automorfismo continuo 6 € Gal(L,,/K,), que
é dado por 6z = limg_,o o(zk), onde (z5) é uma sequéncia em L com limg oo xp = x (aqui
usamos de fato que o é uniformemente continuo).

Assim, temos um homomorfismo de grupos ¢: Gy, (L/K) — Gal(L,,/K,) dado por p(c) = 6.
Se 6 =idy,,, entdao o = |, = idy,, de modo que ¢ é injetor. Por outro lado, seja 7 € Gal(L,,/ K,)
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qualquer. Note que Gal(Ly,/K,) = Gw(Ly/Ky), j& que w é a tnica extensao de v a L,,. Entao
woT = w em Ly, de modo que o := 7|, € G (L/K). Sendo 7 continuo com respeito a w e
L denso em L,,, vemos que 7 = . Isso prova que ¢ é de fato um isomorfismo, cuja inversa ¢é a
restricao.

Com a hipdtese de v ser ndo-arquimediana, é facil ainda mostrar que valem as igualdades
o(Iy(L/K)) = L,(Lyw/Ky) e p(Ry(L/K)) = Ry(Ly/ Ky), de modo que temos os isomorfismos
I,(L/K) = I,(Ly/Ky) e Ry(L/K) = Ry (Ly/ K,) nesse caso. Juntando tudo, obtemos:

Proposigao 10.29. Sejam L/ K uma extensdo finita galoisiana e w | v. Entdo L,/ K, também
¢ uma extensdo finita galoisiana, e temos Gal(Ly/K,) = Guw(Lyw/Ky) = Gyw(L/K), onde esse
isomorfismo € induzido pela extensao p: Gal(L/K) — Gal(L,/K,) descrita acima, cuja inversa
é a restrigio T — T|p. Além disso, se v for nao-arquimediana, ¢ também induzird os isomorfismos

I,(Lw/Ky) 2 1,(L/K) ¢ Ry(Lw/Ky) = Ry(L/K).
O corpo de decomposi¢do Z,, possui as seguintes propriedades:
Proposicao 10.30. Sejam L/ K uma extensao finita galoisiana e w | v.

(a) A restrigio wy de w ao corpo de decomposicio Z,, admite extensdo unica a L.

(b) Se v for nao-arquimediana discreta, Z,, = LN K,, onde essa interse¢io é tomada dentro
de Ly,.

(c) Se v for nio-arquimediana discreta, wy terd o mesmo corpo de residuos e o mesmo grupo
de valores que v.

Demonstragao.  (a) O grupo de Galois de L/ Z,, é G, pela correspondéncia de Galois. Assim,
pela Proposicao 10.23, toda extensao de wy é da forma w oo, para o € Gy,. Mas como
0 € Gy, temos w o o = w, 0 que mostra que w é a Unica extensao de wy a L.

(b) (©): Seja x € Z,, qualquer. Entdo é claro que x € L. Como ox = x para todo o € Gy,
identificando G, com Gal(L,,/K,) vemos que = € K,. Assim, temos z € LN K.

(2): Seja x € LN K,. Consideremos o € G, qualquer, e seja & sua extensao a L.
Entéo, como & € Gal(L,,/K,), temos 6z = x, e portanto oz = x. Isso prova que x € Z,,.

(c) Segue do fato de que a extensao de v a K, tem mesmo corpo de residuos e grupo de valores
dev,ede K C Z,, C K,,.
O

Se supusermos que K é completo’ e que v é discreta, w serd a tnica extensdo de v a L e
teremos B, = AY. Nesse caso, podemos aplicar varios resultados do Capitulo 6, j& que temos a
extensao de DVD’s B,,/A. Sendo w | v tnico, por simplicidade denotemos B,, = B, B, =P e
Aw = A. Entao é ficil ver que temos G, = Gp =G, I, = Ip e R, = R&; Desse modo, obtemos
o familiar diagrama:

PIB ——— L=Q(B) 1
' § p
Py < By —— V,, = Q(By) ------ Ry Gal(Viy/Ty) = I,/ Ry = Wa(N)
Pr < By —— Ty = Q(Br) ---—--- I, A= Br/%r
f f f
p<A —— K =Q(A) -~ G .

2A mesma argumentacdo a seguir funciona para corpos henselianos. Veja mais sobre isso na préxima
secao.
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onde p é o expoente caracteristico de A\, e = p'é e p { é&. Assim, podemos aplicar todos os
resultados que obtivemos no Capitulo 6 a essa configuragao.

10.5. Corpos Henselianos

Nessa secao, voltaremos a considerar como valoragdes apenas as valoragdes nao-arquimedianas.
Seja K um corpo qualquer, munido com um valor absoluto ||, e seja L uma extensao algébrica de
K. Queremos estudar quais sdo as extensoes do valor absoluto de K para um valor absoluto de L.
No caso de K ser completo com respeito a |-|, o Teorema 10.9 nos garante que uma tal extensao
existe, é inica e sabemos a sua expressdo. Analisando atentamente a demonstra¢do do caso ||
nao-arquimediano, vemos que para mostrar existéncia e unicidade dessa extensao utilizamos a
hipétese de K ser completo apenas uma vez: precisamos dessa hipotese para podermos aplicar o
Corolério 10.7, que por sua vez segue do Lema de Hensel (10.1). Isso nos sugere definir:

Definigao (Corpo Henseliano). Um corpo henseliano é um corpo K, munido de uma valoragao
v, cujo anel de valoragdo A satisfaz o Lema de Hensel (10.1). Dizemos ainda que v é uma
valoracgio henseliana e que A é um anel de valoragdo henseliano.

E claro que todo corpo com valoragao completo é henseliano, e que em todo corpo henseliano
vale o Corolario 10.7. Com isso, valerdao também o Teorema 10.9 e o Corolario 10.10, na seguinte
Versao:

Teorema 10.31. Seja (K,v,|-|,A) um corpo henseliano, e seja L uma extensao algébrica de K.
Entao |-| admite uma dnica extensdo a um valor absoluto |-| de L, v admite uma inica extensdo

a uma valoracdo O de L e o anel de valoracdo associado a © é A”.
Além disso, se [L : K| = n < oo, entio essas extensoes sao dadas por |a| = {/|Np, k()

e 9(a) = Lo(Npy/ k(). Em particular, a valoragio estendida serd discreta se e somente se a
valoracdo de K o for.

Para construir um exemplo de um corpo henseliano que nao é completo, comecemos con-
siderando (K,v, A,p) um corpo com valoragio qualquer, e (K,9, A, §) o seu completamento.
Consideremos KV o fecho separavel de K em K. Entdo K¥ é um corpo com valoracio dada pela
restricao de 0.

Defini¢ao (Henselianizac¢ao). O corpo (K, 9, AY,pV) é chamado de henselianizagdo do corpo
(K,v,A,p).

Como o nome sugere, a henselianizagio K¥ de um corpo (K,v) qualquer é um corpo hen-
seliano. No6s provaremos isso no caso particular em que KV é algebricamente fechado em K.
Comecaremos mostrando uma versao do Lema de Gauss para um corpo com valor absoluto nao-
arquimediano:

Lema 10.32 (Lema de Gauss nao-arquimediano). Seja (K, |-|) um corpo com valor absoluto
ndo-arquimediano, e seja A seu anel de valoracdo.

(a) O contetido é multiplicativo, isto €, dados f,g € Alz]| quaisquer nds temos |fg| = |fl|g]-.
(b) Seja f € Alz| primitivo, e suponhamos que f = gh com g,h € K[z]. Entdo existe c € K*

tal que cg,c'h € A[x], de modo que f = (cg)(c™'h) é uma fatoracio de f em polinémios
primitivos de Alz].
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Demonstragao. (a) Escrevamos f(z) = ap+ a1z + -+ amz™ e g(x) = by + byx + - - + bpz™.
Suponhamos que 0 < i < m e 0 < j < n sejam minimos de modo que |a;| = |f| e
|bj| = |g|- Entdo o coeficiente de "7 em fg é a soma de elementos da forma a,bs com
r+s = i+ j. Uma dessas parcelas é a;b;, que satisfaz |a;b;| = |a;i||bj| = |f||g], e as
demais parcelas possuem 7 < i ou s < j, de modo que pela maximalidade de |a;| e |bj]
e pelas minimalidades de i e j nds temos |a,bs| = |ar||bs| < |ail|bj| = |f||g|. Assim, pela
desigualdade ultramétrica vemos que o coeficiente de x'™/ em fg tem valor absoluto |f||g|,
de onde |fg| > |f]|g].

Por outro lado, todos os coeficientes de fg sdo somas de parcelas da forma a,bs, que satis-

fazem |a,bs| = |ar||bs| < |f]lg|.- Assim, pela desigualdade ultramétrica, os coeficientes de
fg possuem valor absoluto no maximo |f||g|, de onde obtemos |fg| < |f||g|. Desse modo,
temos | fg| = |f||g|, como queriamos.

(b) Como f é primitivo, temos 1 = |f| = |gh| = |g||h|, onde utilizamos o item (a). Seja c € K*
tal que |c| = |h| (podemos tomar ¢ como sendo um dos coeficientes de maior valor absoluto
de h, por exemplo). Entao ¢ 'h| = |c| 7t h| =1, e |cg| = |c||g| = |¢||h|~ = 1. Assim, ¢~ 'h
e cg sdo primitivos. Em particular, cg,c th € Alz].
O

Proposicao 10.33. Com as notag¢des acima, suponhamos que KV seja algebricamente fechado
em K. Entdo KV € um corpo henseliano. Em particular, isso ocorrerd se K tiver caracteristica
0, jd que nesse caso K° serd o fecho algébrico de K em K.

Demonstragdo. Seja f(x) € AY[z] primitivo, e seja f(x) € (AY/ p?)[z] seu polindmio induzido.
Suponhamos que existam g(z), h(z) € (AY/ p¥)[x] primos entre si tais que f = gh. E claro que
K também é o completamento de Kv. Assim, pela Proposicio 9.13 nés temos A?/ p¥ = A/p com
as inclusdes canoénicas. Desse modo, podemos ver a fatoracdo f = gh em (fl/ p)[z]. Com isso,
como K é henseliano, existem g(x), h(x) € Alz] tais que f = gh, os polinémios induzidos por g
e h no corpo residual sdo g e h respectivamente e 0 g = 07. A

Como gh = f € A[z], vemos pelo Teorema 1.18 que g, h € ar [z]. Como estamos supondo que
K" é algebricamente fechado em K, nés temos g, h € K? [x]. Multiplicando ¢ e h por constantes
adequadas, podemos pelo Lema de Gauss nao-arquimediano supor que g, h € AY[z] e satisfazem
as mesmas condi¢oes (multiplicando também g e h por constantes se necessario). Assim, vemos
que o Lema de Hensel se aplica para K?, mostrando que KV é henseliano, como queriamos. [

Vale observar que KV é “muito menor” que o completamento K: a extensiao KV/K é sempre
algébrica, enquanto que se pode mostrar que K /K nunca serd algébrica se K nao for completo,
isto é, se K # K. Pela unicidade da extensdo de uma valoracdo dada pelo Teorema 10.31 e pela
Proposicao 10.19, vemos que a identidade fundamental para extensoes finitas de corpos henselianos
se torna:

Proposigao 10.34. Seja (K, v) um corpo henseliano, e seja (L, w) uma extensdo finita de (K, v)
de grau n. Suponhamos que v seja discreta e que L/ K seja separdvel. Denotemos e = e(w | v) e
f = f(w|v). Entio vale a identidade fundamental ef =n = [L: K].

E interessante que vale a volta do Teorema 10.31: um corpo com valor absoluto (K,v) serd
henseliano se e somente se toda extensao algébrica de K admitir tinica extensdo de v. Para
isso, estudaremos o chamado poligono de Newton, um método que nos permite relacionar as
valoracoes das raizes de um polindémio com as valoragoes dos coeficientes desse polindmio.

Defini¢cao (Envoltéria Convexa Inferior). Seja S = {p1 = (z1,41),-..,Pn = (Tn,yn)} um con-
junto finito de pontos de R?, com 1 < - -- < x,,. Nés definimos a envoltéria convexa inferior
de S como sendo “a menor poligonal convexa que esta abaixo de todos os pontos de S”. Formal-
mente, a envoltéria convexa é a poligonal definida da seguinte forma:
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o Seu primeiro segmento liga p; a p;,, onde i3 é o maior 1 < ¢ < n tal que todos os pontos de
S estao no semiplano superior fechado determinado pela reta que liga p; a p;.

o Seu segundo segmento liga p;, a p;y, onde i3 ¢ o maior io < 7 < n tal que todos os pontos
de S estao no semiplano superior fechado determinado pela reta que liga p;, a p;,.

e Seu tltimo segmento liga p;,. a py,.
Assim, a envoltéria convexa inferior de S é dada por p1pi,pi, - = - Pi, Pn.-

Exemplo 10.35. Na figura abaizo, a poligonal em vermelho € a envoltéria convexa inferior do
conjunto de pontos azuis. Ela é formada por 5 segmentos (note que hd um ponto sobre a poligonal
que ndo é um vértice).

Note que a envoltéria convexa inferior de um conjunto de pontos é formada por segmentos
com inclinacao estritamente crescente, da esquerda para a direita.

Definigao (Poligono de Newton). Seja (K,v) um corpo com valoragao, e consideremos um po-
linomio f(z) = ag+ a1z + -+ + apz™ € Kl[z] com ag,a, # 0. A cada monémio a;z’ com
a; # 0 noés associamos o ponto (i,v(a;)) € R% Assim, nés temos um conjunto de pontos
Sy = {(4,v(a;)): 0 < i < n, a; # 0}. O poligono de Newton do polinémio f(z) é defi-
nido como sendo a envoltéria convexa inferior do conjunto de pontos Sy.

Exemplo 10.36. Consideremos o polinémio:
f(z) = 2® — 182°% + 542° + 32 — 812% — 3627 + 1622 — 1215 € Qsx].

O poligono de Newton de f € a poligonal vermelha da figura abaizo:
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Proposigdo 10.37. Seja (K,v) um corpo, e seja f(x) = ag+ a1z + -+ + apa™ € K[z] um po-
linomio com ag,an, # 0. Seja L o corpo de decomposicio de f, e suponhamos que v se estenda
a uma valoragdo w de L. Suponhamos que (r,v(a,)) e (s,v(as)), com r < s, sejam dois pontos
consecutivos do poligono de Newton de f, e seja —m a inclinacdo do segmento que os liga. Entdo
f possui exatamente s —r raizes (contadas com multiplicidade) com valoragdo m.

Demonstragdo. Comecemos observando que dividir por a, apenas faz o poligono de Newton de
f se deslocar verticalmente, uma vez que v(a;/a,) = v(a;) —v(ay) para todo 0 < i < n. Assim,
podemos assumir sem perda de generalidade que a, = 1. Sejam m; < mo < -+ < Mmy41 as
valoragoes assumidas pelas raizes de f em L. Numeraremos as raizes de L por aq,...,a, (com
multiplicidade), de modo que tenhamos:

wor) = - =wlay)=m:
w(as,+1) = w(as,) = ma;
w(asﬁ-l) = = w(an) = Mt+1.
Vendo os coeficientes de f como fun¢oes simétricas nas raizes aq, ..., a, e utilizando a propriedade

nao-arquimediana, nds obtemos:

v(ap,) = v(1) = 0;

v(ap—1) > min{w(a;): 1 <i<n} =my;
v(ap—2) > min{w(oa;): 1 <i<j<n}=2myi;
v(an-s,) = min{w(e, - )i <o <idg ) = s1ma,

onde a primeira igualdade da ultima linha segue do fato de que a, -+~ ;, € o unico termo na
expressao de a,—g, que tem valoragdo sym; (em todos os outros termos aparece uma raiz com
valoragdo maior que my).

Notemos que as expressoes acima implicam que, para todo n —s; < i < n, o ponto (i,v(a;))
estd acima da reta que liga (n — s1,v(an—s,)) = (n—s1,s1m1) e (n,v(a,)) = (n,0), cuja in-
clinacao ¢ L=s1m_ — —sim

= = —m;. Procedendo analogamente, nés obtemos:

n—(n—s1) s1

v(an—s,—1) > min{w(ay, ---041'51“): i1 < <lg41} = S1m1 + My;
>

v(an—s,—2) min{w (o, ---aiﬂm): i1 < <ig 42} = S1m1 + 2mo;

v(an-s,) = min{w(e, -, )i <-o- <} = s1my + (52— s1)ma,

e assim por diante. Como v(an—s,—1) > s1mq +ma > (s1 + 1)mq, é facil ver que (n — s1,s1m1)
estd abaixo da reta que liga (n —s1 — 1,v(ap—s,-1)) a (n,0). Com isso, concluimos que o tltimo
segmento do poligono de Newton de f é o segmento ligando (n — s1,s1m1) a (n,0). Pelas ex-
pressoes acima, para todo n — sy < i < n —s1, o ponto (i,v(a;)) estd acima da reta que liga
(n—s9,v(an-s,)) = (n— s2,51m1 + (s2 — s1)ma) e (n — s1,81m1), cuja inclinagio é

symy — (s1mq + (s2 — s1)ma) _ —(s2 — s1)ma2
(n—s1)—(n—s2) Sg — 81

= —ma.

Continuando do mesmo modo, nés concluimos que os vértices do poligono de Newton sdo, da
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direita para a esquerda:

(n,0);
(n—s1,81m1);

(n — s2,81m1 + (82 — 81)m2);

(n—sj,s1m1 + (s2 —s1)ma + -+ (55 — s5-1)m;);

(0,s1m1 + (52 = s1)ma + -+ (0 — s¢)myy1),

e a inclinagdo de um segmento genérico dessa poligonal é:

(s1ma+ -+ (55— 8j-1)my) — (s1mu + -+ + (8541 — 85)my1) _ (85— 8j41)mjs

= —Mj41.
(n—s5) —(n—sj41) 5j11— 8j a

Ou seja, da direita para a esquerda os segmentos do poligono de Newton tém inclinacées iguais a

—mi, —Ma, ..., —Myt1, € as distancias horizontais entre seus vértices, também da direita para a
esquerda, sdo iguais a s1, S92 — S1,...,S8t — St_1,7 — S¢. Note que isso é exatamente o que queriamos
mostrar! O

Exemplo 10.38. Consideremos o polinomio f(xz) do Exemplo 10.36. Pela proposi¢io acima, no
corpo de decomposicio de [ esse polindmio possui duas raizes com valoracdo 3/2, duas raizes com
valoracdo 1/2 e quatro raizes com valoragdo 1/4.

Notemos que, pela proposi¢ao acima, um polindmio f(z) € K|[x] se fatora em L[x] como
z) =an[[5— fi(x), onde para 1 < j < r temos:
j=1JJ ’ P J

fitw)= I  (@-a),
e! ra(iz)df f(x)

onde my < --- < m, sdo as valoragoes das raizes de f em L e o produto acima considera multi-
plicidades. Observemos que cada f;(z) corresponde ao (r — j + 1)-ésimo segmento do poligono
de Newton, da esquerda para a direita. Em particular, o poligono de Newton de f serd formado
por um Unico segmento se e somente se todas as raizes de f tiverem a mesma valoragdo em L. O
curioso é que, se a extensdao de v a L for Unica, a fatoragdo para f dada acima serd na verdade
uma fatoracdo em K [z]:

Proposicao 10.39. Com as notagdes acima, se w for a unica extensdo de v a uma valora¢do
no corpo de decomposicio L de f, entio a fatoragdo f(x) = an[;—; fj(x) € uma fatoragio em
Klz], ou seja, fi(z),..., fr(2) € Klz].

Demonstracdo. Nbés podemos assumir sem perda de generalidade que a, = 1. Assim, nés temos
a fatoragao f(x) = [[j—; fj(z). Consideremos primeiramente o caso f irredutivel sobre K[x].
Nesse caso, dadas duas raizes a, § € L de f, sabemos que existe o € Gal(L/K) tal que 8 = oa.
Notemos que w o ¢ também é uma valoracao de L que estende v. Logo, por unicidade, temos
que woo = w. Portanto w(B) = w(oa) = w(a). Desse modo, mostramos que todas as
raizes de f possuem mesma valoracio, e portanto » = 1 e nds temos simplesmente a igualdade
fi(z) = () € K[a].

A demonstracao do caso geral serd por indugdo em 0 f = n. Para n = 1, ndo temos nada a
provar. Seja entdo n > 2, e suponhamos que o resultado seja valido para todos os polinémios de
grau menor que n. Fixemos uma raiz a € L de f, e seja p := P, g € K|z] seu polindmio minimal
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sobre K. Definamos g(x) := f(z)/p(z) € K[z]. Como p é irredutivel em K|[z], vemos que todas
as raizes de p possuem a mesma valoracao, sem perda de generalidade m;. Entao p divide f; em
L[z]. Chamemos ¢1(z) := fi(x)/p(z) € L[z]. Entdo nés temos:

flz) _ I fi(=
p(x) p(x)

g(r) =

) =) [ (o)

Notemos que essa fatoragdo de g(z) é exatamente a dada pelo poligono de Newton, uma vez que

as raizes de g1, fo, ..., fr possuem valoracbes myi, mo, ..., m, respectivamente. Finalmente, como
dg < 0 f = n, concluimos pela hip6tese de indugao que g, fo, ..., fr € K[z]. Disso tiramos que
f1 = qip € K[z] também. Ou seja, fi,..., fr € K[z], como desejado. O]

Em particular, se f for irredutivel em K[z| vemos que o poligono de Newton de f con-
sistird de um tnico segmento, que liga os pontos (0,v(ap)) e (n,v(a,)). Assim, para todo
0 <i < n, o ponto (a;,v(a;)) estd acima desse segmento ou sobre ele, de onde nds concluimos
que v(a;) > min{v(ag),v(a,)}. Em termos do valor absoluto |-| associado a v, isso significa que
la;| < max{|ao|, |an|}. Com isso, nés temos:

Corolario 10.40. Seja (K,|-|) um corpo com wvalor absoluto ndo-arquimediano. Seja ainda
f(z) =ap+ a1z + -+ apa™ € K[z| um polinomio irredutivel. Suponhamos que || admita uma
extensao unica a um valor absoluto do corpo de decomposi¢ao de f. Entao |f| = max{|aol,|an|}-

Note que obtivemos um resultado do mesmo tipo que o Corolario 10.7. Estamos na verdade
fazendo o caminho inverso do que fizemos nas se¢oes 10.1 e 10.2. Nelas, supondo um corpo com-
pleto, mostramos o Lema de Hensel, provamos a partir disso o Corolario 10.7 e entdo mostramos a
existéncia e a unicidade de uma extensdo. Aqui, supondo a existéncia e a unicidade de uma certa
extensao, mostramos o Corolario 10.40. De fato, supondo a existéncia e a unicidade de todas as
extensoes algébricas, conseguimos voltar mais ainda e deduzir o Lema de Hensel:

Teorema 10.41. Um corpo com valor absoluto ndo-arquimediano (K,|-|) € henseliano se e so-
mente se o valor absoluto |-| de K admitir extensao inica a qualquer extensao algébrica de K.
Além disso, nesse caso, chamando de k o corpo residual de K, vale a sequinte afirmacdo: dado
um polinomio f(x) = ap+ a1z + -+ -+ apx™ € Alz] primitivo e irredutivel com ag,a, # 0, temos
duas op¢ées para o polinémio induzido f(x) € k[z]:

o f(x) € um polinomio constante nao-nulo, ou

e O0f =0f e f(z) = ap(z)™, onde a € kK* é uma constante, p(x) € k[x] é irredutivel
monico e m € um inteiro positivo.

Demonstragao. Denotemos (K, v, ||, A,p,k). A ida da primeira parte desse teorema segue do
Teorema 10.31. Provemos portanto a volta. Suponhamos que |-| admita extensdo tinica a qualquer
extensao algébrica de K. Comecaremos provando a ultima afirmagao do enunciado. Consideremos
f(z) = ao+ a1z + - + apz™ € Alx] primitivo e irredutivel, com ag, a, # 0, e seja f(z) € x[z]
seu polinémio induzido.

Como |-| possui tnica extensdao ao corpo de decomposi¢ao de f, o fato de f ser irredutivel
implica que seu poligono de Newton é um tnico segmento, que liga (0,v(ap)) a (n,v(ay)). Apli-
cando o Coroldrio 10.40, concluimos que | f| = max{|ao|, |an|}. Sendo f primitivo, temos |f| = 1,
logo |ag| = 1 ou |a,| =1, isto é, v(ag) = 0 ou v(ay,) = 0.

Se v(ay) > 0, entdo v(ag) = 0, e o poligono de Newton de f é o segmento nao-horizontal que
liga (0,0) a (n,v(ay)). Mas note que isso significa que v(a;) > 0 para todo 1 < i < n. Desse
modo, nesse caso temos f(x) = ap constante nao-nulo.

Suponhamos entdo v(a,) = 0. Assim, a,, ¢ p, de modo que @, # 0 e nés temos 9 f = d f. Seja
L o corpo de decomposicao de f sobre K. Entao (L, ||, B,B,\) é um corpo com valor absoluto,
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onde || é a tnica extensdo a L do valor absoluto de K. Notemos que, para todo o € Gal(L/K),
lo()|: L — R4+ é um valor absoluto de L que estende o valor absoluto de K. Assim, pela unicidade
da extensdo temos |o ()| = ||

Dado « € B, temos |a| < 1, e portanto |o(«)| = |a| < 1, 0 que mostra que caw € B, onde
o € Gal(L/K) é qualquer. Portanto, B C B. Da mesma forma, c !B C B = B C 0B, o
que prova que temos 0B = B para todo o € Gal(L/K). Procedendo analogamente, concluimos
que 0B = P para todo o € Gal(L/K). Assim, cada automorfismo o € Gal(L/K) induz um
automorfismo @ € Gal(\/k) dado por 7(Z) = o(x).

Afirmamos que todas as raizes de f estdao em B. Para isso, sejam aq,...,a, € L as raizes
de f, contadas com multiplicidade. Como f é irredutivel, todas as suas raizes sdo conjugadas.
Assim, para 1 < i < n existe 0; € Gal(L/K) tal que 0;(a1) = ;. Desse modo, como ¢ B = B
para todo o € Gal(L/K), basta mostrarmos que oy € B. Supondo por absurdo que a; ¢ B,

temos |ap| > 1, e portanto |o;| = |o;(a1)| = |a1| > 1 para todo 1 <4 < n. Desse modo:
n n
]a0|: Hozi IH|OQ| > 1,
i=1 i=1
um absurdo ji que ap € A = |ag| < 1. Concluimos que g € B, e assim a1, ...,a, € B. Agora,

para todo 1 < i < n nés temos 7;(@;) = @;, 0 que mostra que todas as raizes de f sdo conjugadas
por automorfismos de Gal(\/k). Assim, f =ap(x)™, onde @ € k*, P é o polinémio minimal de
@1 em k[x] e m é um inteiro positivo, provando a tltima afirmagcao.

Seja agora f(x) € A[z] um polinémio primitivo qualquer, e seja f(z) = fi(z) - fr(z) sua fa-
toracao em irredutiveis de K |[z]. Pelo Lema de Gauss ndo-arquimediano, multiplicando f1,..., f;
por constantes adequadas nés podemos supor que fi,..., f, € Alz] sdo primitivos. Assim, em
r[z] nés temos a fatoragdo f(z) = fi(x) - f,(z). Como cada f; é irredutivel, pelo que vimos
nos temos f ou constante ndo-nulo ou entdo 9 f ; =0fe £ ; € a poténcia de um polinomio
irredutivel em k[z], a menos de constante.

Mostraremos que vale o Lema de Hensel para f. Assim, suponhamos que f = gh para alguns
g,h € k[x] primos entre si. Como cada f] é ou constante ndo-nulo ou poténcia de irredutivel
a menos de constante, isso significa que existem uma particdo I LIJ = {1,2,...,7} e elementos
a,b e k* tais que g = a[lic; fis h = bHJeJ fj edf; =0 fi paratodoi € I. Notemos que, como

<

= Gh, nés temos ab = 1, ou seja, b =a L.
Seja a € A\p = AX tal que @ = a (mod p). Entdo a=! € A. Note ainda que temos
b=a'!=a"!(mod p). Definamos finalmente g := a[[;c; fi e h :=a ! [l;es fj- Entdo é claro

&,j

que g,h € Alz] sdo tais que gh = f, g e h sdo os polindmios induzidos por g e h em k[z],
respectivamente, e 0g = > ;0 fi = > ;c; 0 f; = 0g. Isso prova que vale o Lema de Hensel para
f, como queriamos. ]

Como consequéncia imediata desse teorema, nds temos:

Corolario 10.42. Seja (K,v) um corpo henseliano, e seja (L,w) uma extensio algébrica de K.
Entdao (L,w) também € corpo henseliano.

Demonstragdo. Segue imediatamente da caracterizacdo de corpos henselianos por unicidade de
extensdo, uma vez que toda extensdo algébrica de (L,w) também é uma extensdo algébrica de
(K,v). O

Em particular, o fecho algébrico (K,7) de um corpo henseliano (K, v) é henseliano. Também
é facil ver que o corpo de residuos de K é um fecho algébrico do corpo de residuos de K. Juntando
tudo, nés temos o seguinte resultado:

Proposigao 10.43. Seja (K, v, A,p,K) um corpo henseliano. Entdo existe uma inica extensdo
de v a uma valoragdo v de seu fecho algébrico K, que torna K um corpo henseliano (K, v, A,p,%).
Além disso, E € um fecho algébrico de k.
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10.6. Ramificacoes

Nessa secao, estudaremos os tipos de ramificacbes que ocorrem em extensdes de corpos com
valoragdo (nao-arquimediana). Em certo sentido, a ramificacdo de uma extensdo mede o quao
bem se comporta a extensao de corpos de residuos correspondente: quanto menos ramificagio
ocorre, mais bem-comportada é essa extensao. Comecemos definindo o que significa uma néo-
ramificagdo, o caso mais bem-comportado:

Defini¢do (Extensdo Finita Nao-Ramificada). Seja (L,w,\)/(K,v,x) uma extensao finita de
corpos henselianos. Dizemos que essa extensao é ndo-ramificada se a extensao A/ k for separavel
ese [L: K]=[\:k].

Note que numa extensao de corpos henselianos (L, w,\)/(K,v, ), se v for discreta temos a
identidade fundamental ef = [L : K], onde e e f sdo o indice de ramificacio e o grau de inércia
de L/K, respectivamente. Como f = [X : k], a igualdade [L : K| = [X : k] é equivalente a
f = [L : K], e portanto a e = 1 pela identidade fundamental. Assim, L/K serd finita nao-
ramificada se e s6 se A/« for separdvel e e = 1, o que justifica a nomenclatura ndo-ramificada.

Proposicao 10.44. Seja (K,v, A,p,K) um corpo henseliano.

(a) Seja (L,w, B, B, \) uma extensdo finita nao-ramificada de K. Entdao existe « € B tal que
L =K(a) e\ =r(@). Além disso, sendo f(z) = Psx € Alx] 0 polinomio minimal de o

sobre K e f(z) = f(z) (mod p) € k[x], temos que f é o polinémio minimal de @ sobre k
e € separdvel.

(b) Seja L'/ K uma extensdo finita de corpos com valoragdo, e suponhamos que L seja um corpo
com K C L C L. Entio L'/K serd finita nao-ramificada se e somente se as extensoes
intermedidrias L' /L e L/ K forem ambas finitas nao-ramificadas.

(c) Sejam L/K e K'/K extensdes de corpos com valoragdo dentro de um fecho algébrico K / K,
e suponhamos que L/K seja finita nao-ramificada. Entao LK'/K' também € finita nao-
ramificada.

(d) Sejam L/K e K'/K extensoes de corpos com valoracdio dentro de um fecho algébrico K / K,
e suponhamos que L/K e K'/K sejam ambas finitas ndo-ramificadas. Entio LK'/K
também € finita ndo-ramificada. Desse modo, o compositum de duas extensdes finitas nao-
ramificadas também € uma extensdo finita nao-ramificada.

Demonstragao. (a) Como \/k é separével, existe @ € X tal que A = k(@), onde a € B.
Sejan := [L : K] = [X: k]. Entdo 1,@,...,a" ! formam uma base de A\/k, de modo
que pela demonstracdo da Proposicao 10.11 vemos que 1,¢,...,a" ! € B sdo linearmente

independentes sobre K, e portanto formam uma base de L/ K. Assim, L = K («). Notemos
que f(z) = Py i(z) estd de fato em Alzx], pois B = A" pelo Teorema 10.31. Como
Of =0f=n=[r(a):x] e f(a) =0, vemos que 9 f é o polindémio irredutivel de @ sobre
k. Como a extensdo \/k é separdvel, vemos que @& é separavel.

(b) Denotemos (L,\) e (L', ).

(=): Suponhamos que L'/K seja finita ndo-ramificada. Sabemos que X' /k é separdvel
eque [\ : k] =[L : K|]. Como N /X e \/k sao subextensoes da extensdo separdvel \'/k,
vemos que ambas extensoes sdo separdveis. Além disso, pela Proposi¢ao 10.11, nés temos
N:A <[L':L)e[A: k] <[L:K]. Assim:

Nkl =[N:ANN:iw] <[L:L[L:K]|=[L:K]|=[\N:x]
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Desse modo, todas as desigualdades acima sao igualdades, e portanto [\ : \] = [L/ : L] e
[A: k] =[L: K]. Isso prova que L'/L e L/K sao finitas ndo-ramificadas.

(«<): Suponhamos que L'/L e L/K sejam ambas finitas ndo-ramificadas. Entao X'/
e \/kK sdo separdveis, e valem as igualdades [N : A\ = [L' : L] e [\ : k] = [L : K].
Concluimos que \'/k é também separdvel, e temos:

Nkl =[N:A[N:w]=[L:L|][L:K]=[L": K],
mostrando que L'/ K ¢é finita nao-ramificada.

(¢) Denotemos (L, B,B,\), (K',A"p', k") e (LK', B',*f’,\'). Entdo sabemos que \/k é se-
pardvel e [L : K| = [XA: k]. Como [LK': K'| < [L: K], a extensao [LK' : K'] é finita.

Assim, basta mostrarmos que X'/’ é separavel e [LK': K'| = [\ : £/].

Seja a € B tal que L = K(«a) e A = k(a@), que sabemos existir por (a). Sejam ainda
f(z) = Pyk(z) € Alz] e f(z) = f(z) (mod p). Desse modo, LK’ = K'(a). Seja
g(z) = P, k() € K'[z]. Como a € B' = A" vemos que de fato temos g(z) € A'[z].

Definamos g(z) = g(x) (mod p’) € £'[z]. Como g(x) = P, x/(z) e f(x) = Py x(x), vemos
que g | f em A'[z], e portanto g | f em #’[x]. Assim, g é separdvel. Se g fosse redutivel em
'[z], seus dois fatores seriam coprimos devido & separabilidade de g, e portanto pelo Lema
de Hensel em K’ nds concluiriamos que g seria redutivel em A’[z], um absurdo! Logo g é
irredutivel em x'[z], e portanto g(z) = Pg,,. Entéo:

Nk <[LK':K'|=09g=0g=[s'(a):&] <[N:K].

Assim, todas as desigualdades acima sdo igualdades, de modo que [LK' : K'| =[N : k'] e
[+ (@) : k'] = [N : K]. Agora, como k'(a) C XN, a igualdade de graus acima nos diz que
N = Kk'(@) é extensao separdvel de ', j& que o polindémio minimal § de @ sobre &’ 0 é. Isso
prova que LK'/K' é extensao finita nao-ramificada.

(d) Devido ao item (c), sabemos que LK’/ K’ é finita ndo-ramificada. Como K'/K também
é finita ndo-ramificada, vemos pelo item (b) que LK'/K é finita nao-ramificada, como
queriamos.

O]

Para podermos definir uma extensao infinita nao-ramificada de corpos henselianos, nés preci-
samos do seguinte resultado:

Lema 10.45. Seja K um corpo henseliano, e seja L uma extensdo finita de K. FEntdo sdo
equivalentes:

(i) L/K é nao-ramificada.
(ii) Toda subextensio de L/ K é nao-ramificada.
(iii) L é uma unido de subextensoes nao-ramificadas de L/ K.
(iv) L é um compositum de subextensoes nao-ramificadas de L/ K.

Demonstragao. (i) = (ii): Segue da proposi¢ao acima.
(ii) = (#4): E claro, j& que L é a unido de todas as suas subextensdes.

(73i) = (4v): Suponhamos que L = [Jycp Ly, onde cada Ly/K é extensdo finita ndo-ramificada.
Entao ¢é claro que L = [[yca Ly ¢ 0 compositum de todas essas extensoes.
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(tv) = (i): Suponhamos que L = []yca L seja o compositum dos Ly, e que cada Ly/K seja
uma extensdo finita ndo-ramificada. Como L/K é finita, vemos que L é de fato o compositum
de um ntmero finito dos Ly’s, digamos L = [[j_; L;. Aplicando sucessivamente o item (d) da
proposi¢do acima, vemos que L é extensao finita nao-ramificada de K, como queriamos. ]

Com isso, nés temos:

Proposicao 10.46. Seja K um corpo henseliano, e seja L uma extensdo algébrica de K. Entdo
sao equivalentes:

(i) Toda subextensdo finita de L/ K é nao-ramificada.
(ii) L é uma unido de subextensoes finitas nao-ramificadas de L/ K.
(iii) L é um compositum de subextensées finitas nao-ramificadas de L/ K.

Demonstragao. (i) = (ii): Segue do fato de L ser a unido de todas as suas subextensdes finitas.

(i7) = (i14): Suponhamos que L = [Jycpa La, onde cada Ly é uma subextensdo finita néo-
ramificada de L/ K. Entao basta notar que temos L = [[, L.

(#43) = (i): Suponhamos que L = [], Ly, onde cada Ly é uma subextensao finita ndo-ramificada
de L/ K. Seja M uma subextensao finita qualquer de L/ K. Entao M C [], Ly, e como M /K
¢é extensao finita vemos que M esta contido no compositum de um ntmero finito dos L)’s, diga-
mos M C [[j_; L;. Aplicando (iv) = (i) e (i) = (ii) do lema acima, concluimos que M /K é
extensao finita nao-ramificada. Assim, toda subextensao finita de L/K é nao-ramificada, como
queriamos. O

Definigao (Extensao Nao-Ramificada/Ramificada). Seja (K, v) um corpo henseliano e seja (L, w)
uma extensao algébrica de K. Dizemos que a extensdo L/K é nao-ramificada se ela satisfazer
alguma das trés condicbes equivalentes da proposi¢do acima. Caso contrario, dizemos que essa
extensdo é ramificada.

Observe que, se L/ K for extensao finita, entdo essa defini¢ido coincide com a anterior, devido
ao Lema 10.45. Notemos ainda que se L/ K for extensdo ndo-ramificada de corpos henselianos, e
se A e k forem os corpos residuais de L e de K, respectivamente, entao \/x serd uma extensao
separavel, j4 que todas as suas subextensoes finitas sdo separaveis.

Nos temos a seguinte versdo mais geral da Proposicao 10.44:

Proposigao 10.47. Seja (K,v) um corpo henseliano.

(a) Seja L'/ K uma extensdo algébrica nao-ramificada, e suponhamos que L seja um corpo com
K C L CL' Entdo as extensoes intermedidrias L' /L e L/ K sdao ambas nao-ramificadas.

(b) Sejam L/K e K'/K extensoes de corpos dentro de um fecho algébrico K/K, e suponhamos
que L/ K seja nao-ramificada. Entdo LK'/K' também é nao-ramificada.

(c) Sejam L/K e K'/K extensoes de corpos dentro de um fecho algébrico K /K, e suponhamos
que L/K e K'/K sejam ambas ndo-ramificadas. Entdo LK'/K também € nao-ramificada.
Desse modo, o compositum de duas extensées ndo-ramificadas também é uma extensdo
nao-ramificada.

(d) Sejam Ly/K extensdes de corpos dentro de um fecho algébrico K /K, e suponhamos que
L)/ K seja nao-ramificada para todo X € A. Entao o compositum L = J]yca Ly € uma
extensdo nao-ramificada de K.
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Demonstragao. (b) Como L/K é nao-ramificada, temos L = [[yca L, onde cada Ly é uma
subextensao finita nao-ramificada de K. Entao nés temos LK’ = [[ycp LAK’, € pela Pro-
posicao 10.44 nés temos cada LyK'/K' finita nao-ramificada. Assim, LK’ é o compositum
de subextensoes finitas nao-ramificadas de LK’/ K’, de onde concluimos que LK'/K' é
extensao nao-ramificada.

(a) Toda subextensdo finita de L/ K também é subextensao finita de L'/ K, e portanto é nao-
ramificada. Disso concluimos que L/K é nao-ramificada. Para ver que L'/L também é
nao-ramificada, basta aplicar o item (b) para as extensoes L'/ K e L/ K, observando que
L'=LL.

(c) Como L/K e K'/K sdo nao-ramificadas, podemos escrever L = [[,c; L e K' = [];¢; K7,
onde cada L;/ K é subextensao finita nao-ramificada de L/ K, e cada K ; / K é subextensao
finita nao-ramificada de K’'/K. Notemos entao que cada L;K J’~/ K é subextensio finita
nio-ramificada de LK’/ K, pela Proposicao 10.44, e que temos LK’ = [[;c; 1y LiKj, de
modo que LK’/ K é extensao nao-ramificada.

(d) Basta mostrarmos que toda subextensao finita de L/K é ndo-ramificada. Mas toda tal
subextensao também é uma subextensdo finita do compositum de um nimero finito de
Ly’s, que ja sabemos ser uma extensdao nao-ramificada de K. Assim, toda subextensao
finita de L/ K é nao-ramificada, e concluimos que L/ K é nao-ramificada.

O

A proposicao acima nos mostra que existe uma subextensao nao-ramificada maximal de L/ K:

Definigao (Subextensao Nao-Ramificada Maximal). Seja L/ K uma extensao algébrica de corpos
henselianos. Entdo o compositum 7T de todas as subextensoes nao-ramificadas de L/ K é chamada
de subextensdo nio-ramificada maximal de L/K. No caso em que L = K é um fecho
algébrico de K, denotamos 1" por K™, e o chamamos de extensiao nao-ramificada maximal.

Note que T/ K é subextensao nao-ramificada de L/ K e toda subextensido ndo-ramificada de
L/K estd contida em T, o que justifica a nomenclatura. Essa subextensdao tem as seguintes
propriedades:

Proposigao 10.48. Seja (L,w, B,B,\)/ (K, v, A,p, k) uma extensao algébrica de corpos hense-
lianos, e seja (T,w, As,pg, As) a sua subextensio ndo-ramificada mazimal. Entdo \s € o fecho
separdvel de k em \, e w(T*) = v(K*).

Em particular, o corpo de residuos de K™ € o fecho separdvel s de k, e w((K™)*) = v(K™).

Demonstragao. Chamemos de Asp 0 fecho separdvel de k em A\. Como T'/K ¢é nao-ramificada,
temos As C Asep. Seja agora @ € Asep- Seja f(z) = Pzx(x) € klz], e seja f(z) € Alz] tal que
f(a)=0e f = f(mod p). Como f é irredutivel em x[z], temos f irredutivel em A[z]. Além
disso, como = — @ divide f e f é separavel, vemos pelo Lema de Hensel em L que existe o € B
tal que @ = o (mod PB). Assim, f é o polindmio minimal de « sobre K, e nds temos:

[K(a): K]=0f=0f=[r(a):k].

Desse modo, k(«)/k é uma extensdo separdvel e [K(a) : K] = [k(«) : x]. Disso poderemos
concluir que K («)/K é uma extensido nao-ramificada, se mostrarmos que o corpo de residuos '
de K(a) éigual a k(a). Como a € BN K(«a) = ZK(Q), vemos que @ € k', e portanto k(@) C .
Por outro lado, temos:

[x": k] < [K(a) : K] = [r(a) : K],
o que mostra que devemos ter ¥ = k(«), como queriamos. Portanto, a extensdo K(«a)/K é
nao-ramificada, como querfamos, ¢ K(a) C T. Assim, @ € ;. Isso mostra que Asep C g, €
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provamos que As = Agep-

Mostremos agora que w(T*) = v(K*). Como T é a unido de suas subextensoes finitas, basta
provarmos que w(M*) = v(K*) para toda subextensdo finita nao-ramificada (M, w, ) de
L/ K. Mas nés temos:

[M: K| > (w(M™):v(K*))[Ay 2 6] = (w(MX) :0(K*))[M : K],

de onde obtemos (w(M*) : v(K*)) = 1, ou seja, w(M*) = v(K*), como queriamos.
Finalmente, a afirmacao sobre o corpo de residuos de K™ segue da Proposicao 10.43. O

Seja m € IN nao divisivel pela caracteristica do corpo de residuos k de K. Entao sabemos
que o polindmio 2™ — 1 € k[z] é separédvel, e portanto se decompde em fatores lineares em &|x].
Aplicando o Lema de Hensel a K™, vemos que 2 — 1 € K[x] se decompoe em fatores lineares
em K""[x], e portanto K™ contém todas as rafzes m-ésimas da unidade.

A subextensao ndo-ramificada maximal se comporta bem com intersecoes:

Proposicdao 10.49. Seja M /L/K uma torre algébrica de corpos henselianos, e seja T a subex-
tensao nao-ramificada maximal de M /K. Entdo a subextensao ndao-ramificada maximal de L/ K
é TNL. Em particular, a subextensdo nao-ramificada maximal de L/K é K™ N L.

Demonstragdo. Chamemos de U a subextensdo nao-ramificada maximal de L/K. Como a ex-
tensao (Tﬂ L)/ K ¢é uma subextensido da extensdo nao-ramificada T/ K, essa extensao é nao-
ramificada, e portanto TN L C U. Por outro lado, é claro que U C L, e como essa é uma
subextensao nao-ramificada de M /K temos U C T, o que nos d& U C T N L. Assim, vale a
igualdade desejada. O

Estudemos agora as extensoes ramificadas. Existem dois tipos de ramificacdo: a ramificacao
mansa, que é melhor comportada, e a ramificagdo selvagem, que é pior comportada:

Definigdo (Extensao Mansamente/Selvagemente/Totalmente Ramificada). Consideremos uma
extensdo algébrica ramificada de corpos henselianos (L, w, \)/ (K, v, k). Seja T a sua subextensao
nao-ramificada maximal e seja p o expoente caracteristico de k. Se L/K for finita, dizemos que
a extensdo L/K é mansamente ramificada se A\/k for uma extensido separavel e se tivermos
mdc([L : T],p) = 1. No caso geral, dizemos que L/K é mansamente ramificada se \/x for
uma extensdo separavel e se toda subextensdo finita de L/T tiver grau primo com p.

Se L/K néo for mansamente ramificada, dizemos que L/K é selvagemente ramificada.
Além disso, dizemos que L/ K é totalmente ramificada se T' = K.

Suponhamos v discreta, L/ K finita e A\/x separdvel. Nesse caso, como ja vimos, L/ K serd
nao-ramificada se e s6 se e = 1. Notemos que [T : K| = [A\s : k] = [A : k] = f. Assim,
[L:T]=[L:K]/f=e. Ouseja, nesse caso L/ K serd mansamente ramificada se e s6 se e > 1
e pte, e serd selvagemente ramificada se e s6 se e > 1 e p | e. De todo modo, temos o seguinte
diagrama:

L A
e 1‘
T As = A
f‘ f‘
K K

Observemos ainda que, nessas condicoes, L/ K serd totalmente ramificada se e s6 se T = K,
e portanto se e s6 se f = 1.
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E possivel mostrar que o compositum de extensoes mansamente ramificadas também é uma
extensao mansamente ramificada (veja por exemplo a Secao I1.7 de [2]). Assim, dada uma ex-
tensao L/ K de corpos henselianos, sempre existe uma subextensio mansamente ramificada
maximal V de L/ K.

No caso em que L/K é uma extensio finita galoisiana, a valoracio é discreta e A\/k é finita,
podemos mostrar que a subextensdo nao-ramificada maximal de L/K é igual ao seu corpo de
inércia:

Proposigao 10.50. Seja (L, w, B,'B,\)/(K,v,A,p, k) uma extensio finita galoisiana de corpos
henselianos, e suponhamos que v seja discreta e que N/ k seja separdvel. Entdo T, € a subextensdo

nao-ramificada mazximal de L/ K.

Demonstragcao. N6s temos o seguinte diagrama:

RAB — s [ = Q(B) - 1
p* p' p'
Pv < By —— V,, = Q(By) ------ R,
Br < By — Ty, = Q(Br) ---—---- Ly A= Br/Pr
f ! !
pP<LA ——— K =Q(A) -------- G K

Seja T a subextensdo nao-ramificada maximal de L/ K. Nés temos:
[Br/PBr: k] =[\:k]=f=[Ty: K]

Assim, T,/ K é extensao ndo-ramificada, de modo que T, C T. Como [T, : K| = f = [T : K],
concluimos que T, = T, como queriamos. ]

Similarmente, pode-se mostrar que nesse caso a subextensao nao-ramificada maximal de L/ K
é o corpo de ramificacao V,, (veja por exemplo a Segao I1.9 de [2]).



Capitulo 11

O Teorema de Kronecker-Weber

Nosso objetivo nesse capitulo é provar o importante Teorema de Kronecker-Weber:

Teorema 11.1 (Teorema de Kronecker-Weber). Toda extensao finita abeliana de Q estd contida
em uma extensdo ciclotomica. Isto €, se K/ Q for uma extensdo finita galoisiana com Gal(K/ Q)
abeliano, entdo existe uma raiz da unidade ¢ € C tal que K C Q(().

Para demonstrarmos esse teorema, aplicaremos o chamado Principio Local-Global, que nos
permite obter resultados sobre Q olhando para cada corpo p-adico Q,, e depois “juntando tudo”.
Assim, provaremos o Teorema de Kronecker-Weber utilizando o Teorema de Kronecker-Weber
Local:

Teorema 11.2 (Teorema de Kronecker-Weber Local). Seja p um primo. Toda extensdo finita e
abeliana de Q, estd contida em uma extensio ciclotomica. Isto €, se K/ Q, for uma extensio

finita galoisiana com Gal(K / Qp) abeliano, entdo existe uma raiz da unidade ¢ € @p tal que

K CQ,(0).

Noés provaremos esse teorema local dividindo no caso de extensbes ndo-ramificadas, mansa-
mente ramificadas e selvagemente ramificadas.
Nesse capitulo, utilizaremos a notacgao (,, para indicar uma raiz primitiva n-ésima da unidade.

11.1. O Caso Local

Para provarmos o Teorema de Kronecker-Weber Local, podemos nos restringir as extensoes ciclicas
de grau poténcia de primo. Para ver isso, comecemos com o seguinte lema:

Lema 11.3. Seja L/ K uma extensdo finita galoisiana, e suponhamos que G1, Gy sejam grupos
tais que Gal(L/K) = Gy X Gy. Entdo L = L1La, onde Ly, Ly sdo extensées finitas galoisianas
de K, com LiNLy =K, Gal(L1/K) =2 Gy e Gal(Ly/K) = Gs.

Demonstracao. Sem perda de generalidade, reconhecamos G e Go com suas identificagoes den-
tro de Gal(L/K). Entao Gal(L/K) = G1 ® Gg. Definimos L; e Ls como os corpos fixos de
Gy e Gi, respectivamente. Desse modo, Gal(L/L1) = G2 e Gal(L/Ly) = G;. Como nds te-
mos Gal(L/K) = G1 ® Ga, G1,G2 < Gal(L/K). Assim, L1/K e Lo/ K sao extensoes finitas
galoisianas, com Gal(L1/K) = Gal(L/K)/G2 = Gy e Gal(Ly/K) = Gal(L/K) /Gy = Gs.
Além disso, o corpo fixo de Gal(L/K) = G1G3 é L1 N Ly, de modo que L1 N Ly = K, e L1Lo
é o corpo fixo de G1 NGy =1, de modo que L1Ly = L. ]

Com isso, conseguimos a redugao desejada:

202
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Proposicao 11.4. Seja p um primo. Suponhamos que toda extensdo finita ciclica K de Q, com
grau, poténcia de primo esteja contida em uma extensao ciclotomica. Entdo vale o Teorema de
Kronecker- Weber Local para p.

Demonstragao. Seja K uma extensao finita abeliana qualquer de Q,. Entdo, pelo Teorema de
Classificagdo dos Grupos Abelianos Finitos, nés temos:

Gal(K/Q,) 2Z /p}'Zx---xZ /p}" Z,

para pi,...,pr primos e ki,...,k, inteiros positivos. Aplicando vérias vezes o lema acima,
concluimos que K = K-+ K;, onde Ki,..., K, sdo extensoes finitas galoisianas de Q, com

Gal(K;/Q,) = Z /p?j Z, para todo 1 < j < r. Por hipdtese, nés temos K; C Q,((y;), para
algum inteiro positivo n;. Tomemos n := n; ---n,. Entao:

K - Kl Tt KT g Qp((nl) t Qp(C’n,«) g Qp(C’n)v
concluindo a demonstragao. O

A partir de agora, fixemos um ntmero primo p. Pelo resultado acima, para demonstrar
o Teorema de Kronecker-Weber Local para p basta estudarmos as extensdes finitas galoisianas
K/Q, com Gal(K/ Qp) ~ Z /0" Z, onde ¢ € N é um primo e r é um inteiro positivo. Como
veremos, convém dividir o nosso estudo nos casos £ # p e £ = p. O primeiro caso é mais simples,
enquanto o segundo requer um cuidado maior.

Nessa secao, estudaremos como as extensoes de corpos sobre Q,, se comportam em termos de
ramificacdo, e também como sdo as extensoes ciclotomicas sobre Q,. Ao longo dessa secdo, L/ K
sempre denotard uma extensao finita de corpos, onde ambos (L, |-|,, B, B, A) e (K, | |p, A, p, k)
sao extensoes finitas de Q,. Observemos em particular que s é um corpo finito de caracteristica p,
digamos xk = [F;, onde ¢ ¢ uma poténcia de p. Sendo « finito, vemos que \/x é sempre separavel.
Assim, podemos ignorar essa condi¢ao quando tratarmos do tipo de ramificagao.

Denotaremos por e e por f o indice de ramificacio e o grau de inércia de L/ K, respectivamente.
Observemos que vale a identidade fundamental ef = [L : K], j4 que essa é uma extensao finita
de corpos completos com uma valoracdo discreta.

Proposicao 11.5. Suponhamos que L/ K seja uma extensdo finita ndo-ramificada. Entdo existe
uma raiz n-ésima da unidade ¢ € Q,,, com n € N primo com p, tal que L = K(¢).
Em particular, toda extensdo finita nao-ramificada de Q,, é ciclotomica.

Demonstragdo. Como L/K é nao-ramificada, temos [L : K| = [A : k]. Sendo x = Iy, temos
A = k((), onde ( € X é uma raiz n-ésima da unidade, e n = ¢®* — 1 para algum k inteiro
positivo. Em particular, p { n. Como ¢ € A é raiz do polindomio separdvel 2" — 1 € [F,[z], vemos
pelo Lema de Hensel que existe ( € L tal que (" = 1 e ¢ (mod p) = (. Agora, notemos que
[K(¢) : K] > [k(C) : k] pela demonstracdo da Proposi¢ao 10.11, e assim:

LK) > [K(Q): K] = [(0) ] = [\: 4] = [L: K]
Entéao todas as desigualdades acima sao igualdades, e vemos que L = K ((), como querfamos. [

Note que o resultado acima resolve o Teorema de Kronecker-Weber Local para o caso de
extensoes nao-ramificadas. Além disso, a “volta” desse resultado também vale:

Proposigao 11.6. Suponhamos que L = K ((), onde { é uma raiz primitiva n-ésima da unidade,
para ptn. Entdo temos:

(a) A extensio L/K é nao-ramificada de grau f, onde f é o menor nimero natural tal que
¢/ =1 (mod n), isto é, f é a ordem de q em (Z /nZ)*.
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(b) As extensoes L/K e \/k sdo galoisianas e seus grupos de Galois sao canonicamente iso-
morfos. Além disso, Gal(L/K) € gerado pelo automorfismo ¢ — (2.

(c) B = A[(].
Demonstragio.  (a) Seja P(x) = P x(x). Entdo P(x) = P(x)(mod p) € xlz] é igual ao

polindmio minimal de ¢ sobre k. De fato, P(z) é separavel, pois divide o polinémio separavel
" — 1 € k[z]. Desse modo, pelo Lema de Hensel, P é irredutivel, pois caso contrario P

seria redutivel. Assim:
[L:K]=[K():K]|>[k(():k]|=0P=0P=[L:K].

Concluimos entdo que [k(() : k] = [L : K] > [ : k] > [k({) : k]. Assim, k(¢) = N e a
extensao L/ K é n@o—ramiﬁcada. Para ciilcularmos o grau dessa extensdo, devemos deter-

minar o grau de k(¢)/k, ou seja, de IFy(¢)/ F,. Mas o grau dessa extensao é exatamente a
ordem de ¢ em (Z /nZ)*, devido ao Teorema 2.31.

(b) Sendo geradas por raizes da unidade, é claro que L/ K e A\/k sdo ambas galoisianas. Con-
sideremos agora Gal(L/K) — Gal(\/k) dado por o — @, onde 5(() = o(¢). O fato desse
homomorfismo ser uma bijecdo segue de os conjugados de ( serem as classes dos conjugados
de ¢. Finalmente, como k = F,, sabemos que Gal(\/k) é gerado por  — ¢?, de onde

vemos que Gal(L/K) é gerado por ¢ — (1.

(c) Dado b € B qualquer, como A\ = x(¢) temos b = @g + @y + - - - —I—Ef_lzf_l, para alguns
ag,...,ar_1 € A. Assim, b =ap+a1(+---+ af_lcf*1 + p para algum p € 3. Isso prova
que B = A[(] + 9. Como L/K é nao-ramificado, temos e = 1, e portanto p B = . Assim,
B = A[({]+pB. Como B = A" ¢ um A-médulo finitamente gerado, concluimos pelo Lema
de Nakayama que B = A[(].

O

Suponhamos agora que L/K seja uma extensao ramificada. Como a caracteristica de & é p,
essa extensdo serd mansamente ramificada se tivermos mdc(e,p) = 1 e selvagemente ramificada
se tivermos mdc(e, p) > 1. Comecemos estudando as ramificagdes mansas:

Proposicdo 11.7. Seja L/ K uma extensao finita totalmente ramificada mansa. Entdo existem
m € K um normalizador e o € L uma raiz e-ésima de w tais que L = K(«). Além disso, nesse
caso a é um normalizador de L.

Demonstragdo. Tomemos w9 € K e 8 € L normalizadores. Entao temos 8¢ = umg, para algum
u € B*. Como L/K é uma extensdo totalmente ramificada, temos f = 1 = A\ = k. Assim, existe
ug € A% tal que u = ug (mod B). Entdo u = ugp + x, para algum = € PB. Chamemos 7 = ugmy.
Entéo é claro que 7 também é um normalizador de K, e nés temos:

B¢ = umy = (uo + )Ty = uomp + xme = T+ M = | — 7T|p = |TWO|p < |TOlp = |7|p-

Consideremos o polinémio f(x) = z¢ — 7 € Afz], e sejam v, ..., . suas raizes em Q,,. Notemos

que af = = |ajlp = {/|r[p, para todo 1 < j <e. Agora:

HW —ajlp = |f(ﬂ)’p = |B° —7lp < |7lp.
j=1

Assim, devemos ter |3 — oj|, < {/|7|p = |ou|p para algum 1 < j < e. Suponhamos sem perda
de generalidade que isso valha para j = 1. Observemos ainda que, para todo 2 < j < e, temos
a1 — ajlp < max{|ailp, |oylp} = [aap. Agora:

€

[Tlon = ajly = If (an)] = [ea§ ™| = Jaa 5",
j=2
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uma vez que p { e. Desse modo, devemos ter |a; — o, = |ailp, para todo 2 < j < e. Seja
agora (M, |-]) o fecho normal, e portanto galoisiano, da extensdao L(«ay)/L, e seja o € Gal(M /L)
qualquer. Como |o(-)|, é um valor absoluto de M, pela unicidade do Teorema 10.9 temos que
0()p = | |p- Assim:

‘/B_U(al)‘p = |‘7(/8_041)‘p = ’ﬁ_al‘p < ‘a1|p'

Mas entao, para todo 2 < j < e, temos:

jn — o(an)lp < max{|en = Blp, |6 = o(ar)lp} < lealp = on — ajilp,

o que mostra que o(aq) # «;. Como o(aq) é raiz de f, concluimos que o(a;) = a;. Mas
isso vale para todo o € Gal(M /L), o que significa que oy € L. Aplicando agora o critério de
Eisenstein a f(z) = 2 — 7, ou equivalentemente observando que seu poligono de Newton é um
inico segmento, vemos que f é irredutivel sobre K, e portanto [K(a1): K] = e = [L: K]. Isso
mostra que L = K(a1). Tomemos o = ;. Finalmente, notemos que |a[5, = 7|, = |mol, = [B]5,
e portanto ||, = ||, 0 que mostra que a é um normalizador de L. O

Para demonstrarmos o Teorema de Kronecker-Weber no caso ramificado, precisamos estudar
o comportamento das extensoes ciclotomicas sobre Q,, geradas por raizes p™-ésimas da unidade.

Proposicao 11.8. Seja ¢ uwma raiz primitiva p™-ésima da unidade, para m inteiro positivo.
Entao temos:

(a) Q,(¢)/ Q, é uma extensio totalmente ramificada de grau ¢(p™) = (p—1)p™ L.
(b) Gal(Q,(¢)/ Q,) € canonicamente isomorfo a (Z /p™ Z)*.
(¢) 1=¢ € um normalizador de Q,[¢], e Ng (¢)/q,(1 —¢) = p-

(d) Z,[¢] ¢ 0 DVD de Q, ().

Demonstragdo. Seja £ = Cpm_l. Entao £ é uma raiz primitiva p-ésima da unidade, e portanto
m—1

temos 1+ &+ - +&P~1 = 0. Assim, temos 1 + Cpm71 4+ 4+ C(p_l)p = (. Denotemos
SD(:B) — m(p_l)pm71 + . _|_ :L'pm71 + 1‘

Entdo ¢(¢) = 0. Notemos que ¢ — 1 é raiz de ¢(z + 1). Mas nés temos:

m

(P )P —1 P -1 (z—1)P"

= (g — 1)@Vt )
xpm71 o 1 xpmfl _ 1 (a:_ _ 1)pmfl (x ) (mOd p)

p(r) =

Desse modo, ¢(z + 1) = 2P~YP""" (mod p) e o coeficiente independente desse polindmio é igual
a@(04+1) =¢(1) =p. Assim, pelo Critério de Eisenstein, vemos que ¢(z + 1) é irredutivel em
Q,[z], e portanto ¢(x) também o é. Isso prova que Q,(¢)/ Q,, tem grau (p— 1)p™ 1 = (p™).

Pelo Teorema 2.25, Gal(Q,(¢)/ Q,) é canonicamente isomorfo a um subgrupo de (Z /p™ Z)*.
Como Gal(Q,(¢)/ Q,) e (Z /p™Z)* tém ambos ordem ¢(p™), concluimos que esse é um iso-
morfismo. Notemos agora que:

N(1-¢) = II o(1-¢) = II (1=0(Q) = (1) =p.

o€Gal(Q,(¢)/ Qp) oeGal(Q,(¢)/ Qp)
Chamemos de w a valoragao estendida de v, em Q,(¢). Entao:

1 1 1
w(1 =) = (N (1= 0) = Sn(p) = oo
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Isso mostra que e > ¢(p™), e portanto pela identidade fundamental devemos ter e = ¢(p™) e
f = 1. Isso prova que Q,(¢)/ Q, é totalmente ramificada. Como 1/e é o menor valor positivo
assumido por w, e w(1 —¢) = 1/e, vemos que 1 — ¢ é um normalizador de Q,(¢).

Finalmente, notemos que pela demonstracdo da Proposicdo 10.13, utilizando o fato de que
f =1 e tomando w; = 1 e IT:= 1 — ¢, nds obtemos que o DVD de Q,(¢) ¢ Z,[1 — (] = Z,[(],

como queriamos. 0
Precisaremos ainda do seguinte lema:

Lema 11.9. Temos Q,((—p)/®~Y) = Q,(¢), onde (—p)'/ P~V denota uma raiz (p — 1)-ésima
qualquer de —p.

Demonstragdo. Se p = 2, entdo ambos os corpos indicados sao Q,, de modo que o resultado é
6bvio. Suponhamos entdao p > 2. Nesse caso, como ja vimos, ¢, ¢ Q,, uma vez que as Unicas
raizes da unidade de Q, sdo as (p — 1)-ésimas. Notemos que todas as rafzes (p — 1)-ésimas de
—p geram o mesmo corpo sobre Q,, ji4 que uma difere de outra por uma raiz primitiva (p—1)-
ésima da unidade, e todas essas raizes estao em Q,. Assim, basta provarmos isso para uma raiz
(p — 1)-ésima qualquer de —p.

Denotemos ¢(z) = 2P~ +---+z+1e(z) = ¢(z+1). Entdo, como vimos na demonstra¢io
do teorema anterior, esses sao polinomios irredutiveis, e 1 — ¢}, ¢ normalizador de Qp(Cp). Notemos

que
() S <p£1>xp—2_|_..._|_ <]19>$_|_p.

Como e = ¢(p) = p—1, temos (1 — (,)P~! = tp para algum t € Z,[(p]*. Assim, (1 — ()P~ ?
divide p em Z,[(,], de modo que:

G- (7 ) @k (D) G-
= (G- 1P +p(mod (1-G)).
Logo:
0=29(Gp—1) = (- 1)p_1 +p=(t+1)p(mod (1—¢,)") =t+1=0(mod 1 —¢,).

Dessa forma, u := —t = 1 (mod 1 — (,). Notemos que u = % € Z,[¢p)*. Consideremos
agora o polinomio f(z) = 2! —u € Q,(¢)[z]. Entdo f(1) = 1—u = 0(mod 1 — (), e
f'(1)=p—1#0(mod 1—¢,). Pelo Lema de Hensel, concluimos que existe u; € Z,[(p] tal que
f(u1) =0, isto é, v = u. Com isso:

B ) L ey & cp)p—l RSV N S

U a U1 U1

Isso prova que Qp((—p)l/(p_1)> C Q,(¢). Por outro lado, a?~! +p € Q,[z] é um polinémio
irredutivel pelo critério de Eisenstein, de modo que Qp((—p)l/ (p=1))/ Q, ¢ uma extensdo de grau
p — 1, assim como Q,,({p). Isso prova que Qp((—p)l/(p_l)) = Q,(¢p)- O

Com isso, podemos demonstrar o Teorema de Kronecker-Weber Local para extensoes mansa-
mente ramificadas. Isso em particular demonstrara o teorema para extensoes ciclicas de grau £"
com £ # p.

Proposicdo 11.10. Seja K/ Q, uma ertensdo finita abeliana mansamente ramificada. Entao

existe uma raiz da unidade ¢ € @p tal que K C QP(C). Em particular, isso ocorre caso nos
tenhamos Gal(K / Qp) X7 /07, onde £ # p é um primo e r é um inteiro positivo.
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Demonstragdo. Seja T'/ Q,, a subextensdo nao-ramificada maximal de K/ Q,. Entao pela Pro-
posicao 11.5 existe um inteiro positivo n nao divisivel por p tal que T" = Qp(Cn)- Chamemos de
e e de f o indice de ramificacdo e o grau de inércia de K/ Q,, respectivamente. Entao K /T ¢é
uma extensdo totalmente ramificada de indice e, de modo que pela Proposi¢do 11.7 existe um
normalizador 7 € K tal que K = T(7'/¢).

Como T'/Q, ¢ uma extensdo nao-ramificada, temos 7 = —up para alguma unidade u no
DVD de T'. Consideremos agora o polinémio z¢ — u. Como u é unidade, o polinémio induzido
x¢ —u no corpo de residuos de T é separével, j& que p 1 e, e portanto aplicando o Lema de Hensel
em T™ nés encontramos u'/¢ € T™ raiz desse polinémio. Entdo a extensio T'(u'/¢)/T é finita
nao-ramificada. Assim, pela Proposicao 11.5 existe m inteiro positivo nao divisivel por p tal que

T(u®) = T(Cn) = Qp(Gms Cn) € Qp(Cmn)-

Seja M o compositum de K e de Q,((mn). Como K/ Q,, e Q,({mn)/ Q, sdo extensdes galoisianas,
M/ Q, também é extensdo galoisiana, com Gal(M/Q,) — Gal(K/Q,) x Gal(Q,(¢nn)/ Q,).
Assim, a extensao M/ Q,, ¢ abeliana. Observemos agora que ml/e yl/¢ € M, e portanto nés temos
(— p)l/6 =rl/¢/ul/e e M. Assim, Q,((—p)'/¢) € M. Sendo uma subextensdo de M/ Q,, vemos

que Q,((—p)1/¢)/ Q, é uma extensdo abeliana.

Q (Cmn \ Qp((_p)l/e)
‘ 1/6

T(ul’®) Q,(¢e)

Sendo uma extensao de Galois, todas as raizes e-ésimas de —p estao em Qp((—p)l/ €), digamos
ry = (—p)l/e, ..., Te. Note que essas raizes sao todas distintas, pois como p { e o polinémio z¢ + p
é separavel. Assim, 1,71/72,...,71/7¢ € Qp((—p)l/ ¢) sdo todas as e raizes e-ésimas da unidade.
Isso prova que (. € Q,((— )1/6). Notemos agora que a extensdo Q,((—p)'/¢) é totalmente
ramificada. De fato, isso segue do Teorema 4.28, uma vez que (—p)l/ €
satisfaz o Critério de Eisenstein.

Como Q,({.)/ Q, é subextensio de Q,((—p)*/¢)/ Q,, ela é totalmente ramificada. Mas p 1 e,
e portanto pela Proposicao 11.6 a tinica forma disso ocorrer é se essa for a extensao trivial, ou seja,
Ce € Q,. Pela Proposicao 10.5, devemos ter e [p—1oue=2e p = 2. Como p t e, concluimos

que e | p— 1. Desse modo, Qp(( p)te) CQ,((— p)V/ =1y = Q,(¢p), pelo lema acima. Assim:

é raiz de 2+ p = 0, que

K =T(x") C T(u"*, (—=p)") € Qy(Cmn: Gp) = Qp(Cmmp),

como desejado.

Suponhamos agora Gal(K / Qp) = Z /0" Z. Seja T a subextensdo nao-ramificada maximal
de K/Q,. Entdao K/T é uma extensdo de grau que divide £", e portanto mdc([K : T],p) = 1.
Isso prova que K/ Q, é uma extensdo mansamente ramificada, como gostariamos. ]
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Assim, resta mostrarmos o Teorema de Kronecker-Weber Local para extensoes K/ Q,, tais que
Gal(K/ Qp) > 7 /p" Z, para algum inteiro positivo r. Para tratarmos desse caso, utilizaremos
sem demonstragao o seguinte resultado:

Lema 11.11. Seja p > 2 um primo. Entdo nao existem extensoes de Q, com grupo de Galois
isomorfo a (Z. /pZ.)3. Além disso, ndo evistem extensdes de Qy com grupo de Galois isomorfo a
(Z/2Z)* ou (Z /AZ)3.

Esse resultado se demonstra utilizando resultados basicos da chamada Teoria de Kummer.
Para uma demonstragao desse fato, veja por exemplo o Capitulo 20 de [3] ou o Capitulo 14 de [8].
Noés também utilizaremos resultados elementares sobre os grupos de unidades de Z /n Z para n
inteiro positivo, que podem ser encontrados no Capitulo 4 de [12].

Finalmente, conseguimos concluir a demonstracdo do Teorema de Kronecker-Weber Local,
tratando do caso de uma extensdo K/ Q, com Gal(K/Q,) = Z /p" Z.

Teorema 11.12. Seja K/ Q, uma extensdio ciclica de grau p", para r inteiro positivo. Entdo
K C Q,(¢n), para algum inteiro positivo n.

Demonstragdo. Suponhamos inicialmente p # 2. Comecemos considerando as extensoes ci-
clotomicas Q,((,m 1) € Q,((pr+1) de Q,. Pela Proposicao 11.6, a extensdo Q, (¢ 1)/ Q) é
ciclica ndo-ramificada de grau p”, e pela Proposicao 11.8 a extensao Qp(Cpr+1) / Q, é totalmente
ramificada de grau ¢(p") = (p— 1)p", com grupo de Galois isomorfo a:

(Z )2 =Z)(p—- ) Z=Z g ZxZ/(p—1)Z.

Assim, Q,(Cpr 1) € o subcorpo de Q,((yr+1) fixo pelo subgrupo de (Z /p"*t Z)* isomorfo a
Z /p" Z sao ambas extensoes ciclicas de Q,, de grau p”. Definamos n := (ppr —1)ptL.

Mostraremos agora que Q,(Cn) = Qp(Cpor—1) Qp(Cpre1) € Qp(Cpor 1) NQY(Gpr1) = Q. A
primeira igualdade é clara. Para a segunda, basta notar que Q, (¢ 1) N Qp({yr+1) é a0 mesmo
tempo uma extensdao nao-ramificada e totalmente ramificada de Q,, e portanto deve ser igual a
Q,. Com isso:

Gal(Qp(Cn)/ Qp) = Gal(@p(CpPr—l)/ Qp) X Gal(Qp(ng“)/ Qp)
7, /p'r‘Z X(Z /pT+1 Z)X
Z/pZxZ]pZxZ/(p—1)Z.

I

12

Afirmamos que K C Q,((n). De fato, suponhamos por absurdo que K Z Q,(¢,). Entdo
K(¢u) = KQ,(¢n) é uma extensdo de Galois de Q,, cujo grupo de Galois é um subgrupo de
Gal(K/Q,) x Gal(Q,(¢x)/ Q,) = (Z/p"Z)> x Z /(p—1)Z. Em particular, essa ¢ uma ex-
tensdo abeliana. Além disso, como (Z /p" Z)? e Z./(p — 1) Z tém ordens primas entre si, é facil
ver que devemos ter Gal(K(¢,)/ Q,) = G x H, para G < (Z /p" ZPeH<Z/(p—1)Z.

Notemos que Gal(K(¢n)/ Q,(¢n)) é canonicamente isomorfo a um subgrupo de K/Q,, e
portanto isomorfo a Z /p® Z para algum 1 < s < 7 (note que s > 0, pois K Z Q,(¢,)). Além
disso, note que esse grupo esta contido em G, uma vez que H contém apenas elementos de ordem
nao divisivel por p. Agora:

Gal(K(Cn)/Qp) ~ a
Cal(K (0)/ @ (G)) (M @rlen)/ Q)

GxH o2

= H=(Z/p"Z)Y?<Z/(p—1)Z.

Z/prZ "
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Como H possui apenas elementos de ordem nao divisivel por p, H deve ser levado por esse
isomorfismo num subgrupo de Z /(p — 1) Z. Da mesma forma, ﬁ deve ser levado num

subgrupo de (Z /p" Z)?. Isso mostra que devemos ter Z/(p;sz ~(Z/pZ)?eH=Z/(p-1)Z.
Sejam x,y € G tais que T e ¥ geram (Z /p"Z)?, e seja z € G um gerador de Z /p*Z.
Entao x e y devem ter ordem multipla de p”, e portanto essa ordem deve ser exatamente p",

uma vez que G < (Z /p" Z)3. Notemos que todo elemento de -~ se escreve como aZ + by,
Z /psZ

onde nés temos 0 < a,b < p" inteiros. Como isso nos da (p")? elementos, e essa é exatamente
a ordem de ﬁ =~ (Z /p"Z)?, vemos que todos esses elementos sdo distintos. Isso prova que

(x,y) N (z) = 0. Notemos ainda que G = (z,y)(z), uma vez que % = (7,7). Sendo G abeliano,
(x,y), (z) < G, e nés concluimos que G = (x,y) ® (z). Assim:

G2z, x ()2 (Z /P Z)*<XZ]p°Z.
Finalmente, nés obtemos:
Gal(K(¢n)/ Q) =GxH=(Z/p"Z)*<xZ/p°ZxZ/(p—1)Z.

Em particular, Gal(K (¢,)/ Q,,) possui um subgrupo isomorfo a (Z /p Z)3. Sendo K ((,)/ Q,
uma extensdo abeliana, vemos que existe um subgrupo L dessa extensdo com grupo de Galois
Gal(L/Q,) = (Z /pZ)?, um absurdo pelo lema acima! Concluimos que K C Q,(¢,), como
desejavamos.

Suponhamos agora p = 2. Entao, pela Proposi¢ao 11.6, a extensao Qqy((y2r_;)/ Qy é ciclica
nao-ramificada de grau 2", e pela Proposigdo 11.8 a extensiao Qqy((yr+2)/ Q4 é totalmente ramifi-
cada de grau 2"+, com grupo de Galois isomorfo a (Z /272 Z)*. Definindo n = (22" — 1)27+2,
vemos do mesmo modo que no caso anterior que Q5((,) é o compositum dessas duas extensoes e
que Q, é a intersecao delas, de modo que

Gal(Q2(¢n)/ Q2) Gal(Qa(Co2r—1)/ Qg) x Gal(Qa(Car+2)/ Qg)
Z /27 x(Z /272 7)*
>~ Z/)2ZXZ]2ZxZ/27Z.

I

1%

Afirmamos que K C Qy(¢,). De fato, suponhamos por absurdo que K ¢ Q,({,). Entao
K(¢,) = KQy(¢,) é uma extensao de Galois de Q,, cujo grupo de Galois é um subgrupo do
grupo Gal(K/ Qs) x Gal(Qy((n)/ Qq) & (Z /27 Z)3 x Z /2 Z.. De forma anéloga ao caso ante-
rior, vemos que Gal(K (¢,)/ Q2(¢n)) = Z /2°Z para algum 1 < s < r. Agora:

Gal(K(¢n)/ Q2)

Gal(K (¢n)/ Qa(Cn))

Gal(K (¢n)/ Qo) ~ r7\2
7 /57 X (Z/2"Z2)" xZ/27Z.

=~ Gal(QQ(Cn) / QZ)

Sejam x,y, z € Gal(K((,)/ Q) tais que % = (7,7, z), onde o isomorfismo acima leva
(x) no primeiro fator Z /2" Z, (y) no segundo fator Z /2" Z e (z) em Z /2 Z. Entao x e y possuem
ordens miltiplas de 2", e portanto iguais a 2" ja que Gal(K((,)/ Qs) < (Z /27Z)? xZ /27Z.
Seja ainda w um gerador de Z /2% Z. Entao Gal(K ((,)/ Qs) = (x,y, z,w).

Afirmamos que Gal(K((,)/ Qs) = (z) ® (y) ® (z,w). Comecemos mostrando que nds temos
(x,y) N (z,w) = 0. Note que o isomorfismo acima leva (z,y) em (Z,7), e ambos (z,y) e (T,7)
tém (27)% elementos. Sejam 0 < a,b < 27 inteiros. Suponhamos que ax + by € (z,w), com
0 <a,b<2". Entao ax + by é levado pelo isomorfismo acima em 0 x 0 x Z /2 Z. Mas isso é um
absurdo, pois entdo (T, 7) teria menos de (27)? elementos.

Agora, (z) N (y) = 0, pois argumentando de forma similar verfamos que (Z,7) teria menos de
(27)2 elementos. Assim, Gal(K ((,)/ Qy) = (z) © (y) © (z,w) = (Z /2" Z)? x {z,w). Notemos
que (z,w) tem ordem 2°*! uma vez que w tem ordem 2° e Z tem ordem 2 em %
Temos dois casos:
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o (z,w) é ciclico: nesse caso, Gal(K((,)/ Qy) = (Z/2"Z)% x Z /2°1 Z. Como esse é
um subgrupo de (Z /2" Z)? x Z /27Z., concluimos que r > s+ 1 > 2, de modo que
Gal(K (¢n)/ Q) possui um subgrupo isomorfo a (Z /4Z)3. Assim, existe um subcorpo
L de K(¢,) com Gal(L/ Q,) = (Z /4 Z)3, um absurdo pelo lema acima!

e {(z,w) ndo é ciclico: nesse caso, como a ordem de w é 2° e (z, w) tem ordem 257!, devemos ter
(z,w) XZ /2°Z xZ /27, e portanto Gal(K (¢,)/ Qo) = (Z /2" Z)? X Z |2° Z x Z /2 Z.
Em particular, esse grupo possui um subgrupo isomorfo a (Z /2Z)*. Assim, existe um
subcorpo L de K ({,) com Gal(L/Q,) & (Z /2Z)*, um absurdo pelo lema acimal

Esses absurdos nos mostram que K C Qy((,), concluindo a demonstracao. O

11.2. O Caso Global

Finalmente, mostremos que o caso local implica o caso global. Ou seja, que como o Teorema
de Kronecker-Weber Local vale para todo primo p, entdo também vale o Teorema de Kronecker-
Weber. Comecemos com dois lemas:

Lema 11.13. Seja L/ K uma extensdo galoisiana, onde L e K sdo extensées finitas galoisianas
de Q,, para p primo. Sejam Iy, e I o0s grupos de inércia de L/ Q, e K/ Q,, respectivamente.
Entdao temos um homomorfismo sobrejetor Iy, — I .

Demonstragdo. Seja T a subextensdo ndo-ramificada maximal de L/ Qp. Entao a subextensao
nao-ramificada maximal de K/ Q, ¢ T'N K, pela Proposi¢ao 10.49. Também sabemos que os
grupos de inércia de L/ Q, e K/ Q, sdo isomorfos a Gal(T'/ Q,,) e a Gal((TNK)/ Q,), respec-
tivamente, pela Proposicao 10.50. Desse modo, o resultado segue do fato do homomorfismo de
restrigao Gal(T'/ Q,) — Gal((T N K)/ Q,) ser sobrejetor. O

Lema 11.14. Seja n um inteiro positivo. Entdo o grupo de inércia da extensio Q,((n)/ Q, €
isomorfo a (Z /p*»™ Z)*.

Demonstragao. Seja e = vp(n). Entdo podemos escrever n = p®m, onde p { m. Pela Pro-
posi¢ao 11.6, a extensao Q,(¢n)/ Q, é nido-ramificada. Isso significa em particular que p é um
normalizador de Qp(Cm). Com isso, podemos reproduzir a demonstragdo da Proposicdo 11.8
substituindo Q,, por Q,((n), para concluir que a extensao Q,(Cm)((pe)/ Q,(Gm) é totalmente
ramificada com grupo de Galois isomorfo a (Z /p®Z)*. Mas Q,(Cm)((pe) = Q,(Cn). Assim, a
extensao Q,(¢n)/ Qp(¢m) ¢ totalmente ramificada e Gal(Q,(¢n)/ Q,(¢m)) = (Z /p°Z)*.

Desse modo, pela Proposicao 10.50, teremos o resultado desejado se mostrarmos que Qp(gm)
é a subextensdo nao-ramificada maximal de Qp((n) / Q,. Seja T essa subextensdo nao-ramificada
maximal. Como Q,((¢n)/ Q, é nao-ramificada, temos T' 2 Q,((m). Além disso, T'/ Q,(¢m) é
extensdao nao-ramificada, pelo item (b) da Proposigao 10.44.

Sendo Q,,(¢n)/ Q,({m) uma extensao totalmente ramificada, é facil ver pela Proposicao 10.49
que a subextensao 7'/ Q, () também é totalmente ramificada. Desse modo, T'/ Q,((m) ¢ uma
extensao ao mesmo tempo ndo-ramificada e totalmente ramificada, de onde T = Qp(g‘m), con-
cluindo a demonstracao. O

Demonstragao. (Do Teorema de Kronecker-Weber) Seja K/ Q uma extensao finita abeliana qual-
quer. Para cada primo p € IN que se ramifica em K, tomemos p <Ok primo sobre p. Entao, pela
Proposi¢ao 10.29, Gal(K,/Q,) = G,(K/Q) C Gal(K/ Q). Em particular, a extensao K,/ Q,
¢é finita abeliana. Assim, pelo Teorema de Kronecker-Weber Local nds concluimos que existe
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um inteiro positivo n, para o qual K, C Qp(Cnp)- Denotemos, para cada um desses primos p,
ep = vp(ny), e definamos:

n = H P,

p ramifica em K

Esse produto é finito, pelo Coroldrio 4.26. Mostraremos que K C Q((,), o que concluird a
demonstragdo. Para isso, mostraremos que K((,) = Q(¢,). Seja L := K((,). Observe que
L =KQ((,), e portanto Gal(L/ Q) é isomorfo a um subgrupo de Gal(K/ Q) x Gal(Q(¢,)/ Q).
Em particular, a extensdo L/ Q é finita abeliana. Para cada p | p escolhido, fixemos um primo
B <1 O, sobre p. Entao de forma analoga ao que fizemos acima podemos concluir que a extensao
Ly/ Q, ¢é finita abeliana, jd que Ly = Ky (¢n) = Kp Q,(Cn)-

Denotemos Iyz(L/ Q) := I,, e chamemos de T}, o seu corpo fixo. Pela Proposicao 10.29, nds
temos I, = I, onde Iy, € o grupo de inércia da extensao Ly/ Q,. Note que:

L‘J3 = KP (Cn) C Qp(cnp’ Cn) = Qp(Cmmc(np,n)> = Qp(Cpel’n’>a

onde n’ é um inteiro positivo com p { n’. Assim, Q,(¢n) € Ly € Q,(Gperns). Denotemos por
IQP(Cn) e por IQp(Cp%n/) os grupos de inércia de Q,(¢n)/ Q, e de Q,({pern)/ Q,, respectivamente.

Pelo Lema 11.14, ambos os grupos IQp(Cn) e IQp(Cp ) séo isomorfos a (Z /p° Z)*. Agora, pelo

ep /!

Lema 11.13 temos uma sequéncia de homomorfismos sobrejetores IQp(C ep ) = ALy — IQP(Cn)°
p“Pn

de onde concluimos que Ir,, = (Z /p® Z)*. Desse modo, I, = I1,, = (Z /p* Z)*. Seja I o

subgrupo de Gal(L/ Q) gerado por J,,, Ip. Como Gal(L/ Q) é abeliano, [],,, I, ¢ um grupo que

p|n pln P

contém Up|n I,,, e portanto:
1| < TT1l = [TIZ /0 2)%| = [T (™) = n = [Q(¢) : Q- (11.1)
pln pin pn

Seja M o corpo fixo de I. Fixado p | n, nés sabemos que toda a ramificacdo de p na extensiao
L/ Q ocorre em L/T),. Assim, p nao se ramifica em 7T},. Agora, I,, C I = M C T}, de modo que p
também nao se ramifica em M. Fixemos agora p { n. Provaremos que p também nao se ramifica
em M. Para isso, basta ver que p nao se ramifica em L, ja que M C L.

Seja P < O, primo sobre p qualquer. Queremos mostrar que e(* | p) = 1. Sabemos que p
nao se ramifica em K, ji que p f n. Isso também nos diz que p ndo se ramifica em Q(¢,), pelo
Teorema 5.17. Assim, e(PNK | p) = e(PNQ(¢,)) = 1, e portanto pela Proposi¢ao 6.15 nds
concluimos que Tiy O K e Tiy O Q(¢,). Ou seja, Ty O K Q(¢n) = L, o que mostra que Ty = L.
Desse modo, Iy = 1, e temos e(P | p) = |Ip| = 1, como queriamos.

Essa andlise nos mostra que todo primo p € IN é nao-ramificado em M, e portanto pelo
Teorema 7.21 obtemos M = Q. Assim, [ = Gal(L/Q), e (11.1) nos dé:

[L:Q] = |Gal(L/ Q)| < [Q(¢) : QJ,

e como Q(¢,) € L nés obtemos L = Q(¢,), concluindo a demonstragao. O



Capitulo 12

Introducao a Teoria dos Corpos de
Classes

No capitulo anterior, vimos como pode ser 1til estudar “coisas locais” (isto é, completamentos)
para concluir “coisas globais”. Chamamos essa ideia de Principio Local-Global. O desenvol-
vimento desse principio é o que chamamos de Teoria dos Corpos de Classes. Nesse capitulo,
faremos uma breve introducdo dessa importante teoria, que é uma sequéncia natural do que
vinhamos estudando. Os resultados aqui enunciados podem ser encontrados em [2], [3], [11] e
[15].

O principal objetivo da Teoria dos Corpos de Classes é estudar a relacdo entre as extensoes
de corpos globais e de corpos locais com a aritmética desses corpos.

12.1. Um Pouco de Geometria Algébrica

Consideremos o anel de fungoes C[t]. Os seus ideais primos ndo-nulos sdo os ideais da forma
(t — a), para a € C. Assim, esses ideais podem ser identificados com os pontos de C. Dado « € C
qualquer, podemos considerar a avaliagdo em «a como sendo o homomorfismo C[t] — C dado por
f(t) = f(a). Em termos de ideais, podemos considerar para cada ideal primo nao-nulo p < C[t]
a avaliagdo em p como sendo o homomorfismo C[t] — C[t]/ p dado por f(t) — f(t) (mod p).

Podemos generalizar essa ideia para um dominio de Dedekind A qualquer. Dado um primo
nao-nulo p <A, definimos a avaliagdo em p como sendo o homomorfismo A — A/ p dado por
a v+ a(p) = a (mod p). Desse ponto de vista, enxergamos os elementos de A como sendo fungoes
nos ideais primos nao-nulos de A, que assumem valores nos corpos de residuos de A.

Consideremos agora o corpo de fungoes C(¢) = Q(C[t]). Para cada f(t) € C(t) e cada
ponto a € C, podemos representar f como uma série de Laurent em C((t — «)). Podemos ainda
considerar a ordem de f em « como sendo:

m, se a for um zero de ordem m de f;
ord,(f) =< —m, se a for um polo de ordem m de f;

0, caso contrario.

Nos podemos ainda acrescentar a C o ponto no infinito. Nesse caso, dado f(¢) € C(t)
podemos considerar sua série de Laurent no infinito como sendo sua expansao em C((1/t)),
e sua ordem no infinito como sendo ordy(f) == — 0 f. E facil ver que as ordens nos diferentes
pontos de C se relacionam pela expressio Y- ,ec oo} Orda(f) = 0.

Essas expansoes em séries de Laurent possuem uma generalizacao para dominios de Dedekind
em geral. Sejam A um dominio de Dedekind e K = Q(A). Seja p <A primo nao-nulo. Entao para

212
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cada a € A nds podemos considerar a expansao de a como uma série de Laurent no completamento
K, devido a Proposicao 9.14. Além disso, as valoracoes p-ddicas vy, em K generalizam as ordens
ord, de C(t). Ja a formula 3, cc {0y 0rda(f) = 0 corresponde em Z & Férmula do Produto
(Proposigao 9.18), que nos diz que para todo z € Q* temos [zl = 1, onde p varia entre os
primos de IN e co. De fato, temos uma generalizacdo dessa férmula para corpos globais.

12.2. Corpos Globais e Locais

Os dois principais conceitos em Teoria dos Corpos de Classes sdo os de corpos globais e de
corpos locais:

Definigao (Corpo Global/ Corpo Local). Um corpo K é chamado de corpo global se ele for
uma extensao finita de Q (isto é, um corpo de nimeros algébricos) ou de FFy(t), para ¢ poténcia
de primo (nesse caso, chamamos K de corpo de fungées global).

Um corpo com valoragdo (L, v) é chamado de corpo local se ele for localmente compacto em
relacdo a topologia induzida por ||, = e™".

A definicdo de corpo global é resultado da analogia entre dominios de Dedekind e corpos de
fungoes vista acima. De fato, embora o interesse da Teoria Algébrica dos Numeros a principio
seja apenas nos corpos de nimeros algébricos, muitos resultados envolvendo os corpos de funcoes
globais se traduzem em resultados sobre corpos de ntmeros algébricos (e vice-versa). De fato,
em geral é mais facil estudar corpos de fungées, de modo que é comum a estratégia de primeiro
estudar um problema sobre corpos de fungoes e entao buscar desenvolver técnicas analogas sobre
corpos de numeros. Essa estratégia é abordada em [16].

E claro que R e C sdo corpos locais. Pode-se mostrar que todo corpo local é completo.
Como os tinicos corpos arquimedianos completos sdo R e C, falta determinarmos os corpos locais
nao-arquimedianos. Temos a seguinte caracterizacao:

Proposigao 12.1. Seja (L,v) um corpo com valora¢ao discreta. Entdo esse corpo serd local se
e s6 se ele for completo e se seu corpo de residuos associado for finito.

Nesse caso, denotamos a cardinalidade de seu corpo de residuos por ¢, e sendo A seu dominio
de valoracao discreta e p <JA seu unico ideal maximal, denotamos sua valoragao por vp. O va-
lor absoluto associado a v, que consideramos nessa situagio é |-|, dado por |z|, == ¢~ (%) (ou
seja, nesse caso temos uma escolha canonica para a base de exponenciacao). Temos ainda como
caracterizar mais precisamente os corpos locais:

Teorema 12.2. Seja (L,v) um corpo local. Se v for arquimediana, entdo temos L =2 R ou L = C.
Se v for ndo-arquimediana, entdo L ¢ isomorfo a uma extensdo finita de Q, ou de IFy((t)), onde
p €N é primo e g € IN € poténcia de primo.

Seja agora K um corpo de niimeros algébricos. Entao, pelo Teorema 10.22, toda valoracao
nao-arquimediana de K é a menos de equivaléncia uma valoragdo p-adica para um ideal primo
nao-nulo p <Ok. Assim, todo completamento de K ¢é da forma K,. Note que K é completo com
relacdo a uma valoragio discreta (a extensao de vp) e seu corpo de residuos associado é isomorfo
a (O )p/ vy = Ok / p, pela Proposicao 9.13 e pelo Teorema 3.25. Mas |Ok / p| = N(p) < oo.
Assim, K, é corpo local. Suponhamos agora que v seja uma valoragdo arquimediana de K. Nesse
caso, sabemos pelo Teorema de Ostrowski que seu completamento é isomorfo a R ou C, que
sdo locais. Isso prova que todo completamento de um corpo de nimeros algébricos é um corpo
local. De forma similar, pode-se determinar quais sdo as valoragoes dos corpos da forma IF(t),
e utilizando o Teorema da Extensao pode-se mostrar que todo completamento de um corpo de
fungoes global é um corpo local. Concluimos:
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Proposicao 12.3. Seja K um corpo global e v uma valora¢do de K. Entdo o completamento K,
de K com rela¢do a v € um corpo local.

Isso d4a sentido as nossas defini¢cbes de corpo local e corpo global: para estudarmos os corpos
globais por meio do Principio Local-Global, nés devemos estudar seus completamentos, que sao
corpos locais. Na verdade, vale também a volta: todo corpo local é o completamento de algum
corpo global com relagdo a um certo valor absoluto.

12.3. Lugares

Completando Q, nds obtemos os corpos Qq,Qs3,...,Q.. Note que esses completamentos estao
em bijecdo com as classes de equivaléncia de valores absolutos em Q. Do mesmo modo, dado um
corpo global K, seus completamentos estdo em bijecdo com as classes de equivaléncia de valores
absolutos em K.

Defini¢ao (Lugar). Um lugar (também chamado de primo) de um corpo global K é uma classe
de equivaléncia de valores absolutos de K. Se essa classe for composta de valores absolutos nao-
arquimedianos, ela é chamada de lugar (ou primo) finito, e se for composta de valores absolutos
arquimedianos ela é chamada de lugar (ou primo) infinito.

Seja K um corpo de niimeros algébricos. Entao cada lugar finito de K ¢ a classe de equivaléncia
de algum ||, para p <Ok primo néo-nulo, pelo Teorema 10.22. A classe de |-|, pode ser denotada
por p, o que justifica a nomenclatura primo. Os lugares infinitos, por sua vez, correspondem as
imersdes 7: K — C, devido ao Teorema da Extensao. Dizemos que um lugar infinito é um lugar
(ou primo) real se 7(K) C R e é um lugar (ou primo) complexo se 7(K) Z R.

Sendo p um lugar infinito associado & imersdo 7: K — C, noés definimos o valor absoluto
|'l[p: K = R por |z|, = |T2|s, onde |-|oo: € — R é o valor absoluto usual.

Por meio de lugares, nés conseguimos generalizar a Férmula do Produto para um corpo de
nimeros algébricos K qualquer. De fato, é possivel mostrar que para todo z € K™ nds temos
1_[p|x|¥J = 1, para p variando entre os lugares de K (onde na verdade esse produto é finito, pois
pode-se mostrar que |z|, # 1 para apenas um ntmero finito de lugares p).

12.4. Adeles e Idéles

A um corpo global K estdao associados véarios corpos locais: para cada lugar v de K temos
o completamento K. E desejavel que consigamos trabalhar com todos esses completamentos
simultaneamente, por exemplo para conseguirmos aplicar o Principio Local-Global. Uma forma
natural de fazer isso seria considerar o anel [], K,,, onde v varia entre todos os lugares de K. Um
problema que surge é que esse produto nao é localmente compacto, embora cada K, o seja. Para
corrigir isso, nés consideramos o anel de adéles A de K como sendo:

Ay = {(av) c HK”: a, € O, para quase todo lugar finito v},
v

onde O, é o DVD associado a K, (note que esse anel s estd bem-definido se v for um lugar
finito) e “para quase todo” significa “para todo, exceto por um nimero finito”. Os elementos de
A sdo chamados de adeéles. Note que temos uma imersdo canoénica de anéis K — A dada
por z — (x). Assim, conseguimos ver K como subanel de Ag. Os elementos de K sdo chamados
de adeéles principais. E possivel colocar uma topologia em A g de modo que esse conjunto se
torne um anel topolégico localmente compacto. Além disso, K é um subconjunto discreto de A g
e Ak /K é um grupo topolégico compacto.



12.5. LEIS DE DECOMPOSICAO E RECIPROCIDADE 215

Podemos ainda definir o grupo de ideéles I de K como sendo:
Ix = {(av) e [[ K : ay € OF para quase todo lugar finito U}.
v

E facil ver que o grupo de ideles ¢ igual ao grupo das unidades Ay do anel de adeéles. Seus
elementos sdo chamados de idéles. Além disso, temos uma imersao canonica de grupos K* — I
dada por z — (z). Assim, conseguimos ver K* como subgrupo de Ix. Os elementos de K* sdo
chamados de idéles principais. Podemos definir uma topologia em Ix que torna esse conjunto
um grupo topoldgico localmente compacto. Essa topologia nao ¢é a topologia induzida por A.

Definimos ainda o grupo de classes de idéles como sendo o quociente C = Ix/K*.
Esse grupo topoldgico nao é compacto. Para corrigir isso, definimos uma norma em A . Entéo,
chamando de A}( o subgrupo de Ix de elementos de norma 1, temos K™ discreto em A}( e
C}( = A}{ /K> compacto.

A compacidade de C nos permite reobter o Teorema da Finitude do Ntmero de Classes.
De fato, pode-se mostrar que existe um homomorfismo sobrejetor continuo Ck — €4(Of ), onde
€0(Ok) é visto com a topologia discreta. Como a imagem de um conjunto compacto por uma
fungdo continua é compacta, o grupo €¢(Ok) é compacto e discreto, e portanto finito.

Utilizando a teoria de adeles e ideles, também consegue-se uma outra demonstracdo do Teo-
rema das Unidades de Dirichlet. Assim, a linguagem de adeéles e ideles é 1til tanto para a obtengao
de novos resultados quanto para um entendimento mais profundo de resultados ja provados.

12.5. Leis de Decomposicao e Reciprocidade

No Capitulo 5, nés estudamos a decomposicdo de ideais primos em corpos quadraticos e ci-
clotéomicos. Como noés vimos, a decomposicao de um primo p € IN em um corpo K dessa forma
obedece a uma lei de decomposicao: ela depende apenas da classe de congruéncia de p médulo
um certo inteiro positivo N, que por sua vez depende somente de K. Assim, é natural tentarmos
encontrar uma generalizacao dessa lei para um corpo de niimeros algébricos qualquer.

Infelizmente, essa generalizacdo nio existe!', mas vale para extensdes abelianas. De fato, vale
o seguinte: se K for um corpo de ntimeros algébricos, entdo existird um inteiro positivo N de
modo que o tipo de decomposigao de um primo p € N em K dependa somente de p (mod N) se
e s6 se K/ Q for uma extensao abeliana.

Na verdade vale algo ainda mais forte: uma extensao finita abeliana de Q estd completamente
determinada pela sua lei de decomposicdo. Por exemplo, suponhamos que K/ Q seja um corpo
de nimeros algébricos, e que um primo p € IN se decomponha completamente em K se e s6 se
p =1 (mod 4). Entdo é possivel mostrar que K = Q(i).

A existéncia de uma lei de decomposicao para as extensoes abelianas de Q segue de uma andlise
do que ocorre para os subcorpos dos corpos ciclotéomicos e do Teorema de Kronecker-Weber. Seja
N um inteiro positivo, e consideremos o corpo ciclotémico Q({y). A teoria de Galois nos d4 uma
correspondéncia entre os subcorpos de Q((y) e os subgrupos de Gal(Q({n)/ Q) = (Z /N Z)*.
O interessante é que, dado um subcorpo K C Q((x), a lei de decomposi¢do em K estd associada
a identificagdo de Gal(Q(¢n)/K) dentro de (Z /N Z)*. De fato, temos o seguinte resultado, que
generaliza o Teorema 5.17:

Teorema 12.4. Sejam N um inteiro positivo, K um subcorpo de Q((n) e H o subgrupo de
(Z /NZ)* correspondente a K. Entdo, dado um primo p € IN que ndo divide N, temos:

(a) p nao se ramifica em K.

INa verdade, existe mas nao é tao forte. A Teoria dos Corpos de Classes ndo-abeliana vem se desenvol-
vendo bastante nos ultimos anos.
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(b) Seja f a ordem de (p (mod N))H em (Z /N Z)*/H, isto €, o menor inteiro positivo tal
que p/ (mod N) € H. Entdo p se decompoe em O como um produto de [K : Q|/ f ideais
primos distintos.

Em particular, p serd totalmente decomposto em K se e sé se p(mod N) € H.
Além disso, também temos uma versido mais forte do Teorema de Kronecker-Weber:
Teorema 12.5 (Teorema de Kronecker-Weber Forte). Seja K um corpo de nimeros algébricos.

(a) K/ Q serd uma extensio abeliana se e sé se existir um inteiro positivo N tal que K C

Q(¢n)-

(b) Seja N um inteiro positivo. Entio K C Q((n) se e sd se o fato de um primo p € N ser
completamente decomposto em K depender somente de p (mod N).

(c) Suponhamos que K/ Q seja uma extensdo abeliana, e que N seja o menor inteiro positivo
para o qual K C Q((n). Entao um nimero primo p € IN serd ramificado em K se e s se
pIN.

A Teoria dos Corpos de Classes também possui generalizacoes para extensoes abelianas de cor-
pos de nimeros. Por exemplo, consideremos a extensdo abeliana Q((3, v/2)/ Q((3). Verifica-se
que o tipo de decomposicio de um ideal primo de Q({3) em Q((3, V/2) depende unicamente
de seu “resto” moédulo 60gc,)- Algo curioso envolvendo essa extensdo é a torre de corpos
Q(¢3,v2)/Q(¢3)/ Q. Ambas as extensdes Q((3)/ Q e Q((3,v/2)/ Q(¢3) sdo abelianas. As-
sim, temos uma lei de decomposigdo para primos de Q em Q((3) e para primos de Q({3) em
Q(¢3, V/2). Entretanto, ndo temos uma lei de decomposicio para primos de Q em Q((3, v/2), j&
que a extensdo Q((3, v/2)/ Q nio é abeliana.

A Teoria dos Corpos de Classes também se interessa pela seguinte questdo: dado um polinémio
f(x) € Z[z], determinar quais sdo os primos p € IN para os quais existe n € Z tal que p | f(n).
Por simplicidade, diremos que se isso ocorrer entdo p | f. Consideremos por exemplo o polinémio

f(z) = 22 + 1. Entdo sabemos que p | fseesése p=2ou (— | = 1, 0 que como j& vimos
p
ocorre se e s6 se p = 1 (mod 4). O objetivo é tentar generalizar isso para uma lei na forma:

“dado um polindmio f(z) € Z[z], existe um inteiro positivo N de modo que o fato de um primo
p € N dividir f dependa apenas de p (mod N)”. Em alguns casos, existe tal N. Por exemplo,
para f(z) = 2*+ 23+ 22 + 2+ 1 temos N = 5, e para f(x) = 2% + 22 — 22 — 1 temos N = 7.
Entretanto, para f(z) = 23 — 2 nio existe um tal N.

A Teoria dos Corpos de Classes ainda se preocupa com uma terceira pergunta: dado um
polinémio f(x1,...,2x) € Z[x1,...,xk], quais sdo os nimeros primos p € IN que se escrevem
na forma p = f(n1,...,ng), para alguns nq,...,n, € Z7? Um exemplo disso é determinar quais
primos se escrevem na forma x2 + y2. Como j4 vimos no estudo de Z][i], isso ocorre se e 6 se p = 2
ouse p =1 (mod 4). Dessa vez, buscamos uma lei da forma: “dado f(z1,...,zx) € Z[z1, ..., 2k,
existe um inteiro positivo N de modo que o fato de p € IN estar na imagem de f: A 4
dependa apenas de p (mod N)”. Novamente, existem generaliza¢bes mas nao para qualquer f.
Por exemplo, para f(x,y) = 2% + 5y? temos N = 20, e para f(z,y) = 22 + 6y? temos N = 24,
mas para f(z,y) = 2% + 26y ndo existe um tal N.

Lembre que a lei de decomposi¢cdo para corpos quadraticos foi obtida por meio da Lei de
Reciprocidade Quadratica. Da mesma forma que temos a Lei de Reciprocidade Quadratica,
podem ser demonstradas outras leis de reciprocidade, como a Lei de Reciprocidade Ctbica e
a Lei de Reciprocidade Quartica, que podem ser utilizadas para resolver casos particulares das
perguntas acima. Todas essas leis aparecem como casos particulares da Lei de Reciprocidade
de Artin, um dos principais resultados da Teoria dos Corpos de Classes. Para entendermos essa
lei, comecemos definindo os elementos de Frobenius.
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Sejam A um dominio de Dedekind, K = Q(A), L uma extensao finita galoisiana de K com

grupo de Galois G e B = at. Suponhamos que, para todo primo nao-nulo p <A, tenhamos
|A/ p| < co. Note que isso sempre ocorre se K for um corpo global. Para todo p <{A primo nao-
nulo, denotaremos IF, :== A/ p, e para todo P <1 B primo nao-nulo nés denotaremos Fy := B /.

Dados B | p primos nao-nulos quaisquer, sabemos que Fyp é uma extensao finita de IF,.
Como A/ p é finito, sabemos da Teoria de Galois que a extensdo (B/9)/(A/p) é galoisiana, e
que Gal(FFy /F,) é um grupo ciclico de ordem fig gerado pelo automorfismo de Frobenius
7 — 7%l Lembre que temos a sequéncia exata:

1—>Iq3—>Gq37r—m>Gal(]Fsp/]Fp)—>1

onde myp é dado por o — @. Suponhamos agora que p nao se ramifique em L. Entao nés temos
|Iy| = ep =1 = Iy = 1. Assim, vemos que Gy = Gal(FFy / F,) por meio do isomorfismo .
Desse modo, G € ciclico, gerado pela imagem do automorfismo de Frobenius por mil. Denotamos
esse gerador por oy, e o chamamos de elemento de Frobenius de ‘. E facil ver que esse é 0
tinico automorfismo o € G tal que o(z) = z/F*l (mod P) para todo = € B.

Dado um outro primo P’ | p, sabemos que P’ = 7P para algum 7 € G. Disso é ficil ver
que oy = Tm_pT_l. Ou seja, todos os elementos de Frobenius de primos sobre p sdo conjugados.
Assim, vemos que o conjunto dos elementos de Frobenius de primos sobre p é igual a classe de
conjugacao de o em G. Esse conjunto é chamado de classe de Frobenius de p, e é denotado
Frob,,.

Nés diremos que um primo nao-nulo B <1 B é nao-ramificado se P N A for nado-ramificado

em L. Nés definimos o simbolo de Artin como a fun¢do {Primos Nao-Ramificados de L} — G
L/K

dada por P +— ogp. Noés denotamos ainda (/ = ogp. Suponhamos agora que L/K seja

uma extensao abeliana. Nesse caso, todos os elementos de Frobenius de primos sobre um p <{K

coincidem, e Froby, possui um tinico elemento. Assim, podemos falar no elemento de Frobenius

L/K
de p, que pode ser denotado por oy, Frob, ou ainda () Nesse contexto, vemos o simbolo

de Artin como uma func¢do {Primos nao-ramificados de K} — G.

Observemos ainda que, sendo o o elemento de Frobenius de p, nés temos o (z) = z/F»! (mod )
para todo primo P | p e para todo x € B. Como p é nao-ramificado, sua fatoragao em B é da
forma p B = P - - Py, e pelas congruéncias acima ndés vemos que o(z) = 2l (mod p B), para
todo z € B. Denotaremos o (z) = z/¥#! (mod p).

A ideia é tentar estender o simbolo de Artin para obter um homomorfismo /(A4) — G, mas isso
nao ¢ simples porque my nao é um isomorfismo para ‘P ramificado. Para contornar o problema nés
consideramos, para cada conjunto S de ideais primos nao-nulos de A, o subgrupo abeliano livre
1 f; de I(A) gerado pelos primos que ndo estao em S. Tomemos S como o conjunto (finito) dos

primos ramificados em L. Entao nés definimos o mapa de Artin como sendo o homomorfismo
m

L/K _ O (L/K\®
(/>: Iﬁ — G dado por prl — H <;) . Podemos ainda denotar o mapa de Artin
' i=1 i=1 i

como 1/115:/[(: Ii — G.

Exemplo 12.6. Suponhamos K = Q e L = Q(\/&), para algum d € D. Entdo nds temos
Gal(L/K) = {id,7}, onde 7(\/d) = —vd. Seja p € N primo que ndio se ramifica em L.
Como jd vimos, isso significa que p { dy,. Nds temos |Z /pZ| = p. Assim, o simbolo de Artin
de p € o automorfismo o que satisfaz o(x) = 2P (mod p), para todo x € Or. Em particular,
nds temos o(vVd) = (Vd)P (mod p). Note que o(v/d) = +£Vd. Suponhamos p impar. Assim,
para determinar o, basta determinar (v/d)P~! (mod p). Se (v/d)P~' =1 (mod p), entio o = id,
e se (Vd)P™' = —1(mod p), entdo o = T (note que, como p > 2, temos 1 Z —1 (mod p)).
Observemos agora que (\/cil)p_1 = dP=1/2 Assim, basta determinarmos se dP~1/2 deiza resto 1

d
ou —1 mddulo p. Mas pelo critério de Euler temos dr=1)/2 = () (mod p). Assim, reconhecendo
p
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d

= <> Isso mostra que, em certo

2
p

pZ
sentido, o mapa de Artin generaliza o simbolo de Legendre.
Suponhamos agora p = 2. Nesse caso, como 2 1 dr,, vemos que d = 1 (mod 4). Assim, o

2
simbolo de Artin satisfaz o (1+2‘/E> = (1+2\/3) = %M (mod 2). Note que temos:

Gal(L/K) com o grupo {1, —1}, nds concluimos que (

1+vd _1+d+2Vd

o=1id <~ 5 1 (mod 2) <= 242Vd=1+d+2Vd (mod 8)
<= d=1(mod 8).
. L/K\ . L/K\ B
Assim, (22> =1, sed=1(mod38), e (22) = —1, se d =5 (mod 8).

Um dos principais resultados de Teoria dos Corpos de Classes é a sobrejetividade do mapa
de Artin. Devido a isso, nés obtemos um isomorfismo Gal(L/K) = Ij/ ker T/JE/K. A Lei de
Reciprocidade de Artin nos diz ainda mais:

Seja L/ K uma extensdo finita galoisiana de corpos globais, ndo necessariamente abeliana.
Denotemos por Ck e por Cf, os corpos de classes de ideles de K e de L, respectivamente. A
norma Ny i induz um homomorfismo Ny, i = C, — Ck. A Lei de Reciprocidade de Artin
afirma que existe um isomorfismo canénico de grupos : Cx /N, (Cr) — Gal(L/K)*", onde
Gal(L/K)? denota a abelianizagdo do grupo de Galois Gal(L/K).

Embora nao parega a principio, em geral temos mais informagdes sobre o grupo Cx /Ny, (CL)
do que sobre Gal(L/K). Assim, essa lei nos ajuda a entender melhor Gal(L/K), especialmente
no caso L/K abeliano, quando temos Gal(L/K) = Ck /Ny, (Cr). Mais especificamente, esse
isomorfismo nos d4 uma correspondéncia (que inverte a ordem de continéncia) entre as extensoes
abelianas finitas de K dentro de um fecho algébrico fixado e os subgrupos abertos de Cx. Por
meio dele, conseguimos de fato classificar as extensoes abelianas finitas de corpos globais. Ou seja,
a Teoria dos Corpos de Classes funciona como uma espécie de Teoria de Galois para extensoes
abelianas finitas de corpos globais!
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