

PEDRO HENRIQUE BALISTIERO FATTORE

ALGORITMOS METAHEURISTICOS

PARA PROJETO E OTIMIZAÇÃO DE

FONTES DE TENSÃO DE REFERÊNCIA

Trabalho de Conclusão de Curso apresentado à Escola de

Engenharia de São Carlos, da Universidade de São Paulo

Curso de Engenharia da Computação

ORIENTADOR: Prof. Doutor João Navarro Soares Jr.

São Carlos

2014

I

Sumário

Resumo ...III

Abstract... IV

1 Introdução.. 1

1.1 Contextualização .. 1

1.2 Objetivos do Trabalho ... 2

1.3 Organização da Monografia .. 3

1.4 Ferramentas utilizadas ... 3

2 Conceitos utilizados ... 4

2.1 Transistor Bipolar ... 4

2.2 Transistores MOS ... 7

2.3 Fonte de corrente ..11

2.4 Circuitos utilizados ...13

2.5 Algoritmos ...20

2.6 Função de Fitness ...25

3 Simulações e resultados ...29

3.1 Algoritmo Genético ..35

3.1.1 Circuito Ishibe ...35

3.1.2 Circuito Ueno completo ..37

3.1.3 Circuito Ueno modificado ..39

3.2 Simulated Annealing ..41

3.2.1 Circuito Ishibe ...41

3.2.2 Circuito Ueno complete ..43

3.2.3 Circuito Ueno modificado ..45

3.3 Particle Swarm ..47

3.3.1 Circuito Ishibe ...47

3.3.2 Circuito Ueno complete ..49

II

3.3.3 Circuito Ueno modificado ..51

4 Conclusão...56

Anexo ...57

Referências ...61

Apêndice A ...62

Apêndice B ...63

Apêndice C ...64

Apêndice D ...65

Apêndice E ...71

III

Resumo

Fontes de tensão de referência têm a função de fornecer uma tensão constante

independente das circunstâncias às quais o circuito pode estar sujeito, como variação da

temperatura e tensão de alimentação. Projetar esses circuitos é, no entanto, algo bem

complexo e exige vasto conhecimento. Este trabalho utiliza Algoritmo Genético, Simulated

Annealing, Particle Swarm e uma variação do Particle Swarm proposta, junto com

simulações elétricas, para projetar e otimizar fontes de tensão de referência, comparando os

resultados entre as configurações e, se possível, tentar determinar se alguma delas é o

melhor para as fontes testadas. A variação do Particle Swarm proposta aplica redes neurais

para antecipar resultados de simulação. Embora não tenha sido encontrado o melhor

algoritmo para os circuitos testados, foi mostrado que a variação do particle swarm proposta

apresenta resultados promissores.

Palavras-chave: Circuitos integrados MOS, Fonte de tensão de referência,

Algoritmos metaheurísticos.

IV

Abstract

Reference voltage sources have the function of providing a constant voltage

regardless of the circumstances to which the circuit may be subject, for instance temperature

and supply voltage variances. However designing these circuits is something quite complex

and requires a extensive knowledge. This work uses Genetic Algorithm, Simulated

Annealing, Particle Swarm and a proposed variation of Particle Swarm, with electrical

simulations, to design and optimize the reference voltage sources, comparing the results

between them and, if possible, trying to determine which one is the best for all tested

sources. The proposed variation of Particle Swarm applies neural networks to preview the

simulation results. Although a best algorithm for the tested circuits has not been found, it was

shown that the proposed variation of the Particle Swarm presents promising results.

Keywords: MOS integrated circuits, voltage reference, metaheuristic algorithms.

1

1 Introdução

1.1 Contextualização

Circuitos integrados são extensivamente utilizados em produtos eletrônicos atuais,

sendo encontrados em notebooks, celulares, tablets e afins. Com a introdução dos

transistores CMOS (do inglês Complementary Metal-Oxide-Semiconductor) nos circuitos

integrados, foi possível melhorá-los em vários aspectos, tais como consumo de potência,

facilidade de projeto, dimensões, custos de produção além da comunicação entre blocos

analógicos e digitais.

Muitos circuitos, para que possam trabalhar corretamente, precisam de uma

grandeza de referência, corrente ou tensão, de boa qualidade, cujas características se

mantenham com a temperatura, variações de alimentação, variações nos processos de

fabricação e tempo. Para muitos desses circuitos, essa grandeza é fornecida por uma fonte

de tensão de referência; um circuito que fornece uma tensão estável, independente das

circunstancias às quais o circuito está sujeito.

Geralmente, fontes de tensão de referência são compostas de dois blocos de

circuitos com funcionamentos complementares, em relação à temperatura, para uma

determinada grandeza, tensão ou corrente. Um dos blocos deve gerar uma grandeza

diretamente proporcional à temperatura, PTA (do inglês Proportional to Absolute) e o outro,

uma grandeza inversamente proporcional, CTA (do inglês Complementary to Absolute).

Para obtermos a fonte de tensão operando corretamente, devemos fazer com que a

soma dessas duas grandezas anule as variações da grandeza PTAT (Proportional to

Absolute Temperature) com as variações da grandeza CTAT (Complementary to Absolute

Temperature) em um determinado ponto. Dessa forma, o resultado é uma grandeza

constante e independente da temperatura, como mostrado na Figura 1 a seguir:

2

Figura 1. Variação das grandezas PTAT e CTAT de acordo com a temperatura, na esquerda,
e grandeza resultante, na direita.

Desenvolver uma fonte de tensão de referência é algo complicado e exige

conhecimentos avançados em circuitos eletrônicos. Essa mesma dificuldade aparece no

projeto da maior parte dos circuitos analógicos, que exigem, normalmente, projetistas

experientes. Uma opção para resolver esta dificuldade é a aplicação de algum meio

automático para projeto e otimização. Alguns desses meios utilizam algoritmos

metaheuristicos [8]. Estes algoritmos utilizam formas randômicas de geração de parâmetros

para tentar encontrar a melhor solução possível para um determinado problema. Esse

processo, onde se gera randomicamente soluções, é chamado de otimização estocástica.

Este trabalho consiste no projeto de circuitos de fontes de tensão de referência,

utilizando como base circuitos desenvolvidos por Ueno [6] e por Ishibe [7], na tecnologia

CMOS 0,35 𝜇m da AMS (AustriaMicroSystem) [2]. No projeto são aplicados mecanismos

metaheuristicos e simulações elétricas. Também são feitas comparações entre

projetos/otimizações realizadas por diversas metaheuristicas para determinar as dimensões

dos componentes, buscando alcançar o melhor funcionamento possível do circuito.

1.2 Objetivos do Trabalho

Este trabalho consiste em realizar o projeto e otimização de determinados circuitos

de fonte de tensão de referência, por meio de diversos algoritmos metaheuristicos.

Adicionalmente, configurações das metaheuristicas são alteradas visando aprender sobre

quais algoritmos apresentam melhores resultados em termos tanto de velocidade de

otimização e quanto de qualidade final do resultado.

3

1.3 Organização da Monografia

A Seção 2 contém alguns conceitos sobre transistores MOS e bipolar, sobre

funcionamento de fontes de tensão de referência, funcionamento dos algoritmos utilizados e

sobre as simulações e avaliação dos circuitos.

Na Seção 3 apresentam-se os resultados e estes são discutidos.

Na Seção 4 está a conclusão.

1.4 Ferramentas utilizadas

No trabalho foram utilizados:

 MatLab [9]: Ferramenta utilizada para executar o software de projeto e otimização, realizar

os cálculos e exibir os gráficos;

 HSpice [11]: Software utilizado para realizar as simulações elétricas dos circuitos.

4

2 Conceitos utilizados

Existem muitas topologias utilizadas em fontes de tensão de referência, com

diferentes dispositivos e configurações. As utilizadas neste trabalho se baseiam em

transistores MOS e bipolar.

Segundo Silva em [4], durante muito tempo foi utilizado apenas os transistores

bipolares na construção de circuitos eletrônicos. A partir da década de 70, com a melhora da

tecnologia MOS e eliminação de algumas dificuldades na sua construção, os transistores

MOS começaram a ganhar destaque, pois permitiam a construção de circuitos digitais mais

simples e de menor consumo, além de permitir dimensões menores.

Com a diminuição das dimensões dos transistores houve o aumento na

complexidade dos circuitos integrados, o que ocasionou também o aumento nas dificuldades

de projeto. Portanto, é útil e importante que se desenvolvam formas confiáveis de projeto e

otimização de circuitos micro eletrônicos.

2.1 Transistor Bipolar

O transistor bipolar é composto de uma estrutura de três regiões de cristais

semicondutores, com duas regiões do mesmo tipo intercaladas por uma região do tipo

oposto. Os tipos se referem ao tipo N, onde prevalecem elétrons na condução, e tipo P,

onde prevalecem de lacunas. As regiões faladas anteriormente são conhecidas como

Emissor, Base e Coletor. A Figura 2 ilustra os dois tipos de transistores bipolares existentes,

o transistor NPN e o transistor PNP.

Figura 2. Ilustração dos transistores bipolares NPN, à esquerda, e do PNP, à direita com seus

símbolos.

5

O Emissor é a região responsável por fornecer portadores de carga, elétrons, ou

negativas. A Base é a região intermediária, que absorve uma pequena parte dos portadores.

O Coletor é a região que recolhe a maior parte dos portadores emitidos pelo emissor. O

transistor NPN fornece elétrons e o transistor PNP fornece lacunas. Essa transferência de

portadores gera as correntes do transistor, compostas por correntes de base, de emissor e

de coletor, como ilustrada na Figura 3.

Figura 3.Tensões e correntes de um transistor bipolar.

É verificado no transistor bipolar que uma variação da corrente de base gera uma

variação diretamente proporcional na corrente do coletor. É possível determinar relações

das correntes e tensões aplicadas em um transistor, além do ganho corrente entre as

correntes de base e de coletor. De acordo com Sedra em [1], em um transistor bipolar as

seguintes relações são verificadas:

 𝐼𝑒 = 𝐼𝑏 + 𝐼𝑐 (1)

𝛽 =
∆𝐼𝑐
∆𝐼𝑏

(2)

 NPN: 𝑉𝑐𝑒 = 𝑉𝑏𝑒 + 𝑉𝑐𝑏 (3)
 PNP: 𝑉𝑒𝑐 = 𝑉𝑒𝑏 + 𝑉𝑏𝑐 (4)

𝐼𝑐 = 𝐼𝑠. 𝑒

𝑞𝑉𝑏𝑒
𝑘𝑇

(5)

onde 𝐼𝑒 é a corrente do emissor, 𝐼𝑏 é a corrente da base, 𝐼𝑐 é a corrente do coletor, ∆ indica

variação de algum elemento, 𝑞 é a carga do elétron, 𝑘 é a constante de Boltzmann, 𝑇 é a

temperatura em kelvin,  é uma constante de valor alto (acima de 100) e 𝐼𝑠 é a corrente de

saturação do transistor.

6

O índice 𝑉𝑥𝑦 é a diferença de potencia entre dois pontos, ou seja, tensão em x menos

a tensão em y. No transistor, a diferença entre tensões de base, emissor e coletor.

Sabendo que tanto 𝐼𝑠 quanto 𝑉𝑏𝑒 dependem da temperatura e fazendo a relação de

duas correntes de coletor em temperaturas diferentes, [6], podemos escrever:

𝐼𝑐(𝑇)

𝐼𝑐(𝑇2)
= (

𝐼𝑠(𝑇). 𝑒
𝑞𝑉𝑏𝑒(𝑇)

𝑘𝑇

𝐼𝑠(𝑇2). 𝑒
𝑞𝑉𝑏𝑒(𝑇2)

𝑘𝑇2

)

(6)

𝑉𝑏𝑒(𝑇) = 𝑇. [

𝑉𝑏𝑒(𝑇2)

𝑇2
+
𝑘

𝑞
. ln (

𝐼𝑐(𝑇)

𝐼𝑐(𝑇2)
.
𝐼𝑠(𝑇2)

𝐼𝑠(𝑇)
)]

(7)

A fórmula da corrente 𝐼𝑠 é dada por:

𝐼𝑠 =

𝑞. 𝐴. 𝑛𝑖
2. 𝐷̅

𝑁𝐵

(8)

onde A é a área de junção base-emissor, 𝑛𝑖 a concentração de portadores, 𝐷̅ o valor da

difusão efetiva dos portadores minoritários da base e 𝑁𝐵 o número de Gummel, que é o total

de impurezas por unidade de área na base.

Substituindo (8) em (7), temos:

𝑉𝑏𝑒(𝑇) = 𝑇. [

𝑉𝑏𝑒(𝑇2)

𝑇2
+
𝑘

𝑞
. ln (

𝐼𝑐(𝑇)

𝐼𝑐(𝑇2)
.
𝑛𝑖
2(𝑇2). 𝐷̅(𝑇2)

𝑛𝑖
2(𝑇). 𝐷̅(𝑇)

)]
(9)

 A fórmula de 𝑛𝑖
2 é dada por:

𝑛𝑖
2(𝑇) = 𝐸. 𝑇³. 𝑒

(−𝑞.
𝑉𝐺𝑂(𝑇)

𝑘.𝑇
)

(10)

onde E é uma constante, que depende da massa de elétrons e lacunas e 𝑉𝐺𝑂 é a tensão de

bandgap do silício.

Substituindo (10) em (9), temos:

𝑉𝑏𝑒(𝑇) = 𝑇. [

𝑉𝑏𝑒(𝑇2)

𝑇2
−
𝑉𝐺𝑜(𝑇2)

𝑇2
+
𝑉𝐺𝑜(𝑇)

𝑇
+
𝑘

𝑞
. ln (

𝐼𝑐(𝑇)

𝐼𝑐(𝑇2)
.
𝑇2³. 𝐷̅(𝑇2)

𝑇³. 𝐷̅(𝑇)
)]

(11)

A relação de Einstein, que relaciona a constante de difusão com a mobilidade, e a

fórmula que relaciona a mobilidade com temperatura são dadas respectivamente por:

7

𝜇̅(𝑇) =

𝑞. 𝐷̅(𝑇)

𝑘. 𝑇

(12)

 𝜇̅(𝑇) = 𝐶. 𝑇−ƞ (13)

onde C e ƞ são constantes resultantes da relação de Einsten, e ƞ depende do processo de

fabricação do transistor.

Aplicando (12) e (13) em (11), temos:

𝑉𝑏𝑒(𝑇) = 𝑇. [

𝑉𝑏𝑒(𝑇2)

𝑇2
−
𝑉𝐺𝑜(𝑇2)

𝑇2
+
𝑉𝐺𝑜(𝑇)

𝑇
] −

𝑘. 𝑇

𝑞
. ln (

𝑇2
𝑇
)
4−ƞ

+
𝑘. 𝑇

𝑞
. ln (

𝐼𝑐(𝑇)

𝐼𝑐(𝑇2)
)

(14)

𝑉𝑏𝑒(𝑇) = 𝑉𝐺𝑜(𝑇) −

𝑇

𝑇2
[𝑉𝐺𝑜(𝑇2) − 𝑉𝑏𝑒(𝑇2)] −

𝑘. 𝑇

𝑞
. ln (

𝑇2
𝑇
)
4−ƞ

+
𝑘. 𝑇

𝑞
. ln (

𝐼𝑐(𝑇)

𝐼𝑐(𝑇2)
)

(15)

 Por (15), dados os valores dos termos, tem-se que quando há um aumento da

temperatura, mantida a corrente IC constante, a tensão base-emissor diminuirá. Diz-se

nesse caso que Vbe é uma grandeza inversamente proporcional à temperatura CTAT. Essa

relação vai se mostrar muito importante para fontes de tensão de referência.

2.2 Transistores MOS

Apenas na década de 70 a tecnologia MOS (do inglês Metal Oxide Silicon) começou

a competir com os transistores bipolares em algumas áreas. Inicialmente foram utilizados

transistores PMOS (transistores MOS com canal onde a condução é feita por lacunas).

Estes possuíam um melhor desempenho, pois eram mais robustos, trabalhando melhor

mesmo com problemas no óxido de porta e na interface dele com o silício, e seus circuitos

tinham um funcionamento mais estável. Com o avanço da tecnologia, os problemas com o

oxido foram sendo tratados e os transistores NMOS (transistores MOS com canal tipo onde

a condução é feita por elétrons) se mostraram mais rápidos e eficientes. Atualmente, muitos

circuitos trabalham com ambas os transistores, NMOS e PMOS, sendo chamados de

circuitos CMOS. O transistor MOS tem uma estrutura semelhante à mostrada na Figura 4.

Os símbolos usados para representá-los estão mostrados na Figura 5. De forma

semelhante ao bipolar, o NMOS também tem três regiões, uma N (source), uma P (substrato

ou bulk) e outra N (dreno) (ou P-N-P para o PMOS). As regiões de source e dreno são

exatamente iguais; o que determina quem vai ser o source e o dreno são os potenciais à

que eles estão sujeitos.

8

Figura 4. Transistor NMOS em corte.

Figura 5. Símbolos de transistores NMOS, à esquerda, e PMOS, à direita.

No transistor MOS a tensão de controle é aplicada na parte intermediária, o gate. O

gate é formado de um material condutor, metal ou um semicondutor policristalino muito

dopado, que está entre o source e dreno e separado da região de substrato por uma

camada de isolante, dióxido de silício muitas vezes – SiO2, isolando-o eletricamente.

9

Aplicando uma diferença de tensão suficientemente grande entre o gate e o source,

é formado um canal de portadores, elétrons no NMOS e lacunas no PMOS, no substrato e

por esse canal ocorre a passagem da corrente entre source e dreno. Essa tensão mínima

para formação do canal de portadores é conhecia como Tensão de Threshold ou de limiar

(𝑉𝑡).

Os transistores MOS, dependendo da tensão entre gate e source, podem operar em

quatro distintas regiões:

 Inversão Forte: nessa região, a tensão Vgs (entre o gate e o source) é maior que a

tensão de limiar. Essa região é utilizada em projetos onde os transistores

funcionarão como chaves ou para a amplificação de sinais;

 Inversão Fraca: nessa região, a tensão Vgs é muito próxima da tensão Vt. Essa

região é utilizada quando se deseja que o transistor trabalhe com baixas potências

e frequências;

 Inversão moderada: região entre a fraca e forte inversão. A operação de

transistores nela não é modelada de maneira exata.

 Corte: nessa região, a tensão Vgs (entre o gate e o source) é menor que a tensão

de limiar. A corrente que passa pelo canal é praticamente nula.

Normalmente se verifica a região de operação do transistor, Fraca, Moderada ou Forte

inversão, analisando a corrente que passa no dreno. Um critério para determinar em qual

região o transistor opera é apresentado na Tabela 1.

Tabela 1. Critério para determinar a região de operação do transistor.

Região de Operação Condição

Inversão Forte LIM> 10

Inversão Fraca LIM< 0,1

Inversão Moderada 0,1 <LIM< 10

O fator LIM é dado por

LIM =

𝐼𝑑
𝑊

𝐿
𝜇. 𝐶𝑜𝑥. 2𝑛 (UT)²

(16)

onde Id é a corrente de dreno, 𝑛 é o fator de inclinação de inversão fraca (seu valor depende

da tecnologia e varia entre 1,2 e 1,6) e o termo 𝑈𝑇 =
𝑘𝑇

𝑞
 é a tensão térmica.

10

Quando operando na região de forte inversão, um transistor MOS possui dois

estados de funcionamento: saturação e triodo (Figura 6). Estes estados dependem das

diferenças de potencial entre source, dreno e gate.

Para um transistor NMOS estar no estado triodo, devemos ter 𝑉𝑔𝑠 > 𝑉𝑡 e 𝑉𝑑𝑠 < (𝑉𝑔𝑠 −

𝑉𝑡). Este estado apresenta a corrente variando de acordo com a seguinte relação

𝐼 = 𝜇. 𝐶𝑜𝑥

𝑊

𝐿
[(𝑉𝑔𝑠 − 𝑉𝑡)𝑉𝑑𝑠 −

1

2
𝑉𝑑𝑠
2]

(17)

onde 𝜇 é a mobilidade dos portadores do canal, 𝐶𝑜𝑥 é a capacitância por unidade de área

formada entre o gate e o substrato, 𝑊 é a largura do canal do transistor e 𝐿 é o comprimento

entre source e dreno.

Para um transistor NMOS estar no estado de saturação, devemos ter 𝑉𝑔𝑠 > 𝑉𝑡 e

𝑉𝑑𝑠 > (𝑉𝑔𝑠 − 𝑉𝑡). Neste estado, a corrente que passa pelo transistor se estabiliza,

permanecendo constante independente do quanto se aumente a diferença de potencial

entre dreno e source, como mostrado na Figura 6. A equação da corrente é:

𝐼 =

𝜇. 𝐶𝑜𝑥

2

𝑊

𝐿
(𝑉𝑔𝑠

2 − 𝑉𝑡)²
(18)

Figura 6. Gráfico de corrente de dreno versus 𝑉𝒅𝑠 em um transistor NMOS com diferentes valores de

𝑉𝑔𝑠.

Quando operando na região de fraca inversão, a corrente de dreno de um transistor

se dá pela seguinte fórmula:

11

𝐼 = (

𝑊

𝐿
) 𝐼𝐷0𝑒

𝑉𝑔𝑏

𝑛𝑈𝑇 (𝑒
−𝑉𝑠𝑏
𝑈𝑇 − 𝑒

−𝑉𝑑𝑏
𝑈𝑇)

(19)

onde que 𝐼𝐷0 é uma constante da tecnologia com dimensão de corrente e o índice 𝑏 das

tensões é referente ao bulk do transistor.

 A tensão 𝑉𝑔𝑠 do transistor pode ser descrita como [5]:

𝑉𝑔𝑠(T) = 𝑉𝑇𝐻(T) + 𝑉𝑂𝐹𝐹 +

𝑛(𝑇)

𝑛(𝑇2)
(𝑉𝑔𝑠(𝑇2) − 𝑉𝑇𝐻(𝑇2) − 𝑉𝑂𝐹𝐹)

(20)

onde 𝑇2 é uma temperatura de referência e 𝑉𝑂𝐹𝐹 é uma constante obtida pelo modelo de

simulação. Assumindo 𝑉𝑇𝐻 como escrito em (21), poderemos reescrever (20) como (22):

𝑉𝑇𝐻 (𝑇) = 𝑉𝑇𝐻 (𝑇2) + 𝐾𝑇 (

𝑇

𝑇2
− 1)

(21)

𝑉𝑔𝑠(T) ≈ 𝑉𝑔𝑠(𝑇2) + 𝐾𝐺 (

𝑇

𝑇2
− 1)

(22)

com 𝐾𝐺 ≌ 𝐾𝑇 + 𝑉𝑔𝑠(𝑇2) − 𝑉𝑇𝐻(𝑇2) − 𝑉𝑂𝐹𝐹, onde 𝐾𝑇 é uma constante negativa. Quando o

transistor está em fraca inversão, 𝐾𝐺 também será um fator negativo, fazendo com que a

tensão 𝑉𝑔𝑠 varie inversamente à temperatura, apresentando um comportamento CTAT.

2.3 Fonte de corrente

Uma estrutura importante para polarização e construção de fontes de tensão de

referência é a fonte de corrente. Existem diversos tipos de fontes de corrente, com

características variadas, mas uma fonte bastante utilizada é a fonte mostrada na Figura 7

[3]:

12

Figura 7. Fonte de corrente CMOS proporcional à temperatura.

Para que esta fonte opere corretamente, os transistores 𝑀1e 𝑀2 devem estar em

fraca inversão. Sendo assim e utilizando (19) encontramos:

𝐼3 = 𝐼1 = (

𝑊1
𝐿1
) 𝐼𝐷0𝑒

(
𝑉𝑔1

𝑛𝑈𝑇
)

(23)

𝐼4 = 𝐼2 = (

𝑊2
𝐿2
) 𝐼𝐷0𝑒

(
𝑉𝑔2

𝑛𝑈𝑇
−
−𝑉𝑠2
𝑈𝑇

)

(24)

onde 𝐼n é a corrente de dreno, 𝑊n largura de canal, e 𝐿n comprimento de canal do transistor

𝑀𝑛.

Como as tensões de gate dos transistores 𝑀1e 𝑀2 são iguais e a tensão de source

de 𝑀2 é igual à queda de tensão do resistor, 𝑉𝑅, temos:

𝐼3
𝐼4
=
𝐼1
𝐼2
=

(
𝑊1

𝐿1
) 𝐼𝐷0𝑒

(
𝑉𝑔1

𝑛𝑈𝑇
)

(
𝑊2

𝐿2
) 𝐼𝐷0𝑒

(
𝑉𝑔2

𝑛𝑈𝑇
−
−𝑉𝑠2
𝑈𝑇

)
=
(
𝑊1

𝐿1
)

(
𝑊2

𝐿2
)
𝑒
(
𝑉𝑅
𝑈𝑇
)

(25)

Supondo que a relação (W/L) do transistor 𝑀3 seja M vezes maior que (W/L) do 𝑀4,

consequentemente 𝐼3 = 𝑀𝐼4, e sabendo que a queda de tensão no resistor é dada por

𝑉𝑅 = 𝐼2. 𝑅1, temos:

𝐼2 =
𝑈𝑇
𝑅1
. 𝑙𝑛 (

𝑊2

𝐿2
𝑊1

𝐿1

M)

(26)

13

Com (26) vemos que a corrente gerada pela fonte de corrente é uma grandeza

proporcional à temperatura absoluta, PTAT.

2.4 Circuitos utilizados

Existem muitos fatores a se considerar ao projetar e analisar uma fonte tensão de

referência, tais como coeficiente de temperatura, consumo de potência, regulação de linha,

área ocupada, entre outros. Cada um desses fatores influencia no dimensionamento dos

dispositivos da fonte de tensão.

Coeficiente de temperatura quantifica o quanto a tensão de saída varia com

variações da temperatura do circuito. Uma relação para o coeficiente de temperatura é

 CT =
𝑉𝑀𝐴𝑋−𝑉𝑀𝐼𝑁

𝑇𝑀𝐴𝑋−𝑇𝑀𝐼𝑁

1

𝑉𝑅𝐸𝐹
106 (27)

onde VMAX é o máximo valor da tensão de saída para as variações da temperatura, VMIN é o

mínimo valor da tensão de saída, 𝑇𝑀𝐴𝑋 e 𝑇𝑀𝐼𝑁 são, respectivamente, a máxima e a mínima

temperaturas que o circuito está sujeito e 𝑉𝑅𝐸𝐹 o valor desejado para a saída. CT é dado em

ppm (partes por milhão) por unidade de temperatura.

A regulação de linha quantifica o quanto a tensão de saída vai variar com variações

da tensão de alimentação. Uma relação para a regulação de linha é

RL =

𝑉𝑀𝐴𝑋−𝑉𝑀𝐼𝑁

𝑉𝐷𝑀𝐴𝑋−𝑉𝐷𝑀𝐼𝑁

1

𝑉𝑅𝐸𝐹
106

(28)

onde 𝑉𝐷𝑀𝐴𝑋 é o máximo valor da tensão de alimentação e 𝑉𝐷𝑀𝐼𝑁 é o mínimo valor da tensão

de alimentação. RL é dado em ppm/V.

 Dependendo da qualidade da fonte de referência, CT e RL devem ser bem

reduzidos. Valores tais como CT=20 ppm/0C e RL= 500 ppm/V caracterizam uma boa fonte

de tensão.

Os circuitos de fonte de tensão escolhidos para este trabalho foram: Circuito Ishibe

em [6], Circuito Ueno completo em [7] e Circuito Ueno Modificado, que é, como sugere o

nome, uma variação do circuito proposto por Ueno. Estes circuitos apresentam boas

características e representam três topologias diferentes. A seguir são apresentados os

circuitos na Figura 8, Figura 9 e Figura 10, respectivamente, e é feita uma breve

explicação do funcionamento deles.

14

Figura 8. Circuito de Fonte de Tensão Ishibe.

O Circuito fonte de tensão Ishibe, Figura 8, mantém a tensão de saída constante

equilibrando a soma de uma corrente proporcional à temperatura 𝐼𝑃𝑇𝐴𝑇, gerada pela fonte de

corrente e espelhada pelo transistor𝑀10, com outra corrente inversamente proporcional 𝐼𝐶𝑇𝐴𝑇

gerada a partir do transistor bipolar 𝑄1. A soma das duas correntes tende a variar muito

pouco, garantindo pouca variação na queda de tensão no resistor 𝑅3.

Ele utiliza uma variação da fonte de corrente mostrada anteriormente, composta

pelos transistores 𝑀𝑝1, 𝑀𝑝2, 𝑀𝑝3, 𝑀𝑛1, 𝑀𝑛2 e 𝑀𝑛3 e o resistor 𝑅1. Esta corrente gerada pela

fonte de corrente é espelhada pelo transistor 𝑀10 e somada à corrente em R2 que é

proporcional a (VREF – Veb). A corrente resultante, passando pelo resistor 𝑅3, pode ser

ajustada para ser constante com a temperatura, acarretando em VREF uma tensão

praticamente constante.

Os transistores 𝑀𝑝3 e 𝑀𝑛3 são transistores cascode e foram adicionados para que a

corrente na fonte de corrente permaneça praticamente constante quando houver variações

15

na tensão de alimentação 𝑉𝑑𝑑. Os pares de transistores 𝑀𝑝4-𝑀𝑛5 e 𝑀𝑝5-𝑀𝑛4 foram

adicionados para polarizar o circuito, de modo a fornecer tensões que garantam o

funcionamento correto dos transistores cascode.

Figura 9. Circuito de Fonte de Tensão Ueno completo.

O Circuito fonte de tensão Ueno completo, Figura 9, utiliza uma variação da fonte de

corrente apresentada. Nela o resistor é substituído por um transistor NMOS operando na

região triodo. Com isso, podem-se obter menores correntes sem a necessidade de grandes

áreas. Também foi utilizado um amplificador diferencial, composto pelos transistores 𝑀𝑝6,

𝑀𝑝7, 𝑀𝑛10, 𝑀𝑛11 e 𝑀𝑛12, visando manter as tensões 𝑉𝑔𝑑 dos transistores 𝑀𝑝1 e 𝑀𝑝2 iguais e

diminuir a interferência que alterações na tensão de alimentação 𝑉𝑑𝑑 possam causar na

tensão gerada.

Nessa fonte de tensão não é utilizado um transistor bipolar para gerar a corrente

CTAT. Ao invés disso, ele monta uma estrutura composta apenas de transistores MOS e

estes são responsáveis por gerar a tensão CTAT, e a tensão de referência se dá na

16

combinação das diferenças de tensões entre gate e source dos transistores𝑀𝑛3a 𝑀𝑛7, como

mostrado nas fórmulas a seguir [5]:

 𝑉𝑅𝐸𝐹 = 𝑉𝑔𝑠4 − 𝑉𝑔𝑠3 + 𝑉𝑔𝑠6 − 𝑉𝑔𝑠5 + 𝑉𝑔𝑠7 (29)

Todos esses transistores devem estar operando em fraca inversão. Aplicando-se

(19) e substituindo suas respectivas tensões gate-source, temos:

𝑉𝑅𝐸𝐹 = 𝑉𝑔𝑠4 + 𝑛𝑉𝑇 [− ln(
𝐼𝐷3

(
𝑊

𝐿
)
3
𝐼0
)+ ln(

𝐼𝐷6

(
𝑊

𝐿
)
6
𝐼0
)− ln(

𝐼𝐷5

(
𝑊

𝐿
)
5
𝐼0
)+ ln(

𝐼𝐷7

(
𝑊

𝐿
)
7
𝐼0
)]

(30)

onde IDi é a corrente de dreno e (W/L)i é a relação (W/L) do transistor Mni.

Sabendo que as correntes espelhadas em 𝑀𝑝3, 𝑀𝑝4 e 𝑀𝑝5 são iguais, chamaremos

de 𝐼𝑀, temos que as correntes que passam por 𝑀𝑛3, 𝑀𝑛5, 𝑀𝑛6 e 𝑀𝑛7 são, respectivamente,

𝐼𝑀, 𝐼𝑀, 2𝐼𝑀 e 𝐼𝑀, podemos simplificar (30) por:

𝑉𝑅𝐸𝐹 = 𝑉𝑔𝑠4 + 𝑛𝑉𝑇𝑙𝑛 (
2 (

𝑊

𝐿
)
3
(
𝑊

𝐿
)
5

(
𝑊

𝐿
)
6
(
𝑊

𝐿
)
7

)

(31)

Substituindo agora a tensão gate-source do transistor 𝑀𝑛4, sabendo que a corrente

que passa por ele é 3𝐼𝑀, temos:

𝑉𝑅𝐸𝐹 = 𝑛𝑉𝑇𝑙𝑛 (
3𝐼𝑀

(
𝑊

𝐿
)
4
𝐼0
)+ 𝑛𝑉𝑇𝑙𝑛(

2 (
𝑊

𝐿
)
3
(
𝑊

𝐿
)
5

(
𝑊

𝐿
)
6
(
𝑊

𝐿
)
7

)

(32)

Sabendo que 𝐼0 pode ser descrita como (33), podemos reescrever (32) como:

𝐼0 = 𝐼𝐷0𝑒

(−
𝑉𝑇𝐻
𝑛𝑉𝑇

)

(33)

𝑉𝑅𝐸𝐹 = 𝑛𝑉𝑇𝑙𝑛

(

3𝐼𝑀

(
𝑊

𝐿
)
4
𝐼𝐷0𝑒

(−
𝑉𝑇𝐻
𝑛𝑉𝑇

)

)

 + 𝑛𝑉𝑇𝑙𝑛(
2 (

𝑊

𝐿
)
3
(
𝑊

𝐿
)
5

(
𝑊

𝐿
)
6
(
𝑊

𝐿
)
7

)

(34)

𝑉𝑅𝐸𝐹 = 𝑉𝑇𝐻 + 𝑛𝑉𝑇𝑙𝑛(
6 (

𝑊

𝐿
)
3
(
𝑊

𝐿
)
5
𝐼𝑀

(
𝑊

𝐿
)
6
(
𝑊

𝐿
)
7
(
𝑊

𝐿
)
4
𝐼𝐷0
)

(35)

Aplicando-se (21), temos:

17

𝑉𝑅𝐸𝐹(𝑇) = 𝑉𝑇𝐻(𝑇2) − 𝐾𝑇 + 𝑇

(

𝐾𝑇
𝑇2
+
𝑛k

q
𝑙𝑛(

6 (
𝑊

𝐿
)
3
(
𝑊

𝐿
)
5
𝐼𝑀

(
𝑊

𝐿
)
6
(
𝑊

𝐿
)
7
(
𝑊

𝐿
)
4
𝐼𝐷0
)

)

(36)

Ueno [7] desenvolveu esta fonte buscando o coeficiente de temperatura mais baixo

possível. Como buscamos um TC tendendo a zero quando 𝑇 está próximo de 𝑇2, devemos

ter que
∂𝑉𝑅𝐸𝐹(𝑇)

∂T
│𝑇=𝑇2 = 0. Sendo assim, temos:

 𝑉𝑅𝐸𝐹(𝑇) = 𝑉𝑇𝐻(𝑇2) − 𝐾𝑇 (37)

Como os dois termos são constantes, a tensão de saída da fonte de corrente

também é constante, porém não pode ser configurada, dependendo de 𝑉𝑇𝐻(𝑇2) na

tecnologia dos componentes usados na fonte.

Figura 10. Circuito de Fonte de Tensão Ueno modificado.

O circuito fonte de tensão Ueno modificada (Figura 10) tem a mesma configuração e

funcionamento do circuito anterior em relação ao subcircuito de tensão, trabalhando com as

18

relações das tensões 𝑉𝑔𝑠 dos transistores 𝑀𝑛3 a 𝑀𝑛7. A diferença deste circuito para o

anterior está na fonte de corrente. Neste caso o transistor Mn12 foi retirado do amplificador

diferencial. Também foram retirados os transistores cascode Mn8 e Mn9. Ambas as alterações

foram realizadas para permitir que a fonte de corrente opere com tensões mais baixas de

alimentação. Por outro lado ele terá maior dependência com a tensão de alimentação.

Os circuitos são parametrizados, de modo que as dimensões dos dispositivos são

representadas por variáveis que serão determinadas. Atribuem-se intervalos de valores para

essas variáveis. A descrição de um transistor, por exemplo, ficaria como a seguir:

Mn2 d2 g1 s2 0 MODN W='X6*1u' L='X5*1u'

onde Mn2 é o nome do transistor, d2, g1, s2 e 0 são os nós onde estão conectados dreno,

gate, source e bulk dos transistores, MODN quer dizer que é um transistor NMOS, W é a

largura do transistor, parametrizado pela variável X6 e L é o comprimento do gate,

parametrizado pela variável X5.

As descrições completas dos circuitos estão no Apêndice A, Apêndice B e Apêndice

C. A Tabela 2, Tabela 3 e Tabela 4 mostram quais dimensões dos transistores são

parametrizadas por quais variáveis nos circuitos Ishibe, Ueno completo e Ueno modificado,

respectivamente:

Tabela 2. Relações entre as variáveis de parametrização e as dimensões dos componentes do

Circuito Ishibe.

Variáveis Dimensões

X1 Lp1, Lp2, Lp4, L10, L11

X2 Lp3, Lc10, L12

X3 Lp5

X4 Ln1, Ln2, Ln4

X5 Ln3

X6 Ln5

X7 Wp1, Wp2, Wp3, W10, W11, Wc10, W12

X8 Wp4

X9 Wp5

X10 Wn1, Wn2, Wn3

X11 Wn4

X12 Wn5

X13 R1

X14 Cálculo de R2

X15 Cálculo de R3

X16 Relação de tamanho entre Mp2 e M11

X17 Relação de tamanho entre Mp1 e M10

19

Tabela 3. Relações entre as variáveis de parametrização e as dimensões dos componentes

do Circuito Ueno completo.

Variáveis Dimensões

X1 Lp1, Lp2, Lp3, Lp4, Lp5

X2 Wp1, Wp2, Wp3, Wp4, Wp5

X3 Lp6, Lp7

X4 Wp6, Wp7

X5 Ln1, Ln2, Ln12

X6 Wn1, Wn2, Wn8, Wn9, Wn12

X7 Ln3, Ln4, Ln5, Ln6, Ln7

X8 Multiplicador de Mn3 e Mn5

X9 Multiplicador de Mn4 e Mn6

X10 Wn7

X11 Ln8, Ln9

X12 Ln10, Ln11

X13 Wn10, Wn1

X14 Lr1

X15 Wr1

Tabela 4. Relações entre as variáveis de parametrização e as dimensões dos componentes

do Circuito Ueno modificado.

Variáveis Dimensões

X1 Lp1, Lp2, Lp3, Lp4, Lp5

X2 Wp1, Wp2, Wp3, Wp4, Wp5

X3 Lp6, Lp7

X4 Wp6, Wp7

X5 Ln1, Ln2, Ln10, Ln11

X6 Wn1, Wn2, Wn10, Wn11

X7 Ln3, Ln4, Ln5, Ln6, Ln7

X8 Multiplicador de Wn3 e Wn5

X9 Multiplicador de Wn4 e Wn6

X10 Wn7

X11 Lr1

X12 Wr1

Para avaliar os circuitos existe uma função, a função Fitness, que dá notas aos

circuitos com base em resultados de simulação. São também definidas situações de

funcionamento, como tensões mínima e máxima de alimentação, variação de temperatura, e

também valores alvos para outros parâmetros de desempenho, como tensão de saída,

consumo, regulação de linha, entre outros. Para cada um desses parâmetros, foi definido

20

um peso. A Fitness utiliza esses pesos e os valores reais, comparando-os com os valores

desejados, para gerar a nota.

2.5 Algoritmos

Os algoritmos metaheuristicos escolhidos para projeto e otimização foram: Algoritmo

Genético (GA), Simulated Annealing (SA), Particle Swarm Optimization (PSO) e PSO com

rede neural (PSON). A seguir, uma descrição do funcionamento destes algoritmos, baseado

em [8], e como foram utilizados nas simulações.

O Algoritmo Genético, como o próprio nome sugere, é baseado na teoria de

cruzamento e seleção das espécies, buscando sempre o melhor indivíduo. Consideram-se

uma ou mais populações com determinado números de indivíduos cada e trabalha-se com a

reprodução entre os indivíduos para geração de novas populações. Para este trabalho, cada

indivíduo é uma possível fonte de tensão e seus genes são as variáveis de otimização

procuradas.

No GA o programa gera uma população de circuitos, com dimensões para todos os

dispositivos, simula-os, atribui notas de acordo com os parâmetros de desempenho

escolhidos e salva o circuito que apresentou o melhor resultado. Em seguida, ele gera uma

nova população de circuitos a partir de alguns dos circuitos passados como pais, utilizando

os genes destes, que são copiados, cruzados e sofrem mutação, para criar circuitos filhos. A

nova população é simulada novamente e novas notas são atribuídas. Caso haja um novo

melhor resultado, ele é armazenado e o antigo descartado, caso contrário, o antigo é

mantido, e o processo de criar populações e simular é repetido até que se atinja o número

máximo de simulações determinado.

O problema desse algoritmo é conseguir balancear o número de indivíduos e de

populações. O número total de indivíduos deve ser grande o suficiente para garantir uma

boa convergência e distribuído em um certo número de populações de forma manter a

variedade nas dimensões dos circuitos, mas não exagerado, de modo a realizar simulações

excessivas e repetidas. Em contrapartida, ele é um método robusto, garantindo um

resultado geral satisfatório.

Para o algoritmo genético foram alteradas duas características para analises: a

quantidade de indivíduos em cada população e o número de populações. Foram realizadas

aqui simulações com as populações de 50 e 100 indivíduos e com 1 a 4 populações

distintas.

21

O Simulated Annealing funciona com base em algoritmos de Hill-Climbing [8],

utilizando um parâmetro de probabilidade adicional. Partindo de um circuito inicial, que será

também o circuito atual S, é feita a simulação dele e dada uma nota de acordo com os

parâmetros de desempenho escolhidos. Em seguida, o programa gera um novo circuito R

em torno do primeiro, com alguma pequena modificação em algumas dimensões de seus

dispositivos, simula este novo circuito e o compara com o circuito S. Caso R seja melhor, o

sistema faz de R o novo circuito atual S e segue com o processo, criando um novo circuito

em torno de R. Caso R seja pior, ainda há uma probabilidade do algoritmo substituir S por R.

A probabilidade de substituição é dada pela fórmula:

𝑃(𝑡, 𝑅, 𝑆) = 𝑒

𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑟)−𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑠)

𝑡
(38)

onde Quality(r) é a nota obtida pelo circuito R, Quality(s) é a nota obtida pelo circuito S e t é

a temperatura a qual eles estão submetidos.

Pela fórmula, se a nota do circuito R é muito pior, a subtração resulta em um número

muito negativo, gerando uma probabilidade próxima de zero. Caso R não seja muito pior, a

chance de substituir é maior. Há ainda o parâmetro t a ser considerado. Quando t é um valor

grande, o resultado da probabilidade é próxima de 1,0, independente de quão ruim seja o

circuito, o que acarreta uma grande chance de substituição. Isso é feito para garantir um

movimento aleatório no espaço, em um primeiro momento, e evitar que ótimos locais limitem

as buscas. À medida que se diminui o valor de t, as chances de trocar S por um circuito pior

vão diminuindo e apenas substituição por circuitos melhores são garantidas. O Valor de t é

reduzido ao longo do processo de otimização.

Para o Simulated Annealing foram alteradas duas características para análises: o

valor inicial da temperatura t e quantos melhores resultados precisam ser encontrados para

fazer o re-annealing. Esse re-annealing é necessário para retornar a temperatura ao valor

inicial, pois, a partir de um determinado momento, ela é tão baixa que a chance de trocar o

circuito atual se torna praticamente zero. Para limitar o mínimo da temperatura, também foi

alterado o arquivo saupdates.m do Matlab, colocando um mínimo de temperatura igual a

0.0001. Foram realizadas aqui simulações com valores iniciais de t de 2.0, 1.5 e 1.0 e re-

annealing quando encontrar 50, 75 e 100 resultados ótimos, totalizando 9 configurações

distintas.

O PSO é outro algoritmo que tem como base a evolução, mas tem uma diferença

básica. Ao invés de considerar a evolução genética dos indivíduos, ele é baseado no

agrupamento e migração dos mesmos para buscar um melhor resultado. Utilizando os

22

conhecimentos mútuos e na experiência própria e de outros seres, cada indivíduo consegue

decidir sua melhor solução.

Primeiro determina-se o número de partículas que se deseja. Cada uma dessas

partículas representa uma fonte de tensão a ser otimizada. Em seguida, posicionam-se

essas partículas em lugares aleatório no espaço, com um vetor velocidade, também

aleatório. Este espaço é multidimensional e é caracterizado pelas variáveis, ou seja, cada

dimensão está relacionada a uma variável Xn, logo as coordenadas físicas das partículas

neste espaço determinam os valores atribuídos à cada variável.

Durante a execução do algoritmo, são armazenados:

 Os melhores lugares que cada partícula descobriu até o momento (um local por

partícula);

 O melhor lugar que algum informante da partícula descobriu até o momento. Os

informantes de uma partícula são outras partículas, escolhidas aleatoriamente a

cada iteração;

 O melhor lugar descoberto até agora por qualquer partícula;

A cada iteração o algoritmo calcula a nota de cada partícula através da Fitness e

atualiza os melhores locais, caso tenha encontrado algum. Ele também atualiza o vetor

velocidade de todas as partículas, utilizando uma combinação dos vetores que apontam

para os locais ótimos armazenados e altera a posição das partículas de acordo com seus

respectivos vetores velocidades. O desempenho deste algoritmo está ligado à quantidade

de partículas utilizadas, uma vez que mais partículas acarretam mais locais testados

aumentando as chances de encontrar boas soluções com menos simulações, porém

aumenta o tempo que demora cada simulação.

Na Figura 11, um esquemático, contendo ilustrações dos três algoritmos explicados

anteriormente:

23

Figura 11. Esquemático completo de uma execução, para os algoritmos GA, SA e PSO.

O PSON utiliza o mesmo procedimento do PSO, mas conta com auxílio de redes

neurais, que são treinadas para tentar prever quais partículas devem alcançar melhores

notas sem necessidade de realizar simulações. Em uma primeira etapa, Ntotal partículas são

geradas e todas avaliadas, cada uma recebendo a sua nota. A rede neural é então criada e

treinada, com os melhores Ntrei resultados já obtidos, para aprender a identificar quais

partículas são as mais promissoras. As partículas têm seus vetores velocidade e sua

posição atualizados, como padrão do PSO. A partir desse ponto, não são simuladas mais

todas as partículas, mas apenas um grupo menor, Nteste, que são aquelas mais promissoras

para atingir a melhor nota. Também a rede neural é constantemente retreinada.

Com a aplicação de redes neurais, visamos aumentar a qualidade dos resultados,

buscando circuitos melhores, simulando uma abrangência maior sem aumentar o número de

partículas simuladas.

24

A rede neural aplicada tem as seguintes características:

 É do tipo feed-forward backpropagation network;

 O número de entradas é igual ao numero de variáveis otimizadas;

 Apresenta uma saída que da a nota do circuito;

 Tem uma camada escondida com (numero de variáveis)/2 neurônios;

 usa uma função radial para os neurônios.

 O esquemático com os passos do PSON está demonstrado na Figura 12, a seguir.

Figura 12. Esquemático de uma execução do algoritmo PSON.

FIM

PSON

Continua

Atualização das velocidades de

todas as partículas

Simulação elétrica e medidas

Verificação dos critérios de parada

Cálculo dos scores

 Geração de arquivos de simulação

Criação e treino de rede neural para obter score, utilizando

os Ntrei melhores resultados obtidos até o momento.

F
u

n
ç

ã
o

o
b

je
ti

v
o

A
v

a
li

a
 t

o
d

a
s

p
a
rt

ic
u

la
s

Geração de Ntotal partículas

(posição e velocidade)

Seleção, com rede neural, de Nteste partículas mais

promissoras.

Simulação elétrica e medidas

Cálculo dos scores

 Geração de arquivos de simulação

F
u

n
ç
ã

o

o
b

je
ti

v
o

A
v

a
li

a
 N

te
s
te

p
a
rt

íc
u

la
s

Para as partículas não avaliadas repete o

score

Atualização das posições de todas

as partículas

25

Para o PSON, o valor de Ntotal foi de 4, 6 e 8 vezes o número de variáveis, o valor de

Ntrei foi de 100, 200, 300 e 400, formando um total de 12 configurações. O Valor de Nteste foi

mantido igual ao número de variáveis.

2.6 Função de Fitness

Para avaliar os circuitos e dar a eles uma nota existe a função Fitness, ou função

objetivo. Essa função é a mesma para ambos os algoritmos e realiza as seguintes

operações: gera o arquivo, com comandos e valores das variáveis, chamado param,

executa as simulações com um simulador elétrico Hspice, lê os resultados gerados e, por

fim, calcula a nota do circuito. Caso tenha havido algum problema nas simulações, por

exemplo, a não convergência, a nota infinita é atribuída. Ainda, a função Fitness mantém

uma cópia do arquivo param do melhor circuito já encontrado, paramop, e que será a

solução final. Para múltiplas execuções de otimização, o arquivo paramopT terá o resultado

final. Todos os parâmetros obtidos e as notas atribuídas são exibidos na tela durante as

otimizações, possibilitando o acompanhamento do processo. A descrição completa da

função Fitness se encontra no Apêndice E.

Para a realização das simulações são especificadas as condições de funcionamento

do circuito, como tensões mínima e máxima de alimentação e variação de temperatura. Para

cálculo da nota são especificados os parâmetros de desempenho, como tensão de saída,

coeficiente de temperatura, regulação de linha, consumo de potencia, área e estado de

operação de alguns transistores, e os pesos que serão aplicados a cada um desses

parâmetros. Através das simulações são determinados os valores da tensão de saída, VRefM,

do coeficiente de temperatura, CTM, da regulação de linha, RLM, da corrente consumida,

ICONS, dos índices de forte inversão para alguns transistores, IStri, e dos índices de fraca

inversão para alguns transistores, IWeaki. Com esses resultados são avaliados os termos

VRefW, TCW, LRW, PW, que indicam quanto a tensão de saída, o coeficiente de temperatura, a

regulação de linha, e a potência consumida estão longe dos valores desejados, e os valores

de IStrW e IWeakW, que indicam quanto certos transistores estão fora da região de operação

desejada. Estes termos são aplicados no cálculo final de uma nota.

Para obter o termo VRefW é avaliada a seguinte expressão

𝑉𝑅𝑒𝑓𝑊 = {

|𝑉𝑅𝑒𝑓𝑀 − 𝑉𝑅𝑒𝑓𝐸|

min (𝑉𝑅𝑒𝑓𝑀, 𝑉𝑅𝑒𝑓𝐸)
 𝑠𝑒 𝑚𝑎𝑖𝑜𝑟 𝑞𝑢𝑒 𝐸𝑟𝑟

0,0 𝑠𝑒 𝑚𝑒𝑛𝑜𝑟 𝑞𝑢𝑒 𝐸𝑟𝑟

(39)

onde,

26

VRefW = contribuição da tensão de saída para o cálculo da nota;

VRefE = VRef especificado;

Err = variação da tensão de saída permitida (erro relativo) e

Min{ , } = é a função mínimo

Para obter o termo TCW é avaliada a seguinte expressão

𝑇𝐶𝑊 = {

𝐶𝑇𝑀 − 𝑇𝐶𝐸
𝑇𝐶𝐸

, 𝑠𝑒 𝐶𝑇𝑀 > 𝑇𝐶𝐸

0,0 𝑠𝑒 𝐶𝑇𝑀 ≤ 𝑇𝐶𝐸

(40)

onde,

TCW = contribuição do TC para o cálculo da nota e

TCE = TC especificado.

Para obter termo LRW é avaliada a seguinte expressão

𝐿𝑅𝑊 = {

𝑅𝐿𝑀 − 𝐿𝑅𝐸
𝐿𝑅𝐸

, 𝑠𝑒 𝑅𝐿𝑀 > 𝐿𝑅𝐸

0, 0 𝑠𝑒 𝑅𝐿𝑀 ≤ 𝐿𝑅𝐸

(41)

onde,

LRW = contribuição do LR para o cálculo da nota e

LRE = LR especificado.

Para obter PW foi avaliada a seguinte expressão

𝑃𝑊 = (

𝑉𝑀𝑎𝑥 + 𝑉𝑀𝑖𝑛
2

)
𝐼𝐶𝑂𝑁𝑆
𝑃𝑅

(42)

onde,

PW = contribuição da potência média para o cálculo da nota;

PR = potência de referência para o circuito (constante) e

VMax, VMin = máxima e mínima tensão de alimentação.

Para obter IStrW foi avaliada a seguinte expressão

 𝐼𝑆𝑡𝑟𝑊 = ∑ 10. (0,1 − 𝐼𝑆𝑡𝑟𝑖)𝑖 para 𝐼𝑆𝑡𝑟𝑖 < 0,1 (43)

27

onde,

IStrW = contribuição do estado do transistor para o cálculo da nota e

i = índices dos transistores em que se deseja forte inversão.

O valor de IStri é calculado através da expressão:

 𝐼𝑆𝑡𝑟𝑖 = (𝑉𝑔𝑠𝑖 − 𝑉𝑡) (44)

Para obter IWeakW foi avaliada a seguinte expressão

 𝐼𝑊𝑒𝑎𝑘𝑊 = ∑ 10. (𝐼𝑊𝑒𝑎𝑘𝑖)𝑖 para 𝐼𝑊𝑒𝑎𝑘𝑖 > 0,12 (45)

onde,

IWeakW = contribuição do estado do transistor para o cálculo da nota e

i = índices dos transistores em que se deseja fraca inversão.

O valor de IWeaki é calculado através da expressão:

𝐼𝑊𝑒𝑎𝑘𝑖 =

|𝐼𝐷𝑖|

𝑈𝑇(1+
𝑔𝑚𝑏𝑖
𝑔𝑚𝑖

)
− 𝑔𝑚𝑖

𝑔𝑚𝑖

(46)

onde IDi é a corrente de dreno, gmi é a transcondutância e gmbi é a transcondutância de efeito

de corpo do iésimo transistor.

 Um termo adicional é AW, que indica quanto a área está longe de um valor de

referência, é avaliado através da seguinte expressão

𝐴𝑊 =

Á𝑟𝑒𝑎 𝑑𝑜𝑠 𝑡𝑟𝑎𝑛𝑠𝑖𝑠𝑡𝑜𝑟𝑒𝑠 + Á𝑟𝑒𝑎 𝑑𝑜𝑠 𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟𝑒𝑠

𝐴𝑅

(47)

onde,

AW = contribuição da área estimada para o cálculo da nota e

AR = área de referência para o circuito (constante).

Por fim, o valor da nota é dada por

 𝑛𝑜𝑡𝑎 = (𝑝1. 𝑉𝑅𝑒𝑓𝑊 + 𝑝2. 𝑇𝐶𝑊 + 𝑝3. 𝑅𝐿𝑊 + 𝑝4. 𝑃𝑊

+ 𝑝5. 𝐼𝑊𝑒𝑎𝑘𝑊+ 𝑝6. 𝐼𝑆𝑡𝑟𝑊 + 𝑝7. 𝐴𝑊)
2

(48)

28

onde p1, p2, .. p7 são pesos especificados pelo usuário.

29

3 Simulações e resultados

Para realizar as simulações, foi utilizado o software CirOp de projeto e otimização.

Este software está sendo desenvolvido pelo professor Navarro, utilizando como plataforma o

Matlab e alguns pacotes deste.

No programa, primeiramente, escolhe-se o bloco que se deseja projeta e otimizar

(Figura 13). Em seguida, escolhe-se qual topologia do bloco será simulada, ajustando-se os

valores dos parâmetros desejados para o desempenho circuito e os intervalos possíveis

para as variáveis (Figura 14). Por último, escolhe-se a quantidade de vezes que se deseja

otimizar a mesma configuração, o número máximo de simulações por execução, o nome do

arquivo contendo os resultados e se as execuções vão ter um circuito inicial aleatório ou não

(Figura 15). O arquivo contendo os resultados será armazenado na pasta “results”, dentro

da pasta da topologia escolhida. A seguir, imagens dos menus de escolha para o usuário:

Figura 13. Menu para escolha do tipo de circuito a ser simulado.

30

Figura 14. Menu de escolha do tipo de topologia (1), escolha dos parâmetros desejados (4),

intervalo de valores das variáveis (5) e algoritmo desejado (6).

31

Figura 15. Menu de escolha de quantas execuções serão realizadas com a mesma configuração

(1), número máximo de simulações por execução (4000) e nome do arquivo de saída (A1).

 Os parâmetros de funcionamento de cada circuito foram mantidos os mesmos para

todos os algoritmos executados. A seguir, a Tabela 5, Tabela 6 e Tabela 7 apresentam as

condições de funcionamento do circuito, especificados os parâmetros de desempenho e os

pesos utilizados na função de Fitness.

Tabela 5. Configuração dos parâmetros de funcionamento, parâmetros de desempenho e pesos

utilizados para o Circuito Ishibe.

Parâmetros Valores

Tensão de saída(V) 0,5

Variação da tensão de saída (%) 10

Tensão de alimentação (min. máx.) (V) 1,5 2,5

Temperatura (min. máx.) (Celsius) -10 90

Coeficiente de temperatura (ppm/C) 15

Regulação de linha (ppm) 500

Consumo (uW) 5

Área (um x um)

Transistor em fraca inversão Mn1

Transistor em forte inversão

Constantes 3,0

Pesos (Vref, TC, RL, Pot, Winv, Stinv, Area) 1,0 10 10 10 1,0 0,1

 Na Tabela 5, observa-se os parâmetros para o circuito Ishibe, onde os pesos da

última linha estão relacionados com a tensão de referência, Vref, o coeficiente de

temperatura, TC, a regulação de linha, RL, a potência consumida pelo circuito, Pot, os

32

transistores em fraca e forte inversão, respectivamente Winv e Sinv, e à área do circuito,

Área. A constante com valor 3,0 representa quantos transistores iguais ao transistor 𝑀𝑝1 são

usados em paralelo, ou seja, quantas vezes o transistor resultante é maior que o 𝑀𝑝2. Isso é

determinado na parametrização do circuito, encontrada no Apêndice A.

Tabela 6. Configuração dos parâmetros de funcionamento, parâmetros de desempenho e pesos

utilizados para o Circuito Ueno completo.

Parâmetros Valores

Tensão de saída(V) 0,6

Variação da tensão de saída(%) 40

Tensão de alimentação (min. máx.)(V) 1,0 2,5

Temperatura (min. máx.) (Celsius) -10 90

Coeficiente de temperatura (ppm/C) 20

Regulação de linha (ppm) 80

Consumo (uW) 2,0

Área (um x um)

Transistor em fraca inversão Mn2

Transistor em forte inversão

Constantes 3,0 1,0 10 0,1

Pesos (Vref, TC, RL, Pot, Winv, Stinv, Area) 1,0 10 10 0,1 1,0 1,0 0,1

 Na Tabela 6, observa-se os parâmetros para o circuito Ueno completo, onde a

constante com valor 3,0 tem a mesma função que no circuito Ishibe, e as constantes com

valores 1,0, 10 e 0,1 representam, respectivamente, quantos transistores iguais à 𝑀𝑝3, 𝑀𝑝4 e

𝑀𝑝5 são usados em paralelo, M2, o tamanho da largura dos transistores 𝑀𝑛3, 𝑀𝑛4, 𝑀𝑛5 e

𝑀𝑛6, M3, e quantos transistores iguais ao 𝑀𝑛12 são usados em paralelo. Isso é determinado

na parametrização do circuito, encontrada no Apêndice BApêndice A.

Tabela 7. Configuração dos parâmetros de funcionamento, parâmetros de desempenho e pesos

utilizados para o Circuito Ueno modificado.

Parâmetros Valores

Tensão de saída(V) 0,7

Variação da tensão de saída(%) 20

Tensão de alimentação (min. máx.)(V) 1,0 2,5

Temperatura (min. máx.) (Celsius) -10 90

Coeficiente de temperatura (ppm/C) 20

Regulação de linha (ppm) 100

Consumo (uW) 2,0

Área (um x um)

Transistor em fraca inversão Mn1

Transistor em forte inversão

Constantes 3,0 1,0 10 0,1

33

Pesos (Vref, TC, RL, Pot, Winv, Stinv, Area) 10 100 10 1,0 1,0 1,0 0,1

 Na Tabela 7, as constantes referentes aos pesos 3,0, 1,0 e 10 tem a mesma função

que no Ueno completo, e a última constante, 0,1, mostra quantos transistores 𝑀𝑛10 e 𝑀𝑛11

são usados em paralelo. Isso é determinado na parametrização do circuito, encontrada no

Apêndice CApêndice A.

Como foram utilizados algoritmos metaheurísticos, baseados em escolhas

randômicas, existe a chance de o algoritmos convergir para soluções que não são as

melhores possíveis. Para tentar aumentar a probabilidade de obter uma boa solução é

normal serem realizadas múltiplas otimizações. Em nosso trabalho foram realizadas, para

cada circuito, algoritmo e configuração do algoritmo, 15 execuções.

Como queremos visualizar o desempenho de cada configuração dos algoritmos,

precisamos condensar os resultados das 15 execuções o melhor possível. Trabalhamos

sempre com a média geométrica das 15 otimizações. Essa média versus a interação onde

ela é obtida é exibida em um gráfico. Os gráficos foram separados por circuito e por

configuração, de modo que cada gráfico mostre todas as configurações de um único.

Para todos os algoritmos, foram limitados os possíveis valores que as variáveis

poderiam assumir, de acordo com a Tabela 8, Tabela 9 e Tabela 10.

Tabela 8. Valores das parametrizações das variáveis do Circuito Ishibe.

Variáveis Mínimo Máximo

X1 (um) 1,0 20

X2 (um) 1,0 20

X3 (um) 1,0 30

X4 (um) 1,0 20

X5 (um) 1,0 30

X6 (um) 1,0 20

X7 (um) 1,0 400

X8 (um) 1,0 100

X9 (um) 1,0 30

X10 (um) 1,0 100

X11 (um) 1,0 100

X12 (um) 1,0 100

X13 (kOhm) 50 200

X14 0,6 3,0

X15 0,6 1,6

X16 1,0 6,0

34

X17 1,0 6,0

Tabela 9. Valores das parametrizações das variáveis do Circuito Ueno completo.

Variáveis Mínimo Máximo

X1 (um) 1,0 70

X2 (um) 10 100

X3 (um) 1,0 20

X4 (um) 1,0 100

X5 (um) 1,0 20

X6 (um) 1,0 200

X7 (um) 1,0 5,0

X8 1,0 50

X9 1,0 20

X10 (um) 1,0 100

X11 (um) 1,0 100

X12 (um) 0,5 20

X13 (um) 1,0 100

X14 (um) 1,0 50

X15 (um) 2,0 4,0

Tabela 10. Valores das parametrizações das variáveis do Circuito Ueno modificado.

Variáveis Mínimo Máximo

X1 (um) 1,0 40

X2 (um) 10 100

X3 (um) 1,0 20

X4 (um) 1,0 200

X5 (um) 1,0 20

X6 (um) 1,0 200

X7 (um) 1,0 5.0

X8 1,0 50

X9 1,0 20

X10 (um) 1,0 100

X11 (um) 1,0 60

X12 (um) 2,0 4.0

Após todas as simulações, verificando os arquivos de resultados globais, paramopT,

pode-se ver qual foi o melhor resultado obtido para as dimensões dos componentes, bem

como quais os parâmetros de funcionamento que o circuito obteve.

Circuito Ishibe:

.param Vref = 0.50

35

.ParamX1= 15.083 X2= 4.325 X3= 8.762 X4= 5.156 X5= 4.389 X6= 7.025

.ParamX7= 64.769 X8= 35.373 X9= 2.567 X10= 91.907 X11= 21.292 X12=

1.168 X13= 179.542
.Param X14= 1.060 X15= 1.063 X16= 4.176 X17= 1.352
*Score=0.0035 TC= 7.6ppm (FTC= 0) RL = 471ppm (FRL = 0) Vref =0.53V

(FVref =0.00) Pot.=2.9uW (Fpot= 0.59)

 Circuito Ueno complete:

.param Vref = 0.60

.ParamX1= 6.126 X2= 21.726 X3= 17.502 X4= 10.522 X5= 1.344 X6= 183.307

.ParamX7= 3.049 X8= 13.998 X9= 1.616 X10= 1.000 X11= 1.000 X12= 12.687

X13= 48.114
.ParamX14= 35.171 X15= 2.013
*Score=1.7e+002TC= 40ppm (FTC= 0.98) RL = 106ppm (FRL = 0.33) Vref

=0.77V (FVref =0.00) Pot.=0.96uW (Fpot= 0.48)

 Circuito Ueno modificado:

.param Vref = 0.70

.ParamX1= 17.613 X2= 46.544 X3= 8.759 X4= 37.711 X5= 9.570 X6= 43.432

.ParamX7= 4.578 X8= 27.764 X9= 3.607 X10= 3.337 X11= 21.073 X12= 3.528
*Score=1e+002TC= 19ppm (FTC= 0) RL = 158ppm (FRL = 0.58) Vref =0.78V

(FVref =0.00) Pot.=3.5uW (Fpot= 1.7)

3.1 Algoritmo Genético

3.1.1 Circuito Ishibe

Os resultados da aplicação de Algoritmos Genéticos no circuito Ishibe são

apresentados na Figura 16, Figura 17 e na Figura 18.

36

Figura 16. Gráfico da nota média versus simulações para o Algoritmo Genético aplicado ao circuito

Ishibe. As configurações testadas são: 1, 2, 3 e 4 populações com 50 indivíduos em cada população,

GA1x50, GA2x50, GA3x50 e GA4x50; 1, 2, 3 e 4 populações com 100 indivíduos em cada

população, GA1x100, GA2x100, GA3x100 e GA4x100.

Figura 17. Gráfico da nota versus simulações para o Algoritmo Genético, aplicado ao circuito

Ishibe. São mostrados em detalhes os resultados obtidos ao início das simulações.

37

Figura 18. Gráfico da nota versus simulações para o Algoritmo Genético, aplicado ao circuito Ishibe.

São mostrados em detalhes os resultados obtidos ao fim das simulações.

 Analisando os gráficos, podemos perceber que o melhor resultado foi obtido

utilizando a configuração com uma população com 100 indivíduos, que também foi a

configuração que convergiu mais rápido para um resultado aceitável.

3.1.2 Circuito Ueno completo

Os resultados da aplicação de Algoritmos Genéticos no circuito Ueno completo são

apresentados na Figura 19, Figura 20 e Figura 21.

38

Figura 19. Gráfico da nota média versus simulações para o Algoritmo Genético aplicado ao circuito

Ueno completo. As configurações testadas são: 1, 2, 3 e 4 populações com 50 indivíduos em cada

população, GA1x50_noseed, GA2x50, GA3x50 e GA4x50; 1, 2, 3 e 4 populações com 100

indivíduos em cada população, GA1x100, GA2x100, GA3x100 e GA4x100.

Figura 20. Gráfico da nota versus simulações para o Algoritmo Genético, aplicado ao circuito Ueno

completo. São mostrados em detalhes os resultados obtidos ao início das simulações.

39

Figura 21. Gráfico da nota versus simulações para o Algoritmo Genético, aplicado ao circuito Ueno

completo. São mostrados em detalhes os resultados obtidos ao fim das simulações.

 Analisando os gráficos, podemos perceber que o melhor resultado foi obtido

utilizando a configuração com duas populações com 100 indivíduos e a que convergiu mais

rápido para um resultado aceitável foi com uma população de 100 indivíduos.

3.1.3 Circuito Ueno modificado

Os resultados da aplicação de Algoritmos Genéticos no circuito Ueno modificado são

apresentados na Figura 22, Figura 23 e Figura 24.

40

Figura 22. Gráfico da nota média versus simulações para o Algoritmo Genético aplicado ao circuito

Ueno modificado. As configurações testadas são: 1, 2, 3 e 4 populações com 50 indivíduos em cada

população, GA1x50_noseed, GA2x50_noseed, GA3x50_noseed e GA4x50_noseed; 1, 2, 3 e 4

populações com 100 indivíduos em cada população, GA1x100_noseed, GA2x100_noseed,

GA3x100_noseed e GA4x100_noseed.

Figura 23. Gráfico da nota versus simulações para o Algoritmo Genético, aplicado ao circuito Ueno

modificado. São mostrados em detalhes os resultados obtidos ao início das simulações.

41

Figura 24. Gráfico da nota versus simulações para o Algoritmo Genético, aplicado ao circuito Ueno

modificado. São mostrados em detalhes os resultados obtidos ao fim das simulações.

Analisando os gráficos, podemos perceber que o melhor resultado foi obtido utilizando a

configuração com três populações com 50 indivíduos e a que convergiu mais rápido para um

resultado aceitável foi com uma população de 50 indivíduos.

3.2 Simulated Annealing

3.2.1 Circuito Ishibe

Os resultados da aplicação de Simulated Annealing no circuito Ishibe são

apresentados na Figura 25, Figura 26 e Figura 27.

42

Figura 25. Gráfico da nota média versus simulações para o Simulated Annealing aplicado ao circuito

Ishibe. As configurações testadas são: temperatura inicial 2 com 50, 75 e 100 trocas permitidas,

SAT2Int50,SAT2Int75 e SAT2Int100; temperatura inicial 2,5 com 50, 75 e 100 trocas permitidas,

SAT25Int50, SAT25Int75 e SAT25Int100; temperatura inicial 1,5 com 50, 75 e 100 trocas permitidas,

SAT15Int50, SAT15Int75 e SAT15Int100.

Figura 26. Gráfico da nota versus simulações para o Simulated Annealing aplicado ao circuito

Ishibe. São mostrados em detalhes os resultados obtidos ao início das simulações.

43

Figura 27. Gráfico da nota versus simulações para o Simulated Annealing aplicado ao circuito

Ishibe. São mostrados em detalhes os resultados obtidos ao fim das simulações.

Analisando os gráficos, podemos perceber que o melhor resultado foi obtido

utilizando a configuração com temperatura inicial 2, com o máximo de 50 trocas, e também

foi a configuração que convergiu mais rápido para um resultado aceitável.

3.2.2 Circuito Ueno complete

Os resultados da aplicação de Simulated Annealing no circuito Ueno completo são

apresentados na Figura 28, Figura 29 e Figura 30.

44

Figura 28. Gráfico da nota média versus simulações para o Simulated Annealing aplicado ao circuito

Ueno completo. As configurações testadas são: temperatura inicial 2 com 50, 75 e 100 trocas

permitidas, SAT2Int50, SAT2Int75 e SAT2Int100; temperatura inicial 2,5 com 50, 75 e 100 trocas

permitidas, SAT25Int50, SAT25Int75 e SAT25Int100; temperatura inicial 1,5 com 50, 75 e 100 trocas

permitidas, SAT15Int50, SAT15Int75 e SAT15Int100.

Figura 29. Gráfico da nota versus simulações para o Simulated Annealing aplicado ao circuito Ueno

completo. São mostrados em detalhes os resultados obtidos ao início das simulações.

45

Figura 30. Gráfico da nota versus simulações para o Simulated Annealing, aplicado ao circuito Ueno

completo. São mostrados em detalhes os resultados obtidos ao fim das simulações.

Analisando os gráficos, podemos perceber que o melhor resultado foi obtido utilizando a

configuração com temperatura inicial 2,0 e máximo de trocas igual a 50, embora a

configuração com temperatura inicial 2,0 máximo de trocas 100 tenha ficado bem próxima. A

configuração que convergiu mais rápido para um resultado aceitável foi com temperatura

inicial 2,0 e máximo de trocas igual a 100.

3.2.3 Circuito Ueno modificado

Os resultados da aplicação de Simulated Annealing no circuito Ueno modificado são

apresentados na Figura 31, Figura 32 e Figura 33.

46

Figura 31. Gráfico da nota média versus simulações para o Simulated Annealing aplicado ao circuito

Ueno modificado. As configurações testadas são: temperatura inicial 2 com 50, 75 e 100 trocas

permitidas, SAT2Int50, SAT2Int75 e SAT2Int100; temperatura inicial 2,5 com 50, 75 e 100 trocas

permitidas, SAT25Int50, SAT25Int75 e SAT25Int100; temperatura inicial 1,5 com 50, 75 e 100 trocas

permitidas, SAT15Int50, SAT15Int75 e SAT15Int100.

Figura 32. Gráfico da nota versus simulações para o Simulated Annealing aplicado ao circuito Ueno

modificado. São mostrados em detalhes os resultados obtidos ao início das simulações.

47

Figura 33. Gráfico da nota versus simulações para o Simulated Annealing, aplicado ao circuito Ueno

modificado. São mostrados em detalhes os resultados obtidos ao fim das simulações.

Analisando os gráficos, podemos perceber que o melhor resultado foi obtido utilizando a

configuração com temperatura inicial 1,5 e máximo de trocas igual a 50 e também foi a que

convergiu mais rápido para um resultado aceitável.

3.3 Particle Swarm

3.3.1 Circuito Ishibe

Os resultados da aplicação de Particle Swarm no circuito Ishibe são apresentados na

Figura 34, Figura 35 e Figura 36.

48

Figura 34. Gráfico da nota média versus simulações para o Particle Swarm aplicado ao circuito

Ishibe. As configurações testadas são: rede escolhendo número de partículas igual 4vezes número

de variáveis, utilizando os 100, 200, 300 e 400 melhores resultados, PSON4X100, PSON4X200,

PSON4X300 e PSON4X400; 6 vezes o número de variáveis, utilizando os 100, 200, 300 e 400

melhores resultados, PSON6X100, PSON6X200, PSON6X300 e PSON6X400; 8 vezes o número de

variáveis, utilizando os 100, 200, 300 e 400 melhores resultados, PSON8X100, PSON8X200,

PSON8X300 e PSON8X400; PSO simples, PSO.

Figura 35. Gráfico da nota versus simulações para o Particle Swarm, aplicado ao circuito Ishibe.

São mostrados em detalhes os resultados obtidos ao início das simulações.

49

Figura 36. Gráfico da nota versus simulações para o Particle Swarm, aplicado ao circuito Ishibe.

São mostrados em detalhes os resultados obtidos ao fim das simulações.

Analisando os gráficos, podemos perceber que o melhor resultado foi obtido pelo algoritmo

PSO simples. As configurações que convergiram mais rápido para um resultado aceitável foi

o próprio PSO simples e a rede neural avaliando 6 vezes o número de variáveis e utilizando

200 circuitos para retreinar a rede.

3.3.2 Circuito Ueno complete

Os resultados da aplicação de Particle Swarm no circuito Ueno completo são

apresentados na Figura 37, Figura 38 e Figura 39

50

Figura 37. Gráfico da nota média versus simulações para o Particle Swarm aplicado ao circuito

Ueno completo. As configurações testadas são: rede escolhendo número de partículas igual 4 vezes

número de variáveis, utilizando os 100, 200, 300 e 400 melhores resultados, PSON4X100,

PSON4X200, PSON4X300 e PSON4X400; 6 vezes o número de variáveis, utilizando os 100, 200,

300 e 400 melhores resultados, PSON6X100, PSON6X200, PSON6X300 e PSON6X400; 8 vezes o

número de variáveis, utilizando os 100, 200, 300 e 400 melhores resultados, PSON8X100,

PSON8X200, PSON8X300 e PSON8X400; PSO simples, PSO.

Figura 38. Gráfico da nota versus simulações para o Particle Swarm, aplicado ao circuito Ueno

completo. São mostrados em detalhes os resultados obtidos ao início das simulações.

51

Figura 39. Gráfico da nota versus simulações para o Particle Swarm, aplicado ao circuito Ueno

completo. São mostrados em detalhes os resultados obtidos ao fim das simulações.

Analisando os gráficos, podemos perceber que o melhor resultado foi obtido pela

configuração avaliando 6 vezes o número de variáveis e utilizando 100 melhores resultados

para re-treinar a rede. As configurações que convergiram mais rápido para um resultado

aceitável foi o PSO simples e a rede neural avaliando 4 vezes o número de variáveis e

utilizando 100 circuitos para retreinar a rede.

3.3.3 Circuito Ueno modificado

Os resultados da aplicação de Particle Swarm no circuito Ueno modificado são

apresentados na Figura 40, Figura 41 e Figura 42.

52

Figura 40. Gráfico da nota média versus simulações para o Particle Swarm aplicado ao circuito

Ueno modificado. As configurações testadas são: rede escolhendo número de partículas igual 4

vezes número de variáveis, utilizando os 100, 200, 300 e 400 melhores resultados, PSON4X100,

PSON4X200, PSON4X300 e PSON4X400; 6 vezes o número de variáveis, utilizando os 100, 200,

300 e 400 melhores resultados, PSON6X100, PSON6X200, PSON6X300 e PSON6X400; 8 vezes o

número de variáveis, utilizando os 100, 200, 300 e 400 melhores resultados, PSON8X100,

PSON8X200, PSON8X300 e PSON8X400; PSO simples, PSO.

Figura 41. Gráfico da nota versus simulações para o Particle Swarm, aplicado ao circuito Ueno

modificado. São mostrados em detalhes os resultados obtidos ao início das simulações.

53

Figura 42. Gráfico da nota versus simulações para o Particle Swarm, aplicado ao circuito Ueno

modificado. São mostrados em detalhes os resultados obtidos ao fim das simulações.

Analisando os gráficos, podemos perceber que o melhor resultado foi obtido pela

configuração avaliando 6 vezes o número de variáveis e utilizando 200 circuitos para

retreinar a rede. A configuração que convergiu mais rápido para um resultado aceitável foi a

rede neural avaliando 4 vezes o número de variáveis e utilizando 400 circuitos para retreinar

a rede.

Para comparação, a seguir são exibidos os gráficos com os melhores resultados de

cada algoritmo para os circuitos Ishibe, Ueno completo e Ueno modificado, respectivamente

na Figura 43, Figura 44 e Figura 45.

54

Figura 43. Gráfico com os melhores resultados de cada algoritmo para o circuito Ishibe. As

configurações são: Algoritmo Genético com uma população de 100 indivíduos, GA1x100; Particle

Swarm com rede neural avaliando 6 vezes o número de variáveis e Ntrei igual a 400, PSON6x400;

PSO simples, PSO; Simulated Annealing com temperatura inicial 2 e máximo de alterações de 50,

SAT2Int50.

Figura 44. Gráfico com os melhores resultados de cada algoritmo para o circuito Ueno completo. As

configurações são: Algoritmo Genético com duas populações de 100 indivíduos, GA2x100; Particle

Swarm com rede neural avaliando 6 vezes o número de variáveis e Ntrei igual a 100, PSON6x100;

PSO simples, PSO; Simulated Annealing com temperatura inicial 2 e máximo de alterações de 50,

SAT2Int50.

55

Figura 45. Gráfico com os melhores resultados de cada algoritmo para o circuito Ueno modificado. As

configurações são: Algoritmo Genético com três populações de 50 indivíduos, GA3x50; Particle

Swarm com rede neural avaliando 6 vezes o número de variáveis e Ntrei igual a 200, PSON6x200;

PSO simples, PSO; Simulated Annealing com temperatura inicial 1,5 e máximo de alterações de 50,

SAT15Int50.

56

4 Conclusão

Neste trabalho foi explicado o funcionamento geral de uma fonte de tensão de

referência, o funcionamento específico de três topologias diferentes, o funcionamento de

alguns algoritmos metaheurísticos e projetadas e otimizadas fontes de tensão aplicando

algoritmos metaheuristicos. Ainda, a comparação de desempenho dos algoritmos foi

realizada com base tanto na velocidade com que eles chegam a boas soluções, quanto na

solução final apresentada.

Não obstante todos os algoritmos fornecerem soluções para as fontes, não foi

possível determinar uma única configuração de algoritmo metaheuristico que seja, para

todos os circuitos projetados, o melhor algoritmo. Como esperado do algoritmo genético, ele

trouxe um resultado satisfatório para todos os circuitos, e caso seja possível realizar muitas

avaliações, ele oferece bons resultados, porém ele foi o algoritmo mais lento de todos. O

Simulating Annealing não alcançou os melhores resultados, mas foi rápido para fornecer

bons resultados. O Algoritmo Particle Swarm, com rede neural, por sua vez, apresentou um

desempenho bom, aparentando oferecer maior vantagem para circuitos mais complexos.

Para trabalhos futuros, seria interessante testar mais configurações dos algoritmos,

como diminuir o máximo de trocas do Simulated Annealing, buscando realizar o re-annealing

com mais frequência, e buscar melhorar a consistência dos testes do PSON para verificar o

quanto ele é melhor em desempenho e resultado final.

57

Anexo

Modelo dos transistores utilizados para simulação.
.PARAM Wpad = 1.7um
.MODEL MODN NMOS LEVEL=49
* --
************************* SIMULATION PARAMETERS ************************
* --
* format : HSPICE
* model : MOS BSIM3v3
* process : CS[ADFI]
* extracted : CSA C61417; 1998-10; ese(487)
* doc# : 9933016 REV_N/C
* created : 1999-01-12
* --
* TYPICAL MEAN CONDITION
* --
* *** Flags ***
+MOBMOD =1.000e+00 CAPMOD =2.000e+00
* *** Threshold voltage related model parameters ***
+K1 =6.044e-01
+K2 =2.945e-03 K3 =-1.72e+00 K3B =6.325e-01
+NCH =2.310e+17 VTH0 =4.655e-01
+VOFF =-5.72e-02 DVT0 =2.227e+01 DVT1 =1.051e+00
+DVT2 =3.393e-03 KETA =-6.21e-04
+PSCBE1 =2.756e+08 PSCBE2 =9.645e-06
+DVT0W =0.000e+00 DVT1W =0.000e+00 DVT2W =0.000e+00
* *** Mobility related model parameters ***
+UA =1.000e-12 UB =1.723e-18 UC =5.756e-11
+U0 =4.035e+02
* *** Subthreshold related parameters ***
+DSUB =5.000e-01 ETA0 =3.085e-02 ETAB =-3.95e-02
+NFACTOR=1.119e-01
* *** Saturation related parameters ***
+EM =4.100e+07 PCLM =6.831e-01
+PDIBLC1=1.076e-01 PDIBLC2=1.453e-03 DROUT =5.000e-01
+A0 =2.208e+00 A1 =0.000e+00 A2 =1.000e+00
+PVAG =0.000e+00 VSAT =1.178e+05 AGS =2.490e-01
+B0 =-1.76e-08 B1 =0.000e+00 DELTA =1.000e-02
+PDIBLCB=2.583e-01
* *** Geometry modulation related parameters ***
+W0 =1.184e-07 DLC =8.285e-09
+DWC =2.676e-08 DWB =0.000e+00 DWG =0.000e+00
+LL =0.000e+00 LW =0.000e+00 LWL =0.000e+00
+LLN =1.000e+00 LWN =1.000e+00 WL =0.000e+00
+WW =0.000e+00 WWL =0.000e+00 WLN =1.000e+00
+WWN =1.000e+00
* *** Temperature effect parameters ***
+AT =3.300e+04 UTE =-1.80e+00
+KT1 =-3.30e-01 KT2 =2.200e-02 KT1L =0.000e+00
+UA1 =0.000e+00 UB1 =0.000e+00 UC1 =0.000e+00

58

+PRT =0.000e+00
* *** Overlap capacitance related and dynamic model parameters ***
+CGDO =2.100e-10 CGSO =2.100e-10 CGBO =1.100e-10
+CGDL =0.000e+00 CGSL =0.000e+00 CKAPPA =6.000e-01
+CF =0.000e+00 ELM =5.000e+00
+XPART =1.000e+00 CLC =1.000e-15 CLE =6.000e-01
* *** Parasitic resistance and capacitance related model parameters ***
+RDSW =6.043e+02
+CDSC =0.000e+00 CDSCB =0.000e+00 CDSCD =8.448e-05
+PRWB =0.000e+00 PRWG =0.000e+00 CIT =1.000e-03
* *** Process and parameters extraction related model parameters ***
+TOX =7.700e-09 NGATE =0.000e+00
+NLX =1.918e-07
+XL =5.000e-08 XW =0.000e+00
* *** Substrate current related model parameters ***
+ALPHA0 =0.000e+00 BETA0 =3.000e+01
* *** Noise effect related model parameters ***
+AF =1.400e+00 KF =2.810e-27 EF =1.000e+00
+NOIA =1.000e+20 NOIB =5.000e+04 NOIC =-1.40e-12
+NLEV =0
* *** Common extrinsic model parameters ***
+ACM =2
+RD =0.000e+00 RS =0.000e+00 RSH =8.200e+01
+RDC =0.000e+00 RSC =0.000e+00
+LINT =8.285e-09 WINT =2.676e-08
+LDIF =0.000e+00 HDIF =6.000e-07 WMLT =1.000e+00
+LMLT =1.000e+00 XJ =3.000e-07
+JS =2.000e-05 JSW =0.000e+00 IS =0.000e+00
+N =1.000e+00 NDS =1000. VNDS =-1.000e+00
+CBD =0.000e+00 CBS =0.000e+00 CJ =9.300e-04
+CJSW =2.800e-10 FC =0.000e+00
+MJ =3.100e-01 MJSW =1.900e-01 TT =0.000e+00
+PB =6.900e-01 PHP =9.400e-01
* --
.MODEL MODP PMOS LEVEL=49
* --
************************* SIMULATION PARAMETERS ************************
* --
* format : HSPICE
* model : MOS BSIM3v3
* process : CS[ADFI]
* extracted : CSA C61417; 1998-10; ese(487)
* doc# : 9933016 REV_N/C
* created : 1999-01-12
* --
* TYPICAL MEAN CONDITION
* --
*
* *** Flags ***
+MOBMOD =1.000e+00 CAPMOD =2.000e+00
* *** Threshold voltage related model parameters ***
+K1 =5.675e-01
+K2 =-4.39e-02 K3 =4.540e+00 K3B =-8.52e-01

59

+NCH =1.032e+17 VTH0 =-6.17e-01
+VOFF =-1.13e-01 DVT0 =1.482e+00 DVT1 =3.884e-01
+DVT2 =-1.15e-02 KETA =-2.56e-02
+PSCBE1 =1.000e+09 PSCBE2 =1.000e-08
+DVT0W =0.000e+00 DVT1W =0.000e+00 DVT2W =0.000e+00
* *** Mobility related model parameters ***
+UA =2.120e-10 UB =8.290e-19 UC =-5.28e-11
+U0 =1.296e+02
* *** Subthreshold related parameters ***
+DSUB =5.000e-01 ETA0 =2.293e-01 ETAB =-3.92e-03
+NFACTOR=8.237e-01
* *** Saturation related parameters ***
+EM =4.100e+07 PCLM =2.979e+00
+PDIBLC1=3.310e-02 PDIBLC2=1.000e-09 DROUT =5.000e-01
+A0 =1.423e+00 A1 =0.000e+00 A2 =1.000e+00
+PVAG =0.000e+00 VSAT =2.000e+05 AGS =3.482e-01
+B0 =2.719e-07 B1 =0.000e+00 DELTA =1.000e-02
+PDIBLCB=-1.78e-02
* *** Geometry modulation related parameters ***
+W0 =4.894e-08 DLC =-5.64e-08
+DWC =3.845e-08 DWB =0.000e+00 DWG =0.000e+00
+LL =0.000e+00 LW =0.000e+00 LWL =0.000e+00
+LLN =1.000e+00 LWN =1.000e+00 WL =0.000e+00
+WW =0.000e+00 WWL =0.000e+00 WLN =1.000e+00
+WWN =1.000e+00
* *** Temperature effect parameters ***
+AT =3.300e+04 UTE =-1.35e+00
+KT1 =-5.70e-01 KT2 =2.200e-02 KT1L =0.000e+00
+UA1 =0.000e+00 UB1 =0.000e+00 UC1 =0.000e+00
+PRT =0.000e+00
* *** Overlap capacitance related and dynamic model parameters ***
+CGDO =2.100e-10 CGSO =2.100e-10 CGBO =1.100e-10
+CGDL =0.000e+00 CGSL =0.000e+00 CKAPPA =6.000e-01
+CF =0.000e+00 ELM =5.000e+00
+XPART =1.000e+00 CLC =1.000e-15 CLE =6.000e-01
* *** Parasitic resistance and capacitance related model parameters ***
+RDSW =1.853e+03
+CDSC =6.994e-04 CDSCB =2.943e-04 CDSCD =1.970e-04
+PRWB =0.000e+00 PRWG =0.000e+00 CIT =1.173e-04
* *** Process and parameters extraction related model parameters ***
+TOX =7.700e-09 NGATE =0.000e+00
+NLX =1.770e-07
+XL =5.000e-08 XW =0.000e+00
* *** Substrate current related model parameters ***
+ALPHA0 =0.000e+00 BETA0 =3.000e+01
* *** Noise effect related model parameters ***
+AF =1.290e+00 KF =1.090e-27 EF =1.000e+00
+NOIA =1.000e+20 NOIB =5.000e+04 NOIC =-1.40e-12
+NLEV =0
* *** Common extrinsic model parameters ***
+ACM =2
+RD =0.000e+00 RS =0.000e+00 RSH =1.560e+02
+RDC =0.000e+00 RSC =0.000e+00

60

+LINT =-5.64e-08 WINT =3.845e-08
+LDIF =0.000e+00 HDIF =6.000e-07 WMLT =1.000e+00
+LMLT =1.000e+00 XJ =3.000e-07
+JS =2.000e-05 JSW =0.000e+00 IS =0.000e+00
+N =1.000e+00 NDS =1000. VNDS =-1.000e+00
+CBD =0.000e+00 CBS =0.000e+00 CJ =1.420e-03
+CJSW =3.800e-10 FC =0.000e+00
+MJ =5.500e-01 MJSW =3.900e-01 TT =0.000e+00
+PB =1.020e+00 PHP =9.400e-01
* --

.MODEL VERT10 PNP
* --
************************* SIMULATION PARAMETERS ************************
* --
* format : ELDO, AccusimII, Continuum
* model : BJT
* process : C35[A-B][3-4][A-C][1-3]
* revision : 2.0;
* extracted : C35[A-B][3-4][A-C][1-3] B11264.L2; 2002-11; hhl (5481)
* doc# : Eng-182
* --
* TYPICAL MEAN CONDITION
* --
*
+IS =2.3330e-17 IRB =4.3770e-06
+IKF =1.3760e-03 BF =5.9810e+00 NF =9.9250e-01
+ISE =6.5290e-16 NE =1.7760e+00 VAF =1.9420e+02
+IKR =1.9410e-04 BR =9.8740e-02 NR =9.9470e-01
+ISC =2.8430e-14 NC =1.1490e+00 VAR =1.0320e+01
+RBM =1.0000e+00
+RB =2.1380e+02
+RE =9.7360e+00
+RC =4.5400e+01
+TF =6.4800e-10
+
+EG =1.1150e+00 XTI =5.5300e+00 XTB =2.2500e+00
+CJE =1.4880e-13 VJE =1.0200e+00 MJE =5.4882e-01
+CJC =4.3387e-14 VJC =5.3000e-01 MJC =3.1214e-01
+
* --

61

Referências

[1] SEDRA, A. S.; SMITH, K.C. “Microeletrônica”, 4ª ed., 2005

[2] Austriamicrosystems. 0,35𝜇m CMOS process technology. Disponível em:

http://www.ams.com/eng/Products/Full-Service-Foundry/Process-Technology/CMOS

[3] ENGELBRECHT, R.M. “Projeto de fontes de referência de tensão em tecnologia CMOS”.

São Carlos, 2007. Trabalho de Conclusão de Curso – Departamento de Engenharia Elétrica,

Escola de Engenharia de São Carlos, USP.

[4] SILVA, E.S.C. “Projeto de fontes de referência de baixa tensão em tecnologia CMOS”. São

Carlos, 2008. Trabalho de Conclusão de Curso – Departamento de Engenharia Elétrica,

Escola de Engenharia de São Carlos, USP.

[5] SASSI, M.M.F.S. “Projeto de fontes de tensão de referência através de metaheurísticas”.

São Carlos, 2013. Trabalho de pós Graduação - Departamento de Engenharia Elétrica,

Escola de Engenharia de São Carlos, USP.

[6] NAVARRO, J.; ISHIBE, E.I. A sub-1v reference voltage supplier. In: IEEE International

Symposium on Circuits and Systems (ISCAS), 2011, Rio de Janeiro. Proceedings…

Piscataway, NJ: IEEE, 2011

[7] UENO, K. “A 300 nW, 15ppm/ºC, 20ppm/V CMOS Voltage Reference Circuit Consisting of

Subthreshold MOSFETs”. IEEE Journal of Solid-State Circuits, Piscataway, NJ, v. 44, n.

7, July 2009.

[8] LUKE, S. “Essentials of Metaheuristics”, 2 ed., June 2013

[9] MATHWORKS. Matlab. Disponível em: http://www.mathworks.com/products/matlab/

[10] MATHWORKS. Global Optimization Toolbox. Disponível em:

http://www.mathworks.com/products/global-optimization/

[11] SYNOPSYS. Hspice. Disponível em:

<http://www.synopsys.com/tools/verification/amsverification/circuitsimulation/hspice/Pages/d

efault.aspx>

http://www.ams.com/eng/Products/Full-Service-Foundry/Process-Technology/CMOS
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/global-optimization/
http://www.synopsys.com/tools/verification/amsverification/circuitsimulation/hspice/Pages/default.aspx
http://www.synopsys.com/tools/verification/amsverification/circuitsimulation/hspice/Pages/default.aspx

62

Apêndice A

Parametrização do Circuito Ishibe

.include param

.options statfl=1 NXX Noelck=1 MEASFILE=1 NOTOP RUNLVL=1 dcon=1
Mp1 vd b f vd MODP W='X7*1u' L='X1*1u' M='M1'
Mp2 vd b b vd MODP W='X7*1u' L='X1*1u'
Mp3 f a d vd MODP W='X7*1u' L='X2*1u' M='M1'
Mp4 vd b c vd MODP W='X8*1u' L='X1*1u'
Mp5 a a vd vd MODP W='X9*1u' L='X3*1u'
Mn1 0 d d 0 MODN W='X10*1u' L='X4*1u'
Mn2 j d e 0 MODN W='X10*1u' L='X4*1u'
Mn3 e c b 0 MODN W='X10*1u' L='X5*1u'
Mn4 0 d a 0 MODN W='X11*1u' L='X4*1u'
Mn5 0 c c 0 MODN W='X12*1u' L='X6*1u'
R1 j 0 'X13*1k'
M10 vd b t vd MODP W='X7*1u' L='X1*1u' M='int(X17)'
M11 vd b y vd MODP W='X7*1u' L='X1*1u' M='int(X16)'
Mc10 s a t vd MODP W='X7*1u' L='X2*1u' M='int(X17)'
M12 u a y vd MODP W='X7*1u' L='X2*1u' M='int(X16)'
.param R2 = 'X14*X13*1k*0.5/(26m*int(X17)*log(M1))'
R2 u s R2
R3 s 0 'R2*X15*Vref/(1.12-Vref)'
Q1 0 0 u Vert10
Vdd vd 0 1.5
.end

Arquivo param, utilizado

.include ..\..\Models\Model35

.param Vref = 0.50

.Param X1= 10.255 X2= 10.952 X3= 18.050 X4= 1.173 X5= 13.870 X6= 10.751

.Param X7= 163.967 X8= 95.912 X9= 10.406 X10= 38.404 X11= 31.292 X12= 1.011
X13= 87.137
.Param X14= 0.988 X15= 1.343 X16= 3.286 X17= 3.323
** (10.255 10.952 18.050 1.173 13.870 10.751 163.967 95.912 10.406 38.404 31.292
1.011 87.137 0.988 1.343 3.286 3.323)
.Param M1= 3.00
.DC TEMP -10.0 90.0 4.0
.MEASURE DC VreftPP PP V(s)
.MEASURE DC VrefAV AVG V(s)
.DC Vdd 0.50V 2.50V 0.10V
.MEASURE DC VrefvPP PP v(s) from=1.0 to=2.5
.MEASURE DC Vdd_cur find I(Vdd) when v(Vd) = 1.75
.MEASURE DC Mn1_weak find par('((abs(I1(Mn1))/(26m*(1+Lx9(Mn1)/Lx7(Mn1))) -
Lx7(Mn1))/Lx7(Mn1))') when v(Vd) = 1.75

63

Apêndice B

Parametrização do Circuito Ueno Completo

.include param

.options statfl=1 NXX Noelck=1 MEASFILE=1 NOTOP RUNLVL=1 dcon=1
Mp1 d8 d11 vd vd MODP W='X2*1u' L='X1*1u' M=M1
Mp2 d9 d11 vd vd MODP W='X2*1u' L='X1*1u'
Mp3 d3 d11 vd vd MODP W='X2*1u' L='X1*1u' M=M2
Mp4 d5 d11 vd vd MODP W='X2*1u' L='X1*1u' M=M2
Mp5 s d11 vd vd MODP W='X2*1u' L='X1*1u' M=M2
Mp6 d10 d10 vd vd MODP W='X4*1u' L= 'X3*1u'
Mp7 d11 d10 vd vd MODP W='X4*1u' L='X3*1u'
Mn1 g1 g1 0 0 MODN W='X6*1u' L='X5*1u'
Mn2 d2 g1 s2 0 MODN W='X6*1u' L='X5*1u'
Mn3 d3 d3 d4 0 MODN W='M3*1u' L='X7*1u' M='int(X8)'
Mn4 d4 d3 0 0 MODN W='M3*1u' L='X7*1u' M='int(X9)'
Mn5 d5 d5 d6 0 MODN W='M3*1u' L='X7*1u' M='int(X8)'
Mn6 d6 d5 d4 0 MODN W='M3*1u' L='X7*1u' M='int(X9)'
Mn7 s s d6 0 MODN W='X10*1u' L='X7*1u'
Mn8 d8 d8 g1 0 MODN W='X6*1u' L='X11*1u'
Mn9 d9 d8 d2 0 MODN W='X6*1u' L='X11*1u'
Mn10 d10 d9 d14 0 MODN W='X13*1u' L='X12*1u'
Mn11 d11 d8 d14 0 MODN W='X13*1u' L='X12*1u'
Mn12 d14 g1 0 0 MODN W='X6*1u' L='X5*1u' M= M4
MR1 s2 s 0 0 MODN W='X15*1u' L='X14*1u'
Vdd vd 0 1.5
.end

Arquivo param utilizado

.include ..\..\Models\Model35

.param Vref = 0.60

.Param X1= 22.441 X2= 72.123 X3= 7.794 X4= 10.522 X5= 1.344 X6= 140.774

.Param X7= 3.049 X8= 21.932 X9= 1.157 X10= 8.356 X11= 9.407 X12= 12.687 X13=
48.114
.Param X14= 35.171 X15= 2.519
** (22.441 72.123 7.794 10.522 1.344 140.774 3.049 21.932 1.157 8.356 9.407
12.687 48.114 35.171 2.519)
.Param M1= 3.00 M2= 1.00 M3= 10.00 M4= 0.10
.DC TEMP -10.0 90.0 4.0
.MEASURE DC VreftPP PP V(s)
.MEASURE DC VrefAV AVG V(s)
.DC Vdd 0.50V 2.50V 0.10V
.MEASURE DC VrefvPP PP v(s) from=1.0 to=2.5
.MEASURE DC Vdd_cur find I(Vdd) when v(Vd) = 1.75
.MEASURE DC Mn2_weak find par('((abs(I1(Mn2))/(26m*(1+Lx9(Mn2)/Lx7(Mn2))) -
Lx7(Mn2))/Lx7(Mn2))') when v(Vd) = 1.75

64

Apêndice C

Parametrização do Circuito Ueno Modificado

.include param

.options statfl=1 NXX Noelck=1 MEASFILE=1 NOTOP RUNLVL=1 dcon=1
Mp1 g1 d11 vd vd MODP W='X2*1u' L='X1*1u' M=M1
Mp2 d2 d11 vd vd MODP W='X2*1u' L='X1*1u'
Mp3 d3 d11 vd vd MODP W='X2*1u' L='X1*1u' M=M2
Mp4 d5 d11 vd vd MODP W='X2*1u' L='X1*1u' M=M2
Mp5 s d11 vd vd MODP W='X2*1u' L='X1*1u' M=M2
Mp6 d10 d10 vd vd MODP W='X4*1u' L='X3*1u'
Mp7 d11 d10 vd vd MODP W='X4*1u' L='X3*1u'
Mn1 g1 g1 0 0 MODN W='X6*1u' L='X5*1u'
Mn2 d2 g1 s2 0 MODN W='X6*1u' L='X5*1u'
Mn3 d3 d3 d4 0 MODN W='M3*1u' L='X7*1u' M='int(X8)'
Mn4 d4 d3 0 0 MODN W='M3*1u' L='X7*1u' M='int(X9)'
Mn5 d5 d5 d6 0 MODN W='M3*1u' L='X7*1u' M='int(X8)'
Mn6 d6 d5 d4 0 MODN W='M3*1u' L='X7*1u' M='int(X9)'
Mn7 s s d6 0 MODN W='X10*1u' L='X7*1u'
Mn10 d10 d2 0 0 MODN W='X6*1u' L='X5*1u' M=M4
Mn11 d11 g1 0 0 MODN W='X6*1u' L='X5*1u' M=M4
MR1 s2 s 0 0 MODN W='X12*1u' L='X11*1u'
Vdd vd 0 1.5
.MEASURE DC m6_weakp2 find par('((abs(I1(Mn1))/(26m*(1+Lx9(Mn1)/Lx7(Mn1))) -
Lx7(Mn1))/Lx7(Mn1))') when v(Vd) = 1.75
.end

Arquivo param utilizado

.include ..\..\Models\Model35

.param Vref = 0.70

.Param X1= 1.154 X2= 54.479 X3= 19.495 X4= 76.827 X5= 7.124 X6= 88.159

.Param X7= 1.747 X8= 6.696 X9= 10.301 X10= 1.746 X11= 9.627 X12= 3.562
** (1.154 54.479 19.495 76.827 7.124 88.159 1.747 6.696 10.301 1.746 9.627 3.562
)
.Param M1= 3.00 M2= 1.00 M3= 10.00 M4= 0.10
.DC TEMP -10.0 90.0 4.0
.MEASURE DC VreftPP PP V(s)
.MEASURE DC VrefAV AVG V(s)
.DC Vdd 0.50V 2.50V 0.10V
.MEASURE DC VrefvPP PP v(s) from=1.0 to=2.5
.MEASURE DC Vdd_cur find I(Vdd) when v(Vd) = 1.75
.MEASURE DC Mn1_weak find par('((abs(I1(Mn1))/(26m*(1+Lx9(Mn1)/Lx7(Mn1))) -
Lx7(Mn1))/Lx7(Mn1))') when v(Vd) = 1.75

65

Apêndice D

Função Metaheu, responsável pela chamada das condições, de acordo com o

algoritmo escolhido.

global modo;
global nvars;
global genesLB;
global inicialSol;
global dif;
global modoind;
global namext;
global cont;
global circuito;
global slash;

namext = '';
prompt={'Number of Runs','Max simulations (more than 1 run)','Extension of

the output file', 'seed'};
name='Algoritm Running';
numlines=1;
defaultanswer={'1','4000', 'A1', ''};
entrada=inputdlg(prompt,name,numlines,defaultanswer);
namext = entrada{3};
system(['del ' circuito slash 'results' slash 'optimos.' modo namext]);

profile on;
switch modo
case'GA'
 modoind=1;
 load optimtool_GA.mat;
 optimproblem.lb = zeros(1, nvars);
 optimproblem.ub = ones(1, nvars);
 optimproblem.nvars= nvars;
 optimproblem.options.PopInitRange = [optimproblem.lb; optimproblem.ub];
 optimproblem.options.PopulationSize=[100 100];

optimproblem.options.Generations=round(str2num(entrada{2})/sum(optimproblem

.options.PopulationSize))-1;
% inicializa os geradores para se repetir resultados
if ~isempty(entrada{4})
 rand('seed', str2double(entrada{4}));
 randn('seed', strdouble(entrada{4}));
end;

 Best.scoreT = Inf('double');
if str2double(entrada{1}) == 1
 optimtool(optimproblem);
elsefor i=1:str2double(entrada{1});
fprintf('\n__________________ inicio da %1.0f otimizacao Melhor score:

%3g __________________\n\n ', i, Best.scoreT);
cont = 0; Best.score = Inf('double'); Best.scoreT = Inf('double');
 ga(optimproblem);
end;
end;

66

case'SA'
 modoind=2;
 load optimtool_SA.mat;
 optimproblem.lb = zeros(1, nvars);
 optimproblem.ub = ones(1, nvars);
 optimproblem.x0 = zeros(1, nvars);
 optimproblem.options.InitialTemperature=1.5;
 optimproblem.options.ReannealInterval= 75;
 optimproblem.options.MaxFunEvals=[str2num(entrada{2})];
 j=1;
for i=1:length(genesLB)
if (dif(i) ~= 0)
 optimproblem.x0(j)= (inicialSol(i) - genesLB(i))/dif(i);
 j=j+1;
end;
end;

% gera condicoes iniciais
if ~isempty(entrada{4})
 samples = RandStream('mt19937ar', 'Seed', str2double(entrada{4}));

% this stream is used to generate the initial conditions
 rand('seed', str2double(entrada{4}));
 optimproblem.x0 = rand(samples, 1,nvars);
end;

 Best.scoreT = Inf('double');
if str2double(entrada{1}) == 1
 optimtool(optimproblem);
elsefor i=1:str2double(entrada{1});
fprintf('\n__________________ inicio da %1.0f otimizacao Melhor score:

%3g __________________\n\n ', i, Best.scoreT);
cont = 0; Best.score = Inf('double');
 simulannealbnd(optimproblem);
if ~isempty(entrada{4})
 optimproblem.x0 = rand(samples, 1,nvars);
end;
end;
end;

case'PS'
 modoind=3;
 load optimtool_PS.mat;
 optimproblem.lb = zeros(1, nvars);
 optimproblem.ub = ones(1, nvars);
 optimproblem.x0 = zeros(1, nvars);
 optimproblem.options.MaxFunEvals = str2num(entrada{2});
 j=1;
for i=1:length(genesLB)
if (dif(i) ~= 0)
 optimproblem.x0(j)= (inicialSol(i) - genesLB(i))/dif(i);
 j=j+1;
end;
end;

% gera condicoes iniciais
if ~isempty(entrada{4})

67

samples = RandStream('mt19937ar', 'Seed', str2double(entrada{4})); % this

stream is used to generate the initial conditions
 rand('seed', str2double(entrada{4}));
 optimproblem.x0 = rand(samples, 1,nvars);
end;

 Best.scoreT = Inf('double');
if str2double(entrada{1}) == 1
 optimtool(optimproblem);
elsefor i=1:str2double(entrada{1});
fprintf('\n__________________ inicio da %1.0f otimizacao Melhor score:

%3g __________________\n\n ', i, Best.scoreT);
cont = 0; Best.score = Inf('double');
 patternsearch(optimproblem);
if ~isempty(entrada{4})
 optimproblem.x0 = rand(samples, 1,nvars);
end;
end;
end;

case'MM'
 load optimtool_MM.mat;
 optimproblem.lb = zeros(1, nvars);
 optimproblem.ub = ones(1, nvars);
 optimproblem.x0 = zeros(1, nvars);
 j=1;
for i=1:length(genesLB)
if (dif(i) ~= 0)
 optimproblem.x0(j)= (inicialSol(i) - genesLB(i))/dif(i);
 j=j+1;
end;
end;
 modoind=4;
 optimtool(optimproblem);

case'SAM'
 modoind=5;
%set the options
 optimproblem = struct(...
'fitnessfcn', @fitness,...
'Display', 'crossovers',... % it can be 'final', 'iter', 'crossovers', or

'none'
'TolFun', 1e-6,...
'ObjectiveLimit', -1e+20,...
'TolCon', 1e-6,...
'CoolSched',@(T) (.8*T),...
'InitTemp',20,... % initial temperature
'MaxTriesWithoutBest',10000,... %max number of attempts without a new best

before finishing
'MaxSuccess',200,...
'MaxTries',300,...
'StopTemp',1e-8,...
'StopVal',-Inf,...
'MaxtoLocal',25,...
'TimeLimit',inf,... % time in seconds
'LockOn',1,... % lock to variables that are showing progress
'Crossover',1,... % able or disable crossovers
'MaxSim',3000,...

68

'Initial_Sigma',1);

 optimproblem.lb = zeros(1, nvars);
 optimproblem.ub = ones(1, nvars);
 optimproblem.x0 = zeros(1, nvars);
 optimproblem.MaxSim = str2num(entrada{2});
j=1;
for i=1:length(genesLB)
if (dif(i) ~= 0)
 optimproblem.x0(j)= (inicialSol(i) - genesLB(i))/dif(i);
 j=j+1;
end;
end;
if ~isempty(entrada{4})
 samples = RandStream('mt19937ar', 'Seed', str2double(entrada{4}));

% this stream is used to generate the initial conditions
 rand('seed', str2double(entrada{4}));
 optimproblem.x0 = rand(samples, 1, nvars);
end;

 Best.scoreT = Inf('double');
for i=1:str2double(entrada{1});
 fprintf('\n__________________ inicio da %1.0f otimizacao Melhor

score: %3g __________________\n\n ', i, Best.scoreT);
cont = 0; Best.score = Inf('double');
 annealwithcrossovers(optimproblem);
if ~isempty(entrada{4})
 optimproblem.x0 = rand(samples, 1,nvars);
end;
end;
% SAM;

case'SCE'
 optimproblem.lb = zeros(1, nvars);
 optimproblem.ub = ones(1, nvars);
 optimproblem.x0 = zeros(1, nvars);
 j=1;
for i=1:length(genesLB)
if (dif(i) ~= 0)
 optimproblem.x0(j)= (inicialSol(i) - genesLB(i))/dif(i);
 j=j+1;
end;
end;
 fun = 'fitness';
 modoind=6;
 saida= SCE(fun, optimproblem.x0, optimproblem.lb, optimproblem.ub);

case'PSO'
 modoind=7;
 optimproblem.lb = zeros(1, nvars);
 optimproblem.ub = ones(1, nvars);
 optimproblem.x0 = zeros(1, nvars);
 fun = 'fitness';
 j=1;
for i=1:length(genesLB)
if (dif(i) ~= 0)
 optimproblem.x0(j)= (inicialSol(i) - genesLB(i))/dif(i);
 j=j+1;

69

end;
end;
if ~isempty(entrada{4})
 samples = RandStream('mt19937ar', 'Seed', str2double(entrada{4}));

% this stream is used to generate the initial conditions
 rand('seed', str2double(entrada{4}));
 optimproblem.x0 = rand(samples, 1, nvars);
end;

 Best.scoreT = Inf('double');
for i=1:str2double(entrada{1});
 fprintf('\n__________________ inicio da %1.0f otimizacao Melhor

score: %3g __________________\n\n ', i, Best.scoreT);
cont = 0; Best.score = Inf('double');
 saida= PSO(fun, optimproblem.x0, optimproblem.lb, optimproblem.ub,

str2double(entrada{2}), length(optimproblem.x0));
%saida= PSON2(fun, optimproblem.x0, optimproblem.lb, optimproblem.ub,

6*length(optimproblem.x0), length(optimproblem.x0), 300, 'radbas',

round(nvars/2), str2double(entrada{2}));
if ~isempty(entrada{4})
 optimproblem.x0 = rand(samples, 1,nvars);
end;
end;

case'DE'
 optimproblem.lb = zeros(1, nvars);
 optimproblem.ub = ones(1, nvars);
 optimproblem.x0 = zeros(1, nvars);
 j=1;
for i=1:length(genesLB)
if (dif(i) ~= 0)
 optimproblem.x0(j)= (inicialSol(i) - genesLB(i))/dif(i);
 j=j+1;
end;
end;
 fun = 'fitness'; VTR = 1.e-8;
 modoind=8;
 Best.scoreT = Inf('double');
Rnvars = length(optimproblem.x0);

for i=1:str2num(entrada{1});
 fprintf('\n__________________ inicio da %1.0f otimizacao Melhor

score: %3g __________________\n\n ', i, Best.scoreT);
cont = 0; Best.score = Inf('double');
 saida= devec3(fun, VTR, Rnvars, optimproblem.lb, optimproblem.ub, [],

6*Rnvars, round(str2num(entrada{2})/(6*Rnvars)));
end;

case'EvN'
 modoind=9;
 fun = 'fitness';
optimproblem.x0 = zeros(1, nvars);
 j=1;
for i=1:length(genesLB)
if (dif(i) ~= 0)
 optimproblem.x0(j)= (inicialSol(i) - genesLB(i))/dif(i);
 j=j+1;
end;

70

end;

if ~isempty(entrada{4})
 samples = RandStream('mt19937ar', 'Seed', str2double(entrada{4}));

% this stream is used to generate the initial conditions
 rand('seed', str2double(entrada{4}));
 optimproblem.x0 = rand(samples, 1, nvars);
end;

%saida = EvNeu (fun, optimproblem.x0, nvars, 200, 200, 40, 300, 'radbas',

[nvars, nvars]);
 Best.scoreT = Inf('double');
for i=1:str2double(entrada{1})
fprintf('\n__________________ inicio da %1.0f otimizacao Melhor score:

%3g __________________\n\n ', i, Best.scoreT);
cont = 0; Best.score = Inf('double');
 saida = EvNeu16_4(fun, optimproblem.x0, nvars, 95, 200, 40, 300,

'radbas', round(nvars/2));
if ~isempty(entrada{4})
 optimproblem.x0 = rand(samples, 1,nvars);
end;
end;

case'PSON'
 modoind=10;
 optimproblem.lb = zeros(1, nvars);
 optimproblem.ub = ones(1, nvars);
 optimproblem.x0 = zeros(1, nvars);
 fun = 'fitness';
 j=1;
for i=1:length(genesLB)
if (dif(i) ~= 0)
 optimproblem.x0(j)= (inicialSol(i) - genesLB(i))/dif(i);
 j=j+1;
end;
end;
if ~isempty(entrada{4})
 samples = RandStream('mt19937ar', 'Seed', str2double(entrada{4}));

% this stream is used to generate the initial conditions
rand('seed', str2double(entrada{4}));
 optimproblem.x0 = rand(samples, 1, nvars);
end;

 Best.scoreT = Inf('double');
for i=1:str2double(entrada{1});
 fprintf('\n__________________ inicio da %1.0f otimizacao Melhor

score: %3g __________________\n\n ', i, Best.scoreT);
cont = 0; Best.score = Inf('double');
 saida= PSON2(fun, optimproblem.x0, optimproblem.lb, optimproblem.ub,

4*length(optimproblem.x0), length(optimproblem.x0), 400, 'radbas',

round(nvars/2), str2double(entrada{2}));
if ~isempty(entrada{4})
 optimproblem.x0 = rand(samples, 1,nvars);
end;
end;

end

71

Apêndice E

Função Fitness, utilizada para calcular scores dos circuitos

function [sc, sci] = fitness(x)
% sc da o scores total e sci sao os valores parciais

global slash;
global simulador;
global circuito;
global ParDados
global genesLB;

global V_alvo ;
global precisao;
global Vmin;
global Vmax;
global Tmin;
global Tmax;
global TC;
global RL;
global pPot;
global AreaCir;
global weakTrans;
global strTrans;
global const;
global pesos;

global Best
global BestRes;

global modoind;
global modo;
global dif;
global cont;
global namext;

V_alvo = str2num(ParDados{1, 2});
precisao = str2num(ParDados{2, 2})/100;
vet = str2num(ParDados{3, 2}); Vmin = vet(1); Vmax= vet(2);
vet = str2num(ParDados{4, 2}); Tmin = vet(1); Tmax= vet(2);
TC = str2num(ParDados{5, 2});
RL = str2num(ParDados{6, 2});
pPot = str2num(ParDados{7, 2});
AreaCir = str2num(ParDados{8, 2});
weakTrans = strread(ParDados{9, 2}, '%s');
strTrans = strread(ParDados{10, 2}, '%s');
const = str2num(ParDados{11, 2});
pesos = str2num(ParDados{12, 2});

deltaT = Tmax - Tmin;
deltaV = Vmax - Vmin;

72

% os parametros x (gerados) vao de 0 a 1; a partir deles sao gerados os

parametros xr para o arquivo de simulacao
%xr = x.*dif+genesLB;

j=1;
for i=1:length(genesLB)
if (dif(i) ~= 0)
 xr(i)= (x(j)*dif(i)+genesLB(i));
 j=j+1;
else xr(i)=genesLB(i);
end;
end;

% calculo de area do circuito .. nao ta sendo usado
cond = [circuito slash 'AreaCirMea.m'];
if exist(cond)
 eval(['cd ', circuito]);
 AreaMed = AreaCirMea(xr);
 eval('cd ..');
else AreaMed = 0;
end;

% arquivo param tem os comando para simulacao
arq = fopen([circuito slash 'param'],'w');
param_mod(arq, xr);
fclose(arq);

disp ______________________________

cont=cont +1;
fprintf('simulação = %d\n', cont);

% executa a simulacao
[~, b] = system([simulador circuito slash 'circuito.sp']);
% [~, b] = system (['START /Realtime/wait/min C:\synopsys\Hspice_A-

2008.03\BIN\hspice_mt.exe ' circuito '\circuito.sp']);

% read the simulation results
arq = fopen('circuito.ms0','r');
Meas=LeMeas(arq, 3);
fclose(arq);

% verifica se a simulacao gerou todos resultados
if length(Meas) > (7+ length(weakTrans) + length(strTrans))

% calculate the circuit performance
%TC
if (Meas(2) <= 0) FTC = Inf('double'); TCm = Inf('double');
else
 TCm = (Meas(1)/Meas(2))*(1/deltaT)*(1e6);
 FTC = (TCm-TC)/TC; %FTCn = FTC;
if(TCm < TC) FTC = 0;
end
end

%Vref
if (Meas(2) <= 0) FVref = Inf('double');

73

else FVref = abs((Meas(2)-V_alvo)/min(V_alvo, Meas(2))); %FVrefn = FVref;
if (FVref <= precisao) FVref = 0;
end;
end

%RL
if (Meas(5) <= 0) FRL = Inf('double'); RLm = Inf('double');
else
 RLm = (abs(Meas(5))/deltaV)*(1/Meas(2))*1e6;
 FRL = (RLm-RL)/RL; %FRLn = FRL;
if (RLm < RL) FRL = 0;
end
end

%Power consumption
Fpot= -1.0e6*Meas(6)*(Vmax+Vmin)/(pPot*2);

% Area
Farea = AreaMed/AreaCir;

% verify if transistors are in weak invertion
Weakin=0;

for i= 1: length(weakTrans);
 j= 6+i;
 Meas(j)= abs(Meas(j));
if Meas(j)> 0.12 Weakin=10*Meas(j) +Weakin; end;
end;

Strin=0;
for i= 1: length(strTrans);
 j= i+6+length(weakTrans);
if Meas(j) < 0.1 Strin=10*abs(Meas(j)-0.1) + Strin; end;
end;

%final score
sc = (pesos(1)*FVref + pesos(2)*FTC + pesos(3)*FRL + pesos(4)*Fpot +

pesos(5)*Weakin + pesos(6)*Strin + pesos(7)*Farea)^2;
sci = [FRL FTC FVref Fpot Weakin Strin];
%sci = [FRLn FTCn FVrefn Fpot Weakin Strin];
% save the best solution
if(Best.score > sc)
 arq = fopen([circuito slash 'results' slash 'optimos.' modo

namext],'a+');
 fprintf(arq,'%d %.3g\n', cont, sc);
 fclose(arq);
 beep;
 Best.score = sc;
 fprintf('*>');
 arq = fopen([circuito slash 'paramop'],'w');
 param_mod(arq,xr);
 fprintf(arq,'*Score=%.2g TC= %.2gppm (FTC= %.2g) RL = %.3gppm (FRL

= %.2g) Vref =%.2fV (FVref =%.2f) Pot.=%.2guW (Fpot= %.2g) \n*Weakin= %.2g

Strin= %.2g Area=%.2gum2 (Farea= %.2g)\n\n',sc, TCm, FTC, RLm, FRL,

Meas(2), FVref, -1.0e6*Meas(6)*(Vmax+Vmin)/2, Fpot, Weakin, Strin, AreaMed,

Farea);
 fclose(arq);

74

if(Best.scoreT > sc)
 Best.scoreT = sc;
 Best.parameters = xr;
 arq = fopen([circuito slash 'paramopT'],'w');
param_mod(arq,xr);

 fprintf(arq,'*Score=%.2g TC= %.2gppm (FTC= %.2g) RL = %.3gppm

(FRL = %.2g) Vref =%.2fV (FVref =%.2f) Pot.=%.2guW (Fpot= %.2g) \n*Weakin=

%.2g Strin= %.2g Area=%.2gum2 (Farea= %.2g)\n\n',sc, TCm, FTC, RLm, FRL,

Meas(2), FVref, -1.0e6*Meas(6)*(Vmax+Vmin)/2, Fpot, Weakin, Strin, AreaMed,

Farea);
fclose(arq);
 BestRes{modoind} = Best;
end;

end;

% performance results
fprintf('Score=%.3g TC= %.2gppm (FTC= %.2g) RL = %.3gppm (FRL = %.2g)

Vref =%.2fV (FVref =%.2f) Pot.=%.2guW (Fpot= %.2g)\nWeakin= %.2g Strin=

%.2g Area=%.2gum2 (Farea= %.2g)\n\n',sc, TCm, FTC, RLm, FRL, Meas(2),

FVref, -1.0e6*Meas(6)*(Vmax+Vmin)/2, Fpot, Weakin, Strin, AreaMed, Farea);

% problemas na simulacao
else sc = inf('double');
 sci = [inf('double') inf('double') inf('double') inf('double')

inf('double') inf('double')];
 fprintf('Score=%.3g \n\n',sc);
end;

% used parameters
for i = 1:length(xr)
if (mod(i, 10) == 0) fprintf('\n');
end
 fprintf('X%i= %1.1f ', i, xr(i));
end;
fprintf('\n');

end

