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Resumo 

Fontes de tensão de referência têm a função de fornecer uma tensão constante 

independente das circunstâncias às quais o circuito pode estar sujeito, como variação da 

temperatura e tensão de alimentação. Projetar esses circuitos é, no entanto, algo bem 

complexo e exige vasto conhecimento. Este trabalho utiliza Algoritmo Genético, Simulated 

Annealing, Particle Swarm e uma variação do Particle Swarm proposta, junto com 

simulações elétricas, para projetar e otimizar fontes de tensão de referência, comparando os 

resultados entre as configurações e, se possível, tentar determinar se alguma delas é o 

melhor para as fontes testadas. A variação do Particle Swarm proposta aplica redes neurais 

para antecipar resultados de simulação. Embora não tenha sido encontrado o melhor 

algoritmo para os circuitos testados, foi mostrado que a variação do particle swarm proposta 

apresenta resultados promissores. 

Palavras-chave: Circuitos integrados MOS, Fonte de tensão de referência, 

Algoritmos metaheurísticos. 
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Abstract 

Reference voltage sources have the function of providing a constant voltage 

regardless of the circumstances to which the circuit may be subject, for instance temperature 

and supply voltage variances. However designing these circuits is something quite complex 

and requires a extensive knowledge. This work uses Genetic Algorithm, Simulated 

Annealing, Particle Swarm and a proposed variation of Particle Swarm, with electrical 

simulations, to design and optimize the reference voltage sources, comparing the results 

between them and, if possible, trying to determine which one is the best for all tested 

sources. The proposed variation of Particle Swarm applies neural networks to preview the 

simulation results. Although a best algorithm for the tested circuits has not been found, it was 

shown that the proposed variation of the Particle Swarm presents promising results.  

Keywords: MOS integrated circuits, voltage reference, metaheuristic algorithms. 
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1 Introdução 

1.1 Contextualização 

Circuitos integrados são extensivamente utilizados em produtos eletrônicos atuais, 

sendo encontrados em notebooks, celulares, tablets e afins. Com a introdução dos 

transistores CMOS (do inglês Complementary Metal-Oxide-Semiconductor) nos circuitos 

integrados, foi possível melhorá-los em vários aspectos, tais como consumo de potência, 

facilidade de projeto, dimensões, custos de produção além da comunicação entre blocos 

analógicos e digitais. 

Muitos circuitos, para que possam trabalhar corretamente, precisam de uma 

grandeza de referência, corrente ou tensão, de boa qualidade, cujas características se 

mantenham com a temperatura, variações de alimentação, variações nos processos de 

fabricação e tempo. Para muitos desses circuitos, essa grandeza é fornecida por uma fonte 

de tensão de referência; um circuito que fornece uma tensão estável, independente das 

circunstancias às quais o circuito está sujeito. 

Geralmente, fontes de tensão de referência são compostas de dois blocos de 

circuitos com funcionamentos complementares, em relação à temperatura, para uma 

determinada grandeza, tensão ou corrente. Um dos blocos deve gerar uma grandeza 

diretamente proporcional à temperatura, PTA (do inglês Proportional to Absolute) e o outro, 

uma grandeza inversamente proporcional, CTA (do inglês Complementary to Absolute).  

Para obtermos a fonte de tensão operando corretamente, devemos fazer com que a 

soma dessas duas grandezas anule as variações da grandeza PTAT (Proportional to 

Absolute Temperature) com as variações da grandeza CTAT (Complementary to Absolute 

Temperature) em um determinado ponto. Dessa forma, o resultado é uma grandeza 

constante e independente da temperatura, como mostrado na Figura 1 a seguir: 
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Figura 1. Variação das grandezas PTAT e CTAT de acordo com a temperatura, na esquerda, 
e grandeza resultante, na direita. 

 

Desenvolver uma fonte de tensão de referência é algo complicado e exige 

conhecimentos avançados em circuitos eletrônicos. Essa mesma dificuldade aparece no 

projeto da maior parte dos circuitos analógicos, que exigem, normalmente, projetistas 

experientes. Uma opção para resolver esta dificuldade é a aplicação de algum meio 

automático para projeto e otimização. Alguns desses meios utilizam algoritmos 

metaheuristicos [8]. Estes algoritmos utilizam formas randômicas de geração de parâmetros 

para tentar encontrar a melhor solução possível para um determinado problema. Esse 

processo, onde se gera randomicamente soluções, é chamado de otimização estocástica. 

Este trabalho consiste no projeto de circuitos de fontes de tensão de referência, 

utilizando como base circuitos desenvolvidos por Ueno [6] e por Ishibe [7], na tecnologia 

CMOS 0,35 𝜇m da AMS (AustriaMicroSystem) [2]. No projeto são aplicados mecanismos 

metaheuristicos e simulações elétricas. Também são feitas comparações entre 

projetos/otimizações realizadas por diversas metaheuristicas para determinar as dimensões 

dos componentes, buscando alcançar o melhor funcionamento possível do circuito. 

1.2 Objetivos do Trabalho 

Este trabalho consiste em realizar o projeto e otimização de determinados circuitos 

de fonte de tensão de referência, por meio de diversos algoritmos metaheuristicos. 

Adicionalmente, configurações das metaheuristicas são alteradas visando aprender sobre 

quais algoritmos apresentam melhores resultados em termos tanto de velocidade de 

otimização e quanto de qualidade final do resultado. 
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1.3 Organização da Monografia 

A Seção 2 contém alguns conceitos sobre transistores MOS e bipolar, sobre 

funcionamento de fontes de tensão de referência, funcionamento dos algoritmos utilizados e 

sobre as simulações e avaliação dos circuitos. 

Na Seção 3 apresentam-se os resultados e estes são discutidos. 

Na Seção 4 está a conclusão. 

1.4 Ferramentas utilizadas 

No trabalho foram utilizados: 

 MatLab [9]: Ferramenta utilizada para executar o software de projeto e otimização, realizar 

os cálculos e exibir os gráficos; 

 HSpice [11]: Software utilizado para realizar as simulações elétricas dos circuitos. 
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2 Conceitos utilizados 

Existem muitas topologias utilizadas em fontes de tensão de referência, com 

diferentes dispositivos e configurações. As utilizadas neste trabalho se baseiam em 

transistores MOS e bipolar. 

Segundo Silva em [4], durante muito tempo foi utilizado apenas os transistores 

bipolares na construção de circuitos eletrônicos. A partir da década de 70, com a melhora da 

tecnologia MOS e eliminação de algumas dificuldades na sua construção, os transistores 

MOS começaram a ganhar destaque, pois permitiam a construção de circuitos digitais mais 

simples e de menor consumo, além de permitir dimensões menores. 

Com a diminuição das dimensões dos transistores houve o aumento na 

complexidade dos circuitos integrados, o que ocasionou também o aumento nas dificuldades 

de projeto. Portanto, é útil e importante que se desenvolvam formas confiáveis de projeto e 

otimização de circuitos micro eletrônicos. 

2.1 Transistor Bipolar 

O transistor bipolar é composto de uma estrutura de três regiões de cristais 

semicondutores, com duas regiões do mesmo tipo intercaladas por uma região do tipo 

oposto. Os tipos se referem ao tipo N, onde prevalecem elétrons na condução, e tipo P, 

onde prevalecem de lacunas. As regiões faladas anteriormente são conhecidas como 

Emissor, Base e Coletor. A Figura 2 ilustra os dois tipos de transistores bipolares existentes, 

o transistor NPN e o transistor PNP. 

 

Figura 2. Ilustração dos transistores bipolares NPN, à esquerda, e do PNP, à direita com seus 

símbolos. 
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O Emissor é a região responsável por fornecer portadores de carga, elétrons, ou 

negativas. A Base é a região intermediária, que absorve uma pequena parte dos portadores. 

O Coletor é a região que recolhe a maior parte dos portadores emitidos pelo emissor. O 

transistor NPN fornece elétrons e o transistor PNP fornece lacunas. Essa transferência de 

portadores gera as correntes do transistor, compostas por correntes de base, de emissor e 

de coletor, como ilustrada na Figura 3. 

 

Figura 3.Tensões e correntes de um transistor bipolar. 

 

É verificado no transistor bipolar que uma variação da corrente de base gera uma 

variação diretamente proporcional na corrente do coletor. É possível determinar relações 

das correntes e tensões aplicadas em um transistor, além do ganho corrente entre as 

correntes de base e de coletor. De acordo com Sedra em [1], em um transistor bipolar as 

seguintes relações são verificadas: 

 𝐼𝑒 = 𝐼𝑏 + 𝐼𝑐 (1) 
 

𝛽 =
∆𝐼𝑐
∆𝐼𝑏

 
(2) 

 NPN: 𝑉𝑐𝑒 = 𝑉𝑏𝑒 + 𝑉𝑐𝑏 (3) 
 PNP: 𝑉𝑒𝑐 = 𝑉𝑒𝑏 + 𝑉𝑏𝑐 (4) 

 
𝐼𝑐 = 𝐼𝑠. 𝑒

𝑞𝑉𝑏𝑒
𝑘𝑇  

(5) 

 

onde 𝐼𝑒 é a corrente do emissor, 𝐼𝑏 é a corrente da base, 𝐼𝑐 é a corrente do coletor, ∆ indica 

variação de algum elemento, 𝑞 é a carga do elétron, 𝑘 é a constante de Boltzmann, 𝑇 é a 

temperatura em kelvin,  é uma constante de valor alto (acima de 100) e 𝐼𝑠 é a corrente de 

saturação do transistor.  
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O índice 𝑉𝑥𝑦 é a diferença de potencia entre dois pontos, ou seja, tensão em x menos 

a tensão em y. No transistor, a diferença entre tensões de base, emissor e coletor. 

Sabendo que tanto 𝐼𝑠 quanto 𝑉𝑏𝑒 dependem da temperatura e fazendo a relação de 

duas correntes de coletor em temperaturas diferentes, [6], podemos escrever: 

 
𝐼𝑐(𝑇)

𝐼𝑐(𝑇2)
= (

𝐼𝑠(𝑇). 𝑒
𝑞𝑉𝑏𝑒(𝑇)

𝑘𝑇

𝐼𝑠(𝑇2). 𝑒
𝑞𝑉𝑏𝑒(𝑇2)

𝑘𝑇2

) 

(6) 

 
𝑉𝑏𝑒(𝑇) = 𝑇. [

𝑉𝑏𝑒(𝑇2)

𝑇2
+
𝑘

𝑞
. ln (

𝐼𝑐(𝑇)

𝐼𝑐(𝑇2)
.
𝐼𝑠(𝑇2)

𝐼𝑠(𝑇)
)] 

(7) 

 

A fórmula da corrente 𝐼𝑠 é dada por: 

 
𝐼𝑠 =

𝑞. 𝐴. 𝑛𝑖
2. 𝐷̅

𝑁𝐵
 

(8) 

 

onde A é a área de junção base-emissor, 𝑛𝑖 a concentração de portadores, 𝐷̅ o valor da 

difusão efetiva dos portadores minoritários da base e 𝑁𝐵 o número de Gummel, que é o total 

de impurezas por unidade de área na base. 

Substituindo (8) em (7), temos: 

 
𝑉𝑏𝑒(𝑇) = 𝑇. [

𝑉𝑏𝑒(𝑇2)

𝑇2
+
𝑘

𝑞
. ln (

𝐼𝑐(𝑇)

𝐼𝑐(𝑇2)
.
𝑛𝑖
2(𝑇2). 𝐷̅(𝑇2)

𝑛𝑖
2(𝑇). 𝐷̅(𝑇)

)] 
(9) 

 

 A fórmula de 𝑛𝑖
2 é dada por: 

 
𝑛𝑖
2(𝑇) = 𝐸. 𝑇³. 𝑒

(−𝑞.
𝑉𝐺𝑂(𝑇)

𝑘.𝑇
)
 

(10) 

 

onde E é uma constante, que depende da massa de elétrons e lacunas e 𝑉𝐺𝑂 é a tensão de 

bandgap do silício. 

Substituindo (10) em (9), temos: 

 
𝑉𝑏𝑒(𝑇) = 𝑇. [

𝑉𝑏𝑒(𝑇2)

𝑇2
−
𝑉𝐺𝑜(𝑇2)

𝑇2
+
𝑉𝐺𝑜(𝑇)

𝑇
+
𝑘

𝑞
. ln (

𝐼𝑐(𝑇)

𝐼𝑐(𝑇2)
.
𝑇2³. 𝐷̅(𝑇2)

𝑇³. 𝐷̅(𝑇)
)] 

(11) 

 

A relação de Einstein, que relaciona a constante de difusão com a mobilidade, e a 

fórmula que relaciona a mobilidade com temperatura são dadas respectivamente por: 
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𝜇̅(𝑇) =

𝑞. 𝐷̅(𝑇)

𝑘. 𝑇
 

(12) 

 𝜇̅(𝑇) = 𝐶. 𝑇−ƞ (13) 

 

onde C e ƞ são constantes resultantes da relação de Einsten, e ƞ depende do processo de 

fabricação do transistor.  

Aplicando (12) e (13) em (11), temos: 

 
𝑉𝑏𝑒(𝑇) = 𝑇. [

𝑉𝑏𝑒(𝑇2)

𝑇2
−
𝑉𝐺𝑜(𝑇2)

𝑇2
+
𝑉𝐺𝑜(𝑇)

𝑇
] −

𝑘. 𝑇

𝑞
. ln (

𝑇2
𝑇
)
4−ƞ

+
𝑘. 𝑇

𝑞
. ln (

𝐼𝑐(𝑇)

𝐼𝑐(𝑇2)
) 

(14) 

 
𝑉𝑏𝑒(𝑇) = 𝑉𝐺𝑜(𝑇) −

𝑇

𝑇2
[𝑉𝐺𝑜(𝑇2) − 𝑉𝑏𝑒(𝑇2)] −

𝑘. 𝑇

𝑞
. ln (

𝑇2
𝑇
)
4−ƞ

+
𝑘. 𝑇

𝑞
. ln (

𝐼𝑐(𝑇)

𝐼𝑐(𝑇2)
) 

(15) 

 

 Por (15), dados os valores dos termos, tem-se que quando há um aumento da 

temperatura, mantida a corrente IC constante, a tensão base-emissor diminuirá. Diz-se 

nesse caso que Vbe é uma grandeza inversamente proporcional à temperatura CTAT. Essa 

relação vai se mostrar muito importante para fontes de tensão de referência. 

2.2 Transistores MOS 

Apenas na década de 70 a tecnologia MOS (do inglês Metal Oxide Silicon) começou 

a competir com os transistores bipolares em algumas áreas. Inicialmente foram utilizados 

transistores PMOS (transistores MOS com canal onde a condução é feita por lacunas). 

Estes possuíam um melhor desempenho, pois eram mais robustos, trabalhando melhor 

mesmo com problemas no óxido de porta e na interface dele com o silício, e seus circuitos 

tinham um funcionamento mais estável. Com o avanço da tecnologia, os problemas com o 

oxido foram sendo tratados e os transistores NMOS (transistores MOS com canal tipo onde 

a condução é feita por elétrons) se mostraram mais rápidos e eficientes. Atualmente, muitos 

circuitos trabalham com ambas os transistores, NMOS e PMOS, sendo chamados de 

circuitos CMOS. O transistor MOS tem uma estrutura semelhante à mostrada na Figura 4. 

Os símbolos usados para representá-los estão mostrados na Figura 5. De forma 

semelhante ao bipolar, o NMOS também tem três regiões, uma N (source), uma P (substrato 

ou bulk) e outra N (dreno) (ou P-N-P para o PMOS). As regiões de source e dreno são 

exatamente iguais; o que determina quem vai ser o source e o dreno são os potenciais à 

que eles estão sujeitos. 
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Figura 4. Transistor NMOS em corte. 

 

Figura 5. Símbolos de transistores NMOS, à esquerda, e PMOS, à direita. 

 

No transistor MOS a tensão de controle é aplicada na parte intermediária, o gate. O 

gate é formado de um material condutor, metal ou um semicondutor policristalino muito 

dopado, que está entre o source e dreno e separado da região de substrato por uma 

camada de isolante, dióxido de silício muitas vezes – SiO2, isolando-o eletricamente. 
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Aplicando uma diferença de tensão suficientemente grande entre o gate e o source, 

é formado um canal de portadores, elétrons no NMOS e lacunas no PMOS, no substrato e 

por esse canal ocorre a passagem da corrente entre source e dreno. Essa tensão mínima 

para formação do canal de portadores é conhecia como Tensão de Threshold ou de limiar 

(𝑉𝑡). 

Os transistores MOS, dependendo da tensão entre gate e source, podem operar em 

quatro distintas regiões: 

 Inversão Forte: nessa região, a tensão Vgs (entre o gate e o source) é maior que a 

tensão de limiar. Essa região é utilizada em projetos onde os transistores 

funcionarão como chaves ou para a amplificação de sinais; 

 Inversão Fraca: nessa região, a tensão Vgs é muito próxima da tensão Vt. Essa 

região é utilizada quando se deseja que o transistor trabalhe com baixas potências 

e frequências; 

 Inversão moderada: região entre a fraca e forte inversão. A operação de 

transistores nela não é modelada de maneira exata. 

 Corte: nessa região, a tensão Vgs (entre o gate e o source) é menor que a tensão 

de limiar. A corrente que passa pelo canal é praticamente nula. 

Normalmente se verifica a região de operação do transistor, Fraca, Moderada ou Forte 

inversão, analisando a corrente que passa no dreno. Um critério para determinar em qual 

região o transistor opera é apresentado na Tabela 1. 

Tabela 1. Critério para determinar a região de operação do transistor. 

Região de Operação Condição 

Inversão Forte LIM> 10 

Inversão Fraca LIM< 0,1 

Inversão Moderada 0,1 <LIM< 10 

 

O fator LIM é dado por  

 
LIM =

𝐼𝑑
𝑊

𝐿
𝜇. 𝐶𝑜𝑥. 2𝑛 (UT)²

 
(16) 

 

onde Id é a corrente de dreno, 𝑛 é o fator de inclinação de inversão fraca (seu valor depende 

da tecnologia e varia entre 1,2 e 1,6) e o termo 𝑈𝑇 =
𝑘𝑇

𝑞
 é a tensão térmica. 
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Quando operando na região de forte inversão, um transistor MOS possui dois 

estados de funcionamento: saturação e triodo (Figura 6). Estes estados dependem das 

diferenças de potencial entre source, dreno e gate. 

Para um transistor NMOS estar no estado triodo, devemos ter 𝑉𝑔𝑠 > 𝑉𝑡 e 𝑉𝑑𝑠 <  (𝑉𝑔𝑠 −

𝑉𝑡). Este estado apresenta a corrente variando de acordo com a seguinte relação 

 
𝐼 = 𝜇. 𝐶𝑜𝑥

𝑊

𝐿
[(𝑉𝑔𝑠 − 𝑉𝑡)𝑉𝑑𝑠 −

1

2
𝑉𝑑𝑠
2 ] 

(17) 

 

onde 𝜇 é a mobilidade dos portadores do canal, 𝐶𝑜𝑥 é a capacitância por unidade de área 

formada entre o gate e o substrato, 𝑊 é a largura do canal do transistor e 𝐿 é o comprimento 

entre source e dreno. 

Para um transistor NMOS estar no estado de saturação, devemos ter 𝑉𝑔𝑠 > 𝑉𝑡 e 

𝑉𝑑𝑠 >  (𝑉𝑔𝑠 − 𝑉𝑡). Neste estado, a corrente que passa pelo transistor se estabiliza, 

permanecendo constante independente do quanto se aumente a diferença de potencial 

entre dreno e source, como mostrado na Figura 6. A equação da corrente é: 

 
𝐼 =

𝜇. 𝐶𝑜𝑥

2

𝑊

𝐿
(𝑉𝑔𝑠

2 − 𝑉𝑡)² 
(18) 

 

 

Figura 6. Gráfico de corrente de dreno versus 𝑉𝒅𝑠 em um transistor NMOS com diferentes valores de 

𝑉𝑔𝑠. 

 

Quando operando na região de fraca inversão, a corrente de dreno de um transistor 

se dá pela seguinte fórmula: 
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𝐼 = (

𝑊

𝐿
)  𝐼𝐷0𝑒

𝑉𝑔𝑏

𝑛𝑈𝑇 (𝑒
−𝑉𝑠𝑏
𝑈𝑇 − 𝑒

−𝑉𝑑𝑏
𝑈𝑇 ) 

(19) 

 

onde que 𝐼𝐷0 é uma constante da tecnologia com dimensão de corrente e o índice 𝑏 das 

tensões é referente ao bulk do transistor. 

 A tensão 𝑉𝑔𝑠 do transistor pode ser descrita como [5]: 

 
𝑉𝑔𝑠(T) = 𝑉𝑇𝐻(T) + 𝑉𝑂𝐹𝐹 +

𝑛(𝑇)

𝑛(𝑇2)
(𝑉𝑔𝑠(𝑇2) − 𝑉𝑇𝐻(𝑇2) − 𝑉𝑂𝐹𝐹) 

(20) 

 

onde 𝑇2 é uma temperatura de referência e 𝑉𝑂𝐹𝐹 é uma constante obtida pelo modelo de 

simulação. Assumindo 𝑉𝑇𝐻 como escrito em (21), poderemos reescrever (20) como (22): 

 
𝑉𝑇𝐻 (𝑇) = 𝑉𝑇𝐻 (𝑇2 ) + 𝐾𝑇 (

𝑇

𝑇2
− 1) 

(21) 

 
𝑉𝑔𝑠(T) ≈ 𝑉𝑔𝑠(𝑇2) + 𝐾𝐺 (

𝑇

𝑇2
− 1) 

(22) 

 

com 𝐾𝐺 ≌ 𝐾𝑇 + 𝑉𝑔𝑠(𝑇2) − 𝑉𝑇𝐻(𝑇2) − 𝑉𝑂𝐹𝐹, onde 𝐾𝑇  é uma constante negativa. Quando o 

transistor está em fraca inversão, 𝐾𝐺  também será um fator negativo, fazendo com que a 

tensão 𝑉𝑔𝑠 varie inversamente à temperatura, apresentando um comportamento CTAT. 

2.3 Fonte de corrente 

Uma estrutura importante para polarização e construção de fontes de tensão de 

referência é a fonte de corrente. Existem diversos tipos de fontes de corrente, com 

características variadas, mas uma fonte bastante utilizada é a fonte mostrada na Figura 7 

[3]: 
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Figura 7. Fonte de corrente CMOS proporcional à temperatura. 

 

Para que esta fonte opere corretamente, os transistores 𝑀1e 𝑀2 devem estar em 

fraca inversão. Sendo assim e utilizando (19) encontramos: 

 
𝐼3 = 𝐼1 = (

𝑊1
𝐿1
) 𝐼𝐷0𝑒

(
𝑉𝑔1

𝑛𝑈𝑇
)
 

(23) 

 
𝐼4 = 𝐼2 = (

𝑊2
𝐿2
) 𝐼𝐷0𝑒

(
𝑉𝑔2

𝑛𝑈𝑇
−
−𝑉𝑠2
𝑈𝑇

)
 

(24) 

 

onde 𝐼n é a corrente de dreno, 𝑊n largura de canal, e 𝐿n comprimento de canal do transistor 

𝑀𝑛. 

Como as tensões de gate dos transistores 𝑀1e 𝑀2 são iguais e a tensão de source 

de 𝑀2 é igual à queda de tensão do resistor, 𝑉𝑅, temos: 

 
𝐼3
𝐼4
=
𝐼1
𝐼2
=

(
𝑊1

𝐿1
) 𝐼𝐷0𝑒

(
𝑉𝑔1

𝑛𝑈𝑇
)

(
𝑊2

𝐿2
) 𝐼𝐷0𝑒

(
𝑉𝑔2

𝑛𝑈𝑇
−
−𝑉𝑠2
𝑈𝑇

)
=
(
𝑊1

𝐿1
)

(
𝑊2

𝐿2
)
𝑒
(
𝑉𝑅
𝑈𝑇
)
 

(25) 

 

Supondo que a relação (W/L) do transistor 𝑀3 seja M vezes maior que (W/L) do 𝑀4, 

consequentemente 𝐼3 = 𝑀𝐼4, e sabendo que a queda de tensão no resistor é dada por 

𝑉𝑅 = 𝐼2. 𝑅1, temos: 

 

𝐼2 =
𝑈𝑇
𝑅1
. 𝑙𝑛 (

𝑊2

𝐿2
𝑊1

𝐿1

M) 

(26) 
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Com (26) vemos que a corrente gerada pela fonte de corrente é uma grandeza 

proporcional à temperatura absoluta, PTAT. 

2.4 Circuitos utilizados 

Existem muitos fatores a se considerar ao projetar e analisar uma fonte tensão de 

referência, tais como coeficiente de temperatura, consumo de potência, regulação de linha, 

área ocupada, entre outros. Cada um desses fatores influencia no dimensionamento dos 

dispositivos da fonte de tensão. 

Coeficiente de temperatura quantifica o quanto a tensão de saída varia com 

variações da temperatura do circuito. Uma relação para o coeficiente de temperatura é   

 CT = 
𝑉𝑀𝐴𝑋−𝑉𝑀𝐼𝑁

𝑇𝑀𝐴𝑋−𝑇𝑀𝐼𝑁 

1

𝑉𝑅𝐸𝐹
106 (27) 

 

onde VMAX é o máximo valor da tensão de saída para as variações da temperatura, VMIN é o 

mínimo valor da tensão de saída, 𝑇𝑀𝐴𝑋 e 𝑇𝑀𝐼𝑁 são, respectivamente, a máxima e a mínima 

temperaturas que o circuito está sujeito e 𝑉𝑅𝐸𝐹 o valor desejado para a saída. CT é dado em 

ppm (partes por milhão) por unidade de temperatura. 

A regulação de linha quantifica o quanto a tensão de saída vai variar com variações 

da tensão de alimentação. Uma relação para a regulação de linha é 

 
RL = 

𝑉𝑀𝐴𝑋−𝑉𝑀𝐼𝑁

𝑉𝐷𝑀𝐴𝑋−𝑉𝐷𝑀𝐼𝑁

1

𝑉𝑅𝐸𝐹
106

(28) 

 

onde 𝑉𝐷𝑀𝐴𝑋 é o máximo valor da tensão de alimentação e 𝑉𝐷𝑀𝐼𝑁 é o mínimo valor da tensão 

de alimentação. RL é dado em ppm/V. 

 Dependendo da qualidade da fonte de referência, CT e RL devem ser bem 

reduzidos. Valores tais como CT=20 ppm/0C e RL= 500 ppm/V caracterizam uma boa fonte 

de tensão. 

Os circuitos de fonte de tensão escolhidos para este trabalho foram: Circuito Ishibe 

em [6], Circuito Ueno completo em [7] e Circuito Ueno Modificado, que é, como sugere o 

nome, uma variação do circuito proposto por Ueno. Estes circuitos apresentam boas 

características e representam três topologias diferentes. A seguir são apresentados os 

circuitos na Figura 8, Figura 9 e Figura 10, respectivamente, e é feita uma breve 

explicação do funcionamento deles. 
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Figura 8. Circuito de Fonte de Tensão Ishibe. 

 

O Circuito fonte de tensão Ishibe, Figura 8, mantém a tensão de saída constante 

equilibrando a soma de uma corrente proporcional à temperatura 𝐼𝑃𝑇𝐴𝑇, gerada pela fonte de 

corrente e espelhada pelo transistor𝑀10, com outra corrente inversamente proporcional 𝐼𝐶𝑇𝐴𝑇 

gerada a partir do transistor bipolar 𝑄1. A soma das duas correntes tende a variar muito 

pouco, garantindo pouca variação na queda de tensão no resistor 𝑅3. 

Ele utiliza uma variação da fonte de corrente mostrada anteriormente, composta 

pelos transistores 𝑀𝑝1, 𝑀𝑝2, 𝑀𝑝3, 𝑀𝑛1, 𝑀𝑛2 e 𝑀𝑛3 e o resistor 𝑅1. Esta corrente gerada pela 

fonte de corrente é espelhada pelo transistor 𝑀10 e somada à corrente em R2 que é 

proporcional a (VREF – Veb). A corrente resultante, passando pelo resistor 𝑅3, pode ser 

ajustada para ser constante com a temperatura, acarretando em VREF uma tensão 

praticamente constante. 

Os transistores 𝑀𝑝3 e 𝑀𝑛3 são transistores cascode e foram adicionados para que a 

corrente na fonte de corrente permaneça praticamente constante quando houver variações 
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na tensão de alimentação 𝑉𝑑𝑑. Os pares de transistores 𝑀𝑝4-𝑀𝑛5 e 𝑀𝑝5-𝑀𝑛4 foram 

adicionados para polarizar o circuito, de modo a fornecer tensões que garantam o 

funcionamento correto dos transistores cascode. 

 

Figura 9. Circuito de Fonte de Tensão Ueno completo. 

 

O Circuito fonte de tensão Ueno completo, Figura 9, utiliza uma variação da fonte de 

corrente apresentada. Nela o resistor é substituído por um transistor NMOS operando na 

região triodo. Com isso, podem-se obter menores correntes sem a necessidade de grandes 

áreas. Também foi utilizado um amplificador diferencial, composto pelos transistores 𝑀𝑝6, 

𝑀𝑝7, 𝑀𝑛10, 𝑀𝑛11 e 𝑀𝑛12, visando manter as tensões 𝑉𝑔𝑑 dos transistores 𝑀𝑝1 e 𝑀𝑝2 iguais e 

diminuir a interferência que alterações na tensão de alimentação 𝑉𝑑𝑑 possam causar na 

tensão gerada. 

Nessa fonte de tensão não é utilizado um transistor bipolar para gerar a corrente 

CTAT. Ao invés disso, ele monta uma estrutura composta apenas de transistores MOS e 

estes são responsáveis por gerar a tensão CTAT, e a tensão de referência se dá na 
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combinação das diferenças de tensões entre gate e source dos transistores𝑀𝑛3a 𝑀𝑛7, como 

mostrado nas fórmulas a seguir [5]: 

 𝑉𝑅𝐸𝐹 = 𝑉𝑔𝑠4 − 𝑉𝑔𝑠3 + 𝑉𝑔𝑠6 − 𝑉𝑔𝑠5 + 𝑉𝑔𝑠7 (29) 

 

Todos esses transistores devem estar operando em fraca inversão. Aplicando-se 

(19) e substituindo suas respectivas tensões gate-source, temos: 

 

𝑉𝑅𝐸𝐹 = 𝑉𝑔𝑠4 + 𝑛𝑉𝑇 [− ln(
𝐼𝐷3

(
𝑊

𝐿
)
3
𝐼0
)+  ln(

𝐼𝐷6

(
𝑊

𝐿
)
6
𝐼0
)− ln(

𝐼𝐷5

(
𝑊

𝐿
)
5
𝐼0
)+ ln(

𝐼𝐷7

(
𝑊

𝐿
)
7
𝐼0
)] 

(30) 

 

onde IDi é a corrente de dreno e (W/L)i  é a relação (W/L) do transistor Mni. 

Sabendo que as correntes espelhadas em 𝑀𝑝3, 𝑀𝑝4 e 𝑀𝑝5 são iguais, chamaremos 

de 𝐼𝑀, temos que as correntes que passam por 𝑀𝑛3, 𝑀𝑛5, 𝑀𝑛6 e 𝑀𝑛7 são, respectivamente, 

𝐼𝑀, 𝐼𝑀, 2𝐼𝑀 e 𝐼𝑀, podemos simplificar (30) por: 

 

𝑉𝑅𝐸𝐹 = 𝑉𝑔𝑠4 + 𝑛𝑉𝑇𝑙𝑛 (
2 (

𝑊

𝐿
)
3
(
𝑊

𝐿
)
5

(
𝑊

𝐿
)
6
(
𝑊

𝐿
)
7

) 

(31) 

 

Substituindo agora a tensão gate-source do transistor 𝑀𝑛4, sabendo que a corrente 

que passa por ele é 3𝐼𝑀, temos: 

 

𝑉𝑅𝐸𝐹 = 𝑛𝑉𝑇𝑙𝑛 (
3𝐼𝑀

(
𝑊

𝐿
)
4
𝐼0
)+ 𝑛𝑉𝑇𝑙𝑛(

2 (
𝑊

𝐿
)
3
(
𝑊

𝐿
)
5

(
𝑊

𝐿
)
6
(
𝑊

𝐿
)
7

) 

(32) 

 

Sabendo que 𝐼0 pode ser descrita como (33), podemos reescrever (32) como: 

 
𝐼0 = 𝐼𝐷0𝑒

(−
𝑉𝑇𝐻
𝑛𝑉𝑇

)
 

(33) 

 

𝑉𝑅𝐸𝐹 = 𝑛𝑉𝑇𝑙𝑛

(

 
3𝐼𝑀

(
𝑊

𝐿
)
4
𝐼𝐷0𝑒

(−
𝑉𝑇𝐻
𝑛𝑉𝑇

)

)

 + 𝑛𝑉𝑇𝑙𝑛(
2 (

𝑊

𝐿
)
3
(
𝑊

𝐿
)
5

(
𝑊

𝐿
)
6
(
𝑊

𝐿
)
7

) 

(34) 

 

𝑉𝑅𝐸𝐹 = 𝑉𝑇𝐻 + 𝑛𝑉𝑇𝑙𝑛(
6 (

𝑊

𝐿
)
3
(
𝑊

𝐿
)
5
𝐼𝑀

(
𝑊

𝐿
)
6
(
𝑊

𝐿
)
7
(
𝑊

𝐿
)
4
𝐼𝐷0
) 

(35) 

 

Aplicando-se (21), temos: 
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𝑉𝑅𝐸𝐹(𝑇) = 𝑉𝑇𝐻(𝑇2) − 𝐾𝑇 + 𝑇

(

 
𝐾𝑇
𝑇2
+
𝑛k

q
𝑙𝑛(

6 (
𝑊

𝐿
)
3
(
𝑊

𝐿
)
5
𝐼𝑀

(
𝑊

𝐿
)
6
(
𝑊

𝐿
)
7
(
𝑊

𝐿
)
4
𝐼𝐷0
)

)

  

(36) 

 

Ueno [7] desenvolveu esta fonte buscando o coeficiente de temperatura mais baixo 

possível. Como buscamos um TC tendendo a zero quando  𝑇 está próximo de 𝑇2, devemos 

ter que 
∂𝑉𝑅𝐸𝐹(𝑇)

∂T
│𝑇=𝑇2 = 0. Sendo assim, temos: 

 𝑉𝑅𝐸𝐹(𝑇) = 𝑉𝑇𝐻(𝑇2) − 𝐾𝑇 (37) 

 

Como os dois termos são constantes, a tensão de saída da fonte de corrente 

também é constante, porém não pode ser configurada, dependendo de 𝑉𝑇𝐻(𝑇2) na 

tecnologia dos componentes usados na fonte. 

 

Figura 10. Circuito de Fonte de Tensão Ueno modificado. 

 

O circuito fonte de tensão Ueno modificada (Figura 10) tem a mesma configuração e 

funcionamento do circuito anterior em relação ao subcircuito de tensão, trabalhando com as 
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relações das tensões 𝑉𝑔𝑠 dos transistores 𝑀𝑛3 a 𝑀𝑛7. A diferença deste circuito para o 

anterior está na fonte de corrente. Neste caso o transistor Mn12 foi retirado do amplificador 

diferencial. Também foram retirados os transistores cascode Mn8 e Mn9. Ambas as alterações 

foram realizadas para permitir que a fonte de corrente opere com tensões mais baixas de 

alimentação. Por outro lado ele terá maior dependência com a tensão de alimentação.  

Os circuitos são parametrizados, de modo que as dimensões dos dispositivos são 

representadas por variáveis que serão determinadas. Atribuem-se intervalos de valores para 

essas variáveis. A descrição de um transistor, por exemplo, ficaria como a seguir: 

Mn2 d2 g1 s2 0 MODN W='X6*1u' L='X5*1u' 

onde Mn2 é o nome do transistor, d2, g1, s2 e 0 são os nós onde estão conectados dreno, 

gate, source e bulk dos transistores, MODN quer dizer que é um transistor NMOS, W é a 

largura do transistor, parametrizado pela variável X6 e L é o comprimento do gate, 

parametrizado pela variável X5.  

As descrições completas dos circuitos estão no Apêndice A, Apêndice B e Apêndice 

C. A Tabela 2, Tabela 3 e Tabela 4 mostram quais dimensões dos transistores são 

parametrizadas por quais variáveis nos circuitos Ishibe, Ueno completo e Ueno modificado, 

respectivamente: 

Tabela 2. Relações entre as variáveis de parametrização e as dimensões dos componentes do 

Circuito Ishibe. 

Variáveis Dimensões 

X1 Lp1, Lp2, Lp4, L10, L11 

X2 Lp3, Lc10, L12 

X3 Lp5 

X4 Ln1, Ln2, Ln4 

X5 Ln3 

X6 Ln5 

X7 Wp1, Wp2, Wp3, W10, W11, Wc10, W12 

X8 Wp4 

X9 Wp5 

X10 Wn1, Wn2, Wn3 

X11 Wn4 

X12 Wn5 

X13 R1 

X14 Cálculo de R2 

X15 Cálculo de R3 

X16 Relação de tamanho entre Mp2 e M11 

X17 Relação de tamanho entre Mp1 e M10 
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Tabela 3. Relações entre as variáveis de parametrização e as dimensões dos componentes 

do Circuito Ueno completo. 

Variáveis Dimensões 

X1 Lp1, Lp2, Lp3, Lp4, Lp5 

X2 Wp1, Wp2, Wp3, Wp4, Wp5 

X3 Lp6, Lp7 

X4 Wp6, Wp7 

X5 Ln1, Ln2, Ln12 

X6 Wn1, Wn2, Wn8, Wn9, Wn12 

X7 Ln3, Ln4, Ln5, Ln6, Ln7 

X8 Multiplicador de Mn3 e Mn5 

X9 Multiplicador de Mn4 e Mn6 

X10 Wn7 

X11 Ln8, Ln9 

X12 Ln10, Ln11 

X13 Wn10, Wn1 

X14 Lr1 

X15 Wr1 

 

Tabela 4. Relações entre as variáveis de parametrização e as dimensões dos componentes 

do Circuito Ueno modificado. 

Variáveis Dimensões 

X1 Lp1, Lp2, Lp3, Lp4, Lp5 

X2 Wp1, Wp2, Wp3, Wp4, Wp5 

X3 Lp6, Lp7 

X4 Wp6, Wp7 

X5 Ln1, Ln2, Ln10, Ln11 

X6 Wn1, Wn2, Wn10, Wn11 

X7 Ln3, Ln4, Ln5, Ln6, Ln7 

X8 Multiplicador de Wn3 e Wn5 

X9 Multiplicador de Wn4 e Wn6 

X10 Wn7 

X11 Lr1 

X12 Wr1 

 

Para avaliar os circuitos existe uma função, a função Fitness, que dá notas aos 

circuitos com base em resultados de simulação. São também definidas situações de 

funcionamento, como tensões mínima e máxima de alimentação, variação de temperatura, e 

também valores alvos para outros parâmetros de desempenho, como tensão de saída, 

consumo, regulação de linha, entre outros. Para cada um desses parâmetros, foi definido 
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um peso. A Fitness utiliza esses pesos e os valores reais, comparando-os com os valores 

desejados, para gerar a nota. 

2.5 Algoritmos 

Os algoritmos metaheuristicos escolhidos para projeto e otimização foram: Algoritmo 

Genético (GA), Simulated Annealing (SA), Particle Swarm Optimization (PSO) e PSO com 

rede neural (PSON). A seguir, uma descrição do funcionamento destes algoritmos, baseado 

em [8], e como foram utilizados nas simulações. 

O Algoritmo Genético, como o próprio nome sugere, é baseado na teoria de 

cruzamento e seleção das espécies, buscando sempre o melhor indivíduo. Consideram-se 

uma ou mais populações com determinado números de indivíduos cada e trabalha-se com a 

reprodução entre os indivíduos para geração de novas populações. Para este trabalho, cada 

indivíduo é uma possível fonte de tensão e seus genes são as variáveis de otimização 

procuradas.  

No GA o programa gera uma população de circuitos, com dimensões para todos os 

dispositivos, simula-os, atribui notas de acordo com os parâmetros de desempenho 

escolhidos e salva o circuito que apresentou o melhor resultado. Em seguida, ele gera uma 

nova população de circuitos a partir de alguns dos circuitos passados como pais, utilizando 

os genes destes, que são copiados, cruzados e sofrem mutação, para criar circuitos filhos. A 

nova população é simulada novamente e novas notas são atribuídas. Caso haja um novo 

melhor resultado, ele é armazenado e o antigo descartado, caso contrário, o antigo é 

mantido, e o processo de criar populações e simular é repetido até que se atinja o número 

máximo de simulações determinado. 

O problema desse algoritmo é conseguir balancear o número de indivíduos e de 

populações. O número total de indivíduos deve ser grande o suficiente para garantir uma 

boa convergência e distribuído em um certo número de populações de forma manter a 

variedade nas dimensões dos circuitos, mas não exagerado, de modo a realizar simulações 

excessivas e repetidas. Em contrapartida, ele é um método robusto, garantindo um 

resultado geral satisfatório. 

Para o algoritmo genético foram alteradas duas características para analises: a 

quantidade de indivíduos em cada população e o número de populações. Foram realizadas 

aqui simulações com as populações de 50 e 100 indivíduos e com 1 a 4 populações 

distintas. 
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O Simulated Annealing funciona com base em algoritmos de Hill-Climbing [8], 

utilizando um parâmetro de probabilidade adicional. Partindo de um circuito inicial, que será 

também o circuito atual S, é feita a simulação dele e dada uma nota de acordo com os 

parâmetros de desempenho escolhidos. Em seguida, o programa gera um novo circuito R 

em torno do primeiro, com alguma pequena modificação em algumas dimensões de seus 

dispositivos, simula este novo circuito e o compara com o circuito S. Caso R seja melhor, o 

sistema faz de R o novo circuito atual S e segue com o processo, criando um novo circuito 

em torno de R. Caso R seja pior, ainda há uma probabilidade do algoritmo substituir S por R. 

A probabilidade de substituição é dada pela fórmula: 

 
𝑃(𝑡, 𝑅, 𝑆) =  𝑒

𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑟)−𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑠)

𝑡  
(38) 

 

onde Quality(r) é a nota obtida pelo circuito R, Quality(s) é a nota obtida pelo circuito S e t é 

a temperatura a qual eles estão submetidos. 

Pela fórmula, se a nota do circuito R é muito pior, a subtração resulta em um número 

muito negativo, gerando uma probabilidade próxima de zero. Caso R não seja muito pior, a 

chance de substituir é maior. Há ainda o parâmetro t a ser considerado. Quando t é um valor 

grande, o resultado da probabilidade é próxima de 1,0, independente de quão ruim seja o 

circuito, o que acarreta uma grande chance de substituição. Isso é feito para garantir um 

movimento aleatório no espaço, em um primeiro momento, e evitar que ótimos locais limitem 

as buscas. À medida que se diminui o valor de t, as chances de trocar S por um circuito pior 

vão diminuindo e apenas substituição por circuitos melhores são garantidas. O Valor de t é 

reduzido ao longo do processo de otimização. 

Para o Simulated Annealing foram alteradas duas características para análises: o 

valor inicial da temperatura t e quantos melhores resultados precisam ser encontrados para 

fazer o re-annealing. Esse re-annealing é necessário para retornar a temperatura ao valor 

inicial, pois, a partir de um determinado momento, ela é tão baixa que a chance de trocar o 

circuito atual se torna praticamente zero. Para limitar o mínimo da temperatura, também foi 

alterado o arquivo saupdates.m do Matlab, colocando um mínimo de temperatura igual a 

0.0001. Foram realizadas aqui simulações com valores iniciais de t de 2.0, 1.5 e 1.0 e re-

annealing quando encontrar 50, 75 e 100 resultados ótimos, totalizando 9 configurações 

distintas. 

O PSO é outro algoritmo que tem como base a evolução, mas tem uma diferença 

básica. Ao invés de considerar a evolução genética dos indivíduos, ele é baseado no 

agrupamento e migração dos mesmos para buscar um melhor resultado. Utilizando os 
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conhecimentos mútuos e na experiência própria e de outros seres, cada indivíduo consegue 

decidir sua melhor solução. 

Primeiro determina-se o número de partículas que se deseja. Cada uma dessas 

partículas representa uma fonte de tensão a ser otimizada. Em seguida, posicionam-se 

essas partículas em lugares aleatório no espaço, com um vetor velocidade, também 

aleatório. Este espaço é multidimensional e é caracterizado pelas variáveis, ou seja, cada 

dimensão está relacionada a uma variável Xn, logo as coordenadas físicas das partículas 

neste espaço determinam os valores atribuídos à cada variável. 

Durante a execução do algoritmo, são armazenados: 

 Os melhores lugares que cada partícula descobriu até o momento (um local por 

partícula); 

 O melhor lugar que algum informante da partícula descobriu até o momento. Os 

informantes de uma partícula são outras partículas, escolhidas aleatoriamente a 

cada iteração; 

 O melhor lugar descoberto até agora por qualquer partícula; 

A cada iteração o algoritmo calcula a nota de cada partícula através da Fitness e 

atualiza os melhores locais, caso tenha encontrado algum. Ele também atualiza o vetor 

velocidade de todas as partículas, utilizando uma combinação dos vetores que apontam 

para os locais ótimos armazenados e altera a posição das partículas de acordo com seus 

respectivos vetores velocidades. O desempenho deste algoritmo está ligado à quantidade 

de partículas utilizadas, uma vez que mais partículas acarretam mais locais testados 

aumentando as chances de encontrar boas soluções com menos simulações, porém 

aumenta o tempo que demora cada simulação. 

Na Figura 11, um esquemático, contendo ilustrações dos três algoritmos explicados 

anteriormente: 
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Figura 11. Esquemático completo de uma execução, para os algoritmos GA, SA e PSO. 

 

O PSON utiliza o mesmo procedimento do PSO, mas conta com auxílio de redes 

neurais, que são treinadas para tentar prever quais partículas devem alcançar melhores 

notas sem necessidade de realizar simulações. Em uma primeira etapa, Ntotal partículas são 

geradas e todas avaliadas, cada uma recebendo a sua nota. A rede neural é então criada e 

treinada, com os melhores Ntrei resultados já obtidos, para aprender a identificar quais 

partículas são as mais promissoras. As partículas têm seus vetores velocidade e sua 

posição atualizados, como padrão do PSO. A partir desse ponto, não são simuladas mais 

todas as partículas, mas apenas um grupo menor, Nteste, que são aquelas mais promissoras 

para atingir a melhor nota. Também a rede neural é constantemente retreinada. 

Com a aplicação de redes neurais, visamos aumentar a qualidade dos resultados, 

buscando circuitos melhores, simulando uma abrangência maior sem aumentar o número de 

partículas simuladas. 
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A rede neural aplicada tem as seguintes características: 

 É do tipo feed-forward backpropagation network; 

 O número de entradas é igual ao numero de variáveis otimizadas; 

 Apresenta uma saída que da a nota do circuito; 

 Tem uma camada escondida com (numero de variáveis)/2 neurônios; 

 usa uma função radial para os neurônios. 

 O esquemático com os passos do PSON está demonstrado na Figura 12, a seguir. 

 

Figura 12. Esquemático de uma execução do algoritmo PSON. 
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Para o PSON, o valor de Ntotal foi de 4, 6 e 8 vezes o número de variáveis, o valor de 

Ntrei foi de 100, 200, 300 e 400, formando um total de 12 configurações. O Valor de Nteste foi 

mantido igual ao número de variáveis. 

2.6 Função de Fitness 

Para avaliar os circuitos e dar a eles uma nota existe a função Fitness, ou função 

objetivo. Essa função é a mesma para ambos os algoritmos e realiza as seguintes 

operações: gera o arquivo, com comandos e valores das variáveis, chamado param, 

executa as simulações com um simulador elétrico Hspice, lê os resultados gerados e, por 

fim, calcula a nota do circuito. Caso tenha havido algum problema nas simulações, por 

exemplo, a não convergência, a nota infinita é atribuída. Ainda, a função Fitness mantém 

uma cópia do arquivo param do melhor circuito já encontrado, paramop, e que será a 

solução final. Para múltiplas execuções de otimização, o arquivo paramopT terá o resultado 

final. Todos os parâmetros obtidos e as notas atribuídas são exibidos na tela durante as 

otimizações, possibilitando o acompanhamento do processo. A descrição completa da 

função Fitness se encontra no Apêndice E. 

Para a realização das simulações são especificadas as condições de funcionamento 

do circuito, como tensões mínima e máxima de alimentação e variação de temperatura. Para 

cálculo da nota são especificados os parâmetros de desempenho, como tensão de saída, 

coeficiente de temperatura, regulação de linha, consumo de potencia, área e estado de 

operação de alguns transistores, e os pesos que serão aplicados a cada um desses 

parâmetros. Através das simulações são determinados os valores da tensão de saída, VRefM, 

do coeficiente de temperatura, CTM, da regulação de linha, RLM, da corrente consumida, 

ICONS, dos índices de forte inversão para alguns transistores, IStri, e dos índices de fraca 

inversão para alguns transistores, IWeaki. Com esses resultados são avaliados os termos 

VRefW, TCW, LRW, PW, que indicam quanto a tensão de saída, o coeficiente de temperatura, a 

regulação de linha, e a potência consumida estão longe dos valores desejados, e os valores 

de IStrW e IWeakW, que indicam quanto certos transistores estão fora da região de operação 

desejada. Estes termos são aplicados no cálculo final de uma nota. 

Para obter o termo VRefW é avaliada a seguinte expressão 

 

𝑉𝑅𝑒𝑓𝑊 = {

|𝑉𝑅𝑒𝑓𝑀 − 𝑉𝑅𝑒𝑓𝐸|

min (𝑉𝑅𝑒𝑓𝑀, 𝑉𝑅𝑒𝑓𝐸) 
   𝑠𝑒 𝑚𝑎𝑖𝑜𝑟 𝑞𝑢𝑒 𝐸𝑟𝑟

0,0                                   𝑠𝑒 𝑚𝑒𝑛𝑜𝑟 𝑞𝑢𝑒 𝐸𝑟𝑟

 

(39) 

   

onde, 
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VRefW = contribuição da tensão de saída para o cálculo da nota; 

VRefE = VRef especificado; 

Err = variação da tensão de saída permitida (erro relativo) e 

Min{ , } =  é a função mínimo 

Para obter o termo TCW é avaliada a seguinte expressão 

 

𝑇𝐶𝑊 = {

𝐶𝑇𝑀 − 𝑇𝐶𝐸
𝑇𝐶𝐸

,       𝑠𝑒 𝐶𝑇𝑀 > 𝑇𝐶𝐸

0,0                       𝑠𝑒 𝐶𝑇𝑀 ≤ 𝑇𝐶𝐸

 

(40) 

   

onde, 

TCW = contribuição do TC para o cálculo da nota e 

TCE = TC especificado. 

Para obter termo LRW é avaliada a seguinte expressão 

 

𝐿𝑅𝑊 = {

𝑅𝐿𝑀 − 𝐿𝑅𝐸
𝐿𝑅𝐸

,        𝑠𝑒 𝑅𝐿𝑀 > 𝐿𝑅𝐸

0, 0                         𝑠𝑒 𝑅𝐿𝑀 ≤ 𝐿𝑅𝐸

 

(41) 

   

onde, 

LRW = contribuição do LR para o cálculo da nota e 

LRE = LR especificado. 

Para obter PW foi avaliada a seguinte expressão 

 
𝑃𝑊 = (

𝑉𝑀𝑎𝑥 + 𝑉𝑀𝑖𝑛
2

)
𝐼𝐶𝑂𝑁𝑆
𝑃𝑅

 
(42) 

   

onde, 

PW = contribuição da potência média para o cálculo da nota; 

PR = potência de referência para o circuito (constante) e 

VMax, VMin =  máxima e mínima tensão de alimentação. 

Para obter IStrW foi avaliada a seguinte expressão 

 𝐼𝑆𝑡𝑟𝑊 = ∑ 10. (0,1 − 𝐼𝑆𝑡𝑟𝑖)𝑖      para   𝐼𝑆𝑡𝑟𝑖 < 0,1 (43) 
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onde, 

IStrW = contribuição do estado do transistor para o cálculo da nota e 

i = índices dos transistores em que se deseja forte inversão. 

O valor de IStri é calculado através da expressão: 

 𝐼𝑆𝑡𝑟𝑖 = (𝑉𝑔𝑠𝑖 − 𝑉𝑡) (44) 

 

Para obter IWeakW foi avaliada a seguinte expressão 

 𝐼𝑊𝑒𝑎𝑘𝑊 = ∑ 10. (𝐼𝑊𝑒𝑎𝑘𝑖)𝑖        para  𝐼𝑊𝑒𝑎𝑘𝑖 > 0,12 (45) 

   

onde, 

IWeakW = contribuição do estado do transistor para o cálculo da nota e 

i = índices dos transistores em que se deseja fraca inversão. 

O valor de IWeaki é calculado através da expressão: 

 

𝐼𝑊𝑒𝑎𝑘𝑖 =

|𝐼𝐷𝑖|

𝑈𝑇(1+
𝑔𝑚𝑏𝑖
𝑔𝑚𝑖

)
− 𝑔𝑚𝑖

𝑔𝑚𝑖
 

(46) 

 

onde IDi é a corrente de dreno, gmi é a transcondutância e gmbi é a transcondutância de efeito 

de corpo do iésimo transistor. 

 Um termo adicional é AW, que indica quanto a área está longe de um valor de 

referência, é avaliado através da seguinte expressão 

 
𝐴𝑊 =

Á𝑟𝑒𝑎 𝑑𝑜𝑠 𝑡𝑟𝑎𝑛𝑠𝑖𝑠𝑡𝑜𝑟𝑒𝑠 + Á𝑟𝑒𝑎 𝑑𝑜𝑠 𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟𝑒𝑠

𝐴𝑅
 

(47) 

 

onde, 

AW = contribuição da área estimada para o cálculo da nota e 

AR = área de referência para o circuito (constante). 

Por fim, o valor da nota é dada por 

 𝑛𝑜𝑡𝑎 = (𝑝1. 𝑉𝑅𝑒𝑓𝑊 + 𝑝2. 𝑇𝐶𝑊 + 𝑝3. 𝑅𝐿𝑊 + 𝑝4. 𝑃𝑊

+ 𝑝5. 𝐼𝑊𝑒𝑎𝑘𝑊+ 𝑝6. 𝐼𝑆𝑡𝑟𝑊 +  𝑝7. 𝐴𝑊)
2
 

(48) 
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onde p1, p2, .. p7 são pesos especificados pelo usuário. 
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3 Simulações e resultados 

Para realizar as simulações, foi utilizado o software CirOp de projeto e otimização. 

Este software está sendo desenvolvido pelo professor Navarro, utilizando como plataforma o 

Matlab e alguns pacotes deste. 

No programa, primeiramente, escolhe-se o bloco que se deseja projeta e otimizar 

(Figura 13). Em seguida, escolhe-se qual topologia do bloco será simulada, ajustando-se os 

valores dos parâmetros desejados para o desempenho circuito e os intervalos possíveis 

para as variáveis (Figura 14). Por último, escolhe-se a quantidade de vezes que se deseja 

otimizar a mesma configuração, o número máximo de simulações por execução, o nome do 

arquivo contendo os resultados e se as execuções vão ter um circuito inicial aleatório ou não 

(Figura 15). O arquivo contendo os resultados será armazenado na pasta “results”, dentro 

da pasta da topologia escolhida. A seguir, imagens dos menus de escolha para o usuário: 

 

Figura 13. Menu para escolha do tipo de circuito a ser simulado. 
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Figura 14. Menu de escolha do tipo de topologia (1), escolha dos parâmetros desejados (4), 

intervalo de valores das variáveis (5) e algoritmo desejado (6). 
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Figura 15. Menu de escolha de quantas execuções serão realizadas com a mesma configuração 

(1), número máximo de simulações por execução (4000) e nome do arquivo de saída (A1). 

 

 Os parâmetros de funcionamento de cada circuito foram mantidos os mesmos para 

todos os algoritmos executados. A seguir, a Tabela 5, Tabela 6 e Tabela 7 apresentam as 

condições de funcionamento do circuito, especificados os parâmetros de desempenho e os 

pesos utilizados na função de Fitness. 

Tabela 5. Configuração dos parâmetros de funcionamento, parâmetros de desempenho e pesos 

utilizados para o Circuito Ishibe. 

Parâmetros Valores 

Tensão de saída(V) 0,5 

Variação da tensão de saída (%) 10 

Tensão de alimentação (min. máx.) (V) 1,5 2,5 

Temperatura (min. máx.) (Celsius) -10 90 

Coeficiente de temperatura (ppm/C) 15 

Regulação de linha (ppm) 500 

Consumo (uW) 5 

Área (um x um)  

Transistor em fraca inversão Mn1 

Transistor em forte inversão  

Constantes 3,0 

Pesos (Vref, TC, RL, Pot, Winv, Stinv, Area) 1,0 10 10 10 1,0 0,1 

 

 Na Tabela 5, observa-se os parâmetros para o circuito Ishibe, onde os pesos da 

última linha estão relacionados com a tensão de referência, Vref, o coeficiente de 

temperatura, TC, a regulação de linha, RL, a potência consumida pelo circuito, Pot, os 
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transistores em fraca e forte inversão, respectivamente Winv e Sinv, e à área do circuito, 

Área. A constante com valor 3,0 representa quantos transistores iguais ao transistor 𝑀𝑝1 são 

usados em paralelo, ou seja, quantas vezes o transistor resultante é maior que o 𝑀𝑝2. Isso é 

determinado na parametrização do circuito, encontrada no Apêndice A. 

Tabela 6. Configuração dos parâmetros de funcionamento, parâmetros de desempenho e pesos 

utilizados para o Circuito Ueno completo. 

Parâmetros Valores 

Tensão de saída(V) 0,6 

Variação da tensão de saída(%) 40 

Tensão de alimentação (min. máx.)(V) 1,0 2,5 

Temperatura (min. máx.) (Celsius) -10 90 

Coeficiente de temperatura (ppm/C) 20 

Regulação de linha (ppm) 80 

Consumo (uW) 2,0 

Área (um x um)  

Transistor em fraca inversão Mn2 

Transistor em forte inversão  

Constantes 3,0 1,0 10 0,1 

Pesos (Vref, TC, RL, Pot, Winv, Stinv, Area) 1,0 10 10 0,1 1,0 1,0 0,1 

 

 Na Tabela 6, observa-se os parâmetros para o circuito Ueno completo, onde a 

constante com valor 3,0 tem a mesma função que no circuito Ishibe, e as constantes com 

valores 1,0, 10 e 0,1 representam, respectivamente, quantos transistores iguais à 𝑀𝑝3, 𝑀𝑝4 e 

𝑀𝑝5 são usados em paralelo, M2, o tamanho da largura dos transistores 𝑀𝑛3, 𝑀𝑛4, 𝑀𝑛5 e 

𝑀𝑛6, M3, e quantos transistores iguais ao 𝑀𝑛12 são usados em paralelo. Isso é determinado 

na parametrização do circuito, encontrada no Apêndice BApêndice A. 

Tabela 7. Configuração dos parâmetros de funcionamento, parâmetros de desempenho e pesos 

utilizados para o Circuito Ueno modificado. 

Parâmetros Valores 

Tensão de saída(V) 0,7 

Variação da tensão de saída(%) 20 

Tensão de alimentação (min. máx.)(V) 1,0 2,5 

Temperatura (min. máx.) (Celsius) -10 90 

Coeficiente de temperatura (ppm/C) 20 

Regulação de linha (ppm) 100 

Consumo (uW) 2,0 

Área (um x um)  

Transistor em fraca inversão Mn1 

Transistor em forte inversão  

Constantes 3,0 1,0 10 0,1 
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Pesos (Vref, TC, RL, Pot, Winv, Stinv, Area) 10 100 10 1,0 1,0 1,0 0,1 

 

 Na Tabela 7, as constantes referentes aos pesos 3,0, 1,0 e 10 tem a mesma função 

que no Ueno completo, e a última constante, 0,1, mostra quantos transistores 𝑀𝑛10 e 𝑀𝑛11 

são usados em paralelo. Isso é determinado na parametrização do circuito, encontrada no 

Apêndice CApêndice A. 

Como foram utilizados algoritmos metaheurísticos, baseados em escolhas 

randômicas, existe a chance de o algoritmos convergir para soluções que não são as 

melhores possíveis. Para tentar aumentar a probabilidade de obter uma boa solução é 

normal serem realizadas múltiplas otimizações. Em nosso trabalho foram realizadas, para 

cada circuito, algoritmo e configuração do algoritmo, 15 execuções. 

Como queremos visualizar o desempenho de cada configuração dos algoritmos, 

precisamos condensar os resultados das 15 execuções o melhor possível. Trabalhamos 

sempre com a média geométrica das 15 otimizações. Essa média versus a interação onde 

ela é obtida é exibida em um gráfico. Os gráficos foram separados por circuito e por 

configuração, de modo que cada gráfico mostre todas as configurações de um único. 

Para todos os algoritmos, foram limitados os possíveis valores que as variáveis 

poderiam assumir, de acordo com a Tabela 8, Tabela 9 e Tabela 10. 

Tabela 8. Valores das parametrizações das variáveis do Circuito Ishibe. 

Variáveis Mínimo Máximo 

X1 (um) 1,0 20 

X2 (um) 1,0 20 

X3 (um) 1,0 30 

X4 (um) 1,0 20 

X5 (um) 1,0 30 

X6 (um) 1,0 20 

X7 (um) 1,0 400 

X8 (um) 1,0 100 

X9 (um) 1,0 30 

X10 (um) 1,0 100 

X11 (um) 1,0 100 

X12 (um) 1,0 100 

X13 (kOhm) 50 200 

X14 0,6 3,0 

X15 0,6 1,6 

X16 1,0 6,0 



34 
 

 
 

X17 1,0 6,0 

 

Tabela 9. Valores das parametrizações das variáveis do Circuito Ueno completo. 

Variáveis Mínimo Máximo 

X1 (um) 1,0 70 

X2 (um) 10 100 

X3 (um) 1,0 20 

X4 (um) 1,0 100 

X5 (um) 1,0 20 

X6 (um) 1,0 200 

X7 (um) 1,0 5,0 

X8 1,0 50 

X9 1,0 20 

X10 (um) 1,0 100 

X11 (um) 1,0 100 

X12 (um) 0,5 20 

X13 (um) 1,0 100 

X14 (um) 1,0 50 

X15 (um) 2,0 4,0 

 

Tabela 10. Valores das parametrizações das variáveis do Circuito Ueno modificado. 

Variáveis Mínimo Máximo 

X1 (um) 1,0 40 

X2 (um) 10 100 

X3 (um) 1,0 20 

X4 (um) 1,0 200 

X5 (um) 1,0 20 

X6 (um) 1,0 200 

X7 (um) 1,0 5.0 

X8 1,0 50 

X9 1,0 20 

X10 (um) 1,0 100 

X11 (um) 1,0 60 

X12 (um) 2,0 4.0 

Após todas as simulações, verificando os arquivos de resultados globais, paramopT, 

pode-se ver qual foi o melhor resultado obtido para as dimensões dos componentes, bem 

como quais os parâmetros de funcionamento que o circuito obteve.  

Circuito Ishibe: 

.param Vref = 0.50 
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.ParamX1= 15.083  X2= 4.325  X3= 8.762  X4= 5.156  X5= 4.389  X6= 7.025   

.ParamX7= 64.769  X8= 35.373  X9= 2.567  X10= 91.907  X11= 21.292  X12= 

1.168  X13= 179.542   
.Param   X14= 1.060  X15= 1.063  X16= 4.176  X17= 1.352 
*Score=0.0035  TC= 7.6ppm  (FTC= 0)  RL = 471ppm  (FRL = 0) Vref =0.53V 

(FVref =0.00) Pot.=2.9uW (Fpot= 0.59) 

 

 Circuito Ueno complete: 

.param Vref = 0.60 

.ParamX1= 6.126  X2= 21.726  X3= 17.502  X4= 10.522  X5= 1.344  X6= 183.307   

.ParamX7= 3.049  X8= 13.998  X9= 1.616  X10= 1.000  X11= 1.000  X12= 12.687  

X13= 48.114   
.ParamX14= 35.171  X15= 2.013 
*Score=1.7e+002TC= 40ppm  (FTC= 0.98)  RL = 106ppm  (FRL = 0.33) Vref 

=0.77V (FVref =0.00) Pot.=0.96uW (Fpot= 0.48) 

 

 Circuito Ueno modificado: 

.param Vref = 0.70 

.ParamX1= 17.613  X2= 46.544  X3= 8.759  X4= 37.711  X5= 9.570  X6= 43.432   

.ParamX7= 4.578  X8= 27.764  X9= 3.607  X10= 3.337  X11= 21.073  X12= 3.528   
*Score=1e+002TC= 19ppm  (FTC= 0)  RL = 158ppm  (FRL = 0.58) Vref =0.78V 

(FVref =0.00) Pot.=3.5uW (Fpot= 1.7) 

3.1 Algoritmo Genético 

3.1.1 Circuito Ishibe 

Os resultados da aplicação de Algoritmos Genéticos no circuito Ishibe são 

apresentados na Figura 16, Figura 17 e na Figura 18. 
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Figura 16. Gráfico da nota média versus simulações para o Algoritmo Genético aplicado ao circuito 

Ishibe. As configurações testadas são: 1, 2, 3 e 4 populações com 50 indivíduos em cada população, 

GA1x50, GA2x50, GA3x50 e GA4x50; 1, 2, 3 e 4 populações com 100 indivíduos em cada 

população, GA1x100, GA2x100, GA3x100 e GA4x100. 

 

Figura 17. Gráfico da nota versus simulações para o Algoritmo Genético, aplicado ao circuito 

Ishibe. São mostrados em detalhes os resultados obtidos ao início das simulações. 
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Figura 18. Gráfico da nota versus simulações para o Algoritmo Genético, aplicado ao circuito Ishibe. 

São mostrados em detalhes os resultados obtidos ao fim das simulações. 

 

 Analisando os gráficos, podemos perceber que o melhor resultado foi obtido 

utilizando a configuração com uma população com 100 indivíduos, que também foi a 

configuração que convergiu mais rápido para um resultado aceitável. 

3.1.2 Circuito Ueno completo 

Os resultados da aplicação de Algoritmos Genéticos no circuito Ueno completo são 

apresentados na Figura 19, Figura 20 e Figura 21. 
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Figura 19. Gráfico da nota média versus simulações para o Algoritmo Genético aplicado ao circuito 

Ueno completo. As configurações testadas são: 1, 2, 3 e 4 populações com 50 indivíduos em cada 

população, GA1x50_noseed, GA2x50, GA3x50 e GA4x50; 1, 2, 3 e 4 populações com 100 

indivíduos em cada população, GA1x100, GA2x100, GA3x100 e GA4x100. 

 

Figura 20. Gráfico da nota versus simulações para o Algoritmo Genético, aplicado ao circuito Ueno 

completo. São mostrados em detalhes os resultados obtidos ao início das simulações. 
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Figura 21. Gráfico da nota versus simulações para o Algoritmo Genético, aplicado ao circuito Ueno 

completo. São mostrados em detalhes os resultados obtidos ao fim das simulações. 

 

 Analisando os gráficos, podemos perceber que o melhor resultado foi obtido 

utilizando a configuração com duas populações com 100 indivíduos e a que convergiu mais 

rápido para um resultado aceitável foi com uma população de 100 indivíduos. 

3.1.3 Circuito Ueno modificado 

Os resultados da aplicação de Algoritmos Genéticos no circuito Ueno modificado são 

apresentados na Figura 22, Figura 23 e Figura 24. 
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Figura 22. Gráfico da nota média versus simulações para o Algoritmo Genético aplicado ao circuito 

Ueno modificado. As configurações testadas são: 1, 2, 3 e 4 populações com 50 indivíduos em cada 

população, GA1x50_noseed, GA2x50_noseed, GA3x50_noseed e GA4x50_noseed; 1, 2, 3 e 4 

populações com 100 indivíduos em cada população, GA1x100_noseed, GA2x100_noseed, 

GA3x100_noseed e GA4x100_noseed. 

 

Figura 23. Gráfico da nota versus simulações para o Algoritmo Genético, aplicado ao circuito Ueno 

modificado. São mostrados em detalhes os resultados obtidos ao início das simulações. 
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Figura 24. Gráfico da nota versus simulações para o Algoritmo Genético, aplicado ao circuito Ueno 

modificado. São mostrados em detalhes os resultados obtidos ao fim das simulações. 

 

Analisando os gráficos, podemos perceber que o melhor resultado foi obtido utilizando a 

configuração com três populações com 50 indivíduos e a que convergiu mais rápido para um 

resultado aceitável foi com uma população de 50 indivíduos. 

3.2 Simulated Annealing 

3.2.1 Circuito Ishibe 

Os resultados da aplicação de Simulated Annealing no circuito Ishibe são 

apresentados na Figura 25, Figura 26 e Figura 27. 
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Figura 25. Gráfico da nota média versus simulações para o Simulated Annealing aplicado ao circuito 

Ishibe. As configurações testadas são: temperatura inicial 2 com 50, 75 e 100 trocas permitidas, 

SAT2Int50,SAT2Int75 e SAT2Int100; temperatura inicial 2,5 com 50, 75 e 100 trocas permitidas, 

SAT25Int50, SAT25Int75 e SAT25Int100; temperatura inicial 1,5 com 50, 75 e 100 trocas permitidas, 

SAT15Int50, SAT15Int75 e SAT15Int100. 

 

Figura 26. Gráfico da nota versus simulações para o Simulated Annealing aplicado ao circuito 

Ishibe. São mostrados em detalhes os resultados obtidos ao início das simulações. 
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Figura 27. Gráfico da nota versus simulações para o Simulated Annealing aplicado ao circuito 

Ishibe. São mostrados em detalhes os resultados obtidos ao fim das simulações. 

 

Analisando os gráficos, podemos perceber que o melhor resultado foi obtido 

utilizando a configuração com temperatura inicial 2, com o máximo de 50 trocas, e também 

foi a configuração que convergiu mais rápido para um resultado aceitável. 

3.2.2 Circuito Ueno complete 

Os resultados da aplicação de Simulated Annealing no circuito Ueno completo são 

apresentados na Figura 28, Figura 29 e Figura 30. 
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Figura 28. Gráfico da nota média versus simulações para o Simulated Annealing aplicado ao circuito 

Ueno completo. As configurações testadas são: temperatura inicial 2 com 50, 75 e 100 trocas 

permitidas, SAT2Int50, SAT2Int75 e SAT2Int100; temperatura inicial 2,5 com 50, 75 e 100 trocas 

permitidas, SAT25Int50, SAT25Int75 e SAT25Int100; temperatura inicial 1,5 com 50, 75 e 100 trocas 

permitidas, SAT15Int50, SAT15Int75 e SAT15Int100. 

 

 

Figura 29. Gráfico da nota versus simulações para o Simulated Annealing aplicado ao circuito Ueno 

completo. São mostrados em detalhes os resultados obtidos ao início das simulações. 
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Figura 30. Gráfico da nota versus simulações para o Simulated Annealing, aplicado ao circuito Ueno 

completo. São mostrados em detalhes os resultados obtidos ao fim das simulações. 

 

Analisando os gráficos, podemos perceber que o melhor resultado foi obtido utilizando a 

configuração com temperatura inicial 2,0 e máximo de trocas igual a 50, embora a 

configuração com temperatura inicial 2,0 máximo de trocas 100 tenha ficado bem próxima. A 

configuração que convergiu mais rápido para um resultado aceitável foi com temperatura 

inicial 2,0 e máximo de trocas igual a 100. 

3.2.3 Circuito Ueno modificado 

Os resultados da aplicação de Simulated Annealing no circuito Ueno modificado são 

apresentados na Figura 31, Figura 32 e Figura 33. 
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Figura 31. Gráfico da nota média versus simulações para o Simulated Annealing aplicado ao circuito 

Ueno modificado. As configurações testadas são: temperatura inicial 2 com 50, 75 e 100 trocas 

permitidas, SAT2Int50, SAT2Int75 e SAT2Int100; temperatura inicial 2,5 com 50, 75 e 100 trocas 

permitidas, SAT25Int50, SAT25Int75 e SAT25Int100; temperatura inicial 1,5 com 50, 75 e 100 trocas 

permitidas, SAT15Int50, SAT15Int75 e SAT15Int100. 

 

Figura 32. Gráfico da nota versus simulações para o Simulated Annealing aplicado ao circuito Ueno 

modificado. São mostrados em detalhes os resultados obtidos ao início das simulações. 
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Figura 33. Gráfico da nota versus simulações para o Simulated Annealing, aplicado ao circuito Ueno 

modificado. São mostrados em detalhes os resultados obtidos ao fim das simulações. 

 

Analisando os gráficos, podemos perceber que o melhor resultado foi obtido utilizando a 

configuração com temperatura inicial 1,5 e máximo de trocas igual a 50 e também foi a que 

convergiu mais rápido para um resultado aceitável. 

3.3 Particle Swarm 

3.3.1 Circuito Ishibe 

Os resultados da aplicação de Particle Swarm no circuito Ishibe são apresentados na 

Figura 34, Figura 35 e Figura 36. 
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Figura 34. Gráfico da nota média versus simulações para o Particle Swarm aplicado ao circuito 

Ishibe. As configurações testadas são: rede escolhendo número de partículas igual 4vezes número 

de variáveis, utilizando os 100, 200, 300 e 400 melhores resultados, PSON4X100, PSON4X200, 

PSON4X300 e PSON4X400; 6 vezes o número de variáveis, utilizando os 100, 200, 300 e 400 

melhores resultados, PSON6X100, PSON6X200, PSON6X300 e PSON6X400; 8 vezes o número de 

variáveis, utilizando os 100, 200, 300 e 400 melhores resultados, PSON8X100, PSON8X200, 

PSON8X300 e PSON8X400; PSO simples, PSO. 

 

Figura 35. Gráfico da nota versus simulações para o Particle Swarm, aplicado ao circuito Ishibe. 

São mostrados em detalhes os resultados obtidos ao início das simulações. 
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Figura 36. Gráfico da nota versus simulações para o Particle Swarm, aplicado ao circuito Ishibe. 

São mostrados em detalhes os resultados obtidos ao fim das simulações. 

 

Analisando os gráficos, podemos perceber que o melhor resultado foi obtido pelo algoritmo 

PSO simples. As configurações que convergiram mais rápido para um resultado aceitável foi 

o próprio PSO simples e a rede neural avaliando 6 vezes o número de variáveis e utilizando 

200 circuitos para retreinar a rede. 

3.3.2 Circuito Ueno complete 

Os resultados da aplicação de Particle Swarm no circuito Ueno completo são 

apresentados na Figura 37, Figura 38 e Figura 39 
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Figura 37. Gráfico da nota média versus simulações para o Particle Swarm aplicado ao circuito 

Ueno completo. As configurações testadas são: rede escolhendo número de partículas igual 4 vezes 

número de variáveis, utilizando os 100, 200, 300 e 400 melhores resultados, PSON4X100, 

PSON4X200, PSON4X300 e PSON4X400; 6 vezes o número de variáveis, utilizando os 100, 200, 

300 e 400 melhores resultados, PSON6X100, PSON6X200, PSON6X300 e PSON6X400; 8 vezes o 

número de variáveis, utilizando os 100, 200, 300 e 400 melhores resultados, PSON8X100, 

PSON8X200, PSON8X300 e PSON8X400; PSO simples, PSO. 

 

Figura 38. Gráfico da nota versus simulações para o Particle Swarm, aplicado ao circuito Ueno 

completo. São mostrados em detalhes os resultados obtidos ao início das simulações. 
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Figura 39. Gráfico da nota versus simulações para o Particle Swarm, aplicado ao circuito Ueno 

completo. São mostrados em detalhes os resultados obtidos ao fim das simulações. 

 

Analisando os gráficos, podemos perceber que o melhor resultado foi obtido pela 

configuração avaliando 6 vezes o número de variáveis e utilizando 100 melhores resultados 

para re-treinar a rede. As configurações que convergiram mais rápido para um resultado 

aceitável foi o PSO simples e a rede neural avaliando 4 vezes o número de variáveis e 

utilizando 100 circuitos para retreinar a rede. 

3.3.3 Circuito Ueno modificado 

Os resultados da aplicação de Particle Swarm no circuito Ueno modificado são 

apresentados na Figura 40, Figura 41 e Figura 42. 
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Figura 40. Gráfico da nota média versus simulações para o Particle Swarm aplicado ao circuito 

Ueno modificado. As configurações testadas são: rede escolhendo número de partículas igual 4 

vezes número de variáveis, utilizando os 100, 200, 300 e 400 melhores resultados, PSON4X100, 

PSON4X200, PSON4X300 e PSON4X400; 6 vezes o número de variáveis, utilizando os 100, 200, 

300 e 400 melhores resultados, PSON6X100, PSON6X200, PSON6X300 e PSON6X400; 8 vezes o 

número de variáveis, utilizando os 100, 200, 300 e 400 melhores resultados, PSON8X100, 

PSON8X200, PSON8X300 e PSON8X400; PSO simples, PSO. 

 

Figura 41. Gráfico da nota versus simulações para o Particle Swarm, aplicado ao circuito Ueno 

modificado. São mostrados em detalhes os resultados obtidos ao início das simulações. 
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Figura 42. Gráfico da nota versus simulações para o Particle Swarm, aplicado ao circuito Ueno 

modificado. São mostrados em detalhes os resultados obtidos ao fim das simulações. 

 

Analisando os gráficos, podemos perceber que o melhor resultado foi obtido pela 

configuração avaliando 6 vezes o número de variáveis e utilizando 200 circuitos para 

retreinar a rede. A configuração que convergiu mais rápido para um resultado aceitável foi a 

rede neural avaliando 4 vezes o número de variáveis e utilizando 400 circuitos para retreinar 

a rede. 

Para comparação, a seguir são exibidos os gráficos com os melhores resultados de 

cada algoritmo para os circuitos Ishibe, Ueno completo e Ueno modificado, respectivamente 

na Figura 43, Figura 44 e Figura 45. 
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Figura 43. Gráfico com os melhores resultados de cada algoritmo para o circuito Ishibe. As 

configurações são: Algoritmo Genético com uma população de 100 indivíduos, GA1x100; Particle 

Swarm com rede neural avaliando 6 vezes o número de variáveis e Ntrei igual a  400, PSON6x400; 

PSO simples, PSO; Simulated Annealing com temperatura inicial 2 e máximo de alterações de 50, 

SAT2Int50. 

 

Figura 44. Gráfico com os melhores resultados de cada algoritmo para o circuito Ueno completo. As 

configurações são: Algoritmo Genético com duas populações de 100 indivíduos, GA2x100; Particle 

Swarm com rede neural avaliando 6 vezes o número de variáveis e Ntrei igual a  100, PSON6x100; 

PSO simples, PSO; Simulated Annealing com temperatura inicial 2 e máximo de alterações de 50, 

SAT2Int50. 
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Figura 45. Gráfico com os melhores resultados de cada algoritmo para o circuito Ueno modificado. As 

configurações são: Algoritmo Genético com três populações de 50 indivíduos, GA3x50; Particle 

Swarm com rede neural avaliando 6 vezes o número de variáveis e Ntrei igual a 200, PSON6x200; 

PSO simples, PSO; Simulated Annealing com temperatura inicial 1,5 e máximo de alterações de 50, 

SAT15Int50. 
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4 Conclusão 

Neste trabalho foi explicado o funcionamento geral de uma fonte de tensão de 

referência, o funcionamento específico de três topologias diferentes, o funcionamento de 

alguns algoritmos metaheurísticos e projetadas e otimizadas fontes de tensão aplicando 

algoritmos metaheuristicos. Ainda, a comparação de desempenho dos algoritmos foi 

realizada com base tanto na velocidade com que eles chegam a boas soluções, quanto na 

solução final apresentada. 

Não obstante todos os algoritmos fornecerem soluções para as fontes, não foi 

possível determinar uma única configuração de algoritmo metaheuristico que seja, para 

todos os circuitos projetados, o melhor algoritmo. Como esperado do algoritmo genético, ele 

trouxe um resultado satisfatório para todos os circuitos, e caso seja possível realizar muitas 

avaliações, ele oferece bons resultados, porém ele foi o algoritmo mais lento de todos. O 

Simulating Annealing não alcançou os melhores resultados, mas foi rápido para fornecer 

bons resultados. O Algoritmo Particle Swarm, com rede neural, por sua vez, apresentou um 

desempenho bom, aparentando oferecer maior vantagem para circuitos mais complexos. 

Para trabalhos futuros, seria interessante testar mais configurações dos algoritmos, 

como diminuir o máximo de trocas do Simulated Annealing, buscando realizar o re-annealing 

com mais frequência, e buscar melhorar a consistência dos testes do PSON para verificar o 

quanto ele é melhor em desempenho e resultado final. 
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Anexo 

Modelo dos transistores utilizados para simulação. 
.PARAM Wpad = 1.7um 
.MODEL MODN NMOS LEVEL=49 
* ---------------------------------------------------------------------- 
************************* SIMULATION PARAMETERS ************************ 
* ---------------------------------------------------------------------- 
* format    : HSPICE 
* model     : MOS BSIM3v3 
* process   : CS[ADFI] 
* extracted : CSA C61417; 1998-10; ese(487) 
* doc#      : 9933016 REV_N/C 
* created   : 1999-01-12 
* ---------------------------------------------------------------------- 
*                        TYPICAL MEAN CONDITION 
* ---------------------------------------------------------------------- 
*        *** Flags *** 
+MOBMOD =1.000e+00 CAPMOD =2.000e+00 
*        *** Threshold voltage related model parameters *** 
+K1     =6.044e-01  
+K2     =2.945e-03 K3     =-1.72e+00 K3B    =6.325e-01  
+NCH    =2.310e+17 VTH0   =4.655e-01  
+VOFF   =-5.72e-02 DVT0   =2.227e+01 DVT1   =1.051e+00  
+DVT2   =3.393e-03 KETA   =-6.21e-04  
+PSCBE1 =2.756e+08 PSCBE2 =9.645e-06  
+DVT0W  =0.000e+00 DVT1W  =0.000e+00 DVT2W  =0.000e+00  
*        *** Mobility related model parameters *** 
+UA     =1.000e-12 UB     =1.723e-18 UC     =5.756e-11  
+U0     =4.035e+02  
*        *** Subthreshold related parameters *** 
+DSUB   =5.000e-01 ETA0   =3.085e-02 ETAB   =-3.95e-02  
+NFACTOR=1.119e-01  
*        *** Saturation related parameters *** 
+EM     =4.100e+07 PCLM   =6.831e-01  
+PDIBLC1=1.076e-01 PDIBLC2=1.453e-03 DROUT  =5.000e-01  
+A0     =2.208e+00 A1     =0.000e+00 A2     =1.000e+00  
+PVAG   =0.000e+00 VSAT   =1.178e+05 AGS    =2.490e-01  
+B0     =-1.76e-08 B1     =0.000e+00 DELTA  =1.000e-02  
+PDIBLCB=2.583e-01  
*        *** Geometry modulation related parameters *** 
+W0     =1.184e-07 DLC    =8.285e-09  
+DWC    =2.676e-08 DWB    =0.000e+00 DWG    =0.000e+00  
+LL     =0.000e+00 LW     =0.000e+00 LWL    =0.000e+00  
+LLN    =1.000e+00 LWN    =1.000e+00 WL     =0.000e+00  
+WW     =0.000e+00 WWL    =0.000e+00 WLN    =1.000e+00  
+WWN    =1.000e+00  
*        *** Temperature effect parameters *** 
+AT     =3.300e+04 UTE    =-1.80e+00  
+KT1    =-3.30e-01 KT2    =2.200e-02 KT1L   =0.000e+00  
+UA1    =0.000e+00 UB1    =0.000e+00 UC1    =0.000e+00  
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+PRT    =0.000e+00  
*        *** Overlap capacitance related and dynamic model parameters   *** 
+CGDO   =2.100e-10 CGSO   =2.100e-10 CGBO   =1.100e-10  
+CGDL   =0.000e+00 CGSL   =0.000e+00 CKAPPA =6.000e-01  
+CF     =0.000e+00 ELM    =5.000e+00  
+XPART  =1.000e+00 CLC    =1.000e-15 CLE    =6.000e-01  
*        *** Parasitic resistance and capacitance related model parameters *** 
+RDSW   =6.043e+02  
+CDSC   =0.000e+00 CDSCB  =0.000e+00 CDSCD  =8.448e-05  
+PRWB   =0.000e+00 PRWG   =0.000e+00 CIT    =1.000e-03  
*        *** Process and parameters extraction related model parameters *** 
+TOX    =7.700e-09 NGATE  =0.000e+00  
+NLX    =1.918e-07  
+XL     =5.000e-08 XW     =0.000e+00 
*        *** Substrate current related model parameters *** 
+ALPHA0 =0.000e+00 BETA0  =3.000e+01  
*        *** Noise effect related model parameters *** 
+AF     =1.400e+00 KF     =2.810e-27 EF     =1.000e+00  
+NOIA   =1.000e+20 NOIB   =5.000e+04 NOIC   =-1.40e-12  
+NLEV   =0  
*        *** Common extrinsic model parameters *** 
+ACM    =2         
+RD     =0.000e+00 RS     =0.000e+00 RSH    =8.200e+01  
+RDC    =0.000e+00 RSC    =0.000e+00  
+LINT   =8.285e-09  WINT   =2.676e-08  
+LDIF   =0.000e+00 HDIF   =6.000e-07 WMLT   =1.000e+00  
+LMLT   =1.000e+00 XJ     =3.000e-07  
+JS     =2.000e-05 JSW    =0.000e+00 IS     =0.000e+00  
+N      =1.000e+00 NDS    =1000. VNDS   =-1.000e+00  
+CBD    =0.000e+00 CBS    =0.000e+00 CJ     =9.300e-04  
+CJSW   =2.800e-10 FC     =0.000e+00  
+MJ     =3.100e-01 MJSW   =1.900e-01 TT     =0.000e+00  
+PB     =6.900e-01 PHP    =9.400e-01  
* ---------------------------------------------------------------------- 
.MODEL MODP PMOS LEVEL=49 
* ---------------------------------------------------------------------- 
************************* SIMULATION PARAMETERS ************************ 
* ---------------------------------------------------------------------- 
* format    : HSPICE 
* model     : MOS BSIM3v3 
* process   : CS[ADFI] 
* extracted : CSA C61417; 1998-10; ese(487) 
* doc#      : 9933016 REV_N/C 
* created   : 1999-01-12 
* ---------------------------------------------------------------------- 
*                        TYPICAL MEAN CONDITION 
* ---------------------------------------------------------------------- 
* 
*        *** Flags *** 
+MOBMOD =1.000e+00 CAPMOD =2.000e+00 
*        *** Threshold voltage related model parameters *** 
+K1     =5.675e-01 
+K2     =-4.39e-02 K3     =4.540e+00 K3B    =-8.52e-01 
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+NCH    =1.032e+17 VTH0   =-6.17e-01 
+VOFF   =-1.13e-01 DVT0   =1.482e+00 DVT1   =3.884e-01 
+DVT2   =-1.15e-02 KETA   =-2.56e-02 
+PSCBE1 =1.000e+09 PSCBE2 =1.000e-08 
+DVT0W  =0.000e+00 DVT1W  =0.000e+00 DVT2W  =0.000e+00 
*        *** Mobility related model parameters *** 
+UA     =2.120e-10 UB     =8.290e-19 UC     =-5.28e-11 
+U0     =1.296e+02 
*        *** Subthreshold related parameters *** 
+DSUB   =5.000e-01 ETA0   =2.293e-01 ETAB   =-3.92e-03 
+NFACTOR=8.237e-01 
*        *** Saturation related parameters *** 
+EM     =4.100e+07 PCLM   =2.979e+00 
+PDIBLC1=3.310e-02 PDIBLC2=1.000e-09 DROUT  =5.000e-01 
+A0     =1.423e+00 A1     =0.000e+00 A2     =1.000e+00 
+PVAG   =0.000e+00 VSAT   =2.000e+05 AGS    =3.482e-01 
+B0     =2.719e-07 B1     =0.000e+00 DELTA  =1.000e-02 
+PDIBLCB=-1.78e-02 
*        *** Geometry modulation related parameters *** 
+W0     =4.894e-08 DLC    =-5.64e-08 
+DWC    =3.845e-08 DWB    =0.000e+00 DWG    =0.000e+00 
+LL     =0.000e+00 LW     =0.000e+00 LWL    =0.000e+00 
+LLN    =1.000e+00 LWN    =1.000e+00 WL     =0.000e+00 
+WW     =0.000e+00 WWL    =0.000e+00 WLN    =1.000e+00 
+WWN    =1.000e+00 
*        *** Temperature effect parameters *** 
+AT     =3.300e+04 UTE    =-1.35e+00 
+KT1    =-5.70e-01 KT2    =2.200e-02 KT1L   =0.000e+00 
+UA1    =0.000e+00 UB1    =0.000e+00 UC1    =0.000e+00 
+PRT    =0.000e+00 
*        *** Overlap capacitance related and dynamic model parameters   *** 
+CGDO   =2.100e-10 CGSO   =2.100e-10 CGBO   =1.100e-10 
+CGDL   =0.000e+00 CGSL   =0.000e+00 CKAPPA =6.000e-01 
+CF     =0.000e+00 ELM    =5.000e+00 
+XPART  =1.000e+00 CLC    =1.000e-15 CLE    =6.000e-01 
*        *** Parasitic resistance and capacitance related model parameters *** 
+RDSW   =1.853e+03 
+CDSC   =6.994e-04 CDSCB  =2.943e-04 CDSCD  =1.970e-04 
+PRWB   =0.000e+00 PRWG   =0.000e+00 CIT    =1.173e-04 
*        *** Process and parameters extraction related model parameters *** 
+TOX    =7.700e-09 NGATE  =0.000e+00 
+NLX    =1.770e-07 
+XL     =5.000e-08 XW     =0.000e+00 
*        *** Substrate current related model parameters *** 
+ALPHA0 =0.000e+00 BETA0  =3.000e+01 
*        *** Noise effect related model parameters *** 
+AF     =1.290e+00 KF     =1.090e-27 EF     =1.000e+00 
+NOIA   =1.000e+20 NOIB   =5.000e+04 NOIC   =-1.40e-12 
+NLEV   =0 
*        *** Common extrinsic model parameters *** 
+ACM    =2 
+RD     =0.000e+00 RS     =0.000e+00 RSH    =1.560e+02 
+RDC    =0.000e+00 RSC    =0.000e+00 
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+LINT   =-5.64e-08  WINT   =3.845e-08 
+LDIF   =0.000e+00 HDIF   =6.000e-07 WMLT   =1.000e+00 
+LMLT   =1.000e+00 XJ     =3.000e-07 
+JS     =2.000e-05 JSW    =0.000e+00 IS     =0.000e+00 
+N      =1.000e+00 NDS    =1000. VNDS   =-1.000e+00 
+CBD    =0.000e+00 CBS    =0.000e+00 CJ     =1.420e-03 
+CJSW   =3.800e-10 FC     =0.000e+00 
+MJ     =5.500e-01 MJSW   =3.900e-01 TT     =0.000e+00 
+PB     =1.020e+00 PHP    =9.400e-01 
* ---------------------------------------------------------------------- 
 
.MODEL VERT10 PNP  
* ---------------------------------------------------------------------- 
************************* SIMULATION PARAMETERS ************************ 
* ---------------------------------------------------------------------- 
* format    : ELDO, AccusimII, Continuum 
* model     : BJT 
* process   : C35[A-B][3-4][A-C][1-3] 
* revision  : 2.0;  
* extracted : C35[A-B][3-4][A-C][1-3] B11264.L2; 2002-11; hhl (5481) 
* doc#      : Eng-182 
* ---------------------------------------------------------------------- 
*                        TYPICAL MEAN CONDITION 
* ---------------------------------------------------------------------- 
* 
+IS     =2.3330e-17 IRB    =4.3770e-06  
+IKF    =1.3760e-03 BF     =5.9810e+00 NF     =9.9250e-01  
+ISE    =6.5290e-16 NE     =1.7760e+00 VAF    =1.9420e+02  
+IKR    =1.9410e-04 BR     =9.8740e-02 NR     =9.9470e-01  
+ISC    =2.8430e-14 NC     =1.1490e+00 VAR    =1.0320e+01  
+RBM    =1.0000e+00  
+RB     =2.1380e+02  
+RE     =9.7360e+00  
+RC     =4.5400e+01  
+TF     =6.4800e-10  
+ 
+EG     =1.1150e+00 XTI    =5.5300e+00 XTB    =2.2500e+00  
+CJE    =1.4880e-13 VJE    =1.0200e+00 MJE    =5.4882e-01  
+CJC    =4.3387e-14 VJC    =5.3000e-01 MJC    =3.1214e-01  
+  
* ---------------------------------------------------------------------- 
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Apêndice A 

Parametrização do Circuito Ishibe 

.include param 

.options statfl=1 NXX Noelck=1 MEASFILE=1 NOTOP RUNLVL=1 dcon=1 
Mp1 vd b f vd MODP W='X7*1u' L='X1*1u' M='M1' 
Mp2 vd b b vd MODP W='X7*1u' L='X1*1u'   
Mp3 f a d vd MODP W='X7*1u' L='X2*1u' M='M1' 
Mp4 vd b c vd    MODP W='X8*1u' L='X1*1u' 
Mp5 a a vd vd MODP W='X9*1u' L='X3*1u' 
Mn1 0 d d 0 MODN W='X10*1u' L='X4*1u' 
Mn2 j d e 0 MODN W='X10*1u' L='X4*1u' 
Mn3 e c b 0 MODN W='X10*1u' L='X5*1u' 
Mn4 0 d a 0 MODN W='X11*1u' L='X4*1u' 
Mn5 0 c c 0 MODN W='X12*1u' L='X6*1u' 
R1 j 0 'X13*1k' 
M10 vd b t vd MODP W='X7*1u' L='X1*1u' M='int(X17)' 
M11 vd b y vd MODP W='X7*1u' L='X1*1u' M='int(X16)'  
Mc10 s a t vd MODP W='X7*1u' L='X2*1u' M='int(X17)' 
M12 u a y vd MODP W='X7*1u' L='X2*1u' M='int(X16)' 
.param R2 = 'X14*X13*1k*0.5/(26m*int(X17)*log(M1))' 
R2 u s R2 
R3 s 0 'R2*X15*Vref/(1.12-Vref)' 
Q1 0 0 u Vert10 
Vdd vd 0 1.5 
.end 

 
Arquivo param, utilizado 

.include ..\..\Models\Model35 

.param Vref = 0.50 

.Param   X1= 10.255  X2= 10.952  X3= 18.050  X4= 1.173  X5= 13.870  X6= 10.751   

.Param   X7= 163.967  X8= 95.912  X9= 10.406  X10= 38.404  X11= 31.292  X12= 1.011  
X13= 87.137   
.Param   X14= 0.988  X15= 1.343  X16= 3.286  X17= 3.323   
** ( 10.255  10.952  18.050  1.173  13.870  10.751  163.967  95.912  10.406  38.404  31.292  
1.011  87.137  0.988  1.343  3.286  3.323  ) 
.Param   M1= 3.00   
.DC  TEMP   -10.0   90.0   4.0 
.MEASURE DC    VreftPP   PP    V(s) 
.MEASURE DC    VrefAV     AVG  V(s)  
.DC   Vdd   0.50V   2.50V  0.10V 
.MEASURE DC   VrefvPP   PP  v(s) from=1.0 to=2.5  
.MEASURE DC   Vdd_cur  find  I(Vdd) when v(Vd) = 1.75 
.MEASURE DC Mn1_weak find  par('((abs(I1(Mn1))/(26m*(1+Lx9(Mn1)/Lx7(Mn1))) - 
Lx7(Mn1))/Lx7(Mn1))')  when v(Vd) = 1.75 
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Apêndice B 

Parametrização do Circuito Ueno Completo 

.include param 

.options statfl=1 NXX Noelck=1 MEASFILE=1 NOTOP RUNLVL=1 dcon=1 
Mp1 d8 d11 vd vd MODP W='X2*1u' L='X1*1u' M=M1 
Mp2 d9 d11 vd vd MODP W='X2*1u' L='X1*1u' 
Mp3 d3 d11 vd vd MODP W='X2*1u' L='X1*1u' M=M2 
Mp4 d5 d11 vd vd MODP W='X2*1u' L='X1*1u' M=M2 
Mp5 s d11 vd vd MODP W='X2*1u' L='X1*1u' M=M2 
Mp6 d10 d10 vd vd MODP W='X4*1u' L= 'X3*1u' 
Mp7 d11 d10 vd vd MODP W='X4*1u' L='X3*1u' 
Mn1 g1 g1 0 0 MODN W='X6*1u' L='X5*1u' 
Mn2 d2 g1 s2 0 MODN W='X6*1u' L='X5*1u' 
Mn3 d3 d3 d4 0 MODN W='M3*1u' L='X7*1u' M='int(X8)' 
Mn4 d4 d3 0 0 MODN W='M3*1u' L='X7*1u' M='int(X9)' 
Mn5 d5 d5 d6 0 MODN W='M3*1u' L='X7*1u' M='int(X8)' 
Mn6 d6 d5 d4 0 MODN W='M3*1u' L='X7*1u' M='int(X9)' 
Mn7 s s d6 0 MODN W='X10*1u' L='X7*1u' 
Mn8 d8 d8 g1 0 MODN W='X6*1u' L='X11*1u' 
Mn9 d9 d8 d2 0 MODN W='X6*1u' L='X11*1u' 
Mn10 d10 d9 d14 0 MODN W='X13*1u' L='X12*1u' 
Mn11 d11 d8 d14 0 MODN W='X13*1u' L='X12*1u' 
Mn12 d14 g1 0 0 MODN W='X6*1u' L='X5*1u' M= M4 
MR1 s2 s 0 0 MODN W='X15*1u' L='X14*1u' 
Vdd vd 0 1.5 
.end 

 
Arquivo param utilizado 

.include ..\..\Models\Model35 

.param Vref = 0.60 

.Param   X1= 22.441  X2= 72.123  X3= 7.794  X4= 10.522  X5= 1.344  X6= 140.774   

.Param   X7= 3.049  X8= 21.932  X9= 1.157  X10= 8.356  X11= 9.407  X12= 12.687  X13= 
48.114   
.Param   X14= 35.171  X15= 2.519   
** ( 22.441  72.123  7.794  10.522  1.344  140.774  3.049  21.932  1.157  8.356  9.407  
12.687  48.114  35.171  2.519  ) 
.Param   M1= 3.00  M2= 1.00  M3= 10.00  M4= 0.10   
.DC  TEMP   -10.0   90.0   4.0 
.MEASURE DC    VreftPP   PP    V(s) 
.MEASURE DC    VrefAV     AVG  V(s) 
.DC   Vdd   0.50V   2.50V  0.10V 
.MEASURE DC   VrefvPP   PP  v(s) from=1.0 to=2.5  
.MEASURE DC   Vdd_cur  find  I(Vdd) when v(Vd) = 1.75 
.MEASURE DC Mn2_weak find  par('((abs(I1(Mn2))/(26m*(1+Lx9(Mn2)/Lx7(Mn2))) - 
Lx7(Mn2))/Lx7(Mn2))')  when v(Vd) = 1.75 
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Apêndice C 

Parametrização do Circuito Ueno Modificado 

.include param 

.options statfl=1 NXX Noelck=1 MEASFILE=1 NOTOP RUNLVL=1 dcon=1 
Mp1 g1 d11 vd vd MODP W='X2*1u' L='X1*1u' M=M1 
Mp2 d2 d11 vd vd MODP W='X2*1u' L='X1*1u' 
Mp3 d3 d11 vd vd MODP W='X2*1u' L='X1*1u' M=M2 
Mp4 d5 d11 vd vd MODP W='X2*1u' L='X1*1u' M=M2 
Mp5 s d11 vd vd MODP W='X2*1u' L='X1*1u' M=M2 
Mp6 d10 d10 vd vd MODP W='X4*1u' L='X3*1u' 
Mp7 d11 d10 vd vd MODP W='X4*1u' L='X3*1u' 
Mn1 g1 g1 0 0 MODN W='X6*1u' L='X5*1u' 
Mn2 d2 g1 s2 0 MODN W='X6*1u' L='X5*1u' 
Mn3 d3 d3 d4 0 MODN W='M3*1u' L='X7*1u' M='int(X8)' 
Mn4 d4 d3 0 0 MODN W='M3*1u' L='X7*1u' M='int(X9)' 
Mn5 d5 d5 d6 0 MODN W='M3*1u' L='X7*1u' M='int(X8)' 
Mn6 d6 d5 d4 0 MODN W='M3*1u' L='X7*1u' M='int(X9)' 
Mn7 s s d6 0 MODN W='X10*1u' L='X7*1u' 
Mn10 d10 d2 0 0 MODN W='X6*1u' L='X5*1u' M=M4 
Mn11 d11 g1 0 0 MODN W='X6*1u' L='X5*1u' M=M4 
MR1 s2 s 0 0 MODN W='X12*1u' L='X11*1u' 
Vdd vd 0 1.5 
.MEASURE DC m6_weakp2 find  par('((abs(I1(Mn1))/(26m*(1+Lx9(Mn1)/Lx7(Mn1))) - 
Lx7(Mn1))/Lx7(Mn1))') when v(Vd) = 1.75 
.end 

 
Arquivo param utilizado 

.include ..\..\Models\Model35 

.param Vref = 0.70 

.Param   X1= 1.154  X2= 54.479  X3= 19.495  X4= 76.827  X5= 7.124  X6= 88.159   

.Param   X7= 1.747  X8= 6.696  X9= 10.301  X10= 1.746  X11= 9.627  X12= 3.562   
** ( 1.154  54.479  19.495  76.827  7.124  88.159  1.747  6.696  10.301  1.746  9.627  3.562  
) 
.Param   M1= 3.00  M2= 1.00  M3= 10.00  M4= 0.10   
.DC  TEMP   -10.0   90.0   4.0 
.MEASURE DC    VreftPP   PP    V(s) 
.MEASURE DC    VrefAV     AVG  V(s)  
.DC   Vdd   0.50V   2.50V  0.10V 
.MEASURE DC   VrefvPP   PP  v(s) from=1.0 to=2.5  
.MEASURE DC   Vdd_cur  find  I(Vdd) when v(Vd) = 1.75 
.MEASURE DC Mn1_weak find  par('((abs(I1(Mn1))/(26m*(1+Lx9(Mn1)/Lx7(Mn1))) - 
Lx7(Mn1))/Lx7(Mn1))')  when v(Vd) = 1.75 
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Apêndice D 

Função Metaheu, responsável pela chamada das condições, de acordo com o 

algoritmo escolhido. 

global modo; 
global nvars; 
global genesLB; 
global inicialSol; 
global dif; 
global modoind; 
global namext; 
global cont; 
global circuito; 
global slash; 

 
namext = ''; 
prompt={'Number of Runs','Max simulations (more than 1 run)','Extension of 

the output file', 'seed'}; 
name='Algoritm Running'; 
numlines=1; 
defaultanswer={'1','4000', 'A1', ''}; 
entrada=inputdlg(prompt,name,numlines,defaultanswer); 
namext = entrada{3}; 
system(['del ' circuito slash 'results' slash 'optimos.' modo namext]); 

 
profile on; 
switch modo 
case'GA' 
    modoind=1; 
    load optimtool_GA.mat; 
    optimproblem.lb = zeros(1, nvars); 
    optimproblem.ub = ones(1, nvars); 
    optimproblem.nvars= nvars; 
    optimproblem.options.PopInitRange = [optimproblem.lb; optimproblem.ub]; 
    optimproblem.options.PopulationSize=[100 100]; 
    

optimproblem.options.Generations=round(str2num(entrada{2})/sum(optimproblem

.options.PopulationSize))-1; 
% inicializa os geradores para se repetir resultados 
if ~isempty(entrada{4})  
         rand('seed', str2double(entrada{4})); 
         randn('seed', strdouble(entrada{4})); 
end; 

 
    Best.scoreT = Inf('double'); 
if str2double(entrada{1}) == 1 
        optimtool(optimproblem); 
elsefor i=1:str2double(entrada{1}); 
fprintf('\n__________________  inicio da %1.0f otimizacao   Melhor score: 

%3g  __________________\n\n ', i, Best.scoreT); 
cont = 0; Best.score = Inf('double'); Best.scoreT = Inf('double'); 
           ga(optimproblem); 
end; 
end; 
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case'SA' 
    modoind=2; 
    load optimtool_SA.mat; 
    optimproblem.lb = zeros(1, nvars); 
    optimproblem.ub = ones(1, nvars); 
    optimproblem.x0 = zeros(1, nvars); 
    optimproblem.options.InitialTemperature=1.5; 
    optimproblem.options.ReannealInterval= 75; 
    optimproblem.options.MaxFunEvals=[str2num(entrada{2})]; 
    j=1; 
for i=1:length(genesLB) 
if (dif(i) ~= 0)   
        optimproblem.x0(j)= (inicialSol(i) - genesLB(i))/dif(i); 
        j=j+1; 
end; 
end;    

 
% gera condicoes iniciais 
if ~isempty(entrada{4})  
        samples  = RandStream('mt19937ar', 'Seed', str2double(entrada{4})); 

% this stream is used to generate the initial conditions 
        rand('seed', str2double(entrada{4})); 
        optimproblem.x0 = rand(samples, 1,nvars); 
end; 

 
    Best.scoreT = Inf('double'); 
if str2double(entrada{1}) == 1 
        optimtool(optimproblem); 
elsefor i=1:str2double(entrada{1}); 
fprintf('\n__________________  inicio da %1.0f otimizacao   Melhor score: 

%3g  __________________\n\n ', i, Best.scoreT);  
cont = 0; Best.score = Inf('double'); 
           simulannealbnd(optimproblem); 
if ~isempty(entrada{4})  
            optimproblem.x0 = rand(samples, 1,nvars); 
end; 
end; 
end; 

 
case'PS' 
    modoind=3; 
    load optimtool_PS.mat; 
    optimproblem.lb = zeros(1, nvars); 
    optimproblem.ub = ones(1, nvars); 
    optimproblem.x0 = zeros(1, nvars); 
    optimproblem.options.MaxFunEvals = str2num(entrada{2}); 
    j=1; 
for i=1:length(genesLB) 
if (dif(i) ~= 0)   
          optimproblem.x0(j)= (inicialSol(i) - genesLB(i))/dif(i); 
          j=j+1; 
end; 
end;   

 
% gera condicoes iniciais 
if ~isempty(entrada{4})  
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samples  = RandStream('mt19937ar', 'Seed', str2double(entrada{4})); % this 

stream is used to generate the initial conditions 
         rand('seed', str2double(entrada{4})); 
         optimproblem.x0 = rand(samples, 1,nvars); 
end; 

 
     Best.scoreT = Inf('double'); 
if str2double(entrada{1}) == 1 
        optimtool(optimproblem); 
elsefor i=1:str2double(entrada{1}); 
fprintf('\n__________________  inicio da %1.0f otimizacao   Melhor score: 

%3g  __________________\n\n ', i, Best.scoreT);  
cont = 0; Best.score = Inf('double'); 
           patternsearch(optimproblem); 
if ~isempty(entrada{4})  
            optimproblem.x0 = rand(samples, 1,nvars); 
end; 
end; 
end; 

 
case'MM' 
    load optimtool_MM.mat; 
    optimproblem.lb = zeros(1, nvars); 
    optimproblem.ub = ones(1, nvars); 
    optimproblem.x0 = zeros(1, nvars); 
    j=1; 
for i=1:length(genesLB) 
if (dif(i) ~= 0)   
          optimproblem.x0(j)= (inicialSol(i) - genesLB(i))/dif(i); 
          j=j+1;  
end; 
end; 
    modoind=4; 
    optimtool(optimproblem); 

 
case'SAM' 
     modoind=5; 
%set the options 
    optimproblem = struct(... 
'fitnessfcn', @fitness,... 
'Display', 'crossovers',...  % it can be 'final', 'iter', 'crossovers', or 

'none' 
'TolFun', 1e-6,... 
'ObjectiveLimit', -1e+20,... 
'TolCon', 1e-6,... 
'CoolSched',@(T) (.8*T),... 
'InitTemp',20,...                % initial temperature 
'MaxTriesWithoutBest',10000,...  %max number of attempts without a new best 

before finishing 
'MaxSuccess',200,... 
'MaxTries',300,... 
'StopTemp',1e-8,... 
'StopVal',-Inf,... 
'MaxtoLocal',25,... 
'TimeLimit',inf,...    % time in seconds 
'LockOn',1,...         % lock to variables that are showing progress 
'Crossover',1,...      % able or disable crossovers 
'MaxSim',3000,... 
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'Initial_Sigma',1); 

 
    optimproblem.lb = zeros(1, nvars); 
    optimproblem.ub = ones(1, nvars); 
    optimproblem.x0 = zeros(1, nvars); 
   optimproblem.MaxSim = str2num(entrada{2}); 
j=1; 
for i=1:length(genesLB) 
if (dif(i) ~= 0)   
        optimproblem.x0(j)= (inicialSol(i) - genesLB(i))/dif(i); 
        j=j+1; 
end; 
end;    
if ~isempty(entrada{4})  
        samples  = RandStream('mt19937ar', 'Seed', str2double(entrada{4})); 

% this stream is used to generate the initial conditions 
        rand('seed', str2double(entrada{4})); 
        optimproblem.x0 = rand(samples, 1, nvars); 
end; 

 
    Best.scoreT = Inf('double'); 
for i=1:str2double(entrada{1}); 
      fprintf('\n__________________  inicio da %1.0f otimizacao   Melhor 

score: %3g  __________________\n\n ', i, Best.scoreT); 
cont = 0; Best.score = Inf('double'); 
      annealwithcrossovers(optimproblem); 
if ~isempty(entrada{4})  
        optimproblem.x0 = rand(samples, 1,nvars); 
end; 
end; 
% SAM;   

 
case'SCE' 
   optimproblem.lb = zeros(1, nvars); 
   optimproblem.ub = ones(1, nvars); 
   optimproblem.x0 = zeros(1, nvars); 
   j=1; 
for i=1:length(genesLB) 
if (dif(i) ~= 0)   
          optimproblem.x0(j)= (inicialSol(i) - genesLB(i))/dif(i); 
          j=j+1; 
end; 
end; 
   fun = 'fitness'; 
   modoind=6; 
   saida= SCE(fun, optimproblem.x0, optimproblem.lb, optimproblem.ub); 

 
case'PSO' 
   modoind=7; 
   optimproblem.lb = zeros(1, nvars); 
   optimproblem.ub = ones(1, nvars); 
   optimproblem.x0 = zeros(1, nvars); 
   fun = 'fitness'; 
   j=1; 
for i=1:length(genesLB) 
if (dif(i) ~= 0)   
       optimproblem.x0(j)= (inicialSol(i) - genesLB(i))/dif(i); 
       j=j+1; 
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end; 
end; 
if ~isempty(entrada{4})  
        samples  = RandStream('mt19937ar', 'Seed', str2double(entrada{4})); 

% this stream is used to generate the initial conditions 
        rand('seed', str2double(entrada{4})); 
        optimproblem.x0 = rand(samples, 1, nvars); 
end; 

 
   Best.scoreT = Inf('double'); 
for i=1:str2double(entrada{1}); 
      fprintf('\n__________________  inicio da %1.0f otimizacao   Melhor 

score: %3g  __________________\n\n ', i, Best.scoreT); 
cont = 0; Best.score = Inf('double'); 
      saida= PSO(fun, optimproblem.x0, optimproblem.lb, optimproblem.ub, 

str2double(entrada{2}), length(optimproblem.x0)); 
%saida= PSON2(fun, optimproblem.x0, optimproblem.lb, optimproblem.ub, 

6*length(optimproblem.x0), length(optimproblem.x0), 300, 'radbas', 

round(nvars/2), str2double(entrada{2})); 
if ~isempty(entrada{4})  
         optimproblem.x0 = rand(samples, 1,nvars); 
end; 
end; 

 
case'DE' 
   optimproblem.lb = zeros(1, nvars); 
   optimproblem.ub = ones(1, nvars); 
   optimproblem.x0 = zeros(1, nvars); 
    j=1; 
for i=1:length(genesLB) 
if (dif(i) ~= 0)   
          optimproblem.x0(j)= (inicialSol(i) - genesLB(i))/dif(i); 
          j=j+1; 
end; 
end; 
   fun = 'fitness'; VTR = 1.e-8; 
   modoind=8; 
   Best.scoreT = Inf('double'); 
Rnvars = length(optimproblem.x0); 

 
for i=1:str2num(entrada{1}); 
    fprintf('\n__________________  inicio da %1.0f otimizacao   Melhor 

score: %3g  __________________\n\n ', i, Best.scoreT); 
cont = 0; Best.score = Inf('double'); 
    saida= devec3(fun, VTR, Rnvars, optimproblem.lb, optimproblem.ub, [], 

6*Rnvars, round(str2num(entrada{2})/(6*Rnvars))); 
end; 

 
case'EvN' 
   modoind=9; 
   fun = 'fitness'; 
optimproblem.x0 = zeros(1, nvars); 
   j=1; 
for i=1:length(genesLB) 
if (dif(i) ~= 0)   
       optimproblem.x0(j)= (inicialSol(i) - genesLB(i))/dif(i); 
       j=j+1; 
end; 
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end; 

 
if ~isempty(entrada{4})  
        samples  = RandStream('mt19937ar', 'Seed', str2double(entrada{4})); 

% this stream is used to generate the initial conditions 
        rand('seed', str2double(entrada{4})); 
        optimproblem.x0 = rand(samples, 1, nvars); 
end; 

 
%saida = EvNeu (fun,  optimproblem.x0, nvars, 200, 200, 40, 300, 'radbas', 

[nvars, nvars]); 
   Best.scoreT = Inf('double'); 
for i=1:str2double(entrada{1}) 
fprintf('\n__________________  inicio da %1.0f otimizacao   Melhor score: 

%3g  __________________\n\n ', i, Best.scoreT); 
cont = 0; Best.score = Inf('double'); 
     saida = EvNeu16_4(fun,  optimproblem.x0, nvars, 95, 200, 40, 300, 

'radbas', round(nvars/2)); 
if ~isempty(entrada{4})  
         optimproblem.x0 = rand(samples, 1,nvars); 
end; 
end; 

 
case'PSON' 
   modoind=10; 
   optimproblem.lb = zeros(1, nvars); 
   optimproblem.ub = ones(1, nvars); 
   optimproblem.x0 = zeros(1, nvars); 
   fun = 'fitness'; 
   j=1; 
for i=1:length(genesLB) 
if (dif(i) ~= 0)   
       optimproblem.x0(j)= (inicialSol(i) - genesLB(i))/dif(i); 
       j=j+1; 
end; 
end; 
if ~isempty(entrada{4})  
        samples  = RandStream('mt19937ar', 'Seed', str2double(entrada{4})); 

% this stream is used to generate the initial conditions 
rand('seed', str2double(entrada{4})); 
        optimproblem.x0 = rand(samples, 1, nvars); 
end; 

 
   Best.scoreT = Inf('double'); 
for i=1:str2double(entrada{1}); 
      fprintf('\n__________________  inicio da %1.0f otimizacao   Melhor 

score: %3g  __________________\n\n ', i, Best.scoreT); 
cont = 0; Best.score = Inf('double'); 
      saida= PSON2(fun, optimproblem.x0, optimproblem.lb, optimproblem.ub, 

4*length(optimproblem.x0), length(optimproblem.x0), 400, 'radbas', 

round(nvars/2), str2double(entrada{2})); 
if ~isempty(entrada{4})  
         optimproblem.x0 = rand(samples, 1,nvars); 
end; 
end; 

 
end 
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Apêndice E 

Função Fitness, utilizada para calcular scores dos circuitos 

function [sc, sci] = fitness(x) 
% sc da o scores total e sci sao os valores parciais 

 
global slash; 
global simulador; 
global circuito; 
global ParDados 
global genesLB; 

 
global V_alvo ; 
global precisao; 
global Vmin; 
global Vmax; 
global Tmin; 
global Tmax; 
global TC; 
global RL; 
global pPot; 
global AreaCir; 
global weakTrans; 
global strTrans; 
global const; 
global pesos; 

 
global Best 
global BestRes; 

 
global modoind; 
global modo; 
global dif; 
global cont; 
global namext; 

 

 
V_alvo = str2num(ParDados{1, 2}); 
precisao = str2num(ParDados{2, 2})/100; 
vet = str2num(ParDados{3, 2});  Vmin = vet(1);  Vmax= vet(2);  
vet = str2num(ParDados{4, 2});  Tmin = vet(1);  Tmax= vet(2);  
TC = str2num(ParDados{5, 2}); 
RL = str2num(ParDados{6, 2}); 
pPot = str2num(ParDados{7, 2}); 
AreaCir = str2num(ParDados{8, 2}); 
weakTrans = strread(ParDados{9, 2}, '%s'); 
strTrans = strread(ParDados{10, 2}, '%s'); 
const = str2num(ParDados{11, 2}); 
pesos = str2num(ParDados{12, 2}); 

 
deltaT = Tmax - Tmin; 
deltaV = Vmax - Vmin; 
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% os parametros x (gerados) vao de 0 a 1;  a partir deles sao gerados os 

parametros xr para o arquivo de simulacao 
%xr = x.*dif+genesLB; 

 
j=1; 
for i=1:length(genesLB) 
if (dif(i) ~= 0)   
        xr(i)= (x(j)*dif(i)+genesLB(i)); 
        j=j+1; 
else xr(i)=genesLB(i); 
end; 
end; 

 
% calculo de area do circuito .. nao ta sendo usado 
cond = [circuito slash 'AreaCirMea.m']; 
if exist(cond) 
   eval(['cd ', circuito]); 
   AreaMed = AreaCirMea(xr); 
   eval('cd ..'); 
else AreaMed = 0; 
end; 

 
% arquivo param tem os comando para simulacao 
arq = fopen([circuito slash 'param'],'w'); 
param_mod(arq, xr);    
fclose(arq); 

 
disp ______________________________ 

 
cont=cont +1; 
fprintf('simulação = %d\n', cont); 

 
% executa a simulacao 
[~, b] = system([simulador circuito slash 'circuito.sp']); 
% [~, b] = system (['START /Realtime/wait/min C:\synopsys\Hspice_A-

2008.03\BIN\hspice_mt.exe ' circuito '\circuito.sp']); 

 
% read the simulation results 
arq = fopen('circuito.ms0','r'); 
Meas=LeMeas(arq, 3); 
fclose(arq); 

 
% verifica se a simulacao gerou todos resultados 
if length(Meas) > (7+ length(weakTrans) + length(strTrans)) 

 
% calculate the circuit performance 
%TC  
if (Meas(2) <= 0)  FTC = Inf('double'); TCm = Inf('double'); 
else 
    TCm = (Meas(1)/Meas(2))*(1/deltaT)*(1e6); 
    FTC = (TCm-TC)/TC; %FTCn = FTC; 
if(TCm < TC) FTC = 0; 
end 
end 

 
%Vref    
if (Meas(2) <= 0)  FVref = Inf('double');  



73 
 

 
 

else FVref = abs((Meas(2)-V_alvo)/min(V_alvo, Meas(2))); %FVrefn = FVref; 
if (FVref <= precisao) FVref = 0; 
end; 
end 

 
%RL         
if (Meas(5) <= 0)  FRL = Inf('double'); RLm = Inf('double'); 
else 
    RLm = (abs(Meas(5))/deltaV)*(1/Meas(2))*1e6; 
    FRL = (RLm-RL)/RL;  %FRLn = FRL; 
if (RLm < RL)  FRL = 0; 
end 
end 

 
%Power consumption 
Fpot= -1.0e6*Meas(6)*(Vmax+Vmin)/(pPot*2); 

 
% Area  
Farea = AreaMed/AreaCir; 

 
% verify if transistors are in weak invertion 
Weakin=0; 

 
for i= 1: length(weakTrans); 
     j= 6+i; 
    Meas(j)= abs(Meas(j)); 
if Meas(j)> 0.12 Weakin=10*Meas(j) +Weakin; end; 
end;    

 
Strin=0; 
for i= 1: length(strTrans); 
     j= i+6+length(weakTrans); 
if Meas(j) < 0.1 Strin=10*abs(Meas(j)-0.1) + Strin;  end; 
end;    

 
%final score 
sc = ( pesos(1)*FVref + pesos(2)*FTC  + pesos(3)*FRL + pesos(4)*Fpot + 

pesos(5)*Weakin + pesos(6)*Strin + pesos(7)*Farea)^2; 
sci = [FRL   FTC   FVref  Fpot  Weakin Strin]; 
%sci = [FRLn   FTCn   FVrefn  Fpot  Weakin Strin]; 
% save the best solution 
if(Best.score > sc) 
    arq = fopen([circuito slash 'results' slash 'optimos.' modo 

namext],'a+'); 
    fprintf(arq,'%d  %.3g\n', cont, sc); 
    fclose(arq); 
    beep; 
    Best.score = sc; 
    fprintf('*>'); 
    arq = fopen([circuito slash 'paramop'],'w'); 
    param_mod(arq,xr); 
    fprintf(arq,'*Score=%.2g  TC= %.2gppm  (FTC= %.2g)  RL = %.3gppm  (FRL 

= %.2g) Vref =%.2fV (FVref =%.2f) Pot.=%.2guW (Fpot= %.2g) \n*Weakin= %.2g  

Strin= %.2g Area=%.2gum2 (Farea= %.2g)\n\n',sc, TCm, FTC, RLm, FRL, 

Meas(2), FVref, -1.0e6*Meas(6)*(Vmax+Vmin)/2, Fpot, Weakin, Strin, AreaMed, 

Farea); 
    fclose(arq);  
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if(Best.scoreT > sc) 
      Best.scoreT = sc; 
      Best.parameters = xr; 
      arq = fopen([circuito slash 'paramopT'],'w'); 
param_mod(arq,xr); 

 
      fprintf(arq,'*Score=%.2g  TC= %.2gppm  (FTC= %.2g)  RL = %.3gppm  

(FRL = %.2g) Vref =%.2fV (FVref =%.2f) Pot.=%.2guW (Fpot= %.2g) \n*Weakin= 

%.2g  Strin= %.2g Area=%.2gum2 (Farea= %.2g)\n\n',sc, TCm, FTC, RLm, FRL, 

Meas(2), FVref, -1.0e6*Meas(6)*(Vmax+Vmin)/2, Fpot, Weakin, Strin, AreaMed, 

Farea); 
fclose(arq);  
      BestRes{modoind} = Best;   
end; 

 
end; 

 
% performance results 
fprintf('Score=%.3g  TC= %.2gppm  (FTC= %.2g)  RL = %.3gppm  (FRL = %.2g) 

Vref =%.2fV (FVref =%.2f) Pot.=%.2guW (Fpot= %.2g)\nWeakin= %.2g  Strin= 

%.2g Area=%.2gum2 (Farea= %.2g)\n\n',sc, TCm, FTC, RLm, FRL, Meas(2), 

FVref, -1.0e6*Meas(6)*(Vmax+Vmin)/2, Fpot, Weakin, Strin, AreaMed, Farea); 

 
% problemas na simulacao 
else sc = inf('double'); 
    sci = [ inf('double')  inf('double')  inf('double')  inf('double')  

inf('double')  inf('double')]; 
    fprintf('Score=%.3g  \n\n',sc); 
end; 

 
% used parameters 
for i = 1:length(xr) 
if (mod(i, 10) == 0) fprintf('\n'); 
end 
    fprintf('X%i= %1.1f   ', i, xr(i));  
end;     
fprintf('\n');   

 
end 


