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Resumo

CAMARGO, F. S. P. Uma estimacéao alternativa, remota e continuada das variacdes de
tensdo em um sistema de distribuicdo utilizando redes neurais artificiais, 2012. 84f.
Trabalho de Conclus&o de Curso (Engenharia Elétrica com Enfase em Sistemas de Energia
e Automacéo) — Escola de Engenharia de Séao Carlos (EESC), Universidade de Sdo Paulo,
Sao Carlos — SP, 2012.

O processo de monitoramento da energia elétrica fornecida as cargas alocadas em
um sistema de distribuicdo esta diretamente ligado a manutengéo da qualidade da energia
elétrica. Entretanto, alguns entraves sao observados na execucdo deste monitoramento,
tais como a elevada complexidade em se obter um panorama representativo do sistema, e o
respectivo investimento financeiro associado a tal procedimento. Neste sentido, este
trabalho apresenta um método de monitoramento remoto da tenséo eficaz em uma ou mais
cargas de interesse do sistema elétrico por meio de redes neurais artificiais. Para o
desenvolvimento da técnica, utilizou-se uma base de dados, compilada a partir de um
sistema de distribuigéo real devidamente modelado no software ATP (Alternative Transients
Program), de maneira a treinar redes neurais artificiais especificas e capazes de estimar a
tensdo eficaz entregue as cargas analisadas. Ressalta-se que as redes neurais estimam os
valores eficazes nas cargas monitoradas tomando-se apenas medidas das tensdes e
correntes trifasicas na subestacdo do sistema de distribuicdo. Os resultados relacionados
ao desempenho das redes neurais indicam a eficicia e a possibilidade de se generalizar o
método para todas as cargas no sistema, constituindo, portanto, uma alternativa

complementar ao monitoramento convencional da qualidade da energia elétrica.

Palavras Chaves: Qualidade da energia elétrica, sistema de distribuicio de energia
elétrica, monitoramento remoto, variagdes de tensdo de curta duragdo, variacdes de tensao

de longa duracgéo, redes neurais artificiais.
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Abstract

CAMARGO, F. S. P. An alternative, remote and continuous estimation of voltage variations
in a distribution system using artificial neural networks, 2012. 84p. Trabalho de Concluséo
de Curso (Engenharia Elétrica com Enfase em Sistemas de Energia e Automac&o) — Escola
de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo, Sdo Carlos — SP, 2012.

The process of monitoring the power supplied to loads placed in a distribution system
is directly linked to maintaining the power quality. However, some barriers are observed in
carrying out the monitoring such as the increased complexity in obtaining a representative
picture of the system, and the respective financial investment associated with such a
procedure. In this sense, this work presents a method for remote monitoring of the root
mean square (RMS) voltage on one or more important loads of the power system through
artificial neural networks. For the technique development, a database was built from a real
distribution system wich was properly modeled in the software ATP (Alternative Transients
Program). This database was used to train artificial neural networks that are able to estimate
the RMS voltage delivered to specific analyzed loads. It is noteworthy that artficial neural
networks estimate the RMS values of loads monitored by taking only measures of the three
phase voltages and currents at the power system substation. The results related to the
performance of neural networks indicate the effectiveness and the possibility of extending
the method to all loads in the system, thus constituting a complementary and alternative

power quality monitoring process.

Keywords: Power quality, distribution system, power quality, remote monitoring, short-term
voltage variations, long-term voltage variations and artificial neural networks.
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1. Introducéo

Pode-se definir a qualidade da energia elétrica (QEE) como sendo a disponibilidade
de energia na forma de onda puramente senoidal sem que haja alteragcbes em sua
amplitude e frequéncia (Dugan et al, 2003). No entanto, esta condicdo desejada,
frequentemente, ndo € observada na pratica. Em um sistema elétrico de poténcia (SEP) ha
diversos problemas e diferentes condicbes de operacbes que podem ocorrer e, por
consequéncia, depreciar a QEE fornecida. Dentre os problemas mencionados, podem-se
destacar os tipos de cargas acopladas ao sistema, a inser¢cao de elementos que fazem uso
de eletrbnica de poténcia, os quais, por exemplo, podem inserir distorcdo harménica na
rede. Cabe salientar que harmdnicos sdo componentes de uma onda periédica cuja
frequéncia € um valor mdltiplo inteiro da frequéncia fundamental (60Hz no caso do sistema
elétrico brasileiro). J& a distorcdo harménica se caracteriza pela inje¢do de corrente elétrica
nao linear em frequéncias diferentes da fundamental por meio de equipamentos, em geral
com eletrénica de poténcia envolvida, acoplados ao sistema. Também se pode citar como
problema que deprecia a QEE em um SEP a ocorréncia de faltas (curtos-circuitos) ao longo
do sistema de distribuicdo, dentre outros (Dugan et al, 2003).

Como consequéncia da falta de QEE no SEP, é possivel observar a ocorréncia do
mau funcionamento da carga alimentada e, dependendo de sua sensibilidade, pode ocorrer
severa deterioracao e inutilizacao da mesma. Além disso, em alguns casos, ocorrem perdas
de processos industriais, cuja recuperacdo ndo serd imediata, refletindo de imediato em
prejuizos econdbmicos consideraveis, ja que, elevadas quantidades de produtos sédo

perdidos e fases de processos interrompidas (Dugan et al, 2003).

A tendéncia de uma exigéncia por uma melhor QEE fornecida, seja por parte dos
consumidores ou das concessionarias de energia elétrica, é crescente na atualidade. Isto €,
na década dos anos 2010. Assim como os consumidores industriais, os consumidores
comerciais e residenciais tém se tornado mais cientes dos seus direitos, e demandam
serem supridos por energia elétrica com qualidade. Isso se observa pelo surgimento e
consolidacdo de normatizacdes que visam assegurar a QEE aos consumidores conforme
descrito no médulo 1 do PRODIST (Procedimento de Distribuicdo de Energia Elétrica no
Sistema Elétrico Nacional) (ANEEL, 2012a). Assim, fica evidente a preocupacdo com

assuntos relacionados a QEE e suas possiveis implicacdes legais e econdmicas.

Entre os fendmenos que comprometem a QEE, destaca-se, pela frequéncia
(nimero) de ocorréncia, o afundamento de tensdo. Dados apontam que 87% de todas as
ocorréncias de fenbmenos relacionados a QEE dizem respeito a este tipo de distarbio
(Goldstein e Speranza, 1982).



Entre as possiveis causas dos afundamentos de tenséo, esta a ocorréncia de faltas
(curtos-circuitos) ao longo do sistema elétrico de poténcia, dado que o afundamento de

tensdo no ponto da falta se propaga ao longo da linha (Bollen et a, 2006)

Neste contexto, tem-se que cargas sensiveis alocadas em diferentes pontos de um
SEP podem vir a operar inadequadamente sob certas variacdes de tensao (afundamentos).
Como fato, tem-se que distintas situacBes de faltas ocorridas sobre o sistema elétrico
podem vir a caracterizar diferentes niveis de tensdo abaixo do exigido, que, por sua vez,

devem ser avaliados e, na medida em que as condi¢des técnicas permitirem, mitigados.

Desta forma, garantir niveis aceitaveis de QEE é fundamental para que cargas
sensiveis alocadas em diferentes pontos do sistema elétrico possam operar de forma
adequada. Todavia, o processo de avaliagdo da QEE, no cenario atual, apresenta-se como

um procedimento néo trivial e de investimento financeiro relativamente consideravel.

Portanto, o desenvolvimento de metodologias que possam ser técnica e
financeiramente aplicadas ao monitoramento dos distdrbios recorrentes ao SEP é de
fundamental importédncia. Um dos principais problemas para a consolidacdo das
metodologias observadas até entdo € a falta de informacdo relevante sobre quais
localidades fornecem a melhor representacdo da situacdo de operagdo enfrentada pelo
sistema de energia elétrica sob o ponto de vista da QEE.. Ademais, o carater estocastico
inerente a ocorréncia dos distarbios de QEE em um SEP implica em se considerar a
topologia do sistema, assim como manipular outros parametros menos controlaveis para se

obter uma estratégia de monitoramento eficaz (Bollen e Gu, 2006).

Sabendo das dificuldades de se realizar o monitoramento de distlrbios de QEE, o
alto custo de implantagcdo de medidores de QEE e a crescente demanda por parte de todos
os tipos de consumidores de energia elétrica por um alto nivel de QEE, propde-se o
desenvolvimento de uma metodologia que seja capaz de fornecer dados que demonstrem
como o SEP reage, em cada um dos seus pontos, utilizando uma importante técnica de
inteligéncia artificial, as redes neurais artificiais (RNA). O intuito € monitorar os niveis de
tensdo eficaz em um, ou mais, pontos de interesse dentro de um SD qualquer, para
averiguar os niveis QEE, relacionados principalmente aos afundamentos de tensdo. A
metodologia visa, a partir das correntes e tensfes eficazes medidas na subestacdo do SD,
estimar os niveis de tensdo em um ponto qualquer de interesse dentro deste sistema.
Define-se ponto de interesse como sendo uma carga (consumidor) pertencente ao SD em
estudo, na qual é necessario realizar uma medicdo de forma continuada e avaliacdo dos

niveis de tensao.



1.1. Objetivos do trabalho

7

O principal objetivo do trabalho é aprimorar e generalizar uma metodologia que
baseada nos valores eficazes das tensfes e correntes trifasicas, medidos na subestacdo de
um SD de energia, seja capaz de quantificar o valor eficaz da tensdo em um ponto genérico,
definido e de interesse do usuario (que neste é representado pela figura da concessionaria
de distribuicdo de energia), dentro do SD em questdo. Desta maneira, pelo valor da tenséo
eficaz apontado para um ponto qualquer sobre o SD, poderd ser realizada uma analise

remota e continuada de possiveis problemas relacionados a QEE.

Cabe colocar que a metodologia a ser aprimorada e generalizada fard uso de RNA.
Estudos iniciais com relagéo a topologia, arquitetura e algoritmos de treinamentos das RNA
ja foram determinados e apresentados anteriormente em Bottura (2010) e serdo tomados
como base para a otimizag&o e generalizagdo do procedimento de monitoramento descrito

sobre o SD.

Com base nos dados representativos do SD ja utilizados em Bottura (2010), um
novo banco de dados sera formulado buscando atender a uma generalizagéo a ser aplicada
de forma independente a mais de um ponto de monitoramento sobre o SD em analise.
Este novo banco de dados sera compilado por meio de simulagbes de faltas no SD
modelado via o software ATP (Alternative Transients Program) por meio de uma interface
gréfica (ATPDraw) (Leuven EMTP Center, 1987). Pela reestruturagdo da forma como os
dados serdo apresentados as RNA, serd possivel alcangcar o desejado aprimoramento e
generalizacdo de todo o processo de aplicacdo da metodologia. Cabe ressaltar que a
generalizacdo ocorrera a partir da comprovagdo da eficacia da metodologia por meio de
aplicacdo do monitoramento da tensdo para diversos pontos de analise ao longo do SD em

estudo, via RNA, a partir de medidas realizadas na subestacdo do mesmo.
1.2. Apresentacdo do documento

O presente documento apresenta, além deste capitulo introdutério, mais sete
capitulos. O capitulo dois apresenta uma revisdo bibliogréfica acerca dos principais
conceitos relacionados a QEE e as recentes pesquisas desenvolvidas nesta area. Na
sequéncia, o capitulo trés traz os principais aspectos tedricos sobre RNA. O capitulo quatro
apresenta a metodologia de monitoramento da tenséo eficaz dentro do SD em estudo. O
capitulo cinco introduz o SD previamente modelado computacionalmente que seré objeto de
estudo. O capitulo seis apresenta a compilagdo dos conjuntos de treinamento e validacao
das RNA que sdo utilizadas ao longo deste trabalho. Além disso, sdo demonstrados o0s

casos de curto-circuito utilizados, os pontos de monitoramento remoto e também todo o



trabalho de compilacdo e expansdo do banco de dados das RNA para pontos genéricos

sobre o sistema elétrico.

Para o capitulo sete, reservva-se uma analise do desempenho da metologologia
proposta. Neste capitulo, o desempenho da metodologia € demonstrado por meio da
apresentacdo de tabelas com os indices de acertos das RNA para trés faixas de erros
determinadas, bem como pelos respectivos histogramas de erros, e pela avaliacdo da
acuracidade das mesmas por meio da escolha de um ponto de aplicacdo de um caso de
falta elétrica especifico. Neste cenério, sdo averiguados graficamente os resultados
produzidos por cada uma das RNA em comparacdo com o resultado esperado. Ademais,
sdo exibidos resultados relacionados ao maior erro atingido pelas RNA e também os

tempos de treinamento das mesmas.

Finalmente, o capitulo oito traz as principais conclusdes obtidas com a realizagéo
deste trabalho e também tépicos de interesse para o aprimoramento e continuidade da

metodologia proposta nesta pesquisa.



2. Reviséao Bibliografica

O presente capitulo traz os principais fundamentos teéricos relacionados a QEE,
salientando-se os principais distirbios que influenciam a mesma no ambito da tensao
fornecida. Além disso, também sdo exploradas outras pesquisas desenvolvidas na
atualidade que fazem uso de ferramentas inteligentes, como as RNA, por exemplo, e que se

apresentam de grande relevancia para o desenvolvimento deste campo de pesquisa.

2.1. Qualidade da energia elétrica

Na atualidade, a QEE caracteriza um fator determinante na competitividade em
praticamente todos os setores industriais e de servigos. No entanto, ao longo das ultimas
décadas o setor de energia elétrica vem atravessando problemas oriundos, principalmente,
da alteracdo da natureza de suas cargas consumidoras, desregulamentacdo do setor
elétrico em curso a nivel mundial, proliferacdo de autoprodutores, surgimento de novas
tecnologias de geracdo e a crescente pressao por adocdo de tais tecnologias em funcao
dos fatores ambientais. Esses fatores tém causado alteracBes significantes ho modo de
operacdo do sistema elétrico, o que pode implicar em alteracdes consideraveis no
fornecimento da QEE.

Nos SD, a energia elétrica é transportada por extensas malhas de linhas aéreas e /
ou subterraneas de distribuicdo até ser entregue ao consumidor final. Ao longo deste
processo, a energia elétrica percorre grandes distancias e, por razées operacionais, sua
tenséo pode ser reduzida e / ou elevada por transformadores alocados sobre o SEP. Neste
processo, manter o nivel de tensdo dentro de limites operacionais aceitaveis € uma tarefa
ardua que requer medidas de controle e acompanhamento de 6rgéos de fiscalizagéo, bem

como das concessionarias fornecedoras de energia elétrica (Kagan et al, 2005).

A fim de avaliar se um SEP estd operando dentro das condi¢cdes nominais, duas
grandezas elétricas basicas sdo frequentemente monitoradas: a frequéncia e a tensao. No
Brasil, é aceitavel que a frequéncia situe-se em 60,0Hz + 0,5Hz conforme se estabelece no
moédulo 8 do PRODIST (ANEEL, 2012b). Ja quanto a tensdo elétrica, trés aspectos
relevantes devem ser observados, sendo eles, a forma de onda, que deve ser a mais
proxima de uma sendide pura, a simetria do sistema elétrico, isto €, iguais niveis de
corrente e tensdo em todas as fases em qualquer ponto de sua configuragcdo, e as
magnitudes das tensdes, que devem permanecer dentro dos niveis aceitaveis, como sera

descrito detalhadamente mais adiante.



Todavia, nos SEP ha diversos fendmenos aleatérios e / ou intrinsecos ao seu
funcionamento, que provocam nas grandezas elétricas mencionadas certo desvio das

condi¢cbes nominais, caracterizando, portanto, um distirbio na QEE.

Um dos principais distarbios da QEE é a variacdo de tensédo, caracterizado pela
permanéncia do nivel de tensdo fora da faixa nominal por um determinado intervalo de
tempo. Podem-se subdividir as variacdes de tensdo em dois principais grupos, sendo eles:
variacfes de tensdo de longa duracdo (VTLD) e variacdes de tensdo de curta duracdo
(VTCD).

A classificacdo VTLD é designada a fendbmenos de variagéo de tensdo com duragéo
superior a um minuto, cuja tensdo monitorada se eleva entre 1.1 p.u e 1.2 p.u. Isto é, uma
elevagdo da tenséo entre 10% e 20% do valor nominal por mais de um minuto, tem-se o
gue se denomina sobretensao. J4 quando o valor da tensdo remanescente situa-se em um
patamar abaixo de 0,9 p.u. por um intervalo de tempo superior a um minuto, caracteriza-se
o fendmeno de subtens&o (Dugan et al, 2003). A Tabela 1, traz os intervalos das definicdes
das VTLD. As principais causas de VTLD sao varia¢cdes de carga no SEP, chaveamentos
no mesmo e também faltas sustentadas no sistema que podem causar sobretensao,

subtenséo e /ou interrupgdo (Dugan et al, 2003).

Tabela 1 - Classificagdo das variagfes de tenséo de curta e de longa duragéo.

Fendmeno \ Duracéo Tipica \ Amplitude de Tensao Tipica
Variacdo de Tensédo de Curta Duracéo
Instantanea
Interrupcéo 0,5 — 30 ciclos <0,1p.u.
Afundamento 0,5 — 30 ciclos 0,21-0,9p.u
Elevacao 0,5 — 30 ciclos >1,1p.u.
Momentanea
Interrupcéo 30 ciclos — 3s <0,1p.u.
Afundamento 30 ciclos — 3s 0,1-0,9p.u
Elevacao 30 ciclos — 3s >1,1p.u.
Temporaria
Interrupgéo 3s—1min <0,1p.u.
Afundamento 3s—1 min 0,2-0,9 p.u
Elevacao 3s—1min >1,1 p.u.
Variacdo de Tensédo de Longa Duracéo
Interrupcéo >1 min 0 p.u.
Subtenséo > 1 min 0,8-0,9p.u.
Sobretensao > 1 min >1,1p.u.




A sobretensdo, geralmente € causada a partir do processo de desligamento de
grandes cargas do sistema ou da energizacdo de bancos de capacitores ao longo do
mesmo. Como dito, essa pode comprometer a vida Util de equipamentos. Ja a subtenséo,
em geral, é originada a partir de, por exemplo, excesso de carregamento de circuitos
alimentadores ou pela entrada de grandes cargas no sistema. Como efeito, estes disturbios
podem acarretar na retirada de operacdo de equipamentos eletrénicos sensiveis, elevacao
no tempo de partida de maquinas de indugéo, dentre outras consequéncias negativas as
cargas sensiveis do sistema. Caso haja uma situagdo mais grave de VTLD, tem-se uma
interrupcao sustentada, na qual a tensao elétrica permanece nula por tempo superior a um

minuto (Dugan et al, 2003).

Por outro lado, os fendmenos de VTCD estédo relacionados a tempo de duracéo
inferiores a um minuto. Sao subdivididos em trés principais categorias: variagbes
instantaneas (de 0,5 a 30 ciclos), momentaneas (de 30 ciclos a 3 segundos) e temporarias
(de 3 segundos a 1 minuto) (Dugan et al, 2003). Com respeito a magnitude da tensao,
pode-se classificar uma VTCD em interrupcdo, afundamento e elevacdo de tenséo
conforme se observa na Tabela 1.

Em geral, uma VTCD é causada por condicdes de falta ao longo do SEP,
energizacdo de grandes cargas que necessitam de elevadas correntes na partida, ou perda
intermitentes de conexdes nos cabos de um SEP. Ao se tratar de uma falta elétrica,
dependendo do ponto de ocorréncia e das condicbes do sistema, pode-se gerar um
decréscimo de tensao (afundamento) ou aumento da tensao (elevacao). Ou ainda, completa
perda de tenséo (interrupcdo). A condicdo faltosa pode se localizar perto ou distante do
ponto de monitoramento de interesse. Desta forma, diferentes VTCD podem ocorrer até que
o sistema de protecdo atue. Com isso, as VTCD podem resultar em reducédo da vida util de
determinados equipamentos e também causar a completa inutilizacdo ou parada dos

mesmaos.

A interrupcao de tensdo € uma VTCD que ocorre quando a tensdo ou corrente de
carga permanece em um valor inferior a 0,1 p.u. por um periodo de tempo inferior a um
minuto. Essa é consequéncia principalmente da auséncia de fornecimento de energia,

falhas nos equipamentos e também mau funcionamento de sistemas de controle.

O aumento da tenséo eficaz do sistema em cerca de 0,1 p.u. a 0,8 p.u., com duracao
de até 1 minuto, € chamado de elevagdo de tensdo. Este fendbmeno ocorre principalmente
nas fases sds de um circuito trifasico, quando ha um curto-circuito em outra fase do
sistema. Usualmente, elevacdes de tenséo estdo relacionadas a faltas elétricas, porém, nao

sdo tdo comuns quanto os afundamentos de tensdo. Sua duracdo esta ligada diretamente



aos ajustes dos dispositivos de protecdo, a natureza da falta (permanente ou temporaria) e
a sua localizacdo no sistema. Ocorre principalmente em situacfes de saidas de grandes
cargas, energizacdo de grandes bancos de capacitores ou alteracbes nos taps de

transformadores.

Em meio aos diferentes tipos de distirbios de QEE, o afundamento de tensédo é
aquele que desperta maior interesse, principalmente pelo alto nivel de incidéncia e os
principais prejuizos que esse pode causar. Um afundamento de tensdo € uma VTCD
caracterizada por um decréscimo no valor da tensdo remanescente para niveis entre 0,1
p.u. e 0,9 p.u., com duracéo inferior a 1 minuto, conforme ilustra a Tabela 1. Em geral, estédo
associados a faltas no sistema. Todavia, também podem estar relacionados a energizagcéo
de grandes cargas, partidas de grandes motores ou pela corrente de magnetizacdo de

transformadores (Huang et al,1998; Dugan et al, 2003).

Cabe acrescentar que o0 médulo 8 do PRODIST (ANEEL, 2012b), responsavel por
estabelecer normas para a QEE do sistema elétrico brasileiro, define intervalos diferentes
dos apresentados na Tabela 1 para as variacbes de tensdo. Neste documento, o
afundamento momentaneo de tensdo compreende um intervalo de tempo superior ou igual
a um ciclo, e inferior ou igual a trés segundos. Ja o tempordrio compreende em uma faixa
de tempo superior a trés segundos e inferior a trés minutos. A definicdo destes intervalos
apresenta-se como uma classificacdo menos rigida, quando comparada a literatura técnica
correlata, no que diz respeito a garantir a qualidade da tensdo elétrica entregue aos
consumidores, ja que afundamentos de tensdo, mesmo quando inferiores a um ciclo,

também podem ser danosos as cargas sensiveis alocadas no SD.

No sentido de prevenir que equipamentos sensiveis as variacdes de tensdo tenham
seus desempenhos comprometidos, curvas de sensibilidade foram desenvolvidas a fim de

especificar zonas de tolerancia de operac¢des de equipamentos .

Um exemplo deste tipo de estudo de sensibilidade foi o que resultou na curva
CBEMA (Computer Business Manufacturers Association) (Dugan et al, 2003). Esta curva,
representada na Figura 1, desenvolvida por fabricantes de computadores eletrénicos, foi a
primeira do tipo a atender aos propésitos mencionados, caracterizando-se como referéncia
principal aos estudos de tolerdncia de equipamentos eletrbnicos. A Figura 1 traz um
exemplo da curva CBEMA. Nesta, sdo destacadas trés principais regides de operacao
representadas pelas letras A, B e C. A regido A caracteriza a regido normal de operacao,
isto é, zona aceitavel para determinada atividade de operacao. A regiao B indica uma zona

de perigo de trabalho, na qual pode haver ruptura de isolacdo de equipamentos. Por fim, a



regido demarcada por C mostra uma zona também perigosa de trabalho, na qual ha a

possibilidade de paralisacdo do funcionamento de equipamentos.

Porcentagem de mudanca na tensdo (%)

0.0001 0,001 0.01 0.1 1 10 100 1000

Tempo (5)

Figura 1 - Curva CBEMA adaptada de Kyei et al (2002).

A popularizagdo da curva CBEMA motivou a criacdo de um novo padrdo para a
avaliacdo dos efeitos das variacbes de tensdo sobre os equipamentos eletrénicos, a
chamada curva ITIC (Information Technology Industry Council). Essa curva, ilustrada na
Figura 2, apresenta uma divisdo mais criteriosa com respeito aos niveis da magnitude e
duracgéo das VTCD, conforme exposto por Dugan et al (2003).

A curva ITIC apresenta demarcagfes de regibes semelhantes as encontradas na
curva CBEMA, conforme indicado anteriormente. Ou seja, na curva ITIC, a regido denotada
por A indica a zona de operagcdo normal dos equipamentos, e as zonas B e C sédo
chamadas zonas de perigo, cujas condi¢Bes operacionais ocasionam mau funcionamento
de cargas sensiveis.
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Figura 2 - Curva ITIC adaptada de Kyei et al (2002).

2.2. Redes neurais artificiais e ferramentas matemaéticas aplicadas na andlise
de QEE

A pesquisa de Devaraj et al. (2006) prop6e um método de deteccdo e classificacdo
de problemas relacionados a QEE utilizando, conjuntamente a andlise do sinal por
Transformada Wavelet (TW) e RNA. Isto €, esta abordagem se da pela aplicacdo da TW
sobre sinais de corrente e tensdo, sendo possivel detectar e extrair caracteristicas
relacionadas a varios tipos de distarbios elétricos, ja que esta ferramenta é sensivel a
irregularidades no sinal (com a presenca de disturbios de QEE), e insensivel a
comportamento regular do sinal (sem a presenca de distlurbios de QEE). Em seguida, com
os dados obtidos apds a analise dos sinais de corrente e tensao elétrica pela aplicacéo da
TW, os autores propdem que 0s mesmos sejam utilizados para treinar uma RNA especifica,
gue possui como funcdo realizar a classificacdo dos distirbios de QEE entre: (i)
afundamento de tensao, (ii) elevacao de tensao, (iii) distorcdo harmonica e (iv) transitérios
devidos a chaveamentos. Para tanto, afirmam os autores, que cada distarbio de QEE,
representado nos sinais de corrente e tenséo, apresenta desvios Unicos da forma de onda
senoidal pura, que sdo detectados pela RNA. Dessa maneira, é possivel prover a
classificacdo de forma confiavel dos distirbios de QEE mencionados. A metodologia foi
testada por meio da simulagdo de um SEP de quatro barras no qual foram estudados varios

tipos de curtos-circuitos que permitam caracterizar os disturbios de QEE. Além disso, foram
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simuladas situaces de injecdo de harménicos na rede, que representam anomalias de
QEE vinculadas as cargas nao lineares alocados no sistema. Cabe ressaltar que o indice de
acerto das classificacdes realizadas pela RNA foi elevado, o que e atendeu aos propdésitos e
objetivos iniciais do trabalho em questéo, evidenciando a aptiddo da técnica inteligente ao

monitoramento da QEE no sistema elétrico considerado.

O uso de RNA aplicada a QEE também é explorado no trabalho de Srinivasan et al.
(2006). Neste, os autores propde um método de identificacdo de fontes geradoras de
harménicos, em que diferentes RNA séo treinadas a fim de extrair a assinatura Unica dos
dispositivos (cargas) que injetam harménicos no sistema, observando-se unicamente a
forma de onda da corrente elétrica dos mesmos. Uma base de dados foi construida por
meio de experimentos conduzidos em laboratério, nos quais se dispunha de uma instalagao
elétrica contendo vérias cargas lineares e ndo lineares alocadas paralelamente. InUmeras
combinacfes destas cargas proporcionaram a observacdo dos respectivos sinais de
correntes, tomados no ponto de acoplamento comum. Sobre estes sinais de corrente, a
transformada de Fourier foi aplicada a fim de preparar o banco de dados de teste e
validacdo das RNA. A metodologia de classificacdo dos distarbios de QEE desenvolvida foi
testada e aponta para uma excelente identificacdo da assinatura de corrente dos
dispositivos alocados na instalacdo elétrica. Cabe destacar que o os melhores resultados

foram obtidos pela aplicacao de redes do tipo Perceptron de Multiplas Camadas (PMC).

Na mesma linha de pesquisa, Talaat et al. (2008) também afirma que o processo de
andlise e avaliacdo da QEE é complexo de ser realizado, ja que a modelagem de sistemas
de energia é de elevada complexidade. Além disso, € necessario processar uma
significativa quantidade de informacg@es disponivel. Diante deste cenario, os autores propde
uma metodologia que utiliza técnicas inteligentes capazes de classificar eventos
relacionados a falta de QEE em um SEP. As técnicas mencionadas envolvem a aplicacao
da TW, algoritmo de agrupamento subtrativo (cluster subtractive algorithm) e RNA. A
metodologia de classificacdo dos eventos de QEE é validada pela geracdo de sinais de
tensdo que simulam diferentes anomalias relacionadas a QEE, utilizados como entradas
para um médulo de decomposi¢éo de sinal, em que se aplica a TW. A seguir, um modulo de
extracdo de caracteristicas é utilizado para caracterizar alguns coeficientes representativos
dentro de todos os gerados da analise de multi-resolucdo do sinal efetuada no primeiro
moédulo. Este estdgio de extracdo utiliza o algoritmo de agrupamento subtrativo para a
decomposi¢do de multiplos sinais. O propésito desse agrupamento € identificar grupos
naturais de informagfes dentro da base de dados gerada, com o intuito de produzir uma
representacdo concisa dos tipos de disturbios de QEE envolvidos no problema. Por fim, a

saida do estagio de extracdo é utilizada para treinar as RNA. Cabe salientar que ¢é utilizada
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uma RNA especifica para cada tipo de entrada (distarbio), isto é, caracteristicas de
agrupamento identificadas pelo bloco de extracdo de caracteristica. Dados conclusivos do
estudo indicam que as RNAs treinadas atingiram niveis de acerto satisfatérios, cerca de
98%, apresentando-se, portanto, como uma adequada estratégia para a classificacdo de

eventos relacionados a QEE.

A classificacdo de eventos envolvendo QEE também é investigada na pesquisa de
Devaraj et al. (2008), em que o0s autores apresentam uma técnica que combina
transformadas de Fourier e Wavelet com o uso de RNA, com o intuito de se desenvolver um
sistema automatico de reconhecimento de distarbios de QEE. Analogamente as pesquisas
j& mencionadas, um banco de dados é gerado através de simulagbes computacionais do
SEP. Sobre este banco de dados, aplicam-se as transformadas de Fourier e Wavelet nos
sinais de corrente e tensdo a fim de se extrair caracteristicas Uteis a classificacao de
disturbios de QEE. Ao final de todo o processo essas caracteristicas sao utilizadas para
treinar uma RNA que possui como funcdo a classificacdo dos distarbios de QEE
propriamente ditos. Sobre os seis disturbios considerados, o indice de acerto das RNA

utilizadas na técnica de classificagcao proposta foi de 99,6.

O uso de rede neurais também é explorado no sentido de estimar a localizagéo de
faltas elétricas em uma linha de transmissao, como é proposto por Abdollahi et al. (2010).
Neste trabalho os autores realizam um estudo comparativo de desempenho entre as
transformadas discretas de Fourier e Wavelet a fim de estimar a localizagdo do ponto onde

ocorreu determinada falta elétrica em uma linha de transmisséo.

A pesquisa de Bottura (2010) apresenta uma metodologia de monitoramento dos
valores eficazes da tensdo em um sistema de distribuicdo por meio do uso de RNA. O
estudo engloba aspectos da modelagem computacional do SEP em estudo, a determinacgéo
da melhor topologia das RNA, algoritmo de treinamento, bem como o melhor
posicionamento de faltas elétricas monofasicas ao longo do SEP, a fim de caracterizar um
banco de dados que compreende diversas situacbes de operacdo sobre o mesmo. A
técnica utilizada visa montar um banco de dados com as correntes e as tensdes trifasicas
registradas na subestacdo do SEP e também os valores eficazes das tensdes em um
determinado ponto de interesse. Este banco de dados é utilizado com a finalidade de treinar
trés redes neurais que estimam a tensao trifasica em um ponto de interesse. Para o SEP
em estudo foi definida que a topologia 6-15-10-1 (seis neurbnios na camada de entrada, 15
e 10 nas duas camadas intermediarias, e 1 neurdnio na camada de saida) com algoritmo de

treinamento de Levenberg-Marquardt apresentou melhor desempenho, com indice de
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acerto médio de 95,57% quando ha uma tolerancia de 0,03 p.u. entre o valor esperado e 0

valor estimado da tenséo eficaz nos pontos de interesse.

Pela revisao bibliogréafica realizada neste trabalho, é possivel afirmar que a utilizagéo
de ferramentas inteligentes, em especial as RNA, em assuntos relacionados a QEE, tais
como classificacdo e monitoramento de distirbios da mesma, séo indicios que sustentam a
oportunidade de se pesquisar nesta area a fim de garantir solucbes complementares as
existentes na atualidade. Assim, da-se a motivacdo e a inspiracdo de continuar o estudo
nesta grande area, ja que a tendéncia de uso de ferramentas inteligentes tem mostrado
resultados extremamente significativos. No sentido do monitoramento remoto da QEE em
um ponto qualquer de interesse dentro de um SD, destaca-se o fato de que uma das
principais consequéncias é a reducdo do valor econdmico necessario quando
implementados 0s novos métodos, uma vez que, de forma geral, podem ser utilizados

complementarmente aos dispendiosos equipamentos de medicédo de QEE atuais.
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3. Redes neurais artificiais

No presente capitulo, no item 3.1, é apresentada uma introducao sobre os principais
conceitos de RNA. Nos itens 3.2 e 3.3 é abordada a evolucdo histérica das principais
arquiteturas e o tipo de treinamento vinculado a estas arquiteturas, além da forma como

estes conceitos sdo aplicados no presente trabalho.

3.1. Introducéo as redes neurais artificiais

As RNA constituem uma ferramenta inspirada na maneira como o cérebro humano
realiza uma tarefa em particular, ou uma funcdo de interesse. A RNA, na pratica, é
geralmente implementada por meio de componentes eletrdnicos ou simulagbes
computacionais em um computador digital. Seu funcionando é baseado em um importante
aspecto do processo de aprendizagem do cérebro humano, isto €, uma RNA é capaz de
aprender, ou extrair conhecimento, por meio de exemplos, e, posteriormente, generalizar o
conhecimento adquirido de tal forma a ser aproveitado em diversas aplicacdes (Haykin,
2008).

A capacidade de generalizacdo das RNA esta ligada ao fato de que estas sao
capazes de produzir respostas as saidas que nao faziam parte do processo de
aprendizagem da mesma. Estas qualidades, além da toleréncia a falhas, aproximacédo de
funcbes e previsdes de resultados, conferem as RNA excelentes caracteristicas que podem

ser utilizadas em complexos problemas cuja solug&o analitica n&o é trivial.

O problema da estimacdo do valor eficaz da tensdo elétrica em um determinado
ponto de monitoramento de interesse dentro de um sistema elétrico, como se apresenta
nesta pesquisa, por exemplo, é de dificil execugéo e, além disso, encontrar uma solugao
analitica, apresenta-se como procedimento pouco viavel. Dessa forma, o uso de RNA como
estratégia para a obtengcdo do monitoramento desejado, caracteriza-se como uma

importante e eficaz alternativa para a solugéo do problema mencionado.

A fim de atingir altos niveis de desempenho, uma RNA emprega uma rede
interconectada de unidades de processamento de dados chamadas de neurdnios (Haykin,

2008), como pode ser visto na representacdo da Figura 3.

Com o intuito de se obter um modelo neural, trés aspectos devem ser considerados,
conforme ilustrado na Figura 3. O primeiro deles é a existéncia de um conjunto de sinapses,
ou conexdes, entre os neurdnios. Cada entrada x; do neurdnio k esta associada a um peso

sinaptico, cujo respectivo sinal de entrada sera multiplicado pelo peso sinaptico w
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associado. O segundo aspecto a ser considerado é o somador. Este tem por funcdo somar
os sinais que foram devidamente ponderados pelos pesos sinapticos, constituindo-se,
portanto, um combinador linear cuja saida é dada pelo campo local induzido denotado por
vi. O termo wy ilustrado na Figura 3 chamado bias, consiste em um valor fixo pré-
determinado, cujo objetivo é inserir um limiar de ativacdo ao neurbnio, conforme registrado

na Equagéo (1), que traz a expresséo para o campo local induzido.

Vi = ZXjij —Wio (1)

j=1

Finalmente, o terceiro aspecto a ser destacado neste modelo € a funcéo de ativacao,

cuja finalidade é limitar a amplitude da saida de um neur6nio (Haykin, 2008). Por fim, uma

funcéo de ativacao o) limita o valor da saida do neurdnio k em um valor finito em termos

do potencial de ativagdo Equacéo (2).

ye=ov,) )

Xo=+1 — >  Wko

X1 —> Wkl —l
Saida

vk
X2 ——> Wk ———————> z > (p() — Yk

Sinais de
Entrada .
Funciio de
° Somador
Ativacdo
*

Pesos Sindpticos

Figura 3 - Modelo matemético de um neurdnio.

Os tipos mais comuns de fun¢Bes de ativacdo sdo: a funcdo de limiar, funcéo linear

por partes, funcao sigmoide, funcéo sinal e, tangente hiperbdlica.
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Destaca-se o uso das funcgbes de ativacdo linear por partes e da tangente
hiperbdlica, por serem os tipos de fungbes utilizadas nesta pesquisa, além de serem as

mais recorrentes. A primeira delas se assemelha a uma funcédo do tipo rampa com uma

inclinacdo a no intervalo em que |vk| <V ,emqueV € R. Fora deste intervalo, assume valor

unitario de v, > V e valor nulo se v, < —V. Assim, define-se a funcéo de ativagéo linear por

partes como sendo:

1,sev=>V
pw) ={av,se-V<v <V (3)
0,sev< -V

Para um valor suficientemente grande de a tem-se uma fung&o do tipo limiar citada
anteriormente. A Figura 4 ilustra graficamente o comportamento da fungdo de ativagéo
linear por partes.

@(v)

Figura 4 - Comportamento da funcéo de ativacéo do tipo linear por partes.

A funcdo de ativagdo hiperbdlica é dada pela Equacédo (4). Esta fung¢édo tem papel
importante no treinamento de uma rede perceptron de multiplas camadas com algoritmo de
retropropagacao, ja que é capaz de acelerar a convergéncia do mesmo quanto ao niumero
de iteracBes (Haykin, 2008).

¢(v) = tanh(v) (4)
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Na Figura 5 ha uma representacdo grafica do comportamento da funcao de ativacédo

hiperbdlica.

o(v)

Figura 5 - Comportamento da funcéo de ativacao hiperbdélica.

Cabe salientar que a aprendizagem de determinado padrdo de comportamento de
um sistema em andlise € consequéncia da devida alteragdo dos valores dos pesos
sinapticos ao longo de um processo iterativo, que segue uma determinada regra de
aprendizado, caracterizando o algoritmo de aprendizagem, conforme explicado em detalhes

nos itens que seguem.

3.2 Principais arquiteturas de redes neurais artificiais supervisionadas

A arquitetura de uma RNA diz respeito a forma como os neurbnios estao distribuidos
topologicamente, ou seja, a maneira como eles estdo interconectados. As RNA podem ser
divididas em duas principais categorias relacionadas as arquiteturas, sendo elas:

arquiteturas de apenas uma camada, ou arquiteturas com multiplas camadas.

Ademais, a arquitetura esta diretamente relacionada com o tipo de treinamento, uma
vez que o algoritmo de treinamento utilizado depende do modo conforme estéo distribuidas

as conexodes entre 0os neurdnios da rede.
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A arquitetura de RNA de camada Unica apresenta uma camada de entrada e uma

camada de saida apenas. Assim, a camada que contém os chamados nés computacionais

ja é a camada de saida da rede. Na Figura 6, tem-se ilustrada uma rede de camada Unica.

Entradas—

e

Camada de
Entrada

E——

~— Saidas

R

Camada
Unica

Figura 6 - Rede neural de camada Unica.

Os principais exemplos de redes de camada Unica sdo as redes Perceptron e

ADALINE. Dentre as principais funcdes dessas redes, destaca-se a habilidade de fazer a

separacao de padrbes que podem ser linearmente separaveis.

A rede Perceptron é concebida utilizando o modelo de neurdnio nao linear de

McCulloch-Pitts, com funcdo de ativacdo do tipo limiar ou sinal. Ou seja, limita-se

abruptamente a saida do neurdnio. Dessa forma, caracteriza-se uma regra para se

discriminar estimulos de entradas em duas diferentes classes, tomando-se dois diferentes

tipos de saidas produzidos pela Perceptron (Haykin, 2008). A Equacao (5) representa a

saida da rede neural:

y=o@) =9 i

W]XJ )
=1

J
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De acordo com Silva et al (2010), a Equacao (5) representa um hiperplano que
divide o espaco euclidiano m-dimensional (fronteira de decisdo), definido pelos (m)
estimulos de entrada em duas regides (A e B). Para o caso bidimensional, ou seja, m = 2,

obtém-se o hiperplano que se resume a uma reta como fronteira de separacao.

A rede monocamada Perceptron é treinada segundo o principio de aprendizado de
Hebb, no qual a atualizacéo dos seus pesos sinapticos € realizada por um incremento (Aw)
dado pela Equacéao (6):

Aw; =n(d(n) —y)xj(n),paraj =12,..,m (6)
Na Equacédo (6), observa-se que a alteragdo dos pesos sinapticos depende do
produto da entrada x(n), do sinal de erro vindo da diferenca entre a saida desejada e a

saida produzida pela rede (d(n)-y), e também da taxa de aprendizagem dada por (n).

De forma complementar ao Perceptron, desenvolveu-se a rede monocamada
ADALINE, o que trouxe importante contribuicdo ao desenvolvimento dos estudos de RNA. A
principal inovacao se da na introducdo do principio de aprendizado da regra Delta (Silva,
2010). O processo de aprendizado da regra delta consiste em um algoritmo supervisionado
com a finalidade de minimizar o erro quadratico médio entre a saida do combinador linear

v(n) e a saida desejada d(n). A regra Delta é expressa na Equacéo (7):

Aw =n(d(n) —v(n))x(n), paran=1.2,..,N (7)

Cabe salientar que a principal diferenca entre a rede Perceptron e ADALINE esta no
fato de que a ultima faz a minimizacdo das distancias dos padrdes classificados em relacéo
a uma Unica fronteira de decisdo. Ja o Perceptron, a cada execucdo do algoritmo de
aprendizagem, esta sujeito a encontrar uma fronteira de decisao diferente que dependera

da inicializacdo dos pesos sinapticos (Haykin, 2008).

3.2.2 Redes de multiplas camadas

Nas arquiteturas que envolvem multiplas camadas, 0os neurdnios estao arranjados
em uma ou mais camadas intermediarias, situadas entre a camada de entrada e a camada
de saida, conforme ilustra a Figura 7, em que se tem uma rede neural com duas camadas
escondidas. Estas camadas s&o chamadas de camadas escondidas, ou camadas ocultas.
Como principal exemplo de arquitetura com mdultiplas camadas, pode-se citar a rede

Perceptron Multicamadas (PMC).
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Figura 7 — Rede neural de multiplas camadas.

\

O surgimento das redes PMC esta intimamente ligado a necessidade de se
classificar padrées que nado séo linearmente separaveis. Neste contexto, tem-se o exemplo
classico relacionado ao problema da resolucdo da fungéo booleana OU exclusivo (XOR)
(Haykin, 2008). Neste caso, a rede Perceptron, ou entdo a rede ADALINE, de apenas uma
camada deve ser capaz de tracar duas retas como fronteiras de decisdo com o objetivo de
resolver a funcdo XOR, isto é, separando os padrées de saida desta funcao conforme é
exibido na Figura 8.

E evidente que ambas as redes mencionadas, a rede Perceptron e a rede ADALINE,
nao sao indicadas para a resolucdo deste problema, pois, apresentam limitacbes de
funcionalidade, j& que o problema em questdo nado é linearmente separavel. Ou seja, ndo
sdo capazes de fornecer uma Unica fronteira de separagdo que separe corretamente 0s
diferentes padrdes apresentados. Desta forma, faz-se necessario o uso de redes neurais de

multiplas camadas para a separacao dos padrdes ndo separaveis linearmente.

No presente trabalho, que visa a estimacédo do valor eficaz da tensao trifasica em um
determinado ponto genérico de interesse, dentro de um SD, utiliza-se a arquitetura neural
PMC, visto que, tem-se um problema de elevada complexidade, em que os padrdes ndo

sdo linearmente separaveis. Além disso, ndo se possui de antemao conhecimento acerca
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da geometria da fronteira de separabilidade do mesmo, de maneira que a rede PMC
utilizada possui duas camadas ocultas (Haykin, 2008). A rede PMC é organizada em
camadas de neurdnios interconectadas. Classificam-se as camadas em: (i) camada de
entrada, em gque padrBes sao apresentados a rede; (ii) camadas intermediarias ou ocultas,
onde ocorrem 0s processamentos dos dados (nestas camadas é feita a extracdo das
principais caracteristicas presentes nos sinais de entrada) e (iii) camada de saida, na qual
séo disponibilizadas as respostas produzidas pela rede neural.

x1
/N

Fungdo OU exclusivo (1 :U)

E:trad;; JlJIS;al‘r:i;a(‘? () Q (1,1)

] 1] ]
] 1 1
1 1] 1
1 1 0
Y T N 2
" O/ 7
(0,0) (0,1)

Figura 8 - Representacdo da funcéo booleana OU exclusivo (XOR).

3.3. Treinamento de Levenberg-Marquardt

O algoritmo de treinamento utilizado ao longo deste trabalho € o Levenberg-
Marquardt, que possui como base a técnica dos minimos quadrados. A demonstracao de
Fernandes (2009) de ajuste dos pesos sinapticos do algoritmo de treinamento de
Levenberg-Marquardt mostra que este € derivado do método de Newton, e objetiva
minimizar o erro quadratico médio relativo a todas as N entradas de treinamento da rede

neural pertencentes ao conjunto de treinamento.

Sejam os indices (i) e (j) correspondentes a neurbnios que pertencem a camadas
subsequentes, isto é, o neurdnio (j) se encontra em uma camada a direita da camada da
gual pertence o neurénio (i). Assim, o sinal de erro, na apresentacdo do n-ésimo padrédo de

treinamento, quando o neurdnio (j) € um no de saida, € dado por:
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ej(n) = d;(n) —y;(n) (8)
Ao se tomar todo o conjunto de neurdnios da camada de saida, que sdo aqueles
sobre os quais se pode calcular o erro quadratico médio, pois sdo s Unicos visiveis da RNA,

tem-se:

1
Em) =5 (¢(m)’ ©

j
O objetivo do algoritmo é minimizar o erro quadratico médio E relativo a todos os

padrBes de treinamento, normalizando-os em relacdo ao tamanho deste conjunto, obtém-

Se:

N
o (10)
F= N; E(n)

Na forma vetorial, a equagéo do erro quadratico médio, Equacao (10), é dada por:

N N
E=u > > (gm) =55 . et .em
j n=1

A partir da Equacdo (11) pode ser vista como um vetor de erros em funcdo dos

(11)

pesos sindpticos W da rede referentes aos N padrfes de treinamento apresentados a RNA.
E=ew)=e (W) +e;(W)+-+ey(W) (12)

A equacdo iterativa obtida para o método de treinamento de Levenberg-Marquadt

gue ajusta os parametros da rede € dada pela Equagéo (13).
AW = (JTW).JW) +uD)~JT(W).e(W) (13)

Sendo (J) a matriz jacobiana derivada do desenvolvimento realizado via método de
Newton; 4 é o parametro de ajuste da taxa de convergéncia do algoritmo e; (I) é a matriz
identidade.
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4.  Estimacao do valor eficaz da tensao de uma carga de um
sistema de distribuicdo por meio de redes neurais artificiais

Neste capitulo, conforme ilustra a Figura 9, serdo apresentadas todas as
informacdes referentes as etapas constituintes da metodologia de monitoramento remoto
proposta, sendo as mesmas detalhadamente descritas no item 4.1 quando aplicadas a uma
carga especifica. Mais adiante, no item 4.2, estdo ressaltadas as modificacdes que devem
ser consideradas em cada uma das referidas etapas da metodologia de modo a se estender
a aplicacdo da mesma para pontos de monitoramento adicionais, caracterizando, por
conseguinte a generalizagdo da metodologia no que se refere ao monitoramento de

gualquer carga do SEP.

4.1. Estimacéo do valor eficaz datensdo em uma carga (ponto de interesse)
do SD via RNA

O valor eficaz da tenséo fornecida a uma determinada carga do SD monitorado,
denominada ponto de monitoramento remoto 1 (MR1) é estimado por trés RNA distintas.
Assim, cada uma das RNAs destina-se a estimar o valor eficaz da tensdo em cada uma das
trés fases de MR1. Desta forma, uma RNA fornecerd o valor eficaz da tensdo elétrica
referente a fase A, outra serd responsavel por estimar o valor correspondente da fase B, e a
terceira sera da fase C. Portanto, as trés RNA, operando simultaneamente em paralelo, sao
capazes de fornecer o valor da tensao eficaz trifasica no ponto MR1, tomando por entradas
as tensoes e correntes trifasicas disponibilizadas por um medidor presente na subestacéo
do SD. Esta configuracéo esta ilustrada na Figura 10, em que é possivel observar o fluxo
das informacdes, desde a aquisi¢cao dos sinais de entrada das RNA, referentes as tensdes e
correntes trifasicas medidas na SE, até a disponibilizacdo dos valores eficazes das tensdes
em um ponto de monitoramento remoto especifico para as trés fases do sistema. Cabe
ressaltar que as entradas mencionadas sao submetidas a um pré-processamento antes de

serem apresentados as RNA, conforme explicado mais adiante neste capitulo.
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@ SIMULAGOES ® TREINAMENTO DAS @

COMPUTACIONAIS RNAs
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Figura 9 — Procedimento para monitorar remotamente um ponto (carga) de interesse
dentro de um SD.

o Especificagdo da
topologia
¢ Redes PMC

Neste contexto, a etapa 1 (Determinacdo do SEP) da Figura 9 diz respeito ao
sistema elétrico que sera objeto de estudo e aplicagdo da metodologia de monitoramento
proposta. Nesta primeira etapa, objetiva-se obter junto a concessiondaria de energia elétrica
0S parametros que representem o sistema elétrico real, pois o intuito é o de se estabelecer
condicbes de desenvolvimento da metodologia que sejam as mais fiéis possiveis ao real
funcionamento do sistema elétrico em analise. Cabe ressaltar que a boa qualidade dos
parametros sera capaz de fornecer melhores condicdes de modelagem do SD e, por

consequéncia, melhor aplicabilidade da metodologia em um SD real.

Na etapa 2 (Simulagdes Computacionais) é realizada a modelagem computacional
do sistema elétrico no software ATP (Leuven EMTP Center, 1987), além de todas as
simulacdes pertinentes a compilacdo do banco de dados por meio da simulagdo do sistema
frente a aplicacdo de diferentes situa¢des de faltas (curtos-circuitos), conforme demonstrado
no Capitulo 6 deste trabalho. O banco de dados construido é destinado ao treinamento e

validacdo das RNAs utilizadas no processo de monitoramento da carga de interesse (MR1).

Os dados oriundos das simulagdes computacionais realizadas na etapa 2 séo pré-
processados ao longo da etapa 3 (Pré-processamento dos Sinais). Nesta etapa, os sinais
sdo formatados como pares de entradas e saidas correspondentes, ou seja, para uma dada
combinacdo de tensdes e correntes medidas na subestacdo do SD (entrada), ha um par
correspondente de tensdes eficazes no ponto de monitoramente de interesse MR1 (saida).
Sendo assim, para cada situacao de curto-circuito simulada, obtém-se um par de entradas e

saidas correspondentes.

O conjunto de todos os pares de entradas e saidas forma um banco de dados que é

utilizado nas etapas de treinamento e validacdo das RNA. As entradas sdo compostas por
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nove ciclos dos sinais das trés tensGes e das trés correntes elétricas amostradas na
subestacdo do SD. J4 as saidas sdo compostas pelos nove ciclos de tenséo
correspondentes amostrados no ponto de carga (MR1). Dos nove ciclos monitorados, 0s
trés primeiros séo obtidos quando o0 SD se encontra em estado de regime permanente, e 0S
0 seis seguintes reportam o comportamento do SD perante a aplicacdo de uma determinada
falta (curto-circuito monofasico envolvendo a fase A do sistema). Os sinais de entrada, ou
seja, as tensdes e correntes trifasicas medidas na subestacdo do SD foram amostrados a
uma taxa de 128 amostras por ciclo na frequéncia fundamental do sistema (60Hz). Sobre
estes sinais foi aplicada uma janela deslizante de meio ciclo (64 amostras). Desta forma, a
cada passo da janela deslizante sdo calculados os valores eficazes de cada sinal de
interesse, isto €, das trés tensdes e das trés correntes na entrada. Cabe salientar que para
o calculo dos valores eficazes das tensdes e correntes elétricas tanto das entradas como
das saidas, conforme mencionado, € utilizada a férmula de célculo do valor eficaz RMS
(root mean square), dado por Xgus, para uma colecdo de N pontos amostrados (),

conforme mostra a Equacao (14).

Xrys = (14)

De forma analoga sao extraidos os valores eficazes das tensdes no ponto MR1. Os
dados compilados séo organizados em dois grupos. O primeiro deles, composto de 70%
das amostras, é dedicado ao treinamento das RNA, e o segundo, com 30% dos dados, &

utilizado para a validagdo das mesmas.

De posse do banco de dados pré-processado, segue-se a etapa 4 (Treinamento das
RNA) na qual é determinada a topologia das RNA e o algoritmo de treinamento é

executado.

Durante a etapa 4 (Treinamento das RNA) € realizada a definicdo da topologia das
redes e a execucdo do algoritmo de treinamento das mesmas. Cada rede recebe como
entrada os valores eficazes das tensdes e correntes das trés fases medidas na subestacéo,
totalizando seis entradas para cada rede neural. O valor eficaz de cada fase estimado no

ponto de interesse MR1 é dado por cada uma das respectivas RNA.

Conforme descrito anteriormente, todas as RNA mencionadas sdo do tipo PMC
(Haykin, 2008). A topologia utilizada foi obtida a partir da analise de desempenho da rede

variando-se 0 numero de neurdnios das camadas intermediérias. A busca pela topologia
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adequada foi feita inicialmente para a RNA gue monitora a fase A e, posteriormente, a

topologia encontrada foi replicada para as fases B e C (Bottura, 2010).

O algoritmo de treinamento utilizado foi o de Levenberg-Marquardt (Haykin, 2008)
cujo critério de parada foi determinado ao se atingir erro quadratico médio menor ou igual a
107°, ou entdo, até que se atingisse o nimero total de 800 épocas de treinamento. A fungéo
de ativacdo utilizada foi a tangente hiperbdlica nas camadas intermediarias, e a funcéo de
ativacao linear na camada de saida. O parametro de ajuste de convergéncia (u) inicial do
algoritmo foi fixado em 0,001.

Ap6s uma ampla busca pela melhor topologia a ser adotada, conforme descrito
anteriormente, definiu-se que a topologia deve ser composta por 6 neurdnios na camada de
entrada, 15 neurbnios na primeira camada escondida, 10 neurbnios na segunda camada
escondida, e 1 neurdnio na camada neural de saida. E importante frisar que esta topologia
foi inicialmente definida para o ponto de monitoramento MR1, e posteriormente, estendida
aos demais pontos de monitoramento alocados ao longo do SD em estudo, conforme
procedimento demonstrado na secéo 4.2 deste trabalho.
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da Subestacdo . OO J Valor RMS
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Valores RMS : OO Valor RMS ||
de Tens&es e j : / @) -;\ Tensao |
Correntes Trifasicas FaseB |

O—O
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o ‘1) O\ FaseC D
B o Valor RMS |/
‘ 12— ‘iﬁ:» Tensao j
: \ Fase C 1

o 0—@

Tensoes RMS no Ponto Remoto

Figura 10 — Fluxo das informacdes relacionadas ao procedimento de aplicacdo da
metodologia de monitoramento remoto inteligente.
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Finalmente, logo apos a etapa de treinamento, segue-se para a etapa 5 (Validacao e
Operacao das RNAS), na qual é realizada a validacao dos dados obtidos no treinamento por
meio da comparacdo com as respostas simuladas no SD modelado. Isso se da pela analise
de histogramas de erros, andlise de tabela e também por meio de gréficos comparativos
entre a resposta desejada e a resposta obtida pelas RNA, conforme serd apresentado no

Capitulo 7 deste trabalho.

4.2 Procedimento para estimar a tensédo eficaz em demais pontos de carga
alocados no sistema de distribuicéo

Realizado o treinamento, a definicAo da topologia e a validagdo das RNA para a
estimacdo da tensao eficaz no ponto de carga MR1 é possivel estender a metodologia de
estimacédo remota inteligente da tenséo eficaz para as demais cargas de interesse alocadas
no SD em estudo, caracterizando assim a obtencdo da generalizacdo da metodologia,
principalmente no que diz respeito a topologia adotada para as RNA. Para tanto, sdo
necessarias algumas mudancas em determinadas etapas descritas no item 4.1, conforme

descrito no que segue.

Durante a etapa 1 (Determinacdo do SEP) ndo sao requeridas quaisquer alteracoes,
uma vez que o SD em estudo continua sendo 0 mesmo. Todavia, a etapa 2 (Simulacdes
Computacionais) carece de mudancas significativas. Parte do banco de dados referentes ao
treinamento e validacdo das RNA deve ser modificada em funcao do acréscimo do n-ésimo
ponto de monitoramento a ser acrescentado (MRn). Assim, com a determinacdo do novo
ponto de carga, as simula¢cbes computacionais devem suprir o banco de dados com os
valores de tens0Oes trifasicas observadas no local deste novo ponto de monitoramento.
Ademais, é fundamental salientar que os dados referentes as entradas das RNAs nao sao
modificados, uma vez que as situagdes de faltas simuladas, cujos efeitos sdo percebidos na

subestac¢do, sdo idénticas as realizadas inicialmente para MR1.

A partir da obtencdo do novo banco de dados, a etapa 3 (Pré-processamento dos
Sinais) segue de forma semelhante a descrita no item 4.1, cabendo apenas a preparacéo
dos dados de interesse para o treinamento das RNA do ponto genérico MRn, isto &, as
entradas, as mesmas consideradas no ponto MR1, e as saidas, resultantes do pré-

processamento do banco de dados atualizado, obtido na etapa 2 relativa ao ponto MRn.

A etapa 4 (Treinamento das RNASs) sofrera importantes simplificacdes, uma vez que
para o treinamento dos dados referentes ao ponto MRn néo é preciso fazer uma analise

para a busca da melhor topologia, algoritmo de treinamento, critérios de parada e outros
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parametros que concernem a definicdo do melhor arranjo topoldgico das RNA. Todos estes
aspectos ja foram investigados e definidos para o ponto de monitoramento MR1, e séo
simplesmente replicados para o ponto genérico MRn. Vale ressaltar que o algoritmo de
aprendizado, que € o mesmo utilizado nos procedimentos descritos ha se¢do anterior, ao
final do treinamento e da validacdo (etapas 4 e 5), fornece novas matrizes de pesos
sinapticos que mapeiam a relagdo entre os sinais medidos na subestagdo e o ponto de
monitoramento de interesse adicional (MRn).

Desta forma, durante a etapa de operacdo das RNA, etapa 5, € possivel monitorar
remotamente a tensdo eficaz em qualquer carga do sistema, sem a necessidade de
empregar fisicamente medidores extras de QEE ao longo do SD, tornando a metodologia de
monitoramento remoto inteligente uma ferramenta complementar a ser utilizada em conjunto
com o método de monitoramento convencional praticado pelas companhias de distribuicdo

de energia elétrica.
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5. Sistema elétrico de distribuicdo modelado

Conforme exposto anteriormente, com a finalidade de desenvolver a metodologia de
monitoramento e estimagao da tensdo eficaz em um determinado ponto remoto de interesse
de um SD, sdo necesséarias algumas simulagBes computacionais sobre o mesmo,

previamente modelado computacionalmente.

Neste trabalho, o SD em estudo foi modelado e simulado previamente por meio da
interface grafica do software ATPDraw (Prikler e Hgidalen, 2002), conforme comentado por

Bottura (2010). A modelagem computacional deste sistema estd ilustrada na Figura 11.

T A

e
i ]
4 %
o i
{ 3
A AR A AP, AP AP A R0 0 A A A s A AL 0 A AL “-“’J&‘#@‘
! A}ﬂmmm. A o SR BB e o g R R R
y ' 3 ? 73 b
] |
% 3
oo,
§ £
<2 =a
qu Ao
wie wie @ e
ég‘i”-"z.u;i—ﬁl ﬁ@ﬁ};ﬁ,ﬂfiﬁﬁ:ﬁ,ﬁﬁ;‘f. £ ; 303
7o T3 L w3 e .
& { i L
<L { Aé}?\’” ado
T oo, eim o, e om mlw bk o i ko wiaw o
- A T OB N
Ang%? 1 ; £ J AR O g %J g E
1 | . i o
K] * Azf: % Agx ﬂgfﬂj}‘ %
b - = 2
T A A
e A}gr"
i
S
-
A AZ3 AJ3 AT AZ? AZ AJ3 E/F EIP EI8 EIR E[8 EWF EP EIS EI8 | £18
A A A A 4 C A

x"q%]a‘x S?‘}

Aana
K . : 8

A33

3

fee solmw a0
-

lse s '

Figura 11 — Aspecto da modelagem computacional do SD em analise utilizando o
software ATP via interface grafica ATPDraw.

Os dados utilizados na modelagem do SD s&o reais e foram fornecidos por uma
concessionaria de energia elétrica regional. As informacdes necessarias para a modelagem
do SD sdo compostas por: equivalente do sistema a partir da subestacdo de energia
considerada, dados do transformador de poténcia da subestacdo, parametros dos

condutores utilizados, dados das cargas alocadas ao longo do SD, entre outros dados
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relevantes. A fonte de tensdo utilizada nas simulacdes via software ATP é do tipo 14
(Leuven EMTP Center, 1987). Suas caracteristicas para a fase A estdo representadas na

Tabela 2 abaixo. Cabe acrescentar que a sequéncia de fases € ABC .

Tabela 2 - Parametros da fonte de tensdo modelada.

Parametro Valor

Amplitude 71.851,699 V

Frequéncia 60Hz
Fase 0°

A fim de complementar o modelo utilizado do equivalente elétrico do sistema,
adicionou-se uma impedancia em série com a fonte de tens@o de acordo com o modelo RL
mutuamente acoplado (Leuven EMTP Center, 1987). Na Tabela 3 estdo representados 0s
principais parametros do modelo RL mutuamente acoplado.

Tabela 3 - Caracteristicas do modelo RL mutuamente acoplado, em série com a fonte

de tenséo.
Parametro Valor
Resisténcia de sequéncia zero 20,805 Q
Indutancia se sequéncia zero 203,721 mH
Resisténcia de sequéncia positiva 4,062 Q
Induténcia se sequéncia positiva 52,5397 mH

O transformador de poténcia na subestacédo do SD foi simulado seguindo o modelo
de transformador trifasico saturavel com dois enrolamentos (Leuven EMTP Center, 1987),
com poténcia nominal de 15/20MVA e conexd@o Y-A entre o primario e o secundario do
mesmo. Na Tabela 4 s@o apresentadas as principais caracteristicas deste transformador de
poténcia.
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Tabela 4 - Principais parametros do transformador de poténcia do SD

Parametro Valor
Poténcia nominal 15/20MVA
Relagéo de transformacao 3,809524
Corrente nominal do primario 131,215970 A
Corrente nominal do secundario 499,870363 A
Ligacéo do primério Estrela
Ligacao do secundario Delta
Deslocamento angular 30°
Resisténcia do primério 0,054695 Q
Resisténcia do secundario 0,79376 Q
Indutancia do primario 1,628 mH
Indutancia do secundario 23,6258 mH
Resisténcia de magnetizacao 1 MQ

No sistema de distribuicdo da concessiondria de energia elétrica também consta a
presenca de dois bancos de capacitores utilizados com a finalidade de melhorar o perfil de
tensdo do SD. Esses bancos de capacitores foram modelados como um elemento
capacitivo concentrado nao acoplado, do tipo zero, conectado em estrela (Leuven EMTP
Center, 1987). Os principais parametros dos bancos de capacitores sdo mostrados na
Tabela 5.

Tabela 5 - Caracteristicas dos bancos de capacitores do SD

Parametro Valor
Capacitancia da fase A 5,96521 pyF
Capacitancia da fase B 5,96521 pyF
Capacitancia da fase C 5,96521 uF

As cargas alocadas nos alimentadores foram modeladas por poténcias constantes,
via um elemento RL concentrado, ndo acoplado, do tipo zero, conecta em delta (Leuven
EMTP Center, 1987). Em virtude da grande quantidade de consumidores alocados nos
alimentadores, serdo apresentadas as caracteristicas de apenas alguns dos consumidores.
Dentre eles, as cargas referentes ao ponto de monitoramento de interesse deste trabalho.

As informagbes seguem na Tabela 6.



Tabela 6 - Exemplos de dados das carga do SD

Carga Resisténcia (Q) Indutancia (mH)

Ponto 1 8179,90 9,243.1073

Ponto 2 2944,76 3,328.1073
Ponto de Monitoramento 2453,97 2,773.1073
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Finalmente, a fim de completar a modelagem do SD em estudo, tém-se os dados

gue séo referentes aos condutores do mesmo. Cada um dos trechos dos alimentadores foi

modelado por valores de resisténcias e indutancias, por meio de um elemento RL

mutuamente acoplado, dos tipos 51, 52 e 53 (Leuven EMTP Center, 1987). Os condutores

do sistema elétrico simulado sdo de aluminio sem alma de aco, com bitolas de 336.4 MCM,

04 AWG. 1/0 AWG, e cabo de rede compacta com 185mm?. Cada trecho do sistema, dentre

0S varios existentes, possui caracteristica propria representada a fim de se obter o correto

funcionamento do modelo computacional modelado. Nas Tabelas 7 e 8 sdo mostrados 0s

parametros de dois trechos dos alimentadores para a sequéncia zero e sequéncia positiva,

respectivamente.

Tabela 7 - Parametros de dois trechos de condutores dos alimentadores para

sequéncia zero

Trecho Distéancia (m) Cabo Ro(Q) Lo (mH)
I 124,2 336,4 MCM 0,045972 0,251375
Il 573,4 1/0 AWG 0,449227 1,18634

Tabela 8 - Parametros de dois trechos de condutores dos alimentadores para

sequéncia positiva

Trecho Disténcia (m) Cabo Ro (Q) Lo (mH)
I 124,2 336,4 MCM 0,023995 0,038526
Il 573,4 1/0 AWG 0,347767 0,203670
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6. Compilacao dos conjuntos de treinamento e validacao das
RNA

Este capitulo traz todas as informacdes referentes a compilacdo do banco de dados
das RNA, tanto do conjunto de treinamento, como do conjunto de teste e de validagéo.
Conforme descrito anteriormente, os dados do sistema elétrico em estudo foram fornecidos
por uma concessionaria de distribuicdo de energia elétrica regional. Sendo assim, a partir
da determinacdo deste SD de interesse e sua posterior modelagem, foram realizadas as
etapas de simulagBes computacionais e pré-processamento dos sinais, a fim de se obter o

valor eficaz da tenséo trifasica nos pontos de monitoramento de interesse.

A Figura 12 traz o SD modelado, a representacdo dos pontos no quais foram
aplicadas as faltas elétricas, isto é, curtos-circuitos monofésicos envolvendo a fase A do SD
(circulos vermelhos numerados de 1 a 20), a subestacdo do SD (representada por um
circulo verde com a inscricdo SE) e também os seis pontos de cargas (MRn) definidos como
objetos de estudo para investigagdo acerca da generalizagdo da metodologia de
monitoramento remoto inteligente proposta (circulos verdes com a inscricdo MRn, em que
n=1,23,4,5¢e6).

Os diversos casos possiveis de faltas elétricas representadas contemplam a
variacdo da distdncia dos pontos de aplicagdo de curto-circuito e variagdo, tanto na
impedéncia de falta, como no angulo de incidéncia da mesma. A boa diversidade de casos
contribui ativamente na alta capacidade de generalizagdo das RNA, ja que possibilitou uma
correta representagcdo do SD em estudo, uma vez que as RNA sdo capazes de estimar
corretamente os niveis de tensdo para os pontos de interesse escolhidos ao longo do

sistema elétrico, conforme exposto mais adiante no Capitulo 7.

Cabe ainda acrescentar que em cada ponto de aplicacdo de falta a impedancia de
falta é variada de 0 até 40Q em intervalos de 10Q conforme exposto em Bottura, (2010).
Além disso, o valor do angulo de falta também é variado entre 0° e 90°. Assim, para cada
ponto de aplicacdo € possivel simular uma quantidade de 10 casos de curtos-circuitos
diferentes, apenas variando os parametros impedéancia de falta e o angulo de falta. Com
isso, como ha 20 pontos de aplicacdo de falta e 10 casos possiveis de curtos-circuitos por
ponto, tem-se 200 casos de curtos-circuitos possiveis para alimentar o banco de dados,
utiizado na etapa de treinamento das RNA. A Tabela 9 mostra as 200 combinagdes

possiveis de casos faltosos.
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Figura 12 - Aspecto geral do SD modelado com a localizagdo dos pontos de
monitoramento remoto (MRn), da subestacéo (SE) e dos pontos de aplicacéo de faltas

elétricas (hnumerados de 1 a 20).

Cabe frisar que as faltas elétricas simuladas nos 20 pontos em destaque séo curtos-
circuitos monofasicos, e, nas simulagbes computacionais, sdo representadas por chaves
elétricas conectadas em série com uma impedancia cujo valor pode ser variado conforme
descritos na Tabela 9. A Figura 13 ilustra como a representa¢cdo computacional das faltas é
efetuada no software ATPDraw. Ainda na Figura 13, nota-se que apenas uma das chaves é
fechada, caracterizando, portanto, uma situacdo faltosa monofasica, conforme destacado

por uma seta curvilinea vermelha, denotando qual chave elétrica sera fechada a fim de
provocar a falta.
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Figura 13 - Detalhe da chave que simula o curto-circuito monofésico via interface
grafica ATPDraw
Por meio dos sinais de tensao e corrente das trés fases, medidos na SE, foram
selecionados trés ciclos precedentes e seis ciclos subsequentes ao instante de inicio de
cada defeito aplicado. Nestes sinais, que foram amostrados a uma taxa de 128 amostras
por ciclo na frequéncia fundamental do sistema (60 Hz), foi utilizada uma janela deslizante

de dimensao de um ciclo, com deslocamento de meio ciclo (64 amostras).

A cada deslocamento da janela, foram calculados os respectivos valores eficazes
(RMS) da tensao e corrente nas trés fases. Assim, resulta-se em seis valores de entrada
(trés de tenséo e trés de corrente). Desta forma, tanto as situagdes em regime permanente,
guanto os eventos associados e de interesse relacionados a QEE da forma como séo

percebidos na SE, foram apresentados como padrdes de entrada as RNAs.

Da forma como foram simulados, entre o inicio de cada curto-circuito e o seu fim, ha
um total de 9 ciclos, obtendo-se, portanto, 17 padrbes de entrada (valores eficazes
resultantes da janela deslizante de meio ciclo) a serem apresentados as RNA oriundos de
cada situacdo de defeito que foi simulada. Assim, com 200 casos de faltas simuladas, o

banco de dados possui 3400 padrées de entrada.

A fim de se obter os padrdes de saida, aplicou-se 0 mesmo procedimento utilizado
nas entradas nos sinais de saida em cada um dos pontos de monitoramento de interesse.

Portanto, obtém-se os respectivos 3400 padrdes de saida.
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Tabela 9 — Configuracéo dos curtos-circuitos simulados para obtencédo da base de
treinamento das RNA.

Ponto de

aplicacao de falta

Impedancia de falta
(Q)

Angulo de falta
)

Quantidade de casos

1 0; 10; 20; 30 e 40 0e90 10
2 0; 10; 20; 30 e 40 0e90 10
3 0; 10; 20; 30 e 40 0e90 10
4 0; 10; 20; 30 e 40 0e90 10
5 0; 10; 20; 30 e 40 0e90 10
6 0; 10; 20; 30 e 40 0e90 10
7 0; 10; 20; 30 e 40 0e90 10
8 0; 10; 20; 30 e 40 0e90 10
9 0; 10; 20; 30 e 40 0e90 10
10 0; 10; 20; 30 e 40 0e90 10
11 0; 10; 20; 30 e 40 0e90 10
12 0; 10; 20; 30 e 40 0e90 10
13 0; 10; 20; 30 e 40 0e90 10
14 0; 10; 20; 30 e 40 0e90 10
15 0; 10; 20; 30 e 40 0e90 10
16 0; 10; 20; 30 e 40 0e90 10
17 0; 10; 20; 30 e 40 0e90 10
18 0; 10; 20; 30 e 40 0e90 10
19 0; 10; 20; 30 e 40 0e90 10
20 0; 10; 20; 30 e 40 0e90 10
Total - - 200

Com o intuito de garantir a maior generalizacdo possivel do processo de

monitoramento da tensdo eficaz é necessario que os dados da Tabela 9 sejam

apresentados de forma aleat6ria na etapa de treinamento e validagcdo das RNA (Haykin,

2008). Neste sentido, o Anexo 1 deste trabalho traz o cédigo Matlab® implementado que faz

com que os pares de entrada e saida sejam permutados de forma totalmente aleatéria. As

Figuras de 14 a 17 sdo uma representagcdo grafica comparativa de como os dados de

entrada da corrente e da tensdo referentes a Fase A de alimentacdo do SD em estudo

estdo antes e apods sua permutagdo. Nas Figuras 14 e 15 os dados de tensdo e corrente,

respectivamente, ainda ndo foram permutados, isto é, foram apresentados na ordem que

segue na Tabela 9, ou seja, primeiro fixa-se o angulo de falta em 0°, em seguida fixa-se a
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impedancia de falta em 0Q, e variam-se todos os pontos de aplicacdo de falta. A seguir,
incrementa-se a impedancia de falta em 10Q e percorrem-se todos os pontos de falta
novamente. Assim, segue até que todos os casos com angulo de falta de 0° sejam

passados para a RNA. Entéo, repete-se o0 procedimento para angulo de falta de 90°.

J4 nas Figuras 16 e 17 o algoritmo de permutacdo desenvolvido realizou a
permutacdo aleatéria das amostras com a finalidade de garantir maior grau de
generalizacdo das RNAs, ja que durante a fase de treinamento as amostras serdo, por
conseguinte, apresentadas de maneira aleatoria as RNA (Haykin, 2008).

Tensdo de entrada da Fase A em funcdo dos padrées antes da permutacéo aleatdria
171 T T T T T T

0.95 B

0.9 B

Tensdo (p.u.)

0.85 B

0.8 B

0.75 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

Padrdes

Figura 14 — Dados de entrada da tensdo referente a Fase A apresentados a RNA antes

da permutacgao aleatoria.

Corrente de entrada da Fase A em fungdo dos padries antes da permutacéo aleatdria
7 T T T T T T

Corrente (p.u.)

1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000
Padries

Figura 15 — Dados de entrada da corrente referente a Fase A apresentados a RNA

antes da permutacdo aleatoria.
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Tensdo de entrada da Fase A em funcédo dos padries apds a permutacéo aleatdria
11 T T T T T T

09k B

Tensdo (p.u.)

0.85 B

08r B

0.75 1 1 ! 1 1 1
0 500 1000 1500 2000 2500 3000

Padrées

Figura 16 - Dados de entrada da tenséao referente a Fase A apresentados a RNA apés
a permutacdo aleatoria.

Corrente de entrada da Fase A em funcéo dos padrées apds a permutacéo aleatdria
? T T T T T T

Corrente (p.u.)

1 1 1 1 1
0 500 1000 1500 2000 2500 3000
Padrées

Figura 17 - Dados de entrada da corrente referente a Fase A apresentados a RNA

ap6s a permutacéo aleatéria.

Dos 3400 padrbes de entradas e saidas obtidos, 70% destes, ou seja, 2380 padrdes
foram utilizados na etapa de treinamento das RNA. Ja os 30% restantes, isto é, 1020

diferentes padrdes foram reservados para a etapa de validagdo das mesmas.

Como especificado anteriormente, para cada ponto de monitoramento sao
necessarias trés RNA para estimar o valor RMS de cada uma das fases. Dessa forma,
como o estudo envolve seis pontos de monitoramento, tem-se um total de 18 treinamentos
necessarios para a obtencao das respectivas matrizes sinapticas que mapeiam a relacao
entre os sinais de entrada (tensdes e corrente trifasicas medidos na SE) e os sinais de

saida (tensédo eficaz estimada) em todos os seis pontos de monitoramento remoto.
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7. Desempenho da metodologia e monitoramento remoto

inteligente das variacdes de tensao

Realizada a definicdo da topologia das RNAs, destinadas a monitorar remotamente
0s niveis de tensdo em pontos quaisquer de interesse dentro do SD, é realizada uma
andlise de desempenho minuciosa a fim de se confirmar os objetivos iniciais da pesquisa.
Essa analise consiste na averiguacao dos indices de acertos das RNAs por meio do arranjo
dos resultados em tabelas comparativas, 0s respectivos histogramas de erros, andlise do
valor maximo do erro, bem como graficos comparativos entre as respostas desejadas e
aquelas fornecidas por meio da ferramenta inteligente utilizada. Também séo exibidos os
dados referentes a etapa de treinamento das RNA, tais quais tempo alocado para o
treinamento de cada uma das RNA e também a descricdo do hardware utilizado a fim de

comparacao e possivel utilizacado do treinamento em tempo real.

As Tabelas de 10 a 15 mostram os erros menores ou iguais a 0,01 p.u., menores ou
iguais a 0,03 p.u., € menores ou iguais a 0,05 p.u. entre as respostas fornecidas pelas RNA
e as saidas para os pontos de monitoramento de MR1 a MR6, quantificados em

porcentagem e também a topologia das RNA utilizada.

Tabela 10 - Dados do desempenho da aplicagcdo da metodologia proposta em MR1.

Monitoramento remoto Erros inferiores | Erros inferiores | Erros inferiores Erro Maximo
ou iguais a ou iguais a ou iguais a (p.u))
0,01p.u. 0,03p.u. 0,05p.u.
6-15-10-1 | Fase A 90,0% 94,9% 97,4% 0,1437
MR1 | 6-15-10-1 | Fase B 94,8% 99,3% 99,7% 0,1851
6-15-10-1 | Fase C 97,5% 99,1% 99,3% 0,3683

Tabela 11 - Dados do desempenho da aplicagdo da metodologia proposta em MR2.

Monitoramento remoto Erros inferiores | Erros inferiores | Erros inferiores Erro Maximo
ou iguais a ou iguais a ou iguais a (p.u))
0,01p.u. 0,03p.u. 0,05p.u.
6-15-10-1 | Fase A 86,8% 93,5% 96,4% 0,1954
MR2 | 6.15-10-1 | Fase B 93,8% 96,1% 99,2% 0,1974
6-15-10-1 | Fase C 91,3% 94,4% 97,3% 0,2612
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Tabela 12 - Dados do desempenho da aplicagdo da metodologia proposta em MR3.

Monitoramento remoto Erros inferiores | Erros inferiores | Erros inferiores Erro Maximo
ou iguais a ou iguais a ou iguais a (p.u.)
0,01p.u. 0,03p.u. 0,05p.u.
6-15-10-1 | Fase A 96,0% 99,4% 99,6% 0,7840
MR3 | 6.15-10-1 | Fase B 98,2% 99,4% 99,6% 0,1312
6-15-10-1 | Fase C 99,1% 99,7% 99,8% 0,1908

Tabela 13 - Dados do desempenho da aplicagdo da metodologia proposta em MRA4.

Monitoramento remoto

Erros inferiores

Erros inferiores

Erros inferiores

Erro Maximo

ou iguais a ou iguais a ou iguais a (p.u.)
0,01p.u. 0,03p.u. 0,05p.u.
6-15-10-1 | Fase A 86,3% 96,6% 99,0% 0,7358
MR4 | 6.15-10-1 | Fase B 95,1% 99,5% 99,7% 0,0967
6-15-10-1 | Fase C 97,9% 99,3% 99,5% 0,1967

Tabela 14 - Dados do desempenho da aplicacdo da metodologia proposta em MR5.

Monitoramento remoto

Erros inferiores

Erros inferiores

Erros inferiores

Erro Maximo

ou iguais a ou iguais a ou iguais a (p.u.)
0,01p.u. 0,03p.u. 0,05p.u.
6-15-10-1 | Fase A 98,7% 99,7% 99,8% 0,2150
MRS | 6-15-10-1 | FaseB 99,1% 99,6% 99,9% 0,0645
6-15-10-1 | Fase C 99,1% 99,6% 99,6% 0,0940

Tabela 15 - Dados do desempenho da aplicacdo da metodologia proposta em MR6.

Monitoramento remoto

Erros inferiores

Erros inferiores

Erros inferiores

Erro Maximo

ou iguais a ou iguais a ou iguais a (p.u.)
0,01p.u. 0,03p.u. 0,05p.u.
6-15-10-1 | Fase A 94,1% 98,8% 99,3% 0,3262
MR6 | 6-15-10-1 | Fase B 97,2% 99,2% 99,5% 0,1815
6-15-10-1 | Fase C 99,4% 99,7% 100% 0,0499
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A analise da segunda coluna da Tabela 10 indica uma significativa quantidade em
porcentagem de erros inferiores a 0,01 p.u. Como se pode obervar, para 0 ponto MR1
contata-se que 90% a 97,5% dos casos estdo nesta faixa de erro. Para MR2, vé-se na
segunda coluna da Tabela 11 que os erros inferiores a 0,01 p.u. contemplam de 86,8% a
93,8% dos casos. Com relacdo a MR3, na Tabela 12, tem-se de 96% a 99,1%; para MR4 de
86,4% a 97,9%, conforme se observa na Tabela 13; para MR5 de 98,7% a 99,1%, Tabela
14 e, finalmente, em MR6 de 94,1% a 99,4% dos casos apresentam erros inferiores a 0,01
p.u. como pode ser observado na Tabela 15.

Em média, 95,24% dos casos apresentam erros inferiores a 1%, ou seja, 0,01 p.u.
Isso implica em um indice médio de acerto consideravelmente elevado para a faixa de erro
analisada, independentemente do ponto de monitoramento observado, indicando que é
possivel obter uma forma generalizada de aplicacdo do método de monitoramento da
tensdo eficaz em um determinado SD em estudo para quaisquer cargas nele alocadas.

Pela inspecéo da terceira coluna das Tabelas de 10 a 15, que inclui uma maior faixa
de tolerancia para erros, isto é, 0,03 p.u., observa-se que poucas mudangas ocorrem em
relacdo a faixa de analise anterior, sendo as mudangas mais significativas verificadas nos
pontos de monitoramento MR2 e MR4. Com esta nova margem, a média de acerto das

RNAs levando em conta erros inferiores a 3% sobe para 98,21%.

Quando se leva em conta os erros das RNAs para uma faixa de até 0,05 p.u, ou
seja, até 5%, tem-se, em média, uma taxa de acerto das RNA em torno de 99,14%. Estes

dados podem ser observados na quarta coluna das Tabelas de 10 a 15.

As Ultimas colunas das Tabelas de 10 a 15 trazem dados referentes ao erro maximo,
em p.u., encontrado em cada um dos pontos monitorados. E importantes ressaltar que, por
mais que em alguns casos este valor seja elevado, como na fase A de MR3 visto na Tabela
12, em que o erro maximo foi 0,7840 p.u., esses eventos sdo de carater isolados e nédo
comprometem o0s significativos resultados obtidos pela metodologia como um todo.
Entretanto, cabe colocar que uma andlise mais detalhada pode ser conduzida futuramente

com o objetivo de melhorar o desempenho da técnica relagéo a tais casos de teste.

Como se observa, os pontos de monitoramento MR1, MR2, MR3, MR4, MR5 e MR6
apresentam elevados indices de acertos em relacdo as respostas desejadas para as trés
faixas de erro analisadas, demonstrando a eficiéncia da aplicacdo da metodologia proposta
no monitoramento da tensdo eficaz de um ponto genérico (MRn) dentro de um SD

estudado.
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As Figuras de 18 a 23 correspondem aos histogramas de erros relacionados aos
pontos de monitoramento de MR1 a MR®6, respectivamente, através do qual é possivel se
obter uma melhor perspectiva acerca da distribuicAo das magnitudes dos erros entre

resposta alvo e resposta das RNA em funcao da quantidade de casos de teste utilizados.

RMAs para o ponto de monitoramento MR1
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Figura 18 - Histograma de erros para o ponto de monitoramento remoto MR1.

O histograma da Figura 18 ilustra como a grande maioria dos erros entre as
respostas esperadas e as respostas das RNAs para o ponto de monitoramento MR1 estédo
abaixo de 0,01 p.u. para as trés fases em estudo. Nota-se que a fase A, caracterizada por
uma barra vermelha € a que apresenta o menor indice de acerto. Todavia, praticamente a

totalidade de erros (97,4%) se concentra em até 0,05 p.u.

A mesma andlise anterior pode ser feita para o histograma da Figura 19 relacionado
com o ponto de carga MR2. Neste caso, destaca-se que, embora a porcentagem de acertos
nos casos de teste esteja um pouco diminuida em relacao a MR1, quando levados em conta
um erro menor do que 0,01 p.u., os indices de acertos sao significativos, e apresentam
média de acerto superior a 85% nas trés fases monitoradas. Novamente, cabe destacar que
guando sao analisados erros de até 0,05 p.u., isto €, somando-se os valores representados
por cada uma das barras, a porcentagem de casos de testes dentro desta faixa permanece

em valores acima de 97%.
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RMNAs para o ponto de monitoramento MR2
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Figura 19 - Histograma de erros para o ponto de monitoramento remoto MR2.

RMAs para o ponto de monitoramento MR3
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Figura 20 - Histograma de erros para o ponto de monitoramento remoto MR3.

A simples andlise do histograma ilustrado pela Figura 20 indica que o ponto de
monitoramento MR3 apresenta alto indice de acertos (entre 96% e 99,1%) quando se leva

em conta a faixa de erro cujos niveis sao de até 0,01 p.u.. Ademais, a média de acertos
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para as trés RNA, considerando-se erros de até 0,05 p.u., é superior a 99,6%, evidenciando

o elevado indice de generalizacdo das respostas fornecidas pelas redes neurais.

A Figura 21 traz o histograma de erros do ponto de carga MR4. Assim como nos
outros casos jA mencionados, constata-se um alto indice de acertos para 0s casos de teste
considerando erro de 0,01 p.u. para as trés fases em estudo, média de 93,6%. Além disso,
praticamente a totalidade dos casos de teste (acima de 99%) apresentam erros inferiores a
0,05 p.u.

RMAs para o ponto de monitoramento MR4
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Figura 21 - Histograma de erros para o ponto de monitoramento remoto MR4.

O ponto de monitoramento MR5 também se destaca pelos altos niveis de acerto na
estimacéao do valor eficaz das tensdes elétricas pelas RNA para as trés fases em estudo. O
histograma relacionado ao ponto de carga MR5 é exibido na Figura 22 que ilustra grande
taxa de acertos considerando a margem de erro de 0,01 p.u. Praticamente a totalidade dos
casos esta dentro desta margem (acima de 98,7%), 0 que caracteriza o alto grau de
generalizacdo das respostas fornecidas pelas RNA. Ao tomar como referéncia a quantidade
de casos de teste com erros inferiores a 0,05 p.u., verifica-se que, em média, tem-se um

indice de acerto de 99,7% dos casos.

O mesmo comportamento observado nos histogramas anteriores pode ser
encontrado no histograma da Figura 23. Neste, observa-se que as RNA associadas ao

ponto MR6 também exibem alto nivel de acerto para as trés fases do sistema. Cabe
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acrescentar que para erros menores do que 0,05 p.u. tem-se um indice de acerto bastante

expressivo, situando-se em niveis superiores a 99,5%.

RMNAs para o ponto de menitoramento MRS
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Figura 22 - Histograma de erros para o ponto de monitoramento remoto MR5.

RMNAs para o ponto de monitoramento MRG
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Figura 23 - Histograma de erros para o ponto de monitoramento remoto MR6.
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Pelos resultados apresentados até entdo, fica evidente que, independentemente do
ponto de monitoramento que se adote, a metodologia se mostrou eficaz e apresenta altos
niveis de acertos ao estimar as tensdes eficazes nos pontos de interesse (MRn). Pelo
exposto, é possivel constatar a alta capacidade de generalizacdo do método de
monitoramento remoto proposto no que se refere a aplicagdo do mesmo a quaisquer pontos
de interesse alocados ao longo do SD em estudo. Ou seja, a partir de uma investigacao
inicial para a deteccdo da melhor topologia de rede a ser utilizada, relacionada a um ponto
de monitoramento remoto especifico, esta pode ser posteriormente replicada para as
demais RNA que irdo monitorar os pontos adicionais, salvo as devidas modificacbes
necessarias jA mencionadas no item 4.2., sem perda de qualidade das respostas fornecidas
pelas RNA.

Na Tabela de 16 a 21, tém-se informacdes referentes ao tempo total gasto (em
segundos) na etapa de treinamento para cada uma das trés fases dos seis pontos de
monitoramento da tensédo eficaz. Os tempos de treinamento apresentados séo referentes a

utilizacdo de um processador Intel ® Core ™ 2 Duo com processador de 2,26GHz.

Cada um dos treinamentos foi realizado cinco vezes, a fim de se obter os melhores
resultados possiveis, em virtude da aleatoriedade dos pesos sinapticos iniciais. Os tempos
descritos nas Tabelas de 16 a 21 sao referentes aos treinamentos que apresentaram 0s
maiores indices de acertos dentre os cinco treinamentos efetuados. Cabe ainda ressaltar
gue, dependendo da complexidade do sistema em analise, este tempo de treinamento pode
variar, assim como se espera que o mesmo varie caso haja mudanca na topologia das
RNA, como, por exemplo, acrescentando mais neurbnios nas camadas escondidas. Além
disso, o critério de parada do treinamento das RNA também é responsavel pela
discrepancia nos tempos de treinamento. Por exemplo, quando o treinamento para, porque
atingiu um o niimero de 800 épocas, o tempo é maior do que quando o critério de parada
esta relacionado ao desempenho, isto &, atingiu um valor de erro quadratico médio menor

de que 107°.

Tabela 16 - Tempo de treinamento das RNA em MR1.

. Tempo de
Monitoramento remoto .
treinamento
6-15-10-1 Fase A 82s
MR1 6-15-10-1 Fase B 81ls

6-15-10-1 Fase C 81ls




Tabela 17 - Tempo de treinamento das RNA em MR2.

Monitoramento remoto

Tempo de

treinamento

MR2

6-15-10-1 Fase A 94 s
6-15-10-1 Fase B 90 s
6-15-10-1 Fase C 82s

Tabela 18 - Tempo de treinamento das RNA em MR3.

Monitoramento remoto

Tempo de

treinamento

MR3

6-15-10-1 Fase A 82s
6-15-10-1 Fase B 8s
6-15-10-1 Fase C 35s

Tabela 19 - Tempo de treinamento das RNA em MR4.

Monitoramento remoto

Tempo de

treinamento

MR4

6-15-10-1 Fase A 85s
6-15-10-1 Fase B 37s
6-15-10-1 Fase C 75s

Tabela 20 - Tempo de treinamento das RNA em MR5.

Monitoramento remoto

Tempo de

treinamento

MR5

6-15-10-1 Fase A 78 s
6-15-10-1 Fase B 17 s
6-15-10-1 Fase C 20s

49
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Tabela 21 - Tempo de treinamento das RNA em MR6.

_ Tempo de
Monitoramento remoto _
treinamento

6-15-10-1 Fase A 83s
MR6 6-15-10-1 Fase B 84 s
6-15-10-1 Fase C 79s

7.1. Tensé&o eficaz medida no ponto MR1

Com o intuito de ilustrar e exemplificar os resultados obtidos pela metodologia e
realizar uma analise comparativa de desempenho das RNAs no que se refere a estimagao
do valor eficaz da tensédo trifdsica nos pontos de carga de interesse dentro do SD em
estudo, foi escolhido o ponto de aplicacéo de falta nimero 5 no sistema da Figura 12. Este
possui angulo de inser¢cdo de 0° e 30Q de resisténcia de falta. Ademais, este ponto de
aplicacdo de falta dista em torno de 21 km da SE do SD em estudo, conforme dados

repassados pela concessionaria de energia elétrica regional.

Na Figura 24 é possivel verificar o comportamento da tensao fornecida pelas RNA
das fases A, B e C no ponto de monitoramento MR1 mediante ao caso de falta escolhido. A
partir deste exemplo, observa-se que a fase C mantém-se em niveis de tensdo proximos ao
nominal (entre 0,9 p.u. e 1,1 p.u.). A fase B sofre pequena queda nos niveis de tenséo,
porém, ndo esta caracterizado um afundamento de tensdo, uma vez que este nivel ndo é
inferior a 0,9 p.u.. A fase A sofre a maior queda de tensdo. Contudo, também né&o
caracteriza um afundamento de tensao, jA que permanece sempre acima do nivel de 0.9

p.u. durante todos os ciclos considerados.

De maneira geral, constata-se que as respostas das RNA das trés fases sao
significativamente condizentes com os valores de tensao eficazes esperados representados
pelos marcadores circulares. Cabe acrescentar que nos trés primeiros ciclos o sistema esta
em regime permanente, isto é, os niveis de tensdo assumem valores nominais do sistema,

sendo, neste caso, o valor eficaz da tensao préximo a 0,95 p.u..
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Respostas das RNAs e respectivas saidas esperadas (fases A, B e C para o ponto MR1)
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Figura 24 - Comparacdo entre os valores das tensOes eficazes estimadas e seus
respectivos valores esperados para o ponto MR1.

7.2. Tenséao eficaz medida no ponto MR2

No ponto de monitoramento MR2, contata-se que o caso de falta selecionado é
capaz de provocar significativas variacbes de tensfes em duas das fases monitoradas,

conforme se observa na Figura 25.

A fase A apresenta leve variacdo da tensdo, porém, com niveis insuficientes para
configurar afundamento de tensdo (menor do que 0,9 p.u). Assim como na fase A, 0s
valores das tensfes nas fases B e C ndo caracterizam afundamento ou elevagéo de tenséo,
isto é, permanecem dentro da faixa de valores nominais (0,9 p.u. a 1,1 p.u.). Cabe
acrescentar que as respostas das RNA para as trés fases apresentam altos niveis de

acertos para 0s casos em que a tensao eficaz fica dentro dos niveis nominais.
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Respostas das RNAs e respectivas saidas esperadas {fases A, B e C para o ponto MR2)
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Figura 25 - Comparacdo entre os valores das tensOes eficazes estimadas e seus
respectivos valores esperados para o ponto MR2.

7.3. Tenséao eficaz medida no ponto MR3

O caso de falta escolhido reflete um afundamento de tens&o da fase A no ponto de
monitoramento da tenséo eficaz no ponto MR3 conforme ilustrado na Figura 26. Os niveis
de tensdo para a fase A ficam em torno de 0,87 p.u. (abaixo de 0,9 p.u.). Ja para as fases B
e C contata-se que os niveis de tensao ficam préximos aos valores nominais, cerca de 0,97

p.u. e 0,96 p.u., respectivamente.
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Respostas das RNAs e respec’tivas saidas esperadas (fases A, B e C para o ponto MR3)
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Figura 26 - Comparacdo entre os valores das tensOes eficazes estimadas e seus
respectivos valores esperados para o ponto MRS3.

7.4. Tenséao eficaz medida no ponto MR4

No ponto de monitoramento remoto MR4 observa-se que o caso de falta selecionado
ndo é capaz de provocar variagdes significativas de tensao, conforme ilustrado na Figura
27. Os valores eficazes das tensdes nas trés fases, estimados pelas respectivas RNAS,
permanecem proximos do valor nominal (entre 0,9 p.u. e 1,1 p.u), sendo registradas
tensbes remanescentes em torno de 0,945 p.u. para a fase A, 0,955 p.u. para a fase B e

0,97 p.u. para a fase C.
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Respostas das RNAs e respectivas saidas esperadas (fases A, B e C para o ponto MR4)
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Figura 27 - Comparacdo entre os valores das tensdes eficazes estimadas e seus
respectivos valores esperados para o ponto MR4.

7.5. Tensdao eficaz medida no ponto MR5

Comportamento semelhante ao verificado no monitoramento do ponto MR4 é
observado no ponto MR5, ao se considerar o caso de falta escolhido conforme se observa
na Figura 28. Ou seja, ndo sédo registradas variagfes relevantes nos niveis de tenséo eficaz
no ponto de monitoramento remoto. Os valores de tensédo permanecem dentro dos limites
nominais (entre 0.9 p.u. e 1.1 p.u.). Pela analise da Figura 28 também ¢é possivel afirmar
gue os valores das tensfes estimadas remotamente pelas RNA das trés fases, aproximam-
se dos valores esperados, revelando a elevada capacidade de generalizacdo das respostas

fornecidas pelas redes treinadas.
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Respostas das RNAs e respectivas saidas esperadas (fases A, B e C para o ponto MR5)
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Figura 28 - Comparacdo entre os valores das tensOes eficazes estimadas e seus
respectivos valores esperados para o ponto MR5.

7.6. Tensdao eficaz medida no ponto MR6

Por fim, completando a ilustracdo do caso de curto-circuito selecionado, tem-se que
de acordo com os resultados apresentados na Figura 29 fica evidente que o caso de falta
escolhido foi responsavel por provocar um afundamento de tensédo na fase A no ponto de
monitoramento MR6. A tensdo observada na fase A apresenta niveis de tenséo
remanescentes em torno de 0,87 p.u. JA4 as tensbes registradas nas fases B e C
permanecem dentro da faixa de valores nominais (entre 0,9 p.u. e 1,1 p.u.) com cerca de

0,87 p.u. e 0,86 p.u, respectivamente.
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Respostas das RNAs e respectiuas saidas esperadas (fases A, B e C para o ponto MRG)
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Figura 29 - Comparacéo entre os valores das tensOes eficazes estimadas e seus
respectivos valores esperados para o ponto MR6.

Pelo exposto, fica evidente a capacidade de generalizacdo das respostas RNA frente
ao caso de falta selecionado. Sendo assim, é possivel afirmar que as trés RNA estimam
corretamente os niveis de tenséo eficaz para as trés fases com excelente nivel de acerto,
fornecendo fortes indicios de que, caso haja interesse, por exemplo, pode-se definir um
novo ponto de carga adicional MR7 em qualquer localizagdo ao longo do SD em questao, e,
a partir das adaptagbes apontadas no item 4.2 do Capitulo 4, podem-se obter os

respectivos valores de tensao eficaz estimados pela metodologia neste novo ponto de
monitoramento remoto.
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Conclusao

s

A metodologia utilizada no trabalho é fundamentada no uso de ferramenta
inteligente, em especifico, de RNA. Sua aplicacdo se mostrou satisfatria na tarefa de se
monitorar remotamente os valores eficazes das tensbes em pontos distantes da
subestacéo, local este em que as redes neurais estdo localizadas e sendo supridas com as
medidas dos niveis de tensdo e corrente provenientes de um medidor de QEE da
subestacdo. Fica evidente, através do apresentado que a metodologia pode complementar
0 processo de monitoramento convencional do SD em estudo, realizado com a utilizagédo de

medidores fisicos de custo consideravel.

O conjunto de treinamento das RNA é bem diversificado, contando com distintos
casos possiveis de faltas elétricas uma vez que ha a variagdo da distancia dos pontos de
aplicacdo de curto-circuito e variagdo tanto na impedancia de falta como no angulo de
incidéncia da mesma. A boa diversidade de casos contribui ativamente na alta capacidade
de generalizacdo das RNA, de forma que estas sédo capazes de estimar corretamente os
niveis de tensao em qualquer ponto de interesse ao longo do SD em estudo, desde que
respeitando o dominio de operacgéo para o qual as RNA foram projetadas.

O procedimento para a obtengdo do monitoramento remoto de uma carga genérica
dentro do SD se mostrou eficaz, uma vez que apoés a realizagdo de uma investigacgéo inicial
da melhor topologia de RNA e sua aplicagdo no ponto de carga MR1 foi possivel, com as
devidas alteracdes e precaucdes indicadas, aplicar o método de monitoramento proposto
para os pontos MR2, MR3, MR4, MR5 e MR6, alocados ao longo do SD em estudo, e obter
resultados satisfatérios em todas estas cargas monitoradas. A quantidade de casos de
teste, quando analisados os seis pontos de carga escolhidos, com erros inferiores a 0,03
p.u entre a reposta deseja e a resposta estimada pelas RNA permaneceu entre 93,5% e
99,7%. A mesma andlise, considerando-se casos de teste com erros inferiores a 0,01 p.u.,

revela que de 85,3% a 99,4% dos casos de teste permaneceram nesta faixa de erro.

De fato, o elevado indice de acerto das RNA dos respectivos pontos monitorados,
obtido ao se adotar topologias idénticas para as mesmas, fornece fortes evidéncias de que
0 grau de complexidade das do mapeamento tensdes eficazes de cada uma das cargas
presentes no SD é similar e aproximadamente constante em relacdo ao ponto de
monitoramento escolhido (MRn), conferindo a metodologia proposta excelentes
perspectivas referentes a sua implementacdo pratica, tendo em vista que uma vez

adequadamente executada a investigacao inicial sobre a melhor topologia das redes, esta
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pode ser estendida a quaisquer cargas de interesse no SD, conforme os objetivos propostos

inicialmente neste trabalho.

Cabe ressaltar que o modelo exposto, da maneira como foi elaborado, é valido para
uma topologia especifica de operacdo do SD e um perfil de carregamento estatico. Sendo
assim, em trabalhos futuros serd possivel ampliar a metodologia proposta incluindo perfis
de carregamento do SD no treinamento das RNA. Além disso, ndo se descarta a
necessidade de um cuidado extra na escolha dos melhores pontos de aplicacdo das faltas,
considerando aspectos como a taxa de falhas dos alimentadores, poténcia de curto-circuito
das barras e os demais tipos de falta, ja que neste trabalho sdo abordadas apenas as faltas
monofasicas entre a fase A e o terra do sistema. Tais aspectos serdo fundamentais para
aprimorar a representatividade do SD, obtendo-se um banco de dados para treinamento
mais abrangente e consistente, elevando ainda mais a capacidade de generalizacdo das
RNA diante de outras condi¢cdes de operacdo do SD néo levadas em conta neste trabalho.
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Anexo

Anexo 1 - Cadigo de permuta aleatéria das matrizes

o°

saidal RNA = ones(200,17);
saidaz RNA = 2*ones (200,17);
saida3 RNA = 3*ones (200,17);
entrada RNA = 4*ones(6,3400);

o o°

o°

%% Redimensionamento das saidas

%Redimensiona saidal de 200x17 para 1x3400
matriz = saidal RNA;

sizemat?2 = size (matriz):;
k=1;
vetl = 0;

for i=l:sizemat2(1,1)
for j=l:sizemat2(1l,2)
vetl (k) = matriz(i,j);
k = k+1;
end
end
vetl; %Vetor 1x3400 com as saidas referentes a fase A

%Redimensiona saida2 de 200x17 para 1x3400

matriz = saidaZ RNA;
sizemat?2 = size(matriz);
k=1;

vet2 = 0;

for i=l:sizemat2(1,1)
for j=l:sizemat2(1,2)
vet2 (k) = matriz(i,j);
k = k+1;
end
end
vet2; %Vetor 1x3400 com as saidas referentes a fase B

%$Redimensiona saida3 de 200x17 para 1x3400
matriz = saida3 RNA;

sizemat?2 = size (matriz);
k=1;
vet3 = 0;

for i=1l:sizemat2(1,1)
for j=l:sizemat2 (1, 2)
vet3 (k) = matriz(i,j);
k = k+1;

vet3; $Vetor 1x3400 com as saidas referentes a fase C

%$Concatena as matrizes de entrada e as de saida

mat = [entrada RNA;vetl;vet2;vet3];
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%$Faz a permuta aleatdria dos elementos da matriz concatenada

matsize = size (mat);
nemb = 1000;

auxemb = 0;

colunas = 17;

serdo embaralhadas
$vetor de controle
for h=1:200

controle (h)=h;
end

%$Tamanho da matriz

gNumero de embaralhamentos
%Auxiliar

%Determina de quantas colunas

%$Troca de posicgdes dos elementos da matriz

for n=1:nemb

$Define os indices que serdo trocados

indice =
indice2 =

o°

nao
% serdo embaralhados

while ~mod(indice,colunas)==
indice = indice+1l;
end

while ~mod(indice2, colunas)==
indice2 = indice2+1;
end

round (matsize (1, 2) *rand(1,1));
round (matsize(1,2)*rand(1,1));

Garante que os indices sdo multiplos do numero de colunas que

%Indice recebe uma unidade a mais

indice+1;
indice2+1;

indice =
indice2 =

%$Verifica se os indices ndo sdo zero

if indice ==0
indice
end

1;

if indice2 == 0
indice2 =1
end

4

$Considera o caso em que o indice é maior que a matriz que sera

$permutada

if indice >= matsize(1,2)
indice = indice-colunas;
end

if indice2 >= matsize(1l,2)
indice2 = indice2-colunas;
end



end

mat;

%$Ajusta os valores do vetor de controle conforme sdo trocados na

Spermuta
if (indice==1 && indice2 ~=1)
auxcont = controle (1) ;
controle (1l)=controle((indice2-1)/17);
controle ((indice2-1)/17) = auxcont;
elseif (indice==1 && indice2 ~=1)
auxcont = controle((indice-1)/17);
controle((indice-1)/17)=controle(1);
controle(l) = auxcont;
elseif (indice==1 && indice2 ~=1)
auxcont = controle(l);
controle(l)=controle(l);
controle(l) = auxcont;
elseif (indice~=1 && indice2 ~=1)
auxcont = controle((indice-1)/17);
controle((indice-1)/17)=controle ((indice2-1)/17);
controle ((indice2-1)/17) = auxcont;
end

%$Faz a troca de posigdes em todas as linhas da matriz
for j=l:matsize(1l,1)
for i=0:colunas-1

auxemb (i+1) = mat(j,indice+i);
mat (j,indice+i) = mat (j,indice2+i);
mat (j,indice2+1i) = auxemb (i+l);

end
end

%$Saidas j& permutadas aleatoriamente

vetl
vet2
vet3
entrada RN

oo
o°

= mat(7,:);
mat (8, :);
(9,:)
A = mat(l:6,:);

= mat

$Redimensiona as saidas para o formato original

%Redimensiona saidal para 200x17

k=1;

for

end

i=l:sizemat2(1,1)
for j=l:sizemat2 (1, 2)
matriz(i,j) = vetl(k);
k = k+1;
end

saidal RNA = matriz;
smatriz

%$Redimensiona saida2 para 200x17

k=1;

for i=l:sizemat2(1,1)

for j=l:sizemat2(1l,2)
matriz(i,j) = vet2 (k);
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k = k+1;
end
end

saidaz RNA = matriz;
gmatriz

%Redimensiona saida3 para 200x17
k=1;
for i=l:sizemat2(1,1)
for j=l:sizemat2(1,2)
matriz(i,j) = vet3(k);
k = k+1;
end
end

saida3 RNA = matriz;
smatriz
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