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Resumo 

 

CAMARGO, F. S. P. Uma estimação alternativa, remota e continuada das variações de 

tensão em um sistema de distribuição utilizando redes neurais artificiais, 2012. 84f. 

Trabalho de Conclusão de Curso (Engenharia Elétrica com Ênfase em Sistemas de Energia 

e Automação) – Escola de Engenharia de São Carlos (EESC), Universidade de São Paulo, 

São Carlos – SP, 2012. 

 

O processo de monitoramento da energia elétrica fornecida às cargas alocadas em 

um sistema de distribuição está diretamente ligado à manutenção da qualidade da energia 

elétrica. Entretanto, alguns entraves são observados na execução deste monitoramento, 

tais como a elevada complexidade em se obter um panorama representativo do sistema, e o 

respectivo investimento financeiro associado a tal procedimento. Neste sentido, este 

trabalho apresenta um método de monitoramento remoto da tensão eficaz em uma ou mais 

cargas de interesse do sistema elétrico por meio de redes neurais artificiais. Para o 

desenvolvimento da técnica, utilizou-se uma base de dados, compilada a partir de um 

sistema de distribuição real devidamente modelado no software ATP (Alternative Transients 

Program), de maneira a treinar redes neurais artificiais específicas e capazes de estimar a 

tensão eficaz entregue às cargas analisadas. Ressalta-se que as redes neurais estimam os 

valores eficazes nas cargas monitoradas tomando-se apenas medidas das tensões e 

correntes trifásicas na subestação do sistema de distribuição. Os resultados relacionados 

ao desempenho das redes neurais indicam a eficácia e a possibilidade de se generalizar o 

método para todas as cargas no sistema, constituindo, portanto, uma alternativa 

complementar ao monitoramento convencional da qualidade da energia elétrica. 

 

 

 

 

 

Palavras Chaves: Qualidade da energia elétrica, sistema de distribuição de energia 

elétrica, monitoramento remoto, variações de tensão de curta duração, variações de tensão 

de longa duração, redes neurais artificiais. 
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Abstract 

 

CAMARGO, F. S. P. An alternative, remote and continuous estimation of voltage variations 

in a distribution system using artificial neural networks, 2012. 84p. Trabalho de Conclusão 

de Curso (Engenharia Elétrica com Ênfase em Sistemas de Energia e Automação) – Escola 

de Engenharia de São Carlos (EESC), Universidade de São Paulo, São Carlos – SP, 2012. 

 

The process of monitoring the power supplied to loads placed in a distribution system 

is directly linked to maintaining the power quality. However, some barriers are observed in 

carrying out the monitoring such as the increased complexity in obtaining a representative 

picture of the system, and the respective financial investment associated with such a 

procedure. In this sense, this work presents a method for remote monitoring of the root 

mean square (RMS) voltage on one or more important loads of the power system through 

artificial neural networks. For the technique development, a database was built from a real 

distribution system wich was properly modeled in the software ATP (Alternative Transients 

Program). This database was used to train artificial neural networks that are able to estimate 

the RMS voltage delivered to specific analyzed loads. It is noteworthy that artficial neural 

networks estimate the RMS values of loads monitored by taking only measures of the three 

phase voltages and currents at the power system substation. The results related to the 

performance of neural networks indicate the effectiveness and the possibility of extending 

the method to all loads in the system, thus constituting a complementary and alternative  

power quality monitoring process. 

 

 

 

 

 

 

 

Keywords: Power quality, distribution system, power quality, remote monitoring, short-term 

voltage variations, long-term voltage variations and artificial neural networks. 
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1. Introdução 

 Pode-se definir a qualidade da energia elétrica (QEE) como sendo a disponibilidade 

de energia na forma de onda puramente senoidal sem que haja alterações em sua 

amplitude e frequência (Dugan et al, 2003). No entanto, esta condição desejada, 

frequentemente, não é observada na prática. Em um sistema elétrico de potência (SEP) há 

diversos problemas e diferentes condições de operações que podem ocorrer e, por 

consequência, depreciar a QEE fornecida. Dentre os problemas mencionados, podem-se 

destacar os tipos de cargas acopladas ao sistema, a inserção de elementos que fazem uso 

de eletrônica de potência, os quais, por exemplo, podem inserir distorção harmônica na 

rede. Cabe salientar que harmônicos são componentes de uma onda periódica cuja 

frequência é um valor múltiplo inteiro da frequência fundamental (60Hz no caso do sistema 

elétrico brasileiro). Já a distorção harmônica se caracteriza pela injeção de corrente elétrica 

não linear em frequências diferentes da fundamental por meio de equipamentos, em geral 

com eletrônica de potência envolvida, acoplados ao sistema. Também se pode citar como 

problema que deprecia a QEE em um SEP a ocorrência de faltas (curtos-circuitos) ao longo 

do sistema de distribuição, dentre outros (Dugan et al, 2003). 

Como consequência da falta de QEE no SEP, é possível observar a ocorrência do 

mau funcionamento da carga alimentada e, dependendo de sua sensibilidade, pode ocorrer 

severa deterioração e inutilização da mesma. Além disso, em alguns casos, ocorrem perdas 

de processos industriais, cuja recuperação não será imediata, refletindo de imediato em 

prejuízos econômicos consideráveis, já que, elevadas quantidades de produtos são 

perdidos e fases de processos interrompidas (Dugan et al, 2003). 

 A tendência de uma exigência por uma melhor QEE fornecida, seja por parte dos 

consumidores ou das concessionárias de energia elétrica, é crescente na atualidade. Isto é, 

na década dos anos 2010. Assim como os consumidores industriais, os consumidores 

comerciais e residenciais têm se tornado mais cientes dos seus direitos, e demandam 

serem supridos por energia elétrica com qualidade. Isso se observa pelo surgimento e 

consolidação de normatizações que visam assegurar a QEE aos consumidores conforme 

descrito no módulo 1 do PRODIST (Procedimento de Distribuição de Energia Elétrica no 

Sistema Elétrico Nacional) (ANEEL, 2012a). Assim, fica evidente a preocupação com 

assuntos relacionados à QEE e suas possíveis implicações legais e econômicas. 

Entre os fenômenos que comprometem a QEE, destaca-se, pela frequência 

(número) de ocorrência, o afundamento de tensão. Dados apontam que 87% de todas as 

ocorrências de fenômenos relacionados à QEE dizem respeito a este tipo de distúrbio 

(Goldstein e Speranza, 1982). 
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Entre as possíveis causas dos afundamentos de tensão, está a ocorrência de faltas 

(curtos-circuitos) ao longo do sistema elétrico de potência, dado que o afundamento de 

tensão no ponto da falta se propaga ao longo da linha (Bollen et a, 2006) 

Neste contexto, tem-se que cargas sensíveis alocadas em diferentes pontos de um 

SEP podem vir a operar inadequadamente sob certas variações de tensão (afundamentos). 

Como fato, tem-se que distintas situações de faltas ocorridas sobre o sistema elétrico 

podem vir a caracterizar diferentes níveis de tensão abaixo do exigido, que, por sua vez, 

devem ser avaliados e, na medida em que as condições técnicas permitirem, mitigados.  

Desta forma, garantir níveis aceitáveis de QEE é fundamental para que cargas 

sensíveis alocadas em diferentes pontos do sistema elétrico possam operar de forma 

adequada. Todavia, o processo de avaliação da QEE, no cenário atual, apresenta-se como 

um procedimento não trivial e de investimento financeiro relativamente considerável. 

 Portanto, o desenvolvimento de metodologias que possam ser técnica e 

financeiramente aplicadas ao monitoramento dos distúrbios recorrentes ao SEP é de 

fundamental importância. Um dos principais problemas para a consolidação das 

metodologias observadas até então é a falta de informação relevante sobre quais 

localidades fornecem a melhor representação da situação de operação enfrentada pelo 

sistema de energia elétrica sob o ponto de vista da QEE.. Ademais, o caráter estocástico 

inerente à ocorrência dos distúrbios de QEE em um SEP implica em se considerar a 

topologia do sistema, assim como manipular outros parâmetros menos controláveis para se 

obter uma estratégia de monitoramento eficaz (Bollen e Gu, 2006).  

Sabendo das dificuldades de se realizar o monitoramento de distúrbios de QEE, o 

alto custo de implantação de medidores de QEE e a crescente demanda por parte de todos 

os tipos de consumidores de energia elétrica por um alto nível de QEE, propõe-se o 

desenvolvimento de uma metodologia que seja capaz de fornecer dados que demonstrem 

como o SEP reage, em cada um dos seus pontos, utilizando uma importante técnica de 

inteligência artificial, as redes neurais artificiais (RNA). O intuito é monitorar os níveis de 

tensão eficaz em um, ou mais, pontos de interesse dentro de um SD qualquer, para 

averiguar os níveis QEE, relacionados principalmente aos afundamentos de tensão. A 

metodologia visa, a partir das correntes e tensões eficazes medidas na subestação do SD, 

estimar os níveis de tensão em um ponto qualquer de interesse dentro deste sistema. 

Define-se ponto de interesse como sendo uma carga (consumidor) pertencente ao SD em 

estudo, na qual é necessário realizar uma medição de forma continuada e avaliação dos 

níveis de tensão. 
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1.1. Objetivos do trabalho 

O principal objetivo do trabalho é aprimorar e generalizar uma metodologia que 

baseada nos valores eficazes das tensões e correntes trifásicas, medidos na subestação de 

um SD de energia, seja capaz de quantificar o valor eficaz da tensão em um ponto genérico, 

definido e de interesse do usuário (que neste é representado pela figura da concessionária 

de distribuição de energia), dentro do SD em questão. Desta maneira, pelo valor da tensão 

eficaz apontado para um ponto qualquer sobre o SD, poderá ser realizada uma análise 

remota e continuada de possíveis problemas relacionados à QEE. 

Cabe colocar que a metodologia a ser aprimorada e generalizada fará uso de RNA. 

Estudos iniciais com relação a topologia, arquitetura e algoritmos de treinamentos das RNA 

já foram determinados e apresentados anteriormente em Bottura (2010) e serão tomados 

como base para a otimização e generalização do procedimento de monitoramento descrito 

sobre o SD. 

Com base nos dados representativos do SD já utilizados em Bottura (2010), um 

novo banco de dados será formulado buscando atender a uma generalização a ser aplicada 

de forma independente a mais de um ponto de monitoramento sobre o SD em análise.   

Este novo banco de dados será compilado por meio de simulações de faltas no SD 

modelado via o software ATP (Alternative Transients Program) por meio de uma interface 

gráfica (ATPDraw) (Leuven EMTP Center, 1987). Pela reestruturação da forma como os 

dados serão apresentados às RNA, será possível alcançar o desejado aprimoramento e 

generalização de todo o processo de aplicação da metodologia. Cabe ressaltar que a 

generalização ocorrerá a partir da comprovação da eficácia da metodologia por meio de 

aplicação do monitoramento da tensão para diversos pontos de análise ao longo do SD em 

estudo, via RNA, a partir de medidas realizadas na subestação do mesmo. 

1.2. Apresentação do documento 

O presente documento apresenta, além deste capítulo introdutório, mais sete 

capítulos. O capítulo dois apresenta uma revisão bibliográfica acerca dos principais 

conceitos relacionados à QEE e as recentes pesquisas desenvolvidas nesta área. Na 

sequência, o capítulo três traz os principais aspectos teóricos sobre RNA. O capítulo quatro 

apresenta a metodologia de monitoramento da tensão eficaz dentro do SD em estudo. O 

capítulo cinco introduz o SD previamente modelado computacionalmente que será objeto de 

estudo. O capítulo seis apresenta a compilação dos conjuntos de treinamento e validação 

das RNA que são utilizadas ao longo deste trabalho. Além disso, são demonstrados os 

casos de curto-circuito utilizados, os pontos de monitoramento remoto e também todo o 
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trabalho de compilação e expansão do banco de dados das RNA para pontos genéricos 

sobre o sistema elétrico.  

Para o capítulo sete, reservva-se uma análise do desempenho da metologologia 

proposta. Neste capítulo, o desempenho da metodologia é demonstrado por meio da 

apresentação de tabelas com os índices de acertos das RNA para três faixas de erros 

determinadas, bem como pelos respectivos histogramas de erros, e pela avaliação da 

acuracidade das mesmas por meio da escolha de um ponto de aplicação de um caso de 

falta elétrica específico. Neste cenário, são averiguados graficamente os resultados 

produzidos por cada uma das RNA em comparação com o resultado esperado. Ademais, 

são exibidos resultados relacionados ao maior erro atingido pelas RNA e também os 

tempos de treinamento das mesmas. 

Finalmente, o capítulo oito traz as principais conclusões obtidas com a realização 

deste trabalho e também tópicos de interesse para o aprimoramento e continuidade da 

metodologia proposta nesta pesquisa. 
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 2. Revisão Bibliográfica 

 O presente capítulo traz os principais fundamentos teóricos relacionados à QEE, 

salientando-se os principais distúrbios que influenciam a mesma no âmbito da tensão 

fornecida. Além disso, também são exploradas outras pesquisas desenvolvidas na 

atualidade que fazem uso de ferramentas inteligentes, como as RNA, por exemplo, e que se 

apresentam de grande relevância para o desenvolvimento deste campo de pesquisa. 

2.1. Qualidade da energia elétrica 

 Na atualidade, a QEE caracteriza um fator determinante na competitividade em 

praticamente todos os setores industriais e de serviços. No entanto, ao longo das últimas 

décadas o setor de energia elétrica vem atravessando problemas oriundos, principalmente, 

da alteração da natureza de suas cargas consumidoras, desregulamentação do setor 

elétrico em curso a nível mundial, proliferação de autoprodutores, surgimento de novas 

tecnologias de geração e a crescente pressão por adoção de tais tecnologias em função 

dos fatores ambientais. Esses fatores têm causado alterações significantes no modo de 

operação do sistema elétrico, o que pode implicar em alterações consideráveis no 

fornecimento da QEE. 

 Nos SD, a energia elétrica é transportada por extensas malhas de linhas aéreas e / 

ou subterrâneas de distribuição até ser entregue ao consumidor final. Ao longo deste 

processo, a energia elétrica percorre grandes distâncias e, por razões operacionais, sua 

tensão pode ser reduzida e / ou elevada por transformadores alocados sobre o SEP. Neste 

processo, manter o nível de tensão dentro de limites operacionais aceitáveis é uma tarefa 

árdua que requer medidas de controle e acompanhamento de órgãos de fiscalização, bem 

como das concessionárias fornecedoras de energia elétrica (Kagan et al, 2005). 

 A fim de avaliar se um SEP está operando dentro das condições nominais, duas 

grandezas elétricas básicas são frequentemente monitoradas: a frequência e a tensão. No 

Brasil, é aceitável que a frequência situe-se em 60,0Hz ± 0,5Hz conforme se estabelece no 

módulo 8 do PRODIST (ANEEL, 2012b). Já quanto à tensão elétrica, três aspectos 

relevantes devem ser observados, sendo eles, a forma de onda, que deve ser a mais 

próxima de uma senóide pura, a simetria do sistema elétrico, isto é, iguais níveis de 

corrente e tensão em todas as fases em qualquer ponto de sua configuração, e as 

magnitudes das tensões, que devem permanecer dentro dos níveis aceitáveis, como será 

descrito detalhadamente mais adiante. 
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 Todavia, nos SEP há diversos fenômenos aleatórios e / ou intrínsecos ao seu 

funcionamento, que provocam nas grandezas elétricas mencionadas certo desvio das 

condições nominais, caracterizando, portanto, um distúrbio na QEE. 

 Um dos principais distúrbios da QEE é a variação de tensão, caracterizado pela 

permanência do nível de tensão fora da faixa nominal por um determinado intervalo de 

tempo. Podem-se subdividir as variações de tensão em dois principais grupos, sendo eles: 

variações de tensão de longa duração (VTLD) e variações de tensão de curta duração 

(VTCD). 

 A classificação VTLD é designada a fenômenos de variação de tensão com duração 

superior a um minuto, cuja tensão monitorada se eleva entre 1.1 p.u e 1.2 p.u. Isto é, uma 

elevação da tensão entre 10% e 20% do valor nominal por mais de um minuto, tem-se o 

que se denomina sobretensão. Já quando o valor da tensão remanescente situa-se em um 

patamar abaixo de 0,9 p.u. por um intervalo de tempo superior a um minuto, caracteriza-se 

o fenômeno de subtensão (Dugan et al, 2003). A Tabela 1, traz os intervalos das definições 

das VTLD. As principais causas de VTLD são variações de carga no SEP, chaveamentos 

no mesmo e também faltas sustentadas no sistema que podem causar sobretensão, 

subtensão e /ou interrupção (Dugan et al, 2003). 

Tabela 1 - Classificação das variações de tensão de curta e de longa duração. 

Fenômeno Duração Típica Amplitude de Tensão Típica 

Variação de Tensão de Curta Duração 

Instantânea   

        Interrupção 0,5 – 30 ciclos < 0,1 p.u. 

        Afundamento 0,5 – 30 ciclos 0,1 – 0,9 p.u 

        Elevação 0,5 – 30 ciclos >1,1p.u. 

Momentânea   

        Interrupção 30 ciclos – 3s < 0,1 p.u. 

        Afundamento 30 ciclos – 3s 0,1 – 0,9 p.u 

        Elevação 30 ciclos – 3s >1,1p.u. 

Temporária   

        Interrupção 3s – 1 min < 0,1 p.u. 

        Afundamento 3s – 1 min 0,1 – 0,9 p.u 

        Elevação 3s – 1 min >1,1 p.u. 

Variação de Tensão de Longa Duração 

Interrupção > 1 min 0 p.u. 

Subtensão > 1 min 0,8 – 0,9 p.u. 

Sobretensão > 1 min > 1,1 p.u. 
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A sobretensão, geralmente é causada a partir do processo de desligamento de 

grandes cargas do sistema ou da energização de bancos de capacitores ao longo do 

mesmo. Como dito, essa pode comprometer a vida útil de equipamentos. Já a subtensão, 

em geral, é originada a partir de, por exemplo, excesso de carregamento de circuitos 

alimentadores ou pela entrada de grandes cargas no sistema. Como efeito, estes distúrbios 

podem acarretar na retirada de operação de equipamentos eletrônicos sensíveis, elevação 

no tempo de partida de máquinas de indução, dentre outras consequências negativas às 

cargas sensíveis do sistema. Caso haja uma situação mais grave de VTLD, tem-se uma 

interrupção sustentada, na qual a tensão elétrica permanece nula por tempo superior a um 

minuto (Dugan et al, 2003). 

 Por outro lado, os fenômenos de VTCD estão relacionados a tempo de duração 

inferiores a um minuto. São subdivididos em três principais categorias: variações 

instantâneas (de 0,5 a 30 ciclos), momentâneas (de 30 ciclos a 3 segundos) e temporárias 

(de 3 segundos a 1 minuto) (Dugan et al, 2003). Com respeito à magnitude da tensão, 

pode-se classificar uma VTCD em interrupção, afundamento e elevação de tensão 

conforme se observa na Tabela 1. 

 Em geral, uma VTCD é causada por condições de falta ao longo do SEP, 

energização de grandes cargas que necessitam de elevadas correntes na partida, ou perda 

intermitentes de conexões nos cabos de um SEP. Ao se tratar de uma falta elétrica, 

dependendo do ponto de ocorrência e das condições do sistema, pode-se gerar um 

decréscimo de tensão (afundamento) ou aumento da tensão (elevação). Ou ainda, completa 

perda de tensão (interrupção). A condição faltosa pode se localizar perto ou distante do 

ponto de monitoramento de interesse. Desta forma, diferentes VTCD podem ocorrer até que 

o sistema de proteção atue. Com isso, as VTCD podem resultar em redução da vida útil de 

determinados equipamentos e também causar a completa inutilização ou parada dos 

mesmos. 

 A interrupção de tensão é uma VTCD que ocorre quando a tensão ou corrente de 

carga permanece em um valor inferior a 0,1 p.u. por um período de tempo inferior a um 

minuto. Essa é consequência principalmente da ausência de fornecimento de energia, 

falhas nos equipamentos e também mau funcionamento de sistemas de controle.  

 O aumento da tensão eficaz do sistema em cerca de 0,1 p.u. a 0,8 p.u., com duração 

de até 1 minuto, é chamado de elevação de tensão. Este fenômeno ocorre principalmente 

nas fases sãs de um circuito trifásico, quando há um curto-circuito em outra fase do 

sistema. Usualmente, elevações de tensão estão relacionadas à faltas elétricas, porém, não 

são tão comuns quanto os afundamentos de tensão. Sua duração está ligada diretamente 
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aos ajustes dos dispositivos de proteção, à natureza da falta (permanente ou temporária) e 

à sua localização no sistema. Ocorre principalmente em situações de saídas de grandes 

cargas, energização de grandes bancos de capacitores ou alterações nos taps de 

transformadores. 

Em meio aos diferentes tipos de distúrbios de QEE, o afundamento de tensão é 

aquele que desperta maior interesse, principalmente pelo alto nível de incidência e os 

principais prejuízos que esse pode causar. Um afundamento de tensão é uma VTCD 

caracterizada por um decréscimo no valor da tensão remanescente para níveis entre 0,1 

p.u. e 0,9 p.u., com duração inferior a 1 minuto, conforme ilustra a Tabela 1. Em geral, estão 

associados à faltas no sistema. Todavia, também podem estar relacionados a energização 

de grandes cargas, partidas de grandes motores ou pela corrente de magnetização de 

transformadores (Huang et al,1998; Dugan et al, 2003). 

 Cabe acrescentar que o módulo 8 do PRODIST (ANEEL, 2012b), responsável por 

estabelecer normas para  a QEE do sistema elétrico brasileiro, define intervalos diferentes 

dos apresentados na Tabela 1 para as variações de tensão. Neste documento, o 

afundamento momentâneo de tensão compreende um intervalo de tempo superior ou igual 

a um ciclo, e inferior ou igual a três segundos. Já o temporário compreende em uma faixa 

de tempo superior a três segundos e inferior a três minutos. A definição destes intervalos 

apresenta-se como uma classificação menos rígida, quando comparada à literatura técnica 

correlata, no que diz respeito a garantir a qualidade da tensão elétrica entregue aos 

consumidores, já que afundamentos de tensão, mesmo quando inferiores a um ciclo, 

também podem ser danosos às cargas sensíveis alocadas no SD. 

 No sentido de prevenir que equipamentos sensíveis às variações de tensão tenham 

seus desempenhos comprometidos, curvas de sensibilidade foram desenvolvidas a fim de 

especificar zonas de tolerância de operações de equipamentos . 

Um exemplo deste tipo de estudo de sensibilidade foi o que resultou na curva 

CBEMA (Computer Business Manufacturers Association) (Dugan et al, 2003). Esta curva, 

representada na Figura 1, desenvolvida por fabricantes de computadores eletrônicos, foi a 

primeira do tipo a atender aos propósitos mencionados, caracterizando-se como referência 

principal aos estudos de tolerância de equipamentos eletrônicos. A Figura 1 traz um 

exemplo da curva CBEMA. Nesta, são destacadas três principais regiões de operação 

representadas pelas letras A, B e C. A região A caracteriza a região normal de operação, 

isto é, zona aceitável para determinada atividade de operação. A região B indica uma zona 

de perigo de trabalho, na qual pode haver ruptura de isolação de equipamentos. Por fim, a 
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região demarcada por C mostra uma zona também perigosa de trabalho, na qual há a 

possibilidade de paralisação do funcionamento de equipamentos. 

 

Figura 1 - Curva CBEMA adaptada de Kyei et al (2002). 

 A popularização da curva CBEMA motivou a criação de um novo padrão para a 

avaliação dos efeitos das variações de tensão sobre os equipamentos eletrônicos, a 

chamada curva ITIC (Information Technology Industry Council). Essa curva, ilustrada na 

Figura 2, apresenta uma divisão mais criteriosa com respeito aos níveis da magnitude e 

duração das VTCD, conforme exposto por Dugan et al (2003).  

A curva ITIC apresenta demarcações de regiões semelhantes às encontradas na 

curva CBEMA, conforme indicado anteriormente. Ou seja, na curva ITIC, a região denotada 

por A indica a zona de operação normal dos equipamentos, e as zonas B e C são 

chamadas zonas de perigo, cujas condições operacionais ocasionam mau funcionamento 

de cargas sensíveis. 
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Figura 2 - Curva ITIC adaptada de Kyei et al (2002). 

2.2.  Redes neurais artificiais e ferramentas matemáticas aplicadas na análise 

de QEE 

A pesquisa de Devaraj et al. (2006) propõe um método de detecção e classificação 

de problemas relacionados à QEE utilizando, conjuntamente a análise do sinal por 

Transformada Wavelet (TW) e RNA. Isto é, esta abordagem se dá pela aplicação da TW 

sobre sinais de corrente e tensão, sendo possível detectar e extrair características 

relacionadas a vários tipos de distúrbios elétricos, já que esta ferramenta é sensível a 

irregularidades no sinal (com a presença de distúrbios de QEE), e insensível a 

comportamento regular do sinal (sem a presença de distúrbios de QEE). Em seguida, com 

os dados obtidos após a análise dos sinais de corrente e tensão elétrica pela aplicação da 

TW, os autores propõem que os mesmos sejam utilizados para treinar uma RNA específica, 

que possui como função realizar a classificação dos distúrbios de QEE entre: (i) 

afundamento de tensão, (ii) elevação de tensão, (iii) distorção harmônica e (iv) transitórios 

devidos a chaveamentos. Para tanto, afirmam os autores, que cada distúrbio de QEE, 

representado nos sinais de corrente e tensão, apresenta desvios únicos da forma de onda 

senoidal pura, que são detectados pela RNA. Dessa maneira, é possível prover a 

classificação de forma confiável dos distúrbios de QEE mencionados. A metodologia foi 

testada por meio da simulação de um SEP de quatro barras no qual foram estudados vários 

tipos de curtos-circuitos que permitam caracterizar os distúrbios de QEE. Além disso, foram 
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simuladas situações de injeção de harmônicos na rede, que representam anomalias de 

QEE vinculadas às cargas não lineares alocados no sistema. Cabe ressaltar que o índice de 

acerto das classificações realizadas pela RNA foi elevado, o que e atendeu aos propósitos e 

objetivos iniciais do trabalho em questão, evidenciando a aptidão da técnica inteligente ao 

monitoramento da QEE no sistema elétrico considerado.  

O uso de RNA aplicada à QEE também é explorado no trabalho de Srinivasan et al. 

(2006). Neste, os autores propõe um método de identificação de fontes geradoras de 

harmônicos, em que diferentes RNA são treinadas a fim de extrair a assinatura única dos 

dispositivos (cargas) que injetam harmônicos no sistema, observando-se unicamente a 

forma de onda da corrente elétrica dos mesmos. Uma base de dados foi construída por 

meio de experimentos conduzidos em laboratório, nos quais se dispunha de uma instalação 

elétrica contendo várias cargas lineares e não lineares alocadas paralelamente. Inúmeras 

combinações destas cargas proporcionaram a observação dos respectivos sinais de 

correntes, tomados no ponto de acoplamento comum. Sobre estes sinais de corrente, a 

transformada de Fourier foi aplicada a fim de preparar o banco de dados de teste e 

validação das RNA. A metodologia de classificação dos distúrbios de QEE desenvolvida foi 

testada e aponta para uma excelente identificação da assinatura de corrente dos 

dispositivos alocados na instalação elétrica. Cabe destacar que o os melhores resultados 

foram obtidos pela aplicação de redes do tipo Perceptron de Múltiplas Camadas (PMC). 

Na mesma linha de pesquisa, Talaat et al. (2008) também afirma que o processo de 

análise e avaliação da QEE é complexo de ser realizado, já que a modelagem de sistemas 

de energia é de elevada complexidade. Além disso, é necessário processar uma 

significativa quantidade de informações disponível. Diante deste cenário, os autores propõe 

uma metodologia que utiliza técnicas inteligentes capazes de classificar eventos 

relacionados à falta de QEE em um SEP. As técnicas mencionadas envolvem a aplicação 

da TW, algoritmo de agrupamento subtrativo (cluster subtractive algorithm) e RNA. A 

metodologia de classificação dos eventos de QEE é validada pela geração de sinais de 

tensão que simulam diferentes anomalias relacionadas à QEE, utilizados como entradas 

para um módulo de decomposição de sinal, em que se aplica a TW. A seguir, um módulo de 

extração de características é utilizado para caracterizar alguns coeficientes representativos 

dentro de todos os gerados da análise de multi-resolução do sinal efetuada no primeiro 

módulo. Este estágio de extração utiliza o algoritmo de agrupamento subtrativo para a 

decomposição de múltiplos sinais. O propósito desse agrupamento é identificar grupos 

naturais de informações dentro da base de dados gerada, com o intuito de produzir uma 

representação concisa dos tipos de distúrbios de QEE envolvidos no problema. Por fim, a 

saída do estágio de extração é utilizada para treinar as RNA. Cabe salientar que é utilizada 



12 
 

uma RNA específica para cada tipo de entrada (distúrbio), isto é, características de 

agrupamento identificadas pelo bloco de extração de característica. Dados conclusivos do 

estudo indicam que as RNAs treinadas atingiram níveis de acerto satisfatórios, cerca de 

98%, apresentando-se, portanto, como uma adequada estratégia para a classificação de 

eventos relacionados à QEE.  

 A classificação de eventos envolvendo QEE também é investigada na pesquisa de 

Devaraj et al. (2008), em que os autores apresentam uma técnica que combina 

transformadas de Fourier e Wavelet com o uso de RNA, com o intuito de se desenvolver um 

sistema automático de reconhecimento de distúrbios de QEE. Analogamente às pesquisas 

já mencionadas, um banco de dados é gerado através de simulações computacionais do 

SEP. Sobre este banco de dados, aplicam-se as transformadas de Fourier e Wavelet nos 

sinais de corrente e tensão a fim de se extrair características úteis à classificação de 

distúrbios de QEE. Ao final de todo o processo essas características são utilizadas para 

treinar uma RNA que possui como função a classificação dos distúrbios de QEE 

propriamente ditos. Sobre os seis distúrbios considerados, o índice de acerto das RNA 

utilizadas na técnica de classificação proposta foi de 99,6. 

  O uso de rede neurais também é explorado no sentido de estimar a localização de 

faltas elétricas em uma linha de transmissão, como é proposto por Abdollahi et al. (2010). 

Neste trabalho os autores realizam um estudo comparativo de desempenho entre as 

transformadas discretas de Fourier e Wavelet a fim de estimar a localização do ponto onde 

ocorreu determinada falta elétrica em uma linha de transmissão.  

A pesquisa de Bottura (2010) apresenta uma metodologia de monitoramento dos 

valores eficazes da tensão em um sistema de distribuição por meio do uso de RNA. O 

estudo engloba aspectos da modelagem computacional do SEP em estudo, a determinação 

da melhor topologia das RNA, algoritmo de treinamento, bem como o melhor 

posicionamento de faltas elétricas monofásicas ao longo do SEP, a fim de caracterizar um 

banco de dados que compreende diversas situações de operação sobre o mesmo. A 

técnica utilizada visa montar um banco de dados com as correntes e as tensões trifásicas 

registradas na subestação do SEP e também os valores eficazes das tensões em um 

determinado ponto de interesse. Este banco de dados é utilizado com a finalidade de treinar 

três redes neurais que estimam a tensão trifásica em um ponto de interesse. Para o SEP 

em estudo foi definida que a topologia 6-15-10-1 (seis neurônios na camada de entrada, 15 

e 10 nas duas camadas intermediárias, e 1 neurônio na camada de saída) com algoritmo de 

treinamento de Levenberg-Marquardt apresentou melhor desempenho, com índice de 
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acerto médio de 95,57% quando há uma tolerância de 0,03 p.u. entre o valor esperado e o 

valor estimado da tensão eficaz nos pontos de interesse. 

Pela revisão bibliográfica realizada neste trabalho, é possível afirmar que a utilização 

de ferramentas inteligentes, em especial as RNA, em assuntos relacionados à QEE, tais 

como classificação e monitoramento de distúrbios da mesma, são indícios que sustentam a 

oportunidade de se pesquisar nesta área a fim de garantir soluções complementares às 

existentes na atualidade. Assim, dá-se a motivação e a inspiração de continuar o estudo 

nesta grande área, já que a tendência de uso de ferramentas inteligentes tem mostrado 

resultados extremamente significativos. No sentido do monitoramento remoto da QEE em 

um ponto qualquer de interesse dentro de um SD, destaca-se o fato de que uma das 

principais consequências é a redução do valor econômico necessário quando 

implementados os novos métodos, uma vez que, de forma geral, podem ser utilizados 

complementarmente aos dispendiosos equipamentos de medição de QEE atuais. 



14 
 



15 
 

3. Redes neurais artificiais  

No presente capítulo, no item 3.1, é apresentada uma introdução sobre os principais 

conceitos de RNA. Nos itens 3.2 e 3.3 é abordada a evolução histórica das principais 

arquiteturas e o tipo de treinamento vinculado a estas arquiteturas, além da forma como 

estes conceitos são aplicados no presente trabalho.  

3.1. Introdução às redes neurais artificiais 

As RNA constituem uma ferramenta inspirada na maneira como o cérebro humano 

realiza uma tarefa em particular, ou uma função de interesse. A RNA, na prática, é 

geralmente implementada por meio de componentes eletrônicos ou simulações 

computacionais em um computador digital. Seu funcionando é baseado em um importante 

aspecto do processo de aprendizagem do cérebro humano, isto é, uma RNA é capaz de 

aprender, ou extrair conhecimento, por meio de exemplos, e, posteriormente, generalizar o 

conhecimento adquirido de tal forma a ser aproveitado em diversas aplicações (Haykin, 

2008). 

A capacidade de generalização das RNA está ligada ao fato de que estas são 

capazes de produzir respostas às saídas que não faziam parte do processo de 

aprendizagem da mesma. Estas qualidades, além da tolerância a falhas, aproximação de 

funções e previsões de resultados, conferem às RNA excelentes características que podem 

ser utilizadas em complexos problemas cuja solução analítica não é trivial.  

O problema da estimação do valor eficaz da tensão elétrica em um determinado 

ponto de monitoramento de interesse dentro de um sistema elétrico, como se apresenta 

nesta pesquisa, por exemplo, é de difícil execução e, além disso, encontrar uma solução 

analítica, apresenta-se como procedimento pouco viável. Dessa forma, o uso de RNA como 

estratégia para a obtenção do monitoramento desejado, caracteriza-se como uma 

importante e eficaz alternativa para a solução do problema mencionado. 

A fim de atingir altos níveis de desempenho, uma RNA emprega uma rede 

interconectada de unidades de processamento de dados chamadas de neurônios (Haykin, 

2008), como pode ser visto na representação da Figura 3. 

Com o intuito de se obter um modelo neural, três aspectos devem ser considerados, 

conforme ilustrado na Figura 3. O primeiro deles é a existência de um conjunto de sinapses, 

ou conexões, entre os neurônios. Cada entrada xj do neurônio k está associada a um peso 

sináptico, cujo respectivo sinal de entrada será multiplicado pelo peso sináptico wkj 
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associado. O segundo aspecto a ser considerado é o somador. Este tem por função somar 

os sinais que foram devidamente ponderados pelos pesos sinápticos, constituindo-se, 

portanto, um combinador linear cuja saída é dada pelo campo local induzido denotado por 

vk. O termo wk0 ilustrado na Figura 3 chamado bias, consiste em um valor fixo pré-

determinado, cujo objetivo é inserir um limiar de ativação ao neurônio, conforme registrado 

na Equação (1), que traz a expressão para o campo local induzido.  

0

1

k

m

j

kjjk wwxv 


 (1) 

 

Finalmente, o terceiro aspecto a ser destacado neste modelo é a função de ativação, 

cuja finalidade é limitar a amplitude da saída de um neurônio (Haykin, 2008). Por fim, uma 

função de ativação 



(.) limita o valor da saída do neurônio k em um valor finito em termos 

do potencial de ativação Equação (2). 

 kk vy   (2) 

 

 

Figura 3 - Modelo matemático de um neurônio. 

  

Os tipos mais comuns de funções de ativação são: a função de limiar, função linear 

por partes, função sigmoide, função sinal e, tangente hiperbólica. 
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 Destaca-se o uso das funções de ativação linear por partes e da tangente 

hiperbólica, por serem os tipos de funções utilizadas nesta pesquisa, além de serem as 

mais recorrentes. A primeira delas se assemelha a uma função do tipo rampa com uma 

inclinação α no intervalo em que Vvk  , em que    R. Fora deste intervalo, assume valor 

unitário de      e valor nulo se      . Assim, define-se a função de ativação linear por 

partes como sendo: 

 ( )  {
        

           
         

 (3) 

 

Para um valor suficientemente grande de α tem-se uma função do tipo limiar citada 

anteriormente. A Figura 4 ilustra graficamente o comportamento da função de ativação 

linear por partes. 

 

Figura 4 - Comportamento da função de ativação do tipo linear por partes. 

  

A função de ativação hiperbólica é dada pela Equação (4). Esta função tem papel 

importante no treinamento de uma rede perceptron de múltiplas camadas com algoritmo de 

retropropagação, já que é capaz de acelerar a convergência do mesmo quanto ao número 

de iterações (Haykin, 2008). 

 ( )       ( ) (4) 
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 Na Figura 5 há uma representação gráfica do comportamento da função de ativação 

hiperbólica. 

 

Figura 5 - Comportamento da função de ativação hiperbólica. 

 

Cabe salientar que a aprendizagem de determinado padrão de comportamento de 

um sistema em análise é consequência da devida alteração dos valores dos pesos 

sinápticos ao longo de um processo iterativo, que segue uma determinada regra de 

aprendizado, caracterizando o algoritmo de aprendizagem, conforme explicado em detalhes 

nos itens que seguem. 

 

3.2 Principais arquiteturas de redes neurais artificiais supervisionadas  

  A arquitetura de uma RNA diz respeito à forma como os neurônios estão distribuídos 

topologicamente, ou seja, a maneira como eles estão interconectados. As RNA podem ser 

divididas em duas principais categorias relacionadas às arquiteturas, sendo elas: 

arquiteturas de apenas uma camada, ou arquiteturas com múltiplas camadas. 

 Ademais, a arquitetura está diretamente relacionada com o tipo de treinamento, uma 

vez que o algoritmo de treinamento utilizado depende do modo conforme estão distribuídas 

as conexões entre os neurônios da rede. 
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3.2.1 Redes de camada única 

 

 A arquitetura de RNA de camada única apresenta uma camada de entrada e uma 

camada de saída apenas. Assim, a camada que contém os chamados nós computacionais 

já é a camada de saída da rede. Na Figura 6, tem-se ilustrada uma rede de camada única.  

 

Figura 6 - Rede neural de camada única. 

 

Os principais exemplos de redes de camada única são as redes Perceptron e 

ADALINE.  Dentre as principais funções dessas redes, destaca-se a habilidade de fazer a 

separação de padrões que podem ser linearmente separáveis. 

A rede Perceptron é concebida utilizando o modelo de neurônio não linear de 

McCulloch-Pitts, com função de ativação do tipo limiar ou sinal. Ou seja, limita-se 

abruptamente a saída do neurônio. Dessa forma, caracteriza-se uma regra para se 

discriminar estímulos de entradas em duas diferentes classes, tomando-se dois diferentes 

tipos de saídas produzidos pela Perceptron (Haykin, 2008). A Equação (5) representa a 

saída da rede neural: 

   ( )   (∑      

 

   

) (5) 



20 
 

De acordo com Silva et al (2010), a Equação (5) representa um hiperplano que 

divide o espaço euclidiano m-dimensional (fronteira de decisão), definido pelos (m) 

estímulos de entrada em duas regiões (A e B). Para o caso bidimensional, ou seja, m = 2, 

obtém-se o hiperplano que se resume a uma reta como fronteira de separação.  

A rede monocamada Perceptron é treinada segundo o princípio de aprendizado de 

Hebb, no qual a atualização dos seus pesos sinápticos é realizada por um incremento (  ) 

dado pela Equação (6): 

     ( ( )   )  ( )                (6) 

Na Equação (6), observa-se que a alteração dos pesos sinápticos depende do 

produto da entrada x(n), do sinal de erro vindo da diferença entre a saída desejada e a 

saída produzida pela rede (d(n)-y), e também da taxa de aprendizagem dada por ( ). 

De forma complementar ao Perceptron, desenvolveu-se a rede monocamada 

ADALINE, o que trouxe importante contribuição ao desenvolvimento dos estudos de RNA. A 

principal inovação se dá na introdução do princípio de aprendizado da regra Delta (Silva, 

2010). O processo de aprendizado da regra delta consiste em um algoritmo supervisionado  

com a finalidade de minimizar o erro quadrático médio entre a saída do combinador linear 

v(n) e a saída desejada d(n). A regra Delta é expressa na Equação (7): 

    ( ( )   ( )) ( )                (7) 

 

 Cabe salientar que a principal diferença entre a rede Perceptron e ADALINE está no 

fato de que a última faz a minimização das distâncias dos padrões classificados em relação 

a uma única fronteira de decisão. Já o Perceptron, a cada execução do algoritmo de 

aprendizagem, está sujeito a encontrar uma fronteira de decisão diferente que dependerá 

da inicialização dos pesos sinápticos (Haykin, 2008). 

 

3.2.2 Redes de múltiplas camadas 

Nas arquiteturas que envolvem múltiplas camadas, os neurônios estão arranjados 

em uma ou mais camadas intermediárias, situadas entre a camada de entrada e a camada 

de saída, conforme ilustra a Figura 7, em que se tem uma rede neural com duas camadas 

escondidas. Estas camadas são chamadas de camadas escondidas, ou camadas ocultas. 

Como principal exemplo de arquitetura com múltiplas camadas, pode-se citar a rede 

Perceptron Multicamadas (PMC). 
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Figura 7 – Rede neural de múltiplas camadas. 

 

 O surgimento das redes PMC está intimamente ligado à necessidade de se 

classificar padrões que não são linearmente separáveis. Neste contexto, tem-se o exemplo 

clássico relacionado ao problema da resolução da função booleana OU exclusivo (XOR) 

(Haykin, 2008). Neste caso, a rede Perceptron, ou então a rede ADALINE, de apenas uma 

camada deve ser capaz de traçar duas retas como fronteiras de decisão com o objetivo de 

resolver a função XOR, isto é, separando os padrões de saída desta função conforme é 

exibido na Figura 8. 

É evidente que ambas as redes mencionadas, a rede Perceptron e a rede ADALINE, 

não são indicadas para a resolução deste problema, pois, apresentam limitações de 

funcionalidade, já que o problema em questão não é linearmente separável. Ou seja, não 

são capazes de fornecer uma única fronteira de separação que separe corretamente os 

diferentes padrões apresentados. Desta forma, faz-se necessário o uso de redes neurais de 

múltiplas camadas para a separação dos padrões não separáveis linearmente. 

No presente trabalho, que visa à estimação do valor eficaz da tensão trifásica em um 

determinado ponto genérico de interesse, dentro de um SD, utiliza-se a arquitetura neural 

PMC, visto que, tem-se um problema de elevada complexidade, em que os padrões não 

são linearmente separáveis. Além disso, não se possui de antemão conhecimento acerca 



22 
 

da geometria da fronteira de separabilidade do mesmo, de maneira que a rede PMC 

utilizada possui duas camadas ocultas (Haykin, 2008). A rede PMC é organizada em 

camadas de neurônios interconectadas. Classificam-se as camadas em: (i) camada de 

entrada, em que padrões são apresentados à rede; (ii) camadas intermediárias ou ocultas, 

onde ocorrem os processamentos dos dados (nestas camadas é feita a extração das 

principais características presentes nos sinais de entrada) e (iii) camada de saída, na qual 

são disponibilizadas as respostas produzidas pela rede neural. 

 

Figura 8 - Representação da função booleana OU exclusivo (XOR). 

  

3.3. Treinamento de Levenberg-Marquardt 

 

 O algoritmo de treinamento utilizado ao longo deste trabalho é o Levenberg-

Marquardt, que possui como base a técnica dos mínimos quadrados. A demonstração de 

Fernandes (2009) de ajuste dos pesos sinápticos do algoritmo de treinamento de 

Levenberg-Marquardt mostra que este é derivado do método de Newton, e objetiva 

minimizar o erro quadrático médio relativo a todas as N entradas de treinamento da rede 

neural pertencentes ao conjunto de treinamento.  

Sejam os índices (i) e (j) correspondentes a neurônios que pertencem a camadas 

subsequentes, isto é, o neurônio (j) se encontra em uma camada à direita da camada da 

qual pertence o neurônio (i). Assim, o sinal de erro, na apresentação do n-ésimo padrão de 

treinamento, quando o neurônio (j) é um nó de saída, é dado por: 
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  ( )     ( )    ( ) (8) 

Ao se tomar todo o conjunto de neurônios da camada de saída, que são aqueles 

sobre os quais se pode calcular o erro quadrático médio, pois são s únicos visíveis da RNA, 

tem-se: 

 ( )  
 

 
∑(  ( ))

 

 

 
(9) 

O objetivo do algoritmo é minimizar o erro quadrático médio  ̅ relativo a todos os 

padrões de treinamento, normalizando-os em relação ao tamanho deste conjunto, obtém-

se: 

 ̅  
 

 
∑ ( )

 

   

 
(10) 

Na forma vetorial, a equação do erro quadrático médio, Equação (10), é dada por: 

 ̅  
 

  
∑∑(  ( ))

 

 

 
 

  
∑ ( )   ( )

 

   

 

 

   

 
(11) 

 A partir da Equação (11) pode ser vista como um vetor de erros em função dos 

pesos sinápticos W da rede referentes aos N  padrões de treinamento apresentados à RNA. 

 ̅   ( )    ( )    ( )      ( ) (12) 

 A equação iterativa obtida para o método de treinamento de Levenberg-Marquadt 

que ajusta os parâmetros da rede é dada pela Equação (13). 

   (  ( )  ( )    )     ( )  ( ) (13) 

 Sendo (J) a matriz jacobiana derivada do desenvolvimento realizado via método de 

Newton; µ é o parâmetro de ajuste da taxa de convergência do algoritmo e; (I) é a matriz 

identidade. 
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4. Estimação do valor eficaz da tensão de uma carga de um 

sistema de distribuição por meio de redes neurais artificiais 

Neste capítulo, conforme ilustra a Figura 9, serão apresentadas todas as 

informações referentes às etapas constituintes da metodologia de monitoramento remoto 

proposta, sendo as mesmas detalhadamente descritas no item 4.1 quando aplicadas a uma 

carga específica. Mais adiante, no item 4.2, estão ressaltadas as modificações que devem 

ser consideradas em cada uma das referidas etapas da metodologia de modo a se estender 

a aplicação da mesma para pontos de monitoramento adicionais, caracterizando, por 

conseguinte a generalização da metodologia no que se refere ao monitoramento de 

qualquer carga do SEP. 

 

4.1. Estimação do valor eficaz da tensão em uma carga (ponto de interesse) 

do SD via RNA 

 

O valor eficaz da tensão fornecida a uma determinada carga do SD monitorado, 

denominada ponto de monitoramento remoto 1 (MR1) é estimado por três RNA distintas. 

Assim, cada uma das RNAs destina-se a estimar o valor eficaz da tensão em cada uma das 

três fases de MR1. Desta forma, uma RNA fornecerá o valor eficaz da tensão elétrica 

referente à fase A, outra será responsável por estimar o valor correspondente da fase B, e a 

terceira será da fase C. Portanto, as três RNA, operando simultaneamente em paralelo, são 

capazes de fornecer o valor da tensão eficaz trifásica no ponto MR1, tomando por entradas 

as tensões e correntes trifásicas disponibilizadas por um medidor presente na subestação 

do SD. Esta configuração está ilustrada na Figura 10, em que é possível observar o fluxo 

das informações, desde a aquisição dos sinais de entrada das RNA, referentes às tensões e 

correntes trifásicas medidas na SE, até a disponibilização dos valores eficazes das tensões 

em um ponto de monitoramento remoto específico para as três fases do sistema. Cabe 

ressaltar que as entradas mencionadas são submetidas a um pré-processamento antes de 

serem apresentados às RNA, conforme explicado mais adiante neste capítulo. 
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Figura 9 – Procedimento para monitorar remotamente um ponto (carga) de interesse 
dentro de um SD. 

Neste contexto, a etapa 1 (Determinação do SEP) da Figura 9 diz respeito ao 

sistema elétrico que será objeto de estudo e aplicação da metodologia de monitoramento 

proposta. Nesta primeira etapa, objetiva-se obter junto à concessionária de energia elétrica 

os parâmetros que representem o sistema elétrico real, pois o intuito é o de se estabelecer 

condições de desenvolvimento da metodologia que sejam as mais fiéis possíveis ao real 

funcionamento do sistema elétrico em análise. Cabe ressaltar que a boa qualidade dos 

parâmetros será capaz de fornecer melhores condições de modelagem do SD e, por 

consequência, melhor aplicabilidade da metodologia em um SD real. 

 Na etapa 2 (Simulações Computacionais) é realizada a modelagem computacional 

do sistema elétrico no software ATP (Leuven EMTP Center, 1987), além de todas as 

simulações pertinentes à compilação do banco de dados por meio da simulação do sistema 

frente a aplicação de diferentes situações de faltas (curtos-circuitos), conforme demonstrado 

no Capítulo 6 deste trabalho. O banco de dados construído é destinado ao treinamento e 

validação das RNAs utilizadas no processo de monitoramento da carga de interesse (MR1). 

Os dados oriundos das simulações computacionais realizadas na etapa 2 são pré-

processados ao longo da etapa 3 (Pré-processamento dos Sinais). Nesta etapa, os sinais 

são formatados como pares de entradas e saídas correspondentes, ou seja, para uma dada 

combinação de tensões e correntes medidas na subestação do SD (entrada), há um par 

correspondente de tensões eficazes no ponto de monitoramente de interesse MR1 (saída). 

Sendo assim, para cada situação de curto-circuito simulada, obtém-se um par de entradas e 

saídas correspondentes.  

O conjunto de todos os pares de entradas e saídas forma um banco de dados que é 

utilizado nas etapas de treinamento e validação das RNA. As entradas são compostas por 
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nove ciclos dos sinais das três tensões e das três correntes elétricas amostradas na 

subestação do SD. Já as saídas são compostas pelos nove ciclos de tensão 

correspondentes amostrados no ponto de carga (MR1). Dos nove ciclos monitorados, os 

três primeiros são obtidos quando o SD se encontra em estado de regime permanente, e os 

o seis seguintes reportam o comportamento do SD perante a aplicação de uma determinada 

falta (curto-circuito monofásico envolvendo a fase A do sistema). Os sinais de entrada, ou 

seja, as tensões e correntes trifásicas medidas na subestação do SD foram amostrados a 

uma taxa de 128 amostras por ciclo na frequência fundamental do sistema (60Hz). Sobre 

estes sinais foi aplicada uma janela deslizante de meio ciclo (64 amostras). Desta forma, a 

cada passo da janela deslizante são calculados os valores eficazes de cada sinal de 

interesse, isto é, das três tensões e das três correntes na entrada. Cabe salientar que para 

o cálculo dos valores eficazes das tensões e correntes elétricas tanto das entradas como 

das saídas, conforme mencionado, é utilizada a fórmula de cálculo do valor eficaz RMS 

(root mean square), dado por XRMS, para uma coleção de N pontos amostrados (xi), 

conforme mostra a Equação (14).  

      √
 

 
∑  

 

 

   

 (14) 

 

De forma análoga são extraídos os valores eficazes das tensões no ponto MR1. Os 

dados compilados são organizados em dois grupos. O primeiro deles, composto de 70% 

das amostras, é dedicado ao treinamento das RNA, e o segundo, com 30% dos dados, é 

utilizado para a validação das mesmas.  

De posse do banco de dados pré-processado, segue-se à etapa 4 (Treinamento das 

RNA) na qual é determinada a topologia das RNA e o algoritmo de treinamento é 

executado.  

Durante a etapa 4 (Treinamento das RNA) é realizada a definição da topologia das 

redes e a execução do algoritmo de treinamento das mesmas. Cada rede recebe como 

entrada os valores eficazes das tensões e correntes das três fases medidas na subestação, 

totalizando seis entradas para cada rede neural. O valor eficaz de cada fase estimado no 

ponto de interesse MR1 é dado por cada uma das respectivas RNA.  

Conforme descrito anteriormente, todas as RNA mencionadas são do tipo PMC 

(Haykin, 2008). A topologia utilizada foi obtida a partir da análise de desempenho da rede 

variando-se o número de neurônios das camadas intermediárias. A busca pela topologia 
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adequada foi feita inicialmente para a RNA que monitora a fase A e, posteriormente, a 

topologia encontrada foi replicada para as fases B e C (Bottura, 2010). 

O algoritmo de treinamento utilizado foi o de Levenberg-Marquardt (Haykin, 2008) 

cujo critério de parada foi determinado ao se atingir erro quadrático médio menor ou igual a 

    , ou então, até que se atingisse o número total de 800 épocas de treinamento. A função 

de ativação utilizada foi a tangente hiperbólica nas camadas intermediárias, e a função de 

ativação linear na camada de saída. O parâmetro de ajuste de convergência (µ) inicial do 

algoritmo foi fixado em 0,001. 

Após uma ampla busca pela melhor topologia a ser adotada, conforme descrito 

anteriormente, definiu-se que a topologia deve ser composta por 6 neurônios na camada de 

entrada, 15 neurônios na primeira camada escondida, 10 neurônios na segunda camada 

escondida, e 1 neurônio na camada neural de saída. É importante frisar que esta topologia 

foi inicialmente definida para o ponto de monitoramento MR1, e posteriormente, estendida 

aos demais pontos de monitoramento alocados ao longo do SD em estudo, conforme 

procedimento demonstrado na seção 4.2 deste trabalho. 

 

Figura 10 – Fluxo das informações relacionadas ao procedimento de aplicação da 
metodologia de monitoramento remoto inteligente. 
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Finalmente, logo após a etapa de treinamento, segue-se para a etapa 5 (Validação e 

Operação das RNAs), na qual é realizada a validação dos dados obtidos no treinamento por 

meio da comparação com as respostas simuladas no SD modelado. Isso se dá pela análise 

de histogramas de erros, análise de tabela e também por meio de gráficos comparativos 

entre a resposta desejada e a resposta obtida pelas RNA, conforme será apresentado no 

Capítulo 7 deste trabalho. 

4.2 Procedimento para estimar a tensão eficaz em demais pontos de carga 

alocados no sistema de distribuição 

 

Realizado o treinamento, a definição da topologia e a validação das RNA para a 

estimação da tensão eficaz no ponto de carga MR1 é possível estender a metodologia de 

estimação remota inteligente da tensão eficaz para as demais cargas de interesse alocadas 

no SD em estudo, caracterizando assim a obtenção da generalização da metodologia, 

principalmente no que diz respeito à topologia adotada para as RNA. Para tanto, são 

necessárias algumas mudanças em determinadas etapas descritas no item 4.1, conforme 

descrito no que segue. 

Durante a etapa 1 (Determinação do SEP) não são requeridas quaisquer alterações, 

uma vez que o SD em estudo continua sendo o mesmo. Todavia, a etapa 2 (Simulações 

Computacionais) carece de mudanças significativas. Parte do banco de dados referentes ao 

treinamento e validação das RNA deve ser modificada em função do acréscimo do n-ésimo 

ponto de monitoramento a ser acrescentado (MRn). Assim, com a determinação do novo 

ponto de carga, as simulações computacionais devem suprir o banco de dados com os 

valores de tensões trifásicas observadas no local deste novo ponto de monitoramento. 

Ademais, é fundamental salientar que os dados referentes às entradas das RNAs não são 

modificados, uma vez que as situações de faltas simuladas, cujos efeitos são percebidos na 

subestação, são idênticas às realizadas inicialmente para MR1.  

A partir da obtenção do novo banco de dados, a etapa 3 (Pré-processamento dos 

Sinais) segue de forma semelhante à descrita no item 4.1, cabendo apenas a preparação 

dos dados de interesse para o treinamento das RNA do ponto genérico MRn, isto é, as 

entradas, as mesmas consideradas no ponto MR1, e as saídas, resultantes do pré-

processamento do banco de dados atualizado, obtido na etapa 2 relativa ao ponto MRn. 

A etapa 4 (Treinamento das RNAs) sofrerá importantes simplificações, uma vez que 

para o treinamento dos dados referentes ao ponto MRn não é preciso fazer uma análise 

para a busca da melhor topologia, algoritmo de treinamento, critérios de parada e outros 
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parâmetros que concernem a definição do melhor arranjo topológico das RNA. Todos estes 

aspectos já foram investigados e definidos para o ponto de monitoramento MR1, e são 

simplesmente replicados para o ponto genérico MRn. Vale ressaltar que o algoritmo de 

aprendizado, que é o mesmo utilizado nos procedimentos descritos na seção anterior, ao 

final do treinamento e da validação (etapas 4 e 5), fornece novas matrizes de pesos 

sinápticos que mapeiam a relação entre os sinais medidos na subestação e o ponto de 

monitoramento de interesse adicional (MRn).  

Desta forma, durante a etapa de operação das RNA, etapa 5, é possível monitorar 

remotamente a tensão eficaz em qualquer carga do sistema, sem a necessidade de 

empregar fisicamente medidores extras de QEE ao longo do SD, tornando a metodologia de 

monitoramento remoto inteligente uma ferramenta complementar a ser utilizada em conjunto 

com o método de monitoramento convencional praticado pelas companhias de distribuição 

de energia elétrica.  
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 5. Sistema elétrico de distribuição modelado 
 

Conforme exposto anteriormente, com a finalidade de desenvolver a metodologia de 

monitoramento e estimação da tensão eficaz em um determinado ponto remoto de interesse 

de um SD, são necessárias algumas simulações computacionais sobre o mesmo, 

previamente modelado computacionalmente.  

Neste trabalho, o SD em estudo foi modelado e simulado previamente por meio da 

interface gráfica do software ATPDraw (Prikler e Høidalen, 2002), conforme comentado por 

Bottura (2010). A modelagem computacional deste sistema está ilustrada na Figura 11. 

 

Figura 11 – Aspecto da modelagem computacional do SD em análise utilizando o 
software ATP via interface gráfica ATPDraw. 

Os dados utilizados na modelagem do SD são reais e foram fornecidos por uma 

concessionária de energia elétrica regional. As informações necessárias para a modelagem 

do SD são compostas por: equivalente do sistema a partir da subestação de energia 

considerada, dados do transformador de potência da subestação, parâmetros dos 

condutores utilizados, dados das cargas alocadas ao longo do SD, entre outros dados 
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relevantes. A fonte de tensão utilizada nas simulações via software ATP é do tipo 14 

(Leuven EMTP Center, 1987). Suas características para a fase A estão representadas na 

Tabela 2 abaixo. Cabe acrescentar que a sequência de fases é ABC . 

Tabela 2 - Parâmetros da fonte de tensão modelada. 

Parâmetro Valor 

Amplitude 71.851,699 V 

Frequência 60Hz 

Fase 0° 

 

A fim de complementar o modelo utilizado do equivalente elétrico do sistema, 

adicionou-se uma impedância em série com a fonte de tensão de acordo com o modelo RL 

mutuamente acoplado (Leuven EMTP Center, 1987). Na Tabela 3 estão representados os 

principais parâmetros do modelo RL mutuamente acoplado. 

  

Tabela 3 - Características do modelo RL mutuamente acoplado, em série com a fonte 
de tensão. 

Parâmetro Valor 

Resistência de sequência zero 20,805 Ω 

Indutância se sequência zero 203,721 mH 

Resistência de sequência positiva 4,062 Ω 

Indutância se sequência positiva 52,5397 mH 

O transformador de potência na subestação do SD foi simulado seguindo o modelo 

de transformador trifásico saturável com dois enrolamentos (Leuven EMTP Center, 1987), 

com potência nominal de 15/20MVA e conexão Y-∆ entre o primário e o secundário do 

mesmo. Na Tabela 4 são apresentadas as principais características deste transformador de 

potência. 
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Tabela 4 - Principais parâmetros do transformador de potência do SD 

Parâmetro Valor 

Potência nominal 15/20MVA 

Relação de transformação 3,809524 

Corrente nominal do primário  131,215970 A 

Corrente nominal do secundário  499,870363 A 

Ligação do primário Estrela 

Ligação do secundário Delta 

Deslocamento angular 30° 

Resistência do primário 0,054695 Ω 

Resistência do secundário 0,79376 Ω 

Indutância do primário 1,628 mH 

Indutância do secundário 23,6258 mH 

Resistência de magnetização 1 MΩ 

 

 No sistema de distribuição da concessionária de energia elétrica também consta a 

presença de dois bancos de capacitores utilizados com a finalidade de melhorar o perfil de 

tensão do SD. Esses bancos de capacitores foram modelados como um elemento 

capacitivo concentrado não acoplado, do tipo zero, conectado em estrela (Leuven EMTP 

Center, 1987). Os principais parâmetros dos bancos de capacitores são mostrados na 

Tabela 5. 

Tabela 5 - Características dos bancos de capacitores do SD 

Parâmetro Valor 

Capacitância da fase A 5,96521 µF 

Capacitância da fase B 5,96521 µF 

Capacitância da fase C 5,96521 µF 

 

 As cargas alocadas nos alimentadores foram modeladas por potências constantes, 

via um elemento RL concentrado, não acoplado, do tipo zero, conecta em delta (Leuven 

EMTP Center, 1987). Em virtude da grande quantidade de consumidores alocados nos 

alimentadores, serão apresentadas as características de apenas alguns dos consumidores. 

Dentre eles, as cargas referentes ao ponto de monitoramento de interesse deste trabalho. 

As informações seguem na Tabela 6. 
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Tabela 6 - Exemplos de dados das carga do SD 

Carga Resistência (Ω) Indutância (mH) 

Ponto 1 8179,90 9,243.     

Ponto 2 2944,76 3,328.     

Ponto de Monitoramento 2453,97 2,773.     

 

 Finalmente, a fim de completar a modelagem do SD em estudo, têm-se os dados 

que são referentes aos condutores do mesmo. Cada um dos trechos dos alimentadores foi 

modelado por valores de resistências e indutâncias, por meio de um elemento RL 

mutuamente acoplado, dos tipos 51, 52 e 53 (Leuven EMTP Center, 1987). Os condutores 

do sistema elétrico simulado são de alumínio sem alma de aço, com bitolas de 336.4 MCM, 

04 AWG. 1/0 AWG, e cabo de rede compacta com 185   . Cada trecho do sistema, dentre 

os vários existentes, possui característica própria representada a fim de se obter o correto 

funcionamento do modelo computacional modelado. Nas Tabelas 7 e 8 são mostrados os 

parâmetros de dois trechos dos alimentadores para a sequência zero e sequência positiva, 

respectivamente. 

  

Tabela 7 - Parâmetros de dois trechos de condutores dos alimentadores para 
sequência zero 

Trecho Distância (m) Cabo R0 (Ω) L0 (mH) 

I 124,2 336,4 MCM 0,045972 0,251375 

II 573,4 1/0 AWG 0,449227 1,18634 

 

Tabela 8 - Parâmetros de dois trechos de condutores dos alimentadores para 
sequência positiva 

Trecho Distância (m) Cabo R0 (Ω) L0 (mH) 

I 124,2 336,4 MCM 0,023995 0,038526 

II 573,4 1/0 AWG 0,347767 0,203670 
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6.  Compilação dos conjuntos de treinamento e validação das 

RNA  

Este capítulo traz todas as informações referentes à compilação do banco de dados 

das RNA, tanto do conjunto de treinamento, como do conjunto de teste e de validação. 

Conforme descrito anteriormente, os dados do sistema elétrico em estudo foram fornecidos 

por uma concessionária de distribuição de energia elétrica regional. Sendo assim, a partir 

da determinação deste SD de interesse e sua posterior modelagem, foram realizadas as 

etapas de simulações computacionais e pré-processamento dos sinais, a fim de se obter o 

valor eficaz da tensão trifásica nos pontos de monitoramento de interesse. 

 A Figura 12 traz o SD modelado, a representação dos pontos no quais foram 

aplicadas as faltas elétricas, isto é, curtos-circuitos monofásicos envolvendo a fase A do SD 

(círculos vermelhos numerados de 1 a 20), a subestação do SD (representada por um 

círculo verde com a inscrição SE) e também os seis pontos de cargas (MRn) definidos como 

objetos de estudo para investigação acerca da generalização da metodologia de 

monitoramento remoto inteligente proposta (círculos verdes com a inscrição MRn, em que   

n = 1, 2, 3, 4, 5 e 6). 

Os diversos casos possíveis de faltas elétricas representadas contemplam a 

variação da distância dos pontos de aplicação de curto-circuito e variação, tanto na 

impedância de falta, como no ângulo de incidência da mesma. A boa diversidade de casos 

contribui ativamente na alta capacidade de generalização das RNA, já que possibilitou uma 

correta representação do SD em estudo, uma vez que as RNA são capazes de estimar 

corretamente os níveis de tensão para os pontos de interesse escolhidos ao longo do 

sistema elétrico, conforme exposto mais adiante no Capítulo 7. 

Cabe ainda acrescentar que em cada ponto de aplicação de falta a impedância de 

falta é variada de 0 até 40Ω em intervalos de 10Ω conforme exposto em Bottura, (2010). 

Além disso, o valor do ângulo de falta também é variado entre 0° e 90°. Assim, para cada 

ponto de aplicação é possível simular uma quantidade de 10 casos de curtos-circuitos 

diferentes, apenas variando os parâmetros impedância de falta e o ângulo de falta. Com 

isso, como há 20 pontos de aplicação de falta e 10 casos possíveis de curtos-circuitos por 

ponto, tem-se 200 casos de curtos-circuitos possíveis para alimentar o banco de dados, 

utilizado na etapa de treinamento das RNA. A Tabela 9 mostra as 200 combinações 

possíveis de casos faltosos.  
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Figura 12 - Aspecto geral do SD modelado com a localização dos pontos de 
monitoramento remoto (MRn), da subestação (SE) e dos pontos de aplicação de faltas 
elétricas (numerados de 1 a 20). 

 Cabe frisar que as faltas elétricas simuladas nos 20 pontos em destaque são curtos-

circuitos monofásicos, e, nas simulações computacionais, são representadas por chaves 

elétricas conectadas em série com uma impedância cujo valor pode ser variado conforme 

descritos na Tabela 9. A Figura 13 ilustra como a representação computacional das faltas é 

efetuada no software ATPDraw. Ainda na Figura 13, nota-se que apenas uma das chaves é 

fechada, caracterizando, portanto, uma situação faltosa monofásica, conforme destacado 

por uma seta curvilínea vermelha, denotando qual chave elétrica será fechada a fim de 

provocar a falta. 



37 
 

 

Figura 13 - Detalhe da chave que simula o curto-circuito monofásico via interface 
gráfica ATPDraw 

Por meio dos sinais de tensão e corrente das três fases, medidos na SE, foram 

selecionados três ciclos precedentes e seis ciclos subsequentes ao instante de início de 

cada defeito aplicado. Nestes sinais, que foram amostrados a uma taxa de 128 amostras 

por ciclo na frequência fundamental do sistema (60 Hz), foi utilizada uma janela deslizante 

de dimensão de um ciclo, com deslocamento de meio ciclo (64 amostras).  

A cada deslocamento da janela, foram calculados os respectivos valores eficazes 

(RMS) da tensão e corrente nas três fases. Assim, resulta-se em seis valores de entrada 

(três de tensão e três de corrente). Desta forma, tanto as situações em regime permanente, 

quanto os eventos associados e de interesse relacionados à QEE da forma como são 

percebidos na SE, foram apresentados como padrões de entrada às RNAs. 

Da forma como foram simulados, entre o início de cada curto-circuito e o seu fim, há 

um total de 9 ciclos, obtendo-se, portanto, 17 padrões de entrada (valores eficazes 

resultantes da janela deslizante de meio ciclo) a serem apresentados às RNA oriundos  de 

cada situação de defeito que foi simulada. Assim, com 200 casos de faltas simuladas, o 

banco de dados possui 3400 padrões de entrada. 

A fim de se obter os padrões de saída, aplicou-se o mesmo procedimento utilizado 

nas entradas nos sinais de saída em cada um dos pontos de monitoramento de interesse. 

Portanto, obtêm-se os respectivos 3400 padrões de saída. 
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Tabela 9 – Configuração dos curtos-circuitos simulados para obtenção da base de 
treinamento das RNA. 

Com o intuito de garantir a maior generalização possível do processo de 

monitoramento da tensão eficaz é necessário que os dados da Tabela 9 sejam 

apresentados de forma aleatória na etapa de treinamento e validação das RNA (Haykin, 

2008). Neste sentido, o Anexo 1 deste trabalho traz o código Matlab® implementado que faz 

com que os pares de entrada e saída sejam permutados de forma totalmente aleatória. As 

Figuras de 14 a 17 são uma representação gráfica comparativa de como os dados de 

entrada da corrente e da tensão referentes à Fase A de alimentação do SD em estudo 

estão antes e após sua permutação. Nas Figuras 14 e 15 os dados de tensão e corrente, 

respectivamente, ainda não foram permutados, isto é, foram apresentados na ordem que 

segue na Tabela 9, ou seja, primeiro fixa-se o ângulo de falta em 0°, em seguida fixa-se a 

Ponto de 

aplicação de falta 

Impedância de falta 

(Ω) 

Ângulo de falta  

(°) 
Quantidade de casos 

1 0; 10; 20; 30 e 40 0 e 90 10 

2 0; 10; 20; 30 e 40 0 e 90 10 

3 0; 10; 20; 30 e 40 0 e 90 10 

4 0; 10; 20; 30 e 40 0 e 90 10 

5 0; 10; 20; 30 e 40 0 e 90 10 

6 0; 10; 20; 30 e 40 0 e 90 10 

7 0; 10; 20; 30 e 40 0 e 90 10 

8 0; 10; 20; 30 e 40 0 e 90 10 

9 0; 10; 20; 30 e 40 0 e 90 10 

10 0; 10; 20; 30 e 40 0 e 90 10 

11 0; 10; 20; 30 e 40 0 e 90 10 

12 0; 10; 20; 30 e 40 0 e 90 10 

13 0; 10; 20; 30 e 40 0 e 90 10 

14 0; 10; 20; 30 e 40 0 e 90 10 

15 0; 10; 20; 30 e 40 0 e 90 10 

16 0; 10; 20; 30 e 40 0 e 90 10 

17 0; 10; 20; 30 e 40 0 e 90 10 

18 0; 10; 20; 30 e 40 0 e 90 10 

19 0; 10; 20; 30 e 40 0 e 90 10 

20 0; 10; 20; 30 e 40 0 e 90 10 

Total - - 200 
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impedância de falta em 0Ω, e variam-se todos os pontos de aplicação de falta. A seguir, 

incrementa-se a impedância de falta em 10Ω e percorrem-se todos os pontos de falta 

novamente. Assim, segue até que todos os casos com ângulo de falta de 0° sejam 

passados para a RNA. Então, repete-se o procedimento para ângulo de falta de 90°. 

Já nas Figuras 16 e 17 o algoritmo de permutação desenvolvido realizou a 

permutação aleatória das amostras com a finalidade de garantir maior grau de 

generalização das RNAs, já que durante a fase de treinamento as amostras serão, por 

conseguinte, apresentadas de maneira aleatória às RNA (Haykin, 2008). 

 

Figura 14 – Dados de entrada da tensão referente à Fase A apresentados à RNA antes 

da permutação aleatória. 

 

Figura 15 – Dados de entrada da corrente referente à Fase A apresentados à RNA 

antes da permutação aleatória. 
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Figura 16 - Dados de entrada da tensão referente à Fase A apresentados à RNA após 

a permutação aleatória. 

 

Figura 17 - Dados de entrada da corrente referente à Fase A apresentados à RNA 

após a permutação aleatória. 

Dos 3400 padrões de entradas e saídas obtidos, 70% destes, ou seja, 2380 padrões 

foram utilizados na etapa de treinamento das RNA. Já os 30% restantes, isto é, 1020 

diferentes padrões foram reservados para a etapa de validação das mesmas.  

Como especificado anteriormente, para cada ponto de monitoramento são 

necessárias três RNA para estimar o valor RMS de cada uma das fases. Dessa forma, 

como o estudo envolve seis pontos de monitoramento, tem-se um total de 18 treinamentos 

necessários para a obtenção das respectivas matrizes sinápticas que mapeiam a relação 

entre os sinais de entrada (tensões e corrente trifásicas medidos na SE) e os sinais de 

saída (tensão eficaz estimada) em todos os seis pontos de monitoramento remoto. 
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7.  Desempenho da metodologia e monitoramento remoto 

inteligente das variações de tensão 

Realizada a definição da topologia das RNAs, destinadas a monitorar remotamente 

os níveis de tensão em pontos quaisquer de interesse dentro do SD, é realizada uma 

análise de desempenho minuciosa a fim de se confirmar os objetivos iniciais da pesquisa. 

Essa análise consiste na averiguação dos índices de acertos das RNAs por meio do arranjo 

dos resultados em tabelas comparativas, os respectivos histogramas de erros, análise do 

valor máximo do erro, bem como gráficos comparativos entre as respostas desejadas e 

aquelas fornecidas por meio da ferramenta inteligente utilizada. Também são exibidos os 

dados referentes à etapa de treinamento das RNA, tais quais tempo alocado para o 

treinamento de cada uma das RNA e também a descrição do hardware utilizado a fim de 

comparação e possível utilização do treinamento em tempo real. 

As Tabelas de 10 a 15 mostram os erros menores ou iguais a 0,01 p.u., menores ou 

iguais a 0,03 p.u., e menores ou iguais a 0,05 p.u. entre as respostas fornecidas pelas RNA 

e as saídas para os pontos de monitoramento de MR1 a MR6, quantificados em 

porcentagem e também a topologia das RNA utilizada. 

Tabela 10 - Dados do desempenho da aplicação da metodologia proposta em MR1. 

Monitoramento remoto Erros inferiores 
ou iguais a 

0,01p.u. 

Erros inferiores 
ou iguais a 

0,03p.u. 

Erros inferiores 
ou iguais a 

0,05p.u. 

Erro Máximo 
(p.u.) 

MR1 

6-15-10-1 Fase A 90,0% 94,9% 97,4% 0,1437 

6-15-10-1 Fase B 94,8% 99,3% 99,7% 0,1851 

6-15-10-1 Fase C 97,5% 99,1% 99,3% 0,3683 

 

Tabela 11 - Dados do desempenho da aplicação da metodologia proposta em MR2. 

Monitoramento remoto Erros inferiores 
ou iguais a 

0,01p.u. 

Erros inferiores 
ou iguais a 

0,03p.u. 

Erros inferiores 
ou iguais a 

0,05p.u. 

Erro Máximo 
(p.u.) 

MR2 

6-15-10-1 Fase A 86,8% 93,5% 96,4% 0,1954 

6-15-10-1 Fase B 93,8% 96,1% 99,2% 0,1974 

6-15-10-1 Fase C 91,3% 94,4% 97,3% 0,2612 
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Tabela 12 - Dados do desempenho da aplicação da metodologia proposta em MR3. 

Monitoramento remoto Erros inferiores 
ou iguais a 

0,01p.u. 

Erros inferiores 
ou iguais a 

0,03p.u. 

Erros inferiores 
ou iguais a 

0,05p.u. 

Erro Máximo 
(p.u.) 

MR3 

6-15-10-1 Fase A 96,0% 99,4% 99,6% 0,7840 

6-15-10-1 Fase B 98,2% 99,4% 99,6% 0,1312 

6-15-10-1 Fase C 99,1% 99,7% 99,8% 0,1908 

 

Tabela 13 - Dados do desempenho da aplicação da metodologia proposta em MR4. 

Monitoramento remoto Erros inferiores 
ou iguais a 

0,01p.u. 

Erros inferiores 
ou iguais a 

0,03p.u. 

Erros inferiores 
ou iguais a 

0,05p.u. 

Erro Máximo 
(p.u.) 

MR4 

6-15-10-1 Fase A 86,3% 96,6% 99,0% 0,7358 

6-15-10-1 Fase B 95,1% 99,5% 99,7% 0,0967 

6-15-10-1 Fase C 97,9% 99,3% 99,5% 0,1967 

 

Tabela 14 - Dados do desempenho da aplicação da metodologia proposta em MR5. 

Monitoramento remoto Erros inferiores 
ou iguais a 

0,01p.u. 

Erros inferiores 
ou iguais a 

0,03p.u. 

Erros inferiores 
ou iguais a 

0,05p.u. 

Erro Máximo 
(p.u.) 

MR5 

6-15-10-1 Fase A 98,7% 99,7% 99,8% 0,2150 

6-15-10-1 Fase B 99,1% 99,6% 99,9% 0,0645 

6-15-10-1 Fase C 99,1% 99,6% 99,6% 0,0940 

 

Tabela 15 - Dados do desempenho da aplicação da metodologia proposta em MR6. 

Monitoramento remoto Erros inferiores 
ou iguais a 

0,01p.u. 

Erros inferiores 
ou iguais a 

0,03p.u. 

Erros inferiores 
ou iguais a 

0,05p.u. 

Erro Máximo 
(p.u.) 

MR6 

6-15-10-1 Fase A 94,1% 98,8% 99,3% 0,3262 

6-15-10-1 Fase B 97,2% 99,2% 99,5% 0,1815 

6-15-10-1 Fase C 99,4% 99,7% 100% 0,0499 
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A análise da segunda coluna da Tabela 10 indica uma significativa quantidade em 

porcentagem de erros inferiores a 0,01 p.u. Como se pode obervar, para o ponto MR1 

contata-se que 90% a 97,5% dos casos estão nesta faixa de erro. Para MR2, vê-se na 

segunda coluna da Tabela 11 que os erros inferiores a 0,01 p.u. contemplam de 86,8% a 

93,8% dos casos. Com relação a MR3, na Tabela 12, tem-se de 96% a 99,1%; para MR4 de 

86,4% a 97,9%, conforme se observa na Tabela 13; para MR5 de 98,7% a 99,1%, Tabela 

14 e, finalmente, em MR6 de 94,1% a 99,4% dos casos apresentam erros inferiores a 0,01 

p.u. como pode ser observado na Tabela 15. 

Em média, 95,24% dos casos apresentam erros inferiores a 1%, ou seja, 0,01 p.u. 

Isso implica em um índice médio de acerto consideravelmente elevado para a faixa de erro 

analisada, independentemente do ponto de monitoramento observado, indicando que é 

possível obter uma forma generalizada de aplicação do método de monitoramento da 

tensão eficaz em um determinado SD em estudo para quaisquer cargas nele alocadas. 

Pela inspeção da terceira coluna das Tabelas de 10 a 15, que inclui uma maior faixa 

de tolerância para erros, isto é, 0,03 p.u., observa-se que poucas mudanças ocorrem em 

relação à faixa de análise anterior, sendo as mudanças mais significativas verificadas nos 

pontos de monitoramento MR2 e MR4. Com esta nova margem, a média de acerto das 

RNAs levando em conta erros inferiores a 3% sobe para 98,21%. 

Quando se leva em conta os erros das RNAs para uma faixa de até 0,05 p.u, ou 

seja, até 5%, tem-se, em média, uma taxa de acerto das RNA em torno de 99,14%. Estes 

dados podem ser observados na quarta coluna das Tabelas de 10 a 15.  

As últimas colunas das Tabelas de 10 a 15 trazem dados referentes ao erro máximo, 

em p.u., encontrado em cada um dos pontos monitorados. É importantes ressaltar que, por 

mais que em alguns casos este valor seja elevado, como na fase A de MR3 visto na Tabela 

12, em que o erro máximo foi 0,7840 p.u., esses eventos são de caráter isolados e não 

comprometem os significativos resultados obtidos pela metodologia como um todo. 

Entretanto, cabe colocar que uma análise mais detalhada pode ser conduzida futuramente 

com o objetivo de melhorar o desempenho da técnica relação a tais casos de teste. 

Como se observa, os pontos de monitoramento MR1, MR2, MR3, MR4, MR5 e MR6 

apresentam elevados índices de acertos em relação às respostas desejadas para as três 

faixas de erro analisadas, demonstrando a eficiência da aplicação da metodologia proposta 

no monitoramento da tensão eficaz de um ponto genérico (MRn) dentro de um SD 

estudado. 
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As Figuras de 18 a 23 correspondem aos histogramas de erros relacionados aos 

pontos de monitoramento de MR1 a MR6, respectivamente, através do qual é possível se 

obter uma melhor perspectiva acerca da distribuição das magnitudes dos erros entre 

resposta alvo e resposta das RNA em função da quantidade de casos de teste utilizados. 

 

Figura 18 - Histograma de erros para o ponto de monitoramento remoto MR1. 

 

O histograma da Figura 18 ilustra como a grande maioria dos erros entre as 

respostas esperadas e as respostas das RNAs para o ponto de monitoramento MR1 estão 

abaixo de 0,01 p.u. para as três fases em estudo. Nota-se que a fase A, caracterizada por 

uma barra vermelha é a que apresenta o menor índice de acerto. Todavia, praticamente a 

totalidade de erros (97,4%) se concentra em até 0,05 p.u. 

A mesma análise anterior pode ser feita para o histograma da Figura 19 relacionado 

com o ponto de carga MR2. Neste caso, destaca-se que, embora a porcentagem de acertos 

nos casos de teste esteja um pouco diminuída em relação à MR1, quando levados em conta 

um erro menor do que 0,01 p.u., os índices de acertos são significativos, e apresentam 

média de acerto superior a 85% nas três fases monitoradas. Novamente, cabe destacar que 

quando são analisados erros de até 0,05 p.u., isto é, somando-se os valores representados 

por cada uma das barras, a porcentagem de casos de testes dentro desta faixa permanece 

em valores acima de 97%. 
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Figura 19 - Histograma de erros para o ponto de monitoramento remoto MR2. 

  

 

Figura 20 - Histograma de erros para o ponto de monitoramento remoto MR3. 

 A simples análise do histograma ilustrado pela Figura 20 indica que o ponto de 

monitoramento MR3 apresenta alto índice de acertos (entre 96% e 99,1%) quando se leva 

em conta a faixa de erro cujos níveis são de até 0,01 p.u.. Ademais, a média de acertos 
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para as três RNA, considerando-se erros de até 0,05 p.u., é superior a 99,6%, evidenciando 

o elevado índice de generalização das respostas fornecidas pelas redes neurais. 

A Figura 21 traz o histograma de erros do ponto de carga MR4. Assim como nos 

outros casos já mencionados, constata-se um alto índice de acertos para os casos de teste 

considerando erro de 0,01 p.u. para as três fases em estudo, média de 93,6%. Além disso, 

praticamente a totalidade dos casos de teste (acima de 99%) apresentam erros inferiores a 

0,05 p.u. 

 

Figura 21 - Histograma de erros para o ponto de monitoramento remoto MR4. 

  

O ponto de monitoramento MR5 também se destaca pelos altos níveis de acerto na 

estimação do valor eficaz das tensões elétricas pelas RNA para as três fases em estudo. O 

histograma relacionado ao ponto de carga MR5 é exibido na Figura 22 que ilustra grande 

taxa de acertos considerando a margem de erro de 0,01 p.u. Praticamente a totalidade dos 

casos está dentro desta margem (acima de 98,7%), o que caracteriza o alto grau de 

generalização das respostas fornecidas pelas RNA. Ao tomar como referência a quantidade 

de casos de teste com erros inferiores a 0,05 p.u., verifica-se que, em média, tem-se um 

índice de acerto de 99,7% dos casos. 

O mesmo comportamento observado nos histogramas anteriores pode ser 

encontrado no histograma da Figura 23. Neste, observa-se que as RNA associadas ao 

ponto MR6 também exibem alto nível de acerto para as três fases do sistema. Cabe 
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acrescentar que para erros menores do que 0,05 p.u. tem-se um índice de acerto bastante 

expressivo, situando-se em níveis superiores a 99,5%. 

 

Figura 22 - Histograma de erros para o ponto de monitoramento remoto MR5. 

  

 

Figura 23 - Histograma de erros para o ponto de monitoramento remoto MR6. 
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Pelos resultados apresentados até então, fica evidente que, independentemente do 

ponto de monitoramento que se adote, a metodologia se mostrou eficaz e apresenta altos 

níveis de acertos ao estimar as tensões eficazes nos pontos de interesse (MRn). Pelo 

exposto, é possível constatar a alta capacidade de generalização do método de 

monitoramento remoto proposto no que se refere à aplicação do mesmo a quaisquer pontos 

de interesse alocados ao longo do SD em estudo. Ou seja, a partir de uma investigação 

inicial para a detecção da melhor topologia de rede a ser utilizada, relacionada a um ponto 

de monitoramento remoto específico, esta pode ser posteriormente replicada para as 

demais RNA que irão monitorar os pontos adicionais, salvo as devidas modificações 

necessárias já mencionadas no item 4.2., sem perda de qualidade das respostas fornecidas 

pelas RNA. 

Na Tabela de 16 a 21, têm-se informações referentes ao tempo total gasto (em 

segundos) na etapa de treinamento para cada uma das três fases dos seis pontos de 

monitoramento da tensão eficaz. Os tempos de treinamento apresentados são referentes à 

utilização de um processador Intel ® Core ™ 2 Duo com processador de 2,26GHz. 

Cada um dos treinamentos foi realizado cinco vezes, a fim de se obter os melhores 

resultados possíveis, em virtude da aleatoriedade dos pesos sinápticos iniciais. Os tempos 

descritos nas Tabelas de 16 a 21 são referentes aos treinamentos que apresentaram os 

maiores índices de acertos dentre os cinco treinamentos efetuados. Cabe ainda ressaltar 

que, dependendo da complexidade do sistema em análise, este tempo de treinamento pode 

variar, assim como se espera que o mesmo varie caso haja mudança na topologia das 

RNA, como, por exemplo, acrescentando mais neurônios nas camadas escondidas. Além 

disso, o critério de parada do treinamento das RNA também é responsável pela 

discrepância nos tempos de treinamento. Por exemplo, quando o treinamento para, porque 

atingiu um o número de 800 épocas, o tempo é maior do que quando o critério de parada 

está relacionado ao desempenho, isto é, atingiu um valor de erro quadrático médio menor 

de que     . 

Tabela 16 - Tempo de treinamento das RNA em MR1. 

Monitoramento remoto 
Tempo de 

treinamento 

MR1 

6-15-10-1 Fase A 82 s 

6-15-10-1 Fase B 81 s 

6-15-10-1 Fase C 81 s 
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Tabela 17 - Tempo de treinamento das RNA em MR2. 

Monitoramento remoto 
Tempo de 

treinamento 

MR2 

6-15-10-1 Fase A 94 s 

6-15-10-1 Fase B 90 s 

6-15-10-1 Fase C 82 s 

 

Tabela 18 - Tempo de treinamento das RNA em MR3. 

Monitoramento remoto 
Tempo de 

treinamento 

MR3 

6-15-10-1 Fase A 82 s 

6-15-10-1 Fase B 8 s 

6-15-10-1 Fase C 35 s 

 

Tabela 19 - Tempo de treinamento das RNA em MR4. 

Monitoramento remoto 
Tempo de 

treinamento 

MR4 

6-15-10-1 Fase A 85 s 

6-15-10-1 Fase B 37 s 

6-15-10-1 Fase C 75 s 

 

Tabela 20 - Tempo de treinamento das RNA em MR5. 

Monitoramento remoto 
Tempo de 

treinamento 

MR5 

6-15-10-1 Fase A 78 s 

6-15-10-1 Fase B 17 s 

6-15-10-1 Fase C 20 s 
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Tabela 21 - Tempo de treinamento das RNA em MR6. 

Monitoramento remoto 
Tempo de 

treinamento 

MR6 

6-15-10-1 Fase A 83 s 

6-15-10-1 Fase B 84 s 

6-15-10-1 Fase C 79 s 

 

7.1. Tensão eficaz medida no ponto MR1 

Com o intuito de ilustrar e exemplificar os resultados obtidos pela metodologia e 

realizar uma análise comparativa de desempenho das RNAs no que se refere à estimação 

do valor eficaz da tensão trifásica nos pontos de carga de interesse dentro do SD em 

estudo, foi escolhido o ponto de aplicação de falta número 5 no sistema da Figura 12. Este 

possui ângulo de inserção de 0° e 30Ω de resistência de falta. Ademais, este ponto de 

aplicação de falta dista em torno de 21 km da SE do SD em estudo, conforme dados 

repassados pela concessionária de energia elétrica regional.  

Na Figura 24 é possível verificar o comportamento da tensão fornecida pelas RNA 

das fases A, B e C no ponto de monitoramento MR1 mediante ao caso de falta escolhido. A 

partir deste exemplo, observa-se que a fase C mantém-se em níveis de tensão próximos ao 

nominal (entre 0,9 p.u. e 1,1 p.u.). A fase B sofre pequena queda nos níveis de tensão, 

porém, não está caracterizado um afundamento de tensão, uma vez que este nível não é 

inferior a 0,9 p.u.. A fase A sofre a maior queda de tensão. Contudo, também não 

caracteriza um afundamento de tensão, já que permanece sempre acima do nível de 0.9 

p.u. durante todos os ciclos considerados. 

De maneira geral, constata-se que as respostas das RNA das três fases são 

significativamente condizentes com os valores de tensão eficazes esperados representados 

pelos marcadores circulares. Cabe acrescentar que nos três primeiros ciclos o sistema está 

em regime permanente, isto é, os níveis de tensão assumem valores nominais do sistema, 

sendo, neste caso, o valor eficaz da tensão próximo a 0,95 p.u.. 
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Figura 24 - Comparação entre os valores das tensões eficazes estimadas e seus 
respectivos valores esperados para o ponto MR1. 

 

7.2. Tensão eficaz medida no ponto MR2 

No ponto de monitoramento MR2, contata-se que o caso de falta selecionado é 

capaz de provocar significativas variações de tensões em duas das fases monitoradas, 

conforme se observa na Figura 25. 

A fase A apresenta leve variação da tensão, porém, com níveis insuficientes para 

configurar afundamento de tensão (menor do que 0,9 p.u). Assim como na fase A, os 

valores das tensões nas fases B e C não caracterizam afundamento ou elevação de tensão, 

isto é, permanecem dentro da faixa de valores nominais (0,9 p.u. a 1,1 p.u.). Cabe 

acrescentar que as respostas das RNA para as três fases apresentam altos níveis de 

acertos para os casos em que a tensão eficaz fica dentro dos níveis nominais. 
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Figura 25 - Comparação entre os valores das tensões eficazes estimadas e seus 
respectivos valores esperados para o ponto MR2. 

 

7.3. Tensão eficaz medida no ponto MR3 

O caso de falta escolhido reflete um afundamento de tensão da fase A no ponto de 

monitoramento da tensão eficaz no ponto MR3 conforme ilustrado na Figura 26. Os níveis 

de tensão para a fase A ficam em torno de 0,87 p.u. (abaixo de 0,9 p.u.). Já para as fases B 

e C contata-se que os níveis de tensão ficam próximos aos valores nominais, cerca de 0,97 

p.u. e 0,96 p.u., respectivamente.  
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Figura 26 - Comparação entre os valores das tensões eficazes estimadas e seus 
respectivos valores esperados para o ponto MR3. 

 

7.4. Tensão eficaz medida no ponto MR4 

No ponto de monitoramento remoto MR4 observa-se que o caso de falta selecionado 

não é capaz de provocar variações significativas de tensão, conforme ilustrado na Figura 

27. Os valores eficazes das tensões nas três fases, estimados pelas respectivas RNAs, 

permanecem próximos do valor nominal (entre 0,9 p.u. e 1,1 p.u), sendo registradas 

tensões remanescentes em torno de 0,945 p.u. para a fase A, 0,955 p.u. para a fase B e 

0,97 p.u. para a fase C.  
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Figura 27 - Comparação entre os valores das tensões eficazes estimadas e seus 
respectivos valores esperados para o ponto MR4. 

 

7.5. Tensão eficaz medida no ponto MR5 

Comportamento semelhante ao verificado no monitoramento do ponto MR4 é 

observado no ponto MR5, ao se considerar o caso de falta escolhido conforme se observa 

na Figura 28.  Ou seja, não são registradas variações relevantes nos níveis de tensão eficaz 

no ponto de monitoramento remoto. Os valores de tensão permanecem dentro dos limites 

nominais (entre 0.9 p.u. e 1.1 p.u.). Pela análise da Figura 28 também é possível afirmar 

que os valores das tensões estimadas remotamente pelas RNA das três fases, aproximam-

se dos valores esperados, revelando a elevada capacidade de generalização das respostas 

fornecidas pelas redes treinadas.  
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Figura 28 - Comparação entre os valores das tensões eficazes estimadas e seus 
respectivos valores esperados para o ponto MR5. 

 

7.6. Tensão eficaz medida no ponto MR6 

Por fim, completando a ilustração do caso de curto-circuito selecionado, tem-se que 

de acordo com os resultados apresentados na Figura 29 fica evidente que o caso de falta 

escolhido foi responsável por provocar um afundamento de tensão na fase A no ponto de 

monitoramento MR6. A tensão observada na fase A apresenta níveis de tensão 

remanescentes em torno de 0,87 p.u. Já as tensões registradas nas fases B e C 

permanecem dentro da faixa de valores nominais (entre 0,9 p.u. e 1,1 p.u.) com cerca de 

0,87 p.u. e 0,86 p.u, respectivamente. 
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Figura 29 - Comparação entre os valores das tensões eficazes estimadas e seus 
respectivos valores esperados para o ponto MR6. 

 

Pelo exposto, fica evidente a capacidade de generalização das respostas RNA frente 

ao caso de falta selecionado. Sendo assim, é possível afirmar que as três RNA estimam 

corretamente os níveis de tensão eficaz para as três fases com excelente nível de acerto, 

fornecendo fortes indícios de que, caso haja interesse, por exemplo, pode-se definir um 

novo ponto de carga adicional MR7 em qualquer localização ao longo do SD em questão, e, 

a partir das adaptações apontadas no item 4.2 do Capítulo 4, podem-se obter os 

respectivos valores de tensão eficaz estimados pela metodologia neste novo ponto de 

monitoramento remoto. 
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Conclusão 

A metodologia utilizada no trabalho é fundamentada no uso de ferramenta 

inteligente, em específico, de RNA. Sua aplicação se mostrou satisfatória na tarefa de se 

monitorar remotamente os valores eficazes das tensões em pontos distantes da 

subestação, local este em que as redes neurais estão localizadas e sendo supridas com as 

medidas dos níveis de tensão e corrente provenientes de um medidor de QEE da 

subestação. Fica evidente, através do apresentado que a metodologia pode complementar 

o processo de monitoramento convencional do SD em estudo, realizado com a utilização de 

medidores físicos de custo considerável. 

O conjunto de treinamento das RNA é bem diversificado, contando com distintos 

casos possíveis de faltas elétricas uma vez que há a variação da distância dos pontos de 

aplicação de curto-circuito e variação tanto na impedância de falta como no ângulo de 

incidência da mesma. A boa diversidade de casos contribui ativamente na alta capacidade 

de generalização das RNA, de forma que estas são capazes de estimar corretamente os 

níveis de tensão em qualquer ponto de interesse ao longo do SD em estudo, desde que 

respeitando o domínio de operação para o qual as RNA foram projetadas. 

O procedimento para a obtenção do monitoramento remoto de uma carga genérica 

dentro do SD se mostrou eficaz, uma vez que após a realização de uma investigação inicial 

da melhor topologia de RNA e sua aplicação no ponto de carga MR1 foi possível, com as 

devidas alterações e precauções indicadas, aplicar o método de monitoramento proposto 

para os pontos MR2, MR3, MR4, MR5 e MR6, alocados ao longo do SD em estudo, e obter 

resultados satisfatórios em todas estas cargas monitoradas. A quantidade de casos de 

teste, quando analisados os seis pontos de carga escolhidos, com erros inferiores a 0,03 

p.u entre a reposta deseja e a resposta estimada pelas RNA permaneceu entre 93,5% e 

99,7%. A mesma análise, considerando-se casos de teste com erros inferiores a 0,01 p.u., 

revela que de 85,3% a 99,4% dos casos de teste permaneceram nesta faixa de erro. 

De fato, o elevado índice de acerto das RNA dos respectivos pontos monitorados, 

obtido ao se adotar topologias idênticas para as mesmas, fornece fortes evidências de que 

o grau de complexidade das do mapeamento tensões eficazes de cada uma das cargas 

presentes no SD é similar e aproximadamente constante em relação ao ponto de 

monitoramento escolhido (MRn), conferindo à metodologia proposta excelentes 

perspectivas referentes a sua implementação prática, tendo em vista que uma vez 

adequadamente executada a investigação inicial sobre a melhor topologia das redes, esta 
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pode ser estendida a quaisquer cargas de interesse no SD, conforme os objetivos propostos 

inicialmente neste trabalho.  

Cabe ressaltar que o modelo exposto, da maneira como foi elaborado, é válido para 

uma topologia específica de operação do SD e um perfil de carregamento estático. Sendo 

assim, em trabalhos futuros será possível ampliar a metodologia proposta incluindo perfis 

de carregamento do SD no treinamento das RNA. Além disso, não se descarta a 

necessidade de um cuidado extra na escolha dos melhores pontos de aplicação das faltas, 

considerando aspectos como a taxa de falhas dos alimentadores, potência de curto-circuito 

das barras e os demais tipos de falta, já que neste trabalho são abordadas apenas as faltas 

monofásicas entre a fase A e o terra do sistema. Tais aspectos serão fundamentais para 

aprimorar a representatividade do SD, obtendo-se um banco de dados para treinamento 

mais abrangente e consistente, elevando ainda mais a capacidade de generalização das 

RNA diante de outras condições de operação do SD não levadas em conta neste trabalho. 
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Anexo 
 
Anexo 1 - Código de permuta aleatória das matrizes 

 
% saida1_RNA = ones(200,17); 

% saida2_RNA = 2*ones(200,17); 

% saida3_RNA = 3*ones(200,17); 

% entrada_RNA = 4*ones(6,3400); 

 

%% Redimensionamento das saídas 

%==================================== 

%Redimensiona saida1 de 200x17 para 1x3400 

matriz = saida1_RNA; 

sizemat2 = size(matriz); 

k=1; 

vet1 = 0; 

    for i=1:sizemat2(1,1) 

        for j=1:sizemat2(1,2) 

            vet1(k) = matriz(i,j); 

            k = k+1; 

        end 

    end 

vet1;                  %Vetor 1x3400 com as saidas referentes a fase A 

 

 

%Redimensiona saida2 de 200x17 para 1x3400 

matriz = saida2_RNA; 

sizemat2 = size(matriz); 

k=1; 

vet2 = 0; 

    for i=1:sizemat2(1,1) 

        for j=1:sizemat2(1,2) 

            vet2(k) = matriz(i,j); 

            k = k+1; 

        end 

    end 

vet2;                   %Vetor 1x3400 com as saidas referentes a fase B 

 

 

%Redimensiona saida3 de 200x17 para 1x3400 

matriz = saida3_RNA; 

sizemat2 = size(matriz); 

k=1; 

vet3 = 0; 

    for i=1:sizemat2(1,1) 

        for j=1:sizemat2(1,2) 

            vet3(k) = matriz(i,j); 

            k = k+1; 

        end 

    end 

vet3;                 %Vetor 1x3400 com as saidas referentes a fase C 

 

%% ==================================== 

 

%Concatena as matrizes de entrada e as de saída 

 

mat = [entrada_RNA;vet1;vet2;vet3]; 
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%Faz a permuta aleatória dos elementos da matriz concatenada 

 

matsize = size(mat);                    %Tamanho da matriz 

nemb = 1000;                            %Numero de embaralhamentos 

auxemb = 0;                             %Auxiliar 

colunas = 17;                           %Determina de quantas colunas 

serão embaralhadas 

 

%vetor de controle 

 

for h=1:200 

    controle(h)=h; 

end 

 

%Troca de posições dos elementos da matriz 

    for n=1:nemb 

        %Define os indices que serão trocados 

        indice = round(matsize(1,2)*rand(1,1)); 

        indice2 = round(matsize(1,2)*rand(1,1)); 

          

        % Garante que os indices são multiplos do numero de colunas que 

nao 

        % serão embaralhados 

         

        while ~mod(indice,colunas)==0 

        indice = indice+1; 

        end 

          

        while ~mod(indice2,colunas)==0 

        indice2 = indice2+1; 

        end 

        

        %Indice recebe uma unidade a mais 

        indice = indice+1; 

        indice2 = indice2+1; 

         

        %Verifica se os indices não são zero 

        if indice ==0 

            indice = 1; 

        end 

     

        if indice2 == 0 

            indice2 = 1; 

        end 

       

         

        %Considera o caso em que o indice é maior que a matriz que será 

        %permutada 

         

        if indice >= matsize(1,2) 

            indice = indice-colunas; 

        end 

         

        if indice2 >= matsize(1,2) 

            indice2 = indice2-colunas; 

        end 

         



63 
 

    %Ajusta os valores do vetor de controle conforme são trocados na 

    %permuta 

        if (indice==1 && indice2 ~=1) 

            auxcont = controle(1); 

            controle(1)=controle((indice2-1)/17); 

            controle((indice2-1)/17) = auxcont; 

                elseif (indice==1 && indice2 ~=1) 

                    auxcont = controle((indice-1)/17); 

                    controle((indice-1)/17)=controle(1); 

                    controle(1) = auxcont; 

                elseif (indice==1 && indice2 ~=1) 

                    auxcont = controle(1); 

                    controle(1)=controle(1); 

                    controle(1) = auxcont; 

                elseif (indice~=1 && indice2 ~=1) 

                    auxcont = controle((indice-1)/17); 

                    controle((indice-1)/17)=controle((indice2-1)/17); 

                    controle((indice2-1)/17) = auxcont; 

          end 

         

    %Faz a troca de posições em todas as linhas da matriz 

    for j=1:matsize(1,1) 

       for i=0:colunas-1 

            auxemb(i+1) = mat(j,indice+i); 

            mat(j,indice+i) = mat(j,indice2+i); 

            mat(j,indice2+i) = auxemb(i+1); 

 

        end 

    end 

end 

mat; 

 

%Saídas já permutadas aleatoriamente 

vet1 = mat(7,:); 

vet2 = mat(8,:); 

vet3 = mat(9,:); 

entrada_RNA = mat(1:6,:); 

 

%% ================================== 

%Redimensiona as saídas para o formato original 

 

%Redimensiona saida1 para 200x17 

k=1; 

for i=1:sizemat2(1,1) 

        for j=1:sizemat2(1,2) 

            matriz(i,j) = vet1(k); 

            k = k+1; 

        end 

end 

     

saida1_RNA = matriz; 

%matriz 

 

%Redimensiona saida2 para 200x17 

k=1; 

for i=1:sizemat2(1,1) 

        for j=1:sizemat2(1,2) 

            matriz(i,j) = vet2(k); 
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            k = k+1; 

        end 

end 

     

saida2_RNA = matriz; 

%matriz 

 

%Redimensiona saida3 para 200x17 

k=1; 

for i=1:sizemat2(1,1) 

        for j=1:sizemat2(1,2) 

            matriz(i,j) = vet3(k); 

            k = k+1; 

        end 

end 

     

saida3_RNA = matriz; 

%matriz 


