

VINÍCIUS GOMES SERAGUCI

SONDA DE MONITORAMENTO DA QUALIDADE DA

ÁGUA: MÓDULOS DE MEDIDA DE PH, OXIGÊNIO

DISSOLVIDO E INTERFACEAMENTO I2C COM

MICROCONTROLADOR

Trabalho de Conclusão de Curso apresentado à Escola de Engenharia de São Carlos, da

Universidade de São Paulo

Curso de Engenharia Elétrica com ênfase em

Eletrônica

ORIENTADOR: Valentin Obac Roda

São Carlos

2009

AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE
TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO,
PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica preparada pela Seção de Tratamento
da Informação do Serviço de Biblioteca – EESC/USP

Seraguci , Vinícius Gomes

S481s Sonda de monitoramento da qual idade da água :

módulos de medida de pH, oxigênio dissolvido e

interfaceamento 12C com microcontrolador / Vinícius

Gomes Seraguci ; orientador Valentim Obac Roda. –- São

Carlos, 2009.

 Trabalho de Conclusão de Curso (Graduação em

Engenharia Elétrica com ênfase em Eletrônica) --

Escola de Engenharia de São Carlos da Universidade de

São Paulo, 2009.

1 . Hidrologia. 2. Sonda. 3. MSP430.

4. Instrumentação. 5. Oxigênio dissolvido. I . Título.

Aos meus pais, por toda a dedicação,

carinho, atenção e apoio durante toda a minha

graduação.

À minha falecida avó, pelo apoio e ajuda.

A um grande amigo e companheiro que foi.

AGRADECIMENTOS

Ao Prof. Valentin Obac Roda, professor orientador, pelo auxílio e disponibilização do

laboratório de ensino.

Ao CNPq/PIBIC pela bolsa de estudos.

Aos amigos Bruno Crippa, Tiago Spineli, Otto Litjens e Lucas Licursi, pelo apoio e auxílio

na solução de problemas.

A Deus, por todos esses anos de graduação e pela realização deste projeto.

RESUMO

Este trabalho teve por objetivo o aperfeiçoamento de alguns dos circuitos de uma sonda

para a medida de variáveis físicas e químicas, indicadoras da qualidade da água, a partir do

isolamento dos circuitos condicionadores de sinais dos sensores de pH, oxigênio dissolvido,

condutividade, temperatura, turbidez e pressão. Os sinais são processados por

microcontroladores de baixo consumo que se comunicam através do padrão I2C, isolados

opticamente, com um microcontrolador central que gerencia a informação e envia as informações

a um microcomputador. Cada sensor junto com o circuito condicionador de sinal e unidade de

processamento formam módulos com alimentação independente, a partir da utilização de

conversores DC/DC. As informações enviadas ao computador são mostradas em um software

desenvolvido exclusivamente para a sonda, para a captura dos dados. Testes foram realizados

em laboratório com os sensores de pH e o medidor de oxigênio dissolvido, com a possibilidade de

verificação das leitura na tela do PC. Os resultados obtidos foram comparados com os valores

definidos e com os buffers utilizados.

Palavras-chave: Sonda – MSP430 - Instrumentação – Hidrologia – pH – Oxigênio

Dissolvido

ABSTRACT

The objective of this work is the improvement of some circuits of a probe for measurement

of physical and chemical variables that index water quality, based on isolation of the signal

conditioning circuits of pH, dissolved oxygen, conductibility, temperature, turbidity and pressure.

The signals are processed by low power microcontrollers that communicate using I2C standard,

optically isolated, with a central microcontroller that manages information and send it to a

computer. Each sensor with a signal conditioning circuits and a processing unit constitute a module

with independent power source, from DC/DC convertors. The information sent to computer is

displayed on software developed exclusively for the probe, to capture data. Tests were performed

in laboratory with the pH and dissolved oxygen sensors, with the ability of checking the data on

PC. The results were compared with defined values and with used buffers.

Keywords: Probe – Microcontroller – Instrumentation – Hydrology – pH – Dissolved

Oxygen.

LISTA DE FIGURAS

Figura 1 - Seqüência de Controle do barramento.. 21

Figura 2 - Configuração elétrica do I2C. .. 22

Figura 3: Sensor para medição de pH. .. 23

Figura 4: Resposta do Sensor a 25ºC. .. 24

Figura 5 – Circuito condicionador de sinal: Sensor de pH. .. 25

Figura 6: Sensor para medição do Oxigênio Dissolvido. ... 26

Figura 7 – Circuito condicionador de sinal do sensor de oxigênio dissolvido. 27

Figura 8: Ligações MAX232. ... 28

Figura 9 - Diagrama do projeto. .. 28

Figura 10 - BWR-15/100-D12.. 29

Figura 11 – Esquemático da placa de alimentação dos circuitos. ... 30

Figura 12: Circuito Regulador de 3,3V. ... 31

Figura 13 – CI P82B96.. 32

Figura 14 – Isolação do I2C via acoplamento óptico. .. 32

Figura 15 – Interior da sonda, vista superior. .. 33

Figura 16 – Vista externa da sonda... 33

Figura 17– Layout da placa 1 – Circuitos condicionadores de sinal. ... 34

Figura 18 – Placa de alimentação dos circuitos. ... 35

Figura 19 – Conexão entre as placas. ... 35

Figura 20 – Visão geral do kit MSP-TS430DW28 [9]. .. 36

Figura 21 – Esquemático dos testes. .. 37

Figura 22: Fluxograma do microcontrolador SLAVE 1 - pH. .. 39

Figura 23: Fluxograma do microcontrolador SLAVE 2 - Ox. .. 40

Figura 24: Fluxograma do microcontrolador Master. ... 42

Figura 25: Tela de trabalho do software Monitor. .. 44

Figura 26: Tela de calibração do pH. .. 46

Figura 27: Tela de calibração do Oxigênio Dissolvido. .. 46

Figura 28: Tela com dados de calibração.. 47

Figura 29: Fluxograma do envia de dados para porta serial. ... 47

Figura 30: Fluxograma da recepção de dados da serial. ... 48

Figura 31: Sinal de pH condicionado... 50

LISTA DE SIGLAS

ACK Acknowledge

AD Analógico/Digital

ADC Analog-to-Digital Converter

CI Circuito Integrado

CPU Central Processing Unit

DC Direct Current

DCO Digitally Controlled Oscillator

DMA Direct Memory Access

FET Flash Emulation Tool

I2C Inter-Integrated Circuit

JTAG Joint Test Action Group

LCD Liquid-Crystal Display

LQFP Low Profile Quad Flat Pack

MIPS Million Instructions per Second

PC Personal Computer

PCB Printed Circuit Board

PWM Pulse Width Modulation

QFN Quad Flat No-Lead

RAM Random Acess Memory

RISC Reduced Instruction Set Computer

SCL Serial Clock

SDA Serial Data

USART Universal Asynchronous Receiver/Transmitter

SUMÁRIO

1. INTRODUÇÃO ... 17

1.1. POTENCIAL HIDROGENIÔNICO – PH .. 17

1.2. OXIGÊNIO DISSOLVIDO .. 18

1.3. MICROCONTROLADOR MSP430 ... 19

1.4. BARRAMENTO I2C .. 20

2. MATERIAIS E MÉTODOS .. 23

2.1 CIRCUITOS CONDICIONADORES DE SINAL: MEDIDOR DE PH ... 23

2.2 CIRCUITOS CONDICIONADORES DE SINAL: OXIGÊNIO DISSOLVIDO .. 25

2.3 COMUNICAÇÃO ENTRE OS SISTEMAS .. 27

2.4 MÉTODOS DE ISOLAÇÃO ... 29

2.5. CONFECÇÃO E MONTAGEM DAS PLACAS DE CIRCUITO IMPRESSO .. 32

2.6. PROGRAMAÇÃO DOS MICROCONTROLADORES ... 35

2.7. INTERFACE MICROCONTROLADOR-PC .. 42

3. RESULTADOS E CONCLUSÕES .. 49

3.1 TESTES DOS CIRCUITOS ... 49

3.2. TESTES DOS MICROCONTROLADORES... 50

3.3. CONCLUSÃO .. 51

REFERÊNCIAS BIBLIOGRÁFICAS ... 53

APÊNDICE A – CÓDIGO FONTE SLAVE 1 - PH ... 54

APÊNDICE B – CÓDIGO FONTE MASTER ... 57

APÊNDICE C – CÓDIGO FONTE PROGRAMA MONITOR .. 62

UNIDADE PRINCIPAL .. 62

UNIDADE DE CALIBRAÇÃO DO PH .. 66

UNIDADE DE CALIBRAÇÃO DO OXIGÊNIO DISSOLVIDO .. 67

17

1. Introdução

O presente projeto consistiu no aprimoramento de alguns dos circuitos utilizados em uma

sonda para monitoramento da qualidade da água [1]. O microcontrolador usado anteriormente foi

substituído por um modelo da Texas Instrumentos, da família MSP430 que deverá simplificar e

melhorar os circuitos eletrônicos do instrumento. Alguns dos circuitos que eram utilizados na

versão anterior da sonda foram implementados para o microcontrolador MSP430 [2].

O projeto de sonda desenvolvido anteriormente é composto de um único

microcontrolador central modelo PIC. Os circuitos condicionadores de sinais estão organizados

em duas placas de circuito impresso, com alimentação independente conseguida com um

transformador com quatro secundários. Os sinais dos sensores dos circuitos condicionadores são

multiplexados e selecionados a partir de chaves analógicas controladas pelo PIC. O sinal antes de

ser processado passa por um circuito conversor analógico-digital e então é enviado ao

microcontrolador, para este se comunicar com um microcomputador através da comunicação

serial.

O atual projeto propõe para evitar a interferência entre os sensores, o desenvolvimento

de módulos independentes para cada sensor, com alimentação independente e com os dados

isolados opticamente, utilizando um barramento comum de comunicação baseado no padrão I2C.

A arquitetura prevista para os módulos inclui além dos circuitos de condicionamento de

sinal, uma alimentação independente (a partir de uma bateria de 3V no próprio circuito ou de um

sinal DC isolado das outras fontes do sistema) à sonda com monitoramento da temperatura,

pressão, pH, oxigênio dissolvido, turbidez e condutividade.

A sonda tem a finalidade de estudo e verificação das características físicas e químicas da

água, com aplicações em diversas áreas como: o controle da qualidade das águas de

abastecimento, caracterização dos efluentes líquidos de águas residuárias industriais ou

domésticas e caracterização de diferentes corpos de água naturais, como os rios, lagos ou

reservatórios.

O trabalho proposto consistiu no projeto, construção e avaliação de uma sonda aquática

capaz de medir alguns parâmetros necessários para sua qualidade e controle. Escolheu-se

desenvolver instrumentos para medição e visualização de variáveis como pH e oxigênio

dissolvido.

1.1. Potencial Hidrogeniônico – pH

É a medida da acidez ou alcalinidade de uma solução. O valor é definido a partir do

logaritmo decimal da concentração de íons H+ em uma solução aquosa, ou seja:

18

 (1.1)

onde aH é a concentração de íons de hidrogênio ativos na solução.

O pH pode ser lido a partir de um pHmêtro, que consiste de um eletrodo acoplado a um

sistema de medida. O medidor de pH é um voltímetro capaz de converter o valor do potencial do

eletrodo em unidades de pH.

O eletrodo normalmente é feito de vidro e do tipo íon seletivo, ou seja, este detecta íons

H+ e gera uma tensão proporcional a sua concentração. A partir desta tensão gerada é possível

saber o valor do pH da solução.

A impedância de entrada de um circuito de medição de pH deve ser alta, por causa do

alto valor da resistência do vidro dos eletrodos tipicamente utilizados. O circuito condicionador de

sinal normalmente consiste de um amplificador operacional com configuração inversora de ganho

de algumas unidades, pois o sinal captado dos sensores é da ordem de centésimos de volt.

A medição correta de um pH depende de um bom sensor e calibrações periódicas. O

valor medido pode variar com o tempo e temperatura, portanto calibrações são sugeridas a cada

dia de utilização. As calibrações deverão ser realizadas com a utilização de soluções com valores

de pH conhecidos, buffers. É recomendado o uso de dois ou mais buffers com valores de pH entre

4 e 10.

Fabricantes de sensores para medição de pH recomendam armazenar o eletrodo sempre

que não está sendo utilizado, em uma solução ácida ou em água, para casos de emergência,

mantê-lo úmido. Constantes exposições do eletrodo a soluções de água destilada ou deionizada

podem causar a degradação do mesmo.

1.2. Oxigênio dissolvido

A medida do oxigênio dissolvido é de fundamental importância no estudo das águas, uma

vez que o oxigênio é um elemento que interage diretamente com os seres vivos aquáticos. Sua

concentração deve ser controlada, pois tanto valores baixos quanto altos, são letais para os

organismos.

O conhecimento de sua concentração pode ser útil para detecção de impactos

ambientais como eutrofização e poluição orgânica.

A medição de oxigênio dissolvido pode ser realizada a partir de dois métodos:

 Eletrodo Íon seletivo: um eletrodo inerte que se comunica com uma solução externa

através de uma membrana que permite a passagem de apenas um íon a ser analisado. Este

eletrodo pode ser utilizado em conjunto com um eletrodo de referência.

 Eletrodo de referência: é um tipo de eletrodo que mantém um potencial constante em

relação a um potencial que pode ser medido de uma outra meia-pilha. O eletrodo de referência

http://pt.wikipedia.org/wiki/Eletrodo
http://pt.wikipedia.org/wiki/Pilha

19

ideal apresenta um potencial conhecido e constante em relação ao eletrodo padrão de oxigênio.

Assim como a medição do pH, a leitura do oxigênio dissolvido sofre alterações do meio

externo. A temperatura da água e a variação de pressão devido à altitude, influenciam de maneira

exponencial no sinal do sensor de oxigênio dissolvido. Por esse motivo calibrações periódicas

também são recomendadas.

Normalmente as unidades de medida de oxigênio dissolvido são: ppm, mg/l e

porcentagem (%). Para esta última unidade, o instrumento de medida deve ser calibrado em uma

solução com 100% e em outra com 0% de oxigênio. Os valores em ppm e mg/l são obtidos a partir

da porcentagem de oxigênio e a temperatura ambiente. Uma tabela com a solubilidade do

oxigênio para a determinada temperatura deverá ser consultada [3].

1.3. Microcontrolador MSP430

O microcontrolador utilizado neste trabalho, o MSP430, fabricado pela empresa Texas

Instruments apresenta baixo consumo e alto desempenho [4].

Suas principais características estão listadas a seguir.

 Baixo consumo: os MSP430 são chips conhecidos pelo seu consumo incrivelmente

baixo (da ordem de 0, 1µA para retenção dos dados da RAM, 0, 8µA para funcionamento no modo

de relógio de tempo real e cerca de 250µA/MIPS em funcionamento normal). O baixo consumo é

obtido graças aos diversos modos de funcionamento da CPU.

 Baixa tensão de operação: podem operar com tensões a partir de 1,8V até 3,6V.

 Alto desempenho: utilizando um barramento de 16 bits, diversos modos de

endereçamento e um conjunto de instruções pequeno, mas muitíssimo poderoso, os MSP430

permitem realizar tarefas complexas com um código bastante pequeno e rápido.

 Conjunto de instruções ortogonais: a disponibilidade de qualquer modo de

endereçamento para qualquer instrução e qualquer operando permitem que escrevam códigos

pequenos e eficientes, facilitando a tarefa dos compiladores de linguagens de alto nível como a

linguagem C.

 Número reduzido de instruções: arquitetura RISC com apenas 27 instruções físicas

(op-codes) e mais 24 instruções emuladas (variações de 27 instruções que utilizam os geradores

de constantes), resultando um conjunto de 51 instruções.

 Grande quantidade de periféricos: os chips MSP430 contam com um conjunto

bastante extenso de periféricos internos, com ênfase especial para conversores A/D de até 16

bits, conversores D/A, comparador analógico, amplificador operacional programável, controladores

de DMA, temporizadores com diversos modos de funcionamento (incluindo PWM), controlador de

LCD, USARTs com capacidade endereçamento, multiplicador por hardware com capacidade de

20

executar operações de multiplicação e acumulo, etc.

 Facilidade de gravação e de depuração: a utilização da interface JTAG para a

gravação e depuração permite que se realize a programação e a depuração de seu software

diretamente na placa de aplicação, sem a necessidade de utilização de equipamentos

dispendiosos como emuladores.

 Diversos encapsulamentos: desde o diminuto QFN de 24 pinos e seus 4 x 4 mm. até

encapsulamentos LQFP de 100 pinos.

Há a possibilidade do uso de osciladores de alta freqüência, baixa freqüência, oscilador

por resistor, e diversas combinações, todas programadas via software. Consegue-se operar o

dispositivo sem cristais externos, apenas com o oscilador DCO presente nos mesmos. O uso dos

modos corretos de oscilador é vital para otimização do consumo de energia.

Vale lembrar também que toda a linha MSP430 utiliza internamente a arquitetura Von-

Neumann, isto é, o barramento de dados e o barramento de endereçamento de memória são os

mesmos (multiplexado).

1.4. Barramento I2C

A fim de aprimorar a comunicação entre os sensores e o circuito de processamento, foi

realizado um estudo para que esta comunicação seja feita através do barramento I2C.

O protocolo de comunicação I2C, sistema multi-mestre escravo, foi desenvolvido pela

Philips, e a partir de 1996 seu uso foi liberado ao público. Esta interface foi escolhida devido a sua

simplicidade e facilidade de inclusão e exclusão de dispositivos no barramento sem afetar a

comunicação com os outros dispositivos. Além de ser um padrão de comunicação síncrono, ou

seja, através do sinal de clock é possível ter o controle da transferência, permite a comunicação

com a presença de somente 2 dutos bi-direcionais: SDA e SCL [5].

Muitas vantagens podem ser atribuídas ao protocolo I2C. Destacam-se entre elas:

 Organização funcional em blocos, providenciando um simples diagrama

esquemático final.

 Não há necessidade de se desenvolver interfaces. Todos os dispositivos integram

as interfaces "on-chip", o que aumenta a agilidade no desenvolvimento.

 Endereçamento e protocolo de transferência de dados totalmente definido via

software.

 Possibilidade de inclusão ou exclusão de dispositivos no barramento sem afetá-lo

ou outros dispositivos conectados a este.

 Diagnóstico de falhas extremamente simples. O mau funcionamento é

imediatamente detectado.

21

 Desenvolvimento simplificado do software através do uso de bibliotecas e módulos

de software reutilizáveis.

 Facilidade no desenvolvimento de placas de circuito impresso, devido à quantidade

de interconexões.

O protocolo apresenta as seguintes terminologias:

 TRANSMISSOR: circuito integrado (CI) que fornece os dados para o barramento;

 RECEPTOR: CI que recebe os dados do barramento;

 MASTER: CI que inicia e finaliza a transferência de dados, gera o sinal de clock, ou

seja controla a transmissão;

 SLAVE: CI endereçado pelo MASTER, sem o poder de controle da comunicação, é

controlado pelo clock do MASTER;

Apesar deste protocolo não apresentar complexidade na sua configuração, há muitos

parâmetros a serem configurados e o máximo de atenção é requerido para que erros simples não

sejam cometidos.

Na figura 1 tem-se a seqüência de quando algum dado deve ser enviado do MASTER ao

SLAVE. SDA representa o duto de dados e SCL, a linha do clock do padrão de comunicação.

Figura 1 - Seqüência de Controle do barramento.

O padrão de comunicação é composto da seguinte seqüência para envio de dados:

primeiro o MASTER deve enviar um sinal de start para sinalizar o inicio da transmissão. Este sinal

de inicio deve ser da maneira ilustrada na figura 1: o sinal do clock deve estar em nível alto e

então deve-se alternar o sinal de dados (SDA) para nível baixo. Após o envio do start, o MASTER

deve mandar o endereço do dispositivo ao qual deseja se comunicar, seguido do bit que indica se

ocorrerá leitura ou escrita no dispositivo (R/W).

O bit seguinte é o sinal de reconhecimento: o MASTER envia o sinal de clock e aguarda

por um tempo definido a resposta do SLAVE ao qual se deseja estabelecer a comunicação. O

SLAVE deverá enviar para nível alto o sinal do SDA, a seqüência descrita é entendida que a

22

comunicação está ocorrendo normalmente e deve continuar. Caso o SLAVE não responda ao

sinal de clock do MASTER, a comunicação deverá retornar erro e ser encerrada.

Caso a opção do MASTER seja de escrita, como descrito no exemplo da figura 1, este

microcontrolador deve enviar em seguida os dados desejados, respeitando a regra de que a cada

um byte enviado, um sinal de reconhecimento (ACK) deverá ser realizado. Se a escolha do

MASTER foi de receber dados do SLAVE, o MASTER deve gerar o sinal de clock para que o

SLAVE envie suas informações sincronizadas, mantendo a regra de um sinal de ACK a cada byte

enviado.

O encerramento da comunicação é realizado pelo MASTER, com o envio do sinal de

STOP, onde o SCL deve ser levado para nível alto e em seguida, fazer o mesmo com o SDA.

A configuração elétrica do método é simples e está esquematizada na figura 2.

Figura 2 - Configuração elétrica do I2C.

Ambas as linhas SDA e SCL são bidirecionais e estão conectadas à alimentação via

resistor PULL-UP (figura acima). Quando a barra está livre, ambas as linhas permanecem em

nível alto. O estágio de saída do dispositivo conectado à barra deve possuir um coletor aberto ou

um dreno aberto, para executar a função AND, como descrito na figura 2.

23

2. Materiais e Métodos

2.1 Circuitos condicionadores de sinal: Medidor de pH

Para a realização da medida do pH utilizou-se um sensor comercial fabricado pela

empresa Cole Parmer, figura 3. O sensor fornece uma diferença de potencial gerada por uma

célula galvânica (eletrodo + eletrodo de referência).

Figura 3: Sensor para medição de pH.

Para a confecção do circuito condicionador de sinal, obteve-se com o fabricante a

resposta teórica do sensor integrado, para uma temperatura de 25°C. O gráfico obtido está

representado na figura 4.

24

Figura 4: Resposta do Sensor a 25ºC.

O conversor AD utilizado é um comparador de 10bits presente no microcontrolador MSP

430F1232, e este aceita tensões entre 0 e VDD, 3,3V. Através da curva do sensor observa-se que

a tensão produzida está compreendida aproximadamente entre -420mV e +420mV, portanto duas

modificações no sinal devem ser realizadas: torná-lo apenas positivo e amplificá-lo para faixa de

tensão do conversor.

A figura 5 ilustra o circuito construído com a finalidade de condicionar o sinal do sensor

de pH. Como mencionado anteriormente, estes eletrodos apresentam altas resistências internas

criando a necessidade de se utilizar um amplificador operacional seguidor de tensão, que

apresenta uma alta impedância de entrada e permite uma baixa corrente de polarização. O

segundo amplificador operacional proporciona um ganho ao sinal e soma uma componente de

tensão contínua e fixa, para então gerar um sinal dentro da faixa de medida do conversor A/D do

microcontrolador [6].

A tensão fixa gerada para o segundo amplificador operacional é feita com um diodo

Zenner de 5,5V, seguido de um divisor de tensão.

O sensor de pH é conectado nos terminais Elet_pH1(fio vermelho da figura 3) e Elet_pH2

(fio preto da figura 3). O terminal S_ph, representa a saída do sinal de pH que deve ser lida pelo

conversor do MSP430.

Como pode ser observada na figura 5, a alimentação do circuito apresenta o índice 2, isto

foi realizado para criar a isolação na alimentação do módulo.

-500

-400

-300

-200

-100

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14V
 (

m
V

)

pH

Tensão x pH

25

Figura 5 – Circuito condicionador de sinal: Sensor de pH.

2.2 Circuitos condicionadores de sinal: Oxigênio dissolvido

Para o presente trabalho utilizou-se o método do eletrodo de referência, como

mencionado na introdução. A quantidade de oxigênio dissolvida é baseada na corrente elétrica

gerada devido à diferença de potencial entre dois eletrodos imersos em uma solução eletrolítica.

Os eletrodos utilizados são feitos de um metal nobre e um deles é polarizado

negativamente com relação ao outro eletrodo de referência, de prata/cloreto de prata. Ambos

estão imersos em uma solução de cloreto de potássio isolada por uma membrana semipermeável.

No primeiro eletrodo acontece uma redução do oxigênio e uma corrente elétrica é gerada

proporcional a esta redução.

A corrente elétrica produzida com a diferença de potencial entre os eletrodos se mantém

constante para valores de tensão de polarização entre 0,6 a 0,8V, portanto com a fixação deste

potencial para um valor próximo de 0,7V é possível encontrar a concentração de oxigênio a partir

da leitura da corrente, sendo esta proporcional a quantidade de íons reduzidos.

Na figura 6 está representado o sensor para medição do oxigênio dissolvido utilizado.

26

Figura 6: Sensor para medição do Oxigênio Dissolvido.

Na Figura 7 está representado o circuito condicionador do sinal; este está dividido em

duas partes: à esquerda, um circuito responsável por fornecer a tensão de referência constante de

0,7V, e à direita, um conversor corrente-tensão seguido de um amplificador de sinal. Esta tensão

de referência é obtida a partir de um Zenner de 5V e um circuito divisor de tensão. A tensão de

0,7V é responsável por criar a situação desejada, uma corrente proporcional a quantidade de íons

de oxigênio produzidos.

 O sensor é conectado entre a referência de 0,7V, (Elet_ox1) e a entrada inversora do

primeiro amplificador operacional (Elet_ox2).

O sinal representando a porcentagem de oxigênio dissolvido é lido no pino S_ox. De

acordo com o tratamento de sinal realizado, o nível de tensão na saída do circuito para uma

solução com 100% de oxigênio fica em torno de 2V. Assim como encontrado no circuito

condicionador de sinal do pH, este apresenta a isolação na alimentação, como pode ser visto com

o índice 3.

27

Figura 7 – Circuito condicionador de sinal do sensor de oxigênio dissolvido.

2.3. Comunicação entre os sistemas

Após a escolha do microcontrolador e do sistema de comunicação a ser utilizado,

MSP430 e padrão I2C, desenvolveu-se o sistema de comunicação deste sistema ao

microcomputador.

A ligação entre os microcontroladores foi realizada conforme definido pelo padrão I2C

especificado pela PHILIPS [5]. Optou-se por utilizar um valor de VDD de 3,3V, e resistores de pull-

up, 10kOhm.

A visualização dos dados dos sensores deve ser feita em um computador. Para isto é

necessário o desenvolvimento de um software capaz de se comunicar com o MSP430. Optou-se

por utilizar a comunicação serial, pela sua facilidade em configuração no microcontrolador e as

opções de desenvolvimento de software para o PC.

Para a realização da comunicação do microcontrolador MASTER com o PC, utilizou-se o

integrado MAX232, este proporciona um tratamento do sinal do microcontrolador para os níveis de

tensão aceitos por qualquer computador que apresente uma porta comum serial. O sinal a ser

enviado pelo MSP para o computador é lido através de dois pinos do microcontrolador e então

passa pelo CI MAX232. A configuração do integrado foi feita a partir da sua folha de dados. Na

figura 8 estão as ligações realizadas. Tx representa o duto de transmissão, e Rx, duto de

recepção dos dados.

28

Figura 8: Ligações MAX232.

Na figura 9 está representado o esquemático de como são realizadas as ligações entre

os microcontroladores e o computador, com especificação dos tipos de comunicação

compartilhada entre cada sistema. O SLAVE 1 e SLAVE 2, representam microcontroladores

responsáveis por receber e converter os dados dos sensores de pH e oxigênio dissolvido [7]. O

MASTER é o responsável por juntar os dados dos dois sensores e enviá-los ao PC serialmente.

Figura 9 - Diagrama do projeto.

29

2.4 Métodos de Isolação

 Alimentação

Os sensores utilizados apresentam certa sensibilidade a interferências entre os sinais.

Um método de isolação é necessário para que se capture os sinais desejados. A isolação de cada

módulo de sensor poderá ser realizada com a utilização de conversores DC/DC para a

alimentação e isoladores ópticos na comunicação I2C entre os microcontroladores. A isolação

entre a alimentação dos circuitos condicionadores de sinal foi possível através da utilização de

conversores DC/DC da DATEL.

Os conversores da DATEL são uma grande solução para fontes de alimentação de

amplificadores, pois eles apresentam duas saídas de tensão, uma positiva e outra negativa com

valores entre 5 e 15 volts dependendo do modelo escolhido. No projeto utilizou-se o modelo para

saída de 15V, BWR-15/100-D12. Outra vantagem do circuito integrado é seu tamanho reduzido,

que é de extrema importância para o projeto da sonda, pois a parte mecânica não apresenta

tamanho elevado.

Na figura 10 é apresentado o conversor BWR.

Figura 10 - BWR-15/100-D12.

30

Como a alimentação dos MSP430 é próxima de 3,3V, foram utilizados reguladores de

tensão LM317, com ajustes da tensão de saída para 3,3V, a partir das tensões de entrada

geradas pelos conversores DC/DC de 15V.

Na figura 11 encontra-se o esquemático da fonte feita no software OrCAD com os

conversores DC/DC. A figura além de apresentar o sinal de alimentação dos circuitos dos

sensores de pH e oxigênio dissolvido, apresenta mais dois conversores. O esquemático foi

confeccionado para fornecer a alimentação dos outros circuitos condicionadores da sonda:

condutividade, temperatura, pressão e turbidez. Nele pode-se observar a alimentação que irá para

cada módulo de processamento. As tensões com índices „1‟ são para a alimentação do circuito

condicionador de sinal do condutivimetro, 2 são para o circuito de medida do pH, 3 para o módulo

do oxigênio dissolvido, e G, para os sensores que não sofrem interferências significativas como os

demais: sensor de turbidez, temperatura e pressão.

Figura 11 – Esquemático da placa de alimentação dos circuitos.

O circuito de redução de tensão para alimentação dos MSP430, está representado na

figura 12. Com um sinal de entrada próximo de 15V, a saída do circuito é aproximadamente 3,3V.

31

Figura 12: Circuito Regulador de 3,3V.

 Barramento I2C

Foi realizado um estudo a respeito de como realizar a isolação no barramento I2C, e

deste modo completar a isolação de cada módulo de sensor. Há um integrado fabricado pela

própria PHILIPS, criadora do barramento I2C, para uso indicado na comunicação I2C, este circuito

integrado, o P82B96, funciona como um buffer para o sistema de comunicação que é bidirecional.

O CI elimina o problema de latching e cria uma relação bidirecional entre o barramento I2C e

outras configurações de barramento [5]. A transmissão dos sinais SDA/SCL através das linhas

equilibradas de transmissão pode ser realizada com a isolação galvânica, por acoplamento óptico,

de forma simples pois os sinais direcionais de transmissão (Tx) e de recepção (Rx) são fornecidos

separados. Os sinais de Tx e de Rx podem diretamente ser conectados, sem causar latching, para

fornecer uma linha de sinal bidirecional alternativa com as propriedades de I2C.

A figura 13 mostra a especificação do circuito integrado utilizado para isolamento na

comunicação I2C.

32

Figura 13 – CI P82B96.

Na ilustração 14 está um exemplo de como deve ser ligado o buffer para o caso de se

utilizar o método de isolação por acoplamento óptico. No esquemático da figura pode-se observar

como é realizada a ligação para se obter um duto bi-direcional.

Figura 14 – Isolação do I2C via acoplamento óptico.

2.5. Confecção e montagem das placas de circuito impresso

No desenvolvimento do hardware foram utilizados os softwares OrCAD, que permitiu o

desenho esquemático dos circuitos impressos e a geração dos PCB, para posterior uso no

 óptico

33

software CircuitCam, que gera o arquivo utilizado na fresa do Departamento de Engenharia

Elétrica da EESC, para confecção das placas.

Após desenho do esquema elétrico no OrCAD Capture, o passo seguinte foi reunir todos

os circuitos numa placa e posicionar todos os componentes. A partir do OrCAD Layout, foi criada

a forma que a placa deveria ter e também definida suas dimensões. A forma e a dimensão da

placa são de extrema importância devido ao restrito espaço disponível, um dos maiores

problemas encontrados. Apesar de a sonda apresentar dimensões circulares, a forma escolhida

foi a de uma meia lua, pois há a parte interna dos sensores que dificulta a colocação de placas

circulares. As figuras 15 e 16 ilustram a parte mecânica da sonda.

Figura 15 – Interior da sonda, vista superior.

Figura 16 – Vista externa da sonda.

34

A confecção das placas foi realizada durante o período de iniciação cientifica. Na época

da confecção, a formação de módulos microprocessados para cada sensor não havia sido

planejada, portanto a placa criada apresenta além do circuito condicionador de sinal de pH e

oxigênio dissolvido, circuitos dos sensores de temperatura, pressão e turbidez. Estes circuitos

condicionadores poderão no futuro ser incorporados ao barramento I2C através da utilização de

microcontroladores.

As placas confeccionadas apresentam dupla face e alimentação independente entre cada

circuito condicionador. Na figura 17 está o layout da placa confeccionada.

Figura 17– Layout da placa 1 – Circuitos condicionadores de sinal.

 O projeto foi realizado para se ter um total de quatro placas, com a primeira contendo

todos os sensores exceto o condutivímetro, este apresenta seu espaço reservado na segunda

placa, por completo. A terceira placa foi destinada para a unidade de microprocessamento da

sonda, como o presente projeto terá processamento isolado para cada sensor, a utilização da

terceira placa foi descartada. Por fim a quarta placa que foi criada, apresenta as fontes de

alimentação com os conversores DC/DC, dos circuitos condicionadores de sinal.

Para o maior aproveitamento do espaço interno da sonda, planejou-se a conexão entre

as placas de maneira que cada uma pudesse ser conectada sobre a outra, por meio de jumpers.

Na figura 18 está a outra placa confeccionada, com as fontes de alimentação

independentes para os módulos dos sensores.

35

Figura 18 – Placa de alimentação dos circuitos.

A figura 19 demonstra como é realizada a conexão entre as placas.

Figura 19 – Conexão entre as placas.

2.6. Programação dos Microcontroladores

Concluído o entendimento sobre o barramento I2C, começaram-se os testes com os

microcontroladores. Um dos modelos escolhido foi o MSP4301F1232, presente no kit da Texas,

FET[8]. O kit é bem simples, não apresenta nenhuma interface de interação com o programador

exceto o cabo JTAG para programação e emulação do software com o computador. Com estas

ferramentas o uso da plataforma IAR, que permite emular e debugar o software desenvolvido, foi

muito importante. Na figura 20 esta o esquemático do kit utilizado.

36

Figura 20 – Visão geral do kit MSP-TS430DW28 [9].

Através do IAR Embedded Workbench foi possível executar o programa e ao mesmo

tempo visualizar no computador todas as portas e registradores do microcontrolador. A emulação

permitiu também a execução do programa passo a passo e ainda a colocação de breakpoints, o

qual favorece a localização de pontos críticos do algoritmo. Essa ferramenta foi muito importante

para o desenvolvimento do programa, testes e correções de erros.

A programação do MSP foi feita em linguagem C com a criação de funções básicas para

a comunicação I2C. O objetivo de se programar desse modo é obter uma organização do

programa e facilidade de se encontrar as partes que realizem certas funções no software.

O teste feito com o barramento I2C foi com a implementação de um software em um MSP

fazendo-o se comunicar com outro microcontrolador da mesma família, um MSP430F169. Esse

teste foi útil para o aprendizado do I2C na prática e uma familiarização com o MSP430.

Aproveitou-se a oportunidade para a realização da configuração da comunicação serial, e através

do software livre Tera Term Pro foi possível enviar e receber dados para o microcontrolador

MASTER.

O microcontrolador MSP430F169 utilizado para a realização dos testes está presente em

um kit FET, semelhante ao anterior, não apresenta interface com o usuário, somente o acesso aos

pinos do microcontrolador [10].

Os testes foram úteis para se ter uma base de como será a versão final de cada

microcontrolador. A figura 21 apresenta uma noção de como os testes foram feitos.

37

Figura 21 – Esquemático dos testes.

Após êxito na comunicação I2C e serial, os softwares dos microcontroladores foram

estruturados e definidos.

Realizou-se primeiramente a finalização dos softwares dos MSP SLAVE 1 (pH) e SLAVE

2 (oxigênio dissolvido). Os microcontroladores são responsáveis por ler os dados do sensor por

uma porta analógica, e realizar a conversão com um ADC de 10bits. E então enviar as

informações dos sensores quando o microcontrolador MASTER solicitar.

A leitura e conversão dos dados dos sensores são realizadas de maneira a aproveitar

toda a resolução do conversor, para a faixa de tensão entre 0 a 3,3V. O endereço de cada

microcontrolador foi definido de acordo com a tabela 1:

Tabela 1: Endereços para comunicação I2C.

Microcontrolador Endereço I2C

pH Slave A9

Ox Slave A0

O software SLAVE 1 e o SLAVE 2 são muito semelhantes, apresentam a única diferença

de endereço na comunicação I2C.

A adequação do valor convertido para o aproveitamento de toda a resolução dos

conversores AD, é realizada da seguinte forma:

Conv = Conv*255/1024; // Ajuste valor lido ADC (0 -> 3,30V)->(0 -> 255)

O valor 1024 representa a resolução do conversor, e o 255, o parâmetro para restringir o

tamanho da conversão em um byte.

38

Tanto o SLAVE 1 quanto o SLAVE 2 contém as seguintes funções, além da função

principal:

 Delay – função responsável por criar pausas no software e temporizar a

comunicação I2C;

 ReadByte – função que recebe um byte da comunicação I2C;

 ReadByteAux – auxilia na recepção de um byte, com o tratamento bit a bit;

 SendByte – função que envia um byte da comunicação I2C;

 SendByteAux – auxilia no envio de um byte, fazendo-o bit a bit;

 ACK – função que realiza o envio do sinal de reconhecimento, indicando êxito na

comunicação I2C;

 Interrupt – tratamento da interrupção do conversor AD;

Os fluxogramas dos softwares do SLAVE 1 e 2 estão nas figuras 22 e 23.

39

Figura 22: Fluxograma do microcontrolador SLAVE 1 - pH.

40

Figura 23: Fluxograma do microcontrolador SLAVE 2 - Ox.

41

O microcontrolador MASTER tem por objetivo realizar a comunicação com os slaves e

com um microcomputador via serial. Seu software foi feito para começar a operar após um sinal

do software do computador. A partir de um sinal de start (“V”, ou 0x56), o MASTER envia uma

solicitação de leitura ao SLAVE 1 e em seguida ao SLAVE 2. Após recebimento dos dados com

segurança, estes são enviados ao software do computador, para então serem exibidos na tela.

O sinal transmitido serialmente para o microcomputador é composto primeiramente do

sinal do sensor de pH, e em seguida o sinal do sensor de oxigênio dissolvido é enviado.

O software do MASTER apresenta as seguintes funções, além da função principal:

 InitUART0 – configuração da comunicação serial com a seleção de pinos a serem

utilizados, baud-rate e habilitação de interrupção para quando ocorrer sinal no RX

(pino de recebimento da serial);

 SendStop – envia o sinal de STOP: subida de borda do SDA com o SCL em alta;

 __interrupt void usart0_rx – tratamento da interrupção da comunicação serial;

 Delay – função responsável por criar pausas no software e temporizar a

comunicação I2C;

 InitI2C – Inicialização da comunicação I2C com o envio de um sinal de STOP e

configuração dos pinos para o SDA e SCL;

 ReadByte – função responsável por enviar o sinal de START da comunicação I2C, o

endereço do microcontrolador selecionado, e receber em uma variável de saída a

resposta de um dos slaves.

 SendStart – envia o sinal de START: descida de borda do SDA com o SCL em alta;

 SendByteAux – auxilia no envio de um byte, fazendo-o bit a bit. Utilizada para envio

do endereço do slave;

 ACK – função que realiza o envio do sinal de reconhecimento, indicando êxito na

comunicação I2C;

 ReadByteAux – auxilia na recepção de um byte, com o tratamento de bit a bit;

Na figura 24 está ilustrado o fluxograma do software do Master.

42

Figura 24: Fluxograma do microcontrolador Master.

2.7. Interface Microcontrolador-PC

Após leitura e tratamento dos sinais dos sensores, deve-se ter uma interface de

visualização dos dados captados. Optou-se por utilizar um microcomputador para esta tarefa.

Através da comunicação serial, o MSP430 transmite seus dados ao PC, e este os mostra em um

43

display através de um programa especificamente desenvolvido para esta aplicação.

Todo o controle da comunicação é desenvolvido pelo software presente no computador.

Este envia um pedido ao microcontrolador MASTER a cada segundo, e o MSP430 MASTER,

configurado para interrupção da porta serial, ao receber a solicitação, inicia o processo de pedido

dos sinais dos sensores, enviando primeiramente para o microcontrolador do sensor de pH,

SLAVE 1, e posteriormente para o medidor de oxigênio dissolvido, SLAVE 2. Após recebimento

dos dados dos sensores, o microcontrolador MASTER envia as informações ao software do PC.

O software do computador é capaz de receber serialmente os dados do microcontrolador,

e apresentá-los ao usuário do sistema, com a possibilidade de escolha de quando ligar/desligar a

recepção dos dados dos sensores.

O software para recebimento e visualização dos dados dos sensores no

microcomputador foi implementado com o auxílio do software Borland Delphi 7 [11]. O programa

desenvolvido foi estruturado para apresentar além da tela de trabalho, com a possibilidade de

visualização dos dados e controle da comunicação serial com o MASTER, uma tela para

calibração do pH e outra do oxigênio dissolvido. Há também a opção de salvar ou carregar uma

calibração realizada.

O software Monitor foi desenvolvido em linguagem pascal, onde para cada objeto/menu

presente, há um procedimento para tratamento da ação dependendo do evento ocorrido. Por

exemplo, quando se executa o botão Button1, este troca seu nome de exibição, com a

intercalação entre “Conectar” e “Desconectar, altera a mensagem na barra de status da janela que

indica a situação da comunicação, e habilita ou desabilita o timer responsável por controlar a

comunicação serial com o microcontrolador MASTER.

A comunicação serial é configurada com o auxílio de um objeto próprio para se trabalhar

com a porta COM do microcomputador. O objeto ComPort facilita a configuração da velocidade de

comunicação, seleção da porta utilizada, abertura/fechamento da COM, configuração do bit de

paridade, start e stop bit. É neste objeto que pode ser visualizado a flag de recebimento, buffer de

dados, e os eventos possíveis com a comunicação serial.

Com a utilização de um timer é possível realizar a configuração para que o software

realize a solicitação dos dados dos sensores automaticamente a partir de um tempo estipulado.

O Delphi apresenta a característica de permitir a criação de uma interface amigável e

prática ao usuário, permitindo o fácil manuseio das ações. A possibilidade de criação de menu

deixa-o com semelhanças ao Windows [12].

O software Monitor pode ser executado em qualquer microcomputador, foi criado um

arquivo executável que permite sua execução com a única restrição de que o PC deve apresentar

pelo menos uma porta COM para a comunicação com o microcontrolador Master.

Na figura 25 esta ilustrada a tela de trabalho do software Monitor.

44

Figura 25: Tela de trabalho do software Monitor.

O menu “Arquivo” do Monitor contém três opções: Abrir Calibração, Salvar Calibração, e

Fechar o programa. No menu “Calibração” é possível acessar os formulários para a calibração do

pH e do oxigênio dissolvido.

Tanto a calibração do pH quanto do oxigênio dissolvido podem ser realizadas da seguinte

maneira:

 pH – Dois buffers com pHs conhecidos têm seus valores de tensões lidos, e através

destes pontos, uma equação de reta é definida para que se possa determinar qualquer valor de

pH possível, equação 2.1. Para quando somente um único ponto de calibração é realizado, utiliza-

se uma constante angular de m = 1/7 para a equação, obtida a partir do gráfico da figura 15, e o

pH é encontrado a partir da equação 2.2.

Onde:

45

 pHx = valor do pH desejado;

 Vyp = valor da tensão lida para o pH desejado;

 pH1 e pH2 = valores de pH conhecidos, buffers;

 Vp1 e Vp2 = valores de tensão para pH1 e pH2;

Casos onde não há calibração de nenhum ponto, a equação 2.2 é utilizada e com os

valores para Vp1 = 2,15V e pH1 = 7.

 Oxigênio dissolvido – É realizada a leitura de tensão para uma solução de água

destilada, esta com aproximadamente 0% de oxigênio dissolvido. Uma solução com água mineral

deverá ser borbulhada com ar, com a utilização de uma bomba de aquário por exemplo, e seu

sinal no sensor capturado. Com as duas leituras anteriores determina-se a equação (2.3) de reta e

estabelece-se uma relação entre a porcentagem de oxigênio dissolvido e o valor de tensão lido.

Onde:

 Ox = porcentagem do oxigênio dissolvido;

 Vyo = valor da tensão lida para a porcentagem do oxigênio desejada;

 Ox1 e Ox2 = valores de oxigênio dissolvido conhecidos;

Vo1 e Vo2 = valores de tensão para Ox1 e Ox2;

O sensor de oxigênio dissolvido é muito sensível e apresenta variação de leitura, portanto

é necessário realizar a calibração do mesmo, ou no mínimo utilizar uma calibração realizada

anteriormente para melhor leitura.

Nas figuras 26 e 27 estão as duas telas para calibração dos dados lidos dos sensores.

46

Figura 26: Tela de calibração do pH.

Figura 27: Tela de calibração do Oxigênio Dissolvido.

As rotinas de calibração são executadas após abertura de alguma das telas de

calibração, deve-se selecionar o buffer utilizado. Para a calibração do sensor de pH, o valor do

buffer deve ser digitado, com uma casa decimal e com a utilização da vírgula para separação, na

caixa de texto presente. Feita a seleção do buffer, é necessário executar o botão „Calibrar‟ para

que o buffer escolhido seja lido. Após a barra ser totalmente carregada, pode-se selecionar o

outro buffer a ser calibrado, e repetir os procedimentos anteriores. Para finalizar a calibração,

deve-se executar o botão „Fechar‟.

Quando se utiliza o botão „Calibrar‟, o software atribui valor „1‟ para as frags de referência

para cada sensor, habilita a comunicação serial e o timer, que receberá os dados da porta serial

automaticamente.

No menu „Arquivo‟, é possível carregar uma calibração realizada anteriormente ou salvar

uma calibração, como a realizada acima. A calibração é salva em um arquivo texto “.txt”, cuja

composição é ilustrada na tela da figura 28:

47

Figura 28: Tela com dados de calibração.

O programa tem seu início de operação quando o usuário executa o botão

„Conectar/Desconectar‟, então o timer responsável pela comunicação serial é habilitado e a cada

segundo, o sinal com a solicitação dos dados dos sensores é enviado à porta serial. Na caixa de

texto, com o valor “COM1”, da figura 29, é possível escolher qual porta serial do computador será

utilizada na comunicação.

Clique Botão

„Conectar‟

Abre porta serial,

inicializa conexão

e habilita Timer

Estouro do

Timer

Envia dados para

serial

Sim

Não

Figura 29: Fluxograma do envia de dados para porta serial.

48

Após o envio da solicitação para a porta serial, o programa aguarda até a recepção.

Quando esta ocorrer, é verificado se é o primeiro byte, caso positivo o valor da tensão é carregado

e a partir do número de pontos de calibração existentes, uma das equações (2.1 ou 2.2) é

utilizada, então o valor do pH é exibido no display. Caso seja o segundo byte recebido pela

comunicação serial, o valor recebido representará a porcentagem de oxigênio dissolvido, e

através da equação 2.3, o display é atualizado com o valor corrigido.

Para encerrar a leitura dos sensores, é necessário executar o botão „Desconectar‟, e

então o timer é desabilitado, a porta é fechada e a conexão serial encerra-se. Na figura 30 está o

fluxograma da recepção dos dados.

Aplica equação ao

valor recebido

Recepção

Serial

Sim

Qual valor da

Flag_serial

Atualiza Display

do pH

1

Aplica equação ao

valor recebido

2

Atualiza Display

do Oxigênio

Dissolvido

Não

Figura 30: Fluxograma da recepção de dados da serial.

49

3. Resultados e Conclusões

3.1 Testes dos Circuitos

Para testar de forma eficiente e definitiva, os circuitos condicionadores de sinais foram

montados em placas de teste, protoboards. Através delas pode-se observar como realmente os

circuitos funcionam, assim como quais as dimensões que eles assumiriam. O aspecto da

dimensão do circuito é de suma importância, já que o espaço que há disponível no interior da

sonda é estritamente pequeno.

Durante a montagem dos circuitos foram feitas algumas alterações para torná-los

fidedignos ao resultado desejado. Depois de montados, os circuitos foram conectados aos

respectivos sensores. Os sensores por sua vez foram imersos em soluções com características

pré-estabelecidas. De acordo com a solução utilizada, foi esperado um sinal elétrico que estivesse

dentro de um patamar também pré-estabelecido. Os sinais elétricos em geral foram medidos

através de multímetros digitais disponíveis no laboratório.

Com os testes foi possível avaliar a qualidade dos sinais obtidos e outras de suas

características, como por exemplo, os tempos necessários para suas estabilizações.

A montagem dos circuitos condicionadores de sinais nas protoboards foi bem sucedida;

esta atingiu os resultados esperados e mostrou diversas características do sistema que não

puderam ser visualizadas nas simulações e cálculos.

O sinal de pH, após receber o tratamento do circuito condicionador, ficou compreendido

entre a faixa de 1V a 3,3V, para valores de pH entre 1 e 14. Testes realizados com o circuito e o

sensor permitiram coletar dados suficientes para elaboração do gráfico da figura 31, onde está

representada a resposta final do circuito que deve ser convertida pelo comparador do

microcontrolador SLAVE 1. Para os testes, foram lidos pH de soluções buffers presentes no

laboratório de pesquisa, pH com valores de 4, 7 e 10.

50

Figura 31: Sinal de pH condicionado.

O teste para o circuito condicionador do oxigênio dissolvido foi realizado de maneira

similar ao sensor de pH, porém com soluções de acordo com a tabela 2.

Tabela 2: Testes com o sensor de Oxigênio Dissolvido.

Tensão de saída Solução

0,55V Água destilada em repouso.

2,15V Água destilada após ar ser

borbulhado por 10 minutos.

O sucesso nos testes dos circuitos permitiu a criação das placas de circuito impresso.

3.2. Testes dos Microcontroladores

Realizaram-se testes para a comunicação I2C com apenas dois microcontroladores de

cada vez, um slave e outro master, pois se dispunha de apenas dois MSP. Para que todos os

softwares fossem testados, primeiro um dos microcontroladores recebeu o software MASTER e o

outro, o software do SLAVE 1 (pH). A parte referente à solicitação dos dados ao sensor de

oxigênio dissolvido foi comentada. Com este teste se comprovou a eficiência da comunicação I2C

com o entendimento da mesma por parte de ambos os softwares.

Em seguida realizou-se o teste com o SLAVE 2 (Ox) e o MASTER, resultados

comprovaram que a comunicação foi bem sucedida e que o MASTER recebeu o valor esperado.

0

0,5

1

1,5

2

2,5

3

3,5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

V
 (

V
)

pH

Tensão x pH

51

O método de isolação da comunicação I2C não foi testado por falta do integrado

responsável por auxiliar na isolação, o P82B96.

O software Monitor não funcionou de maneira adequada, onde não foi possível realizar a

comunicação com o microcontrolador MASTER. Porém mesmo com o não funcionamento do

software, o sistema com os microcontroladores e os sensores foi testado, através da utilização do

programa Tera Term Pro, que permite o envio e recepção de dados pela porta serial do

computador.

3.3. Conclusões

Ao final do projeto foi possível ter uma noção sobre a criação de um projeto desde seu

planejamento até sua conclusão. Foram vivenciadas as dificuldades presentes em um trabalho

com várias etapas de desenvolvimento e a necessidade de um prazo a cumprir.

Através do trabalho com circuitos condicionadores de sinais de sensores, houve uma

grande familiarização e desenvolvimento da capacidade de criação desses circuitos. Pode-se

compreender o funcionamento dos sensores

O grande número de circuitos impressos e suas restrições para confecções ajudaram a

desenvolver um bom conhecimento sobre o assunto e experiência para criação de qualquer outro

quando for necessário.

Foi possível desenvolver um bom conhecimento com relação à microcontroladores da

família MSP430, que estão presentes no mercado com grande expressividade. Houve um

aperfeiçoamento da capacidade de programação com a criação de softwares mais complexos e a

implementação de protocolos e microcontroladores não vistos anteriormente nas salas de aula.

Adquiriu-se conhecimento de softwares que auxiliam no desenvolvimento de trabalhos

com o uso de microcontroladores. Com o Embedded Workbench IAR foi possível debugar um

programa criado e através da emulação, encontrar erros mais facilmente que a maneira habitual.

O protocolo de comunicação I2C foi desenvolvido na prática e testado suas facilidades

para quando se desejar realizar uma comunicação entre circuitos de maneira organizada e

totalmente controlada por software. Foi nesta configuração de comunicação que se obteve maior

dificuldade na programação dos microcontroladores, porém com a ajuda da disciplina SEL373 –

PROJETOS DE SISTEMS DIGITAIS, esta pode ser superada com maior facilidade.

O projeto foi de extrema importância não somente para a vida acadêmica do aluno, mas

também para seu desenvolvimento profissional. Obteve-se a experiência de se trabalhar como

engenheiro e conhecimento de suas dificuldades.

Parte do trabalho realizado foi apresentada no SIICUSP – Simpósio Internacional de

Iniciação Cientifica da Universidade de São Paulo, em Nov. 2008, onde foram demonstrados os

52

circuitos condicionadores de sinal, as placas confeccionadas e o estudo sobre os

microcontroladores MPS430. Durante o período de Ago 2007 a Jul 2008, houve um auxílio com

bolsa CNPq/PIBIC para o desenvolvimento do projeto.

A programação em DELPHI foi inédita ao aluno, para sua realização foi necessário um

estudo do software e busca de ferramentas para auxiliarem no desenvolvimento do Monitor.

Porém a interface amigável e o conhecimento da linguagem Pascal, permitiram que o trabalho

proposto fosse realizado. Exceto pela comunicação serial, onde os erros encontrados não foram

corrigidos.

De acordo com o que foi realizado, trabalhos futuros podem ser implementados. A

utilização do barramento I2C permite que módulos dos outros sensores com sinais não tratados

no presente projeto possam ser incorporados ao sistema. Para isto basta algumas alterações no

software MASTER e adições de rotinas para o software Monitor. Verificações de erros na

comunicação podem ser realizadas, tanto para o software do microcontrolador quanto para o do

computador.

O método de isolação da comunicação I2C pode ser implementado facilmente e deste

modo garantir a total isolação de cada módulo de sensor.

REFERÊNCIAS BIBLIOGRÁFICAS

[1] Bruno, Ronaldo, “Pesquisa em Instrumentação Eletrônica Microprocessada para a Medida de

Parâmetros Físicos e Químicos da Água”, Dissertação de mestrado defendida no Instituto de

Física de São Carlos/USP, 1997.

[2] Pereira, Fábio; “MICROCONTROLADORES FAMÍLIA MSP 430 – TEORIA E PRÁTICA”, 2004.

[3]Lee, Young H. Tsao, George T., “Dissolved Oxygen Electrodes”. Volume 13, Philadelphia-USA

1979.

[4] Press, N. York, 1998,Pereira, Fábio; “MICROCONTROLADORES FAMÍLIA MSP 430 –

TEORIA E PRÁTICA”, 2004.

[5] Philips Semiconductor, APPLICATION NOTE I2C BUS. Disponivel em:

www.nxp.com/acrobat_download/applicationnotes/AN10216_1.pdf. Ultimo acesso em 10 de out.

2009.

[6] Dailey, D.J. “Operational amplifiers: design and applications”. McGraw-Hill, 1995.

[7] Gonçalves, Vitor M.S.; “SISTEMAS ELETRÔNICOS COM MICRO-CONTROLADORES”, 2a.

Edição.

[8] Texas Instruments. DATASHEET MSP430F12X2. Disponível em:

http://www.ti.com/lit/gpn/msp430f1232 . Último acesso em: 05 de nov. 2009.

[9] Texas Instruments. DATASHEET FET TS430DW28. Disponível em:

http://focus.ti.com/lit/ug/slau278b/slau278b.pdf. Último acesso em: 05 de maio 2009.

[10] Texas Instruments. DATASHEET MSP430F16X. Disponível em:

http://www.ti.com/lit/gpn/msp430f169. Último acesso em: 05 de nov. 2009.

[11] Leão, Marcelo; “BORLAND DELPHI 7 CURSO COMPLETO”, 2003.

[12] Anselmo, Fernando;”BORLAND DELPHI – DESVENDANDO O CAMINHO DAS PEDRAS”,

1997.

http://www.philips.com/

54

Apêndice A – Código Fonte SLAVE 1 - pH

#include <msp430x12x2.h>
#define bitset(var,bitno) ((var) |= 1 << (bitno))
#define bitclr(var,bitno) ((var) &= ~(1 << (bitno)))

#define SDA BIT2&P3IN //SDA P3.2
#define SCL BIT3&P3IN //SCL P3.3
#define _1ms 2 //2 cycles *12 + 9 = 801 / 801*0.305us = 1ms ver isso
#define SDA_ON bitset(P3OUT,2)
#define SDA_OFF bitclr(P3OUT,2)
#define SCL_ON bitset(P3OUT,3)
#define SCL_OFF bitclr(P3OUT,3)
#define MREAD 0xA9 //endereço do MSP p/ comunicação I2C 10101001

//Declaração de funções
void Delay(unsigned int a);
void InitUART0(void);
void InitI2C(void);
void SendStart(void);
void SendStop(void);
void SendByteAux(unsigned char *dado);
void ReadByteAux(unsigned char dado[8]);
unsigned char Ack(void);
unsigned char SendByte(unsigned char *valor);
void ReadByte(void);

unsigned char envia;

void main(void)
{
 unsigned char Conv=0;
 envia=0;

 WDTCTL = WDTPW + WDTHOLD; // Stop WDT
 ADC10CTL0 = ADC10SHT_2 + ADC10ON + ADC10IE; // ADC10ON, interrupt enabled
 ADC10AE |= 0x01; // P2.0 ADC option select
 P1DIR |= 0x01; // Set P1.0 to output direction
 P3DIR &= ~0x04; // Pino SDA como entrada
 P3DIR &= ~0x08; // Pino SCL como entrada

 while (1) //repetir sempre
 {
 ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start
 _BIS_SR(CPUOFF + GIE); // LPM0, ADC10_ISR will force exit

 //Ajustar valor da conversao p/ envio ao MASTER
 Conv = ADC10MEM; //valor lido de 0 a 1024 - 0 a 3V
 Delay(10);
 Conv = Conv*255/1024; // Ajuste valor lido ADC (0 -> 3,00V)->(0 -> 255)

 //testar se codigo msp p/ I2C
 if (!SDA & SCL) //condição de START verifica se houve tentativa de comunicação
 {
 Delay(12);
 if(!SCL) //antigo Rec_flag==0
 {
 ReadByte(); //leitura do código do SLAVE
 if (envia == 1) //Se código do SLAVE
 {
 Delay(6);
 SendByte(&Conv); //Envia dados do conversor AD
 Delay(13);

 if(SCL & !SDA) //Sinal de STOP
 Delay(12);

55

 if(SCL & SDA) envia=0; //Final transmissão
 }
 }
 }
 }
 }

//Função que gera um tempo de 9+a*ciclos de clock (32kHz)
void Delay(unsigned int a)
{
 unsigned int k;
 for (k=0 ; k != a; ++k);
}

// Comunicaçao I2C
/**
//Inicialização da comunicação
void InitI2C(void)
{
 P3DIR |= 0x07; //P3.2 = SDA I2C/ P3.3 SCL I2C
 SendStop();
 Delay(150);
}

void SendStart(void) //envio de um START
{
 SDA_OFF;
 Delay(10);
 SCL_OFF;
}

void SendStop(void) //envio de um STOP
{
 SDA_OFF;
 Delay(10);
 SCL_ON;
 Delay(10);
 SDA_ON;
}

//funcao responsavel pelo envio de um byte
void SendByteAux(unsigned char *dado) //mudar essa
{
 //unsigned char bit=7;
 unsigned char i;
 i=0;
 Delay(10);

 for(i=7;i>=0;i--)
 {
 Delay(2);
 while(SCL)
 {
 //if(BITi&dado) //MSB
 if(dado[i])
 SDA_ON;
 else
 SDA_OFF;
 Delay(10);
 }
 }
}

void ReadByteAux(unsigned char dado[8]) //unsigned char *dado
{
 int i;

56

 P3DIR &= ~0x04; //Pino do SDA como entrada
 //ver tempo

 Delay(2);
 for(i=7;i>=0;i--)
 {
 while(SCL);
 {
 //Delay(10);
 // if(SCL); //checar
 //Delay(10);
 if(SDA) bitset(*dado,i); //se high, 1

 else
 bitclr(*dado,i); // se low, 0

 //SCL_OFF;
 Delay(20);
 }
 }
}

//funcao de reconhecimento da comunicação
unsigned char Ack(void)
{
 int contador=0; //contador responsavel por esperar ate o reconhecimento, se cheio, nao houve Ack
 //SDA_ON;
 bitclr(P3DIR,2); //pino do SDA como entrada
 Delay(2);
 //SCL_ON;
 while(SDA && (contador<20))
 contador++;
 SDA_OFF;
 //bitset(P3DIR,2); //pino do SDA como saida
 if(contador>19)
 return 0;
 return 1;
}

//criar função enviar ACK

//funcao responsavel por enviar um bloco de informaçoes
unsigned char SendByte(unsigned char *valor) //revisar funcao
{
 Delay(10);
 //if(!Ack())
 //return 0;
 //Delay(10);
 SendByteAux(valor);
 if(!Ack())
 return 0;
 Delay(10);
 //Delay(250);
 return 1;
}

//funcao responsavel por leitura um bloco de informaçoes
void ReadByte(void)
{
 unsigned char valor;
 Delay(8);
 ReadByteAux(&valor);

 if(valor == MREAD) //se eh esse msp
 {
 Delay(15);
 if(SDA) //ack

57

 {
 P3DIR |= 0x04; //volta do pino do SDA como saida
 Delay(5);
 SDA_OFF;
 P3DIR &= ~0x04; //Pino do SDA como entrada
 envia = 1;
 }
 }
}

 /*
 SendByteAux(0xA0);
 if(!Ack())
 return 0;
 SendByteAux(0x00);
 if(!Ack())
 return 0;
 Delay(10);
 SDA_ON;
 SCL_ON;
 SendStart();
 Delay(10);
 SendByteAux(0xA1);
 if(!Ack())
 return 0;
 SDA_ON;
 ReadByteAux(valor);
 SendStop();
 */

//**

// ADC10 interrupt service routine
#pragma vector=ADC10_VECTOR
__interrupt void ADC10_ISR (void)
{
 _BIC_SR_IRQ(CPUOFF); // Clear CPUOFF bit from 0(SR)
}

Apêndice B – Código Fonte MASTER

#include <msp430x12x2.h>
#include "stdlib.h"
#include "stdio.h"
#include "string.h"

#define bitset(var,bitno) ((var) |= 1 << (bitno)) //atribuir True para bit
#define bitclr(var,bitno) ((var) &= ~(1 << (bitno))) //atribuir False para bit

#define SDA BIT2&P3IN //SDA P3.2
#define SCL BIT3&P3IN //SCL P3.3
#define COD1 0x0A // codigo `ENTER`
#define SDA_ON P3OUT |= 0x04 //P3OUT_bit.P3OUT_2 = 1
#define SDA_OFF P3OUT &= ~0x04 //P3OUT_bit.P3OUT_2 = 0
#define SCL_ON P3OUT |= 0x08 //P3OUT_bit.P3OUT_3 = 1 //bitset(P3OUT,3)
#define SCL_OFF P3OUT &= ~0x08 //P3OUT_bit.P3OUT_3 = 0
#define pHREAD 0xA9 //endereço p/ leitura do MSP p/ I2C pH - 10101001
#define OxREAD 0xAB //endereço p/ leitura do MSP p/ I2C Ox - 10101011

58

//variavies globais
unsigned char Start_Trans=0;

//Declaração de funções
void Delay (unsigned int a);
void InitUART0(void);
void InitI2C(void);
void SendStart(void);
void SendStop(void);
void SendByteAux(unsigned char dado);
void ReadByteAux(unsigned char *dado);
void ReadByte(int *valor, unsigned char address);
unsigned char Ack(void);
unsigned char SendByte(unsigned char valor, unsigned char address);

//programa principal
void main(void)
{
 int ConvpH;
 int ConvOx;

 InitUART0(); //Inicialização comunicação serial
 InitI2C(); //Inicialização comunicação I2C

// loop infinito
//**
 while(1)
 {
 _BIS_SR(LPM3_bits + GIE); // Enter LP3, interrupts enaabled
 if (!(IFG2 & UTXIFG0)); // USART0 TX buffer ready?
 if (RXBUF0 == 0x56)
 {
 ReadByte(&ConvpH,pHREAD); //enviar e recebe sinal slaves 1
 ReadByte(&ConvOx,OxREAD); //enviar e recebe sinal slaves 2

 //envio serial
 TXBUF0 = ConvpH; // envio pH
 Delay(50);
 TXBUF0 = ConvOx; // envio oxigênio dissolvido
 }
 }
//**
}

void InitUART0(void)
{
 WDTCTL = WDTPW + WDTHOLD; // Stop WDT
 P3SEL |= 0x30; // P3.4,5 = USART0 TXD/RXD
 ME2 |= UTXE0 + URXE0; // Enabled USART0 TXD/RXD
 UCTL0 |= CHAR; // 8-bit character
 UTCTL0 |= SSEL0; // UCLK = ACLK
 UBR00 = 0x0D; // 32k/2400 - 13.65
 UBR10 = 0x00;
 UMCTL0 = 0x6B; // Modulation
 UCTL0 &= ~SWRST; // Initalize USART state machine
 IE2 |= URXIE0; // Enabled USART0 RX interrupt
}

// UART0 RX ISR will for exit from LPM3 in Mainloop
#pragma vector=USART0RX_VECTOR
__interrupt void usart0_rx (void)
{
 _BIC_SR_IRQ(LPM3_bits); // Clear LPM3 bits from 0(SR)
}

59

//Função que gera tempo de 9+a*12 ciclos de clock
void Delay (unsigned int a)
{
 unsigned int k;
 for (k=0 ; k != a; ++k);

// Comunicaçao I2C
//**
//Inicializa I2C
void InitI2C(void)
{
 P3DIR |= 0x07; // P3.2 = SDA I2C/ P3.3 SCL I2C/ P3.4 USART0 TXD/ P3.5 USART0 RXD
 SendStop();
 Delay(150);
}

//Sinal de START I2C
void SendStart(void)
{
 SDA_OFF;
 Delay(10);
 SCL_OFF;
}

//Sinal de STOP I2C
void SendStop(void)
{
 SDA_OFF;
 Delay(5);
 SCL_ON;
 Delay(10);
 SDA_ON;
}

//funcao responsavel pelo envio de um byte, bit a bit
void SendByteAux(unsigned char dado)
{
 Delay(5);
 if(BIT7&dado) //MSB
 SDA_ON;
 else
 SDA_OFF;
 Delay(5);
 SCL_ON;
 Delay(10);
 SCL_OFF;
 Delay(5);
 if(BIT6&dado) //BIT 6
 SDA_ON;
 else
 SDA_OFF;
 Delay(5);
 SCL_ON;
 Delay(10);
 SCL_OFF;
 Delay(5);
 if(BIT5&dado) //BIT 5
 SDA_ON;
 else
 SDA_OFF;
 Delay(5);
 SCL_ON;
 Delay(10);
 SCL_OFF;
 Delay(5);

60

 if(BIT4&dado) //BIT 4
 SDA_ON;
 else
 SDA_OFF;
 Delay(5);
 SCL_ON;
 Delay(10);
 SCL_OFF;
 Delay(5);
 if(BIT3&dado) //BIT 3
 SDA_ON;
 else
 SDA_OFF;
 Delay(5);
 SCL_ON;
 Delay(10);
 SCL_OFF;
 Delay(5);
 if(BIT2&dado) //BIT 2
 SDA_ON;
 else
 SDA_OFF;
 Delay(5);
 SCL_ON;
 Delay(10);
 SCL_OFF;
 Delay(5);
 if(BIT1&dado) //BIT 1
 SDA_ON;
 else
 SDA_OFF;
 Delay(5);
 SCL_ON;
 Delay(10);
 SCL_OFF;
 Delay(5);
 if(BIT0&dado) //BIT 0
 SDA_ON;
 else
 SDA_OFF;
 Delay(5);
 SCL_ON;
 Delay(10);
 SCL_OFF;
 Delay(5);
}

//funcao responsavel pelo recebimento de um byte, bit a bit
void ReadByteAux(unsigned char *dado)
{
 int i;
 //SDA_ON;
 P3DIR &= ~0x04; //Pino do SDA como entrada
 for(i=7;i>=0;i--)
 {
 Delay(10);
 SCL_ON;
 Delay(5);
 if(SDA) //Se 1, seta bit
 bitset(*dado,i);
 else //Se 0, clear bit
 bitclr(*dado,i);
 Delay(5);
 SCL_OFF;
 }
 Delay(10);
 P3DIR |= 0x04; //volta do pino do SDA como saida
 SDA_OFF;

61

}

//funcao de reconhecimento da comunicação, Acknowlegde
unsigned char Ack(void)
{
 int contador=0; //contador responsavel por esperar ate o reconhecimento, se cheio, nao houve Ack
 SDA_ON;
 bitclr(P3DIR,2); //pino do SDA como entrada
 Delay(5);
 SCL_ON;
 while(SDA && (contador<20))
 contador++;
 SCL_OFF;
 bitset(P3DIR,2); //pino do SDA como saida
 if(contador>19)
 return 0;
 return 1;
}

//funcao responsavel por enviar um bloco de informaçoes
unsigned char SendByte(unsigned char valor, unsigned char address)
{
 Delay(10);
 SendStart(); //Sinal de START
 //Delay(10);
 SendByteAux(address); //Envio endereço
 if(!Ack()) //Sinal de reconhecimento
 return 0; //Retorna 0 se não há reconhecimento
 Delay(10);
 SendByteAux(valor); //Envia os dados da variavel valor
 if(!Ack())
 return 0;
 Delay(10);
 SendStop(); //Sinal de STOP da comunicação
 Delay(250);
 return 1;
}

//funcao responsavel por receber um bloco de informaçoes
void ReadByte(int *valor, unsigned char address)
{
 unsigned char MemChar1=0; //, MemChar2=0;
 Delay(10);
 SendStart(); //Sinal de START
 Delay(10);
 SendByteAux(address); //Endereço do SLAVE para solicitação dos dados
 if(!Ack()); //Sinal de reconhecimento
 else
 {
 ReadByteAux(&MemChar1); //Leitura dos dados do SLAVE
 //Delay(10);
 //ReadByteAux(&MemChar2);
 Delay(10);
 //SDA_ON;
 SendStop(); //Sinal de STOP da comunicação
 *valor= MemChar1;
 }
//**
}

62

Apêndice C – Código Fonte Programa Monitor

Unidade Principal

unit Monitor;

interface

uses
 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
 Dialogs, XPMan, Menus, ExtCtrls, StdCtrls, ComCtrls, ToolWin, Buttons,
 JvExControls, JvSimIndicator, JvAutoComplete, JvComponentBase,
 JvSystemPopup, JvgDigits, ActnMan, ActnColorMaps, CPort, CPortCtl;

type
 TForm1 = class(TForm)
 XPManifest1: TXPManifest;
 MainMenu1: TMainMenu;
 Arquivo1: TMenuItem;
 SalvarCalibrao2: TMenuItem;
 Fechar1: TMenuItem;
 Fechar2: TMenuItem;
 Configurao1: TMenuItem;
 SelecionarPorta1: TMenuItem;
 Label1: TLabel;
 Label2: TLabel;
 Label3: TLabel;
 Panel1: TPanel;
 StatusBar1: TStatusBar;
 Timer1: TTimer;
 GroupBox1: TGroupBox;
 Button1: TButton;
 ComboBox1: TComboBox;
 AbrirCalibrao1: TMenuItem;
 Panel2: TPanel;
 AbrirCalibrao2: TMenuItem;
 Label4: TLabel;
 JvLookupAutoComplete1: TJvLookupAutoComplete;
 JvgDigits1: TJvgDigits;
 Label5: TLabel;
 OpenDialog1: TOpenDialog;
 SaveDialog1: TSaveDialog;
 ComPort1: TComPort;
 ComDataPacket1: TComDataPacket;
 ComLed1: TComLed;
 JvgDigits2: TJvgDigits;
 Label6: TLabel;
 Timer2: TTimer;
 Edit1: TEdit;
 Edit2: TEdit;
 Edit3: TEdit;
 procedure Fechar2Click(Sender: TObject);
 procedure Sobre1Click(Sender: TObject);
 procedure Timer1Timer(Sender: TObject);
 procedure Button1Click(Sender: TObject);
 procedure SelecionarPorta1Click(Sender: TObject);
 procedure AbrirCalibrao1Click(Sender: TObject);
 procedure SalvarCalibrao2Click(Sender: TObject);
 procedure AbrirCalibrao2Click(Sender: TObject);
 procedure FormCloseQuery(Sender: TObject; var CanClose: Boolean);
 procedure Timer2Timer(Sender: TObject);
 procedure ComPort1RxChar(Sender: TObject; Count: Integer);
 procedure ComboBox1Select(Sender: TObject);

 private

63

 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

 {Variaveis de calibração}
 pH1:integer;
 pH2:integer;
 Vp1:integer;
 Vp2:integer;
 Ox1:integer;
 Ox2:integer;
 Vo1:integer;
 Vo2:integer;
 flag_serial:integer;

implementation

uses Sobre, Calph, CalOx, Sair, Salvar;

{$R *.dfm}

procedure TForm1.Fechar2Click(Sender: TObject);
begin
 Form5.ShowModal;
end;

{Procedimento para abrir Formulário Sobre}
procedure TForm1.Sobre1Click(Sender: TObject);
begin
 Application.CreateForm(TForm2, Form2);
 Form2.ShowModal;
end;

{Data e hora na barra de status}
procedure TForm1.Timer1Timer(Sender: TObject);
begin
 StatusBar1.Panels[2].Text:= 'Hora: ' +TimeToStr(Time)+ ' Data: ' + DateToStr(Date);
 if (Button1.Caption= 'Conectar') then
 StatusBar1.Panels[1].Text:= 'Desconectado'
 else
 StatusBar1.Panels[1].Text:= 'Conectado';

end;

{mudar nome botão quando clicar nele}
procedure TForm1.Button1Click(Sender: TObject);
begin

 if (Button1.Caption= 'Conectar') then
 begin
 flag_serial:= 1; //flag recepção
 flag_cal:=0; //não entrar em calibração
 ComPort1.Connected := True;
 ComPort1.Open;
 Timer2.Enabled := True;
 Button1.Caption:='Desconectar';
 Button1.Hint:= 'Encerrar comunicação serial com a Sonda.'
 end
 else
 begin
 Timer2.Enabled := False;
 ComPort1.Connected := False;

64

 ComPort1.Close;
 Button1.Caption:='Conectar';
 Button1.Hint:= 'Iniciar comunicação serial com a Sonda.'
 end;
end;

procedure TForm1.SelecionarPorta1Click(Sender: TObject);
begin
 Form3.ShowModal;
end;

{formulário calibração oxigênio dissolvido}
procedure TForm1.AbrirCalibrao1Click(Sender: TObject);
begin
 Form4.ShowModal;
end;

{Salvar arquivo de calibração}
procedure TForm1.SalvarCalibrao2Click(Sender: TObject);

var
 arq: TStringlist;
begin
 if SaveDialog1.Execute then
 begin
 arq := TStringlist.Create;
 try
 arq.values['pH1'] := FloatToStr(pH1);
 arq.values['Vp1'] := FloatToStr(Vp1);
 arq.values['pH2'] := FloatToStr(pH2);
 arq.values['Vp2'] := FloatToStr(Vp2);
 arq.values['Ox1'] := FloatToStr(Ox1);
 arq.values['Vo1'] := FloatToStr(Vo1);
 arq.values['Ox2'] := FloatToStr(Ox2);
 arq.values['Vo2'] := FloatToStr(Vo2);
 arq.SaveToFile(SaveDialog1.FileName);
 finally
 arq.free;
 end;
 end;
end;

{Abrir arquivo de calibração}
procedure TForm1.AbrirCalibrao2Click(Sender: TObject);
var
 arq: TStringlist;
begin
 if OpenDialog1.Execute then
 begin
 arq := TStringlist.Create;
 try
 arq.LoadFromFile(OpenDialog1.FileName);
 pH1:= StrToint(arq.Values['pH1']);
 Vp1:= StrToint(arq.Values['Vp1']);
 pH2:= StrToint(arq.Values['pH2']);
 Vp2:= StrToint(arq.Values['Vp2']);
 Ox1:= StrToint(arq.Values['Ox1']);
 Vo1:= StrToint(arq.Values['Vo1']);
 Ox2:= StrToint(arq.Values['Ox2']);
 Vo2:= StrToint(arq.Values['Vo2']);
 finally
 arq.free;
 end;
 end;
end;

//Quando sair

65

procedure TForm1.FormCloseQuery(Sender: TObject; var CanClose: Boolean);
begin
 Form5.ShowModal;
end;

//Timer de 1s
procedure TForm1.Timer2Timer(Sender: TObject);

begin
 Edit2.Text:= BoolToStr(ComPort1.Connected);
 if ComPort1.Connected then
 begin
 Comport1.WriteStr('V'); //envia caracter ASCII V
 if (flag_serial=3) then flag_serial :=1;
 end;
end;

//Recepção pela serial
procedure TForm1.ComPort1RxChar(Sender: TObject; Count: Integer);
var
 Str: String;
 valor: integer;
 i: integer;
begin
 ComPort1.ReadStr(Str, Count); //leitura do buffer
 valor:=StrToInt(Str);
 //valor:= valor and (0x00FF);
 Str:= FloatToStr(valor*3.3/255); //adequação para tensão
 valor:= StrToInt(Str);

 //recepçao pH **
 if ((flag_serial=1) and (flag_cal=0)) then
 begin
 //com calibração de 2 pontos
 if ((Vp1<>0) and (Vp2<>0)) then JvgDigits1.Value:=((valor/10)*(pH2-pH1)-Vp1*(pH2-pH1)+(Vp2-Vp1)*pH1)/(Vp2-
Vp1);
 //com calibração de 1 ponto
 if ((Vp1<>0) and (Vp2=0)) then JvgDigits1.Value:= ((valor/10)-Vp1+pH1)/(1/7);
 //sem calibração
 if ((Vp1=0) and (Vp2=0)) then JvgDigits1.Value:= (valor/10-2.15+7)/(1/7)
 end;

 //recepçao pH na calibração ***
 if ((flag_serial=1) and (flag_cal=1)) then
 begin
 if(Form3.RadioButton1.Checked = True) then
 begin
 Vp1:= valor;
 pH1:= StrToInt(Form3.Edit1.Text);
 for i:=0 to 100 do
 begin
 Form3.ProgressBar1.Position:= Form3.ProgressBar1.Position + 1;
 end;
 end;
 if(Form3.RadioButton2.Checked= true) then
 begin
 Vp2:= valor;
 pH2:= StrToInt(Form3.Edit1.Text);
 for i:=0 to 100 do
 begin
 Form3.ProgressBar1.Position:= Form3.ProgressBar1.Position + 1;
 end;
 end;
 Timer2.Enabled := False;
 ComPort1.Close;
 end;

66

 //recepção ox **
 if ((flag_serial=2) and (flag_cal=0)) then JvgDigits2.Value:=((valor/10)*(Ox2-Ox1)-Vo1*(Ox2-Ox1)+(Vo2-
Vo1)*Ox1)/(Vo2-Vo1);

 //recepção ox calibração ***

 //segunda passagem
 if ((flag_serial=2) and (flag_cal=2)) then
 begin
 if(Form4.RadioButton1.Checked) = True then
 begin
 Vo1:= valor;
 Ox1:= 0;
 for i:=0 to 100 do
 begin
 Form3.ProgressBar1.Position:= Form3.ProgressBar1.Position + 1;
 end;
 end;
 if(Form3.RadioButton2.Checked= true) then
 begin
 Vo2:= valor;
 Ox2:= 100;
 for i:=0 to 100 do
 begin
 Form3.ProgressBar1.Position:= Form3.ProgressBar1.Position + 1;
 end;
 end;
 Timer2.Enabled := False;
 ComPort1.Close;
 end;
 //primeira passagem
 if ((flag_serial=2) and (flag_cal=1)) then flag_cal:=2;

 //incremento p/ leitura do oxigênio dissolvido
 if (flag_cal<>1)then flag_serial:= flag_serial + 1;
end;

//Seleção da porta serial
procedure TForm1.ComboBox1Select(Sender: TObject);
begin
 if ComboBox1.Text='COM1' then ComPort1.Port:= 'COM1';
 if ComboBox1.Text='COM2' then ComPort1.Port:= 'COM2';
 if ComboBox1.Text='COM3' then ComPort1.Port:= 'COM3';
 if ComboBox1.Text='COM4' then ComPort1.Port:= 'COM4';
end;

end.

Unidade de Calibração do pH

unit Calph;

interface

uses
 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
 Dialogs, StdCtrls, ComCtrls, ExtCtrls,Monitor;

type
 TForm3 = class(TForm)
 Label1: TLabel;
 Label2: TLabel;
 ProgressBar1: TProgressBar;
 Button2: TButton;

67

 RadioButton1: TRadioButton;
 RadioButton2: TRadioButton;
 Button3: TButton;
 Edit1: TEdit;
 Label3: TLabel;
 procedure Button2Click(Sender: TObject);
 procedure Button3Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form3: TForm3;
 flag_cal:integer;

implementation

{$R *.dfm}

procedure TForm3.Button2Click(Sender: TObject);
begin
 flag_cal:= 0;
 close;
end;

procedure TForm3.Button3Click(Sender: TObject);
begin
 Form3.ProgressBar1.Position:= 0;
 flag_serial:= 1; //flag recepção
 flag_cal:= 1;
 Form1.ComPort1.Open;
 Form1.ComPort1.Connected := True;
 Form1.Timer2.Enabled := True;
end;

end.

Unidade de Calibração do Oxigênio Dissolvido

unit CalOx;

interface

uses
 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
 Dialogs, StdCtrls, ComCtrls, Monitor;

type
 TForm4 = class(TForm)
 Label1: TLabel;
 Label2: TLabel;
 RadioButton1: TRadioButton;
 RadioButton2: TRadioButton;
 Button1: TButton;
 Button3: TButton;
 ProgressBar1: TProgressBar;
 procedure Button3Click(Sender: TObject);
 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public

68

 { Public declarations }
 end;

var
 Form4: TForm4;

implementation

uses Calph;

{$R *.dfm}

procedure TForm4.Button3Click(Sender: TObject);
begin
 flag_cal:=0;
 close;
end;

procedure TForm4.Button1Click(Sender: TObject);
begin
 Form3.ProgressBar1.Position:= 0;
 flag_serial:= 2; //flag recepção
 flag_cal:= 1;
 Form1.ComPort1.Open;
 Form1.ComPort1.Connected := True;
 Form1.Timer2.Enabled := True;
end;

end.

	VINÍCIUS GOMES SERAGUCI
	1. Introdução
	1.1. Potencial Hidrogeniônico – pH
	1.2. Oxigênio dissolvido
	1.3. Microcontrolador MSP430
	1.4. Barramento I2C

	2. Materiais e Métodos
	2.1 Circuitos condicionadores de sinal: Medidor de pH
	2.2 Circuitos condicionadores de sinal: Oxigênio dissolvido
	2.3. Comunicação entre os sistemas
	2.4 Métodos de Isolação
	2.5. Confecção e montagem das placas de circuito impresso
	2.6. Programação dos Microcontroladores
	2.7. Interface Microcontrolador-PC

	3. Resultados e Conclusões
	3.1 Testes dos Circuitos
	3.2. Testes dos Microcontroladores
	3.3. Conclusões

	REFERÊNCIAS BIBLIOGRÁFICAS
	Apêndice A – Código Fonte SLAVE 1 - pH
	Apêndice B – Código Fonte MASTER
	Apêndice C – Código Fonte Programa Monitor
	Unidade Principal
	Unidade de Calibração do pH
	Unidade de Calibração do Oxigênio Dissolvido

