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Resumo

O uso da visão computacional em aplicações biomédicas é bastante comum pois pode fa-

cilitar no reconhecimento de anomalias e na identificação de enfermidades, auxiliando tanto a

comunidade médica quanto a população em geral. Neste contexto, se torna interessante aliar

a visão computacional com métodos de detecção precoce de doenças como o câncer. Já que

o câncer de pele é um dos mais frequentes no mundo, com a sua variação do tipo melanoma

sendo a mais fatal, e aliado ao fato de possuir um método visual para a identificação dos

estágios iniciais da doença, propõe-se uma avaliação de diferentes algoritmos para segmentar

manchas de pele, usando como referência banco de dados que contém imagens de melano-

mas. Também foi proposto o desenvolvimento de descritores para se extrair informação da

imagem com base da regra ABCDE, que avalia a assimetria, borda, cor, diâmetro e evolução

da lesão, regra criada por médicos para que a população em geral possa realizar autoexames.

Como resultado é apresentado a comparação de parâmetros como eficiência e tempo de pro-

cessamento, considerando também o uso de diferentes canais de cores, para três métodos de

segmentação, limiarização adaptativa, limiarização por multiníveis de Otsu e agrupamento

por Fuzzy C-Means. Conclui-se então que, entre os métodos analisados, os de limiariza-

ção apresentaram menor tempo de processamento e que o Fuzzy C-Means e limiarização por

multiníveis de Otsu apresentaram taxa de erros semelhantes.

Palavras-Chave: visão computacional, câncer de pele, melanoma, segmentação, regra

ABCDE.





Abstract

The use of computer vision in biomedical applications is common because it can facili-

tate the recognition of anomalies and the identification of diseases, helping both the medical

community and the population in general. In this context, it becomes interesting to combine

computational vision with methods of early detection of diseases such as cancer. Since the

skin cancer is one of the most frequent in the world, with its variation of the melanoma type

being the most fatal, and the fact that it has a visual method to identify the initial stages of the

disease, it is proposed an evaluation of different algorithms for segmenting skin blemishes,

using as reference database containing melanoma images. It was also proposed the develop-

ment of descriptors to extract information from the image based on the ABCDE rule, which

evaluates the asymmetry, border, color, diameter and evolution of the lesion, a rule created

by physicians so the general population can perform self-tests. As a result it is presented

the comparison of parameters such as efficiency and processing time, also considering the

use of different color channels, for three methods of segmentation, adaptive thresholding,

thresholding by Otsu multilevels and grouping by Fuzzy C-Means . It was concluded that,

among the analyzed methods, the thresholds presented lower processing time and that the

Fuzzy C-Means and multi-level thresholds of Otsu had similar error rates.

Keywords: computer vision, skin cancer, melanoma, ABCDE rule.
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Capítulo 1

Introdução

A área de Visão Computacional oferece várias ferramentas para a resolução de problemas

que possam ser realizados a partir da análise de imagens digitais. Deste modo, é possível

automatizar vários processos, como o reconhecimento e a extração de informações de uma

imagem, que antes só era possível pelo ser humano. Dentre as várias aplicações em que

se pode utilizar esta área do conhecimento, as biomédicas se destacam, pois facilitam no

trabalho de médicos e consequentemente melhoram a saúde da população.

Nota-se que na literatura há poucos exemplos de aplicativos finalizados para mobile com

tal objetivo, sendo que alguns se propõem apenas a segmentar as imagem (Mendi et al. 2014),

enquanto outros foram implantados apenas em poucos sistemas operacionais (Pradi 2012b)

ou necessitam se comunicar com um servidor externo (Fosu e Jouny 2015). Assim, propõe-se

um programa robusto que depois poderá ser transferido para Android, Windows Phone ou iOS

que será capaz de realizar tanto a parte de segmentação quanto a de identificação.

1.1 Justificativa

O câncer de pele é uma das neoplasias mais comuns no planeta e também no Brasil. Ape-

sar de não ser o tipo mais frequente de câncer de pele, o do tipo melanoma possui maior

risco de vida caso não seja tratado em seus estágios iniciais. Apesar da já estabelecida regra

ABCDE ser um método simples e com razoável eficácia para a detecção precoce do câncer

de pele, nem todas as pessoas a conhecem e sabem como utilizá-la. Assim, a possibilidade

de novos métodos para a conscientização da população sobre o método é bem vinda. Com

o uso de aparelhos mobile popularizado, aliar esta plataforma com interesses educacionais

acrescentado com o dinamismo de observar manchas de pele sendo avaliadas pode incentivar
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pessoas a observarem melhor sua pele e de outros em busca de sinais inicias de melano-

mas. Logo, o conhecimento sobre os métodos de diagnóstico precoce e até a identificação de

novos casos de melanoma em seu processo inicial podem ser espalhados pela existência de

programas acessíveis ao público comum.

1.2 Objetivos

O trabalho possui como objetivo principal a avaliação de códigos para a segmentação de

manchas na pele e uma proposta de descritores a serem utilizados na região de interesse.

Assim, o programa é desenvolvido em Matlab tendo como entrada uma imagem de uma

mancha de pele com razoável definição (com algum nível de contraste entre mancha e pele de

modo que se possa diferenciar um do outro) e é capaz de segmentar a imagem e depois avaliar

a cor, borda e simetria da mancha, pois tais características ajudam em avaliar a possibilidade

de uma mancha da pele ser ou não um melanoma. A saída inicial será composta pela eficácia

dos diferentes métodos segmentação.

Também é desenvolvido descritores, tendo como entrada a referência da região de inte-

resse, com avaliação final do tempo entre a entrada e a saída do algoritmo e o quanto tais

descritores se aproximam de parâmetros previamente avaliados por profissionais. Para tal

procedimento, é utilizado imagens de bancos de dado já analisadas por especialistas para um

melhor resultado. Logo, o trabalho apresenta uma comparação entre diferentes métodos de

segmentação em três canais de cores.

1.3 Organização do trabalho

O trabalho a ser apresentado é dividido em 5 partes. No capítulo 2 será apresentado os

tipos de cânceres de pele e melanomas e como funciona o a regra de detecção ABCDE. Já no

capítulo 3 será descrito trabalhos anteriores na área, apresentando os métodos desenvolvidos

ao longo da história para a segmentação de possíveis melanomas, além dos utilizados para a

classificação deles. Já no capítulo 4 será explicitado os métodos de segmentação e classifica-

ção escolhidos para serem desenvolvidos para este trabalho e uma explanação sobre o banco

de dados utilizado. Por fim, no capítulo 5 será apresentado e resultado obtido dos bancos

de dados submetido aos diferentes algoritmos e no 6 a conclusão e indicação de possíveis

trabalhos futuros.
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Capítulo 2

O Câncer de Pele Melanoma

O câncer de pele é um dos mais comuns no planeta, padrão que também se é verificado

no Brasil. O câncer de pele pode ser separado basicamente em dois tipos: melanoma e não

melanoma. O tipo não melanoma é o mais comum, sendo o tipo de câncer mais frequente no

mundo, porém possui uma taxa baixa de mortalidade. Já o câncer do tipo melanoma, apesar

de representar apenas uma pequena proporção dos cânceres de pele, pode ser letal se não for

tratado de forma rápida.

Devido a este fato, os melanomas ganham destaque médico para que sejam detectados

em seus estágios iniciais para aumentar a eficácia do tratamento da doença. Como não há

rastreamento populacional deste câncer, é recomendado aos profissionais de saúde ficarem

alertas caso encontrem pacientes com lesões de pele. Para o caso de pessoas que já tiveram a

doença ou que tem histórico familiar, é recomendado exames médicos periódicos.

Nas próximas seções vários aspectos da doença serão analisados, iniciando com uma aná-

lise da distribuição populacional deste câncer. Depois, será apresentado fatores relacionados

à origem da neoplasia, fatores de risco e suas diferentes maneiras de expressão. Por fim, será

apresentado uma forma de se identificar a doença e especificações do diagnóstico e trata-

mento. Tais informações são importantes pois elas oferecem informações necessárias para o

desenvolvimento de métodos automatizados para reconhecimento e identificação da lesão.

2.1 Epidemiologia

Segundo dados fornecidos por INCA (2017), em 2012 foi estimado em todo o mundo um

total de 232.130 casos novos do câncer de pele do tipo melanoma, o que representa uma taxa

de incidência de 3,3 por 100 mil habitantes, classificando a doença como o 19º câncer mais
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frequente do planeta. As maiores taxas de incidência acontecem em países como Austrália e

Nova Zelândia (ambos na Oceania), devido a uma população predominante de pessoas com

pele de cor mais clara em uma região com maior exposição aos raios UV. Neste mesmo ano,

o câncer melanoma registrou 55.488 óbitos no mundo (sendo que no Brasil, em 2015, este

número foi igual a 1.794).

A estimativa de casos de câncer de pele melanoma para todo o ano de 2018 é igual a

6.260, sendo que 78,43% dos casos se concentram na região Sul e Sudeste. Considerando

uma estimativa de que em 2018 a população brasileira é aproximadamente 209 milhões, por

volta de 3 a cada 100 mil habitantes terão câncer de pele melanoma. Os dados também

revelam que só no estado de São Paulo há uma estimativa de 3,30 casos para cada 100 mil

homens e de 4,57 casos para cada 100 mil mulheres. Os dados também revelam que a doença

é ligeiramente mais comum nas mulheres (53,35%) do que nos homens, e equivale ao 1,5%

das neoplasias no Brasil (total excetuando pele não melanoma, que é o tipo mais comum entre

todos).

Costa, Fernandes e Borges 2015 apresentam um estudo pontual para analisar a distribui-

ção de melanoma em uma capital brasileira, analisando outros fatores como profissão dos

pacientes e cor de pele. O estudo foi realizado em Palmas, capital do estado do Tocantins,

avaliando a evolução dos casos do neoplasma durante o período de 2001 até 2011 entre os

residentes, a partir de registros do Serviços de Anatomia Patológica de Palmas e do Registro

de Câncer de Base Populacional de Palmas. A cidade, que fica na região Norte do país, possui

um clima seco, quente e a população é exposta à radiação solar ultravioleta de forma quase

permanente.

Foram analisados 45 pacientes que comprovaram residir na cidade, e chegou a uma con-

clusão de que a média de idade dos afetados pela doença corresponde a 54,9 ± 16,1 anos,

com uma proporção maior da doença em mulheres, que 24,4% trabalhavam no setor rural

e que dos pacientes atendidos apenas 2 possuíam pele negra. O estudo também comparou

os dados com outros estudos similares realizados em Goiânia, Florianópolis, Blumenau e

Criciúma e concluiu que a maioria dos casos de câncer de pele do tipo melanoma no Brasil

acomete pessoas por volta de 50 anos, brancas e mulheres, sendo o tipo mais frequente da

doença o melanoma extensivo superficial.
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2.2 Etiologia

O melanoma cutâneo é um tumor de origem neuroectodérmica. Os melanócitos tem como

função produzir o pigmento escuro chamado melanina, e são células presentes na junção

dermoepidérmica, isto é, entre as duas camadas mais externas da pele. A melanina tem como

função proteger os núcleos das células de possíveis danos causados pela radiação UV.

De forma geral, um melanócito saudável se torna um tumor a partir de fatores ambien-

tais, acúmulo de alterações genéticas,ativação de oncogenes, inativação de genes supressores

de tumor e um reparo deficiente de DNA. Logo, o câncer se inicia quando mudanças nega-

tivas cumulativas na estrutura celular não são corrigidas e como consequência inicia-se um

crescimento anormal de determinada célula (Matheus e Verri 2015). Aproximadamente, a

metade dos melanomas é desenvolvida a partir de nevos, que é o termo médico para lesões na

pele como pintas, manchas ou sinais, porém o resto se desenvolve a partir de uma pele com

aparência normal (James et al. 2015).

Normalmente, a lesão apresentará um crescimento prolongado e não invasivo de forma

radial, seguido de um crescimento vertical à medida que o tumor no nódulo é gerado. O

risco de metástase surge quando o crescimento vertical atinge a parte mais interna da pele e

posteriormente as irrigações sanguíneas.

Os fatores de risco para a ocorrência do câncer de pele são variados e vão deste a ca-

racterísticas físicas como comportamentais. Pessoas acometidas com melanoma usualmente

possuem pele mais clara, olhos claros e cabelos loiros ou ruivo. Além disso, também é

comum que tais pessoas tenham sofrido muitas queimaduras devido à exposição aos raios

solares durante a infância, além de uma tendência de dificilmente conseguirem se bronzea-

rem em contraste com uma facilidade de ter queimaduras, acompanhado com a falta de uso

de protetor solar. O risco de desenvolver melanoma também é aumentado se há histórico

familiar da doença na família, e é raro aparecer em crianças e adolescentes que não passaram

pela puberdade (James et al. 2015).

Além disso, há também como fatores um número alto de nevos espalhados pela pele

(mais de 50), além da presença de nevos muito grandes. Há também fatores genéticos como

mutações no gene p16 CDK4. Mutações do gene BRAF também é comum em casos em que

o paciente desenvolve melanoma mesmo sem exposição solar elevada (James et al. 2015).

Outros fatores de risco incluem PUVA, técnica usada para o tratamento de psoríase e viti-

ligo, exposição de lâmpadas de bronzeamento, imunodeficiência, cicatrizes de queimadura e
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Xerodermia pigmentosa, que é uma desordem genética em que o organismo repara de forma

insuficiente o dano causado pelos raios UV no DNA das células (James et al. 2015).

Uma das principais recomendações para a prevenção do melanoma é evitar a exposição

ao sol em horários que os raios são mais intensos e há grande incidência de raios UV, capazes

de danificar o DNA das células da pele. Assim, o uso de protetores solar e de proteção física

(roupas longas e sombrinhas, por exemplo) principalmente o final da manhã e início da tarde

ajudam a evitar novas incidências do neoplasma.

2.3 Tipos de Melanoma

Os melanomas podem ser classificados em diferentes tipos, dependendo de suas caracte-

rísticas clínicas, histológicas e como se dá a progressão do tumor. Destaca-se sete classes:

2.3.1 Melanoma extensivo superficial

É o melanoma caracterizado por um crescimento radial de um melanócito anaplásico, isto

é, um melanócito com formação celular com desvio de normalidade. Presente em todas as

idades, atinge mais adultos na quinta década de vida, aparecendo mais em regiões que não

são atingidas pelo sol com muita frequência, como costas, torço e membros inferiores (James

et al. 2015).

Tal forma é a mais comum, sendo responsável por cerca de 70% das ocorrências. Ela é

caracterizada como um tumor com evolução lenta (por volta de 1 a 5 anos), com crescimento

radial, diâmetro maior do que 6 mm, com margens irregulares e dentadas, bordas ligeiramente

elevadas, assimétrico. A sua coloração é variável, sendo as mais comuns preto, vermelho,

marrom, azul e branco, como pode ser observado na Figura 2.1 (Matheus e Verri 2015).

Figura 2.1: Melanoma extensivo superficial. Fonte: James et al. 2015.
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2.3.2 Melanoma nodular

Lesão sem crescimento radial perceptível, é mais comum na população masculina e apa-

rece em regiões expostas ao sol como cabeça, pescoço e tronco, como exemplificado na

Figura 2.2. É a segunda forma mais frequente, apresentando crescimento vertical de evolu-

ção rápida (6 a 8 meses), se assemelhando a outras condições como uma bolha de sangue ou

nevo dérmico, de cor escura ou cinza e de 1 a 2 cm de tamanho (Matheus e Verri 2015). Caso

apresente um crescimento de forma a criar um um pedúnculo (um tumor com a pele mais fina

perto da região afetada como uma haste) pode ser classificado como melanoma polipoide

(James et al. 2015).

Figura 2.2: Melanoma nodular. Fonte: Pradi 2012a.

2.3.3 Melanoma lentigo maligno

O melanoma lentigo maligna começa como uma mancha que se expande de forma perifé-

rica, de forma gradual e escurecendo durante os anos. A Figura 2.3 mostra um paciente com

tal enfermidade. O processo de crescimento da lesão e o escurecimento do tom acontece com

o passar dos anos de forma lenta, com um crescimento radial durante um período de 5 anos

até 20 seguido de um crescimento vertical (James et al. 2015).

O neoplasma também possui bordas irregulares, com cores variáveis na faixa do cinza,

marrom e preto e medindo entre 3 a 6 cm. Tal forma é mais comum em pessoas mais velhas

(por volta dos 70 anos) com a pele mais afetada pela exposição solar, afetando mais habitantes

de regiões mais ensolaradas (Matheus e Verri 2015).
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Figura 2.3: Melanoma lentigo maligno. Fonte: James et al. 2015.

2.3.4 Melanoma lentiginoso acral

Forma de melanoma mais frequente para pessoas de pele escura e populações asiáticas,

já que as outras formas pouco afetam determinado grupo. Mede de 2 a 3 cm, com coloração

enegrecida e com mais casos entre os 55 e 65 anos. Comum surgir nas mãos e pés, como

demonstrado pela Figura 2.4 (James et al. 2015).

Figura 2.4: Melanoma lentiginoso acral. Fonte: James et al. 2015.
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2.3.5 Melanoma desmoplástico

A lesão se difere das outras neste caso devido ao fato de fibras colagenosas se estenderem

entre as células do tumor, sendo as vezes perceptíveis apenas ao tato devido à ocasional

ausência de melanina. Mais comum na região do pescoço e cabeça em homens mais velhos,

também pode aparecer nas digitais. Este tipo de melanoma pode ser visto na Figura 2.5.

Apesar da difícil percepção do tumor, raramente sofre metástase (James et al. 2015).

Figura 2.5: Melanoma desmoplástico. Fonte: James et al. 2015.

2.3.6 Melanoma amelanótico

Difere das outras formas pela ausência de melanina, porém apresenta uma lesão de colo-

ração rosácea ou avermelhada, de forma heterogênea, como se pode ver na Figura 2.6. Tal

forma é mais comum em pessoas albinas (James et al. 2015).

Figura 2.6: Melanoma amelanótico. Fonte: James et al. 2015.
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2.3.7 Melanoma mucoso

Forma bem rara de manifestação da doença, aparece em regiões de mucosas como língua,

lábios e narinas. É detectada geralmente após metástase na região inicial, pois pode gerar em

regiões de difícil percepção pelo paciente e é notado após ulceração da lesão (James et al.

2015).

2.4 Diagnóstico

De acordo com INCA (2016), estudos evidenciam que a maioria dos casos de melanoma

é detectado pelo próprio paciente ou familiares, de forma acidental. Tendo em vista que a

população leiga que percebe alterações indicativas do câncer, a Sociedade Brasileira de De-

martologia e a American Cancer Society defendem a regra do ABCDE, que é um conjunto de

características a serem avaliadas em nevos que podem indicar a presença de um melanoma.

Tais características são a assimetria da mancha, a presença de bordas irregulares ou mal defi-

nidas, alta variação de cor da mancha, diâmetro maiores que 6 mm e a evolução (crescimento

e variações de cor e formato durante tal processo).

O método de prevenção da regra do ABCDE foi proposto inicialmente em 1985 (Fri-

edman, Rigel e Kopf), baseado em observações de casos de melanomas malignos e suas

similaridades. Ao observar os tipos de melanoma encontrado em pacientes e na literatura, foi

detectado que alterações na cor, especialmente em vários tons de marrom escuro ou preto,

vermelho, branco e azul são comuns, determinando a letra C do método. Além disso, caso

o melanoma apresentasse formato atípico, como borda irregular e pouca simetria, as chances

de ser indícios de câncer eram maior, originando então a letra A e B da regra. Por último foi

possível perceber que o câncer se desenvolvia com maior frequência num período de 5 anos

em casos em que o nevo possuía inicialmente diâmetro maior do que 6 mm, originando a

letra D do método. Atualmente foi adicionada uma nova letra, o E de evolução, para garantir

o acompanhamento de nevos e que se houver alguma alteração esta será avaliada.

Para melhor avaliação das manchas encontradas no corpo em busca de melanomas, Fried-

man, Rigel e Kopf 1985 sugerem que a pessoa a ter a pele avaliada se encontre em ambiente

claro e que se estiver só, tenha próximo um espelho de corpo inteiro e um de mão, além de

dois apoios. Despido, o indivíduo deverá avaliar as partes frontais e costeiras dos braços e

mãos, os dedos, a parte frontal do corpo inteiro e a lateral. Com o auxílio do espelho de mão,

analisar a parte de trás do corpo inteiro e caso possível, o couro cabeludo. Por fim, utilizando
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apenas o espelho de mão e os apoios, verificar a existência de melanomas malignos entre as

pernas e nos pés.

Apesar de ser um método com razoável eficácia e simples, há exceções de melanomas

que escapam à regra (principalmente quando a lesão é pequena) e de nevos benignos que

se encaixam na regra. Além disso, o método descrito de detecção precoce é mais eficaz

para os melanomas do tipo extensivo superficial e lentigo maligno. A qualquer suspeita de

neoplasma, um médico deve ser procurado para realizar exames mais detalhados.

Isso acontece devido ao fato do melanoma poder simular uma variedade de lesões devido a

suas propriedades visuais e sintomas, como por exemplo carcinoma basocelular pigmentado,

que é um câncer de pele do tipo não melanoma caracterizado por manchas que coçam, ardem,

descamam ou sangram e feridas que custam a cicatrizar por mais de 4 semanas. Entre as

lesões que um melanoma pode ser semelhante estão a ceratose seborreica pigmentada escura

(tumor benigno de aspecto verrugoso), o granuloma piogênico (tumor vascular caracterizado

por lesões pequenas avermelhadas) e o sarcoma de Kaposi (tumor maligno raro caracterizado

por lesões arroxeadas) (James et al. 2015).

A forma mais eficiente para um correto diagnóstico da lesão suspeita é a partir de uma

biópsia e avaliação de um profissional especializado em lesões pigmentadas ou dermatolo-

gista. Para a realização da biópsia, é removido geralmente entre 1 a 3 mm de pele contendo

o melanoma, para os casos em que a lesão não é grande ou esteja em áreas sensíveis, como o

rosto.

Com um diagnóstico obtido, é possível tratar e curar o câncer. Em suas fases iniciais, em

que o melanoma apresenta no máximo 2,0 mm de espessura e não apresenta ulcerações, a

chance de cura é maior do que 80%. Para casos em que a espessura da lesão é maior do que

4,0 mm mas ainda não ocorreu metástase as chances de cura caem para o intervalo de 60% a

80%. É muito importante detectar a doença nestas fases porque após metástase do câncer na

região próxima as chances diminuem para um mínimo de 10% e podem ser até menores do

que isso caso afete outros órgãos distantes (James et al. 2015).

Atenta-se que mesmo após o tratamento o paciente deverá realizar autoexame com de-

terminada frequência e ir a consultas médicas periódicas para detectar uma recorrência do

câncer.
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2.5 Tratamento

Caso seja confirmado um câncer de pele em uma pessoa pelo sistema de saúde do país, o

tratamento varia. No caso do câncer de pele não melanoma, é retirada a lesão através de uma

cirurgia simples, apresentando poucas complicações. Já para a maioria dos melanomas, um

extração completa da lesão deve ser realizada seguido de tratamento adicional. Em casos em

que o paciente não possa realizar cirurgias, métodos como a radioterapia podem ser utiliza-

dos. Se a doença estiver mais avançada, tratamentos mais agressivos como a quimioterapia

também devem ser utilizados.
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Capítulo 3

Processamento de Imagens

3.1 Segmentação de imagens

A segmentação é um processo de manipulação em imagens digitais que consiste em sepa-

rar regiões das imagens em no mínimo objeto e fundo, com o intuito de identificar elementos

que possuem características similares. Uma segmentação de sucesso é uma em que a região

de interesse foi corretamente selecionada para o objetivo desejado. Para a identificação de

melanomas, o problema se torna separar a lesão da pele ao seu redor com a maior acurácia

possível, obtendo uma segmentação com a menor perda de informação possível e com um

processamento rápido, não sobrecarregando o sistema ao qual está inserido.

Algoritmos de segmentação são em geral baseados em descontinuidade ou similaridade

dos valores de intensidade da imagem. Como métodos de descontinuidades se tem os detecto-

res de bordas, que buscam variações abruptas dos valores de intensidade. Já para os métodos

de similaridade, se tem os que avaliam propriedades de regiões da imagem como média e

variação de intensidade, tendo como exemplo a limiarização e separação e agrupamento de

regiões (Gonzalez e Woods 2008).

Os métodos desenvolvidos para segmentação e classificação dos melanomas consideraram

que a maioria das lesões analisadas acontecem em pessoas de pele clara e que a lesão será

mais escura do que a pele. Além disso, com base do conhecimento dos diferentes tipos de

melanoma e suas frequências, os métodos tendem a ter melhores resultados para melanomas

extensivo superficial e lentigo maligno devido à sua distinção clara em relação à pele e do

direcionamento das técnicas para tais tipos (Pradi 2012b).

Nas seções seguintes serão apresentados os métodos de segmentação mais utilizados na

detecção de melanomas, assim como o pré-processamento que podem ser necessários depen-



29

dendo do caso e dos espaços de cores no qual se é trabalhado as imagens digitais com um

intuito de melhores resultados.

3.1.1 Espaço de cores

Ao se trabalhar com imagens de lesões presentes na pele, o sistema de cores utilizado é de

fundamental importância já que certos canais podem possuir mais informações do que outros.

Nem toda forma de obtenção de imagem da pele permite utilizar as cores como informação

útil, por isso deve-se atentar à origem das imagens para escolher o espaço de cores em que

será trabalhado o método de segmentação.

Em geral, a maioria das imagens médicas de pele para o diagnóstico de melanoma obti-

das estão no padrão RGB (imagem colorida composta por um canal de cor vermelha, verde

e azul). A maioria das imagens de melanoma e outras lesões de pele são imagens dermatos-

cópicas, obtidas a partir de exames médicos não invasivos. Devido ao modo de obtenção, é

comum tais imagens terem iluminação controlada e uma lesão centralizada. Enquanto que

poucos trabalhos considerem imagens obtidas por câmeras comuns, se é possível trabalhar

com imagens obtidas até por câmeras de aparelhos mobile, como demonstrado por Bae et al.

(2017) ao analisar a rugosidade de lesões a partir da textura da lesão. Também há trabalhos

que se baseiam em imagens obtidas a partir da Internet, sem fonte conhecida, capazes de

identificar lesões de pele (Xia et al. 2018).

Outras fontes de origem das imagens digitais da pele também estão sendo considera-

das por pesquisadores, especialmente métodos que permitem analisar as camadas da pele

de modo mais detalhado. Imagens obtidas a partir de dermatoscopia fotoacústica (Schwarz

et al. 2017) ou microcospia confocal reflectante abreviado como RCM (Ghanta et al. 2017)

conseguem registrar imagens até da junção dermoepidérmica, região onde o melanoma se

desenvolve, sem causar danos ao paciente. Porém, como tais métodos de obtenção são relati-

vamente novos, as imagens por eles gerados não são consideradas em quase todos os métodos

de segmentação e classificação de lesões.

Apesar disso, imagens multiespectrais (imagens obtidas com diferentes comprimentos

de onda) já permitem a extração de parâmetros da pele como concentração de melanina,

quantidade de sangue, saturação de oxigênio e espessura da derme e epiderme a partir de

algoritmos genéticos (Li et al. 2015). Estas informações podem auxiliar na classificação de

variadas lesões em um futuro próximo.

Portanto, é definido que as imagens de trabalho estarão no sistema RGB, sendo possível
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utilizar apenas um canal de cor ou converter a imagem para escala de cinza. Há por exemplo

métodos que garantem que usar apenas o canal azul em geral produz melhores resultados

(Ganster et al. 2001), e outros que se usa apenas o canal que possui maior entropia partindo

do pressuposto de que tal canal facilitará a segmentação por ter uma maior variação do valor

de intensidade (Silveira et al. 2009).

Outros métodos convertem a imagem do sistema RGB para o espaço L∗, a∗ e b∗, em

que L∗ representa a luminosidade e a∗ e b∗ representam as coordenadas que definem o tom

vermelho/verde e amarelo/azul da cor, respectivamente (Silveira et al. 2009). Também há

métodos que utilizam o espaço HSV, em que H (hue) representa a matiz (distinção da cor), S a

saturação (pureza da cor) e V o valor (brilho). Por exemplo, Roy, Pal e Garain (2017) realizam

a segmentação de outra lesão de pele (artrite psoriática) utilizando apenas as informações de

H e S das imagens.

3.1.2 Pré-processamento

Para auxiliar no resultados de segmentação, às vezes é necessário realizar um pré-processamento

na imagem com o intuito de eliminar ruídos de baixa ou alta frequência obtidos durante a cap-

tura da imagem. Para o caso das lesões na pele, também se torna atrativo o uso de métodos

capazes de eliminar os pelos presentes, pois estes podem atrapalhar na segmentação caso

possuem características semelhantes com a lesão, como pode ser visto na Figura 3.1(a). A

figura também apresenta outras dificuldades, que devem ser consideradas em todas as etapas

de trabalho com qualquer lesão presente na pele. Atenta-se que as informações presentes na

imagem não podem ser eliminadas nem alteradas em demasia, invalidando os dados obtidos

a partir dela.

A primeira forma de pré-processamento utilizada é a aplicação de filtros para a eliminação

de ruídos, representando uma alternativa como pouco custo operacional. Filtros de média são

comumente utilizados, eliminando ruídos e sinais de alta frequência. Eles são basicamente

a aplicação de máscaras de tamanho adequado por toda a imagem, como por exemplo a

máscara 13x13 utilizado por Pradi (2012b). Como a borda da lesão é importante para sua

análise, tais métodos de suavização podem ser aplicados de forma a não deformar ela de modo

significativo, como utilizado por Araujo et al. (2012). Por fim, métodos como a aplicação de

filtros de mediana para a eliminação de ruído sal-e-pimenta e a transformada de Karhumen-

Loeve podem ser utilizados para melhorar a imagem caso tal tipo de ruído esteja presente

(Sujitha et al. 2015).
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Figura 3.1: Dificuldades de imagens dermoscópicas; (a) presença de pelo; (b) transição suave entre a

lesão e a pele; (c) lesão com múltiplas cores; (d) reflexão especular. Fonte: Silveira et al. 2009.

A segunda forma de pré-processamento que pode ser utilizada é a eliminação dos pelos.

Métodos mais simples baseados em erosão e dilatação da imagem na escala de cinza podem

ser utilizados (Ferri et al. 2017), porém métodos mais avançados como os baseados em equa-

ções diferenciais parciais também podem ser aplicados, apresentando bons resultados (Xie et

al. 2017).

A aplicação de um ou outro método de pré-processamento dependerá da acurácia e do

custo computacional desejado para o algoritmo final, ficando à escolha do desenvolvedor o

uso e necessidade de tais processos.

3.1.3 Limiarização

A limiarização, também conhecido como thresholding, se baseia na escolha de um limiar

de valor de intensidade para separar a imagem, de acordo com o histograma. Uma imagem

digital I pode ser descrita pelos seus valores de intensidade I(x,y) dados pelas coordenadas

(x,y). Tais valores de intensidade dependerão do sistema de cor utilizado, podendo ser desde

apenas construído a partir de um canal de cor do sistema RGB como de uma composição,

como uma escala de cinza obtida a partir da conversão da imagem de colorido para preto e
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branco. O histograma é construído a partir da distribuição dos valores de intensidade em todo

o domínio da imagem, de forma que se constrói um gráfico com todos os valores possíveis de

I(x,y) e a quantidade de vezes que tal valor aparece em I, como pode ser visto na Figura 3.2.

Figura 3.2: Dois histogramas, um com um vale e outro com dois vales, ambos bem definidos. Fonte:

Gonzalez e Woods 2008.

A limiarização então se baseia em encontrar um valor T que separa o histograma de forma

de separar a imagem em dois grupos de acordo com os valores de intensidade mais presentes.

De forma simples, define T como a intensidade que representa o vale do gráfico. Dependendo

da imagem, o histograma não é facilmente separado em dois, podendo ou não ter vales ou ter

mais de um vale. No último caso, pode-se adotar mais de um valor de limiarização, separando

a imagem em mais de um grupo. No caso dos tipos de melanomas em análise, a presença

de um vale acontece em boa parte das imagens, já que é comum a lesão ser escura (sendo o

objeto em análise) em um fundo de pele clara.

O algoritmo de limiarização simples pode ser, de acordo com Gonzalez e Woods (2008),

resumido como:

1. Escolha um valor inicial de T como estimativa.

2. Segmente a imagem usando T . Isso gerará dois grupos de pixels, G1 consistindo de

todos os valores acima de T e G2 com todos os valores menores e iguais a T .

3. Calcula o valor médio dos valores dos pixels em G1 e G2, obtendo µ1 e µ2.

4. Calcule o novo valor de limiar a partir da média de µ1 e µ2.

5. Repita os passos 2 até o 4 até que a diferença do valor inicial de T em relação ao final

seja menor do que um valor T0 predefinido.
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Como resultado final, os pixels em G1 receberão o valor máximo (na escala de cinza,

será o valor 255 que equivale à cor branca) enquanto os pixels em G2 receberão o valor

mínimo (na escala de cinza, será 0 que equivale ao preto), gerando uma imagem binária.

Este método também é chamado de método de limiarização adaptativo devido ao fato do

algoritmo modificar o valor de limiar de forma dinâmica, e pode ser utilizado no canal com

maior entropia caso a imagem original for RGB.

A limiarização também pode ser obtida a partir de considerações de probabilidade, em

que se considera as duas regiões que se deseja separar como duas funções de densidade de

probabilidade. O método de Otsu por exemplo realiza a limiarização com o intuito de que o

valor de T encontrado seja o que faça que o valor de variância σ2 entre os dois grupos G1 e G2

seja o maior possível, considerando que cada grupo seja a representação de uma distribuição

gaussiana. O método considera o número de níveis de cinza L, sendo que k é utilizado para

representar cada nível em que pode ser encontrado o limiar, considera as probabilidades P(k)

de pertinência do nível aos grupos G1 e G2, o valor médio m(k) e a variância σ(k)2 de cada

grupo em função de k. O método pode ser resumido como (Otsu 1979):

1. Considere a imagem I de dimensão M x N com L níveis de cinza.

2. Realize uma separação de histograma com todos os valores possíveis de limiar, obtendo

pi =
ni

MN
com i = 0, ...,L−1, sendo que ni é o número de pixels que possuem o nível

de cinza i.

3. Calcule a probabilidade do nível de cinza k de pertencer a G1 e G2 a partir de P1(k) =

∑
k
i=0 pi e P2(k) = ∑

L−1
i=k+1 pi.

4. Calcule o valor médio para cada nível de cinza m1(k) =
1

P1(k)
∑

k
i=0 ipi e m2(k) =

1
P2(k)

∑
L−1
i=k+1 ipi.

5. Calcule a variância para cada distribuição de probabilidade a partir de σ2
1(k)=

1
P1(k)

∑
k
i=0(m1(k)−

pi)
2 e σ2

2(k) =
1

P2(k)
∑

L−1
i=k+1(m2(k)− pi)

2.

6. Por fim, calcula a variância intra-classes em relação ao nível de cinza k como σ2
c(k) =

σ2
1(k)P1(k)+σ2

2(k)P2(k).

7. O limiar ótimo T é o valor k em que σ2
c(k) é o maior de todos.
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Caso o algoritmo seja repetido para cada repartição do histograma, o método começa a

ser chamado de método de Otsu de multinível.

Os métodos de limiarização em geral se tornam bastantes atraentes na detecção de mela-

nomas devido ao baixo custo computacional e de apresentarem mesmo assim bons resultados.

Santy e Joseph (2015) compararam por exemplo métodos diferentes de segmentação, sendo

eles fusão estatística de regiões, fusão iterativa estocástica de regiões, limiarização adapta-

tiva, limiarização de multiníveis e segmentação iterativa de realce de cor. Dentre todos os

métodos analisados, a limiarização de multiníveis apresentou melhor resultado, sendo ele

uma variação do método de Otsu para N-níveis apresentado por Humayun, Malik e Kamel

(2011).

Silveira et al. (2009) também compararam diferentes formas de segmentação do neo-

plasma, no total seis tipos de segmentação de diferentes tipos, como limiarização, detecção de

borda e crescimento de região. Ao todo, foram analisadas os métodos de limiarização adapta-

tiva, fluxo de vetor gradiente, Snake adaptativo, método de Chan, Expectation-Maximization

Level Set e Fuzzy baseado no algoritmo split-and-merge. Apesar do estudo concluir que o

melhor método foi o Snake adaptativo, com menos erros, a limiarização adaptativa também

obteve bons resultados entre os seis, além de apresentar o menor tempo de processamento.

Portanto, é natural que o uso de limiarização ser bastante comum na detecção de mela-

noma. Pirnog et al. (2015), por exemplo, utilizaram apenas uma limiarização simples sobre

o histograma S do sistema HSV e operações morfológicas (como processos de abertura e

suavizações de contorno) para a segmentação da imagem. Já Ramlakhan e Shang (2011) usa

a luminância da imagem que é composto pelo RGB para a definição do limiar enquanto que

Mendi et al. (2014) realiza a mesma operação e agrupa os pixels resultantes do processo com

o auxílio do algoritmo DBSCAN, afim de lidar com o ruído presente na imagem binária final.

Pradi (2012b) utiliza uma modificação da limiarização adaptativa, considerando apenas o

canal azul do sistema RGB. Considerando a premissa de que a probabilidade de se ter apenas

um vale bem definida no histograma da lesão é grande, procura-se os picos sabendo que o

maior corresponde à tonalidade da pele (pois como é o fundo da imagem, está presente em

maior quantidade) e que o segundo pico é o da mancha, a partir da hipótese de que este possua

intensidade menor do que 40% do valor máximo de intensidade da imagem (pois a lesão tende

a ser escura) e a diferença com o primeiro valor encontrado deverá ser maior do que 12% do

valor máximo de intensidade. Com estes dois valores definidos a partir do valor máximo de

intensidade presente na imagem, procura-se o vale entre eles e aplica a limiarização a partir
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de tal valor.

Uma forma de melhorar também o resultado das limiarizações é o de repartir a imagem

em partes e a partir das informações de cada região definir valores de limiarização para cada

região. A partir de tais valores, pode-se realizar as limiarizações em cada região, o que pode

melhorar o resultado em casos que há diferença de iluminação, mas pode gerar desconti-

nuidades no resultado final (Gonzalez e Woods 2008). Porém, caso utilize tais valores para

definir um valor final, este problema é evitado. Por exemplo, Zortea, Flores e Scharcanski

(2017) divide a imagem em partes de modo axial garantindo que todas as partes possuam

tanto pele quanto a lesão, e depois de obter valores de limiar pelo método de Otsu, obtém um

valor final de limiar para aplicar em toda a imagem a partir de uma média ponderada com os

valores anteriormente recolhidos.

Caso após a aplicação de qualquer método de limiarização ainda sobrar ruídos residuais,

operações morfológicas podem ser utilizadas para refinar o resultado, como processos de

abertura e fechamento. Em casos em que a borda também é prejudicada, pode-se utilizar o

gradiente de intensidade para recuperar as informações presentes na borda, já que é esperado

que ele seja alto nas bordas da lesão (Xu et al. 1999).

3.1.4 Agrupamento

Outros modo de segmentar uma imagem se baseiam em modelar a imagem inteira em

vetores compostos pela localização e valor dos pixels e considerá-los como funções de den-

sidade de probabilidade desconhecidas e tentar encontrar grupos (também chamados como

cluster) nesta distribuição. O objetivo final é separar tais vetores em grupos com propriedades

semelhantes, de forma a classificar tais dados entre pertencentes à lesão ou à pele.

Uma das técnicas mais utilizadas é o k-means, que assume que a função de densidade

destes dados é o resultado da superposição de um número de funções com distribuições mais

simples (por exemplo, de Gaussianas), sendo possível estimar localização (centro) e forma

(covariância) destas funções menores. Dado um número k de grupos, o algoritmo basica-

mente atualiza o valor do centro dos grupos baseado nos dados mais próximos ao centro do

grupo, a partir de uma inicialização de um grupo de vetores com as características em análise

(Szeliski 2010).

Cada centro de um grupo é modificado por uma matriz de covariância cujo valores são re-

estimados a partir das amostras correspondentes. Além de usar os dados vizinhos diretamente

como entrada, uma distância de Mahalanobis é utilizada, como pode ser visto na equação:
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d(yi,µk;∑k) = ‖yi−µk‖∑
−1
k

= (yi−µk)
T

∑
−1
k (yi−µk) (3.1)

Na equação (3.1) yi são as amostras de entrada, ,µk são os centro dos grupos e ∑k são

as estimativas de covariância. As amostras podem ser associadas a um ou mais centros dos

grupos mais próximos (associando um grau de pertinência à amostra). Após tal etapa, os

valores de y são reestimados a partir de uma função de densidade Gaussiana, gerando um

método iterativo que pode parar até que os centros não sofram diferença significativa entre

uma iteração e outra (Szeliski 2010).

Um modo de agrupamento também utilizado é o associado com lógica Fuzzy, mais cha-

mado de Fuzzy c-means (FCM), que permite aos dados pertencerem a dois ou mais centros.

O objetivo do algoritmo é a redução do valor obtido pela função (Bezdek 1981):

Jm =
N

∑
i=1

C

∑
j=1

um
i j
∥∥xi− c j

∥∥ ,1≤ m < ∞ (3.2)

Na equação (3.2), m é qualquer número real maior do que 1, ui j é o grau de pertinência

de xi no grupo j, xi é o i-ésimo membro do dado medido e c j é o centro do grupo. O

particionamento Fuzzy é propagado a partir da otimização iterativa das funções abaixo, que

atualizam o grau de pertinência e o centro dos grupos:

ui j =
1

∑
C
k=1

(∥∥xi− c j
∥∥

‖xi− ck‖

) 2
m−1

(3.3)

c j =
∑

N
i=1 um

i jxi

∑
N
i=1 um

i j
(3.4)

Esta iteração se encerrará quando maxi j

[
|u(k+1)

i j −u(k)i j |
]
< ε, em que ε é um critério de

término com valor entre 0 e 1 e k é o número de iterações (geralmente limitado para que o

algoritmo seja interrompido caso não haja convergência para um mínimo local de Jm).

O algoritmo do FCM se torna então um cálculo de novos valores do centro c j seguido

por uma atualização do grau de pertinência ui j e comparação do grau de pertinência ao valor

anterior até que um número máximo de iterações seja obtido ou se a variação dos valores seja

pequena o suficiente. Atenta-se que a matriz de pertinência deverá ser inicializada antes de

todo o processo.
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Tais métodos, apesar de exigirem mais esforço computacional do que uma limiarização,

apresentam bons resultados. Mendi et al. (2014) por exemplo utilizam o FCM na realização

de um algoritmo de segmentação de melanoma após uma melhora do contraste da imagem

RGB a partir de uma equalização de histograma. Os métodos de agrupamento também podem

ser utilizados com o intuito de realçar a partir dos graus de pertinência a lesão, facilitando a

segmentação da lesão com o uso de outros métodos, como pode ser observado em Ashour et

al. (2018) ao analisarem variadas lesões na pele.

3.1.5 Métodos alternativos

Entre os outros métodos de segmentação que também podem ser usados para a segmen-

tação do melanoma, há técnicas de contorno ativo, como o Snake adaptativo, que se baseia

numa redução de energia de uma curva 2D que envolve o objeto em análise, detectando as

bordas mais atenuadas presentes no neoplasma (Silveira et al. 2009). Outras técnicas basea-

das em crescimento de região e detecção de borda também podem ser utilizadas.

Métodos híbridos podem ser usados para garantir resultados mais eficazes em detrimento

de custo de processamento. Araujo et al. (2012) propõem, por exemplo, um método em que se

realiza um crescimento de regiões baseado em divisão e união de acordo com as similaridades

entre os pixels; logo após tal etapa, é aplicada iterações de um algoritmo de contorno ativo

para encontrar o resultado desejado. Já Sujitha et al. (2015) utilizam um método híbrido de

contorno ativo em conjunto com a segmentação por região de Watershed, afirmando que os

dois juntos produzem melhores resultados. Outro método híbrido é o utilizado por Beuren,

Pinheiro e Facon (2012), que realizam uma limiarização simples no espaço de cores HSV

para depois utilizar o Fuzzy C-means.

Outras técnicas que estão sendo usadas atualmente são as baseadas em redes neurais, que

permitem uma grande variedade de abordagens para solucionar o mesmo problema. Entre

as redes já utilizadas tem caso de rede neural profunda residual baseado em blocos residuais

que aceitam como entrada imagens de tamanho arbitrário e mesmo assim geram como saída

máscaras equalizadas (Yu et al. 2017), rede convolucional completa com distância de Jac-

card capaz de segmentar imagens de lesão de pele em geral (Yuan, Chao e Lo 2017) e rede

automatizada de autogeração (Xie et al. 2017).

Nota-se que em todas as técnicas de segmentação, métodos de abertura e fechamento

podem ser utilizados para a eliminação dos ruídos que sobram após o processamento e mé-

todos suavização do contorno da imagem podem melhorar a borda da região de interesse.
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Caso necessário, pode-se extrair o contorno da região segmentada, através do maior contorno

gerado pelo algoritmo de Canny (Pradi 2012b) ou por um algoritmo de seguidor de bordas

(Ramlakhan e Shang 2011).

3.2 Classificação

Após a segmentação do possível neoplasma, pode-se analisar a região de interesse com

o intuito de extrair informação da imagem e a partir destes dados classificar a lesão em me-

lanoma ou não. O problema final então se torna em como e quais características devem ser

usadas de forma significativa para permitir a classificação e como usar tais dados de forma

eficiente.

3.2.1 Extração de características

Pode-se extrair características da região de interesse de forma aleatória, isto é, sem consi-

derar os conhecimentos clínicos para a identificação de melanomas. Assim, pode-se calcular

características como os momentos da imagem segmentada (Sadri et al. 2017), a textura da

região, a média dos valores no espaço de cores HSV (Barata, Celebi e Marques 2017) e parâ-

metros geométricos baseados nas proporções, dimensões e intensidades da região de interesse

(Rundo et al. 2018).

Pode-se também utilizar extratores mais específicos baseados na regra ABCDE, consis-

tindo basicamente em verificar quatro características da lesão:

A - Assimetria, que é formada em relação ao maior eixo da lesão;

B - Borda, pois quanto mais irregular maior as chances de ser um melanoma;

C - Cor, sendo que um melanoma apresentará mais variações de cores na região da lesão;

D - Diâmetro, que não deve ser maior do que 5 milímetros.

Os médicos também consideram que manchas suspeitas devem ser acompanhadas, acres-

centando a letra E à regra para considerar a evolução da lesão. Contudo, essa consideração

não tem impacto no teste, pois caso haja uma evolução de um possível melanoma, este será

verificado pela regra ABCDE em testes posteriores.

Com a regra ABCDE definida, surgem dois problemas: como extrair informações da ima-

gem segmentada para cada letra da regra e como unificar essas informações para uma classifi-
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cação de uma mancha em maligna ou benigna (se é um melanoma ou não). Alguns descritores

acabam sendo desenvolvidos a partir dos conhecimentos prévios da simetria, borda e variação

de cor da lesão.

Assimetria

Já em relação à assimetria (A) o método de comparação em relação ao maior diâmetro

produz bons resultados (Araujo et al. 2012). Com o contorno da região segmentada, busca-se

a maior reta que cruza a lesão verificando a distância entre todos os pares de pixels. Depois

de encontrado o diâmetro da lesão, considera apenas todos os pares de pontos que produzem

retas perpendiculares com o diâmetro e compara a distância de cada ponto com o diâmetro.

Deste modo, pode-se concluir se a lesão é assimétrica, levemente assimétrica ou simétrica.

Borda

Para a verificação da borda (B) três propostas possíveis oferecem bons resultados. A pri-

meira delas é baseada na geração da envoltória convexa da área segmentada pelo algoritmo de

Skalansky (Ramlakhan e Shang 2011). Com a envoltória convexa, busca-se irregularidades

e considera que quanto maior a chance de ser um melanoma mais defeitos na borda serão

contados. A segunda proposta seria o cálculo do índice de circularidade da imagem, dado

pela fórmula (3.5), sendo A a área em pixels e P o número de pixels presentes no períme-

tro da região segmentada (Ramlakhan e Shang 2011). Outros parâmetros como perímetro,

excentricidade e elipsidade também podem ser considerados (Ferri et al. 2017).

CI =
4πA
P2 (3.5)

A última proposta para avaliação da borda se dá de acordo com a assinatura do contorno

da região segmentada. É verificado tanto a presença de pontos de inflexão de acordo com a

mudança de direção em relação aos valores vizinhos na assinatura quanto o produto vetorial

entre dois pontos retirados da assinatura (Araujo et al. 2012). Assim, é verificado de modo

conjunto as irregularidades pequenas e grandes.

Cor

Em relação ao primeiro problema, há na literatura soluções para cada um. De todos os

quatro parâmetros, o mais fácil de se avaliar são as variações de cor (C). Uma opção simples
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é considerar a variação de intensidade de cor na área segmentada. Deste modo, pode-se

subtrair a média dos valores e calcular a variância em cada canal do sistema RGB (Fosu e

Jouny 2015). Outra opção é separar a lesão em duas a partir de um corte vertical e comparar

a variância e média dos valores de intensidade da lesão inteira e de cada metade (Ramlakhan

e Shang 2011).

Outra opção de verificar a variação de cores consiste em dividir o histograma de cores

em classes e verificar quantas classes estão presentes na lesão. Pradi (2012b) por exemplo

procura seis cores específicas (não cobrindo toda a faixa do histograma) e conta quantas

aparecem. Já Ganster et al. (2001) convertem o sistema de cores da imagem do sistema RGB

para o HSV e usam tanto o canal H (após uma normalização pelo valor de maior probabilidade

presente na pele) quanto o V (após normalizar a região de interesse pela média dos pixels

presentes na pele). Após tal conversão, é usado o algoritmo de Heckbert para dividir cada

histograma em 15 grupos e verifica quantos estão presentes na lesão e sua porcentagem.

Araujo et al. (2012) também realizam a mesma conversão do sistema de cores, porém é usado

apenas o canal H e 10 grupos de mesmo tamanho do histograma; além disso, as classes que

possuem menos de 100 pixels são desconsideradas pois podem ter sido produzidas devido a

ruídos na imagem.

Caso seja necessário obter um número maior de parâmetros, é possível até analisar as

propriedades estatísticas (média, variância e entropia por exemplo) de cada canal do espaço

de cor RGB (Xie et al. 2017), com o intuito de registrar a variedade de cores presentes na

lesão.

3.2.2 Métodos de treinamento

A partir das informações recolhidas a partir da imagem segmentada, deve-se unificar toda

esta informação em uma só para que seja possível classificar manchas de pele em lesões

benignas ou malignas. Uma opção seria o uso de um índice que resume de forma simples um

conjunto de informações;

Como exemplo de índice já desenvolvido, se tem o DPV (Dermatologic Point Value),

índice em que cada resultado da regra ABCDE é traduzido em um número que gerará um

valor de acordo com uma soma ponderada (Pradi 2012b). Assim, de acordo com a equação

(3.6) e sabendo que A varia entre 0 e 2, B entre 0 e 8, C entre 0 e 6 e D entre 0 e 5, o valor

de DPV varia entre 0 à 8,9. Caso este valor for menor do que 4,75 define-se que a mancha

tem maior probabilidade de ser uma lesão benigna, enquanto que valores maiores que 5,45
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indicam uma probabilidade maior de ser melanoma. Os valores intermediários representam

lesões suspeitas em que a probabilidade de ser ou não melanoma são muito próximas.

DPV = 1,3A+0,1B+0,5C+0,5D (3.6)

Outra opção é usar métodos de treinamento com o uso de resultados de uma base de dados

já classificados, como o classificador k-NN (Ramlakhan e Shang 2011) e o SVM (Support

Vector Machines) (Fosu e Jouny 2015). Tais métodos apresentam resultados mais confiáveis

e permitem um número maior de características como entrada.

Como visto na seção anterior, não é impossível obter um número muito grande de carac-

terística a partir da imagem segmentada, e é bem provável que haja redundância entre tais

dados. Para não sobrecarregar os algoritmos de treinamento, se torna útil uma análise dos

componentes principais (PCA) para a redução do número de parâmetros sem que elimine

informação previamente recolhida (Xie et al. 2017).

De acordo com Adjed et al. (2018), a forma melhor de avaliar tais métodos se baseia em

três parâmetros de performance, sendo estes a sensibilidade, especificidade e acurácia, carac-

terizados pelas equações de sensibilidade sen (3.7), especificidade spe (3.8) e acurácia acc

(3.9) respectivamente. Ao se classificar uma lesão, caso a rede de treinamento acerte pode-se

ter um Verdadeiro Positivo (VP) ou um Verdadeiro Negativo (VN); caso a rede erre, se tem

um Falso Positivo (FP) ou um Falso Negativo (FN), sendo este último o pior pois caso um me-

lanoma seja classificado como saudável, poderá impedir um tratamento precoce da doença.

Logo, a sensibilidade é a capacidade do método detectar indivíduos verdadeiramente positi-

vos, a especificidade é a capacidade do método de detectar verdadeiros negativos e a acurácia

a capacidade do método de detectar corretamente os verdadeiros positivos e negativos.

sen =
V P

V P+V N
(3.7)

spe =
V N

V N +FP
(3.8)

acc =
V P+V N

V P+V N +FP+FN
(3.9)
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SVM (Support Vector Machine)

O SVM procura por uma série de valores máximos de borda no espaço de características

de diferentes classes (funcionando na sua forma simples para casos em que se há apenas duas

classes). No caso dos melanomas, há essencialmente duas classes: se a lesão é um neoplasma

ou se ela não é. O número de características definida no momento do treinamento da técnica,

e a eficiência do método aumenta de acordo com o aumento do número de casos disponíveis

para o treinamento do método. Após o treinamento, o SVM possuirá uma separação com a

maior distância entre os hiperplanos gerados pelas características de entrada, de forma que

qualquer novo dado será classificado de acordo com o plano que pertence (Cortes e Vapnik

1995).

Usar para a classificação das lesões tal rede de treinamento é bem comum, como pode ser

observado em Adjed et al. (2018), que apresenta um bom exemplo de uso do método. Do

total das 200 imagens presentes no banco de dados da base PH2 (Mendonca et al. 2013) com

as lesões já classificadas, 70% das imagens foram usadas para treinamento enquanto o resto

foi utilizado para teste. Este procedimento foi repetido escolhendo vários grupos de forma

aleatória mantendo a porcentagem anterior para a realização do treinamento e do teste, o que

permite que no final uma mesma imagem do banco de dado foi usada no treinamento do

SVM em alguns casos enquanto em outra situação pertencia ao grupo das imagens de teste.

No final, o resultado da classificação se dá a partir de uma média entre todos os casos de

treinamento, obtendo uma sensibilidade de 78,93%, especificidade de 93,25% e acurácia de

86,07%.

Este método de treinamento também é utilizado em Barata, Celebi e Marques (2017),

com kernel de função de base radial e em Fosu e Jouny (2015), demonstrando o bom uso do

mesmo na classificação do neoplasma.

k-NN

O algoritmo k-NN (k-nearest neighbors) para o uso de classificação tem como saída uma

classe de pertinência, em que a entrada que está sendo avaliada é classificada dependendo

da classe que ela possui mais afinidade, podem pertencer de forma secundária a até outra

classe. Este algoritmo está entre os mais simples de aprendizado de máquina, já que avalia a

pertinência de um elemento novo em relação aos dados já classificado a partir de uma análise

local, o que também reduz o tempo de processamento do método. Desta forma não há um
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treinamento global, e sim uma avaliação da distância do novo elemento em relação à alguns

existentes já classificados que partilham de atributos semelhante (Altman 1992).

Atenta-se que devido ao fato da classificação dos elementos de testes se darem de acordo

com os elementos já pertencentes na memória do algoritmo, casos em que se há um número

maior de uma classe em detrimento da outra tende a enviesar o método. A melhor forma de

se lidar com tal situação é a partir da adição de pesos no cálculo das distâncias, de modo que

os dados em maior quantidade não sejam naturalmente beneficiados. Isto é importante para a

classificação de melanoma devido ao fato de que boa parte dos bancos de dados possuem um

número maior de lesões benignas do que malignas.

Devido à simplicidade deste método, não é surpreendente também ver o seu amplo uso

na classificação de melanomas. Por exemplo, Barata, Celebi e Marques (2017) utilizam tal

algoritmo com o intuito de comparar com o SVM e validar o método de segmentação por gra-

fos desenvolvido, enquanto Ramlakhan e Shang (2011) utiliza o algoritmo desenvolvido pelo

OpenCV em um projeto focado em aparelhos mobile. O classificador também foi utilizado

em Ferri et al. (2017).
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Capítulo 4

Materiais e Métodos

4.1 Banco de dados

Foi escolhido para o projeto três bancos de imagens de lesões de pele, incluindo mela-

nomas. Os bancos de dados de lesões de pele em geral sofrem de um número limitado de

imagens, ainda mais pelo fato de ser difícil encontrar bancos avaliados por profissionais de

saúde e que o paciente tenha disponibilizado de forma voluntária a inclusão da imagem de

sua lesão no banco. Pesquisas como a de Pezeshk et al. (2017) chegam a desenvolver méto-

dos de editar imagens médicas de lesões de pele criando novas imagens para análise a partir

da combinação de lesões já existentes em regiões sadias.

Outro detalhe ao analisar as imagens pertencentes ao banco de dados é a validação dos

registros, mesmo que a base tenha sido classificada por um especialista, já que é possível ter

falha humana e até mesmo uma diferença de análise entre especialistas. Por exemplo, Xu

et al. (1999) apresenta lesões com o ground truth selecionado por quatro diferentes profis-

sionais de saúde (no caso, dois cirurgiões, um dermatologista e um bioengenheiro) e como

consequência há uma diferença de até 11,86 % entre a área selecionada como pertencente à

lesão. Para o trabalho desenvolvido, como as bases de dado só possuem uma avaliação mé-

dica, considera a classificação ou segmentação realizada pelo profissional como não detentora

de erros (apesar das resalvas levantadas anteriormente).

As bases de dados utilizadas foram:

1. Base Pradi (Pradi 2012)

A base é composta por 73 imagens de lesões previamente classificadas por especialistas,

divididas em 32 benignas e em 41 malignas. Das 63 imagens, 5 foram obtidas através
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de uma câmera do iPhone com lentes macro, 4 são imagens dermatoscópicas e as outras

foram obtidas via câmeras comuns.

Figura 4.1: Exemplo de melanoma da base Pradi. Fonte: Pradi 2012

Figura 4.2: Exemplo de lesão benigna da base Pradi. Fonte: Pradi 2012

2. Base MEDNODE (Giotis et al. 2015)

Esta base de imagens é composta por 70 melanomas e 100 nevos, obtidas a partir do

arquivo digital do Departamento de Dermatologia da University Medical Center Gro-

ningen (UMCG) usados para o desenvolvimento e teste do sistema MED-NODE para

detecção de câncer de pele a partir de imagens macroscópicas.

3. Base PH2 (Mendonca et al. 2013)

Esta base de imagens é composta por um total de 200 imagens, incluindo no total 80

nevos comuns, 80 nevos atípicos e 40 melanomas. As imagens dermatoscópicas foram

obtidas a partir do Serviço de Dermatologia do Hospital Pedro Hispano (Matosinhos,

Portugal) sobre as mesmas condições de sistema com uma ampliação de 20 vezes. To-

das as imagens neste base são coloridas (RGB) com resolução de 768 x 560 pixels. Ela



46

contém a segmentação da lesão, diagnóstico clínico e histológico, todos avaliados por

um médico dermatologista.

Figura 4.3: Exemplo de melanoma da base MEDNODE. Fonte: Giotis et al. 2015

Figura 4.4: Exemplo de lesão benigna da base MEDNODE. Fonte: Giotis et al. 2015

Figura 4.5: Exemplo de melanoma da base PH2. Fonte: Mendonca et al. 2013



47

Figura 4.6: Exemplo de lesão benigna da base PH2. Fonte: Mendonca et al. 2013

Figura 4.7: Exemplo de lesão segmentada por um especialista médico. Fonte: Mendonca et al. 2013

4.2 Visão geral do projeto

O trabalho se dividiu essencialmente em duas partes: uma análise da segmentação e o

desenvolvimento de descritores, como pode ser observado na Figura 4.8. Para a segmentação,

foram utilizados três métodos (limiarização adaptativa, limiarização de Otsu de multiníveis e

FCM), que eram compatíveis para a entrada de uma imagem digital em escala de cinza, canal

com maior entropia do sistema RGB ou canal B. Já para a classificação, foram utilizados três

descritores para análise.

Todo o projeto foi realizado utilizando a plataforma Matlab, em uma máquina com Win-

dows 10 como sistema operacional de 64 bits, processador com base em x64 Intel(R) Core(TM)

i7-4500U CPU @ 1,80 - 2,40 GHz e com memória RAM de 8,00 GB.
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Figura 4.8: Diagrama estrutural do projeto.

4.2.1 Métodos de segmentação

Limiarização adaptativa

O primeiro algoritmo desenvolvido para a segmentação das imagens foi o com limiariza-

ção adaptativa. Para este método, foi necessário encontrar dois valores de intensidade de cor

e a partir destes valores encontrar um valor para limiarizar a imagem original. O maior valor

Ip é o tom claro com maior número de pixels no histograma, que parte da consideração de que

a parte mais presente na imagem é a pele. De modo semelhante, o segundo valor Im é o tom

escuro mais presente representando a mancha, com a diferença de que tal valor tem que ter

uma distância mínima do primeiro. Os dois valores que foram definidos experimentalmente

neste método então são a intensidade Ix em que se considera que valores menores são escuros

e maiores claros; e a diferença mínima dmin (Ip− Im). Por fim, obteve-se o valor final para a

limiarização Tat a partir do menor valor entre Ip e Im, mas caso tal vale não exista, utilizou-se

o valor médio entre os dois. Foi utilizado então Ix igual a 40% do valor de maior intensidade

presente na imagem e dmin igual a 10% do valor de maior intensidade.

Fuzzy C-Means

O segundo algoritmo partiu de um Fuzzy C-Means tradicional com dois grupos, sendo

que o centro inicial de um foi a intensidade 8 e o do outro 250. Além disso, limitou-se o

algoritmo em 15 ciclos para evitar casos em que a convergência necessite de muitos ciclos

e consequentemente aumentem muito o tempo de processamento. Por fim, com o grau de

pertinência de cada pixel da imagem original, segmentou a imagem de modo que a saída seja

todos os pixels pertencentes a um grupo.
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Algoritmo 1: Segmentação pelo método de limiarização adaptativo (AT)
Entrada: Canal com maior entropia da imagem original, canal azul ou imagem em

escala de cinza

Saída: Imagem binária

início
Calcule o histograma da imagem de entrada;

Para os valores acima do que Ix, procure o valor mais presente (Ip);

Para os valores menores ou igual a Ix, procure o valor mais presente que tenha no

mínimo uma diferença de dmin em relação ao valor da pele (Im);

Busque o vale entre a macha e a pele (Tat);

se não existir vale então
Use o valor intermediário entre Im e Ip como Tat ;

Com Tat , limiarize a imagem.

fim

Algoritmo 2: Segmentação pelo método de agrupamento por Fuzzy C-Means (FCM)
Entrada: Canal com maior entropia da imagem original, canal azul ou imagem em

escala de cinza

Saída: Imagem binária

início
Define os valores iniciais do centro dos dois grupos;

repita
Calcule a distância de cada pixel para os valores do centro;

Calcule o grau de pertinência de cada pixel em relação aos grupos;

Recalcule os valores dos centros baseado no grau de pertinências dos pixels;

se os centros variaram pouco então saia do ciclo;

até completar 15 ciclos;

Com o grau de pertinência dos pixels, segmente a imagem.

fim

Limiarização de Otsu por multiníveis

O último algoritmo desenvolvido consistiu na realização de limiarização pelo método de

Otsu de modo que se tenha como saída quatro grupos, sendo que a seleção final da segmenta-

ção ficou a critério do usuário, sendo o único entre os três métodos a necessitar de interação

com o usuário.
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Algoritmo 3: Segmentação pelo método de multiníveis de Otsu (MLT)
Entrada: Canal com maior entropia da imagem original, canal azul ou imagem em

escala de cinzal

Saída: Imagem binária

início
Obtém o histograma da imagem;

Calcule pelo método de Otsu o valor de limiarização de toda a imagem;

Limiarize a imagem e divide o histograma em dois;

Repete os dois passos anteriores para cada metade do histograma;

para cada faixa do histograma faça
Apresente ao usuário a imagem correspondente e pergunta se ela pertence à

região de interesse;

fim

A partir das entradas do usuário, monte a imagem final limiarizada.

fim

Refinamento da imagem segmentada

Em qualquer um dos métodos de segmentação, foi necessário refinar a imagem binária de

modo a eliminar regiões indesejadas e buracos na imagem devido a erros, como a presença

de pelos e pintas menores que não pertenciam à mancha que estava sendo analisada. Assim,

foi escolhido um algoritmo de pós-processamento que consiste em um fechamento e abertura

da imagem segmentada a partir de um elemento estruturante em formato de disco e de raio

definido experimentalmente como no mínimo 2 e maior de acordo com a dimensão da ima-

gem. Além disso, como foi analisado apenas uma mancha por imagem e como ela devia ser

a predominante na imagem, selecionou-se apenas a região com maior área para análise.

Avaliação da segmentação

Com os três métodos de segmentação desenvolvidos, decidiu-se analisar qual deles apre-

sentou um melhor resultado em três situações diferentes: uma em que se escolheu entre os

canais RGB o que possuía maior entropia; uma que a imagem original RGB tinha sido con-

vertida em uma escala de cinza; e uma em que se escolheu o canal azul. O banco de dados

escolhido para esta etapa foi a base PH2, justamente por possuir imagens já previamente

classificadas e com uma segmentação de referência para a maioria das imagens. Como as

imagens de tal banco apresentam uma borda com iluminação menor devido ao aparelho utili-
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zado para registrá-las, foi necessário uma etapa de pré-processamento para eliminar tal região

e evitar de que ela influencie na segmentação.
Algoritmo 4: Refinamento da segmentação

Entrada: Imagem binária

Saída: Imagem binária pós-processada

início
Define um elemento estruturante em formato de disco de acordo com o tamanho

da imagem;

Realize um processo de fechamento e abertura com o elemento estruturante;

se tiver mais de uma região então
Calcule a área de todas as regiões;

Selecione o segmento com maior área como saída;

senão
A região única já é a saída;

fim

fim

4.2.2 Desenvolvimento dos descritores

Com a imagem segmentada, desenvolveu e avaliou a partir da região de interesse três

descritores com o intuito de analisarem padrões de simetria, borda e cor no banco de dados

entre as imagens de melanomas e de lesões benignas. Os códigos de tais descritores criados

estão presentes no Apêndice A e as funções auxiliares no Apêndice B, sendo todos os valores

presentes em seu código obtidos de forma experimental.

Descritor de cor

Para o descritor de cor, o algoritmo simplesmente recuperou a cor da região de interesse

em escala de cinza e reconstituiu o histograma dessa região. Depois, separou ele em dez

grupos e contabilizou o número de pixels pertencentes em cada grupo. Os grupos que possuí-

ram mais do que uma porcentagem de pixels em relação ao total foram considerados válidos,

sendo definido no caso tal porcentagem limitante igual a 10%, valor escolhido de forma ex-

perimental durante o desenvolvimento do descritor. O descritor de saída então varia entre

1 a 10, já que é o número de divisões do histograma realizadas, assumindo apenas valores

inteiros. Espera-se que quanto menor este valor maior a chance da imagem em análise ser de

um melanoma.
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Algoritmo 5: Descritor de cor
Entrada: Imagem binária pós-processada

Saída: Descritor

início
Obtém a cor em escala de cinza da imagem segmentada;

Divide o histograma da imagem em dez segmentos uniformes;

Conte o número de elementos presentes em cada grupo;

Considere apenas os grupos com mais do que 10% do total de pixels da região de

interesse;

Conte o número de grupos considerados anteriormente.

fim

Descritor de borda

Partindo novamente da imagem segmentada, se iniciou o processo a partir da obtenção de

um contorno convexo para a região de interesse pela aplicação do método de Convex Hull.

Após tal etapa, obteve a assinatura da borda do contorno convexo e da imagem binária inicial.

Para garantir que as próximas etapas acontecessem de forma correta, ao montar a assinatura

da imagem garantiu-se que as matrizes que guardassem os valores das assinaturas fossem

compatíveis; para assegurar tal compatibilidade, mudou-se a escala da assinatura de modo

que para ambos os casos ela fosse um função variando de [0,2π) com o primeiro ponto da

assinatura sendo correspondente à distância do centroide da imagem binária até a borda na

coordenada equivalente ao ângulo 0. Para maior precisão sem que o processamento fosse

prejudicado, a assinatura no total guardou as informações equivalentes à 1000 pontos entre 0

e 2π.

Com a assinatura tanto do contorno convexo quanto da imagem binária na mesma escala

e sem translação entre si, obteve-se a partir de uma subtração em módulo a diferença para

cada um dos 1000 pontos entre a distância do contorno convexo em relação à borda da ima-

gem segmentada original. Aproveitando o fato que a assinatura da borda da imagem binária

estava centrada em seu centroide e organizada de acordo com os ângulos de uma circunferên-

cia completa, calculou-se o valor (considerando que todos eram positivos pois representam

distâncias) correspondente aos pontos que estavam localizados de forma oposta, obtendo-se

assim o comprimento de 500 retas que passavam pelo centroide da figura. O maior deste

valor equivaleu à máxima diagonal.
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Assim, com o vetor de diferenças D entre o contorno convexo e a borda, considerou todos

os pontos em que o valor desta diferença era maior do que 2% do valor da maior digonal, ob-

tendo um percentual de pontos em que tal distância é considerável. Logo, o descritor de borda

varia entre 0 até 1, e quanto mais desconvexo for a figura, maior será o valor representado

por tal descritor.
Algoritmo 6: Descritor de regularidade da borda

Entrada: Imagem binária pós-processada

Saída: Descritor

início
Obtém o contorno convexo da região;

Calcule a assinatura do contorno convexo e da borda original da região;

Realize a diferença D do contorno convexo da borda;

A partir da assinatura da borda, calcula a maior diagonal M;

Obtém a porcentagem de elementos da diferença D maior do que 2% do valor de

M.
fim

Descritor de assimetria

O objetivo geral de tal descritor era comparar a distância da borda da imagem segmentada

em relação à um eixo de simetria, sendo que a situação ideal o centroide da região de interesse

tem que estar dentro do objeto. Assim, o primeiro passo do descritor desenvolvido foi a

verificação da localização do centroide.

Caso ele estivesse dentro do objeto, o descritor utilizou o fato de possuir o ângulo re-

lacionado à maior diagonal obtida pelo descritor de borda (α) e realizou um processo de

centralização da imagem seguido por uma rotação em relação ao centro da região de inte-

resse equivalente a este ângulo. Desta forma, a diagonal maior era paralela a um dos eixos

da imagem, formando um eixo de simetria na vertical. Foi calculada então a distância per-

pendicular de cada ponto da borda até o eixo de simetria, a partir de uma varredura vertical.

Se fosse possível localizar pixels em ambos os lados opostos do eixo de simetria, calculou-se

a diferença entre ambas as distâncias e comparou o valor em relação ao valor da maior dia-

gonal. Desta forma, foi possível realizar uma varredura vertical que determinou se em cada

ponto da varredura se podia considerar a existência de elementos de simetria ou não, consi-

derando a linha como simétrica se a diferença era menor do que 5%, parcialmente simétrica

se entre 5% e 10% e assimétrica se maior do que 10% do valor da diagonal maior.
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Algoritmo 7: Descritor de simetria
Entrada: Imagem binária pós-processada, valor da maior diagonal M e o ângulo α

da diagonal em relação ao centroide

Saída: Descritor

início
Calcule o centroide da imagem binária;

se o centroide da região estiver dentro dela então
Rotacione a imagem em um ângulo igual a α em relação ao centroide, de

forma que a maior diagonal esteja no final na vertical e seja considerada o

eixo de simetria;

Calcule a distância de cada borda lateral até o eixo de simetria (Ll e Lr);

Varre verticalmente a região, analisando cada linha horizontal;

se houver pixels nos dois lados do eixo de simetria então
Realiza a diferença entre as distâncias da direita e da esquerda da borda ao

eixo (|Lr−Ll|);

caso a diferença for menor do que 5% de M faça
Considere tal linha como simétrica;

caso a diferença for entre 5% e 10% de M faça
Considere tal linha como parcialmente simétrica;

caso a diferença for maior do que 10% de M faça
Considere tal linha como assimétrica;

fim

senão
Considere tal linha como assimétrica;

fim

Obtém o número total de linhas simétricas (ns), de linhas parcialmente

simétricas (nps) e de linhas assimétricas (na);

Define como saída a razão
ns +0,7nps

ns +nps +na
;

senão
Pergunte para usuário se ele considera a imagem simétrica, parcialmente

simétrica ou assimétrica;

Dependendo da entrada do usuário, considere a saída respectivamente como

1, 0,7 ou 0 para simétrica, parcialmente simétrica ou assimétrica.

fim

fim
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Para o caso em que ambos os pixels da borda estivessem do mesmo lado no objeto, consi-

derou que em tal linha havia assimetria. Por fim, realizou uma média ponderada de todos os

elementos computados durante a varredura, chegando então em um valor final que varia entre

0 e 1 que é o descritor de simetria. Se o centroide do objeto não estiver dentro dele, a lesão

era mostrada ao usuário e o mesmo deveria decidir se há simetria, simetria parcial ou assime-

tria. O descritor foi formado de tal forma que quanto mais próximo de 0 mais assimétrica é a

lesão.
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Capítulo 5

Resultados

5.1 Resultados da segmentação

Foram avaliadas então todas as 200 imagens da base PH2, segmentando as lesões pelo

método de limiarização adaptativa (AT), limiarização multinível de Otsu (MLT) e o de agru-

pamento Fuzzy C-Means (FCM). A Figura 5.1 apresenta um exemplo da aplicação dos três

métodos. Nota-se que nesta base as 40 primeiras imagens são de câncer de pele do tipo

melanoma, enquanto as outras 160 são de manchas de pele benignas.

Figura 5.1: Segmentação de uma lesão.

O resultados da segmentação de todas as imagens do banco de dados PH2, nos três mé-

todos de segmentação avaliados, estão apresentados nas Tabelas 5.1, 5.2, 5.3, 5.4, 5.5 e 5.6.

Nela é associado a taxa de erro entre a segmentação obtida pelo método em comparação com

a segmentação avaliada pelo profissional de saúde.
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Tabela 5.1: Taxa de erro em % das imagens 1-100 do banco de dado PH2 pelo método AT
Imagem Canal Canal com Canal Imagem Canal Canal com Canal

cinza maior entropia azul cinza maior entropia azul
001 72,78 66,16 66,16 051 82,79 28,05 28,05
002 43,09 64,25 34,08 052 16,49 53,02 53,02
003 68,02 42,39 33,02 053 68,84 15,45 15,45
004 14,50 18,10 48,33 054 45,10 11,09 11,09
005 79,17 36,32 32,58 055 35,21 16,61 41,79
006 69,02 69,02 69,02 056 16,50 14,67 14,67
007 14,49 12,52 12,52 057 07,99 06,96 06,96
008 15,79 26,72 40,15 058 08,46 07,37 12,76
009 19,46 49,63 46,40 059 09,78 09,21 08,79
010 11,97 08,44 08,44 060 13,76 15,17 16,47
011 95,70 78,99 34,84 061 16,07 09,65 09,65
012 12,17 11,85 08,25 062 11,66 24,96 10,44
013 36,72 42,86 66,73 063 17,59 36,18 36,18
014 09,55 09,90 11,90 064 10,96 14,23 14,23
015 68,87 42,48 68,87 065 12,18 08,86 08,86
016 20,40 19,59 54,46 066 16,15 16,89 09,77
017 50,45 37,59 45,61 067 14,58 16,19 24,58
018 72,81 56,13 72,81 068 27,73 29,02 23,41
019 49,74 70,52 70,52 069 07,46 07,19 07,74
020 55,73 60,53 58,39 070 18,46 10,56 10,56
021 86,30 81,61 81,61 071 09,40 08,72 08,72
022 44,78 32,39 44,84 072 61,29 47,64 23,60
023 74,59 44,99 22,74 073 12,34 08,14 08,14
024 35,78 53,17 33,52 074 11,75 12,61 13,94
025 36,31 75,58 31,81 075 14,83 08,80 08,80
026 28,89 26,69 18,97 076 16,43 10,07 10,07
027 23,20 22,64 12,86 077 42,82 28,34 28,34
028 78,14 62,52 62,52 078 16,73 14,71 10,68
029 06,17 65,15 65,15 079 24,69 19,00 19,00
030 54,55 15,06 15,06 080 20,81 17,89 15,72
031 72,13 97,54 42,40 081 20,20 14,05 14,05
032 69,41 72,56 94,13 082 12,38 07,72 07,72
033 26,14 41,37 56,72 083 15,88 14,62 09,55
034 80,35 66,70 22,57 084 12,84 12,34 08,97
035 56,99 73,14 62,53 085 30,57 18,67 14,56
036 87,90 78,69 78,69 086 17,01 11,57 11,57
037 04,69 33,65 03,36 087 21,96 16,80 20,04
038 77,68 76,60 84,23 088 10,18 11,03 10,23
039 58,62 84,76 84,76 089 10,21 09,52 08,43
040 57,19 10,52 10,52 090 16,76 06,88 06,88
041 20,36 12,75 12,75 091 08,67 05,87 05,87
042 16,37 11,94 11,94 092 08,38 08,31 07,33
043 17,80 28,67 28,67 093 15,98 12,32 12,32
044 26,16 09,80 09,80 094 48,84 12,34 12,34
045 41,23 15,31 15,31 095 09,93 07,97 07,97
046 48,48 48,48 14,53 096 10,80 09,66 09,66
047 08,45 08,01 08,22 097 17,18 16,51 36,80
048 08,13 07,34 07,34 098 32,53 03,72 03,72
049 10,16 10,46 10,33 099 27,43 16,97 16,97
050 07,39 09,30 08,35 100 04,82 04,36 04,36
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Tabela 5.2: Taxa de erro em % das imagens 101-200 do banco de dado PH2 pelo método AT
Imagem Canal Canal com Canal Imagem Canal Canal com Canal

cinza maior entropia azul cinza maior entropia azul
101 07,66 05,53 05,53 151 12,86 23,16 23,16
102 15,61 11,33 11,33 152 18,21 14,90 14,90
103 43,55 17,38 17,38 153 12,79 11,85 39,49
104 50,71 18,20 20,56 154 15,75 15,44 12,34
105 44,50 32,25 50,56 155 11,87 17,13 08,77
106 18,48 11,19 11,19 156 52,47 40,60 40,60
107 12,43 11,31 39,36 157 13,85 12,73 24,18
108 50,39 13,01 13,01 158 11,66 08,90 08,90
109 09,39 11,10 08,16 159 37,55 12,61 12,61
110 60,23 58,58 50,46 160 23,11 10,49 10,49
111 10,56 11,16 60,24 161 13,17 11,60 11,60
112 13,96 11,87 08,79 162 10,10 09,04 07,85
113 26,31 09,98 09,98 163 24,51 10,71 09,87
114 35,93 09,28 09,28 164 09,86 08,97 27,83
115 16,11 12,50 12,50 165 35,53 28,58 40,00
116 33,15 12,59 12,59 166 15,78 54,12 54,12
117 12,32 13,98 31,15 167 21,28 11,58 11,58
118 14,94 13,24 13,24 168 16,55 08,27 08,27
119 14,65 09,90 09,90 169 49,05 13,00 13,00
120 21,90 17,80 16,30 170 10,89 09,67 09,67
121 21,41 13,75 16,02 171 13,92 12,28 12,61
122 10,69 07,30 07,30 172 14,44 16,80 19,72
123 04,27 04,27 04,27 173 32,98 13,86 13,86
124 08,91 08,43 06,84 174 72,30 56,82 56,82
125 20,47 11,34 11,34 175 13,14 22,37 33,14
126 26,24 06,73 06,73 176 39,28 09,03 09,03
127 17,29 14,36 14,36 177 10,20 08,13 08,13
128 12,72 12,10 08,68 178 08,29 06,64 06,64
129 06,51 66,77 66,77 179 14,63 15,94 15,94
130 31,24 03,05 03,05 180 16,77 09,65 09,65
131 15,31 15,10 16,13 181 19,36 18,99 10,51
132 15,13 13,04 22,89 182 11,75 10,61 08,30
133 14,20 14,25 10,90 183 10,44 08,48 08,48
134 15,18 14,05 09,57 184 34,51 55,33 55,33
135 15,98 16,85 15,87 185 08,03 07,16 07,16
136 24,09 20,89 20,04 186 18,31 21,11 21,11
137 11,54 11,44 08,24 187 16,02 14,21 12,34
138 10,88 10,05 08,69 188 08,61 06,20 06,20
139 09,11 08,33 08,33 189 16,72 15,08 51,27
140 08,53 08,16 08,16 190 10,57 07,45 07,45
141 15,06 09,20 09,20 191 12,84 24,39 10,44
142 15,81 53,48 53,78 192 14,73 13,51 13,51
143 22,95 08,66 08,66 193 07,31 06,56 06,56
144 10,35 08,81 08,81 194 09,16 08,64 08,66
145 16,62 15,41 32,05 195 15,63 49,05 14,04
146 16,83 15,34 10,21 196 10,61 07,55 07,55
147 23,95 17,40 17,40 197 15,78 06,51 06,51
148 17,38 16,10 16,10 198 08,27 08,03 08,03
149 11,32 07,35 07,35 199 07,21 07,27 08,46
150 29,84 10,15 10,15 200 09,77 08,78 11,71
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Tabela 5.3: Taxa de erro em % das imagens 1-100 do banco de dado PH2 pelo método FCM
Imagem Canal Canal com Canal Imagem Canal Canal com Canal

cinza maior entropia azul cinza maior entropia azul
001 36,30 33,79 33,79 051 46,67 21,11 21,11
002 20,46 23,67 23,80 052 17,16 13,15 13,15
003 15,36 32,89 09,30 053 04,26 02,24 02,24
004 14,79 18,89 10,68 054 16,73 10,72 10,72
005 14,60 29,44 08,50 055 16,39 17,56 14,30
006 14,56 17,67 10,31 056 17,53 18,99 18,99
007 15,04 12,76 12,76 057 10,18 11,94 11,94
008 15,79 18,48 18,88 058 10,05 12,41 17,02
009 18,70 23,26 21,58 059 10,45 10,42 11,07
010 08,32 07,92 07,92 060 15,48 15,05 21,58
011 31,39 38,68 12,82 061 17,05 11,98 11,98
012 10,59 10,30 09,80 062 12,62 14,40 12,70
013 07,52 14,23 07,71 063 15,53 17,51 17,51
014 11,23 12,89 20,27 064 13,66 16,50 16,50
015 14,02 17,57 10,27 065 12,18 09,46 09,46
016 33,01 20,37 43,68 066 09,87 11,06 09,43
017 34,32 39,27 31,54 067 14,36 16,22 10,56
018 17,93 28,27 12,99 068 17,40 17,34 24,57
019 20,08 24,43 14,24 069 10,06 10,39 11,76
020 55,73 60,00 42,14 070 16,90 11,21 11,21
021 22,37 15,57 15,57 071 10,86 10,87 10,87
022 15,01 14,62 14,84 072 26,42 21,01 15,90
023 09,97 15,69 08,66 073 12,23 09,78 09,78
024 25,52 34,08 14,82 074 15,15 17,20 16,31
025 28,12 35,01 21,08 075 13,46 11,06 11,06
026 25,88 23,16 14,06 076 20,90 11,11 11,11
027 20,16 18,81 12,86 077 42,19 15,34 15,34
028 16,53 13,69 13,69 078 14,38 13,41 11,29
029 09,93 06,86 06,86 079 20,54 14,61 14,61
030 22,94 16,46 16,46 080 16,09 14,71 11,27
031 35,82 42,63 23,42 081 17,58 16,94 16,94
032 49,52 51,77 33,24 082 12,13 11,51 11,51
033 12,31 14,74 11,58 083 14,55 14,60 13,00
034 08,44 14,15 06,19 084 13,02 12,62 10,37
035 36,90 43,99 28,51 085 12,65 11,87 11,86
036 32,53 25,28 25,28 086 14,03 10,71 10,71
037 04,96 04,42 03,37 087 14,71 13,35 10,26
038 57,32 51,52 40,81 088 10,96 11,77 13,70
039 55,70 43,36 43,36 089 11,39 11,08 11,04
040 20,50 12,66 12,66 090 10,88 09,87 09,87
041 16,50 13,77 13,77 091 11,25 10,98 10,98
042 15,56 10,03 10,03 092 10,76 10,78 11,17
043 19,84 15,24 15,24 093 14,96 11,13 11,13
044 14,31 13,65 13,65 094 17,98 12,25 12,25
045 21,97 18,09 18,09 095 10,79 10,39 10,39
046 14,43 12,53 08,50 096 10,35 09,58 09,58
047 10,17 10,38 10,88 097 05,55 04,98 07,93
048 09,81 10,57 10,57 098 08,72 04,15 04,15
049 11,91 11,86 12,55 099 21,87 14,42 14,42
050 08,82 09,37 10,38 100 05,10 04,92 04,92
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Tabela 5.4: Taxa de erro em % das imagens 101-200 do banco de dado PH2 pelo método FCM
Imagem Canal Canal com Canal Imagem Canal Canal com Canal

cinza maior entropia azul cinza maior entropia azul
101 09,93 41,64 41,64 151 09,98 03,79 03,79
102 04,25 02,66 02,66 152 14,43 11,52 11,52
103 40,47 18,28 18,28 153 13,01 12,53 11,44
104 19,28 17,91 13,02 154 13,84 13,38 14,74
105 15,69 14,73 10,04 155 11,83 14,16 09,75
106 16,27 15,21 15,21 156 26,87 17,13 17,13
107 12,26 11,27 11,37 157 13,78 12,58 10,44
108 27,85 13,19 13,19 158 11,73 10,20 10,20
109 09,73 11,14 10,24 159 19,06 12,42 12,42
110 40,01 36,51 21,55 160 12,71 10,97 10,97
111 10,98 11,54 12,77 161 14,81 11,85 11,85
112 12,95 11,61 08,77 162 10,90 10,78 11,91
113 12,87 09,10 09,10 163 11,70 10,39 09,72
114 13,98 09,28 09,28 164 10,88 10,68 10,65
115 13,09 16,63 16,63 165 21,27 17,77 14,83
116 16,29 12,61 12,61 166 16,87 14,44 12,25
117 14,92 14,75 15,62 167 16,98 11,05 11,05
118 14,94 18,19 18,19 168 11,46 09,64 09,64
119 19,09 19,25 19,25 169 15,40 13,11 13,11
120 17,14 15,24 19,74 170 10,91 09,95 09,95
121 14,32 14,46 20,40 171 12,24 11,23 11,96
122 12,03 09,03 09,03 172 15,12 16,88 16,19
123 10,24 11,69 11,69 173 14,74 10,09 10,09
124 10,08 10,25 10,64 174 34,50 18,42 18,42
125 16,65 12,20 12,20 175 13,12 18,57 10,81
126 09,43 06,66 06,66 176 12,77 10,16 10,16
127 14,87 11,85 11,85 177 09,69 08,16 08,16
128 11,22 10,55 09,41 178 08,86 06,59 06,59
129 07,62 11,63 11,63 179 12,14 08,34 08,34
130 08,22 02,73 02,73 180 17,10 09,34 09,34
131 17,12 17,27 18,28 181 16,21 14,68 10,98
132 13,66 13,12 13,85 182 10,71 10,21 10,70
133 13,47 17,33 19,71 183 10,16 08,44 08,44
134 13,01 13,05 13,65 184 16,48 10,26 10,26
135 17,11 14,91 12,68 185 09,05 05,97 05,97
136 20,15 18,04 16,90 186 29,76 33,36 33,36
137 12,14 11,95 12,50 187 16,49 16,56 15,94
138 10,88 10,37 09,72 188 11,05 10,77 10,77
139 10,08 10,89 10,89 189 15,98 14,56 12,02
140 09,59 10,42 10,42 190 11,27 10,96 10,96
141 13,47 09,86 09,86 191 12,66 16,00 11,19
142 14,50 20,71 10,41 192 21,87 33,22 33,22
143 12,28 08,89 08,89 193 08,63 10,42 10,42
144 10,00 09,52 09,52 194 09,43 09,86 13,45
145 16,97 16,28 22,45 195 14,97 18,24 15,61
146 16,92 15,78 11,02 196 10,35 11,32 11,32
147 18,13 20,42 20,42 197 07,08 04,80 04,80
148 17,92 14,94 14,94 198 10,02 11,70 11,70
149 11,10 07,48 07,48 199 10,61 10,69 11,29
150 14,33 10,50 10,50 200 12,96 13,17 15,26
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Tabela 5.5: Taxa de erro em % das imagens 1-100 do banco de dado PH2 pelo método MLT
Imagem Canal Canal com Canal Imagem Canal Canal com Canal

cinza maior entropia azul cinza maior entropia azul
001 35,79 33,34 33,34 051 49,79 20,70 20,70
002 20,10 23,37 24,76 052 16,85 13,38 13,38
003 14,82 33,37 09,37 053 04,14 02,24 02,24
004 14,79 18,77 10,67 054 17,05 10,88 10,88
005 13,79 28,02 08,42 055 17,17 17,56 14,30
006 14,56 17,50 10,22 056 17,53 17,86 17,86
007 15,02 13,25 13,25 057 10,31 12,25 12,25
008 15,78 18,40 19,85 058 10,05 12,41 17,02
009 18,49 22,94 21,91 059 10,57 10,77 11,36
010 08,38 08,14 08,14 060 15,91 15,27 22,11
011 30,64 38,10 11,24 061 17,20 12,22 12,22
012 10,56 10,35 10,11 062 12,96 14,40 13,16
013 07,52 13,75 08,60 063 15,36 18,12 18,12
014 11,34 12,89 20,27 064 13,96 16,92 16,92
015 14,02 17,30 10,27 065 12,18 09,60 09,60
016 33,01 20,37 43,68 066 09,87 11,06 09,43
017 34,32 38,73 31,54 067 14,43 16,20 10,90
018 17,34 27,61 12,74 068 17,40 17,34 24,57
019 19,77 24,18 14,08 069 10,25 10,74 12,04
020 54,97 59,48 40,91 070 16,07 10,84 10,84
021 21,64 15,10 15,10 071 11,02 11,17 11,17
022 14,96 14,62 14,84 072 27,62 21,01 16,24
023 09,92 15,24 08,66 073 12,30 09,96 09,96
024 25,06 33,65 14,59 074 15,15 13,71 14,58
025 28,12 35,01 21,18 075 13,40 11,32 11,32
026 25,54 22,65 13,92 076 20,91 11,11 11,11
027 19,83 18,49 12,89 077 45,01 15,20 15,20
028 15,92 13,13 13,13 078 14,36 13,41 11,59
029 09,44 06,80 06,80 079 20,54 14,56 14,56
030 22,94 16,10 16,10 080 15,99 14,71 11,32
031 35,14 41,88 22,04 081 17,48 17,50 17,50
032 47,55 51,77 31,42 082 12,22 11,80 11,80
033 12,22 14,49 11,65 083 14,44 14,27 13,00
034 08,46 13,84 06,19 084 13,02 12,62 10,54
035 36,65 43,80 28,06 085 12,78 11,96 12,25
036 31,79 24,93 24,93 086 14,03 10,36 10,36
037 04,94 04,42 03,37 087 14,64 13,22 10,44
038 57,32 51,52 39,61 088 11,05 11,92 13,70
039 55,10 42,67 42,67 089 11,53 11,24 11,16
040 20,50 12,27 12,27 090 10,88 10,16 10,16
041 16,64 14,03 14,03 091 11,31 10,98 10,98
042 15,50 10,09 10,09 092 10,90 11,02 11,17
043 19,83 15,24 15,24 093 14,96 11,26 11,26
044 14,31 13,99 13,99 094 17,44 12,30 12,30
045 22,75 18,35 18,35 095 11,10 10,39 10,39
046 14,16 12,38 08,51 096 10,43 09,82 09,82
047 10,17 10,38 10,88 097 05,17 04,72 08,72
048 10,08 10,77 10,77 098 08,08 03,79 03,79
049 12,10 12,00 12,87 099 21,87 14,84 14,84
050 09,04 09,43 10,73 100 05,10 05,37 05,37
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Tabela 5.6: Taxa de erro em % das imagens 101-200 do banco de dado PH2 pelo método MLT
Imagem Canal Canal com Canal Imagem Canal Canal com Canal

cinza maior entropia azul cinza maior entropia azul
101 08,45 36,33 36,33 151 09,45 03,23 03,23
102 03,97 02,86 02,86 152 14,59 11,86 11,86
103 42,47 18,53 18,53 153 13,06 12,55 11,98
104 19,09 17,69 12,91 154 13,87 13,32 14,74
105 15,64 14,70 10,06 155 11,86 14,12 09,98
106 16,29 15,21 15,21 156 27,33 16,91 16,91
107 12,26 11,27 11,75 157 13,81 12,56 10,83
108 27,85 13,03 13,03 158 11,77 10,20 10,20
109 09,74 11,22 10,48 159 19,06 12,43 12,43
110 39,38 36,51 21,13 160 12,71 10,97 10,97
111 11,07 11,61 13,33 161 14,85 11,85 11,85
112 12,94 11,62 08,86 162 10,96 10,78 12,64
113 12,96 09,23 09,23 163 11,62 10,37 09,76
114 13,98 09,41 09,41 164 11,05 10,92 10,85
115 13,02 16,63 16,63 165 21,03 17,65 15,76
116 16,40 12,73 12,73 166 16,59 14,36 12,18
117 15,02 14,87 15,14 167 16,82 11,16 11,16
118 14,94 18,50 18,50 168 11,47 09,76 09,76
119 19,65 14,56 14,56 169 15,31 13,13 13,13
120 17,14 14,98 19,74 170 10,90 09,95 09,95
121 14,32 14,46 20,40 171 12,16 11,23 11,96
122 12,10 09,21 09,21 172 15,34 16,93 16,19
123 10,32 11,69 11,69 173 14,58 09,79 09,79
124 10,28 10,47 10,94 174 34,50 18,24 18,24
125 16,82 12,31 12,31 175 13,20 17,98 11,31
126 09,25 06,64 06,64 176 12,45 09,92 09,92
127 14,85 11,77 11,77 177 09,69 08,36 08,36
128 11,20 10,53 09,52 178 08,82 06,60 06,60
129 07,20 10,57 10,57 179 11,94 08,56 08,56
130 07,67 02,82 02,82 180 16,95 09,14 09,14
131 17,18 17,60 18,56 181 16,16 14,60 11,07
132 13,72 13,12 12,96 182 10,78 10,34 10,70
133 13,47 17,28 19,71 183 10,19 08,56 08,56
134 12,99 13,18 13,65 184 16,37 10,28 10,28
135 17,09 14,91 12,73 185 08,84 06,04 06,04
136 19,86 18,04 17,15 186 30,22 33,91 33,91
137 12,27 12,22 12,79 187 16,49 16,37 16,19
138 10,92 10,39 09,79 188 11,05 10,96 10,96
139 10,19 10,89 10,89 189 15,98 14,49 12,41
140 09,79 10,17 10,17 190 11,42 11,20 11,20
141 13,47 10,14 10,14 191 12,79 16,00 11,47
142 14,23 20,42 10,49 192 22,02 30,57 30,57
143 12,23 08,98 08,98 193 08,85 10,59 10,59
144 09,96 09,67 09,67 194 09,55 10,17 13,74
145 17,01 16,28 22,45 195 15,04 17,96 16,34
146 16,88 15,78 11,33 196 10,53 11,71 11,71
147 17,12 19,32 19,32 197 06,62 04,75 04,75
148 18,09 14,94 14,94 198 10,36 12,22 12,22
149 11,13 07,54 07,54 199 10,85 10,97 11,65
150 14,27 10,65 10,65 200 13,20 13,53 15,77
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O resultado da segmentação pode ser então reunido na Tabela 5.7, que apresenta a média

e o desvio padrão da taxa de erro, o tempo de processamento médio no processador Intel(R)

Core(TM) i7-4500U CPU @ 1,80 - 2,40 GHz e o desvio padrão do mesmo, além do tempo

máximo que cada método apresentou. A taxa de erro foi definida como a porcentagem de

pixels discordantes entre a imagem binária final de cada método em relação à referência da

base PH2. Percebeu-se que entre todas as nove combinações, as segmentações pelo método de

Fuzzy C-Means e pelo método de multiníveis de Otsu apresentaram o melhor resultado com

a entrada proveniente do canal azul da imagem original, possuindo resultados semelhantes

e variação menor do que a limiarização adaptativa. Ao analisar segmentações individuais,

observou-se que as imagens que apresentaram maior erro foram as que havia presença de

pelos escuros, as que o tom da mancha era bem semelhante a cor da pele da pessoa e as que a

mancha cobria boa parte da imagem, não possuindo um fundo distinto, caracterísiticas mais

comuns entre as imagens de melanoma. A Figura 5.2 exemplifica uma situação de difícil

segmentação.

Ao analisar os métodos em relação ao tipo da lesão na Tabela 5.8 e 5.9, percebe-se que a

segmentação dos melanomas apresentou mais erros, o que é justificável devido ao fato de que

a imagem destas lesões chegaram a ocupar todo o espaço da imagem, o que indica que para os

casos em que a lesão esteja muito grande deve-se aproximar menos a imagem ou garantir que

na captura da lesão haverá a presença de pele saudável, facilitando a segmentação. Ao ana-

lisar os resultados, também percebe-se que os métodos de limiarização apresentaram tempo

de processamento muito menor do que o FCM. Nota-se que ao comparar o resultado de tal

Tabela 5.7: Resultado geral das segmentações
Canal com maior entropia
Método Taxa de erro (%) Tempo de processamento (ms) Tempo máximo (ms)
AT 22,07±20,22 31,31±2,00 46,84
FCM 15,30±8,94 2594±27,66 6765
MLT 15,19±8,74 30,12±3,70 50,21
Canal cinza
Método Taxa de erro (%) Tempo de processamento (ms) Tempo máximo (ms)
AT 25,49±20,71 36,74±8,62 1081
FCM 16,27±8,95 2621±27,26 5612
MLT 16,26±9,00 30,05±3,35 48,05
Canal azul
Método Taxa de erro (%) Tempo de processamento (ms) Tempo máximo (ms)
AT 21,99±19,89 31,06±1,96 54,04
FCM 13,75±7,03 2619±27,59 5418
MLT 13,73±6,77 30,19±03,35 45,53
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método apenas com o de algoritmos já desenvolvidos, a taxa de erro é grande está dentro o

esperado, como visto pelos valores apresentados na Tabela 5.10.

Figura 5.2: Imagem do banco de dados PH2 de número 11; (a) imagem original; (b) referência; (c)
resultado da segmentação pelo método FCM no canal azul.

Tabela 5.8: Resultado das segmentações - melanomas
Método AT
Canal Taxa de erro (%) Tempo de processamento (ms) Tempo máximo (ms)
Canal com maior entropia 48,48±25,04 30,80±3,02 42,11
Canal cinza 48,51±26,90 57,40±3,02 1081
Canal azul 45,30±25,40 30,62±3,53 44,09
Método FCM
Canal Taxa de erro (%) Tempo de processamento (ms) Tempo máximo (s)
Canal com maior entropia 24,58±13,57 2217±19,87 3,274
Canal cinza 23,00±13,75 2157±20,80 3,218
Canal azul 18,26±11,04 2297±24,61 4,827
Método MLT
Canal Taxa de erro (%) Tempo de processamento (ms) Tempo máximo (ms)
Canal com maior entropia 15,47±11,77 30,16±4,049 50,21
Canal cinza 19,73±13,88 30,14±3,172 42,91
Canal azul 16,16±12,88 30,39±3,371 45,53

Tabela 5.9: Resultado das segmentações - não melanomas
Método AT
Canal Taxa de erro (%) Tempo de processamento (ms) Tempo máximo (ms)
Canal com maior entropia 15,47±11,77 31,43±4,21 46,84
Canal cinza 19,73±13,88 31,57±3,87 47,64
Canal azul 16,16±12,88 31,18±3,90 54,04
Método FCM
Canal Taxa de erro (%) Tempo de processamento (ms) Tempo máximo (s)
Canal com maior entropia 12,98±5,27 2688±28,40 6,765
Canal cinza 14,58±6,30 2736±27,58 5,612
Canal azul 12,62±5,06 2700±27,86 5,418
Método MLT
Canal Taxa de erro (%) Tempo de processamento (ms) Tempo máximo (ms)
Canal com maior entropia 12,92±4,98 30,11±3,621 45,35
Canal cinza 14,63±6,56 30,03±3,402 48,05
Canal azul 12,64±4,78 30,14±3,356 44,26
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Tabela 5.10: Resultado da segmentações de Silveira et al. 2009
Comparison of Segmentation Methods
for Melanoma Diagnosis in Dermoscopy Images Taxa de erro

AT (adaptive thresholding) 19%
GVF (gradient vector flow) 16%
AS (adaptative snake) 8%
C-LS (level set method of Chan) 22%
EM-LS (expectation-maximization level set) 11%
FBSM (fuzzy-based split-and-merge) 18%

5.2 Resultado dos descritores

Para avaliar os descritores, foram consideradas as lesões e a segmentação feita por um

profissional da base PH2. O código desenvolvido para os descritores (e funções auxiliares)

estão presentes no Apêndice A e B. Como se deseja apenas entender o padrão dos descritores

e analisar a eficácia de cada um, eles foram aplicados em 40 imagens de melanoma e em

40 imagens de nevos (não melanomas). Na Tabela 5.11 é apresentado o resultado de cinco

amostras de cada tipo de lesão e uma média de todas as calculadas. As primeiras duas colunas

representam o resultado clínico avaliado pelo especialista; já as outras próximas três colunas

têm o resultado dos descritores; a última coluna apresenta o tempo de processamento do

cálculo dos três descritores.

Percebe-se que o descritor de cor dos melanomas apresentou um resultado maior do que

a das lesões benignas, o que era esperado já que quanto maior o número de cores na lesão

maiores as chances de ser um melanoma, isto é, para os melanomas espera-se que o valor se

aproxime de 10 e para os não melanomas de 1. Já o descritor de simetria das lesões malignas

tem que ser menor do que a das saudáveis, mais próximas de 0 do que de 1, já que quanto mais

perto de 1 mais simétrico é a região de interesse. Este padrão é confirmado, apesar de que em

certas lesões há discrepâncias no descritor. O descritor de borda por outro lado apresentou

um padrão diferente do esperado, já que ele deveria em geral ter números mais próximos de

1 nos melanomas, que usualmente apresentam bordas irregulares, e mais próximos de 0 em

não melanomas.

Ao analisar o tempo de processamento no processador Intel(R) Core(TM) i7-4500U CPU

@ 1,80 - 2,40 GHz, os tempos médios dos cálculos dos descritores são maiores do que o

das segmentações AT e MLT, porém ao se comparar com a segmentação FCM apresentou

resultados menores.

Para analisar a classificação geral com os descritores gerados, utilizou-se toda as 170
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imagens da base MEDNODE para treinar o Support Vector Machine de forma mais uniforme,

pois tal base tem um número maior de melanomas do que as outras bases e em todas as

imagens as lesões estão bem definidas, com a pele como fundo garantido. O teste do método

foi realizado na base Pradi. O resultado obtido pelo SVM pode ser observado na Tabela

5.12. Logo, pode-se calcular uma sensibilidade de 87,5%, uma especificidade igual a 25,0%

e uma acurácia igual à 71,1%, que são resultados razoáveis para acurácia e sensibilidade

porém ruins para especificidade. Na literatura, como demonstrado em Adjed et al. 2018 que

trabalhou com a mesma base deste trabalho, o valor de sensibilidade da maioria dos métodos

é por volta de 60% a 85% (o trabalho de Adjed et al. apresentou sensibilidade de 78,9%), o

de especificidade é por volta de 80% a 95% (o trabalho de Adjed et al. apresentou o valor de

93,3%) e o de acurácia é por volta de 75% a 95% (o trabalho de Adjed et al. apresentou o

valor de 86,1%). Este resultado e de outros classificadores podem ser vistos na Tabela 5.13.

Tabela 5.11: Resultado dos descritores
Melanoma

Amostra Simetria Cores Descritor Descritor Descritor Tempo de

clínica clínicas de cor de borda de simetria cálculo (s)

Exemplo 1 Simétrico 4 3 0,295 0,810 1,097

Exemplo 2 Assimétrico 2 4 0,058 0,628 1,177

Exemplo 3 Assimétrico 2 3 0,503 0,645 0,838

Exemplo 4 Assimétrico 3 3 0,303 0,573 1,199

Exemplo 5 Assimétrico 2 3 0,523 0,532 1,340

Média total - - 3,75±0,78 0,359±0,253 0,624±0,208 1,539±0,631

Não Melanoma

Amostra Simetria Cores Descritor Descritor Descritor Tempo de

clínica clínicas de cor de borda de simetria cálculo (s)

Exemplo 1 Assimétrico 2 3 0,591 0,674 1,029

Exemplo 2 Simétrico 1 3 0,875 0,660 0,969

Exemplo 3 Simétrico 1 2 0,299 0,983 0,900

Exemplo 4 Simétrico parcial 1 3 0,362 0,790 1,263

Exemplo 5 Simétrico parcial 3 3 0,525 0,360 1,460

Média total - - 2,95±0,68 0,415±0,164 0,774±0,197 0,689±0,184
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Tabela 5.12: Resultado do SVM
Número de VP 62,2%

Número de VN 8,9%

Número de FP 26,7%

Número de FN 2,2%

Tabela 5.13: Comparação com outros trabalhos

Acc Spe Sen

Método desenvolvido 71,1% 25,0% 87,5%

Fusion of structural and textural features for melanoma recognition 86,1% 93,3% 78,9%

Melanoma Classification on Dermoscopy Images Using a Neural

Network Ensemble Model
91,1% 95,0% 83,3%

Large margin methods for structured and interdependent output variables 87,2% 93,3% 75,0%

Two systems for the detection of melanomas in dermoscopy images using

texture and color features
77,2% 84,2% 63,3%

Improving dermoscopy image classification using color constancy 83,9% 89,2% 73,3%
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Capítulo 6

Conclusão

Neste trabalho foi proposta a criação de um algoritmo simples capaz de segmentar lesões

na pele e de possíveis descritores para a classificação das manchas em prováveis melanomas

ou não. Como resultado final, a etapa de segmentação gerou um resultado razoável tendo a

aplicação em mente, já que foi capaz segmentar a lesão de forma eficiente e rápida.

A partir dos dados obtidos a partir da segmentação, percebe-se que se é possível realizar

a segmentação de lesões de pele a partir de métodos simples e que não exigem alto tempo de

processamento (resultado obtido a partir do processador Intel(R) Core(TM) i7-4500U CPU @

1,80 - 2,40 GHz). Os métodos de limiarização apresentaram tempo de processamento menor

do que o Fuzzy C-Means, o que os tornam mais atrativos caso o tempo seja uma limitação. Já

em relação à taxa de erro, os métodos apresentaram uma média próxima do presente na litera-

tura, porém com desvio padrão geral alto; ao analisar em grupos, percebe-se que as imagens

que continham o câncer de pele do tipo melanoma apresentaram erro maior de segmentação

em relação há lesões benignas. Também pode-se concluir que o método de Multiníveis de

Otsu e o Fuzzy C-Means apresentaram resultados semelhantes em relação à taxa de erro e

melhores do que o método de Limiarização Adaptativa, com resultados melhores quando se

trabalhado com o canal azul.

Apesar de resultados razoáveis na segmentação da lesão, considerando que pretende gerar

um sistema leve e sem a necessidade de uma alta eficácia, os resultados da classificação não

foram bons. Mesmo com uma sensibilidade boa (de quase 90%) e uma acurácia próxima

dos 75%, a especificidade foi muito baixa. Um dos motivos a tal resultado se dá a ao fato

dos descritores estarem enviesados para valores que indiquem melanoma ou pelo fato de

que a amostra para o treinamento do SVM é relativamente pequena, ainda mais comparado

com o número baixo de imagens submetidas ao teste. Como proposta, sugere-se realizar
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manipulações básicas nas imagens presentes no banco de dados MEDNODE ou na base PH2

com o intuito de criar diferentes amostras a partir de translação, rotação, mudança de escala

e de iluminação nas imagens da base, com o intuito de avaliar a sensibilidade dos métodos de

segmentação utilizados e dos desritores desenvolvidos. Porém, para isso funcionar deve-se

considerar que os descritores não são sensíveis a tais variações, o que é não é tão provável já

que todos obtêm valores relacionados a percentuais da prórpria imagem. Outra opção seria

utilizar a base PH2 também nesta etapa de treinamento.

Também poderia-se adicionar novos descritores, pois com a adição de novas informa-

ções pode ajudar no processo de classificação dos melanomas; infelizmente, quanto mais

descritores forem utilizados maior será o tempo de processamento para a classificação de

um melanoma, já que cálculos adicionais deverão ser realizados no domínio da imagem. De

qualquer maneira, caso o algoritmo seja transferido para uma plataforma mobile, deverá ser

obrigatório uma mensagem recomendando a visita do paciente a um profissional da saúde. De

qualquer modo, o aplicativo por si só já estimularia a realização de um autoexame em busca

de lesões suspeitas, conscientizando a população sobre o câncer de pele do tipo melanoma e

sobre a regra ABCDE.

6.1 Contribuições

As principais contribuições deste trabalho foram um estudo do estado da arte na segmen-

tação e classificação de melanomas, com a avaliação de métodos de segmentação mais usados

e desenvolvimento de descritores a partir da regra ABCDE.

6.2 Limitações

Uma das maiores limitações ao trabalho foram a disponibilidade de bases de dados, que

são fundamentais para testar a eficácia dos métodos e para um bom treinamento de redes de

classificação, pois apenas uma delas possuía um ground truth para verificação dos métodos

de segmentação, sendo que nem todas as imagens das bases são ideais para o processo de

segmentação (pois há lesões grandes que ocupam boa parte da imagem).
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6.3 Trabalhos futuros

Como trabalhos futuros se tem a avaliação de outros métodos de segmentação, compa-

rando com os já avaliados, e a acrescentar na avaliação dos canais de entrada uma conversão

para outros sistemas de cores. Além disso, pode ser realizado um refinamento dos descritores

e a inclusão cuidadosa de novos descritores, para não afetar de forma brusca o tempo de pro-

cessamento. Também pode-se incrementar métodos de pré-processamento capazes de lidar

com as situações difíceis para a segmentação.
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Apêndice A

Código dos Descritores

1 %%CODIGO FINAL GERACAO DESCRITORES

2 %Entrada: Imagem original e imagem segmentada (Img_original e Img_binaria)

3 % obs: se o centro da imagem nao pertencer a mesma , sera pedido uma

4 % entrada do usuario

5 %Saida: 3 descritores:

6 % * Descritor de cor

7 % * Descritor de borda

8 % * Descritor de simetria

9

10 Img_org = rgb2gray(Img_original);

11 Area = sum(sum((Img_binaria ==1))); %area da ROI

12 Img_cor = Img_org.*uint8(Img_binaria); %imagem com cor da ROI

13

14 % Descritor de cor

15 % Objetivo geral: divide a imagem em 10 grupos uniformes de cores e conta

16 % quantas cores estao presentes

17

18 %histograma da imagem com cor da ROI

19 Histograma = imhist(Img_cor);

20 %divisao do histograma em 10, ignorando os pixels igual a 0 (fundo) e os 4

21 % maiores tons de branco

22 Histograma_div = reshape(Histograma (2:251),[25 10]);

23 %contagem do numero de pixels em cada grupo

24 Elementos_grupo = sum(Histograma_div);

25 %Considera apenas os grupos com mais do 5% de pixels presentes na ROI

26 Descritor_cor = sum(sum(Elementos_grupo >Area*0.1));

27
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28 %1 <= Descritor_cor <= 10

29 %Quanta mais cor, mais chances de ser melanoma

30

31 % Descritor de borda

32 % Objetivo geral: compara a assinatura da imagem com a do seu contorno

33 % convexo , e ve quais a diferenca e maior do q 5% da diagonal maior

34

35 stats=regionprops(Img_binaria ,'Centroid','Area','PixelIdxList');

36 [maxValue ,index] = max([stats.Area]);

37 [rw col]=size(stats);

38 for i=1:rw

39 if (i~=index)

40 Img_binaria(stats(i).PixelIdxList )=0; % remove as regioes menores

41 end

42 end

43

44 %contorno convexo da imagem segmentada

45 Contorno_convx = bwconvhull(Img_binaria);

46 %assinatura da imagem segmentada

47 [Asg1 , Points , Centro] = assinatura(Img_binaria);

48 Asg2 = assinatura(Contorno_convx); %Assinatura do contorno convexo

49

50 for i=1:500 %para todos os pontos da assinatura , calcula a diagonal total

51 Diag(i) = Asg1(i)+Asg1(i+500);

52 end

53 [M Ind] = max(Diag); %obtencao da maxima diagonal

54 alfa = Points(1,Ind); %obtencao do angulo correspondente a maxima diagonal

55 M1=M;

56

57 %Diferenca entre o contorno convexo e a borda original

58 Dif = abs(Asg2 -Asg1);

59 Descritor_borda = sum(Dif>M*0.02)/length(Dif);

60 %0 <= Descritor_borda <= 1

61 %Quanto mais desconvexo (valor maior), maior a chancede ser melanoma

62

63 % Descritor de simetria

64 % Objetivo geral: comparar a distancia da borda em relacao ao eixo de

65 % simetria

66

67 %Valido apenas se o centro for dentro do objeto

68 if Img_binaria(round(Centro(2)),round(Centro(1)))

69 %Centralizacao da imagem e rotacao ao centro da ROI em alfa
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70 Img_transl = imtranslate(Img_binaria ,[size(Img_binaria ,2)/2-Centro(1)

71 ,size(Img_binaria ,1)/2-Centro (2)]);

72 Img_rot = imrotate(Img_transl ,alfa ,'bilinear');

73

74 % Encontra a cordenada do eixo de simetria (X_sim) e registra o valor do

75 % pixel a mais a esquerda e o a mais a direita

76 L = zeros(size(Img_rot ,1),2);

77 X_sim = round(size(Img_rot ,2)/2);

78 for i=1:size(Img_rot ,1)

79 for j=1:size(Img_rot ,2)

80 if Img_rot(i,j)==1 && L(i)==0

81 L(i,1) = X_sim - j;

82 j = size(Img_rot ,2);

83 while Img_rot(i,j)==0

84 j = j-1;

85 end

86 L(i,2) = j - X_sim;

87 end

88 end

89 end

90

91 %calculo da diferenca em relacao ao eixo de simetria

92 %1: simetrico <10% -> guardado em (as)

93 %2: pouco simetrico 10%< <30% -> guardado em (bs)

94 %3: nao simetrico >30% ou totalmente sem correspondecia -> guardado em (cs)

95 as=0;bs=0;cs=0;

96 for i=1:size(L,1)

97 if L(i,2)~=0 && L(i,1)~=0

98 if L(i,2)*L(i,1)<0

99 cs=cs+1;

100 else

101 comp = abs(L(i,2)-L(i,1));

102 if comp < 0.05*M && comp > 0

103 as=as+1;

104 elseif comp > 0.1*M

105 cs=cs+1;

106 else

107 bs=bs+1;

108 end

109 end

110 end

111 end
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112 Descritor_simet = (as+.7*bs)/(as+bs+cs);

113 %0 <= Descritor_simet <= 1

114 %Quanta mais assimetrico (=0), mais chances de ser melanoma

115

116 else

117 figure(1)

118 imshow(Img_original)

119 str = input('Digite A para assimetrica , P para parcialmente simetrica e S ...

120 ... para simetrica: \n','s');

121 i=0;

122 while i==0

123 if str=='S'

124 Descritor_simet = 1; i=1;

125 elseif str=='P'

126 Descritor_simet = 0.7; i=1;

127 elseif str=='A'

128 Descritor_simet = 0; i=1;

129 else

130 str = input('Entrada invalida , digite [A],[P] ou [S]: \n','s');

131 end

132 end

133 close(1)

134 end
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Apêndice B

Função auxiliar - assinatura

1

2 %FUNcaO ASSINATURA DA IMAGEM

3 %Assinatura da imagem divida em angulos

4

5 function [distances , ang, c] = assinatura(Img)

6 % entrada: imagem a ser obtida a assinatura

7 % saida: vetor assinatura e vetor angulo+posicoes

8

9 %vetor de angulos [0,360) e a posicao da borda correspondente

10 ang = linspace (0 ,360*(1 -1/1000) ,1000);

11 ang = [ang; zeros(2,size(ang ,2))];

12

13 stats=regionprops(Img,'Centroid','Area','PixelIdxList');

14 [maxValue ,index] = max([stats.Area]);

15 [rw col]=size(stats);

16 for i=1:rw

17 if (i~=index)

18 Img(stats(i).PixelIdxList )=0; % Remove todas as regioes menores

19 end

20 end

21

22 % stats=regionprops(Img,'Centroid ');

23 c=stats(index).Centroid; %obtencao dos centroides

24 boundary=bwboundaries(Img);

25 bound=boundary(1); %obtencao da fronteira exterior

26 x=bound{1,1}(:,1);

27 y=bound{1,1}(:,2); %coordenadas x e y da fronteira
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28

29 %calculo do angulo de todos os pontos da fronteira

30 temp = atan2(-(y-c(1)),(x-c(2)))/2/pi*360;

31 for i=1:size(temp)

32 if temp(i)<0

33 temp(i)=temp(i)+360;

34 end

35 end

36

37 %distribuicao dos pontos da fronteira para o vetor de angulos criado

38 %anteriormente

39 for i=1:size(temp ,1)

40 for j=1:(size(ang ,2)-1)

41 if temp(i) < ang(1,2)

42 ang(2,1) = x(i);

43 ang(3,1) = y(i);

44 elseif ang(1,j) < temp(i) && temp(i) < ang(1,j+1)

45 ang(2,j+1) = x(i);

46 ang(3,j+1) = y(i);

47 elseif temp(i) > ang(1000)

48 ang(2,1000) = x(i);

49 ang(3,1000) = y(i);

50 end

51 end

52 end

53

54 %loop para garantir que nao se tenha angulos vazios , fazendo que os angulos

55 %em brancos recebam o valor dos pontos vizinhos

56 while min(ang(2,:))==0 || min(ang(3,:))==0

57 for i=1:(size(ang ,2)-1)

58 k = i;

59 while ang(2,k)==0 && ang(3,k)==0

60 ang(2,k) = ang(2,i+1);

61 ang(3,k) = ang(3,i+1);

62 i=i+1;

63 end

64 i = k;

65 if ang(2,size(ang ,2))==0 && ang(3,size(ang ,2))==0

66 ang(2,size(ang ,2)) = ang(2,1);

67 ang(3,size(ang ,2)) = ang(3,1);

68 end

69 end
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70 end

71

72 %Vetor de distancia da borda ao centro

73 distances=sqrt((ang(3,:)-c(1)).^2+(ang(2,:)-c(2)).^2);

74 end


