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RESUMO 

 

ROZENKWIT, LUIS SÉRGIO.  Aprendizado Profundo em Segmentação de 
Imagens Médicas : Revisão da Literatura e o Estado da Arte.   2024.  59 f.  Trabalho 
de conclusão de curso (MBA em Inteligência Artificial e Big Data) – Instituto de 
Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, 
2024. 
 

A segmentação de imagens médicas é um componente essencial do processamento 
de imagens biomédicas e tem contribuído significativamente para o avanço da saúde 
sustentável. Com o advento da aprendizagem profunda, especialmente por meio das 
redes neurais convolucionais profundas, houve uma revolução no processamento de 
imagens médicas. Esta monografia tem como objetivo explorar detalhadamente o 
campo da segmentação de imagens médicas utilizando técnicas de aprendizagem 
profunda. Inicialmente, apresenta uma visão geral dos conceitos fundamentais e das 
características da segmentação de imagens médicas baseada em aprendizagem 
profunda. Em seguida, discute o estado atual da pesquisa nesse domínio, oferecendo 
uma análise abrangente dos três principais métodos de segmentação de imagens 
médicas, juntamente com suas limitações inerentes. Além disso, explora as 
características distintas de vários tecidos e órgãos patológicos, destacando os 
desafios específicos que eles representam e os algoritmos clássicos de segmentação 
empregados para resolvê-los. Apesar dos avanços notáveis, o campo continua a 
enfrentar obstáculos de pesquisa significativos, como a precisão insuficiente da 
segmentação e a limitação em quantidade e resolução dos conjuntos de dados de 
imagens médicas. Para abordar esses problemas, o artigo apresenta um exame 
detalhado dos métodos atuais baseados em aprendizagem profunda para 
segmentação de imagens médicas, visando ajudar os pesquisadores a superar esses 
desafios. 
 
Palavras-chave: Segmentação de Imagens Médicas; Inteligência Artificial; 

Aprendizado de Máquina Profundo; Visão Computacional; Redes Neurais 

Convolucionais; Processamento de Imagens Médicas; Radiologia e Diagnóstico por 

Imagem. 

  



 
 

 

ABSTRACT 

ROZENKWIT, LUIS S.  Deep Learning in Medical Image Segmentation: Literature 

Review and State of the Art. 2024.  59 f.  Final course work (MBA in Artificial 

Intelligence and Big Data) - Institute of Mathematical and Computer Sciences, 

University of São Paulo, São Carlos, 2024. 

 

Medical image segmentation is an essential component of biomedical image 

processing and has contributed significantly to the advancement of sustainable 

healthcare. With the advent of deep learning, especially through deep convolutional 

neural networks, there has been a revolution in medical image processing. This 

monography aims to explore in detail the field of medical image segmentation using 

deep learning techniques. Initially, it presents an overview of the fundamental concepts 

and characteristics of medical image segmentation based on deep learning. It then 

discusses the current state of research in this domain, offering a comprehensive 

analysis of the three main medical image segmentation methods, along with their 

inherent limitations. In addition, it explores the distinct characteristics of various 

pathological tissues and organs, highlighting the specific challenges they pose and the 

classic segmentation algorithms employed to solve them. Despite notable advances, 

the field faces significant research obstacles, such as insufficient segmentation 

accuracy and the limited quantity and resolution of medical image datasets. To address 

these problems, the text presents a detailed examination of current deep learning-

based methods for medical image segmentation, aiming to help researchers overcome 

these challenges. 

 

Keywords: Medical Image Segmentation; Deep Learning; Artificial Intelligence ; 

Computer Vision; Convolutional Neural Networks; Medical Image Processing ; 

Radiology ; Medical Image Diagnostic.  
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1. INTRODUÇÃO 

 

         O estudo e desenvolvimento de técnicas de segmentação de imagens têm se 

mostrado fator crítico e ao mesmo tempo condição sine qua non para o 

processamento de imagens médicas e seu aproveitamento em inteligência artificial. 

Embora haja gargalos de diversas matizes (ética, técnica, científica, regulatória, entre 

outras), há rápida e perceptível evolução deste campo da visão computacional em 

grande parte pela compreensão da importância de sua aplicação na área médica 

(significativo impacto no aumento da acurácia diagnóstica, aumento em escala na 

quantidade de exames liberados no menor tempo possível, potencial impacto positivo 

na viabilidade financeira dos serviços), que têm levado a uma crescente sinergia entre 

profissionais de diversas áreas (médicos, programadores, cientistas da computação, 

engenheiros, cientistas de dados, etc.). 

 

Essencialmente, a segmentação de imagens envolve a divisão de uma imagem 

inteira em regiões distintas que compartilham certas propriedades comuns. Em termos 

mais simples, visa separar uma região de interesse (ROI) do restante da imagem 

(fundo ou background). Assim, à partir da abertura de novas frentes de estudo, tendo 

como consequência natural a elaboração de protocolos e algoritmos de programação 

(leia-se aprendizagem de máquina), meio da integração de novas teorias e 

tecnologias de ponta, busca-se um padrão-ouro para a aplicação de segmentação que 

possa ser utilizado de forma eficiente, efetiva e eficaz nos diversos campos da 

imaginologia médica.( Lateef, F.; Ruichek, Y. Survey on semantic segmentation using 

deep learning techniques.Neurocomputing 2019, 338, 321–348). 

 

As técnicas para obtenção de imagens médicas comumente utilizadas em 

ambientes clínicos incluem tomografia computadorizada (TC), ressonância magnética 

(RM), tomografia por emissão de pósitrons (PET), raios-X (RX), ultrassonografia 

(USG) e densitometria óssea (DO), e suas sub áreas. Além disso, há também outros 

tipos de imagens e suas aplicações, como microscopia, histopatologia e oftalmologia 

(imagens vasculares da retina), que se enquadram na categoria de imagens RGB (red, 

green, blue) comuns.  
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As imagens geradas pelos equipamentos espelham a condição de saúde do 

paciente no momento do exame e, não por acaso, tornaram-se a base principal sobre 

a qual os médicos fazem suas análises, planejamento clínico, terapêutico e 

prognósticos. Portanto, inevitavelmente a segmentação de imagens radiológicas 

tornou-se foco de especial atenção dos cientistas e pesquisadores de visão 

computacional. (Shen, D.;Wu, G.; Suk, H.I. Deep learning in medical image analysis. 

Annu. Rev. Biomed. Eng. 2017, 19, 221–248). 

 

           No campo da segmentação de imagens, os avanços na inteligência artificial e 

particularmente o aprendizado de máquina profundo (deep learning), têm evoluído e 

entregado resultados impressionantes. A utilização de técnicas de aprendizado 

profundo provou ser vantajosa em termos de precisão e velocidade quando 

comparada aos métodos convencionais de aprendizado de máquina e visão 

computacional.  

 

A implementação de técnicas de aprendizado profundo na segmentação de 

imagens médicas provou ser uma ferramenta valiosa para os médicos avaliarem com 

precisão aspectos como forma, tamanho e natureza de eventuais lesões para fins de 

classificação e planejamento terapêutico. 

 

 Tal tecnologia pode aliviar significativamente a sobrecarga de trabalho dos 

médicos radiologistas, com impacto favorável no desfecho clínico do paciente e na 

saúde financeira da instituição, uma vez que tem pleno potencial para entregar 

resultados com alta sensibilidade e especificidade numa escala muito além da 

capacidade humana. (Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep 

Learning; MIT Press: Cambridge, UK, 2016). 

 

Para reunir informações abrangentes sobre diferentes metodologias, foi 

realizada pesquisa no Google Scholar e ArXiv usando as palavras-chave, “inteligência 

artificial”, “aprendizado de máquina”, “visão computacional” "aprendizado profundo", 

"medical image processing", “computer vision”, e "deep learning" para acessar a 

literatura mais recente. Além disso, foram avaliados artigos e estudos publicados em 

congressos, revistas e conferências relevantes ao assunto, tais como ISBI 

(International Symposium on Biomedical Imaging), IPMI (Information Processing in 
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Medical Imaging) e MICCAI (Medical Image Computing and Computer Assisted 

Intervention Society), para reunir os materiais relevantes. 

 

Esta pesquisa examina os avanços na segmentação de imagens médicas, 

especificamente da perspectiva do aprendizado profundo. Ao contrário de outras 

revisões encontradas em diversas publicações, esta análise abrangente se concentra 

no progresso recente e compara vários métodos no campo.  

 

Os artigos selecionados, que utilizam predominantemente técnicas de 

aprendizado profundo, passaram por uma verificação rigorosa. A revisão investiga 

especificamente a aplicação da tecnologia de aprendizado profundo na segmentação 

de imagens médicas nos últimos três anos, analisando estruturas de rede, 

metodologias, pontos fortes e fracos. Além disso, identifica desafios e destaca o 

potencial para avanços futuros nessa área. A revisão abrange os métodos mais 

recentes e as abordagens clássicas na tecnologia para aplicação de algoritmos de 

aprendizado profundo em imagens médicas. 

 

A monografia está estruturada da seguinte forma: o capítulo 2 inicia a exaustiva 

revisão da literatura apresentando conceitos de segmentação de imagens médicas e 

as primeiras técnicas de redes neurais e aprendizado profundo e suas aplicações 

neste campo. No capítulo 3, compartilhamos métricas de avaliação e conjuntos de 

dados provenientes de alguns dos principais desafios de análise de imagens médicas.  

 O corpo principal da revisão da literatura é abordado nos capítulos 4 e 5. O 

capítulo 4 fornece uma visão geral de três modernas e importantes estruturas de rede 

- FCN (rede totalmente convolucional), U-Net e GAN (rede adversária generativa) - 

que são usadas para segmentação de imagens médicas baseadas em aprendizado 

profundo semântico exemplos de arquitetura de rede e aplicações. 

Finalmente, o capítulo 5 aborda o estado da arte e o capítulo 6 conclui a monografia 

sumarizando-a. 
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2. REVISÃO BIBLIOGRÁFICA 

 

A aplicação da tecnologia de processamento de imagens médicas permite a 

segmentação, extração, reconstrução tridimensional e exibição tridimensional de 

órgãos humanos, tecidos moles bem como de estruturas específicas.  

Esse processo envolve a análise e o processamento de imagens 2D ou 3D para dividi-

las em diferentes regiões com base em sua semelhança ou diferença.  

 

Ao utilizar tal método, os médicos radiologistas são capazes de analisar 

qualitativamente ou mesmo quantitativamente lesões e outras áreas de interesse, 

levando a um aumento significativo na precisão e confiabilidade dos diagnósticos 

médicos, ou seja, a sua acurácia (Lateef e Ruichek, 2019). 

 

O processo de segmentação de imagens médicas pode ser entendido 

conceitualmente por meio de um modelo baseado na teoria dos conjuntos. Neste 

modelo, uma imagem médica, denotada como I, é analisada em conjunto com uma 

coleção de restrições de similaridade representada como C i (onde i = 1, 2, ... ). O 

objetivo da segmentação é particionar a imagem I em regiões ou segmentos distintos.  

A equação             N 

                              ∪ = Rx = I, Rx ∩ Ry = ∅, ∀x /= y, x, y ∈ [1, N] 

                              x=1   

afirma que a união de N e x é igual a 1, onde Rx é igual a I, e a interseção de Rx e Ry 

é vazia para todo x não igual a y, onde x e y estão ambos dentro do intervalo de 1 a 

N. Essa condição garante que Rx e Ry satisfaçam a restrição de similaridade de 

comunicação Ci para todos os pixels nas áreas da imagem.  

 

As variáveis x e y são usadas para distinguir entre diferentes regiões. N representa 

um inteiro positivo maior ou igual a 2, indicando o número de regiões após a 

segmentação (Shen, Wu e Suk, 2017). 

 

O processo de segmentação de imagens médicas envolve várias etapas. Em primeiro 

lugar, é obtido um conjunto de dados de imagens médicas que normalmente inclui um 

conjunto de treinamento, um conjunto de validação e um conjunto de teste. 
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No processamento de imagens baseado em aprendizado de máquina, o conjunto de 

dados geralmente é dividido nessas três partes  (Goodfellow et al., 2016). 

 

 

Figura 1. Técnica de segmentação tumoral em ressonância magnética encefálica. 

Fonte: Menze et al., 2015. 

 

 O conjunto de treinamento é usado para treinar o modelo de rede, enquanto o 

conjunto de validação é usado para ajustar os hiperparâmetros do modelo.  

 

O impacto final do modelo é confirmado usando o conjunto de teste. A imagem é pré-

processada e aumentada, normalmente envolvendo a padronização da imagem de 

entrada e a aplicação de rotação aleatória e dimensionamento para expandir o 

conjunto de dados.  

 

Uma técnica adequada de segmentação de imagens médicas é utilizada para 

segmentar a imagem médica e produzir imagens segmentadas que representem 

apropriadamente o conteúdo e semântica originais de informação (Almeida e Tavares, 

2020).  

 

A avaliação do desempenho da estimativa é realizada para avaliar a eficácia da 

segmentação de imagens médicas, exigindo o estabelecimento de indicadores de 

desempenho apropriados para verificação.  
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A segmentação de imagens é um componente crucial do processo geral. O campo da 

compreensão de imagens tornou a segmentação de imagens um ponto focal, pois é 

um paradigma bem estabelecido na pesquisa de visão computacional (Hesamian et 

al., 2019). 

 

A segmentação de imagens envolve a divisão de uma imagem em áreas distintas com 

base em vários recursos, como tons de cinza, cor, textura e formas. O objetivo é 

garantir que esses recursos exibam consistência ou semelhança dentro da mesma 

área, ao mesmo tempo em que exibem diferenças claras entre as diferentes áreas.  

 

Dependendo do nível de granularidade, a segmentação de imagens pode ser 

categorizada em segmentação semântica, segmentação de instância e segmentação 

panorâmica (Altaf et al., 2019). Na área médica, a segmentação de imagens é 

considerada principalmente uma tarefa de segmentação semântica. Além disso, 

existem vários ramos de segmentação de imagens, incluindo segmentação de 

imagens de satélite, segmentação de imagens médicas e direção autônoma. 

 

À medida que o número de estruturas de rede propostas aumenta, a precisão dos 

métodos de segmentação de imagens continua a melhorar. No entanto, é importante 

observar que não existe um algoritmo de segmentação universal que possa ser 

aplicado a todas as imagens. A eficácia dos métodos tradicionais de segmentação de 

imagens não pode mais ser comparada àquelas baseadas em aprendizado profundo 

(Hu et al., 2019).  

 

No entanto, os conceitos subjacentes a esses métodos tradicionais ainda são valiosos 

para fins de aprendizagem. Exemplos de tais métodos incluem segmentação baseada 

em limite, segmentação baseada em região e segmentação baseada em detecção de 

borda.  

 

Esses métodos utilizam princípios de processamento digital de imagens e matemática 

para segmentar imagens. Embora sejam simples de calcular e rápidos em termos de 

velocidade de segmentação, eles podem não ter precisão quando se trata de capturar 

detalhes finos.  
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Atualmente, os métodos baseados em aprendizado profundo (deep learning) 

alcançaram avanços notáveis na segmentação de imagens.Esta nova abordagem 

superou as técnicas tradicionais de segmentação em termos de precisão. A introdução 

de redes totalmente convolucionais marcou um avanço significativo no uso de 

aprendizado profundo para segmentação semântica de imagens (Geiger, Lenz e 

Urtasun, 2012). 

 

No domínio das redes de segmentação, existem opções notáveis como U-Net, Mask 

R-CNN, RefineNet e DeconvNet. Tais redes possuem uma capacidade notável de lidar 

efetivamente com bordas intrincadas  (Ess et al., 2009). 

 

 

 

Figura 2. R-CNN na segmentação de imagens em radiografia torácica. 

Fonte: Soumyiajit et al., 2021. 
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2.1. AS REDES NEURAIS CONVOLUCIONAIS DESEMPENHAM UM PAPEL 

SIGNIFICATIVO NESTE CAMPO DE ESTUDO 

 

A fusão da tecnologia de aprendizado profundo e processamento de imagem deu 

origem à rede neural convolucional (CNN). 

 

No campo da análise e processamento de imagens, a CNN alcançou inúmeros 

avanços solidificando seu status como uma das redes neurais mais proeminentes. 

Notavelmente, no conjunto de dados ImageNet amplamente utilizado, a CNN tem sido 

fundamental em várias realizações, como extração de recursos de imagem, 

classificação e reconhecimento de padrões.  

 

Como um modelo profundo de aprendizado supervisionado, a CNN opera com base 

no princípio do compartilhamento de peso para mapeamento de recursos em 

diferentes posições dentro da rede de camadas anterior. Ao alavancar as relações 

espaciais, essa abordagem reduz efetivamente o número de parâmetros, melhorando 

assim o desempenho do treinamento (Ma, Tavares e Jorge, 2009). 

 

A jornada da rede neural convolucional desde sua proposta até sua aplicação 

generalizada pode ser dividida em várias etapas: brotamento teórico, desenvolvimento 

experimental, aplicação em larga escala e pesquisa aprofundada. Uma teoria crucial 

que surgiu durante os estágios iniciais foi o conceito de campos receptivos e máquinas 

neurocognitivas na informação visual humana. Em 1962, Hubel et al. (1962) 

conduziram pesquisas biológicas revelando que a transmissão de informações visuais 

no cérebro ocorre por meio de excitação de campo receptivo em vários níveis, 

introduzindo assim o conceito de campos receptivos. Com base nesse conceito, 

Fukushima (1982) propôs uma máquina neurocognitiva que é considerada a primeira 

rede de implementação de redes neurais convolucionais.  

 

O estágio de desenvolvimento experimental começou em 1998, quando Lécun et al. 

introduziram a LeNet5, uma rede treinada usando um algoritmo de retropropagação 

baseado em gradiente. O interesse da comunidade acadêmica em redes neurais 

convolucionais cresceu significativamente com a proposta da rede LeNet5, 
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particularmente devido à sua aplicação bem-sucedida no reconhecimento de 

caligrafia. 

 

 

 

 

Figura 3. Rede LaNet-5 

Fonte: Lécun et.al, 1998. 

 

Após o desenvolvimento inicial da rede LeNet5, a rede neural convolucional entrou 

em uma fase de avanço experimental.  

 

No entanto, não foi até a introdução da rede AlexNet em 2012 que as redes neurais 

convolucionais solidificaram sua posição no domínio das aplicações de aprendizado 

profundo.  

 

A inovadora AlexNet proposta por Krizhevsky et al.  (2012) alcançou um sucesso 

notável na classificação de imagens usando o conjunto de treinamento ImageNet.  

 

Como resultado, as redes neurais convolucionais emergiram como um ponto focal 

para pesquisas em visão computacional, um campo que continua a se expandir e 

evoluir.  
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Figura 4. Rede AlexNet. 

Fonte: S. Collet, Availabe Online: 2017. https://www.saagie.com/blog/object-detection-

part1/ 

 

A estrutura típica de uma CNN inclui várias camadas, ou seja, a camada de entrada, 

a camada de saída e várias camadas ocultas. Dentro das camadas ocultas, cada 

camada realiza operações distintas como convolução, agrupamento e ativação 

(Ferreira, Gentil e Tavares, 2014).  

 

 

Figura 5. Rede neural convolucional de 3 camadas. 

Fonte: Xiaofei, Yang et col. 
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A imagem de entrada está vinculada à camada de entrada, com o número de 

neurônios nessa camada correspondendo aos pixels na imagem de entrada. 

 

Por meio de uma operação de convolução, a camada convolucional intermediária 

realiza a extração de recursos nos dados de entrada, produzindo um mapa de 

recursos. O resultado da operação de convolução é determinado pela configuração 

dos parâmetros dentro do kernel de convolução (Ma et al., 2010). 

 

 A camada convolucional é seguida pela camada de pooling, que serve para filtrar e 

escolher mapas de recursos, reduzindo efetivamente a complexidade computacional 

de toda a rede.  

 

Na camada totalmente conectada, cada neurônio está conectado a todos os neurônios 

da camada anterior.  

 

A saída resultante é então passada para o classificador, que determina o resultado da 

classificação. 

 

 

 

Figura 6. Típica rede neural convolucional e sua aplicação em imaginologia médica. 

Fonte: Sarvamangala et al, 2016  

 

 

 



42 
 

2.2. REDES NEURAIS CONVOLUCIONAIS BIDIMENSIONAIS (CNN 2D) 

 

A rede neural convolucional típica usada é uma CNN 2D, onde a imagem de entrada 

é 2D e o kernel de convolução também é 2D, como visto em modelos como ResNet e 

VGG.  

 

Se considerarmos uma imagem de entrada com dimensões H × W e três canais no 

formato RGB, o kernel de convolução que tem dimensões (c, h, w) se move pela 

dimensão espacial da imagem de entrada. Aqui, c, h e w representam o número de 

canais, a altura e a largura do kernel de convolução, respectivamente. Para obter um 

valor, a operação de convolução é realizada em cada canal, inserindo o valor da 

imagem e o valor de (h, w).  

 

A imagem de entrada é dividida em 30 camadas, com cada camada representando 

um pixel.  

 

A extração de feição é executada nos dados de entrada pela camada convolucional 

intermediária por meio de uma operação de convolução, resultando em um mapa de 

feição.  

 

O resultado da operação de convolução é determinado pelos parâmetros definidos no 

kernel de convolução. 

 

 

Figura 7. Rede neural convolucional de duas dimensões (2D CNN). 

Fonte: Xiaofei, Yang et col. 
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2.3. REDES NEURAIS CONVOLUCIONAIS TRIDIMENSIONAIS (CNN 3D) 

 

A maioria das imagens médicas, como tomografias computadorizadas e ressonâncias 

magnéticas, são normalmente apresentadas em formato tridimensional.  

 

A imagem de TC convencional, que normalmente é visualizada, é uma representação 

2D, fornecendo apenas uma única fatia da imagem geral.  

 

Para segmentar com precisão os tecidos doentes, é necessário um kernel de 

convolução 3D. Um exemplo disso é a rede 3D U-Net, que utiliza um kernel de 

convolução 3D projetado especificamente para segmentação de imagens médicas 3D 

(Xu et al., 2010).  

 

Ao incorporar a natureza tridimensional da imagem, uma CNN 3D pode extrair uma 

representação de volume mais robusta ao longo dos eixos X, Y e Z, aproveitando 

efetivamente os benefícios das informações espaciais.  

 

Ao contrário de sua contraparte 2D, o kernel de convolução 3D inclui uma dimensão 

de profundidade adicional, correspondente ao número de fatias 2D dentro da imagem 

médica.  

 

No caso de uma imagem 3D denotada como C × N × H × W, onde C representa o 

número de canais, N representa o número de camadas de fatia e H e W representam 

a altura e a largura do kernel de convolução, o kernel de convolução 3D fornece uma 

abordagem abrangente para a análise de imagens (Ma et al., 2010).  

 

Semelhante à operação de convolução 2D, o processo de obtenção de um valor 

envolve deslizar a janela pela altura, largura e número de camadas em cada canal em 

3D.  
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Figura 8. Uma arquitetura CNN 3D básica. 

Fonte : Tasnin et al., 2020 

 

 

 

 

 

Figura 9. Aplicação de CNN 3D para detecção de lesão cerebral em RM. 

Fonte: Kamnitsas et al., 2017 
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3. MÉTRICAS DE AVALIAÇÃO DE SEGMENTAÇÃO E CONJUNTOS DE DADOS 

 

3.1. MÉTRICAS DE AVALIAÇÃO 

 

Avaliar a qualidade de um algoritmo requer um indicador objetivo correto. Em 

algoritmos de segmentação médica, as anotações desenhadas à mão pelos médicos 

são geralmente usadas como padrão-ouro (verdade fundamental, GT para abreviar).  

 

Outros resultados da segmentação do algoritmo são os resultados da previsão (Rseg, 

SEG para abreviar). A avaliação de segmentação de imagens médicas é dividida em 

métodos baseados em pixels e baseados em sobreposição (He et al., 2017). 

 

Índice de Dados: O coeficiente de dados é uma função para avaliar a similaridade. 

Geralmente é usado para calcular a semelhança ou sobreposição entre duas 

amostras. É também o mais usado. Seu intervalo de valores é de 0 a 1. Quanto mais 

próximo o valor estiver de 1, melhor será o efeito de segmentação. Dados dois 

conjuntos A e B, as métricas são definidas como: 

 

 

Índice de Jaccard: O índice de Jaccard é semelhante ao coeficiente de dados. Dados 

dois conjuntos A e B, as métricas são definidas como: 

 

 

Precisão de Segmentação (SA): A área de segmentação precisa é responsável pela 

porcentagem da área real na imagem GT. Entre eles, Rs representa a área de 

referência da imagem segmentada desenhada manualmente pelo especialista. Ts 

representa a área real da imagem obtida pela segmentação do algoritmo. |Rs - Ts| 

indica o número de pixels segmentados incorretamente (Lin et al., 2017). 
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Taxa de Supersegmentação: A proporção de pixels que são divididos na área de 

referência da imagem GT é calculada da seguinte forma: 

 

 

Os pixels em Os aparecem na imagem segmentada real, mas não aparecem na 

imagem segmentada teórica Rs. Rs representa a área de referência da imagem 

segmentada desenhada manualmente pelo especialista (Lin et al., 2017). 

 

Taxa de Subsegmentação: A proporção do resultado da segmentação para os pixels 

ausentes em Imagem GT. Calculado da seguinte forma: 

 

 

Os pixels em Us aparecem na imagem segmentada teórica Rs, mas não aparecem 

na imagem segmentada real. Rs e Os têm o mesmo significado que acima (Noh, Hong 

e Han, 2015). 

 

Distância de Hausdorff: Descreve uma medida do grau de semelhança entre dois 

conjuntos de pontos, ou seja, a distância entre os dois limites da verdade fundamental 

e a entrada do resultado da segmentação para a rede. Sensível ao limite dividido (Zhu, 

2005). 

 

onde, i e j são pontos pertencentes a conjuntos diferentes. d representa a distância 

entre i e j. 
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3.2. CONJUNTOS DE DADOS PARA SEGMENTAÇÃO DE IMAGENS MÉDICAS 

 

Para qualquer segmentação de modelo baseada em aprendizado profundo, é crucial 

coletar dados suficientes no conjunto de dados. A qualidade do algoritmo de 

segmentação depende dos dados de imagem de alta qualidade fornecidos pelos 

especialistas e do conjunto de dados padronizado por rótulos correspondente, o que 

permite uma comparação justa entre os sistemas. Esta seção apresentará alguns 

conjuntos de dados públicos frequentemente usados no campo da segmentação de 

imagens médicas (Zeiler e Fergus, 2014). 

 

Decatlo de Segmentação Médica (MSD): Simpson et al. criaram um grande conjunto 

de dados de imagens médicas anotadas à mão de código aberto de várias partes 

anatômicas. Esse conjunto de dados pode avaliar objetivamente os métodos gerais 

de segmentação por meio de benchmarks abrangentes e tornar público o acesso a 

dados de imagens médicas. O conjunto de dados tem um total de 2633 imagens 

médicas tridimensionais, envolvendo aplicações clínicas reais de múltiplas estruturas 

anatômicas, vários modelos e múltiplas fontes (ou instituições).  

É dividido em dez categorias ou tarefas (“tasks”) : 

 

• Task01_BrainTumour: Há um total de 750 imagens, e os rótulos são 

divididos em duas categorias: Glioma (tumor necrótico/ativo) e edema.  

• Task02_Heart: Há um total de 30 imagens, e o rótulo é o átrio esquerdo, 

uma vez que os dados são provenientes do Desafio de Segmentação do 

Átrio Esquerdo (LASC).  

• Task03_Liver: São 201 imagens no total, com rótulos divididos em 

fígado e tumores. O tipo de imagem é tomografia computadorizada.  

• Task04_Hippocampus: Há um total de 394 imagens, e os rótulos são 

hipocampo normal e hipocampo alterado. O tipo de imagem é 

ressonância magnética. O conjunto de dados consistiu em ressonância 

magnética adquirida em 90 adultos saudáveis e 105 adultos com 

transtorno psicótico não afetivo. 
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• Task05_Prostate: Há um total de 48 imagens, e os rótulos são glândula 

central e zona periférica. O tipo de imagem é ressonância magnética. O 

conjunto de dados da próstata consistiu em 48 estudos de ressonância 

magnética multiparamétrica fornecidos pela Universidade Radboud 

(Holanda) relatados em um estudo de segmentação anterior. 

• Task06_Lung: Há um total de 96 imagens, e o rótulo é tumor de pulmão. 

O tipo de imagem é a tomografia computadorizada. O conjunto de dados 

pulmonares era composto por pacientes com câncer de pulmão de 

células não pequenas da Universidade de Stanford. A região do tumor 

foi indicada por um radiologista torácico, em uma seção transversal 

representativa da tomografia, usando OsiriX. 

• Task07_Pancreas: Há um total de 420 imagens, com rótulos divididos 

em pâncreas e massa pancreática (cisto ou tumor). O tipo de imagem é 

a tomografia computadorizada. O conjunto de dados do pâncreas 

consistia em pacientes cujas massas pancreáticas foram removidas. 

• Task08_HepaticVessel: Há um total de 443 imagens, e os rótulos são 

vasos hepáticos. O tipo de imagem é a TC. Este segundo conjunto de 

dados hepáticos consistia em pacientes com vários tumores hepáticos 

primários e metastáticos. 

• Task09_Spleen: Há um total de 61 imagens, e o rótulo é o baço. O tipo 

de imagem é a TC. O conjunto de dados do baço é composto por 

pacientes submetidos a tratamento quimioterápico para metástases 

hepáticas no Memorial Sloan Kettering Cancer Center. 

• Task10_Colon: Há um total de 190 imagens, e o rótulo é câncer de 

cólon. O tipo de imagem é a TC. (Gu et al., 2018). 
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Figura 10. Desafio de dez tarefas do Medical Segmentation Decathlon. 

Fonte: https://www.nature.com/articles/s41467-022-30695-9 

 

 

Segmentação em Radiografias de Tórax (SCR): Todas as radiografias de tórax são 

retiradas do banco de dados da Japanese Society of Radiological Technology. O 

banco de dados SCR foi criado para simplificar o estudo comparativo da segmentação 

do campo pulmonar, coração e clavícula em radiografias de tórax posterior padrão. 

Todos os dados no banco de dados são segmentados manualmente para fornecer 

padrões de referência. A imagem é digitalizada de filme para 2048 × 2048 pixels, com 

uma resolução espacial de 0,175 mm/pixel e uma escala de cinza de 12 bits. Cada 

uma das 154 imagens tem um nódulo pulmonar e as outras 93 imagens não têm 

nódulos pulmonares (Rundo et al., 2019). 

 

 

https://www.nature.com/articles/s41467-022-30695-9
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Segmentação de Tumor Cerebral (BRATS): É um conjunto de dados de competição 

para segmentação de tumores cerebrais, que é combinado com a conferência MICCAI 

(Medical Image Computing and Computer Assisted Intervention Society), uma das 

mais tradicionais instituições da área de computação e medicina. Com o objetivo de 

avaliar os melhores métodos de segmentação de tumores cerebrais e comparar 

diferentes métodos, é realizado todos os anos desde 2012.Existem cinco tipos de 

rótulos: tecido cerebral saudável, área necrótica, área de edema, realce do tumor e 

área sem realce. Novos conjuntos de treinamento são adicionados a cada ano (Qiu, 

Yao e Mei, 2017). 

 

Banco de Dados Digital para Mamografia de Rastreamento (DDSM): O DDSM é 

um recurso utilizado pela comunidade de pesquisa em análise de imagens de 

mamografia e é amplamente utilizado por pesquisadores. O banco de dados contém 

aproximadamente 2500 estudos. Cada estudo inclui duas imagens de cada mama, 

bem como algumas informações relevantes do paciente e informações de imagem 

(Heath, M.; Bowyer, K.; Kopans, D.; Kegelmeyer, P.; Moore, R.; Chang, K.; 

Munishkumaran, S., 2000). 

 

Segmentação de Lesão de AVC Isquêmico (ISLES): Fornece exames de 

ressonância magnética contendo um grande número de amostras precisas de AVC e 

parâmetros clínicos relacionados. Este desafio é organizado para avaliar a 

fisiopatologia do AVC e a previsão de resultados clínicos em imagens precisas de 

ressonância magnética (Heath, M.; Bowyer, K.; Kopans, D.; Kegelmeyer, P.; Moore, 

R.; Chang, K.; Munishkumaran, S., 2000). 

 

Segmentação de Tumor Hepático (LiTS): Esses dados são fornecidos por diferentes 

centros clínicos em todo o mundo para a segmentação de tumores hepáticos e 

hepáticos. O conjunto de dados de treinamento contém 130 tomografias 

computadorizadas e o conjunto de dados de teste contém 70 tomografias 

computadorizadas (Bilic, P.; Christ, P.F.; Vorontsov, E.; Chlebus, G.; Chen, H.; Dou, 

Q.; Fu, C.-W.; Han, X.; Heng, P.-A.; Hesser, J.; et al, 2019). 
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Segmentação de Imagem de RM da Próstata (PROMISE12): Este conjunto de 

dados é usado para segmentação da próstata e incluem pacientes com doenças 

benignas (hiperplasia benigna da próstata) e câncer de próstata. Esses casos incluem 

uma imagem de RM transversal da próstata ponderada em T2 (Bilic, P.; Christ, P.F.; 

Vorontsov, E.; Chlebus, G.; Chen, H.; Dou, Q.; Fu, C.-W.; Han, X.; Heng, P.-A.; 

Hesser, J.; et al, 2019). 

 

Coleção de Imagens do Consórcio do Banco de Dados de Imagens Pulmonares 

(LIDC-IDRI): O conjunto de dados é composto por arquivos de imagens médicas de 

tórax (como tomografia computadorizada e radiografia) e rótulos de lesões de 

resultados de diagnóstico correspondentes. O objetivo é estudar a detecção precoce 

do câncer em populações de alto risco. Um total de 1018 exemplos de pesquisa estão 

incluídos. Para as imagens em cada exemplo, quatro radiologistas torácicos 

experientes realizaram um diagnóstico e anotação em dois estágios (Armato, S.G., III; 

McLennan, G.; Bidaut, L.; McNitt-Gray, M.F.; Meyer, C.R.; Reeves, A.P.; Zhao, B.; 

Aberle, D.A.; Henschke, C.I.;Hoffman, E.A.; et al, 2011) 

 

Série de Estudos de Imagem de Acesso Aberto (OASIS): Este é um projeto que 

visa permitir que a comunidade científica forneça conjuntos de dados de ressonância 

magnética cerebral gratuitamente. Uma terceira geração foi lançada. O OASIS-3 é 

uma compilação retrospectiva de dados de mais de 1000 participantes coletados de 

vários projetos em andamento por meio do WUSTL Knight ADRC nos últimos 30 anos. 

O OASIS-3 é um conjunto de dados longitudinais de neuroimagem, clínicos, cognitivos 

e biomarcadores para o envelhecimento normal e a doença de Alzheimer.  

 

Os participantes incluíram 609 adultos cognitivamente normais e 489 pessoas em 

vários estágios de declínio cognitivo, com idades entre 42 e 95 anos (Marcus, D.S.; 

Fotenos, A.F.; Csernansky, J.G.; Morris, J.C.; Buckner, R.L., 2010). 
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Imagens Digitais da Retina para Extração de Vasos (DRIVE): Este conjunto de 

dados é usado para comparar a segmentação dos vasos sanguíneos nas imagens da 

retina. As fotos no banco de dados DRIVE vieram de um projeto de triagem de 

retinopatia diabética na Holanda, e 40 fotos foram selecionadas aleatoriamente.  

Entre eles, 33 casos não apresentavam sinais de retinopatia diabética e sete casos 

apresentavam sinais de retinopatia diabética precoce leve. Cada imagem é capturada 

com 768 × 584 pixels com 8 bits por plano de cor. O campo de visão de cada imagem 

é circular com um diâmetro de aproximadamente 540 pixels (Staal, J.; Abràmoff, M.D.; 

Niemeijer, M.; Viergever, M.A.; Van Ginneken, B. Ridge, 2004). 

 

Sociedade de Análise de Imagens Mamográficas (MIAS): O MIAS é um banco de 

dados de imagens mamográficas apresentando neoplasia de mama criado por uma 

organização de pesquisa britânica em 1995. Cada pixel tem uma escala de cinza de 

8 bits. O banco de dados MIAS contém imagens de mama esquerda e direita de 161 

pacientes, com um total de 322 imagens, incluindo 208 imagens saudáveis, 63 

imagens de câncer de mama benigno e 51 imagens de câncer de mama maligno. O 

limite da área da lesão também foi calibrado por especialistas (Suckling, J.P., 1994). 

 

Dados Cardíacos de Sunnybrook (SCD): Também conhecidos como dados de 

desafio de segmentação do ventrículo esquerdo de RM cardíaca de 2009 e consistem 

em 45 imagens de cine-ressonância magnética com uma variedade de pacientes e 

patologias: saudável, hipertrofia, insuficiência cardíaca com infarto e insuficiência 

cardíaca sem infarto (Fonseca, C.G.; Backhaus, M.; Bluemke, D.A.; Britten, R.D.; 

Chung, J.D.; Cowan, B.R.; Dinov, I.D.; Finn, J.P.; Hunter, P.J.;Kadish, A.H.; et al., 

2011). 
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4.  PRINCIPAIS REDES DE SEGMENTAÇÃO DE IMAGENS MÉDICAS 

 

4.1.1.Redes Totalmente Convolucionais (FCN) 

 

FCN´s (Fully Convolutional Networks) representam uma arquitetura desenvolvida 

principalmente para segmentação semântica. As camadas usadas são conectadas 

apenas localmente — convolução, pooling e upsampling. Ao não usar camadas 

densas, o número de parâmetros é reduzido (as redes são, portanto, mais rápidas de 

treinar) e uma FCN pode receber imagens de tamanhos diferentes porque todas as 

conexões são locais. A arquitetura integra um caminho de downsampling, por meio do 

qual o contexto é extraído e interpretado, e um caminho de upsampling para 

localização. 

 

Nesta arquitetura são utilizadas conexões de salto para o mesmo que recuperar 

informações espaciais de granulação fina perdidas no caminho de downsampling. 

Essas redes convolucionais são modelos visuais com hierarquias de recursos 

extremamente poderosas.  

 

Uma vez que uma rede convolucional padrão, treinada de ponta a ponta, em pixels, 

pode ter um desempenho melhor na segmentação semântica de imagens do que os 

recursos de engenharia manual de última geração.  

 

Versões totalmente convolucionais das redes de classificação rápida contemporâneas 

— AlexNet, VGG net e GoogLeNet — aprendem extrações densas de recursos e são 

diretamente aplicáveis à tarefa de classificação em pixels.  

 

Na arquitetura do FCN, camadas de desconvolução são usadas para que o mapa de 

características da camada de convolução final possa ser ampliado para corresponder 

ao tamanho da imagem de entrada — permitindo, portanto, previsões para cada pixel, 

preservando as informações espaciais dentro da imagem de entrada original. 
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O mapa de características ampliado é então classificado pixel a pixel na segmentação 

da imagem final. Ele é baseado no passo de ampliação e é dividido em FCN-32s, 

FCN-16s e FCN-8. (Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks 

for semantic segmentation. In Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440). 

 

 

 

 

 

 

Figura 11. Estrutura de rede totalmente convolucional (FCN) 

Fonte: Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic 

segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. 
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4.1.2 DEEP LAB v1 

 

Por outro lado, a FCN também apresenta problemas.  

Os resultados da segmentação podem ser relativamente confusos e seu upsampling 

pode não ser sensível aos detalhes da imagem podendo resultar em aquisições 

grosseiras. 

 

Em segundo lugar a ideia da segmentação é essencialmente classificar cada pixel 

sem consideração completa. A relação entre os pixels carece de consistência 

espacial. 

 

Para obter um mapa de pontuação mais denso no FCN, pode ser adicionado 

preenchimento à primeira camada convolucional. O tamanho do preenchimento é 

igual a 100, o que trará muito ruído. 

 

Chen et al. propuseram o DeepLab v1, que alterou o passo de agrupamento do original 

2 para 1 e o tamanho do preenchimento do original 100 para 1. Dessa forma, o 

tamanho da imagem agrupada não é reduzido e o resultado do mapa de pontuação 

obtido é mais denso do que o do FCN.  

 

O DeepLab v1 é reescrito com base na rede VGG-16, removendo a última camada 

totalmente conectada da rede VGG e usando convolução completa em vez disso, 

porque usar muitas camadas de agrupamento resultará em um tamanho de camada 

de recurso muito pequeno.  

 

Os recursos contidos são muito esparsos, o que não é propício à segmentação 

semântica.  

 

Finalmente, o DeepLab v1 usa campo aleatório condicional (CRF) para melhorar a 

precisão dos limites de segmentação.( Krähenbühl, P.; Koltun, V. Efficient inference in 

fully connected crfs with gaussian edge potentials. Adv. Neural Inf. Process. Syst. 

2011, 24, 109–117). 
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4.1.3 DeepLab v2 

 

DeepLab v2 abordou as dificuldades de segmentação devido a variações de escala 

do mesmo objeto dentro da mesma imagem.  

Quando o objeto semelhante tem tamanhos variantes na mesma imagem ou em 

imagens diferentes a maneira comum é garantir que as imagens tenham o mesmo 

tamanho por meio do redimensionamento embora isso possa levar a distorções por 

perdas de pixels.A inovação no DeepLab v2 vem do uso da convolução atrous (ou 

dilatada) de uma maneira mais flexível, que os autores propuseram como 

agrupamento de pirâmide atrous espacial (ASPP).  

 

O ASPP é baseado na ideia de agrupamento de pirâmide espacial (SPP) para derivar 

uma estrutura para amostragem convolucional paralela de buracos em taxas 

diferentes de uma maneira equivalente para capturar contexto em imagens em 

múltiplas escalas. 

 

Em seu trabalho, os autores do DeepLab v2 escolheram uma rede mais complicada e 

expressiva baseada no ResNet-101. Os recursos de alto nível obtidos após passar 

pelas camadas profundas do DCNN são espacialmente subamostrados por meio de 

operações de agrupamento.  

 

Ele extrai recursos de alta resolução porque o DeepLab v2 descarta o 

subamostramento no conjunto final de camadas de agrupamento máximo e o substitui 

pela convolução atrous para calcular mapas de recursos com uma densidade de 

amostragem mais alta. 

 

 Eles também retiraram a camada totalmente conectada da rede e colocaram uma 

camada totalmente convolucional, usando um CRF totalmente conectado para 

melhorar a precisão do limite para segmentação.  

(Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic 

image segmentation with deep convolutional nets, atrous convolution, and fully 

connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848). 
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4.1.4 SEGNET 

 

Ele segue a arquitetura de codificador-decodificador simétrico do FCN para 

segmentação semântica visando atingir segmentação de imagem de ponta a ponta no 

nível de pixel. A estrutura é dividida principalmente em duas partes: o codificador e o 

decodificador.  

 

Na segmentação semântica, as redes tomam, como entrada, uma imagem RGB e têm 

um rótulo que é uma imagem de n canais. Aqui, n é o número de rótulos envolvidos. 

Cada canal corresponde a um rótulo (carros, estradas, etc.) e cada pixel em um 

determinado canal será 1 ou 0, dependendo se o pixel pertence ao rótulo 

correspondente a esse canal. 

 

Com base nas informações analisadas no processamento, ele forma uma nova 

imagem, onde cada pixel é associado a uma cor ou um rótulo para identidade.  

A novidade neste caso está em como o decodificador conduz o upsampling do mapa 

de recursos de entrada que ele recebe de um nível mais baixo de resolução, enquanto 

no FCN utiliza-se a desconvolução para upsampling. 

 

Finalmente, um kernel de convolução treinável é aplicado para a operação de 

convolução para produzir um mapa de recursos denso.  

 

Após a restauração dos mapas de características para sua resolução original, eles 

são alimentados para o classificador softmax para classificação em nível de pixel.  

 

Isso reservou a integridade das informações de alta frequência, caráter aprimorado 

das bordas e parâmetros reduzidos de treinamento, mas o depooling também ignora 

as informações adjacentes de mapas de características de baixa resolução. 

(Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-

decoder architecture for image segmentation.IEEE Trans. Pattern Anal. Mach. Intell. 

2017, 39, 2481–2495) 
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Figura 12. Segnet 

Fonte: (Badrinarayanan et al., 2017. 

 

 

 

 

 

 

Figura 13.  VGGSegnet usada para classificação de pneumopatia intersticial em TC 

Fonte: Badrinarayanan et al., 2017. 
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4.2 U-NET 

4.2.1 U-NET 2D 

 

Baseia-se no paradigma da segmentação semântica, em que há classificação por 

pixel, ou seja, não se considera a imagem como um todo. 

 

Após a FCN, Ronneberger et al. introduziram ainda mais uma rede específica para 

imagens médicas: U-Net. Eles nomearam sua proposta após a qual ela encontrou 

ampla aplicabilidade na tarefa de segmentação de imagens médicas em muitas outras 

aplicações. 

 

Devido ao seu alto desempenho e à capacidade de capturar detalhes finos em 

grandes distâncias, entre muitas outras tarefas (e mais), variantes da U-Net têm visto 

ampla aplicação em diferentes subcampos da visão computacional. 

 

Foi apresentada na conferência MICCAI 2015 e recebida com entusiasmo, com 

milhares de citações, encorajando o desenvolvimento de uma ampla gama de 

variantes e aplicações.(Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional 

networks for biomedical image segmentation. In Proceedings of the International 

Conference on Medical Image Computing and Computer-Assisted Intervention, 

Munich, Germany, 5–9 October 2015; pp. 234–241). 

 

Embora existam muitas novas maneiras de projetar redes neurais convolucionais, a 

maioria delas têm se baseado na ideia central da U-Net, que é conhecida por ter 

canais U e conexões de salto.  

 

O codificador aqui segue a mesma estrutura do SegNet, apresentando quatro 

submódulos, cada um compreendendo duas camadas convolucionais. Após cada 

submódulo, o pool máximo é executado para downsampling.  

 

O decodificador também tem quatro submódulos. O upsampling aumenta a resolução 

progressivamente até que as previsões sejam feitas para cada valor de pixel.  

Uma entrada de tamanho 572 x 572 é alimentada nela, e uma dimensão de 388 x 388 

é obtida como saída.  
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A saída sendo menor que a entrada é principalmente porque lida com segmentação 

na área médica, que precisa ser mais precisa. 

 

Como visto na figura 6, esta rede não contém nenhuma camada totalmente 

conectada; há apenas convoluções e downsamplings, com uma conexão de salto para 

conectar o resultado de upsampling à saída do submódulo com a mesma resolução 

no codificador que a entrada do próximo submódulo no decodificador que ele usa. Isso 

significa que esse segmento será mais preciso. 

 

A razão pela qual a U-Net é apropriada para segmentação de imagens médicas é que 

informações de baixo e alto nível podem ser mescladas ao mesmo tempo por sua 

estrutura; as informações de baixo nível auxiliam na melhoria da precisão, enquanto 

as de alto nível auxiliam na extração de características de imagem mais detalhadas.  

 

 

 

 

Figura 14. Arquitetura de uma U-Net  

Fonte : Ronnenberger et al., 2015. 
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4.2.2. 3D U-NET 

 

A melhoria propiciada pela U-Net alterou o foco de atenção na pesquisa em 

segmentação de imagens médicas e muitas variantes foram desenvolvidas, com 

destaque para Çiçek et al., que propuseram um modelo 3D U-Net.  

 

Este modelo visa fazer com que a estrutura U-Net tenha informações espaciais mais 

ricas. A estrutura de rede tridimensional é semelhante à U-Net, com um caminho de 

codificação e um caminho de decodificação.  

 

Cada caminho tem quatro níveis de resolução. Cada camada no caminho de 

codificação contém duas convoluções 3 x 3, seguidas por uma camada ReLU.  

Utilizando uma camada de pooling máxima para reduzir a dimensionalidade.  

No caminho de decodificação, cada camada contém uma camada de desconvolução 

2 x 2 x 2 com um passo de 2, seguida por duas camadas de convolução 3 x 3 x 3. 

Cada convolução é seguida por uma camada ReLU. 

 

Por meio de um atalho, a camada com a mesma resolução no caminho de codificação 

é passada para o caminho de decodificação, fornecendo a ela recursos originais de 

alta resolução.   

 

Esta rede não só pode treinar em um conjunto de dados escassamente rotulados e 

prever outros lugares não rotulados neste conjunto de dados, mas também treinar 

em vários conjuntos de dados escassamente rotulados e então prever novos dados.  

(Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: 

Learning dense volumetric segmentation from sparse annotation. In Proceedings of 

the International Conference on Medical Image Computing and Computer-Assisted 

Intervention, Athens, Greece, 17–21 October 2016; pp. 424–432). 
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Figura 15. Arquitetura de uma rede 3D U-Net 

Fonte: Çiçek et al., 2016. 

 

 

 

Figura 16: 3D UNet para segmentação de pneumopatia intersticial em imagem de TC 

Fonte: Muller et al., 2018. 
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4.2.3. V-NET 

 

Milletari et al. propuseram uma estrutura de deformação 3D V-Net da estrutura de rede 

U-Net. A arquitetura do V-Net utiliza a função de perda de coeficiente Dice, 

diferentemente da função de perda de entropia cruzada clássica.  

 

Ele faz o kernel convolucional 3D da imagem e reduz a dimensão do canal por meio 

de um kernel de convolução 1x1x1 no lado esquerdo do caminho gradualmente 

comprimido da rede, que é dividido em muitos estágios, com cada estágio contendo 

de uma a três camadas convolucionais para fazer com que cada estágio aprenda uma 

função de parâmetro, as entradas e saídas de cada estágio são adicionadas para 

atingir o aprendizado da função residual. 

 

A operação de convolução é usada para extrair características dos dados, enquanto 

ao mesmo tempo no final de cada "estágio" através do tamanho de passo apropriado 

a resolução dos dados é reduzida.  

 

No lado direito, a rede é um suporte espacial descompactado gradualmente de 

recurso de resolução mais baixa para segmentação de volume de saída. 

 

O tamanho de saída final da rede é consistente com o tamanho de entrada original. 

Um kernel é usado para convolver a imagem e reduz a dimensão do canal através de 

um kernel de convolução 1x1x1. 

 

No lado esquerdo da rede há um caminho gradualmente compactado, 

dividido em muitos estágios, cada um contendo de uma a três camadas 

convolucionais.  

 

Para fazer cada estágio aprender uma função de parâmetro, adicionamos entrada e 

saída de cada estágio para obter aprendizado da função residual.  

 

Os dados são passados pela operação de convolução que extrai características dos 

dados e reduz a resolução no final de cada “estágio” nos dados pelo tamanho de 
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passo apropriado. Um caminho gradualmente descompactado está na extremidade 

direita da rede.  

 

Deve-se notar que o tamanho final da saída da rede deve ser o mesmo que o tamanho 

da entrada original.( Milletari, F.; Navab, N.; Ahmadi, S.-A. V-net: Fully convolutional 

neural networks for volumetric medical image segmentation.In Proceedings of the 

2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 

October 2016; pp.565–571). 

 

 

 

 

 

Figuras 17 e 18: Rede V-Net. Downsampling (esquerda) e Upsampling (direita) 

Fonte : Milletari et al., 2016. 
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4.2.4. OUTRAS ESTRUTURAS U-NET 

 

Res-UNet (Weighted Res-UNet) e H-DenseUNet são baseadas em conexões 

residuais e conexões densas, substituindo cada submódulo do U-Net por uma 

conexão residual e uma conexão densa, respectivamente. Aplicado à segmentação 

de imagens para vasos sanguíneos da retina está o Res-UNet. 

 

Apresentando um desafio adequado para Xiao et al., que propuseram um Res-UNet 

ponderado projetado especificamente com base em um modelo U-Net original com 

mecanismos de atenção ponderada adicionais ajudando a distinguir características 

mais aprendidas sobre a manutenção de estruturas de árvore separadas de pixels de 

vasos. Problemas comumente observados na segmentação de vasos são a ausência 

de pequenos vasos sanguíneos e a segmentação ruim do disco óptico.  

 

Isso resulta de uma tentativa de usar técnicas padrão na segmentação de uma 

estrutura que se parece com uma estrutura de bifurcação em forma de árvore, onde 

os vasos sanguíneos são muito finos para serem detectados. 

 

 

 

Figura 19: ResUNet e a detecção de finos vasos retinianos. 

Fonte: Xiaoli Xiang et al., 2018 
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O H-DenseUNet representa uma nova abordagem para explorar eficientemente 

recursos representativos de alto nível intra-slice e inter-slice, seguido pela otimização 

dos recursos por meio da camada de fusão de recursos híbridos. A arquitetura lidou 

elegantemente com os problemas de que as convoluções 2D ignoram contextos 

volumétricos e as convoluções 3D têm uma enorme carga computacional. 

Experimentos extensivos no conjunto de dados LiTS e 3DIRCADb de 2017 provaram 

a eficácia do modelo H-DenseUNet (Xiaomeng Li et al, 2017). 

 

 

Figura 20: H-DenseUNet.aplicada na segmentação de imagens tumorais em 

tomografias computadorizadas. A cor vermelha representa hepatócitos saudáveis, 

enquanto as verdes mostram  células tumorais. 

Fonte: M. Moghbel et al., 2017. 
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4.3 REDES GENERATIVAS ADVERSARIAS (GAN´S) 

 

Em 2014 Goodfellow et al. propuseram uma abordagem adversarial para aprender um 

modelo generativo profundo — Generative Adversarial Network (GAN). Sua estrutura 

é composta de duas partes; para a primeira parte — esta é uma rede de geração onde 

algum ruído aleatório z (um número aleatório) serve como entrada e a partir deste 

ruído de entrada uma imagem é gerada. A segunda parte é a rede adversarial: usada 

para julgar se uma imagem é "real" ou não. Seu parâmetro de entrada é x (uma 

imagem), e a saída D(x) representa a probabilidade de que x seja uma imagem real. 

Em palavras simples, é por meio do treinamento que duas redes competem entre si. 

A rede de geração produz dados falsos; por outro lado, o adversário usa um 

discriminador para verificar a autenticidade.  

Eventualmente, espera-se que o valor gerado pelo gerador possa ser falso. 

 

 

Figura 21. Rede Generativa Adversária. 

Fonte: Goodfellow et al., 2014 
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4.3.1 REDE DE SEGMENTAÇÃO ADVERSÁRIA (SegAN) 

 

Tomando emprestada a motivação das Redes Adversariais Generativas clássicas, 

Xue et al. introduziram notavelmente uma Rede Neural Adversarial de ponta a ponta 

para realizar segmentação de imagens médicas: SegAN.  

 

A obtenção de segmentações pixel a pixel infere que a saída de um único valor escalar 

para real/falso pelo discriminador GAN clássico pode não ser eficaz na produção de 

dados estáveis ou feedback de gradiente suficiente para as redes.  

 

O segmentador é uma rede neural totalmente convolucional que gera os mapas de 

rótulos de segmentação. 

 

Propuseram então uma nova Rede Adversarial Crítica com força de perda L1 

multiescala, encorajando tanto o crítico quanto o segmentador a aprender 

características globais e locais capturando relacionamentos espaciais de longo e curto 

alcance entre pixels, ao aprender a atualizar a partir do feedback adversário do crítico.  

 

Na estrutura SegAN, as redes de segmentação e crítica são treinadas alternadamente 

em um jogo min-max; o crítico recebe como entrada um par de imagens e é treinado 

pela maximização de uma função de perda multiescala, onde (imagem original ∗ mapa 

de rótulo previsto, imagem original ∗ mapa de rótulo da verdade básica) e o 

segmentador é treinado apenas com gradientes realizados pelo crítico, visando 

minimizar a função de perda multiescala.  

 

 

Figura 22. Exemplo de GAN em imagem cardíaca (Skandarani et col.,2022). 
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Figura 23. Rede SegAN.  

Fonte: (Xue, Y et col.; 2018). 

 

Os autores afirmaram a estrutura SegAN é mais robusta e eficiente para a tarefa de 

segmentação e fornece desempenho mais fino do que o método de segmentação de 

última geração U-net (Xue, Y.; Xu, T.; Zhang, H.; Long, L.R.; Huang, X. SegAN: 

Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation. 

Neuroinformatics 2018, 16, 383–392.). 
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5. O ESTADO DA ARTE 

 

Segmentação precisa de múltiplos órgãos de imagens médicas é uma etapa essencial 

no diagnóstico auxiliado por computador, assim como na navegação cirúrgica, e 

radioterapia.  

Nos últimos anos, com uma extração de recursos baseada em dados, abordagem e 

treinamento ponta a ponta, multi-órgãos automáticos baseados em aprendizagem 

profunda os métodos de segmentação superaram em muito os métodos tradicionais 

e se tornaram um novo tema de pesquisa.  

Esta técnica abrange dois principais fundamentos, que são conjunto de dados 

(datasets públicos, repositórios de universidades e hospitais universitários, etc.) e a 

metodologia em que os dados são abordados (totalmente supervisionada, fracamente 

supervisionadas e semi-supervisionadas). (van Ginneken B, Schaefer-Prokop CM, 

Prokop M. Computer-aided diagnosis: how to move from the laboratory to the clinic. 

Radiology. 2011;261:719–32.) 

O processo inicia-se com a rotulagem manual pelos médicos, o que é muito trabalhoso 

e demorado. 

Além disso, diferentes médicos ou hospitais fornecem resultados diferentes da 

rotulagem (Hurkmans CW, Borger JH, Pieters BR, Russell NS, Jansen EPM, Mijnheer 

BJ. Variability in target volume delineation on CT scans of the breast. Int J Radn Oncol 

Biol Phys. 2001;50:1366–72). 

Portanto, há uma necessidade urgente de métodos precisos e automatizados de 

segmentação de múltiplos órgãos na prática clínica.  

Alguns dos benchmarks comuns para a segmentação de imagens usam recursos de 

imagem extraídos manualmente, que incluem métodos de limiarização (Saranathan 

AM, Parente M. Threshold based segmentation method for hyperspectral images. 

2013 5th workshop on hyperspectral image and signal processing: evolution in remote 

sensing (WHISPERS). Gainesville, FL, USA: IEEE;2013. p. 1–4. http:// ieeex plore. 

ieee. org/ docum ent/ 80806 56/. Accessed 8 Oct 2022). 

Devido ao grande número de recursos de imagem extraídos manualmente e limiares 

ou sementes não robustos que devem ser fornecidos, seus resultados na 
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segmentação são geralmente instáveis, geralmente fornecendo apenas um resultado 

de segmentação aproximado ou trabalhando apenas para alguns órgãos específicos. 

Métodos baseados em conhecimento fazem isso, onde informações anatômicas 

detalhadas de vários órgãos são obtidas automaticamente, com base em conjuntos 

de dados rotulados, em vez de extrair manualmente os recursos da imagem como em 

outros métodos. Isso provou aumentar a precisão e a robustez dos métodos de 

segmentação multiorgânica baseados em multiatlas, como fusão de rótulos multiatlas  

e modelos de forma estatística (Ecabert O, Peters J, Schramm H, Lorenz C, von Berg 

J, Walker MJ, et al. Automatic model-based segmentation of the heart in CT images. 

IEEE Trans Med Imaging. 2008;27:1189–201.) 

 

O método baseado em multiatlas continua usando o alinhamento de imagem para 

alinhar contornos estruturais predefinidos à imagem que precisa ser segmentada. No 

entanto, essa abordagem normalmente é multietapa; portanto, seu desempenho pode 

depender de vários fatores relevantes que são influenciados em cada etapa. Além 

disso, atlas fixos tornam muito difícil controlar variações anatômicas de órgãos em 

diferentes pacientes, levando a uma grande variabilidade entre usuários, tornando a 

adaptação clínica quase impossível (Qazi AA, Pekar V, Kim J, Xie J, Breen SL, Jaffray 

DA. Auto-segmentation of normal and target structures in head and neck CT images: 

a feature-driven model-based approach: feature-driven model-based segmentation. 

Med Phys.2011;38:6160–70). 

Também é altamente computacional e leva tempo para realizar uma tarefa de 

alinhamento. O modelo atua de forma estatística, usando as inter-relações em posição 

entre diferentes órgãos e a forma de cada órgão no espaço estatístico como restrições 

que são aplicadas aos resultados da segmentação para regularizá-los. Sua precisão 

depende em grande parte da confiabilidade e extensibilidade do modelo de forma; na 

verdade, um modelo baseado em estruturas anatômicas regulares tem muito pouco 

efeito em problemas de segmentação com estruturas irregulares (Zhou X, Takayama 

R, Wang S, Hara T, Fujita H. Deep learning of the sectional appearances of 3D CT 

images for anatomical structure segmentation based on an FCN voting method. Med 

Phys. 2017;44:5221–33). 

 



72 
 

 

 

 

Assim, os métodos totalmente supervisionados requerem todos os órgãos anotados 

na segmentação de múltiplos órgãos para realizar a tarefa. Os métodos existentes 

podem ser divididos em quatro partes que podem estar relacionadas às suas análises, 

ou seja: arquitetura de rede, dimensão de rede, módulos de segmentação de imagem 

e função de perda de rede.  

Módulos de segmentação de imagem referem-se a módulos que são frequentemente 

usados na segmentação de múltiplos órgãos para precisão e rapidez. 

 

 

 

 

Figura 24: Resumo esquemático de segmentação multiórgãos 

Fonte: Xiaoliu, L. et col., 2024. 
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Figura 44. Visão geral dos métodos de segmentação multiórgãos. 

Fonte: Segmentation Outside the Cranial Vault Challenge. 2015; https:// repo- prod. 

prod.sageb ase. org/ repo/ v1/ doi/ locate? id= syn31 93805 & type= ENTITY. 

Accessed 3 Oct 2022 
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Nos métodos baseados em múltiplas visualizações, a segmentação precisa de 

imagens médicas requer o uso efetivo de informações espaciais entre fatias de 

imagem. Embora a entrada de imagens 3D diretamente na rede neural ajude a evitar 

alto uso de memória, isso resulta em perda de informações espaciais entre fatias. Uma 

solução tem sido os métodos baseados em múltiplas visualizações, usando redes 

neurais 2,5D com múltiplas fatias 2D ou convoluções 2D e 3D.  

Isso pode reduzir o uso de memória enquanto mantém as informações espaciais 

intactas entre fatias. Esse tipo de informação ajudará a melhorar a precisão na 

segmentação de imagens médicas. 

 

 

 

 

 

Figura 45. Estrutura de métodos baseados em múltiplas visualizações 

Fonte:Zhou et col.; 2017 
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6. CONCLUSÃO 

 

Embora a pesquisa em segmentação de imagens médicas venha evoluindo, o efeito 

da segmentação automática ainda não pode atender a todas as necessidades de 

aplicações práticas.  

 

A principal razão é que a atual pesquisa de segmentação de imagens médicas ainda 

apresenta dificuldades e desafios a serem superados, especialmente em uma área 

sensível, como a radiologia e diagnóstico por imagem. 

 

É um campo multidisciplinar - A fisiopatologia e a clínica são ciências complexas, 

muito além do arcabouço geral de conhecimentos de um cientista da inteligência 

artificial (habitualmente oriundo das ciências exatas como a ciência da computação, 

engenharia de software, etc), que acaba perdendo nuances preciosas de cada 

necessidade clínica específica, que demanda longo treinamento e extensa 

experiência médica. Por outro lado, de modo geral, médicos não compreendem a 

tecnologia específica da inteligência artificial, seus subcampos e ferramentas 

específicas para cada necessidade técnica que se apresenta. Como resultado, a 

inteligência artificial não pode atender completamente às necessidades clínicas 

específicas desse profissional de saúde, porém a IA traz a possibilidade de 

desenvolvimento de técnicas e ferramentas que são valiosas para apoiar o trabalho 

do especialista médico.  

 

Assim, afim de promover a aplicação da inteligência artificial e o aprendizado de 

máquina na área médica, deve ser estimulada uma irrestrita cooperação entre 

médicos e programadores (cientistas da computação, engenheiros, etc). Esta sinergia 

mitigará a questão do livre acesso a dados e imagens médicas, ao passo que 

potencializará o desenvolvimento de novos algoritmos de aprendizado de máquina 

alinhados às necessidades específicas de cada serviço médico, tendo como óbvio 

resultado um significativo impacto positivo na acurácia (e portanto, na confiabilidade) 

de cada exame. 
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Há diferenças substanciais entre as diferentes modalidades de imagens médicas. 

Essas diferenças impactam o desenvolvimento e mesmo a adaptabilidade do modelo 

de aprendizado profundo durante a segmentação. O ruído e os artefatos das imagens 

médicas também são um grande problema no pré-processamento de dados. 

 

Os conjuntos de dados de imagens médicas existentes são pequenos em escala. O 

treinamento de algoritmos de aprendizado profundo requer uma grande quantidade 

de suporte ao conjunto de dados, o que leva ao problema de sobreajuste (overfitting) 

no processo de treinamento de modelos de aprendizado profundo.  

 

Uma maneira de resolver a quantidade insuficiente de dados de treinamento é o 

aprimoramento desses dados, como transformação geométrica e o aprimoramento do 

espaço de cores.  

 

As GAN´s usam dados originais para sintetizar novos dados. Outra forma de abordar 

o problema baseia-se em um modelo de meta-aprendizagem para estudar a 

segmentação de imagens médicas em condições de amostra pequena. 

 

O modelo de aprendizado profundo tem suas próprias falhas. Ele se concentra 

principalmente em três aspectos: design da estrutura de rede, design do modelo de 

segmentação de dados 3D e design da função de perda. 

 

Durante a pesquisa realizada neste trabalho de conclusão de curso percebeu-se que 

há espaço para se aprimorar as técnicas de segmentação de imagens ao se explorar 

o design da estrutura da rede.  

 

O desenvolvimento de novas técnicas e algoritmos como resultado do esforço 

conjunto profissional multidisciplinar tem levado a resultados mais do que satisfatórios 

e descortinam um futuro bem próximo onde a excelência e confiabilidade dos métodos 

de imagem por inteligência artificial apoiará o tratamento médico sustentável. 

A segmentação multiórgãos baseada em aprendizado profundo é a mais recente 

fronteira neste campo de estudo, abordando duas frentes principais (conjuntos de 

dados e métodos para segmentação de múltiplas regiões do corpo), e sua acurácia 

tem superado em muito os métodos tradicionais, mostrando resultados promissores. 
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