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RESUMO

Bagagli, R. Criacao de marcas d’agua visiveis mais resistentes a algoritmos
de remocao em imagens digitais. 2019. 81p. Monografia (Trabalho de Conclusao de
Curso) - Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos,
2019.

Este trabalho apresenta uma proposta de método de adicdo de marcas d’agua visiveis
em imagens digitais com a finalidade de defesa de direitos autorais de fotografias, como é
realizado em grandes escalas para imagens comerciais do tipo “Stock Photos”, dificultando
reproducoes nao autorizadas dessas imagens. Neste cenario de aplicagao e utilizacao de
marcas d’agua, foi utilizado um algoritmo de remocao de marcas d’agua da divisao de
pesquisa da Google para validar a proposta apresentada. Esse algoritmo busca remover
as marcas d’agua baseando-se no fato que estas sao identicamente adicionadas a grandes
quantidades de fotos facilmente obtidas na internet, permitindo que esse problema seja
resolvido a partir da resolugao de um sistema de equagoes cujo objetivo é minimizar o
erro na imagem reconstruida final. O funcionamento do algoritmo de remocao de marcas
d’agua visiveis foi verificado com a sua aplicacdo em imagens comercialmente marcadas,
mostrando 6timo desempenho quanto a remocgao das marcas e qualidade dos resultados
reconstruidos. A partir disso, foram elaboradas técnicas de aumento da robustez de
marcas d’agua frente a este algoritmo de ataque, visando que as marcas aprimoradas nao
fossem tao facilmente removidas, comparativamente as marcas tradicionais. Os métodos
de melhora abordados baseiam-se na aplicagdo de distorcoes e de “ditheriza¢ao” as marcas.
Estes métodos foram analisados quantitativamente por meio de métricas de qualidade
de imagens, obtendo-se resultados que indicam um aumento real na robustez destas
marcas que passaram pelo processamento adicional. Conclui-se, por fim, que as marcas
d’agua tradicionais, amplamente utilizadas por grandes empresas de “Stock Photography”,
sao pouco robustas frente a um ataque de remocao baseado na abundancia de imagens
identicamente marcadas, porém, o método proposto nesse trabalho é capaz de aumentar
significativamente a robustez destas marcas, indicando que é possivel, e desejavel, o uso de
marcas mais avancadas para melhor garantir a protecao dos direitos autorais de imagens e

impedir seu uso nao autorizado.

Palavras-chave: Marca D’agua Visivel; Processamento de Imagens; Restauracao de

Imagens; Qualidade de Imagens; Algoritmo; Visao Computacional






ABSTRACT

Bagagli, R. Creation of visible watermarks more resistant to removal algo-
rithms in digital images. 2019. 81p. Undergraduate Final Project, Sao Carlos School
of Engineering, University of Sao Paulo, Sao Carlos, Brazil, 2019

This paper proposes a method of adding visible watermarks to digital images with the goal
of protecting intellectual rights, as is commonly done in large volumes for “Stock Photos”,
defending against unauthorized uses of these images. Within this context of application and
use of watermarks, a watermark removal algorithm from Google Research was implemented
to validate the proposed method. This algorithm seeks to remove watermarks through
the fact that those marks are identically applied to a large quantity of images freely
available on the internet, allowing this problem to be solved through the solution of a
system of equations which results in a final reconstructed image with minimal errors.
The performance of this visible watermark removal algorithm was validated through its
application on a dataset of commercially watermarked images, resulting in high quality
reconstructed images without highly visible watermarks or visual artifacts. Following this,
techniques for improving watermark robustness were explored, so that these improved
watermarks would not be so easily removed from images, when compared to traditional
watermarks. The methods explored are based on applying distortions and ditherization to
the watermark. Quantitatively, these results were analyzed using image quality metrics,
achieving results that indicate a real improvement of the watermark’s robustness when
they go through this additional processing. In conclusion, traditional watermarks, widely
in use by large Stock Photography companies, were shown not to be robust when faced
with a removal algorithm that employs the abundance of identically watermarked images,
however, the proposed method in this paper is capable of significantly improving their
robustness, showing that the use of more advanced watermarks would be a desirable change

in order to better protect an image against unlicensed use and copyright infringement.

Keywords: Visible Digital Watermarks; Digital Image Processing; Image Restoration;
Image Quality; Algorithm; Computer Vision
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1 INTRODUCAO

1.1 Contextualizacao

Com o advento de imagens digitais, distribuidas em quantidades enormes através da
internet e entre diversos modos de armazenamento de dados virtuais, surge a necessidade
da criagao de métodos novos para a protecao dos direitos autorais, o “copyright”, destas
imagens. Para isso, surgiu a ideia da criacao de "marcas d’agua digitais", do inglés “ Digital
Watermarking” (Minerva M. Yeung, 1997). Tradicionalmente, as marcas d’dgua sao usadas
em documentos de papel oficiais e cédulas monetarias como defesa a sua falsificacdo por
entidades nao autorizadas. Para este uso, estas marcas sao comumente geradas através de
variagoes na densidade e espessura do papel utilizado, gerando diferentes caracteristicas
Opticas na imagem impressa dependendo da iluminacao ou angulo de visdo. Dada a
dificuldade na reproducao destas marcas, sua presenca ¢ evidéncia da originalidade do
documento ou impressao (Biermann, 1996). Um exemplo deste tipo de marca estd na

figura 1.

No mundo digital, marcas d’agua também sao sobrepostas a imagens as quais se
deseja proteger, como em fotografia profissional do tipo “Stock Photos”, que sao fotos
profissionalmente capturadas cujos direitos de uso sao comercialmente vendidos, para
aplicacao em campanhas de marketing, embalagens de produtos, propagandas, entre outros
objetivos diversos (Frosh, 2001), necessitando entdo da aquisicdo de uma licenga para
seu uso de forma legal. Sem esta licenca, somente é fornecida ao publico uma versao
da foto que contem uma marca d’agua altamente visivel sobre a imagem, denotando
quem detém seus direitos intelectuais e desincentivando seu uso de forma gratuita por
entidades nao autorizadas. Devido a grande facilidade de compartilhamento e reproducao
de imagens pela internet, este tipo de protecao é muito demandado. Estas marcas d’agua
comumente possuem opacidade reduzida, mas que apds sua aplicacao degradam a qualidade
da imagem ou foto original, de forma que a remocao desta marca nao é um processo trivial,
sendo estes um dos objetivos fundamentais desejados com o uso de marcas d’agua visiveis
(Fred Mintzer, 1997). Um exemplo de marca d’adgua visivel aplicada em uma imagem

digital esta na figura 2.
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Figura 1: Marca d’agua tradici- Figura 2: Exemplo de marca
onal em uma cédula de 20 euros d’agua digital (“Wikipedia”)

Além de marcas d’agua de alta visibilidade, existem também as de baixa visibilidade,
que nao alteram visivelmente a imagem mas adicionam informagoes a esta de modo que
seja possivel a certificacdo da origem da imagem, através da andlise dos bits especificos
que a formam. Esta técnica estd relacionada aos conceito de impressao digital, em inglés
“digital fingerprinting”, e ao conceito de esteganografia, que se refere a ocultagdo de uma
mensagem no interior de outra (Potdar et al., 2005). Estas marcas d’agua invisiveis, apesar
de servirem um objetivo similar as marcas visiveis, nao substituem inteiramente seu uso,
visto que ha diversas situagoes em que deseja-se prontamente alertar o visualizador da
imagem quem ¢é seu detentor de “copyright” (Kankanhalli et al., 1999), por exemplo. Neste
trabalho serao abordadas apenas as marcas do tipo visivel, cujo caracteristica principal é

ser prontamente visivel quando aplicada.

1.2 Motivacao e Justificativa

Utilizando técnicas tradicionais de edigao de imagens, como o software “Adobe
Photoshop”, a remocao de marcas d’agua do tipo visivel é um processo arduo e demorado,
além de exigir experiéncia por parte do editor, que deve manualmente reconstruir as
partes afetadas pela marca d’agua na imagem. Contudo, através do avango em técnicas de
processamento de imagens e aprendizado de maquina, ha a possibilidade da implementacao
de um algoritmo que estima a marca d’agua e sua méscara de opacidade, aplicadas em
conjunto na foto alvo. Tendo a marca corretamente estimada, deseja-se que o algoritmo
remova a marca da imagem, restaurando seu estado natural. Tal procedimento baseia-se
no pressuposto que a mesma marca d’agua ¢é aplicada de forma consistente a um grande
numero de fotos, o que é verdade para as “Stock Photos”, permitindo que a marca d’agua
seja melhor estimada (Dekel et al., 2017). A viabilidade de um algoritmo deste tipo foi
estudada e demonstrada no trabalho publicado pela Google Research, intitulado “On the
Effectiveness of Visible Watermarks”, (Dekel et al.; 2017), que servird de base para a

elaboracgao deste trabalho. Por ser um trabalho recente, ainda nao ha na literatura exemplos
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de marcas d’agua visiveis feitas explicitamente com o objetivo de serem resistentes a esse

algoritmo de remocao.

Devido entao a possibilidade do desenvolvimento de um programa capaz de remover
estas marcas d’agua de alta visibilidade de forma sistematizada e automatizada, existe o
interesse em melhor compreender o funcionamento deste ataque e a proposicdo de técnicas
capazes de aprimorar a robustez de marcas d’agua tradicionais, por meio de transformacoes
de tamanho, formato ou cor, adicao de ruidos aleatérios, ou técnicas de sobreposicao da
marca de maior complexidade, como a proposta por Mohanty et al. (2000), que desenvolve
um modelo matematico para a sobreposi¢ao de uma marca d’agua com base no dominio
DCT (“Discrete Cosine Transform”).

1.3 Objetivo

Este projeto propoe a implementacao de um ataque a marcas d’agua de alta
visibilidade com base na analise de um banco de dados de imagens identicamente marcadas,
e em seguida a avaliacao de possiveis métodos de protecao a este procedimento, de forma
que o mesmo algoritmo de remocao nao seja capaz de remover por completo as marcas de
robustez ampliada. Serao estudados trés métodos de forma detalhada: Distorcoes aleatorias,
aplicacao de dithering, e rotagoes aleatorias. Estes métodos serao analisados e comparados

utilizando métricas numéricas de qualidade.
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1.4

Estrutura do Trabalho

Este documento esta dividido nas seguintes se¢oes, brevemente descritas abaixo:

Introducgao: Contextualizacao, motivagao e objetivos do trabalho.

Teoria: Descricao tedrica dos conceitos necessarios para a implementacao dos algo-

ritmos.

Materiais e Métodos: Detalhamento dos processos realizados para a implementa-

¢ao de cada passo necessario dos algoritmos.

Resultados: Demonstracao e discussao dos resultados obtidos e dos dados quanti-

tativos de qualidade calculados.
Conclusao: Condensacao dos resultados e discussao desta monografia.

Apéndice: Exemplos adicionais do desempenho do algoritmo de remocao de marcas

d’agua.
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2 TEORIA

Esta secao aborda a teoria necessaria para a compreensao dos procedimentos
relacionados a adicao de uma marca d’agua a uma imagem, bem como o equacionamento
teodrico relacionado ao algoritmo de ataque as marcas d’agua adicionadas de forma idéntica

a grandes bancos de imagens.

2.1 Adicao de uma Marca D’agua

Para adicionar uma marca d’agua a uma imagem, além da marca e da prépria
imagem, também é necessaria a informacgao de como a marca serd sobreposta a imagem, isto
é, qual serd sua intensidade, ou transparéncia, na imagem final. A informagao necesséria
para isto é conhecida como a opacidade da marca, que é representada por meio de uma

mascara “alpha”, que ¢ o terceiro sinal a ser considerado, além da imagem e marca.

Apesar de existirem modelos complexos de composicao de imagens sobrepostas por
marcas d’agua, que utilizam transformadas “ Wavelet” ou no dominio “DCT”, a maioria das
imagens marcadas encontradas em uso sao compostas através de um modelo padrao aditivo
para a adicao da marca d’dgua em imagens (Dekel et al., 2017), descrito na subsecao

seguinte.

2.1.1 Modelo de Composicao Tradicional

Consideramos entao que a imagem original é representada por I(p), a marca d’agua
por W(p), e sua méascara alpha por «(p), temos entao que a imagem marcada final, J(p),

¢é obtida através da composicao aditiva denotada na equagao 2.1:

J(p) = a(p)W(p) + (1 — a(p))I(p) (2.1)

Em que “p” representa a posicao “x,y” de cada pixel da imagem, marca e mascara

alpha.

Tipicamente, deseja-se que tanto a imagem original como a marca d’agua sejam
parcialmente visiveis, e portanto para isto considera-se que a(p) = ¢ X a,(p), em que
¢ < 1 é uma constante de mesclagem entre imagem e marca, e a,(p) € [0,1] é a mascara
normalizada para cada um dos pixels. Este processo de composicao é exemplificado na
figura 3, utilizando o fator de mesclagem ¢ = 0,5 e uma marca d’agua sintética criada para

os testes:
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W(p) * a(p) (1-a(p)) = (p)

Figura 3: Exemplificagdo do modelo de composi¢ao de uma imagem marcada

Enquanto que uma constante de mesclagem de 0,5 permite a visualizacao simultanea
da marca d’agua e da imagem original, valores menores para ¢ tornam a marca mais sutil,
enquanto que maiores dao prevaléncia a marca na imagem final, com o valor limite 1, em
que os pixels da imagem original sdo totalmente substituidos por pixels da marca d’agua,

de maneira irrecuperavel.

2.2 Remocao de uma Marca D’agua

Dada a equacao 2.1, de adigdo de uma marca d’agua, o processo inverso de remog¢ao

pode ser explicito na equacao 2.2:

I(p) = J(p)l—_ (Ef(?; I;wp ) (2.2)

Contudo, a remocao na pratica de uma marca d’agua por meio desta equacao é

inviavel, uma vez que para cada pixel existem 3 incégnitas: W, «a, e I, e apenas uma
equacao de formacdo 2.1. E devido a esta subdeterminacio do sistema, portanto, que
surge a necessidade de se utilizar uma cole¢ao de imagens marcadas consistentemente pela
mesma marca W e opacidade «, permitindo que este problema seja solucionado com boa
precisao (Dekel et al., 2017).

A colegao de K imagens marcadas, com o indice “(p)” omitido para brevidade,

pode ser representada como:

Jy=aW+ 1 —-a)l, k=1,--- K (2.3)

A remocao de marcas d’agua consistentemente aplicadas a uma cole¢do de imagens,

portanto, baseia-se em um algoritmo de alguns passos:

o Estimar e Reconstruir a Marca D’agua
o Encontrar Posicao das Marcas na Colecao de Imagens

e Decompor Imagens Marcadas e Aprimorar Estimativas Iterativamente
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2.2.1 Estimacao e Reconstrucao da Marca D’agua

O passo fundamental para a remocao de uma marca é a estimacgao desta. Para
este objetivo, é calculado o gradiente de K imagens da cole¢ao nas direcoes X e Y, e
entao é obtida a mediana entre todos estes gradientes, de forma que apenas os gradientes
consistentes a todas as imagens permanecam, formando uma estimativa do gradiente da
marca d’agua utilizada na colecao de imagens. Esta estimativa de partida é equacionada a

seguir:

VW, (p) = medianay,(V.J,(p)) (2.4)

Como demonstrado em Dekel et al. (2017), quanto maior o ntimero K de imagens
processadas, mais a estimativa do gradiente VW, (p) se aproxima dos gradientes reais da
marca d’dgua (W,, = aWW) com a presenca de um desvio, como demonstrado a seguir,
a partir da equacao de formagao 2.1 e do pressuposto que I (Imagem original) e W
(Marca d’agua original) sdo sinais aleatérios, em que E[X] representa seu valor estatistico

esperado.

E[VJi] = ENW,] + E[V((1 — a)I))] = E[NW,| + E[VL] — E[V(aly)] (2.5

Utilizando propriedades de multiplicagao da derivada (regra do produto), E[V (aly)]

pode ser expandido:

E[VJi] = VW + E[VI] — E[V(a) ]+ aV (I)] = VW, + E[VI] = VaE[I] — aE[V ]
(2.6)

Por fim, tendo que a probabilidade de muitas imagens terem gradientes fortes em

uma tnica posigao é pequena, F[l;] ~ 0,

E[NJi] = VW, — VaE[L] (2.7)

Ou seja, o valor esperado para a mediana dos gradientes das imagens da colecao
coincide com os gradientes da marca real diferindo apenas nos pixels em que o gradiente
de alpha, Va, é diferente de zero, por um desvio de VaE[I;]. A principio este desvio é
aceito para a formacao da estimativa inicial de W,,, mas ele ser4 minimizado e corrigido

na estimativa final.

Tendo entdo a estimativa VIV, (p) calculada, é realizada a reconstrugao da marca
d’agua através da integracao dos gradientes na direcao X e Y, para cada um dos canais R,

G, e B da mareca.
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2.2.2 Localizacao da Marca D’agua

Comumente marcas d’agua sao aplicadas no centro da imagem ou em alguma
posicao pré-definida, para toda imagem da colecao. Neste casos, é apenas necessario a
identificacao prévia deste local, sem grandes dificuldades entdo para se encontrar a regiao
marcada em todas as imagens. Contudo, também é frequente, como uma protecao basica
contra métodos de remocao automatica de marcas d’agua, a randomizagao das coordenadas
na imagem em que a marca ¢ aplicada. Para que qualquer algoritmo de remocao seja

aplicado, é antes necessario o conhecimento destas coordenadas.

Para que a posicdo da marca seja encontrada em todas as imagens da colegao,
deseja-se utilizar técnicas de reconhecimento de padroes em imagens a partir de uma
marca d’agua pré-estimada, algo que pode ser realizado através da selecdo prévia manual
da regiao em que a marca d’agua estd em apenas uma das imagens, através da qual é
realizada a pré-estimacao de seu gradiente, assim como definido na secao anterior. Essa
estimativa serd refinada iterativamente assim que mais marcas forem detectadas na colecao,
resultando por fim em uma estimativa mais robusta e capaz de detectar todas ou quase

todas as marcas desejadas.

2.2.3 Decomposicao de uma Imagem Marcada

Tendo em maos uma aproximacao inicial da marca d’agua Wi (p), e sua localizacao
em cada uma das imagens da colegao, deseja-se decompor as imagens marcadas Ji(p)
em suas componentes W (p), a(p) e Ix(p), respectivamente, a marca d’agua, sua mascara
de opacidade, e imagem original. Contudo, nao ha informagoes suficientes nas imagens
marcadas para o encontro de uma solucao exata, mesmo com o uso de uma colecao grande
de imagens. Assim, este problema é redefinido como a busca de uma solugao estimada que
minimize uma funcao de erro adequada, ou seja, é resolvido por meio de um sistema de
otimizacao iterada. Sao entao formuladas as seguintes equagdes que estimam o erro da
solugao do problema (Dekel et al., 2017):

Eaata (I, W, a) = 30 (JaW + (1= a) I, — Ji[*) (2.8)

U (s?) = Vs + €2 e = 0.001 (2.9)

Em que Egata (Ig, W, a) é a func¢ao de erro que penaliza diferencas entre a imagem
formada pela equacao 2.1 de formacao feita com os resultados estimados da imagem

decomposta. A funcao ¥ <s2> ¢é apenas uma funcao simples de regularizacao dos dados.

Ereg(VI) = >0 (|ag| I7 + |oy| I7) (2.10)
p
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Ereg(VW) = >0 (|oa| W2 + |oy, | W) (2.11)
Eveg(Va) =30 (a2 +al) (2.12)

Ereg(VI), Ereg(VIV) € Eiee(Va) sao as fungoes de erro de regularizacdo que penali-
zam mudancas bruscas de intensidade na marca d’agua e imagem reconstruidas nas regioes
em que o gradiente da méascara de opacidade é mais forte, ou seja, encoraja o resultado
final a ser suave nestas regioes de borda. I, W, e a, sdo as derivadas na direcao X destes

sinais. Similarmente, I,,, W, e «,, sao as derivadas na direcao y.

Br (VW) =Y 0 (vam - vaHQ) (2.13)

E¢ (VW,,) é a fungao de erro que estimula o resultado a apresentar gradientes
similares aos obtidos na estimativa inicial W,,,. Por fim, na equacao 2.14, com o uso destas
fungdes de erro é escrita a fungdo que se deseja minimizar, para encontrar uma solugao

otimizada ao problema de decomposi¢ao de uma cole¢ao de K imagens marcadas:

arg min Z (Eaata (W, o, Ii) + A Eyeg (V1))
Woenlli} % (2.14)

+ A Brog(VIV) 4 Ao Breg (V) + BEH(V (aW))

Em que os parametros A\ e 3 sdo constantes que controlam a influéncia de cada
termo. Encontrar os argumentos minimos desta equacao nao é uma tarefa facil, porém
Dekel et al. (2017) sugerem a resolugao deste problema pelo método dos minimos quadrados
iterativamente ponderados (“Iteratively- Reweighed-Least-Square (IRLS)”) (Burrus, 2012).

Para otimizar a resolugao deste problema nao linear e de muitas variaveis, sao
introduzidas variaveis auxiliares W}, que representam uma estimativa individual da marca
d’agua para cada uma das imagens marcadas presentes no banco de dados, de forma que
cada Wy deve ser proxima a estimativa geral da marca, W, de acordo com a funcao de
erro F,y., definida na equagao 2.15, de forma similar as fungdes de erro anteriores: (Dekel
et al., 2017)

Eaux (I/V, Wk) = Z |W - Wk| (2'15>
P

Com a adicao de uma constante v relacionada a funcao E,,,, o sistema final a ser

resolvido, a fim de se encontrar os argumentos minimos, é entdo o seguinte, dado pela
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equacao 2.16:

arg min Z (Edata (]k, Wk, Oé) —+ )\[Ereg (V]k) + )\wEreg (VWk> +
k

(2.16)
Ao Freg(Va) + BE; (V (aWi)) + 7S Ba (W, W)

A resolugao deste sistema pode ser interpretada como as varidveis “I;,” (Imagens com
marcas d’dgua retiradas), “W}” (Aproximagoes da marca d’dgua aplicada a cada imagem),
e “a” (Mascara de transparéncia da marca d’agua) que produzem os menores valores
de erros nas fungoes “Fgyq,” (Garante que os resultados obtidos, quando recombinados,
produzem imagens semelhantes as utilizadas na entrada), “E,.,” (Garante que os resultados
tenham aparéncia relativamente suave), “E;” (Estimula que a marca d’agua estimada
final seja similar a estimativa inicial), e “E,,,” (Aproxima estimativas individuais de cada
marca a estimativa geral). As varidveis estao resumidas e organizadas na tabela 1, e as

funcoes de erro na tabela 2.

Tabela 1: Variaveis

Variavel Descricao
I Imagens Limpas
Wy Estimativa Individual da Marca
Q@ Mascara de Transparéncia

Tabela 2: Fungoes

Funcao Descrigao
Egate  Imagem decomposta gera imagem original quando recomposta
Ereg Suavidade na Aparéncia
E¢ Similaridade com Estimativa Inicial
Eous Similaridade de Estimativas Individuais com a Geral

Y

Dekel et al. (2017) resolve este sistema em duas partes, primeiramente fixando “«o’
e “W?7” a partir de estimativas iniciais, e através do sistema simplificado a seguir, encontra
“Wk” e L(Ik”:

arg &/m? Eaata (I, W) + A1 Ereg (V1) + Ay Ereg (VWy) +
kslk

(2.17)
BEf (V (OéWk)) + ’yEauX (I/Vy Wk)

Apés a resolucao deste sistema, que sera detalhada posteriormente, a estimativa

geral para a marca d’agua “W?” é atualizada de maneira simples utilizando o conjunto de
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estimativas individuais “W}”, por meio do calculo da mediana:

W = mediank Wk (218)

Por fim, a varidavel “a” é atualizada, mantendo as anteriores fixas, de maneira
analoga a como “W,” e “I,,” foram obtidas, mas desta vez minimizando o erro para obter

o valor de «.

S Baata (@, I, W) + Ao Breg (V) + BEf(V(aW)) (2.19)

Este processo é entao iterado quantas vezes forem necessarias para a convergéncia
do resultado, cuja velocidade de convergéncia depende das constantes A\;,Ay,Aa, B € 7, que
agem como pesos para cada uma das funcoes de erro que levam aos valores ideais de “I}.”,

“Wk” e “O{”.

2.2.3.1 Detalhamento da Resolu¢ao do Sistema

A resolucao do sistema dado pela equacao 2.16, como detalhado no material suple-
mentar por Dekel et al. (2017), se da pela transferéncia do dominio discreto (somatoria)
para o dominio continuo (integral), com o uso de equagdes de Euler-Lagrange. Especifica-
mente, através de um sistema de vérias fungoes de varias variaveis (Courant and Hilbert,

1989), cujo formato estd denotado nas equagoes 2.20, 2.21 e 2.22.

I[f17f2,...,fm] :/QE(Il,...,ZEn,fl,...,fm7f1717...,fl’n,...,fm71,...,fm7n)dX

(2.20)
_9fi
fi a—mj (2.21)
oL & 0 (0L
— =y — =0
dfi ]z_:l O <(9f1,j> 1
oL & o0 ([ OC
o D =0 2.22
an ; an <8f2,j> 2 ( )
oc & o oL
= . =0,,
fm ]; axj <8fm7]>

Quando deseja-se resolver o sistema de equagoes 2.17, as fungbes de varias variaveis
f1, fo,--., fm representam as funcgoes I, e Wy, cujas variaveis sao as coordenadas x e y. [

e Wy sao o resultado desejado na resolugao deste problema. A somatéria em k no sistema
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2.17 é substituida pela integral genericamente definida em €2, e o termo L representa o

termo interior a somatoria, isto é:

L :Ldata (Ika Wk7 05) + )\ILreg (Vlk) + )\ereg (VWk) +

(2.23)
AaLieg (V) + BL; (V (aW3)) + YLauwx (W, Wy)

Com as funcgoes L, sendo analogas as fungoes E, anteriores, no dominio discreto.
Com estas defini¢oes, as equagoes de Euler-Lagrange para o sistema, como exemplificadas

genericamente na equacao 2.22, sao as seguintes:

oL 9 oL 0 0L
oI*(p) 0z d(IE(p))  dyo (Ik(p)
or 5 o1 5 ( y&L ) (2.24)

OWkp)  0xd(WEP))  dyo (Whp))

E substituindo os termos relevantes,

8Ldata aLreg (V]k) aLreg (V]k)

o) o) o (1) 22

0 (Ldata + f}/Laux) _ 2 0 <5Lf + )\ereg) B g 0 (ﬁLf + Aereg)
OW*(p) dr 9 (Wg(p)) 9y o (Wi(p))

—0 (2.26)

Com a finalidade de reescrever este sistema de forma matricial e resolvé-lo, Dekel
et al. (2017) define as seguintes notagoes que serao utilizadas também para a implementacao

deste algoritmo computacionalmente:

a = diag(«a) a = diag(1l — «) (2.27)

Em que “diag” representa uma matriz diagonal com os elementos de “a”.

vl .. = diag (\IJ' ((aWk +(1—a)ly — Jk)2>)
v = diag (\If ((laxl W+ oy Wyk)Q))

U1 = diag (‘1/’ ((!Oéx| I} + |ay| Iz]j>2>>

V', = diag <\I// (HV (Osz) - VWm) HQ)

W, = diag (‘I’ <(Wk - W)2>)

U'rl = diag (\If/ ((|04x‘ I? + |ty | I;))

Wrww = diag (0 ((Jou| W2+ |0y | W2))

(2.28)
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L;=D}¢, YD, + D,c,¥;,D,

r

L,=D]c, ¥, D, + D]c, ¥, D,

2.29

Ay =a’(D¥,D, +D)¥,D,)a + ¥, (228)
Ly

c, = diag (|ag|) cy = diag (|ay|) (2.30)

by ='W ¥+ BLW,, +~y¥, W 2:31)

_ =T\y! k
by =a Wy, J

Em que ¥(s)" é a derivada da fungao ¥(s), (equagdo 2.9), de regularizacao defi-
nida anteriormente, e D,, D, representam operadores de derivada horizontal e vertical,

respectivamente.

Com esta notagao, ¢ entdo composto o seguinte sistema matricial, que representa
as equagoes 2.25 e 2.26 (Dekel et al., 2017):

—Ty/
aaqjdata
—2Ty/
(87 ‘I’data + /\ILI

oUW+ N\, L, + [A;f
]k b[

we ] = [ b ] (2.32)

A implementacao computacional desta solu¢do envolve, portanto, a composi¢ao
desta matriz através do calculos dos termos nao lineares W', através da estimativa atual
de a e W, e entao resolucao do sistema de equacgoes dado em 2.32, tendo como resultado

estimativas atualizadas de Wy, e I.

Por fim, com base nestas estimativas atualizadas, o valor de a é recalculado, por
um método analogo ao anterior, porém com o sistema de equacoes dado em 2.19, que
mantém as variaveis anteriores fixas, para encontrar «. O sistema, na forma “Aa = 0", e

as defini¢cbes necessarias, sao as seguintes:

(Z Uy + AaLo + 5f~1f> a=>Y A (J—1L)+ WTL;W, (2.33)
k k
W = diag(WV)
' — diag (xp’ ((aW (1= a) It = %) (W - Ik)>)
L,=DIV.D,+ DIV, D, (2.34)
Ay =WTL;W

W, = diag (V' (||Val?))

As imagens I, e W), sao entao obtidas de forma intercalada com «, até que o

resultado seja satisfatério.
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2.3 Avaliacao Da Qualidade de Imagens

Para a avaliagao da qualidade de imagens sao frequentemente utilizados métodos
como o “Erro Quadrético Médio” (MSE - Mean Squared Error), “Pico da Rela¢ao Sinal
Ruido” (PSNR - Peak Signal to Noise Ratio), “Relagdo Sinal Ruido” (SNR - Signal to
Noise Ratio) e o Indice de Similaridade Estrutural (SSIM - Structural Similarity Index)
(Zhou Wang et al., 2004).

O método mais simples e direto, MSE, é obtido através da média das diferencas

das intensidades elevadas ao quadrado de duas imagens, ou seja:

|
—

m—1n

> Ui g) = K(i5)P (2.35)

=0 j5=0

MSE = =
mn

<
I

Em que I,K representam as duas imagens sendo comparadas, e m,n, suas dimensoes.
K é a imagem de referéncia, nao degradada por ruidos, ou no caso deste trabalho, por
marcas d’agua, e I é a imagem que sofreu alguma degradacao. O valor desta métrica
pode entao ser calculado uma vez comparando a imagem original e a imagem com marca
d’agua antes do processo de remocao, e uma segunda vez com a imagem marcada apds o
processo de remogao, obtendo-se dois valores cuja diferenca indicarda a melhora ou piora

na qualidade da imagem, em relacdo a imagem original nao modificada.

Contudo, o método MSE nao é muito robusto e depende muito dos possiveis valores
de intensidade da imagem, portando é mais frequentemente aplicada a métrica PSNR

(com unidades em dB), que continua o conceito da métrica MSE da seguinte forma:

MAX?

- MAX, (2.36)
=20- 10g10 W

Em que M AX| representa o valor maximo de intensidade da imagem, por exemplo,
255 em uma imagem de 8 bits. Desta forma a métrica PSNR nao ¢ mais dependente da
amplitude dos dados da imagem, e por ser uma métrica logaritmica, funciona bem mesmo
para grandes variagdes. De forma similar a métrica PSNR, a métrica SNR ¢é definida como
a relacao entre a poténcia do sinal puro e do sinal de ruido em uma imagem, diferindo da
PSNR que ¢ a relagao entre o valor maximo alcancavel para o tipo da imagem e a poténcia
do ruido, de forma que PSNR > SN R, porém com ambas sendo métricas comparaveis e

similares.

Um exemplo do comportamento da métrica PSNR em uma imagem de teste com

diferentes niveis de ruido pode ser visto na figura 4.
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PSNR =27.19 dB

Imagem Original de Referéncia

PSNR =20.47 dB

PSNR =9.21dB PSNR =6.78 dB

Figura 4: PSNR de varias imagens com diferentes quantidades de ruido

Apesar de muito uteis no estudo de ruidos, as métricas SNR e PSNR nem sempre
sao adequadas para a analise da qualidade visual de uma imagem, isto é, é possivel que
uma imagem de menor PSNR possua, visualmente, uma qualidade superior a uma imagem
de maior PSNR, devido a forma com que interpretamos imagens, em que certos tipos de
ruidos ou erros sao mais visiveis que outros, algo nao levado em consideracao por estas
métricas. Foi, portanto, desenvolvida a métrica SSIM, com o intuito de resolver estes

problemas na avaliagdo de qualidade de imagens. (Zhou Wang et al., 2004)

O indice de similaridade, SSIM, também entre uma imagem de referéncia e uma
degradada, seja por ruido, marcas, ou compressao, denotadas por x e y, é calculado da

seguinte forma:

SSIM(x, ) = [z, )] - [e(x,y)]” - [s(z,y)]" (2.37)

Que é uma combinacao dos termos “I”, de luminancia, “c”, de contraste, e “s”, de
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estrutura (structure), com pesos «, 3 e . Estes termos sao definidos a seguir:

_ 2:U/x,uy + C’1

l(l’,y) ) 2 C

Mm+uy+ 1

20,04+ Cy

oz +o2+Cy
Oy + 03
0,0y + Cs

c(z,y) = (2.38)

s(x,y) =

C, = (K,L)* (2.39)
Cy = (K,L)? (2.40)

Cy = Cy/2 (2.41)

Em que, p,, p, representam a média das imagens, o,, 0,, a variancia, e o,y, a
covariancia. Ky e Ky sao constantes pequenas para estabilidade da divisao, por padrao
definidas como K; = 0.01 e K5 = 0.03. Os pesos «, 3 e 7, quando todos iguais a 1,

permitem a simplificacdo das férmulas anteriores ao resultado explicito na equacao 2.42:

(2ptatty + C1) 204y + Cs)
(12 + 12+ C1) (02 + 02+ Cy)

SSIM(z,y) = (2.42)

O calculo desse indice entre duas imagens retorna um valor entre 0 e 1, em que
1 representa duas imagens idénticas, e 0 representa similaridade nula. Assim como as
métricas SNR e PSNR, este indice serd usado para comparar a similaridade da imagem
marcada com a imagem original, antes e depois de seu processamento, com o objetivo de
se observar um aumento na similaridade entre as imagens apés a tentativa de remocao da

marca d’agua adicionada a imagem.
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3 MATERIAIS E METODOS

Esta secao abordara os passos tomados a fim da implementacao computacional do
algoritmo para remoc¢ao de marcas d’agua detalhado na secdo tedrica deste trabalho, assim
como as tarefas necessarias para validar e quantificar seu funcionamento. Por fim, também
sao abordadas as tarefas relacionadas aos métodos sugeridos de melhoria da robustez
de marcas d’agua, com a finalidade que este algoritmo de remocao abordado apresente

eficiéncia reduzida.

O computador utilizado para a elaboragao e execugao final dos programas relevantes
possui um processador “Intel Core i7 4790k”, 12GB de memoria RAM, placa de video
“GeForce GTX 9707 e sistema operacional Windows 8.1. Devido a implementagao nao
otimizada por paralelizacao dos algoritmos, o fator principal que limita sua velocidade
de execucao é a velocidade do processador, em apenas uma thread légica. Com excecao
do algoritmo de remocao, que sera detalhado separadamente no trabalho, foi utilizado o
ambiente de programacao Matlab para a manipulagao das imagens e marcas, devido a
grande disponibilidade de fung¢oes e algoritmos relacionados ao processamento de imagens

ja fornecidos pela linguagem.

3.1 Criacdao do Banco de Imagens Utilizado

Para a elaboragao e teste do algoritmo, foram primeiramente adquiridas fotos
suficientes para simular um grande banco de dados de “Stock Photos” identicamente
marcadas por marcas d’agua, como os disponiveis na internet para uso comercial, por
exemplo, “Adobe Stock” ou “ Getty Images”, entre muitos outros. Para que o algoritmo
possa ser avaliado de forma objetiva, foram requisitadas fotos originalmente limpas, que
nao apresentam marcas d’agua, de modo que uma marca sintética possa ser aplicada a
estas e que o resultado final da remocao possa ser comparado com imagens limpas. Assim,
o provedor de imagens limpas utilizadas foi o website “pezels.com”, no qual todas as fotos
disponiveis estao em alta resolugao, sem marcas d’agua, e possuem licenca que permite

seu uso e reproducao de maneira livre.

Foram escolhidas 48 imagens de teméatica e aparéncia variadas, a fim de representar

a grande variabilidade de imagens possiveis. Uma amostra destas imagens esta na figura 5.

$*.
£

Figura 5: Amostra de imagens limpas adquiridas (Fonte: pexels.com)
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Para facilitar o processamento das imagens, todas elas tiveram suas dimensoes
regularizadas para 500x500 pixels, através das fungbes “imresize” e “padarray” do Matlab,
utilizado para o tratamento inicial do banco de imagens. Esta dimensao foi escolhida por
ser suficientemente alta para que os detalhes das imagens e marcas sejam facilmente visiveis
e claros, porém também buscando minimizar o tamanho das imagens para facilitar o seu

processamento, tanto em quantidade de memoria necessaria e tempo de processamento.

3.1.1 Marca D’agua Sintética

A marca d’agua sintética, que foi aplicada nas imagens limpas do banco de dados,
foi entao gerada de forma simples e direta com o auxilio do programa gratuito de edicao de
imagens “Paint. NE'T”, bem como seu canal alpha, necessario para a aplicacao das marcas,
conforme demonstrado na figura 3, na secao de teoria do trabalho. A marca e seu canal

alpha gerados estao na figura 6.

MARCA

MARCA

(a) Marca D’agua (“W(p)”) (b) Canal Alpha (“a(p)”)

Figura 6: Marca D’adgua e seu Canal Alpha gerados

Estas marcas d’agua foram geradas com a resolugao de 200x200 pixels, para serem

aplicadas no centro das imagens do banco de dados.

Figura 7: Exemplo de Imagem Marcada Sinteticamente
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3.1.2  Marca D’agua Comercial (Adobe Stock)

Além do banco de imagens limpas, também foram adquiridas imagens previamente
marcadas por motivos comerciais, a fim de validar o funcionamento do algoritmo com
exemplos reais e demonstrar a fragilidade destas marcas cujo objetivo é a identificagao
do detentor dos direitos autorais da foto. Para tal, foram obtidas imagens da provedora
“Adobe Stock”, que marca todas suas imagens diretamente disponiveis em seu website, de
maneira a incentivar a compra dos direitos de uso das imagens em sua resolucao maxima e
nao marcada. Ao total, foram obtidas 60 imagens com a marca “Adobe Stock”, amostradas

nas figuras 8 e 9.

#125205539

Figura 8: Exemplo de imagem marcada comercialmente - “Adobe Stock” (Fonte:
stock.adobe.com)

Figura 9: Outras imagens marcadas adquiridas (Fonte: stock.adobe.com)

Assim como as imagens anteriores, estas também sdo processadas para que tenham
o mesmo formato 500x500 pixels, através de recortes em imagens maiores e do padding em

imagens menores.

3.2 Remocao das Marcas D’agua

Para a remocao das marcas d’dgua o algoritmo foi implementado na linguagem de
programagcao Python, para ambas as versoes 2.7, cujo suporte oficial serd encerrado em
breve, e 3.7, versao mais recente da linguagem Python. Essa linguagem foi escolhida por
ter utilizacao muito ampla e bem documentada na internet, e por possuir sintaxe intuitiva,

sendo uma boa escolha para a manipulacao de imagens e outros dados.
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As bibliotecas principais utilizadas foram “OpenCV”, uma biblioteca de codigo
aberto com mais de 2000 funcoes relacionadas a visao computacional, “numpy”, “scipy”,
bibliotecas da linguagem Python para a manipulagao numérica de matrizes e resolucao do
sistema linear final obtido através do algoritmo, e “matplotlib”, também uma biblioteca
Python, para a exibi¢ao das imagens e resultados durante a execugao do codigo. O fluxo

do algoritmo implementado é o seguinte:
1. Estimar Marca D’agua Inicial
2. Detectar Localizagao da Marca em Todas as Imagens e recorta-las
3. Estimar Mdscara « Inicial
4. Estimar Fator de Mesclagem ¢ Inicial

5. Para cada uma das imagens de entrada:

a) Obter I}, e Wy, mantendo o e W fixos
b) Atualizar Valor de W mantendo os demais fixos

¢) Atualizar Valor de o mantendo os demais fixos

6. Repetir o passo acima um ntmero pré-definido de iteragoes

O primeiro passo, estimar a marca inicial, se d4 através do célculo do gradiente de
cada umas fotos do conjunto, seguido pela mediana entre todos estes gradientes, obtendo-
se entao um gradiente médio. A partir deste gradiente médio sao utilizadas técnicas de
thresholding (Gonzalez and Woods, 2006) a fim de que apenas os gradientes provenientes
da marca d’agua estejam presentes no resultado processado, obtendo-se neste passo o
formato e tamanho que sera utilizado de recorte para as marcas das imagens. Os resultados

desse passo encontram-se na figura 10.

(c) Marca Recortada e Recons-
truida através do Gradiente

(a) Gradiente da Marca Nao Pro{b) Gradiente da Marca Proces-
cessado sado

Figura 10: Processo de Obtencao da Estimativa Inicial da Marca D’agua
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A reconstrucao da marca d’agua a partir de seus gradientes, na direcao X e Y,
se da através da reconstrugao de Poisson (Pérez et al., 2003) Shen et al. (2005), com
o calculo do Laplaciano das imagens, isto ¢, o divergente do gradiente previamente
calculado. O codigo implementado para esta reconstrucao foi adaptado do disponivel em:
https://web.media.mit.edu/~raskar/photo/code.pdf (acessado em 22/11/2019).

O segundo passo, localizar a marca d’agua em todas as imagens da colecao e
recortd-las, pode ser simplificado quando todas as marcas sao adicionadas as imagens na
mesma posi¢ao, como é comum nas marcas comerciais, no entanto, o método de localizacao
da marca implementado baseia-se na comparacao entre as bordas detectadas em uma
imagem marcada e as bordas de uma estimativa inicial da marca d’agua, que pode até
mesmo ter sido obtida através da reconstrucao de poucas imagens cuja localizagao da
marca foi manualmente denotada. A comparacao, que resultard na posicdo da marca
d’agua, é feita através da filtragem no dominio do espago (Gonzalez and Woods, 2006) da
imagem marcada com suas bordas detectadas através do algoritmo de Canny (Canny, 1986)
utilizando as bordas da estimativa da marca como o kernel do filtro. Isto é, é calculada a
correlagao entre estas duas imagens. Muitas vezes este processo de filtragem é referido
como convolucao entre imagens, contudo, a convolugao inverte o kernel, enquanto que a

correlacdo mantém sua orientacdo. As imagens relevantes a este passo estao na figura 11.

MARCA

(a) Bordas Da Marca a ser Detectada

(c) Ampliagao da regido da marca na imagem, onde suas bordas serdo detectadas

Figura 11: Exemplo de Imagens utilizadas para localizacao da Marca

Apébs o calculo da correlagdo entre estas duas imagens, o resultado nao tera
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semelhanca visual a nenhuma delas, porém, se a deteccao for bem sucedida, o pixel de
maior valor no resultado corresponde ao ponto na correlagao em que o kernel do filtro,
quando multiplicado e somado com os pixels correspondentes na imagem alvo, melhor
coincidiu sobre as bordas desta imagem. Ou seja, onde houve maior sobreposi¢ao entre
as bordas da marca estimada e das bordas da imagem alvo, denotando assim a posic¢ao
esperada da marca na imagem. Na figura 12 a seguir, encontram-se exemplos dessa

localizacao.

Figura 12: Exemplo de marcas localizadas pelo método de filtragem, denotadas pelo X
vermelho

Para a simplificacao dos testes, contudo, as marcas utilizadas para os testes a seguir
foram todas adicionadas ao centro de todas as imagens, posi¢cao comum em “stock photos”
comerciais, como nas imagens “Adobe Stock” obtidas, de modo que para a localizagao e
recorte de todas as marcas foi apenas necessaria a definicio manual de uma janela em

torno de uma das marcas, que sera aplicada para todo o banco de imagens. Além do
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método de filtragem descrito anteriormente para encontrar marcas, outras técnicas de
localizacao de padroes em imagens também poderiam ser utilizadas com desempenhos
similares ou superiores ao método da correlacdo, como por exemplo, as func¢oes de detecgao
e extracao de caracteristicas de imagens, disponiveis no toolbox de visao computacional do

Matlab, através da funcao “matchFeatures”.

O terceiro e quarto passos, responsaveis pela inicializacdo das estimativas da
mascara de transparéncia, «, e da constante de mesclagem, ¢, sao completados a partir da
implementacao do algoritmo de separagao de plano de fundo e plano frontal de Levin et al.

(2008), cujos resultados estao demonstrados nas figuras 13 e 14

(b) Canal a de saida do algoritmo de Levin

(a) Imagem de entrada ot al.

(c) Separacao de Plano de fundo e frontal pelo algoritmo

Figura 13: Exemplo do funcionamento do algoritmo de Levin et al.

Figura 14: Imagem « da Marca D’agua, obtida através do algoritmo de Levin et al. (Com
ajuste de contraste para melhor visualizagao)

Como entrada deste passo sao utilizados os recortes das imagens em suas regioes
marcadas e a estimativa inicial de W adquirida anteriormente pela reconstrucao Poisson,
e a saida final é obtida pela mediana de todas as imagens “a” resultantes do algoritmo de

separacao de planos.

Por fim, o quinto e sexto passos sao a implementacao do algoritmo detalhado na
secao de teoria, “Decomposicao de uma Imagem Marcada”, também implementado em
Python, cujo programa baseia-se na declaracao das variaveis presentes nas equagoes de 2.27

a 2.34, na forma de matrizes diagonais esparsas, com o auxilio da biblioteca “scipy”, para o
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sistema matricial principal 2.32 ser montado e solucionado através da fungao “spsolve”. As
constantes utilizadas para a resolu¢ao do problema, em todos os exemplos deste trabalho,
foram as seguintes: A\; = 1; Ay = 0,005; A\, = 0,01; 5 =1 e v = 1. Estes valores controlam
a influéncia relativa de cada uma das funges avaliadoras de erro (Tabela 2), e foram
escolhidos de modo que a influéncia de cada uma destas funcoes fosse perceptivel, porém

nao excessiva em relagao as demais.

O fim da execugao do algoritmo ocorre quando se completa o niimero de iteracoes
definidas no inicio da execucao do programa. A quantidade de repeticoes é definida
observando-se a qualidade da saida apds cada iteracao, de modo qualitativo, quando a
marca ja nao é mais prominente na imagem, ou quantitativamente, quando a relacao
sinal-ruido da imagem ultrapassa um limiar desejado. Menos itera¢oes sao necessarias

quando a estimativa inicial ja é de boa qualidade.

3.3 Criacdo e Aplicacao de Marcas Melhoradas

Tendo o algoritmo de remocao completo, foram abordadas técnicas cujo objetivo é
o aumento da robustez de uma marca d’agua frente a este algoritmo de remocao. Essas
técnicas sao a aplicagdo de distor¢oes geométricas no formato da marca de forma aleatéria,
para que todas as imagens nao compartilhem de exatamente a mesma marca, e da aplicacao
da “ditherizacao” nas marcas, que tem o objetivo de minimizar a regularidade e suavidade

da marca, fator que é pressuposto para o bom funcionamento do algoritmo de remocao.

O detalhamento e implementagao destes métodos esta descrito nas se¢oes seguintes
deste trabalho.

3.3.1 Distorgoes

O fundamento do algoritmo de remocao baseia-se no fato que existe apenas uma
marca que ¢ aplicada identicamente a muitas imagens, portanto uma ideia natural para
a melhora da robustez das marcas é a alteracdo destas de modo que nao sejam todas
idénticas. Para isto, é possivel apenas a adi¢do de ruidos simples aditivos a marca antes
de sua aplicacao, contudo, alteracoes sutis apenas nos valores dos pixels da marca sao
muito pouco eficientes frente ao algoritmo de remocao (Dekel et al., 2017), uma vez que
seu funcionamento utiliza a mediana de muitas imagens, limitando naturalmente o efeito

de ruidos aditivos aplicados.

Foram entao testadas alteracoes geométricas aleatérias na marca. Para tal também
foram utilizados ruidos aleatérios gerados proceduralmente (Lagae et al., 2010), porém

com a finalidade de distorcer a imagem , e ndo como ruido aditivo.

O tipo de ruido escolhido para a execucao das distorcoes aleatérias foi o ruido

“Perlin” (Perlin, 1985), um tipo de ruido, normalmente bidimensional, mas extensivel a
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maiores dimensoes, muito comumente aplicado quando deseja-se um ruido suave, isto é,

que nao possui variagoes abruptas de um ponto a outro (Lagae et al., 2010).

A distorgao é obtida utilizando o ruido Perlin 2D (Perlin, 2002) gerado como mapas
de deslocamento (“Displacement Fields”) para a imagem da marca e de seu canal « de
opacidade, antes de serem aplicados na imagem alvo. O esquema pelo qual o ruido é

adicionado como distor¢oes na marca esta representado na figura 15.

Ruido Perlin Gerado, 100x100, Diregao X Ruido Perlin X Repetido até di a0

X Imagem (Marca) Original Imagem Distorcida

Mapas de Deslocamento Interpolagdo
, MARCA

Figura 15: Esquema de aplicagao de distor¢ao

Sao inicialmente geradas duas imagens de ruido, uma representando o deslocamento
que os pixels da imagem alvo sofrerao na direcao X, e outra na direcdo Y. A amplitude deste
deslocamento é definida de acordo com o valor do pixel na imagem de ruido, multiplicado
por uma constante de intensidade de distor¢ao. Como o ruido Perlin é continuo, pixels
préoximos sofrem deslocamentos proximos, mantendo até certo ponto a integridade da
imagem. A amplitude de distor¢ao utilizada para os testes foi de 15 pixels, e o resultado

final obtido pela funcao “interp2” do Matlab.

Essas imagens de ruido sao geradas em resolugdes menores que a final e espelhadas
até que tenham o mesmo tamanho da imagem da marca d’agua. Este processo é realizado
pois quanto menor as dimensoes da imagem de ruido inicial gerado, mais vezes esta tera
que ser espelhada e portanto aumentara a frequéncia do ruido de distor¢ao até o nivel
desejado. Este espelhamento também gera periodicidade na distor¢ao aplicada, contudo
esta é praticamente imperceptivel, salvo em casos que o ruido inicial gerado é muito menor

que a imagem alvo.

Com esta distor¢do cada uma das imagens recebe, portanto, uma marca estrutu-
ralmente tnica, a fim de melhorar sua robustez e dificultar sua remocao. Um exemplo

encontra-se na figura 16.
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Figura 16: Exemplo de marca distorcida aplicada a uma imagem

3.3.2  Efeito Dithering (“Porta de Tela”)

A segunda estratégia para o aumento da robustez das marcas estd relacionada
ao fato do algoritmo de remocao pressupor que as marcas sao continuas e suaves, o que
é em geral verdade para as marcas simples utilizadas comercialmente. Para quebrar a

continuidade das imagens foi utilizado o efeito de “Dithering” nas marcas.

“Dithering” refere-se a adi¢ao intencional de ruido a uma imagem de modo seu
ruido de quantizagao seja aleatorizado, reduzindo, portanto, o efeito indesejado de “bandas”

visiveis na imagem, como na figura 17 de exemplo.

8-bit gradient 8-bit gradient, 24-bit gradient
dithered

Figura 17: Exemplo da reducao do efeito de bandas com o efeito dither, na imagem central
(Fonte: Wikipedia)

No entanto, a relevancia deste método esta ligada ao uso do efeito dither para a
geracao de imagens “halftone” (Veryovka and Buchanan, 1999) (Sindhu, 2013). Nesta
aplicacao, a quantidade de pixels ditherizados escuros em uma imagem € proporcional a
intensidade do tom de cinza na imagem de origem, gerando a impressao da existéncia de
muitos tons de cinza na imagem ditherizada, mesmo quando esta é apenas binaria. Um

exemplo do uso deste efeito para a representagao de tons de cinza esta na figura 18.
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(a) Imagem em tons de (b) Imagem “ditherizada”(c) Imagem “ditherizada”
cinza original aleatoriamente regularmente

Figura 18: Exemplo do efeito Dither em imagens (Fonte: Wikipedia)

O método implementado para a melhora das marcas d’agua funciona através do
efeito de transparéncia obtido quando uma imagem é “ditherizada”, como no exemplo da
figura 18. O objetivo é implementar o efeito de transparéncia “Porta de Tela” (Screen-door
Transparency) (Sen et al., 2003), que é alcangando intercalando na imagem final os pixels

visiveis entre a imagem de fundo e a imagem da marca, ditherizada.

Para tal, foram criadas mascaras de ditherizacao através da funcao “dither” do
Matlab, aplicada a imagens de tons de cinza com a intensidade desejada para a transparéncia
final da imagem. O efeito e aplicacao destas marcas pode ser observado no esquema da
figura 19:

Tom de Cinza 0.25 Padrio Dither ("Porta de Tela") Regular  Efeito de Transparéncia "Porta de Tela"

Dither
Tom de Cinza 0.5

Dither
Tom de Cinza 0.75

Dither

Figura 19: Funcionamento do efeito de transparéncia “Porta de Tela”
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Na figura 19 fica visivel que quanto menos pixels da imagem final estiverem presentes,
maior ¢é o efeito de transparéncia obtido, apesar de que na realidade cada pixel individual
da imagem final ainda possui opacidade igual a 1, isto é, total. Um exemplo da aplicacao

deste método encontra-se na figura 20.

Figura 20: Exemplo de Marca Ditherizada Ordenadamente, Aplicada a uma Imagem (50%
dos Pixels)

Também foram geradas marcas ditherizadas de forma aleatoria, exemplificadas pela
figura 21. Ao invés de pixels intercalados regularmente, os pixels que estardao presentes
na marca sao escolhidos aleatoriamente, na proporcao desejada. Devido a aleatoriedade
da marca, este método garante também que todas as marcas sao diferentes umas das
outras, apesar de que com um banco de imagens suficientemente grande a mediana das
marcas tenderd rapidamente a marca original, intacta. Ambos os métodos, regular ou
aleatério, garantem que marca possui muitas descontinuidades, dificultando sua remocao

pelo algoritmo apresentado anteriormente.

Figura 21: Exemplo de Marca Ditherizada Aleatoriamente, Aplicada a uma Imagem (50%
dos Pixels)
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4 RESULTADOS

4.1 Adicdo de Marca D’Agua

Aplicando uma marca d’agua de teste a uma imagem para varias constantes de

mesclagem, obteve-se o seguinte comportamento, ilustrado na figura 22:

(a) Marca com ¢ = 0,25 (b) Marca com ¢ = 0,50

(¢) Marca com ¢ = 0,75 (d) Marca com ¢ = 1,00

Figura 22: Efeito da variacao da constante de mesclagem

Ou seja, quanto menor o valor da constante “c”, menos visivel é a marca d’agua,
algo que pode ser ideal caso o desejado seja que a marca influencie o minimo possivel
na aparéncia da imagem, enquanto que valores mais altos de “c” a marca obstrui muito
mais a imagem, situacdo que também pode ser desejavel, caso o objetivo da marca seja,
além de identificar a imagem, desincentivar ao maximo seu uso nao licenciado. Contudo,

o valor limite de “c = 17, apesar de evitar a reconstrucao da imagem original, em geral
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nao é desejado pois toda informacao visual original da imagem é perdida onde a marca é

aplicada.

O valor “c = 0,5” mostrou-se um bom ponto intermedidrio para a aplicacao da
marca d’agua, uma vez que mantém componentes da marca e imagem original em mesma

proporcao.

4.2 Estimativa e Reconstrucio da Marca D’Agua

Utilizando uma colecao de 48 imagens identicamente marcadas em seu centro,
foi entao calculado o gradiente nas diregoes X e Y de todas as imagens, e em seguida a
mediana de todos esses gradientes, para cada um dos canais RGB, obtendo-se os resultados

dispostos na figura 23:

Medianas dos Gradientes X o Y, Canal R Medianas dos Gradientes Xe Y, Canal G Medianas dos Gradientes X e Y, Canal B

MIARCA

MARCA ‘\\/l/\:{()/\
D'AGUA 2

D'AGUA : ID'AGUA

(a) Gradientes X e Y media{b) Gradientes X e Y media-(c) Gradientes X e Y media-
nos - Canal R nos - Canal G nos - Canal B

Figura 23: Gradientes medianos obtidos

Através destes gradientes os canais RGB foram entéo reconstruidos individualmente,

para em seguida serem compostos na estimativa inicial da marca d’agua.

Reconstruido R

Reconstruido G

Reconstruido B

(a) Intensidade do canal ver{b) Intensidade do canal (c) Intensidade do canal azul
melho reconstruido verde reconstruido reconstruido

Figura 24: Intensidades reconstruidas dos canais R, G ¢ B

Devido a marca d’agua de teste utilizada ser branca, os trés canais obtidos, apre-

sentados na figura 24, sao muito semelhantes uns aos outros.
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A composicao destes canais em uma imagem colorida RGB, obtida através do
processamento de 48 imagens marcadas, resulta na estimativa da figura 25, de qualidade

suficiente para uma estimativa inicial que ainda sera aprimorada iterativamente:

Reconstruide RGB

MARCA
D'AGUA

Figura 25: Reconstrugdo da marca d’agua obtida através do processamento de 48 imagens

Observa-se que existem imperfei¢oes na reconstrucao ao redor da marca, efeito
que é amenizado com o uso de mais imagens nesta estimacao inicial, e intensificado caso
sejam usadas menos imagens, como ¢ visivel nos seguintes resultados, para reconstrugoes

realizadas com um ntimero N de imagens entre apenas 2 até 48, na figura 26.

Reconstruido RGB Reconstruido RGB Reconstruido RGB

(a) N =2 (b) N = 3 ()N=6

Reconstruido RGB Reconstruido RGB Reconstruido RGB

(d) N = 12 (&) N =24 (f) N = 48

Figura 26: Estimativas da marca d’agua para diferentes nimeros de imagens processadas

Observa-se, portanto, que quanto menor o niimero de imagens utilizadas na estima-
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¢ao maior € a influéncia destas imagens na reconstrucao final, visto que para o caso N = 2,
na sub-figura (a), elementos das imagens utilizadas sdo facilmente notados na reconstrucao,
enquanto que com o uso de uma colegdo maior de imagens este efeito indesejado é cada

vez menor e menos impactante no resultado.

O mesmo processo, utilizando as 60 imagens com a marca d’agua “Adobe Stock”,

resultou na seguinte reconstru¢ao da marca, na figura 27:

A\ Adobe Stock

Figura 27: Marca Adobe Stock reconstruida
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4.3 Remocdo da Marca D’agua

4.3.1 Resultados para Marca Comercial (“Adobe Stock”)

Apébs o processamento do banco de 60 imagens com a marca “Adobe Stock”, com o
uso de 5 iteracoes do algoritmo, foram obtidos os seguintes resultados, apresentados nas
figuras 28 e 29, utilizando duas imagens como exemplo da efetividade de remocao para

esta marca d’agua comercial:

(c¢) Imagem Marcada Original (d) Imagem Processada

Figura 28: Amostra do resultado da remocao nas imagens Adobe Stock
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(a) Imagem Marcada Original (Ampliagao)

(b) Imagem Processada (Ampliacao)

..' |.-
e L
i E

(d) Imagem Processada (Ampliacao)

Figura 29: Ampliacao do resultado da remocao nas imagens Adobe Stock

O resultado, portanto, sendo analisado qualitativamente, atingiu um nivel satisfa-
torio, de forma que para as imagens nao ampliadas é muito dificil a percepcao dos tracos
residuais da marca. Ampliando a secao das imagens onde a remocao foi efetuada é possivel
notar estes residuos da marca como pequenas distor¢oes de aparéncia sombreada e borrada,
especialmente em volta das bordas da marca. Mais exemplos dos resultados obtidos para

esta marca estao no final deste trabalho, como apéndice.

E possivel que com aprimoramentos ao algoritmo de remocao que estes defeitos
se tornem ainda mais imperceptiveis, contudo, este resultado ja mostra que uma im-
plementacao simples do algoritmo é capaz de remover uma marca d’agua comercial ao

ponto que esta nao é mais facilmente reconhecivel de maneira visual nas fotos. Assim, as
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fotos processadas poderiam ser utilizadas de forma nao autorizada sem que o detentor
de seus direitos autorais (Adobe Stock) esteja visivel na foto, destacando a existéncia da

vulnerabilidade destas marcas d’agua.

4.3.2 Resultados para Marca Simples

Para o banco de imagens marcadas sinteticamente, foram testados os efeitos de
diferentes constantes de mesclagem no resultado final da remocao, com ¢ = 0,25; ¢ =0,5 ¢
c=0,75:

(a) Marca Simples ¢ = 0,25 (b) Marca Simples ¢ = 0,25 pds Remocao

(e) Marca Simples ¢ = 0,75 (f) Marca Simples ¢ = 0,75 pés Remocao

Figura 30: Antes e depois da remocao para imagens marcadas de forma simples
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(a) Marca Simples ¢ = 0,25 (b) Marca Simples ¢ = 0,25 pés Remocao

A,

o

(c) Marca Simples ¢ = 0,5 (d) Marca Simples ¢ = 0,5 p6s Remocao

(e) Marca Simples ¢ = 0,75 (f) Marca Simples ¢ = 0,75 pés Remogao

Figura 31: Antes e depois da remogao para imagens marcadas de forma simples (Ampliado)

Novamente pode-se observar, nas figuras 30 e 31, que o resultado da remocao é
satisfatorio para todas as constantes de mesclagem testadas, de modo que a marca d’agua
é quase imperceptivel em imagens nao ampliadas. Contudo, como pode ser observado nas
secoes ampliadas, quanto maior a constante de mesclagem mais intenso sao os defeitos
visiveis apOs a remocao, algo esperado, uma vez que estes casos representam imagens cuja
marca tem maior impacto na imagem original. Assim, uma possivel acao para a melhora
da robustez das marcas é simplesmente torna-las menos transparentes, em situacoes em

que a diminui¢ao da visibilidade da imagem original é um compromisso aceitavel.

Analisando estes resultados de forma quantitativa, foram calculadas as seguintes
métricas médias entre todas as 60 imagens do banco de dados, antes e depois do pro-
cessamento, em uma regiao central em torno da marca, em relacdo a imagem original
nao marcada: SNR (Signal to Noise Ratio), PSNR (Peak Signal to Noise Ratio) e SSIM
(Structural Similarity Index).

O tamanho da regido escolhida ao redor da marca tem influéncia nos valores
absolutos obtidos das métricas PSNR, SNR e SSIM, porém nao influenciam a variacao
encontrada entre as imagens antes e depois do processamento, contanto que a regiao
englobe a marca inteira. Assim, o valor principal que deve ser analisado para comparacao
dos diferentes métodos é a diferenca entre os valores da métrica, que representara uma

melhora ou deterioracao, caso variagao negativa, na imagem.

Entende-se, portanto, que a marca d’agua age como um ruido na imagem limpa



4.8 Remocgdo da Marca D’dgua 53

original, e o aumento dessas métricas representa a reducao do efeito da marca na imagem.

Tabela 3: Métricas para Marca Simples ¢ = 0,25

Métrica Antes de Processar Apos Processar  Diferenca

PSNR 26,2357 dB 32,2495 dB 6,0138 dB
SNR 20,1728 dB 26,1867 dB 6,0139 dB
SSIM 0,8814 0,9485 0,0671

Tabela 4: Métricas para Marca Simples ¢ = 0,5

Métrica Antes de Processar Apos Processar  Diferenca

PSNR 20,2147 dB 27,1058 dB 6,8911 dB
SNR 14,1518 dB 21,0429 dB 6,8911 dB
SSIM 0,7734 0,8838 0,1104

Tabela 5: Métricas para Marca Simples ¢ = 0,75

Meétrica Antes de Processar Apos Processar  Diferenca

PSNR 16,71 dB 24,0032 dB 7,2932 dB
SNR 10,6472 dB 17,9403 dB  7,2931 dB
SSIM 0,6935 0,8339 0,1404

Através destes dados apresentados nas tabelas 3, 4 e 5, é entao observado que
quanto maior a constante de mesclagem, maior é a melhora relativa na imagem, porém
quando os resultados sao comparados entre si, quanto menor esta constante, melhor é a
qualidade absoluta do resultado, visto que para o caso ¢ = 0,25 o indice de similaridade
final obtido foi de 0,9485, indicando que a imagem processada é muito similar a imagem

original que nunca foi marcada.

Também fica claro por meio destes dados que as métricas PSNR e SNR diferem
sempre pelo mesmo valor, sendo entao redundantes. Para simplificacdo dos resultados

apresentados seguintes serao apenas utilizadas as métricas PSNR e SSIM.

4.3.3 Resultados para Marca Distorcida (¢ = 0,5)

Repetindo a aplicagdo do algoritmo de remocao para as imagens cujas marcas

foram distorcidas aleatoriamente, sdo obtidos os seguintes resultados, nas figuras 32 e 33:
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(a) Imagem Com Marca Distorcida (b) Imagem Processada

Figura 32: Antes e depois da remocao para marca distorcida

(b) Imagem Processada (Ampliada)

Figura 33: Ampliagdo do resultado da remogao na imagem com marca distorcida

Diferentemente do obtido anteriormente para as marcas simples nao distorcidas,
desta vez o algoritmo é inefetivo na remocao da marca distorcida, de forma que esta é quase

tao visivel na imagem processada quanto na imagem marcada original. Isto ocorre devido
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a impossibilidade do algoritmo estimar corretamente a marca aplicada a cada imagem,
uma vez que cada uma delas difere significativamente devido a suas distorcoes aleatorias,
que mostraram-se efetivas no aumento de robustez da marca frente a este algoritmo de

remocao. Quantitativamente, as seguintes métricas foram levantadas, na tabela 6:

Tabela 6: Métricas para Marca Distorcida ¢ = 0,5

Métrica Antes de Processar Apods Processar  Diferenca
PSNR 20,4639 dB 21,8468 dB 1,3829 dB
SSIM 0,7722 0,7919 0,0197

Ou seja, numericamente houve uma melhora menor, de apenas 1,3829 dB, apds o
processamento das imagens, quando comparado ao comportamento do algoritmo para as
marcas regulares nao distorcidas, que tiveram melhoras numericamente maiores e mais

significativas.
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4.3.4 Resultados para Marca Ditherizada

Para as marcas ditherizadas foram repetidos os testes alterando a transparéncia
dos pixels presentes da marca, entre ¢ = 0,5 e ¢ = 1. E importante notar que como sao
aplicados apenas 50% dos pixels da marca a “transparéncia média”, que a marca aparenta
ter quando a imagem ¢é vista como um todo é, de fato, metade do valor da constante c.
Ou seja, o efeito de transparéncia visual obtido para a situacao ¢ = 1 é similar ao visto na

marca regular com ¢ = 0,5.

4.3.4.1 Dither regular

(a) Ditherizada Regular ¢ = 0,5 (b) Ditherizada Regular ¢ = 0,5 P6s Remocao

(e) Ditherizada Regular ¢ =1 (f) Ditherizada Regular ¢ = 1 Pés Remocao

Figura 34: Antes e depois da remocao para imagens com marcas ditherizadas regularmente
(Ampliadas)

Nestes testes, apresentados na figura 34, é observado, assim como nos realizados
para a marca comum, que marcas com constante de mesclagem maiores produzem defeitos
de remocao mais visiveis, contudo, para as marcas ditherizadas estes defeitos sao muito
mais pronunciados ao longo de toda a marca, e ndo apenas nas bordas, como anteriormente.
Mesmo para a marca bastante sutil, com ¢ = 0,5, estes defeitos geram um efeito quadricu-
lado bastante visivel na imagem processada, devido a incompatibilidade do efeito dither
com o algoritmo de remocao. Estas observacoes sao afirmadas pelas métricas calculadas, a

seguir, nas tabelas 7, 8 e 9:
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Tabela 7: Métricas para Marca Ditherizada ¢ = 0,5

Métrica Antes de Processar Apos Processar  Diferenca
PSNR 23,2336 dB 26,297 dB 3,0634 dB
SSIM 0,8197 0,8509 0,0312

Tabela 8: Métricas para Marca Ditherizada ¢ = 0,75

Meétrica Antes de Processar Apos Processar Diferenga
PSNR 19,7286 dB 23,5306 dB 3,802 dB
SSIM 0,7551 0,8016 0,0465

Tabela 9: Métricas para Marca Ditherizada ¢ = 1

Métrica Antes de Processar Apods Processar  Diferenca
PSNR 17,2334 dB 21,3458 dB 4,1124 dB
SSIM 0,7052 0,7598 0,0546

Este comportamento assemelha-se ao obtido para as marcas comuns, porém com
melhoras inferiores em todas as métricas quando comparadas com as melhoras obtidas para
as marcas comuns de mesma constante de mesclagem, sem modificagoes, demonstrando

que a aplicacao do efeito Dither gerou aumento na robustez das marcas como desejado.
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4.3.4.2 Dither aleatério

Para as marcas ditherizadas aleatoriamente, sao obtidos resultados visualmente
similares aos anteriores, apresentados na figura 35, porém com defeitos de remocao de
formato irregular ao invés de quadriculado. Numericamente, os resultados das métricas de

qualidade estao nas tabelas 10, 11 e 12.

.‘.-

-

(a) Ditherizada Aleatéria ¢ = 0,5 (b) Ditherizada Aleatéria ¢ = 0,5 Pés Remocao

(e) Ditherizada Aleatéria ¢ =1 (f) Ditherizada Aleatéria ¢ = 1 P6s Remogao

Figura 35: Antes e depois da remogao para imagens com marcas ditherizadas aleatoriamente
(Ampliadas)

Tabela 10: Métricas para Marca Ditherizada Aleatoriamente ¢ = 0,5

Métrica Antes de Processar Apo6s Processar  Diferenca
PSNR 23,2008 dB 24,7204 dB 1,5196 dB
SSIM 0,8215 0,8041 -0,0174

Tabela 11: Métricas para Marca Ditherizada Aleatoriamente ¢ = 0,75

Métrica Antes de Processar Apods Processar  Diferenca
PSNR 19,7276 dB 25,3595 dB 5,6319 dB
SSIM 0,7583 0,8542 0,0959
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Tabela 12: Métricas para Marca Ditherizada Aleatoriamente ¢ = 1

Métrica Antes de Processar Apos Processar  Diferenca
PSNR 17,2135 dB 23,4382 dB 6,2247 dB
SSIM 0,708 0,8234 0,1154

Analisando os resultados qualitativos e quantitativos para as marcas aleatoriamente
ditherizadas observa-se que o desempenho do algoritmo foi inferior ao obtido com as marcas
simples, tradicionais. No entanto, apenas a situacao de ¢ = 0,5 mostrou-se mais robusta
ao algoritmo quando comparada ao dither regular. Uma possivel razao para este resultado
é que os defeitos adicionados devido a aleatoriedade sao capazes de sobrepor a melhora
decorrente pela tentativa de remocao da marca ¢ = 0,5, visto que, assim como observado
nos resultados anteriores, marcas de baixa opacidade fornecem menores oportunidades de
melhora, e para as situagoes ¢ = 0,75 e ¢ = 1, o efeito de remoc¢ao da marca é mais intenso

que os defeitos decorrentes da aleatoriedade.

Esta linha de raciocinio também explica a razao do resultado negativo para a
métrica SSIM no caso da marca com ¢ = 0,5. O valor negativo indica que a qualidade
visual da imagem piorou apods a execuc¢ao do algoritmo, mesmo que apenas ligeiramente,
com um valor muito proximo a zero. Sua ocorréncia para esta situacao se deve ao fato das
imperfei¢oes adicionadas pelo algoritmo serem de magnitude aproximadamente equivalente
ao efeito de melhora na imagem decorrente da remoc¢ao da marca. Ou seja, o efeito desejado
do algoritmo, remover a marca, esta equilibrado com os efeitos indesejados adicionados

devido a irregularidade desta marca.

Logo, ambas as técnicas de dithering podem ser validas para o aumento da robustez
das marcas d’agua, uma vez que a diferenca principal entre o resultado destas duas ¢ a
aparéncia final dos defeitos de remocao, que podem ser regulares ou irregulares, e possuem
intensidade relacionada com a constante de mesclagem escolhida para a aplicacao da

marca.

4.3.5 Outros Resultados

4.3.5.1 Marca Sélida

A maneira mais simples de marcar uma imagem é apenas sobrepor uma regiao
desta com a marca desejada, substituindo inteiramente seus pixels, equivalente ao uso de
uma constante de mesclagem ¢ = 1. Isto ndao é um modo comum de se marcar imagens
uma vez que impacta intensamente a qualidade visual da imagem, contudo, também foi
testado o desempenho do algoritmo de remocao para essa situacao, obtendo-se os seguintes

resultados, nas figuras 36 e 37:
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(a) Imagem Com Marca Sélida (b) Imagem Processada

Figura 36: Antes e depois da remog¢ao para marca sélida

(a) Imagem Com Marca Sélida (Ampliada)

(b) Imagem Processada (Ampliada)

Figura 37: Ampliacdo do resultado da remog¢ao na imagem com marca solida

Ou seja, mesmo para uma imagem que teve alguns de seus pixels totalmente
substituidos, o algoritmo tem o comportamento de remover a marca, que é facilmente

estimada e reconstruida, e “borrar” as regioes desconhecidas de acordo com os pixels
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préximos. Embora o resultado final ainda esteja claramente marcado e apresentando
defeitos, mesmo para imagens nao ampliadas, a melhora relativa entre a imagem marcada
e a processada é maior que para as marcas testadas anteriormente, como demonstrado

pelas métricas na tabela 13, a seguir:

Tabela 13: Métricas para Marca Solida ¢ = 1

Métrica Antes de Processar Apos Processar  Diferenca
PSNR 11,2974 dB 19,0507 dB 7,7533 dB
SSIM 0,5642 0,7468 0,1826

Mesmo com a maior melhora relativa dos resultados, o resultado final ainda possui
a pior das relacoes absolutas de sinal-ruido apds a execugao do algoritmo. Ou seja, a
qualidade da imagem resultante é ruim quando comparada a imagens cujas marcas aplicadas

possuiam indices de mesclagem menores que 1.

4.3.5.2 Distorgoes e Ditherizagao (¢ = 0,75)

De maneira a melhorar ainda mais a robustez das marcas d’agua foram combinados
ambas as técnicas de distorcao e ditherizagaio com ¢ = 0,75, obtendo-se os seguintes

resultados apresentados nas figuras 38 e 39, altamente resistentes ao algoritmo de remocao:

(a) Imagem Com Marca Distorcida e Ditherizada (b) Imagem Processada

Figura 38: Antes e depois da remocao para marca distorcida e ditherizada
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(b) Imagem Processada (Ampliada)

Figura 39: Ampliagao do Resultado da Remocdo na Imagem com Marca distorcida e
ditherizada

Tabela 14: Métricas para Marca Distorcida e Ditherizada (¢ = 0,75)

Métrica Antes de Processar Apods Processar  Diferenca
PSNR 19,9683 dB 20,4623 dB 0,4940 dB
SSIM 0,7541 0,7468 -0,0073

A partir das figuras 38, 39, e dos dados quantitativos na tabela 14, é visivel que o
algoritmo foi inefetivo em remover esta marca que combina duas das técnicas abordadas
neste trabalho, tendo a saida do algoritmo quase idéntica a sua entrada. E necessario
considerar, no entanto, que a distor¢ao e processamento excessivo das marcas pode torna-
las dificeis de serem lidas, logo, deve-se realizar um compromisso entre dificuldade de
remocao e clareza na marca. Uma maneira simples de controlar esta clareza é diminuir a

intensidade das distorcoes, que foram aplicadas intensamente nas imagens analisadas.

Para este teste a métrica SSIM teve variacao negativa, novamente denotando uma
deterioracao na qualidade da imagem quando quantificada por esta métrica. Esta diferenca,
de -0,0073, é muito préxima de zero, e indica que o algoritmo nao teve grande impacto na
direcao de melhorar ou piorar a imagem. A mesma conclusao pode ser tomada a partir da
diferenca de 0,4940 dB na métrica PSNR.
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4.3.5.3 Rotacoes Aleatoérias

Por fim, foram testadas imagens cujas marcas receberam rotagoes aleatérias entre
+45° e —45°, de modo que o algoritmo, como foi implementado, é totalmente incapaz de
estimar corretamente as marcas d’agua e executar o processo de remog¢ao, uma vez que
este pressupoe que todas as marcas estdo ao menos na mesma orientacao. Ao rotacionar as
marcas o algoritmo nao ¢ capaz de reconhecé-las como a mesma marca em varias imagens,
e portanto falha, estimando como marca apenas uma pequena regiao ao redor do ponto de

rotacao, demonstrado na figura 40, e nos resultados inefetivos das figuras 41 e 42.

'}

Figura 40: Estimativa Incorreta da Marca Aleatoriamente Rotacionada

(a) Imagem Com Marca Rotacionada (b) Imagem Processada

Figura 41: Antes e depois da tentativa de remocao de marcas aleatoriamente rotacionadas
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(a) Marca Rotacionada (Ampliada) (b) Imagem Processada (Ampliada)

Figura 42: Ampliagdo do Resultado da Tentativa de Remocao da Marca Rotacionada

Ou seja, uma maneira muito simples de aumentar a robustez de marcas d’agua é a
realizacao de rotagoes aleatérias antes de sua aplicacao em cada imagem. Essas rotagoes

também podem ser combinadas com distorgoes e ditherizacao, se desejado e necessério.

Deve-se notar que existe a possibilidade da melhora do algoritmo de remocao para
que este nao pressuponha a mesma orientagao de todas as marcas, contudo isto aumentaria
a complexidade e dificuldade deste algoritmo, que deveria, em algum ponto de seu processo,
alinhar todas as marcas apos sua identificacdo por algum método que seja invariante a

rotagoes. Com todas as marcas alinhadas, o algoritmo poderia proceder normalmente.

Apesar de nao testado neste trabalho, alteracoes na escala da marca aplicada devem
agir de forma analoga ao método de rotagdes aleatérias, impedindo que o algoritmo calcule
a estimativa inicial sem que seja adicionado um passo adicional que corrija variagoes

também na escala.

4.3.6 Comparacgao Grafica

Para a visualizacao destes dados foram gerados os seguintes graficos, nas figuras 43
e 44, para as métricas PSNR e SSIM dos resultados anteriores. Gréaficos para a métrica
SNR se comportam da mesma forma que os graficos de PSNR, com um desvio de 6,06dB

igual a todas as amostras, portanto nao foram repetidos.

As barras em azul, a esquerda, representam os valores calculados antes do proces-
samento das imagens, a as barras em laranja, a direita, representam os resultados obtidos
apds o processamento. A ordem dos testes representados nos graficos é, da esquerda para
direita: Marca Soélida ¢ = 1; Regular ¢ = 0,75; Regular ¢ = 0,5; Regular ¢ = 0,25; Dither
Aleatorio ¢ = 1; Dither Aleatoério ¢ = 0,75; Dither Aleatério ¢ = 0,5; Dither Regular ¢ = 1;



4.8 Remocgdo da Marca D’dgua 65

Dither Regular ¢ = 0,75; Dither Regular ¢ = 0,5; Distor¢oes Aleatorias ¢ = 0,5; Distorgoes

mais Dither Regular ¢ = 0,75; e por fim, Rotagoes Aleatorias.
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Figura 43: Comparacao de valores de PSNR para todos os testes
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Figura 44: Comparacao de valores de SSIM para todos os testes

Observa-se, entao, que a melhora dos indices PSNR e SSIM é menor para as marcas
que passaram pelos processos de aumento de robustez (distorgao, ditherizagao), que para
as marcas tradicionalmente adicionadas a imagens, que sao os exemplos em que ocorreram
as maiores variacoes destes indices. Quase nao ocorreram variagdes para os métodos mais

avancados de distorcao e ditherizagdo combinados, ou para o método de rotacoes.

Como o desempenho do algoritmo esté ligado a diferenca entre os valores obtidos
antes e depois do processamento, foram gerados graficos desta diferenca, apresentados nas
figuras 45 e 46, que confirmam o comportamento descrito para os diferentes métodos e
destacam a vulnerabilidade das marcas adicionadas de forma simples e tradicional, como
as imagens “Adobe Stock”, utilizadas de exemplo real e que cujas marcas foram removidas

de maneira muito bem sucedida.

Para o grafico de variagdo dos valores da métrica SSIM, na figura 46, destaca-se
a presenca de valores negativos e préximos de zero, que como discutido anteriormente,
representam uma deterioracao da qualidade visual destas imagens apds seu processamento,
quando quantificada pela métrica SSIM. Esse fendmeno ocorre quando as imperfei¢coes

adicionadas pelo algoritmo se sobressaem em relacao a eventuais melhoras decorrentes da
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tentativa de remoc¢ao da marca, e s6 foi presente nas situagdes em que a marca possuia

baixa opacidade e alta dificuldade de remogao.

Variago PSNR (dB)

Figura 45: Comparacao da variagdo dos valores de PSNR para todos os testes
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Figura 46: Comparacao da variagdo dos valores de SSIM para todos os testes
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5 CONCLUSAO

Através da implementacao do algoritmo de remog¢ao de marcas d’agua, foi demons-
trado que as marcas d’agua comumente utilizadas para a protecao de direitos autorais
de imagens e fotografias comerciais, por grandes empresas como a Adobe Stock, sdo de
fato pouco robustas frente a um ataque de remocao que se aproveita da disponibilidade de
um imenso nimero de imagens identicamente marcadas na internet, por meio das quais
foi possivel a decomposicao das imagens marcadas em imagens reconstruidas limpas e em
sua marca d’agua estimada, de modo que o resultado final, para estas marcas tradicionais,
possui defeitos dificilmente perceptiveis, mesmo para marcas que foram aplicadas com dife-
rentes niveis de opacidade, nas quais o algoritmo foi capaz de melhorar significativamente
suas qualidades, obtendo ganhos entre 6 e 7 dB nas métricas de qualidade SNR e PSNR.

Ou seja, este trabalho alcancou o objetivo de demonstrar esta vulnerabilidade.

Os métodos analisados de aumento da robustez das marcas d’agua, por sua vez,
demonstraram que mesmo processos relativamente simples, como a ditherizacao em padrao
quadriculado regular, e a aplicagao de distor¢oes aleatoérias foram capazes de melhorar
as marcas como também era o objetivo deste trabalho. Apds a tentativa de remocao
destas marcas melhoradas, residuos e imperfeicdes sao imediatamente visiveis na imagem
reconstruida pelo algoritmo, algo que nao era presente em tamanha intensidade para
as marcas tradicionalmente aplicadas. Além da robustez ser avaliada de forma visual e
qualitativa, esta melhora também foi validada objetivamente pelos resultados das métricas
de qualidade calculadas. Imagens que foram marcadas pela marca d’agua que foi tanto
distorcida como ditherizada apresentaram um ganho na métrica SNR de apenas 0,49 dB
apos a aplicagao do algoritmo de remocao, uma melhora quase imperceptivel, indicando
que a aplicacdo destas técnicas em conjunto foi capaz de inviabilizar o uso deste algoritmo
para a remocao destas marcas, e portanto melhor garante a protecao dos direitos autorais
destas imagens. Na literatura atual da area nao foram encontrados bons exemplos de
marcas melhoradas com o objetivo de resistirem ataques como o descrito por Dekel et al.
(2017), em “On the Effectiveness of Visible Watermarks ”, dificultando a comparagao dos

resultados obtidos neste trabalho com outras marcas d’agua propostas na literatura.

Deve-se notar que sempre existird a possibilidade do aperfeicoamento do algoritmo
de remocao de marcas adicionando consideracoes prévias de possiveis variacoes na marca,
nao s6 por meio das técnicas descritas e aplicadas neste trabalho, mas também de outras
possiveis transformacoes geométricas na marca, a exemplo das marcas aleatoriamente
rotacionadas, as quais o algoritmo de remocao nao esta preparado para lidar, e portanto é
ineficaz em sua remocao. Apesar desta possibilidade, uma marca d’dgua de maior robustez

representara uma maior barreira de esfor¢o necessario para a sua remocao, e assim diminui
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o risco da aplicacao mal-intencionada de algoritmos que busquem remover marcas de forma
sistematica e generalizada, uma vez que estes algoritmos, para apresentarem resultados
satisfatorios em marcas robustas, necessariamente serao mais complexos e lentos, tornando-

0s menos viaveis para aplicacdo em massa.

Verificou-se entao que ainda ha muitas possibilidades para a melhora de marcas
d’agua atualmente utilizadas, que sao vulneraveis a ataques de remocao que podem
ser inteiramente automatizados, buscando de maneira auténoma imagens marcadas na
internet e removendo suas marcas. Entre estas possibilidades de melhora, a simples
distorcao aleatéria ou a rotagao da marca antes de ser aplicada ja representa um grande
passo no aumento da robustez destas marcas. Além das marcas melhoradas analisadas
neste trabalho, também podem ser estudadas em trabalhos futuros marcas d’agua digitais
nao visiveis que funcionem como indicadores ocultos dos direitos autorais da imagem,
bem como marcas d’agua aplicadas nos diferentes dominios de uma imagem, como o da

frequéncia.
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Apéndice:
Exemplos adicionais do desempenho do algoritmo de
remocao de marcas d’agua
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(e) Imagem Marcada Original

(f) Imagem Processada
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(a) Imagem Marcada Original

(e) Imagem Marcada Original

(b) Imagem Processada

(f) Imagem Processada
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(f) Imagem Processada (Ampliagao)
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(f) Imagem Processada (Ampliagao)
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(b) Imagem Processada (Ampliacao)
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