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RESUMO

Bagagli, R. Criação de marcas d’água visíveis mais resistentes a algoritmos
de remoção em imagens digitais. 2019. 81p. Monografia (Trabalho de Conclusão de
Curso) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos,
2019.

Este trabalho apresenta uma proposta de método de adição de marcas d’água visíveis
em imagens digitais com a finalidade de defesa de direitos autorais de fotografias, como é
realizado em grandes escalas para imagens comerciais do tipo “Stock Photos”, dificultando
reproduções não autorizadas dessas imagens. Neste cenário de aplicação e utilização de
marcas d’água, foi utilizado um algoritmo de remoção de marcas d’água da divisão de
pesquisa da Google para validar a proposta apresentada. Esse algoritmo busca remover
as marcas d’água baseando-se no fato que estas são identicamente adicionadas à grandes
quantidades de fotos facilmente obtidas na internet, permitindo que esse problema seja
resolvido a partir da resolução de um sistema de equações cujo objetivo é minimizar o
erro na imagem reconstruída final. O funcionamento do algoritmo de remoção de marcas
d’água visíveis foi verificado com a sua aplicação em imagens comercialmente marcadas,
mostrando ótimo desempenho quanto à remoção das marcas e qualidade dos resultados
reconstruídos. A partir disso, foram elaboradas técnicas de aumento da robustez de
marcas d’água frente a este algoritmo de ataque, visando que as marcas aprimoradas não
fossem tão facilmente removidas, comparativamente às marcas tradicionais. Os métodos
de melhora abordados baseiam-se na aplicação de distorções e de “ditherização” às marcas.
Estes métodos foram analisados quantitativamente por meio de métricas de qualidade
de imagens, obtendo-se resultados que indicam um aumento real na robustez destas
marcas que passaram pelo processamento adicional. Concluí-se, por fim, que as marcas
d’água tradicionais, amplamente utilizadas por grandes empresas de “Stock Photography”,
são pouco robustas frente a um ataque de remoção baseado na abundância de imagens
identicamente marcadas, porém, o método proposto nesse trabalho é capaz de aumentar
significativamente a robustez destas marcas, indicando que é possível, e desejável, o uso de
marcas mais avançadas para melhor garantir a proteção dos direitos autorais de imagens e
impedir seu uso não autorizado.

Palavras-chave: Marca D’água Visível; Processamento de Imagens; Restauração de
Imagens; Qualidade de Imagens; Algoritmo; Visão Computacional





ABSTRACT

Bagagli, R. Creation of visible watermarks more resistant to removal algo-
rithms in digital images. 2019. 81p. Undergraduate Final Project, Sao Carlos School
of Engineering, University of Sao Paulo, Sao Carlos, Brazil, 2019

This paper proposes a method of adding visible watermarks to digital images with the goal
of protecting intellectual rights, as is commonly done in large volumes for “Stock Photos”,
defending against unauthorized uses of these images. Within this context of application and
use of watermarks, a watermark removal algorithm from Google Research was implemented
to validate the proposed method. This algorithm seeks to remove watermarks through
the fact that those marks are identically applied to a large quantity of images freely
available on the internet, allowing this problem to be solved through the solution of a
system of equations which results in a final reconstructed image with minimal errors.
The performance of this visible watermark removal algorithm was validated through its
application on a dataset of commercially watermarked images, resulting in high quality
reconstructed images without highly visible watermarks or visual artifacts. Following this,
techniques for improving watermark robustness were explored, so that these improved
watermarks would not be so easily removed from images, when compared to traditional
watermarks. The methods explored are based on applying distortions and ditherization to
the watermark. Quantitatively, these results were analyzed using image quality metrics,
achieving results that indicate a real improvement of the watermark’s robustness when
they go through this additional processing. In conclusion, traditional watermarks, widely
in use by large Stock Photography companies, were shown not to be robust when faced
with a removal algorithm that employs the abundance of identically watermarked images,
however, the proposed method in this paper is capable of significantly improving their
robustness, showing that the use of more advanced watermarks would be a desirable change
in order to better protect an image against unlicensed use and copyright infringement.

Keywords: Visible Digital Watermarks; Digital Image Processing; Image Restoration;
Image Quality; Algorithm; Computer Vision
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1 INTRODUÇÃO

1.1 Contextualização

Com o advento de imagens digitais, distribuídas em quantidades enormes através da
internet e entre diversos modos de armazenamento de dados virtuais, surge a necessidade
da criação de métodos novos para a proteção dos direitos autorais, o “copyright”, destas
imagens. Para isso, surgiu a ideia da criação de "marcas d’água digitais", do inglês “Digital
Watermarking” (Minerva M. Yeung, 1997). Tradicionalmente, as marcas d’água são usadas
em documentos de papel oficiais e cédulas monetárias como defesa a sua falsificação por
entidades não autorizadas. Para este uso, estas marcas são comumente geradas através de
variações na densidade e espessura do papel utilizado, gerando diferentes características
ópticas na imagem impressa dependendo da iluminação ou ângulo de visão. Dada a
dificuldade na reprodução destas marcas, sua presença é evidência da originalidade do
documento ou impressão (Biermann, 1996). Um exemplo deste tipo de marca está na
figura 1.

No mundo digital, marcas d’água também são sobrepostas a imagens as quais se
deseja proteger, como em fotografia profissional do tipo “Stock Photos”, que são fotos
profissionalmente capturadas cujos direitos de uso são comercialmente vendidos, para
aplicação em campanhas de marketing, embalagens de produtos, propagandas, entre outros
objetivos diversos (Frosh, 2001), necessitando então da aquisição de uma licença para
seu uso de forma legal. Sem esta licença, somente é fornecida ao público uma versão
da foto que contem uma marca d’água altamente visível sobre a imagem, denotando
quem detém seus direitos intelectuais e desincentivando seu uso de forma gratuita por
entidades não autorizadas. Devido a grande facilidade de compartilhamento e reprodução
de imagens pela internet, este tipo de proteção é muito demandado. Estas marcas d’água
comumente possuem opacidade reduzida, mas que após sua aplicação degradam a qualidade
da imagem ou foto original, de forma que a remoção desta marca não é um processo trivial,
sendo estes um dos objetivos fundamentais desejados com o uso de marcas d’água visíveis
(Fred Mintzer, 1997). Um exemplo de marca d’água visível aplicada em uma imagem
digital está na figura 2.
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Figura 1: Marca d’água tradici-
onal em uma cédula de 20 euros

Figura 2: Exemplo de marca
d’água digital (“Wikipedia”)

Além de marcas d’água de alta visibilidade, existem também as de baixa visibilidade,
que não alteram visivelmente a imagem mas adicionam informações a esta de modo que
seja possível a certificação da origem da imagem, através da análise dos bits específicos
que a formam. Esta técnica está relacionada aos conceito de impressão digital, em inglês
“digital fingerprinting”, e ao conceito de esteganografia, que se refere à ocultação de uma
mensagem no interior de outra (Potdar et al., 2005). Estas marcas d’água invisíveis, apesar
de servirem um objetivo similar às marcas visíveis, não substituem inteiramente seu uso,
visto que há diversas situações em que deseja-se prontamente alertar o visualizador da
imagem quem é seu detentor de “copyright” (Kankanhalli et al., 1999), por exemplo. Neste
trabalho serão abordadas apenas as marcas do tipo visível, cujo característica principal é
ser prontamente visível quando aplicada.

1.2 Motivação e Justificativa

Utilizando técnicas tradicionais de edição de imagens, como o software “Adobe
Photoshop”, a remoção de marcas d’água do tipo visível é um processo árduo e demorado,
além de exigir experiência por parte do editor, que deve manualmente reconstruir as
partes afetadas pela marca d’água na imagem. Contudo, através do avanço em técnicas de
processamento de imagens e aprendizado de máquina, há a possibilidade da implementação
de um algoritmo que estima a marca d’água e sua máscara de opacidade, aplicadas em
conjunto na foto alvo. Tendo a marca corretamente estimada, deseja-se que o algoritmo
remova a marca da imagem, restaurando seu estado natural. Tal procedimento baseia-se
no pressuposto que a mesma marca d’água é aplicada de forma consistente a um grande
número de fotos, o que é verdade para as “Stock Photos”, permitindo que a marca d’água
seja melhor estimada (Dekel et al., 2017). A viabilidade de um algoritmo deste tipo foi
estudada e demonstrada no trabalho publicado pela Google Research, intitulado “On the
Effectiveness of Visible Watermarks”, (Dekel et al., 2017), que servirá de base para a
elaboração deste trabalho. Por ser um trabalho recente, ainda não há na literatura exemplos
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de marcas d’água visíveis feitas explicitamente com o objetivo de serem resistentes a esse
algoritmo de remoção.

Devido então à possibilidade do desenvolvimento de um programa capaz de remover
estas marcas d’água de alta visibilidade de forma sistematizada e automatizada, existe o
interesse em melhor compreender o funcionamento deste ataque e a proposição de técnicas
capazes de aprimorar a robustez de marcas d’água tradicionais, por meio de transformações
de tamanho, formato ou cor, adição de ruídos aleatórios, ou técnicas de sobreposição da
marca de maior complexidade, como a proposta por Mohanty et al. (2000), que desenvolve
um modelo matemático para a sobreposição de uma marca d’água com base no domínio
DCT (“Discrete Cosine Transform”).

1.3 Objetivo

Este projeto propõe a implementação de um ataque a marcas d’água de alta
visibilidade com base na análise de um banco de dados de imagens identicamente marcadas,
e em seguida a avaliação de possíveis métodos de proteção a este procedimento, de forma
que o mesmo algoritmo de remoção não seja capaz de remover por completo as marcas de
robustez ampliada. Serão estudados três métodos de forma detalhada: Distorções aleatórias,
aplicação de dithering, e rotações aleatórias. Estes métodos serão analisados e comparados
utilizando métricas numéricas de qualidade.
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1.4 Estrutura do Trabalho

Este documento está dividido nas seguintes seções, brevemente descritas abaixo:

• Introdução: Contextualização, motivação e objetivos do trabalho.

• Teoria: Descrição teórica dos conceitos necessários para a implementação dos algo-
ritmos.

• Materiais e Métodos: Detalhamento dos processos realizados para a implementa-
ção de cada passo necessário dos algoritmos.

• Resultados: Demonstração e discussão dos resultados obtidos e dos dados quanti-
tativos de qualidade calculados.

• Conclusão: Condensação dos resultados e discussão desta monografia.

• Apêndice: Exemplos adicionais do desempenho do algoritmo de remoção de marcas
d’água.
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2 TEORIA

Esta seção aborda a teoria necessária para a compreensão dos procedimentos
relacionados a adição de uma marca d’água a uma imagem, bem como o equacionamento
teórico relacionado ao algoritmo de ataque às marcas d’água adicionadas de forma idêntica
a grandes bancos de imagens.

2.1 Adição de uma Marca D’água

Para adicionar uma marca d’água a uma imagem, além da marca e da própria
imagem, também é necessária a informação de como a marca será sobreposta à imagem, isto
é, qual será sua intensidade, ou transparência, na imagem final. A informação necessária
para isto é conhecida como a opacidade da marca, que é representada por meio de uma
máscara “alpha”, que é o terceiro sinal a ser considerado, além da imagem e marca.

Apesar de existirem modelos complexos de composição de imagens sobrepostas por
marcas d’água, que utilizam transformadas “Wavelet” ou no domínio “DCT”, a maioria das
imagens marcadas encontradas em uso são compostas através de um modelo padrão aditivo
para a adição da marca d’água em imagens (Dekel et al., 2017), descrito na subseção
seguinte.

2.1.1 Modelo de Composição Tradicional

Consideramos então que a imagem original é representada por I(p), a marca d’água
por W (p), e sua máscara alpha por α(p), temos então que a imagem marcada final, J(p),
é obtida através da composição aditiva denotada na equação 2.1:

J(p) = α(p)W (p) + (1− α(p))I(p) (2.1)

Em que “p” representa a posição “x, y” de cada pixel da imagem, marca e máscara
alpha.

Tipicamente, deseja-se que tanto a imagem original como a marca d’água sejam
parcialmente visíveis, e portanto para isto considera-se que α(p) = c × αn(p), em que
c < 1 é uma constante de mesclagem entre imagem e marca, e αn(p) ∈ [0, 1] é a máscara
normalizada para cada um dos pixels. Este processo de composição é exemplificado na
figura 3, utilizando o fator de mesclagem c = 0,5 e uma marca d’água sintética criada para
os testes:
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Figura 3: Exemplificação do modelo de composição de uma imagem marcada

Enquanto que uma constante de mesclagem de 0,5 permite a visualização simultânea
da marca d’água e da imagem original, valores menores para c tornam a marca mais sutil,
enquanto que maiores dão prevalência à marca na imagem final, com o valor limite 1, em
que os pixels da imagem original são totalmente substituídos por pixels da marca d’água,
de maneira irrecuperável.

2.2 Remoção de uma Marca D’água

Dada a equação 2.1, de adição de uma marca d’água, o processo inverso de remoção
pode ser explícito na equação 2.2:

I(p) = J(p)− α(p)W (p)
1− α(p) (2.2)

Contudo, a remoção na prática de uma marca d’água por meio desta equação é
inviável, uma vez que para cada pixel existem 3 incógnitas: W, α, e I, e apenas uma
equação de formação 2.1. É devido a esta subdeterminação do sistema, portanto, que
surge a necessidade de se utilizar uma coleção de imagens marcadas consistentemente pela
mesma marca W e opacidade α, permitindo que este problema seja solucionado com boa
precisão (Dekel et al., 2017).

A coleção de K imagens marcadas, com o índice “(p)” omitido para brevidade,
pode ser representada como:

Jk = αW + (1− α)Ik, k = 1, · · · , K (2.3)

A remoção de marcas d’água consistentemente aplicadas a uma coleção de imagens,
portanto, baseia-se em um algoritmo de alguns passos:

• Estimar e Reconstruir a Marca D’água

• Encontrar Posição das Marcas na Coleção de Imagens

• Decompor Imagens Marcadas e Aprimorar Estimativas Iterativamente
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2.2.1 Estimação e Reconstrução da Marca D’água

O passo fundamental para a remoção de uma marca é a estimação desta. Para
este objetivo, é calculado o gradiente de K imagens da coleção nas direções X e Y, e
então é obtida a mediana entre todos estes gradientes, de forma que apenas os gradientes
consistentes a todas as imagens permaneçam, formando uma estimativa do gradiente da
marca d’água utilizada na coleção de imagens. Esta estimativa de partida é equacionada a
seguir:

∇Ŵm(p) = medianak(∇Jk(p)) (2.4)

Como demonstrado em Dekel et al. (2017), quanto maior o número K de imagens
processadas, mais a estimativa do gradiente ∇Ŵm(p) se aproxima dos gradientes reais da
marca d’água (Wm = αW ) com a presença de um desvio, como demonstrado a seguir,
a partir da equação de formação 2.1 e do pressuposto que Ik (Imagem original) e Wk

(Marca d’água original) são sinais aleatórios, em que E[X] representa seu valor estatístico
esperado.

E[∇Jk] = E[∇Wm] + E[∇((1− α)Ik))] = E[∇Wm] + E[∇Ik]− E[∇(αIk)] (2.5)

Utilizando propriedades de multiplicação da derivada (regra do produto), E[∇(αIk)]
pode ser expandido:

E[∇Jk] = ∇Wm +E[∇Ik]−E[∇(α)Ik +α∇(Ik)] = ∇Wm +E[∇Ik]−∇αE[Ik]−αE[∇Ik]
(2.6)

Por fim, tendo que a probabilidade de muitas imagens terem gradientes fortes em
uma única posição é pequena, E[Ik] ≈ 0,

E[∇Jk] = ∇Wm −∇αE[Ik] (2.7)

Ou seja, o valor esperado para a mediana dos gradientes das imagens da coleção
coincide com os gradientes da marca real diferindo apenas nos pixels em que o gradiente
de alpha, ∇α, é diferente de zero, por um desvio de ∇αE[Ik]. A princípio este desvio é
aceito para a formação da estimativa inicial de Wm, mas ele será minimizado e corrigido
na estimativa final.

Tendo então a estimativa ∇Ŵm(p) calculada, é realizada a reconstrução da marca
d’água através da integração dos gradientes na direção X e Y, para cada um dos canais R,
G, e B da marca.
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2.2.2 Localização da Marca D’água

Comumente marcas d’água são aplicadas no centro da imagem ou em alguma
posição pré-definida, para toda imagem da coleção. Neste casos, é apenas necessário a
identificação prévia deste local, sem grandes dificuldades então para se encontrar a região
marcada em todas as imagens. Contudo, também é frequente, como uma proteção básica
contra métodos de remoção automática de marcas d’água, a randomização das coordenadas
na imagem em que a marca é aplicada. Para que qualquer algoritmo de remoção seja
aplicado, é antes necessário o conhecimento destas coordenadas.

Para que a posição da marca seja encontrada em todas as imagens da coleção,
deseja-se utilizar técnicas de reconhecimento de padrões em imagens a partir de uma
marca d’água pré-estimada, algo que pode ser realizado através da seleção prévia manual
da região em que a marca d’água está em apenas uma das imagens, através da qual é
realizada a pré-estimação de seu gradiente, assim como definido na seção anterior. Essa
estimativa será refinada iterativamente assim que mais marcas forem detectadas na coleção,
resultando por fim em uma estimativa mais robusta e capaz de detectar todas ou quase
todas as marcas desejadas.

2.2.3 Decomposição de uma Imagem Marcada

Tendo em mãos uma aproximação inicial da marca d’água Ŵm(p), e sua localização
em cada uma das imagens da coleção, deseja-se decompor as imagens marcadas Jk(p)
em suas componentes W (p), α(p) e Ik(p), respectivamente, a marca d’água, sua máscara
de opacidade, e imagem original. Contudo, não há informações suficientes nas imagens
marcadas para o encontro de uma solução exata, mesmo com o uso de uma coleção grande
de imagens. Assim, este problema é redefinido como a busca de uma solução estimada que
minimize uma função de erro adequada, ou seja, é resolvido por meio de um sistema de
otimização iterada. São então formuladas as seguintes equações que estimam o erro da
solução do problema (Dekel et al., 2017):

Edata (Ik,W, α) =
∑
p

Ψ
(
|αW + (1− α)Ik − Jk|2

)
(2.8)

Ψ
(
s2
)

=
√
s2 + ε2, ε = 0.001 (2.9)

Em que Edata (Ik,W, α) é a função de erro que penaliza diferenças entre a imagem
formada pela equação 2.1 de formação feita com os resultados estimados da imagem
decomposta. A função Ψ

(
s2
)
é apenas uma função simples de regularização dos dados.

Ereg(∇I) =
∑
p

Ψ
(
|αx| I2

x + |αy| I2
y

)
(2.10)
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Ereg(∇W ) =
∑
p

Ψ
(
|αx|W 2

x + |αy|W 2
y

)
(2.11)

Ereg(∇α) =
∑
p

Ψ
(
α2
x + α2

y

)
(2.12)

Ereg(∇I), Ereg(∇W ) e Ereg(∇α) são as funções de erro de regularização que penali-
zam mudanças bruscas de intensidade na marca d’água e imagem reconstruídas nas regiões
em que o gradiente da máscara de opacidade é mais forte, ou seja, encoraja o resultado
final a ser suave nestas regiões de borda. Ix, Wx e αx são as derivadas na direção X destes
sinais. Similarmente, Iy, Wy e αy, são as derivadas na direção y.

Ef (∇Wm) =
∑
p

Ψ
(∥∥∥∇Wm −∇Ŵm

∥∥∥2
)

(2.13)

Ef (∇Wm) é a função de erro que estimula o resultado a apresentar gradientes
similares aos obtidos na estimativa inicial Ŵm. Por fim, na equação 2.14, com o uso destas
funções de erro é escrita a função que se deseja minimizar, para encontrar uma solução
otimizada ao problema de decomposição de uma coleção de K imagens marcadas:

arg min
W ,α,{Ik}

∑
k

(Edata (W,α, Ik) + λIEreg (∇Ik))

+ λwEreg(∇W ) + λαEreg(∇α) + βEf (∇(αW ))
(2.14)

Em que os parâmetros λ e β são constantes que controlam a influência de cada
termo. Encontrar os argumentos mínimos desta equação não é uma tarefa fácil, porém
Dekel et al. (2017) sugerem a resolução deste problema pelo método dos mínimos quadrados
iterativamente ponderados (“Iteratively-Reweighed-Least-Square (IRLS)”) (Burrus, 2012).

Para otimizar a resolução deste problema não linear e de muitas variáveis, são
introduzidas variáveis auxiliares Wk, que representam uma estimativa individual da marca
d’água para cada uma das imagens marcadas presentes no banco de dados, de forma que
cada Wk deve ser próxima a estimativa geral da marca, W , de acordo com a função de
erro Eaux, definida na equação 2.15, de forma similar às funções de erro anteriores: (Dekel
et al., 2017)

Eaux (W,Wk) =
∑
p

|W −Wk| (2.15)

Com a adição de uma constante γ relacionada à função Eaux, o sistema final a ser
resolvido, a fim de se encontrar os argumentos mínimos, é então o seguinte, dado pela
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equação 2.16:

arg min
∑
k

(Edata (Ik,Wk, α) + λIEreg (∇Ik) + λwEreg (∇Wk) +

λαEreg(∇α) + βEf (∇ (αWk)) + γ
∑
k

Eaux (W,Wk)
(2.16)

A resolução deste sistema pode ser interpretada como as variáveis “Ik” (Imagens com
marcas d’água retiradas), “Wk” (Aproximações da marca d’água aplicada a cada imagem),
e “α” (Máscara de transparência da marca d’água) que produzem os menores valores
de erros nas funções “Edata” (Garante que os resultados obtidos, quando recombinados,
produzem imagens semelhantes às utilizadas na entrada), “Ereg” (Garante que os resultados
tenham aparência relativamente suave), “Ef” (Estimula que a marca d’água estimada
final seja similar à estimativa inicial), e “Eaux” (Aproxima estimativas individuais de cada
marca à estimativa geral). As variáveis estão resumidas e organizadas na tabela 1, e as
funções de erro na tabela 2.

Tabela 1: Variáveis

Variável Descrição
Ik Imagens Limpas
Wk Estimativa Individual da Marca
α Máscara de Transparência

Tabela 2: Funções

Função Descrição
Edata Imagem decomposta gera imagem original quando recomposta
Ereg Suavidade na Aparência
Ef Similaridade com Estimativa Inicial
Eaux Similaridade de Estimativas Individuais com a Geral

Dekel et al. (2017) resolve este sistema em duas partes, primeiramente fixando “α”
e “W ”, a partir de estimativas iniciais, e através do sistema simplificado a seguir, encontra
“Wk” e “Ik”:

arg min
Wk,Ik

Edata (Ik,Wk) + λIEreg (∇Ik) + λwEreg (∇Wk) +

βEf (∇ (αWk)) + γEaux (W,Wk)
(2.17)

Após a resolução deste sistema, que será detalhada posteriormente, a estimativa
geral para a marca d’água “W” é atualizada de maneira simples utilizando o conjunto de
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estimativas individuais “Wk”, por meio do cálculo da mediana:

W = mediankWk (2.18)

Por fim, a variável “α” é atualizada, mantendo as anteriores fixas, de maneira
análoga a como “Wk” e “Ik” foram obtidas, mas desta vez minimizando o erro para obter
o valor de α.

∑
k

Edata (α, Ik,W ) + λαEreg(∇α) + βEf (∇(αW )) (2.19)

Este processo é então iterado quantas vezes forem necessárias para a convergência
do resultado, cuja velocidade de convergência depende das constantes λI ,λw,λα, β e γ, que
agem como pesos para cada uma das funções de erro que levam aos valores ideais de “Ik”,
“Wk” e “α”.

2.2.3.1 Detalhamento da Resolução do Sistema

A resolução do sistema dado pela equação 2.16, como detalhado no material suple-
mentar por Dekel et al. (2017), se dá pela transferência do domínio discreto (somatória)
para o domínio contínuo (integral), com o uso de equações de Euler-Lagrange. Especifica-
mente, através de um sistema de várias funções de várias variáveis (Courant and Hilbert,
1989), cujo formato está denotado nas equações 2.20, 2.21 e 2.22.

I [f1, f2, . . . , fm] =
∫

Ω
L (x1, . . . , xn, f1, . . . , fm, f1,1, . . . , f1,n, . . . , fm,1, . . . , fm,n) dx

(2.20)

fi,j := ∂fi
∂xj

(2.21)

∂L
∂f1
−

n∑
j=1

∂

∂xj

(
∂L
∂f1,j

)
= 01

∂L
∂f2
−

n∑
j=1

∂

∂xj

(
∂L
∂f2,j

)
= 02

∂L
∂fm

−
n∑
j=1

∂

∂xj

(
∂L
∂fm,j

)
= 0m

(2.22)

Quando deseja-se resolver o sistema de equações 2.17, as funções de várias variáveis
f1, f2,..., fm representam as funções Ik e Wk, cujas variáveis são as coordenadas x e y. Ik
e Wk são o resultado desejado na resolução deste problema. A somatória em k no sistema
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2.17 é substituída pela integral genericamente definida em Ω, e o termo L representa o
termo interior a somatória, isto é:

L =Ldata (Ik,Wk, α) + λILreg (∇Ik) + λwLreg (∇Wk) +
λαLreg (∇α) + βLf (∇ (αWk)) + γLaux (W,Wk)

(2.23)

Com as funções Lx sendo análogas as funções Ex anteriores, no domínio discreto.
Com estas definições, as equações de Euler-Lagrange para o sistema, como exemplificadas
genericamente na equação 2.22, são as seguintes:

∂L

∂Ik(p) −
∂

∂x

∂L

∂ (Ikx(p)) −
∂

∂y

∂L

∂
(
Iky (p)

)
∂L

∂W k(p) −
∂

∂x

∂L

∂ (W k
x (p)) −

∂

∂y

∂L

∂
(
W k
y (p)

) (2.24)

E substituindo os termos relevantes,

∂Ldata

∂Ik(p) − λI
∂Lreg (∇Ik)
∂ (Ikx(p)) − λI

∂Lreg (∇Ik)
∂
(
Iky (p)

) = 0 (2.25)

∂ (Ldata + γLaux)
∂W k(p) − ∂

∂x

∂ (βLf + λwLreg)
∂ (W k

x (p)) − ∂

∂y

∂ (βLf + λwLreg)
∂
(
W k
y (p)

) = 0 (2.26)

Com a finalidade de reescrever este sistema de forma matricial e resolvê-lo, Dekel
et al. (2017) define as seguintes notações que serão utilizadas também para a implementação
deste algoritmo computacionalmente:

α = diag(α) α = diag(1− α) (2.27)

Em que “diag” representa uma matriz diagonal com os elementos de “α”.

Ψ′data = diag
(

Ψ′
((
αW k + (1− α)Ik − Jk

)2
))

Ψ′w = diag
(

Ψ′
((
|αx|W k

x + |αy|W k
y

)2
))

Ψ′I = diag
(

Ψ′
((
|αx| Ikx + |αy| Iky

)2
))

Ψ′f = diag
(
Ψ′
(
‖∇

(
αW k

)
−∇Wm

)
‖2
)

Ψ′aux = diag
(

Ψ′
((
W k −W

)2
))

Ψ′rI = diag
(
Ψ′
((
|αx| I2

x + |αy| I2
y

))
Ψ′rw = diag

(
Ψ′
((
|αx|W 2

x + |αy|W 2
y

))

(2.28)
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LI = DT
xcxΨ′rIDx +DT

y cyΨ′rIDy

Lw = DT
xcxΨ′rwDx +DT

y cyΨ′rwDy

Af = αT (DT
xΨ′fDx +DT

yΨ′fDy︸ ︷︷ ︸
Lf

)α+ γΨ′aux
(2.29)

cx = diag (|αx|) cy = diag (|αy|) (2.30)

bw = αTΨ′data J
k + βLfWm + γΨ′aux W

bI = αTΨ′data J
k

(2.31)

Em que Ψ(s)′ é a derivada da função Ψ(s), (equação 2.9), de regularização defi-
nida anteriormente, e Dx, Dy representam operadores de derivada horizontal e vertical,
respectivamente.

Com esta notação, é então composto o seguinte sistema matricial, que representa
as equações 2.25 e 2.26 (Dekel et al., 2017):

 α2Ψ′Ψ′data + λwLw + βAf ααΨ′data

ααΨ′data α2Ψ′data + λILI

 W k

Ik

 =
 bw

bI

 (2.32)

A implementação computacional desta solução envolve, portanto, a composição
desta matriz através do cálculos dos termos não lineares Ψ′, através da estimativa atual
de α e W , e então resolução do sistema de equações dado em 2.32, tendo como resultado
estimativas atualizadas de Wk e Ik.

Por fim, com base nestas estimativas atualizadas, o valor de α é recalculado, por
um método análogo ao anterior, porém com o sistema de equações dado em 2.19, que
mantém as variáveis anteriores fixas, para encontrar α. O sistema, na forma “Aα = b”, e
as definições necessárias, são as seguintes:

(∑
k

Ψ′k + λαLα + βÃf

)
α =

∑
k

Ak (J − Ik) + βW TLfWm (2.33)

W = diag(W )
Ψ′k = diag

(
Ψ′
((
αW + (1− α)Ik − Jk

)2
(W − Ik)

))
Lα = DT

xΨ′αDx +DT
yΨ′αDy

Ãf = W TLfW

Ψ′α = diag
(
Ψ′
(
‖∇α‖2

))
(2.34)

As imagens Ik e Wk são então obtidas de forma intercalada com α, até que o
resultado seja satisfatório.
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2.3 Avaliação Da Qualidade de Imagens

Para a avaliação da qualidade de imagens são frequentemente utilizados métodos
como o “Erro Quadrático Médio” (MSE - Mean Squared Error), “Pico da Relação Sinal
Ruído” (PSNR - Peak Signal to Noise Ratio), “Relação Sinal Ruído” (SNR - Signal to
Noise Ratio) e o Índice de Similaridade Estrutural (SSIM - Structural Similarity Index)
(Zhou Wang et al., 2004).

O método mais simples e direto, MSE, é obtido através da média das diferenças
das intensidades elevadas ao quadrado de duas imagens, ou seja:

MSE = 1
mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (2.35)

Em que I,K representam as duas imagens sendo comparadas, em,n, suas dimensões.
K é a imagem de referência, não degradada por ruídos, ou no caso deste trabalho, por
marcas d’água, e I é a imagem que sofreu alguma degradação. O valor desta métrica
pode então ser calculado uma vez comparando a imagem original e a imagem com marca
d’água antes do processo de remoção, e uma segunda vez com a imagem marcada após o
processo de remoção, obtendo-se dois valores cuja diferença indicará a melhora ou piora
na qualidade da imagem, em relação à imagem original não modificada.

Contudo, o método MSE não é muito robusto e depende muito dos possíveis valores
de intensidade da imagem, portando é mais frequentemente aplicada a métrica PSNR
(com unidades em dB), que continua o conceito da métrica MSE da seguinte forma:

PSNR = 10 · log10

(
MAX2

I

MSE

)

= 20 · log10

(
MAXI√
MSE

)
= 20 · log10 (MAXI)− 10 · log10(MSE)

(2.36)

Em que MAXI representa o valor máximo de intensidade da imagem, por exemplo,
255 em uma imagem de 8 bits. Desta forma a métrica PSNR não é mais dependente da
amplitude dos dados da imagem, e por ser uma métrica logarítmica, funciona bem mesmo
para grandes variações. De forma similar à métrica PSNR, a métrica SNR é definida como
a relação entre a potência do sinal puro e do sinal de ruído em uma imagem, diferindo da
PSNR que é a relação entre o valor máximo alcançável para o tipo da imagem e a potência
do ruído, de forma que PSNR ≥ SNR, porém com ambas sendo métricas comparáveis e
similares.

Um exemplo do comportamento da métrica PSNR em uma imagem de teste com
diferentes níveis de ruído pode ser visto na figura 4.
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Figura 4: PSNR de várias imagens com diferentes quantidades de ruído

Apesar de muito úteis no estudo de ruídos, as métricas SNR e PSNR nem sempre
são adequadas para a análise da qualidade visual de uma imagem, isto é, é possível que
uma imagem de menor PSNR possua, visualmente, uma qualidade superior a uma imagem
de maior PSNR, devido à forma com que interpretamos imagens, em que certos tipos de
ruídos ou erros são mais visíveis que outros, algo não levado em consideração por estas
métricas. Foi, portanto, desenvolvida a métrica SSIM, com o intuito de resolver estes
problemas na avaliação de qualidade de imagens. (Zhou Wang et al., 2004)

O índice de similaridade, SSIM, também entre uma imagem de referência e uma
degradada, seja por ruído, marcas, ou compressão, denotadas por x e y, é calculado da
seguinte forma:

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (2.37)

Que é uma combinação dos termos “l”, de luminância, “c”, de contraste, e “s”, de
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estrutura (structure), com pesos α, β e γ. Estes termos são definidos a seguir:

l(x, y) = 2µxµy + C1

µ2
x + µ2

y + C1

c(x, y) = 2σxσy + C2

σ2
x + σ2

y + C2

s(x, y) = σxy + C3

σxσy + C3

(2.38)

C1 = (K1L)2 (2.39)

C2 = (K2L)2 (2.40)

C3 = C2/2 (2.41)

Em que, µx, µy representam a média das imagens, σx, σy, a variância, e σxy, a
covariância. K1 e K2 são constantes pequenas para estabilidade da divisão, por padrão
definidas como K1 = 0.01 e K2 = 0.03. Os pesos α, β e γ, quando todos iguais a 1,
permitem a simplificação das fórmulas anteriores ao resultado explícito na equação 2.42:

SSIM(x, y) = (2µxµy + C1) (2σxy + C2)(
µ2
x + µ2

y + C1
) (
σ2
x + σ2

y + C2
) (2.42)

O cálculo desse índice entre duas imagens retorna um valor entre 0 e 1, em que
1 representa duas imagens idênticas, e 0 representa similaridade nula. Assim como as
métricas SNR e PSNR, este índice será usado para comparar a similaridade da imagem
marcada com a imagem original, antes e depois de seu processamento, com o objetivo de
se observar um aumento na similaridade entre as imagens após a tentativa de remoção da
marca d’água adicionada à imagem.
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3 MATERIAIS E MÉTODOS

Esta seção abordará os passos tomados a fim da implementação computacional do
algoritmo para remoção de marcas d’água detalhado na seção teórica deste trabalho, assim
como as tarefas necessárias para validar e quantificar seu funcionamento. Por fim, também
são abordadas as tarefas relacionadas aos métodos sugeridos de melhoria da robustez
de marcas d’água, com a finalidade que este algoritmo de remoção abordado apresente
eficiência reduzida.

O computador utilizado para a elaboração e execução final dos programas relevantes
possui um processador “Intel Core i7 4790k”, 12GB de memória RAM, placa de vídeo
“GeForce GTX 970” e sistema operacional Windows 8.1. Devido a implementação não
otimizada por paralelização dos algoritmos, o fator principal que limita sua velocidade
de execução é a velocidade do processador, em apenas uma thread lógica. Com exceção
do algoritmo de remoção, que será detalhado separadamente no trabalho, foi utilizado o
ambiente de programação Matlab para a manipulação das imagens e marcas, devido a
grande disponibilidade de funções e algoritmos relacionados ao processamento de imagens
já fornecidos pela linguagem.

3.1 Criação do Banco de Imagens Utilizado

Para a elaboração e teste do algoritmo, foram primeiramente adquiridas fotos
suficientes para simular um grande banco de dados de “Stock Photos” identicamente
marcadas por marcas d’água, como os disponíveis na internet para uso comercial, por
exemplo, “Adobe Stock” ou “Getty Images”, entre muitos outros. Para que o algoritmo
possa ser avaliado de forma objetiva, foram requisitadas fotos originalmente limpas, que
não apresentam marcas d’água, de modo que uma marca sintética possa ser aplicada a
estas e que o resultado final da remoção possa ser comparado com imagens limpas. Assim,
o provedor de imagens limpas utilizadas foi o website “pexels.com”, no qual todas as fotos
disponíveis estão em alta resolução, sem marcas d’água, e possuem licença que permite
seu uso e reprodução de maneira livre.

Foram escolhidas 48 imagens de temática e aparência variadas, a fim de representar
a grande variabilidade de imagens possíveis. Uma amostra destas imagens está na figura 5.

Figura 5: Amostra de imagens limpas adquiridas (Fonte: pexels.com)
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Para facilitar o processamento das imagens, todas elas tiveram suas dimensões
regularizadas para 500x500 pixels, através das funções “imresize” e “padarray” do Matlab,
utilizado para o tratamento inicial do banco de imagens. Esta dimensão foi escolhida por
ser suficientemente alta para que os detalhes das imagens e marcas sejam facilmente visíveis
e claros, porém também buscando minimizar o tamanho das imagens para facilitar o seu
processamento, tanto em quantidade de memória necessária e tempo de processamento.

3.1.1 Marca D’água Sintética

A marca d’água sintética, que foi aplicada nas imagens limpas do banco de dados,
foi então gerada de forma simples e direta com o auxílio do programa gratuito de edição de
imagens “Paint.NET”, bem como seu canal alpha, necessário para a aplicação das marcas,
conforme demonstrado na figura 3, na seção de teoria do trabalho. A marca e seu canal
alpha gerados estão na figura 6.

(a) Marca D’água (“W (p)”) (b) Canal Alpha (“α(p)”)

Figura 6: Marca D’água e seu Canal Alpha gerados

Estas marcas d’água foram geradas com a resolução de 200x200 pixels, para serem
aplicadas no centro das imagens do banco de dados.

Figura 7: Exemplo de Imagem Marcada Sinteticamente
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3.1.2 Marca D’água Comercial (Adobe Stock)

Além do banco de imagens limpas, também foram adquiridas imagens previamente
marcadas por motivos comerciais, a fim de validar o funcionamento do algoritmo com
exemplos reais e demonstrar a fragilidade destas marcas cujo objetivo é a identificação
do detentor dos direitos autorais da foto. Para tal, foram obtidas imagens da provedora
“Adobe Stock”, que marca todas suas imagens diretamente disponíveis em seu website, de
maneira a incentivar a compra dos direitos de uso das imagens em sua resolução máxima e
não marcada. Ao total, foram obtidas 60 imagens com a marca “Adobe Stock”, amostradas
nas figuras 8 e 9.

Figura 8: Exemplo de imagem marcada comercialmente - “Adobe Stock” (Fonte:
stock.adobe.com)

Figura 9: Outras imagens marcadas adquiridas (Fonte: stock.adobe.com)

Assim como as imagens anteriores, estas também são processadas para que tenham
o mesmo formato 500x500 pixels, através de recortes em imagens maiores e do padding em
imagens menores.

3.2 Remoção das Marcas D’água

Para a remoção das marcas d’água o algoritmo foi implementado na linguagem de
programação Python, para ambas as versões 2.7, cujo suporte oficial será encerrado em
breve, e 3.7, versão mais recente da linguagem Python. Essa linguagem foi escolhida por
ter utilização muito ampla e bem documentada na internet, e por possuir sintaxe intuitiva,
sendo uma boa escolha para a manipulação de imagens e outros dados.
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As bibliotecas principais utilizadas foram “OpenCV ”, uma biblioteca de código
aberto com mais de 2000 funções relacionadas a visão computacional, “numpy”, “scipy”,
bibliotecas da linguagem Python para a manipulação numérica de matrizes e resolução do
sistema linear final obtido através do algoritmo, e “matplotlib”, também uma biblioteca
Python, para a exibição das imagens e resultados durante a execução do código. O fluxo
do algoritmo implementado é o seguinte:

1. Estimar Marca D’água Inicial

2. Detectar Localização da Marca em Todas as Imagens e recortá-las

3. Estimar Máscara α Inicial

4. Estimar Fator de Mesclagem c Inicial

5. Para cada uma das imagens de entrada:

a) Obter Ik e Wk mantendo α e W fixos

b) Atualizar Valor de W mantendo os demais fixos

c) Atualizar Valor de α mantendo os demais fixos

6. Repetir o passo acima um número pré-definido de iterações

O primeiro passo, estimar a marca inicial, se dá através do cálculo do gradiente de
cada umas fotos do conjunto, seguido pela mediana entre todos estes gradientes, obtendo-
se então um gradiente médio. A partir deste gradiente médio são utilizadas técnicas de
thresholding (Gonzalez and Woods, 2006) a fim de que apenas os gradientes provenientes
da marca d’água estejam presentes no resultado processado, obtendo-se neste passo o
formato e tamanho que será utilizado de recorte para as marcas das imagens. Os resultados
desse passo encontram-se na figura 10.

(a) Gradiente da Marca Não Pro-
cessado

(b) Gradiente da Marca Proces-
sado

(c) Marca Recortada e Recons-
truída através do Gradiente

Figura 10: Processo de Obtenção da Estimativa Inicial da Marca D’água
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A reconstrução da marca d’água a partir de seus gradientes, na direção X e Y,
se dá através da reconstrução de Poisson (Pérez et al., 2003) Shen et al. (2005), com
o cálculo do Laplaciano das imagens, isto é, o divergente do gradiente previamente
calculado. O código implementado para esta reconstrução foi adaptado do disponível em:
https://web.media.mit.edu/~raskar/photo/code.pdf (acessado em 22/11/2019).

O segundo passo, localizar a marca d’água em todas as imagens da coleção e
recortá-las, pode ser simplificado quando todas as marcas são adicionadas às imagens na
mesma posição, como é comum nas marcas comerciais, no entanto, o método de localização
da marca implementado baseia-se na comparação entre as bordas detectadas em uma
imagem marcada e as bordas de uma estimativa inicial da marca d’água, que pode até
mesmo ter sido obtida através da reconstrução de poucas imagens cuja localização da
marca foi manualmente denotada. A comparação, que resultará na posição da marca
d’água, é feita através da filtragem no domínio do espaço (Gonzalez and Woods, 2006) da
imagem marcada com suas bordas detectadas através do algoritmo de Canny (Canny, 1986)
utilizando as bordas da estimativa da marca como o kernel do filtro. Isto é, é calculada a
correlação entre estas duas imagens. Muitas vezes este processo de filtragem é referido
como convolução entre imagens, contudo, a convolução inverte o kernel, enquanto que a
correlação mantém sua orientação. As imagens relevantes a este passo estão na figura 11.

(a) Bordas Da Marca a ser Detectada

(b) Bordas Da Imagem Marcada

(c) Ampliação da região da marca na imagem, onde suas bordas serão detectadas

Figura 11: Exemplo de Imagens utilizadas para localização da Marca

Após o cálculo da correlação entre estas duas imagens, o resultado não terá
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semelhança visual a nenhuma delas, porém, se a detecção for bem sucedida, o pixel de
maior valor no resultado corresponde ao ponto na correlação em que o kernel do filtro,
quando multiplicado e somado com os pixels correspondentes na imagem alvo, melhor
coincidiu sobre as bordas desta imagem. Ou seja, onde houve maior sobreposição entre
as bordas da marca estimada e das bordas da imagem alvo, denotando assim a posição
esperada da marca na imagem. Na figura 12 a seguir, encontram-se exemplos dessa
localização.

Figura 12: Exemplo de marcas localizadas pelo método de filtragem, denotadas pelo X
vermelho

Para a simplificação dos testes, contudo, as marcas utilizadas para os testes a seguir
foram todas adicionadas ao centro de todas as imagens, posição comum em “stock photos”
comerciais, como nas imagens “Adobe Stock” obtidas, de modo que para a localização e
recorte de todas as marcas foi apenas necessária a definição manual de uma janela em
torno de uma das marcas, que será aplicada para todo o banco de imagens. Além do
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método de filtragem descrito anteriormente para encontrar marcas, outras técnicas de
localização de padrões em imagens também poderiam ser utilizadas com desempenhos
similares ou superiores ao método da correlação, como por exemplo, as funções de detecção
e extração de características de imagens, disponíveis no toolbox de visão computacional do
Matlab, através da função “matchFeatures”.

O terceiro e quarto passos, responsáveis pela inicialização das estimativas da
máscara de transparência, α, e da constante de mesclagem, c, são completados a partir da
implementação do algoritmo de separação de plano de fundo e plano frontal de Levin et al.
(2008), cujos resultados estão demonstrados nas figuras 13 e 14

(a) Imagem de entrada (b) Canal α de saída do algoritmo de Levin
et al.

(c) Separação de Plano de fundo e frontal pelo algoritmo

Figura 13: Exemplo do funcionamento do algoritmo de Levin et al.

Figura 14: Imagem α da Marca D’água, obtida através do algoritmo de Levin et al. (Com
ajuste de contraste para melhor visualização)

Como entrada deste passo são utilizados os recortes das imagens em suas regiões
marcadas e a estimativa inicial de W adquirida anteriormente pela reconstrução Poisson,
e a saída final é obtida pela mediana de todas as imagens “α” resultantes do algoritmo de
separação de planos.

Por fim, o quinto e sexto passos são a implementação do algoritmo detalhado na
seção de teoria, “Decomposição de uma Imagem Marcada”, também implementado em
Python, cujo programa baseia-se na declaração das variáveis presentes nas equações de 2.27
a 2.34, na forma de matrizes diagonais esparsas, com o auxílio da biblioteca “scipy”, para o
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sistema matricial principal 2.32 ser montado e solucionado através da função “spsolve”. As
constantes utilizadas para a resolução do problema, em todos os exemplos deste trabalho,
foram as seguintes: λI = 1; λW = 0,005; λα = 0,01; β = 1 e γ = 1. Estes valores controlam
a influência relativa de cada uma das funções avaliadoras de erro (Tabela 2), e foram
escolhidos de modo que a influência de cada uma destas funções fosse perceptível, porém
não excessiva em relação as demais.

O fim da execução do algoritmo ocorre quando se completa o número de iterações
definidas no início da execução do programa. A quantidade de repetições é definida
observando-se a qualidade da saída após cada iteração, de modo qualitativo, quando a
marca já não é mais prominente na imagem, ou quantitativamente, quando a relação
sinal-ruído da imagem ultrapassa um limiar desejado. Menos iterações são necessárias
quando a estimativa inicial já é de boa qualidade.

3.3 Criação e Aplicação de Marcas Melhoradas

Tendo o algoritmo de remoção completo, foram abordadas técnicas cujo objetivo é
o aumento da robustez de uma marca d’água frente a este algoritmo de remoção. Essas
técnicas são a aplicação de distorções geométricas no formato da marca de forma aleatória,
para que todas as imagens não compartilhem de exatamente a mesma marca, e da aplicação
da “ditherização” nas marcas, que tem o objetivo de minimizar a regularidade e suavidade
da marca, fator que é pressuposto para o bom funcionamento do algoritmo de remoção.

O detalhamento e implementação destes métodos está descrito nas seções seguintes
deste trabalho.

3.3.1 Distorções

O fundamento do algoritmo de remoção baseia-se no fato que existe apenas uma
marca que é aplicada identicamente a muitas imagens, portanto uma ideia natural para
a melhora da robustez das marcas é a alteração destas de modo que não sejam todas
idênticas. Para isto, é possível apenas a adição de ruídos simples aditivos à marca antes
de sua aplicação, contudo, alterações sutis apenas nos valores dos pixels da marca são
muito pouco eficientes frente ao algoritmo de remoção (Dekel et al., 2017), uma vez que
seu funcionamento utiliza a mediana de muitas imagens, limitando naturalmente o efeito
de ruídos aditivos aplicados.

Foram então testadas alterações geométricas aleatórias na marca. Para tal também
foram utilizados ruídos aleatórios gerados proceduralmente (Lagae et al., 2010), porém
com a finalidade de distorcer a imagem , e não como ruído aditivo.

O tipo de ruído escolhido para a execução das distorções aleatórias foi o ruído
“Perlin” (Perlin, 1985), um tipo de ruído, normalmente bidimensional, mas extensível a
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maiores dimensões, muito comumente aplicado quando deseja-se um ruído suave, isto é,
que não possui variações abruptas de um ponto a outro (Lagae et al., 2010).

A distorção é obtida utilizando o ruído Perlin 2D (Perlin, 2002) gerado como mapas
de deslocamento (“Displacement Fields”) para a imagem da marca e de seu canal α de
opacidade, antes de serem aplicados na imagem alvo. O esquema pelo qual o ruído é
adicionado como distorções na marca está representado na figura 15.

Figura 15: Esquema de aplicação de distorção

São inicialmente geradas duas imagens de ruído, uma representando o deslocamento
que os pixels da imagem alvo sofrerão na direção X, e outra na direção Y. A amplitude deste
deslocamento é definida de acordo com o valor do pixel na imagem de ruído, multiplicado
por uma constante de intensidade de distorção. Como o ruído Perlin é contínuo, pixels
próximos sofrem deslocamentos próximos, mantendo até certo ponto a integridade da
imagem. A amplitude de distorção utilizada para os testes foi de 15 pixels, e o resultado
final obtido pela função “interp2” do Matlab.

Essas imagens de ruído são geradas em resoluções menores que a final e espelhadas
até que tenham o mesmo tamanho da imagem da marca d’água. Este processo é realizado
pois quanto menor as dimensões da imagem de ruído inicial gerado, mais vezes esta terá
que ser espelhada e portanto aumentará a frequência do ruído de distorção até o nível
desejado. Este espelhamento também gera periodicidade na distorção aplicada, contudo
esta é praticamente imperceptível, salvo em casos que o ruído inicial gerado é muito menor
que a imagem alvo.

Com esta distorção cada uma das imagens recebe, portanto, uma marca estrutu-
ralmente única, a fim de melhorar sua robustez e dificultar sua remoção. Um exemplo
encontra-se na figura 16.
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Figura 16: Exemplo de marca distorcida aplicada a uma imagem

3.3.2 Efeito Dithering (“Porta de Tela”)

A segunda estratégia para o aumento da robustez das marcas está relacionada
ao fato do algoritmo de remoção pressupor que as marcas são contínuas e suaves, o que
é em geral verdade para as marcas simples utilizadas comercialmente. Para quebrar a
continuidade das imagens foi utilizado o efeito de “Dithering” nas marcas.

“Dithering” refere-se a adição intencional de ruído a uma imagem de modo seu
ruído de quantização seja aleatorizado, reduzindo, portanto, o efeito indesejado de “bandas”
visíveis na imagem, como na figura 17 de exemplo.

Figura 17: Exemplo da redução do efeito de bandas com o efeito dither, na imagem central
(Fonte: Wikipedia)

No entanto, a relevância deste método está ligada ao uso do efeito dither para a
geração de imagens “halftone” (Veryovka and Buchanan, 1999) (Sindhu, 2013). Nesta
aplicação, a quantidade de pixels ditherizados escuros em uma imagem é proporcional à
intensidade do tom de cinza na imagem de origem, gerando a impressão da existência de
muitos tons de cinza na imagem ditherizada, mesmo quando esta é apenas binária. Um
exemplo do uso deste efeito para a representação de tons de cinza está na figura 18.
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(a) Imagem em tons de
cinza original

(b) Imagem “ditherizada”
aleatoriamente

(c) Imagem “ditherizada”
regularmente

Figura 18: Exemplo do efeito Dither em imagens (Fonte: Wikipedia)

O método implementado para a melhora das marcas d’água funciona através do
efeito de transparência obtido quando uma imagem é “ditherizada”, como no exemplo da
figura 18. O objetivo é implementar o efeito de transparência “Porta de Tela” (Screen-door
Transparency) (Sen et al., 2003), que é alcançando intercalando na imagem final os pixels
visíveis entre a imagem de fundo e a imagem da marca, ditherizada.

Para tal, foram criadas máscaras de ditherização através da função “dither” do
Matlab, aplicada a imagens de tons de cinza com a intensidade desejada para a transparência
final da imagem. O efeito e aplicação destas marcas pode ser observado no esquema da
figura 19:

Figura 19: Funcionamento do efeito de transparência “Porta de Tela”
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Na figura 19 fica visível que quanto menos pixels da imagem final estiverem presentes,
maior é o efeito de transparência obtido, apesar de que na realidade cada pixel individual
da imagem final ainda possui opacidade igual a 1, isto é, total. Um exemplo da aplicação
deste método encontra-se na figura 20.

Figura 20: Exemplo de Marca Ditherizada Ordenadamente, Aplicada a uma Imagem (50%
dos Pixels)

Também foram geradas marcas ditherizadas de forma aleatória, exemplificadas pela
figura 21. Ao invés de pixels intercalados regularmente, os pixels que estarão presentes
na marca são escolhidos aleatoriamente, na proporção desejada. Devido à aleatoriedade
da marca, este método garante também que todas as marcas são diferentes umas das
outras, apesar de que com um banco de imagens suficientemente grande a mediana das
marcas tenderá rapidamente à marca original, intacta. Ambos os métodos, regular ou
aleatório, garantem que marca possui muitas descontinuidades, dificultando sua remoção
pelo algoritmo apresentado anteriormente.

Figura 21: Exemplo de Marca Ditherizada Aleatoriamente, Aplicada a uma Imagem (50%
dos Pixels)
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4 RESULTADOS

4.1 Adição de Marca D’Água

Aplicando uma marca d’água de teste a uma imagem para várias constantes de
mesclagem, obteve-se o seguinte comportamento, ilustrado na figura 22:

(a) Marca com c = 0,25 (b) Marca com c = 0,50

(c) Marca com c = 0,75 (d) Marca com c = 1,00

Figura 22: Efeito da variação da constante de mesclagem

Ou seja, quanto menor o valor da constante “c”, menos visível é a marca d’água,
algo que pode ser ideal caso o desejado seja que a marca influencie o mínimo possível
na aparência da imagem, enquanto que valores mais altos de “c” a marca obstrui muito
mais a imagem, situação que também pode ser desejável, caso o objetivo da marca seja,
além de identificar a imagem, desincentivar ao máximo seu uso não licenciado. Contudo,
o valor limite de “c = 1”, apesar de evitar a reconstrução da imagem original, em geral
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não é desejado pois toda informação visual original da imagem é perdida onde a marca é
aplicada.

O valor “c = 0,5” mostrou-se um bom ponto intermediário para a aplicação da
marca d’água, uma vez que mantêm componentes da marca e imagem original em mesma
proporção.

4.2 Estimativa e Reconstrução da Marca D’Água

Utilizando uma coleção de 48 imagens identicamente marcadas em seu centro,
foi então calculado o gradiente nas direções X e Y de todas as imagens, e em seguida a
mediana de todos esses gradientes, para cada um dos canais RGB, obtendo-se os resultados
dispostos na figura 23:

(a) Gradientes X e Y media-
nos - Canal R

(b) Gradientes X e Y media-
nos - Canal G

(c) Gradientes X e Y media-
nos - Canal B

Figura 23: Gradientes medianos obtidos

Através destes gradientes os canais RGB foram então reconstruídos individualmente,
para em seguida serem compostos na estimativa inicial da marca d’água.

(a) Intensidade do canal ver-
melho reconstruído

(b) Intensidade do canal
verde reconstruído

(c) Intensidade do canal azul
reconstruído

Figura 24: Intensidades reconstruídas dos canais R, G e B

Devido a marca d’água de teste utilizada ser branca, os três canais obtidos, apre-
sentados na figura 24, são muito semelhantes uns aos outros.
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A composição destes canais em uma imagem colorida RGB, obtida através do
processamento de 48 imagens marcadas, resulta na estimativa da figura 25, de qualidade
suficiente para uma estimativa inicial que ainda será aprimorada iterativamente:

Figura 25: Reconstrução da marca d’água obtida através do processamento de 48 imagens

Observa-se que existem imperfeições na reconstrução ao redor da marca, efeito
que é amenizado com o uso de mais imagens nesta estimação inicial, e intensificado caso
sejam usadas menos imagens, como é visível nos seguintes resultados, para reconstruções
realizadas com um número N de imagens entre apenas 2 até 48, na figura 26.

(a) N = 2 (b) N = 3 (c) N = 6

(d) N = 12 (e) N = 24 (f) N = 48

Figura 26: Estimativas da marca d’água para diferentes números de imagens processadas

Observa-se, portanto, que quanto menor o número de imagens utilizadas na estima-
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ção maior é a influência destas imagens na reconstrução final, visto que para o caso N = 2,
na sub-figura (a), elementos das imagens utilizadas são facilmente notados na reconstrução,
enquanto que com o uso de uma coleção maior de imagens este efeito indesejado é cada
vez menor e menos impactante no resultado.

O mesmo processo, utilizando as 60 imagens com a marca d’água “Adobe Stock”,
resultou na seguinte reconstrução da marca, na figura 27:

Figura 27: Marca Adobe Stock reconstruída
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4.3 Remoção da Marca D’água

4.3.1 Resultados para Marca Comercial (“Adobe Stock”)

Após o processamento do banco de 60 imagens com a marca “Adobe Stock”, com o
uso de 5 iterações do algoritmo, foram obtidos os seguintes resultados, apresentados nas
figuras 28 e 29, utilizando duas imagens como exemplo da efetividade de remoção para
esta marca d’água comercial:

(a) Imagem Marcada Original (b) Imagem Processada

(c) Imagem Marcada Original (d) Imagem Processada

Figura 28: Amostra do resultado da remoção nas imagens Adobe Stock
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(a) Imagem Marcada Original (Ampliação)

(b) Imagem Processada (Ampliação)

(c) Imagem Marcada Original (Ampliação)

(d) Imagem Processada (Ampliação)

Figura 29: Ampliação do resultado da remoção nas imagens Adobe Stock

O resultado, portanto, sendo analisado qualitativamente, atingiu um nível satisfa-
tório, de forma que para as imagens não ampliadas é muito difícil a percepção dos traços
residuais da marca. Ampliando a seção das imagens onde a remoção foi efetuada é possível
notar estes resíduos da marca como pequenas distorções de aparência sombreada e borrada,
especialmente em volta das bordas da marca. Mais exemplos dos resultados obtidos para
esta marca estão no final deste trabalho, como apêndice.

É possível que com aprimoramentos ao algoritmo de remoção que estes defeitos
se tornem ainda mais imperceptíveis, contudo, este resultado já mostra que uma im-
plementação simples do algoritmo é capaz de remover uma marca d’água comercial ao
ponto que esta não é mais facilmente reconhecível de maneira visual nas fotos. Assim, as
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fotos processadas poderiam ser utilizadas de forma não autorizada sem que o detentor
de seus direitos autorais (Adobe Stock) esteja visível na foto, destacando a existência da
vulnerabilidade destas marcas d’água.

4.3.2 Resultados para Marca Simples

Para o banco de imagens marcadas sinteticamente, foram testados os efeitos de
diferentes constantes de mesclagem no resultado final da remoção, com c = 0,25; c = 0,5 e
c = 0,75:

(a) Marca Simples c = 0,25 (b) Marca Simples c = 0,25 pós Remoção

(c) Marca Simples c = 0,5 (d) Marca Simples c = 0,5 pós Remoção

(e) Marca Simples c = 0,75 (f) Marca Simples c = 0,75 pós Remoção

Figura 30: Antes e depois da remoção para imagens marcadas de forma simples
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(a) Marca Simples c = 0,25 (b) Marca Simples c = 0,25 pós Remoção

(c) Marca Simples c = 0,5 (d) Marca Simples c = 0,5 pós Remoção

(e) Marca Simples c = 0,75 (f) Marca Simples c = 0,75 pós Remoção

Figura 31: Antes e depois da remoção para imagens marcadas de forma simples (Ampliado)

Novamente pode-se observar, nas figuras 30 e 31, que o resultado da remoção é
satisfatório para todas as constantes de mesclagem testadas, de modo que a marca d’água
é quase imperceptível em imagens não ampliadas. Contudo, como pode ser observado nas
seções ampliadas, quanto maior a constante de mesclagem mais intenso são os defeitos
visíveis após a remoção, algo esperado, uma vez que estes casos representam imagens cuja
marca tem maior impacto na imagem original. Assim, uma possível ação para a melhora
da robustez das marcas é simplesmente torná-las menos transparentes, em situações em
que a diminuição da visibilidade da imagem original é um compromisso aceitável.

Analisando estes resultados de forma quantitativa, foram calculadas as seguintes
métricas médias entre todas as 60 imagens do banco de dados, antes e depois do pro-
cessamento, em uma região central em torno da marca, em relação à imagem original
não marcada: SNR (Signal to Noise Ratio), PSNR (Peak Signal to Noise Ratio) e SSIM
(Structural Similarity Index).

O tamanho da região escolhida ao redor da marca tem influência nos valores
absolutos obtidos das métricas PSNR, SNR e SSIM, porém não influenciam a variação
encontrada entre as imagens antes e depois do processamento, contanto que a região
englobe a marca inteira. Assim, o valor principal que deve ser analisado para comparação
dos diferentes métodos é a diferença entre os valores da métrica, que representará uma
melhora ou deterioração, caso variação negativa, na imagem.

Entende-se, portanto, que a marca d’água age como um ruído na imagem limpa
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original, e o aumento dessas métricas representa a redução do efeito da marca na imagem.

Tabela 3: Métricas para Marca Simples c = 0,25

Métrica Antes de Processar Após Processar Diferença
PSNR 26,2357 dB 32,2495 dB 6,0138 dB
SNR 20,1728 dB 26,1867 dB 6,0139 dB
SSIM 0,8814 0,9485 0,0671

Tabela 4: Métricas para Marca Simples c = 0,5

Métrica Antes de Processar Após Processar Diferença
PSNR 20,2147 dB 27,1058 dB 6,8911 dB
SNR 14,1518 dB 21,0429 dB 6,8911 dB
SSIM 0,7734 0,8838 0,1104

Tabela 5: Métricas para Marca Simples c = 0,75

Métrica Antes de Processar Após Processar Diferença
PSNR 16,71 dB 24,0032 dB 7,2932 dB
SNR 10,6472 dB 17,9403 dB 7,2931 dB
SSIM 0,6935 0,8339 0,1404

Através destes dados apresentados nas tabelas 3, 4 e 5, é então observado que
quanto maior a constante de mesclagem, maior é a melhora relativa na imagem, porém
quando os resultados são comparados entre si, quanto menor esta constante, melhor é a
qualidade absoluta do resultado, visto que para o caso c = 0,25 o índice de similaridade
final obtido foi de 0,9485, indicando que a imagem processada é muito similar à imagem
original que nunca foi marcada.

Também fica claro por meio destes dados que as métricas PSNR e SNR diferem
sempre pelo mesmo valor, sendo então redundantes. Para simplificação dos resultados
apresentados seguintes serão apenas utilizadas as métricas PSNR e SSIM.

4.3.3 Resultados para Marca Distorcida (c = 0,5)

Repetindo a aplicação do algoritmo de remoção para as imagens cujas marcas
foram distorcidas aleatoriamente, são obtidos os seguintes resultados, nas figuras 32 e 33:
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(a) Imagem Com Marca Distorcida (b) Imagem Processada

Figura 32: Antes e depois da remoção para marca distorcida

(a) Imagem Com Marca Distorcida (Ampliada)

(b) Imagem Processada (Ampliada)

Figura 33: Ampliação do resultado da remoção na imagem com marca distorcida

Diferentemente do obtido anteriormente para as marcas simples não distorcidas,
desta vez o algoritmo é inefetivo na remoção da marca distorcida, de forma que esta é quase
tão visível na imagem processada quanto na imagem marcada original. Isto ocorre devido
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a impossibilidade do algoritmo estimar corretamente a marca aplicada a cada imagem,
uma vez que cada uma delas difere significativamente devido a suas distorções aleatórias,
que mostraram-se efetivas no aumento de robustez da marca frente a este algoritmo de
remoção. Quantitativamente, as seguintes métricas foram levantadas, na tabela 6:

Tabela 6: Métricas para Marca Distorcida c = 0,5

Métrica Antes de Processar Após Processar Diferença
PSNR 20,4639 dB 21,8468 dB 1,3829 dB
SSIM 0,7722 0,7919 0,0197

Ou seja, numericamente houve uma melhora menor, de apenas 1,3829 dB, após o
processamento das imagens, quando comparado ao comportamento do algoritmo para as
marcas regulares não distorcidas, que tiveram melhoras numericamente maiores e mais
significativas.
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4.3.4 Resultados para Marca Ditherizada

Para as marcas ditherizadas foram repetidos os testes alterando a transparência
dos pixels presentes da marca, entre c = 0,5 e c = 1. É importante notar que como são
aplicados apenas 50% dos pixels da marca a “transparência média”, que a marca aparenta
ter quando a imagem é vista como um todo é, de fato, metade do valor da constante c.
Ou seja, o efeito de transparência visual obtido para a situação c = 1 é similar ao visto na
marca regular com c = 0,5.

4.3.4.1 Dither regular

(a) Ditherizada Regular c = 0,5 (b) Ditherizada Regular c = 0,5 Pós Remoção

(c) Ditherizada Regular c = 0,75 (d) Ditherizada Regular c = 0,75 Pós Remoção

(e) Ditherizada Regular c = 1 (f) Ditherizada Regular c = 1 Pós Remoção

Figura 34: Antes e depois da remoção para imagens com marcas ditherizadas regularmente
(Ampliadas)

Nestes testes, apresentados na figura 34, é observado, assim como nos realizados
para a marca comum, que marcas com constante de mesclagem maiores produzem defeitos
de remoção mais visíveis, contudo, para as marcas ditherizadas estes defeitos são muito
mais pronunciados ao longo de toda a marca, e não apenas nas bordas, como anteriormente.
Mesmo para a marca bastante sutil, com c = 0,5, estes defeitos geram um efeito quadricu-
lado bastante visível na imagem processada, devido a incompatibilidade do efeito dither
com o algoritmo de remoção. Estas observações são afirmadas pelas métricas calculadas, a
seguir, nas tabelas 7, 8 e 9:
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Tabela 7: Métricas para Marca Ditherizada c = 0,5

Métrica Antes de Processar Após Processar Diferença
PSNR 23,2336 dB 26,297 dB 3,0634 dB
SSIM 0,8197 0,8509 0,0312

Tabela 8: Métricas para Marca Ditherizada c = 0,75

Métrica Antes de Processar Após Processar Diferença
PSNR 19,7286 dB 23,5306 dB 3,802 dB
SSIM 0,7551 0,8016 0,0465

Tabela 9: Métricas para Marca Ditherizada c = 1

Métrica Antes de Processar Após Processar Diferença
PSNR 17,2334 dB 21,3458 dB 4,1124 dB
SSIM 0,7052 0,7598 0,0546

Este comportamento assemelha-se ao obtido para as marcas comuns, porém com
melhoras inferiores em todas as métricas quando comparadas com as melhoras obtidas para
as marcas comuns de mesma constante de mesclagem, sem modificações, demonstrando
que a aplicação do efeito Dither gerou aumento na robustez das marcas como desejado.
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4.3.4.2 Dither aleatório

Para as marcas ditherizadas aleatoriamente, são obtidos resultados visualmente
similares aos anteriores, apresentados na figura 35, porém com defeitos de remoção de
formato irregular ao invés de quadriculado. Numericamente, os resultados das métricas de
qualidade estão nas tabelas 10, 11 e 12.

(a) Ditherizada Aleatória c = 0,5 (b) Ditherizada Aleatória c = 0,5 Pós Remoção

(c) Ditherizada Aleatória c = 0,75 (d) Ditherizada Aleatória c = 0,75 Pós Remoção

(e) Ditherizada Aleatória c = 1 (f) Ditherizada Aleatória c = 1 Pós Remoção

Figura 35: Antes e depois da remoção para imagens com marcas ditherizadas aleatoriamente
(Ampliadas)

Tabela 10: Métricas para Marca Ditherizada Aleatoriamente c = 0,5

Métrica Antes de Processar Após Processar Diferença
PSNR 23,2008 dB 24,7204 dB 1,5196 dB
SSIM 0,8215 0,8041 -0,0174

Tabela 11: Métricas para Marca Ditherizada Aleatoriamente c = 0,75

Métrica Antes de Processar Após Processar Diferença
PSNR 19,7276 dB 25,3595 dB 5,6319 dB
SSIM 0,7583 0,8542 0,0959
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Tabela 12: Métricas para Marca Ditherizada Aleatoriamente c = 1

Métrica Antes de Processar Após Processar Diferença
PSNR 17,2135 dB 23,4382 dB 6,2247 dB
SSIM 0,708 0,8234 0,1154

Analisando os resultados qualitativos e quantitativos para as marcas aleatoriamente
ditherizadas observa-se que o desempenho do algoritmo foi inferior ao obtido com as marcas
simples, tradicionais. No entanto, apenas a situação de c = 0,5 mostrou-se mais robusta
ao algoritmo quando comparada ao dither regular. Uma possível razão para este resultado
é que os defeitos adicionados devido à aleatoriedade são capazes de sobrepor a melhora
decorrente pela tentativa de remoção da marca c = 0,5, visto que, assim como observado
nos resultados anteriores, marcas de baixa opacidade fornecem menores oportunidades de
melhora, e para as situações c = 0,75 e c = 1, o efeito de remoção da marca é mais intenso
que os defeitos decorrentes da aleatoriedade.

Esta linha de raciocínio também explica a razão do resultado negativo para a
métrica SSIM no caso da marca com c = 0,5. O valor negativo indica que a qualidade
visual da imagem piorou após a execução do algoritmo, mesmo que apenas ligeiramente,
com um valor muito próximo a zero. Sua ocorrência para esta situação se deve ao fato das
imperfeições adicionadas pelo algoritmo serem de magnitude aproximadamente equivalente
ao efeito de melhora na imagem decorrente da remoção da marca. Ou seja, o efeito desejado
do algoritmo, remover a marca, está equilibrado com os efeitos indesejados adicionados
devido a irregularidade desta marca.

Logo, ambas as técnicas de dithering podem ser válidas para o aumento da robustez
das marcas d’água, uma vez que a diferença principal entre o resultado destas duas é a
aparência final dos defeitos de remoção, que podem ser regulares ou irregulares, e possuem
intensidade relacionada com a constante de mesclagem escolhida para a aplicação da
marca.

4.3.5 Outros Resultados

4.3.5.1 Marca Sólida

A maneira mais simples de marcar uma imagem é apenas sobrepor uma região
desta com a marca desejada, substituindo inteiramente seus pixels, equivalente ao uso de
uma constante de mesclagem c = 1. Isto não é um modo comum de se marcar imagens
uma vez que impacta intensamente a qualidade visual da imagem, contudo, também foi
testado o desempenho do algoritmo de remoção para essa situação, obtendo-se os seguintes
resultados, nas figuras 36 e 37:
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(a) Imagem Com Marca Sólida (b) Imagem Processada

Figura 36: Antes e depois da remoção para marca sólida

(a) Imagem Com Marca Sólida (Ampliada)

(b) Imagem Processada (Ampliada)

Figura 37: Ampliação do resultado da remoção na imagem com marca sólida

Ou seja, mesmo para uma imagem que teve alguns de seus pixels totalmente
substituídos, o algoritmo tem o comportamento de remover a marca, que é facilmente
estimada e reconstruída, e “borrar” as regiões desconhecidas de acordo com os pixels
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próximos. Embora o resultado final ainda esteja claramente marcado e apresentando
defeitos, mesmo para imagens não ampliadas, a melhora relativa entre a imagem marcada
e a processada é maior que para as marcas testadas anteriormente, como demonstrado
pelas métricas na tabela 13, a seguir:

Tabela 13: Métricas para Marca Sólida c = 1

Métrica Antes de Processar Após Processar Diferença
PSNR 11,2974 dB 19,0507 dB 7,7533 dB
SSIM 0,5642 0,7468 0,1826

Mesmo com a maior melhora relativa dos resultados, o resultado final ainda possui
a pior das relações absolutas de sinal-ruído após a execução do algoritmo. Ou seja, a
qualidade da imagem resultante é ruim quando comparada a imagens cujas marcas aplicadas
possuíam índices de mesclagem menores que 1.

4.3.5.2 Distorções e Ditherização (c = 0,75)

De maneira a melhorar ainda mais a robustez das marcas d’água foram combinados
ambas as técnicas de distorção e ditherização com c = 0,75, obtendo-se os seguintes
resultados apresentados nas figuras 38 e 39, altamente resistentes ao algoritmo de remoção:

(a) Imagem Com Marca Distorcida e Ditherizada (b) Imagem Processada

Figura 38: Antes e depois da remoção para marca distorcida e ditherizada
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(a) Marca Distorcida e Ditherizada (Ampliada)

(b) Imagem Processada (Ampliada)

Figura 39: Ampliação do Resultado da Remoção na Imagem com Marca distorcida e
ditherizada

Tabela 14: Métricas para Marca Distorcida e Ditherizada (c = 0,75)

Métrica Antes de Processar Após Processar Diferença
PSNR 19,9683 dB 20,4623 dB 0,4940 dB
SSIM 0,7541 0,7468 -0,0073

A partir das figuras 38, 39, e dos dados quantitativos na tabela 14, é visível que o
algoritmo foi inefetivo em remover esta marca que combina duas das técnicas abordadas
neste trabalho, tendo a saída do algoritmo quase idêntica a sua entrada. É necessário
considerar, no entanto, que a distorção e processamento excessivo das marcas pode torná-
las difíceis de serem lidas, logo, deve-se realizar um compromisso entre dificuldade de
remoção e clareza na marca. Uma maneira simples de controlar esta clareza é diminuir a
intensidade das distorções, que foram aplicadas intensamente nas imagens analisadas.

Para este teste a métrica SSIM teve variação negativa, novamente denotando uma
deterioração na qualidade da imagem quando quantificada por esta métrica. Esta diferença,
de -0,0073, é muito próxima de zero, e indica que o algoritmo não teve grande impacto na
direção de melhorar ou piorar a imagem. A mesma conclusão pode ser tomada a partir da
diferença de 0,4940 dB na métrica PSNR.
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4.3.5.3 Rotações Aleatórias

Por fim, foram testadas imagens cujas marcas receberam rotações aleatórias entre
+45◦ e −45◦, de modo que o algoritmo, como foi implementado, é totalmente incapaz de
estimar corretamente as marcas d’água e executar o processo de remoção, uma vez que
este pressupõe que todas as marcas estão ao menos na mesma orientação. Ao rotacionar as
marcas o algoritmo não é capaz de reconhecê-las como a mesma marca em várias imagens,
e portanto falha, estimando como marca apenas uma pequena região ao redor do ponto de
rotação, demonstrado na figura 40, e nos resultados inefetivos das figuras 41 e 42.

Figura 40: Estimativa Incorreta da Marca Aleatoriamente Rotacionada

(a) Imagem Com Marca Rotacionada (b) Imagem Processada

Figura 41: Antes e depois da tentativa de remoção de marcas aleatoriamente rotacionadas



64 Capítulo 4 Resultados

(a) Marca Rotacionada (Ampliada) (b) Imagem Processada (Ampliada)

Figura 42: Ampliação do Resultado da Tentativa de Remoção da Marca Rotacionada

Ou seja, uma maneira muito simples de aumentar a robustez de marcas d’água é a
realização de rotações aleatórias antes de sua aplicação em cada imagem. Essas rotações
também podem ser combinadas com distorções e ditherização, se desejado e necessário.

Deve-se notar que existe a possibilidade da melhora do algoritmo de remoção para
que este não pressuponha a mesma orientação de todas as marcas, contudo isto aumentaria
a complexidade e dificuldade deste algoritmo, que deveria, em algum ponto de seu processo,
alinhar todas as marcas após sua identificação por algum método que seja invariante a
rotações. Com todas as marcas alinhadas, o algoritmo poderia proceder normalmente.

Apesar de não testado neste trabalho, alterações na escala da marca aplicada devem
agir de forma análoga ao método de rotações aleatórias, impedindo que o algoritmo calcule
a estimativa inicial sem que seja adicionado um passo adicional que corrija variações
também na escala.

4.3.6 Comparação Gráfica

Para a visualização destes dados foram gerados os seguintes gráficos, nas figuras 43
e 44, para as métricas PSNR e SSIM dos resultados anteriores. Gráficos para a métrica
SNR se comportam da mesma forma que os gráficos de PSNR, com um desvio de 6,06dB
igual a todas as amostras, portanto não foram repetidos.

As barras em azul, a esquerda, representam os valores calculados antes do proces-
samento das imagens, a as barras em laranja, a direita, representam os resultados obtidos
após o processamento. A ordem dos testes representados nos gráficos é, da esquerda para
direita: Marca Sólida c = 1; Regular c = 0,75; Regular c = 0,5; Regular c = 0,25; Dither
Aleatório c = 1; Dither Aleatório c = 0,75; Dither Aleatório c = 0,5; Dither Regular c = 1;
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Dither Regular c = 0,75; Dither Regular c = 0,5; Distorções Aleatórias c = 0,5; Distorções
mais Dither Regular c = 0,75; e por fim, Rotações Aleatórias.

Figura 43: Comparação de valores de PSNR para todos os testes
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Figura 44: Comparação de valores de SSIM para todos os testes

Observa-se, então, que a melhora dos índices PSNR e SSIM é menor para as marcas
que passaram pelos processos de aumento de robustez (distorção, ditherização), que para
as marcas tradicionalmente adicionadas a imagens, que são os exemplos em que ocorreram
as maiores variações destes índices. Quase não ocorreram variações para os métodos mais
avançados de distorção e ditherização combinados, ou para o método de rotações.

Como o desempenho do algoritmo está ligado à diferença entre os valores obtidos
antes e depois do processamento, foram gerados gráficos desta diferença, apresentados nas
figuras 45 e 46, que confirmam o comportamento descrito para os diferentes métodos e
destacam a vulnerabilidade das marcas adicionadas de forma simples e tradicional, como
as imagens “Adobe Stock”, utilizadas de exemplo real e que cujas marcas foram removidas
de maneira muito bem sucedida.

Para o gráfico de variação dos valores da métrica SSIM, na figura 46, destaca-se
a presença de valores negativos e próximos de zero, que como discutido anteriormente,
representam uma deterioração da qualidade visual destas imagens após seu processamento,
quando quantificada pela métrica SSIM. Esse fenômeno ocorre quando as imperfeições
adicionadas pelo algoritmo se sobressaem em relação a eventuais melhoras decorrentes da
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tentativa de remoção da marca, e só foi presente nas situações em que a marca possuía
baixa opacidade e alta dificuldade de remoção.

Figura 45: Comparação da variação dos valores de PSNR para todos os testes
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Figura 46: Comparação da variação dos valores de SSIM para todos os testes
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5 CONCLUSÃO

Através da implementação do algoritmo de remoção de marcas d’água, foi demons-
trado que as marcas d’água comumente utilizadas para a proteção de direitos autorais
de imagens e fotografias comerciais, por grandes empresas como a Adobe Stock, são de
fato pouco robustas frente a um ataque de remoção que se aproveita da disponibilidade de
um imenso número de imagens identicamente marcadas na internet, por meio das quais
foi possível a decomposição das imagens marcadas em imagens reconstruídas limpas e em
sua marca d’água estimada, de modo que o resultado final, para estas marcas tradicionais,
possui defeitos dificilmente perceptíveis, mesmo para marcas que foram aplicadas com dife-
rentes níveis de opacidade, nas quais o algoritmo foi capaz de melhorar significativamente
suas qualidades, obtendo ganhos entre 6 e 7 dB nas métricas de qualidade SNR e PSNR.
Ou seja, este trabalho alcançou o objetivo de demonstrar esta vulnerabilidade.

Os métodos analisados de aumento da robustez das marcas d’água, por sua vez,
demonstraram que mesmo processos relativamente simples, como a ditherização em padrão
quadriculado regular, e a aplicação de distorções aleatórias foram capazes de melhorar
as marcas como também era o objetivo deste trabalho. Após a tentativa de remoção
destas marcas melhoradas, resíduos e imperfeições são imediatamente visíveis na imagem
reconstruída pelo algoritmo, algo que não era presente em tamanha intensidade para
as marcas tradicionalmente aplicadas. Além da robustez ser avaliada de forma visual e
qualitativa, esta melhora também foi validada objetivamente pelos resultados das métricas
de qualidade calculadas. Imagens que foram marcadas pela marca d’água que foi tanto
distorcida como ditherizada apresentaram um ganho na métrica SNR de apenas 0,49 dB
após a aplicação do algoritmo de remoção, uma melhora quase imperceptível, indicando
que a aplicação destas técnicas em conjunto foi capaz de inviabilizar o uso deste algoritmo
para a remoção destas marcas, e portanto melhor garante a proteção dos direitos autorais
destas imagens. Na literatura atual da área não foram encontrados bons exemplos de
marcas melhoradas com o objetivo de resistirem ataques como o descrito por Dekel et al.
(2017), em “On the Effectiveness of Visible Watermarks ”, dificultando a comparação dos
resultados obtidos neste trabalho com outras marcas d’água propostas na literatura.

Deve-se notar que sempre existirá a possibilidade do aperfeiçoamento do algoritmo
de remoção de marcas adicionando considerações prévias de possíveis variações na marca,
não só por meio das técnicas descritas e aplicadas neste trabalho, mas também de outras
possíveis transformações geométricas na marca, a exemplo das marcas aleatoriamente
rotacionadas, as quais o algoritmo de remoção não está preparado para lidar, e portanto é
ineficaz em sua remoção. Apesar desta possibilidade, uma marca d’água de maior robustez
representará uma maior barreira de esforço necessário para a sua remoção, e assim diminui
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o risco da aplicação mal-intencionada de algoritmos que busquem remover marcas de forma
sistemática e generalizada, uma vez que estes algoritmos, para apresentarem resultados
satisfatórios em marcas robustas, necessariamente serão mais complexos e lentos, tornando-
os menos viáveis para aplicação em massa.

Verificou-se então que ainda há muitas possibilidades para a melhora de marcas
d’água atualmente utilizadas, que são vulneráveis a ataques de remoção que podem
ser inteiramente automatizados, buscando de maneira autônoma imagens marcadas na
internet e removendo suas marcas. Entre estas possibilidades de melhora, a simples
distorção aleatória ou a rotação da marca antes de ser aplicada já representa um grande
passo no aumento da robustez destas marcas. Além das marcas melhoradas analisadas
neste trabalho, também podem ser estudadas em trabalhos futuros marcas d’água digitais
não visíveis que funcionem como indicadores ocultos dos direitos autorais da imagem,
bem como marcas d’água aplicadas nos diferentes domínios de uma imagem, como o da
frequência.
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Apêndice:  
Exemplos adicionais do desempenho do algoritmo de 

remoção de marcas d’água
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(a) Imagem Marcada Original (b) Imagem Processada

(c) Imagem Marcada Original (d) Imagem Processada

(e) Imagem Marcada Original (f) Imagem Processada
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(a) Imagem Marcada Original (b) Imagem Processada

(c) Imagem Marcada Original (d) Imagem Processada

(e) Imagem Marcada Original (f) Imagem Processada
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(a) Imagem Marcada Original (b) Imagem Processada

(c) Imagem Marcada Original (d) Imagem Processada

(e) Imagem Marcada Original (f) Imagem Processada
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(a) Imagem Marcada Original (b) Imagem Processada

(c) Imagem Marcada Original (d) Imagem Processada

(e) Imagem Marcada Original (f) Imagem Processada
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(a) Imagem Marcada Original (Ampliação)

(b) Imagem Processada (Ampliação)

(c) Imagem Marcada Original (Ampliação)

(d) Imagem Processada (Ampliação)

(e) Imagem Marcada Original (Ampliação)

(f) Imagem Processada (Ampliação)
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(a) Imagem Marcada Original (Ampliação)

(b) Imagem Processada (Ampliação)

(c) Imagem Marcada Original (Ampliação)

(d) Imagem Processada (Ampliação)

(e) Imagem Marcada Original (Ampliação)

(f) Imagem Processada (Ampliação)
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(a) Imagem Marcada Original (Ampliação)

(b) Imagem Processada (Ampliação)

(c) Imagem Marcada Original (Ampliação)

(d) Imagem Processada (Ampliação)

(e) Imagem Marcada Original (Ampliação)

(f) Imagem Processada (Ampliação)
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(a) Imagem Marcada Original (Ampliação)

(b) Imagem Processada (Ampliação)

(c) Imagem Marcada Original (Ampliação)

(d) Imagem Processada (Ampliação)

(e) Imagem Marcada Original (Ampliação)

(f) Imagem Processada (Ampliação)


